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Resumen

En esta tesis, presentamos las redes neuronales celulares p-adic, que son generalizaciones
matemáticas de las redes neuronales celulares clásicas (CNN) introducidas por Chua y
Yang en la década de 1980. Las nuevas redes tienen infinitas celdas que están organizadas
jerárquicamente en árboles enraizados, y también tienen infinitas capas ocultas. También
presentamos dos tipos de CNN que pueden realizar cálculos con datos reales y cuya dinámica
se puede entender casi por completo. El primer tipo puede detectar el borde de las imágenes
grises. El segundo tipo es una nueva clase de redes de reacción-difusión. Investigamos la
estabilidad de estas redes y demostramos que pueden usarse como filtros para reducir el
ruido, conservando los bordes, en imágenes contaminadas con ruido gaussiano aditivo.

Esta tesis se basa en las publicaciones [70, 71] escritas en colaboración con mi supervisor Dr.
Wilson Zúñiga-Galindo.

I



Abstract

In this thesis, we introduce the p-adic cellular neural networks, which are mathematical gen-
eralizations of the classical cellular neural networks (CNNs) introduced by Chua and Yang in
the 1980s. These new networks have infinitely many cells which are organized hierarchically
in rooted trees, and also they have infinitely many hidden layers. We also present two types
of CNNs that can perform computations with real data, and whose dynamics can be under-
stood almost completely. The first type can detect the edge of gray images. The second type
is a new class of reaction-diffusion networks. We investigate the stability of these networks
and show that they can be used as filters to reduce noise, preserving the edges, in images
polluted with additive Gaussian noise.

This thesis is based on the publications [70, 71] written in collaboration with my supervisor
Dr. Wilson Zúñiga-Galindo.
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Overview

In the late 80s, Chua and Yang introduced a new natural computing paradigm called the
cellular neural networks (or nonlinear cellular networks) CNN, which includes the cellular
automata as a particular case [17, 19, 20]. From the beginning, the CNN paradigm was in-
tended for applications such as integrated circuits. This paradigm has been highly successful
in various applications in vision, robotics, and remote sensing. See, e.g., [18, 59], and the
references therein.

In this work, we present a mathematical generalization of the CNNs of Chua and Yang called
p-adic cellular neural networks. The p-adic continuous CNNs offer a theoretical framework
to study the emergent patterns of hierarchical discrete CNNs having arbitrarily many hidden
layers.

This work was carried out in collaboration with Dr. Wilson A. Zuñiga Galindo, and it was
published in the Journal of Nonlinear Mathematical Physics, [70].

Nowadays, it is widely accepted that the analysis of ultrametric spaces is the natural tool
for formulating models where the hierarchy plays a central role. An ultrametric space (M,d)
is a metric space M with a distance satisfying d(A,B) ≤ max {d (A,C) , d (B,C)} for any
three points A, B, C in M . Ultrametricity in physics means the emergence of ultrametric
spaces in physical models. Ultrametricity was discovered in the 1980s by Parisi and others
in the theory of spin glasses and by Frauenfelder and others in the physics of proteins. In
both cases, the space of states of a complex system has a hierarchical structure that plays a
central role in the physical behavior of the system, see e.g. [21, 23, 29, 34, 41, 52, 64, 72],
and the references therein.

On the other hand, Khrennikov and his collaborators have studied neural network models
where p-state neurons take their values in p-adic numbers, see [1, 35]. These models are
entirely different from the ones considered here. In addition, Khrennikov has developed non-
Archimedean models of brain activity and mental processes, see, e.g., [31] and the references
therein.

Among the ultrametric spaces, the field of p-adic numbers Qp plays a central role. A p-adic
number is a series of the form

x = x−kp
−k + x−k+1p

−k+1 + . . .+ x0 + x1p+ . . . , with x−k ̸= 0, (0.0.1)

where p is a prime number, the xjs are p-adic digits, i.e. numbers in the set {0, 1, . . . , p− 1}.
The set of all the possible series of form (0.0.1) constitutes the field of p-adic numbers
Qp. There are natural field operations, sum and multiplication, on series of form (0.0.1),
see e.g. [37]. There is also a natural norm in Qp defined as |x|p = pk, for a nonzero p-
adic number x of the form (0.0.1). The field of p-adic numbers with the distance induced
by |·|p is a complete ultrametric space. The ultrametric property refers to the fact that

|x− y|p ≤ max
{
|x− z|p , |z − y|p

}
for any x, y, z in Qp.

We denote by GM the set of all the p-adic numbers of the form i = i−Mp−M +i−M+1p
−M+1+

· · ·+i0+ · · ·+iM−1p
M−1, where the ijs belong to {0, 1, . . . , p− 1}. Then (GM , |·|p) is a finite
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ultrametric space. Geometrically speaking, GM is a regular rooted tree with 2M layers, here
regular means that exactly p edges emanate from each vertex. We study N-dimensional,
discrete hierarchical CNNs having arbitrarily many layers. In particular, a (1-dimensional)
p-adic discrete CNN is a dynamical system of the form

∂

∂t
X(i, t) = −X(i, t) +

∑
j∈GM

A(i, j)Y (j, t) +
∑
j∈GM

B(i, j)U(j) + Z(i), (0.0.2)

i ∈ GM , where Y (j, t) = f (X(j, t)), with f(x) = 1
2
(|x+ 1| − |x− 1|). HereX(i, t), Y (i, t) ∈

R are the state, respectively the output, of cell i at the time t. The function U(i) ∈ R is the
input of the cell i, Z(i) ∈ R is the threshold of cell i, and the matrices A,B : GM ×GM → R
are the feedback operator and feedforward operator, respectively. Note that the matrices A,
B are functions on the Cartesian product of two rooted trees. The Chua-Yang CNNs are a
particular case of (0.0.2), see e.g. [18, 59].

For the sake of simplicity, we focus on space-invariant networks, i.e. in the case in which

A(i, j) = A(|i− j|p), B(i, j) = B(|i− j|p). (0.0.3)

We study the emergent patterns produced by the p-adic discrete CNNs. Since we are inter-
ested in arbitrary large trees, the description of these networks requires literally millions of
integro-differential equations, consequently, a numerical approach seems not suitable for an
exploration of the theoretical properties. Instead of this, we construct a p-adic continuous
model that can be very well approximated by (0.0.2).

Intuitively, in the space-invariant case, the continuous model corresponding to (0.0.2) is
obtained by taking the limit as M tends to infinity:

∂X(x, t)

∂t
= −X(x, t) +

∫
Qp

A(|x− y|p)Y (y, t)dy+ (0.0.4)

∫
Qp

B(|x− y|p)U(y)dy + Z(x),

with Y (x, t) = f(X(x, t)).

The study of the qualitative behavior of differential equations on large graphs is a relevant
matter due to its applications. In [47] Nakao and Mikhailov proposed using continuous mod-
els to study reaction-diffusion systems on networks and the corresponding Turing patterns.
In [74] the second author showed that p-adic analysis is the natural tool to carry out this
program. Models constructed using energy landscapes naturally drive to a large system
of differential equations (the master equation of the system), see e.g. [9, 34, 41]. p-Adic
continuous versions of some of these systems were constructed by Avetisov, Kozyrev and
others in connection with models of protein folding, see e.g. [34, 41] for a general discussion.
Another relevant system is the Eigen-Schuster model in biology, see e.g. [49]. In [73] a p-adic
continuous version of this model was introduced, this p-adic version allows to explain the
Eigen paradox. Recently Hua and Hovestadt pointed out that the p-adic number system
offers a natural representation of hierarchical organization of complex networks [29].
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We now describe in detail the results and contributions presented in this thesis. In Chapter
1 we present the essential aspects of p-adic analysis, including the definitions of the field of
p-adic numbers and the Bruhat-Schwartz space. We also define the integration over Qn

p and
the change of variables theorem. Chapter 2 introduces semilinear differential equations over
Banach spaces, a natural theory to study integro- differential Equations that describe p-adic
CNN.

Chapter 3 we present the results concern to p-adic CNN. For the sake of simplicity, in the
introduction we discuss our results in dimension one. We study the case where A(|x|p),
B(|x|p) are integrable, and U , Z are continuous functions vanishing at infinity. Under these
hypotheses the initial value problem attached to (0.0.4) with initial datum X0 (a continuous
function vanishing at infinity) has a unique solution X(x, t) which is a continuous function
vanishing at infinity in x for every t ≥ 0, satisfying |X(x, t)| ≤ Xmax, where the constant
Xmax is completely determined by A, B, U , Z and f , see Theorem 9. An analogous result
is valid for discrete CNNs, see Theorem 10.

The solution X(x, t) can be very well approximated in the ∥·∥∞-norm as∑
j∈GM

X(j, t)Ω
(
pM |x− j|p

)
.

By using standard techniques of approximation of semilinear evolution equations, we show
that the solution of the Cauchy problem attached to (0.0.2), under condition (0.0.3), is
arbitrarily close in the ∥·∥∞-norm to the solution of the Cauchy problem attached to (0.0.4),
if M is sufficiently large, see Theorem 11. This implies that the p-adic continuous CNNs
have infinitely many hidden layers, and that they are continuous versions of suitable p-adic
discrete CNNs. It is relevant to mention that equation (0.0.4) makes sense over the real
numbers, i.e., by replacing Qp by R in (0.0.4) we get an equation modeling a continuous
network. But, there are no natural discretizations of the real version of (0.0.4) that can be
interpreted as hierarchical CNNs, because the real numbers are a completely ordered field,
and thus the natural hierarchy is only the linear one.

In practical applications it is natural to assume that the radial functions A, B have com-
pact support or that they are test functions. Under this hypothesis we study the patterns
produced by p-adic continuous CNNs when U , Z and X0 are test functions. The hypoth-
esis that X0 is a test function means that at time t = 0 only certain clusters of cells are
excited. Each cluster corresponds to a p-adic ball centered at some cell with radius, say
p−L. The intensity of the excitation is the same for all cells in a given cluster. The fact that
U , Z are test functions can be interpreted in an analogous way. Let BM0 denote the ball
centered at the origin with radius pM0 , which the smallest ball containing the supports of
A, B, U , Z, X0. Then the solution X(x, t) of the initial value problem attached to (0.0.4)

is a test function supported in BM0 of the form
∑

j∈GM0
X(j, t)Ω

(
pM0 |x− j|p

)
for t ≥ 0,

with M0 ≥ L, see Theorem 8. This means that a p-adic continuous CNN produces a pattern
which is organized in a finite number of disjoint clusters, each of them supporting a time
varying pattern. We also show the existence of two steady state patterns X+(x), X−(x),
which are test functions, such that X−(x) ≤ limt→∞ X(x, t) ≤ X+(x), see Theorem 9. We
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conjecture that for generic p-adic continuous CNNs, limt→∞X(x, t) is a test function, which
means that the steady state pattern is organized in a finite number of disjoint clusters, each
of them supporting a constant pattern. This is exactly the multistability property reported
in [47], see also [74], for reaction-diffusion networks.

We have conducted a large number of numerical simulations. Such simulations require solving
integro-differential equations on a tree. The numerical study of p-adic continuous CNNs offers
two big challenges. The first, the need of dealing with matrices having millions of entries,
the second, the visualization of functions depending on p-adic variables. Due to the first
problem, we use small trees with 16 to 64 leaves. The p-adic numbers have a fractal nature,
so, it is necessary to visualize real-valued functions defined on the Cartesian product of a
fractal times the real line. To deal with this problem we systematically use heat maps which
allow us to get a glimpse of the hierarchical nature of the CNNs. Our numerical simulations
show that the solutions of continuous CNNs exhibit a very complex behavior, including self-
similarity and multistability, depending on the interaction of all the parameters defining the
network and initial datum.

In the last Chapter 4, we show that p-adic CNNs can perform computations using real data
and that the dynamics can be understood entirely. We present two types of p-adic CNNs,
one for edge detection of gray images and the other for denoising gray images polluted
with Gaussian noise. This work was carried on in collaboration with Dr. Wilson Zuñiga
Galindo, [71]. It is important to emphasize that our goal is not to produce new techniques
for image processing but to use these tasks to verify that p-adic CNNs can perform relevant
computations. On the other hand, classical CNNs have been implemented in hardware for
performing certain image-processing tasks. We have used some of the ideas introduced in
[18], but our results go in a completely new direction.

We found experimentally that p-adic CNNs of the form
∂
∂t
X(x, t) = −X(x, t) + aY (x, t) + (B ∗ U)(x) + Z(x), x ∈ Zp, t ≥ 0;

Y (x, t) = f(X(x, t)),
(0.0.5)

can be used as edge detectors. Here Zp is the p-adic unit ball, and U is an image. We develop
numerical algorithms for solving the Cauchy problem attached to (0.0.5), with initial datum
X(x, 0) = 0. The simulations show that after a time sufficiently large the network outputs a
white and black image approximating the edges of the original image U(x). The performance
of this edge detector is comparable to the Canny detector and other well-known detectors.
But most importantly, we can explain reasonably well how the network detects the edges of
an image.

We determine all the stationary states of (0.0.5), i.e., the solutions of ∂
∂t
X(x, t) = 0, for

all a ∈ R, see Lemma 8 and Theorem 12. We show that for a > 1, the set of all possible
stationary statesM of (0.0.5) has a hierarchical structure; more precisely, (M,≼) is a lattice,
where≼ is a partial order. Furthermore, we determine the set of minimal elements of (M,≼),
see Theorem 13. The dynamics of the network consists of transitions in a hierarchically
organized landscape (M,≼) toward of some minimal state. This is a reformulation of the
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classical paradigm asserting that the dynamics of a large class of complex systems can be
modeled as a random walk on its energy landscape.

We found experimentally that p-adic CNNs of the form

∂X(x, t)

∂t
= µX(x, t) + (λI −Dα

0 )X(x, t) +

∫
Zp

A(x− y)f(X(y, t))dy (0.0.6)

+

∫
Zp

B(x− y)U(y)dy + Z(x),

can be used for denoising gray images poluted with Gaussian noise. In this case, X(x, 0) is
the input image, and X(x, t0) for a suitable (typically small) t0 is the output image.

The CNN (0.0.6) is a reaction-diffusion network. The diffusion part corresponds to

∂X(x, t)

∂t
= (λI −Dα

0 )X(x, t), x ∈ Zp, t ≥ 0, (0.0.7)

here Dα
0 is the Vladimirov operator acting on functions supported in the unit ball, α >

0. The equation (0.0.7) is a p-adic heat equation in the unit ball: this means that there
is a stochastic Markov process attached to it. The paths of this stochastic process are
discontinuous. p-Adic heat equations and the associated stochastic processes have been
studied intensively in the last thirty years in connection with models of complex systems,
see, e.g., [7, 8, 21, 34, 38, 41, 63, 64, 72, 75].

The reaction term in (0.0.6) gives an estimation of the edges of the image, while the diffusion
term produces a smoothed version of the image. Under suitable hypotheses, see Theorem 14,
we show that a solution of the initial value problem attached to (0.0.6) is bounded at very
time if µ ≤ 0, otherwise, the solution is bounded by Ceµt, where C is a positive constant.
Some numerical simulations show that our filter effectively reduces the noise while preserving
the edges of the image. However, its performance is inferior to the Perona-Malik filter, see,
e.g., [57].

Finally, we want to mention that Prof. Adrei Khrenikov and his collaborators have studied
extensively the applications of p-adic analysis to image processing, see [10] and related papers
[11, 33, 40]
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Chapter 1

Essential aspects of p-adic analysis

In this document, p will be a fixed prime number. In this chapter, we present some important
results about of p-adic numbers. For an in-depth review of p-adic analysis, the reader may
consult [2, 64], and the references therein.

1.1 The field of p-adic numbers

The field of p-adic numbers Qp is defined as the completion of the field of rational numbers
Q with respect to the p−adic norm | · |p, which is defined as

|x|p =
{

0 if x = 0
p−γ if x = pγ a

b
,

where a and b are integers coprime with p. The integer γ := ord(x), with ord(0) := +∞, is
called the p−adic order of x. We extend the p−adic norm to QN

p by taking

||x||p := max
1≤i≤N

|xi|p, for x = (x1, . . . , xN) ∈ QN
p .

We define ord(x) = min1≤i≤N{ord(xi)}; then ||x||p = p−ord(x). The metric space
(
QN

p , || · ||p
)

is a complete ultrametric space. As a topological space Qp is homeomorphic to a Cantor-like
subset of the real line, see e.g. [2, 64].

Any p−adic number x ̸= 0 has a unique expansion of the form

x = pord(x)
∞∑
j=0

xjp
j,

where xj ∈ {0, 1, . . . , p− 1} and x0 ̸= 0.

1.2 Topology of QN
p

For r ∈ Z, denote by BN
r (a) = {x ∈ QN

p ; ||x− a||p ≤ pr} the ball of radius pr with center at
a = (a1, . . . , aN) ∈ QN

p , and take BN
r (0) := BN

r . Note that BN
r (a) = Br(a1)× · · · × Br(aN),

1



where Br(ai) := B1
r (ai) = {x ∈ Qp; |xi − ai|p ≤ pr} is the one-dimensional ball of radius pr

with center at ai ∈ Qp. The ball BN
0 equals the product of N copies of B0 = Zp, the ring of

p−adic integers. We also denote by SN
r (a) = {x ∈ QN

p ; ||x− a||p = pr} the sphere of radius
pr with center at a = (a1, . . . , aN) ∈ QN

p , and take SN
r (0) := SN

r . We notice that S1
0 = Z×

p

(the group of units of Zp), but
(
Z×

p

)N ⊊ SN
0 . The balls and spheres are both open and closed

subsets in QN
p . In addition, two balls in QN

p are either disjoint or one is contained in the
other.

As a topological space
(
QN

p , || · ||p
)
is totally disconnected, i.e. the only connected subsets

of QN
p are the empty set and the points. A subset of QN

p is compact if and only if it is closed
and bounded in QN

p , see e.g. [64, Section 1.3], or [2, Section 1.8]. The balls and spheres are

compact subsets. Thus
(
QN

p , || · ||p
)
is a locally compact topological space.

We will use Ω (p−r||x− a||p) to denote the characteristic function of the ball BN
r (a). For

more general sets, we will use the notation 1A for the characteristic function of a set A.

1.3 Integration over QN
p

We now review Haar’s theorem for locally compact topological groups, which allow us to
develop an integration theory over QN

p . For further details, the reader may consult [64,
Chapter 4] and [2, Chapter 3].

Theorem 1. [28, Thm B. Sec.58] Let (G,+) be a locally compact topological group. There
exists a Borel measure dx, unique up to multiplication by a positive constant, such that∫
U
dx > 0 for every non empty Borel open set U , and

∫
x+E

dx =
∫
E
dx, for every Borel set

E.

The measure dx is called a Haar measure of G. Since (Qp,+) is a locally compact topological
group, by Theorem 1, it has a Haar measure dx. We normalize this measure using the
condition

∫
Zp

dx = 1.

In the N -dimensional case, we denote by dNx the product measure dx · · · dx︸ ︷︷ ︸
N−times

. This measure

satisfies that dN(x+ a) = dnx, for a ∈ QN
p , and

∫
ZN
p
dNx = 1.

Example 1. 1.
∫
pZp

dx = p−1. Indeed,

1 =

∫
Zp

dx =

∫
⊔p−1

i=0 i+pZp

dx =

p−1∑
i=0

∫
i+pZp

dx =

p−1∑
i=0

∫
pZp

dx = p

∫
pZp

dx.

2.
∫
BN

−1
dNx = p−N .

3.
∫
SN
−1

dNx = (1− p−N), this formula is obtained as follows:

∫
SN
−1

dNx =

∫
ZN
p \BN

−1

dNx =

∫
ZN
p

dNx−
∫
BN

−1

dNx = 1− p−N .
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4.
∫
BN

r (a)
dNx = prN .

5.
∫
SN
r (a)

dNx = pr(1− p−N).

6. Let s ∈ C with Re(s) > 0. Then∫
a+plZp

|x|s−1
p dx =

{
p−ls

(
1−p−1

1−p−s

)
if a ∈ plZp

p−l |a|s−1
p if a /∈ plZp.

(1.3.1)

Indeed,

If a /∈ plZp, by changing variables x 7→ y − a we have∫
a+plZp

|x|s−1
p dx =

∫
plZp

|−a+ y|s−1
p dy = |a|s−1

p

∫
plZp

dy = p−l |a|s−1
p .

If a ∈ plZp then a+ plZp = plZp, by changing variables x 7→ ypl we have∫
a+plZp

|x|s−1
p dx = p−l

∫
Zp

∣∣ply∣∣s−1

p
dy = p−ls

∫
Zp

|y|s−1
p dy

= p−ls

∞∑
k=0

∫
Sk

|y|s−1
p dy = p−ls

∞∑
k=0

p−k(s−1)p−k(1− p−1)

= p−ls(1− p−1)
∞∑
k=0

p−ks = p−ls1− p−1

1− p−s
.

1.4 The Bruhat-Schwartz space

A real-valued function φ defined on QN
p is called locally constant if for any x ∈ QN

p there
exists an integer l(x) ∈ Z such that

φ(x+ x′) = φ(x) for x′ ∈ BN
l(x). (1.4.1)

A function φ : QN
p → R is called a Bruhat-Schwartz function (or a test function) if it is

locally constant with compact support. Any test function can be represented as a linear
combination, with real coefficients, of characteristic functions of balls. The R-vector space
of Bruhat-Schwartz functions is denoted by D(QN

p ). For φ ∈ D(QN
p ), the largest number

l = l(φ) satisfying (1.4.1) is called the exponent of local constancy (or the parameter of
constancy) of φ.

If U is an open subset of QN
p , D(U) denotes the space of test functions with supports

contained in U , then D(U) is dense in

Lρ (U) =

φ : U → R;

∫
QN

p

|φ (x)|ρ dNx


1
ρ

< ∞

 ,
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where dNx is the Haar measure on QN
p normalized by the condition vol(BN

0 ) = 1, for 1 ≤
ρ < ∞, see e.g. [2, Section 4.3]. In the case U = QN

p , we will use the notation Lρ instead

of Lρ
(
QN

p

)
. For an in depth discussion about p-adic analysis the reader may consult [2, 38,

62, 64].

1.5 The Spaces X∞, XM

We define X∞(QN
p ) := X∞ =

(
D(QN

p ), ∥·∥∞
)
, where ∥ϕ∥∞ = supx∈QN

p
|ϕ(x)| and the bar

means the completion with respect the metric induced by ∥·∥∞. Notice that all functions in
X∞ are continuous and that

X∞ ⊆ C0 :=
({

f : QN
p → R; f continuous with lim

∥x∥p→∞
f (x) = 0

}
, ∥·∥∞

)
.

On the other hand, since D(QN
p ) is dense in C0, cf. [62, Chap.II, Proposition 1.3], we conclude

that X∞ = C0.

For M ≥ 1, we set GN
M := BN

M/BN
−M , which is a finite additive group with #GN

M := p2NM

elements. Any element i = (i1, . . . , iN) of G
N
M can be represented as

ij = ij−Mp−M + ij−M+1p
−M+1 + . . .+ ij0 + ij1p+ . . .+ ijM−1p

M−1, (1.5.1)

for j = 1, . . . , N , with ijk ∈ {0, 1, . . . , p− 1}. From now on, we fix a set of representatives in
QN

p for GN
M of the form (1.5.1). Notice that

ij = p−M
(
aj
0 + aj

1p+ · · ·+ aj
2M−1p

2M−1
)
,

where aj
0 + aj

1p+ · · ·+ aj
2M−1p

2M−1 ∈ Zp/p
2MZp = B0/B−2M .

The characteristic functions of the balls BN
−M(i) for i ∈ GN

M{
Ω
(
pM ∥x− i∥p

)}
i∈GN

M

(1.5.2)

are orthogonal with respect to the standard L2 inner product, since

Ω
(
pM ∥x− i∥p

)
Ω
(
pM ∥x− j∥p

)
= 0, for i, j ∈ GN

M , i ̸= j and for any x ∈ BN
M .

We denote by DM
(
QN

p

)
:= DM the R-vector space spanned by (1.5.2). We set

XM :=
(
DM , ∥·∥∞

)
for M ≥ 1.

Notice that XM is isomorphic as a Banach space to
(
R#GN

M , ∥·∥R
)
, where∥∥∥(t1, . . . , t#GN

M

)∥∥∥
R
= max

1≤j≤#GN
M

|tj| .
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1.6 Tree-like structures and p-adic numbers

Take N = 1 and fix M ∈ N∖ {0}, then G1
M := GM = p−MZp/p

MZp is an additive group
consisting of elements of the form

i = i−Mp−M + i−M+1p
−M+1 + · · ·+ i0 + · · ·+ iM−1p

M−1, (1.6.1)

where the ij belong to {0, 1, . . . , p− 1}. Furthermore, the restriction of |·|p to GM induces

an absolute value such that |GM |p =
{
0, p−(M−1), · · · , p−1, 1, · · · , pM

}
. We endow GM with

the metric induced by |·|p, and thus GM becomes a finite ultrametric space. In addition, GM

can be identified with the set of branches (vertices at the top level) of a rooted tree with

2M + 1 levels and p2M branches. Any element i ∈ GM can be uniquely written as p−M ĩ,
where

ĩ = ĩ0 + ĩ1p+ · · ·+ ĩ2M−1p
2M−1 ∈ Zp/p

2MZp,

with the ĩjs belonging to {0, 1, . . . , p− 1}. The elements of the Zp/p
2MZp are in bijection

with the vertices at the top level of the above mentioned rooted tree. By definition the
root of the tree is the only vertex at level 0. There are exactly p vertices at level 1, which
correspond with the possible values of the digit ĩ0 in the p-adic expansion of ĩ. Each of these
vertices is connected to the root by a non-directed edge. At level ℓ, with 1 ≤ ℓ ≤ 2M , there
are exactly pℓ vertices, each vertex corresponds to a truncated expansion of ĩ of the form
ĩ0 + · · ·+ ĩℓ−1p

ℓ−1. The vertex corresponding to ĩ0 + · · ·+ ĩℓ−1p
ℓ−1 is connected to a vertex

ĩ
′
0+ · · ·+ ĩ

′
ℓ−2p

ℓ−2 at the level ℓ−1 if and only if
(
ĩ0 + · · ·+ ĩℓ−1p

ℓ−1
)
−
(
ĩ
′
0 + · · ·+ ĩ

′
ℓ−2p

ℓ−2
)

is divisible by pℓ−1.

In conclusion, Zp/p
2MZp is a rooted tree, and Zp is an infinite rooted tree. Now, the 1-

dimensional unit sphere Z×
p is the disjoint union of sets of the form j + pZp, for j ∈

{1, . . . , p− 1}. Each set of the form j + pZp is an infinite rooted tree. Then, Z×
p is a

forest formed by the disjoint union of p − 1 infinite rooted trees. On the other hand,
Q×

p = Qp ∖ {0} is a countable disjoint union of scaled versions of the forest Z×
p , more

precisely, Q×
p =

⊔k=+∞
k=−∞pkZ×

p . The field of p-adic numbers has a fractal structure, see e.g.
[2, 64].
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Figure 1.1: The rooted tree associated with the group Z2/2
3Z2. We identify the ele-

ments of Z2/2
3Z2 with the set of integers {0, . . . , 7} with binary representation i =

i0 + i12 + i32
2, i0, i1, i2 ∈ {0, 1}. Two leaves i, j ∈ Z2/2

3Z2 have a common ancestor
at level 2 if and only if i ≡ j mod 22, i.e., i = a0 + a12 + i22

2 and j = a0 + a12 + j22
2

with i2, j2 ∈ {0, 1}. Now, for i, j ∈ Z2/2
3Z2 have a common ancestor at level 1 if and

only if i ≡ j mod 2. Notice that that the p-adic distance satisfies − log2 |i− j|2 =
(level of the first common ancestor of i, j).
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Chapter 2

Semilinear differential equations

This chapter will regard the main ideas about semi-linear partial differential equations that
we will apply during all the remaining chapters. The explanation is based on the reference
[46, Chapter 4, Chapter 5], [67, Chapter 1, Chapter 2].

Through this chapter, X will denote a Banach space over K = R or C with norm ∥ · ∥.

For a linear operator A : Dom(A) ⊆ X → X we denote ρ(A) as the resolvent of A, i.e., all
λ ∈ K such that R(λ,A) := (λI − A)−1 : X → Dom(A) exists and is bounded. We denote
σ(A) := K \ ρ(A) as the spectrum of A.

2.1 Strongly continuous semigroups

In this section, we will summarize the theory of strongly continuous semigroups.

Definition 1. Let {T (t)}t≥0 be a family of bounded linear operators on X. {T (t)}t≥0 is
called a strongly continuous semigroup or C0-semigroup if

� T0 is the identity I.

� For all t, s ≥ 0, T (t)T (s) = T (s+ t).

� For all x ∈ X, limt→0+ ∥T (t)x− x∥ = 0.

Given a strongly continuous semigroup {T (t)}t≥0, its infinitesimal generator A is defined as

x ∈ Dom(A) if and only if limt→0+
T (t)x−x

t
exists and Ax is the limit.

Theorem 2. Assume that {T (t)}t≥0 is a strongly continuous semigroup with infinitesimal
generator A. Then

1. There exist constants w ∈ R and M ≥ 0 such that

∥T (t)∥ ≤ Mewt for t ≥ 0.
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2. For x ∈ X and t ≥ 0, we have
∫ t

0
T (s)xds ∈ Dom(A) and

T (t)x− x = A

(∫ t

0

T (s)xds

)
.

3. For all x ∈ Dom(A) an t ≥ 0, T (t)x ∈ Dom(A) and

dT (t)x

dt
:= lim

h→0

T (t+ h)x− T (t)x

h
= AT (t)x = T (t)Ax.

4. Dom(A) is dense in X and A is a closed linear operator, i.e., {(x,Ax); x ∈ Dom(A)}
is closed in X ×X.

5. For every x ∈ Dom(A) and t ≥ s ≥ 0

T (t)x− T (s)x =

∫ t

s

T (τ)Axdτ =

∫ t

s

AT (τ)xdτ.

The following well-known theorem due to Hill-Yosida-Phillips tells us how we can identify
whether an operator A is the infinitesimal generator of a strongly continuous semigroup.

Theorem 3 (Hill-Yosida-Phillips). A linear operator A is the infinitesimal generator of a
strongly continuous semigroup {T (t)}t≥0 satisfying ∥T (t)∥ ≤ Mewt if and only if

1. A is a closed operator and Dom(A) is dense in X, and either

2a. (w,∞) ⊆ ρ(A) and

∥R(λ,A)∥ ≤ M

(λ− w)n
for λ > w

or

2b. ρ(A) contains complex numbers λ with Re(λ) > w and

∥R(λ,A) ≤ M

(Reλ− w)n
for Reλw.

There is a more direct relation between a strongly continuous semigroup {T (t)}t≥0 and the
resolvent operator R(λ,A) of its infinitesimal generator given by:

1. Integral formula

R(λ,A) =

∫ ∞

0

e−λsT (s)ds if Reλ > w

2. Exponential formula

T (t)x = lim
n→∞

(I − t/nA)−n x

for all x ∈ X, and the convergence is uniform in t.

8



2.2 Semilinear partial differential equations

Now we consider the theory of semilinear partial differential equations where one study
abstract Cauchy problems such as{

dX(t)
dt

= AX(t) + F (X, t), if t > 0
X(0) = X0

(2.2.1)

where A is the infinitesimal generator of a strongly continuous semigroup {T (t)}t≥0, X0 ∈ X
and F : X × [0, τ) → X for some ∞ ≥ τ > 0.

Remark 1. A continuous functions X : [0, τ) → X is called a classical solution of 2.2.1 if
and only if

1. X(0) = X0 for all x ∈ X.

2. X(t) is continuously differentiable for t > 0.

3. X(t) ∈ Dom(A) for t > 0.

4. Satisfies 2.2.1

Theorem 4. Let A be a densely defined linear operator with a non-empty resolvent set ρ(A).
The initial value problem 2.2.1 with F = 0 has a unique solution X(t) : [0,∞) → X for
every X0 ∈ Dom(A) if and only if A is the infinitesimal generator of a strongly continuous
semigroup.

In general, it is hard to find a classical solution of 2.2.1 thus, we are satisfied with finding
a weaker solution called a mild solution. The existence of such a solution, up to some
hypothesis, is given by the following theorem.

Theorem 5. Let F : [0, τ ]×X → X be continuous and satisfy a Lipschitz condition

∥F (t, ϕ)− F (t, ϕ′)∥ ≤ L∥ϕ− ϕ′∥, t ∈ [0, τ), ϕ, ϕ′ ∈ X, L ≥ 0.

Assume that {T (t)}t≥0 is a strongly continuous semigroup on X satisfying ∥T (t)∥ ≤ Mewt

for t ≥ 0. Then for a given X0 ∈ X, there exists a unique function X : [0, τ) → X which
solves the following abstract integral equation,

X(t) = T (t)X0 +

∫ t

0

T (t− s)F (s,X(s))ds. (2.2.2)

Such an X is called the mild solution of 2.2.1.

2.3 Approximation for Semilinear differential Equations

We shall approximate the solution of 2.2.1 without any a priori information of X. We will
seek approximations on spaces Xn of X, which are usually finite dimensional.

In this section, we assume that
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A. X1, X2, . . . are all Banach spaces over K. We will denote all theirs norms as ∥ · ∥.

B. There exist p, q ≥ 0 and bounded linear operators Pn : X → Xn and En : Xn → X for
each n ≥ 1 such that ∥Pn∥ ≤ p and ∥En∥ ≤ q.

C. For all x ∈ X and n ≥ 1, PnEnx = x.

D. There exist M ≥ 0, w ∈ R and bounded linear operators An : Xn → Xn such that
∥eAnt∥ ≤ Mewt for all t ≥ 0.

E. A is a densely defined linear operator in X, λ0 ∈ (w,∞) ∩ ρ(A) and

lim
n→∞

∥AnPnx− PnAx∥ = lim
n→∞

∥EnPnx− x∥ = 0; for all x ∈ X.

Lemma 1. For all x ∈ Dom(A)

lim
n→∞

∥En(An − λ0)
−1Pnx− (A− λ0)

−1x∥ = 0.

Theorem 6. Under the hypothesis of this section. A is the infinitesimal generator of a
strongly continuous semigroup {T (t)}t≥0. Moreover, ∥T (t)∥ ≤ pqMewt for t ≥ 0 and

lim
n→∞

sup
t≥0

e−bt∥Rne
AntPnx− T (t)x∥ = 0

for all x ∈ X and b ∈ (w,∞) ⊆ ρ(A).

Now we also assume a Lipschitz condition for the non-linearity for a abstract Couchy problem.
More precisely,

F. Assume that F : [0, τ ]×X → X is continuous, τ ∈ (0,∞), and there exists L ≥ 0 such
that

∥F (t, x)− F (t, x′)∥ ≤ L∥x− x′∥; for all x ∈ X, t ∈ [0, τ ].

Given X0 ∈ X, let X : [0, τ ] → X be the mild solution of 2.2.1, and let Xn the solution of{
Xn

dt
= AnXn + PnF (t, ENXn), t > 0,

Xn(0) = PnX0
(2.3.1)

Theorem 7. Under the hypothesis and notation we have introduced,

lim
n→∞

sup
0≤t≤τ

∥EnXn(t)−X(t)∥ = 0. (2.3.2)
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Chapter 3

p-adic Cellular Neural Networks

We introduce the p-adic cellular neural networks which are mathematical generalizations
of the classical cellular neural networks (CNNs) introduced by Chua and Yang. The new
networks have infinitely many cells which are organized hierarchically in rooted trees, and
also they have infinitely many hidden layers. Intuitively, the p-adic CNNs occur as limits
of large hierarchical discrete CNNs. More precisely, the new networks can be very well
approximated by hierarchical discrete CNNs. Mathematically speaking, each of the new
networks is modeled by one integro-differential equation depending on several p-adic spatial
variables and the time. We study the Cauchy problem associated to these integro-differential
equations and also provide numerical methods for solving them.

3.1 p-Adic CNNs: basic definitions

We say that a function f : R → R is called a Lipschitz function if there exists a real constant
L(f) > 0 such that, for all x, y ∈ R, |f(x)− f(y)| ≤ L(f)|x− y|. A relevant example is

f(x) =
1

2
(|x+ 1| − |x− 1|) .

3.1.1 p-Adic discrete CNNs

By considering GN
M as a subset of QN

p ,
(
GN

M , ∥·∥p
)
becomes a finite ultrametric space.

Definition 2. An element i of GN
M is called a cell. A p-adic discrete CNN is a dynamical

system CNNd(A,B, U, Z) on GN
M . The state Xi(t) ∈ R of cell i at time t is described by the

following differential equations:

(i) state equation:

dX(i, t)

dt
= −X(i, t) +

∑
j∈GN

M

A(i, j)Y (j, t) +
∑
j∈GN

M

B(i, j)U(j) + Z(i), i ∈ GN
M ,
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Figure 3.1: The heat map associated with the p-adic distance function on Z2/2
3Z2.

(ii) output equation:
Y (j, t) = f(X(j, t)),

where Y (i, t) ∈ R is the output of cell i at the time t, f : R → R is a bounded
Lipschitz function satisfying f(0) = 0. The function U(i) ∈ R is the input of the cell i,
Z(i) ∈ R is the threshold of cell i, and A,B : GN

M ×GN
M → R are the feedback operator

and feedforward operator, respectively.

Not all the cells of GN
M are active. A cell i is connected with cell j if A(i, j) ̸= 0 or B(i, j) ̸= 0

for some j ∈ GN
M . Then, a p-adic discrete CNN is a dynamical system on

CN,M :=
{
i ∈ GN

M ;A(i, j) ̸= 0 or B(i, j) ̸= 0 for some j ∈ GN
M

}
.

The topology of a p-adic discrete CNN depends on the functions A, B : GN
M ×GN

M → R. For
general matrices A, B, it is difficult to give a graph-type description of the topology of the
network. Our p-adic CNNs contain as a particular case the CNNs of Chua and Yang, see
e.g. [18], [59]. In this article we focus on p-adic CNNs satisfying

A(i, j) = A(∥i− j∥p), B(i, j) = B(∥i− j∥p), (3.1.1)

which are discrete CNNs having the space-invariant property. The fact that A and B are
radial functions of ∥·∥p implies that the cells are organized in a tree like-structure with many
layers.

3.1.2 p-Adic continuous CNNs

Definition 3. Given A(x, y), B(x, y) ∈ L1(QN
p ×QN

p ), and U , Z ∈ X∞, a p-adic continuous
CNN, denoted as CNN(A,B, U, Z), is the dynamical system given by the following differential
equations: (i) state equation:

∂X(x, t)

∂t
= −X(x, t) +

∫
QN

p

A(x, y)Y (y, t)dNy +

∫
QN

p

B(x, y)U(y)dNy + Z(x), (3.1.2)
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Figure 3.2: A 1-dimensional discrete 2-adic CNN with 8 cells: C1,3 = {0, 1, 2, 3, 4, 5, 7} ⊂
Z2/2

3Z2 ⊂ 2−3Z2/2
3Z2. We set B = 0 and A(i, j) = [ai,j ], with ai,j ̸= 0 if |i− j|2 = 1/2 and

i, j ∈ C1,3; ai,j = 0 otherwise.

where x ∈ QN
p , t ≥ 0, and (ii) output equation: Y (x, t) = f(X(x, t)), f : R → R is a bounded

Lipschitz function satisfying f(0) = 0. We say that X(x, t) ∈ R is the state of cell x at the
time t, Y (x, t) ∈ R is the output of cell x at the time t. Function A(x, y) is the kernel of the
feedback operator, while function B(x, y) is the kernel of the feedforward operator. Function
U is the input of the CNN, while function Z is the threshold of the CNN.

We focus mainly in continuous CNNs having the space invariant property, i.e. A(x, y) =
A(∥x−y∥p) and B(x, y) = B(∥x−y∥p) for some A,B ∈ L1, however our results are valid for
general p-adic continuous CNNs. Along this chapter the function f(x) = 1

2
(|x+ 1| − |x− 1|)

will be fixed, for this reason it does not appear in the list of parameters of the CNNs.

3.1.3 Discretization of p-adic continuous CNNs

A central result of the present work is the fact that p-adic continuous CNNs are ‘continu-
ous versions’ of p-adic discrete CNNs. More precisely, p-adic discrete CNNs are very good
approximations of p-adic continuous CNNs for sufficiently large M . We discuss here the
discretization process in an intutive way (a formal theorem will be provided later on, see
Theorem 11).

Intuitively, a discretization of a p-adic continuous CNN(A,B, U, Z) is obtained assuming
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Figure 3.3: A 1-dimensional 3-adic CNN with 7 cells, C1,2 = {0, 1, 2, 3, 4, 5, 6} ⊂ Z3/3
2Z3 ⊂

3−2Z3/3
2Z3. We set B = 0 and A(i, j) = [ai,j ], with ai,j ̸= 0 if |i − j|3 = 1 and i, j ∈ C1,2;

ai,j = 0 otherwise.

that X(·, t), A, Y (·, t), B, U and Z belong to DM (see Section 1.5), i.e.

X(x, t) =
∑
i∈GN

M

X(i, t)Ω
(
pM ∥x− i∥p

)
, Y (x, t) =

∑
i∈GN

M

Y (i, t)Ω
(
pM ∥x− i∥p

)
,

U(x) =
∑
i∈GN

M

U(i)Ω
(
pM ∥x− i∥p

)
, Z(x) =

∑
i∈GN

M

Z(i)Ω
(
pM ∥x− i∥p

)
,

A(x, y) =
∑
i∈GN

M

∑
j∈GN

M

A(i, j)Ω
(
pM ∥x− i∥p

)
Ω
(
pM ∥y − j∥p

)
,

B(x, y) =
∑
i∈GN

M

∑
j∈GN

M

B(i, j)Ω
(
pM ∥x− i∥p

)
Ω
(
pM ∥y − j∥p

)
.

Notice that if f : R → R, then

f (X(x, t)) =
∑
i∈GN

M

f(X(i, t))Ω
(
pM ∥x− i∥p

)
= Y (x, t).

Now,

∂

∂t
X(x, t) =

∑
i∈GN

M

∂

∂t
X(i, t)Ω

(
pM ∥x− i∥p

)
,
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and ∫
QN

p

A(x, y)f (X(y, t)) dNy

=
∑
i∈GN

M


∑
j∈GN

M

A(i, j)f(X(j, t))

∫
QN

p

Ω
(
pM ∥y − j∥p

)
dNy

Ω
(
pM ∥x− i∥p

)

= p−MN
∑
i∈GN

M

∑
j∈GN

M

A(i, j)Y (j, t))

Ω
(
pM ∥x− i∥p

)
.

Similarly,

∫
QN

p

B(x, y)U(y)dNy = p−MN
∑
i∈GN

M

∑
j∈GN

M

B(i, j)U(j))

Ω
(
pM ∥x− i∥p

)
.

Therefore,

∂

∂t
X(i, t) = −X(i, t) +

∑
j∈GN

M

p−MNA(i, j)Y (j, t)

+
∑
j∈GN

M

p−MNB(i, j)U(j) + Z(i), for i ∈ GN
M ,

and Y (i, t) = f(X(i, t)), for i ∈ GN
M . This is exactly a p-adic discrete CNN with A(i, j) =

p−MNA(i, j), B(i, j) = p−MNB(i, j).

Intuitively a p-adic continuous CNN has infinitely many layer. Each layer corresponds to
some M , and the layers are organized in a hierarchical structure. For practical purposes, a
p-adic continuous CNN is realized as a p-adic discrete CNN for M sufficiently large.

3.2 Stability of p-adic continuous CNN

Lemma 2. Let f be a Lipschitz function on R with f(0) = 0 and let E be a radial function
in L1(QN

p ). Then, the mappings

F0 : g →
∫
QN

p

E(∥x− y∥p)f(g(y))dNy

F1 : g →
∫
QN

p

E(∥x− y∥p)g(y)dNy

are well defined bounded operators from X∞ into itself.
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Proof. We first notice that for all g ∈ X∞, F0(g)(x) exists for all x ∈ QN
p , since

|E(∥y∥p)| |f(g(x− y))| ≤ L(f)∥g∥∞ |E(∥y∥p)| , (3.2.1)

where E(∥y∥p) ∈ L1(QN
p ). To show the continuity of F0(g)(x), we take a sequence {xm}m∈N ⊂

QN
p such that xm → x. By using (3.2.1) and the dominated convergence theorem,

limm→∞ F0(g)(xm) = F0(g)(x). Finally, we show that F0(g) ∈ X∞. By contradiction, assume
that F0(g) ̸∈ X∞. Then, there is a sequence {xm}m∈N ⊂ QN

p such that limm→∞ ∥xm∥p = ∞
and ϵ > 0 such that F0(g)(xm) > ϵ for all m ∈ N. By using (3.2.1) and the dominated
convergence theorem, we have

ϵ ≤ lim
m→∞

|F0(g)(xm)| = lim
m→∞

∣∣∣∣∣
∫
QN

p

E(∥y∥p)f(g(xm − y))dNy

∣∣∣∣∣
=

∣∣∣∣∣
∫
QN

p

E(∥y∥p)
{

lim
m→∞

f(g(xm − y))
}
dNy

∣∣∣∣∣ = 0

which contradicts the fact ϵ > 0. The same argument allow us to show that F1(g) ∈ X∞ for
any g ∈ X∞.

Lemma 3. Assume A,B ∈ L1(QN
p ) are radial functions and that U , Z ∈ X∞. For g ∈ X∞,

set

H(g)(x) :=

∫
QN

p

A(∥x− y∥p)f (g(y)) dNy +

∫
QN

p

B(∥x− y∥p)U(y)dNy + Z(x).

Then H : X∞ → X∞ is a well-defined operator satisfying

∥H(g)−H(g′)∥∞ ≤ L(f)∥A∥1∥g − g′∥∞, for g, g′ ∈ X∞,

where L(f) is the Lipschitz constant of f .

Proof. By Lemma 2, H : X∞ → X∞ is a well-defined operator. Take g, g′ ∈ X∞, then

|H(g)(x)−H(g′)(x)| =

∣∣∣∣∣∣∣
∫
QN

p

A(∥x− y∥p)
(
f (g(y))− f

(
g′(y)

))
dNy

∣∣∣∣∣∣∣
≤
∫
QN

p

|A(∥x− y∥p)||f (g(y))− f
(
g′(y)

)
|dNy ≤ L(f)∥g − g′∥∞

∫
QN

p

|A(∥x− y∥p)|dNy

= L(f)∥A∥1∥g − g′∥∞.

Remark 2. (i) Lemma 2 remains valid if we replace the condition E is radial and integrable
by the condition E(x, y) is a continuous function with compact support.
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(ii) Under the hypothesis of part (i), Lemma 3 is valid for operators of the form

Lg(x) =

∫
QN

p

A(x, y)f (g(y)) dNy +

∫
QN

p

B(x, y)U(y)dNy + Z(x),

for g ∈ X∞.

Proposition 1. Assume that A, B ∈ L1(Zp), and that U , Z ∈ X∞. Let τ be a fixed positive
real number. Then for each X0 ∈ X∞ there exists a unique X ∈ C([0, τ ],X∞) which satisfies

X(x, t) = e−tX0 (x) +

∫ t

0

e−(t−s)H(X(x, s))ds (3.2.2)

where

HX(x, t) =

∫
QN

p

A(∥x− y∥p)f(X(y, t))dNy +

∫
QN

p

B(∥x− y∥p)U(y)dNy + Z(x). (3.2.3)

The function X(x, t) is differentiable in t for all x, and it is a solution of equation (3.1.2)
with initial datum X0.

Proof. The result follows from Lemma 3, by using standard techniques in PDEs, see e.g.
[46, Theorem 5.1.2]. To make the treatment comprehensive, we provide some details here.
First, define

T (Y ) = X0e
−t +

∫ t

0

e−(t−s)H(Y (x, s))ds,

and Y = C([0, τ ],X∞) which is a Banach space with the norm ∥ · ∥∞. By Lemma 3, T : Y →
Y . If Y , Y1 ∈ Y , then

∥T (Y )(t)− T (Y1)(t)∥∞ =

∥∥∥∥∫ t

0

e−(t−s) {H(Y )(s)−H(Y1)(s)} ds
∥∥∥∥
∞

≤
∫ t

0

e−(t−s)∥H(Y )(s)−H(Y1)(s)∥∞ ds ≤ L(f)∥A∥1
∫ t

0

∥Y − Y1∥∞ds.

Now, for M ≥ 1, it verifies that

∥TM(Y )(t)− TM(Y1)(t)∥∞ ≤ τML(f)M∥A∥M1
M !

∥Y − Y1∥∞,

By the Stirling approximation formula forM !, it holds that 0 <
τML(f)M∥A∥M1

M !
< 1 for someM

sufficiently large, and by the contraction mapping theorem applied to TM , there is a unique
X ∈ Y which T (X) = X, see e.g. [46, Theorem 1.1.3]. Moreover, since the right-hand side
of (3.2.2) is differentiable in t, X is a solution of (3.1.2) with initial condition.

Remark 3. The contraction mapping theorem provides an iterative formula for approximat-
ing X(x, t). Set X1(x, t) = X0 (x) and

XL+1(x, t) = e−tX0 (x) +

∫ t

0

e−(t−s)H(XL(x, s))ds, for L = 1, 2, . . . ,

then limL→∞ ∥XL (·, t)−X (·, t) ∥∞ = 0 for each t ≤ τ , see e.g. [46, Theorem 5.2.2].
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Theorem 8. Assume A, B ∈ L1(p−M0ZN
p ) are radial functions, for some M0 ∈ N, and that

U , Z, X0 ∈ XM0. Then there is a unique X ∈ C([0, τ ],XM0) ∩ C1([0, τ ],XM0) satisfying
(3.2.2), which is a solution of equation (3.1.2) with initial datum X0.

Remark 4. This theorem remains valid if A(x, y), B(x, y) are continuous functions with
compact support, see Remark 2.

Proof. Since XM0 is a subspace of X∞, by applying Proposition 1, there exists a unique
X ∈ C([0, τ ],X∞)∩C1([0, τ ],X∞) that satisfies all the announced properties. By Remark 3,
limL→∞ ∥XL (·, t)−X (·, t) ∥∞ = 0, where

XL+1(x, t) = e−tX0 (x) +

∫ t

0

e−(t−s)H(XL(x, s))ds, for L = 1, 2, . . . .

By induction on L, if XL(·, s) ∈ XM0 , i.e. if

XL(x, s) =
∑

i∈GN
M0

XL(i, s)Ω
(
pM0 ∥x− i∥p

)
,

f(XL(x, s)) =
∑

i∈GN
M0

YL(i, s)Ω
(
pM0 ∥x− i∥p

)
by using that∫ t

0

e−(t−s)H(XL(x, s))ds

=
∑

i∈GN
M0

(∫ t

0

e−(t−s)YL(i, s)ds

)∫
QN

p

A(∥x− y∥p)Ω
(
pM0 ∥y − i∥p

)
dNy


+
∑

i∈GN
M0

U(i)(1− e−t)

∫
QN

p

B(∥x− y∥p)Ω
(
pM0 ∥y − i∥p

)
dNy

+
∑

i∈GN
M0

(1− e−t)Z(i)Ω
(
pM0 ∥x− i∥p

)
,

and that for any E ∈ L1(p−M0ZN
p ) are radial function, with the convention that the support

of E is the ball p−M0ZN
p ,∫

QN
p

E(∥x− y∥p)Ω
(
pM0 ∥y − i∥p

)
dNy =

∫
i+pM0ZN

p

E(∥x− y∥p)dNy

=


0 if x /∈ p−M0ZN

p∫
pM0ZN

p

E(∥z∥p)dNz if x ∈ i+ pM0ZN
p

p−M0NE(∥i− j∥p) if x ∈ j + pM0ZN
p , i ̸= j,
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we conclude that

XL+1(x, t) = e−tX0 (x)+ (3.2.4)

∑
j∈GN

M0


∑

i∈GN
M0

i ̸=j

a (i, t) p−M0NA(∥i− j∥p)

Ω
(
pM0 ∥y − j∥p

)
+

∑
j∈GN

M0

a (j, t)

 ∫
pM0ZN

p

A(∥z∥p)dNz

Ω
(
pM0 ∥y − j∥p

)
+

∑
i∈GN

M0


∑

i∈GN
M0

i ̸=j

U(i)(1− e−t)B(∥i− j∥p)

Ω
(
pM0 ∥y − j∥p

)
+

∑
i∈GN

M0

U (j) (1− e−t)

 ∫
pM0ZN

p

B(∥z∥p)dNz

Ω
(
pM0 ∥y − j∥p

)
+ (1− e−t)Z(i),

i.e. XL+1(·, s) ∈ XM . Consequently, {XL(·, t)}L∈N∖{0} is a sequence in XM . Since XM is
closed in X∞, X (·, t) ∈ XM for any t ≤ τ .

Remark 5. By using that

pMN

∫
pMZN

p

A(∥z∥p)dNz → A(0), pMN

∫
pMZN

p

B(∥z∥p)dNz → B(0)

as M → ∞, see e.g. [62, Theorem 1.14], (3.2.4) provides an explicit approximation of the
continuous CNN described in Theorem 8.

Lemma 4. Let τ be a fixed positive real number, let X(x, t) be the solution given in Propo-
sition 1, with X(x, 0) = X0. Then, for all x, y ∈ QN

p and t ∈ (0, τ),

|X(x, t)−X(y, t)| ≤ |X0(x)−X0(y)|e∥A∥1L(f)t.

Moreover, if X0 is a locally-constant function, i.e. X0(x) = X0(y) for y ∈ Bl(x), with
l = l(x) ∈ Z, for any x ∈ QN

p , then X(·, t) is a locally-constant function and X(x, t) = X(y, t)
for y ∈ Bl(x) for any x ∈ QN

p .

Proof. Fix x, y ∈ QN
p , the by Proposition 1 and Lemma 3, for all t ∈ (0, τ ]

|X(x, t)−X(y, t)| ≤ e−t|X0(x)−X0(y)|+
∫ t

0

e−(t−s)|H(X(x, s))−H(X(y, s))|ds

≤ |X0(x)−X0(y)|+ L(f)∥A∥1
∫ t

0

|X(x, s)−X(y, s)|ds.
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Thus, by Gronwall’s theorem, see [46, Theorem 5.1.1],

|X(x, t)−X(y, t)| ≤ |X0(x)−X0(y)|eL(f)∥A∥1t

for all t ∈ (0, τ).

Definition 4. A function Xstat(x) := Xstat(x;A,B, U, Z) ∈ X∞ is called a stationary state
of a p-adic continuous CNN(A,B, U, Z), if

Xstat(x) =

∫
QN

p

A(∥x− y∥p)Y (y)dNy +

∫
QN

p

B(∥x− y∥p)U(y)dNy + Z(x),

where Y (x) = f(Xstat(x)) and x ∈ QN
p .

Remark 6. If a p-adic continuous CNN(A,B, U, Z) satisfies that ∥A∥1L(f) < 1, then the
CNN(A,B, U, Z) has a unique stationary state. This follows by the fact that, under this
condition, H(X) becomes a contraction map in X∞, cf. Lemmas 2, 3.

Theorem 9. All the states X(x, t) of a p-adic continuous CNN(A,B, U, Z) are bounded for
all time t ≥ 0. More precisely, if

Xmax := ∥X0∥∞ + ∥f∥∞∥A∥1 + ∥U∥∞∥B∥1 + ∥Z∥∞,

then
|X(x, t)| ≤ Xmax for all t ≥ 0 and for all x ∈ QN

p . (3.2.5)

In addition

X− (x) := lim inf
t→∞

X(x, t) ≤ X(x, t) ≤ lim sup
t→∞

X(x, t) =: X+ (x) ,

for x ∈ QN
p . If X− (x) = X+ (x) := X∗(x),then X∗(x) is a stationary solution of the

CNN(A,B, U, Z) and

X∗(x) ≥ −∥f∥∞ ∥A∥1 − ∥U∥∞∥B∥1 + Z(x). (3.2.6)

Remark 7. Condition (3.2.5) implies that X(x, t) does not blow-up at finite time. The
existence of a stationary state X∗(x) means that the state of each cell of a p-adic continuous
CNN most settle at stable equilibrium point after the transient has decayed to zero.

Proof. By Proposition 1, see (3.2.2)-(3.2.3), by using that |Y (y, t)| = |f (X (x, t))| ≤ ∥f∥∞,
we have

|H(X (x, t))| ≤
∫
QN

p

|A(∥x− y∥p)||Y (y, t)|dNy +
∫
QN

p

|B(∥x− y∥p)||U(y)|dNy + |Z(x)|

≤ ∥f∥∞∥A∥1 + ∥B∥1∥U∥∞ + ∥Z∥∞.
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Therefore

∥X (x, t)∥∞ ≤ e−t∥X0∥∞ +

∫ t

0

e−(t−s) ∥H (X (x, s))∥∞ ds

≤ ∥X0∥∞ + ∥f∥∞∥A∥1 + ∥B∥1∥U∥∞ + ∥Z∥∞.

This bound is valid for any t ∈ [0, τ ], but τ is arbitrary, so the bound is valid for any t ≥ 0.

The bound (3.2.5) implies existence of the functions:

X+ (x) = lim sup
t→∞

X(x, t) = lim
M→∞

sup {X(x, t); t > M} ,

X− (x) = lim inf
t→∞

X(x, t) = lim
M→∞

inf {X(x, t); t > M} .

Now assume that X+(x) = X−(x) = X∗(x), then limt→∞X(x, t) = X∗(x) exists. By using
that ∫ t

0

e−(t−s)H(X (x, s))ds =

∫ t

0

e−uH(X (x, t− u))du

=

∫ ∞

0

1[0,t] (u) e
−uH(X(x, t− u))du,

and ∣∣1[0,t] (u) e−uH(X(x, t− u))
∣∣ ≤ (∥f∥∞∥A∥1 + ∥B∥1∥U∥∞ + ∥Z∥∞) e−u ∈ L1(R),

and the dominated convergence theorem and Lemma 3, it follows from (3.2.2) that

lim
t→∞

X(x, t) =

∫ ∞

0

e−u lim
t→∞

{
1[0,t] (u)H(X(x, t− u))

}
du =

∫ ∞

0

e−uH(X∗(x))du

=

∫
QN

p

A(∥x− y∥p)f(X∗(x))dNy +

∫
QN

p

B(∥x− y∥p)U(y)dNy + Z(x).

which shows that X∗(x) is a stationary solution of the CNN(A,B, U, Z).

3.3 Stability of p-adic discrete CNN and Approxima-

tion of Continuous CNNs

3.3.1 The operators PM , EM

We now define for M ≥ 1, PM : X∞ → XM as

PMφ (x) =
∑
i∈GN

M

φ (i) Ω
(
pM ∥x− i∥p

)
.

Therefore PM is a linear bounded operator, indeed, ∥PM∥ ≤ 1.

We denote by EM , M ≥ 1, the embedding XM → X∞. If Z, Y are real Banach spaces, we
denote by B(Z,Y), the space of all linear bounded operators from Z into Y . The following
result is a consequence of the above observations.
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Lemma 5. [72, Lemma 2] With the above notation, the following assertions hold true:

(i) X∞, XM for M ≥ 1, are real Banach spaces, all with the norm ∥·∥∞;

(ii) PM ∈ B (X∞,XM) and ∥PMφ∥∞ ≤ ∥φ∥∞ for any M ≥ 1, φ ∈ X∞;

(iii) EM ∈ B (XM ,X∞) and ∥EMφ∥∞ = ∥φ∥∞ for any M ≥ 1, φ ∈ XM ;

(iv) PMEMφ = φ for M ≥ 1, φ ∈ XM ;

(v) limM→∞ ∥φ− PMφ∥∞ = 0 for any φ ∈ X∞;

(vi) limM→∞ ∥EMPMϕ− ϕ∥∞ = 0 for all ϕ ∈ X∞.

Proposition 2. Assume that A(∥x∥p), B(∥x− y∥p), U(x), Z(x) ∈ XM , M ≥ 1. Let τ be a
fixed positive real number. Consider the initial value problem:

X ∈ C([0, τ ],XM) ∩ C1([0, τ ],XM)

∂X(x,t)
∂t

= −X(x, t) +

∫
QN

p

A(∥x− y∥p)f(X(x, t))dNy

+

∫
QN

p

B(∥x− y∥p)U(y)dNy + Z(x), x ∈ BN
M , t ≥ 0

X(x, 0) = X0 ∈ XM .

(3.3.1)

There exists a unique X ∈ C([0, τ ],XM) which satisfies

X(x, t) = e−tX0 (x) +

∫ t

0

e−(t−s)H(X(x, s))ds

where

H(X)(x, t) =

∫
QN

p

A(∥x− y∥p)f(X(x, t))dNy +

∫
QN

p

B(∥x− y∥p)U(y)dNy + Z(x).

The function X(x, t) is a solution of equation 3.3.1 with initial datum X0.

Proof. The result is established by using the argument given in the proof of Theorem 8.

By the discussion presented in section 3.1.3, (3.3.1) describes a p-adic discrete CNN. Fur-
thermore, Theorem 12 is also valid for discrete CNN in XM .

Remark 8. By using the discretization procedure given in Section 3.1.3 and in the proof of
Theorem 8, Proposition 2 implies that the initial value problem

XM ∈ C([0, τ ],XM) ∩ C1([0, τ ],XM)

∂XM

∂t
= −XM + PMH(EMXM)

XM(0) = PM(X0)
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has a unique solution for an arbitrary τ > 0.

Theorem 10. All the states X(i, t), i ∈ GN
M , in a p-adic discrete CNN are bounded for all

time t ≥ 0. More precisely, if

Xmax := max
i∈GN

M

|X0(i)|+ p−MN

(
max
i∈GN

M

|f(i)|
) ∑

i∈GN
M

|A (i)|

+ p−MN

(
max
i∈GN

M

|U(i)|
) ∑

i∈GN
M

|A (i)|+ max
i∈GN

M

|Z(i)| ,

then
|X(i, t)| ≤ Xmax for all t ≥ 0 and for all i ∈ GN

M .

In addition

X− (i) := lim inf
t→∞

X(i, t) ≤ X(i, t) ≤ lim sup
t→∞

X(i, t) =: X+ (i) ,

for i ∈ GN
M . If X− (i) = X+ (i) := X∗(i), then

X∗(i) =
∑
j∈GN

M

p−MNA(∥i− j∥p)f(X∗(i))

+
∑
j∈GN

M

p−MNB(∥i− j∥p)U(j) + Z(i), for i ∈ GN
M ,

and

X∗(i) ≥ −p−MN

(
max
i∈GN

M

|f(i)|
) ∑

i∈GN
M

|A (i)|

− p−MN

(
max
i∈GN

M

|U(i)|
) ∑

i∈GN
M

|A (i)|+ Z(i) , for all i ∈ GN
M .

Theorem 11. Let X be the solution of a continuous p-adic CNN given by Theorem 1 with
initial condition X0. Let XM be the solution of the Cauchy problem{

dXM

dt
= −XM + PMH(EMXM)

XM(0) = PM(X0),
(3.3.2)

cf. Proposition 2 and Remark 8. Then

lim
M→∞

sup
0≤t≤τ

∥XM(t)−X(t)∥∞ = 0.

Proof. The result follows from Lemma 5, Propositions 1, 2, by using standard techniques of
approximation for evolution equations, see e.g. [46, Theorem 5.4.7]. See also [72, Section 9.1
and Theorem 7] for an in-depth discussion of similar matters.
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3.4 Numerical Simulations of p-Adic Continuous CNNs

In this section we present some numerical simulations of the solutions of several p-adic contin-
uous CNNs in dimension 1. We give two numerical schemes for the numerical approximation
of the solutions. In the first scheme, we consider the case when all of the functions A,B, U, Z
are radial functions. While the second one considers the case when one of these functions is
a test function.

3.4.1 Numerical Scheme A

In section we present an approximation of the solutionX(x, t) of s p-adic continuous CNN(A,B, U, Z)
when A,B, U, Z are radial functions.

Lemma 6. Let H(| · |p) ∈ L1(Qp) and let g ∈ X∞. We set Gk = p−kZp/p
kZp, k ∈ N. Then

∫
Qp

H(|x− y|)g(y)dy = lim
k→∞

∑
i∈Gk; i ̸=x

g(i)p−kH(|x− i|p) + g(x)(1− p−1)

∞∑
l=k

H(p−l)p−l.

Proof. By Lemma 5-(v), limk→∞
∑

i∈Gk
g(i)Ω(pk|x − i|p) = g(x), now by the dominated

convergence theorem,∫
Qp

H(|x− y|p)g(y)dy = lim
k→∞

∑
i∈Gk

g(i)

∫
Qp

H(|x− y|p)Ω(pk|y − i|p)dy

= lim
k→∞

∑
i∈Gk

g(i)

∫
x−i+pkZp

H(|z|p)dz.

Now, if |x− i|p > p−k, i.e. x ̸= i in Gk, then∫
x−i+pkZp

H(|z|p)dz = p−kH(|x− i|p).

If |x− i|p ≤ p−k, i.e. x = i in Gk, then∫
x−i+pkZp

H(|z|p)dz =
∞∑
l=k

H(p−l)(1− p−1)p−l.

We now assume that A, B are radial integrable functions, and that U , Z, X0 ∈ X∞. Based
on the continuity of operators A,B : X∞ → X∞ and the formula given in Lemma 6, we
can approximate the solution X(x, t) of a p-adic continuous CNN(A,B, U, Z) by p2k ODEs,
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k ≥ 1, of the form

d

dx
X(i, t) = −X(i, t) +

∑
j∈Gk; j ̸=i

f(X(j, t))p−kA(|i− j|p)+

f(X(i, t))(1− p−1)
kmax∑
l=k

A(p−l)p−l +
∑

j∈Gk; j ̸=i

U(i)p−kB(|i− j|p)

+ U(j)(1− p−1)
kmax∑
l=k

B(p−l)p−l + Z(i), for i ∈ Gk.

In the simulations the parameters k, kmax were chosen by trial and error on a case by case
approach. The sum

∑kmax

l=k A(p−l)p−l can be approximated by A(p−k)p−k in the cases where

A(p−k)p−k is the dominant term in
∑kmax

l=k A(p−l)p−l.

3.4.2 Numerical Scheme B

In section we present an approximation of the solutionX(x, t) of s p-adic continuous CNN(A,B, U, Z)
when A,B, U, Z are test functions.

Lemma 7. Let H(x) =
∑m

l=0HlΩ(p
kl |x − bl|p) be a test function and let g ∈ X∞. Take

Gk = p−kZp/p
kZp, k ∈ N, as before. Then∫

Qp

H(x− y)g(y)dy = lim
k→∞

∑
i∈Gk

g(i)
m∑
l=0

Hl

∫
Qp

Ω(pkl |x− i− bl − y|p)Ω(pk|y|p)dy

= lim
k→∞

∑
i∈Gk

g(i)
m∑
l=0

Hlp
min(−k,−kl)Ω

(
p−max(−k,−kl)|x− i− bl|p

)
= lim

k→∞

∑
i∈Gk

g(i)
m∑
l=0

Hlp
−max(k,kl)Ω

(
pmin(k,kl)|x− i− bl|p

)
.

Proof. It is sufficient to consider the case where H(x) = Ω(pkH |x − bH |p) for some kH ∈ Z
and bH ∈ Qp. Since g(x) = limk→∞

∑
i∈Gk

g(i)Ω(pk|x− a|p), we have∫
Qp

H(x− y)g(y)dy = lim
k→∞

∑
i∈Gk

g(i)

∫
Qp

Ω(pkH |x− bH − y|p)Ω(pk|y − i|p)dy

= lim
k→∞

∑
i∈Gk

g(i)

∫
Qp

Ω(pkH |(x− bH − i)− y|p)Ω(pk|y|p)dy.

Without loss of generality, we may assume that kH ≤ k, and since any two balls are disjoint
or one contains the other, then B−k∩B−kH (x−bH−a) = ∅ or B−k∩B−kH (x−bH−i) = B−k.
The latter case occurs if and only if 0 ∈ B−kH (x− bH − i), i.e. when |x− bH − a|p ≤ p−kH .
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Therefore ∫
Qp

Ω(pkH |x− bH − i− y|p)Ω(pk|y|p)dy = p−kΩ
(
pkH |x− bH − i|p

)
.

We now assume that U , Z, X0 ∈ X∞ and that A, B are test functions of the form

A(x) =

mA∑
l=0

AlΩ(p
kl |x− al|p), B(x) =

mB∑
l=0

BlΩ(p
kl |x− bl|p.

Based on the continuity of operators A,B : X∞ → X∞ and the formula given in Lemma 7,
we can approximate the solution X(x, t) of a p-adic continuous CNN by p2k ODEs, k ≥ 1,
of the form

d

dx
X(i, t) = −X(i, t) +

∑
j∈Gk

f(X(j, t))

mA∑
l=0

Alp
−max(k,kl)Ω

(
pmin(k,kl)|i− j − al|p

)
+
∑
j∈Gk

U(j)

mB∑
l=0

Blp
−max(k,kl)Ω

(
pmin(k,kl)|i− j − bl|p

)
+ Z(i), for i ∈ Gk.

It is possible to combine the approximations given in numeric schemes A, B.

3.4.3 A remark on the visualization of finite rooted trees

The discretizations to level k of the kernels A, B are functions on Gk ×Gk, while the input
U and X0 are functions on Gk. We use systematically heat maps 1 to present these functions.
We always include a plot of the tree Gk. By convention we identify the leaves of the tree Gk

with the set of rational numbers {0, 1/pk, 2/pk, . . . , (p2k−1)/pk}. Furthermore, we label the
levels of Gk with integers from the set {−k,−k + 1, . . . , 0, 1, . . . k − 1}. The level l consists
of the cells i, j such that

− logp(|i− j|p) = (the level of the first common ancestor of i, j) = l.

3.4.4 First Simulation

In this example, we take k = 2, p = 2, which means that we use a tree with 24 = 16 leaves
and 4 levels. A basic application of the classical CNNs is image processing, see e.g. [18]. In
this example we present a one-dimensional edge detector, which is a p-adic, one-dimensional
analog of the examples 3.1 and 3.2 in [18]. The input U is an image having three levels:

U(x) =
∑
i∈G2

UiΩ(2
2|x− i|2), Ui =


−1 if i = 1, 2, 1/4, 13/4
0 if i = 1/2, 9/4, 5/4
1 otherwise,

1A heat map is a data visualization technique showing a phenomenon’s magnitude as color in two dimen-
sions. The color in a cell represents the value of the function in that particular cell.
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x ∈ G2 = 2−2Z2/2
2Z2. As in [18] we take X0(x) = 0, A(x) = 0. We use

B(x) = 64Ω(22|x|2)− 4
∑

i∈G2; i ̸=0

Ω(22|x− i|2), x ∈ G2.

Finally, we take Z(x) = −Ω(2−2|x|2), f(x) = 1
2
(|x+ 1| − |x− 1|). The output Y (x, t)

consists of the edges on the input U , see Figure 3.6.

Figure 3.4: Simulation 1. Heat map U(x).

27



Figure 3.5: Simulation 1. Heat map of B (|x− y|2), x, y ∈ G2.

3.4.5 Second Simulation

In this example, we take k = 2, p = 2, which means that we use a tree with 24 = 16 leaves
and 4 levels. We consider a CNN with the followin parameters:

A(x) = Ω(22|x− 2−2|2), B(x) = U(x) = Ω(22|x|2), Z(x) = 0, x ∈ G2.

We set X0(x) = 0 and f(x) = 1
2
(|x+ 1| − |x− 1|).

In this network, we have A(i, j) = A(i− j) = Ω (22 |i− j − 2−1|2), B(i, j) = B(|i− j|2) =
Ω (22 |i− j|2) = δi,j , where δi,j denotes the Konecker delta function. This network does
not have the space-invariant property because A(i, j) = Ω (22 |i− j − 2−1|2) is not a radial
function. Due to this fact, A(i, j) is not a symmetric matrix. For instance:

A(
15

4
, 0) = 0, A(0,

15

4
) = 1, A(

1

4
, 0) = 0, A(0,

1

4
) = 1.

Our interpretation is that there is a connection from cell 15
4
to cell 0, and a connection from

cell 0 to cell 1
4
. This assertion is confirmed by the ouput Y (x, t), see Figure 3.10. Notice

that Y (1
2
, t) ̸= 0 and A(1

2
, 0) = A(0, 1

2
) = 0. But A(1

4
, 1
2
) = 0, A(1

2
, 1
4
) = 1, then there is a

connection from cell 1
4
to cell 1

2
, which explains the fact that Y (1

2
, t) ̸= 0.
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Figure 3.6: Simulation 1. Step 0.05.

The numerical solution is given in Figure 3.10. We now take A(x) = B(x) = Ω(22|x|2). In
this case the output Y (x, t) changes completely, see Figure 3.11.
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Figure 3.7: Simulation 2. Heat map A(x− y) for x, y ∈ G2.

3.4.6 Third Simulation

In this example, we take k = 3, p = 2, which means that we use a tree with 26 = 64 leaves
and 12 levels. We consider a CNN with the following parameters: A(x) = Ω(23|x − 2−2|2),
B(|x|2) = Ω(23|x|2), U(x) = sin(p4|x|2), Z(x) = 0.15Ω(2−2|x|2) for x ∈ G3 = 2−3Z3/2

3Z3.
We set X0(x) = 0 and f(x) = 1

2
(|x+ 1| − |x− 1|).

As a consequence of the fractal nature of the p-adic numbers, the p-adic CNNs exhibit self-
similarity in several ways. For instance, the graph of the kernel A(x, y) is a self-similar set,
this follows by comparing the graphs given in simulations 2 and 3 for this kernel. In addition,
the output Y (x, t) = 0 when the norm |x|2 is sufficiently large. In this simulation the CNN
produces a pattern similar to the input, see Figure 3.13 and Figure 3.14.
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Figure 3.8: Simulation 2. Heat map of B (|x− y|2) for x, y ∈ G2.

3.4.7 Fourth Simulation

In this example, we take k = 2, p = 2, which means that we use a tree with 24 = 16 leaves and
4 levels. The parameters of the CNN are A(x) = Ω (22 |x− 2−2|2), B(x) = U(x) = Z(x) = 0,
we set X0 (x) = Ω (22 |x|2), f(x) =

1
2
(|x+ 1| − |x− 1|) for x ∈ G2.

In this example, at time zero the cells near the origin are excited, which causes all the cells of
the network to activate. The activation can be seen in the Fourier transform of the output.
After some time the network returns to a state of rest.
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Figure 3.9: Simulation 2. Heat map of U(x).

Figure 3.10: Simulation 2. Step 0.05.
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Figure 3.11: Simulation 2. Output with A(x) = B(x) = Ω(22|x|2) and step 0.05.

Figure 3.12: Simulation 3. Heat map of A(x− y) for x, y ∈ G3.

Figure 3.13: Simulation 3. Heat map of U(x).
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Figure 3.14: Simulation 3. Step 0.05.

Figure 3.15: Simulation 4. Heat map of X0(x).

Figure 3.16: Simulation 4. Step 0.05.
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Figure 3.17: Simulation 4.
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Chapter 4

p-adic Cellular Neural Network:
Application to Image Processing

In this chapter, we present two new types of p-adic CNNs that can perform computations
with real data, and whose dynamics can be understood almost completely. The first type
can detect edges of gray images. The stationary states of these networks are organized
hierarchically in a lattice structure, and that dynamics of any of these networks consists
of transitions toward some minimal state in the lattice. The second type is a new class of
reaction-diffusion networks. We investigate the stability of these networks and show that
they can be used as filters to reduce noise, preserving the edges, in images polluted with
additive Gaussian noise. The networks introduced here we found experimentally. They are
abstract evolution equations on spaces of real-valued functions defined in the p-adic unit ball
for some prime number p. In practical applications the prime p is determined by the size of
image, and thus, only small primes are used. We provide several numerical simulations to
show how these networks work.

4.1 A type p-adic continuous CNNs for edge detection

In this section we present new edge detectors1 based on p-adic CNNs for gray images. We
take B ∈ L1(Zp) and U,Z ∈ C(Zp), a, b ∈ R , and fix the sigmoidal function f(s) =
1
2
(|s+ 1| − |s− 1|) for s ∈ R. In this section we consider the following p-adic CNN:

∂
∂t
X(x, t) = −X(x, t) + aY (x, t) + (B ∗ U)(x) + Z(x), x ∈ Zp, t ≥ 0;

Y (x, t) = f(X(x, t)).
(4.1.1)

We denote this p-adic CNN as CNN(a,B, U, Z), where a,B, U, Z are the parameters of the
network. In applications to edge detection, we take U(x) to be a gray image, and take the
initial datum as X(x, 0) = 0.

1Edge detection includes a variety of mathematical methods that aim at identifying edges in a digital
image at which the image brightness changes sharply.
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4.1.1 Stationary states

We say that Xstat(x) is a stationary state of network CNN(a,B, U, Z), if
Xstat(x) = aYstat(x) + (B ∗ U)(x) + Z(x), x ∈ Zp;

Ystat(x) = f(Xstat(x)).
(4.1.2)

Remark 9. Let X̃(x) be any solution of (4.1.2). Then

X̃(x) =

{
a+ (B ∗ U)(x) + Z(x) if X̃(x) > 1

−a+ (B ∗ U)(x) + Z(x) if X̃(x) < −1,
(4.1.3)

and
(1− a) X̃(x) = (B ∗ U)(x) + Z(x) if

∣∣∣X̃(x)
∣∣∣ ≤ 1. (4.1.4)

Lemma 8. (i) If a < 1, then network CNN(a,B, U, Z) has a unique stationary state
Xstat(x) ∈ C(Zp) given by

Xstat(x) =


a+ (B ∗ U)(x) + Z(x) if (B ∗ U)(x) + Z(x) > 1− a
−a+ (B ∗ U)(x) + Z(x) if (B ∗ U)(x) + Z(x) < −1 + a
(B∗U)(x)+Z(x)

1−a
if |(B ∗ U)(x) + Z(x)| ≤ 1− a

(4.1.5)

(ii) If a = 1 , then network CNN(a,B, U, Z) has a unique stationary state Xstat(x) ∈ L1(Zp)
given by

Xstat(x) =


1 + (B ∗ U)(x) + Z(x) if (B ∗ U)(x) + Z(x) > 0
−1 + (B ∗ U)(x) + Z(x) if (B ∗ U)(x) + Z(x) < 0
0 if (B ∗ U)(x) + Z(x) = 0.

(4.1.6)

Proof. If a < 1, it follows from (4.1.3)-(4.1.4) that (4.1.5) is a continuous stationary state
since by the dominated convergence theorem (B ∗ U)(x) is continuous. To establish the
uniqueness of the solution, let X(x) ∈ C(Zp) be another stationary state. Consider a point
x0 ∈ Zp such that X(x0) > 1. Then by (4.1.3), X(x0) = a + (B ∗ U)(x0) + Z(x0) > 1
consequently (B ∗ U)(x0) + Z(x0) > 1− a and thus

X(x0) = a+ (B ∗ U)(x0) + Z(x0) = Xstat(x0).

The cases X(x0) < −1 and X |(x0)| < 1 are treated in a similar way.

The case a = 1 follows from (4.1.4), in this case we have that Xstat(x) ∈ L1(Zp) since Xstat(x)
is bounded. The continuity of Xstat(x) requires further hypotheses on B,U, Z.

Definition 5. Assume that a > 1. Given

I+ ⊆ {x ∈ Zp; 1− a < (B ∗ U)(x) + Z(x)},
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I− ⊆ {x ∈ Zp; (B ∗ U)(x) + Z(x) < a− 1},

satisfying I+ ∩ I− = ∅ and

Zp ∖ (I+ ∪ I−) ⊆ {x ∈ Zp; 1− a < (B ∗ U)(x) + Z(x) < a− 1},

we define the function

Xstat(x; I+, I−) =


a+ (B ∗ U)(x) + Z(x) if x ∈ I+
−a+ (B ∗ U)(x) + Z(x) if x ∈ I−
(B∗U)(x)+Z(x)

1−a
if x ∈ Zp \ (I+ ∪ I−) .

(4.1.7)

Theorem 12. Assume that a > 1. All functions of type (4.1.7) are stationary states of
network CNN(a,B, U, Z). Conversely, any stationary state of network CNN(a,B, U, Z)
has the form (4.1.7).

Proof. We first verify that any function of type (4.1.7) is a stationary state. Take a point
x0 ∈ Zp. Since the sets I+, I−, Zp ∖ (I+ ∪ I−) are disjoint, three cases occur.

Case 1: x0 ∈ I+.

If x0 ∈ I+, then Xstat(x0; I+, I−) = a+ (B ∗U)(x0) +Z(x0) and by definition of I+, a+ (B ∗
U)(x0) + Z(x0) > 1. Then

af(Xstat(x0; I+, I−)) + (B ∗ U)(x0) + Z(x0) =

a+ (B ∗ U)(x0) + Z(x0) = Xstat(x0; I+, I−).

Case 2: x0 ∈ I−.

If x0 ∈ I−, then Xstat(x0; I+, I−) = −a + (B ∗ U)(x0) + Z(x0) and by definition of I−,
−a+ (B ∗ U)(x0) + Z(x0) < −1. Then

af(Xstat(x0; I+, I−)) + (B ∗ U)(x0) + Z(x0) =

− a+ (B ∗ U)(x0) + Z(x0) = Xstat(x0; I+, I−).

Case 3: x0 ∈ Zp ∖ (I+ ∪ I−).

If x0 /∈ I+ ⊔ I−, then Xstat(x0; I+, I−) =
(B∗U)(x0)+Z(x0)

1−a
and by definition of Zp ∖ (I+ ∪ I−),

−1 ≤ (B∗U)(x0)+Z(x0)
1−a

≤ 1, then

af(Xstat(x0; I+, I−)) + (B ∗ U)(x0) + Z(x0) =

a
(B ∗ U)(x0) + Z(x0)

1− a
+ (B ∗ U)(x0) + Z(x0) =

(B ∗ U)(x0) + Z(x0)

1− a

= Xstat(x0; I+, I−).

Therefore Xstat(x0; I+, I−) is a stationary state of the network CNN(a,B, U, Z).
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Now, suppose that Xstat(x) is a stationary state of network CNN(a,B, U, Z). Set

I+ := X−1
stat((1,∞)), I− := X−1

stat((−∞,−1)).

By using (4.1.3) and (4.1.4), we have

I+ ⊆ (B ∗ U + Z)−1((1− a,∞)),

I− ⊆ (B ∗ U + Z)−1((−∞, a− 1)),

and

Zp ∖ (I+ ∪ I−) ⊆ (B ∗ U + Z)−1([1− a, a− 1]).

Then Xstat(x0; I+, I−) is a well-defined function. Finally, using again (4.1.3) and (4.1.4), we
conclude that Xstat(x) = Xstat(x0; I+, I−) for all x ∈ Zp.

Remark 10. Notice that

Ystat(x; I+, I−) := f (Xstat(x; I+, I−)) =


1 if x ∈ I+
−1 if x ∈ I−
(B∗U)(x)+Z(x)

1−a
if x ∈ Zp \ (I+ ∪ I−) .

The function Ystat(x; I+, I−) is the output of the network. If I+ ∪ I− = Zp, we say that
Xstat(x; I+, I−) is bistable. The set B (I+, I−) = Zp\(I+ ∪ I−) measures how far Xstat(x; I+, I−)
is from being bistable. We call set B (I+, I−) the set of bistability of Xstat(x; I+, I−). If
B (I+, I−) = ∅, then Xstat(x; I+, I−) is bistable.

Remark 11. If I+ ∪ I− ⫋ Zp, we say that Xstat(x; I+, I−) is an unstable.

4.2 Hierarchical structure of the space of stationary

states

A relation ≼ is a partial order on a set S if it satisfies: 1 (reflexivity) f ≼ f for all f in S;
2 (antisymmetry) f ≼ g and g ≼ f implies f = g; 3 (transitivity) f ≼ g and g ≼ h implies
f ≼ h. A partially ordered set (S,≼) (or poset) is a set taken endowed with a partial
order. A partially ordered set (S,≼) is called a lattice if for every f , g in S, the elements
f ∧ g = inf{f, g} and f∨ g = sup{f, g} exist. Here, f ∧ g denotes the largest element in S
satisfying f ∧ g ≼ f and f ∧ g ≼ g; while f∨ g denotes the smallest element in S satisfying
f ≼ f∨ g and g ≼ f∨ g. We say that h ∈ S a minimal element of with respect to ≼, if
there is no element f ∈ S, f ̸= h such that f ≼ h.

Posets offer a natural way to formalize the notion of hierarchy.

We set

M =
⋃

I+,I−

{Xstat(x; I+, I−)} ,
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where I+, I− run trough all the sets given in Definition 5. Given Xstat(x; I+, I−) and
Xstat(x; I+, I−) in M, with I+ ∪ I− ̸= Zp or I ′+ ∪ I ′− ̸= Zp, we define

Xstat(x; I
′
+, I

′
−) ≼ Xstat(x; I+, I−) if I+ ∪ I− ⊆ I ′+ ∪ I ′−. (4.2.1)

In the case I+∪I− = Zp and I ′+∪I ′− = Zp, the corresponding stationary statesXstat(x; I+, I−),
Xstat(x; I+, I−) are not comparable. Since the condition I+ ∪ I− ⊆ I ′+ ∪ I ′− is equivalent to
B
(
I ′+, I

′
−
)
= Zp \ (I ′1 ∪ I ′−1) ⊆ B (I1, I−1)=Zp \ (I1 ⊔ I−1), condition (4.2.1) means that the

set of bistability of Xstat(x; I
′
+, I

′
−) is smaller that the set of of bistability of Xstat(x; I+, I−).

Also, the condition I+ ∪ I− ⊆ I ′+ ∪ I ′−implies that

Xstat(x; I
′
+, I

′
−)(x) = Xstat(x; I+, I−)(x) for all x ∈ I+ ∪ I− ∪ B

(
I ′+ ∪ I ′−

)
.

By using this observation, one verifies that (4.2.1) defines a partial order in M. This means
that the set of stationary states of the network CNN(a,B, U, Z), a > 1, has a hierarchical
structure, where the bistable stationary states are the minimal ones. Intuitively, the bistable
stationary states are at the deepest level of M. Furthermore, (M,≼) is a lattice. Indeed,
given Xstat(x; I

′
+, I

′
−), Xstat(x; I+, I−),in M, it verifies that

Xstat(x; I
′
+, I

′
−) ∧Xstat(x; I+, I−) = Xstat(x; I

′′
+, I

′′
−),

where I ′′+ = I+ ∪ I ′+, I
′′
− = I− ∪ I ′−, and

Xstat(x; I
′
+, I

′
−) ∨Xstat(x; I+, I−) = Xstat(x; I

′′′
+ , I

′′′
− ),

where I ′′′+ = I+ ∩ I ′+, I
′′′
− = I− ∩ I ′−. Therefore, we have established the following result:

Theorem 13. (M,≼) is a lattice. Furthermore, the set of minimal elements of (M,≼)
agrees with the set of bistable states of CNN(a,B, U, Z).

4.3 Edge detection

4.3.1 A new class of edge detectors

We take a > 1, X(x, 0) = 0, and U(x) ∈ D(Zp) to be a gray image. We argue that network
(4.1.1) works as an edge detector. By Theorem 12, network CNN(a,B, U, Z), a > 1 has
steady states of the form

Ystat(x) = f(Xstat (x)) =

{
+1 if (B ∗ U)(x) + Z(x) > Threshold1

−1 if (B ∗ U)(x) + Z(x) < Threshold2
(4.3.1)

where Threshold2, Threshold1 are real numbers. This type of outputs occur for networks with
stationary states where I+⊔I− = Zp. For instance, when I+ ⊆ (B∗U+Z)−1((Threshold1,∞))
and I− ⊆ (B ∗U +Z)−1((−∞,Threshold2)). If U(x) is sufficiently small, then (B ∗U)(x) +
Z(x) gives a measure of dispersion of the image intensities; if this value is larger than
Threshold1, the networks ouputs +1 to indicate the existence of an edge, if value is smaller
than Threshold2, the network ouputs −1 to indicate the non existence of an edge.
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We conducted several numerical experiments with gray images presented in Section 4.4. We
implemented a numerical method for solving the initial value problem attached to network
CNN(a,B, U, Z), with X(x, 0) = 0 and U(x) a gray image. The simulations show that
after a sufficiently long time the network outputs a white and black image approximating
the edges of the original image U(x). This means that for t sufficiently large X(x, t) is close
to a bistable stationary state Xstat(x; I+, I−). Furthermore, after a certain sufficiently large
time, the outputs of the network do not show a difference perceivable by the human eye.
We interpret this result as the bistable stationary states are asymptotically stable; of course
this is a mathematical conjecture.

We now give an intuitive picture of the dynamics of the network, for t sufficiently large,
using (M,≼) as an asymptotic landscape for CNN(a,B, U, Z). For t sufficiently large, the
network performs transitions between stationary states Xstat(x; I+, I−) belonging to a small

neighborhood N around a bistable state X
(0)
stat(x; I+, I−), I+ ∪ I− = Zp. The dynamics of

the network consists of transitions in a hierarchically organized landscape (M,≼) toward
of some minimal state. This is a reformulation of the classical paradigm asserting that the
dynamics of a large class of complex systems can be modeled as a random walk on its energy
landscape, see e.g. [21, 23, 29, 34, 41, 52, 64, 72]

4.3.2 Discretization

To process an image U(x), we use a discrete version of network CNN(a,B, U, Z), a > 1.
In turn, this requires to determine suitable kernels B(x). We address these matters on this
section.

We take L to be a positive integer, and set GL = Zp/p
LZp. We identify i ∈ GL with an

element of the form
i = i0 + i1p+ . . .+ iL−1p

L−1,

where the iks belong to the set {0, 1, . . . , p− 1}. We denote by DL (Zp) the R-vector space
of test functions of the form

φ (x) =
∑
i∈GL

φ (i) Ω
(
pL |x− i|p

)
supported in the unit ball Zp and Ω

(
pL |x− i|p

)
is the characteristic function of the ball

B−L(i). Since Ω
(
pL |x− i|p

)
Ω
(
pL |x− j|p

)
= 0 for i ̸= j, the set{

Ω
(
pL |x− i|p

)}
i∈GL

is a basis of DL (Zp). Notice that the dimension of DL (Zp) is p
L.

Assuming that B (x) , U(x), Z(x) ∈ DL (Zp), the initial value problem
∂
∂t
X(x, t) = −X(x, t) + aY (x, t) + (B ∗ U)(x) + Z(x), x ∈ Zp, t ≥ 0;

X(x, 0) = X0 ∈ DL (Zp) .
(4.3.2)
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has unique solution

X(x, t) =
∑
i∈GL

X(i, t)Ω
(
pL |x− i|p

)
(4.3.3)

in DL (Zp) for t ≥ 0, see Theorem 8.

This result allow us to obtain a discretization of (4.3.2) and (4.1.1) as follows. Take

U(x) =
∑
i∈GL

U(i)Ω(pL|x− i|), (4.3.4)

Z(x) =
∑
i∈GL

Z(i)Ω(pL|x− i|), (4.3.5)

and
B(x) = pM2−M1Ω(pM2|x|p)− Ω(pM1|x|p) (4.3.6)

for some integers M1 ≤ M2 ≤ L.

We now take i, j ∈ GL and an integer M ≤ L, then

|i− j + pLz|p = |i− j|p for any z ∈ Zp.

By using this observation, one gets that

Ω(pM |x|p) ∗ U(x) = (4.3.7)

=
∑
i∈GL


∑
j∈GL

U(j)

∫
Zp

Ω(pM |i− y|p)Ω(pL|y − j|p)dy

Ω(pL|x− i|p)

=
∑
i∈GL


∑
j∈GL

U(j)

∫
j+pLZp

Ω(pM |i− y|p)dy

Ω(pL|x− i|p)

=
∑
i∈GL

{
p−L

∑
j∈GL

U(j)Ω(pM |i− j|p)

}
Ω(pL|x− i|p).

Now, from (4.3.6)-(4.3.7), we get the following formula:

(B ∗ U)(x) = (4.3.8)∑
i∈Gl

p−L

(
pM2−M1

∑
j∈Gl

Ω(pM2|i− j|p)U(j)−
∑
j∈Gl

Ω(pM1 |i− j|p)U(j)

)
Ω(pL|x− i|p).

We now replace (4.3.3)-(4.3.8) in the equation in (4.3.2) and use that {Ω(pL|x− i|)}i∈GL
is

a basis of DL(Zp), to get a discretization of (4.3.2):{
dX(i,t)

dt
= −X(i, t) + aY (i, t) + p−L (LU) (i) + Z(i), i ∈ GL

X(i, 0) = X0(i),
(4.3.9)
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where
Y (i, t) = f (X(i, t)) , i ∈ GL,

and

(LU) (i) := pM2−M1

∑
j∈Gl

Ω(pM2|i− j|p)U(j)−
∑
j∈Gl

Ω(pM1|i− j|p)U(j), i ∈ GL. (4.3.10)

Graph Laplacians

Let G = (V,E) be a simple finite graph with vertices V and edges E. Let ϕ : V → R be a
function on the graph. The graph Laplacian ∆ acting on ϕ is defined as

(∆ϕ) (v) =
∑
w∈V

dist(w,v)=1

[ϕ (v)− ϕ (w)] ,

where dist(w, v) is the distance on the graph, e.i., the distance between w and v in G is the
number of edges in a shortest path, see [53]. Now, let N (v) be a fixed neighborhood of v,
for instance,

N (v) = {w ∈ V ; dist(w, v) ≤ M} ,

for positive integer M , a generalization of operator ∆ is

(∆Nϕ) (v) =
∑

w∈N (v)

(∆ϕ) (w) . (4.3.11)

The operator L has the form (4.3.11). Indeed, the following formula holds for operator
(LU) (i):

(LU) (i) =
∑
j∈GL

|i−j|p≤p−M2

 ∑
k∈GL

p−M2<|j−k|p≤p−M1

[U(j)− U(k)]

 , i ∈ GL. (4.3.12)

In particular, taking M1 = 0, M2 = 1, one gets that∑
k∈GL

p−1<|j−k|p≤1

[U(j)− U(k)] =
∑
k∈GL

|j−k|p=1

[U(j)− U(k)] ,

which is the graph Laplacian on GL = Zp/p
LZp with the distance induced by | · |p.

Finally, we establish formula (4.3.12). We use that

#
{
k ∈ GL; p

−M2 < |j − k|p ≤ p−M1
}
= pM2−M1 ,

since i = i0 + i1p+ . . .+ iL−1p
L−1. Now |i− j|p ≤ p−M2 and p−M2 < |j − k|p ≤ p−M1 implies

that
|i− k|p = max

{
|i− j|p , |j − k|p

}
= |j − k|p ≤ p−M1 ,
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by ultrametric property of |·|p. Then,

∑
j∈GL

|i−j|p≤p−M2

 ∑
k∈GL

p−M2<|j−k|p≤p−M1

[U(j)− U(k)]

 =

∑
j∈GL

|i−j|p≤p−M2

[
#
{
k ∈ GL; p

−M2 < |j − k|p ≤ p−M1
}]

U(j)

−
∑
j∈GL

|i−j|p≤p−M2

∑
k∈GL

p−M2<|j−k|p≤p−M1

U(k) =

∑
j∈GL

|i−j|p≤p−M2

pM2−M1U(j)−
∑
k∈GL

|i−k|p≤p−M1

U(k) = (LU) (i).

4.4 Numerical Examples

To construct an edge detector using (4.3.9), it requires an algorithm for splitting a large
image into smaller sub-images. Given an image I of size (n,m), a prime p and an integer
K, the algorithm divides image I into sub-images I ′r of size (pK , pK) or less. Then, we use
another algorithm to codify sub-image I ′r as a test function Test(I ′r). These algorithms are
presented in the Section 4.7. We process the test function Test(I ′r) = U using network

dX(i,t)
dt

= −X(i, t) + aY (i, t) +
∑8

j=0 {U(i)− U(i+ j32)}+ z0, i ∈ GL

X(i, 0) = 0
Y (i, t) = f(X(i, t)),

(4.4.1)

with p = 3, L = 4, M1 = 2, M2 = 4, and Z(i) = z0 ∈ R, for i ∈ GL, and rescaling (LU) (i) as
34 (LU) (i), for i ∈ GL, to get another test function X(i, t0;Test(I

′
r)) taking values in {±1}.

Each test function X(i, t0;Test(I
′
r)) is transformed into an image Iedgesr , at the final step, we

concatenate all the images Iedgesr to obtain a full image Iedges, which is the output image.
The time t0 is chosen on a case-by-case basis so that the edges are as sharp as possible. See
Figures 4.1, 4.2.

4.5 Reaction-diffusion Cellular Neural Networks

4.5.1 The p-adic heat equation

For α > 0, the Vladimirov-Taibleson operator Dα is defined as

D(Qp) → L2(Qp) ∩ C (Qp)

φ → Dαφ,
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Figure 4.1: Left side, the original image. Right side, edges obtained by using a Canny edge
detector. See Section B.1

Figure 4.2: Left side, edges obtained by using CNN (4.4.1), with z0 = −1 and 6 steps. Right
side, edges obtained by using the CNN (4.4.1), with z0 = −1 and 10 steps.
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where

(Dαφ) (x) =
1− pα

1− p−α−1

∫
Qp

[φ (x− y)− φ (x)]

|y|α+1
p

dy.

The p-adic analogue of the heat equation is

∂u (x, t)

∂t
+ aDαu (x, t) = 0, with a > 0.

The solution of the Cauchy problem attached to the heat equation with initial datum
u (x, 0) = φ (x) ∈ D(Qp) is given by

u (x, t) =

∫
Qp

Z (x− y, t)φ (y) dy,

where Z (x, t) is the p-adic heat kernel defined as

Z (x, t) =

∫
Qp

χp (−xξ) e−at|ξ|αp dξ, (4.5.1)

where χp (−xξ) is the standard additive character of the group (Qp,+). The p-adic heat
kernel is the transition density function of a Markov stochastic process with space state Qp,
see, e.g., [38, 75].

4.5.2 The p-adic heat equation on the unit ball

We define the operator Dα
0 α > 0, by restricting Dα to D(Zp) and considering (Dαφ) (x)

only for x ∈ Zp. It satisfies that

Dα
0φ(x) = λφ(x) +

1− pα

1− p−α−1

∫
Zp

φ(x− y)− φ(x)

|y|α+1
p

dy,

for φ ∈D(Zp), with λ = p−1
pα+1−1

pα.

Consider the Cauchy problem
∂u(x,t)

∂t
+Dα

0u (x, t)− λu (x, t) = 0, x ∈ Zp, t > 0;

u (x, 0) = φ (x) , x ∈ Zp,

where φ ∈D(Zp). The solution of this problem is given by

u (x, t) =

∫
Zp

Z0(x− y, t)φ (y) dy, x ∈ Zp, t > 0,
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where

Z0(x, t) := eλtZ(x, t) + c(t), x ∈ Zp,

c(t) := 1− (1− p−1)eλt
∞∑
n=0

(−1)n

n!
tn

1

1− p−nα−1

and Z(x, t) is given (4.5.1). The function Z0(x, t) is non-negative for x ∈ Zp, t > 0, and∫
Zp

Z0(x, t)dx = 1,

see [38]. Furthermore, Z0(x, t) is the transition density function of a Markov process with
space state Zp.

The family
Tt : L1(Zp) −→ L1(Zp),

ϕ(x) 7−→ Ttϕ(x) :=

∫
Zp

Z0(x− y, t)ϕ(y)dy,
(4.5.2)

is a C0-semigroup of contractions with generator Dα
0 −λI on L1(Zp), see [32, Proposition 4,

Proposition 5]

4.5.3 Reaction-diffusion CNNs

Definition 6. Given µ ∈ R, α > 0, A(x), B(x),U(x), Z(x) ∈ C(Zp), a p-adic reaction-
diffusion CNN, denoted as CNN (µ, α,A,B, U, Z), is the dynamical system given by the
following integro-differential equation:

∂X(x, t)

∂t
= µX(x, t) + (λI −Dα

0 )X(x, t) +

∫
Zp

A(x− y)f(X(y, t))dy (4.5.3)

+

∫
Zp

B(x− y)U(y)dy + Z(x),

where x ∈ Zp, t ≥ 0. We say that X(x, t) ∈ R is the state of cell x at the time t. Function
A is the kernel of the feedback operator, while function B is the kernel of the feedforward
operator. Function U is the input of the CNN, while function Z is the threshold of the CNN.

Notice that if µ = 0 and A = B = U = Z = 0, (4.5.3) becomes the p-adic heat equation in
the unit ball. Then, in (4.5.3), (λI − Dα

0 ) is the diffusion term, while the other terms are
the reaction ones, which describe the interaction between X(x, t), U(x), and Z(x).

Remark 12. In this section, we assume that f is an arbitrary Lipschitz function, f(0) = 0,
i.e., |f(s)− f(t)| ≤ L(f) |s− t|, for s, t ∈ R, where L(f) is a positive constant.
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Lemma 9. Let A, B, U , Z ∈ C(Zp).

(i) Set

H(g) :=

∫
Zp

A(x− y)f (g(y)) dy +

∫
Zp

B(x− y)U(y)dy + Z(x), (4.5.4)

for g ∈ L1(Zp). Then H : L1(Zp) → L1(Zp) is a well-defined operator satisfying

∥H(g)−H(g′)∥1 ≤ L(f)∥A∥∞∥g − g′∥1, for g, g′ ∈ L1(Zp).

(ii) The restriction of H to C(Zp) satisfies

∥H(g)−H(g′)∥∞ ≤ L(f)∥A∥1∥g − g′∥∞, for g, g′ ∈ C(Zp),

so H : C(Zp) → C(Zp) is well-defined operator.

Proof. Take g, g′ ∈ L1(Zp), then

∥H(g)−H(g′)∥1 = ∥
∫
Zp

A(x− y) {f (g(y))− f (g′(y))} dy∥1

≤
∫
Zp


∫
Zp

|A(x− y)| |f (g(y))− f (g′(y))| dy

 dx ≤ L(f)∥A∥∞
∫
Zp

|g(y)− g′(y)| dy

≤ L(f)∥A∥∞∥g − g′∥1.

This inequality also proves that H is well-defined. The second part is established in a similar
way.

Proposition 3. Let A, B, U(x), Z ∈ C(Zp). Take X0(x) ∈ L1(Zp) as the initial datum for
the Cauchy problem attached to (4.5.3). Then there exists τ = τ (X0) ∈ (0,∞] and a unique
X(t) ∈ C([0, τ ], L1(Zp)) satisfying{

X(t) = eµtTtX0 +
∫ t

0
eµ(t−s)Tt−sH(X(s))ds

X(0) = X0.
(4.5.5)

Proof. By [32, Proposition 4], (Dα
0 −λI) is the generator of a strongly continuous semigroup

{Tt}t≥0 of contraction on L1(Zp). Then (Dα
0 − λI) + µI is the generator of a strongly

continuous semigroup {eµtTt}t≥0 on L1(Zp), see [46, Theorem 4.3-(10)]. Since ∥eµtTt∥ ≤ eµt

and H is a Lipschitz nonlinearity, see Lemma 9-(i), there exits a unique mild solution
X(t) ∈ C([0, τ ], L1(Zp)) satisfying (4.5.5), see, e.g., [46, Thorem 5.1.2].

Lemma 10. Let A, B, U , Z ∈ C(Zp). Take X0 ∈ C(Zp). Then, the integral equation (4.5.5)
has unique solution C([0,∞), C(Zp)).
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Proof. It is sufficient to show that (4.5.5) has a unique solution in C([0, T ] , C(Zp)), where
T > 0 is an arbitrary time horizon. Indeed, if X0(t) ∈ C([0, T0] , C(Zp)) and X1(t) ∈
C([0, T1] , C(Zp)), with T0 ≤ T1 are mild solutions, then X0(t) = X1(t) for t ∈ [0, T1], see
[46, Theorem 5.2.3].

We set Y := C([0, T ], C(Zp)), which is a Banach space with norm

sup
0≤t≤T

∥Y (t)∥∞ = sup
0≤t≤T

[
sup
x∈Zp

|Y (x, t)|

]
.

We now set

Gg(t) := eµtTtX0 +

∫ t

0

eµ(t−s)Tt−sH (g(s)) ds,

for g(t) ∈ C([0, T ], C(Zp)). By using that Z0(x, t) ∈ L1(Zp), one gets Ttg ∈ C([0, T ], C(Zp)),
and by Lemma 9-(ii), G : Y → Y . We now set

Gn = G ◦G ◦ · · · ◦ G
n−times︸ ︷︷ ︸ .

We show that for n sufficiently large Gn is a contraction. We first notice that

∥Gg(t)−Gg(t)∥∞ ≤ L(f)eµT ∥A∥1 ∥g(t)− g′(t)∥∞.

By a well-known argument, see e.g. [46, Proof of Theorem 5.1.2], one gets that

∥Gng(t)−Gng(t)∥∞ ≤ (eµTL(f)∥A∥1T )n

n!
∥g(t)− g′(t)∥∞,

with (eµTL(f)∥A∥1T )n

n!
< 1, for n sufficiently large. Therefore G has a unique fixed point X(t)

in Y , see, e.g., [46, Theorem 1.1.3].

Theorem 14. Let X(t) ∈ C([0,∞), C(Zp)) be the unique solution of (4.5.5), with initial
condition X0 ∈ C(Zp).Then,

∥X(t)∥∞ ≤ eµt∥X0∥∞ +
(eµt − 1)

µ
(∥A∥1∥f∥∞ + ∥B∥1∥U∥∞ + ∥Z∥∞) , (4.5.6)

if µ ̸= 0, otherwise

∥X(t)∥∞ ≤ ∥X0∥∞ + τ (∥A∥1∥f∥∞ + ∥B∥1∥U∥∞ + ∥Z∥∞) . (4.5.7)

Proof. By using that ∥B ∗ U∥ ≤ ∥B∥1∥U∥∞, cf. [62, Theorem 1.7], and Lemma 9-(ii), we
get that

∥H(g)∥∞ ≤ L(f)∥A∥1∥g∥∞ + ∥B∥1∥U∥∞ + ∥Z∥∞ for g,∈ C(Zp).

Now, the stated formula follows from (4.5.5), by Lemma 10, by using that ∥A∥1 ≤ ∥A∥∞
and ∥B∥1 ≤ ∥B∥∞. The bound (4.5.7) is established in a similar way.
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Figure 4.3: On the left side, the original image X(x, 0). On the right side X(x, 3).

4.6 Denoising

In this section, we present a new denoising technique based on certain reaction-diffusion
CNNs. We first consider the initial value problem

∂X(x,t)
∂t

+D1
0X(x, t)− λX(x, t) = 0, x ∈ Zp, t > 0

X(x, 0) = X0(x), x ∈ Zp,

(4.6.1)

where X0(x) ∈ [0, 1] is a gray image codified as a test function supported in the unit ball
Zp. The algorithm for this coding is discussed at the end of this section. The output image
X(x, t) is similar to the one produced by the classical Gaussian filter. See Figure 4.3.

We propose the following reaction-diffusion CNN for denoising gray images polluted with
normal additive noise:

∂X(x, t)

∂t
= 3X(x, t) + (λI −Dα

0 )X(x, t) + 3B ∗ [X0(x)− f(X(x, t))] , (4.6.2)

where α = 0.75, f(x) = 0.5(|x + 1| − |x − 1|), B(x) = (Ω(p2|x|p) − Ω(|x|p)), and −1 ≤
X0(x) ≤ 1. Notice that we are using the interval [−1, 1] as a gray scale. This equation was
found experimentally. Natively, the reaction term 3X(x, t)+ 3B ∗ [X0(x)− f(X(x, t))] gives
an estimation of the edges of the image, while the diffusion term (λI −Dα

0 )X(x, t) produces
a smoothed version of the image.

The processing of an image X0(x) using (4.4.1) requires solving the corresponding Cauchy
problem with initial datum X(x, 0) = X0(x). Given an image I, i.e., a matrix of size (n,m),
and a pixel (i, j) of I , for the processing this pixel we use a neighborhood Ii,j centered at
this pixel, which is sub-image Ii,j of size of

(
pK , pK

)
, where p2K is the number of pixels in
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the sub-image Ii,j. We use small primes, p = 2, 3 to get sub-images of size 2× 2 and 3× 3.
The choosing of the prime p is completely determined by the image size, then, only small
primes are required. Now, we codify the sub-image Ii,j a test function Tes(Ii,j) and solve
numerically the Cauchy problem attached to (4.4.1) with initial datum Tes(Ii,j). We pick a
time t0, on a case by case basis, and take the test function X(x, t0; Ii,j) as the output of the
network. At the final step, we transform X(x, t0; Ii,j) into an image I ′i,j, and take the pixel
processed image at (i, j) as the center of I ′i,j. See Figures 4.4, 4.5.

Figure 4.4: Left side, the original image. Right side, the image plus Gaussian noise, mean
zero and variance 0.05.

4.7 Images and test functions

We show the existence of a bijective correspondence between images and test functions. We
first show the existence of a bijective correspondence between finite disjoint unions of balls
contained in Zp, for some prime p with weighted rooted trees of valence p. The connection
between clustering, trees and ultrametric spaces is well-known, see e.g., [34, Chapter 2] and
the references therein. Then we show the existence of a bijective correspondence between
finite, regular rooted trees of valence p with images.

4.7.1 Finite rooted trees and test functions

By a finite rooted tree T , we mean a finite undirected graph in which any two vertices are
connected by exactly one path. The vertices V (T ) of T are organized in disjoint levels :

V (T ) =
M⊔
j=0

Levelj (T ) ,
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Figure 4.5: Left side, filtered image using Equation 4.6.2. Right side, filtered image obtained
by using Perona-Malik equation with λ = 0.04, δt = 0.075, and t = 100 iterations, and g1(s),
Section B.2.

where Levelj (T ) := Levelj =
{
vj,0, vj,1, . . . , vj,kj

}
, kj ≥ 1, are the vertices of T at level j.

At level 0 there is exactly one vertex v0, the root of the tree. The vertices at the level 1
are the descendants of the root, which means that there is path v0 → v1,i for any vertex
v1,i ∈ Level1. Inductively, the vertices at level j, 1 ≤ j ≤ M , are the the descendants of the
vertices at level j − 1. The vertices at level M do not have descendants.

We denote by γ (v), v ∈ V (T ), the number of edges emanating from v. We set

γT := max
v∈V (T )

{γ (v)} .

We fix a prime number defined as pT := minp {p prime; γT ≤ p}. For the sake of simplicity
we use p := pT . Given any vertex vj,ij ∈ Levelj, 1 ≤ j ≤ M , there is exactly one path
connecting vj,ij with v0:

v0 → v1,i1 → . . . → vj−1,ij−1
→ vj,ij . (4.7.1)

We attach to vj,ij the p-adic integer

Ivj,ij := i1 + i2p+ . . .+ ij−1p
j−2 + ijp

j−1, (4.7.2)

where the digits ik belong to {0, 1, . . . , p− 1}. Then, there is a bijection between the vertices
of T and the p-adic integers of form (4.7.2). Given a vertex v at level Lv denote the
corresponding p-adic number as

Iv = i1 + i2p+ . . .+ iLv−1p
Lv−1, Lv ≤ M. (4.7.3)
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Now we attach to T the following family of balls:

B(T ) :=
{
Iv + pLvZp, v ∈ V (T )∖ {v0}

}⊔
{Zp} ,

where the unit ball Zp correspond to the case v = v0. The tree T and the collection of balls
B(T ) are equivalent data. Indeed, given a finite collection B of balls contained in Zp such
that Zp ∈ B, there is a finite rooted tree T that represents the partial order induced by ⊆
in B.

We say that a vertex v is a leaf of T if v does not have descendants. In particular, all the
vertices in LevelM are leaves. We denote by Leaf(T ) the set of all leaves of T . Finally, we
attach to T the open compact subset

K(T ) =
⊔

v∈Leaf(T )

(
Iv + pLvZp

)
. (4.7.4)

Now, given a finite disjoint union of balls of the form
⊔

v∈G
(
Iv + pLvZp

)
, there is a unique

tree T having {Iv; v ∈ G} as a set of leaves. The other vertices correspond to truncations of
the numbers Ivs. And given a tree T , (4.7.4) attaches a unique finite disjoint union of balls
to T .

We define a weighted tree as a pair (T , w), where w : Leaf(T ) → R+ := {x ∈ R;x ≥ 0}.
We denote by Ω

(
pLv |x− Iv|p

)
the characteristic function of the ball

(
Iv + pLvZp

)
. Given a

test function from DLv(Zp) of the form

Φ (x) =
∑
v∈G

cvΩ
(
pLv |x− Iv|p

)
, x ∈ Zp, (4.7.5)

we attach to it the unique weighted tree with leaves {Iv; v ∈ G} and weights v → cv, for
v ∈ G. Conversely, given a weighted tree (T , w), with leaves G = {Iv; v ∈ Leaf(T )}, and
w(v) = cv for v ∈ G, (4.7.5) defines a unique test function Φ (x) from DLv(Zp).

4.7.2 Images and finite rooted trees

We propose an algorithm for coding an image as a finite, weighted, regular, rooted tree
of valence p, where p a prime number. The input is an image I, a (n,m) matrix, and a
prime number p satisfying p ≤ m,n. The output is a finite, weighted, regular tree Tree(I).
We use two functions. The function dH divides an image into p horizontal sub-images,
and the function dV divides an image into p vertical sub-images. The tree has at most
L := ⌊logp(nm)⌋ levels. The level zero contains just the root of the tree. Each vertex of the
tree corresponds to a sub-image I ′ of I, and the descendants of this vertex, in the next level,
are sub-images of I ′ obtained by using the function dH or dV .

1. The tree Tree(I) corresponding to an image I is construct recursively as follows:

2. Level 0: there is one vertex, the root of the tree which corresponds to I.

3. Level 2l + 1: the descendants of a vertex I ′ at the level 2l correspond to the elements
of dH(I

′).
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4. Level 2l: the descendants of a vertex I ′ at the level 2l − 1 correspond to the elements
of dV (I

′).

5. Level L: all the vertices (leaves) at the level L are pixels. The gray intensity of each
pixel gives a the weight of the corresponding leaf.

We now define the operator dV . Let m0, r0 nonnegative integers such that m = pm0 + r0.
If m0 ̸= 0, we define

Is = [Ii,j] 0≤i<n
sm0≤j≤m0(s+1)

for s = 0, . . . , r0,

Is = [Ii,j] 0≤i<n
m0s+r0≤j<m0s

for s = r0 + 1, . . . , p− 1,

and
dV (I) = [Is]s=0,...,p−1.

If m0 = 0, we define

Is = [Ii,j]0≤i<n
j=s

for s = 0, . . . , r0, and dV (I) = [Is]s=0,...,p−1.

Thus the operator dV divides the image I into p vertical sub-images.

We now define operators dH . Let n0, q0 be non-negative integers satisfying n = (p−1)n0+q0.
If n0 ̸= 0. We define

Is = [Ii,j]sn0≤i≤n0(s+1)
0≤j<m

for s = 0, . . . , q0,

Is = [Ii,j]n0s+q0≤i<n0s
0≤j<m

for s = q0 + 1, . . . , p− 1,

and
dH(I) = [Is]s=0,...,p−1.

If n0 = 0, we define

Is = (Ii,j)i=s;0≤j<m for s = 0, . . . , q0, and dH(I) = [Is]s=0,...,p−1.

Thus the operator dH divides the image I into p horizontal sub-images.

Consequently, the correspondence between images and weighted, finite, regular, rooted trees
of valence p, is a bijection. Figure 4.6 shows the correspondence between images and test
functions.
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Figure 4.6: Left side, original image 81× 81. Right side, the representation of the image as
a test function. We use p = 3, L = 8.
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Chapter 5

Conclusions

In this thesis, we presented a mathematical generalization of the CNNs of Chua and Yang
called p-adic cellular neural networks. The p-adic continuous CNNs offered a theoretical
framework to study the emergent patterns of hierarchical discrete CNNs having arbitrary
many hidden layers.

A p-adic Cellular Neural Network is

∂X(x, t)

∂t
= −X(x, t) +

∫
Qp

A(|x− y|p)Y (y, t)dy +

∫
Qp

B(|x− y|p)U(y)dy + Z(x), (5.0.1)

with Y (x, t) = f(X(x, t)). We studied the case where A(|x|p), B(|x|p) are integrable, and
U , Z are continuous functions vanishing at infinity. Under these hypotheses the initial value
problem attached to (5.0.1), with initial datum X0 (a continuous function vanishing at
infinity) has a unique solution X(x, t) which is a continuous function vanishing at infinity
in x for any t ≥ 0, satisfying |X(x, t)| ≤ Xmax, where the constant Xmax is completely
determined by A, B, U , Z and f . We also presented a large number of numerical simulations.
Such simulations required solving integro-differential equations on a tree.

We also showed that p-adic CNNs can process real gray images, and that the dynamics can
be understood almost completely. We presented two types of p-adic CNNs, one type for edge
detection of gray images, and the other, for denoising of gray images polluted with Gaussian
noise. The performance of this edge detector is comparable to the Canny detector. But
most importantly, we can explain, reasonably well, how the network detects the edges of an
image. On the other hand, although the image denoising performance is not as good as the
results obtained using the Perona-Malik equation, the mathematical analysis of the network
presented is more feasible than the mathematical analysis in the case of Perona-Malik.

This thesis open a path for different applications of p-adic Cellular Neural Networks or more
general Neural Networks.

There are some paths to continue this work. One is to use fuzzy operators in p-adic CNN,
which combines images’ low and high-level information. This line of research is connected
with the morphological operators in image processing. Another is to study p-adic versions
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of the Perona-Malik Equation. More generally, anisotropic p-adic diffusion equation. These
approximations can present betters results for denoising in image processing and new math-
ematical challenges.
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Appendix A

Cellular Neural Networks

Cellular neural network (CNN) was introduced by Leon O. Chua and Linc Yang in [20] as a
new circuit architecture. This CNN presents some of the critical features of neural networks
and has some significant potential applications in such areas as image processing, patter
recognition, and partial differential equations, among others.
The primary circuit unit is called a cell, where any cell is connected only to its neighbor cells.
The adjacent cells can interact directly with each other. However, cells not directly connected
may indirectly affect each other because of the continuous time dynamics’ propagation effect.
For an in-depth review cellular neural network, the reader may consult [18, 20, 59], and the
references therein.

The following section is taking directly from [61].

A.1 General Cellular Neural Network

We introduce 1-dimensional cellular neural networks (1D-CNN). A 1D-CNN cell will be
denoted by Ci, where i ∈ {1, 2, . . . , N}. Each cell in the 1D-CNN architecture is a dynamic
system and is locally coupled only to the neighboring cells that lie inside Si(r), sphere of
influence, of radio r.

Si(r) := {Ck : max(|i− k|) ≤ r, 1 ≤ k ≤ N} . (A.1.1)

The cell dynamics are defined by the state equation{
Ẋi = g(Xi, Zi, Ui(t), I

s
i )

YI = f(Xi)
(A.1.2)

with State vector Xi ∈ Rmx , Output vector Yi ∈ Rmy , threshold Zi ∈ Rmz , and Input
vector Ui ∈ Rmu of the i-th cell Ci.

� Isi ∈ RmI is a Synaptic law of the cell Ci.

� f : Rmx → Rmy is a nonlinear output function.
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� g : Rmx × Rmz × Rmy × RmI → Rmx .

The synaptic law defines the coupling between the considered cell Ci and all the cells within
the sphere of influence Si(r).

Isi :=
∑

k∈Si(r)

[
Âi,kXk(t) + Ai,kYk(t) +Bi,kUk(t) + Aτ

i,kYk(t− τ)

+Bτ
i,kUk(t− τ) + An

i,k(Yi, Yk) +Bn
i,k(Ui, Uk) + Cn

i,k(Xi, Xk)
] (A.1.3)

The synaptic law is uniquely specify by synaptic matrices Âi,k ∈ RmI×mX , Ai,k ∈ RmI×my ,
Bi,k ∈ RmI×mu , Aτ

i,k ∈ RmI×my , Bτ
i,k ∈ RmI×mu and nonlinear functions

An
i,k : Rmy × Rmy → RmI

Bn
i,k : Rmu × Rmu → RmI

Cn
i,k : Rmx × Rmx → RmI .

It is usually listed these matrices as entries of the following matrices:

� State template Â := (Âi,k).

� Feedback template A := (Ai,k).

� Feedforward template B = (Bi,k).

� Delay-type feedback template Aτ = (Aτ
i,k).

� Delay-type feedforward template Bτ = (Bτ
i,k).

� Nonlinear feedback template An(Yi, Yk) =
(
An

i,k(Yi, Yk)
)
.

� Nonlinear feedforward template Bn(Ui, Uk) =
(
Bn

i,k(Ui, Uk)
)
.

� Nonlinear state template Cn(Xi, Xk) =
(
Cn

i,k(Xi, Xk)
)
.

The superscripts τ and n of a template indicate that the template is a delay-type and
nonlinear type. In general, an n-dimensional cellular neural network (nD-CNN) is defined
the same way as 1D- CNN, but we put i ∈ N1× . . .×Nn on the State equation and Synaptic
equation.

A.2 Chua-Yang CNN model

The cell dynamics of the Chua-Yang CNN model, see [20], is governed by the following
2-dimensional state equation

Cẋij = −axij + z + Isij

yij = f(xij) = 1/2(|xij − 1| − |xij + 1|)

Isij =
∑

(k,l)∈Sij(r)

aij,klykl + bij,klukl

(A.2.1)
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with the following constraint conditions:

� uij(t) are contestants on time.

� |xij(0)|, |uij| ≤ 1.

� a > 0.

We gather some results of Chua-Yang CNN presented in [20].

Theorem 15. [20, Theorem 1] All states xij in a CNN A.2.1 are bounded for all time t > 0
and the bound xmax can be computed by the following formula for any CNN

xmax = 1 + (1/a)zmax + (1/a) max
1≤i≤N1, 1≤j≤N2

 ∑
(k,l)∈S(i,j)(r)

(|aij,kl|+ |bij,kl|)

 (A.2.2)

Proposition 4. [20, Corollary 1] After the transient of a CNN A.2.1 has decayed to zero,
we always obtain a constant output, e.i.

lim
t→∞

yij(t) = constant.

Theorem 16. [20, Theorem 5] If the circuit parameters satisfy

aij,kl > a

then each cell of a CNN most settle at a stable equilibrium point after the transient has
decayed to zero (t → ∞). Moreover, the magnitude of all stable equilibrium point is greater
than 1. In other words, we have the following properties:

lim
t→∞

|xij(t)| > 1

and
lim
t→∞

yij(t) = ±1.
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Appendix B

Image processing

Following [13] a image is a function that maps every point in some domain of definition to a
certain color values. An gray image u is a map from an image domain Ω to some color space
F : u : Ω → F . where F ⊆ R. One can distinguish between discrete and continuous image
domains:

� discrete gray d-dimensional images, for example Ω = {1, . . . , N1} × · · · × {1, . . . , Nd}.

� continuous gray d-dimensional images, for example Ω ⊆ Rd (domain), or specifically
Ω = [0, a1]× · · · × [0, ad].

When partial differential equations are applied, continuous 2-dimensional gray images are
used as a theoretical object in image processing. But, discrete 2-dimensional gray images,
which are N1 × N2 matrices, are the best representations of the (real) images we want to
process.

B.1 Canny Edge detector

We follow section is taken from [68].

The edge is the most basic feature of an image, which refers to the set of pixels that have a
sudden change in the gray level. Edge detection is a basic method to recognize and segment
the edges of images based on gray discontinuous points. The Canny operator is a multiply-
scale edge detection algorithm proposed by John F.Canny in 1986, the goal is to find an
optimal edge detection algorithm, which is widely used in the field of image processing, and
are constantly improved and innovated.

Using Canny edge detection, there are usually several steps:

1. Denoise image vefore detecting edge of the image, and usually use the Gauss smoothing
filter to reduce noise, according to

G(x, y) =
1

2πσ2
e

x2+y2

2σ2 (B.1.1)
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2. Calculate the gradient amplitude and direction, usually the gradient direction takes
the four angles, according to

G =
√

G2
x +G2

y (B.1.2)

θ = arctan

(
Gy

Gx

)
(B.1.3)

where Gx and Gy are the first derivative (as neighbor of a pixel) in the horizontal
direction and the vertical direction, respectively, e.i., Gx = [1/2 0 − 1/2]G and Gy =
[1/2 0 − 1/2]TG.

3. Non maximum suppression, which eliminates non edge pixels, leaving only a few fine
lines. For this, at every pixel, pixel is checked if it is a local maximum in its neighbor-
hood in the direction of gradient.

4. Select the hysteresis threshold, hysteresis threshold needs two threshold which retain
or exclude pixels to select the edge.

If the amplitude of the pixel position if higher than the high threshold, the pixel is reserved
as an edge pixel.

If the amplitude of the pixel position is less than the high threshold, the pixel is exclude.

If the amplitude of the pixel position is between the two threshold, the pixel is reserved only
when connected to a pixel higher than high threshold.1

B.2 Perona-Malik Equation

We follow [13, 66] to write this section.

The idea of Perona and Malik [50] was to slow down diffution at edges, where edges can be
describe as points where the gradient has a large magnitude. They apply an inhomogeneous
process that reduces the diffusivity at those locations which have a large likehood to be
edges. This likehood is measured by | ▽ u|2. The Perona-Malik is based on the equation

∂tu = div(g(| ▽ u|2)▽ u) (B.2.1)

where it is usual to take

g1(s) =
1

1 + s2

λ2

, g2(s) = e−
s2

2λ2 , (B.2.2)

the parameter λ says how fast the function tends to zero. One problem when g(s) is be
taken as gi(s) is that Equation B.2.1 is not always a well-posedness process for some initial
conditions, e.g., see [36].

1https://docs.opencv.org/4.x/da/d22/tutorial_py_canny.html
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