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Resumen

En este documento, se toma el tema de reconstrucción de mapas para navegación robótica mediante

cámaras. Dos casos principales deben distinguirse: cámaras calibradas y no calibradas. En esta

tesis se presentan algoritmos que pueden ser usados en ambos casos.

Para el caso calibrado, se asume que una reconstrucción métrica del entorno del robot puede ser

producida fácilmente. Por lo tanto, nuestra principal preocupación en este tema es la calibración

externa de las cámaras con respecto al robot. Este problema es más comúnmente conocido cómo

el problema de Calibración Mano-Ojo (Hand-Eye Calibration). Sin embargo, las soluciones ac

tuales asumen que la cámara esta fija con respecto al marco de referencia. Estas soluciones no

son prácticas para el caso cuando la cámara está montada en una unidad Pan-Tilt y su relación

con respecto al marco de referencia varia constantemente. En este documento se propone un

método, llamado Calibración Cuerpo-Ojo (Body-Eye Calibration), para resolver este problema sin

la necesidad de re-calibrar constantemente. Este método también puede ser empleado para calibrar

otros sensores.

En el caso no calibrado, se le ha dado considerable atención a la reconstrucción de movimiento

y estructura a partir de una serie de vistas. Sin embargo, todo este trabajo se ha enfocado principal
mente en la reconstrucción de puntos. Aquí se presenta un método que produce reconstrucciones

simultáneas de varios tipos de primitivas (puntos, líneas, cuádricas, cónicas planas y cuádricas

degeneradas) y cámaras por medio del Bundle Adjustment, usando un método de inicialización

simple pero efectivo. De forma adicional, se presenta una restricción extra que debe ser incluida

dentro de las iteraciones del Bundle Adjustment para mantener la topología de las cuádricas que
se están reconstruyendo. De igual forma, se presenta un método original para hacer la corrección

epipolar de las siluetas de cónicas en n vistas.

Finalmente, en la última parte de esta tesis, se ataca el problema de encontrar correspondencias
de puntos en 2D y 3D, cuando los puntos han sufrido una transformación rígida. Usando el Álgebra
Geométrica, hemos podido cambiar el enfoque del problema a encontrar un par de líneas, y un

plano, respectivamente. Al usar la Votación Tensorial para encontrar estas entidades, se han podido
detectar aún en la presencia de grandes cantidades de outliers (para el caso 2D, las líneas se pueden
detectar aún cuando se tiene 1000% de outliers). Este método también ha demostrado ser útil para
detectar movimiento no-rígido y elástico en 2D y 3D.
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Abstract

In this document we address the problem of map reconstruction using cameras for robotic navi-

gation. Two main cases must be distinguished: calibrated and uncalibrated cameras. We present

algorithms that can be used in either case.

For the calibrated case, we assume that a metric reconstruction of the surroundings of the robot

can be produced easily. Therefore, our main concern in this subject is the external calibration of

the camera with respect to the robot. This problem is more commonly known as the Hand-Eye
Calibration problem. However, current approaches assume that the camera is fixed with respect to

the reference frame. These solutions are impractical for the case when the camera is mounted in

a Pan-Tilt Unit and its relationship with the reference frame varíes constantly. We have proposed
a method called Body-Eye Calibration to cope with this problem without constant re-calibration.

This method can also be employed to calíbrate other sensors.

In the uncalibrated case, considerable attention has been given to the reconstruction ofmotion

and structure from a series of views. However, all this work has focused mainly on the reconstruc

tion of points. We present an approach that simultaneously performs reconstruction of various

types of primitives (points, lines, quadrics, plañe conics and degenerate quadrics) and cameras by
means of Bundle Adjustment using a simple but effective initialization method. Additionally, we

provide an extra constraint that must be included in the Bundle Adjustment iterations in order to

maintain the topology of the quadrics being reconstructed. We also present an original method to

do epipolar correction of conic outlines in n views.

Finally, in the last part of this thesis we tackle the problem of finding point correspondences
in in 2D and 3D, when the points have undergone a rigid transformation. By using Geometric

Algebra, we have been able to re-cast this problem as a problem of finding a pair of lines, and a

plañe, respectively. By using Tensor Voting to find these entities, we have been able to detect them

even in the presence of large amounts of outliers (as much as 1000% outliers in the 2D case). This

approach has also proven to be useful to detect non-rigid and elastic motion in 2D and 3D.
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List of Formulae

Projective Geometry

Symbol Meaning

X Homogeneous 3D point.
X Homogeneous 2D point.
a A vector.

A, a, k,a Scalars.

A A scale factor.

P The projection matrix.

C The center of projection.
H A general homography.
L A line in Plücker Matrix form.

C A line in Plücker 6-vector form.

V The projection matrix for lines in Plücker 6-vecto form

1 A homogeneous 2D line.

C A conic.

Q A quadric.
c A conic in 6-vector form.

q A quadric in 10-vector form.

F The Fundamental Matrix.

r The Trifocal Tensor.

Q The Quadrifocal Tensor.

i The IdentityMatrix.

e The epipole.
X* The dual ofX.

adj(X) The adjoint of X.

diag(:r_,...,£„) A matrix where the elements -r., ..., xn appear in the main diagonal.

null(X) The nuil space of X.

det(X) The determinant of X.

XT The transpose of X.

X Y The innerproduct ofX andY.

XAY The meet of X and Y.

XVY The;omofXandY.

Mx A skew-symmetric matrix such that [x]xy = x x y.

IWI The magnitude of x.



Geometric Algebra

Symbol Meaning

e-i The ¿-th basis of a Geometric Algebra.

e+ The n + 1 basis of an riD Conformal Algebra.
e_ The n + 2 basis of an nD Conformal Algebra.

e0 The nuil vector representing the origin in Conformal Algebra.

Coo The nuil vector representing the point at infinity in Conformal Algebra.
e The nuil vector representing the origin in the Affine Plañe.

é The nuil vector representing the point at infinity in the Affine Plañe.

/ The Pseudoscalar.

E The Pseudoscalar representing the Minkowski plañe.
R A Rotor.

M A Motor.

T A Translator.

<A)r The component r-vector of A.

XAY The wedge product of X and Y.

XUY The join ofX and Y.

xnY The meet of X andY

Á The Grade Involution of A.

Á The Reversión of A.

A The Clifford Conjúgate of A.

X* The dual ofx.

Xe A generic Euclidean point.

Xq. A generic Conformal point.

Xfl A generic point in the Affine Plañe.

S A generic sphere.
z A generic circle.

l A generic line.

1. A generic plañe.

Pe The projection operator in Conformal Geometry.

Pk The rejection operator in Conformal Geometry.
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Chapter 1

Introduction

1.1 Motivation

A recurring problem in visually-guided robotic navigation is that of the construction of amap of the

surrounding environment. The final goal in this approach would be the fully-automatic building of

the map. This implies that the robot should be able to calíbrate its various coordinate systems with

respect to each other (i.e. calíbrate all its sensors and effectors), and hopefully build an internal

representation of the world without any external assistance. In this document we will focus both

on the calibrated and uncalibrated reconstruction ofmaps.

In the calibrated case, we assume a stereo system where the cameras' intrinsic parameters have

been computed beforehand. Binocular systems of this type are usually mounted on pan-tilt units to

allow a greater viewing range. However, the exact positioning between the stereo system and the

pan-tilt unit are seldom known. When one realizes that the cameras' coordinate system is usually

placed at the leñ camera center, which in turn is a point placed somewhere inside the case of the

stereo system, it becomes evident that a simple externalmeasurement is impractical and inaccurate.

Therefore, in the first part of this document, we address this problem, commonly known as Hand-

Eye Calibration, and propose a new method that enables the fusión ofmeasurements from different

sensors.

In the uncalibrated case, we are presented with n uncalibrated views of a scene. The problem
is to find a projective reconstruction that produces the same images. In this subject, extensive

work has been done for the case of 2 to 4 views, but relatively few algorithms exist for the general
n-view case. Furthermore, almost all the work produced so far is exclusively concerned with

the reconstruction of cameras and points. Therefore, we have addressed the more general case

of reconstructing cameras, points, lines, quadrics, plañe conics and degenerate quadrics using n

uncalibrated views. In the process, we also produced a novel algorithm for conic outline correction

that enables the preservation of topology in quadrics.

Finally, we also address the problem of finding the correspondences of two point sets in 2D

or 3D assuming that a rigid transformation has taken place without further information. These

correspondences enable us to compute the motion between these sets to perform registration. The

problem of registering data sets is common in the computer visión literature. Applications range
from the alignment of range measurements for the automatic re-construction of maps for robotic

navigation [31], [42]; registration of CT and MR images for medical purposes [24], [51], [20],

[37], [22]; computer graphics and CAD modeling [58], [19] and recognition of objects [11], [59].
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1.2 State ofthe Art

1.2.1 Calibrated case

As stated previously, we will focus on two different aspects of map reconstruction. In the case of

the Hand-Eye Calibration problem, one of the first closed-form solutions was given Tsai and Lenz

in [57] where a matrix system of the form AX = XB was solved. More recently, this basic approach
was modified by Dornaika and Horaud in [18] to account for the Robot-World calibration too.

Andreff further improved the basic scheme in [1] to enable on-line Hand-Eye Calibration using
a Kalman Filter. In a similar way, Angeles et al used recursive least squares estimation in [2] to

enable on-line calibration. Wei et al proposed a nonlinear approach in [23] that not only solves

the hand-eye calibration problem, but also accounts for camera calibration (with lens distortion)
and path planning for the calibration itself. In [8] Bayro et al approach the problem of Hand-Eye
Calibration in the context of TheMotorAlgebra. In that paper, a different formulation is presented
based on the motion of lines. Finally, Malm and Heyden propose a method based on normal

derivatives of the image flow field in [45] to achieve Hand-Eye Calibration.

1.2.2 Uncalibrated case

For the case of múltiple view uncalibrated reconstruction. Hartley and Zisserman [27] have pro

posed the use of n-view tensors which can be computed directly from image features. This method

has the advantage that no constraints are imposed on the scene (in general), and the correspon

dences of points and lines can be mixed to add robustness. However, the computation of the

tensors is a complex task and can only be applied to four views at most. The points and lines used

to compute the tensors must also be visible in all the views.

Carlsson and Weinshall [12] have used an approach based on the duality principie between

points and camera centers. This approach has the advantage that it can be used with n views and

the equations are rather straightforward (compared to the tensors). However, line correspondences
cannot be used and the points are required to be visible in all views. Rother et al further simplified
this scheme [49], by relying on the a priori knowledge of planarity in the scene. The disadvantage
of this method is that it imposes a constraint on the scene, namely that four points visible in all

views lie on a plañe. Planarity has also been used by Kaucic et al to simplify the computation of n-

view tensors [36]. This method requires features to be visible in all views and imposes a constraint

on the scene.

Projective factorization alone has also been used by Sturm and Triggs in [55]; however, this

approach is only valid if the projective depths are known or can be reasonably guessed, and all

the features must be present in all the views. Another approach proposed by Bayro and Banarer

[5] produces a projective reconstruction using the n-view tensors and. the invariants theory. This

method has the same advantages and disadvantages of the tensor computation methods. In [33]

Kahl and Heyden propose a method to compute structure and motion from points, lines and conics.

This method has the advantage of simultaneously estimating several different kinds of primitives.

However, quadrics are not reconstructed and the epipolar constraint is not taken into account.

On the other hand, this method was developed for the case of affine c_ameras using factorization.

Nevertheless, a method for handling missing data is introduced. f

Bundle Adjustment (BA) [56] can be used to simultaneously estímate múltiple cameras and

3D primitives. Classical Bundle Adjustment [27] can cope with missing data, but current work
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specializes on the reconstruction of points and cameras. Another disadvantage is that the param-
eterization is not minimal leading to a large minimization problem. This basic approach has been

improved by McLauchlan [46] to account for gauge invariance. Bartoli and Sturm [4] developed
a minimal parameterization scheme and Malis and Bartoli [44] further improved this to produce
an Euclidean reconstruction. All this work is based in the estimation of cameras and 3D points.
Berthilsson et al [9] used BA for the estimation of general space curves. Shan et al applied BA

[50] to model human faces from a prototype neutral face model and a series of images.

In [3] Ástrom proposed amethod based on Bundle Adjustment for the computation of structure

and motion from points, lines and conics. This method can deal with projective cameras, in contrast

to [33]. However, quadrics are not reconstructed and the problem of epipolar consistency is also

dismissed.

On the reconstruction of quadrics, Cross and Zisserman [16] work with previously known

camera matrices to develop an algorithm to do outline correction of the conics and perform the

reconstruction from two views. No clear details are given on how to extend the algorithm for 3

or more views, and the problem of noise in the process of the estimation of the cameras is not

addressed. In [15], Cross describes a similar method for outline correction and reconstruction of

quadrics from n views. However, the details are only given for 2 and 3 views and, as will be

proven in this report, the algorithm for 4 or more views cannot be directly applied as stated by
Cross. Again, camera matrices are assumed to be known beforehand and the problem of noise in

the camera matrices is disregarded.

1.2.3 Point registration

The classical solution to this problem was given by Besl and McKay with the Iterative Closest

Points algorithm (ICP) [10]. Several improvements have been made to the basic scheme starting
with a more efficient way to compute the distance and thresholding of the points [61] by the use

of K-D trees and statistical analysis, respectively; the use of extra cues to improve the matching
of points like texture [32], [25]; the implementation of a soft-assign scheme to allow for vary

ing degrees of certainty in the matches [59]; and the use of more robust iteration techniques like

Levenberg-Marquardt [13], [21].
The advantages of the ICP are that it is simple, fast, and henee can be used for real-time

applications. However, in general, all the ICP-based approaches refine an initial guess of the

registration by iteratively updating the parameters of the transformation. If the initialization is

poor, the method will not converge to the desired solution. Because of this, ICP is generally used

when the difference between the model and the data is small, constraining the range of possible

applications to those where this constraint can be met. One way to overeóme this problem is by

initializing the transformation with other methods like the Procrustes [43] algorithm. Another

drawback of this method is that it requires a model and a data set, so that the data set is a subset of

the model. That is, at least one of the data sets must not contain outliers (the model) and must be

relatively noise-free. Also, the ICP in general is not robust against the presence of large amounts
of outliers, and is limited to registering points via a rigid transformation. Another disadvantage is

that the resulting mapping may not be one-to-one.

Anothermethod widely used to solve the registration problem in 2D is Chamfermatching [1 1].
In this paper, Borgefors improves the original chamfer matching algorithm by using a resolution

pyramid in a hierarchical matching procedure. Chamfer matching can also be implemented in a

parallel fashion [60] to improve its performance. Again, the limitation of this method is that the
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motion between the images must be small or the process might converge to a local mínimum. The

images must also be free of outliers.

Methods that do not require initialization and are robust to outliers are generally based on vot

ing schemes, like the Hough Transform. In this respect, Hu [30] solved the registration problem in

3D by employing a Hough-based voting scheme. The advantages of thismethod are that it does not

require an initialization and works equally well independently of the "size" of the transformation.

However, the translation must lie within the working range of the voting space. As will be proven
in this paper, limiting and quantizing the range of possible transformations has an effect on the

accuracy and ranges that can be reliably detected by this type of algorithms. Another disadvantage
is that this method is model-based, meaning that the model must be relatively free of noise and

must not contain outliers.

Following the same voting scheme, Kalviainen et al use the Randomized Hough Transform

[34] to obtain the 2D motion between two point sets. The problem with this approach is, again,
that the voting space introduces a quantization that degenerates the accuracy and possible ranges
of the solution.

Finally, in the voting-based algorithms. Kang et al [35] demonstrated how Tensor Voting can

be used to detect múltiple affine motions in 2D. It should be noted that all the algorithms men

tioned so far only work when a single global motion is present in the data. Kang's algorithm is

largely independent of initialization (it allows formúltiple candidate matches and has a robust way
of rejecting the false matches), and is robust to outliers. This paper is inspired by the work of

Kang, therefore, we will discuss the similarities and differences of both algorithms in a subsequent
section.

There are also a few algorithms that handle non-rigid transformations like [14] which uses

soft-assign and an iterative minimization method (deterministic annealing) to produce a non-rigid

registration of points. The advantage of this method is that it guarantees a one-to-one mapping
when the algorithm finishes, but the disadvantage is that it requires a good initialization and only
withstands a small amount of outliers in the input data. Another ICP-based algorithm that performs

non-rigid (affine and spline) registration is given in [20], the same disadvantages of initialization

and outliers apply. Finally, in [37] B-splines are used to perform the registration and gradient
descent technique is used to find the solution. This approach is dependent on a good initialization.

Generally, these methods find a greater application for medical imaging.

Another type of problem is the registration ofmúltiple data sets. Solutions to this problem have

been reviewed in [17]. One solution consists mainly of expressing the problem as an optimization

problem where the parameters are all the transformations needed to register the múltiple data sets

[22] and then a standard minimization algorithm is used. Another approach relies on modeling
the problem as a dynamic spring system to register the múltiple sets together [19], [54]. These

algorithms suffer from the same problems that have been already mentioned: they require an ini

tialization and, depending on its quality, may ormay not converge to the desired solution, and they
are not robust against the presence of outliers. However, we will restrict ourselves to the two-frame

case only.

1.3 Chosen Problems

As we can see, the Hand-Eye Calibration problem is mainly used when the camera is rigidly
attached to the end effector of a robotic arm. These approaches can also be used when the camera
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is mounted on a pan-tilt unit to find the transformation linking the camera to the robot's main

framework; however they become impractical if the pan-tilt unit is moved constantly, requiring re-

calibration for each motion. Therefore, we concentrated on the problem ofHand-Eye Calibration

when the relationship between the camera and the robot is not fixed. Indeed, one of the main

goals of the work was to produce an algorithm that was capable of computing the transformation

between camera and robot without re-calibration. Furthermore, we also extended this algorithm to

account for other sensors and thus achieve full Body-Eye calibration too.

For the case of uncalibrated reconstruction, we noted that most of the methods published con

céntrate on a specific type of primitive. To the best of our knowledge, there is not an approach
for projective reconstruction, that takes into account all the types of primitives at the same time

while keeping the topology of quadrics. Henee, we decided to tackle the problem of simultaneous

estimation of points, lines, quadrics (including plañe conics and degenerate quadrics) and cam

eras from a series of uncalibrated views. We also dedicated special attention to the problem of

conic outline correction in 4 or more views (required to preserve the topology of the reconstructed

quadrics). The advantages of our method are:

• Works even when there is missing data.

• Applicable to n views.

• Uses projective cameras.

• Does not require a priori knowledge.

• Does not impose constraints on the scene.

• Simultaneous estimation ofmúltiple primitives.

• The problem of epipolar-consistency (topology) is addressed in the presence of noisy camera

matrices.

Finally, for the case of point registration. We found that in general, the ICP and Chamfer

matching based algorithms suffer from the following disadvantages.

• A good initialization must be provided. The quality of the initial correspondences impaets
the performance of the algorithms.

• The range of possible motions is restricted (they work better for small motions).

• No outliers are permitted in the model and few to none in the data.

• Require preprocessing of the data to reject outliers (if present).

• Only work when a single global rigid motion is present.

• For the gradient-descent and Levenberg-Marquardt implementations, a computation of the
derivatives is needed.

• The resulting mapping is not guaranteed to be one-to-one.

For the Hough-based algorithms, the disadvantages are
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• The range of the possible transformations is limited due to the size of the voting space.

• The voting space introduces a quantization of the parameters which compromises the accu

racy of the solution.

In this chapter we propose a novel algorithm that provides the following advantages.

• Works in the presence of large numbers of outliers.

• No initialization required.

• No thresholding to reject incorrect pairings needed (as is the case for most ICP implementa-

tions).

• Works equally well for large and small motions.

• No quantization is introduced for the parameters of the transformation, the accuracy of the

solution is therefore not compromised.

• Does not require any preprocessing of the data.

• Does not require estimation of derivatives.

• Guarantees a one-to-one correspondence.

• Múltiple overlapping motions can be detected.

1.4 Main Contributions

To summarize, three main problems have been tackled. In the Hand-Eye calibration problem, an

algorithm was proposed to account for the varying positions of a stereorig mounted on a Pan-Tilt

Unit without constant re-calibration. This algorithm was also extended to comprise other sensors,

like the láser, and thus find the correspondences between all these systems and the robot main

framework. Therefore, we have called this algorithm the Body-Eye Calibration.

The second problem was the simultaneous projective reconstruction of various primitives such

as points, lines, quadrics, plañe conics and degenerate quadrics. We found that in order to pre

serve the topology of the quadrics, an extra constraint was needed during the iterations of Bundle

Adjustment. Also, a novel algorithm for the epipolar correction of conic outlines in n views was

proposed.

Finally, in the point correspondence and registration problem, two novel algorithms have been

proposed. These algorithms are not iterative and do not require an initialization. All transforma

tions are equally detectable regardless of their magnitude. Our algorithms perform even in the

presence of large amounts of outliers (on the order of 1000%). And, finally, these algorithms can

be extended to account for múltiple overlapping motions and non-rigid or elastic motion.
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Chapter 2

TheMathematicalModels of Computer
Vision

In this chapter we will present two different mathematical models that are commonly used to solve

computer visión problems. The first section of this chapter is devoted to the most widely used

method, called Projective Geometry. This mathematical model is based on vector calculus, matrix

algebra and tensors.

The second part of this chapter presents a different approach based on Clifford's Geometric

Algebra. In particular, we will concéntrate on the Geometric ConformalAlgebra and one of its

related spaces: The Affine Plañe.

Each model has its own set of advantages and drawbacks. Some problems are more easily
solved in one framework or the other. Therefore, it is necessary to have a good understanding of

both methods in order to select the best one for each particular problem.

2.1 Part I: Projective Geometry

The classical approach to computer visión consists in modeling the camera as a 3 x 4 projection
matrix. A review on the projection of points, lines and quadrics will be given in this section. The

interested reader may look in [27] for further details.

2.1.1 Projection of points

In projective geometry, all nD points are represented by (n+l)D column vectors using homoge
neous coordinates. Thus, for instance, the general format of a 3D point X is

X =

X

Y

Z

w

(2.1)

X represents the Euclidean point (X/W, Y/W, Z/W). Under the pinhole camera model, the pro
jection of a homogeneous 3D point is written as

Ax = PX, (2.2)
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Figure 2.1: The optical planes pj in a camera with center C.

Where, again, x is a 3-vector that represents a 2D point in projective coordinates, A is an arbitrary

nonzero scale factor known as projective depth and P is a 3 x 4 matrix representing the camera.

Note that the rows p^ of P can be seen as three intersecting optical planes (see Fig. 2.1). For the

remainder of this paper, we will assume that all points are represented in homogeneous coordinates

unless otherwise stated. Scalar factors will also be omitted when not necessary.

The set of all 3D homogeneous points X is called The projective space of3D P3 In this set,

the nuil point 0 - [0, 0, 0, 0]T is excluded. Similarly, the set of all 2D homogeneous points x is

called The projective space of2D P2

2.1.2 Projection of lines

There are a few ways of representing 3D lines, but we chose the Plücker representation. A line in

3D can be represented either by a Plücker matrix, which is a 4 x 4 skew-symmetric matrix, or a

Plücker vector, which is a 6 x 1 column vector containing the entries of the Plücker matrix. The

line joining two points A and B is the Plücker matrix given by

L = ABT - BAT (2.3)

A Plücker line matrix can be transformed into a Plücker vector by the rule

C = [¿12 ¿13 ¿14 ¿23 ¿42 ¿34] (2.4)

where kj represents the element from the ith row and jth column from matrix L. Additionally,

a 6-vector £ only represents a line if and only if it satisfies the internal orthogonality constraint

whereas

¿12¿34 + ¿13¿42 + ¿14¿23 — 0. (2.5)
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For the projection of the lines in Plücker coordinates, we need to define a different projection
matrix V as follows

V =

p2 Ap3

P3AP!

P^P2

(2.6)

Where P'T is the ith row of the point-projection camera matrix P (given in Eq. 2.2), and Pl A P*7

is the meet or intersection between the optical planes P* and P*7, implemented with matrices (we

will be using the symbol A to denote the intersection or meet of geometric objects throughout this

report, though the actual implementation may vary). For an extended discussion and further insight
into the geometric meaning of the coefficients of the Plücker coordinates, and the meet and join

operations in the Geometric Algebra framework, see [5]. The meet between the planes P and Q can

be computed by

PAQ
= PQT-QPT = L*, (2.7)

where L* is the dual Plücker line matrix. The relationship between a line and its dual is given by
the rule

[¿12 ¿13 ¿14 ¿23 ¿42 ¿34] = [¿34 ¿42 ¿23 -*14 K3 K2] (2-8)

Using the camera matrix as defined by Eq. 2.6, the projection of the line may now be written as

\ = VC =

where the product C\C is defined as

(P2AP3)|£l r c23\c i

(p^p1)^ = c31\c
(P1 AP2)|>C j [ £12\c J

(2.9)

C\C — ¿12¿34 + ¿34¿12 + ¿13¿42 + ¿42¿13 + ¿14¿23 + ¿23--14-

Which is the projection of C into the three optical basis rays.

(2.10)

2.1.3 Projection of quadrics, plañe conics and degenerate quadrics

The inhomogeneous equation of a quadric in R3

ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0. (2.11)

Can be transformed into a homogeneous expression in P3 by substitution, yielding the following
matrix equation

where

Q =

XTQX = 0,

a d/2 e/2 g/2
d/2 b f/2 h/2

e/2 f/2 c i/2

g/2 h/2 i/2 j

(2.12)

(2.13)
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Figure 2.2: a) The polar n generated by a point X on the quadric Q and their duals b).

The projection of a quadric from P3 to P2 produces a conic; in fact, only the outline of the

quadric is projected. The outline is generated by the intersection of the polar of the quadric with

respect to the camera center (see Fig. 2.2). The polar of a quadric is a plañe i. generated by

7T = QX. (2.14)

The intersection of the polar with the quadric is a set of points whose tangent planes pass

through the camera center. Therefore the projection is simplified when the dual quadric is used

instead. Just like the normal quadric is an equation on points, the dual quadric is an equation on

planes (which are the dual of the points). The dual quadric Q* is computed by

Q* = adj(Q). (2.15)

Finally under the point projection matrix P (Eq. 2.2) the quadric Q is mapped as follows

C*=PQ*PT (2.16)

where C* is a dual (line) conic, and C = adj(C*) (see Fig. 2.3). The equation of the conic reads

ax2 + bxy + cy2 + dx + ey + f = 0. (2.17)

which can be represented in matrix form using homogeneous coordinates as

xTCx = 0, (2.18)

where

a b/2 d/2'
C= b/2 c e/2'' (2.19)

d/2 e/2 f*

As explained in detail later, a plañe conic is represente^ as a dual cone Q*, therefore, the plañe

conics are projected using Eq. 2.16 too. In contrast, degeneyate quadrics cannot be projected using

Eq. 2.16 since the adjoint of a rank-deficient matrix Q is^undefined. Therefore, it is necessary
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a b

Figure 2.3: A conic a) and its dual b).

to use a different projection equation that works in real-space (see [15] for the full details on the

derivation of this formula)

C = A"T [q33CCTQ33 + 2qcTQ33 + qqT - (cTQ33c -I- 2cTq + q) Q33J A-1 (2.20)

where

Q =
Q33 q

qT Q

is the real-space quadric we want to project P = [A a], is the camera matrix and c

optical center of P.

(2.21)

—A-1a is the

2.1.4 Projection of planes

A plañe t. does not produce an image on a camera but rather induces a 2D homography between

itself and the image plañe. This homography can be computed by features extracted from the plañe
or by the limits of a plañe segment like its edges or its corners. However, both edges and corners

fall into the case of lines and points respectively which have already been considered. Furthermore,

to compute this homography, at least four points (or its equivalent in lines) lying on the plañe are

needed. If these points are reconstructed, then the plañe can be obtained by siraply joining three

of them (i.e. ix = Pi V P2 V P3, see [5]) or by performing a linear regression with the whole

set. Plañe reconstruction is, therefore, a subproblem of point and line computation, so we will not

consider the reconstruction of 3D planes in our approach.

2.2 Projective Geometry ofN Views

We have just reviewed the basic projection equations for points, lines and quadrics. In order to be

able to reconstruct these primitives frpm image measurements, however, the projective geometry
of the scene must be first estimated. Depending upon the number of views available, this geometry
can be expressed by the bifocal, trifocal or quadrifocal tensor. Ifmore than four views are available,
combinations of the tensors just mentioned can be used. We will now describe the algorithms we

implemented to compute these tensors in the present work.
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Figure 2.4: The Fundamental Matrix F.

2.2.1 The bifocal tensor

The projective geometry defined by two views can be described by the Bifocal Tensor (also called

The Fundamental Matrix, see Fig. 2.4). This matrix is defined by the equation

x'TFx = 0, (2.22)

where x and x' are corresponding points in the first and second views respectively. The 3x3

matrix F has rank two with 7 degrees of freedom (dof), and can be computed with 8 (or more)

point correspondences. If x = [x, y, 1]T and x' = [x', y', 1]T, then Eq. 2.22 can be rewritten as

x'xfn + x'yfn + ¿fu + ifxfn + v'vhi + v'hz + z/31 + y/32 + /33 = 0. (2.23)

The entries of F can be rearranged in a column vector f such that the previous equation can be

rewritten as

[ x'x x'y x' y'x y'y y' x 1 ] f = 0.

From a set of n point correspondences, we can make a system of the form

(2.24)

x\xi x[yi x\ y[xi y\y\ y[ %\ 1

x'nxn x'nyn x'n y'nxn y'nyn y'n xn 1

f = Zf = 0. (2.25)

From which f can be solved by taking the nuil vector of Z. In practice, due to noise in the measure

ments, the best nuil vector is obtained by taking the Singular Valué Decomposition (SVD, see [48]

for details) of Z and extracting the singular vector that corresponds to the smallest singular valué.

Finally, recall that F must be a rank-2 matrix. In order to enforce this constraint we must

decompose F = UDVT using the SVD decomposition, where D = diag(r, s, t) is a diagonal matrix

satisfying r > s>t. Then the new rank-2 matrix we need is F = Udiag(r-, s, 0)VT
To further improve this algorithm, the set of points can be normalized by applying homogra-

phies H and H' such that the centroid of the set of points lies at the origin and their mean distance

to it is \¡2 (see [27]). In that case, the resulting F is further de-normalized according to F' = H'FH.

Once the matrix F is known, the first pair of camera matrices can be calculated as

P = [I|0]

P' = [[e']xF|e'],

(2.26)

(2.27)
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c

Figure 2.5: The point-point-line trilinear relation.

where e' = null(FT) and

[e']x =
0 -4 e'2 1

4 0 -e\

L-e'2 e\ 0 1
(2.28)

with e' = [e\ e'2 e'3]T. Note that the matrix P' in Eq. 2.27 has the left 3x3 sub-matrix [e']xF which

has rank 2. Therefore, this submatrix has a nuil vector n. If the extra column of e' is added, we

arrive at the conclusión that the nuil vector for P' has the form [nT, 0]T Henee, the center of P' is at

infinity. Note however, that this does not necessarily imply that the principal plañe lies at infinity
too. The general formula to compute P' is in fact

P' = [[e']xF + e'vT|Ae'], (2.29)

where v is any 3-vector. However, we have not noticed any significant difference between comput

ing P' using Eq. 2.27 or Eq. 2.29, since the cameras are further refined through Bundle Adjustment
and the projective reconstruction is then rectified to a metric framework through the application
of a homography. This rectifying homography has the effect of mapping the center of the second

camera from infinity to a real point. The details of the Bundle Adjustment stage and the metric

rectification will be given in the Chapter 4.

2.2.2 The trifocal tensor

The Trifocal tensor defines the projective geometry of three views. Whereas the Fundamental

matrix only comprised relations between points, the trifocal tensor T relates points, lines and their

combinations as shown in Table 2. 1 (for details about these relations see [27]). The point-point-line
trilinear relation is illustrated in Fig. 2.5.

Correspondence Type Equation

pomt-point-point

point-point-line

point-line-line

ljne-line-line

7iV*

X X lr€jqix 'i
= ^u

x%i';7?r = o

ipi'ai'yiwT?r = ow

Table 2.1: The trilinear relations.

In this, and the following section, 2D points x are represented as column vectors of the form

x = [x1, x2, x3]T and lines are represented as row vectors 1 = [¿i, ¿2, ¿3]. Therefore, a matrix



16 TheMathematicalModels of Computer Vision

H¿¿ is represented as the tensor HJ. According to the way they transform, points are said to be

contravariant tensors and lines are covariant tensors.

Unlike the Fundamental matrix, the Trifocal tensor is not easy to compute. This is because

the Trifocal tensor has a greater number of internal constraints (the tensor has 27 enfries but only
18 dof). Thus, even though any relation shown in Table 2.1 can be rewritten in the form At =

0 where t is a 27-vector representing the trifocal tensor, simply extracting the nuil vector of A

will not produce a geometrically valid tensor satisfying all the internal constraints, in general.

Therefore, a more sophisticated algorithm is needed. However, the method just mentioned serves

as a starting point for other algorithms that further refine the trifocal tensor. The full normalized

linear algorithm (taken from [27]) is presented in Algorithm 2.1.

1. Find transformation matrices H, H', and H" to apply to the three images, such that the

centroid of the points/lines lies at the origin and their average distance to it is \¡2.
2. Transform points according to x1 x-r xl = HJx*7, and lines according to ¿. »*-» ¿¿ = (H_1)¿¿_¡.

Points and lines in the second and third view transform in the same way.

3. Compute the trifocal tensor 7* linearly in terms of the transformed points and

lines using the equations of Table 2. 1 by solving a set of equation of the form

At = 0 (see Algorithm A.1).

4. Compute the trifocal tensor corresponding to the original data according to

T? = ti¡(K'-')jQi'"^trst.

Algorithm 2.1 The normalized linear algorithmfor the computation ofT

In general, the trifocal tensor that results from applying Algorithm 2.1 is not geometrically
valid. In order to enforce the internal constraints, the tensor must be parameterized in terms of the

camera matrices. Recall that in a framework with canonical cameras P = [l|0], P' = [A|a] and

P" = [B|b], the trifocal tensor may be computed as

7f = <#,*- aJ46*, (2.30)

where alj and bj represent the entry at row i, column j from the second and third camera matrices,

respectively. The last columns of P' and P" are the epipoles (the center of P projected on P' and

P"). These epipoles can also be computed from the trifocal tensor as follows:

1. For i — 1, .., 3, find the unit vector v. that minimizes ||T.v.||, where T. = 7<
"

(see Algorithm A. 1). Form the matrix V, the ith row of which is vj
2. Compute the epipole e" as the unit vector that minimizes ||Ve" || .

The epipole e' is computing similarly, using T^ instead of T.. In terms oftthe epipoles, the trifocal
tensor can be computed as z

?•

7?* = aíe"k - eHl -e (2.31)

Which provides a parameterization to compute a geometrically valid trifocal tensor. The full pro
cedure is described in Algorithm 2.2. <

The trifocal tensor resulting from the application of Algorithm 2.2 is geometrically valid; how

ever it can further be improved by minimizing a more meaningful cosh function based on the

geometric distance. One such algorithm (The Gold Standard Method) isaiescribed in Algorithm

2.3. ■ K



2.2 Projective Geometry ofN Views 17

1 . Compute an initial estimate of 7¡J using Algorithm 2. 1 .

2. Find the two epipoles e' and e" from 7?k as the common perpendicular
to the left (respectively right) nuil-vectors of the three T¿.

3. Construct the 27 x 8 matrix E such that t = Ea where t is the vector

of entries of 7?*, a is the vector representing entries of a{ and 6*, and

E expresses the linear relationship 7?* = a{e"h - e'ib\.
4. Solve the minimization problem: minimize ||AEa|| subject to ||Ea|| = 1

(see Algorithm A.2). Compute the error vector e = AEa.

5. Iteratíon: The mapping (e', e") x-t t is a mapping from R6 to R27

Itérate on the last two steps with varying e' and e" using the

Levenberg-Marquardt algorithm to find the optimal e' and e"

Henee find the optimal t = Ea containing the entries of 7?'*.

Algorithm 2.2 Computation ofa geometrically valid trifocal tensor. The data must be

normalized as in Algorithm 2.1. The last step is optional.

Figure 2.6: The point-point-line-line quadrilinear relation.

2.2.3 The quadrifocal tensor

The Quadrifocal tensor defines the projective geometry of four views. Like the trifocal tensor,

the quadrifocal tensor Q relates points, lines and their combinations. The equations are in Table

2.2 (details on the derivation of these relations can be found in [27]). The point-point-line-line
quadrilinear relation is illustrated in Fig. 2.6.

The quadrifocal tensor has 81 entries but only depends on 29 parameters. The equations from
Table 2.2 can be rearranged to produce a matrix equation of the form Aq = 0, where q is an

81 -vector containing all the entries of the quadrifocal tensor. However, the vector obtained from
this equation will not satisfy the constraints of a geometrically valid quadrifocal tensor. Therefore
a more sophisticated estimation method must be used. We will be using the method presented in

[26], which we describe next.

In [26], an initial estimation of the quadrifocal tensor is obtained by solving an equation of the
form Aq = 0 built from the quadrilinear relations. However, the matrix A is first replaced by a

reduced measurement matrix í such that ||Aq|| = ||Sq||. This matrix is computed using the QR

decomposition where A = QA.

Then, in order to reduce the number of unsatisfied constraints, a reduced quadrifocal tensor
is computed. This tensor arises from cameras consisting of zeros everywhere except for the main

diagonal and the last column. In particular the camera matrices P, P', P" and P'" have the form:
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1. Compute an initial geometrically valid estimate ofT using Algorithm 2.2.

2. Compute an initial estimate of the subsidiary variables {x., x¿, x-'} as follows:

a) Retrieve the camera matrices P' and P" from T

b) From the (given) point correspondence x. •<->• x¿ •<-* x" and P = [l|0], P', P" determine
an estimate ofXj using triangulation.

c) The correspondence consistent with T is obtained as

x. = PX¿, x. = PX¿ and x'¡ = PX¿.

3. Minimize the cost function

E^x.^+^x.f+d^xn2

over T and X_, i — l,..,n. The cost is minimized using the Levenberg-Marquardt

algorithm over 3n + 24 variables: 3n for the n 3D points X¿ and 24 for

the elements of the camera matrices P', P".

Algorithm 2.3 The Gold StandardAlgorithmfor estimating the trifocal tensorT

Correspondence Type Equation
four points

three points, one line

two points, two lines

three lines

four lines

XXX X *ipwtjqx*kry*lsz*s¿
—

^wxyz

XXX ls £ipu)€jqx*kry*s¿
—

^wxy

XX lf, l¿ tipyjCjqx 3¡_¡ Vyjx

iPiqi"QpqTS = os

lPl'al'rQP9rs = 0a, lpl'Ql"sQpqTS = or

Table 2.2: The quadrilinear relations.

P = [I|0], P'

P" =

h

b'2
h b'

p'" =

«i

c\

a2

C2

a3 a'3

c'2

(2.32)

c3

This, in turn produces a large number of zeros in the entries of the quadrifocal tensor, thus reducing
the number of significant entries. In practice, this means that three correspondences u¿ -H* u- -H*

u" <-> uf for i = 1, .., 3 must be chosen so that these points are not cóllinear in any image. Then,

the canonical points e-*. = [1, 0, 0]T, e2 = [0, 1, 0]T and e3 = [0, 0, 1]T must be mapped to the points
Ui, U2, U3 via the mappings of the form

T =

Ul u2 u3

Vi v2 v3

Wi w2 w3

(2.33)

where [«,*, vu Wi]T are the coordinates of u¿.
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The rule to transform from the reduced quadrifocal tensor Q to the full quadrifocal tensor Q is

Qijkl = QtodfJjjHkj»
mi

(2.34)

The reduced quadrifocal tensor Q has only 36 non-zero entries and thus can be represented

by a 36-vector q. The preceding equation can thus be expressed as a 81 x 36 matrix T such that

q
= Tq, where q is an 81-vector representing the full quadrifocal tensor.

Once the reduced quadrifocal tensor is computed, the diagonals of the camera matrices can be

extracted from it by solving

0 Q2311 Q3211
■ "

Ol

"

Q1322 0 Q3122 a.2

Q1233 Q2133 0
.

°3
.

0 Q2131 Q3121
"

\'
£1232 0 Q3212 b2

Q1323 Q2313 0 .bs.

0 Q2113 Q3112
" '

Ci

"

Q1223 0 Q3221 c2

Q1332 Q2331 0
.

C3
.

= o

= o

= o

(2.35)

After the valúes of [ai , a2, a3]T, [&i , b2, b3]J and [ci , c2, c3]T are computed, the valúes ofthe epipoles
of the reduced camera matrices (the last columns) can be computed too, since the entries of Q. are

a linear combination of the epipoles. Recall that the quadrifocal tensor can be computed from

QpqTS = det
b"

c'

ds

(2.36)

where ap is the pih of the first camera matrix, bq is the qth row of the second camera matrix and

so on. Thus, the exact form of this relation between Q and the epipoles can be computed by
cofactor expansión down the last columns of the reduced camera matrices. This relation has the

form q = Ma' where M is a 36 x 9 matrix and a' is the vector

a' = [ai , a'2 , a'3 , b[ , b'2 , b'3 , c[ , c'2 , c3]T (2.37)

containing the entries of t{ie epipoles. The full procedure to compute the quadrifocal tensor is

described in Algorithm 2.4,

The quadrifocal tensor computed by Algorithm 2.4 is valid and minimizes the algebraic error

subject to two conditions:
•

1. The camera matrix diagonals have the valué given by the 9-vector a, computed at step 5

of the algorithm.
2. The three points usrd to compute transforms T, .., T'" correspond precisely.
The solution from Algorithm 2.4 can be further improved by a Levenberg-Marquardt nonlinear

minimization. The paramefíirs for this minimization are a (from the mapping a x-, Aq) and points
u-, u", u¿" (producing, in furn, the transformation matrices T', .., T"'). This produces a total of 27

parameters for the minimization.
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1. Form the reduced measurement matrix Á from the original data (according to Table 2.2).

2. Obtain the transformation matrices T, .., T'" from three of the correspondences

using Eq. 2.33.

3. Compute the 81 x 36 transformation matrix T such that q = Tq from the

transformation rule 2.34.

4. Minimize ||ATq|| subject to ||Tq|| = 1 to find q, an initial estimate ofthe

reduced quadrifocal tensor.

5. Find the diagonal elements (vector a) of the reduced camera matrices by solving Eq. 2.35.

6. Compute the 36 x 9 matrix M such that q
= Ma', where a' is the 9-vector containing the

elements of the last columns of the reduced camera matrices.

7. Minimize ||ATMa'|| subject to ||TMa'|| = 1 (see Algorithm A.2). From this we may derive

the vector q
= TMa' corresponding to a full quadrifocal tensor.

8. If desired, we may compute the reduced camera matrices from the vectors a and a'. These

may be transformed to camera matrices for the original set of data by left-multiplication by

the transforms T, ..,!'".

Algorithm 2.4 Computation ofa geometrically valid quadrifocal tensor.

2.3 Part II: Clifford GeometricAlgebra, Conformal Geometry

and the Affine Plañe

The main altemative to the classical approach to computer visión is Clifford Geometric Alge

bra. This algebra system was invented by the English mathematician William Kingdom Clifford

(1845-1879) who combined the ideas introduced by the Germán mathematician Hermann Günther

Grassmann (1809-1877) and Sir William Rowan Hamilton (1805-1865). Since the 1960s, David

Hestenes has been working on developing his versión of Clifford Algebra [28]. We will now

present a brief introduction to Geometric Algebra.

Geometric Algebra is similar to the Vector Calculus but it is enabled with a new product (the

Cliffordproduct) that has inverse (in general) and combines the properties
of the interior and exte

rior products. That is to say, for two vectors a and b, their Clifford product
is expressed as

ab = a b + aAb, (2.38)

where the wedge product A is similar to the cross product; but instead of producing a vector, a new

entity, called a bivector is rendered. The bivector a A b can be visualized as the oriented plañe

spanned by a and b (the sense of the normal to the plañe can be obtained by the right-hand rule,

see Fig. 2.7).

The Clifford product is linear, associative and anticommutative,
that is

ab = -ba,
,:

(2.39)

from whence

a a b = -b A a (2.40)

can be easily derived. From Eq. 2.38, we can see that the Cliffcyd product of a vector with

itself produces a scalar. In general, this scalar will
not be necessarily positive. By definition, in a
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Figure 2.7: The bivector aAb.

geometric algebra Qp,q,r, the first p basis vectors e*., .., ep will square to 1, the next q basis vectors

ep+i, .., ep+g will square in -1 and the last r basis vectors will square to 0.

The common geometric algebra of 3D space Q3,o,o is spanned by

1
, ei, e2, e3 e23, e3i, ei2, e_23 = I (2.41)

scalar vectors bivectors

"■■—
v—

'

trivectors

The elements that span a given geometric algebra are called blades. The grade of a blade indicates

the number of basis vectors used to form it. That is to say, a scalar is a zero-grade blade and the

element ei23 is a three-grade blade; however, in general, blades will bemultiplied by a scalar factor.

The blade with the greatest grade in any given algebra is called the pseudoscalar and is commonly

represented by the letter I. A k-vector is a linear combination of blades of grade k.

A multivector is a linear combination of blades of different grades. For any given multivector

A, the notation (A)r indicates the component r-vector of A (if the subindex is omitted, the scalar

part is assumed). The grade of a multivector is the highest grade of its component blades. A

homogeneous multivector is a multivector that only contains blades of the same grade. Using the

blade grade, we can express the Clifford product of any two givenmultivectors Ar and Bs of grade
r and s, respectively, as

ArB. = (ArBs)r+s + <ArBs}r+.-2 + ... + <ArB.)|r-.|- (2-42)

From this equation, we can derive the general definition for the interior and exterior product for

multivectors as

Ar B_ = (ArB_.)|r_s|,

Ar A Bs = (ArB_)r+s.

(2.43)

(2.44)

Finally, for an r-grade multivector Ar = _C¿=o(-At)¿- me following operations are defined

t=0

¿(-l)^<Ar>.,
t=0

__
r

Clifford Conjugation: Ár = Ár = ^(-1) ■■ (Ar)..

Grace Involution: Ár

Reversión: Ar

(2.45)

(2.46)

(2.47)
i=0
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The grade involution simply negates the odd-grade blades of a multivector. The reversión can also

be obtained by reversing the order of basis vectors making up the blades in a multivector and then

rearranging them to their original order using the anticommutativity of the Clifford product. The

Clifford conjugation can be used to compute the inverse of a vector a as

a"1 = -4- (2.48)
aa

This formula for the inverse can also be applied for homogeneous multivectors, but cannot be used

for all multivectors in general.
Before finishing this small introduction, we would like to advance a few words about an entity

called Rotor. A rotor is a bivector that represents a rotation of a vector about the origin. The rotor

can be expressed in exponential form as

R = e*6B (2.49)

where B is a unit bivector that represents the axis of rotation and 6 is the angle of rotation. This

representation of the rotor can be developed to yield the following formula

R = cos(f) + flsin(f) = cos(|) (l +B^r\ (2.50)

This definition of the rotor will prove to be quite useful when we discuss the problem of 2D

point registration. We will present more details on the rotor in subsequent sections.

We shall conclude our introduction to Clifford Algebra here. We refer the interested reader to

[28], [29], [40], [6] and [7] for more details. We also recommend the use ofCLICAL [39], [41] to

help in familiarizing with the Clifford Algebras.

2.4 Conformal Geometry

The Geometric Algebra can be used to express Conformal Geometry in a very elegant way. To

see how this is possible, we follow the same formulation presented in [53] and show how the

Euclidean vector space Rn is represented in Rn+1,1 This space has an orthonormal vector basis

given by {e**., .., en, e+, e_ } with the properties

e2 = l, i = l..,n; (2.51)

4 = i1* (2.52)

e. -e+ =e.
• e_ = e+

• e_ = 0, i = l,..,n. (2.53)

A nuil basis {e0, e^} can be introduced by

e0
= i(e_-e+), (2.54)

eoo = e_ + e+.
><

(2.55)

with the properties
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el = elo = °» eoo
•

eo = -1. (2.56)

A unit pseudoscalar E € R1'1 which represents the Minkowski plañe is defined by

E = eo, A e0 = e+ A e_ = e+e_, (2.57)

having the properties

É = -E (2.58)

(2.59)

Eeo = —e0E = e0, (absorption property) (2.60)

1 + E = -eoeoo. (2.61)

The dual of E is given by

E* = Er1 = -El, (2.62)

where I is the pseudoscalar for Rn+1,1 .

Euclidean points xe e R" can be represented in Rn+1,1 in a general way as

xc
=
xe 4- ae0 + Pe^. (2.63)

where a and /? are arbitrary scalars. A conformal point xc G R""1"1'1 can be divided into its

Euclidean and conformal part by an operation called the conformal split. This split is defined by
the projection operators PE (projection) and PE (rejection) as follows

PE(xc) = (xc-E)E =
ae0 + peooeR1'1, (2.64)

P£(xe) = (xc E*)Eí = (xcAE)E = xeeRn (2.65)

The ñames "projection" and "rejection" stem from the geometrical meaning of these operators.
The first returns the component of xc which is parallel to E by a projection (dot product). The

latter produces the component of xc which is orthogonal to E, henee the ñame (see Figure 2.8).
To improve our model, we would like to use homogeneous coordinates as in the case of pro

jective geometry. In homogeneous coordinates, all points are equal up to a scale factor. Therefore,
we need to define some way to fix the scale of the points. A point xc € Rn+1,1 is normalized or in

standard form when

arc
•

eo- = -1. (2.66)

Now, recall that a hyperplane P(n, a) € Rn+U with normal n and passing though the point a is

the solution to the equation

n • (x - a) = 0, x G Rn+M (2.67)

The normalization condition xc
•

e^ = e^
■

e0 = -1 is equivalent to the equation

E2 = l,

Ee± = -e-**-
,

•fiPoo == eooiií = eoo,

1 - E = -eooeo,

e,»
• (xc -

e0) = 0, (2.68)
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Figure 2.8: The projection and rejection of vector xc G R2'1 from the E plañe. The operators are

illustrated for the case of 1-D.

which is the equation of a hyperplane P(eoo, e0). Thus the normalization condition ofEq. 2.66 con-
strains the points xc to lie in a hyperplane passing though e0 with normal eoo- Eq. 2.66 fixes scale;
however for the conformal model, another constraint is needed to fix xc as a unique representation

ofxeeRn

To complete the definition of generalized homogeneous coordinates for points in Rn+1,1 the

last constraint is that x2 = 0. The set W+1 of vectors that square to zero is called the nuil cone.

Therefore, conformal points are required to lie in the intersection of the nuil cone I-?1"1"1 with the

hyperplane P(eoo, e0), the resulting surface N¿ is called the Horosphere:

N? - N"+1 n P(eoo, eo) = {xc G Rn+U \x\ = 0, xc ■

eoo
= -1} (2.69)

These two constraints finally define the mapping from Euclidean space to conformal space.

To see how this mapping is obtained, first we see that any point xc — xe + ae0 + fie,*, G N¿
can be expressed as xc

=
xe + kie+ + k2e-, for some scalars hi, k2, since e0 and eoo are linear

combinations of the basis vectors e+ and e_. Then, by applying the conformal split to xc we get

xc = xcE2 = (xcAE + xc E)E = (xc A E)E + (xc E)E, (2.70)

since E2 = 1. Now, recall that (xc A E)E = xe is the rejection (see Eq. 2.65). The expression

(xc ■ E)E can be expanded as

(xc ■ E)E = (xc ■ (eoo A e0))E,
= {{xc • eoo) A e0

-

eoo A (xc ' e0))E,

- (-e0
-

eoo A (xc ■ eQ))E (applying constraint 2.66),

= e0 + |(A;i + A;2)eoo* ;'
(2.71)

Now, applying the condition that x2 = 0, we find from 2.70 ■>

l1

x2c = ((:rcA£)£ + (a.c E)E)2, ,¡¡
0 = (xe + e0 + |(A;i + A;2)eoo)2 .
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0 = x2 - (ki + k2),

x2 = {ki-rk2).

Finally, using 2.70 and substituting 2.72 into 2.71 we get

(2.72)

xc
= (xc A E)E + (xc • E)E = xe + e0 -I- -{kx + k2)e00 = xe + -x^e,» + e0. (2.73)

An illustration of the nuil cone, the hyperplane and the horosphere can be seen in Figure 2.9

Figure 2.9: The Nuil Cone (dotted lines), the Hyperplane P(eoo-eo) and the Horosphere for 1-

D. Note that even though the normal of the hyperplane is eoo the plañe is actually geometrically

parallel to this vector.

We can gain further insight into the geometrical meaning of the nuil vectors by analyzing Eq.
2.73. For instance by setting xe = 0 we find that e0 represents the origin of R" (henee the ñame).

Similarly, dividing this equation by xc
•

e0 =
—

¿x2 gives

C í ? \

^70
=

-^
+
2x<e~

+ eo)'

„/
1 1 *30\

Thus we conclude that eoo represents the point at infinity.

(2.74)

(2.75)

2.5 The Stereographic Projection

The Conformal Geometry is equivalent to a Stereographic Projection in Euclidean space. Gen

erally speaking, a stereographic projection is a mapping taking points lying on a hypersphere to

points lying on a hyperplane following a simple geometric construction. This projection is used

in cartography to make maps of the earth. In this case, the projection plañe passes through the

equator and the sphere is centered at the origin. To make a projection, a line is drawn from the
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north pole to each point on the sphere and the intersection of this line with the projection plañe
constitutes the stereographic projection.

For simplicity, we will illustrate the equivalence between Stereographic Projections and Con

formal Geometric Algebra in R1 We will be working in R2,1 with the basis vectors {ei, e+, e_}
having the usual properties. The projection plañe will be the x-axis and the sphere will be a circle

centered at the origin with unitary radius.

Figure 2.10: Stereographic projection for 1-D.

Given a scalar xe representing a point on the x-axis, we wish to find the point xc lying on the

circle that projects to it (see Figure 2.10). The equation of the line passing through the north pole
and xe is given by

f(x) = x + 1.

The equation of the circle is

x2 + /(x)2 = l.

Substituting the equation of the line on the circle, we get

x2 - 2xxe + x2x\ = 0.

Which has the two solutions

From which only the latter is meaningful. Substituting in the equation of the line we get

x2-l
/(*) =

x2 + l

Henee, xc has coordinates

which can be represented in homogeneous coordinates as the vector

xl-l

i

xc = 2*^r^ei +
■x2 + \ -r2 + l

e+ +e_.

(2.76)

(2.77)

(2.78)

(2.79)

(2.80)

(2.81)

(2.82)
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From this equation we can infer the coordinates on the circle for the point at infinity as

zoo
= lim (2-^-,4^|) , (2-83)

ie-+oo y xj + 1 XI + 1 /

xoo = (0,1), (2.84)

which are the coordinates of the north pole; or in homogeneous coordinates as

eoo = lim ¡2-£—ex + *^4e++e_l, (2.85)

eoo =
e+ + e_, (2.86)

which matches our previous definition of eoo. Similarly, evaluating at xe = 0 gives

x0 = (0, -1) (2.87)

(which are the coordinates for the south pole), or in homogeneous coordinates

e0 = -e+ + e_. (2.88)

Note that this definition for e0 differs from the original by a scale factor which is the normal

equivalence under homogeneous coordinates. The geometric implications of this difference in

scale will be discussed at the end of this section.

To prove that the stereographic projection is equivalent to a conformal mapping we note that

Eq. 2.82 can be rewritten to

* =

2^ei + fele+ + e-' (2"89)
e

'
e

*i +
-

(xeei + \(x\
- l)e+ + \{x\ + l)e_) (2.90)

Dividing by the scale factor -¿^ in order to achieve the constraint imposed by Eq. 2.66: xc-eO0 =

— 1 we arrive at

xc
=

xeei + i(x2-l)e+ + ¿(x2-|-l)e_,
— j/gCl "t~ 9 e 00 ' 0¡*

=
xe + ix2eoo + e0, (2.91)

where xe = xeei, which is precisely Eq. 2.73. Henee, we have demonstrated that Conformal Geo

metric Algebra is projectively equivalent to a stereographic projection (i.e. up to a scale factor).
To conclude this section, we will elabórate on the geometrical meaning of the equivalence up

to scale factor. Recall that from the definition of a stereographic projection we arrived at the valúes

eoo =

e+ + e_, and (2.92)

e0 = e_
-

e+, (2.93)
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for the point at infinity and the origin respectively. The valué of e0 in particular, differs from the

original definition by a scale factor. This difference in scale factors has the effect of displacing the

hyperplane P(eoo, e0) as we will prove now. From the stereographic projection Eq. 2.82 it can be

easily seen that all points mapped by this formula satisfy

e_ •

xc
= -1, (2.94)

and more importantly,

e_ (xc-e0), (2.95)

where eo = e_
—

e+ as previously stated. This means, that the hyperplane passes through eo and

has e_ as normal. The resulting configuration of the nuil cone, hyperplane and horosphere can be

seen in Figure 2.11.

Hyperplane

Figure 2.11: The nuil cone W+1 hyperplane P(eoo,eo) and horosphere N¿ as generated by the

equation xc = 2-^ei + _|^e+ + e_.

Therefore, the choice of normalization affects the orientation of the hyperplane, which in turn

modifies the conformal mapping equation according to a scalar factor. The position of the hy

perplane also determines the shape of the horosphere, but the properties of conformal geometry
remain invariant. This fact will be useful later on, when we discuss the particular choice of hyper

plane used in this work. For the remainder of this section, however, we will return to the original
definition of the n-dimensional horosphere.

2.5.1 Spheres and planes

The equation of a sphere of radius p centered at point pe G Rn can be written as

(xe
- Pe)2 = p2 (2.96)

Since xc-yc
= -|(xe

- ye)2, we can rewrite the formula above in terms of homogeneous coordi

nates as «
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Xc-Pc
= -\p2 (2.97)

Since xc
•

eoo
= -1 we can factor the expression above to

xc
■ (Pc -

5/>2eoo) = 0.

Which finally yields the simplified equation for the sphere as

xc s = 0,

where

1
2

s = Pc
-

-zp eoo = Pe + e0 +
Pe2 " P2

(2.98)

(2.99)

(2.100)

is the equation of the sphere (note from this equation that a point is just a sphere with zero radius).
The vector s has the properties

s =

s —

— „2
P¿>0,

-1.

(2.101)

(2.102)

From these properties, we conclude that the sphere s is a point lying on the hyperplane, but outside

the nuil cone. In particular, all points on the hyperplane outside the horosphere determine spheres
with positive radius, points lying on the horosphere define spheres of zero radius (i.e. points),
and points lying inside the horosphere have imaginary radius (see Figure 2.12). Finally, note that

spheres of the same radius form a surface which is parallel to the horosphere.

Spheres ccntcrcd at the origin

Figure 2.12: The horosphere for R2 The x and y axes are shown, and the z axis represents the

eoo direction, e0 is not shown. The vertical line falling down from the horosphere represents the

spheres centered at the origin with varying radii.

The radius and center of a sphere can be recovered from s, using 2. 101 and 2. 102 as
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s
2

P2 =

,

and (2.103)
{s

■ eoo)2

Pc
= / 7 + \p2eoo- (2.104)

-(s • eoo) 2

With the normalization s
•

e^
= — 1, each sphere is represented by a unique vector and the set

{xc G Rn+1,1 \xc s > 0} represents the interior of the sphere.

Alternatively, spheres can be dualized and represented as (n + 1)-vectors s* = s/_1 Since

f= (_l)|(n+2)("+l)/ = _/-l: (2.105)

we can express constraints 2.101 and 2.102 as

s = —s*s =

p ,
<2 jQ^N

eoo -s = eoa(s*I) = (e00As*)I=-l.

The equation for the sphere now becomes

xcAs* = 0. (2.107)

The advantage of the dual form is that the sphere can be directly computed from four points (in

3D) as

s* = xCl A xC2 A xC3 A xC4. (2.108)

If we replace one of these points for the point at infinity we get

ir* —

xCl A xC2 A xC3 A eoo, (2.109)

Developing the producís, we get

xCl A xC2
—

xei A xe2 + 2^xe_xei
—

xe.xe2 ) A eoo >

(xei
- xe2) A e0 + ¿(x2,

-

x2J£;, (2.110)

xci A xC2 A eoo
=

Xei A xe2 A eoo
-

(xei
-

xe2) A E, (2. 1 1 1)

xC3 A xCl A xC2 A eoo
=

xe3 A xei A x£2 A eoo
-

xei Axe¡A£ +

xe3A(xe2-xei)A£;. (2.112)

Since xei A xe2
=
xei A (xe2

- xei), we get

t

xC3 A xCl A xC2 A eoo
=

xe3 A xe, A x62 A eoo +

But since xe E = 0, we can rewrite this as

/,-

xC3 A xCl A xC2 A eo=
=

xe3 A xei A xe_ A eoo + {fa»
~ xei) A (x£2

- xei))£, (2.114)

((xe3-xei)A(xe2-xei))A£;. (2.113)
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So 7r* becomes

=

xei Axej Axes Aeoo + ((xei -xe2) A(xea -xfi2))£;, (2.115)

which is the equation of the plañe passing through the points xei, xe2 and xe3. We can easily see

that xei A xes. A xe3 is a scalar representing the volume of the parallelepiped with sides xei , xe_

and xes. Also, since (xei — xe2) and (xe3
-

xea) are two vectors on the plañe, the expression

((xej
-

x62) A (xea
— xe2)) is the normal to the plañe. Therefore planes are spheres passing through

the point at infinity.

2.5.2 Circles and lines

A circle z can be regarded as the intersection of two spheres si and s2. This means that for each

point xc on the circle z

xc G z <=> xc G «i and xc G s2. (2.116)

Assuming that si and s2 are linearly independent, we can write

xc G z

■4=>> (xc ■ Si)s2
-

(xc ■ s2)si = 0,

■•*=> xc (si A s2) — 0,

■<=> xc z = 0, (2.117)

where 0 = (si A si) is the intersection of the spheres. The intersection with a third sphere leads to

a point pair.

The dual form of the circle (in 3D) can be expressed by three points lying on it as

z* = xCl A xC2 A xC3. (2.118)

Similar to the case of planes, lines can be defined by circles passing through the point at infinity as

l* = xCl AxC2 A eoo- (2.119)

This can be demonstrated by developing the wedge producís as in the case of the planes to yield

xCl A xC2 A eoo -

xei A x62 A eoo + (xe2
-

xei) A E, (2.120)

from where it is evident that the expression xei A xe2 is a bivector representing the plañe where the

line is contained and (xe2 —

xei) is the direction ofthe line.
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2.5.3 Conformal transformations

A transformation of geometric figures is said to be conformal if it preserves the shape; that is, if it

preserves the angles and henee the shape of straight lines and circles. Any conformal transforma

tion in Rn can be expressed as a composite of inversions in spheres and reflections in hyperplanes.
In general, conformal transformations have the form

g(xc) = Gxc(G*Yl = ox'c, (2.121)

where xc G R""1"1'1, G is a versor and cr is a scalar. We will begin our discussion of conformal

transformations with the inversión.

Inversions

The general form of a reflection about a vector is

s(xc) = —sxcs~l = xc
-

2(s • xc)s~l = ax'c, (2.122)

where sx + xs = 2(s x) from the definition of the Clifford product between two vectors. We

will analyze now what happens when s represents a sphere. Recall that the equation of a sphere of

radius p centered at point cc is the vector

s = cc
-

\p2eoo. (2.123)

If s represents the unit sphere centered at the origin, then s and s_1 reduce to e0
-

le,». Henee
-2 (a • xc)

- x2 - 1 and Eq. 2.122 becomes

ax'c = (xe + ±x2 + eo=) + (x2 -

l)(e0
-

|e„o) = x2^1 + ix^oo + e0), (2.124)

which is the conformal mapping for x¡"V
To see how a general sphere inverts a point, we return to Eq. 2. 123 to get

s-xc
= cc xe- |p2eoo

•

xc
= -|[(xe

- ce)2 - p2]. (2.125)

Insertion into 2.122 and a little algebra gives

ax'c = (^^p1) [fl(xc) + ¿52(*e)eoo
+ c0], (2.126)

where

'W =^ + C' =f^ + C- (2'127)

i s the inversión in Rn.
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Reflections

A hyperplane with unit normal n and signed distance 6 from the origin in Rn can be represented

by the vector

s = n + «5e00. (2.128)

Inserting s
■

xc = n •

xe into 2. 122, we find that

g(xe) = nxeñ + 26n = n(xe
-

-5n)ñ -I- Sn, (2.129)

This expression is equivalent to a reflection nxent at the origin, translated by 6 along the direction

of n. A point ce is on the hyperplane when 6 = n •

ce, in which case 2.128 can be written

s = n + eooii
•

ce. (2.130)

Via Eq. 2.129, this vector represents the reflection in a hyperplane through point ce.

Translations

Trans lations can be modeled as two reflections about two parallel hyperplanes (see Fig. 2.13).

Without loss of generality, we can assume that both planes have been normalized so that the mag
nitude of their normáis is 1 and one of them passes through the origin. Then, from Eq. 2.128 we

can represent the operator for translation (called translator) as

ra = 7ri7r2 = (n + -5eoo)(n-|-0eoo),
= 1 + ^aeoo, (2.131)

1. The translation distance is twice the separation between the hyper-

Figure 2.13: The translation as a reflection about two parallel planes.

Transversions

The transversion can be generated from two inversions and a translation. The transversor has the

form

where a = 2-5n and ¡|n|| =

planes.
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Ka = e+Tae+ = (±eoo -

e0)(l + ^oo)^ -

e0) = 1 + ae0. (2.132)

The transversion generated by Ka can be put in various forms

5(Xe) = l-2Xa-xeX+x2a2
= Xe(1 " ""^ =^ " ^ ^^

The last form can be written down directly as an inversión followed by a translation and another

inversión.

Rotations

Rotations can be modeled by the composition of two reflections about two hyperplanes intersecting
in a common point ce (see Fig. 2.14) as

R = (a + e^a • ce)(b + eoob ■ c) = ab + eooCe
• (a A b), (2.134)

where a and b are unit normáis. Rotations about the origin can also be written in exponential form

as

R = e*aB, (2.135)

where B is a unit bivector representing the axis of rotation and a is the magnitude of the angle of

rotation.

Figure 2.14: The rotation as a reflection about two intersecting planes.

Dilations

Dilations are the composite of two inversions centered at the origin. Using the unit sphere sx =

eo
-

|eoo and another sphere of arbitrary radius p, s2 = e0- \p2erx, as inversors, we get

(e0
-

¿eoo)(e0
-

|p2eoo) = 1(1 - E) + |(1 + E)p2 (2.136)

Normalizing to unity we have

Dp = 12(l + E)p+ 1(1 - E)p~l = eE\ (2.137)

where ó = Inp. To prove that this is indeed a dilation, we note that
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p

Therefore,

DpeooD-1 = p~2e, and similarly (2.138)

ZVoD;1 = PW (2-139)

Dp{xe + lx2eoo + eo)D~l = p2[p~2xe + l(/J_2xe)2e0o + e0], (2.140)

which is the conformal mapping g(x.e) — P~2xe, producing the scaling as expected.

Involution

The bivector E (the Minkowski plañe of R1*1) represents an operation which corresponds to the

main involution whereas for an r-blade Ar, Ar = (— l)rAr. In particular, for vectors xe = -xe,

which can be easily obtained by applying the versor E

E(xe + |x2eoo + e0)E = -(-xe + ±x2eoo + e0). (2.141)

This expression corresponds to the conformal mapping of -xe> thus confirming that the versor E

represents the main involution for Rn This means that the main involution is a reflection via the

Minkowski plañe R1,1

2.6 The 3D Affine Plañe

We have described the general conformal framework and its transformations. However, many of

those operators were not employed in the present work. Indeed, since only rigid transformations

were necessary to solve the problems we will present in the following chapter, we limited ourselves

to the use of theAffine Plañe which is a n+ 1 dimensional subspace of the Hyperplane of reference

P(eoo, e0).
We have chosen to work in the Qití algebra. We have shown that the particular choice of

nuil vectors does not affect the properties of the conformal geometry. Thus, to further simplify

calculations, we have chosen to define these vectors as

e = l(e4 + e5), (2.142)

é = e4
-

e5. (2.143)

With the following properties

e2 = 1, for i = 1,.., 4, (2.144)

e2 = -1, (2.145)

e2 = e2 = 0. (2.146)

Points in the affine plañe x G R4'1 are formed with

J¿a
—

^e ' ^j (2.147)



where xe G R3 From this equation we note that e represents the origin (by setting xe = 0), sim

ilarly, é represents the point at infinity. The previous equation, allows the normalization equation
2.66 to be expressed as

e-xa = l. (2.148)

In this framework, the conformal mapping equation is expressed with

xc = xe
-

|x2é + e = xa
- ±x2é. (2.149)

However, most of the time we will be working on the affine plañe exclusively. Therefore, we will

be mainly concerned with a simplified versión of the rejection. Noting that £ = eooAe0 = éAe,

then Eq. 2.65 becomes

P¿-(xc) = (xc A E)E = (xc A E) E,

xe = (xcAe)-e-e. (2.150)

Now, since the points in the affine plañe have the form x = xe + e, we conclude that

xa = (xc A e) •

e, (2.151)

is the mapping from the horosphere to the affine plañe we needed.

2.6.1 Lines and Planes

We will not be using circles and spheres in this framework. The lines and planes are expressed in

a similar fashion to their conformal counterparts as the join of 2 and 3 points, respectively

L =

xfll Axa2, (2.152)

II = xaiAxa2Axa3. (2.153)

Note that unlike their conformal counterparts, the line is a bivector and the plañe is a trivector. As

seen earlier, these equations produce a moment-direction representation thus

L = ed + B, (2.154)

where d is a vector representing the direction of the line and B is a bivector representing the

(orthogonal) moment of the line. Similarly we have that

n = en + fcem, (2.155)

where n is the normal vector to the plañe and A; is a scalar representing the distance from the plañe
to the origin. Note that in any case, the direction and normal can be retrieved with d = é L and

n = é • II, respectively.
In this framework, the intersection or meet has a simple expression too. Let A =

ai A ... /\ar

and B — bi A ... Abs, then the meet is defined as

Aí)B = A (B-IAUB), (2.156)

where IAuB is either ei2e, e23e, e3ié, or eme, according to which basis vectors span the largest
common space of A and B.
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2.6.2 Rigid transformations in the 3D affine plañe

Rotations and translations have the same form as previously stated. In our new definition, the rotor

becomes

fl-=efB = cos(f) + £sin(§), (2.157)

where 6 is the angle of rotation and B is a unit bivector representing the axis of rotation.

The translator is defined by

T = e2tg = 1 + ¿te, (2.158)

where t is a vector representing the translation. For the particular case of rotors and translators,
the inverse is equal to the Clifford conjúgate, which in tum is equal to the reversión. Thus, the

transformation rule of a rotor and translator may be written as

X' = RXR, and (2.159)

X' = TXT. (2.160)

Also, note that when a translator is applied to a geometric entity, the result will lie in the

horosphere. Therefore, it is necessary to perform the partial rejection as defined by Eq. 2.151

followed by the normalization e •

xa — 1 if applicable.
Rotors and Translators can be combined multiplicatively to produceMotors. The motorM is

defined, in general, as

M = TR, (2.161)

= (l + lte)/?, (2.162)

= R+\teR. (2.163)

Therefore, it is rather simple to find the rotational part of a motor by simple inspection. The

translational part can then be computed by right-multiplying the remainder of M with i?-1

Note in particular that the motor defined by

M = TRT (2.164)

represents a rotation about an arbitrary axis. There is a simple relationship between the axis of

rotation and the form of a motor that produces the rotation about it. Let L = m + e A n be a line

such that ||n|| = 1. Then, the motor M that rotates by a radians about the axis defined by L is

given by

M = cos(f ) + sin(f )[é A (ei23m) -

(ei23n)]. (2.165)

The converse formula to extract the axis of rotation from a given motor is also simple. First, notice
that from the previous equation, M can be written as

M = ki + k2e A (ei23m) - fc2ei23n. (2.166)

From this equation, it is easy to see that
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m

n

= e_23(e.(M-A:i)),
=

-cm
• (M -

ki),

(2.167)

(2.168)

where wl and n' differ from the original m and n by a scale factor. Thus, the line representing the

axis of rotation is given by L = m' + e A n'.

2.6.3 Directed distance

The directed distance is defined as the smallest vector joining two geometric objects (see Fig.

2.15). Due to this definition, this vector is always orthogonal to both entities. In general, the

directed distance between two geometric objects x = Xi A ... A xr and y
=

yi A ... A ys is defined

by

d =
(•r Ay)

(e • x) A (e • y)
(2.169)

Figure 2.15: The directed distance between a plañe and a point.

When x and y are parallel, the above formula fails since. To see why, note that é x is the

direction of x and é •

y is the direction of y. When these vectors are parallel, their wedge product
becomes zero. To solve this case, one merely needs to find one point in either x or y and compute
the directed distance from this new point to the other object. A simple way to find a point on a

geometric object A is with the formula

x = (e ■ A) • A. (2.170)

This equation returns the point on A which is closest to the origin. Note, however, that x will not

be normalized, in general. Thus the constraint e
•

x = 1 must be enforced after x is computed.
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Chapter 3

Reconstruction, Calibrated Case

We now proceed to describe a series of algorithms and techniques that enable any mobile robot

to build a map for navigation purposes. In order to achieve this goal, several issues must be

addressed. From these, we have chosen to tackle the problem of coordinate system calibration

between múltiple sensors. At the end of this chapter we present a reconstruction and a small

navigation task, based on this algorithm. Throughout this chapter, we assume that the cameras

have been calibrated and thus metric reconstruction can be easily achieved.

The problem of coordinate system calibration is basically a problem of motion estimation. We

proceed now to describe two methods for motion estimation we have employed in this work.

3.1 Point-Based RigidMotion Estimation

The most basic feature that can be detected is the point. The algorithm we describe here to per

form rigid motion estimation based on point observations was originally presented in [38]. The

algorithm proceeds as follows. Given the 3D coordinates of two sets of n corresponding points X.
and XJ in Q3, we wish to find the rotation R and translation t that minimizes

n

5 = £[x.-.R(Xi-t)íl
i=l

(3.1)

This therefore involves minimizing S with respect to R and t. The differentiation with respect to t

is straightforward

n

dtS = J] [xj
-

R(Xi - t)ñ] dt(RtR) = 0. (3.2)
i=l

Which can be easily solved for t to give

¿=i

This can be rewritten as

t = ^¿[x<-*x^ (3.3)

t = X - RX'R, (3.4)
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where X and X are the centroids of the data points in the two views. The differentiation with

respect to the rotor R is much more involved, we direct the interested to [38] for details. The result

of this differentiation produces

n

Y,X¡/\R(Xi-t)R = 0. (3.5)

4=1

If we substitute the valué of t in the previous equation we get

n

^2x'iAR(Xi-X-KX.'R)R = 0. (3.6)

i=l

Noting that the term _53"=i x¿ A ^' vanishes- this reduces the previous equation to

n

^w.Ai?u.ñ = 0, (3.7)

¿=i

where

u¿ = Xi - X,

w. = Xí. (3.8)

With these new valúes, we obtain a matrix Fap as

n

F£./9 = X¡(ea Ui)(ep-Wi). (3.9)

i=l

Applying the SVD to matrix F0/3 = USVT we can find the rotation matrix R as

R = VUT (3.10)

Once the rotor is R is obtained from R, the translator t can be computed from Eq. 3.4.

3.2 Line-Based RigidMotion Estimation

Since lines are more robust to noise than points, it is important to describe how rigid motion esti

mation can be performed based on them. The algorithm we describe here was originally presented

in [8] using motors or dual quaternions in theMotorAlgebra Q3,o,i, but we have extended it for the

Affine Plañe. In this framework, the motion of the line can be expressed as

LB = MLAM, (3.11)

where X is the Clifford conjúgate ofX and, in the case ofmotors, MM = 1.

LB = b + eb'.

LA = a + ea' = RbR + e(RbR' + Rb'R + R'bRt). (3.12)
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Separating the real and dual parts

a = RbR,

a' = RbR' + Rb'R + R'bR,

multiplying on the right by R and knowing that RR' + R'R = 0, we get

(3.13)

(3.14)

aR-Rb = 0,

{a'R-Rb') + {aR'-R'b) = 0.

Which can be rewritten in matrix form as

(3.15)

(3.16)
a-b [a + b]x 03xi 03x3, R

a'-b' [a' + b']x a-b [a + b]x\[R!
Taking n > 2 observations we stack the n line parameters in the left matrix, which is decomposed

using SVD as C = UEVT Since the rank of the left matrix is 6 we use two vectors which span the

nuil space for computing R and Rl. For more details of the method refer to [8].

3.3 Body-Eye Calibration

Current approaches to compute the transformation between a coordinate system attached to a

robotic hand and the camera on top of it work on the premise that the camera is always fixed

at the same position with respect to the robotic arm. This is not the case for Pan-Tilt Units where

the camera is constantly changing its position and orientation with respect to the robot's reference

frame. To solve this problem, we proposed a novel algorithm which we describe next.

The robot-to-sensor relation can be seen as a series of joints Ji,J2,..,Jn where a rotation about

joint J. affects all joints Ji+1, ..,«/„ and a measurement system U is rigidly attached to the last

joint «/„. The problem can be stated as the computation of the transformations Mi, M2, .., Mn_i

between the robot frame and the last joint and the transformation Mn between the last joint and the

measurement device U, using only data gathered with U.

Note that this formulation is independent on the type of sensor U used; however, we will discuss

how this calibration can be implemented to solve the robot-to-camera relationship and later on, how

it was slightly modified to calíbrate a láser sensor against the robot coordinate system.

Furthermore, we would like to solve this problem in a way that enables a real-time response

when the spatial location of the joints varíes. Therefore, we have divided our algorithm in two

stages. The first stage computes the screw axes of the joints, and the second stage uses these axes

to compute the final transformation between the coordinate systems.

3.3.1 Screw axes computation

To compute the axes of rotation, we use a motion estimator such as the one described in section

3.2. Each joint J. is moved in turn while leaving the rest at their home position (see Figure 3.1).
From the resulting motor Mi, the axis of rotation S. can be extracted using Eqs. 2.167 and 2.168.

For our particular robot, the sequence ofmotions is presented in Figure. The general procedure is

presented in Algorithm 3.1.
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1. For each joint «/., i = l,..n do:

2. Set all joints to their home position.
3. Rotate joint 7, by -ai degrees.
4. Measure a set of 3D points Xj (or lines Lk) using the stereo camera.
5. Return joint «/. to its home position and rotate it by a2 degrees.
6. Compute the corresponding set of points Xj (or lines IA).
7. Compute the motor M_ such that X'j = M{Xj (or L'ó = MiLj).
8. Compute the axis of rotation S¿ using Eqs. 2.167 and 2.168 as

Si = e_23(e • (M¡ -

ki)) + e A [-ei23 (M¿ -

kx)] ,

where ki is the scalar part ofM..

Algorithm 3.1 Computation ofthe axes of rotation.

3.3.2 Calibration

Note thatAlgorithm 3. 1 will produce a set of lines S¿ in the camera's coordinate system. Once these

axes are known, the transformation taking one point Xk measured in the camera's framework to

the robot's coordinate system is easy to derive, provided that we know the angles o:, applied to

each joint 7¿. Basically, the algorithm undoes the implicit transformations applied on the cam

era's framework by first rotating about joint Jk and then translating the joint (and the framework,

along with the rest of the joints) to the origin (see Figure 3.2). The full procedure is described in

Algorithm 3.2.

*

-"U: the number of joints n, a set ofm points X¿,
""■•* Si and their angles of rotation a¿.

1. (lnw

k <— n,

X¡ -f*- Xh for ¿ = 1, ..,,...

5- <- Si, for i - l,..,n.

2. P«-nearest(SJ.).
3. T «- makeTranslator(-(P

-

e)).
4. M<*-TlineToMotor(Sj¡., -ak).
5. X¡ <r- MX¡M, for i = 1, .., m.

6. S[ <- TS.T, for ¿ = 1,.., A; -1.

7. fe-f-fc-1.

8. Repeat 2-7 until A; = 0. The final corrected points are X*, i = 1, . .,m.

Algorithm 3.2 Computation ofthe transformation X¿ i-> A"¿/0r a system ofn joints andm

points where Xi is a pointmeasured in the camera 'sframework andX[ is the same point in the
robot's coordinate system.
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Figure 3.1: Estimation of the screw axes.
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Figure 3.2: Correction of the rotation and relocation of the screw axes.
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The functions used in Algorithm 3.2 are defined as follows

nearest(X) = -J^-L* (3.17)
e •

[(e
•

X)
•

X\

makeTranslator(t) = 1 + -é, (3.18)
m

lineToMotor(L,o) = cos(§) +sin(f )[é A (e_23m)
- (ei23n)], (3.19)

where L = m + e A n, and ||n|| = 1. The function nearest(A") returns the point on X which

is nearest to the origin, makeTranslator(t) retums a translator displacing by an amount t, and

lineToMotor(L, a) was previously explained in Eq. 2.165 and simply retums a motor that rotates

a radians about the axis L.

3.4 Navigation

To test the calibration method, we conducted three experiments. For the first experiment, we

applied a certain pan and tilt to our robot and reconstructed the scene (see Figure 3.3.a). The

reconstruction is initially aligned with the camera coordinate system. Applying Algorithm 3.2,

the reconstruction was transformed to match the robot's coordinate system (Figures 3.3.b-d). The

comparison between the final reconstruction and the situation of the robot is presented in Figure
3.3.e.

The second test consisted in making a 3D map of the surroundings of the robot by superim-

posing together múltiple reconstructions obtained at different pan and tilt angles. For each pan

and tilt position, a reconstruction was obtained and transformed to the robot's reference coordinate

system. The robot was left unmoved throughout the process. Some of the images used for the

reconstruction can be seen in the top row of Figure 3.4, and the resulting reconstruction can be

seen in the bottom row.

For the last experiment, a navigation and grasping task was tested. First, the láser system of

our robot was calibrated according to Algorithm 3.1 (note that in this case, the only axis of rotation

is the robot itself). Then, an object was placed on a box and the robot's pan-tilt unit was rotated to

look at it. The object's coordinates were transformed into the robot's reference frame according to

Algorithm 3.2 and then further correlated with the láser system. Once the coordinates were located

in the laser's frame, the robot automatically navigated to place itself in position to grab the object.
In order to guarantee a reliable navigation, a very simple algorithm for the control of the robot's

position was implemented. This algorithm was based upon the line measurements obtained with

the láser and the motion estimation algorithm of Section 3.2. Some of the images in the video

sequence can be seen in Figure 3.5.
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Figure 3.3: a) Reconstruction without calibration. b-d) Relocation of the screws according to

Algorithm 3.2. e) Comparison ofthe final reconstruction with the real view
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Figure 3.4: Top: some of the stereo pairs used in the reconstruction. Bottom: Extracted 3D data

(left) and texture-mapped reconstruction (right).

Figure 3.5: Full calibration: after the láser and the binocular systems are calibrated, the robot can

navigate and reach objetes in 3D accurately.
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Chapter 4

Projective Reconstruction Using N

Uncalibrated Views

In the third chapter, Geometric Algebra was used to solve sensor calibration and navigation tasks

for a robot. However, all this work is based on the assumption that the cameras were calibrated,

thus achieving a metric reconstruction of the space. When this condition is not met, it becomes

increasingly difficult to employ Geometric Algebra since the camera model (in particular, the cal

ibration matrix K) does not have a simple form in this framework. Therefore, in the case of uncali

brated views we resort to the use of classical Projective Geometry. This is because a treatment of

this topic purely using the Clifford Geometric Algebra framework is a matter of future research.

This will require designing a particular geometric algebra equipped with the mathematical tools to

handle affine and projective transformations.

In this chapter, we present a Bundle Adjustment-based method to deal with the case of n

uncalibrated views to produce a projective reconstruction of points, lines, quadrics, plañe conics

and degenerate quadrics in contrast to current research based solely on the reconstruction of points

or liens. However, it is well known that this method requires a good initialization in order to

converge. Here, we present a nice introduction to these initialization methods.

In the following sections, we will assume that nv > 3 views are available. Each of these

views may show projections of points, lines, quadrics, plañe conics and degenerate quadrics. The

correspondences between these entities are assumed to be known. No image calibration is needed,

and, for our method, the features are not required to be visible in all views. Thus for each view

j = 1, ..., nv we will have nx. points, n(j lines, nq. conics (produced by
both full-rank quadrics

and plañe conics) and nqd degenerate conics visible. However, for simplicity, the subindex j will

be omitted. Note that full-rank quadrics and plañe conics are counted together but degenerate

quadrics are not. This is because the projection equations are the same for full-rank quadrics and

plañe conics but different for degenerate quadrics. This will be explained in full detail in the

following subsections.

4.1 Initialization

4.1.1 Reconstruction of cameras and points

In our implementation the initialization is provided by first computing the fundamental matrix

between views one anc two. The labeling of the views is chosen so that the first two views have
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the widest baseline possible to provide a more robust initialization. We use the normalized 8-point

algorithm for the computation of F (see [27] or Section 2.2.1). Please note that this algorithm is

not optimal, and in fact, it can be used as an initialization for the Gold Standard algorithm where a

more meaningful geometric error is minimized and a better F is computed. However, this is only
the initialization for a subsequent Bundle Adjustment stage where the refinement will be made.

Thus we only need a "quick and rough" solution at this stage.

Computing F, P and P' from point correspondences an initial reconstruction of all the points

can be performed by triangulation (see [27] for details). From the projection equations

Ax = PX (4.1)

A'x' = P'X'. (4.2)

In order to elimínate the scale factors A and A' we use the product x x x = x x (PX) = 0, which

can be written as

x(p3TX) - (p1TX)
"

j/(p3TX) - (p2TX) = 0, (4.3)

*(p2TX)-j/(p1TX)
_

where piT is the ith row of P. Combining the expression above with the corresponding equations

for x' x (P'X') yields

•rp3T - p1T

2/P3T - P2T

x'p'3T-p'1T
X = ZX = 0. (4.4)

L VP
~

P

Again, X can be obtained by extracting the nuil vector of Z via SVD.

After all the points have been reconstructed, we might further improve the first two cameras

and compute all the other cameras by using Eq. 2.2 (notice that both x and X are known, thus

in principie, P and the X's are the only unknowns and could therefore be estimated given enough

points). However, that equation holds only up to a scale factor, thus we use the following formula

instead

x..., x PjX. = 0, (4.5)

thereby eliminating the scale factors and producing a strict equality. From this point on, we will

use a more general notation where Pj represents the jth camera, Xj represents the ith 3D point and

Xíj is the image of the ith point on the jth camera. Thus, i ranges from 1 . . . nx and j ranges from

1 . . . nv. A similar notation will be used with lines and quadrics in the following sections. Note

that the preceding equation is linear in the entries of the P/s. So we can factor out the camera

coefficients to produce an equation of the form

x.,.* x PjXí = ZPijPj
= 0, ¡

where
■í

Z*,i
=

Ojxl

.
-ViJXJ

ZíjXJ yitjXj^
XijSLi

Olxl <

^4x1 xi,jXi
x- XT

(4.6)

(4.7)
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Pj
= \Pj,l---Pj,12]T, (4.8)

and

Pía Pj¿ Pjfi PjA

Pj = Pjfi Pjfi Pj,7 Pjfi

. Pjfi Pj.W PjM Pj,n

(4.9)

being Xjj = [x.¿ j/.¿ Zi¿]T By stacking together all the ZPi , for ¿ = 1 . . . nx we can compute Pj

by taking the nuil vector of the stacked matrices. Furthermore, if these matrices are stacked for all

the views we can build a system of the form

ZPP =

■*pm
0

zP-w 0
"Pi>x

0 Zpli2 o

o

o

0 ZPnIl2 0

o

o

o z
Phnv

o z
*Pnx ,nv

P
= 0, (4.10)

where p = [p^ . . . pJJT is a column vector with 12n„ entries containing all parameters for all the

cameras, and Zp is a 3nxnv x 12^ matrix (notice that this is just an extensión for n-views of the

DLT method presented in [27]).

Thus we can simultaneously estimate all cameras by extracting the null-space of Zp and adding
all the vectors that span this null-space. One way to do this is by taking the SVD of Zp and taking
the nv singular vectors that correspond to the smallest singular valúes. Remarkably enough, in

this way, we do not have to compute any n-view tensors and we do not have to rely on a priori

knowledge like the projective depths or planarity in the scene.

Once all the cameras are computed, we back-project all the points again into 3-space and,

according to Eq. 4.4, perform triangulation considering all views simultaneously (again, this is an

extensión to n-views of the DLT method, see [27]). In this case, Eq. 4.3 is stacked nv times (once
for each camera) to créate a system of the form

z»PiT " PÍT
y«PiT - p?t

XiP3nTv
~

p£
y¿Pn!

- p£

X. = lxXi = 0. (4.11)

We solve this problem using the SVD again, as described before. This step is not necessary but

it improves slightly the reconstruction of the points X¿. This procedure is easy to implement
and it does not increase the computation time too much. To see an example of optimal n-view

triangulation of points see [52].
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4.1.2 Reconstruction of lines

Once the cameras and points are known, we proceed with the triangulation of lines. Once more,
we estimate the lines by simultaneously using all cameras. Two methods for line reconstruction

were tested. The first method is based on Eq. 2.9, by making the scalar factor explicit in

which can be rewritten as

^ij'ij
—

PjLri, (4.12)

VjCi + AiJHJ
— 0

or in matrix form

[■Pj kj]
Ci

A¿,_. j

= 0.

(4.13)

(4.14)

If the line is observed in nv views, then a system of the form

Vi li,! 0

V2 0 1¿,2 0

nv
o

... o

... o

0 li,n.

Ci

Ai,i

*i,nv

= ZVXL = 0 (4.15)

from where the line can be extracted by taking the first six entries of the nuil vector of Z-p\.
The second method is described in [27], and consists of back-projecting the images of the line

into planes according to the formula

nj
= P]hj. (4.16)

If we stack all the planes generated by the same line in all views we can form an.x4 matrix Z_.

ZL =

TX.
¿,1

TT,
i,nv

(4.17)

Now let ZL — UDVT be the singular valué decomposition, and let Vi, v2 be the two columns of V

that correspond to the two largest singular valúes, vi, v2 span the best rank 2 approximation to ZL

and thus correspond to two planes which can be intersected (see Figure 4.1), according to Eq. 2.7,

to find the dual line as

ti

vj A v2 = vivj - v2v[ = L* (4.18)

The actual line can be retrieved from the entries of L* using Eq. 2.8:

[hl ¿13 ¿14 ¿23 ¿42 ¿34] = [¿34 ¿42 ¿23 ¿14 ¿13 ¿I2L (4.19)

The test consisted in adding Gaussian, zero-mean, noise levéis witb a standard deviation rang-

ing from 0.005 to 0.1 in steps of 0.005 (thus making 20 noise levelsfcto each component of the

normalized images lj (with ||lj|| = 1) of a randomly chosen line C (with \\C\\ = 1). For each noise
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Figure 4. 1 : a) Back-projection of a line from múltiple views. b) Equivalent computation of the line

as the intersection of two planes

level, the 3D line was reconstructed 100 times using both methods yielding two lines Ci and C2,

with ||£i || = ||£2 1| = 1, and the errors were averaged. Two error measures were taken, the first be

ing the algebraic error 1 1£
— £ • 1 1 and 1 1£

— £2 1 1 , and the second being the intemal-con sistency check

of Eq. 2.5. This procedure was repeated for 100 random lines £ and the results were averaged for

each noise level across all lines. The results are shown in Figure 4.2.

OrthogoD.il ity error

Figure 4.2: a) Algebraic error of both reconstruction algorithms at different noise levéis, b) Internal

orthogonality error

From Figure 4.2.a it can be seen that, apparently, the algebraic error is lower in the second

method; and most importantly, the internal orthogonality constraint is better preserved too. Addi-

tionally, the implementation of the first method requires computing the SVD of a 3nv x 4 + nv

matrix, whereas the secondmethod requires the computation of the SVD of a nv x 4 matrix, which

is faster. Therefore, the latter was used for the initialization of our tests.
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4.1.3 Reconstruction of quadrics

Whereas 3D points and lines are relatively easy to compute, the same does not hold for quadrics.
To begin with, the triangulation of points and lines (using the second method described before)
is invariant to scale factors. The scale factor was eliminated in the first case by taking the cross

product (see Eq. 4.5), and by employing the meet operation (see Eq. 4.18) in the second. But there

is no equivalent ofthe cross product or meet for conics. Henee, it becomes necessary to include an

explicit scale factor in the triangulation of quadrics.

4.1.4 Quadric triangulation

Following the procedure suggested in [16], Eq. 2.16 becomes

aC* = PQ*PT

Noting that this equation is linear in the entries of Q* and C*, it can be rewritten as

(4.20)

ac* = ZQq*

with a being an arbitrary non-zero scale factor,

c* = [a b c d e /]T,

(4.21)

(4.22)

cf = [ABCDEFGH IJ\J (4.23)

being column vectors containing the 6 and 10 parameters of the dual conic and quadric respectively,

and Zq =

Pl p| p| P1P2 P1P3 P2P3 P1P4 P2P4 P3P4

2PBP1 2poP2 2p7p3 P5P2+P6P1 P5P3+P7P1 P6P3 + P7P2 P5P4 + P8P1 P6P4 + P8P2 P7P4 + P8P3

p\ p_ P? P6P6 P6P7 P6P7 P5P8 P6P8 P7P8

2p_p- 2P10P2 2p__p3 P10P1+P9P2 P9P3+P11P1 P10P3+P11P2 P12P1 + P9P4 P10P4 + P12P2 P11P4+P12P3

2P9PS 2pioP6 2pnP7 P9P6+P10P5 P9P7+PHP6 P11P6+P10P7 P9P8+P12P6 P10P8 + P12P8 P11P8 + P12P7

Pg p.o Pi! P9P10 P9PU P10P11 P9P12 P10P12 P11P12

where

Pi P2 P3 Pi

Ph P6 ?7 P8

P9 Pío Pn P12

Thus, Eq. 4.20 can be rewritten to

pí
2P8P4

P¡
2P12P4

2P12P8
„2
Pl2 J

(4.24)

(4.25)

ZQq* + ac* = 0,

which finally enables the formulation of the matrix system

ZQi c* 0 ... 0

ZQ2 0 c^ ... 0

-Qn.
0 o

-n„

q*

ai

a2

ttn„

ZqV - 0, i

(4.26)

(4.27)
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where Zq. is formed by using the camera matrix P¿ in Eq. 4.24, cj is the dual conic in view i ,

ai , . . .

, a„v are independent arbitrary scale factors and q* is the 10-vector that represents the quadric
we are looking for. Once again, by getting the nuil vector of Zq via SVD, q* (and the scale factors)

can be obtained.

However, as shown in [16], it is necessary that the dual conics c* are consistent with the epipo-
lar geometry before Eq. 4.27 is used. Otherwise, the topology of the quadric may not be preserved.
We have verified experimentally that even small differences of the order of one or two pixels

may yield topologically inconsistent quadrics (e.g. a hyperboloid is reconstructed where a sphere
was expected). Therefore, a preprocessing of the conic outlines is needed in order to make them

epipolar-consistent, before Eq. 4.27 can be used. We will describe a method which guarantees the

epipolar-consistency of conics in a subsequent section.

4.1.5 3D plañe conic reconstruction

In contrast to the case of the full rank quadrics, a plañe conic in space cannot be represented by a

symmetric 4x4 matrix in the real space, but it can be represented in dual space as a dual cone

Q* (a degenerate quadric of rank 3). We will follow the reconstruction algorithm described in [15].

The interested reader will find the full details there.

Figure 4.3: a) Real-space plane-conic and its dual representation b)

The first part of the reconstruction consists of computing Q* by applying Eq. 4.27. We have

found in practice that even in noise-free simulations, the resulting dual quadric may be of full

rank. Therefore, after Q* is found by triangulation, the rank-3 constraint is enforced by taking
the SVD of Q* and setting the smallest singular valué to 0. That is, let UDVT = svd(Q*c) with
D = diag(cíi, d2, d3, di) such that </. > <¿.+i. Let D' = diag(<¿i, d2, d3, 0), then the corrected dual

cone is Q'c* = UD'V.

The second part of the reconstruction consists of computing the real-space plañe conic. Now,
since Q* is of rank-3, we cannot take the adjoint of Q*. Instead, we must find the plañe where the

conic lies and map the intersection of the quadric with this plañe, to real-space. Following the

development in [15], the plañe 7 where the conic lies is the dual to the apex of Q* (see 4.3), thus

7 =null(Q*). (4.28)
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Now, a coordinate system must be fixed to the plañe 7. This is performed by finding a 4 x 3

transformation matrix M such that

X = Mx (4.29)

Figure 4.4: The mapping generated by the equation X
= Mx.

where X is a 3D point and x is a 2D point lying on 7 (see Figure 4.4). The computation of M has

been discussed in [27]. In the coordinate system defined in 7, the conic is defined by xTCx = 0,

and its dual is defined by

fC*l = 0. (4.30)

The dual-space cone is defined by an envelope of tangent planes

nTq*n = 0. (4.31)

For each pointX on II, I1TX = 0. The line of intersection 1, of 7 and II in the coordinate system

defined by M follows by substitution (see Figure 4.5

nTMx = 0 (4.32)

From lTx = 0, it is clear that 1 = MTII. Now since the conic envelope is defined both by Eq. 4.30

and Eq. 4.31, substituting for 1 in Eq. 4.30 yields

nTMC*MTII = 0 (4.33)

and therefore

Q* = MC*MT (4.34)

from where

C* = M^Q'M-1 (4.35)

defines the dual conic C* in the coordinate system defined in 7. Since M is a 4 x 3 matrix we use

the pseudo-inverse instead of M_1 in practice.
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MTn

Figure 4.5: A plañe conic and its projection on the image plañe.

Once again, just like in the case of the full-rank quadrics, the outlines of the plañe conic pro

jected on all the images must be epipolar-consistent in order to preserve the topology of the conic.

Fortunately, since the images of a plañe conic are full-rank conics, the same method for outline

correction can be used for full-rank quadrics and plañe conics.

4.1.6 Degenerate quadric reconstruction

Degenerate quadrics cannot be triangulated using Eq. 4.27 since the adjoint of a rank-deficient

matrix Q is undefined. Therefore a different method is used in this case (the following procedure is

based on [15]).

The image of a degenerate (rank 2) quadric is a degenerate conic (two lines). The back-

projection of these degenerate conics Cj produce pairs of planes Tíij and n2)j (see Figure 4.6).
The back-projected planes are dual to points in the dual-space plañe conic, and the support plañe
for this conic is the dual to the apex (singularity) of the degenerate quadric. The apex can be

found by intersecting all the planes n.¿. Therefore, the degenerate quadric is found by fitting a

conic to the points dual to the back-projected planes and then transforming this plañe conic into

the real-space quadric. We give the details of these computations next.

Figure 4.6 A degenerate quadric and its projection on the image plañe.
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First the singularity or apex of the degenerate quadric is computed by finding the intersections

xiníi
= lij X l2(j, (4.36)

where li¿ and 12¿ are the pair of lines that make up the image of the degenerate quadric in view j.
The points of intersection xin<j are back-projected and a 3D point S is triangulated using Eq. 4. 1 1 .

Then, the transformation

X = Mx (4.37)

is computed that maps 2D points x into 3D points X lying on the plañe defined by S, thus fixing a

coordinate system. Then, the planes

n.,j = Pjly (4.38)

are computed for i = 1,2, and their equivalent dual-space points are computed with

Xduakj
=M1^ (4.39)

for i = 1, 2 (note that in practice, the pseudo-inverse is used instead ofM-1). A conic C is fitted to

the set of points x.duaiij and finally, the degenerate quadric is found by

Q = MCMT (4.40)

Just as in the case of general quadrics and plañe conics, this procedure is only valid for epipolar-
consistent degenerate quadrics. Therefore it is necessary to correct the outlines of the quadric
before attempting the reconstruction. We will proceed now to describe how outlines are corrected

for the case of full-rank quadrics and plañe conics, then the description of the algorithm for the

outline correction in degenerate quadrics is presented.

4.1.7 Geometric conic outline correction

Before we describe our method, we shall make a review of the existing work on conic outline

correction. In [16] Cross and Zisserman work with error-free camera matrices. In this paper, the

outline of the conic C' on the second image is adjusted to be consistent with C the image of the

conic in the first image. This correction is performed by geometric means. Then using C and C'

as a starting point, a minimization is performed over the parameters of the reconstructed quadric

Q. The cost function being minimized is the sum of squared perpendicular distances from the

measured points to the conic outlines. In this paper the authors do not discuss in detail how the

initial correction is performed for 3 views and assumes cameras are known without error.

In [15], Cross describes a similar method for outline correction. Here, the minimization equa
tion is

1

771

nnn]^J]D(c;(v)s.)j),s¿)j), (4.41)
t=0 j

where v represents the parameters (the angles) of the epipolar tangen! lines, D(C, s) is the orthog-
onal distance between conic C and point s. The feature s.,j is the jth point measured on the outline

of image i and C-(v, s.,j) is a conic fitted first to the epipolar tangent Unes v and then to the image
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points Sjj*. The computation of C* is given for the case of two and three views. For the case of three

views, the following procedure is followed:

Given v and henee four epipolar tangent lines in the ith image, fit a dual conic to these lines,

giving a pencil of dual conics: CJ = aiCJ -I- a2C¡!

- Solve for o* and a-¿ by finding the best-fit conic to the image data, s.,j:

minV£>(C.,s.J) (4.42)

i

(Levenberg-Marquardt is used)

Compute Ci = (C\)*.

No details are given in [1 5] for 4 or more views. For the case of two or three views, the problem
of fitting a dual conic to 2 and 4 lines respectively is under-determined, which means that a family
of dual conics is found that exactly passes through the required lines. Note, however that for 4 or

more views the problem is over-determined (with 4 views, each conic must pass through 6 epipolar

lines). This means that only one dual conic will be found which, in general, will not pass exactly

through any given line, but rather will approach all of them (see Figure 4.7 for an example). This

is a major flaw in the algorithm of Cross [15], since any following minimization will not ensure,
in general, that the dual conic will pass exactly through all the lines. Note also, that with 4 or

more views the parameterization used for the minimization in step 2 of the algorithm cannot be

used anymore. The thesis does not mention how to cope with these problems. In addition to this

problem, the camera matrices are, again, assumed to be known in advance without error.

Figure 4.7: Conic fitted to six epipolar lines (dashed line) using the method described in [15] (before any

minimization). This example comes from a real experiment with 4 cameras. The noisy measured points

(crosses) are also shown with a conic fitted to them for reference (solid outline). Note the gross error

between the points and the fitted conic (dashed line) and notice also that the conic approaches the lines but

does not pass exactly through all of them.

We have taken the ideas just outlined and improved them to créate a novel method for the

correction of outlines in the presence of noisy camera matrices for 4 or more views. Our method

requires the sets of measured pointsMCi, i = 1, ..,nv on the conic outlines, and at least 3 views. If
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only 2 views are present, then the algorithm in [16] may be used instead and then the noisy camera

matrices may be adjusted with Algorithm 4.2 (explained later). An initial, noisy approximation of

the camera matrices Pj, i = 1, .., nv is assumed to be known.

Before proceeding, we must note that we will be using a notation of the form Xíjj¡¡. This does

not mean we are using tensors though. The first subindex stands for the view where things are

projected to, the second indicates the view of origin where objects are projected from, and the last

index merely ranges through all the objects of the same type.

The method presented here has two stages. In the first stage, the outlines in three views
are

corrected by fitting dual conics to five epipolar lines. Four lines are obtained in view
i by mapping

the two tangents from view j to view i:

hnaPPediJik
= ([^i,j]x^i,j) Itfjk, (4-43)

where \maPPeditj,k is the kth tangent line mapped
from view j to view i (k = 1, 2), e¿,j is the epipole

produced by projecting the center of the jth camera on the íth view, F.¿ is the fundamental matrix

between views i and j satisfying xTf¿,jXj = 0, and lj4ík is the kth tangent line in view j obtained

with

x^
= (C;ej,.)ACj, (4.45)

(4.46)

where Cj is the matrix of the conic outline
in view j and xjti¡k is the kth intersection or meet of the

polar Cjej,. with Cj (see Figure 4.8). The intersection
between a conic and a line is easy to derive

and implies the solution of the quadratic equation that
results from substituting the line equation

into the conic equation and solving for x or y, henee k = 1, 2. Cj can be computed by fitting a

conic to each set of points MCj (an easy algorithm to do this is presented later in this section, for

more sophisticated algorithms see [62]).

Figure 4.8: a) and b) views 1 and 2, respectively with local tangent lines. c) Third view with

mapped tangent lines

If the conic outlines and the camera matrices were error-free, then the following would hold:

lmapped-,.,*. X hangenUj,, =0, k = 1, 2, (4.47)

with ltangenti
.

„

=

e.,j x Xi,hk and x.,Jifc as defined by Eq. 4.45. Eq.
4.47 simply states that the local

and the mapped tangents to the conic must coincide. This,
however does not hold in the presence

of noise. Note that this situation is analogous to the epipolarmismatch
between two corresponding

points in the presence of noise (see
section 1 1.5, pg. 301 of [27]). In that case, the optimal solution
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is found by varying the epipolar lines in such a way as to minimize the orthogonal distance to the

measured points. In a similar fashion, we produce new epipolar lines lying halfway between the

local and mapped tangent lines (though, no minimization is performed in this stage). Let

lmid-j,*
=

e«,j X (dir(lmappe(ii,.,J + &r(ltangenti,jlk)), (4.48)

miJij.l ^ lmappedij¡

'JT~~P^^

\

Kiappttly,

(c* )\
L»UU,<

K»

hmd¡j.r
—

—

-^_*____i;M

Figure 4.9: Relationship between lm._(.iM, lmapped-,.-,* and liJ>fc

where dir(l) retums the normalized direction of the line 1 in a vector of the form v = [dx dy 0]T
such that ||v|| = 1, and dir(\mappedijk) dir(ltan9ent.,_,J > 0 (both vectors have the same sense).

Then, the following equation holds (up to scale):

*midi,j,k
~

\iei,j\x*i,j) '■midjti¡, (4.49)

Which means that the middle line between the mapped tangent and the local tangent in view j

maps to the corresponding middle line in view i (see Figure 4.9). Henee the conics that have these

lines as tangents are epipolar-consistent. Since each \midiijik imposes one constraint in the equation

lmt<¿.,_iJtC hnidtjj. — 0 (4.50)

we need at least 5 such lines to compute C*. However, three cameras provide only four epipolar
lines for each view. To find the fifth line we need to resort to the set ofmeasured pointsMa on the

outline of the conic. The fifth line is found by using each measured point, getting its tangent line,

fitting a conic to the set of five lines and choosing the point that yields the smallest geometric error

between the fitted conic and the set of points (see Figure 4.10). The full procedure is summarized

in Algorithm 4.1. In that procedure, the geometric distance between a point and a conic is used.

The reader may consult an algorithm to compute such distance in [62]; however in that report,

there are some slight errors in the equations, which were corrected. The revised versión appears in

Appendix B.

Before proceeding, we present a simple linear algorithm to fit a (dual) conic to a set of (lines)

points. This algorithm is similar to the one presented in [27], but instead of assuming that the

points have the normalized form (x, y, 1) we derive our own algorithm from the homogeneous

equation of the conic:

xTCx = 0. (4.51)

Which can be rewritten í*
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1. Fit a conic Cj to the set of measured pointsMa for each view i = 1, .., 3.
2. Find the set ofmiddle lines lmi(i. .

k
.

3. For each view i = 1, .., 3 do:

4. Initialize CurrentDistance «— oo, Cibcst «— nuil.

5. Choose a point x € Ma not previously chosen.

6. Find the point xc on C¿ that is closest to x.

7. Get the tangent at this point by lt = C.xc.

8. Using lmid..,i(. for all j'^ i, k = 1, 2 and lt,

fit a dual conic D,* that passes through these five lines.

9. IfE^0?)**^*) < CurrentDistance then

- CurrentDistance «— _Cc*-((**-;,¿)*>-Mci)
-C

Hcst (Di*)*
10. Repeat steps 5-9 until all points in MCi are chosen.

11. The new corrected conics are C¿6e.t , i = 1,..,3.

Algorithm 4.1 Conic outline correction in 3 views. _T} <-?((D¿ )*, .Me.) denotes the sum of

orthogonal distances from the points x. € Mato the conic (D*)*

[ x2 xy y2 xz yz z2 ] c = 0, (4.52)

where c = [a b c d e f]T is a vector containing the entries of the conic. Stacking n such equations

weget

2-12/1 V\ xizi yizi Zl

c = Zrc = 0. (4.53)

*^n xnyn yn xnzn ynzn zn

We can obtain c by finding the nuil vector of Zc via the SVD. Finally, to find the matrix C

representing the conic we use

C =

a b/2 d/2
'

b/2 c e/2

d/2 e/2 f

(4.54)

The advantage of this method is that the input points have the general form (x, y, z). This is

specially useful since we can use points at infinity too (i.e. z
= 0). The dual of a point at infinity is

a line that passes through the origin. Therefore we are able to use lines passing through the origin
in our formulation, whereas in [27], the algorithm assumed that points were normalized so that

2 = 1, thus precluding the use of these lines.

The second stage of the algorithm uses C6eít.- i = 1, .., 3 to produce an initial reconstruction

of the quadric Qest using Eq. 4.27. Then Qe_t is projected on the remaining P., i = 4, .., nv to

genérate epipolar-consistent outlines in views 4 through nv (see Figure 4.1 1), and a minimization is

performed on QeSí such that the geometric distance from the outlines to the setsMa is minimized.

The procedure is described in detail in Algorithm 4.2.

The set of conic outlines C*final. are epipolar-consistent. However,
the precisión of the recon

struction depends on the degree of noise present in the camera matrices Pi- Thus, in order to im-
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Figure 4.10: Illustration ofAlgorithm 4.1. The middle tangent lines l-nidi,.,* are shown in solid lines. The

setMa is shown with crosses. The conic Cj fitted to Ma is shown in a dotted line. The point x € Ma
that yields the smallest error is shown in a square. The tangent at x is shown in a dashed line. The final

epipolar-correct conic is shown in a solid line.

1. Compute an initial reconstruction of the quadric Q*st by Eq. 4.27, using
the conics C^. , i = 1, .., 3 computed by Algorithm 4.1.

2. Compute C*st. = PiQeitp7 for ¿ = 1, .., n„. This step generates

epipolar-consistent outlines in all views.

3. Perform a non-linear minimization of the expression

Vinal
= ™**;,XZid(C-estt.Ma)

4. Compute the final conics with C*-iraa-, = PiQ/.n_*fp7 f°r i — 1- ■•■ w«

Algorithm 4.2 Quadric reconstruction and conic outline correction in n views.

prove the reconstruction it is necessary to simultaneously refine the cameras and the quadrics. We

will go one step further and show how simultaneous refinement of cameras, points, lines, quadrics,

plañe conics and degenerate quadrics is possible via Bundle Adjustment.

4.1.8 Degenerate quadric outline correction

Finally, before discussing Bundle Adjustment, we show how we perform outline correction in

degenerate quadrics. To the best of our knowledge, no one else has mentioned a similar outline

correction algorithm in the literature. The epipolar constraint for the case of degenerate quadrics
can be formulated as

*'epipo¡orj>*íx«ntj
= "i (4.35)

where lepipoiarjík is the epipolar line generated by x.ntj. in view j with



Figure 4.11: Illustration of Algorithm 4.2. Using the epipolar-consistent outlines in the first 3 views, the

quadric is reconstructed. This quadric is topologically correct and thus it can be projected to the remain-

ing 4, ..,n„ views to genérate epipolar-consistent conic outlines. Then, the parameters of this quadric are

modified in order to minimize the error between the measured outline and the projected conics.

^■epipolarjtk
— *■" j,k^-intk- \ft.JO)

and Fjjt is the fundamental matrix between views j and k satisfying xjFj^Xfc = 0.

The epipolar constraint for degenerate quadrics states simply that the singularity or apex of the

quadric must be epipolar-consistent. One way to achieve this is to triangúlate the singularity S (see

Figure 4.6) using Eq. 4.11 and then re-projecting S into all the views generating new points of

intersection x'int.
;•;

x^=P¿S. (4.57)

the existing lines ly, ¿ = 1,2 making up the images of the degenerate quadric in all views will

not pass through the new intersection points x¿nt. ifthe images are not epipolar-consistent. But the

lines are corrected easily according to 'J

l.)j
= dir(l.,j)xx.„í., (4.58)

where dir(l¿jj) retums the direction of the line ly in a vector of the form v = [dx dy 0]T The

procedure is summarized in Algorithm 4.3.

Before proceeding, note that in all the methods mentioned abovej there is not a requirement for
all features (points, lines, and conics generated by quadrics, plañe conics and degenerate quadrics)
to be present in all views. If any given feature is absent, its equation is simply left out. This will

be explained in detail in the following section.

O

4.2 Refinement of the Reconstruction {.

In the previous subsection we described how we make our initial reopnstruction. This reconstruc

tion is used as a seed for a Bundle Adjustment algorithm that refiites the solution. Briefly, the
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1. Find the points of intersection x.nt>
= li,j x l2)j for j = 1 . . . nv, where l\j and l2,j are

the two lines making up the degenerate conic Cj in view j.
2. Using Eq. 4.11, triangúlate the singularity point S.

3. Project S on all the views, generating the set of points x*nt = PjS.
4. Compute 1^ = dir(lj.j) x xjnt. for ¿ = 1, 2 and j = 1 . . . n„.

4. The new, epipolar-consistent, degenerate conics Cj are made up with the lines 1_7, ¿ = 1,2.

Algorithm 4.3 Degenerate conic outline correction in n views.

classical algorithm consists in minimizing

imj1£d(PiXj,x.,j)2, (4.59)

where P. is set of estimated cameras, Xj is the set of estimated 3D points, x,*.j is the set of mea

sured 2D features and d(x, y) is the geometric distance between points x and y. Usually, this

minimization is performed with the Levenberg-Marquardt algorithm which we briefly describe

now.

4.3 Levenberg-Marquardt

We follow the derivation given in [27] where a functional relation of the form

V = /(P), (4.60)

is given where V is ameasurement vector and P is aparameter vector in RN and MM respectively.
An initial estimate of P is gjven and the goal is to find the vector P satisfying V = /(P) + e for

which \\( || is minimized. At each iteration, a new parameter vector is found by

Pi+1 = P¿ + A^ (4.61)

where A, is found by solving the augmented normal equations:

diag(l + A)(jTj.)A. = jTCí, (4.62)

where J. is the Jacobian of / evaluated at P¿, e¿ is the error between x¿j and /(P¿) and diag(fc) =

kl is a square matrix with k in its diagonals. The valué of A is typically initialized at A = IO-3. If

the valué of A¿ obtained in this way leads to a reduction in e., then Pí+i is accepted and A = A/10.
Otherwise, if A. leads to an increment in the error, then A = 10A and the augmented normal

equations are solved again, ttiis process is repeated until a A¿ is found that decreases error. This

process constitutes an iteration of the Levenberg-Marquardt algorithm.

4.3.1 Refíning the reconstruction of points, lines. quadrics, conics and de

generate quadrics

The classical BundleAdjustment algorithm, as described in [27] was modified by stacking together
the parameters of cameras (>'„), points (Px), lines (P-), dual quadrics and plañe conics (P9. , note
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that plañe conics are parameterized as dual quadrics too and thus can be included in the same

parameter vector) and degenerate quadrics (Pqd, note we are parameterizing degenerate quadrics

in real-space, in contrast to full-rank quadrics and plañe conics which are parameterized in dual-

space)in aparameter vector Pvxiq-qd = [Pj Pl P^ PJ. PjJ
T

This vector has 12n„-l-4nx-l-6n¿+

10n9+10ng<¡ entries. Similarly, the measurement vector mx*cc<j has 3nvnx+3nvni+6nvnq+6nvnqd
entries. Using the projection equations 2.2, 2.9, 2.16 and 2.20, the Jacobian takes the form

J =

r ^m
dPv

axi?i
apx

0 0 0

>-spf ap.
0 0 0<

spv

OXíix ,n_

dPx
0 0 0

dPV
0

aii.i

ap,
0 0

Oln¡,nv

9P.
0

9\ni,nv

ap,
0 0

ap„
0 0

ap,.
0

°cnqtnv
dPv

dcdll
ap.

0

0

0

0

ap,.

0

0

acdll

ap.d

ap.
0 0 0

dn,_,,n_.

«Vi J

(4.63)

where x.,j, k,j, «L and cdij are the
ith point, line, dual conic and degenerate conic respectively as

measured on the jth view. Each element in Eq. 4.63 is a block matrix of the form

dx-ij
___

dPv

a_/¿,_

apn,_

dPvltl

dPvl2 :

ap«i2,i

ap.
12,1

dxi,i

apn¿

dPv12

opn2

9xjj
dPv

dXi.

12,2
•dPv

dPv12¡2

a*ft>i*>.*>

12,nv

ay¿,j

"12,n.

az¿,_
ap„

12,n„ J

(4.64)

where xitj
= [x.,j yitj zitj]T and PVij denotes the ith parameter of the jth camera in vector P„. Note

that the 3 x 4 matrix P is decomposed as a 12-vector (see Eq. 4.25). Similar block-matrices are

dcli flfííj. ax^ ai^
acv „,,,**___. t¡

denoted by -^ ap.
-

ap.
'
ap*

'

ap,
• ap ap

<¡d

dxt .

If a point x.,j is missing, then the corresponding
3 rows of the expressions -^- and -^ are

omitted from the Jacobian (this is shown in the rows marked between the symbols > and < in Eq.

4.63). The same holds for missing lines, dual conics
and degenerate condes.

A simple cost function to minimize might be

|mx.cc<¡
— f(Pvxlq'qd) (4.65)
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where f(Pvxiq'qd) is the projection of the parameter vector as defined by equations 2.2, 2.9, 2.16
and 2.20.

This initial, simple formulation has several disadvantages. First, Eq. 4.65 is the algebraic error

between the projected parameters and the measured data. This makes the problem scale-dependent
which in turn forces equations 2.2, 2.9, 2.16 and 2.20 to be satisfied up to a strict equality. Second,
as we have seen earlier, the outlines of the quadrics must satisfy the epipolar geometry which is

not explicitly taken into account in this formulation. This will result in topologically erroneous

reconstructions ofthe quadrics. Finally, the 3D Plücker lines must satisfy an internal orthogonality
constraint (see Eq. 2.5), which is not considered in the formulation either.

The first problem is solved by simply using the geometric distance instead of the algebraic
distance

ni,nv n,,nv

eg
= £d(xi,j,/(Pt,j,PXj))+ J^ d(x-,/(P„.,Píí)) +

t, j i, j, xieM^j

n, ,nv nqd ,nv

J2 d(xc,/(P„,,P,.))+ ¿2 d(xCd,f(PVj,Pqdi)), (4.66)

«, j, Xc€MCiJ i, j, Xcd€Mcd. .

whereM^, Ma¿ and MCd. .

are the sets of measured points on the line, conic and degenerate

conic ¿ from view j, respectively, and d(X, Y) is the geometric distance between objects X andY

(note that this distance is defined differently depending on the types of the objects).
To cope with the second problem (the epipolar consistency between conic outlines), we use

tiq,nv,2 nv,nv

**-e
=

¿_j d(lrna.ppedi¿,k,f('Pvj,'Pqr))+ ]¿J d(lepipoiarjk,Xintj), (4.67)

¿, j, k j, k (jjtk)

where \mappedijik are the epipolar lines, for full-rank quadrics and plañe conics, mapped from view

j to view i as defined in Eq. 4.43, lepipoiarjfk are the epipolar lines, for degenerate quadrics, mapped
from view A: to view j as defined in Eq. 4.56 and xintj are the intersections of the lines forming
the degenerate conic in view j. It is assumed that the initial dual quadric and degenerate quadric

parameters are epipolar-consistent and thus ee is zero when Bundle Adjustment begins. The final

cost function is the sum of the above expressions

e = eg + ee. (4.68)

During the iterations. Eq. 4.67 serves as a geometric constraint in order to keep the epipolar-

consistency of the quadrics. However, unless this constraint is achieved exactly at each itera

tion (which is not guaranteed), the quadrics may lose their topology. Therefore, a final epipolar-

consistency correction as described in Algorithms 4.2 and 4.3 is necessary after BundleAdjustment
finishes. Nevertheless, it is worth emphasizing that Eq. 4.67 effectively prevents the parameters
of the quadrics to evolve freely. In practice, this means that the quadrics will be nearly epipolar-
consistent throughout Bundle Adjustment at the expense of probably stopping short of the global
mínimum.

It is worth noting that the algorithm described thus far produces a projective reconstruction. In
a projective framework, topology preservation makes little sense since, for example, a hyperboloid



68 Projective Reconstruction Using N Uncalibrated Views

is projectively equivalent to a sphere. However, when the reconstruction is rectified to a metric

framework, topology becomes important. The purpose of the conic outline correction algorithms
described in this paper is to preserve the topology once the metric rectification is performed.

Finally, in order to achieve the internal orthogonality constraint for lines, two strategies can be

adopted:

1. Start with a set of internally-orthogonal lines via plañe intersections as described in Section

4.1.2 and let the parameters evolve freely during Bundle Adjustment. When the iterations

finish, the lines are orthogonalized again.

2. Add an orthogonalization step at each iteration of the Bundle Adjustment.

In practice, we have found both options produce nearly the same results. The only practical
difference being the extra time needed for each iteration if the second strategy is adopted. The

orthogonalization of two 3D vectors is an easy problem. In our case, the direction of the line

remained fixed and only the momentum of the line was modified.

4.4 Experimental Analysis

We conducted four experiments where some objects displaying points, lines, quadrics, plañe conics

and degenerate quadrics were reconstructed. In the first experiment, a few objects were placed in

a box and some images were taken with the stereo rig of our robot, but only the left image was

used (see Figures 4.13.a-c). In the second and third experiments, various objects were also placed
in boxes but we used a commercial digital camera (see Figures 4.14.a-c and 4.15.a-c). For the

last experiment, a fountain scene displaying quadrics, plañe conics and degenerate quadrics was

reconstructed (see Figure 4.16.a-c). The same camera was used in the last three experiments.
The Canny edge detector was used to find edgels and corners to sub-pixel precisión. All sets

of points for lines and conics were chosen by hand. Lines were found by doing a linear regression.
Conics are fitted to the sets of points measured on the conics and degenerate conics (MCi and

MCd .. respectively) but degenerate conics receive special attention: the sets making up both lines

are manually identified and their intersection (the image of the singularity) is also computed.
The full procedure can be visualized in Figure 4.12. We proceed to describe the steps in detail

next.
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4.4.1 Initialization of points and cameras

The initialization is produced as follows. A set of n > 8 point correspondences (manually chosen)
is normalized with homographies H and H' so that their centroid lies at the origin and their mean

distance to it is \/2. Using these points the Fundamental matrix is computed with Eq. 2.25 and

later modified to enforce the rank-2 constraint. Finally, the Fundamental matrix is de-normalized

according to F' = H'FH (Figure 4.12.a).

Using the Fundamental matrix, the first two cameras are computed using equations Eq. 2.26

and Eq. 2.27 (Figure 4.12.a). Then all the points are triangulated according to Eq. 4.4 using only
the first two cameras (Figure 4.12.b). With all the points available, all the cameras are computed

using Eq. 4.10 (Figure 4.12.c). Finally, all the points are triangulated again taking all cameras into

account, according to Eq. 4.11 (see Figure 4.12.d).

Figure 4.13: a) Setup of the scene. b) and c) A couple of images in the sequence (top). d), e) and

f) Resulting reconstruction from different view points (bottom).

4.4.2 Initialization of lines

With all camera matrices available, the lines are reconstructed by back-projecting the images of

the lines to 3D planes according to Eq. 4.16 and stacking the planes produced by all the views as

shown in Eq. 4.17. The SVD is then applied to this matrix to find the best two planes that produce
the line of intersection (Figure 4. 12.e). This procedure i& repeated for all the lines.

4.4.3 Initialization of quadrics

Finally, the initial set of quadrics is produced. First, conics C. are fitted to the sets A-í^. and

MCd.. of measured points for conics and degenerate conics, respectively, in every view. Three
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Figure 4.14: a), b) and c) Three of the images in the sequence (top). d), e) and f) Resulting
reconstruction from different view points (bottom).

II

views are chosen (the ones that have the widest baselines between them) and the conic outlines are

corrected in these views using Algorithm 4.1 or Algorithm 4.3 if the conics are degenerate (Figure

"4.12.f). Then, 3D quadrics and plañe conics are obtained by the solving the projection equation
aC* = PjQjPj (recall that the scalar factor is important in this case) as described in Eq. 4.27 using
"the corrected outlines. In the case of degenerate quadrics, the reconstruction is slightly different,

"see Section 4.1.6 for details. The quadrics thus obtained are used in Algorithm 4.2 to obtain the

corrected outlines in the rest of the views (Figure 4.12.g).

We must note, however, that a different procedure was used in the last experiment. Since the

contours of the fountain are highly irregular (compare the contour seen in Figures 4.16.a-b), a

consistent conic could not be extracted from image features at all. Instead, two hyperbolas and a

"degenerate conic were placed near the features by hand (see Figure 4.16.c). Nevertheless, besides

this, the algorithm was implemented as described.

4.4.4 Bundle adjustment

Once the cameras, points, lines, quadrics, plañe conics and degenerate quadrics are initially recon

structed, they are used as seed for the Bundle Adjustment stage (Figure 4.12.h). For this case the

Jacobian used in the Levenberg-Marquardt iteration was approximated by finite differences. Dur

ing Bundle Adjustment, lines and quadrics receive special treatment. Recall that lines must satisfy
an internal-orthogonality constraint. Both line-orthogonalization strategies described in Section

4.3.1 were tested, the only noticeable difference being the longer time needed for Bundle Adjust
ment to converge for the second strategy. Therefore, we recommend the use of the first strategy



where line parameters evolve freely and orthogonalization is performed only once after Bundle

Adjustment has finished (Figure 4. 12.i).

Figure 4.15: a), b) and c) Three of the images in the sequence (top). d), e) and f) Resulting
reconstruction from different view points (bottom)

Quadrics, on the other hand, must satisfy the epipolar consistency constraints, namely, that the

tangent lines in each view are mapped to tangent lines in the rest of the views via the fundamental

matrices. The initialization stage produces consistent quadrics, but itwould be extremely expensive
to use Algorithms 4.1, 4.2 and 4.3 during the iterations of Bundle Adjustment. However, an extra

measurement is added to the cost function being minimized (see Eq. 4.67) which measures the

geometric distance between mapped epipolar tangent lines and the conics. This distance should be

kept near zero. Unfortunately, this goal is seldom achieved exactly which means that quadrics may
indeed lose topology during Bundle Adjustment. Nevertheless, this constraint effectively prevenís
the quadric parameters from drifting aimlessly. In fact, this check may prevent the system from

reaching the global mínimum while keeping the quadric parameters near a topologically-correct
state. Finally, when Bundle Adjustment finishes it is necessary to apply Algorithms 4.1 and 4.2

again to ensure that the topology ofthe quadrics is preserved (Figure 4.12.J and 4.12.k).
The projective reconstruction is rectified to a metric framework by computing a homography

that takes a few control points on the projective reconstruction (at least 5 points to account for the

15 dof of a general 3D homography) to their ideal position (see Fig. 4.12). The average geometric
error in millimeters between the actual position ofthe control points afteiyectification and the ideal

position is presented in Table 4.1. For proper reference, the approximate. mínimum bounding box
for each scenario is also presented. Note that the error is not related to the size of the bounding
box.

For all experiments, tests were conducted using 4 and 5 views (though, only the results for 4

views are presented in Table 4.1). Both line orthogonalization strategies were tested. Some of the
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d e f

Figure 4.16: a), b) and c) Three of the images in the sequence (top). d), e) and f) Resulting
reconstruction from different view points (bottom).

Experiment Average error in mm Control points Bounding box size

1

2

3

4

0.80mm

1.14mm

3.18mm

9.52mm

6

12

10

10

450mm x 350mm x 300mm

300mm x 250mm x 300mm

270mm x 200mm x 220mm

370cm x 250cm x 270cm

Table 4.1: Average error in millimeters measured at the control points ofthe scenes reconstructed.

images used and the resulting reconstructions are shown in Figures 4.13, 4.14, 4.15 and 4.16.

4.4.5 Initializing with the trifocal tensor

For comparison purposes, we also tested using the Trifocal Tensor instead of the Fundamental

Matrix in the initialization of points and cameras. The Trifocal Tensor was computed using the

Gold Standard Algorithm as described in [27] (pages 383-386). Both point-point-point and com-

bined point-point-point and line-line-line correspondences were used to compute the tensor. The

same views used to compute F were used for T plus another one lying approximately halfway
between the first two views. Similarly the same points used to compute the Fundamental Matrix

were used for the tensor. The first 3 cameras were computed directly from 7~, and the points were

triangulated using these three views using Eq. 4.1 1. The rest of the cameras were computed using
the triangulation method of Eq. 4.10. Again, we measured the average geometric error between

the control points after metric rectification of the projective reconstruction produced using Bun

dle Adjustment and their ideal positions. Only the second experiment was tested (Figure 4.14).
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Control Points Ideal Positions

J±=E_
Bounding Box

Figure 4.17: Situation of the control points and the bounding box.

The results are presented in Table 4.2. From this table it can be seen that using the trifocal tensor

instead of the fundamental matrix does not produce significantly better results.

Error using F T, 3-point corresp. T, 3-point and 3-line corresp.

1.14mm 1.37mm 1.34mm

Table 4.2: Comparison of average error in millimeters measured at the control points of the second

experiment.
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Chapter 5

Registration of 2D and 3D Points Using
Geometric Algebra and Tensor Voting

5.1 Introduction

We have already stated, in the beginning of this thesis, that the problem of registering data sets is

common in the computer visión literature. Applications range from the alignment of range mea

surements for the automatic re-construction ofmaps for robotic navigation [31], [42]; registration
of CT and MR images for medical purposes [24], [51], [20], [37], [22]; computer graphics and

CAD modeling [58], [19] and recognition of objects [11], [59].

The algorithm proposed herein is based on re-casting the correspondences problem as a prob
lem of finding a couple of lines in 2D or a plañe in 3D using Tensor Voting. Therefore, before

proceeding we shall present a short introduction to this methodology.

5.2 Tensor Voting

Tensor voting is a methodology for the extraction of dense or sparse features from riD data. Some

of the features that can be detected with this methodology include lines, curves, points of junction
and surfaces.

The Tensor Voting methodology is grounded in two elements: tensor calculus for data repre
sentation and tensor vming for data communication. Each input site propagates its information in

a neighborhood (the ir 'ormation itself is encoded as a tensor and is defined by a predefined voting

field). Each site colle ;ts the information east there by its neighbors and analyzes it, building a

salieney map for each feature type. Salient features are located at local extrema of these salieney

maps, which can be excracted by non-maximal suppression.

For the present w<rk, we found that sparse tensor voting, along with Geometric Algebra, was

enough to solve the pr blem. Also, we only needed the detection of lines (or curves) in 2D, and the

detection of planes (oí surfaces) in 3D. Therefore we will confine our explanation of tensor voting
to these particular pro esses. The interested reader may find further information in [47].
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Figure 5.1: a) Graphic representation of a second order 2D symmetric tensor in 2D, and 3D b).

5.2.1 Tensor representation

To make this presentation easier, we will be mainly describing the 3D Tensor Voting formalism,

because this is a generalization of the 2D case. However, we will still make the differences with

the 2D case whenever necessary.

In tensor voting, all points are represented as tensors. To express a second order symmetric
tensor S graphically depicted as an ellipse (2D) or an ellipsoid (3D), we choose to take the associ

ated quadratic form, and to diagonalize it, leading to a representation based on the eigenvalues Ai,

A2 and A3 and the eigenvectors e_, e2 and e3. Therefore, we can write the tensor S as

ÍA1 0 0
'

e_

"

0 A2 0 e2

0 0 A3 J .

e3
.

The eigenvectors correspond to the principal directions of the ellipse (2D) or the ellipsoid (3D)
and form an orthonormal basis, while the eigenvalues encode the size and shape of the ellipse (see

Fig. 5.1).
For the rest of this paper, we will use the convention that the eigenvectors have been arranged

so that Ai > X2 > A3. In this scheme, 3D points are encoded as ball tensors (i.e. tensors with

eigenvalues Ai = A2 = A3 = 1); curvéis as píate tensors (i.e. tensors with Ai = A2 — 1, and

A3 = 0, tangent direction given by e3); and surfels as stick tensors (i.e. A! = 1, A2 = A3 = 0,

normal direction given by ei).

A ball tensor encodes complete uncertainty of orientation, a píate tensor encodes uncertainty of

orientation in two axis, but complete certainty in the other one, and a stick tensor encodes absolute

certainty of orientation. Tensors that lie between these three extremes encode differing degrees of

orientation certainty. The point-ness of any given tensor is represented by A3, the curve-ness is

represented by A2 — A3 and the surface-ness by Ai — A2. Also, note that a second order tensor only
encodes direction, but not sense.

For the 2D case, only two types of tensors exist: the ball tensor and the stick tensor. The ball

tensor represents complete uncertainty about the orientation of the points*whereas the stick tensor

represents absolute certainty of the normal direction of the curve that passes through the current

point.

5.2.2 Voting Fields

We have just seen how the various types ofi input data are encoded inj tensor voting, now we

will describe how these tensors communicate between them. The inputiüsually consists of a set
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Osculating y&
Circle y

Voter

Figure 5.2: The osculating circle and the corresponding normáis of the voter and votee.

; !¡!!!lü'"ilil)l|l|:

a

Figure 5.3: The fundamental voting field. a) and b) orientation and strength fields. c) 3D display
of the strength field.

of sparse points. These points are encoded as ball tensors if no information is available about

their direction. If only a tangent is available, the points are encoded as píate tensors. Finally, if

information about the normal of the point is given, it is encoded as a stick tensor. Then, each

encoded point, or token communicates with its neighbors using either a ball voting field (if no

orientation is present), a píate voting field (if local tangents are available), or a stick voting field

(when the normal is available).

These voting fields have been derived from a 2D fundamental voting field that encodes the

constrains of surface continuity and smoothness, among others. To see how the fundamental voting
field was derived, suppose that we have a voter p with an associated normal np. At each votee site

x surrounding the voter p, the direction ofthe fundamental field n_. is determined by the normal of

the osculating circle at x that passes through p and x and has normal np at p, see Fig. 5.2.

The strength of the fundamental field s(d, p, o) at each point depends on the distance d and

curvature p between p and x and is given by the following Gaussian function

_/w__r\

s(d,p,o) = e r^H/, (5.2)

where cr is a scale factor that determines the overall rate of attenuation. The shape of the funda

mental field can be seen in Fig. 5.3.

Finally, both orientation and strength are encoded as a stick vote. Henee, each voting site is

also encoded as a tensor, and communication is performed by the addition of the tensor present at

the votee and the tensor produced by the field at that site.

The fundamental voting field, in the 2D case, is also the stick voting field. The stick voting
field can be used when there is information about the local normal of the token. However, when

no information is available, we must use the ball voting field. This field is produced by rotating
the fundamental field about the z axis and integrating the contributions at each site surrounding the
voter. The resulting field is shown in Fig. 5.4.
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Figure 5.4: The ball voting field. a) and b) orientation and strength fields. c) 3D display of the

strength field.

•Ud

Figure 5.5: The stick voting field in 3D. a) Strength field cut in half showing the intensity at several

slices. b) Some slices of the orientation field showing only the ei eigenvalues. The normal voting
direction is shown in both cases.

The 3D voting fields can be generated by rotating the fundamental voting field about the x, y
and z axes, depending on the type of field we must genérate. In the present work, however, we

only needed the stick voting field and the ball voting field. The stick voting field in 3D is generated

by rotating the fundamental voting field about the y axis, as shown in Fig. 5.5. The 3D ball voting
field forms an isotropic sphere and looks virtually equal to its 2D counterpart.

5.2.3 Sparse Tensor Voting

Now that we have defined the tensors used to encode the information and the voting fields, we can

describe the sparse voting process.

If no information is available about the normáis at each token, we initialize them all as ball

tensors. Then, in order to acquire the preferred orientations at ejach token, we place a ball voting
field at each voter and east votes to all the neighbors. The process is repeated until all tokens have

east votes to all their neighbors. Once this step is finished, we cansextract the preferred orientations

of each token by analyzing the eigensystem encoded in its tensor. The preferred normal direction

is given by the eigenvector ei, and the salieney of this orientation is given by Ax -

A2.

To enforce the orientation of the tokens, or ifwe have the norrnals available from the beginning,
a sparse stick voting is performed. In this case, a stick voting field is placed on each token and

is rotated until it becomes aligned with the local normal. Then, the resulting field is used to east

votes to all the neighbors and reinforce the local normáis.
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After the voting stage is finished. The tensors at each site are decomposed into their eigensys-
tem. The resulting eigenvalue Ai encodes the absolute salieney of the token. This valué roughly

represents the number of neighbors that have lent support to this token. Tokens that are isolated

will have a low absolute valué and can be discarded as noise. From the remaining tokens, we can

identify which ones belong to a surface, a curve, or a junction as follows. If Ai » A2, then there is

a high confidence about the normal orientation of the token, and it belongs to a surface. If Ai « A2
and A2 » A3 then the token belongs to a curve, with tangent direction e3. Finally, if Ai « A2 « A3,
then the current point belongs to a junction.

In this work, we have also used another surface-nessmeasure that is independent ofthe absolute

salieney of the token. We simply take the ratio A2/Ai. If the token belongs to a surface, the ratio

will be cióse to 0. On the other hand, if the token is not oriented, the ratio becomes closer to 1.

This is useful to find tokens with a low salieney but with a high orientation.
In the general formalism, after the preferred directions have been obtained, a dense tensor

voting is performed. In this stage, each voting field casts votes all around the space surrounding
the voter (not only to neighboring tokens), and features are extracted by performing an analysis
that deteets máxima from the dense junction, curvature and surface salieney maps. However, since

we did not need that part of the engine in our present work, we refer the interested reader to [47]
for more details.

5.3 Formulation of the problem in 2D

Using the Geometric Algebra of 2D, _72>o,o, the rigid motion model of a point x = xai + yo2 can

be expressed as

x' = RxR + 1, (5.3)

where R = e*"12 = cos(|) -f sin(f )cr12 is a rotor and t = txoi + tyo2 is a translation vector. From

the previous equation, by left-multiplication with ü we get

Rx' = xR + Rt, (5.4)

(cos(f) + sin(f )aí2)(x'al + y'o2) = (xoi + y<72)(cos(§) + sin(f)<n2) + (5.5)

(cos(|) + sin(f )o-i2)(í_.<7i + tyo2). (5.6)

Developing producís and separating the resulting expression into its basis vectors we get the fol

lowing equations

x'cos(|) + y'sin(|) = :rcos(§)
-

ysin(f) + cos(f)t_ +sin(f)íj,, (5.7)

í/'cos(|) --r'sin(f) = xsin(|) + ycos(f)
- sin(f)í_. + cos(f)íy. (5.8)

Factoring together the cosines and sines we get

cos($)(x'-x)-rsm(i)(y' + y)-(cos(í)tx + sin(*)ty) = 0, (5.9)

-sm(i)(x' + x)-rCOs(°1)(y'-y) + (sm(°1)tx-cos(°1)ty) = 0. (5.10)

Which are clearly the equations of two lines in the joint spaces (y'+y), (x'-x) and (x'+x), (y' -y):

[sin(§) cos(|) -(cm(l)tx + sin(l)ty)} [(y' + y) (x'-x) 1 ]T = 0, (5.11)

[-sin(f) cos(f) (sin(§)¿. -

cos(f)g ] [ (x' + x) (y'
-

y) 1 ]T = 0. (5.12)
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Finally, it can be easily seen by inspection that the normáis of these two lines are not independent.

They are related by a reflection about the y-axis and obey the following constraint

ab' + ba' = 0, (5.13)

where (a, b) and (a1, b') are the normáis of the first and second line respectively. This equation will

prove highly useful in the following sections and we will refer to it as The Reflection Constraint.

Equations 5.12 and 5.11 tell us that if we have two sets of points, we can detect which ones

are in correspondence, via a rigid transformation, by checking for two lines in the joint spaces

(x' + x), (y'
—

y) and (y' + y), (x'
— x). Previous work has been done for the case of 2D affine

transformations [35], which in the end was formulated as a problem of finding two independent

3D planes. However, by restricting the problem to a rigid motion model and by using Geometric

Algebra, we have now simplified the problem to finding two non-independent lines in 2D. We will

now show how this problem can be solved in an efficient way by applying tensor voting to find

these lines.

5.4 Estimation of correspondences in 2D

Given two sets of 2D points Xi and X2, we are expected to find the correspondences between

these two sets assuming a rigid transformation has taken place. The points that are actually in

correspondence will be referred to as inliers and the rest of the points as outliers, and we have an

unspecified number of them. No other information is given.
In the absence of better information, we popúlate the joint spaces as modeled by Eqs. 5.12 and

5.11 by matching all points from the first set with all the points from the second set. Let ni and

n2 be the number of points in the sets Xi and X2 respectively, and let m be the number of inliers in

these sets. In the best possible case (no outliers), we have to findm points out of a set of m2 points
in each joint space. The percentage of noise in the best case is thus 100m%. To give us an idea of

the extent of the problem, suppose that we have no outliers and m = 50. In this case, we are trying
to find a line composed of 50 points out of a set of 2500 points (5000% noise, see Fig. 5.6) in each

joint space. If we add outliers, the noise ratio in the joint spaces increases even more.
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e f

Figure 5.6: a) An example of 50 points with no outliers obeying a rigidmotion transformation (95.5

deg, Tx = 1.6, Ty = -1.5), the first set is marked with crosses, the transformed set, with circles.

c) and e) the joint spaces for this example (x' + x), (y'
-

y) (first row, center) and (y' + y)(x' - x)
(first row, right). Note the huge amounts of noise that must be filtered in these spaces, even with

no outliers. Nevertheless, our method correctly identifies 48 of the 50 points b), d) and 0-
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To alleviate this problem, we have adopted a divide-and-conquer strategy. First, we popúlate
the joint spaces by taking all possible matches between the sets Xt and X2 as candidate matches.

Then, we transíate the centroid of these spaces to the origin and perform a skew so as to sepárate
the outliers from the real line, but taking care to preserve the constraint expressed by Eq. 5.13.

To ease the exposition of our algorithm, we will refer to the points in the joint spaces as tokens to

distinguish them from the points in the original 2D spaces.

In practice we do not know the normal of the line we are seeking. Therefore we do a series of

hypothesize-and-test runs, varying the axis of skew at discrete intervals, until we find the desired

lines that satisfy Eq. 5.13 or the full range (360 degrees) is covered. The skew is implemented
as a rotation about the origin followed by a ten-fold scale in the y-axis (the extent of skew was

chosen arbitrarily). The sense of rotation must be opposite across the different joint spaces so as

to preserve Eq. 5.13 (see Fig. 5.7).
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Figure 5.7: Section of the voting spaces showing the effect of the skew (the skew factor is k in this

case). Note how the lines are much more salient now

The problem can be simplified if a search window is used to produce the candidate matches

(instead of matching all points against themselves), but this limits the range of possible transfor

mations that can be detected (Note however, that this is common practice and is in fact the solution

used by the ICP-based algorithms [10], [61]). However, for the rest of this discussion we will as-

sume the worst case where we match all points from Xi with all the points from X2 unless otherwise

stated.

Once the joint spaces have been normalized and skewed with the hypothesized angle, we pro
ceed as follows. First, we need to find the preferred local orientations of all the points. We initialize

all the points as ball tensors and perform a sparse ball voting using a small ball voting field. After

this voting is finished, we get the preferred orientations from the eigenvectors ex. If the space has

been skewed, we discard the points with a preferred normal direction-'n = [nx, ny] that is "too
horizontal" (i.e. all those points for which ||nx|| > 0.8), since we expect to find lines with normáis

cióse to the vertical. Then, we reject all those points with low curve salieney: (Ai
-

A2)/Ai > 0.75.

The next step is to reinforce the preferred orientations by means ofia sparse stick voting with

a slightly higher reach. Only the points that passed the tests mentioned before emit a vote, but

all points in the space receive votes. This is done so that points that might have been erroneously

rejected in the previous stage may have a chance to be re-activated in. further stages. After the

sparse stick voting is done, we test all the points and reject (or re-activate) the points with ||n_.|| >

*-£>
-!<¡
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1. Popúlate the voting spaces with tokens generated from the candidate correspondences.
Initialize the skew angle a = 0o.

2. Skew the voting space according to a.

3. Initialize all tokens to ball tensors.

4. Perform sparse ball voting and extract the preferred normáis.

5. Perform sparse stick voting using the preferred normáis. Optionally, repeat this step
to elimínate outliers.

6. Obtain the equations of the lines described by the tokens with highest salieney in each

voting space. Perform sparse stick voting between the tokens that lie in these lines.

Enforce the Reflection Constraint of Eq. 5.13. Itérate until a stable line

is found or a set number of iterations is hit.

7. If a satisfactory line is found, output the correspondences. Otherwise, increment a and

repeat steps 2-6 until a = 360°.

Algorithm 5.1 General algorithmfor the detection ofcorrespondences between two 2D point
sets under a single rigid transformation.

0.8. From the remaining set of active points we reject those with low curve salieney ratio as

mentioned before.

The sparse voting step just described is repeated several times, but using a smaller angle for the

stick vote and wider reach each time to refine the sets of orientations and produce a highly salient

line (if present). Typically, it is enough to increment the reach of the stick votes o at discrete

intervals until it covers at least half the total range of the voting space in the x-direction (the axis

that is not skewed). We also reject all points with an absolute salieney Ai smaller than the average,
at each step, to speed up the process of outlier rejection. When this is done, we should have a

highly salient line (if one is present). The process is done simultaneously in both joint spaces and

all the points must pass all tests in both spaces in order to east votes on the next stage. Note also

that depending on the amount of outliers present, this repetition can be omitted.

Once we have found the salient lines, we enter the final stage of the process where we refine

the initial line estimates as follows. First, we save the preferred orientations of the active points
and then reset all the votes at each site to the original ball tensors. Then, we perform sparse stick

voting with a high a so that the stick votes reach the whole space in the x-direction, using the stored

preferred normáis. Again, we east votes only from active sites but receive votes everywhere.

We repeat the same tests of rejection by nx and plañe ratio; however, we add another test that

takes into account the constraint ofEq. 5.13. Namely, we take the preferred orientation ofthe most

highly salient token in each joint space and compute the equation of the line for each one. If the

normáis of the lines satisfy Eq. 5.13, then we only keep the points that simultaneously line in both

lines and reject the rest. We also overwrite the preferred directions of all the tokens lying on a line

to be consistent with the direction of the line. On the other hand, if the normáis of the line do not

satisfy Eq. 5.13, then we keep the tokens that lie on either line instead and reject the rest.

Since we populated the space by taking all possiblematches, for each point in the first set there

are múltiple candidate matches on the second. The test of forcing each token to lie simultaneously
in both lines in the joint spaces in order to remain active also has the effect of rejecting these

múltiple matches from ths same point. Henee by using this simple rule we are also assuring that

the final set will be at most a one-to-one mapping. We will prove why this happens in the following
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sub-section

This process is repeated (including resetting the votes to ball tensors each time) until we find

the lines that satisfy the reflection constraint and the amount of inliers detected is stable, or we

hit a certain predefined number of iterations. If the lines found are indeed the correct ones but

the reflection constraint is not satisfied well enough, then the subsequent iterations will have the

effect of slightly modifying the direction of the line by mutual reinforcement of the votes east by
the active tokens. Since the large majority of the active tokens will be inliers (because the lines

we found are the right ones), then the line that is computed in the next iteration will be closer to

satisfying the orthogonality constraint. However, ifthe lines are wrong, this reinforcement will not

oceur and the lines will vary randomly. There is a chance that wrong lines will randomly satisfy

this constraint, but these lines are rejected based on the amount of inliers detected. The number of

iterations is typically low, only 4 or 5 are needed in most cases, but we use 10 iterations as a top

limit.

If the number of iterations is hit and no stable pair of lines are detected that satisfy Eq. 5.13,

then we know we have not found the desired correspondence and continué to test the next axis of

skew until all possibilities are exhausted. Typically using the described normalization, lines with

tangent directions ranging from -15 to 15 degrees are detected with confidence. Henee, the axis

of skew is incremented at about 10 degrees each time. An outline of the process is presented in

Algorithm 5.1.

5.4.1 Uniqueness constraint enforcement in 2D

We have mentioned previously that requiring that both tokens generated by the same correspon

dence lie on the lines detected using Tensor Voting is enough to guarantee a one-to-one mapping.

We will now prove why this is correct. Let (x, y) be a point that is in correspondence with a point

(x\ y') via a known rigid transformation. Then, these points satisfy the equations of the lines 5.9

and 5.10

cos(|)(x/-x)+sin(|)(^ + |/)-(cos(f)íx + sin(f)í1,) = 0, (5.14)

-Sm(í)(x' + x) + cos(i)(y,-y) + (sm($)tx-co&(t)ty) - 0. (5.15)

Suppose that there is another point (x", y") ^ (x1, y') that is also in correspondence with (x, y) by
the same transformation. Then (x", y") must satisfy the equations 5.9 and 5.10 too

cos(|)(a:"-x)-l-sin(|)(í/'' + y)-(cos(f)íx+sin(f)í3,) = 0 (5.16)

-sin(|)(x" + x) + cos(f)(y"-y) + (sin(|)íx-cos>(í|)í¡/) = 0. (5.17)

If we substract Eqs. 5.16 and 5.17 from Eqs. 5.14 and 5.15, respectively we get

cos(|)(x'-x") + sin(f)(y'-y") = 0 (5.18)
-

sin(f )(x'
- x") + cos(|)(y'

- y") = 0
'

(5.19)

It can be easily demonstrated that the only valúes for (x'
- x") and (y' r- y") that simultaneously

satisfy Eqs. 5.18 and 5.19 are 0, which in turn implies that (a;', y') = (x", y"). This means that if

we have a múltiple match between (x, y) and two other points (x', y') -apd (x", y") under the same

rigid transformation, then either (x1, y') = (x", y") or only one of these points will simultaneously
satisfy the equations of the lines 5.9 and 5.10, and we can safely rejeetthe other as a false match.



5.5 Formulation in 3D 85

In practice this is implemented by checking against the lines obtained through Tensor Voting: if

these lines satisfy the reflection constrain, then we can reject múltiple matches by requiring that

the points lie simultaneously on both lines.

5.5 Formulation in 3D

Using the Geometric Algebra of3D space ^3.0,0 the rigidmotion of a 3D point x = xo\+yo2+za3
can be formulated as

x! = RxR + t, (5.20)

where R = e*A = cos(f ) + sin(f )A, t = txo\ + í,<r2 + tza3 and A = azo23 + a^on + azaí2 is

a bivector ofmagnitude 1 that specifies the axis of rotation. For simplicity, we will represent R as

rotor ofthe form

R = qo + qxOT3 + 9»^3i + 9*^12- (5.21)

By left-multiplication with R, the equation of rigidmotion becomes

Rx! = xR + Rt, (5.22)

(•»+«r<rj3+9»<T3i+íian)(x'ffi+y<ri+z'<r3) =

(XOi+y<T?+z<r3)(qo+qz<r23+<h<'3l+qz<'i7)+ (5-23)

(qo+1*<ri3+vt<r3i+qz''ii)(tz<ri+ti<'2+tztr3)- (5-24)

Developing products, we get

m>*'<'i+1x*'<'l3i+qw''<r3-qzx'<r2+qoK'<r2—9*V<'i+<h1l'a^2+9'rf"i+^a^"i+<k^"2—9t^"i+q^aita =

*90>'l+]ni^2+z9[^3+xqxaiz3+tqxa3—zqIa2-xqta3-^^at3i+zqtai+xqIai—^ +

qartxOl^xtIOZ3\+qitxO3—qxX\*a2-yillfa02—q*ti<'3+qiti<'312-\^zXv<'\-^ (5.25)

Re-arranging terms according to their multivector basis (see Eq. 2.41) we obtain the following
four equations

ox : qox1 + qzxj - qy¿ =
q^x + qyz

-

qzy + qotx + qzty
-

qytz, (5.26)

o2 ■■ qoy1 + qx¿ - qzi' = qoy + qzx
-

qxz + q¿ty + qxtz
-

qztx, (5.27)

°z '■ qo¿ + qyx'
- qxy' =

qaz + qxy
-

qyx + q0tz + qytx
-

qxtg, (5.28)

^123 : q*¿ + qvV1 + qz¿ =
qxx + qyy + qzz + qxtx + qyty + qztz. (5.29)

These equations can be re-arranged to express linear relationships in the joint difference and sum

spaces

°\ ■ qo(x' - x) -

qy(z + zl) + qz(y + y') + (qytz
-

q0tx
-

qzty) = 0, (5.30)

°* ■ qok/ ~V) + qx(z + /) - qz(x + x') + (qztx
-

qQty
-

qxtz) = 0, (5.31)

°3 ■■ qoiz' ~ z) -

qx(y + y1) + qy(x + x') + (qxty
-

q0tz
-

qytx) = 0, (5.32)

•7123: qx(x'-x) + qy(y'-y)+qz(zl-z)-(qxtx + qyty + qztz) = 0. (5.33)

These equations clearly represent four 3D planes. Thus, in order to estimate the correspondences
due to a rigid transformatii n, it suffices with finding these planes in the joint spaces {(x'-x), (z+

¿)- (y+\ñh {(v'-y), (*4 O. (x+x')}, {(z'-z), (y+r/), (x+x1)} and {(x'-x), (xf-y), (z'-z)}.
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However, as will be shown in the following sections, it will be enough to simply search for the

plañe described by Eq. 5.33 and verify it using constraints derived from the other three planes. In

a sense, we will seek only a plañe but require the points on this plañe to simultaneously lie on the

other three planes. We will now show how this is done and how this check helps in eliminating

múltiple matches.

5.6 Discarding múltiple matches in 3D

First, we will derive the set of constraints that will be used to verify that the plañe we have obtained

through tensor voting is indeed the plañe we are looking for. Let (x¿,x_) and (x¿,x^) be two

correspondences. Then, these points satisfy Eq. 5.30

qodx
-

qysz + qzsy + qk
= 0, (5.34)

q0d'x
-

qys'z + qzs'y + qk
= 0, (5.35)

where dx = x\
-

x., sz
= z\ + zu sy

=

y
■ + y¿; d'x = x'j

-

x}, s'z = z'j + Zj, s'y = y'j + y,; and

qk
= qytz

—

Qotx
—

Qzty If we substract these equations we get

qovx
-

qyvsz + qzvsy
= 0, (5.36)

where vx = dx —

d'x, vsz = sz
—

s'z and vsy = sy
—

s'y. Using the definition of R, this equation can
be rewritten as

kvx —

ayvsz + azvsy
= 0, (5.37)

where k = cos(|)/sin(f ). Using a similar procedure, for the Eqs. 5.31 and 5.32 we end up with

the following system of equations

kvx + azvsy
—

ayvsz
— 0, (5.38)

kvy + axvsz
-

azvsx = 0, (5.39)

kvz + ayvsx
-

axvsy
= 0. (5.40)

Where vy, vz and vsx are defined accordingly. Note that we now have a system of equations

depending on the unitary axis of rotation [ax, ay, az]. Since we can obtain the axis of rotation as

the normal ofthe plañe described by Eq. 5.33, then we only have one unknown: k. These equations
can be mixed to yield the following three constraints

vy(ayvsz
-

azvsy)
-

vx(azvsx
-

axvsz) = 0, (5.41)

vz(ayvsz
-

azvsy)
-

vx(axvsy
-

ayvsx) = 0, (5.42)

vz(azvsx
- axvsz)

-

vy(axvsy
-

ayvsx) = 0. (5.43)

These equations only depend on the points themselves and on the plañe spanned by them. Thus, we

can use these constraints to tell whether the plañe produced by Tensor Voting actually corresponds
to a rigid motion model. Also note that these equations never become undefined since the factor

k was removed. Furthermore, since these constraints have been derived from the original plañe

equations 5.30, 5.31 and 5.32 they are, in a sense, expressing the requirement that these points lie

simultaneously on all three planes.
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On the other hand, Eqs. 5.41, 5.42 and 5.43 have an interesting geometric interpretation. They
are in fact expressing a double cross product that is only satisfied for true correspondences. To see

this, note that if A = [ax,ay,az]T V = [vX)vy,vt]T andVs = [vsx, vsy, vsz]T then Eqs. 5.41,

Eqs. 5.42 and Eqs. 5.43 can be rewritten as a vector equation of the form

V x (A x Vs) = 0. (5.44)

This equation only holds due to an inherent symmetry that is only present for true correspon
dences; in other words, these equations can be used to reject false matches too. To prove this, first

remember the well-known fact that any rigidmotion in 3D is equivalent to a screw motion (rotation
about the screw axis followed by a translation along it). Henee, without loss of generality, we can

consider the case where the screw axis is aligned with the z axis. In this case, the screw motion

consists of a rotation about z followed by a translation tz along it. Therefore,

vz = dz -

d'z = z'i -

Zi
-

z'j + Zj
= (zí + 1„) -Zi- (zj + tz) + Zj

= 0. (5.45)

Also, note that since A = [001]T, then the first cross product ofEq. 5.44, Ay. Vs = [-vsy, vsx, 0]T
henee the vsz component of Vs is irrelevant in this case and can be safely disregarded. Thus,

we can analyze this problem in 2D by looking only at the x and y components of V and Vs.

Accordingly, the difference and sum vectors will only have two components di = [dx, dy]r, dj =

[d'x, d'y]r, Si — [sx, sy]J, and Sj
= [s'x, s'y]T The situation is illustrated in Figs. 5.8.a and d.

Since the angle between X. and x_ is the same as the angle between Xj and x'j, then the rhombi

spanned by the sum and difference of these points (the dashed lines in Fig. 5.8.d) are equal up to

a scale factor. That is, there is a scale factor k such that k\\si\\ = ||s_¡|| and fc||d.|| = \\dj\\. From
whence ||*s.||/||*i.|| = ||*s_,||/||dj||. In turn, this means that the triangle formed by the vectors di, dj
and V is proportional to the triangle s¿, Sj, Vs. And since, by construction, s. J_ d. and Sj J. dj,
thenV±Vs.

Now, let us return to Eq. 5.44. The cross product A x Vs has the effect of rotating Vs by
90 degrees since A = [0, 0, 1]T in this case. But since Vs J_ V, then the vector A x Vs will be

parallel to V and henee, their cross product will always be 0, which is consistent with the analytic
derivation.

This symmetry is broken if we have points that belong to different transformations, as shown

in Figs. 5.8.b and e (we assume the worst case in which points x. and x_* were applied the same

translation but different rotation angle <£. If a different translation is present, the planes of motion

will be different for both points, breaking the symmetry). Note how the angle between V and Vs

is not orthogonal (Fig. 5.8.e).
In a similarway, when we havemúltiple correspondences, i.e., x¿ matches both x\ and x'j,i^ j

(Fig. 5.8.c), the symmetry is also broken and V is not orthogonal to Vs (see Fig. 5.8.f). Henee,

the constraint expressed by Eq. 5.44 can be used to reject múltiple matches too.

Having explained how we can identify that the correct plañe has been detected, we will now

show how we used Tensor Voting to find this plañe.

5.7 Estimation of 3D correspondences

Given two sets of 3D points Xi and X2, we are expected to find the correspondences between these

two sets assuming a rigid transformation has taken place, and we have an unspecified number of

outliers in each set. No other information is given.
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Figure 5.8: a) and d) Two correspondences belonging to the same transformation and the geometry
of the plañe of rotation. b) and e) Two correspondences belonging to different transformations

(different angle) and their corresponding geometry. c) and f) Múltiple correspondence case and its

geometry.

In the absence of better information, we popúlate the joint space (x'
—

x), (y' - y), (z' - z) by

matching all points from the first set with all the points from the second set. Thus, the amount of

outliers present in the joint space is multiplied 100-fold by this mapping.

This mapping enables us to detect the transformation regardless of the magnitude of the trans

formation. However, the drawback is that the density of the plañe we are seeking decreases as the

angle of rotation increases. To solve this problem, we have adopted a hypothesize-and-test scheme

were a series of rotation axes are tested at discrete intervals and angles until the desired plañe is

identified. In order to identify the plañe we use the constraint of Eq. 5.44, as explained in the

previous section. This constraint requires the specifícation of two different points. In practice we

use the point on the plañe with the highest salieney and test it against the rest of the candidate

points. If any of these points does not satisfy the constraint, we remove it.from the plañe. If not

enough points remain after this pruning is completed, we reject the plañe. *,

The plañe is detected using the following prooídure. First, the set of ppints Xx is rotated ac

cording to the current hypothesized axis and angle, and the joint space specified by Eq. 5.33 is

populated with a dense correspondence scheme (all points from X. matched against all the points
from X2). These tokens are initialized as ball tensors and a sparse ball voting is done with a small

a to find the preferred normáis.
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As can be easily noted, Eq. 5.33 collapses for the case of puré translation. However, in this

case, all points that belong to the motion model will cluster together in a single token in the joint

space. This token is easy to detect because the first voting stage will produce a large absolute

salieney valué for this point. If a token with these characteristics is found, we stop the algorithm
and produce the correspondences based on the tokens that were found clustered together.

In the general case, however, the next step is to reject all those tokens with a low plañe salieney
ratio A2/Ai > 0.9. Then, we perform a series of sparse plañe voting iterations. At each iteration,
we reject tokens with low plañe ratio, and absolute salieney valué below the mean. Only the tokens

that remain active from the previous iteration east votes in the current iteration, but all sites receive

votes, in order to enable tokens that may have been erroneously rejected in a previous cycle. The

o valué is increased slightly at each iteration so as to make the plañe we are looking for "grow"

gradually.
When the o valué has reached a predetermined valué, we switch to the last stage of the algo

rithm where we enforce the constrain of Eq. 5.44. The valué of o is left fixed, but all the tensors

at the tokens are reset to ball tensors. Then, a sparse plañe voting is performed using the stored

preferred normáis at each active token. Now, instead of rejecting tokens with low plañe salieney,
we reject all those tokens that do not lie cióse to the plañe defined by the token with the máximum

absolute salieney. Then, we reject tokens with an absolute salieney valué below the mean and

finally, we enforce the constraint expressed by Eq. 5.44.

This last stage is repeated until the number of active tokens becomes stable (meaning we have

actually found a plañe representing a rigid motion model) or a pre-set number of iterations is

hit. It is worth noting that, in general, it is not enough with finding a plañe in the joint space

(x' — x), (y' — y), (z1
—

z) only. The checks against the other three joint spaces are needed to

determine a correct rigidmotion has been detected. Recall that this is precisely the purpose ofEq.
5.44, plus the added benefit of rejecting múltiple matches.

If a plañe that satisfies Eq. 5.44 is not found, or it has not enough support, then we try again
the whole procedure using a different angle. In practice we have used increments of 5 degrees to

have a greater confidence in the detection of the plañe. If all angles have been tested and no plañe
was detected, we try with a different axis of rotation. Again, the axes are tested in a systematic
fashion at small increments until the full hemisphere of possible orientations is tested. The whole

algorithm is sketched in Algorithm 5.2

Finally, we recognize that the scheme proposed here is far from perfect. The exhaustive search

of all angles and rotation axes can be quite time-consuming, and appears to be a little simplistic.

Unfortunately, the density of the plañe we are seeking varíes with the angle of the rotation applied
to the set of points. That is, the density of this plañe is mínimum (the plañe spans the full voting

space) when the rotation is 180°, and it becomes infinite when we have puré translation (all the

points of the plañe cluster in a single location in space). Henee there does not seem to be some

type of heuristic or constraint we can apply to prune the search. An altemative to this is to use the

other three search spaces as described in Eqs. 5.30, 5.31, and 5.32 and perform Tensor Voting to

detect these planes to help improve the search method. This is a matter of future research.

However, this disadvantage is only apparent if the magnitude of the transformation is un

bounded. Algorithms like the ICP require that the transformation be relatively small. If we use

the same limitation in our method, we do not need this exhaustive search, and our method works

without an iterative scheme. In this case, our algorithm has a complexity of 0(n2) in the worst

case (this will be proven in a subsequent section), where n is the number of tokens in the voting

space.
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1. Initialize the rotation angle a = 0°, and axis A — [0, 0, 1]T
2. Rotate the set Xi according to a and A.

Popúlate the voting space with tokens generated from the candidate correspondences.
3. Initialize all tokens to ball tensors.

4. Perform sparse ball voting and extract the preferred normáis.

5. Check for the presence of a set of tokens clustered about a single point in space.
If this cluster is found, finish and output the corresponding translation detected.

6. Perform sparse píate voting using the preferred normáis. Optionally, repeat this step
to elimínate outliers. After each iteration, increase the reach of the votes slightly, so

as to make the plañe grow.
7. Obtain the equation of the plañe described by the tokens with highest salieney.

Perform sparse píate voting between the tokens that lie in this plañe.
Enforce the constraint of Eq. 5.44. Itérate until a stable plañe
is found or a set number of iterations is hit.

8. If a satisfactory plañe is found, output the correspondences. Otherwise, increment a and A,

and repeat steps 2-7 until all angles and axes of rotation have been tested.

Algorithm 5.2 General algorithmfor the detection ofcorrespondences between two 3D point

sets under a single rigid transformation.

5.8 Tests with synthetic data in 2D

The method just described was validated by performing a large set of experiments. We also com

pared our method against the Iterated Closest Points algorithm (ICP). The elassie ICP was de

scribed in [10], but we actually used Fitzgibbonys implementation as described in [21]. Briefly,

Fitzgibbon's ICP (F-ICP) is based on an iterative scheme where an error measure is minimized to

find the correspondences.
The experimental setup to test these methods is as follows. We generated 50 points uniformly

distributed in a 10 x 10 square centered at the origin. Then, we applied a known rigid motion

to this set of points. After this transformation was applied, an equal number of random outliers

distributed uniformly throughout the space spanned by both sets, was added to both the model

and the data sets. It is well-known that the reliability of F-ICP depends largely on the similarity
between the two input sets: the closer the transformation is to the identity, the better it performs.

Thus, to try to keep things fair, we chose to constrain the range of rotations between -5° and 5°

and the translation range to ±1.5 in both axes.

The results of these tests can be seen in Table 5.1. The success rate is defined by computing
the percentage of correct matches produced by the algorithm. If the percentage is at least equal to

50%, we deem the experiment a success. The output of F-ICP is not a set of correspondences, but

we computed these simply by selecting the closest points to each othenpcross both sets. It must be

noted that using this procedure, we could find a correspondence for all the outliers. However, we

only counted the correspondences produced for the actual inliers in Tapie 5.1. Another approach
would have been to use a threshold window to reject the outliers, bué we did not want to risk

rejecting a true inlier with a poorly chosen window in some experiment. .

However, given that the core of the problem, as we have formulated-it, is finding a line from a

set of points, we also compared Tensor Voting against the simpler Hough Transform. It is interest-
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Angle J-xt J-y Outliers Success rate Number of triáis

-5°..5° -1.5..1.5 100% 75% 20

-5°..5° -1.5..1.5 200% 30% 20

-5°..5° -1.5..1.5 300% 10% 20

-5°..5° -1.5..1.5 400% 10% 20

-5°. .5° -1.5..1.5 500% 5% 20

Table 5.1: Success rates for the F-ICP algorithm.

ing to note that the Hough Transform performs slightly better than Tensor Voting in many cases.

However, the disadvantage of the Hough Transform is that its range is limited. Henee, the input

space must be normalized so that it always lies within the working range of the Hough Transform,
whereas Tensor Voting works regardless of the size of the input space. This normalization has

adverse effects for the Hough Transform in many cases. Another advantage of Tensor Voting over

the Hough Transform is its ability to detect curves, we will return to this point later.

To keep things fair, we performed a set of tests where the parameters of the transformation

where well within working range of the Hough Transform at varying levéis of noise. The setup of

the experiment was similar to the previous case. We chose the same working space of a 10 x 10

square centered on the origin. However, in this case, the full range of angles was used and the

translation was constrained so that the sets remained in the general vicinity of this square, so as not

to disqualify the Hough Transform by applying an out-of-range transformation. In practice, this

means that we set the máximum possible translation of ±10 units in each axis. Then, we added

random outliers uniformly distributed throughout the space spanned by both sets, to each set. The

results of this experiment at varying degrees of noise are presented in Table 5.2. From this table

it is clear that in these cases, the Hough Transform performs better than Tensor Voting (Tensor

Voting stops working reliably before the 300% outlier mark, whereas the Hough Transform still

works in this situation).

Angle T T-*■***» ±y Density Outliers HT success TV success Triáis

0..3600 -10..10 1.0 100% 100% 100% 20

0..3600 -10..10 2.0 200% 100% 100% 20

0..3600 -10..10 2.6 260% 100% 80% 20

0..3600 -10..10 2.8 280% 100% 60% 20

0..3600 -10..10 3.0 300% 100% 60% 20

0..3600 -10..10 4.0 400% 100% 15% 20

Table 5.2: Success rates for the Hough Transform (HT) versus Tensor Voting (TV).

Note that unlike F-ICP, our algorithm is insensitive to the magnitude of the transformation.

Therefore we have allowed the full range of rotations and a larger range of translations in our

experiments. Also, our algorithm is still stable at 200% outliers, whereas the performance of F-

ICP was reduced to approximately 30% by this mark.

We also performed a series of tests where the parameters of the transformation where not so

strictly bounded. For this case, we generated points in the same fashion as previously described,
but the transformations were now much larger (the translation ranged between 50 and 100 units).
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Then, we added random noise evenly distributed throughout the área covered by both sets. Since

we had optimized theHough Transform to work in the original 10 x 10 square área, a normalization

of the data was always needed (or else, the Hough Transform would not detect any lines at all).

However, no normalization of the data was needed for the Tensor Voting algorithm. The results of

these tests are shown in Table 5.3.

Angle T T
■Lx, Jjy Density Outliers HT success TV success Triáis

0..3600 -100..-50,50..100 0.03 300% 100% 100% 20

0..3600 -100..-50,50..100 0.04 400% 100% 100% 20

0..3600 -100..-50,50..100 0.06 600% 50% 100% 20

0..3600 -100..-50,50..100 0.08 800% 10% 100% 20

0..3600 -100..-50,50..100 0.10 1000% 0% 100% 20

0..3600 -100..-50,50..100 0.12 1200 % 0% 100% 20

0..3600 -100..-50,50..100 0.14 1400% 0% 100% 20

Table 5.3: Success rates for the Hough Transform (HT) versus Tensor Voting (TV).

Note how the results of the Hough Transform start deteriorating because of its intrinsic range
limits whereas Tensor Voting remains stable. For instance, starting at 600% outliers, the Hough
Transform starts detecting false or múltiple matches whereas the Tensor Voting remains stable.

This is because of the outlier density to inlier density ratio (shown in both tables under the

column labeled "Density"). In the first batch of experiments, the density of the inliers is 0.5 points

per square área unit. The density of the outliers at the 100% case is the same. Henee, by adding
more outliers, the ratio of the density of outliers versus the density of inliers increases quickly.

On the other hand, in the second batch of experiments, the density of the inliers is still 0.5 points

per square área unit, but the density of the outliers is reduced to a mere 0.005 points per square área

unit since we are adding them over the full space spanned by the transformation. Remember that

the Hough Transform works by counting the number of votes for each line, whereas Tensor Voting
works by using the local density of the tokens. This explains why in the first set of experiments,
the Hough Transform performs better since there are less overall points with a higher density.

Accordingly, in the second set of experiments, there are much more points but their density is

much lower, henee Tensor Voting works well but the Hough Transform fails.

From these experiments we conclude that our approach seems to be less outlier-sensitive than

F-ICP, in general. We believe that F-ICP might still wqrk under outlier levéis of 1000% in a few

cases, but the reliability of that algorithm would be rat¿er low. However, our algorithm managed
to remain stable throughout all these experiments. ¿

On the other hand, we can also see that the Hough Transform may be more reliable than Tensor

Voting in a limited range of transformations; however, (Tensor Voting is by far more stable in the

more general sense where the range of the transformations is not bounded by any limits. Further-

more, as will be shown later in this thesis, Tensor Voting can also be used to detect general curves

in the voting spaces which correspond to certain types of non-rigid transformations. In such cases,
the use of the Hough Transform is completely out of the question.
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5.9 Tests with synthetic data in 3D

Again, we validated our method for 3D correspondences by performing several experiments with

synthetic data. Since the core of the problem is the detection of a 3D plañe among a set of points,
we considered using the Hough Transform for this. However, unlike the 2D case, the Hough
Transform did not prove to be useful in a large portion of the cases. This is because the voting
space has 100 times more points due to false matches than the actual inliers (this is, of course,
the best case: assuming that no outliers are present in the original data sets) and the actual plañe
only covers a small región of the space; whereas for the 2D case, the lines we were seeking almost

always covered the whole space. Henee, the global máximum in the Hough space almost always
corresponds to a random plañe generated by the vast majority of the tokens present. Whereas

tensor voting is based on the density of these tokens which is not only a function of the number of

points present, but also on their relative positions. An illustration of this problem appears in Fig.
5.9. In this figure, the left image shows the joint space. The plañe detected by Hough is highlighted
in Fig. 5.9.b, whereas the actual plañe is shown in Fig. 5.9.C.

Figure 5.9: a) The joint space (x;
-

x), (y'
-

y), (z' - z). b) The incorrect plañe detected by the
3D Hough Transform. c) The actual plañe we are seeking (correctly detected with our algorithm).

Of course, it can be argued that increasing the resolution of the Hough space will help in the

detection of the correct plañe, however, due to the large amounts of points that will be tested, the

computation time becomes prohibitive. On the other hand, Tensor Voting can be optimized to run

with the use of Oct-trees so that only a tiny amount of tokens receive votes at each stage. Henee,

we only compared ourmethod against the Iterated Closest Points algorithm (ICP). The elassie ICP

can be found in [10], though we actually used Fitzgibbon's implementation (F-ICP) as described

in[21].

For the case of F-ICP, the tests were conducted in the following fashion. A set of points was

generated inside a 10 x 10 x 10 cube centered on the origin. A known rigid transformation was

then applied to this set. The bounds of these points are computed and the same amount of random

outliers is added to both sets. The outliers are distributed uniformly throughout the bounds set by
the original sets.

It is well-known that the reliability of F-ICP depends largely on the similarity between the

two input sets: the clos >r the transformation is to the identity, the better it performs. Since our

algorithm effectively ro» ates one set of points until it finds a solution, it can be considered that we

too, are dependent upor. the quality of the initialization. Therefore, to try to keep things fair, we

chose to constrain the unge of rotations Detween -5° and 5° and the translation range to ±1.5
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in all axes while testing the F-ICP algorithm. The angles, axis of rotation and translations were

generated randomly following an uniform distribution. The range ofthe axis of rotation was largely
immaterial and therefore covered the whole hemisphere of possible orientations. An experiment
is deemed a success if at least 50% of the correspondences are correctly identified. The results of

these tests, are presented in Table 5.4.

Angle J-Xt -tyi J-z Outliers Success rate Triáis

-5..5° -1.5..1.5 100% 90% 20

-5..50 -1.5..1.5 200% 80% 20

-5..5° -1.5..1.5 300% 60% 20

-5..5° -1.5.-1.5 400% 67% 20

-5..5° -1.5..1.5 500% 50% 20

Table 5.4: Success rates for the F-ICP algorithm.

Our algorithm was tested in a similar fashion. However, in this case, the full range of possible
rotation angles was employed. The translation was also increased to lie between —10 and 10 units.

The results of these experiments can be seen in Table 5.5. It will be noted that we did not include

the density ratio column in this table, as we did for the 2D case. This is because the actual density
of the plañe varíes with the rotation between both sets of points. The density of the plañe reaches

a mínimum of 0.05 points per cubic volume unit at 180° and a máximum of oo at 0o (all the tokens

become clustered in the same point).

Angle ■lXt íyt J-z Outliers TV success Triáis

0..3600 -10..10 300% 100% 20

0..3600 -10..10 400% 90% 20

0..3600 -10..10 600% 85% 20

0..3600 -10..10 800% 85% 20

0..3600 -10..10 1000 % 80% 20

0..3600 -10..10 1200 % 70% 20

Table 5.5: Success rates for the estimation of correspondences for 3D rigid motion using Tensor

Voting.

As can be appreciated from these tables, our algorithm still performs reliably at 300% outliers,

whereas F-ICP only succeeds about 60% of the times at this mark. Also, the performance of our

algorithm deteriorates at much slower pace than F-ICP in general. This shows that, just as in the

2D case, F-ICP does not withstand as much outliers as our algorithm.

5.10 Analysis of the algorithm

The complexity analysis is rather straightforward. Let us consider the first voting step of the

2D case where a sparse ball voting is performed. In each voting space there will be n tokens.

Suppose that in average, these tokens reach m neighbors with their voting fields. Then, the average
number of votes east is nm. Therefore,! the complexity of this step is 0,(nm) where n is the
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number of tokens in each voting space and m is the number of tokens within reach. Note that all

subsequent voting is also of the same order. Henee, the overall complexity of our algorithm is

0(mn), in average. In the worst case, where every single token casts a vote to every other token,
the complexity increases to 0(n2) (note that in practice this will seldom happen).

For the 3D case, the analysis is quite similar. On average, each voting stage will be of order

0(mn) where n is the number of tokens in the voting space andm is average the number of tokens

within reach. This becomes 0(n2) in the worst case, where every single token receives a vote from

every other token.

The complexity of the algorithms, in their most general implementation (voting space skewing
for the 2D case, test-and-hypothesize runs, iterations to make the lines or planes grow slowly) is

0(kmn) where k is the number of hypothesize-and-test runs. This also makes these algorithms run

rather slow. It may take from several minutes to hours to compute a single 2D or 3D motion with

1000 % outliers. However, bear in mind that this is an excessive scenario. Most applications rely
on the assumption that the motion between both data sets is small and, more importantly, that there

are no outliers. If we apply these same constrains to our algorithm, we can produce an optimized
versión that produces the desired results in a fast way. This is possible mainly because in these

cases no iterations are needed at all, and the problem is solved in two or three tensor voting passes.

5.11 Experimental results: 2D case

5.11.1 Range readings

We tested our 2D engine with various experiments. For the first experiment, we aligned to sets of

points obtained with a láser range scanner mounted on a mobile robot In the 2D case, we tested

our method with some range readings taken with a láser system mounted on a mobile robot
'
We

took two non-consecutive readings after the robot had performed both an unknown rotation and

translation. The matches were computed using the procedure described in previous sections with

the difference that instead of populating the voting spaces with a full matching scheme, a search

window was used instead. With the correspondences thus obtained, the motion between the frames

was computed using the standard Direct Linear Transform (DLT) algorithm. The original data sets

and the aligned sets are shown in Fig. 5.10.

5.11.2 Experiments with images

In another experiment, we used our algorithm to register a couple of images of a plañe with a

random pattern performing an unknown rigid transformation (Figures 5.11.a and b). The images

were first processed to compénsate for any projective distortion produced by the camera and then,

the Harris comer det -ctor was used to find features of interest. Note that the features extracted

need not be the same number in both images and no initialization of correspondences is needed.

The resulting matches produced by our algorithm were used to compute a rigid transformation

between the two images and register them (Fig. 5.1 lx).
It is worth noting that in this case, due to the noise in the detection of the features, our algorithm

had to be adapted tc account for this. Thus, instead of looking for a perfect line in the joint

space, we looked fcj a small band of points lying riearly on a line. The search criteria were

'Thanks to Denis Wc 1; of the Robotics Embedded Systems Laboratory of the USC for providing the data.
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Figure 5.10: a) and b) Two láser range readings. c) The alignment produced by our algorithm.

Figure 5.11: a) and b) Two images of a plañe performing an unknown rigid motion. c) The align
ment produced by our algorithm (The features have been enhanced for clarity).

accordingly relaxed. This, however, allowed for a few múltiple matches to "pass through" the

original algorithm. To correct this situation, an additional final step was employed to reject the

multiplicity of correspondences based on the closeness to the lines found in the joint spaces. Figure
5.12 illustrates this situation. In that figure, we have two tokens x¿ and x¿ which viólate the

uniqueness constraint. In order to reject one or the other, we fit a line to all the inliers and choose

the token with the smallest distance to this line. In our particular example, Xj would be chosen.

5.11.3 Múltiple overlapping motions

Another advantage of our algorithm is that it can easily be extended to account for múltiple over

lapping motions. In order to detect múltiple motions, we apply the algorithm as described in

Algorithm 5.1; but in the last stage, instead of just taking the token with the highest salieney and

assume that it belongs to the only line present, we first group all existing lineg and then perform
the final stage for each line separately. , j

The grouping of lines proceeds as follows. First, we créate two lists of line equations (one for

each joint voting space). Then, for each active token, we compute the equation;of the line passing

through this token based on its position and its preferred orientation. If the equation of the line
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Figure 5.12: If two tokens x. and Xj viólate the uniqueness constraint, only the point lying closer
to the fitted line is chosen.

is similar to one of the equations that has already been stored in the list, we update the equation
on the list by averaging both equations and we add the point to the set of points belonging to this

equation. If, on the contrary, no line equation is found that is similar enough with the current line,
we simply add a new line to the list, créate a new set of points and add the current token to this

set. We repeat this algorithm until all tokens have been assigned to a line equation. Then, we find

corresponding line pairs across both voting spaces (i.e., the lines that roughly satisfy Eq. 5.13 and

discard the rest. Finally, for each pair of lines we run the last stage of the algorithm to discard

possible outliers and enforce the uniqueness constraint.

We present a synthetic example with three overlapping motions in a 10 x 10 square in Fig.
5.13.a. The resulting correspondence sets as detected by our algorithm are shown in Figures 5. 13.b-

d. Note that the traditional approaches like ICP and Chamfer matching cannot deal with múltiple

overlapping motions.

Figure 5.13: a) Three overlapping motions (dots map to crosses). b),c) and d) The resulting corre

spondence sets as detected by our algorithm.

We also performed an experiment in the field of object recognition. In this case, we took a

picture of some pliers (see Fig. 5.14.a), and computed its outline using the Canny edge detector.

Then, we placed *:he pliers and opened them (see Fig. 5.14.b), taking another picture and again

detecting the edges in the same fashion. However, since the model and the target both had a

structure, we used this to our advantage. Instead of blindly matching all points of the model with

all the points in (he target, we first computed the local tangents of the edges using sparse ball

voting.
We used these tangents to guide thematchings (only pointswith similar tangents werematched)

and prune the voting space by limiting the number of outliers. Other than this, we applied our
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algorithm as usual. Several solutions were provided by our algorithm at different angles, however,

we chose the two solutions that yielded the highest number of matches. The model and the target

object can be seen in Fig. 5.14.C. The first solution found with our algorithm can be seen in Fig.

5.14.d, and the second solution in Fig. 5.14.e. The multiplicity of solutions is due to the symmetry

of the pair of pliers themselves.

Figure 5.14: a) Image of the pliers used as model. b) Target object. c) The model and the target

edges overlapped. d) and e) The two solutions found by our algorithm.

5.11.4 Extensión to 2D non-rigid motion

Our algorithm can also detect some instances of non-rigidmotion. Namely, those that still produce

detectable curves in the voting spaces. We have found that point sets that display smoothly-varying

rigid transformations produce smooth curves in the voting spaces. For example Fig.
5. 15.a displays

one such set. We generated this set by slowly varying the rotation angle over the Jength of the string
of points. The voting spaces display two clearly salient curves, as seen in Fig. |.15.b.

In order to detect these curves, we employ the Algorithm 5.1. However, in the last stage,

instead of globally enforcing the reflection constraint of Eq. 5.13, we only require
that each token

is locally consistent with this constraint across both voting spaces, and reject the rest. This is

illustrated in Fig. 5.15.b. Here we show two tokens along with their normáis, the arrows across

the voting spaces show which tokens are used to enforce the Reflection Constraint locally. The

resulting correspondences in this synthetic test are shown in Fig. 5.15.C.
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Figure 5.15: a) The set of points that were applied a non-rigid transformation (dots transform

to crosses). b) The curves generated in the voting spaces. The arrows across the voting spaces
show the local enforcement of the Reflection Constraint. c) The correspondences found with our

algorithm.

5.12 Experimental results: 3D case

In the 3D case, we performed the following experiments. First, we followed the position of a

robotic arm in 3D in a sequence of stereo pairs (Fig. 5.16 shows only the left images of the

sequence). The model of the object was picked by hand from the first reconstruction and then we

computed the position of the arm in the subsequent reconstructions using an optimized versión of

our algorithm (namely, it only consisted of two stages: sparse ball voting and sparse stick voting,
no iterations were used). Note that the sequence of images do not form a video, henee, the features

cannot be tracked between successive frames due to the relatively large differences between the

snapshots. After the motion was computed, the position of the arm in 3D was reprojected on the

images as shown in Fig. 5.16.

In a second experiment wemade a reconstruction of a Styrofoam model of a head using a stereo

camera. The two reconstructions are shown in Fig. 5.17.a-c. The aligned sets can be seen in Fig.
5.17.d-f. In this case, however, another optimization was used. Since the sets are cióse to each

other, and the points provide enough structure, we used tensor voting to compute the preferred
normáis at each site.

The computation of the normáis proceeds as in standard sparse tensor voting. First, we initial-

ized each point to a ball tensor. Then, we placed a normal ball voting field on each point and east

votes to all the neighbors. Then, the preferred normal at each site is obtained by computing the

eigensystem at each point and selecting the eigenvector with the greatest eigenvalue. A close-up
of the surface of the model and some of the normáis found by this method is shown in Fig. 5. 17.g.
We used this information to prune the candidate matches to those that shared a relatively similar

orientation only.

Also, note tha in this case, there are non-rigid differences between both sets, due to the noise

in the reconstruefc Dn process. This can be noted in places like the shin, where the alignment could

not be made simp.y because the size of this section of the reconstruction differs slightly between

both sets. Howev r, our algorithm still manages to align the sets as much as possible using a rigid
transformation. ". hus, it can be notec' that the forehead and upper part of the nose were aligned

successfully.

Finally, in ot last experiment, vv s aligned a model of a Toyota car taken with a láser range

scanner and alig ed it with a noisy ;construction performed with a stereo camera. The noisy
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Figure 5.16: Sequence of (left) images from a stereo camera showing the position of the reprojected
arm. This is not a video.
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Figure 5.17: a)-c) Sets to be aligned. d)-f) Sets after alignment. g) Close-up ofthe surface ofthe

model showing some of the normáis computed using tensor voting.



5.13 Múltiple overlapping motions 101

Figure 5.18: a) Target for alignment, note the noisy surface. b) Model displayed over the target.

c) Model and data after alignment. d) Close-up of the surface of the model showing some of the

normáis computed with Tensor Voting.

target is shown in Fig. 5.18.a, the model and the target are shown in Fig. 5.18.b, and the final

alignment in Fig. 5.18.a The procedure is the same as in the previous case. Again, since the

data sets provided structure, we used it to our advantage by computing the preferred normáis using
tensor voting and pruning the candidate matches as described previously (Fig. 5.18.d).

5.13 Múltiple overlappingmotions

As noted previously, another advantage our method has over ICP and similarmethods is the ability
to simultaneously detect múltiple overlapping motions. This is also true for the 3D case. In this

case, each different motion simply produces another plañe in the voting space. There are limita-

tions to the motions that can be differentiated, though. A quick analysis of Eq. 5.33 reveáis that

if two different motions share the same axis of rotation and same overall translation, then they
will span the same 3D plañe in the voting space. However, in these circumstances, it suffices with

analyzing the other three voting spaces (Eqs. 5.30, 5.31 and 5.32) to disambiguate this case.

To illustrate this, we present a synthetic example where three overlapping motions with dif

ferent axes of rotation, angles and translations were generated in a 10 x 10 x 10 cube centered

at the origin (see Fig. 5.19). Our algorithm is applied as described in Algorithm 5.2. However,
after the first plañe was detected, we removed its tokens from the voting space and the process
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Figure 5.19: a) Three overlapping rigid motions in 3D. b)-d) The different motions as detected by

our algorithm.

was repeated until no more planes were found. This is, of course, the naive implementation of the

solution. However, the algorithm can be modified to account for the presence of múltiple planes.

In that case, only the final stage, where the constraint from Eq. 5.44 is enforced, would be executed

separately for each set of points.

5.14 Extensión to 3D non-rigid motion

While it can still be argued that, with some work, the Hough Transform might also be used to

detect the same plañe we obtain through Tensor Voting, there is another advantage to using the

latter over the formen Tensor Voting enables us to find general surfaces. This means that we can

also detect certain non-rigid motions that produce non-planar surfaces in the voting spaces.
To illustrate this, we generated a synthetic plañe and then applied a twist transformation to

it (see Fig. 5.20.a). This transformation produces a curved surface in the voting space (clearly

visible in the center of Figs. 5.20.b-c, a close-up of the surface is also presented Fig. 5.21).

The surface is easily detected using Tensor Voting and the resulting correspondences, from two

different viewpoints, can be seen in Figs. 5.20.d-e.

In order to detect this surface, we had to modify our algorithm as follows. The first two stages

(sparse ball voting and sparse stick voting) are performed as usual. However, in the last stage,

Eq. 5.44 was not enforced globally, but only locally around each active token. In other words,

we enforced presence of rigid transformations only on a local level. It must be remembered that

Eq. 5.44 depends on two points. Therefore, for each token that was verified, we used the closest

active neighbor. We illustrate this in Fig. 5.21. In that figure, the token x. is being verified using

its closest neighbor, x_¡. The normáis ofthe tokens are also shown.
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Figure 5.20: a) Non-rigid motion applied to a 3D plañe, b) and c) The curved surface that was gen
erated in the voting space from two different view points. d) and e) The resulting correspondences
found with our algorithm seen from two different viewpoints.
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Figure 5.21: A close-up of the surface corresponding to an elastic motion. The constrains of Eq.
5.44 are only verified locally between the closest point pairs. In this figure, token x¿ is verified

with its closest neighbor, Xj. Other pairs to be verified are also highlighted in the figure.
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Chapter 6

Conclusions and Future Work

6.1 Fusión ofmúltiple reconstructions using calibrated sensors

In the calibrated case, we have demonstrated a simple but effective algorithm to compute the axes

of rotation of the pan-tilt unit. We have used these axes to compute the transformation between

the camera and the robot without the need for re-calibration, thus enabling the superposition of

reconstructions taken from different positions into a single map.
The algorithm presented works with any sensor. We have proven this by incorporating in

formation gathered from the láser system into the maps reconstructed with the stereo system. In

particular, we have used motion estimation techniques on line measurements obtained with the

láser system to guide our robot with enough precisión to perform simple grasping and reaching
tasks.

6.2 Uncalibrated reconstruction

In the uncalibrated reconstruction part, we have presented a method that simultaneously estimates

points, lines, quadrics, plañe conics, degenerate quadrics and cameras. The advantage of this

method is that it does not impose any kind of constraints on the scene, e.g. there's no need for

planarity and the features are not required to be visible in all views. The only requirement is that

there is enough information in a couple of images to compute the Fundamental matrix. However,

we have also tested initializing with the Trifocal tensor. Even though the initial reconstruction is

better using the Trifocal tensor, the final scene after Bundle Adjustment is nearly the same in both

cases. The gain in precisión is only meager. We expect similar results with the Quadrifocal tensor.

The problem of line orthogonalization was properly addressed and we found out that orthogo

nalization is not needed at each iteration ofthe Bundle Adjustment. A final correction step suffices.

We have also presented an algorithm for the correction of conic outlines in n-views, and a

geometric constraint (Eq. 4.67) that can be implemented inside the Bundle Adjustment iterations.

This constraint does not preserve the topology of the quadrics by itself. However, it must be

stressed that this constraint prevents the parameters of the quadrics to evolve freely and keeps

them cióse to an epipolar-consistent state. A secondary effect of this constraint— albeit, not less

important
—

,
is that it effectively prevents the system from reaching a global mínimum when this

implies a great increase in the error in the epipolar-consistency check. This means that reaching

the global mínimum is not always desirable, for it may produce quadrics that are topologically
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incorrect. Thus, we have designed a geometric constraint that helps in determining when Bundle

Adjustment should stop.

6.3 Estimation of correspondences in 2D and 3D

We have also presented a novel non-iterative algorithm that combines the power of expression of

Geometric Algebra with the efficiency of Tensor Voting to find the correspondences between two

sets of 2D or 3D points with an underlying rigid transformation. This algorithm was also shown to

work with excessive amounts of outliers in both sets.

We have also used Geometric Algebra to derive two sets of constraints (Eq. 5.13, for the 2D

case and Eq. 5.44 for the 3D case) that serve a double purpose: on one hand, it lets us decide

whether or not the current plañe (or lines) corresponds to a rigid motion; and on the other hand, it

allows us to reject múltiple matches and enforce the uniqueness constraint.

Our algorithm does not require an initialization (though it can benefit from one). Works equally
well for large and small motions. And can be easily extended to account for múltiple overlapping
motions and even certain non-rigid transformations.

It must be noted that our algorithms can detect múltiple overlapping motions, whereas the

current solutions only work for a single global motion. We have also shown that our algorithm can

work with data sets that present small non-rigid deformations. During our synthetic experiments
in the 3D case we also noticed that some types of non-rigid motion produce 3D curves instead of

surfaces in the voting space. The next logical step is to explore what other types of motion can be

detected, and to extend this to múltiple non-rigid motions.

In the unconstrained case, with a large amount of outliers (500-1000%), our algorithm can take

several minutes to finish. However, in most real-life applications, these extreme circumstances

are not found, and a good initialization can be computed. When these conditions are met, our

algorithm can be rather fast.

It is worth noting the effect of the "sampling rate" of the input points in our algorithm. Our

method is based on an equation for point motion and assumes a direct point-to-point correspon
dence can be established. If the input data sets have been sampled at different rates, this condition

will not be met and the performance of our algorithm will degrade, maybe even stop working

altogether. We are currently working on ways to overeóme this problem.
Another aspect of our 3D algorithm is that we must rotate one of the sets of points in order to

densify the plañe we are looking for. We are currently exploring other ways to make this more ef

ficient. One possible solution might come from considering all four voting spaces simultaneously.

Up until now, only the space produced by the trivector part was considered and the other spaces

were only used in an implicit fashion to provide extra constraints to identify valid rigid motions.

Maybe these other spaces can be used to direct the search of the transformation we are seeking,
but this is a subject for future research.

6.4 Final thoughts

It has come to our attention one interesting fact. The general correspondences problem might
be considered as an NP problem, since it consists of two parts: the non-deterministic generation

of a set of correspondences, and the testing of the correctness of the set. In our particular case,

the complexity of the problem is reduced significantly by using the extra information that a rigid
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transformation has taken place. This alone serves to diminish the complexity of the problem from

NPtoPtime.

Let us focus this discussion on the 2D case first. Assume we have two sets of points X and

Y. For each x. € X there is one, and only one y-, G Y such that y. = Hx,*, where H is 2D rigid
transformation consisting of an arbitrarily large rotation and translation. We are expected to find

the correspondences mapping X to Y via H.

The naive approach to solve this problem would be as follows: genérate a tentative correspon
dences set between X and Y, compute the H generated by this set and test if the points X are actually
mapped to the points Y. The non-deterministic part of the algorithm is the generation of the corre

spondences set. However, this can be easily formulated in a systematic fashion and, since we are

dealing with a 2D rigid transformation, the set does not need to comprise all the points in X, but

only enough to account for the three degrees of freedom of H (two points).
The algorithm to choose the correspondences may proceed as follows. Select x. G X for

each ¿ = 1, .., n where n is the number of points in X. For each xt chosen, select a tentative

corresponding point y., G Y for each j = 1, .., n, where again, n is the number of points in Y (see

Fig. 6. 1 .a). This can be easily coded with two nested iterations, one to itérate over i and the other to

itérate over j . The total number of possible selections is therefore O (n2 ) . Now, if we consider that

we need two such correspondences, it is evident that we must nest four iterations (two iterations

for each pair) and therefore the algorithm is 0(n4) in the worst case. Since the computation of H

given a set of tentative correspondences is of 0(1), this does not increase the complexity of the

problem.

x'¿y
o \+yt \

o

o

Figure 6.1: a) A set of points X (circles) and the same set after a rigid transformation has been

applied Y (crosses). A tentative set of correspondences between one point x. and the set Y is

shown. b) The same set, in this case, two points x. and Xj are chosen and left fixed and all the

possible correspondences are then considered (shown).

This simple scheme can be further optimized. We can choose two points x¿ and Xj from X and

leave them fixed. Then we can itérate over the possible selections of the corresponding y¿- and y,-

for these points (see Fig. 6.1.b). This operation is of 0(n2) since only two cycles are nested, one
to itérate over i' and another to itérate over f.

In the 3D case a similar analysis can be performed. In this case we have six degrees of freedom

to account for. But since each point x¿ introduces three constraints, we only need two points to

compute H. Therefore the complexity is the same: 0(n2). Note that this naive algorithm will be

capable of finding the correct answer regardless of the magnitude of the transformation applied.
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On the other hand, in current approaches like ICP, the generation of correspondences is much
more efficient but is based on the assumption that corresponding points are cióse to each other.

Therefore, algorithms like the ICP will not work even in the absence ofoutliers if the transforma

tion is large. Another problem of the ICP is that the solution produced is highly dependent on the

quality of the initialization. This algorithm might become trapped in a "local minimum" and thus

might not produce the desired answer.

We have already shown that our algorithm is of 0(nm) < 0(n2) where m < n is the number

of neighbors that receive votes from the current token. In the 2D case the reader might remember

that we also proposed a hypothesize-and-test scheme where different skewing angles were tested in

a systematic fashion. However, we must stress that when no outliers are present, we can detect the

correct transformation without skewing the space regardless ofthemagnitude ofthe transformation

(see Fig. 5.6 for an example of this). Henee, no extra iterations are needed, and our algorithm does

provide a real decrease in computational costs. This has been possible because we have re-cast

the correspondences problem into another space where a particular constraint of the problem was

more readily detected and exploited. It is interesting to note that this space was found by using the

Geometric Algebra.

Finally, we have discussed how a general NP problem could be solved using a simple algorithm
that runs in P time thanks to the use of extra knowledge that constrains the problem. Namely, that

a rigid transformation has taken place between the sets we must match. This same constraint is not

properly exploited by other algorithms that also solve this problem. In the case of ICP, for example,
the problem is further limited by bounding the magnitude of the transformation to a relatively small

range. In our case, we have applied a transformation to the problem, taking it into another space
where the aforementioned constraint is readily detectable, without introducing extra limitations to

the problem (like bounding the magnitude of the transformation). Thus producing a more efficient

algorithm by exploiting this powerful constraint.

The author is tempted to think about possible generalizations of this particular result. Maybe
similar approaches could be used in other problems. It is granted that we are employing a very

specific constraint to this case; but perhaps the solution to the NP-completeness problem lies in

casting the problems into different search spaces that require simpler, but more powerful detection

techniques?



109

Appendix A

Numerical Algorithms

In this appendix, we briefly describe two algorithms that were mentioned in various parts of this

document. These algorithms and several others can be found in [27]

A.1 Least-Squares Solution ofHomogeneous Equations

Throughout this document, several problems were solved by finding the solution to a set of equa

tions of the form Ax = 0. In particular, we consider the case when there are more equations than

unknowns (the system is over-determined). The trivial solution x = 0 is not of interest. Observe

that if x is a solution to the set of equation, so is kx for any scalar k. Therefore, we need to con

straint the norm of x when seeking a solution. A reasonable choice is to fix ||x|| = 1. In general,

such a set of equations will not have an exact solution. Suppose A has dimensión m x n, then

there is an exact solution if and only if rank(k) < n. In the absence of an exact solution, we will

normally seek a least-squares solution. Therefore problemmay be stated as

• Find the x that minimizes || Ax|| subject to \\x\\ = 1

This problem can be solved as follows. Let A = UDVT The problem then requires us to minimize

||UDVTx||. However, ||UDVTx|| = ||DVTx|| and ||x|| = ||VTx||. Thus we need to minimize ||DVTx||

subject to the condition ||VTx|| = 1. We write y
= VTx, and the problem is: minimize ||Dy||

subject to ||y|| = 1. Now, D is a diagonal matrix with its diagonal entries in descending order. It

follows that the solution to this problem is y
= [0, 0, .., 0, 1]T having one non-zero entry, 1 in the

last position. Finally, x = Vy is simply the last column of V. The procedure is summarized in

Algorithm A.1.

Alternatively, the last column of V may be described as the eigenvector of ATA corresponding

to the smallest eigenvalue.

Problem: Find the vector x that minimizes ||Ax|| subject to ||x|| = 1.

Solution:

1. x is the last column of V, where A = UDVT is the SVD of A.

Algorithm A.1 The solution to the equation system Ax = 0.
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A.2 Constrained Minimization

Sometimes the minimization is subject to constraints that can be expressed as a matrix multiplica-
tion. The algorithm discussed here to solve this problem was presented in [26]. The problem can

be stated as follows: given a matrix A, and a constraintmatrix C, we wish to find the unit norm vec

tor q that minimizes ||Aq|| subject to q = Ca for some vector a. This is equivalent to minimizing

||ACa|| subject to ||Ca|| = 1, then set q — Ca. The procedure to solve this problem is presented in

Algorithm A.2.

Problem: minimize ||ACa|| subject to ||Ca|| = 1, where q = Ca.

Solution:

1. Compute the SVD C = UDVT such that the non-zero valúes of D appear first

down the diagonal.
2. Let U' be the matrix comprising the first r columns of ü, where r is the rank

of C. Further, let V' consist of the first r columns of V and D' consist of the

r first rows and columns of D.

3. Find the unit vector q' that minimizes ||AU'q'||. This is the singular vector

corresponding to the smallest singular valué of AU'

4. The required vector q is given by q = U'q'. A vector a such that q = Ca is

given by a = VD'^q'.

Algorithm A.2 The solution to the constrainedminimization problem.



111

Appendix B

Computation of the orthogonal distance

between a point and a conic

This algorithm has been previously discussed in [62]. However in that report, there was a minor

error in the equations. We now present the corrected versión of that algorithm.

Recall that the equation of a conic:

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0,

can be expressed in homogeneous form as

xTCx = 0.

With

(B.l)

(B.2)

A B/2 D/2
'

C= B/2 C E/2 (B.3)

D/2 E/2 F

and x being a 3-vector representing a 2D point in homogeneous coordinates. In [62], however, a

different formulation is used to express a conic

C(x, y) = A(x
- x0)2 + 2B(x

- x0) (y
- yo) + C(y

- y0)2 -1 = 0, (B.4)

where (x0, y0) is the center of the conic. To convert a conic c = [ABCDEFf satisfying Eq.
B.l to the Conic-Center format of Eq. B.4, Algorithm B.l can be used.
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1.

2.

3.

4.

5.

6.

,, , E-BD/(U)
yo <—

B2/(2A)-2C

s <- Cy^ + J3x0y0 + ^x2,
A' <- A/s
B' +- B/(2s)
C' <- C/s

-F

7. The conic parameters are: [A',B> C Xo yo]

Algorithm B.l Conversión from the inhomogeneous conic equationformal to the Conic-Center

format.

The conversión from the Conic-Center format to the inhomogeneous conic format is straight-

forward, with a little algebra it can be seen that:

A +- A'

B <r- 2B'

c <r- c

D <- -2B'y0 - 2A'x0

E +- -2C'y0 - 25'xo

F <- C'y¡ + 2B'x0y0 + A'x20 - -1 (B.5)

Figure B.l: Orthogonal distance d from point (x, y) to a conic. The point (xu yt) marks the point
on the conic which is closest to (x, y).

The problem is to compute the orthogonal distance d from point (x, y) to the conic C(x, y)

(see Figure B.l). We will follow closely the development in [62]. In that report, the objective is to

find the point xt = (xt, y.) on the conic which is closest to (x, y). Thus, point xt must satisfy the

equation of the conic (Eq. (B.4)):

A(xt
- x0)2 + 2B(xt

-

x0)(yt
- yo) + C(yt

- y0)2 -1 = 0 (B.6)



and must pass by the line which is orthogonal to the tangent at xt:

to_rt22fetí_(,_«o»Q*sBl (b.7)

Now let Ax = xt- x0 and A¡, = yt
-

y0, from B.6,

A,= =^±í, (B.8)

where £2 = B2A2 -

C(AA2X - 1) = (52 - J4C)A2 + C. From B.7,

(¿A* + BAy)(y -yO- Ay) = (CAy + BAx)(x -

x0
- Ax). (B.9)

Substituting the valué of A¡, in the above equation leads to

eiA2 + e2Ax + e3
= (e4Ax + e5), £ (B.10)

where

e0 = 52-.4C

e_ = 25eo

e2 = Ce0(y-y0)

e3 = 5C

e4 = B2 + C2 + e0

e5 = C[5(y-yo)-C(x-x0)]. (B.ll)

Squaring the above equation, we have

(e-A2 + e2Ax + e3)2 = (e4Ax + e5)2 (e0A2 + AC) . (B.12)

Rearranging terms, we obtain an equation of degree four in Ax:

hAl + f3Al + f2A2x + fiAl + f0 = 0, (B.13)

where

h = e2-e0e2 (B.14)

f3 = 2e_e2 - 2e0e4e5 (B.15)

f2 = e2 -(- 2eie3
- e0e2 - e^C (B.16)

/i = 2e2e3-2e4e5C (B.17)

/o = e\-e\C (B.18)

Note that in the original formulation [62], the expressions for f2, /_ and /0 were wrong. The two

or four real roots of Eq. B.13 can be found in closed form. For one solution Ax, we can obtain £

from Eq. B.10, as follows

f = (eiA2 + e2Ax + e3) / ^A., + e5) . (B.19)
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Thus, Ay is computed from Eq. B.8. Eventually, the orthogonal distance d can be computed by

d = ^(x-xo-A^-My-j/o-A,)2 (B.20)

Note that there might be up to four solutions, but only the one with the smallest distance
is the one

we need.
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