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Summary

This doctoral project is focused in contributing to the development of post-quantum cryp-
tography, speci�cally in the area of cryptography based on isogenies of elliptic curves. We
have studied the security of various schemes by simulating the best known quantum at-
tacks against them, as well as by implementing large-scale classical attacks to understand
their e�ciency and practicality. We have used our results to sustain the claim that many
of the protocols proposed in the literature are not secure when using their original pa-
rameters, specially the isogeny-based Di�e-Hellman protocol known as CSIDH. We also
extrapolated our results to larger instances in order propose new parameter sets that we
deem secure. Moreover, we have provided highly e�cient and constant-time implementa-
tions of the CSIDH protocol, both with the original and the newly proposed parameters.
Finally, we have also proposed novel protocols that implement other cryptographic prim-
itives based on isogenies and elliptic curves, speci�cally a veri�able delay function and an
admissible encoding function for points in ordinary elliptic curves that is currently the
most e�cient one in the literature.

Spanish/Español

Este proyecto doctoral se ha dedicado a contribuir al desarrollo de la criptografía post-
cuántica, especí�camente en el área de criptografía basada en isogenias de curvas elípticas.
Se ha estudiado la seguridad de diversos esquemas haciendo simulaciones de ataques cuán-
ticos y también implementando ataques clásicos a grandes escalas para medir su e�ciencia
y practicidad. Con base en estos estudios, hemos podido sustentar la a�rmación de que
muchos de los protocolos propuestos en la literatura no son lo su�cientemente seguros
usando sus parámetros originales, especialmente el protocolo de Di�e-Hellman basado en
isogenias conocido como CSIDH. A su vez, hemos extrapolado nuestro estudio a instan-
cias con parámetros de mayor tamaño, para proponer nuevos conjuntos de parámetros
que sí son seguros. Hemos también realizado implementaciones altamente optimizadas y
en tiempo constante de CSIDH, tanto con los parámetros originales como con los aquí
propuestos. Finalmente, se han propuesto protocolos novedosos que implementan difer-
entes primitivas criptográ�cas basadas en isogenias y curvas elípticas, especí�camente una
función de retraso veri�cable y una función de codi�cado admisible para puntos en curvas
elípticas ordinarias que es, a la fecha, la más e�ciente de su tipo en la literatura.
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Chapter 1

Introduction

1.1 General Context and Motivation

Since its start in the 1950s, the digital revolution has continued to periodically bring
about new technologies that drastically change our everyday lives. One of the areas
that has seen great advances is that of digital communications, which include everything
from cellphones and the internet to credit card payments and bank transfers. With the
increasing ubiquitousness of digital communications in our lives, there has been a growing
concern for studying how to keep these communications safe: for example, how to ensure
a message will only be read by the intended recipient or how to verify that a message
does indeed come from the source it indicates. Cryptography is the science that studies
these questions and comes up with solutions in the form of cryptographic schemes such
as public key encryption schemes or digital signature schemes.

Although a great variety of schemes are known and have been studied for either en-
crypting or signing a message, only a few of them are used in practice. This is mainly
due to resource constraints since large volumes of tra�c, the need for fast transactions,
and the desire to enable safe communications on lightweight devices all require algorithms
that are highly e�cient both in terms of computational power and key storage size. Most
of the schemes used today are based on RSA and Elliptic Curve Cryptography, which
have levels of security based on the hardness of factoring a large integer and of computing
logarithms over large �nite groups, respectively.

The next major advance in the digital revolution is expected to be the emergence of
quantum computation. First theorized by Richard Feynman in 1981, a quantum computer
is a machine that exploits the laws of quantum physics to perform calculations with a
computational power much greater than any classical computer. While a classical bit
always takes one of two values, a quantum bit, or qubit, can be in a superposition of the
two states. This leads to an unbounded increase in the amount of information that can
be stored in one bit, and allows for superposed computations with di�erent input bits at
once similar to the model of a non-deterministic state machine.

1



2 CHAPTER 1. INTRODUCTION

While quantum computers could positively a�ect our lives by enabling new computa-
tional capabilities, the facet of quantum computation that has become more prominent is
as a threat to the security of our communications. This has been evident since 1994, when
MIT mathematician Peter Shor showed the existence of algorithms that can e�ciently
solve both the factorization and discrete logarithm problems, thus violating the security
of all cryptographic schemes used today. The imminent arrival of quantum computation
has thus created an urgent need to revise our current schemes and optimize new ones that
are based on di�erent problems which are not known to be solvable even for a quantum
computer. This has given raise to the area known as post-quantum cryptography.

It may still be decades for the �rst useful quantum computers to be available, but that
does not mean that the study of post-quantum cryptography is irrelevant in the mean-
time. For one, it is clear that current post-quantum schemes are much more ine�cient
than RSA or elliptic curve schemes and so could not be immediately applied in all areas
once quantum computers arrive. It is thus imperative to dedicate research now to the op-
timization of post-quantum schemes so that we can be ready when quantum computation
arrives. This urge is even more pressing when considering the fact that a malicious agent
could be storing encrypted information now to decrypt it once a quantum computer is
available, so if there is any information that we consider may still be sensitive a few years
down the road, we should already be using post-quantum encryption on it now.

Finally, the other reason why its important to dedicate work to post-quantum cryptog-
raphy now is to start building up con�dence on it. The security of cryptographic schemes
is very rarely demonstrable, but is rather conjectured based on our lack of success in
trying to break them. Therefore, it is important to spend a large amount of time putting
these systems to test in order to convince ourselves of their security, a discipline known
as cryptanalysis.

1.2 Problem Exposition

This project aims to advance the development of post-quantum cryptography, which
is achieved by analyzing existing protocols and programming e�cient implementations
of them, as well as by proposing and implementing novel post-quantum constructions.
Speci�cally, we focus on isogeny-based cryptography which is one of the principal candi-
dates being considered for post-quantum cryptography in the form of the SIDH [1, 2] and
CSIDH [3] protocols.

We analyze the existing protocols by considering the known quantum attacks and sim-
ulating the size of the circuit that one would need to implement them. This results in an
assessment of the quantum security provided by the currently proposed parameters, as
well as a more informed proposal for new sets of parameters that conform more suitably
with the intended security goals. Additionally, we develop programming optimizations
for these protocols and provide e�cient and secure implementations of them.
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We also propose brand new constructions based on elliptic curve isogenies that lead
to post-quantum versions of useful cryptographic primitives other than encryption. This
is a topic that has been largely overlooked, with public key encryption and signatures
gathering most of the attention in post-quantum cryptography. For instance, we propose
the use of isogenies to obtain a post-quantum version of a veri�able delay function, or
constructing hash functions into the set of points of an elliptic curve.
As a secondary aim, we also advance the development of classical elliptic curve cryptog-

raphy, speci�cally by proposing a novel construction for e�ciently encoding and hashing
to points in an ordinary curve. While this task is of lesser interest for postquantum cryp-
tography, which usually focuses on supersingular curves, it holds immense interest for
several classical algorithms that are widely in use today and will continue to be so for
years. Moreover, despite not being applicable to postquantum protocol, the construction
we propose is not isolated from the context of the rest of this project, as it exploits much
of the same elliptic curve and isogeny frameworks that are used in our other constructions.

1.3 Objectives and contributions

The speci�c objectives of this project were the following:

1. Assess the quantum security of existing isogeny-based protocols by obtaining a nu-
meric estimation of the resources needed to carry out a quantum attack on them

2. Based on these results, suggest new parameter sizes for existing protocols that con-
form better to the security goals

3. Assess also the classical security of these protocols by launching classical attacks on
small-parameter instances and comparing the performances of di�erent attacks

4. Optimize existing isogeny-based protocols and provide e�cient secure implementa-
tions of them

5. Build upon the existing isogeny-based framework to obtain cryptographic primitives
for purposes other than encryption, which are also quantum-secure

6. Exploit the acquired dominance of the elliptic curve and isogeny frameworks to also
propose new primitives for classical elliptic curve cryptography.

By the end of the project, we are able to claim the following speci�c contributions:

1. Provided the �rst constant-time C implementation of the CSIDH protocol using the
sublinear Vélu formulas [4]
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2. Published quantum circuit estimates that deem the security of original CSIDH in-
stances insu�cient [4]

3. Proposed and implemented larger CSIDH instances along with new quantum circuit
estimates to conform to the original security goal [4]

4. Provided parallel implementations of the meet-in-the-middle and van Oorschot-
Wiener attacks for isogeny path �nding [5]

5. Presented precise estimates for the cost of the previous attacks for a given setup
and used them to derive classically-secure parameters [5]

6. Proposed the �rst instance of a veri�able delay function with post-quantum security
using the isogeny framework [6]

7. Proposed and implemented the most e�cient hash function into a large set of ordi-
nary elliptic curves known to date [7]

1.4 Structure of the manuscript

The remainder of this manuscript is structured as follows. In Chapter 2, we go over all
the background that is relevant to understanding the contributions of this project, in-
cluding topics on quantum computation, elliptic curves and isogenies. In Chapter 3 we
describe the state-of-the-art for isogeny-based cryptography focusing on two protocols,
CSIDH and SIDH, and the various recent e�orts in cryptanalysis that have advanced
our understanding of them. For the reader interested only in the general idea of this
project's contributions, Chapter 4 gives a brief overview of each of the four works that
were developed. These are then presented in more depth in the remaining chapters: �rst,
a major analysis of the quantum security of the CSIDH protocol along with a proposal
of new parameters that is covered in more detail in Chapter 5. Second, a parallel im-
plementation and a comprehensive analysis of the classical attacks that are applicable
to isogeny-based cryptography in general, presented in Chapter 6. Third, a proposal of
the �rst post-quantum veri�able delay function based on isogenies, which is contained in
Chapter 7. And fourth, a new construction for encoding points in ordinary elliptic curves
and hashing onto them that is covered in Chapter 8. Finally, Chapter 9 contains the
concluding remarks and future work ensuing from this project.



Chapter 2

Background

In this section we present all the background that is relevant to better understand the
contributions of this project. We begin by presenting an overview of quantum compu-
tation in Section 2.1 and of post-quantum cryptography candidates in Section 2.2. The
mathematical background of elliptic curves and isogenies is then covered in detail in Sec-
tion 2.3.

2.1 Quantum Computation

Quantum computation provides a more powerful model of computation which, despite cur-
rently remaining mainly theoretical due to engineering constraints, holds great promise
in pushing the frontier for problems that are considered feasibly solvable. Most impor-
tantly, the factoring problem and the discrete logarithm problem, on which virtually all
cryptographic systems that are used today are based on, are both known to be solvable
in polynomial time by a quantum computer.
In this section we brie�y describe the model by breaking it into its two main components:

qubits and operators. This is followed by a brief discussion on reversibility and cost
metrics, and lastly we present a short overview of key quantum algorithms.

2.1.1 Qubits

Unlike classical computers, which use high or low voltages to represent the discrete binary
values of bits, quantum computers operate on the spin states of spin-1/2 particles like
electrons or nuclei. Each particle constitutes a qubit, and its spin state is a vector in a
complex Hilbert space of dimension 2, whose orthonormal basis vectors are denoted |0⟩
and |1⟩. Each qubit can be in either of these states, but also in a superposition (linear
combination over the complex numbers) of them.
Multiple qubits can be described by a single Hilbert space by taking the tensor product

of each qubit's space, so the two-qubit vector |1⟩ ⊗ |0⟩ (or |10⟩ for short) represents the

5
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�rst qubit in state |1⟩ and the second in |0⟩. A general state of n qubits can be written as

|Ψ⟩ =
∑
b

αb |b1 . . . bn⟩ ,

where the sum is over all n-bit numbers and the amplitudes αb are complex constants.
The state itself is not accessible to a computer, but only the result of a randomized
measurement which returns state |b⟩ with probability proportional to |αb|2. After the
measurement, the state collapses to just |Ψ⟩ = |b⟩, so all other information about the
state is lost.

2.1.2 Operators

We use linear operators to modify qubits and realize computations, analogous to the use
of gates for classical bits. As per the laws of quantum physics, the time evolution of any
state can always be described by a unitary linear operator. If we write the basis vectors
as column vectors,

|0⟩ =
(
1
0

)
and |1⟩ =

(
0
1

)
,

then any operation on a single qubit can be expressed as a 2×2 unitary matrix. Likewise,
operations involving two qubits can be expressed as 4× 4 unitary matrices. We typically
consider only these cases, with operations on several qubits obtained by composing simpler
two-qubit operations.
A set of quantum operators is said to be universal if any unitary operator can be

approximated by a series of operators in the set, up to an arbitrarily small loss in precision.
A usual universal set of operators consists [8] of the one-qubit operators

N =

(
0 1
1 0

)
, H =

1√
2

(
1 1
1 −1

)
, T =

(
1 0
0 eiπ/4

)
as well as the two-qubit controlled-NOT operator,

CN =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ,

which �ips the second qubit if and only if the �rst qubit is in the |1⟩ state.

2.1.3 Reversible Computation and Gate Costs

An important consequence of operators being necessarily unitary is that of reversibility:
unlike with classical computers, where actions like clearing or overwriting a bit are con-
sidered trivial, quantum operations on qubits must always be reversible. Consider for
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example the task of computing the AND of two bits b1, b2. In a classical computer with
only two bits of memory one could compute the result and overwrite it in b1 while leaving
b2 the same, which leads to the following truth table:

bin1 bin2 bout1 bout2

0 0 0 0
0 1 0 1
1 0 0 0
1 1 1 1

This function is not realizable by a quantum computer since output (0,0) is produced
by both inputs (0,0) and (1,0), making reversibility impossible. The workaround for a
quantum computer is to use a third qubit b3, called an ancilla bit, and the three-qubit
To�oli gate

F =

I6×6 0 0
0 0 1
0 1 0

 ,

which has the e�ect of �ipping the state of b3 if and only if b1 and b2 are both in state
|1⟩, leaving the other qubits intact. That is, it maps |b1, b2, b3⟩ 7→ |b1, b2, b3 ⊕ b1b2⟩ and as
long as the ancilla qubit b3 starts in state |0⟩, it will end up holding the correct result.
Note that an ancilla qubit with a di�erent initial state may produce undesired results,
so convention dictates that before deallocating the ancilla we must perform the inverse
calculation (in this case, the To�oli gate is its own inverse) to return it to the |0⟩ state
(this process is known as uncomputing).
Because the AND gate cannot be computed using only the two qubits involved, we say

that it is non-linear. The process described in the previous paragraph is an example of
Bennett's conversion, which translates any classical program into a quantum one following
a simple rule:

� For each non-linear gate acting on bits x, y to produce f(x, y), allocate an ancilla
qubit z (assumed to be in state |0⟩) and perform the reversible calculation |x, y, z⟩ 7→
|x, y, z ⊕ f(x, y)⟩ (e.j. by using a To�oli gate)

� Use the value of f(x, y) on other calculations as needed, but never changing the
state of the initial three qubits

� Once f(x, y) is not needed anymore, perform the inverse calculation on the three
qubits to revert |x, y, z ⊕ f(x, y)⟩ 7→ |x, y, z⟩

Just like the AND gate, the OR and NAND gates are also non-linear and must follow
this procedure with To�oli gate implementations for step one, whereas the NOT and
XOR gates are both linear and can be implemented in a more straightforward way (the
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NOT gate, for example, can be computed using only the single qubit involved by simply
applying the N operator).
On top of the additional steps and ancilla qubits required for non-linear gates, their

implementations all make use of To�oli gates. Each To�oli gate, in turn, is implemented
with seven T operators, which are widely thought to be considerably more expensive than
the other operators (N,H,CN). Because of this, some authors opt for a cost metric that
counts only the number of non-linear gates, disregarding the number of linear ones [9, 10,
11].

2.1.4 Quantum Algorithms

We are now ready to de�ne a quantum algorithm as a �xed number of qubits along
with a circuit of operators to be applied to them, called the quantum circuit, whose size
should scale e�ciently with the size of the input (for general purposes, e�ciency means
that something grows only as a polynomial function of the input size). Since we have
discussed how to emulate the AND and NOT gates, it should be clear that any classical
algorithm for computing a function can be emulated by some quantum circuit given a
large enough number of ancilla qubits. The required number of qubits and the size of the
quantum circuit are the so-called quantum resources that we are interested in estimating.
Given that emulating a function through a quantum circuit always requires additional

ancilla qubits and more gates, the utility of this construction remains unclear so far.
However, the real power of quantum computation starts to show once we exploit the
properties of superposition. Given a function f : {0, 1}n 7→ {0, 1}m, consider starting
with n+m qubits in the |0⟩ state and applying an H gate to each of the �rst n qubits to
obtain

(H |0⟩)⊗n ⊗ |0⟩⊗m =
1

2n/2
(|0⟩+ |1⟩)⊗n ⊗ |0⟩⊗m =

1

2n/2

∑
x∈{0,1}n

|x⟩ ⊗ |0⟩⊗m ,

which has a superposition of all possible n-bit inputs in the �rst n qubits. If we are
able to construct a quantum circuit that emulates f storing the result in the last m
qubits (using additional ancilla bits not shown here), then we could apply this circuit
to our superposition and thanks to the linearity of operators we will obtain the new
superposition

1

2n/2

∑
x∈{0,1}n

|x⟩ ⊗ |f(x)⟩

which has, in a way, computed the function f for all possible values of x at once,
somewhat resembling the concept of a non-deterministic machine. Recall, however, that
what is accessible is not the state itself but the result of a randomized measurement.
In 1996, Grover published his algorithm [12] which, given a value of y, modi�es the
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amplitudes of this superposition iteratively so that after just O(
√
N) iterations, where

N = 2n, a measurement will have probability above 25% of producing a state |x⟩⊗ |f(x)⟩
where f(x) = y, yielding a noticeable improvement over the O(N) evaluations needed for
a classical exhaustive search.

An even greater proof of the power of quantum computation is Shor's Algorithm, pub-
lished in 1994 [13], which factorizes an integerN using onlyO((logN)2(log logN)(log log logN))
quantum operators, providing an exponential improvement over the best known classical
algorithm and showing that the security of RSA cryptography can be easily broken pro-
vided that a large enough stable quantum computer can be built. Shor also presented
an algorithm for solving the abelian hidden subgroup problem, which solves the discrete
logarithm problem for any �nite abelian group in subexponential time, breaking also the
security of all Di�e-Hellman-based protocols.

2.2 Post-Quantum Cryptography

In view of the threat posed by quantum computation, the goal of post-quantum cryptog-
raphy is therefore to �nd protocols that are based on problems di�erent than factoriza-
tion and discrete logarithms, which are not known to be easily solvable by a quantum
computer. Even if a problem is not easily solvable by a quantum algorithm, quantum
computation can still facilitate the attack via generic methods such as the Grover search.
Therefore, assessing a post-quantum protocol's security always requires the consideration
of quantum attacks and the resources needed to carry them out, usually in the form of
three metrics: the total number of qubits, the circuit size (total number of gates applied),
and the circuit depth (maximum number of gates applied to the same qubit). The later
is specially important since qubit decoherence due to noise limits the number of times we
can operate on a qubit realistically before its information degrades.

Although several algorithms exist that are not known to be breakable by a quantum
computer, these are plagued by the recurring problem of excessively long key sizes or en-
cryption/decryption times, leaving much work to be done in the research for new quantum-
resistant algorithms and e�cient implementations. Since 2016, the United States' Na-
tional Institute for Standards and Technology (NIST) had started a process [14] to solicit
and evaluate quantum-resistant cryptographic algorithms both for digital signatures and
public key encapsulation, which �nalized in 2022. Symmetric key schemes are not con-
sidered since their constructions are more heuristic and, as far as we know, there are no
quantum-based threats beyond the usual Grover search which reduces the e�ective key
length for an exhaustive search by one half.

The NIST candidates fell into �ve main areas: hash-based, code-based, lattice-based,
multivariate, and elliptic curve isogeny-based, which tend to vary greatly in terms of key
or signature lengths. Table 2.1 shows the typical lengths by referring to a representative
scheme from each area in the NIST security level 1. When it comes to key encapsulation
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versus digital signatures, we note that some areas have a distinct strength in one category
over the other. Isogeny-based cryprtography, which is the focus of this work, does not
have any particularily good signature candidates. However, it has a niche application for
PKE since it has the smallest key sizes despite not having the best timing performance.

Area Public key Private key Signature
Isogeny 751[15] 48[15] 141,312[16]
Hash 64[17] 128[17] 29,792[17]
Code 1MB[18] 11.5 KB[18] -
Lattice 6,130[19] 6,743[19] 1,024[19]
Multivariate 15 KB[20] 10 KB[20] -

Table 2.1: Typical key and signature lengths (in bytes) for representative schemes in each
area of post quantum cryptography. The schemes being referred to are shown within
citation.

The NIST process �nalized with a selection of mostly lattice-based protocols along with
a single hash-based signature scheme, while SIDH [1, 2], the only isogeny-based candidate,
had been designated an �alternative candidate� probably due to its poor performance but
niche characteristics. Later, SIDH was completely ruled out due to the discovery of a
polynomial-time attack by Castryck and Decru [21] which completely broke its security
by exploiting additional information leaked in the protocol. However, this attack does
not generalize to other isogeny-based protocol that don't have this leakage, and the niche
characteristics of isogeny-based cryptography mean that it is still a topic of ongoing
interest despite having missed the NIST standardization process. For instance, a newer
isogeny-based protocol called CSIDH [3] is the only post-quantum candidate to provide
optimally small keys (in the sense that the key size is just enough to guarantee the desired
number of possible keys), and is also the only non-interactive postquantum key exchange.
Additionally, isogeny-based cryptography has the advantage of relying on elliptic curves
which have been in use classically for a long time. This means that they have been studied
with mathematical robustness for much longer than other areas, and also that they can
exploit many parts of the elliptic curve libraries that have already been widely rolled out
today.

2.3 Elliptic Curves and Isogenies

Elliptic curve cryptography is the basis for several cryptographic schemes that are used
today both for key exchanges and digital signatures. However, its security is based on
the di�culty of the discrete logarithm problem and so elliptic curve cyptography by itself
is not post-quantum secure. To work around this, new cryptographic schemes have been
developed that exploit the idea of isogenies over elliptic curves. These schemes are thought
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to be resistant to quantum attacks while maintaining the framework of elliptic curves and
the short key sizes that characterize them. To fully understand elliptic curve isogenies,
we must �rst go over the general concepts of classical elliptic curve cryptography.

2.3.1 Elliptic Curve Basics

An elliptic curve is a an equation of the form

E : y2 + a1xy + a2y = x3 + a3x
2 + a4x+ a6,

where x, y are variables and ai are constants, all over a given �eld F and such that the
curve is non-singular. Whenever the �eld characteristic is not 2 or 3 (which we will assume
throughout), this equation can be brought to the short Weiestrass form

E : y2 = x3 + ax+ b

via a simple change of variables. In this form, the condition that the curve be non-singular
is equivalent to the discriminant ∆E = −16(4a3 + 27b2) being nonzero.
We use E(F) to refer to the set of points (x, y) ∈ F2 that satisfy this equation, whose

size can be estimated by Hasse's Theorem [22]:

Theorem 2.3.1 (Hasse). The number of points in an elliptic curve over a �nite �eld of
size q = pn is always #E(F) = q − t + 1 for some integer t called the Frobenius trace,
which takes values in the interval −2√p ≤ t < 2

√
p.

This set can be expanded into an additive group by appending an identity element 0
and de�ning the group operation

(x1, y1) + (x2, y2) = (x3, y3),

where

x3 =

(
y2 − y1
x2 − x1

)2

− x1 − x2

y3 =

(
y2 − y1
x2 − x1

)
(x1 − x3)− y1

if (x1, y1) ̸= (x2, y2), or

x3 =

(
3x21 + a

2y1

)2

− 2x1

y3 =

(
3x21 + a

2y1

)
(x1 − x3)− y1

if (x1, y1) = (x2, y2), and with additive inverses de�ned by

−(x, y) = (x,−y).



12 CHAPTER 2. BACKGROUND

Figure 2.1: Group operation P +Q over R for the elliptic curve shown in red.

The geometric motivation for this operation is simple: when F = R, we have P +Q = R
where R is the x-axis re�ection of the third point that lies on the line going through P
and Q, as shown in Fig. 2.1. A result of interest for many applications is that the points
of order 2 in this group are of the form (x, 0) where x is a root of x3 + ax + b, so there
either zero or three such points if the discriminant ∆E is a square, and exactly one if it is
not.

In practical applications, the �eld is taken to be Fpm for some large prime p, so E(Fpm)
is a �nite group. One can use the Di�e-Hellman protocol over this group (known as the
ECDH protocol) by de�ning an initial point P of prime order r and choosing a private key
d ∈ F∗

r, then publishing Q = [d]P (which denotes P added to itself d times) as the public
key. Two parties with public keys QA = [dA]P and QB = [dB]P , can easily compute the
common point [dAdB]P by multiplying each other's public key by their own private key,
and the x coordinate of this point is taken as the shared key. The security of ECDH
therefore relies on the following problem:

Problem 2.3.1 (Elliptic Curve Di�e-Hellman Problem). Given a generator P of a large
group in an elliptic curve as well as the public keys [dA]P and [dB]P , �nd the shared secret
[dAdB]P .

As previously mentioned, this problem is not quantum-hard since it can be solved as a
discrete logarithm problem using Shor's algorithm [13].

2.3.2 Isogenies

The study of isogenies has emerged as a way to pose an elliptic curve-related problem that
is not easily solvable by a quantum computer. The next sections o�er a broad overview



2.3. ELLIPTIC CURVES AND ISOGENIES 13

of the most important de�nitions and results for elliptic curve isogenies. For proofs and
a more detailed survey, the reader is referred to Washington's book [23].
An isogeny between elliptic curves E1, E2 is a rational map ϕ : E1 → E2 that preserves

the group identity and is a group homomorphism. A general isogeny can be written as
[22]

ϕ : (x, y) 7→
(
p1(x)

p2(x)
,
p3(x, y)

p2(x)

)
,

where pi are polynomials, and the degree of ϕ is de�ned as max{deg p1, deg p2}. The de-
gree is multiplicative under composition, in the sense that deg(ϕ1 ◦ϕ2) = deg(ϕ1) deg(ϕ2).
We use the term d-isogeny as a shorthand for an isogeny of degree d.
An important result regarding the existence of an isogeny between two elliptic curves

is due to Tate [24]:

Theorem 2.3.2 (Tate). Two elliptic curves are isogenous over a �eld F if and only if
they have the same number of points over that same �eld.

An isogeny is said to be an endomorphism when the domain and codomain curves
are equal. For any isogeny ϕ : E1 → E2 of degree d, there must also exist a dual isogeny
ϕ̂ : E2 → E2 of the same degree such that the composition ϕ̂ ◦ ϕ is an endomorphism of
E1 that equals the multiplication-by-d map. The dual may be de�ned over a �nite �eld
extension, and so may not exist if restricting isogenies to a non-algebraically closed �eld.
An isogeny of degree 1 is called an isomorphism since it is always a bijection that

preserves the group law. The j-invariant of a curve, de�ned as

jE = 1728
4a3

4a4 + 27b2
,

is important for discerning isomorphism classes since it can be shown [23] that two curves
are isomorphic over an algebraically closed �eld if and only if their j-invariants are equal.
An isogeny is said to be separable if its degree equals |Ker ϕ|, the number of elements

mapped to the identity in E2, and any isogeny can be written as the composition ϕ = σ◦πm

where m is a nonnegative integer, σ is a a separable isogeny, and π is the Frobenius en-
domorphism π : (x, y) 7→ (xp, yp) with p the �eld characteristic. Moreover, the separable
isogeny can always be written as a composition of prime-degree separable isogenies.
An important mathematical resultis that, up to composition with an isomorphism, a

separable isogeny is uniquely determined by its kernel. We often exploit this fact to
de�ne isogenies before even knowing their codomain: given a curve E, one can choose a
�nite set of points P1, . . . , Pk and denote by E/ < P1, . . . , Pk > the unique curve (up to
isomorphism) that is the image of E under an isogeny whose kernel is the group generated
by P1, . . . , Pk. In practice, one can easily compute E/ < P1, . . . , Pk > given the list of
points P1, . . . , Pk using Vélu's formulas. The fastest implementation of these formulas is
due to Bernstein et al. [25], and computes an isogeny of degree d in time O(

√
d).
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A second method for constructing isogenies that is alternative to Vélu's formulas are
the modular polynomials: for any prime ℓ, there exists a polynomial Φℓ ∈ Z[X, Y ]
of degree ℓ + 1, called the ℓth modular polynomial, such that two curves E and E ′ are
ℓ−isogenous if and only if Φℓ(jE, jE′) = 0. Given a starting curve E, we can �nd the
ℓ−isogenous curves (characterized by their j-invariant) by �nding the roots of Φℓ(jE, X)
rather than explicitly computing an isogeny. However, this method is not used in practice
for large ℓ since solving a degree-ℓ equation results in a much worse complexity than
Vélu's formulas.

2.3.3 Supersingular curves

Another concept frequently used in isogeny-based cryptography is that of supersingu-
lar curves. For an elliptic curve E over a �nite �eld Fq of characteristic p, recall by
Theorem 2.3.1 that #E(Fq) = q + 1− t for some |t| ≤ 2

√
q. The curve is said to be su-

persingular if p divides t, and ordinary otherwise. As per Theorem 2.3.2, supersingular
curves can only ever be isogenous to other supersingular curves, allowing us to never leave
the supersingular sector while working with isogenies.
Moreover, supersingular curves over any extension of a prime �eld L ⊃ Fp have the

important property that their j−invariant is always contained in Fp2 , even if the curve
coe�cients are de�ned over a larger extension. In particular, every supersingular elliptic
curve de�ned over a �nite �eld is isomorphic to a curve de�ned over a quadratic �eld,
and so we can always assume without loss of generality that the �eld of de�nition of a
supersingular curve is either Fp or Fp2 .
Supersingular curves are useful in cryptography for two reasons:
First, they allow us to work with curves of a known group structure. For instance,

given a prime of the form p =
∏n

i=0 ℓi − 1 where ℓi are distinct small primes, we know
that all supersingular curves over Fp for large enough p will have t = 0 and #E(Fp) =
p+1 =

∏n
i=0 ℓi must contain exactly one subgroup of order ℓi for each i. We can use these

small-order points to de�ne e�ciently-computable isogenies to other curves using Vélu's
formulas.
Second, supersingular curves provide us with the following hard problem:

Problem 2.3.2 (Supersingular Isogeny Problem). Given two supersingular curves E1 and
E2 that are known to be related through a large-degree isogeny, �nd such isogeny.

The supersingular isogeny problem is used as the basis for the security of all isogeny-
based protocols, and is thought to be hard to solve even for a quantum computer. On
the other hand, the analogous problem using ordinary curves is not quantum-hard since
it is known to be reducible to the abelian hidden group problem [26].
For any prime ℓ, the supersingular isogeny graphGFq(ℓ) is the directed graph having

Fq-isomorphism classes of ℓ-isogenous supersingular elliptic curves (represented by their j-
invariants) as vertices, and ℓ-degree isogenies as edges. The graph GFq(ℓ) is a Ramanujan
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graph [27], meaning that the diameter of the graph grows at an asymptotically optimal
rate with the size of q. This makes it so that random walks in it tend to �mix� and become
unpredictable at a quick pase, making them ideal for cryptographic applications.
Due to the existence of dual isogenies, the graph GFq(ℓ) is symmetric, and it is also

(ℓ + 1)-regular whenever
(−p

ℓ

)
= 1. There are two special vertices, j = 0 and j = 1728,

which represent the only curves with non-constant automorphisms. Outside of these two
vertices the graph contains no self-loops. For a more comprehensive study of supersingular
isogeny graphs, the reader is referred to Kohel's work [28].

2.3.4 Endomorphism rings and the class group

Let End(E) denote the set of endomorphisms of the curve E over an algebraically closed
�eld, together with the identity map. This set has the structure of a ring, with com-
position as the multiplicative operation. The structure of this ring is that of an order
O in a Q-algebra K. For ordinary curves, K is an imaginary quadratic �eld (making
it commutative), but for supersingular curves it is a quaternion algebra (making it non-
commutative). We use Ell(O) to refer to the set of all the curves that share the same
endomorphism ring, Ell(O) = {E : End(E) = O}, which are all isogenous under the
algebraic closure of the �eld.
We say that two left-ideals a, b ⊂ O are equivalent if there exist λ ∈ K such that

a = λb. We use Cl(O) to refer to set of equivalence classes of left-O ideals under this
relation. When K is a an imaginary quadratic �eld, Cl(O) takes the structure of an
abelian group known as the ideal class group.
Regardless of whether K is an imaginary quadratic �eld or a quaternion algebra, the

Deuring correspondence [29] states that there is a one-to-one relationship between ele-
ments of Cl(O) and isomorphism classes in Ell(O), and we use Ea to refer to a curve
(unique up to isomorphism) that corresponds to the class of the ideal a. This allows us
to de�ne an action of Cl(O) on Ell(O) through a ∗Eb = Ea·b, which is well-de�ned up to
isomorphisms. This action is a faithful and transitive, but it is not generally commutative
in the case of supersingular curves.
Since the curves Eb and Ea·b are isogenous, the action of Cl(O) can be understood as

an isogeny evaluation, with the ideal class a representing the isogeny ϕa : Eb → Ea·b.
While the typical description of an isogeny has well-de�ned domain and image curves, the
representation of an isogeny as an ideal is agnostic to the curves at the endpoints. For
instance, the same ideal a could be used to describe an isogeny between a di�erent pair of
curves ϕ′

a : Eb′ → Ea·b′ . This idea is exploited by various protocols where two isogenies
can be seen as �the same isogeny but acting on a di�erent curve�, also commonly called
parallel isogenies.
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Chapter 3

State of the Art

In this section we will cover the state of the art for isogeny-based cryptography. We split
our discussion between isogenies over quadratic �elds Fp2 and isogenies over prime �elds
Fp. As previously mentioned, no other cases need to be considered since any supersingular
curve de�ned over a larger extension �eld is isomorphic to a curve over Fp2 .

3.1 Isogenies over quadratic �elds

In the most general case of isogenies over quadratic �elds, it is common to chose a prime
of the shape

p = ℓeAA ℓ
eB
B ± 1

where ℓA, ℓB are distinct small primes and ℓeAA ≈ ℓeBB . We also work with isogenies of
supersingular curves of Frobenius trace t = ±2p so that the curves' cardinality is

#E(Fp2) = p2 − t+ 1 = (p∓ 1)2 = (2eA · 3eB)2.

In this case the group structure is always Zℓ
eA
A ℓ

eB
B
⊕ Zℓ

eA
A ℓ

eB
B
, which allows us to �nd a

couple of generators PA, QA for E[ℓeAA ] (the subgroup of points whose order divides ℓeAA )
as well as generators PB, QB for E[ℓeBB ]. We can use the basis to parametrize all the
points order ℓeAA and ℓeBB , which are used as kernel points and passed to Vélu's formulas
to e�ciently compute isogenies of the corresponding degrees. This setting is the most
common since it allows two parties to work with two classes of isogenies which are always
of coprime degree, but note that group cardinalities with a larger number of ℓeii factors
are also possible and work in the same way.
Despite being now broken, the most historically important protocol based on supersin-

gular isogenies over quadratic �elds was the Supersingular Isogeny Di�e-Hellman
protocol (SIDH), proposed by De Feo and Jao [1, 2]. It was a key exchange scheme where
Alice starts from a prede�ned curve E0 and obtains an order-ℓeAA point by picking a ran-
dom integer kA ∈ Zℓ

eA
A

and computing RA = PA + kAQA which she uses as kernel to

17
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Figure 3.1: Diagram of the SIDH protocol. Arrows in blue represent isogenies computed
by Alice, and arrows in red represent isogenies computed by Bob.

construct the isogeny ϕA and obtain the curve EA = E0/ < RA >. On the other hand,
Bob does the same using a point RB of order ℓeBB , leading to an isogeny ϕB and a curve
EB = E0/ < RB >. The scalars kA, kB act as Alice's and Bob's private keys, whereas the
curves EA and EB act as their public keys. Additionally, Bob must publish the images
ϕB(PA) and ϕB(QA) of Alice's generators under his isogeny, which allows Alice to com-
pute the image ϕB(RA) = ϕB(PA) + kaϕB(QA) of her secret point under Bob's isogeny.
She uses this to compute a new isogeny starting from Bob's curve and obtain the curve
EBA = EB/ < ϕB(RA) >. Analogously, Alice publishes the image of Bob's generators
so that he can compute ϕA(RB) and construct an isogeny starting from Alice's curve to
obtain the curve EAB = EA/ < ϕA(RB) >. This procedure is illustrated by Figure 3.1.

Note that the composition of the isogenies from E0 to EA and from EA to EAB is an
isogeny whose kernel is the union of < RA > and < RB >, and the same is true for the
composition of the isogenies from E0 to EB and from EB to EBA. It follows that that the
curves EAB and EBA are isomorphic, and their common j-invariant is what is used as the
protocol's shared secret.

The key encapsulation version of SIDH with concrete sets of parameters was named
SIKE [15], which was one of the �nalists and the only isogeny-based candidate for the
NIST postquantum standardization process. It was later improved by Costello in an
extension called B-SIDH [30] which increased e�ciency by considering both curves of
cardinality (p + 1)2 and (p − 1)2 at once. Unfortunately, it was then found by Castryck
and Decru [21] that the necessary publication of the image of Alice's basis points under
Bob's isogeny and vice-versa leaked important information that allows one to recover the
secret isogeny kernel points. This led to a polynomial time attack that completely broke
the security of SIDH, SIKE and B-SIDH.
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This is not to say that the general supersingular isogeny problem has been broken, how-
ever, since the attack relies on the leakage of additional information. Many schemes that
rely on a problem closer to the �pure� supersingular isogeny problem still remain secure,
which include hash functions [31], signature schemes [32] and proofs of knowledge [33, 34],
as well as the veri�able delay function presented in Chapter 7.

Cryptanalysis. Regarding the SIDH setting, following the devastating attack of Cas-
tryck and Decru [21] there were several countermeasures proposed including hiding the
degree of the isogeny [35], the endomorphism ring of the base curve [36], or the images of
the torsion points [37]. However, there have been follow-up attacks that are fast to adapt,
such as that of Maino and Martindale [38] and yet another one by Robert [39] which do
not rely on knowledge of the endomorphism ring anymore. It is now generally accepted
that leaking torsion point images is a severe security risk, and focus has shifted to other
types of schemes whose security is more closely based on Problem 2.3.2.
In the general case of the supersingular isogeny problem, the most e�cient quantum

algorithm for �nding secret isogenies is that from Biasse, Jao and Sankar [40] which
runs in time O(p1/4), where p is the �eld's characteristic. This algorithm exploits the
algebraic structure of supersingular elliptic curves to achieve an asymptotic improvement
over a bare Grover search which would run in O(p1/2). In most cases, this is in fact no
better than a classical attack. For instance, �nding an isogeny of degree ℓeA would have
a complexity of O(ℓeA/2) with a classical meet-in-the middle attack, which is just as good
in the common scenario that ℓeA ≈ √p. Because of this, it is often argued that the overall
security of the supersingular isogeny problem is bounded by its classical security alone,
making it a strong candidate for post-quantum cryptography.
When choosing concrete parameters, most schemes (including SIKE) have historically

based their parameter sizes based on the complexity of the meet-in-the-middle attack.
However, this choice has proven to be controversial and it is argued in [41] that even the
classical MITM attack is unrealistic to implement due to its memory requirements, and
parameters should be chosen according to a more conservative attack that compromises
between performance and memory such as the van Oorschot-Wiener golden collision �nd-
ing algorithm [42]. If this line of thought is followed, then the required parameter sizes
can be relaxed while maintaining security. In the case of SIKE, this had already led to a
more in-depth analyses of the van Oorschot-Wiener attack and revision of the parameter
sizes by the authors of the original proposal [43].
The record for a real-world implementation is currently held by Udovenko and Vitto [44]

who brute-forced a degree-288 isogeny using the classical MITM, but already requiring 70
TB of memory for this relatively small instance. However, no large-scale implementations
of the van Oorschot-Wiener attack have been attempted to date there are still several
unanswered questions regarding the concrete performance and parallelism scalability of
these attacks that would help shed light on the appropriate choice of parameters for
other still relevant schemes. These open problems are tackled in the work presented in
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Chapter 6.

3.2 Isogenies over prime �elds

The special case of restricting all elliptic curves and isogenies to be de�ned over a prime
�eld Fp has also proven to be of great cryptographic interest. As explained in Chapter 2,
the ring of endomorphisms of a curve is generally an order in a quaternion algebra for
supersingular curves or an order in an imaginary quadratic �eld for ordinary curves.
However, it was shown by Delfs and Galbraith [45] that if endomorphisms are restricted
to Fp only then the endomorphism ring is always contained in an imaginary quadratic
�eld, even for supersingular curves. This allows us to obtain a commutative ideal class
group Cl(O), and to combine the mathematical usefulness of a commutative class group
action with the cryptographical security and e�ciency of supersingular curves.
The common scenario is to work over a �eld Fp with a prime of the form

p = f
∏
i

ℓi − 1,

where f is a co-factor and ℓi are distinct odd primes co-prime to f . Supersingular curves
over the prime �eld will always have a Frobenius trace t = 0, and a cardinality of
#E(Fp) = p + 1 − t = f

∏
i ℓi, so there will be exactly one subgroup of order ℓi for

each i. We use ϕi to denote the isogeny whose kernel is the subgroup of order ℓi, and li to
denote an ideal from the ideal class that corresponds to this isogeny under the Deuring
correspondence. The li are used as a spanning set for Cl(O), and an arbitrary ideal class
a = la00 la11 · · · lann can be represented by the integer vector a⃗ = (a0, . . . , an). Note that it is
not clear that the li necessarily generate all of Cl(O), but empirically it has been shown
that even a single li will usually span the entirety of it [46]. Additionally, we can also use
negative exponents to denote powers of the inverse ideal l−1, which is well-de�ned since
Cl(O) is a group and corresponds to the isogeny that is the dual of ϕi. Since there is only
one subgroup of order ℓi in E(Fp), the dual must necessarily be de�ned outside of Fp, but
it has been shown in [3] that it can still be computed e�ciently using Fp arithmetic only.
One of the most important isogeny-based schemes still of relevance today is the Com-

mutative Supersingular Isogeny Di�e-Hellman scheme (CSIDH) proposed by Cas-

tryk et al.in 2018 [3]. The scheme has Alice and Bob pick random integer vectors a⃗, b⃗
which act as their private keys and encode ideals a, b. They then compute the action of
their ideals on a base curve E0 to obtain EA = a ∗E0 and EB = b ∗E0, which act as their
public keys. Alice then computes the action of her secret ideal a on Bob's public curve
EB to obtain a ∗ EB = a · b ∗ E0, while Bob does the analogue and arrives to the same
curve thanks to the commutativity of the group action. This commutativity allows the
group action to act as a drop-in substitute for the operation in the original Di�e-Hellman
protocol, but the fact that the public information is the action of a group element on a
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set rather than a group element itself makes it resistant to Shor's algorithm. Thanks to
this, CSIDH is currently the only known non-interactive key exchange protocol1 that is
post-quantum.
Commutative class group actions have also been used in signature schemes such as CSI-

FiSh [46] and SeaSign seasign, but they su�er from poor performance relative to other
alternatives.

Cryptanalysis. Despite the usefulness of commutative group actions, restricting only
to curves over Fp means that we are not dealing with the most general case of the super-
singular isogeny problem, and the commutative group structure can be just as useful in
providing new means for attacks.
In general, the problem of �nding an isogeny in the setting of commutative group

actions can be reduced to a problem known as the Abelian Hidden Shift Problem, for
which Kuperberg has presented a quantum attack that takes sub-exponential time in
2005 [47], with a small improvement to the memory-time trade-o� presented later in
2013 [48]. While not prohibitively devastating, a sub-exponential attack means that a
quantum attacker can achieve a much better complexity than a classical one and so,
unlike the general case of isogenies over quadratic �elds, the quantum security of these
protocols needs to be scrutinized by analyzing the quantum circuit for Kuperberg's attack
closely.
For instance, the smallest instance of the original CSIDH proposal used a 512-bit

prime where the number of ℓi factors is n = 74 and the private keys had the form
a⃗ = (a1, a2, . . . , a74) where each exponent ai is chosen from the interval [−5, 5], hence
yielding a keyspace of 1174 ≈ 2256 and a classical security of 128 bits. However, whether
or not this instance is also big enough to be considered secure against a quantum attack
has proven to be a topic of great controversy. In 2018, Bernstein et al.[9] estimated that a
quantum circuit that evaluates the CSIDH-512 action would require around 240 T-gates,
and argued that the advantage of Kuperberg's algorithm would be outweighed by this
costly evaluation cost. However, in 2020 Peikert [49] estimated that a full execution of
Kuperberg's algorithm only requires about 216 queries to the evaluation oracle, which
combined with Bernstein's result means that CSIDH-512 could have as little as 56 bits of
quantum security. Also in 2020, Bonnetain and Schrottenloher [50] found that a full sim-
ulation of the attack against CSIDH-512 took 219 queries and at 252.6 T-gates per query,
for a total security of 71.6 bits. While this result is more optimistic, it is still insu�cient
since a similar study by the same team found that AES-128 (to which CSIDH-512 and
other postquantum candidates are supposed to be comparable to in security) has at least
113 bits of quantum security [51].
Still, this may not tell the whole story since parameters such as the circuit depth are not

being restricted, and only the operations in the calls to the CSIDH evaluation oracle are

1That is, Alice can compute the shared secret after learning Bob's public key without previously
exchanging any auxiliary information with him, and vice-versa.
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being counted (there is another large part of Kuperberg's algorithm known as the sieving
phase which progressively collapses the superposed state into a basic state containing the
answer, that has not been taken into consideration in these works). All of these were
open issues that were tackled in the �rst contribution of this project, which is detailed in
Chapter 5.



Chapter 4

Overview of Results

These contributions of this project were obtained though four main works, which will
be summarized in this chapter. The four works are developed in full in the next four
chapters.

4.1 The SQALE of CSIDH: scaling up CSIDH to quantum-

secure parameters

The acronym SQALE is used for �Sublinear Vélu Quantum-resistant isogeny Action with
Low Exponents�, and is also an allegory to the fact that this work's main goal is to scale
the parameters of CSIDH up to a quantum-secure state.

One of the main theoretical contributions of this work is the argument that bloating
the size of the prime �eld alone should be enough to increase the quantum security, even
if the key space of usable isogenies is not increased at all. This is because the main
quantum threat to CSIDH, Kuperberg's attack [47], requires working over a set with
group structure and even if only a small subset of Cl(O) is used as keys, the group that
they generate will almost surely be all of Cl(O).
Based on this, we proposed 5 new instances of CSIDH using primes of size 4096 or

5120 targeting NIST security level 1 (compared to the original 512 bits), 6144 to target
NIST security level 2 (compared to the original 1024 bits), and 8192 or 9216 to target
NIST security level 3 (compared to the original 1792 bits). We also provided quantum
circuit estimations for the sieving phase of Kuperberg's attack, in order to back up the
the quantum resistance claim of our new instances. We argue that this sieving phase in
fact becomes asymptotically more costly than the CSIDH query calls, even though the
later had been the only part of the attack that previous authors [49, 50] considered.

One of the main disadvantage of CSIDH relative to other post-quantum candidates
was its slow performance even with its current parameters, and so the adopting of larger
parameters should be taken with great reluctance. To better understand how negative the

23
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e�ects can be, we presented full constant-time C implementations for each of our proposed
new instances. We benchmarked all of our implementations, which used two important
optimizations to ameliorate the damage of using larger primes:

� Low Exponents Recall that the private keys in CSIDH are vectors of exponents
ai which indicate how many times the isogeny of each degree ℓi is repeated. Having
a larger prime allows us to increase the number of ℓi factors in the factorization of
p+ 1 and the pool of isogenies, thus allowing us to reach the same key space using
only exponents ai ∈ {−1, 0,+1}. This ensures that each isogeny degree will be used
at most once, and avoids having to constantly look for new points of order ℓi.

� Sublinear Vélu formulas In 2020, Bernstein et al. [25] presented a new algorithm
that evaluates the Vélu formulas for an isogeny of degree ℓ in time O(

√
ℓ) as opposed

to the straightforward implementation which took O(ℓ) and was the previous state-
of-the-art. We provided the �rst constant-time C implementation of Bernstein's
algorithm, and integrated it to our implementations. The quadratic speedup proved
specially bene�cial to our scaled-up instances, since they make use of much larger
primes ℓi.

Despite these improvements, it was concluded that there is still a long way to go before
CSIDH can be considered practical, as even the fastest version of CSIDH-4096 was found
to run in over 23 billion clock cycles.

4.2 Parallel Isogeny Path Finding: classical cryptanal-

ysis of isogeny-based cryptography

In this work we analyze the security of isogeny-based cryptography in the more general
scenario of isogenies over quadratic �elds. We work on the special but common case that
the isogeny degree is known to the attacker, but do not assume any additional informa-
tion such as the one leaked in SIDH. The cryptanalytic e�orts for this scenario usually
focus on classical attacks only, since there are no known quantum attacks that are more
asymptotically e�cient than the classical ones. Speci�cally, the fastest known attack is
an adaptation of the meet-in-the-middle attack (MitM), but it has intensive memory re-
quirements and the golden collision search (GCS) of van Oorschot and Wienner [42] is
probably more viable as a time-memory trade-o�. A proper choice of parameters for cryp-
tographic protocols requires determining which attack is optimal under given conditions
and predicting the concrete performance of said attack, but so far these questions had
not been widely studied in practice and the analysis remained theoretical.
We have aimed to provide concrete cryptanalytic results by producing large-scale paral-

lel implementations of both the MitM and GCS attacks which were made freely available.
The MitM implementation is CPU-based and is similar to the one of Udovenko and
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Vitto [44], while the GCS implementation is the �rst ever large-scale GPU-based imple-
mentation of this attack. Having both implementations readily available, we were able to
measure the performances for varying isogeny degrees and determine the crossing point
where the GCS starts being more e�cient than the MitM under a limited-memory setting.
This was found to be at a degree of around 296 for reasonable memory bounds, which is
well bellow common cryptographic sizes, and so we concluded that the GCS should be
considered the attack of interest for all cryptanalytic applications.
Additionally, we developed a detailed theoretical analysis for the cost of either attack

in order to derived explicit formulas for their concrete cost. These formulas were veri�ed
by comparing their prediction with the actual cost of our implementations, which allows
us to con�dently extrapolate the model to larger instances which were unfeasible to solve.
The extrapolation predicts that an isogeny of degree 2190 should already provide 128−bit
security. This bound is considerably more aggressive compared to the choices of previous
protocols, such as SIKE [15] which used a degree of 2216 aiming for the same security
level.

4.3 Veri�able IsogenyWalks: Towards a Post-Quantum

Isogeny-based VDF

This work focused on using the isogeny framework to obtain a post-quantum instance
of a veri�able delay function (VDF), which is a relatively new cryptographic primitive
that has gathered great interest in areas such as blockchain, proofs of work, and veri�able
computation.
The goal of a VDF is to provide a function that can only be evaluated via a very slow

algorithm, and which cannot be accelerated substantially even by using parallelization.
However, once the output has been obtained and published by someone, it should be
easily veri�able by anyone in a time that is exponentially faster than having to redo the
computation. Before the publication of this work, no VDFs had ever been proposed that
were quantum-secure in the sense of explicitly relying on one of the commonly studied
post-quantum problems.
The construction proposed by this work gives an explicit algorithm for performing a

random isogeny walk which can be easily plugged into a SNARG framework. SNARGs,
or Succinct Non-interactive Arguments, are constructions of great interest which allow for
the veri�cation of any computation in a time exponentially faster than the computation
itself. Despite having the necessary asymptotic complexities, SNARGs are still consid-
ered of mainly theoretical interest since they come with immense overheads that make
them inviable for most practical applications. Nonetheless, our construction is still of
great importance since it is the �rst post-quantum construction with the right asymptotic
complexities.
Additionally, we also we show that the SNARG can be adapted to verify computations
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at the �eld arithmetic level, which should save signi�cantly on overhead compared to
universal SNARGs which are used to verify arbitrary algorithms at the bit-operation
level. However, we have not provided any implementation nor estimate as to how much
this explicitly helps, which is left for consideration as future work.

4.4 SwiftEC: An e�cient encoding for ordinary elliptic

curves

This work tackled the problem of �nding an e�cient encoding for ordinary elliptic curves,
which means being able to represent points in an elliptic curve as uniformly random bit
strings. This has important applications in protecting against censorship since raw elliptic
curve points are easily identi�able and can be �ltered out to forbid communications with
elliptic curve-based protocols. Additionally, under the right conditions, the inverse of the
encoding can be seen as a hash function that turns random bit strings into random elliptic
curve points, which is useful for constructing many other cryptographic primitives.
In practice, an encoding is usually de�ned by �rst �nding a map f : F → E(F) and

then setting the encoding function to f−1. Finding an e�cient f can be hard, especially
if it is required to run in constant time where the cost is dominated by the number of �eld
exponentiations. In 2006, Shallue and van de Woestijne [52] proposed a parametrized
family of functions fu which, for any choice of u ∈ F, mapped to E(F) in constant time
using only one exponentiation. However, the image for a given u does not cover all of
E(F) and so not only can it not be considered a cryptographic hash function but it cannot
even provide an encoding for all of the points.
Tibouchi's Elligator Squared paper [53] in 2014 showed that one could �x both of these

issues by instead considering the two-parameter encoding

F : (t1, t2) 7→ fu(t1) + fu(t2),

with the addition being performed in the elliptic curve group. It showed that the output
was surjective, asymptotically indistinguishable from a random distribution, and that it
had all the right conditions for a proper encoding. Having to perform two evaluations of
fu unfortunately brings the cost up to two exponentiations, but this was still the most
optimal encoding of its kind known so far.
In this work, we propose a new encoding called SwiftEC, which brings the cost back

down to one exponentiation while retaining the indistinguishability property. In a nut-
shell, the work points out that if u is viewed as a free parameter then the two-parameter
function

F : (u, t) 7→ fu(t)

already �lls the whole curve and its output distribution is indistinguishable from random.
This argument is accompanied by robust mathematical proofs regarding the output dis-
tribution, and a proof-of-concept implementation was written in Sage and benchmarked
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to count the number of �eld operations needed. Viewed either as an encoding or as a hash
function, the single exponentiation makes our construction the most e�cient constant-
time construction known to date for a large set of ordinary elliptic curves that it is
compatible with.
Since it works over ordinary curves, the construction is not interesting for post-quantum

applications. However, it is closely related to our work in that it still utilizes the isogeny
framework, and it produces a result that is of great immediate interest for classical appli-
cations being used today.
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Chapter 5

The SQALE of CSIDH: Scaling up

CSIDH to quantum-secure parameters

Abstract. Recent analyses reported independently by Bonnetain-Schrottenloher and Peik-
ert in Eurocrypt 2020, signi�cantly reduce the estimated quantum security provided by the
isogeny-based commutative group action protocol CSIDH. The work in this chapter, pub-
lished in collaboration with Sam Jacques, Jesus Chi and Francisco Rodríguez in the Journal
of Cryptographic Engineering [4], revisits CSIDH quantum security through a comprehen-
sive analysis of the computational cost associated to the quantum collimation sieve attack.
Furthermore, it proposes a set of primes that can be applied to obtain large instantiations
of CSIDH achieving the NIST security levels 1, 2, and 3. Along with this work, C-code
constant-time implementation of those CSIDH large instantiations was provided, which is
supported by the new sublinear Vélu formulae.

Based on supersingular elliptic curve isogenies de�ned over a prime �eld Fp, the commu-
tative isogeny-based key exchange protocol CSIDH is a promising isogeny-based protocol
that has received considerable attention since its proposal in Asiacrypt 2018 by Castryck,
Lange, Martindale, Panny and Renes [3].
CSIDH can be used analogously to the Di�e-Hellman protocol to produce a non-

interactive key exchange scheme between two parties. Moreover, CSIDH can be adapted as
the underlying cryptographic primitive for more elaborate applications such as key encap-
sulation mechanisms, signatures and other primitives. It has remarkably small public keys
(in fact, even with the parameter scaling proposed in this chapter it still has shorter keys
than the four public key encryption round-3 �nalists of the NIST post-quantum standard-
ization process [14] 1), and allows a highly e�cient key validation procedure. This latter
feature aids in making CSIDH better suited than most (if not all) post-quantum schemes

1The SIKE protocol, which is also isogeny-based, does have shorter keys than our scaled version of
CSIDH, but is classi�ed as an "alternate candidate"
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for resisting Chosen Ciphertext Attacks (CCA) and for supporting static-dynamic and
static-static key exchange settings. On the downside, CSIDH has a signi�cantly higher
latency than other isogeny-based protocols such as SIDH and SIKE [15, 54]. Further-
more, as this chapter will discuss in detail, several recent analyses revised CSIDH's true
quantum security downwards (see for example [50, 49]).

CSIDH's Security From a classical perspective, the security of CSIDH is related to
the problem of �nding an isogeny path from the isogenous supersingular elliptic curves
E0 and EA. Now, random-walk-based attacks on the whole class group (of rough size

√
p)

have a complexity of Õ( 4
√
p) steps with constant space (for more details see, [45]). Thus,

in order to provide a security level of 128 classical bits, the prime p needs to be large
enough to support 2256 ideal classes, hence the choice of a 512-bit prime in the original
CSIDH proposal. The parameter m should then be chosen in such a way that the private
key space is also composed of 2256 di�erent secret keys, which we heuristically expect to
�ll nearly all ideal classes.
From a quantum attack perspective, Childs, Jao, and Soukharev tackled in [26] the

problem of recovering the secret a from the relation EA = a∗E0. They managed to reduce
this computational task to the abelian hidden-shift problem on the class group, where
the hidden shift corresponds to the secret a that one wants to �nd. Previously in 2003
and 2004, Kuperberg and Regev had presented two sieving algorithms that could solve
this problem in subexponential time if they were executed in a quantum setting [47, 55].
In particular, Kuperberg's procedure has a quantum time and space complexity of just
exp

(
O(
√
log p)

)
. Later, in 2011, Kuperberg re�ned his algorithm by adding a collimation

sieving phase [48]. The time complexity of this new variant was still exp
(
O(
√
log p)

)
, but

the quantum space complexity was just O(log p).
In a nutshell, a Kuperberg-like approach for solving the hidden-shift problem consists

of two main components:

1. A quantum oracle that evaluates the group action on a uniform superposition and
produces random phase vectors

2. A sieving procedure that destructively combines low-quality phase vectors into high-
quality phase vectors

The sieving procedure gradually improves the quality of the phase vectors until they
can be measured and reveal some bits of the hidden shift, and thus the CSIDH secret key.
Recent analyses of this quantum algorithm that were presented in Eurocrypt 2020

[50, 49], point to a signi�cant reduction of the quantum security provided by CSIDH.
Concretely, the original 511-bit prime CSIDH instantiation was deemed to achieve NIST
security level 1 in [3]. However, the authors of [50] recommended that the size of the
CSIDH prime p should be upgraded to at least 2260 or 5280 bits, according to what they
named as aggressive and conservative modes, respectively.
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Both [50] and [49] focus on breaking the originally proposed instantiations of CSIDH,
rather than an exhaustive analysis of the quantum attack. [50] focuses mainly on Kupber-
berg's �rst attack and Regev's attack by providing a thorough accounting of a quantum
group action circuit. [49] gives a thorough practical and theoretical analysis of Kuper-
berg's second algorithm and provides many optimizations. While [49] simulates the full
algorithm to give very precise estimates, this method will not extend to the larger primes
we consider here because, by design, even the classical aspects of the attack should be
infeasible to compute. We use the results of the theoretical analysis in [49] to count re-
source use without a full simulation. This allows us to evaluate very large primes and to
explore depth-width trade-o�s and thus to compare to NIST's security levels. We argue
that for the primes we consider, CSIDH's quantum security depends mainly on the cost
of the collimation sieve, not the current isogeny evaluation costs.

The SQALE of CSIDH We use the acronym SQALE for �Sublinear Vélu Quantum-
resistant isogeny Action with Low Exponents�. The SQALE of CSIDH is a CSIDH in-
stance such that p = 4 ·∏n

i=1 ℓi − 1 is a prime number with small odd primes ℓ1, . . . , ℓn,
and the key space size N ≪ √p is determined by using only the k ≤ n smallest ℓi's, where
the exponents ei of the ideal class a =

∏n
i=1 l

ei
i , are drawn from a small range, possibly

{−1, 0, 1}.
The original CSIDH protocol chose exponents large enough that the key space is ap-

proximately equal to the class group. We show in Section 5.1 that a SQALE'd CSIDH
preserves classical security. We also argue in Section 5.3 that quantum attackers need
to attack the entire class group, regardless of the subset that keys are drawn from, so
we can choose low exponents and preserve quantum security as well. With this change,
we improve the trade-o� between the performance of the key exchange and its quantum
security. To further improve performance of the large CSIDH instances considered in this
work, we incorporate the Vélu's improved O(

√
ℓ) algorithm for isogeny computations.

Contributions In this work we present a detailed classical and quantum cryptanalysis
of CSIDH using our revised prime sizes as shown in Table 5.1, which, according to our
analysis, are required to achieve the NIST security levels 1, 2 and 3. We also present a
constant-time C implementation of CSIDH for several large instantiations of CSIDH as
reported in Table 5.6.

Our concrete contributions can be summarized as follows:

1. A concrete computational cost analysis of the CSIDH group action for di�erent sizes
of primes p. Our study takes into account di�erent options for the exponentinterval
m going all the way from the minimal setting J−1 . . 1K (including and not including
the zero exponent), and the more common choice J−5 . . 5K. In particular, for each
interval J−m . . mK we directly apply the framework described in [56], by selecting
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Table 5.1: Summary of results. Quantum security is depth×width, including a hardware
limit of 280 for Level 1, 2100 for Level 2, and 2119 for Level 3, as well as a 210 overhead for
error correction, and assuming a quantum oracle free of cost. Performance based on the
CSIDH variant OAYT-style (cf. Subsection 5.1.2).

NIST CSIDH quantum CSIDH prime Performance
Security level security in bits size in bits (gigacycles)

Level 1 124 4,096 23.2
Level 1 135 5,120 42.2
Level 2 148 6,144 74.8
Level 3 >160 8,192 199.1
Level 3 >171 9,216 292.4

optimal bound vectors, (i.e, a customized mi per each ei along with their respective
optimal strategies.

2. The �rst C-code implementation of a constant-time version of the CSIDH protocol
using the O(

√
ℓ) algorithm for constructing and evaluating isogenies as proposed

in [25].

3. Extending the cost analysis of the quantum collimation sieve to account for larger
primes, depth limits, improved quantum memory circuits, and several small opti-
mizations. We also argue that a small exponent interval maintains quantum security
while improving classical performance.

Outline Section 5.1 gives background on CSIDH, e�cient methods for computing its
group action, and the quantum cost models we use. In Section 5.2 we describe the quan-
tum collimation sieve attack and explain how to estimate its cost. We account for larger
primes, depth limits, improved memory circuits, and �nd several small optimizations.
The sieve only seems able to attack the full class group, and not any smaller generating
subset. We give several arguments for this in Section 5.3, ultimately concluding that for a
quantum attacker, only the size of the class group a�ects the total quantum attack cost.
These conclusions suggests that an ideal scheme will operate on isogenies of a number
of degrees, but with small exponents for each. Section 5.4 summarizes the quantum and
classical security and the e�ects of hardware limits.
We then give a concrete cost analysis of the CSIDH group action for a key exchange

with di�erent sizes of primes p in Section 5.5. We account for di�erent options of the
exponent interval m, from the minimal setting J−1 . . 1K (with or without zero) up to the
original proposal of J−5 . . 5K. For each interval, we apply the framework reported in [56]
to select optimal bounds (di�erent mi for each prime) and their corresponding optimal
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strategies. Starting from the Python-3 CSIDH library reported in [57], we present the
�rst constant-time implementation of large CSIDH instantiations supporting the O(

√
ℓ)

isogeny-evaluation algorithm from [25]. Our C library also includes a companion script
that estimates quantum attack costs. Our software is freely available at https://github.
com/JJChiDguez/sqale-csidh-velusqrt.

5.1 Background

This section presents some of the main concepts required for performing classical and
quantum attacks on CSIDH.

5.1.1 Construction and evaluation of odd degree isogenies using
Vélu Square-root Algorithm

Let ℓ be an odd prime number, Fp a �nite �eld of large characteristic, and A a Montgomery
coe�cient of an elliptic curve EA/Fp : y

2 = x3 + Ax2 + x. Given an order-ℓ point P ∈
EA(Fp), the construction of an isogeny ϕ : EA 7→ EA′ of kernel ⟨P ⟩ and its evaluation at a
point Q = (α, β) ∈ EA(Fp)\⟨P ⟩, consist of the computation of the Montgomery coe�cient
A′ ∈ Fp of the co-domain curve EA′/Fp : y

2 = x3 + A′x2 + x and the x-coordinate ϕx(α)
of ϕ(Q).

Using the recent Vélu square-root algorithm (aka
√
élu) as presented by Bernstein, De

Feo, Leroux and Smith in [25], A′ and ϕx(α) can be computed as (see also [58], [59], [60]
and [57]),

A′ = 2
1 + d

1− d and ϕx(α) = αℓ hS(1/α)
2

hS(α)2
,

where d =

(
A− 2

A+ 2

)ℓ(
hS(1)

hS(−1)

)8

,

S = {1, 3, . . . , ℓ− 2}, and
hS(X) =

∏
n∈S

(X − x([n]P )).

Hence, the main cost associated to computing A′ and ϕx(α), corresponds to the com-
putation of hS(X). Given EA/Fp an order-ℓ point P ∈ EA(Fp), and some value α ∈ Fp

we want to e�ciently evaluate the polynomial,

hS(α) =
ℓ−1∏
i

(α− x([i]P )).

From Lemma 4.3 of [25],

https://github.com/JJChiDguez/sqale-csidh-velusqrt
https://github.com/JJChiDguez/sqale-csidh-velusqrt
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(X − x(P +Q))(X − x(P −Q)) = X2 +
F1(x(P ), x(Q))

F0(x(P ), x(Q))
X +

F2(x(P ), x(Q))

F0(x(P ), x(Q))

where,

F0(Z,X) = Z2 − 2XZ +X2;

F1(Z,X) = −2(XZ2 + (X2 + 2AX + 1)Z +X);

F2(Z,X) = X2Z2 − 2XZ + 1.

This suggests a rearrangement à la Baby-step Giant-step as,

hS(α) =
∏
i∈I

∏
j∈J

(α− x([i+ s · j]P ))(α− x([i− s · j]P )),

where s is a �xed integer representing the size of the giant steps and I, J are two sets of
indices such that I ± sJ covers S.
Now hS(α) can be e�ciently computed by calculating the resultants of two polynomials

in Fp[Z], of the form

hI(Z) :=
∏
xi∈I

(Z − xi)

EJ,α(Z) :=
∏
xj∈J

(
F0(Z, xj)α

2 + F1(Z, xj)α + F2(Z, xj)
)

The most demanding operations of
√
élu require computing four di�erent resultants

ResZ(f(Z), g(Z)) of two polynomials f, g ∈ Fp[Z]. Those four resultants are computed
using a remainder tree approach supported by carefully tailored Karatsuba polynomial
multiplications. In practice, the computational cost of computing degree-ℓ isogenies using√
élu is close to K(

√
ℓ)log2 3 �eld operations for a constant K. For more details about

these computations see [25, 57].

5.1.2 Summary of CSIDH

Here, we give a general description of CSIDH. A more detailed description of the CSIDH
group action computation can be found in [3, 61, 62, 63].
The most demanding computational task of CSIDH is evaluating its class group ac-

tion, whose cost is dominated by performing a number of degree-ℓi isogeny constructions.
Roughly speaking, three major variants for computing the CSIDH group action have been
proposed, which we brie�y outline next.
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Let π : (x, y) 7→ (xp, yp) be the Frobenius map andN ∈ Z be a positive integer. Working
now with points over the extension �eld Fp2 , let E[N ] denote the N -torsion subgroup of
E/Fp2 de�ned as, E[N ] = {P ∈ E(Fp2) : [N ]P = O}. Let also

E[π − 1] = {P ∈ E(Fp2) : πP = P}

and

E[π + 1] = {P ∈ E(Fp2) : πP = −P}.
Note that E[π− 1] corresponds to the original set of Fp-rational points, whereas E[π+1]
is a set of points of the form (x, iy) where x, y ∈ Fp and i =

√
−1 so that ip = −i. We

call the later the set of zero-trace points.
The MCR-style [62] of evaluating the CSIDH group action takes as input a secret

integer vector e = (e1, . . . , en) such that ei ∈ J0 . . mK. From this input, isogenies with
kernel generated by P ∈ EA[ℓi] ∩ EA[π − 1] are constructed for exactly ei iterations. In
the case of the OAYT-style [63], the exponents are drawn from ei ∈ J−m . . mK, and P
lies either on EA[ℓi]∩EA[π− 1] or EA[ℓi]∩EA[π+1] (the sign of ei determines which one
will be used). We stress that for constant-time implementation of CSIDH adopting the
MCR and OAYT styles, the group action evaluation starts by constructing isogenies with
kernel generated by P ∈ EA[ℓi] ∩ EA[π − sign (ei)] for ei iterations, followed by dummy
isogeny constructions that are performed for the remaining (m− ei) iterations.
On the other hand, the dummy-free constant-time CSIDH group action evaluation,

proposed in [61], takes as secret integer vector e = (e1, . . . , en) such that ei ∈ J−m . . mK
has the same parity as m. Then, one starts constructing isogenies with kernel generated
by P ∈ EA[ℓi] ∩ E[π − sign (ei)] for exactly ei iterations. Thereafter, one alternatingly
computes EA[ℓi] ∩ EA[π − 1] and EA[ℓi] ∩ EA[π + 1] isogenies for the remaining mi − ei
iterations (for more details see [61]).

5.1.3 Quantum computing

We refer to [64] for the basics and notation of quantum computing. Following [65], we treat
a quantum computer as a memory peripheral of a classical computer, which can modify
the quantum state with certain operations called �gates�. We give the cost of a quantum
algorithm in terms of these operations (speci�cally Cli�ord + T gates), which we treat as
a classical computation cost. With this we can directly add and compare quantum and
classical costs, since we measure quantum computation costs in classical operations. We
use the �DW �-cost, which assumes that the controller must actively correct all the qubits
at every time step to prevent decoherence. This means the total cost is proportional to
the total number of qubits (the �width�), times the total circuit depth.
We depart from [65] by giving an overhead of 210 classical operations for each unit of

DW -cost, to represent the overhead of quantum error correction. With surface code error
correction, every logical qubit is formed of many physical qubits, which continuosly run
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through measurement cycles. We assume each cycle of each physical qubit is equivalent
to a classical operation. By this metric, Shor's algorithm has an overhead of 217 for each
logical gate [66]. The algorithm we analyze will need much more error correction, but we
assume continuing advances in quantum error correction will reduce this overhead to 210.
Since a surface code needs to maintain a distance between logical qubits in two physical
dimensions and one dimension of time [67], we assume the 210 overhead is the cube of the

code distance, and thus every logical qubit is composed of 210·
2
3 physical qubits.

5.2 Quantum Attack

We follow Peikert [49] and analyze only Kuperberg's second algorithm [48]. Because
of this, and our assumption that classical operations are only 210 times cheaper than
quantum, the trade-o�s of [68, 69] do not help for our analysis.
Kuperberg's algorithm can be divided into 3 stages:

1. Constructing phase states, where we compute an arbitrary isogeny action in su-
perposition, perform a quantum Fourier transform, then measure the result. This
leaves a single qubit in a random phase state with some associated classical data,
which forms the input to the next stage.

2. A sieving stage, where we use a process called �collimation� to destructively combine
phase states to produce �better� phase states. This requires some quantum arith-
metic, but the main costs are quantum access, in superposition, to a large table of
classical memory, and subsequent classical computations on this table.

3. A measurement stage, where we measure a su�ciently �good� phase state and recover
some number of bits of the secret key.

We repeat these steps until we recover enough bits of the secret key to exhaustively search
the remainder.
Asymptotically, the sieving stage is the most costly, so we focus on that. In Section 5.2.6

we justify our choice to ignore the cost of constructing phase states.

5.2.1 Overview of Kuperberg's algorithm

We start with an abelian group G (the class group) of order N and two injective functions
f : G → X and h : G → X such that h(x) = f(x − S) for some secret S. For
this description we assume G is cyclic. This is generally untrue for class groups, but
a quantum attacker can recover the group structure as a polynomial-cost precomputation
(see [50, Section 4]). They can then decompose the group into cyclic subgroups, perform a
quantum Fourier transform on each, and collimate them independently. The total amount
of collimation will be the same, so we focus on a cyclic group as it is easier to describe.
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For CSIDH, the function f will identify an element of the class group with an isogeny
from EA to some other curve E, and output the j-invariant of that curve. The function
h is the same, but starts with a public key curve EA′ .
To begin, we generate a superposition over G (ignoring normalization),

∑
g∈G |g⟩. Then

we initialize a single qubit in the state |+⟩ = |0⟩+ |1⟩, and use it to control applying either
f or h: ∑

g∈G

|0⟩ |g⟩ |f(g)⟩+ |1⟩ |g⟩ |h(g)⟩ (5.1)

Then we measure the �nal register, �nding f(g) = h(g + S) for some g. Because f and h
are injective, this leaves only two states in superposition:

|0⟩ |g⟩+ |1⟩ |g + S⟩ . (5.2)

This is the ideal state. Naive representations of the group will not produce precisely this
state. Section 5.3.1 explains why our best option is to �x a generator g, and produce
superpositions

∑N−1
x=0 |x⟩ |xg⟩, which leads to a �nal state

|0⟩ |x⟩+ |1⟩ |x+ s⟩ (5.3)

where S = sg. At this point, we apply a quantum Fourier transform (QFT), modulo the
group order N , to produce

|0⟩
N−1∑
k=0

e2πi
xk
N |k⟩+ |1⟩

N−1∑
j=0

e2πi
(x+s)j

N |j⟩ . (5.4)

Then we measure the �nal register and �nd some value b, leaving us with the state

|0⟩ e2πixbN + |1⟩ e2πi (x+s)b
N ≡ |0⟩+ e2πi

sb
N |1⟩ . (5.5)

From this point, we de�ne ζbs = e2πi
bs
N . We emphasize that it is critical that the QFT acts

as a homomorphism between the elements of the group and phases modulo N , even an
approximate homomorphism as in [50].
A classical computer with knowledege of s can easily simulate input phase vectors, and

the cost of the remainder of the algorithm is mainly classical. Peikert thus simulated the
remaining steps of the algorithm for a precise security estimate [49]. We hope to choose
parameters such that the remaining steps are infeasible, so we cannot classically simulate
them. Instead we extrapolate Peikert's results to estimate the full cost, with some small
algorithmic improvements we now describe.

Phase vectors with data. Kuperberg works with states of the form in Equation 5.5
to save quantum memory; however, we will maintain the factor b in quantum memory.
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We de�ne a phase vector with data to have a length L, a height S, an altitude A,
and a phase function B : [L] → [S]A (de�ning [N ] := {0, . . . , N − 1} and [N ]M :=
{0,M, 2M, . . . ,M(N − 1)}), as follows:

L−1∑
j=0

ζB(j)
s |j⟩ |B(j)⟩ . (5.6)

The phase function B is known classically.
The vector in Equation 5.5 almost has this form, with L = 2, B(0) = 0 and B(1) = b

(in fact B(0) = 0 for all phase vectors), and S = b. To add the data to it, we simply use
the qubit to control a write of the value of b to a new register.
Starting from an initial phase vector with data, we can double its length with a new

initial phase vector. We describe the procedure for a power-of-two length, which is much
easier, but other lengths are possible with relabelling. We �rst concatenate the new phase
vector, then treat the new qubit as the most signi�cant bit of the index j:

(
|0⟩+ ζb

′

s |1⟩
)
⊗
(

L−1∑
j=0

ζB(j)
s |j⟩ |B(j)⟩

)
(5.7)

=
L−1∑
j=0

ζB(j)
s |j⟩ |B(j)⟩+

2L−1∑
j=L

ζB(j−L)+b′

s |j⟩ |B(j − L)⟩ .

On the left sum, the �rst bit of j is 0, and on the right sum it is 1. We then rede�ne
the phase function to be B′ : [2L] → [S + b′], where B′(j) = B(j) if j < L and B′(j) =
B(j − L) + b′ if j ≥ L. To update the phase register, we perform an addition of b′,
controlled on the �rst qubit (which is now the leading bit of the index j). The state is
now twice as long, at the cost of just one quantum addition, and classical processing of
the table of values representing B.
We can produce initial phase vectors with data of length L = 2ℓ by starting with an

initial phase vector, adding its phase function to a quantum register, then repeating this
doubling process ℓ − 1 times. The height of such a vector will be the maximum of ℓ
uniformly random values from 0 to 2n; we assume this is simply 2n. The altitude will be
the least common multiple of these vectors and we assume this is 1.
The next part of the algorithm is to collimate phase vectors until their height equals

approximately their length. A collimation takes r phase vectors of some length L, height
S, and altitude A, and destructively produces a new phase vector of length L′, height S ′,
and altitude A′, where S ′ < S and A′ ≥ A. For e�ciency, we try to keep L′ = L.
Once the height equals the length, say S0, we perform a QFT and hopefully recover

lgS0 bits of the secret s, starting from the bit at lg(A). To recover all of the secret bits,
we run the same process but target di�erent bits each time, sequentially or in parallel.
Classical simulations show that each run recovers only lgS0 − 2 bits on average [49].
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Adaptive Strategy . The length of the register in Equation 5.3, which undergoes to
the QFT, governs the cost of the sieve. Ideally, after �nishing one sieve, we would use
the known bits of the secret to reduce the size of the problem. For example, if the group
order is N = 2n for some n, then if the secret is s = s12

k + s0 and we know s0, we start
with a state |0⟩ |x⟩+ |1⟩ |x+ s mod 2n⟩ for some random, unknown x. We can subtract
s0 from the second register, controlled by the �rst qubit, to obtain

|0⟩ |x⟩+ |1⟩ |x+ s12
k mod 2n⟩ (5.8)

The least signi�cant k bits of the second register are the same in both states, so we can
remove or measure these states, and only apply the QFT to the remaining bits. Then our
initial phase vectors start with a height of 2n−k, rather than 2n.
This is Kuperberg's original technique. Peikert analyzed a non-adapative attack, using

a high-bit collimation in case of non-smooth group orders. We remain uncertain whether
an attack can be adaptive with a prime-order group. With prime orders, there is little
correlation between the bits of x and x+ s mod N , even if we know most of the bits of
s.
Alternatively, we could represent group elements by exponent vectors. In that case, we

end up with the state
|0⟩ |x⃗⟩+ |1⟩ |x⃗+ s⃗ mod L⟩ (5.9)

where L is the lattice representing the kernel of the map from exponent vectors to class
group elements. However, a direct, bit-wise QFT does not de�ne a homomorphism from
vectors modulo a lattice are to phases (see Section 5.3.1).
We could try to represent integer exponent vectors x⃗ by vectors v⃗ such that BLv⃗ = x⃗,

where BL is a matrix of the basis vectors of the lattice. We would �nd all bits of a
single component, then clear that component for future sieves. Since v⃗ = B−1

L x⃗, and
B−1

L = 1
det(BL)

adj(BL), and the adjugate of an integer matrix is an integer matrix, the

smallest non-zero entry of B−1
L in absolute value is at least 1/ det(BL). This means one

needs lg det(BL) bits of precision for each component v⃗. However, det(BL) = det(L) = N ,
the size of the class group, so each component is as hard to solve as the entire problem
under a generator-based representation, and we still cannot adaptively sieve within each
component.
It is possible that adaptive sieving on a prime-order group is inherently di�cult. There

is a large gap between the classical di�culty of discrete log in a prime-order group com-
pared to a smooth-order group, so a similar gap may exist in the highly similar abelian
hidden shift problem. In summary, we assume that partial knowledge of the bits of a
secret s in an abelian hidden shift problem gives no advantage in �nding unknown bits
for groups of prime order. More formally:

Assumption 5.2.1. If it costs C to recover t secret bits in an abelian hidden shift problem
for a group of prime order, it will still cost max{C, O(2n−k)} to recover t bits even if k
bits out of n are already known.
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Each run of the sieve recovers about lgS0 − 2 bits on average, so the total number of
sieves is lgN

lgS0−2
. If this assumption is wrong, then in the worst case, the total sieving

cost will be dominated by the �rst run of the sieve, leading to a reduction of ≈ 7 bits of
security.

5.2.2 Collimation

From vectors of length L and height S, we repeatedly collimate to a height S ′ as follows:
First we concatenate the vectors and add together their phase functions, which will match
the new phase. Addition is done in-place on one of the phase registers. Let j⃗ = (j1, j2)

so that |j1⟩ |j2⟩ = ⃗|j⟩, and let B(⃗j) := B1(j1) +B2(j2). The resulting state will be:

L−1∑
j1=0

ζB1(j1)
s |j1⟩ |B1(j1)⟩

L−1∑
j2=0

ζB2(j2)
s |j2⟩ |B1(j1) +B2(j2)⟩

=
L−1∑

j1,j2=0

ζB(⃗j)
s |⃗j⟩ |B1(j1)⟩ |B(⃗j)⟩ . (5.10)

Then we divide B(⃗j) by S ′ and compute the remainder and modulus:

L−1∑
j1,j2=0

ζB(⃗j)
s |⃗j⟩ |B1(j1)⟩ |

⌊
B(⃗j)
S′

⌋
⟩ |B(⃗j) mod S ′⟩ . (5.11)

We then measure the value of
⌊
B(⃗j)
S′

⌋
, which gives some value K. Let J ⊆ L × L be

the set of indices j1 and j2 such that
⌊
B1(j1)+B2(j2)

S′

⌋
= K. Since we know K, B1, and B2

classically, we can �nd �nd the set J and use it to construct a permutation π : J → [L′],
where L′ = |J |. De�ning a new phase function B′ : [L′]→ [S/S ′] where B′(j) = B(π−1(j))
mod S ′, we �nd that B(⃗j) = K + B′(π(⃗j)) for all j⃗ ∈ J . Equation 5.12 shows that the
factor of K only introduces a global phase and thus we can ignore it.
We now �x the phase vector that was left after measurement. First, we must erase

B1(j1). We use a quantum random access classical memory (QRACM) look-up uncompu-
tation, which only needs to look up values of j1 which are part of a pair in J . We expect
L′ such values.
Then we compute π(⃗j) in another register. This is a QRACM look-up from a table of

L′ indices with words of size lgL′. Letting j′ = π(⃗j), this leaves the state∑
j⃗∈J

ζB(⃗j)
s |⃗j⟩ |π(⃗j)⟩ |B(⃗j) mod S ′⟩

=
L′−1∑
j′=0

ζK+B′(j′)
s |π−1(j′)⟩ |j′⟩ |B′(j′)⟩ (5.12)



5.2. QUANTUM ATTACK 41

|ctrl〉
|i0〉

|i1 . . . in−1〉
0

w

In

T

=

0

0

w

n−1

In

T0

In

T1 0

0

(a) Recursive case

|ctrl〉
|i0〉

0

0

w

w

+t0

+t1 0

(b) Base case

Figure 5.1: A short, wide look-up circuit for a table T = [t0, t1, . . . ], where T0 and T1 are
two halves of T .

We now do a QRACM look-up uncomputation in a table of L′ indices to erase π−1(j′).
This technique is analogous with r > 2. We uncompute B1(j1), B2(j2), . . . , Br−1(jr−1)

with a single look-up. We can do this because each value of ji that appears in a tuple in J
likely appears in a unique tuple, since there are only L possible values of ji and it appears
in Li tuples. Since this is an uncomputation, the extra word size is irrelevant [70]. The
greatest cost here seems to be computing the permutation π.

QRAM. Collimations repeatedly perform look-ups in quantum random access classical
memory (QRACM), also known as quantum read-only memory (QROM). Given a large
table of classical data T = [t0, . . . , tn−1] of w-bit words, we want a circuit to perform the
following:

|i⟩ |0⟩ 7→ |i⟩ |ti⟩ . (5.13)

The simplest method is a sequential look-up from Babbush et al. [70], while Berry et
al. [71] provide a version that parallelizes nicely. Beyond the minimum depth of that
circuit, we use a wide circuit, Figure 5.1. Our cost estimation checks the cost of each
of these circuits and chooses whichever has the lowest cost under each depth constraint;
often this is Berry et al.'s circuit with k ≈ 8.
Following Peikert we assume that if our target length is L, the actual look-ups will need

to access Lmax = 8L words.
Memory latency has no e�ect on our �nal costs. For both the look-ups and the per-

mutation computation, we added a depth of (100W )1/2, where W is the total hardware
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(classical and quantum) needed. Signal propagation over a single bit should be faster than
execution of a single gate, which is our unit of depth, so (100W )1/2 should safely overes-
timate the latency of accessing two-dimensional memory. This still had no e�ect on our
�nal costs except under extreme conditions of more than about 2130 classical processors.

5.2.3 Permutation

To compute the permutation π, we start with r sorted lists of L elements in the range [S].
We want to �nd all tuples that add up to a speci�ed value K in [rS]. For our estimation,
we checked the cost of three di�erent approaches and di�erent r and chose the cheapest,
which was often r = 2.

Problem 5.2.1 (Collimation permutation). Let L, S1, and S2 be integers such that S1 ≫
S2 ≫ L. On an input of r sorted lists B1, . . . , Br of L random numbers from 0 to S1 and
an integer K, list all r-tuples from B1 × · · · ×Br such that their sum is in {KS2, KS2 +
1, . . . , KS2 + S2 − 1}.

One approach is to iterate through all (r − 1)-tuples of elements from B1 to Br−1,
compute the sum for each tuple, then search through Br to �nd all elements that produce
a sum in the correct range. This has a cost of approximately Lr−1 lgL, since we expect
to check only 1/Lr−1 elements in Br for each (r − 1)-tuple. With appropriate read-write
controls, this parallelizes perfectly.
The structure of the sieve guarantees S2 ≥ Lr for all but the �nal collimation. This

means we cannot guess a value for the sum of the �rst r/2 lists, then search for a matching
sum in the remaining lists, because we would need to guess r

2
S2 values, raising the cost

over Lr. This prevents divide-and-conquer strategies like with a subset-sum, as in [69].
A lower-cost but memory intensive algorithm �rst merges s of the lists into a single

sorted list of Ls s-tuples and their sums, at cost Ls(s lgL). Then it exhaustively searches
the remaining Lr−s tuples, and searches for matches in the merged, sorted list. The total
cost is O(Ls + Lr−ss lgL). We choose s = ⌊r/2⌋.
We assume both classical approaches parallelize perfectly, but we track the total num-

bers of classical processors required to �t in any depth limit.

Grover's algorithm . A simple quantum approach is Grover's algorithm, searching
through the set of Lr r-tuples for those whose sum is in the correct range. This requires
O(Lr/2) iterations, but each iteration requires r look-ups, which each cost O(L). Each
Grover search returns 1 possible tuple, creating a coupon-collector problem, so we repeat
the Grover search L lgL times. The cost thus grows as L

r+3
2 lgL, which improves on the

classical approach for r ≥ 5.
The cost of Grover's algorithm gets much worse under a depth limit. Grover oracles

should minimize their depth as much as possible, and since the look-up circuits parallelize
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almost perfectly, we analyze only the wide look-up as a Grover oracle subroutine. We
assume the L lgL search repetitions are parallel as well.

5.2.4 Sieving

To �nd the cost of each sieve repetition, we �rst �nd the depth of the tree of sieves. First
we follow [72] to derive some facts about the distribution of phase vectors after sieving.
Let K = {K1, . . . , Ks} be all possible measurement results from collimation. We treat
each of the Lr states in superposition as i.i.d. random variables Xi with values in K,
de�ning pi = P[X = Ki]. Since the states are in uniform superposition, we imagine that
measurement selects one such state Xj. Let Wj be the number of other states in the
superposition with the same value as Xj; it equals 1 +

∑
i ̸=j 1Xi=Xj

. Conditioning on
Xj = Km gives us

Wj|(Xj = Km) = 1 +
∑
i ̸=j

1Xi=Km ∼ 1 + Bin(Lr − 1, pm).

This means

P[Wj = w] =
s∑

m=1

P[Wj = w|Xj = Km]P[Xj = Km]

=

(
Lr − 1

w − 1

) s∑
m=1

pwm(1− pm)L
r−w. (5.14)

The size of the collimated list is the expected value of Wj:

E[Wj] =
Lr∑
w=0

w

(
Lr − 1

w − 1

) s∑
m=1

pwm(1− pm)L
r−w (5.15)

=
s∑

m=1

1

Lr

Lr∑
w=0

(
Lr

w

)
w2pwm(1− pm)L

r−w

︸ ︷︷ ︸
(Am)

(5.16)

In the �rst layer of collimation X is uniformly random so pm = S1

S0
and Wj is binomial,

giving E[Wj] =
S1

S0
(Lr − 1) + 1.

(Am) is the expected value of the square of Bin(Lr, pm), implying E[Wj] equals

s∑
m=1

1

Lr

(
(L2r + Lr)p2m − Lrpm

)
= (Lr + 1)

s∑
m=1

p2m − 1.

To �nd pm for later collimations, we assume X is a sum of r i.i.d. uniformly random
variables with values in [0, . . . , s] where s = Si/Si+1. By the central limit theorem this
converges to a N(rµ, rσ2) random variable, where µ = s/2 and σ2 ≈ s2

12
.
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We approximate
∑s

m=1 p
2
m as the integral of the square of the probability density func-

tion for N(µ, σ2), which is 1
2
√
πσ
. This gives us

E[Wj] ≈ (Lr + 1)

√
3√
rπs
− 1. (5.17)

This means the size of a new list is approximately Si+1

Si

√
3
rπ
Lr. We use cr :=

√
3
rπ

as

an �adjustor�. Peikert takes this as 2
3
for r = 2. Using the central limit theorem might be

innacurate for small r, but in fact our adjustor gives ≈ 0.69 for r = 2, so we assume it is
also accurate for r ≥ 3.
This derivation replicates Peikert's result that each collimation reduces the height by a

multiplicative factor of Lr−1cr, with a more precise expression for cr.
We start with a height of N =

√
p and we want to reach a height of S0, so the height

of the tree must be

h =

⌈
lg(N/S0)

lg(Lr−1/cr)

⌉
. (5.18)

Because of the rounding, we might need vectors of length less than L in the initial layer.
Thus, we recalculate: The height of the phase vectors in the second layer (after the �rst
collimation) must be Sh−1 = S0(L

r−1/cr)
h−1.

The top layer has height Sh = N , the height of random new phase vectors. Since
Sh−1/Sh is larger than any other layer, the phase vectors in the top layer only need
a length L0 which is less than L. Following Section 3.3.1 of Peikert and the previous
derivation, the sieve requires L0 = (L N

Sh−1
)1/r. For this top layer we do not have the

adjusting factor of cr because the sum of r uniformly random values up to N , modulo N ,
will still be uniformly random.
This tells us how many oracle calls must be performed: There will be rh leaf nodes

in the tree, and each one must have length L0. We adjust this slightly: Since each layer
has some probability of failing, we divide this total by (1− δ)h for δ = 0.02, which is an
empirical value from Peikert. We also add a 20.3 �fudge factor� from Peikert. The above
analysis gives the number of oracle calls.

5.2.5 Fitting the sieve in a depth limit

We focus on NIST's security levels, which have a �xed limit MAXDEPTH on circuit depth,
forcing the sieve to parallelize. The full algorithm consists of recursive sieving steps,
producing a tree, where we collimate nodes together at one level to produce a node at
the the next level. This parallelizes extremely well, though a tree of height h must do at
least h sequential collimations.
From this, we use MAXDEPTH/h as the depth limit for each collimation. The cost of

collimation is mainly QRACM look-ups, which parallelize almost perfectly.
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If each collimation has depth dc and the tree has height h, then MAXDEPTH− hdc is the
maximum depth available for oracle calls. We divide this by the depth for each oracle call,
do, and then by the number of total oracle calls. This determines the number of oracle
calls one must make simultaneously.
We also check whether collimation must be parallelized. We compute the total number

of collimations in the tree, then multiply this by the depth of each collimation. Since
one can start collimating as soon as the �rst oracle calls are done, the depth available for
collimating is MAXDEPTH− do. This tells us how many parallel oracle calls the sieve must
make, Po, and the number of parallel collimations, Pc.
If Po > lg(L0)Pc, then we will need to store extra phase vectors. We compute the depth

to �nish all the oracle calls, then subtract the number of phase vectors that are collimated
in that time, to �nd the number that must be stored.
If Po ≤ lg(L0)Pc, the algorithm cannot parallelize the collimation as much as required,

because the input rate of phase vectors is too low. Hence, we must increase Po to lg(L0)Pc.
This slightly overestimates the oracle's parallelization, since we can occupy the collimation
circuits by collimating at higher levels in the tree, but since the number of vectors in
successive levels of the tree decreases exponentially, we expect negligible impact.

5.2.6 Oracle costs

We propose that the cost of the oracle is the most likely factor for future algorithmic
improvements to reduce CSIDH quantum security. Any improvement in basic quantum
arithmetic will apply to computing the CSIDH group action in superposition; thus, using
estimates from current quantum arithmetic techniques like [50], will almost certainly
overestimate costs (indeed, the costs they reference have since been reduced [73]). The
alternative approach of [9] was to produce a classical constant-time implementation to give
a lower bound on cost, since latency, reversibility, and fault tolerance will add signi�cant
overheads.
However, there is some possibility that quantum implementations may be cheaper

than reversible classical methods. A prominent example is the recent idea of �ghost
pebbles� [74], which shows that the lower bounds on the costs of reversibly computing
classical straight-line programs [75] do not hold for quantum computers.
We give some rough estimates for the oracle cost here. We start with [9] and assume the

number of non-linear bit operations scales quadratically with the size of the prime. The√
élu memory costs 8b+3b log2 b �eld elements, where b ≈

√
ℓmax ≈

√
log p

log log p
is the largest

isogeny computed. Each �eld element is log2 p bits. We assume that this is enough to
hold the �state� of the group action evaluation, and thus we can apply straight-line ghost
pebbling techniques. This is likely not optimal but it is a �rst approximation. We assume
that the depth is equal to the number of operations, though with perfect parallelization
up to a factor of log2 p. We treat each non-linear bit operation as a quantum AND gate,
and do not include linear bit operation costs.
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Pebbling. Reversible computers cannot delete memory, and �pebbling� is the process
of managing a limited amount of memory (�pebbles�) to compute a program. We refer
to [75] for details. Ghost pebbling [74] is a quantum technique where we measure a state
in the {|+⟩ , |−⟩}-basis, which releases the qubits but may add an unwanted phase that
must be cleaned up. For our purposes, a pebble will be a state of many qubits, so with
near certainty, a measurement-based uncomputation will leave a phase that we need to
remove.
Our strategy is as follows: Suppose we have enough qubits to hold s states simultane-

ously and n steps remaining in the program. From one state we can compute the next
step, uncompute the previous state with measurements, and then repeat this; this only
requires 2 states at a time. As a base case for s = 3, this gives the �Constant Space�
strategy from [74], which requires n(n+1)

2
steps. In fact we only need 2 states, since we

either consider the �nal state separately from this accounting, or we only need to clear
the phase from the �nal state.
For a recursive strategy, we pick some k < n, and repeat the 2-states-at-a-time method

to reach step n−k. We then recurse with s−1 states for the �nal k steps, then uncompute
the state at step n−k with a measurement. To clean up the phase from this measurement,
we repeat the 2-states-at-a-time to reach step n − 2k, then recurse for the next k steps.
We repeat this process until all phases are removed.
If C(k, s− 1) is the cost for the recursive step, this has total cost

⌈n
k

⌉
C(k, s− 1) +

⌊nk⌋∑
i=0

ik. (5.19)

Based on some simple optimization, we choose k = n
s−1
s . We �nd the total costs nu-

merically, and test initial values of s between 1
2
lg n and 5 lg n to �nd an optimal value.

Table 5.2 gives the costs of one call to the oracle.

5.3 Security of Low Exponents

One of our main contributions is low exponents as secret keys. Our key space is thus a
small subset of the class group. We believe that this extra information does not help a
quantum adversary, for the following reasons:

1. The representation of group elements as a bitstring must be homomorphic to bit-
strings representing integers;

2. Creating an incomplete superposition of states will not produce properly formed
phase vectors; and

3. Incorrect phase vectors as input are likely undetectable, uncorrectable, and quickly
render the sieve useless.
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Table 5.2: Estimated CSIDH group action oracle costs in log base 2, including 210 overhead
for total cost and 26.7 hardware overhead for each logical qubit.

Prime Logical Depth Hardware Cost
Size Operations (DW )

512 44.9 44.0 26.5 73.4
1024 46.9 46.0 28.0 77.4
1792 48.5 47.6 29.3 80.3
3072 50.1 49.2 30.6 83.1
4096 50.9 50.0 31.2 84.6
5120 51.6 50.6 31.8 85.7
6144 52.1 51.2 32.2 86.7
8192 52.9 52.0 32.8 88.2
9216 53.2 52.3 33.1 88.8

We will explain each point in detail. These support our main assumptions:

� Quantum adversaries will still need to search the entire class group;

� The oracle for a quantum adversary will need to evaluate arbitrary group actions,
not just small exponents.

Both points mean that the quantum security depends only on the size of the class
group, not the size of the subset we draw keys from. Importantly, these assumptions fail
if we restrict the keys to a small subgroup of the class group. It is critical that the subset
of keys generates the entire class group.

5.3.1 Group Representations

To create the input states, we must use a QFT which computes a homomorphism between
elements of the group and phases of quantum states. Circuits to do this are well-known
only for modular integers, represented as bitstrings. With a di�erent representation of
group elements (e.g., vectors in lattice), we either need a custom-built QFT circuit for
that representation, or we �rst change the representation to modular integers. However, a
custom-built QFT is equivalent to a change of representation: we could apply the custom
QFT, then the inverse of the usual QFT to integers, and this will map our group elements
to modular integers.
This seems to restrict us to representing elements of the class group as multiples of

a generator. We might be able to reduce the cost of the search if we only used small
multiples of this generator; however, low exponents do not correspond to small multiples.
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Hence, the exponent vectors will likely be indistinguishable from random multiples of the
generator.
The state before the QFT has the form |0⟩ |x⟩+ |1⟩ |x+ s⟩, where x is the coe�cient of

the generator for the group element that we measured. Hence, if x is randomly distributed,
we will still need lg |G| qubits to represent it, and the QFT will produce random phase
vectors of height up to |G|. Since the cost of the sieve is governed by the height of the
input phase vectors, the cost of the sieve will be the same.
In short, to exploit the fact that secrets are restricted, we require a representation of

group elements that can be homomorphically compressed to fewer than lg |G| qubits. We
see no method to do this.

5.3.2 Incomplete Superpositions

The �rst step of producing phase vectors involves a superposition over all of G. If we
know that the secret s is in a smaller subset H1 ⊆ G, we could instead sample from H1.
We could even sample from another set H0 for f , though it must be the same size for the
normalization to match. This produces a superposition

|0⟩
∑
g∈H0

|g⟩ |f(g)⟩+ |1⟩
∑
g∈H1

|g⟩ |h(g)⟩ . (5.20)

Measuring the �nal register returns a particular value z = f(g) for some g ∈ H0 or
z = h(g) = f(g − S) for some g ∈ H1. Let Z = f(H0) ∪ h(H1), and partition it into
3 subsets: Z0 = f(H0) \ h(H1), Z+ = f(H0) ∩ h(H1), and Z1 = h(H1) \ f(H0). If we
measure z ∈ Z0, then the state after the QFT is just |0⟩, since there was no value g ∈ H1

such that h(g) = z. Similarly, measuring z ∈ Z1 leaves the state |1⟩. Only if we measure
z ∈ Z+ will we have a �successful� phase vector, i.e., one that is not just |0⟩ or |1⟩ and
has some information about s.
The size of Z+ is |H0 ∩ (S +H1)| ≤ |H0|, and the probability of measuring z ∈ Z+ is
|Z+|/|H0|. Choosing H0 and H1 to make this probability large, without knowing S, seems
very challenging. For example:

Theorem 5.3.1. If we generate a uniform superposition of exponent vectors with elements
in {−m, . . . ,+m}, then for a key in {−1, 1}n, the probability of a successful phase vector
is (

2m

2m+ 1

)n

. (5.21)

Proof. There are 2(2m+1)n states in superposition when we measure: (2m+1)n exponent
vectors in superposition for each value |0⟩ or |1⟩ of the leading qubit. Each state has equal
probability. We measure curves, meaning that a curve reached by both E0 and E1 is twice
as likely as a curve reached by only one or the other.
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For small m, the set of curves reached by E0 is close to a bijection with a hypercube
of exponent vectors of width (2m + 1) and centered at 0. The set of curves reached by
E1 is in bijection with a hypercube of exponent vectors of the same width centered at s,
the exponent vector of the secret key. The intersection of these hypercubes has volume
(2m)n, giving Equation 5.21.

5.3.3 E�ects of Incomplete Superpositions

We de�ne a defective phase vector with �delity q of length L as a triple (B, J, |ϕ⟩), where
B : {0, . . . , L} → [N ] is classically known, J ⊆ [L] is not classically known and |J | = qL,
and

|ϕ⟩ =
∑
j∈J

ζB(j)
s |j⟩ . (5.22)

If we measure a |0⟩ or |1⟩ state from an oracle that produces incomplete superpositions,
then q = 1

2
, B(1) = b, but B(0) = 0 and J = {0} or J = {1}.

In short, a phase vector with q < 1 is one where our classical beliefs about the set of
phases in superposition are wrong. We know the function B correctly, but it only matches
the real state on the unknown subset J . The issue is that the oracle cannot tell us the
�delity of a new phase vector; our measurements do not tell us whether we succeeded or
not.
We call this �delity because it represents quantum �delity with respect to the state we

believe we have, given the classical information of the function B. This means that if k
input phase vectors are defective, the �delity of the entire input state degrades to 2−k. If
our �nal phase vector before measurement has �delity q with respect to the state we want,
then q is the probability of measuring the same result [64, Section 9.2.2]. That is, the
�nal �delity gives us the probability of actually recovering any bits of the secret. We need
this to be very high, since there is no e�cient method to test whether a small number
of key bits are correct. Such a method would trivially break the scheme by guessing and
checking.
Hence, if our input states have �delity q, we need the �delity to increase by the time we

reach the �nal state. Quantum circuits without measurement are unitary operations and
thus preserve �delity, but measurements may increase it, so we �rst argue that collimation
does not appreciably increase the �delity.

Theorem 5.3.2. Starting with an initial phase vector of length L and �delity q < 1
2
, with

height S, if we collimate to a new height S ′, the resulting phase vector is a new defective
phase vector with expected �delity at most

q + 4

√
ln(L′)

L′ , (5.23)

for L′ := S
S′Lq ≥ 40.
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Proof. The probability of measuring any phase is uniform in the �rst collimation. This
means pm is constant in Equation 5.14, so the length of any state after measurement,
which we denote X, has distribution 1 + Bin(|J | − 1, S ′/S) = 1 + Bin(qL − 1, p) for
p = S ′/S and qL = |J |. The length of phases that we incorrectly believe we have will
have distribution Y ∼ Bin(L− qL, p).
The �delity of the measured state is X

X+Y
. We use Cherno� bounds to concentrate

X and Y to be within a factor of (1 ± δ) of their means, except with probability ϵ :=
2 exp(−E[x]δ2/3) + 2 exp(−E[y]δ2/3). With δ =

√
3 ln(L′)/L′, since q < 1

2
, this gives

ϵ < 5
L′ .

We know X
X+Y

≤ 1 so we can bound E[ X
X+Y

] as

E
[

X

X + Y

]
≤ 1 + δ

1− δ
p(qL− 1) + 1

p(qL− 1) + 1 + p(L− qL) + ϵ. (5.24)

With careful rearranging we �nd

q +
q

L′ + 2
√
3

√
ln(L′)

L′ +
5

L′ . (5.25)

For su�ciently large L′ this �ts the required bound.

Theorem 5.3.2 shows that for small q, the �delity increases only linearly with each
collimation. The factor of L′ is approximately equal to the actual number of states in
superposition in the collimated phase vector. Each phase vector is only collimated once
for each level of the tree and there are only ≈ 27 sequential collimations, even at very large
prime sizes. Hence the sieve could only tolerate ≈ 7 defective input phase vectors. Sieving
over a 6144-bit prime needs 289 input phase vectors, so we would need the probability of
failure to be approximately 2−86. Given Theorem 5.3.1, this nearly rules out sampling
low exponents.
Since sieving is ine�ective, it would be desirable instead to take many phase vectors,

some of which may be defective, and produce good vectors out of them. We summarize
this as the following problem:

Problem 5.3.1 (Probabilistic Phase Vector Distillation (PPVD)). Let s be an unknown
secret value. As input, there are n input states |ϕk⟩ with labels k, such that with probability
p, |ϕk⟩ = |0⟩ + eiks/N |1⟩, with probability 1−p

2
, |ϕk⟩ = |0⟩, and with probability 1−p

2
,

|ϕk⟩ = |1⟩.
With some probability ϵ, either output 0 for failure or output 1 and t states |ϕj1⟩ , . . . , |ϕjt⟩

and their associated phase multipliers ji, such that, for all i:

|ϕji⟩ = |0⟩+ eijis/N |1⟩ . (5.26)

The PPVD problem cannot be solved with epsilon > 0 for n = 1:
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Lemma 5.3.1. There is no quantum channel (circuit plus measurement) that distin-
guishes a single phase vector from |0⟩ or |1⟩ without calling the group oracle or learning
the secret s.

Proof. Suppose such a quantum channel Φ exists. Since the states we want to distinguish
are constrained to a 2-dimensional subspace, any measurement will produce a state in a
1-dimensional space, which is a single vector. Since we want the output to be a phase
vector, our measurement must produce a valid phase vector |ϕ′⟩. Suppose |ϕ′⟩ has some
associated phase j. The vector |ϕ′⟩ is the basis of our measurement, and thus cannot
depend on the input states nor the secret s, since we assume we do not learn s. Hence,
for an input |ϕ⟩ = |0⟩+ eiks/N |1⟩, the secret is s, so we require |ϕ′⟩ = |0⟩+ eijs/N |1⟩. But
if we instead had an input for a secret s′ ̸= s, then |ϕ′⟩ is not a correct phase vector.

The argument of Lemma 5.3.1 does not readily extend to n > 1, but we assume that
similar arguments exist. The central issue is that our distillation process must project
inputs onto phase vectors that are correct for an unknown secret phase multiplier s. We
see no way to do this without learning s and without being able to produce correct phase
vectors from �blank� inputs of |0⟩ and |1⟩. Either of these cases implies a more e�cient
solution to the dihedral hidden subgroup problem. We make that last statement more
precise and argue that we cannot expect to �gain� phase vectors on average:

Lemma 5.3.2. If the collimation sieve gives the optimal query complexity for the dihedral
hidden subgroup problem, then no process can solve PPVD with tϵ > pn.

Proof. For a contradiction, let tϵ > pn. Assume we have a perfect phase vector oracle,
from which we make n initial queries. We then take pn of our phase vectors and shu�e
them together with |0⟩ and |1⟩ vectors. Then we run the process that solves the PPVD.
If it succeeds, it produces t new phase vectors, which we add to a growing list; if it fails,
we call the phase vector oracle another t times. Either way we have t − np new phase
vectors, and in the �rst case we did not need to call the oracle. Thus each iteration calls
the oracle t(1− ϵ) times on average. We repeat this process to create all the phase vectors
that the collimation sieve needs.
If the collimation sieve requires Q states, this process only calls the oracle Q

t−np
t(1− ϵ)

times. If tϵ > pn, then

Q

t− npt(1− ϵ) <
Q

t− tϵt(1− ϵ) = Q (5.27)

and thus we solve the dihedral hidden subgroup problem with fewer than Q states.

5.4 Discussing secure CSIDH instatiations

In this section we discuss the various factor that play a role in the security analysis of
CSIDH instantiations. We consider the two facets of security, beginning with quantum
security in Subsection 5.4.1 and then discussing classical security in Subsection 5.4.2.
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5.4.1 Quantum-secure CSIDH instatiations

Table 5.4 presents estimated costs for quantum sieve attacks against di�erent prime sizes,
based on the analysis in Section 5.2. NIST de�nes post-quantum security levels relative
to the costs of key search against AES (we assume an o�ine single-target attack) and
collision search against SHA-3 [14], for which the most e�cient attacks, respectively, are
Grover's algorithm (which is quantum) and van Oorschot & Wiener's (vOW) algorithm
(which is classical) [42].
To compare these three algorithms, which have distinct space-time trade-o�s, we in-

clude �xed hardware limits and add a fault tolerance overhead. These assumptions are
stronger than the assumptions used in the analyses of other post-quantum schemes, par-
ticularly proposed NIST standards. Since CSIDH, and our `SQALE'd version, are not
being considered for standardization, we use riskier assumptions in our cost model. This
means the performance is not directly comparable to other post-quantum schemes at the
same security level. Our recommended parameters are a 4096-bit prime for Level 1, 6144
bits for level 2, and 8192 bits for level 3.

Quantum Oracle Costs The number of oracle calls decreases with the size of the
prime, relative to the total computational expense. To increase our estimate of the attack
cost against a 4096-bit prime, the isogeny oracle must cost at least 254 gates, and at
least 279 gates to change the 8192-bit prime cost estimate. These are high but may be
realistic. Bonnetain and Schrottenloher [50] estimate 263 T-gates just for CSIDH-1792;
however, their estimate is based on costs for modular arithmetic that have subsequently
been improved. Bernstein et al. [9] gave a circuit with 240 non-linear bit operations,

leaving the full quantum cost to be determined. Both predate the
√
élu technique and

neither exploit any fully quantum techniques. Since basing security on current isogeny
evaluation costs seems precarious, we only account for the costs of the collimation sieve
itself.

Hardware Limits Grover-like quantum algorithms parallelize very badly, but the col-
limation sieve parallelizes almost perfectly. Thus the threshold for security increases as
depth decreases, but CSIDH's bits of security remain the same. To an adversary with a
high depth budget of 296, SQALE'd CSIDH-4096 costs much more to break than AES-128,
but costs much less to break if the adversary must �nish their attack in depth 240. There
is therefore not a straightforward answer to whether SQALE'd CSIDH-4096 is as secure
as AES-128.
We assert that it does not matter if an adversary with access to more than 280 qubits

could attack AES-128 at a higher cost than attacking CSIDH-4096, since such an adversary
is unrealistic. We constrain an adversary's amount of �hardware�, the total of classical
processors, memory, and physical qubits (see Subsection 5.1.3). All three are given equal
weight. Under limits of both hardware and depth, certain attacks are impossible. The



5.4. DISCUSSING SECURE CSIDH INSTATIATIONS 53

depths in Table 5.4 are the minimum depths for which the collimation sieve can �nish
under our hardware constraint. Because Grover search becomes more expensive at lower
depths, this removes high-cost attacks on AES.
Our hardware limit for NIST level 1 is 280, based on [41]. For level 2 we use 2100,

the memory contained in a �New York City-sized memory made of petabyte micro-SD
cards� [76], and for level 3 we use 2119, the memory of a 15 mm shell of such cards around
the Earth [76].

5.4.2 Classical Security

Assume we want to �nd a CSIDH key that connects two given supersingular Montgomery
curves E0 and E1 de�ned over Fp for a prime p = 4 ·∏n

i=1 ℓi − 1. Let N denote the key
space size.
Notice, large primes p ≫ 2512 permit smaller key space sizes N ≪ p1/2 than the class

group order; and then, random-walk-based attacks are costlier than Meet-In-The-Middle
(MITM) procedures. In fact, MITM performs about N1/2 ≪ p1/4 steps.
To illustrate the MITM approach, let us assume that for i := 1, . . . , n, we require the

computation of isogenies of degree-ℓi, each of which we repeat m ∈ Z+ times. The �rst
step is to split the set {ℓ1, . . . , ℓn} into two disjoint subsets L0 and L1, both of size n

2
.

Next, for i = 0, 1, let Si be the table with elements (e⃗, ge⃗) where ge⃗ corresponds to the
output of the group action evaluation with inputs Ei, and a CSIDH key e⃗ = (e1, . . . , en)
such that ej = 0 for each ℓj ∈ L1−i. The MITM procedure on CSIDH looks for a collision

between S0 and S1; that is, two pairs (e⃗, ge⃗) ∈ S0 and (f⃗ , gf⃗ ) ∈ S1 such that ge⃗ = gf⃗ ;

consequently, the concatenation of e⃗ and f⃗ , maps E0 to E1.
The tables S0 and S1 each have about N1/2 elements 2. The size of the class group

#cl(O) is asymptotically close to p1/2, and the key space size N must be (approximately)
equal to 22λ to ensure λ ∈ {128, 192} bits of classical security. Consequently, for large
primes p≫ 21024, we have

#S0 ≈ #S1 ≈ 2λ ≪ #cl(O)1/2 ≈ p1/4. (5.28)

Then (#S1)(#S0)≪ #cl(O), and the birthday-paradox probability of a collision between
S0 and S1 (other than the one expected by construction) happening by chance is negligible.
The expected running-time of MITM is 1.5N1/2 and it requires N1/2 ≈ 2λ cells of memory.
Here, the classical security of CSIDH falls into the same case as SIDH, where van Oorschot
& Wiener (vOW) Golden Collision Search (GCS) is cheaper than MITM, and a small key
space still provides λ ∈ {128, 192} bits of classical security. In fact, the van Oorschot &
Wiener Golden Collision search procedure [41, 42] applied to CSIDH has an expected
running-time of

2In general, when mi degree-ℓi isogeny constructions are required for each i = 1, . . . , n, where the
cardinality of the sets L0 and L1 should be #S0,#S1 ≈ N1/2.
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Classical security
Bound m 128-bits 192-bits

OAYT MCR Dummy-free OAYT MCR Dummy-free
5 64 86 86 89 119 119
4 70 95 95 97 132 132
3 79 111 111 109 153 153
2 95 139 139 132 193 193
1 139 221 221 193 306 306

Table 5.3: Number of small odd primes ℓi's required for ensuring 128 and 192 bits of
classical security given the hardware bounds we set.

1

µ

(
7.1× N3/4

w1/2

)
(5.29)

when only µ processors and w cells of memory are allowed to be used. As a consequence,
the number k of small odd primes ℓi's that allows λ-bits of classical security is

k ≈ 4

3

(
λ+ 1

2
log2(w)− log2(7.1)

log2(δm+ 1)

)
, (5.30)

where N = (δm+ 1)k and (δm + 1) determine the size of either J−m . . mK (δ = 2,
OAYT-style [63]), J0 . . mK (δ = 1, MCR-style [62]) or { ( }m) = {e ∈ J−m . . mK | e ≡
m mod 2} (δ = 1, dummy-free style [61]).
Assuming the previously mentioned technological limits of w = 280, w = 2100, w = 2119

cells of classical memory for NIST levels 1, 2, 3 (resp.), Table 5.3 summarizes and compares
the number k of small odd primes required as a function of the maximun number m of
isogeny constructions per prime. In each case, we then found independent bounds mi

for each degree-ℓi isogeny construction to optimize the cost using the approach reported
in [56]. Note that any increase in our classical memory budget w will imply a higher
value of k, thus forcing us to re-parameterize the collection of k isogenies that must be
processed.

Quantum collision-�nding. For quantum security we analyze only the collimation
sieve, but a quantum attacker could attack the meet-in-the-middle problem, just as a
classical attacker. With the cost model we use, the best attack is Multi-Grover with
distinguished points [77]. SIKE-434 and SIKE-610 have larger search spaces than we
consider, and likely have higher oracle costs. Under the Multi-Grover attack, these SIKE
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parameters meet NIST security levels 1 and 3, respectively, so we conclude that our
parameters are also secure against this attack.

5.5 Experimental results

In this section, we discuss larger and safer CSIDH instantiations. We report the �rst
constant-time C-coded implementation of the CSIDH group action evaluation that uses
the new fast isogeny algorithm of [25], as reported in [57]. The C-code implementation
allows an easy application for any prime �eld, which requires the shortest di�erential
addition chains (SDACs), the list of small odd primes (SOPs), and the optimal strategies
presented in [56]; in particular, our C-code implementation is a direct application of the
algorithm and Python-code presented in [57], and thus all the data framework required (for
each di�erent prime �eld) can be obtained from its corresponding Python-code version.
Our experiments focus on instantiations of CSIDH with primes of the form p = 4

∏n
i=1 ℓi−

1 of 1024, 1792, 2048, 3072, 4096, 5120, 6144, 8192, and 9216 bits (see Table 5.5). We
compared the three variants of CSIDH, namely, i) MCR-style, ii) OAYT-style, and ii)
Dummy-free-style. All of our experiments were executed on a Intel(R) Core(TM) i7-
6700K CPU 4.00GHz machine with 16GB of RAM, with Turbo boost disabled and using
clang version 3.8. Our software library is freely available from

https://github.com/JJChiDguez/sqale-csidh-velusqrt .

To illustrate the impact of using low exponents, Figure 5.3 shows experimental results
for all instantiations of CSIDH using exponent bounds ranging from m = 1 to m = 5.
Each exponent bound is parameterized to reach the same security, meaning fewer ℓi for
larger m. In all cases we started from the global bound and then optimized for the
bounds per individual small prime and evaluation strategies as in [56]. Note that some
con�gurations of the 1024- and 1792-bit primes do not have enough ℓi's to support the
m = 1 and m = 2 bounds.
Our results show a slight drop in performance with the m = 1 bound in both the

dummy-free and MCR-style versions, then for m = 2 onwards, higher m steadily performs
worse. For OAYT style, on the other hand, m = 1 was always optimal. Because the
performance bump at m = 1 appears to get ameliorated at higher primes, we decided to
use the m = 1 bound for all cases due to its simplicity and security. The results for these
instantiations, which provide NIST security leves 1, 2, and 3, are in Table 5.6. These
results correspond with the measurement of 1024 random instances.

5.6 Discussion

As the quantum security analysis of CSIDH has become more robust, it seems clear now
that its original parameters must be updated by considering larger primes.

https://github.com/JJChiDguez/sqale-csidh-velusqrt
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Prime Depth Oracle Qubits Classical Cost Hardware Cost
Length (min.) Calls Hardware (DW ) (DW )

NIST Level 1 (hardware limit 280)

CSIDH AES-128

512 40 21 13 24 63 89 132
1024 40 23 22 64 72 89 132
1792 40 36 33 74 83 89 132
3072 40 55 59 77 110 89 132
4096 66 70 48 80 124 36 106
5120 81 77 44 80 135 18 97

NIST Level 2 (hardware limit 2100)

CSIDH SHA-256

5120 41 73 77 99 139 105 146
6144 74 89 72 100 156 72 146

NIST Level 3 (hardware limit 2119)

CSIDH AES-192

6144 40 74 96 115 146 151 195
8192 60 78 82 119 176 111 175
9216 92 102 79 118 181 47 143

CSIDH, lowest cost with no hardware constraints

3072 47 49 46 94 103
4096 45 56 59 108 117
5120 44 64 68 121 130
6144 52 70 73 132 142
8192 51 83 88 151 160
9216 54 87 91 161 171

Table 5.4: Quantum attack costs against SQALE'd CSIDH. Depth is the minimum possi-
ble under the given hardware limit. The �nal two columns give the lowest cost of attacking
{AES,SHA} in depth at least as much as the minimum to break the associated CSIDH
instance, based on [78, 79, 14]. Italics highlights where such a break exceeds the hardware
limit.
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Figure 5.2: Costs of the quantum collimation sieve attack under various hardware limits.
Coloured solid lines are the costs of the collimation sieve at primes of bit lengths from 512
to 9126; dotted lines are the cost of key search on AES, from [79], with the same memory
limits and overhead as our analysis. All �gures are logarithmic in base 2. Plots on the left
are parameterized to minimize gate cost, plots on the right to minimize DW -cost. Larger
primes achieving lower depth (e.g., 5120 vs. 4096) is due to increased memory limits.



58 CHAPTER 5. THE SQALE OF CSIDH

log2(p) n Excluded Included
1024 130 739 983
1792 207 149 1289
2048 231 5 3413
3072 326 37, 2053 2203, 2007
4096 417 1151 2897
5120 504 5 4133
6144 590 71, 4289 4337, 4339
8192 757 4937, 5749 5783, 5791
9216 838 263, 6373 6473, 6481

Table 5.5: Shape of the primes: p = 4
∏n

i=1 ℓi−1, where ℓ1, . . . , ℓn are the �rst n odd prime
numbers, excluding and including the listed primes in columns Excluded and Included,
respectively.

Table 5.6: Clock Cycles (in gigacycles) corresponding to CSIDH instantiations with
4096, 5120, 6144, 8192, and 9216 bits. Each CSIDH instantiation uses m = 1 (one
isogeny construction per each ℓi). The measured clock cycles are the average of 1024
random instances without key validation.

Instantiation Style NIST
OAYT MCR Dummy-free Security

CSIDH-4096 23.21 28.50 39.35 Level 1
CSIDH-5120 44.56 53.39 73.57 Level 1
CSIDH-6144 74.88 87.09 117.57 Level 2
CSIDH-8192 199.15 236.13 322.57 Level 3
CSIDH-9216 292.41 346.46 475.64 Level 3
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Figure 5.3: Group action evaluation cost (excluding key validation) for each CSIDH in-
stantiation from 1024 to 9216 bits. The CSIDH con�gurations are according to Table 5.3.
Each experiment considers the cost of 1024 random instances, except for experiments
corresponding to the 8192- and 9216-bit instances which consider a smaller set of 128
experiments.
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In this chapter, we have proposes a set of primes large enough to make the protocol
quantum-secure. Taking as a basis the Python 3 library reported in [57], we provide a
freely available software library coded in C, which implements CSIDH instantiations that
were built using these large primes.
Since the introduction of CSIDH in 2018, it has been the norm to try to approximate

the key space to its maximum theoretical size of #cl(O) ≈ √p. Nevertheless, as quantum
security demands a larger prime, this key space has become unnecessarily large. It is there-
fore important to prove that leaving a portion of this space unused does not compromise
the CSIDH security, which is an important conjecture that our analysis supports.
To make larger prime �eld instantiations of CSIDH more viable, our implementation

combines techniques such as exponent strategy optimization, low exponents, and the new
Vélu formulas presented in [25]. Our results are the �rst of their kind for these larger
primes, hoping that these designs will pave the path forward for future re�nements of
CSIDH.
From our analysis, the main computational cost of the quantum sieve comes from the

classical cost of merging lists to �nd permutations. Improvements to this subroutine would
lower the security of CSIDH. Given that CSIDH's relative security and it's `SQALE'd
performance depend on hardware limits, our analysis highlights the need for consensus
on the resources of far-future attackers.



Chapter 6

Supersingular Isogeny Path Finding

with Limited Memory

Abstract. This work has been published in INDOCRYPT 2022 in collaboration with E.
Bellini, JJ. Chi-Domínguez, A. Esser, S. Ionica, L. Rivera-Zamarripa, F. Rodríguez-
Henríquez, M. Trimoska and F. Zweydinger [5]. It studies the computational hardness
of �nding an isogeny between two supersingular isogenous curves de�ned over a prime
�eld Fq with q a power of a large prime p, which is the underlying problem on which the
security guarantees of most isogeny-based protocols rely. In a classical setting, a meet-
in-the-middle algorithm is the fastest known strategy for solving this problem. However,
due to its stringent memory requirements, it quickly becomes infeasible for moderately
large instances. One has therefore to resort to time-memory trade-o�s to instantiate
attacks, particularly in GPU platforms, which are inherently more memory-constrained
than CPU architectures. In such a setting, a van Oorschot-Wiener-based collision �nding
algorithm o�ers a better asymptotic scaling. We present a precise estimation of the costs
of both strategies considering most recent algorithmic improvements, and substantiate our
estimations via optimized software implementations of both algorithms. In this context,
we provide the �rst optimized GPU implementation of the van Oorschot-Wiener approach
for attacking isogenies. Based on practical measurements we extrapolate the running times
for solving di�erent-sized instances. Finally, we give estimates of the costs of computing
a degree-288 isogeny using our CUDA software library running on an NVIDIA A100 GPU
server.

Let E0 and E1 be two supersingular isogenous elliptic curves de�ned over a �nite �eld
Fq, with q a power of a large prime p which can be taken to be q = p2 without loss of
generality. Computing an isogeny ϕ : E0 → E1 is believed to be hard in the classical
as well as the quantum setting and is known as the Supersingular Isogeny Path (SIP)
problem. In many scenarios, the isogeny is of known degree ℓe for some small prime ℓ and

61
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we refer to this variant as the Supersingular Fixed-Degree Isogeny Path (SIPFD) problem.
Investigating the concrete computational hardness of SIPFD and the best approaches to
tackle it in multi- and many-core CPU and GPU platforms, is the main focus of this work.

In the context of cryptographic protocols, SIP was �rst studied by Charles, Goren and
Lauter [31]. They reduced the collision resistance of a provably secure hash function to
the problem of �nding two isogenies of equal degree ℓn for a small prime ℓ and n ∈ Z
between any two supersingular elliptic curves. This in turn may also be tackled as a
SIPFD problem.

Variants of the SIPFD problem form the basis of several isogeny-based signatures [32,
16]. Further, SIPFD has been used as foundation of recently proposed cryptographic
primitives, including Veri�able Delay Functions such as the one of De Feo et al. [80]
and the one presented in Chapter 7. Based on the intractability of the SIPFD problem,
Jao and De Feo proposed the Supersingular Isogeny-based Di�e-Hellman key exchange
protocol (SIDH) [1, 2]. Apart from revealing the isogeny degree, SIDH also reveals the
evaluation of its secret isogenies at a large torsion subgroup. This weaker variant of SIPFD
was dubbed as the Computational Supersingular Isogeny (CSSI) problem [1]. SIKE [15],
a variant of SIDH equipped with a key encapsulation mechanism, was one of the few
schemes that made it to the fourth round of the NIST standardization e�ort as a KEM
candidate [14]. Until recently, the best-known algorithms for breaking SIDH or SIKE had
an exponential time complexity in both, classical and quantum settings.

However, in July 2022, Castryck and Decru [21] proposed a surprising attack that
(heuristically) solves the CSSI problem in polynomial-time. This attack relies on the
knowledge of three crucial pieces of information, namely, (i) the degree of the isogeny ϕ;
(ii) the endomorphism ring of the starting curve E0; and (iii) the images ϕ(P0), ϕ(Q0) of
Alice's generator points ⟨P0, Q0⟩ = E[2a], where the prime p = 2a3b − 1 is the underly-
ing prime used by SIKE instantiations. Recall that (ii) and (iii) are only known in the
speci�c case of the CSSI problem, but not in the more general case of the SIPFD prob-
lem. Furthermore, another attack by Maino and Martindale [38] and yet another one by
Robert [39] quickly followed. Maino and Martindale's attack relies on several crucial steps
used in [21], but does not require knowledge of the endomorphism ring associated to the
base curve. Robert's attack can also break SIDH for any random starting supersingular
elliptic curve.

Despite the short time elapsed since the publication of Castryck and Decru's attack,
several countermeasures have already been proposed by trying to hide the degree of the
isogeny [35], the endomorphism ring of the base curve [36], or the images of the torsion
points [37]. At this point, only time will tell if SIDH/SIKE will ever recover from the
attacks on the CSSI problem. But even if this never happens, the theoretical and practical
importance of the SIPFD problem still stands. For instance, the constructions from [32,
Section 4], [33, Section 5.3] and the one presented in Chapter 7 do not append images
of auxiliary points to their public keys. In turn the Castryck-Decru family of attacks
does not apply, making the security of those applications entirely based on the SIPFD
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problem.

Known attacks on the SIPFD problem. Even before the publication of the attack
in [21], it was wildly believed that the best approaches for solving the CSSI problem
are classical and not quantum [65]. Here we present a brief summary of the di�erent
assumptions made across the last decade about the cost of solving the SIPFD problem.
We stress that while all these advances were made with SIKE as main motivation, the
fact that they did not make use of the torsion point images means that they still represent
the state-of-the-art for attacks against the general SIPFD problem. The fastest known
algorithm for solving SIP has computational complexity Õ(

√
p) [81, 45, 82]. However,

if the secret isogeny is of known degree ℓe, there might exist more e�cient algorithms
for solving the SIPFD . Indeed, in their NIST �rst round submission, the SIKE team [15]
argued that the best classical attack against the CSSI problem was to treat it as an SIPFD
problem and use a MitM approach with a time and memory cost of O(ℓ

e
2 ), which is more

e�cient for SIKE and all instantiations of the SIPFD where ℓe ≤ p.

By assuming an unlimited memory budget and memory queries with zero time cost,
the MitM attack is indeed the best attack against the SIPFD problem. Nevertheless,
in [41], the authors argued that the van Oorschot-Wiener (vOW) golden collision search,
which yields a better time-memory trade-o� curve, is the best classical approach for large
instances. The rationale used is that the O(ℓ

e
2 ) memory requirement for launching the

MitM attack is infeasible for the cryptographic parameter sizes. Since the best known
generic attacks against AES use a negligible amount of memory, it is just natural to set
an upper bound on the available classical memory when evaluating the cost of solving
SIPFD instantiations in the context of NIST security levels 1 to 5.

To increase interest in studying the CSSI problem Costello published in [83] two Mi-
crosoft $IKE challenges, a small and a large one using a 182- and a 217-bit prime number,
respectively. These two CSSI instances are known as $IKEp182 and $IKEp217 chal-
lenges.1 A few months later, the solution of $IKEp182 was announced by Udovenko and
Vitto in [44]. The authors treated this challenge as an instance of SIPFD , and then used
a MitM approach largely following the description given in [43] along with several clever
sorting and sieving tricks for optimizing data queries for their disk-based storage solution.
The authors reported that their attack had a timing cost of less than 10 core-years, but
at the price of using 256 TiB of high-performance network storage memory.

It is obvious that this memory requirements quickly render the strategy unfeasible for
larger non-toy instances. As mentioned in [41], there exists a time-memory trade-o�
variant of the MitM algorithm (cf. Subsection 6.1.2), which was adopted by Udovenko
and Vitto to bring the storage requirements of their attack down to about 70 TiB.

However, determining the best algorithmic choice for solving instances of given size un-
der a certain memory budget and computational platform remains so far an open problem.

1The precise speci�cations can be found in https://github.com/microsoft/SIKE-challenges.

https://github.com/microsoft/SIKE-challenges
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In this work we present a framework predicting that both MitM variants are outperformed
by the vOW golden collision approach even for moderately large SIPFD instances. We
then substantiate our claims by extrapolating results of our implementations, accounting
for practical e�ects such as memory access costs.

Our contributions In [41] it was found that vOW is a better approach than MitM
to tackle large SIPFD instances. However, the small Microsoft challenge $IKEp182 was
broken, before the Castryck-Decru attack was known, using a MitM strategy [44]. As
discussed in [44], it remains unclear for which instance sizes and memory availability,
vOW outperforms MitM. In this work we answer this question from a theoretical and
practical perspective. Theoretically, we give a precise estimation of the costs of both
strategies including most recent algorithmic improvements. Practically we substantiate
our estimations via optimized implementations and extensive benchmarking performed in
CPU and GPU platforms.

Moreover, in the case of CPU platforms, we present a detailed framework that for a �xed
memory budget and prime size, predicts when a pure MitM approach, batched (limited
memory) MitM or vOW approach becomes the optimal design choice for attacking SIPFD
(see Section 6.2 and Figure 6.2). The predictions of our model are backed up by practical
experiments on small SIPFD instances and extrapolations based on the obtained practical
timings of our implementations.

We additionally provide the �rst optimized GPU implementation of the vOW attack
on SIPFD , outperforming a CPU based implementation by a factor of almost two magni-
tudes. We provide medium sized experimental data points using our GPU implementation
including extrapolations to larger instances. More concretely, our implementation solves
SIPFD instances with isogeny degree 288 with primes of bit size 180 (comparable to the
instance solved in [44]) using 16 GPUs each equipped with only 80 GiB of memory in
about 4 months. Based on our experimental results we conclude that vOW is the preferred
choice for any larger SIPFD instances on reasonable hardware.

Our CPU and GPU software libraries are open-source and available at https://

github.com/TheSIPFDTeam/SIPFD.

Outline. The remainder of this work is organized as follows. In Section 6.1 we present
a formal de�nition of SIPFD and relevant mathematical background. We also give a
detailed explanation of the MitM and vOW strategies. In Section 6.2 we present a careful
estimation of the cost of the MitM and vOW strategies and their corresponding trade-
o�s in the context of the SIPFD . In Section 6.3 we present our implementation and
results of the CPU-based MitM attack, which is used as baseline to compare against the
more complex GPU-based vOW implementation. The later implementation is described
in Section 6.4, and the results obtained from it in Section 6.5. Finally, Section 6.6 discusses
our results and their implications by extrapolating them to larger instances.

https://github.com/TheSIPFDTeam/SIPFD
https://github.com/TheSIPFDTeam/SIPFD
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6.1 Preliminaries

In this section we provide some preliminary background for this work. We start with a
more detailed explanation of the setting of the problem that we are attacking in Sub-
section 6.1.1. Then, we describe the two basic approaches for attacking the problem:
the Meet in the Middle attack and the Parallel Collision Search, in Subsection 6.1.2 and
Subsection 6.1.3, respectively.

6.1.1 Our setting for the SIPFD problem

In this subsection we describe our concrete setting for attacking the SIPFD problem,
which is formally de�ned as follows:

De�nition 6.1.1 (SIPFD problem). Let p, ℓ be two prime numbers. Consider E0 and E1

two supersingular elliptic curves de�ned over Fp2 such that #E0(Fp2) = #E1(Fp2). Given
e ∈ N �nd an isogeny of degree ℓe from E0 to E1, if it exists.

For concreteness, we will assume that the degree of the secret isogeny is 2e, that this
number divides p+ 1, and that the bitlength of p is around 2e. We also assume that the
curves have Frobenius trace t = −p, so that the curve cardinality is #E(Fp2) = p2−t+1 =
(p+1)2 and we can �nd a basis P,Q ∈ E(Fp2) for the torsion subgroup E[2e] (that is, the
set of points whose order divides 2e). All of the assumptions mentioned in this paragraph
are e�ciency-oriented decisions that are commonly adhered to in applications, but it must
be stressed that we only make them for concreteness and they are not exploited by our
attacks in any signi�cant way (other than in bene�ting in performance in the same way
that a protocol would), so our results should be considered as applying to the SIPFD
problem in general.
The basis P,Q can be used to parametrize all the possible isogenies, in the sense that

the kernel of any degree-2e isogeny can be written as either ⟨P + [k]Q⟩ or ⟨[k]P +Q⟩ for
some integer k ∈ Z2e . For simplicity we will assume that kernels can only take the form
⟨P + [k]Q⟩ for some choice of basis, but there is little loss in generality since recovering
the general case would at most require repeating the attack with a �ipped basis.
An isogeny ϕ : E0 → E1 of degree 2e can be written as a composition ϕ = ϕ1 ◦ ϕ0 of

two isogenies of degree 2e/2 (assuming an even e for simplicity), where ϕ0 : E0 → Em and
ϕ1 : Em → E1 for some middle curve Em. Since there exists a dual isogeny ϕ̂1 : E1 → Em,
one can conduct a Meet in the Middle (MitM) attack by exploring all the possible 2e/2-
isogenies emanating from E0 and E1, and �nding the pair of isogenies that arrive to the
same curve Em (up to isomorphism). The largest attack recorded on the SIPFD problem,
conducted by Udovenko and Vitto2 [44], used this strategy to break an instance with
e = 88.

2This work was realized as an attack on SIKE, but does not exploit the torsion point images and can
be regarded as an attack on SIPFD in general.
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6.1.2 Meet in the Middle (MitM)

Let us brie�y recall the MitM procedure to solve the SIPFD for ℓ = 2. We �rst compute
and store all 2e/2-isogenous curves to E0 in a table T (identi�ed via their j-invariants).
Then we proceed by computing each 2e/2-isogenous curve to E1 and check if its j-invariant
is present in table T . Any matching pair then allows to recover the secret isogeny as
outlined in the previous section.

Complexity. Let N := 2e/2. The worst-case time complexity of the MitM attack is
2N evaluations of degree-2e/2 isogenies, while in the average case 1.5N such evaluations
are necessary. The space complexity is dominated by the size of the table to store the N
j-invariants and scalars.
In a memory restricted setting, where the table size is limited to W entries, the MitM

attack is performed in batches. In each batch, we compute and store the output of W
isogenies from E0, then compute and compare against each of the N isogenies from E1

without storing them. The number of batches is N/W where each batch performs W
isogenies from E0 and N isogenies from E1, yielding a total of

N
W

(N +W ) evaluations of
2e/2-isogenies.

Depth-First Search methodology. In 2018, Adj et al. [41, �3.2] exploited the fact
that an ℓe-isogeny can be regarded as the composition of e isogenies of degree ℓ, and
showed that computing the isogenies from each side in a depth-�rst tree fashion yields
performance improvements. The improvement stems from the fact that, whenever two
isogenies share the same initial path, the depth-�rst approach avoids re-computation of
those steps.
In order to adapt to the limited-memory scenario, let us assume that the available

memory can hold W = 2ω entries. Then each batch of isogenies from E0 can be obtained
by following a �xed path for the �rst e/2−ω steps, and then computing the whole subtree
of depth ω from this node.
Also, the attack is easy to parallelize. Assuming 2c threads are used, all trees can be

branched sequentially for c steps to obtain 2c subtrees, each of which is assigned to a
di�erent core. This methodology for evaluating trees in batches and with multiple cores
is summarized in Figure 6.1.
Since a binary tree of depth ω has 2ω+1 − 2 edges, each batch is computing e/2− ω +

2ω+1 − 2 isogenies of degree 2 for the side corresponding to E0, and the whole tree with
2e/2+1− 2 isogenies for the side corresponding to E1. The expected cost corresponding to
half of the batches is then

1

2
2e/2−ω

(
2e/2+1 + 2ω+1 + e/2− ω − 4

)
≈ 2e−ω

computations of 2-isogenies.
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Figure 6.1: The batched Meet-in-the-Middle depth-�rst approach: �nding a 2e-isogeny
between E0 and E1 with 2c cores and 2ω memory. In this example, e = 12, c = 2, and
ω = 4.

6.1.3 Parallel Collision Search

Given a random function f : S → S, van Oorschot and Wiener's method [42] is a parallel
procedure to �nd collisions in f . The main idea of the algorithm is to construct in parallel
several chains of evaluations xi = f(xi−1), starting from random seeds x0. Further, a small
fraction of the points in S is called distinguished based on an arbitrary criterion (e.g. that
the binary representation of x ∈ S ends with a certain number of zeros). A chain continues
until it reaches a distinguished point. Then this point is compared against a hash table
including all previously found distinguished points. Further, to avoid in�nite loops, chains
are aborted after their length exceeds a speci�ed threshold.

Two chains ending in the same distinguished point indicate a collision between those
chains. This collision can be e�ciently reconstructed if the seeds x0, x

′
0 and the lengths

d, d′ of the colliding chains are known. Therefore, assuming d > d′ we take d− d′ steps on
the longer chain (starting from x0). From there on we take simultaneous steps on both
chains, checking after each step if the collision has occurred. Hence, the hash table stores
for each found distinguished point the triplet (x0, xd, d) indexed by xd.

Complexity. Let N be the size of the set S, θ the proportion of points that are distin-
guished, and W the amount of distinguished triplets that we can store. Since each chain
has an average length of 1/θ, the chains represented by the stored triplets (once the hash
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table is completely �lled) include an average of W/θ points. Therefore the probability
that a given evaluation of f collides with any of these points is W/Nθ. After a collision
takes place, the chain needs to continue for an additional 1/θ steps on average before it
reaches a distinguished point and the collision is detected. At this point, the two involved
chains must be reconstructed from the start to �nd the exact step at which the collision
occurred, yielding a total of Nθ/W +3/θ evaluations of f to �nd a collision. The optimal
choice for θ is

√
3W/N yielding a cost of 2

√
3N/W per collision. Note, however that

this analysis assumes a table that already contains W triplets. To capture the transition
e�ect of the table �lling up, van Oorschot and Wiener [42] model θ = α

√
W/N for a

parameter α that is experimentally measured to be optimal at α = 2.25. The resulting
cost per collision is found to be linear in

√
N/W as long as 210 < W < N/210.

Note that any random function from S to itself is expected to have N/2 collisions,
however, many applications, including the SIPFD , require looking for one speci�c collision
that we refer to as the �golden collision� [84, 85, 86, 87]. This means that the attack has
to �nd N/4 di�erent collisions on average before stumbling upon the golden collision,
bringing the total cost to O(

√
N3/W ) function evaluations.

Application to the SIPFD problem To attack the SIPFD problem and �nd the
kernel of a degree-2e isogeny between E0 and E1, we assume for simplicity that e is even
and de�ne S = {0, 1} × {0, . . . , 2e/2 − 1} so that N = 2e/2+1. We also de�ne the map
g : S → Fp2 , (c, k) 7→ j(Ec/⟨Pc + [k]Qc⟩), where (Pc, Qc) are a prede�ned basis of the
2e/2-torsion on either side as before. As explained in Section 6.1.1, the function g yields a
bijection between S and the set of 2e/2-isogenies with kernel ⟨Pc + [k]Qc⟩ from the curves
on either side. A collision g(c, k) = g(c′, k′) with c ̸= c′ implies two isogenous curves
starting on opposite sides and meeting at a middle curve (up to isomorphism).

To apply the parallel collision search, we need a function f that maps S back to itself.
Hence, we have to work with the composition f = h ◦ g where h is an arbitrary function
mapping j-invariants back to S. This composition introduces several fake collisions that
are produced by the underlying hash function while there is still only one (golden) collision
that leads to the secret isogeny.

Note that for a certain (unlucky) choice of hash function h the golden collision might
not be detectable.3 Therefore, we have to periodically switch the hash function h. More
precisely, we switch the function whenever we found a certain amount C of distinguished
points. If we model C = β ·W for some constant β, then each hash function will have a
probability of 2βW/N for �nding the golden collision. Experimentally, van Oorschot and
Wiener [42] found β = 10 to perform best, and the average running time of the attack is
measured to be (2.5

√
N3/W )/m, where m is the number of processors computing paths

in parallel.

3For instance, one of the points that leads to the golden collision might be part of a cycle that does
not reach a distinguished point.
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6.2 Accurate formulas for vOW and MitM

So far, we have provided theoretical cost functions for the golden collision search in terms
of the number of evaluations of the function f , and for the batched depth-�rst MitM
in terms of the number of 2-isogeny evaluations. We now provide a more detailed cost
model in terms of elliptic curve operations to make these costs directly comparable. These
formulas give a �rst indication of which memory regime favors which algorithm and,
further, they form the starting point for parameter selection in our implementation.

6.2.1 Meet in the Middle

For the depth-�rst MitM, we have counted only the 2-isogeny evaluations but the total
cost involves also obtaining the kernel points of each isogeny and pushing the basis points
through the isogeny. As described in [41], the total cost of processing a node at depth d
can be summarized as:

� 2e/2−d point doublings to compute the kernel points

� 2 isogeny constructions to compute the children nodes

� 1 point doubling, 1 point addition, and 6 isogeny evaluations to push the basis
through the isogenies.

Nodes at the second-to-last level represent an exception since once we obtain the leaves,
we no longer require pushing the bases and instead we need to compute the j-invariant.
Let us refer by ADD, DBL, ISOG, EVAL, JINV to the cost of a point addition, point

doubling, 2-isogeny construction, 2-isogeny evaluation at a point, and j-invariant compu-
tation, respectively. The total cost of computing a tree of depth e/2 is then

DFS(e/2) =

e/2−2∑
d=0

2d
(
(2e/2−d + 1)DBL+ 2ISOG+ 1ADD+ 6EVAL

)
+ 2e/2−1 (2DBL+ 2ISOG+ 2JINV)

= 2e/2−1 ((e+ 1)DBL+ 4ISOG+ 1ADD+ 6EVAL+ 2JINV) +O(1).

The expected time of the whole MitM attack using 2ω memory entries, which computes
a tree of depth ω on one side and a tree of depth e/2 on the other side for each batch, is
then

MitM(e, ω) =
2e/2

2 · 2ω (DFS(ω) +DFS(e/2))

≈ (2e−ω−2 + 2e/2−2) (DBL+ 4ISOG+ 1ADD+ 6EVAL+ 2JINV)

+ (2e−ω−2e/2 + 2e/2−2ω)DBL.
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6.2.2 Golden Collision Search

For the golden collision search, the cost of an evaluation of the random function, given a
scalar k ∈ Z2e/2 and a bit c ∈ {0, 1}, consists of

� computing the kernel point Pi + [k]Qi,

� constructing a single 2e/2-isogeny with said kernel and

� computing the j-invariant of the output curve.

The �rst step is usually done with a three-point Montgomery ladder which has an
average cost of e

2
(DBL + ADD). For the second step, it is shown in [1] that a �balanced�

strategy for computing a 2e/2-isogeny costs about e
4
log(e/2)DBL+ e

4
log(e/2)EVAL+ e

2
ISOG.

Hence, the total expected sequential time of the golden collision search is

GCS(e, ω) = 2.5 · 23(e/2+1)/2−ω/2

×
(e
4
log(e/2)(DBL+ EVAL) +

e

2
ISOG+ JINV+

e

2
(DBL+ ADD)

)
.

6.2.3 Simpli�ed Cost Models for Montgomery Curves

Assuming that we use Montgomery curve arithmetic, then the cost of curve operations
can be expressed in terms of �eld additions, multiplications, squares and inverses (A, M,

S, I, respectively) as follows (compare to [15])

DBL = 4A+ 4M+ 2S, ADD = 6A+ 4M+ 2S, ISOG = A+ 2S and

EVAL = 6A+ 4M, JINV = 8A+ 3M+ 4S+ I.

Moreover, we assume M = 1.5S = 100A = 0.02I which we have obtained experimentally
from our quadratic �eld arithmetic implementation. The cost models can then be written
in units of M as

MitM(e, ω)/M ≈ 22799

600

(
2e−ω + 2e/2

)
+

403

300

(
2e−ω · e/2 + 2e/2 · ω

)
(6.1)

and

GCS(e, ω)/M ≈ 2.5 · 23(e/2+1)/2−ω/2

(
4181

75
+

1211

200
e+

283

120
e log(e/2)

)
(6.2)

For a given value of e and a memory budget ω, we can now determine which algorithm
is favorable. Figure 6.2 visualizes three di�erent regions. For ω ≥ e/2 the full MitM
attack without batching can be applied. The batched MitM attack is found to have a
narrow area of application at the border of the region where the golden collision search is
optimal, which dominates the largest part of the limited-memory area.
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Figure 6.2: Regions in the (e, ω) space where each attack is optimal for solving a SIPFD
problem of size 2e with memory limited to 2w entries.

We would like to stress, that this comparison is based on idealized models involving
only underlying �eld arithmetic operations. They do not take into account any practical
e�ects, as e.g. memory access timings or parallelization issues. Nevertheless, it gives a
�rst indication of the superiority of the golden collision search in the limited memory
setting.

6.3 Practical Results of our MitM CPU Implementa-

tion

We have implemented the batched depth-�rst MitM attack and run experiments on an
AMD EPYC 7763 64-Core processor at 2.45 GHz, running 32 threads in parallel.
The j-invariants in each batch are stored in RAM, along with the corresponding scalar

k. Each processor maintains an array with j-invariants that have been calculated and
sort lexicographically, to reduce the number of memory accesses when searching for the
collision.
For measuring the performance of the batched depth-�rst MitM with the memory pa-

rameter ω, we �x a small instance with exponent e = 50 and benchmark the attack for
ω with 18 ≤ ω ≤ 25. These timings are compared to Equation 6.1, using a separate
benchmark for the cost of M, i.e. a multiplication operation of our implementation. As
shown in Figure 6.3, the experimental measurements are found to adhere to the model
up to an overhead factor of about 2, which is explained by the memory access times and
sorting overheads that are not accounted for in Equation 6.1.
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Figure 6.3: Completion time of the MitM attack for an exponent e = 50 using 32 physical
processors and di�erent memory bounds compared to the prediction in Equation 6.1.
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Figure 6.4: Completion time of the MitM attack for various exponent sizes.

We then tested the attack for increasing values of e while limiting the memory to ω ≤ 28.
For e > 56, the batched MitM must be used and we have estimated the complexity of the
whole attack by completing a single batch. As expected, Figure 6.4 shows that the slope
of the cost changes drastically once we enter the limited-memory region. The overhead
factor between the experimental results and the theoretical model is always found to be
less than 2.6. We conclude that Equation 6.1 can be used to estimate the cost of the
attack for larger parameters without signi�cant overhead.

For comparison, the instance solved by Udovenko and Vitto in [44] was in the unlimited-
memory setting using e = 88 and ω = 44. Based on our model and adjusting to their
clock frequency, we obtain an estimate of 9.47 core-years for the attack. This is close
to Udovenko and Vitto's experimental result of 8.5 core-years, despite the fact that they
used network storage.
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6.4 Practical considerations for our vOW GPU imple-

mentation

We now describe our GPU-based implementation of the parallel collision search. For
context, we �rst give a brief explanation of the GPU architecture we used, followed by a
summary of practical features of our implementation.

6.4.1 GPU architecture

An NVIDIA CUDA device allows to execute thousands of threads in parallel. Following
the Single Instructions Multiple Thread (SIMT) paradigm, a collection of 32 threads is
bundled in warps that can only perform the same instruction on di�erent data. One of
the main challenges when programming CUDA devices is to decrease the memory latency,
i.e., the time the threads are waiting for the data to be loaded into the corresponding reg-
isters. Therefore all CUDA devices have a multiple-level memory hierarchy incorporating
memory and caches of di�erent size and speed.
The NVIDIA A100 has an 80GB sized main memory, connected to other GPUs in

the same cluster via a high throughput bus called NVLINK. However, for performing
computations, data must be propagated through the two levels of caches down to the
registers. Each thread has only a very limited amount of these registers. Whenever more
registers are addressed than physically available, the memory must be outsourced to other
memory levels, causing latency and stalls. Further, whenever more threads are requested
than the hardware can handle concurrently, a scheduling is performed, by swapping active
threads against queued ones. As a consequence, caches must be invalided, which leads
to further memory latency. However, there is usually an optimal number of concurrent
threads such that memory latency can be minimized by an optimal scheduling.

GPU potential of vOW. Note that the major task performed inside the vOW algo-
rithm is the computation of chains of evaluations of the given function on di�erent inputs.
Therefore, it �ts into the SIMT paradigm and can e�ectively be parallelized on the GPU.
Further, since the devices are inherently memory-constrained, they pro�t from the good
asymptotic trade-o� curve of the vOW collision search.

6.4.2 Practical features

We brie�y describe the various optimizations that our implementation adopts:

Hash function. For performance improvements, we heuristically model hash functions
with ℓ-bit output as the projection to the �rst ℓ bits of the input. To obtain a randomized
version we xor a �xed random nonce to the output. That is, for a given nonce r ∈ Fℓ

2 the
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hash function hr : F∗
2 7→ Fℓ

2 is de�ned as hr(x) := (x1, . . . , xℓ) + r. This is justi�ed by the
fact that the inputs usually inherit already enough randomness, which is con�rmed in our
experiments.

Memory optimizations. The bit-size of every triplet (x0, xd, d) is roughly e+log(20/θ),
since x0, xd encode 2e/2-isogenies and the length of each chain is d < 20/θ. However, due
to our hash function choice, we can omit logW bits of xd referring to its address in the
table, plus another log(1/θ) bits from the fact that it is a distinguished point, giving a
size of roughly e+ log(20)− logW bits per triplet.

PTX assembly. We provide core functionalities of our GPU implementation in PTX
(Parallel Thread eXecution) assembly, which is the low level instruction set of NVIDIA
CUDA GPUs. This includes our own optimized Fp arithmetic. In this context, we pro-
vide optimized version of both the schoolbook and the Karatsuba algorithm for integer
multiplication, as well as the Montgomery reduction.

Data structure. For storing distinguished points we compare the performance of a
standard hash table against the Packed Radix-Tree-List (PRTL) proposed in [88]. The
PRTL is a hash table that stores a linked list at each address, instead of single elements.
This avoids the need for element replacement in case of hash collisions. Further it iden-
ti�es the address of an element via its pre�x (radix ) and stores only the pre�x-truncated
element. The packed property of the PRTL relates to distinguished point triplets being
stored as a single bit-vector, thus, avoiding the waste of space due to alignment. We
ran CPU experiments with both data structures to identify the optimal choice prior to
translating the code to the GPU setting. Eventually, we adopted the packed property
and the use of pre�xes, while we found no improvement in performance from using linked
lists.

Precomputation. As discussed in [43], the time Tf required for a function evaluation
can be decreased via precomputation. For a depth parameter d, one can precompute the
2d curves corresponding to all the 2d−isogenies from E0 and E1. When computing a 2e/2-
isogeny, the initial d steps are replaced by a table lookup and we end up computing only
a 2e/2−d-isogeny. Note that the memory needed for precomputation grows exponentially
with d and so asymptotically it does not play a relevant role. However, for relatively
small parameters it can provide valuable savings and speed up our experiments without
a�ecting metrics such as the number of calls to f .
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6.5 Practical results of our vOW GPU implementation

We now present results obtained by our GPU implementation and put them together with
the known theoretical behavior to extrapolate the time to solve larger instances. In the
original work of van Oorschodt-Wiener the time complexity of the procedure was found
to be well approximated by

1

m
(2.5

√
N3/W ) · Tf , (6.3)

where Tf is the cost per function evaluation. Therefore, we measure the cost Tf of
our implementation which then allows us to derive an estimate for arbitrary instances.
Further, we compare this estimate against the theoretical estimate via Equation 6.2 and
an estimate based on collecting a certain amount of distinguished points.
Additionally, we verify that our GPU implementation using the functions speci�ed

in Subsection 6.1.3 has a similar behavior as the CPU implementation using random
functions of [42]. This increases the reliability in our estimates, as it shows that the time
complexity of our implementation is still well approximated by Equation 6.3. Let us start
with this veri�cation.

6.5.1 Verifying the theoretical behavior

In [42] van Oorschot and Wiener �nd that on average it takes 0.45N
W

randomized versions
of the function to �nd the solution, which in our case corresponds to random choices of
the hash function (compare to Subsection 6.1.3). In their experiments, the function is
changed after β ·W distinguished points have been discovered, where a value of β = 10 is
found to be optimal. Further, chains are aborted after they reach a length of 20θ−1, i.e.,
20 times their expected length.

Optimal value of β. Let us �rst verify that an amount of 10 ·W distinguished points
until we abort the collision search for the current version of the function is still a suitable
choice for our implementation. Table 6.1 shows the average running time of our vOW
implementation using di�erent values of β. We conclude that the values around β = 10
give comparable performance, with β = 10 being optimal in most of the experiments.
The results are averaged over 100 (e = 34) and 50 (e = 36) runs respectively.

Expected number of randomized versions of the function. Now that we con-
�rmed the optimal choice of β, we expect that the required amount of random functions
until success also matches the one from [42]. In this case, the number of required ran-
domizations of the function until the golden collision is found should follow a geometric
distribution with parameter close to W

0.45N
.
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e ω β = 5 β = 10 β = 15 β = 20

34
8 405.08 384.74 371.67 335.88
9 244.30 198.86 238.60 285.97
10 173.73 207.37 136.80 179.93

36
9 704.65 567.89 654.15 599.61
10 419.87 373.16 489.71 542.00
11 398.72 365.62 314.26 290.49

Table 6.1: Running time in seconds for di�erent values of β.
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Figure 6.5: Number of used randomizations to �nd the solution for e = 30, W = 27

We con�rm this distribution in an experiment for e = 30, in which case we have
N = 2e/2+1 = 216 and use a hash table that can store up to W = 27 distinguished points.
We then solved 1000 such instances and recorded for each the number of randomized
versions of the function until the solution was found. On average, it took 208.28 ver-
sions compared to the approximation of 0.45N

W
= 230.4, despite slightly surpassing the

W ≤ N/210 limit where the vOW experiments took place. In Figure 6.5 we visualize
the obtained frequencies (triangles) and give as comparison the probabilities of the geo-
metric distribution with parameter 1

208.27
(diamonds). In this �gure we accumulated the

frequencies in each interval of size 20 to allow for a better visualization.

6.5.2 Measuring the time per function evaluation

Next we measured the time per function evaluation that the GPU implementation requires
on our hardware for di�erent values of e. To pick our parameters, we �rst set W to the
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Figure 6.6: Cost per function evaluation using 6912 threads in parallel. Each data point
is averaged over 4096 evaluations.

largest power of 2 such that the memory would not surpass our GPU's 80 GB budget,
then chose the largest precomputation depth that would �t in the remaining memory. In
the smaller instances, the memory and precomputation depth were additionally subject
to a cap of W ≤ N/28 and d ≤ e/4 in the smaller instances. After performing the
precomputation, we measured the time per function evaluation as illustrated in Figure 6.6.
The jumps in the graph indicate that the bitsize of the used prime, which is roughly 2e,
exceeds the next 64-bit boundary. In those cases the prime occupies an additional register,
which leads to a slowdown of the Fp2-arithmetic.

6.5.3 Performance estimation using a single GPU

Now, the measured timings allow us to estimate the time required by our implementation
to solve larger instances. To compute this estimate we use Equation 6.3 with the measured
value for Tf and the number of concurrent threads m used on the GPU. The resulting
estimate is shown in Figure 6.7 (diamonds).
Note that the steeper incline in the estimation for e > 62 stems from the fact that

for e = 62 we reach the maximum number of concurrent threads for our implementation,
which we �nd to be 27, 648 threads. Further, from e = 80 onwards we additionally hit
our hash table memory limit of W = 233 elements. We summarize in Table 6.2 optimal
con�gurations for the SIPFD instances executed on our single GPU platform.
We also obtain an alternative estimate based on the time to �nish one version of the

random function in the full implementation of the attack. That is, we measure the time
to obtain 10 ·W distinguished points and then multiply by the average number 0.45N

W
of

random functions needed. This method should capture the performance more accurately
as it includes practical e�ects such as the memory access costs. For e ≤ 62 we averaged
100 experiments of completing a random function, while for larger instances we decreased
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e 30 32 34 36 38 40 42 48 50 52 56 62 68 74 80

d 9 9 10 11 11 12 12 14 14 15 16 17 19 21 22
logW 8 9 10 11 12 13 14 17 18 19 21 24 27 30 33

Table 6.2: Optimal con�gurations for vOW on single GPU with 80GB memory. Con�g-
urations for e > 80 match the one of e = 80.
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Figure 6.7: Estimated time to solve instances of SIPFD on a single GPU

the number of experiments and for e ≥ 76 we only computed a 1/210 fraction of the needed
points and scaled the resulting time accordingly. The results of this second estimation
are also shown in Figure 6.7 (circles) and present an overhead factor of about 8. This
overhead is likely the result of imperfect parallelization speedups in GPUs, as well as the
cost of memory accesses, but it is observed to decrease towards larger instances.

Finally, we benchmarked the average cost of �eld multiplications in our GPU setup
to obtain a third estimate based on Equation 6.2, which is also presented in Figure 6.7
(triangles). This estimate closely matches the estimate via the full algorithm, especially
for larger instances where distinguished points are rare and memory accesses are more
sporadic.

Overall, our measurements support the use of any of the three methods described to
obtain accurate extrapolations of the algorithm's running time. For a concrete example,
we estimate that a problem with e = 88 which corresponds to the instance solved by
Udovenko and Vitto in [44], would take about 44 years on a single GPU with 80GB
memory limit. While this is not yet very impressive, compared to the 10 CPU years
reported in [44], a single GPU is far less expensive and powerful than the 128TB network
storage cluster used for that record. Therefore in the following section we give an estimate
of the attack when scaling to a multiple GPU architecture.
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Figure 6.8: Estimated time to solve instances of SIPFD on 4 GPUs connected via an
NVLINK bus

6.5.4 Multiple GPU estimation

We explored di�erent strategies for parallelizing the vOW algorithm across multiple GPUs.
In the �rst strategy, every GPU independently runs its own instantiation of the algorithm.
The advantage of this approach lies its simplicity, which minimizes overhead since no
communication between GPUs is necessary. On the downside, it provides only a linear
speedup in the number of GPUs, since additional memory resources are not shared. In
our second approach, GPUs report distinguished points to the same hash table, which is
stored distributed over the global memory of all GPUs. The advantage here clearly lies
in the increase of the overall memory, which allows to make use of the good time-memory
trade-o� behavior inherent to the vOW algorithm. However, this approach introduces
a communication overhead due to the distributed memory access. On top of that, the
data needs to be send over the slower NVLINK instead of the internal memory bus of the
GPU.

We performed an extrapolation of the time to solve di�erent sized instances in the
distributed setting, similar to the extrapolation via the full algorithm in the single GPU
setting. In this experiment, we allocated a hash table able to store up to W = 234

distinguished triplets, which for large instances corresponds to about 200GB, across the
memory of four GPUs connected via an NVLINK bus. We then measured the time to
collect and store a certain amount X of distinguished points. Multiplying this time by
10·W
X
·0.45· 2e/2+1

W
= 4.5 · 2e/2+1/X, gives an extrapolation of the running time of completing

the whole attack.

Figure 6.8 visualizes the obtained extrapolations (circles) in comparison to the estimate
via the multiplication benchmark (triangles), i.e., using Equation 6.2. We observe, similar
to the single GPU case, a slight underestimation by using Equation 6.2, which for larger
instances vanishes. For the larger instances we obtain an underestimation by a factor
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of roughly two, which corresponds to the performance di�erence of the NVLINK bus in
comparison to the internal memory bus. However, since for larger instances with �xed
memory budget the time to compute distinguished points dominates, the factor is expected
to vanish. Hence, we �nally conclude that using the distributed memory architecture does
not lead to unexpected performance slowdowns.

Comparing both strategies. Let us determine, which of the parallelization strategies
is preferable for a speci�c amount of GPUs. For large instances, the computational cost of
the multi-GPU as well as the single-GPU setting, are well approximated by Equation 6.2.
Therefore the speedup when parallelizing via distributed memory using X GPUs is

GCS(e, ω)

GCS(e, ω + logX)/X
= X3/2,

and, hence, preferable over the strategy via independent executions with a speedup of
only X. Also, if comparing the exact numbers obtained from the estimate via the full
algorithm in the distributed memory setting and the single GPU setting, we �nd that the
distributed setting o�ers a better practical performance already for e ≥ 62.

6.6 Extrapolating to cryptographic sizes

Based on our practical timings we estimate the time to solve an instance with e = 88
on 4 GPUs to about 32 GPU years in comparison to roughly 44 GPU years in the single
GPU setting. Moreover, if we scale the attack to 16 GPUs, which is the maximum that
the NVLINK bus currently supports, we estimate the time to only 5.6 GPU years, which
means the experiment would �nish in about 4 months. We therefore conclude from our
experiments that for larger instances, with a memory budget of 128TB in the MitM case
and 80GB per device in the GPU case, the vOW algorithm is the preferred choice.
In Figure 6.9 we visualize the result of the estimation via Equation 6.1 and 6.2 in both

settings assuming 256 cores with 128TB of memory in the CPU case and 16 NVIDIA A100s
connected via an NVLINK bus in the GPU case. This �gure illustrates the estimate for
running the MitM on the CPU (solid line) and the vOW on the GPU system (dashed
line). We �nd that under these �xed resources, the break-even point from where vOW
o�ers a better performance lies at e = 96. Additionally, we provide the estimate if we
instead execute vOW on the corresponding CPU system (dash dotted line). Observe,
that even under the unrealistic assumption that the 128TB of memory would allow for
e�cient random access (for the vOW hash table), it does not outperform the GPU based
approach for any instance size. Moreover, even under this memory advantage in case of
e = 96, the GPU implementation o�ers a speedup of almost two magnitudes (82x). We
conclude that the way forward when tackling larger instances of the SIPFD clearly favors
vOW implementations on GPU platforms.
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Figure 6.9: Estimated time to solve instances of SIPFD on 16 NVIDIA Ampere GPUs
with 80GB each connected via an NVLINK bus in comparison to a cluster with 128TB
storage and 256 cores.

The explicit formulas can also be used to derive cryptographically secure choices for
concrete parameters. Assuming the 16 NVIDIA A100 setup, we �nd that an instance with
e = 190 already has an expected cost as high as 2128 �eld multiplications. This shows that
previous protocols have considerably overestimated parameter sizes, and more aggressive
options are possible. For comparison, the SIKE proposal [15] had recommended e = 216
to target 128−bit security.
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Chapter 7

Veri�able Isogeny Walks: Towards a

post-quantum isogeny-based VDF

Abstract. The work in this chapter, presented in collaboration with Francisco Rodríguez
and Mehdi Tibouchi in Select Areas in Cryptography 2021 [6], investigates the problem
of constructing postquantum-secure veri�able delay functions (VDFs), particularly based
on supersingular isogenies. Isogeny-based VDF constructions have been proposed before,
but since veri�cation relies on pairings, they are broken by quantum computers. We pro-
pose an entirely di�erent approach using succinct non-interactive arguments (SNARGs),
but speci�cally tailored to the arithmetic structure of the isogeny setting to achieve good
asymptotic e�ciency. We obtain an isogeny-based VDF construction with postquantum
security, quasi-logarithmic veri�cation, and requiring no trusted setup. As a building block,
we also construct non-interactive arguments for isogeny walks in the supersingular graph
over Fp2, which may be of independent interest.

A Veri�able Delay Function (VDF) is a cryptographic primitive �rst formalized by
Boneh, Bonneau, Bünz and Fisch in 2019 [89], which has since gathered increasing interest
due to its various applications such as power-e�cient blockchains, benchmarking, and
randomness beacons (these and other applications are discussed in [89, 80]).

The intuitive idea of a VDF is that it acts as a function whose value is uniquely
determined at the moment that we pick an input, but no one is able to compute its output
faster than a guaranteed prescribed wall-clock time T . To achieve this, it is crucial that
the only known approaches for computing a VDF must be inherently sequential, such
that no reasonable amount of parallelism could be e�ective on speeding up the VDF
evaluation. At the same time, we also require the peculiar feature that the VDF's output
must be e�ciently and publicly veri�able, meaning that any other party can con�rm its
correctness, without relying on secret parameters nor on repeating the lengthy evaluation
work that was required to produce it in the �rst place.

83
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Constructing an ordinary delay function is a simple task, as it su�ces to use T iterations
of any function that can be composed with itself and whose output is unpredictable (such
as a hash function). However, achieving an e�cient veri�cation is usually a much bigger
challenge. For this, one may rely on general techniques for veri�able computation, speci�-
cally on Succinct Non-interactive Arguments (SNARGs) which allow for e�cient proofs of
any computation, where the time complexity of the proof construction is asymptotically
close to that of the original computation, and its veri�cation is polylogarithmic. This
chapter presents a quantum-resistant VDF, whose evaluation involves isogeny walks over
supersingular elliptic curves that can be publicly veri�ed by means of a SNARG-based
validation process.
In terms of quantum security, none of the current VDF constructions proposed as

of today manage to achieve an exponential time gap between evaluation and veri�cation
while still being based on commonly studied postquantum assumptions. Our construction
bene�ts from being derived from isogeny-based cryptography, which provides security
guarantees that have been carefully scrutinized in the postquantum setting for over a
decade. These studies add con�dence in our security assumptions as well as in providing
accurate estimates of how fast isogeny evaluations can be performed using optimized
software and hardware libraries.

Previous Work The usage of SNARGs for constructing a VDF was �rst proposed by
Boneh et al. [89], and independently by Döttling et al. [90]. The concept of veri�able
computation branched out from probabilistic checkable proofs, as proposed by Babai et
al. [91], and its development towards proofs that are short, e�cient and non-interactive
began with Micali's work [92].
In the context of veri�able delay functions, as of today the only isogeny-based con-

struction was proposed by De Feo et al. in 2019 [80]. The main computational task for
the evaluation of this VDF is that of �nding images of points under a �xed large degree
isogeny of a supersingular elliptic curve, whereas its veri�cation essentially consists of
performing a bilinear pairing computation. This veri�cation is much more e�cient than
a SNARG-based veri�cation, but the trade-o� is that a quantum attacker can compute
the VDF output by solving an associated discrete logarithm problem rather than going
through the intended isogeny evaluation. Moreover, the construction has the added draw-
backs of requiring a trusted setup and the setup itself being slow (requiring about as much
time as an evaluation).
More recently, Leroux [93] proposed an isogeny-based veri�able random function that

makes use of a proof of knowledge of a secret isogeny. While it is pointed out that this
proof provides an exponential gap between prover and veri�er, it cannot be adapted to
a VDF since it only convinces the veri�er that the prover knows some isogeny without
any guarantee that the isogeny was somehow derived from an input. The evaluation of
the random function actually maps the input to points, and then evaluates the images of
those points, but this is not quantum-resistant unless it is treated as a single-use function.
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Our Contribution We present an isogeny-based VDF that is free of the three main
drawbacks su�ered by the construction of De Feo et al.: the setup is fast, is not required to
be trusted, and the construction is postquantum. By using a SNARG veri�cation, we are
able to obtain an evaluator with Õ(T ) time complexity using O((log T )4) parallelism, and
a quasi-logarithmic veri�er with Õ((log T )4+log log T ) time complexity using no parallelism.
This result is of interest not only due to its asymptotic complexity, but also because of
the fact that it could directly bene�t from future advances in SNARG constructions.
Since our VDF construction performs a random walk in the supersingular isogeny graph

over Fp2 , it can be seen as an instance of the Charles-Lauter-Goren hash function [31] aug-
mented with a SNARG veri�cation of this random walk. While there exist general-purpose
SNARGs that can be applied for any computation in a straightforward fashion (see for
example [94, 95]), we save as much as possible on overhead by specializing to the isogeny
setting and constructing a SNARG over the �eld Fp2 , which veri�es the computation at
the �eld-arithmetic level as opposed to the ALU-operation level. This implies that we
have to generalize various SNARG results to work e�ciently over a prescribed �eld, which
leads us to present a framework that connects the SNARG with the isogeny walk setting
in a natural way. Moreover, we describe the process for �ordering� the possible isoge-
nies at each vertex of the isogeny graph so that the walk can be derived from an input
string. This was never presented explicitly in [31], and in order to be compatible with our
SNARG, our method selects an isogeny using only Fp2 arithmetic (i.e. we refrain from
using arbitrary rules that look at the bit-representation of the �eld elements).

Organization The remainder of the chapter is organized as follows. Section 7.1 con-
tains an overview and background of both isogeny-based cryptography and time-sensitive
cryptography. In Section 7.2 we present the evaluation method of our isogeny-based delay
function, and in Section 7.3 we present its SNARG-based veri�cation. We then provide
our security analysis in Section 7.4, and summarize our results in Section 7.5.

7.1 Background

In this section we present some basic de�nitions and background material used throughout
the chapter.

7.1.1 Time-sensitive cryptography and Veri�able Delay Functions

Time-sensitive cryptography was �rst proposed in 1996 by Rivest, Shamir and Wag-
ner [96]. The authors of [96], presented time-lock puzzle constructions that must be com-
puted by performing a prescribed number of sequential squarings over an RSA modulus of
unknown order. More recently, Lenstra and Wesolowski introduced in [97], a slow-timed
hash function dubbed sloth. The evaluation of sloth is accomplished by the iterated com-
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putation of a �xed number of sequential functions. Also, the notion of Proof of Sequential
Work (PoSW) was introduced by Cohen and Pietrzak in Eurocrypt 2018 [98]. Then,
Boneh, Bonneau, Bünz and Fisch formalized this branch of cryptography by rigorously
de�ning veri�able delay functions.
A Veri�able Delay Function (VDF) as de�ned in [97, 89] is a function f : X 7→ Y that

cannot be computed in less than a prescribed delay, regardless of the amount of paral-
lelization available for its evaluation. At the same time, once a VDF has been computed,
it can be easily veri�ed by any third party, typically with the help of a companion proof
produced during the evaluation. Moreover, the veri�cation should be achievable with a
limited amount of parallel cores, and ideally, by performing a single-core computation.
Formally, a VDF is composed of three main algorithms:

� Setup: takes as input a security parameter λ and a delay parameter T and outputs
public parameters pp.

� Eval: Takes a certain input x and public parameters pp and calculates an output y
and a proof π.

� Verify: Takes as input x, y, π and pp and outputs 1 if and only if π is a valid proof
for the input-output pair (x, y).

Moreover, a secure VDF satis�es the following properties:

� Sequentiality : The eval procedure can be completed in timeO(T, λ) using polylog(T )
parallelism, but cannot be completed in time o(T ) even when poly(T ) parallelism is
available.

� Completeness : An honest evaluation always causes the veri�er to accept.

� Soundness : If y is not the output of Eval(x, pp), then no PPT adversary can �nd a
proof π such that the veri�er accepts (x, y, π).

VDFs have important applications for Blockchain proof of work, space and stake [99],
constructing a trustworthy randomness beacon [100], benchmarking of high-end servers
and many more [101, 102]. Several examples of VDFs proposed in the literature can be
found on [89, 80, 103, 104].

7.1.2 Isogeny-based VDFs

The only isogeny-based VDF construction proposed as of today is the one presented by
De Feo, Masson, Petit, and Sanso in Asiacrypt 2019 [80].
The authors of [80], proposed an isogeny-based VDF where the evaluator must compute

the image of a point under a large smooth-degree isogeny ϕ (consisting of the composition
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of T isogenies each of prime degree ℓ), between two ℓT -isogenous supersingular curves E
and E ′. The order of the elliptic curves E and E ′ has a large prime divisor N, and their
N -torsion subgroups are used for the veri�cation via a pairing comparison using a point
P with known image ϕ(P ) (these points are public parameters and are computed at setup
time).
This VDF construction has three important drawbacks. The �rst one is that it requires

a trusted setup. This implies that a dishonest party computing the setup, can easily
backdoor the function to make the evaluation much faster (as discussed in [80], knowledge
of the random walk that generated E, can be used to compute the endomorphism ring
of the curve E, which can be used to reduce the degree-ℓT isogeny to a shorter one).
A second issue is that the setup computation is slow, taking as long as the delay from
the evaluation itself. A third drawback is that the veri�cation crucially depends on the
computation of a pairing, which opens the door against any quantum attack targeting
discrete logarithm computations.

7.1.3 VDFs from iterated sequential functions

Given an input parameter x, the authors of [89, 80] gave as an example of a naive VDF
the chained computation of a one-way function as,

xi = H(xi−1), for i = 1, . . . , T,

with x0 = x, and where the output y = xT can only be calculated sequentially inde-
pendently of the amount of parallelism available for the evaluator. Notice however, that
if the evaluator publishes some of the intermediate values xi for i = 1, . . . , T (see Fig-
ure 7.1), then a veri�er with access to many independent processors, can verify the work
of the evaluator in a wall-clock delay signi�cantly shorter than the time invested by the
evaluator for producing y. This simple version of a VDF was discussed in [97, �3.1] as
a trivial design, and later proposed by Yakovenko as a Proof of History consensus pro-
tocol with direct applications to blockchains [105]. Although this type of construction
cannot achieve a polylogarithmic-time veri�cation without requiring poly(T ) parallelism
from the veri�er, they are still su�ciently e�cient for various applications. In particular,
Yakovenko's Proof of History consensus protocol is massively used by the cryptocurrency
Solana as its main consensus mechanism.
In order to obtain an asymptotically e�cient veri�cation without parallelism, the ver-

i�cation can be improved by means of veri�able computation. Veri�able computation
can be used by the evaluator to compute a succinct non-interactive argument (SNARG),
which certi�es that a given computation was performed honestly. An important charac-
teristic of a SNARG is that its veri�cation can achieve a complexity that is logarithmic
in the size of the original computation.
Both Boneh et al. [89] and Döttling et al. [90] proposed that any iterative sequential

function can be augmented with a SNARG to produce an asymptotically e�cient VDF.
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g g g
x0 x1 x2 xk−1

y = xk
· · ·

y = f(k, x)

Figure 7.1: Illustration of an Iterated Sequential Function f : N × X 7→ X , de�ned as
f(k, x) = g ◦ g ◦ . . . ◦ g. In the �gure, x0 = x, and the output of the function f = (k, x) is
y = xk.

This is precisely the steps that we follow for our isogeny-based VDF, with the iterative
function being instantiated by a step in the supersingular isogeny graph and the SNARG
being constructed at the Fp2 arithmetic level.

7.2 An Isogeny-based delay function

We now present an overview for the evaluation method of our VDF, leaving the SNARG-
based veri�cation for Section 7.3.
Our function involves computing a walk of length T in the 2-isogeny graph of super-

singular curves over Fp2 , where p
2 ≡ 9 mod 16 (which is required for applying Kong's

square-root algorithm [106]) and p = poly(T ) (which is required to make �eld arithmetic
e�cient for the veri�er). The walk itself is determined from a string that is derived from
the input to the VDF, starting from a prescribed initial curve, and the j−invariant of the
�nal curve is taken as the output of the VDF. Therefore, our output exactly matches the
output from an instantiation of the Charles-Goren-Lauter hash function [31], where the
isogeny at each step is determined after assigning some ordering to the outgoing isogenies.
In order to make the procedure suitable for a SNARG construction, however, we develop
a procedure that makes this ordering not only explicit but also veri�able using only �eld
arithmetic.

7.2.1 Evaluation overview

Given a delay parameter T , we ask the evaluator to compute a walk of length T on the
2-isogeny graph, where the exact path is determined by a string s and is non-backtracking.
We would not be able to specify kernel points of order ℓT as in the SIDH setting, since
doing so would require either p = O(ℓT ) or working over an O(T ) �eld extension, both
of which would make all �eld arithmetic ine�cient for the veri�er. Therefore, each step
in the isogeny walk has to be determined �on the �y�, and we chose to derive it from the
modular polynomial root-�nding problem since it is naturally expressed in Fp2 arithmetic.
Given two curves with j-invariants ji and ji+1, they are 2-isogenous over Fp2 if and

only if the modular polynomial Φ2(ji, ji+1) vanishes. Thus, for �xed ji, the next curve



7.2. AN ISOGENY-BASED DELAY FUNCTION 89

in the path can be computed by �nding a root of Φ2(ji, X). This is a cubic polynomial,
but we can exploit the fact that we already know one of the roots (namely ji−1, the
previous curve in the walk) to factor out a linear term: if X = ji−1 is a known root of
Φ2(X) = X3 + aX2 + bX + c then we can rewrite

Φ2(X) = (X − ji−1)(X
2 + (a+ ji−1)X + b+ aji−1 + j2i−1)

and focus on �nding the roots of the quadratic factor. This accomplishes three distinct
goals:

1. It ensures the walk is non-backtracking by discarding the X = ji−1 root

2. It reduces the root-�nding problem to a quadratic equation (reducing the size of the
computation yields heavy savings on SNARG overhead)

3. It enables the step in the walk to be de�ned by a canonical square-root along with
a bit indicating its sign

Taking into account the explicit form of Φ2, the other two roots are given by

ji+1 =
1

2

(
j2i − 1488ji − ji−1 + 162000±

√
Di

)
(7.1)

where

Di =j
4
i − 2976j3i + 2j2i ji−1 + 2532192j2i − 2976jiji−1 (7.2)

− 645205500ji − 3j2i−1 + 324000ji−1 − 8748000000

The evaluator computes a canonical square root Si =
√
Di using Kong's algorithm

[106]: �rst �x any quadratic nonresidue d and precompute t = d
p2−9

8 , then compute

Ri = (2Di)
p2−9
16 (7.3)

and set

Si =

{
RiDi(2DiR

2
i − 1) if (2aR2

i )
2 = −1

RitdDi(2R
2
i t

2d2Di − 1) if (2aR2
i )

2 = +1
(7.4)

which can be combined into

Si =

(
1− (2aR2

i )
2

2

)
RiDi(2DiR

2
i − 1) +

(
1 + (2aR2

i )
2

2

)
RitdDi(2R

2
i t

2d2Di − 1) (7.5)

After the square root has been calculated, the evaluator uses the input string to choose
the sign, yielding a deterministic process for the walk. Note that the input string cannot
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have length O(T ) (since the veri�er must receive it and process it in time polylog(T )), so
we will construct the signs pseudorandomly from a smaller string, as detailed in Section
7.3.1.

Note also that the evaluator could use any algorithm for computing square roots, but
for the SNARG veri�cation process it is convenient to use a procedure that is deterministic
and also produces a �xed choice of sign, hence the choice of Kong's algorithm. For the
veri�cation process, the evaluator will keep track of ji, Di, Ri, Si at each step and construct
a SNARG that shows that equations (7.1), (7.2), (7.3) and (7.5) are satis�ed.

Initial conditions. Since equation (7.1) requires knowledge of the j−invariant two
steps into the past, we need to specify the �rst two curves as initial conditions. The
2-isogeny graph is a 3-regular graph without repeated edges or self-loops except for the
two special vertices j = 1728 and j = 0. At j = 1728 there is one self-loop and two
edges going to the vertex j = 287496, so we use the initial curve j0 = 287496 and take
j−1 = 1728 to avoid going back to the non-regular vertex. Note that the SNARG will
only access values at indices 0 through T − 1, so we replace j−1 = 1728 by an equivalent
condition on D0 using equation (7.2).

7.3 SNARG-based Veri�cation

In this section we deal with the veri�cation process of the VDF, speci�cally how to �t the
evaluation into a SNARG framework.

The notion of veri�able computation emanated from Probabilistic Checkable Proofs
(PCP), a term �rst coined by Arora and Safra [107] to refer to a protocol between a
prover who generates a proof of membership in a language (known as the PCP witness)
for a given input and a randomized veri�er which interacts with it. Both Babai et al.
[91] and Feige et al. [108] independently proposed algorithms for transforming any NP
witness into a PCP witness which, at the cost of making the veri�cation probabilistic and
the witness polynomially larger, allow for logarithmic-time veri�cation by sampling only
a logarithmic number of bits from the witness.

The results from [91] and [108] show that the history of any computation can be put
into an alternate form which can be veri�ed with an exponential speedup. In practice,
however, these PCP constructions have two major drawbacks. First, they require in-
teraction between the two parties throughout the protocol, and second, the amount of
communication is still ine�cient since the full PCP witness must be transmitted even if
only a few bits of it are sampled. Succinct Non-interactive Arguments (SNARGs) are an
alternative primitive which overcomes both limitations (they do not require interaction
and are succinct in the sense that the witness is of logarithmic size). It was shown by
Micali [92] that any PCP construction can be e�ciently transform into a SNARG.

General-purpose SNARGs aim to verify a computation by working at the level of a RAM
model and translating the correctness of the computation into either a circuit satis�ability
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or an algebraic constraint problem. For our construction we have focused on the latter
approach, and use a checksum-type PCP to verify said constraint problem.
In this section we review how the di�erent construction ingredients are adapted to our

particular problem. Section 7.3.1 describes the process of transforming the correctness of
our computation into an algebraic constraint problem (known as arithmetization). Section
7.3.2 then gives a high-level summary for the rest of the SNARG construction and the
complexities of the resulting veri�cation scheme. Finally, Section 7.3.3 discusses the
parallelization of the SNARG proof construction to obtain a concrete proof construction
time close to the evaluation time.

7.3.1 Arithmetization

The sumcheck protocol that we work with is a PCP that veri�es conditions of the form∑
x⃗∈Bn

P (x⃗) = 0, (7.6)

where P is a polynomial in n variables over some ring R ⊃ B.
To turn the veri�cation of our VDF into an instance of this problem we arithmetize by

storing the intermediate values into polynomials that act as lookup tables. Speci�cally,
for the computation with T steps, we pick a base b and integer n such that T ≈ bn, and
let B = {0, 1, . . . , b − 1}. The time steps t ∈ {0, 1, . . . , T − 1} can then be expressed
as b−ary strings of length n, where we refer with tx⃗ to the integer represented by string
x⃗ ∈ Bn.
For y⃗ ∈ Bn we de�ne the polynomial

δy⃗(x⃗) =
n−1∏
j=0

∏
z∈B−{yj}

xj − z
yj − z

(7.7)

which maps x⃗ ∈ Bn to 1 if x⃗ = y⃗ and 0 if x⃗ ̸= y⃗. Regarding B as a subset of Fp2 , the above
formula can be seen as a polynomial over (Fp2)

n, and is in fact the unique degree-(b− 1)
polynomial that agrees with the δ function on Bn (note that throughout this chapter,
the �degree� of a multivariate polynomial refers to the maximum degree of any individual
variable).
The δ polynomial can be used as an auxiliary tool to select a speci�c index when

summing over all indices. Given the sequence ji of j-invariants at each step, we can
de�ne the polynomial

j(x⃗) =
∑
y∈Bn

jty⃗δy⃗(x⃗). (7.8)

This polynomial encodes the history of the computation since it maps x⃗ ∈ Bn to jtx⃗ ,
but can also be evaluated (with less predictable outcome) over all of (Fp2)

n. We can
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then de�ne similar polynomials D(x⃗), R(x⃗), S(x⃗) for the quantities Di, Ri, Si de�ned in
Section 7.2, and also use the constants

Lt1,t2 =

{
1 if t2 = t1 + 1

0 else

to de�ne the polynomial

L(x⃗, y⃗) =
∑

x⃗′,y⃗′∈Bn

Ltx⃗′ ,ty⃗′
δx⃗′(x⃗)δy⃗′(y⃗) (7.9)

which vanishes in B2n unless x⃗ and y⃗ represent consecutive integers. Similarly to the δ
polynomial, this polynomial will be used as a sequential counter that selects only consec-
utive indices when summing over all pairs of indices.
With this in hand, equations (7.1), (7.2), (7.3) and (7.5) can be represented as polyno-

mial conditions. For instance, (7.1) becomes

P j(x⃗, y⃗, z⃗) = 0 ∀ (x⃗, y⃗, z⃗) ∈ B3n, (7.10)

where

P j(x⃗, y⃗, z⃗) :=[
2j(z⃗)− j(y⃗)2 + 1488j(y⃗) + j(x⃗)− 162000− s(y⃗)S(y⃗)

]
L(x⃗, y⃗)L(y⃗, z⃗).

Here, s(x⃗) represents the choice of sign at step tx⃗, which we have also represented as a
polynomial. We have not speci�ed how the sign is derived from the input, but it will be
necessary for the veri�er to be able to e�ciently evaluate s(x⃗). Therefore, we will take

s(x⃗) =
n−1∏
i=0

si(xi), (7.11)

where si are single-variable polynomials of degree b− 1 mapping B to {+1,−1}. Since a
polynomial of degree b− 1 is determined by its values at any b points, we only need b bits
to uniquely specify each si. This means that we use a total of nb bits to de�ne s(x⃗), and
we now de�ne these bits as the input to the VDF (the input bits can be passed through
a hash function �rst to enforce pseudorandomness of the resulting polynomial).
We then turn equations (7.2) and (7.5) into polynomial conditions

PD(x⃗, y⃗) = 0 ∀ (x⃗, y⃗) ∈ B2n

and
P S(x⃗) = 0 ∀ x⃗ ∈ Bn
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in an analogous way.
As for equation (7.3), the polynomial that we would obtain by arithmetizing it directly

would be of large degree, which is undesirable for the SNARG construction (the sumcheck
protocol veri�cation, described in [109], is linear in the degree of the polynomial). There-
fore, we introduce additional state and break the exponentiation down into a right-to-left
strategy: let K = ⌈log((p2 − 9)/16)⌉ and e0, e1, . . . , eK−1 be the bits of (p

2 − 9)/16. We

de�ne R
(0)
i = 1, D

(0)
i = Di and for 0 < k < K,

D
(k)
i = (D

(k−1)
i )2, (7.12)

and
R

(k)
i = R

(k−1)
i (D

(k−1)
i )ek (7.13)

so that R
(k−1)
i = Ri. For each 0 ≤ k < K we de�ne polynomials D(k)(x⃗) and R(k)(x⃗)

from the values ofD
(k)
i and R

(k)
i , respectively, and use them to write polynomial conditions

PR,k(x⃗) = 0 ∀ x⃗ ∈ Bn

and
PD,k(x⃗) = 0 ∀ x⃗ ∈ Bn.

Note that we now have K = log p pairs of polynomials to work with, but each being
of degree d = O(b) just as P j, PD and P S (this is inherited from the degree of the δ
polynomial).
Finally, to wrap the whole veri�cation into the form of (7.6), we use the weighted sum

P (x⃗, y⃗, z⃗) = wJ(x⃗, y⃗, z⃗)P J(x⃗, y⃗, z⃗) (7.14)

+ wD(x⃗, y⃗)PD(x⃗, y⃗) + wS(x⃗)P S(x⃗)

+
∑
k

(
wD,k(x⃗)PD,k + wS,k(x⃗)P S,k

)
,

where each w is a weight polynomial. These polynomials are de�ned in the same way as
s(x⃗) in equation (7.11), but are chosen randomly by the veri�er so that proving that∑

x⃗,y⃗,z⃗∈Bn

P (x⃗, y⃗, z⃗) = 0

is enough to convince the veri�er that P J , PD, P S, P k,D, P k,S vanish at all points, and
hence that the whole computation is correct.
We stress that general-purpose SNARGs exist that can be applied to any program (see

for example [94] and [110]), but they usually perform arithmetization at the ALU level,
which increases the overhead cost. For instance, they may have lookup polynomials that
encode the values of CPU registers at each time step and obtain polynomial conditions
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that represent the correctness of ALU operations (which in our case would include even the
breakdown of all Fp2 arithmetic into basic ALU operations). The arithmetization that we
propose is performed directly at the �eld arithmetic level, meaning that the values encoded
into our polynomials are Fp2 elements and our polynomial conditions represent equality
over this �eld, without actually including the correctness of Fp2 arithmetic procedures in
the SNARG proof since it is within the veri�er's capabilities to perform them directly.

7.3.2 Overview of the SNARG construction

We now present a high-level summary of the steps required to complete the SNARG
construction. For a more detailed account, the reader may consult the appendix in the
extended version of this work [111].

We have reduced the veri�cation process to the veri�cation of a condition of the form1

∑
x⃗∈Bn

P (x⃗) = 0,

where P is of degree d = O(b) in n variables, and T = nb. This veri�cation is handled
by the sumcheck protocol of Lund, Fortnow, Karlo� and Nisan [109], detailed in the
appendix of [111]. The sumcheck protocol is a PCP that reduces the problem to the
veri�er's ability to evaluate P at a random point x⃗ ∈ (Fp2)

n. To enable this, the prover
publishes a PCP witness that contains the table of values for each of the polynomials
j(x⃗), D(x⃗), S(x⃗), R(k)(x⃗), S(k)(x⃗) in all of (Fp2)

n. The table of values for L(x⃗, y⃗) is assumed
to be precomputed and publicly available (since it is independent of the input), while the
polynomials for the sign and the random weights are directly evaluated by the veri�er.

The next step is to apply Micali's transform [92], which both eliminates interactiveness
and shortens the proof to a polylogarithmic size. The core idea is to encode the tables
of values into a Merkle tree and publish only the root of the tree as a commitment,
answering speci�c queries with a value along with its veri�cation path in the Merkle tree.
We then apply the Fiat-Shamir transform [112] to replace all random choices from the
veri�er (including the choice of the weight polynomials in (7.14)).

The resulting veri�cation scheme has a prover time complexity of O((n2b)nb log b) with
O(n2 log p) parallelism and space complexity of O((n2b)n log p) �eld elements (from com-
puting and storing the tables of values), and a veri�er time complexity ofO(n3b log(nb) log p)
with no parallelization nor signi�cant storage requirements (from performing a degree test
on said table). Both of these complexities are derived in the appendix of the extended
version of this work [111]. We argue in Section 7.4 that a choice of p = poly(T ) is natural,
so the evaluator parallelism is polylog(T ).

There is still some freedom regarding the choice of parameters n and b, since they only

1For ease of notation we collapse x⃗, y⃗, z⃗ into a single vector, implicitly substituting n 7→ 3n throughout.
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need to satisfy nb ≈ T . Choosing b ≈ (log T )1/ϵ for some ϵ > 0 means that

n ≈ log T

log b
=

ϵ log T

log log T
,

and

nn ≈
(
ϵ log T

log log T

) ϵ log T
log log T

< log T
ϵ log T

log log T = T ϵ,

so the prover complexity becomes Õ(T 1+2ϵ) time (which can be made arbitrarily close to
linear) andO(T 1+2ϵ log p) space, while the veri�cation complexity becomes Õ((log T )4+1/ϵ).
Another option is to chose a slowly decreasing function ϵ = 1/ log log T . This causes the

proof construction to be strictly quasi-linear, but at the cost of making the veri�cation
only quasi-polylogarithmic.

7.3.3 Parallelization of the Proof Construction

It is also desirable for the evaluation algorithm of a VDF to take time that is concretely (as
opposed to asymptotically) close to T . Both Boneh et. al. [89] and Döttling et. al. [90]
independently proposed similar methods for exploiting parallelism to �nish evaluation of
an iterative function and its SNARG proof construction at the same time by working with
subsegments of geometrically decreasing size. Assuming that computing the proof is slower
than the function evaluation by a factor of α, the evaluator stops after completing T/(1+α)
iterations of the computation and then starts a proof for this partial computation in
parallel with the remaining αT/(1+α) steps. This is repeated recursively, so the evaluator

does proof constructions of size T
(

α
1+α

)i
for i = 1, 2, 3, . . . until i ≈ log(T )/ log(1 + 1

α
)

when approximately a single step remains and it can be computed directly by the veri�er
without proof. Since log(1+ 1

α
) = 1

α
+O( 1

α2 ), this increases the parallelization requirement
by a factor of α log T .
Note that in the case when b = (log T )1/ϵ for constant ϵ this results in an amount of

parallelism polynomial in T , which is coined a weak VDF by Boneh et al. [89, De�nition
5]. We favor the case when ϵ = 1/ log log T instead, which means the parallelism is strictly
logarithmic at the cost of making the veri�cation slightly slower (quasi-polylogarithmic).

7.4 Security Analysis

The soundness of the VDF relies entirely on that of the SNARG proof, which is discussed
in [92]. In this section we discuss the other crucial security property of a VDF, namely
its sequentiality.
As a side note, we point out that any protocol where the isogeny walk is not prescribed

in some way is insecure in terms of sequentiality. For instance, one could have asked the
evaluator for a SNARG proof of any large-degree isogeny and naively hope that this makes
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for a good proof of sequential work even if the output is not unique. However, much like
the proof of isogeny knowledge proposed by Leroux [93], this does not constitute proof
of a sequential computation if the evaluator is free to choose the path. Indeed, even
if backtracking is avoided it has been shown by Adj, Ahmadi and Menezes [113] that
it is easy to �nd cycles of any length in the ℓ−isogeny graph, which allows a cheating
evaluator to construct a SNARG for a �long� walk by repeating a short cycle as many
times as necessary. Of course, the prescribed walks in our construction may still contain
cycles, but this is not a problem so long as they cannot be forced nor predicted by the
evaluator.
In our context, sequentiality relies on a similar version of the Isogeny Shortcut Problem

de�ned by De Feo et al. [80] :

Problem 7.4.1 (Isogeny Shortcut Problem). Let E/Fp be a random supersingular elliptic
curve and ϕ : E → E ′ an isogeny of degree ℓT to a curve E ′/Fp2. After a precomputation
time poly(T, λ), �nd the image of a given point whose order is coprime to ℓ in time o(T ).

Our setting di�ers from the one in this problem in three important ways:

1. Our problem is not to �nd images of points, but codomain curves. Since the
codomain curve can be computed from any three point evaluations, the problem in
our setting could be considered more general. However, all known point-evaluation
methods have complexities asymptotically equal to those of codomain-evaluation,
so we do not expect our security assumption to be signi�cantly stronger.

2. The precomputation time that we allow in our setting is granted before learning
the isogeny to be evaluated, which re�ects the fact that our VDF uses a di�erent
isogeny for each input as opposed to �xing the isogeny at setup time. In this regard,
our security is stronger since it relies on a much weaker assumption.

3. We do not assume that the starting curve was randomly sampled, which is done in
[80] to prevent shortcut attacks (see below) when the endomorphism ring is known.
However, we argue that such attacks are unimportant in our setting precisely due
to the previous point. Starting from a public curve means we do not need a trusted
setup.

Despite these di�erences, our security analysis is very similar to De Feo's et al., as we
still distinguish two types of attacks: either �nding a way to perform the isogeny walk
faster (possibly exploiting parallelism), or attempting to �nd an equivalent isogeny walk
of smaller degree (which we call isogeny shortcuts).

7.4.1 Faster Isogenies

The best known method for computing a degree-ℓT isogeny is by sequentially performing
the composition of T consecutive ℓ-isogenies, where each ℓ-isogeny is computed using
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Vélu's formulas. We consider the time of this computation as a lower bound for the delay
parameter o�ered by our VDF, even though our speci�cation of the evaluation algorithm
does not use kernel points. While Vélu's formulas parallelize almost perfectly, attempting
to directly evaluate an isogeny of degree ℓT in time O(T ), would require an amount of
parallelism exponential in T which exceeds the evaluator's capabilities. This is leaving
aside the fact that our isogeny is not readily presented as a kernel that could be plugged
directly into these formulas, and even if such a kernel could be obtained it would be de�ned
over a degree-T �eld extension. Assuming then that the best strategy is to decompose
into small-degree isogenies, it is unlikely that any algorithm would be able to compute
the composition of all such isogenies without going through each intermediate curve.

While none of the above premises are often studied as security assumptions, they are
long-standing conjectures that have endured the test of time, despite considerable incen-
tives to optimize isogeny evaluations. For instance, �nding a way to compute an isogeny
of degree ℓT in linear time without exploiting the smooth decomposition would be equiv-
alent to computing an arbitrary-degree isogeny in time logarithmic in the degree, which
would be ground-breaking for all isogeny-based cryptography.

It should be noted that recent improvements to the evaluation of ℓ−isogenies do exist,
most notably the algorithm of Bernstein et al. [25], which achieves a square-root time
complexity improvement over the previous state-of-the-art. Although this does not a�ect
the asymptotic complexity of computing T isogenies in series, having the possibility for
variations in the concrete cost is still problematic for a VDF. However, the gains in these
new formulas are asymptotic in ℓ and we only use 2−isogenies for which the formulas are
so simple that they can be conjectured to be already optimal.

7.4.2 Isogeny Shortcuts

The second possibility is for the evaluator to produce a di�erent isogeny path between
the two end curves, and hope that it is shorter than the original. Because construction of
the proof requires the evaluator to know each of the j-invariants in the original isogeny
path, one might mistakenly assume that such an attack would be useless. However, an
attacker that is able to predict the output in a shorter time, even if unable to produce a
proof for it, would still violate the security of the VDF.

A shorter path always exists because the isogeny graph is of size O(p) and the optimal
expander property of Ramanujan graphs [27] implies the distance between any two curves
is bounded byO(log p) (which is necessarily logarithmic in T , otherwise all �eld arithmetic
would be ine�cient). However, the sequentiality property only requires that such path
cannot be found in time o(T ). In the case of arbitrary curves, when the endomorphism
ring is not known, the best one can do is to try to solve the isogeny problem between the
curves, disregarding the already known isogeny. The best algorithm for this is a birthday
attack, which takes O(p1/4) time using a quantum Grover search [40]. This sets a theoretic
limit on the admissible delay parameters of T = O(p1/4). However, it should be noted
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that even this attack would not apply directly since it requires previous knowledge of the
codomain curve.

In our construction, we take an additional risk of �xing the starting curve j = 1728
where not only is the endomorphism ring known, but also elements of norm ℓn can be
easily found with the KLPT algorithm [114]. This leads to an attack analogous to the
CGL hash collision-�nding algorithm that was described in [115] and optimized by [80],
which computes a shorter isogeny in time poly(T, log p). One could always start from
a curve of unknown endomorphism ring to avoid this attack at the cost of requiring a
trusted setup, but in our case even this attack is admissible because there is a di�erent
isogeny used in each input and computing the shortcut is still slower (in the VDF from
De Feo et al. [80], this is more of a problem because the same isogeny is always used, so
the shortcut breaks the VDF for all inputs after being computed once).

More generally, it is unlikely that any kind of reduction could be computed fast enough
since our isogeny is not readily represented as an ideal in the quaternion algebra. Any
reduction that works over the endomorphism ring would have to translate the isogeny at
each step into the language of quaternion ideals, necessarily resulting in a Ω(T ) complexity,
and the concrete time of whatever parsing need to be performed is unlikely to be much
faster than a simple degree-2 isogeny.

7.5 Discussion

We have presented a framework for applying a SNARG at the �eld-arithmetic level to
verify an isogeny walk, and used it to obtain a postquantum isogeny-based VDF that does
not require a trusted setup and is less susceptible to isogeny shortcut attacks since it uses
a di�erent isogeny walk for each input.

In terms of asymptotic complexity, our VDF is less e�cient relative to other construc-
tions: for example, the VDF from De Feo et al. [80] has O(T ) evaluator-space complexity
and veri�cation time constant in T . However, no previous VDF construction achieves
post-quantum security.

Although SNARG-based VDFs have been deemed mainly of theoretical interest by
Boneh et al. [89], alluding to the fact that current SNARG constructions have concrete
costs about 100,000 times larger than the original computation, it should be noted that
this is the case for general-purpose constructions which verify every step of the computa-
tion at the bit-operation level. Since our construction veri�es steps of the computation at
the �eld-arithmetic level, it has the potential to save signi�cantly on overhead. Therefore,
it could prove an interesting future work to implement and benchmark our construction.

We leave it also as future work to propose concrete parameters for our construction. We
stress that de�nitions such as 128-bit security level are not meaningful for the sequentiality
property of a VDF, whereas for soundness our security is completely derived from Micali's
work [92] and based on symmetric cryptography. This means that the choice of parameters
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should be based only on the desired delay time, which is impossible to �ne-tune until a
working implementation is obtained.
We also point out that there is a factor of log p in both the evaluator's parallelism

complexity and the veri�er's total complexity that emanates from the breakdown of an
exponentiation to verify a square-root computation, as represented by equations (7.12) and
(7.13). If the square-root computation was veri�ed via a squaring rather than repeating
the computation, this factor could be eliminated. However, the longer computation is
required due to the fact that we perform our arithmetization at the �eld arithmetic level,
meaning that we need a deterministic way of picking a sign that uses only �eld operations.
We leave it as an open question whether one can design a method to, given both roots of
a quadratic polynomial, choose one of them deterministically using only �eld arithmetic
and without resorting to a large exponentiation.
Finally, it should also be noted that the SNARG mechanism we have described is fairly

rudimentary and there are various recent developments that achieve slight optimizations.
However, most of these improvements rely on reducing the arithmetic over ad hoc �elds
(such as [110], which uses a binary �eld) whereas our SNARG is constrained to work in
the �eld of the elliptic curve. We note that this problem is likely to be ubiquitous when
adapting SNARGs to work with existing cryptographic frameworks, since such frameworks
usually include arithmetic over a prescribed �eld. Working directly over this prescribed
�eld is bound to save signi�cantly on overhead when constructing SNARG proofs, so we
also encourage further optimizations of SNARG constructions over arbitrary �elds.
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Chapter 8

SwiftEC: An e�cient encoding for

ordinary elliptic curves

Abstract. The work in this chapter, published in ASIACRYPT 2022 in collaboration with
Franchisco Rodríguez and Mehdi Tibouchi [7], presents a novel construction for a uniform
encoding of points in ordinary elliptic curves and an associated hash function. This con-
struction has the perk of requiring a single exponentiation in the curve's �eld as opposed to
all previous constructions which required at least two, making it the most e�cient known
way of encoding and hashing into a large class of ordinary curves. Since it works over
ordinary curves, the construction is not interesting for post-quantum applications. How-
ever, it is closely related to our work in that it still utilizes the isogeny framework, and it
produces a result that is of great immediate interest for classical applications being used
today.

Indi�erentiable hashing to elliptic curves. Numerous cryptographic primitives and
protocols constructed over elliptic curve groups involve hashing to an elliptic curve: they
assume the existence of a public function H mapping arbitrary bit strings to elliptic curve
points / group elements. Moreover, the function H is supposed to behave �like a random
oracle�. Such a functionality is required for example for many password-authenticated
key exchange protocols, identity-based encryption schemes, short signature schemes, veri-
�able random functions, oblivious PRFs and more. It is therefore important to understand
how it can be e�ciently instantiated in practice, and moreover with constant-time imple-
mentations, since the data that is hashed to the curve is often sensitive and can thus be
compromised by timing side-channel attacks. This problem is in fact currently the subject
of an IETF standardization e�ort within the Crypto Forum Research Group [116].

It became an active research topic about a decade ago, particularly after the work of
Brier et al. [117], which applied Maurer et al.'s indi�erentiability framework [118] to prop-
erly formalize what it meant for H to �behave like a random oracle�, and proposed several
constructions satisfying the required properties. The design paradigm that emerged at the

101
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time as the main approach to hashing to elliptic curve groups combines so-called encoding
functions to the elliptic curve, which are algebraic (or piecewise algebraic) maps from the
base �eld to the group of points on the curve, with random oracles to the base �eld and
other sets that are �easy to hash to�, as well as simple arithmetic operations on the curve.
More precisely, consider for instance1 the problem of hashing to the subgroup G of

cofactor h in E(Fq), where E is an elliptic curve de�ned over the �nite �eld Fq and such
that E(Fq) is cyclic of order n with generator P . Then Brier et al. [117] showed that the
following construction:

Hslow(m) = [h] ·
(
f
(
h1(m)

)
+ [h2(m)]P

)
(8.1)

is indi�erentiable from a random oracle when h1 and h2 are modeled as independent
random oracles to Fq and Z/nZ respectively (which are easy to realize, heuristically,
using bitstring-valued hash functions) and f : Fq → E(Fq) is a mapping (the encoding
function) satisfying mild conditions. This means that whenever2 a cryptographic scheme
or protocol is proved secure in the random oracle model with respect to a G-valued random
oracle H, that random oracle can be instantiated securely with the construction Hslow.
As we have mentioned, the construction above requires a suitable encoding function

f : Fq → E(Fq). A number of candidates were known at the time for various classes of
elliptic curves, such as those of Shallue and van de Woestijne [52], Ulas [120] or Icart [121],
and many more have been proposed since [122, 123, 124, 125, 126, 127, 128]. All of
them can be computed in constant time at the cost of one full size exponentiation in Fq

(typically a square root or cube root computation), which dominates the complexity, plus
a few other less costly operations in the �eld, like multiplications, inversions and Jacobi
symbol computations.
In contrast, the second term of Hslow is a full-size scalar multiplication over the curve,

which typically exceeds the computationally cost of a �eld exponentiation by a factor of
10 or more depending on base �eld size and curve arithmetic. This makes Hslow a fairly
ine�cient construction.
To alleviate this issue, Brier et al. also proved that the following construction is also

indi�erentiable from a random oracle:

Hsquare(m) = [h] ·
(
f
(
h1(m)

)
+ f
(
h2(m)

))
(8.2)

when h1 and h2 are modeled as independent random oracles to Fq, and when f is speci�-
cally Icart's function. The result was later extended by Farashahi et al. [129], who showed
that basically all of the known encoding functions f could also be plugged into that con-
struction. This provides indi�erentiable hashing to arbitrary elliptic curves at the cost of
essentially two base �elds exponentiations.

1The general case of a non-cyclic E(Fq) can be treated similarly. We refer to Brier et al. [117] for
details.

2Technically, this holds in the case of single-stage security games, as clari�ed by Ristenpart et al. [119].
This limitation is rarely of concern in our context.
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On the other hand, in certain primitives and protocols proved secure with respect to a
G-valued random oracle H, one can show that H can be securely instantiated using the
following simpler construction:

Hnon-unif(m) = [h] · f
(
h(m)

)
(8.3)

where h is modeled as a random oracle to Fq. This construction is not nearly as well-
behaved as (8.2). In fact, f usually only reaches a fraction of the points on E(Fq),
and induces a non-uniform distribution over its image, so that Hnon-unif can typically be
e�ciently distinguished from a random oracle, and in particular it is not indi�erentiable in
the sense discussed so far. Nevertheless, certain primitives and protocols do not require
the full strength of indi�erentiability, and Hnon-unif is sometimes su�cient to let their
security proofs go through.
A rough idea of why this happens is that, in a random oracle proof of security, the

simulator generally wants to program the random oracle by setting the hash of some
message m to a value Q, but that point Q itself can usually be anything depending on
some randomness. So assuming that h = 1, the simulator might typically want to set
H(m) to Q = [r] · P for some random r, say. Now if H is de�ned in the protocol using a
construction like (8.3), the simulator would pick a random r and set h(m) to one of the
preimages u ∈ f−1(P ) if P ∈ f(Fq). If however P is not in the image of f , the simulator
would pick another random r and try again.
Therefore, construction (8.3), while less general and well-behaved than (8.2), is some-

times good enough for security at half the computational cost. This is a substantial
di�erence in terms of e�ciency that practitioners may be sensitive to, so much so that
both of these constructions are in fact proposed in the current IETF draft [116]. Construc-
tion (8.3), however, comes with the caveats that applications using it �SHOULD carefully
analyze the security implications of nonuniformity�, and that �cryptographic protocols
whose security analysis relies on a random oracle that outputs points with a uniform dis-
tribution MUST NOT� use it. This results in the somewhat unfortunate situation that
implementers have to choose between two approaches for implementing hashing to elliptic
curves: one which is secure in all cases but slower, and one which is faster but requires a
careful analysis to ascertain that it does not fully compromise the security of the scheme.

The quest for fast indi�erentiable hashing. Ideally, one would prefer to have the
best of both worlds: indi�erentiable hashing at the cost of a single exponentiation in the
base �eld instead of two. Obtaining this for general elliptic curves is a long-standing open
problem.
In special cases, solutions exist: this is particularly the case for supersingular curves

of j-invariant 0 and 1728, for which it has long been known [130, 123] that an �almost
bijective� encoding function f exists; it is then easy to check that plugging that f into con-
struction (8.3) does achieve indi�erentiability. Unfortunately, those types of supersingular
curves, which were popular to reach the 80-bit security level in pairing applications in the
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early 2000s, are no longer used today due to exceedingly large parameters at higher secu-
rity levels. Moreover, there are strong reasons to believe that almost bijective encodings
cannot exist for general elliptic curves [131].
Progress towards adressing the general open problem was made by Tibouchi and Kim [132],

who extended the statistical results of Farashahi et al., and established in particular that,
asymptotically, it was possible to achieve indi�erentiable hashing at a cost of less than
two exponentiations by tweaking construction (8.1) with a random oracle h2 mapping to a
short interval. That result is mostly of theoretical signi�cance, however, since it requires
very large base �elds to provide meaningful error bounds.
Recently, Koshelev [133] made a practically signi�cant advance, by showing that indif-

ferentiable hashing at the cost of a single exponentiation was possible for certain ordinary
curves of j-invariant 0 over suitable base �elds. This is still a negligible fraction of all
elliptic curves, but it is practically relevant since it includes pairing-friendly curves like
some of the BLS12 used today. Koshelev's approach is also the �rst one considered in the
last decade or so that substantially departs from the framework of constructions (8.1)�
(8.3) above. While those earlier techniques reduce the problem of indi�erentiable hashing
to the encoding function f : Fq → E(Fq), which is de�ned over a one-dimensional domain,
Koshelev bases its construction on a map F : F2

q → E(Fq) with a two-dimensional range.
Looking back at Brier et al.'s original proof for the indi�erentiability of construction (8.2)
using Icart's encoding function, this is fairly natural (since that proof was constructed
around a two-dimensional argument), but it is an important shift in perspective.
In this chapter, we use a similar idea (albeit very di�erent techniques) to settle the

open problem for a large class of elliptic curves: for essentially all curves over �elds Fq

with q ≡ 1 (mod 3) with either odd order or order divisible by 4 (this includes almost
all elliptic curves in current use), we are able to construct a new indi�erentiable hashing,
which we call SwiftEC, at the cost of a single exponentiation in the base �eld.

Representing points as uniform random strings. A very di�erent problem, but
which has been tackled using similar techniques, was introduced in Bernstein et al.'s
Elligator paper [127]: the problem of representing a uniform point on E(Fq) in a public
way as a close to uniform random bit string. The stated goal was to achieve a form of
steganography for censorship circumvention. Indeed, network tra�c containing points on
a certain elliptic curve (e.g. public keys for encryption or signature) represented in usual
ways (either as full coordinates (x, y), in compressed form (x, sgn y) or in x-only form) can
be easily distinguished from random, which may lead to automated tra�c interruption or
targeted surveillance.
As a countermeasure, Bernstein et al. suggested to use an encoding function f : Fq →

E(Fq) with the property that it maps an interval I ⊂ Fq of length ≈ q/2 injectively into
E(Fq). Then, any point in f(I) can be represented by its unique preimage under f in I.
In particular, if q is close to a power of two, this readily gives a simple representation of
random elements in f(I) ⊂ E(Fq) as uniform random bit strings (and when q is far from



105

a power of two, it su�ces to represent elements of I as uniform random bit strings, which
can be easily done by expanding the representation and introducing randomness).
This approach has two drawbacks. First, suitable encodings f that are injective over

a large interval are hard to construct, and only known for limited families of elliptic
curves [124, 126, 127], all of order divisible by 3 or 4 (and hence not including curves of
prime order, for example). Second, one needs to address the issue of points falling outside
f(I). Since the goal is to represent random points on E(Fq) as bit strings, the assump-
tion is that in the cryptographic protocol under consideration, the point to represent is
obtained by some sort of random process, and it is possible to use rejection sampling until
reaching f(I). Since the image size covers roughly half of all points on the curve, this will
require about two iterations on average, often an acceptable cost. However, if the process
generating the point is expensive, rejecting may be less than ideal.
Tibouchi's Elligator Squared paper [53] addressed these shortcomings by, in essence,

applied construction (8.2) above �in reverse�. One of the key properties that makes con-
struction (8.2) an indi�erentiable hash function is the fact that, for an encoding function
f : Fq → E(Fq), the following map:

f⊗2 : F2
q → E(Fq)

(u, v) 7→ f(u) + f(v)
(8.4)

induces a close-to-uniform distribution on its image. In particular, a uniformly random
preimage of a uniformly random point in E(Fq) is close to uniform in F2

q. This provides a
simple solution to the point representation problem that works for general elliptic curves
and can represent all points, avoiding the need for rejection sampling inside the protocol
to reach a particular subset of the curve. However, representation size is about twice as
large as Elligator (a drawback partially addressed in subsequent work [132]) and the rep-
resentation function, computing uniformly random preimages under f⊗2, is also somewhat
more complicated and costly than that of Elligator.
Basically, to compute a random preimage of P ∈ E(Fq), one picks a uniform v ∈ Fq

and computes u as a preimage of P − f(v). However, rejection sampling is necessary to
ensure the uniformity of the distribution, which requires multiple iterations, each of them
evaluating the function f (at a cost of a �eld exponentiation each).
In this work, as a by-product of our new SwiftEC construction, we also obtain Elli-

gatorSwift, a much faster variant of Elligator Squared over all the curves over which
SwiftEC is de�ned. The idea is that fully computing the underlying encoding in the
forward direction becomes unnecessary, saving many �eld exponentiations in the process.

Contributions and technical overview. The starting point of our work is to revisit
the �rst construction of an encoding function to general elliptic curves, originally due
to Shallue and van de Woestijne [52]. We observe that that construction actually had a
number of interesting properties that have not been considered so far, and that we manage
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to build upon with suitable additional analysis. To describe them, we need to �rst recall
a few facts about the Shallue�van de Woestijne encoding itself.

Given an elliptic curve E : y2 = g(x) = x3 + ax + b over a �nite �eld Fq of charac-
teristic ≥ 5, Shallue and van de Woestijne construct a certain algebraic surface S in the
a�ne space over Fq together with three rational functions x1, x2, x3 such that the product
g(x1)g(x2)g(x3) is a square. This means in particular that, when evaluated at any point
P of S(Fq) (outside of the locus of poles), at least one of x1(P ), x2(P ) or x3(P ) must be
the x-coordinate of a point in E(Fq). Indeed, the product g

(
x1(P )

)
g
(
x2(P )

)
g
(
x3(P )

)
is

a square in Fq, and since the product of three nonsquares in Fq is a nonsquare, at least
one of the factors must be square, yielding the x-coordinate of a point in E(Fq). Based
on that, we can de�ne an encoding function from S(Fq) to E(Fq) simply by mapping a
point P to one of the points of x-coordinate xi(P ) that works (selecting the index i and
the sign of the y-coordinate in a predetermined way).

The second step of the construction is to note that the speci�c surface S under con-
sideration can in fact be seen as a one-parameter family of conics over Fq. Based on
that, Shallue and van de Woestijne �x the value of the parameter, obtain a single non-
degenerate conic over Fq, and use the fact that such a conic always admits a rational
parametrization to obtain a map Fq → S(Fq) to the chosen conic. Composing with the
previous map �nally gives an encoding Fq → E(Fq) as desired, which can be used in
constructions (8.1)�(8.3) above for hashing, and in the Elligator Squared framework: this
is what is usually known as the Shallue�van de Woestijne encoding.

Our contributions rely on two novel observations regarding that original construction:

� �rst, for a large class of elliptic curves E which we characterize in detail, the
surface S regarded as a family of conics actually admits a global, two-parameter
parametrization over Fq. This means that one can e�ectively construct a rational
map F2

q → S(Fq) that is essentially a bijection. This result is obtained using tech-
niques due to van Hoeij and Cremona [134] classifying conics over function �elds;

� second, unlike each of the maps de�ned by individual conics, the map from S(Fq)
as a whole to the set XE,Fq of elements of Fq which are x-coordinates on E(Fq)
is admissible: it satis�es the su�cient conditions of Brier et al. [117] to construct
indi�erentiable hashing. The most important of those conditions is regularity: the
image of a uniform point in S(Fq) is close to uniform in XE,Fq . We are able to
establish that property by giving a precise description of the preimage of an x ∈
XE,Fq : it consists of the union of one algebraic curve drawn on S (the set of points
P such that x1(P ) = x, say) and two halves of two other curves (the subset of the
curves given by x2(P ) = x and x3(P ) = x respectively, with the condition that
g(x1(P )) is a nonsquare). By counting points on those curves and curve subsets, we
are able to establish the required statistical properties, and deduce that S(Fq) →
XE,Fq is admissible.
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Combining those two observations, we obtain, for a large, explicit class of elliptic curves
E (including almost all curves in practical use), an admissible encoding F2

q → XE,Fq .
Adding a sign bit to choose the y-coordinate on E yields an admissible encoding F : F2

q ×
{0, 1} → E(Fq) as well, which can be computed at the cost of a single exponentiation in
Fq (namely, the square root computation needed to derive the y-coordinate). This has
the two consequences mentioned above, over the elliptic curves E of interest:

� given a hash function h modeled as a random oracle with values in F2
q×{0, 1} (which

is easy to heuristically instantiate), the map m 7→ F
(
h(m)

)
is indi�erentiable from

a random oracle, and can be computed at the cost of a single exponentiation. This
is the SwiftEC construction;

� given a uniform point on the curve, we can e�ciently sample a uniform preimage of
it under F , and this becomes a close-to-uniformly distributed element of F2

q×{0, 1}.
Since such an element is easy to represent as a uniform bit string, we thus obtain an
Elligator Square-like representation technique which is much faster than Elligator
Square itself, as it requires far fewer �eld exponentiations on average. This is the
ElligatorSwift construction.

In addition, we also get indi�erentiable hashing to the set XE,Fq without any �eld ex-
ponentiation at all. This even faster construction, XSwiftEC, is particularly interesting
in context where x-only arithmetic is feasible, such as for example BLS signatures [135].

8.1 Background

We begin by providing some background regarding quadratic residuosity and various
statistical notions which will lay the ground for mathematical proofs regarding our con-
struction.

8.1.1 Quadratic Residuosity

Throughout this chapter, Fq denotes the �nite �eld with q elements. We only consider
�nite �elds of characteristic ̸= 2, 3. The quadratic character χ2 : Fq → {−1, 0, 1} is the
map that sends 0 to 0, nonzero squares to 1 and nonzero nonsquares to −1. It is well-
de�ned, multiplicative, and extends the unique nontrivial multicative group morphism
F×
q → {−1, 1}. A related map is IsSquare, which sends all squares to 1 and nonsquares

to 0.
When q is prime, the quadratic character coincides with the Legendre symbol, and

can be computed e�ciently by repeated applications of quadratic reciprocity. This can be
implemented in fast constant time [136, 137, 138], similar to the constant-time binary GCD
technique of Bernstein�Yang for �eld inversion [139]. Similarly, the quadratic character
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over extension extension �elds can be computed fast by descending to the prime �eld, and
IsSquare can be trivially computed from χ2.
We also �x an e�ciently computable map sgn: Fq → {−1, 0, 1} called the �sign�, with

the property that sgn 0 = 0, sgnx ̸= 0 for x ̸= 0, and sgn(−x) = − sgnx. The choice is
arbitrary, but for example over prime �elds, it is customary to use the sign of an integer
representative in the interval (−q/2, q/2) (over extension �elds, one might choose the sign
of the �rst nonzero coe�cient in some basis over the prime �eld).
An element x ∈ Fq which is a square has exactly two square roots (except 0 which has

just one), exactly one of which is of nonnegative sign. We denote it by
√
x; it typically

requires a single base �eld exponentiation to compute (although slightly faster approaches
may exist over extension �elds).

8.1.2 Point counting and character sums

A generalization of the result regarding the number of rational points of an elliptic curve
is that any (absolutely irreducible) smooth curve of bounded genus over Fq has a number
of points over Fq close to q. More precisely, the following celebrated result holds:

Lemma 8.1.1 (Hasse�Weil bound). For any smooth projective absolutely irreducible curve
X/Fq of genus g, we have: ∣∣#X(Fq)− (q + 1)

∣∣ ≤ 2g
√
q.

For curves of bounded degree, the number of points at in�nity is also bounded, and we
thus get a bound of the form #Xa�(Fq) = q + c

√
q + O(1) (|c| ≤ 2g) on the number of

a�ne points on X.
A related result concerns character sums on such curves. Let χ be a multiplicative

character of Fq (a group homomorphism F×
q → C× extended by 0 at 0), and f ∈ Fq(X) a

rational function on the curve X. We consider the following character sum:

W (X,χ, f) =
∑

P∈X(Fq)
f(P )̸=∞

χ
(
f(P )

)
.

Using the Bombieri�Weil methodology, Perret [140] proves the following bound. See
also [141, 132].

Lemma 8.1.2 (Perret). Let X be a smooth projective absolutely irreducible curve of
genus g over Fq, χ a nontrivial multiplicative character of order m|q − 1, and f ∈ Fq(X)
a rational function which is not a perfect m-th power in F̄q(X). The character sum
W (X,χ, f) can be bounded as:∣∣W (X,χ, f)

∣∣ ≤ (2g − 2 + 2 deg f)
√
q.
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8.1.3 Quadratic residuosity over function �elds

Many results of classical arithmetic over Q and number �elds have analogues over function
�elds. This is in particular the case for quadratic reciprocity. We recall some of the
relevant results below. An exhaustive treatment is provided in Rosen's textbook [142, pp.
23-31].
For a �xed monic irreducible polynomial f ∈ Fq[t], we de�ne the quadratic residue

symbol
(

g
f

)
2
for any g ∈ Fq[t] as the image of g under the quadratic character of the

�nite �eld Fq[t]/(f). In other words:

(
g

f

)
2

=


0 if f divides g;

1 if g is coprime to f and a square modulo f ;

−1 if g is coprime to f and a nonsquare modulo f .

We then extend this symbol to not necessarily irreducible f 's by multiplicativity, similarly
to how the Jacobi symbol extends the Legendre symbol. If f = αf e1

1 · · · f en
n with α ∈ F×

q

and the fi irreducible, we let: (
g

f

)
2

=
∏
i=1

n

(
g

fi

)
2

.

Note that the symbol does not depend on the leading coe�cient lc(f) = α of f .

Lemma 8.1.3. The quadratic residue symbol has the following properties.

� If g1 ≡ g2 (mod f),
(

g1
f

)
2
=
(

g2
f

)
2
.

�

(
g1g1
f

)
2
=
(

g1
f

)
2

(
g2
f

)
2
.

�

(
g

f1f2

)
2
=
(

g
f1

)
2

(
g
f2

)
2
.

�

(
g
f

)
2
̸= 0 if and only if f and g are coprime.

� If g is a nonzero square modulo f , then
(

g
f

)
2
= 1 (but the converse does not need

to hold).

Furthermore, it satis�es the following law of quadratic reciprocity. For f, g ∈ Fq[t] coprime
and nonzero, it holds that:(

g

f

)
2

(
f

g

)
2

= (−1) q−1
2

deg f deg g lc(f)
q−1
2

deg g lc(g)
q−1
2

deg f .
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8.1.4 Statistical notions

For D a probability distribution on a �nite set S, we write Pr[s← D ] for the probability
assigned to the singleton {s} ⊂ S by D . The uniform distribution on S is denoted by US

(or just U if the context is clear).

De�nition 8.1.1 (Statistical distance). Let D and D ′ be two probability distributions on
a �nite set S. The statistical distance between them is de�ned as the ℓ1 norm:

∆1(D ,D
′) =

1

2

∑
s∈S

∣∣Pr[s← D ]− Pr[s← D ′]
∣∣.

We simply denote by ∆1(D) the statistical distance between D and US:

∆1(D) =
1

2

∑
s∈S

∣∣∣Pr[s← D ]− 1

#S

∣∣∣,
and say that D is ε-statistically close to uniform when ∆1(D) ≤ ε. When ∆1(D) is
negligible, we simply say than D is statistically close to uniform.

De�nition 8.1.2 (Pushforward). Let S, T be two �nite sets and F any mapping from S
to T . For any probability distribution DS on S, we can de�ne the pushforward F∗DS of
DS by F as the probability distribution on T such that sampling from F∗DS is equivalent
to sampling a value s← DS and returning F (s). In other words:

Pr
[
t← F∗DS

]
= Pr

[
s← DS; t = F (s)

]
= µS

(
F−1(t)

)
=

∑
s∈F−1(t)

Pr[s← DS],

where µS is the probability measure de�ned by DS.

De�nition 8.1.3 (Regularity). Let S, T be two �nite sets and F any mapping from S
to T . We say that F is ε-regular when F∗US is ε-close to the uniform distribution. We
may omit ε if it is negligible.

8.1.5 Admissible encodings

In their work on the construction of indi�erentiable hashing to elliptic curves, Brier et
al. [117] de�ne the notion of an admissible map F : S → R between two sets. The
de�nition, which generalizes an early notion introduced by Boneh and Franklin [130], is
as follows.

De�nition 8.1.4 (Admissible encoding). A function F : S → R between �nite sets is an
ε-admissible encoding if it satis�es the following properties:

Computable: F is computable in deterministic polynomial time.
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Regular: F is ε-regular (in the sense of the previous section).

Samplable: there is an e�cient randomized algorithm I : R → S ⊔ {⊥} such that for
any r ∈ R, I (r) induces a distribution that is ε-statistically close to the uniform
distribution in F−1(r).

F is an admissible encoding if it is ε-admissible for some negligible ε.

That notion satis�es the suitable properties such that, given an S-valued random oracle
h, the composition F ◦ h is indi�erentiable from a R-valued random oracle.
Moreover a similar results holds for arbitrary compositions of admissible functions (even

though admissibility need not be preserved under composition). Namely, if Fi : Si → Si−1

are admissible encodings for i = 1, . . . , n, then it also holds that, given an Sn-valued
random oracle h, the composition F1 ◦ · · · ◦ Fn ◦ h is indi�erentiable from a S0-valued
random oracle (even though it does not always hold that F1 ◦ · · · ◦ Fn is admissible).

8.2 The SW Encoding Family

In their seminal ANTS�VII paper [52], Shallue and van de Woestijne constructed the �rst
encoding function to arbitrary elliptic curves. In this section, we give a description of that
construction (restricted for simplicity to base �elds of characteristic ≥ 5) that is slightly
di�erent but essentially equivalent to the original one, and then we state new properties
of that construction.
In the entire section, we �x an elliptic curve E : y2 = x3 + ax+ b over the �nite �eld Fq

(q prime power not divisible by 2 or 3), and denote by XE,Fq the subset of Fq consisting
of x-coordinates of points in E(Fq); in other words:

XE,Fq =
{
x ∈ Fq ; ∃y, (x, y) ∈ E(Fq)

}
.

8.2.1 Construction of the Shallue�van de Woestijne encoding

Let g and h be the polynomials over Fq de�ned by:

g(u) = u3 + au+ b and h(u) = 3u2 + 4a.

The starting point of the Shallue�van de Woestijne construction is the construction of a
rational map ψ : S → V from the following quasi-a�ne surface in the (x, y, u) a�ne space:

S : x2 + h(u)y2 = −g(u), y ̸= 0 (8.5)

to the following threefold in the (x1, x2, x3, z) a�ne 4-dimensional space:

V : z2 = g(x1)g(x2)g(x3).
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The rational map ψ is given by the following explicit equations and clearly de�ned every-
where on S:

x1 =
x

2y
− u

2
x2 = −

x

2y
− u

2

x3 = u+ 4y2 z =
g(u+ 4y2)

2y
·R
(
u,

x

2y
− u

2

) (8.6)

where R(u, v) = u2 + uv + v2 + a. When referring to a point P on S, we will denote by
x1(P ), x2(P ), x3(P ) and z(P ) the corresponding coordinates of ψ(P ) in V . In particular,
this de�nes x1, x2, x3 and z as rational functions on the surface.
A remarkable property of the threefold V is that for any point (x1, x2, x3, z) ∈ V (Fq),

at least one of the three values x1, x2, x3 must be in XE,Fq . Indeed, g(x1)g(x2)g(x3)
is a square in Fq, so by multiplicativity of the quadratic character, they cannot be all
nonsquares (and in fact, there must be exactly one or three squares among them, except
possibly when z = 0).
As a result, one can therefore map points on S(Fq) to XE,Fq by �rst mapping to V (Fq)

with ψ, and then selecting one of the coordinates x1, x2, x3 in a prescribed order. For
example, in this chapter we will consider the following map:

F0 : S(Fq)→ XE,Fq

P 7→


x3(P ) if g

(
x3(P )

)
is a square;

x2(P ) if g
(
x3(P )

)
is not a square but g

(
x2(P )

)
is;

x1(P ) if neither g
(
x3(P )

)
or g

(
x2(P )

)
are squares.

(8.7)

Note that F0(P ) is very e�cient to compute from the coordinates (x, y, u) of P using the
formulas of (8.6) and a few quadratic character computations. In particular, it requires
no �eld exponentiation.
Of course, once we have an element x̄ ∈ XE,Fq , it is easy to deduce a point in E(Fq):

simply compute a square root of g(x̄) to get the y-coordinate up to sign. Since we prefer
to select the sign separately, we de�ne the following extended map to E(Fq) which takes
an additional input bit b:

F+
0 : S(Fq)× {0, 1} → E(Fq)

(P, b) 7→
(
F0(P ), (−1)b

√
g
(
F0(P )

))
.

(8.8)

The construction o�ers a way to map to E(Fq) provided that one can construct rational
points on the surface S itself, which may not be a priori obvious. Fortunately, as seen
from equation (8.5), each of the curves Su0 on S obtained by �xing u to some u0 ∈ Fq are
simply conics over Fq, with equations:

x2 + h(u0)y
2 = −g(u0), y ̸= 0.
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Now, a conic over Fq always admits a rational parametrization. Therefore, we can con-
struct a map Fq → Su0(Fq) that can then be composed with F+

0 to obtain an encoding
function F0,u0 : Fq → XE,Fq (and similarly to E(Fq)). This is basically the approach taken
in the original paper of Shallue and van de Woestijne [52].
Note that obtaining the parametrization of the conic Su0 for a �xed u0 requires an a

priori costly precomputation (it requires �nding a point on the conic, typically by trial-
and-error: this costs a square root, and a number of quadratic character computations
that is hard to bound uniformly). Therefore, while it may be tempting to try and de�ne
a two-parameter map F2

q → XE,Fq by (t, u) 7→ F0,u(t), this is not usually workable for
hashing purposes, since a new parametrization would have to be computed for any new
input u.
Nevertheless, we show in the remainder of this section that the maps F0 and F+

0 on
the surface S(Fq) as a whole have nice statistical properties, and it would therefore be
bene�cial to overcome the di�culty of e�ciently parametrizing it. That problem will then
be addressed, at least for a large class of elliptic curves E, in Section 8.3 below.

8.2.2 Geometry of the SW family

For a �xed element x̄ ∈ XE,Fq , we now want to describe the set of points in S(Fq) that
map to x under the encoding F0 of (8.7). By the previous description of the encoding,
this is the union of three disjoint sets:

F−1
0 (x̄) = C

(3)
x̄ (Fq) ⊔ C(2)

x̄ (Fq)
+ ⊔ C(1)

x̄ (Fq)
+,

where C
(i)
x̄ are algebraic curves on S de�ned by the condition that xi = x̄ (i = 1, 2, 3) and

C
(i)
x̄ (Fq)

+ is the subset of C
(i)
x̄ (Fq) under the condition that g

(
xj(P )

)
is not a square for

j ̸= i. Note that since there are always exactly only 1 or 3 squares, it su�ces to de�ne

C
(1)
x̄ (Fq)

+ := {P ∈ C(1)
x̄ (Fq); x2(P ) not a square}

C
(2)
x̄ (Fq)

+ := {P ∈ C(2)
x̄ (Fq); x1(P ) not a square}

We would like to count the number of points in each of these sets. The �rst step is to
understand the geometry of the curves C

(i)
x̄ . It is easy to see that, for a generic x̄, they

are hyperelliptic curves of genus 2.
Consider for example C

(3)
x̄ . It is given by the equations (cf. (8.6)):

u+ 4y2 = x̄ and x2 + h(u)y2 = −g(u).

Eliminating u = x̄− 4y2 between those two equations, we see that that C
(3)
x̄ is isomorphic

to the curve in the (y, x) a�ne plane given by the equation:

x2 = −g(x̄− 4y2)− h(x̄− 4y2)y2.
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The right-hand side is a polynomial of degree 6 in y, namely:

16y6 − 24x̄y4 + 9x̄2y2 − g(x̄),

whose discriminant is a polynomial of degree exactly 11 in x̄ (or exactly 9 if a = 0). We

thus get that C
(3)
x̄ is a hyperelliptic curve of genus 2, except for at most 11 points x̄. Other

than for those exceptional points, we have:

#C
(3)
x̄ (Fq) = q + c3

√
q +O(1), for some c3 such that |c3| ≤ 4.

by the Hasse�Weil bound. Note that the O(1) term comes from the fact that we consider
the a�ne situation rather than the projective one, and we could easily provide an explicit
bound for it, but this is typically not of interest for cryptographic applications.
Similarly, C

(2)
x̄ is given by the equations:

− x

2y
− u

2
= x̄ and x2 + h(u)y2 = −g(u).

Eliminating x = −y(u + 2x̄) between those two equations, we see that that C
(2)
x̄ is iso-

morphic to the curve in the (u, y) a�ne plane given by the equation:

y2
[
(u+ 2x̄)2 + h(u)

]
= −g(u),

which is again isomorphic to the curve in the (u, v) a�ne plane, v = y
[
(u+ 2x̄)2 + h(u)

]
,

of equation:
v2 = −g(u) ·

[
(u+ 2x̄)2 + h(u)

]
.

The right-hand side is a polynomial of degree 5 in u, namely:

−4
(
u5 + x̄u4 + (x̄2 + 2a)u3 + (ax̄+ b)u2 + (ax̄2 + bx̄+ a2)u+ b(x̄2 + a)

)
,

and its discriminant is always of degree 14 in x̄ (the degree 14 coe�cient is 216 · 3 · (4a3 +
27b2) ̸= 0). Thus, C

(2)
x̄ is a hyperelliptic curve of genus 2, except for at most 14 points x̄.

Other than for those exceptional points, we therefore have:

#C
(2)
x̄ (Fq) = q + c2

√
q +O(1) for some c2 such that |c2| ≤ 4

by the Hasse�Weil bound.
A similar computation gives the same result for C

(1)
x̄ , given by the equations:

x

2y
− u

2
= x̄ and x2 + h(u)y2 = −g(u).

Indeed, eliminating x = y(u + 2x̄) between those two equations shows that C
(1)
x̄ is also

isomorphic to the curve in the (u, y) a�ne plane given by the equation:

y2
[
(u+ 2x̄)2 + h(u)

]
= −g(u),
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the same as above. It therefore holds again that, except for at most 14 points x̄, C
(2)

1̄
is

a hyperelliptic curve of genus 2, and:

#C
(1)
x̄ (Fq) = q + c1

√
q +O(1) for some c1 such that |c1| ≤ 4

by the Hasse�Weil bound.
It remains to evaluate the cardinality of the subsets C

(i)
x̄ (Fq)

+ ⊂ C
(i)
x̄ (Fq) for i = 1, 2.

One can do so in various ways, but the simplest is probably to relate them to character
sums. Consider for example the following character sum on C

(1)
x̄ :

W1 := W
(
C

(1)
x̄ , χ2, g ◦ x2

)
=

∑
P∈C(1)

x̄ (Fq)

χ2

(
g
(
x2(P )

))
,

where χ2 is the quadratic multiplicative character of Fq. The term χ2

(
g
(
x2(P )

))
is equal

to −1 if g
(
x2(P )

)
is not a square in Fq, which is exactly when P ∈ C(1)

x̄ (Fq)
+. Moreover,

it is otherwise equal to 1 (for points outside C
(1)
x̄ (Fq)

+ such that x2(P ) ̸= 0) or 0 (for

points outside C
(1)
x̄ (Fq)

+ such that x2(P ) = 0). As a result, we have:

W1 = (−1) ·#C(1)
x̄ (Fq)

+ + 1 · (#C(1)
x̄ (Fq)−#C

(1)
x̄ (Fq)

+ −N0) + 0 ·N0

= #C
(1)
x̄ (Fq)− 2 ·#C(1)

x̄ (Fq)
+ −N0,

where N0 = O(1) is the number of points in C
(1)
x̄ (Fq) such that x2(P ) = 0. This gives:

#C
(1)
x̄ (Fq)

+ =
1

2
#C

(1)
x̄ (Fq)−

W1

2
+O(1) =

q

2
+
c1
2

√
q − W1

2
+O(1),

where the O(1) term accounts both for N0 and for the fact that we consider an a�ne
situation instead of a projective one.
Then, by the character sum estimate of 8.1.2, we have:

|W1| ≤
(
4− 2 + 2 deg(g ◦ x2)

)√
q +O(1) = (2 + 2 · 3 · 2)√q +O(1) = 14

√
q +O(1)

since x2 = u− x̄ on C
(1)
x̄ is a rational function of degree 2. It then follows that:

#C
(1)
x̄ (Fq)

+ =
q

2
+ c+1
√
q +O(1) for some c+1 such that |c+1 | ≤

4 + 14

2
= 9.

Obviously, the exact same argument applies to C
(2)
x̄ , yielding:

#C
(2)
x̄ (Fq)

+ =
q

2
+ c+2
√
q +O(1) for some c+2 such that |c+2 | ≤ 9.

Combining all the previous estimates, we �nally obtain the following result.
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Theorem 8.2.1. For all x̄ ∈ XE,Fq except at most 39 of them, the number of preimages
of x̄ under the F0 map of equation (8.7) is close to 2q, and the di�erence is bounded as:∣∣#F−1

0 (x̄)− 2q
∣∣ ≤ 22

√
q +O(1).

Proof. Indeed, except for the at most 11 + 14 + 14 = 39 exceptional points mentioned
above, we have:

#F−1
0 (x̄) =

(
1 +

1

2
+

1

2

)
q +

(
c+1 + c+2 + c3

)√
q +O(1)

and since
∣∣c+1 + c+2 + c3| ≤ 4 + 9 + 9 = 22, the result follows.

8.2.3 The SW family is admissible

Using Theorem 8.2.1, we are now in a position to prove that the encoding function F0 is
admissible in the sense of Subsection 8.1.5. The main step in doing so is to prove that it
is regular.

Lemma 8.2.1. The map F0 : S(Fq) → XE,Fq of equation (8.7) is ε-regular for ε =
(
6 +

o(1)
)
q−1/2.

Proof. Let ∆ = ∆1

(
(F0)∗US(Fq)

)
be the statistical distance between the distribution in-

duced by F0 on XE,Fq and the uniform distribution. By de�nition, we have:

∆ =
1

2

∑
x̄∈XE,Fq

∣∣∣∣#F−1(x̄)

#S(Fq)
− 1

#XE,Fq

∣∣∣∣.
Now for each element x̄ ∈ XE,Fq , there are exactly two points of E(Fq) with x-coordinate

equal to x̄, except if g(x̄) = 0, in which case there is exactly one (and this happens for at
most three values of x̄). Taking the point at in�nity into account, we therefore get:

#XE,Fq =
1

2
#E(Fq) +O(1) =

q

2
+ cE

√
q +O(1) for some cE with |cE| ≤ 1

by yet another application of the Hasse�Weil bound. Up to sign, the constant cE is half
the normalized Frobenius trace of E.
Moreover, S(Fq) is the disjoint union of the various a�ne conics

{
x2 + h(u0)y

2 =
−g(u0), u = u0

}
for all u0 ∈ Fq. Those conics are nondegenerate whenever g(u0)h(u0) ̸=

0, in which case they have q +O(1) points. In remaining exceptional cases, they have at
most 2q points. As a result, we get:

#S(Fq) =
(
q −O(1)

)
·
(
q +O(1)

)
+O(1) ·O(q) = q2 +O(q).
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As for the number of preimages of F , we know by Theorem 8.2.1 that for each x̄ ∈
XE,Fq \Xbad, where Xbad is a set of 39 points, there exists c0,x̄ ∈ [−22, 22] such that:

#F−1(x̄) = 2q + c0,x̄
√
q +O(1) ∀x̄ ∈ XE,Fq \Xbad

For x̄ ∈ Xbad, we can still obtain a less strict but simpler bound: note that for any
�xed u = u0 ∈ Fq the equations x̄ = x1(x, y, u0), x̄ = x2(x, y, u0) and x̄ = x3(x, y, u0)
have at most 2, 2, and 4 solutions in S, respectively (these solutions are given explicitly
in Section 8.6). Hence, any point can have at most 8 preimages for any �xed u0 and at
most 8q preimages in all.
We can now bound ∆ as follows:

2∆ =
∑

x̄∈XE,Fq\Xbad

∣∣∣∣#F−1(x̄)

#S(Fq)
− 1

#XE,Fq

∣∣∣∣+ ∑
x̄∈Xbad

∣∣∣∣#F−1(x̄)

#S(Fq)
− 1

#XE,Fq

∣∣∣∣
=

∑
x̄∈XE,Fq\Xbad

∣∣∣∣2q + c0,x̄
√
q +O(1)

q2 +O(q)
− 1

q/2 + cE
√
q +O(1)

∣∣∣∣+
∑

x̄∈Xbad

∣∣∣∣ cbad,x̄q

q2 +O(q)
− 1

q/2 + cE
√
q +O(1)

∣∣∣∣
=

∑
x̄∈XE,Fq\Xbad

1

q

∣∣∣∣(2 + c0,x̄q
−1/2 +O(q−1)

)
−
(
2− cEq−1/2 +O(q−1)

)∣∣∣∣+
∑

x̄∈Xbad

1

q

∣∣∣∣(cbad,x̄ +O(q−3)
)
−
(
2− cEq−1/2 +O(q−1)

)∣∣∣∣
=

∑
x̄∈XE,Fq\Xbad

1

q

∣∣∣∣(c0,x̄ + cE
)
q−1/2 +O(q−1)

∣∣∣∣+ ∑
x̄∈Xbad

1

q

∣∣∣∣cbad,x̄ − 2 +O(q−1/2)

∣∣∣∣
where each of the constants c0,x̄ is in [−22, 22] and each of the constants cbad,x̄ is in [0, 8].
In particular, |c0,x̄ + cE| ≤ 23 and |cbad,x̄ − 2| ≤ 6 for all x̄, and we have:

2∆ ≤ #
(
XE,Fq \Xbad

)
q

·
(
23q−1/2 +O(q−1)

)
+

#Xbad

q
·
(
6 +O(q−1/2)

)
=

1
2
q +O(

√
q)

q
·
(
23 + o(1)

)
q−1/2 +

39

q
·
(
6 + o(1)

)
=
(23
2

+ o(1)
)
q−1/2 ≤ 2 ·

(
6 + o(1)

)
q−1/2

as required.

As an easy consequence, we obtain the following theorem.
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Theorem 8.2.2. The map F0 : S(Fq) → XE,Fq of equation (8.7) is ε-admissible for ε =(
6 + o(1)

)
q−1/2. In particular, if h is a random oracle with values in S(Fq), F0 ◦ h is

indi�erentiable from an XE,Fq random oracle.
Moreover, the same results hold for F+

0 : S(Fq)× {0, 1} → E(Fq).

Proof. By de�nition, we need to prove that F0 is e�ciently computatable, ε-regular and ε-
samplable. Computability is obvious. Regularity is the result of 8.2.1. And 0-samplability
is obtained using the preimage sampling algorithm discussed in Section 8.6 below. To �x
ideas, we sketch its construction.
Fix x̄ ∈ XE,Fq . As previously mentioned, for any �xed u0 ∈ Fq, there are at most

8 preimages (x, y, u) ∈ F−1(x̄) such that u = u0 (at most two coming from each of x1
and x2 and four coming from x3). We can e�ciently compute all those preimages and in
particular count them. Therefore, the following simple rejection sampling algorithm has
an output distribution uniform in F−1(x̄): pick u0 uniformly at random, compute the list
Lu0 of preimages with u = u0, restart with probability 1−#Lu0/8 and otherwise return
a random element of Lu0 .
Finally, the extension to F+

0 is straightforward.

8.3 Parametrizing the SW Conic

We now describe our approach for parametrizing the family of conics that appear in
the Shallue�van de Woestijne construction. The base prerequisites that must be met
are described in Subsection 8.3.1 in terms of the conics, and this is translated into a
set of requirements for the elliptic curve in Subsection 8.3.2. We then describe some
workarounds that help us deal even with curves that do not meet these base requirements
in Subsection 8.3.3.

8.3.1 Parametrizability conditions

In the previous section, we have seen how the Shallue�van de Woestijne construction
could be leveraged to construct admissible encodings F0 : S(Fq)→ XE,Fq and F

+
0 : S(Fq)×

{0, 1} → E(Fq). However, we have also seen that mapping to Fq-points on the surface S
e�ciently (without base �eld exponentiations) is a priori not straightforward, since the
most naive approach involves �nding points on new conics for all inputs.
Fortunately, the surface S has a fairly simple description: it can be seen as a one-

parameter family of conics (the conics Su; this is also called a relative conic over the u-line,
or a �bration in conics, etc.). In any case, �nding a global, two-parameter parametrization
of S is thus a function �eld analogue of the classical problem, studied by Legendre, of
�nding rational points on conic over Q.
In their paper [134], van Hoeij and Cremona show that Legendre's original approach

can be directly adapted to the function �eld case. They provide necessary and su�cient
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conditions for the existence of solutions, as well as an e�ective algorithm to compute the
parametrization if it exists.
A special case of their main result in as follows.

Lemma 8.3.1 (van Hoeij�Cremona). Let r, s be polynomials in Fq[u] that are coprime,
squarefree, and such that at least one of them is of odd degree. Then, the following
projective conic over Fq(t):

X2 + rY 2 + sZ2 = 0

admits rational points over Fq(u) (i.e., a global rational parametrization) if and only if
the following two conditions hold:

1. −r is a square in Fq[u]/(s)

2. −s is a square in Fq[u]/(r).

Moreover, if this is the case, there is an e�cient algorithm to compute those points.

Proof. This is a special case of [134, Th. 1]. More precisely, the assumptions ensure
that the conic is in reduced form and in �case 1�, in the terminology of van Hoeij and
Cremona, and the squareness conditions are equivalent to the existence of a �solubility
certi�cate�.

The proof presented by van Hoeij and Cremona is constructive in that it yields an
explicit algorithm for �nding the rational parametrization. Our case of interest, corre-
sponding to the surface S, is r = h(u) = 3u2 + 4a and s = g(u) = u3 + au + b (except
when a = 0, in which case a slight adjustment is necessary to meet the assumptions of
the theorem). In that case, if a parametrization exists, it can be put in the form where
Z = 1, and X, Y are polynomials of degree 2 and 1 in u respectively, as will be shown
below. These polynomials depend only on the parameters a, b of the target elliptic curve,
so the polynomial coe�cients can be precomputed while their evaluation at a given u is
done at runtime.

8.3.2 Curves with a parametrizable SW conic

Due to the conditions in 8.3.1, the SwiftEC encoding is not applicable to every ordinary
elliptic curve. We present a di�erent characterization of these conditions from the point
of view of the target curve's geometric properties.

Theorem 8.3.1. The surface S, as a one-parameter family of conics, admits a global
two-parameter parametrization if and only if the following three conditions are satis�ed.

1. The size of the �eld satis�es q ≡ 1 mod 3 (i.e., −3 is a square in Fq).

2. The discriminant ∆E = −16(4a3+27b2) is a square in Fq (i.e. E has either zero or
three points of order 2).
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3. At least one of the constants ν± = 1
2
(−b±√−3∆E/36) is a square in Fq.

Proof. As a �rst observation, note that if we let r = h(u) and s = g(u), then r and s are
indeed coprime (their resultant is 4a3 + 27b2 = −∆E/16 ̸= 0) and s is of odd degree and
squarefree. Moreover, r is squarefree if and only if a ̸= 0. For now, we assume that a ̸= 0,
so that 8.3.1 applies directly. We will treat the special case of a = 0 at the end.
Let us �rst assume that −h is a square in Fq[u]/(g) and −g is a square in Fq[u]/(h).

Note that h and g are coprime since their resultant is 4a3 + 27b2 = −∆E/16 ̸= 0, so the
law of quadratic reciprocity over function �elds gives(−h

g

)
2

(
g

−h

)
2

= (−1) q−1
2

deg g deg hχ2(1)
deg hχ2(−3)deg g

1 ·
(
g

−h

)
2

= 1 · 1 · χ2(−3), (8.9)

where
(

·
f

)
2
and χ2(·) denote quadratic residue symbols over Fq[u]/(f) and Fq, respec-

tively.
On the other hand, we have

1 =

(−g
h

)
2

=

(−1
h

)
2

(−g
h

)
2

= χ2(−1)2
(
g

−h

)
2

=

(
g

−h

)
2

,

so (8.9) reduces to χ2(−3) = 1, which shows the necessity of condition 1.
Next, since −g is a square in Fq[u]/(h), there exists α, β ∈ Fq such that:

−g ≡ (αu+ β)2 (mod h)

−u3 − au− b ≡ α2u2 + 2αβu+ β2 (mod 3u2 + 4a)

4a

3
u− au− b ≡ −4a

3
α2 + 2αβu+ β2 (mod 3u2 + 4a)

a

3
u− b = 2αβu+

(
− 4a

3
α2 + β2

)
.

It follows that the constants α, β satisfy

a

3
= 2αβ (8.10)

b =
4a

3
α2 − β2. (8.11)

Recalling that a ̸= 0, it follows from (8.10) that α, β ̸= 0 and we can substitute
β = a/(6α) into (8.11) to obtain

48aα4 − 36bα2 − a2 = 0, (8.12)
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which is a quadratic equation on α2 whose discriminant is 362b2 + 192a3 = −3∆E. Since
−3 is a square, it follows that ∆E must also be a square for α2 to exist, showing the
necessity of condition 2. The solution to (8.12) is then given by

α2 =
36b±√−3∆E

96a
=
−3
4a
ν±. (8.13)

If a is a square this means that at least one of ν± must be a square for α to exist. On the
other hand, if a is not a square then the same condition always holds since the product
ν+ν− = −a3/27 is a non-square.
The proof of the converse is similar: if conditions 2 and 3 are met then there exists

α, β ∈ Fq that are solutions to (8.10) and (8.11), which shows that −g has a square root
mod h, and then condition 1 together with (8.9) shows that −h is a square mod g.
Finally, consider the special case a = 0. In that case, since h(u) = 3u2, we can apply

the change of variables Y ′ = uY to reduce to the case of the conic:

X2 + 3Y 2 + gZ2 = 0,

i.e., r = 3 and s = g. It is then clear that r and s are coprime, squarefree, and one of them
is of odd degree. Moreover, the condition that −s is a square modulo r is vacuous, and
the condition that −r is a square modulo s simply says that −3 is a square in Fq[u]/(g);
since that etale algebra admits either Fq or Fq3 as a factor, this is equivalent to −3 being
a square in Fq, namely q ≡ 1 (mod 3) as required. This shows that in this case, condition
1 is necessary and su�cient. The result still holds, however, because conditions 2 and 3
become vacuous: the discriminant ∆E = −16(27b2) = −3 · 122b2 is always a square, and
one of ν± is always zero.

Out of the three conditions in Theorem 8.3.1, condition 1 is the most restrictive dis-
carding half of the prime �elds. Condition 3 only fails about 1/4 of the time, whereas
condition 2 fails half of the time but can be circumvented half of those times as discussed
in the next section. Notable curves that satisfy the conditions for SwiftEC include the
NIST P-256 curve, the curve secp256k1 used in Bitcoin [143] and the pairing-friendly
curve BLS12-381 [144] as well as all BN curves [145] and BLS curves [146] over any �eld
with q ≡ 1 mod 3. On the other hand, curves such as the Ed448-Goldilocks curve [147]
and the NIST P-384 curve are incompatible due to the �eld cardinality alone.

8.3.3 Reaching more curves with 2-isogenies

While Theorem 8.3.1 discards the possibility of applying SwiftEC directly to curves with
a non-square discriminant, here we present a small modi�cation that can work around
this condition, at least some of the time. The condition that the discriminant be a square
is invariant under isomorphisms, but not under isogenies. Hence, we may hope that there
is an isogenous curve that satis�es the condition and compose the SwiftEC encoding to
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this curve with the isogeny to obtain a map to the original curve. Curves with a non-
square discriminant always contain exactly one point of order 2, so one may be tempted to
exploit the small 2-isogeny that is available. The following result shows that this intuition
is correct, and indicates exactly when this is possible.

Theorem 8.3.2. Let E/Fq be an elliptic curve with non-square discriminant. There
exists a curve E ′ with square discriminant isogenous to E over Fq if and only if E(Fq)
has a point of order 4. In this case, the isogeny can always be taken to be of degree 2.

Proof. First suppose we have a point P4 ∈ E(Fq) of order 4, and let P2 = 2P4 be the
unique point of order 2 in E(Fq). If ϕ : E → E ′ is the isogeny with kernel < P2 >, then
ϕ(P4) is a point of order 2 in E ′. There must also exist a point P ′

2 ∈ E ′(Fq) of order 2

generating the dual isogeny ϕ̂, and we cannot have ϕ(P4) = P ′
2 because ϕ̂(P ′

2) = 0 but
ϕ̂(ϕ(P4)) = 2P4 ̸= 0. This means we have two distinct points of order 2 in E ′, and their
addition yields a third point of order 2, so E ′ must have a square discriminant as desired.

Conversely, if E has no point of order 4 then the group order is divisible by 2 exactly
once, so any isogenous curve will also have exactly one point of order 2 and hence have a
non-square discriminant.

Note that the application of the 2-isogeny is a 2-to-1 map that would make the distribu-
tion easily distinguishable from uniform. However, in essentially all cases of interest, one
needs to sample points only in a speci�c subgroup orthogonal to the 2-torsion subgroup.
For instance, consider Curve25519 [148] which is non-compatible with our construction
because it does not have a square discriminant. The curve is given by

E25519 : y
2 = x3 + 486662x2 + x

over the prime �eld of size p = 2255 − 19. The group order for this curve is #E25519 = 8ℓ
where ℓ is a large prime, and points in the ℓ-torsion subgroup are used in the ECDH
scheme. We can use SwiftEC to map onto the 2-isogenous curve

E ′ : y2 = x3 − 102314837774592x+ 398341948567736549376

which does satisfy all conditions of Theorem 8.3.1. By composing with the 2-isogeny
generated by P ′

2 = (−11679888, 0) and the multiplication-by-4 map, we are able to hash
into the ℓ−torsion subgroup of Curve25519 at the cost of only an additional 20 �eld
multiplications, 7 squarings and 11 additions. This is to our knowledge the only currently
known way of hashing deterministically and indistinguishably into this subgroup using a
single square root.

Unfortunately, some curves remain out of reach for SwiftEC due to condition 3 alone,
even with this isogeny trick. One such example is NIST curve P-521.
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8.4 The SwiftEC Encoding

We now put everything together to present an overview of our encoding construction.

8.4.1 E�cient computation

As a proof of principle, we have prepared a Sage implementation of SwiftEC that allows
adding new compatible curves in a simple way. This implementation makes explicit the
number of �eld operations needed and uses a constant number of them, but is non-
constant time to the degree that the built-in �eld operations are. Our implementation is
freely available at https://github.com/Jchavezsaab/SwiftEC.
For curves with a ̸= 0, the implementation makes use of the polynomials X0(u), Y0(u)

that evaluate a point in Su as discussed in Section 8.3. Since these polynomials only
depend on the curve coe�cients a, b, they are precomputed and stored in the form of �ve
�eld elements. On input u, t, the initial point (X0(u), Y0(u)) ∈ Su is evaluated and then
a second point (X, Y ) ∈ Su is obtained from the parametrization

X(u, t) =
g(u) + h(u)(Y0(u)− tX0(u))

2

X0(u)(1 + t2h(u))
, (8.14)

Y (u, t) = Y0(u) + t(X −X0(u)).

In the case where a = 0, we have simply g(u) = u3 + b and h(u) = 3u2. In this
case the van Hoeij-Cremona algorithm described in Section 8.3 always yields the point
at in�nity (X0 : Y0 : Z0) = (

√
−3 : 1 : 0), so the formulas for the parametrization have

to be adjusted. We can skip the computation of X0(u), Y0(u) altogether and apply the
following formulas directly:

X(u, t) =
u3 + b− t2

2t
, (8.15)

Y (u, t) =
X(u, t) + t

u
√
−3 .

Finally, we apply the map ψ from (8.6) to get a point (x1, x2, x3, z) ∈ V (Fq). It is not
actually necessary to compute the z-coordinate of this point, and the xi coordinates are
computed projectively so that what we actually obtain is a projective triplet (x1 : x2 :
x3 : λ). Note that this introduces a small bias towards the point at in�nity: if any of the
xi are in�nite then we have to set λ = 0 and all three points will be interpreted as being
in�nite. However, we neglect this since the bias is negligible and dealing with this case
explicitly would produce a non-constant-time implementation.
We must then �nd which of the xi is the x-coordinate of a point in E(Fq), choosing

one arbitrarily but deterministically if all three are. This can be implemented in constant
time as shown in Algorithm 1 which prioritizes x3.

https://github.com/Jchavezsaab/SwiftEC
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Algorithm 1 x-picking algorithm.

Input: The projective xi coordinates (x1 : x2 : x3 : λ) of a point in V (Fq)
Output: One of the xi which is the x-coordinate of a point in E(Fq).

1: s2 ← x32λ+ ax2λ
3 + bλ4

2: s3 ← x33λ+ ax3λ
3 + bλ4

3: c2 ← IsSquare(s2)
4: c3 ← IsSquare(s3)
5: cswap(c2, x1, x2)
6: cswap(c3, x1, x3)
7: return (x1 : λ)

Finally, we use a single inverse to compute the a�ne x-coordinate and a square root
computation (the only one throughout the whole program) to recover the y-coordinate.
Note that there is a free choice for the sign of y in the end, which we integrate as an
additional input bit.

8.4.2 XSwiftEC: x-only computation without exponentiation

Note that the only inverse and square root needed for SwiftEC are at the very end
when the a�ne x, y coordinates are computed. However, there are many applications
where obtaining an output in x-only projective coordinates is acceptable, and these oper-
ations can be omitted. The resulting XSwiftEC algorithm requires no inversions, square
roots or exponentiations of any kind, but only two Jacobi symbol computations that are
considerably cheaper and other elementary �eld operations.
This is particularly useful for the cases when SwiftEC is composed with a 2-isogeny

as described in Subsection 8.3.3: even if an a�ne x, y output is desired, we are better o�
using XSwiftEC and recovering the a�ne coordinates until after applying the projective
x-only 2-isogeny formulas.
Although the output (x : λ) that is obtained is indistinguishable from uniform as a

projective pair, the individual values of x and λ are not and may leak information about
the input. This can be easily circumvented by multiplying both coordinates by a random
�eld element, or it may be ignored to avoid relying on randomness in applications where
this leakage is not a concern.

8.5 Implementation results

We summarize in Table 8.1 the cost in operations for each version of SwiftEC. The most
noteworthy feature is the requirement of only one square root computation (and none
when the y coordinate is not required), which is an improvement on previous admissible
encodings to ordinary elliptic curves.
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Table 8.1: Cost in operations of our implementations of SwiftEC for �eld additions,
squarings, multiplications, Jacobi symbol computations, inversions, and square roots.

Add Sqr Mul Jac Inv Sqrt
SwiftEC 25 7 18 2 1 1
SwiftEC with isogeny 36 14 38 2 1 1
XSwiftEC 22 9 23 2 0 0
XSwiftEC with isogeny 33 14 35 2 0 0

The results shown are for the a ̸= 0 implementation. The implementations for a = 0
always save exactly 7 additions and 6 multiplications due to the simpler formulas in (8.15).

8.6 SwiftEC For Point Representation: Elligator-

Swift

In this section we describe an algorithm to e�ciently compute a uniformly random preim-
age of any point under SwiftEC. The existence of this algorithm is required for the en-
coding to be admissible, which is crucial for using SwiftEC as part of a cryptographically
secure hash function as described in Section 8.1. Moreover, it is important in practice
because it allows us to encode points in an elliptic curve as uniform bitstrings, as is done
in Elligator [127] and Elligator Squared [53].
Compared to Elligator Squared, our ElligatorSwift construction has the advantage

that it does not need to compute any encodings in the forward direction. Indeed, all we
need is to sample a random u ∈ Fq and then �nd an inverse F−1

0,u (P ) of the SW encoding.
We �rst focus on inverting the map Ψ and note that under a change of variables

v = x/2y − u/2 and w = 2y, the image in (8.6) becomes

x1 = v

x2 = −u− v
x3 = u+ w2,

while the equation for the conic becomes

w2(u2 + uv + v2 + a) = −(u3 + au+ b). (8.16)

This yields up to four possible preimages for a given point (x, y) ∈ E(F ), namely:

1. v = x and w2 derived from (8.16), if x was drawn from x1

2. v = −u− x and w2 derived from (8.16), if x was drawn from x2
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3,4. w2 = x− u and v derived from (8.16), if x was drawn from x3,

where the last case actually contains two preimages since (8.16) is a quadratic equation
for v with solutions

v =
−u
2
±
√
−w2(4u3 + 4au+ 4b+ 3w2u2 + 4aw2)

2w2
.

Moreover, all cases have a duplicity from choosing the sign of w =
√
w2, so there are

up to 8 preimages in total. Of course, some of the square roots needed may not exist
and so di�erent values of u will yield a di�erent number of preimages of a given point
(including possibly none). On top of this, if the preimage comes from cases 1 or 2 but
results in values where all three xi yield points in E(Fq), then the preimage will be invalid
even if the square root is well-de�ned since Algorithm 1 in the forward encoding would
have prioritized x3 over the intended one. Care must therefore be taken to check for
the existence of the various square roots and restart the procedure when appropriate, as
shown in Algorithm 2. This makes the algorithm run in non-constant time but ensures
that the preimage is uniformly sampled.
What remains is just to switch back to x, y coordinates and invert the parametrization

(8.14) to recover the parameter t.
Remark: For implementations with a = 0 we must take into account the di�erent

parametrization formulas in (8.15). In this case, lines 29 and 30 of Algorithm 2 can be
replaced by simply t← Y u

√
−3−X, where the constant

√
−3 is part of the precomputed

parameters.
We assume that the square root function makes a random choice of sign each time it

is called, and that it returns Null for non-squares. It is easy to see that the output of
Algorithm 2 is uniformly distributed since each u is attempted with a random choice of
one of the 4 cases, so the probability of each u being successful is proportional to how
many preimages exist under it.
The main cost of Algorithm 2 is an average of 1.5 square root computations per iteration.

Since most points have roughly 2q preimages as per Theorem 8.2.1, we can expect each
choice of u to contain on average 2 valid preimages out of the 8 possible ones, and so the
expected number of iterations is 4. Notice however that a failed iteration can be aborted
before computing any square roots by �rst computing the corresponding Jacobi symbols,
which can be done much more e�ciently with constant-time e�cient implementations
such as [136, 137, 138]. The cost of ElligatorSwift is therefore always exactly 1 or
2 square root computations, and 6 Jacobi symbol computations on average. This is a
considerable improvement over Elligator Squared, where each failed iteration would have
contributed an additional square root from computing the forward map and the average
total cost is 6.5 square roots.
Note that in the case of x-only arithmetic there are no savings on ElligatorSwift

since Algorithm 2 is already agnostic to y but still requires several square roots. As for



8.6. SWIFTEC FOR POINT REPRESENTATION: ELLIGATORSWIFT 127

Algorithm 2 ElligatorSwift.

Input:(x, y) ∈ E(Fq)

Output: u, t, b
$←− SwiftEC−1(x, y)

1: u
$←− Fq

2: case
$←− {1, 2, 3, 4}

3: if case == 1 then
4: v ← x
5: if IsSquare((−v − u)3 + a(−v − u) + b) then
6: go to 1
7: end if
8: w2 ← −(u3 + au+ b)/(u2 + uv + v2 + a)
9: else if case == 2 then
10: v ← −x− u
11: if IsSquare(v3 + av + b) then
12: go to 1
13: end if
14: w2 ← −(u3 + au+ b)/(u2 + uv + v2 + a)
15: else
16: w2 ← x− u
17: r ←

√
−w2(4u3 + 4au+ 4b+ 3w2u2 + 4aw2)

18: if r == Null then
19: go to 1
20: end if
21: v ← −u/2 + r/2w2

22: end if
23: w ←

√
w2

24: if w == Null then
25: go to 1
26: end if
27: Y ← w/2
28: X ← 2Y (v + u/2)
29: Evaluate X0(u) and Y0(u) from precomputed polynomials
30: t← (Y − Y0)/(X −X0)
31: b← sign(y)
32: return u, t, b
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curves where we need to compose SwiftEC with a 2-isogeny, we can obtain a correspond-
ing variant of ElligatorSwift by composing with the dual isogeny, but this has the side
e�ect of introducing a multiplication-by-2 in the round trip. This can be circumvented
by starting with a point halving before applying ElligatorSwift, which is important
for demonstrating that the encoding with the isogeny trick is still admissible. However,
the resulting ElligatorSwift construction is unappealing in terms of e�ciency.

8.7 Discussion

The SwiftEC construction presented in this chapter is the �rst admissible and constant-
time encoding using a single square root that is applicable to a large class of ordinary
elliptic curves. While some curves are still incompatible, the construction applies to
roughly 9/16 of all curves over �elds with q ≡ 1 mod 3. The inverse encoding also
results in an Elligator-like encoding that is signi�cantly more e�cient than previous con-
structions, using more than 4 times less square roots on average than Elligator Squared,
while retaining the same data transmission size of two �eld elements.
It is still an open problem to determine if there are any workarounds that could extend

this encoding to more of the non-compatible curves, or even to �nd a single-square root
admissible encoding that could be applied to all ordinary elliptic curves.
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Conclusions and Future Work

This project has had important contributions to the development of post-quantum cryp-
tography and speci�cally to isogeny-based cryptography, as well as classical elliptic curve
cryptography as a side result. The main contributions can be summarized as:

� We have contributed vastly to the quantum cryptanalysis of isogeny-based cryptog-
raphy and developed a methodology for simulating circuits that attack CSIDH.

� We have proposed new instances of the protocol with concrete sets of parameters
that were derived from our analysis.

� We have provided several constant-time C implementations that are the �rst of their
kind for various algorithms relevant to isogeny-based cryptography, including the
faster Vélu formulas and the CSIDH protocol as a whole.

� We have presented large-scale parallel implementations for classical attacks on isogeny-
based cryptography to provide concrete estimates for its security

� We have exploited the use of the isogeny framework in other cryptographic primi-
tives, and adapted it to other paradigms such as that of SNARGs.

� We have presented the �rst veri�able delay function with post-quantum security,
using the isogeny framework.

� We have used other mathematical techniques, combined with isogenies, to present
the most e�cient encoding known to date onto ordinary elliptic curves.

Derived from the works in this project, there are still a number of topics that can
branch out as future work, as well as other topics already being worked on. We conclude
the manuscript with a short overview of each of these topics.
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Implementing CSIDH into the TLS protocol
While the performance of CSIDH has consistently been found to be far behind other
post-quantum candidates, its status as the only non-interactive public key encapsulation
candidate can be exploited by an alternative to the TLS protocol called OPTLS, which
requires one less round-trip of communication to establish a connection. Whether or
not this bene�t outweighs CSIDH's poor performance can only be assessed by integrat-
ing CSIDH to a full implementation of OPTLS, which is already being worked on in a
collaboration of this project.

Optimizing the sublinear Vélu formulas with parallelization
The new sublinear Vélu formulas, which we have been the �rst to implement in constant-
time in C in our SQALE of CSIDH project, also allow for a good degree of parallelization
that has not yet been exploited. As part of another collaboration, we aim to make an
implementation in parallel using OpenMP to benchmark the parallelization savings versus
the cost of the OpenMP launch, both in the CSIDH setting and in SIDH variants.

Extending the set of applicable curves for our SwiftEC encoding
Our encoding construction is only applicable to about half the ordinary elliptic curves
depending on the three conditions of Theorem 8.3.1. However, an extended version of the
work is already being considered to include a method for bypassing condition 3 almost
all the time by using odd isogenies to �nd a similar curve that meets it, and we are also
studying an early idea that could bypass condition 1 by working with a quadratic �eld
extension but reducing to the original �eld before having to do the exponentiation.

Implementing our VDF construction
As was stressed in Chapter 7, performing the SNARG proof at the �eld arithmetic level
should save signi�cantly on overhead, but we have not provided any quantitative estimates
as to how much. In a subsequent work, Cong et al. [34] have used our framework to
implement a proof of knowledge. While their proof is not exactly the same as ours, they
have obtained promising results showing that the overhead is indeed not unreasonably
large. Therefore, a task that is currently not being worked on but could be considered for
future work is to provide an implementation of the VDF at least for small parameters,
which should help assess how close we are to a practical application.
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