

UNIDAD DE ZACATENCO DEPARTAMENTO DE BIOLOGÍA CELULAR

"IDENTIFICACIÓN DEL RECEPTOR DE PIC ESCHERICHIA COLI ENTEROAGREGATIVA EN CÉLULAS CALICIFORMES MEDIANTE ENSAYOS IN SILICO E IN VITRO"

TESIS

que presenta

LBT. MONTSERRAT GUTIÉRREZ SOTO

Para obtener el grado de

MAESTRA EN CIENCIAS EN LA ESPECIALIDAD DE BIOLOGÍA CELULAR

Ciudad de México

Julio, 2023

DIRECTOR DE TESIS

DOCTOR EMILIANO FERNANDO NAVARRO GARCÍA

Investigador titular del Departamento de Biología Celular, CINVESTAV-IPN

ASESORES

DOCTORA GUADALUPE REYES CRUZ

Investigadora titular del Departamento de Biología Celular, CINVESTAV-IPN

DOCTOR JOSÉ FEDERICO BERNARDO CASTRO MUÑOZ LEDO

Investigador titular del Departamento de Biología Celular, CINVESTAV-IPN

El presente trabajo se realizó en el Departamento de Biología Celular del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), bajo la tutoría del Dr. Emiliano Fernando Navarro García. Durante el desarrollo de este proyecto se contó con el apoyo económico del Consejo Nacional de Ciencia y Tecnología (CONACYT) a través de una beca de maestría, No. 1074762.

DEDICATORIA

A mis padres por el cariño, consejos y amor incondicional que siempre está presente en mi vida a pesar de la distancia. Este logro no se hubiera cumplido sin su apoyo en cada etapa de mi desarrollo personal y profesional. Este logro se los debo enteramente a ustedes.

AGRADECIMIENTOS

A mis padres, por brindarme el apoyo y el amor incondicional para poder cumplir mis metas personales y académicas. Gracias por siempre impulsarme a perseguir mis sueños, nada es inalcanzable teniéndolos a ustedes a mi lado.

A mi abuela Gloria, gracias por apoyarme y estar conmigo tantos años, te extraño demasiado, pero me enseñaste tanto que ahora sé que vives a través de mí.

A mi tutor, Dr. Fernando Navarro García, gracias por paciencia, sus enseñanzas y todos sus consejos, los llevaré grabados para siempre en la memoria en mi futuro profesional.

A mis asesores, la Dra. Guadalupe Reyes Cruz y el Dr. Federico Castro Ledo, por su invaluable apoyo durante el desarrollo de este proyecto. Gracias por su tiempo y sus correcciones para mejorar este trabajo de investigación.

A mis compañeros de laboratorio, Landy, Jaime, Arturo y Yaniel, por su enseñanza y experiencia para mejorar mis experimentos, los momentos y las risas que compartimos, gracias por hacer mi estancia en el laboratorio muy amena.

A mis amigos, Aylin Pérez, David Sánchez, Alexis Sotelo, Ricardo Buendia, Ana Martínez, Ruth Vela y Theresa Azcarraga, muchas gracias por todos los momentos que hemos compartido, la vida es más linda a su lado. Gracias por todos sus consejos y su amistad.

A la M. en C. Lucía Chávez Dueñas y la M. en C. Jazmín Huerta Cantillo, por su apoyo, su asesoría durante el desarrollo de este proyecto y su apreciable amistad. Al Sr. Israel Flores Trejo, por su apoyo técnico en el laboratorio.

INDICE

LISTA DE FIGURAS viii
LISTA DE TABLASix
ABREVIATURASxi
RESUMEN xiii
INTRODUCCIÓN1
Escherichia coli enteroagregativa1
Pic (proteína involucrada en la colonización intestinal)
Mucinas
Celulas calicitormes
Secreción de mucinas
Recentor de adenosina A1 7
Receptor de dechosina Armilo/ Receptor de la lipoxina A4
Receptor purinérgico P2Y2
Receptor activado por proteasa 2
PLANTEAMIENTO DEL PROBLEMA
OBJETIVOS11
Objetivo general:
Objetivos específicos:11
MATERIALES Y MÉTODOS11
Modelo de estructura11
Identificación de los subdominios de DP Pic11
Análisis de validación de moléculas para el acoplamiento molecular
Acoplamiento molecular 12
Cepas bacterianas12
Construcción de pTrcHis2B:: <i>pic</i> ∆d1 y pTrcHis2B:: <i>pic</i> ∆d212
Obtención de células competentes por el método de CaCl2
Transformación de bacterias HB101 competentes con el plásmido pTrcHis2B:: <i>pic</i> ∆d113

Purificación de Pic∆d1	13
Secuenciación de <i>pic</i> ∆d1	14
RESULTADOS	14
Modelado tridimensional del DP Pic en Phyre ²	14
Análisis de la estructura tridimensional de DP Pic	14
Acoplamientos moleculares	16
Acoplamiento molecular del receptor A1R y DP Pic	16
Acoplamiento molecular del receptor ALX/FPR2 y DP Pic	23
Acoplamiento molecular del receptor PAR2 y DP Pic	29
Acoplamiento molecular del receptor P2Y2R y DP Pic	
Acoplamiento molecular del EGFR Y DP Pic	40
Identificación del <i>pocket</i> del receptor que se une a Pic	45
Construcción de pTrcHis2B:: <i>pic</i> ∆d1	47
Secreción de Pic y Pic∆d1	
Secuenciación de <i>pic∆d1</i>	51
Secreción de Pic y Pic∆d1	54
Secuenciación de <i>picΔd1</i>	54
DISCUSIÓN	57
Modelaje de DP Pic muestra 4 subdominios anclados a una β-hélice es	structural. 57
Acoplamientos moleculares de los subdominios de DP Pic	58
Los <i>pocket</i> s de unión de PAR2 con ambos ligandos (8UN y el subdom son muy similares entre sí	inio d1) 62
Deleción del subdominio d1 de DP Pic	63
CONCLUSIONES	66
PERSPECTIVAS	67
BIBLIOGRAFÍA	68

LISTA DE FIGURAS

Figura 1. Ensamblaje de la mucina MUC2 en la célula caliciforme .¡Error! Marcador no definido.

Figura 2. Estructura tridimensional del dominio pasajero de Pic y su representación
esquemática15
Figura 3. Complejo de acoplamiento molecular e interacciones del receptor A1R y su
ligando DU1 o d122
Figura 4. Complejo de acoplamiento molecular e interacciones del receptor ALX/FPR2
y su ligando WKYMV o d228
Figura 5. Complejo de acoplamiento molecular e interacciones del receptor PAR2 y su
ligando 8UN o d1
Figura 6. Complejo de acoplamiento molecular e interacciones del receptor P2Y2R y
su ligando UTP o d2
Figura 7. Complejo de acoplamiento molecular e interacciones del receptor EGFR y su
ligando EGF o d2
Figura 8. Comparación del bolsillo (pocket) de unión de PAR2 en su acoplamiento con
8UN o d1
Figura 9. Amplificación por PCR del gen pic excluyendo el subdominio d1 del plásmido
pTrcHis2B::pic-AvrII usando un gradiente de temperatura
Figura 10. Amplificación del gen <i>pic</i> y <i>pic</i> ∆d1 a partir de la cepa <i>E. coli</i> HB101
Figura 11. Restricción enzimática del gen <i>pic</i> y <i>pic</i> ∆d1 a partir de la cepa <i>E. coli</i> HB101
Figura 12. Expresión y secreción de Pic, y Pic∆d1 a partir de las cepas <i>E. coli</i> HB101 y
BL21iError! Marcador no definido.
Figura 13. Alineamiento de secuencias de nucleótidos de Pic∆d1 teórica y Pic∆d1
secuenciada
Figura 14. Amplificación del gen <i>pic</i> y <i>pic</i> ∆d1 a partir de la cepa <i>E. coli</i> BL2153
Figura 15. Expresión y secreción de Pic, y Pic∆d1 a partir de las cepas <i>E. coli</i> HB101 y
BL21
Figura 16. Alineamiento de secuencias de nucleótidos de Pic∆d1 teórica y Pic∆d1

secuenciadaiError! Marcador no definido	secuenciada	iError! Marcador no definido
---	-------------	------------------------------

LISTA DE TABLAS

Tabla 1. Oligonucleótidos utilizados en este estudio. 12
Tabla 2. Receptores candidatos ocupados para los acoplamientos moleculares con DP Pic. 16
Tabla 3. Acoplamientos moleculares de A1R y DU1/DP Pic. 18
Tabla 4. Acoplamientos moleculares de A1R y los subdominios del DP Pic. 19
Tabla 5. Acoplamientos moleculares de A1R y β-hélices/α-hélice
Tabla 6. Acoplamientos moleculares de A1R y d1/β-hélice1
Tabla 7. Acoplamiento molecular del receptor ALX/FPR2 y WKYMV/DP Pic
Tabla 8. Acoplamientos moleculares del receptor ALX/FPR2 y subdominios del DP Pic.
Tabla 9. Acoplamientos moleculares del receptor ALX/FPR2 y las β-hélice/α-hélice delDP Pic.26
Tabla 10. Acoplamientos moleculares de ALX/FPR2 y el conjunto de d2- β-hélice2 delDP Pic.27
Tabla 11. Acoplamientos moleculares de P2Y2R y UTP/DP Pic. 35
Tabla 12. Acoplamientos moleculares de P2Y2R y los subdominios de DP Pic
Tabla 13. Acoplamientos moleculares de P2Y2R y las β -hélices/ α -hélice
Tabla 14. Acoplamientos moleculares de P2Y2R y los conjuntos de D2-β-hélice1/D2-β-hélice2
Tabla 15. Acoplamientos moleculares de PAR2 y 8UN/DP Pic. 29

Tabla 16. Acoplamientos moleculares de PAR2 y subdominios de DP Pic. 3	30
Tabla 17. Acoplamientos moleculares de PAR2 y las β -hélices/ α -hélice de DP Pic	31
Tabla 18. Acoplamiento molecular de PAR2 y conjunto de d1- β-hélice1.	32
Tabla 19. Acoplamientos moleculares de EGFR y EGF/DP Pic. Acoplamientos moleculares de EGFR y EGF/DP Pic.	11
Tabla 20. Acoplamientos moleculares de EGFR y los subdominios de DP Pic	13
Tabla 21. Distancias intermoleculares del bolsillo de unión de PAR2 y los ligandos	
(8UN y el subdominio d1)	15

ABREVIATURAS

°C	Grados centígrados
μg	Microgramo
μΙ	Microlitro
ADN	Ácido desoxirribonucleico
ARN	Ácido ribonucleico
Amp	Ampicilina
CaCl ₂	Cloruro de calcio
A1R	Receptor de adenosina A1
AAF	Fimbria de Adherencia agregativa
ALX/FPR2	Receptor 2 del péptido/ Receptor de la lipoxina A4
ATP	Trifosfato de adenosina
BSA	Albúmina sérica bovina
g	Gravedades
HRP	Peroxidasa de rábano
PCR	Reacción en cadena de la polimerasa
ml	mililitro
MgCl ₂	cloruro de magnesio
d1	subdominio d1
d2	subdominio d2
d3	subdominio d3
d4	subdominio d4
DAEC	Escherichia coli de adherencia difusa
DAG	Diacilglicerol
DCA	Ácido desoxicólico
DMEM	Medio Eagle modificado de Dulbecco
DP	Dominio pasajero
EAEC	Escherichia coli enteroagregativa
EGF	Factor de crecimiento epidérmico
EGFR	Receptor de factor de crecimiento epidérmico
EHEC	Escherichia coli enterohemorrágica

EIEC	Escherichia coli enteroinvasiva
EPEC	Escherichia coli enteropatógena
FPR	Receptores de péptidos de formilo
GPCR	Receptores acoplados a proteínas G
HAT	Proteasa similar a la tripsina
IP ₃	Inositol trifosfato
KDa	KiloDaltones
LB	Luria Bertani
MUC	Mucina
OMS	Organización mundial de la salud
P2Y2R	Receptor purinérgico P2Y2
PAGE	Electroforesis en gel de poliacrilamida
PAR	Receptores activados por proteasas
PAR2	Receptor activado por proteasa 2
Pb	Pares de bases
PBS	Solución amortiguadora salina de fosfatos
PBS-Tween	PBS con Tween20 al 0.05%
PDB	Protein Data Bank
Pic	Proteína involucrada en la colonización intestinal
PIP2	Fosfatidilinositol (4,5)-bifosfato
PLC	Fosfolipasa C
PMSF	Fluoruro de fenilmetilsulfonilo
PVDF	Membrana de difluorido polivinilido P-inmobilon
RvD1	Resolvina D1
SPATE	Serín proteasas autrotransportadoras de la familia Enterobacteriaceae

UPEC Escherichia coli uropatógenica

RESUMEN

Escherichia coli enteroagragativa (EAEC) está asociada con diarrea aguda en niños y adultos, diarrea persistente en niños y personas con inmunodeficiencias, y es la causante de la diarrea del viajero. Entre los principales factores de virulencia de EAEC se encuentra la proteína autotransportadora Pic, la cual juega un papel importante durante la colonización del epitelio intestinal del hospedero. Recientemente, se demostró que Pic tiene una actividad dual como secretagogo de mucinas en células caliciformes, independiente de su motivo serín proteasa y su actividad como mucinasa dependiente de su motivo serín proteasa. En ese trabajo también se describió el mecanismo molecular para la secreción rápida de mucinas relacionada con la vía PLC/DAG-IP3/Calcio. Sin embargo, hasta ahora se desconoce el receptor de la célula caliciforme que se une a Pic para desencadenar la vía de señalización de PLC. Por ello, consideramos importante determinar cuál es el receptor que desencadena dicha vía de señalización, así como cuál es la secuencia motivo en Pic que reconoce dicho receptor. Para hacerlo, primero hicimos un análisis in silico en el que realizamos el modelaje tridimensional del dominio pasajero (DP) de Pic, para posteriormente, hacer acoplamientos moleculares con los receptores candidatos (A1R, ALX/FPR2, P2Y2R, PAR2 y EGFR) que se unieran al DP Pic y así, también saber en qué motivos de la secuencia de DP Pic es donde se unen dichos receptores. Las interacciones moleculares que encontramos fueron: A1R y PAR2 con el subdominio d1 mientras que ALX/FPR2, P2Y2R y EGFR interaccionan con el subdominio d2 de Pic. Entre todos los acoplamientos, identificamos que el que tenía mayor afinidad en la interacción fue el receptor PAR2 con el subdominio d1 presentando una energía de afinidad de -8.8 kcal/mol y su Kd de 3.6×10^{-7} . Con estos resultados, procedimos a construir una mutante de Pic, deletando el subdominio d1 del DP Pic (Pic∆d1) mediante una PCR inversa. Esta mutante tiene 3,310 pares de bases de longitud, y la proteína Pic∆d1 secretada tiene un peso molecular de 82.6 kDa. Los análisis bioinformáticos nos indican que el mejor receptor candidato que se une a DP Pic para la secreción rápida de mucinas es PAR2. La construcción pTrcHis2B::pic∆d1 y los ensayos in silico realizados en este proyecto servirán para identificar el receptor que se une a DP Pic para desencadenar la vía de señalización de secreción rápida de mucinas.

SUMMARY

Enteroaggregative Escherichia coli is associated with acute diarrhea in children, persistent diarrhea in children and immunodeficient persons, and traveler's diarrhea. Among its main virulence factors is an autotransporter protein termed Pic, which plays a key role during the colonization of the host intestinal epithelium. Recently, it was reported that Pic has dual activity as a mucin secretagogue in goblet cells, independent of its serine protease motif, and as a mucinase, which is dependent on this motif. In that work was also described that the molecular mechanism for the rapid secretion of mucins is related to the PLC/DAG-IP3/Calcium pathway. However, the goblet cell receptor that binds to Pic to trigger the PLC signaling pathway is so far unknown. Therefore, we consider to determine which is the receptor that triggers this signaling pathway, as well as the motif sequence in Pic that recognizes this receptor. To determine this, we first carried out an *in* silico analysis in which we performed three-dimensional modeling of the passenger domain (PD) of Pic, to subsequently perform molecular dockings with the candidate receptors (A1R, ALX/FPR2, P2Y2R, PAR2, and EGFR) that bind to the PD Pic. and thus, also know which motifs of the PD Pic sequence are bound to these receptors. We found that the probable molecular interactions interacted were: with A1R and PAR2 at the d1 subdomain, while ALX/FPR2, P2Y2R and EGFR interacted with the d2 subdomain. Within all the molecular dockings, we identified that the one with the highest affinity of interaction was the PAR2 receptor with the d1 subdomain presenting an affinity energy of -8.8 kcal/mol and its Kd of 3.6×10^{-7} . With these results, we proceeded to construct a Pic mutant, deleting the d1 subdomain of PD Pic ($Pic\Delta d1$) by inverse PCR. This mutant has 3,310 base pairs in length and the secreted Pic $\Delta d1$ protein has a molecular weight of 82.6 kDa. The bioinformatic analysis indicates that the best candidate receptor that binds DP Pic for rapid mucin secretion is PAR2. The pTrcHis2B::*pic*∆d1 construct and the *in* silico assays performed in this project will serve to identify the receptor that binds to DP Pic to trigger the rapid mucin secretion signaling pathway.

INTRODUCCIÓN

Las enfermedades diarreicas son de gran importancia, debido a que son la primera causa de muerte producida en niños menores de cinco años, ocasionando 1 millón de muertes cada año según lo reportado por la Organización Mundial de la Salud (OMS) (Perin et al., 2022). La diarrea infecciosa se adquiere predominantemente por vía fecal-oral y por la ingestión de agua y alimentos contaminados con microorganismos patógenos. Entre los agentes infecciosos asociados a la enfermedad diarreica se encuentran los rotavirus, protozoos y las cepas diarrogénicas de *Escherichia coli* (*E. coli*) (Aranda-Michel and Giannella, 1999).

La bacteria *E. coli* es un anaerobio facultativo predominante en la microbiota colónica humana. Entre estas bacterias, existen diferentes patotipos que causan diarrea, entre las cuales se encuentran: *E. coli* enterohemorrágica (EHEC), *E. coli* enterotoxigénica (ETEC), *E. coli* enteropatogénica (EPEC), *E. coli* enteroinvasiva (EIEC), *E. coli* enteroinvasiva (EIEC), *E. coli* enteroinvasiva (EIEC), *E. coli* enteroinvasiva (EAEC) (Nataro and Kaper, 1998).

Escherichia coli enteroagregativa

EAEC es una causa común de enfermedad diarreica en todo el mundo y se transmite principalmente por la ingesta de bebidas y/o alimentos contaminados, y se asocia frecuentemente con casos de diarrea persistente en niños de países en desarrollo e industrializados, así como con la diarrea del turista, siendo la segunda causa de muerte en viajeros (Adachi et al., 2002; Liu et al., 2020). Se cree que la patogenia ocurre en el íleon y el colon, donde las bacterias se adhieren y forman una biopelícula de agregación robusta (Liu et al., 2020). Los síntomas más frecuentes son la diarrea líquida acompañada de moco y en ocasiones sangre en las heces, dolor abdominal, nauseas con vómito frecuente y a veces fiebre (Huang et al., 2006).

El modelo de patogenicidad para EAEC consta de tres etapas. La primera etapa implica la adhesión de microorganismos a la mucosa intestinal mediante fimbrias de adherencia agregativa (AAF); así EAEC forma agregados asemejando "ladrillos

apilados", constituyendo una biopelícula con el moco secretado por las células caliciformes. Durante la segunda etapa, hay hipersecreción de moco intestinal, manteniendo a los microorganismos inmersos en una matriz de gel que favorece la colonización persistente. Finalmente, la tercera etapa implica la secreción de proteínas y toxinas con actividades enterotóxicas/citotóxicas que provocan alteraciones histopatológicas (Kaper et al., 2004).

Entre los múltiples factores de virulencia producidos por EAEC, la serín proteasa Pic se ha implicado en la colonización bacteriana en virtud de su actividad mucinolítica.

Pic (proteína involucrada en la colonización intestinal)

La proteína involucrada en la colonización (Pic) está codificada en el cromosoma de EAEC y pertenece a la subfamilia llamada serín proteasas autrotransportadoras de la familia *Enterobacteriaceae* (SPATE) (Henderson et al., 1999). Además, el gen *pic* contiene dos genes orientados de manera opuesta en tándem dentro del gen *pic*, denominado gen *she*. Este gen codifica las dos subunidades, set1B y set1A, de la toxina ShET1 (Behrens et al., 2002).

Al ser miembro de las SPATE, Pic tiene 3 dominios ya establecidos: la secuencia señal, el dominio pasajero y la unidad de translocación, y estos, están relacionados en la secreción de la proteína misma. La secuencia señal permite el reconocimiento del sistema sec para la translocación de la proteína al periplasma. Una vez en el periplasma, la unidad de translocación forma un poro barril que se inserta en la membrana externa de la bacteria, a través del cual se secreta el dominio pasajero de Pic (DP Pic). La proteína Pic secretada tiene un peso molecular de 116 KDa (Navarro-Garcia and Elias, 2011).

Navarro-Garcia et al. (2010) analizaron el papel biológico de Pic en un ensayo *in vivo* utilizando el modelo de íleon del intestino de rata que ha sido útil para caracterizar las lesiones histopatológicas causadas por EAEC 042. Se observó que al inocular la bacteria EAEC al modelo había un aumento en la secreción de mucinas, sin embargo, si se inoculaba EAECΔPic la secreción de mucinas se mantenía en niveles basales. Del mismo modo, ocurría con Pic de *Shigella flexneri* y *E. coli* uropatógenica

2

(UPEC).En otro estudio, Liu et al. (2020) analizaron los roles de Pic durante la infección de EAEC utilizando colonoides humanos (modelo intestinal que comprende células caliciformes y una gruesa barrera de mucina). Ellos demostraron la capacidad de Pic en la degradación de MUC2, pero al agregar PicS258A (mutante con una mutación sitio dirigida para eliminar la función mucinolítica) no existió un decremento de la MUC2, es decir la actividad mucinolítica proviene del dominio serín proteasa.

Recientemente se reportó que Pic, tiene una actividad dual, la primera es su capacidad de secretagogo de moco independiente de su motivo serín proteasa y, la segunda, la actividad mucinolítica dependiente de su motivo serín proteasa en células caliciformes humanas que secretan MUC2 y MUC5AC (Flores-Sanchez et al., 2020). Interesantemente, Pic estimula la secreción rápida de mucinas en las células caliciformes al activar la vía de calcio intracelular. La hipersecreción de mucinas en células caliciformes se produce por la activación de la vía de señalización del calcio (Davis and Dickey, 2008). Cuando se activa la vía de calcio intracelular tiene como resultado la activación de la señal de transducción de fosfolipasa C (PLC). La PLC cataliza la conversión de fosfatidilinositol (4,5)-bifosfato (PIP2) produciendo segundos mensajeros como el DAG y el IP3. El IP3 es el mayor mediador en la liberación de calcio intracelular (Tran et al., 2016). Así, la actividad dual de Pic, como secretagogo de moco y mucinasa, es relevante en el contexto de la generación de fuentes de carbono, y es la penetración de la capa de moco lo que permite que EAEC tenga acceso a las células epiteliales (Flores-Sanchez et al., 2020).

Mucinas

Las mucinas son proteínas altamente glicosiladas que se caracterizan por su gran peso molecular y su capacidad para formar geles viscoelásticos (Corfield et al., 2001). Su composición química tiende a ser mayoritariamente carbohidratos (mayor del 80%) y se concentran en dominios denominados MUC (mucina). Estos dominios se construyen sobre un núcleo proteico de una secuencia de repetición en tándem conformado por los aminoácidos prolina, serina y treonina (Ilamadas secuencias PTS) (Johansson, 2013). Además, las mucinas contienen múltiples dominios como los dominios tipo factor de crecimiento epidérmico (EGF), regiones ricas en cisteína y los dominios D localizados en

el amino y carboxilo-terminal que ayudan en la formación del polímero, (Kufe, 2009).

Diferentes tipos de células pueden expresar a las mucinas que se encuentran en contacto con ambientes agresivos, por ejemplo, las células gástricas, las células del tracto respiratorio, las células intestinales etc., en este ambiente adverso las mucinas tienen un papel importante en la homeostasis y en la sobrevivencia de las células epiteliales (Hollingsworth & Swanson, 2004).

La clasificación de las mucinas se divide en dos grupos: las mucinas de membrana y las mucinas secretadas. Las mucinas de membrana (MUC1, 3, 4, 12, 13, 16, 17) son proteínas que contienen dominios homólogos a EGF. La liberación de la mucina de membrana al medio extracelular provoca que la mucina 12 actúe como ligando en los receptores de la familia de EGF y regular procesos como la inflamación, proliferación, diferenciación y motilidad celular (Hollingsworth & Swanson, 2004). Las mucinas secretadas (MUC2, 5AC, 5B, 6) están agrupadas en el cromosoma 11p15.5. MUC2, MUC5AC y MUC6 muestran una expresión importante en el epitelio de todo el tracto con MUC5AC y MUC6 en el estómago y MUC2 en el intestino delgado y grueso. MUC5B muestra una expresión importante en glándulas salivales y glándulas esofágicas, pero niveles menores en epitelio gástrico y colorrectal (Corfield et al., 2001).

Células caliciformes

Las células caliciformes están especializadas en la síntesis y secreción de mucinas. Adquirieron su nombre por su típica apariencia de copa formada por los gránulos de mucina que llenan el citoplasma. Los ratones que carecen de MUC2 tienen el mismo número de células caliciformes, pero estas no tienen la forma típica de las células caliciformes (Hollingsworth and Swanson, 2004).

Las células troncales dan origen a todas las células epiteliales intestinales, incluidos los enterocitos, células caliciformes, células de Paneth y células enteroendocrinas. El linaje de enterocitos es el linaje celular primario y su vía de diferenciación está controlada por la señalización de Notch (Birchenough et al., 2015). Al igual que el epitelio de la superficie intestinal, las células caliciformes se renuevan continuamente a partir de las células troncales que se encuentran en la base de la cripta

intestinal, su recambio celular ocurre normalmente entre 3 y 7 días (Barker, 2014).

Las células caliciformes de la superficie del colon secretan moco continuamente y, por lo tanto, construyen una capa de moco extensa que recubre las células epiteliales intestinales, cuya función principal es formar una barrera física que las protege de patógenos y materiales insolubles. Esta capa de moco se divide en dos subcapas: la capa interna de moco que está anclada a las células caliciformes y es altamente organizada y estatificada, lo que impide que sea impenetrable para las bacterias. La segunda subcapa de moco es la capa externa, la cual está más expandida debido a que los poros que forman los polímeros de las mucinas son más grandes permitiendo que penetren bacterias comensales y ocupen a las mucinas como fuente de carbono. Al presentarse una patología como la colitis, la capa externa de moco se encuentra en menor volumen permitiendo que las bacterias patógenas penetren la capa interna y así, infectar a las células epiteliales intestinales. Por lo que esta capa de moco funciona como primera línea de defensa del hospedero en el tracto intestinal (Birchenough et al., 2015).

Ensamblaje de MUC2 en las células caliciformes

Las células caliciformes del intestino delgado y grueso secretan principalmente a MUC2. El ensamblaje de la mucina MUC2 comienza en el retículo endoplasmático de la célula caliciforme, donde las mucinas forman homooligómeros mediante la formación de puentes disulfuro entre los dominios D del extremo amino-terminal. Las mucinas MUC2

forman dímeros mediante puentes disulfuro, a través de sus los dominios D4 ubicados en el carboxilo-terminal, además de sufrir N-glicosilaciones. Los dímeros son translocados al aparato de Golgi, donde forman trímeros mediante los dominios D (D1-D3) del amino-terminal que también unidos por puentes disulfuro, además de estar Oglicosilados. Estos trímeros son empacados en los gránulos secretorios y preparados para su secreción (Figura 1) (Birchenough et al., 2015).

Secreción de mucinas

La secreción de mucinas es regulada a través de dos procesos celulares: secreción constitutiva y la secreción regulada o rápida. En la secreción constitutiva la célula secreta mucinas al medio a una concentración muy baja y de manera continua y lenta. Para este proceso no se necesita de un estímulo, mientras que, en la secreción regulada o también denominada rápida, se necesita un estímulo como los compuestos denominados secretagogos que transducen una señal para liberar las vesículas que contienen mucinas a través de la activación un receptor de membrana (Davis and Dickey, 2008; Deplancke

and Gaskins, 2001).

La secreción rápida de las mucinas puede ser activada a través del aumento del calcio intracelular, esto bajo la activación de la señal de transducción de PLC, lo cual produce segundos mensajeros como el DAG e IP3. El IP3 libera el calcio intracelular de los reservorios del retículo endoplasmático, mientras que el DAG activa a proteínas del granulo secretorio (Rab3/27, VAMP8 y Syt2) para unirse con proteínas de la membrana plasmática (sintaxina, SNAP23, Munc13-2/4 y Munc18b) y así, permitir que el granulo secretorio se fusione a la membrana plasmática de la célula y permita la liberación de las mucinas (Adler et al., 2013; Flores-Sanchez et al., 2020).

Sin embargo, en el caso de la inducción de la secreción por la Pic, aún no se conoce el receptor de membrana que desencadena la vía de señalización antes mencionada para permitir la secreción rápida de mucinas. Hasta el momento se han reportado dos grandes familias de receptores asociados a dicha secreción: los receptores acoplados a proteínas G (GPCR) y los receptores acoplados a tirosina cinasa, sin embargo, cualquier otro receptor que sea capaz de activar a PLC y a su vez, aumentar el calcio intracelular, son capaces de aumentar la secreción de mucinas.

Receptor de adenosina A1

Los receptores adenosina (AR) son receptores acoplados a proteínas G (GPCR), de ellos se han descrito 4 subtipos: A1R, A2AR, A2BR Y A3R (Fredholm et al., 2011).

En un estudio reciente se reportó que el receptor de adenosina A1 (A1R) a través de la vía de PLC desencadena la liberación de vesículas secretoras de mucinas de células caliciformes. Cuando a estas células se les agregaba su agonista, la adenosina, la secreción de mucinas se ve en aumento; al contrario de cuando se aplicaba un pretratamiento con su antagonista DPCPX a diferentes concentraciones (1 μ M a 20 μ M). Por lo tanto, el receptor A1R permite la secreción regulada de mucinas (McNamara et al., 2004).

Receptor 2 del péptido formilo/ Receptor de la lipoxina A4

Los receptores de péptidos de formilo (FPR) pertenecen a la familia de receptores acoplados a proteínas G (GPCR) y son bien conocidos como receptores quimiotácticos y receptores de reconocimiento de patrones (PRR) que reconocen péptidos formilados derivados de bacterias y mitocondrias. Existen tres tipos de FPR humanos (FPR1, FPR2 y FPR3) y ocho tipos de FPR murinos (Fpr1, Fpr2, Fpr3, Fpr-rs3, Fpr-rs4, Fpr-rs5 Fpr-rs6 y Fpr-rs7).

El receptor 2 del péptido formilo/ Receptor de la lipoxina A4 (ALX/FPR2) está involucrado en la secreción rápida de mucinas que sigue la vía de señalización de PLC y la liberación de calcio intracelular de los reservorios del retículo endoplasmático. Lippestad et al. (2017) lo demostraron al agregar el agonista resolvina D1 (RvD1) a las células caliciformes conjuntivales de rata, sin embargo, cuando se hace un pretratamiento con el antagonista BOC2, la secreción de mucinas se ve interrumpida, todo esto analizado mediante microscopía confocal. Por lo tanto, ALX/FPR2 es un receptor que libera las vesículas secretoras mediante un estímulo.

Receptor purinérgico P2Y2

Los receptores purinérgicos P2 (P2Rs) están compuestos por siete miembros del receptor P2X (P2XR, P2X1R-P2X7R) y ocho miembros del receptor P2Y (P2YR; P2Y1R, P2Y2R, P2Y4R, P2Y6R, P2Y11R-P2Y14R). Los receptores P2X son canales iónicos activados por ligandos y los receptores P2Y son receptores acoplados a proteínas G. Interesantemente, se ha demostrado que el receptor purinérgico P2Y2 (P2Y2R) está involucrado en la liberación de mucina de las glándulas secretoras (Shishikura et al., 2016).

El P2Y2R induce la secreción rápida de mucinas en células caliciformes al utilizar el trifosfato de adenosina (ATP) como secretagogo. Las señales secretoras de mucina fueron estimadas utilizando un ensayo de lectina ligada a enzimas y se observaron señales típicas del 300 al 400% de la línea de base en respuesta a una exposición de 30 min a ATP (100 M). Sin embargo, al utilizar antagonistas competitivos del receptor P2Y2R como la suramina y AR-C118925XX inhibieron la secreción de mucina inducida por adenosina 5 -o-(3-tiotrifosfato) (ATP-S). Por lo tanto, el receptor P2Y2R está involucrado en la secreción regulada de mucinas.

Receptor activado por proteasa 2

Los receptores activados por proteinasa (PAR) son una familia de receptores de siete dominios transmembranales acoplados a proteína G, que actualmente consta de cuatro miembros. PAR1, PAR3 y PAR4 son receptores de trombina mientras que PAR2 es un receptor de tripsina, triptasa de mastocitos, factores de coagulación VIIa y Xa, y posiblemente proteasas desconocidas. La activación de PAR se logra mediante el desenmascaramiento proteolítico de la secuencia activadora del receptor críptico N-terminal, que posteriormente, se une al cuerpo del receptor como un ligando anclado (Kawabata, 2002).

El receptor activado por proteasa 2 (PAR2), también pueden activarse específicamente mediante péptidos sintéticos aplicados de forma exógena de cinco a seis aminoácidos (SLIGRL y SLIGKV para PAR2 murino y humano, respectivamente). La vía de señalización común que sigue a la activación de distintos PAR se desencadena por la activación de PLC a través de la proteína Gq/11, aunque cada PAR también puede activar otras vías de transducción de señales distintas (Kawabata, 2003).

PAR2 desempeña un papel en la hipersecreción de mucinas. Esto se demuestra cuando a las células caliciformes se les aplica un tratamiento con la proteasa similar a la tripsina (HAT), agonista de las respuestas celulares inducidas por PAR2, aumentando la secreción de mucinas MUC5AC. Sin embargo, cuando se aplica un pretratamiento con el inhibidor del receptor, el inhibidor de PLC (U73122) o el quelante de calcio intracelular (BAPTA-AM) atenúa la secreción de mucinas. En conjunto, estos resultados indican que HAT puede estimular la hipersecreción de MUC5AC a través de una vía de señalización mediada por PAR2 (Liu et al., 2013).

Receptor factor de crecimiento epidérmico

El receptor del factor de crecimiento epidérmico (EGFR) induce la hipersecreción de mucinas en células caliciformes al estimularlo con RvD1, mostrando un aumento en el calcio intracelular. Sin embargo, cuando se utiliza un pretratamiento con un inhibidor de EGFR (AG1478) se bloquea el aumento del calcio intracelular. La vía de señalización que se desencadena para la hipersecreción de mucinas es cruzada mediante el receptor ALX/FPR2 al unirse con su ligando (RvD1), activa la metaloproteasa ADAM17 para liberar al factor de crecimiento epidérmico (EGF). El EGF liberado se une al EGFR para activar AKT y ERK 1/2 (Kaye et al., 2019).

PLANTEAMIENTO DEL PROBLEMA

Escherichia coli enteroagragativa (EAEC) está asociada con diarrea aguda en niños y adultos, diarrea persistente en niños y personas con inmunodeficiencias, y causante de la diarrea del viajero. Entre los principales factores de virulencia de EAEC se encuentra la proteína autotransportadora Pic, la cual juega un papel importante durante la colonización del epitelio intestinal del hospedero. Previamente, nuestro grupo encontró que Pic puede ser el factor que provoca una de las características de la infección por EAEC detectada en biopsias intestinales, la formación de una biopelícula de bacterias inmersas en una capa de moco intestinal.

Recientemente, nuestro grupo de investigación también demostró que Pic tiene una actividad dual como secretagogo de moco en células caliciformes y mucinasa dependiente de su motivo serín proteasa. Además, en este mismo estudio, se dilucidó parte del mecanismo molecular para la secreción rápida de mucinas que incluye una señalización por la vía PLC/IP3-DGA/Calcio (Flores-Sanchez et al., 2020). Sin embargo, hasta ahora se desconoce cuál es el receptor de la célula caliciforme que se une a Pic para desencadenar la vía de señalización de PLC. Por ello, consideramos importante determinar cuál es el receptor que desencadena la vía de señalización para la secreción de mucinas en las células caliciformes al estimularlos con la proteasa Pic, así como cuál es la secuencia motivo en Pic que es reconocida por dicho receptor.

OBJETIVOS

Objetivo general:

Identificar el receptor y la secuencia que reconoce cuando Pic de EAEC se une a las células caliciformes.

Objetivos específicos:

- 1. Evaluar los receptores candidatos (P2Y2R, PAR2, A1R, ALX/FPR2 y EGFR) mediante acoplamientos moleculares con Pic.
- 2. Identificar el *pocket* del receptor que se une a Pic.
- 3. Diseñar mutantes en los motivos detectados en los acoplamientos moleculares para evaluar la interacción Pic-célula caliciforme.

MATERIALES Y MÉTODOS

Modelo de estructura

Las estructuras tridimensionales de la proteína DP Pic y P2Y2R fueron modeladas utilizando sus secuencias de aminoácidos descritas por Henderson et al. (1999) (No. de acceso: Q7BS42) y Parr et al. (1994) (No. de acceso: P4123) mediante el servidor de predicción de estructuras Phyre 2.0 (Kelley et al., 2015).

Identificación de los subdominios de DP Pic

Los subdominios del dominio pasajero (DP) de Pic fueron identificados por homología tridimensional mediante la plataforma Dali server (Holm, 2020).

Análisis de validación de moléculas para el acoplamiento molecular

Los receptores candidatos PAR2 (PDB:5NDZ), ALX/FPR2 (PDB:6LW5), A1R (PDB:5UEN) y EGFR (PDB:1IVO) fueron descargados de la plataforma RCSB PDB (http://www.rcsb.org/pdb/). Tanto las moléculas de los receptores como los dominios de DP Pic fueron validados con el servidor MolProbity (Davis et al., 2007).

Acoplamiento molecular

Los acoplamientos moleculares de cada uno de los receptores con los subdominios de DP Pic fueron realizados con el servidor HDock (Yan et al., 2020) y Prodigy server (Xue et al., 2016).

Cepas bacterianas

Durante este estudio fueron utilizadas las cepas HB101 pTrcHis2B:*pic* (Flores-Sanchez et al., 2020) y HB101/p*pic*S258I (Navarro-Garcia et al., 2010). Estas cepas fueron crecidas en medio Luria Bertani (LB) toda la noche a 37°C, cuando fue necesario se agregó ampicilina (100 µg/ml) o tetraciclina (15 µg/ml).

Construcción de pTrcHis2B::*pic*∆d1 y pTrcHis2B::*pic*∆d2

pTrcHis2B::*pic* Δ d1 (Pic Δ d1) fue derivado a partir de pTrcHis2B::pic (Pic) obteniéndolo mediante una PCR usando los oligonucleótidos Pic Δ d1F y Pic Δ d1R descritos en la Tabla 1, ambos *primers* contienen sitios *AvrlI* para permitir la circularización del plásmido. Posteriormente, los productos de PCR obtenidos fueron purificados utilizando el kit QIAquick Gel Extraction (Qiagen, Hilden, Alemania). Estos productos de PCR purificados se cortaron con la enzima de restricción *AvrlI* para finalmente ser ligados con la ligasa T4.

Oligos	Secuencia
Pic∆d1F	5'- CGT GCC TAG GAC TAG TCT GAA CTG GAC ATA CGA CAA-3'
Pic∆d1R	5'- GCA CCC TAG GAG ATC TAA TAC CCG CCT GGG ATA TCT-3'
Pic∆d2F	5'- GTG CCC TAG GAC TAG TAT CTT TCA TGG TCA GCT GAC-3'
Pic∆d2R	5'- CCG ACC TAG GAG ATC TAT CCA GTA AAA GCT GGG ATT-3'
<i>pic</i> pTrcF	5'- CCG CTC GAG CAT GAA TAA AGT TTA TTC TCT TAA ATA TTG CC -3'
<i>pic</i> pTrc-R	5'- CCG GAA TTC TCA GAA CAT ATA CCG GAA ATT CGC GTT -3'
pTrcHis2B	5'- GAG GTA TAT ATT AAT GTA TCG -3'

Tabla 1 Oligonucleótidos utilizados en este estudio.

Obtención de células competentes por el método de CaCl2

La cepa HB101 fue inoculada en 3 ml de medio LB durante 16 h a 37°C/160 rpm. A partir de este cultivo, se utilizaron 4 ml para inocular un matraz con 100 ml de medio LB y se incubó bajo las mismas condiciones hasta alcanzar una densidad óptica (D.O._{600 nm}) entre 0.6 y 0.8. Al alcanzar la D.O. deseada, el cultivo fue centrifugado a 2,350 × *g* durante 15

minutos a 4°C. El paquete celular obtenido fue resuspendido en 4 ml de MgCl₂ 0.1 M y se mantuvo en hielo durante 10 minutos. Posteriormente, el cultivo fue centrifugado como se describió anteriormente, el paquete celular fue resuspendido en 4 ml de CaCl₂ 0.1 M frío y fue incubado en hielo durante 1 hora. las bacterias fueron centrifugadas nuevamente y resuspendidas en 4 ml de CaCl₂. Las células competentes, se distribuyeron en alícuotas de 100 µl, en tubos Eppendorf de 0.6 ml. Para conservar las bacterias competentes, agregar 20% de glicerol estéril y almacenar a -70°C.

Transformación de bacterias HB101 competentes con el plásmido pTrcHis2B::*pic*∆d1

Las bacterias *E. coli* HB101 competentes se les añadió 5 µl del plásmido pTrcHis2B::*pic* Δ d1 y se mantuvieron en hielo durante 30 minutos. Pasado los 30 minutos, se colocaron a 42°C durante 1 minuto y rápidamente se regresó a hielo por 10 minutos. Posteriormente, se les agregó 800 µl de medio LB y se dejó incubando a 37°C durante 1 hora. De manera subsecuente, las bacterias se centrifugaron a 1,380 × *g* durante 3 minutos. El sobrenadante se decantó, la pastilla se resuspendió con 100 µl de medio LB, se plaqueó en medio LB sólido adicionado con ampicilina (100 µg/ml), y se incubó a 37°C durante 24 horas. Pasadas las 24 horas, las colonias que crecieron fueron sembradas en parches en una placa de medio LB sólido adicionado con ampicilina (100 µg/ml), para seleccionar las clonas que tienen el plásmido pTrcHis2B::*pic* Δ d1. Para verificar que estas clonas con los oligos *pic*-pTrcF y *pic*-pTrc-R descritos en la Tabla 1 y el amplificado fue corrido en un gel de agarosa al 1%.

Purificación de Pic∆d1

Las proteínas Pic y Pic Δ d1 fueron purificadas como se reportó anteriormente (Navarro-Garcia et al., 2010). Brevemente, las clonas mínimas HB101/pTrcHis2B::*pic* Δ d1 y HB101/pTrcHis2B::*pic* Δ d2 fueron cultivadas en medio LB con 100 µg/ml de ampicilina, durante 16 h en agitación. Posteriormente, las bacterias fueron centrifugadas a 2,240 × *g* durante 20 min, el sobrenadante fue concentrado de 150-200 veces en un filtro Amicon de 50,000 MWCO (Millipore, Billerica, MA).

Secuenciación de pic∆d1

A partir del ADN plasmídico de *E. coli* HB101/pTrcHis2B::*pic* Δ d1 clona 12 se realizó una PCR utilizando el *oligo pTrcHis2B* y el kit de secuenciación de ciclos BigDyeTM Terminator v3.1 (Thermo Fisher Scientific, Massachusetts, USA). Posteriormente, el producto de PCR fue purificado con el kit QIAquick Gel Extraction (Qiagen, Hilden, Alemania). El ADN plasmídico purificado se pasó a una columna y ésta fue centrifugada a 1,380 × *g* durante 3 minutos. La columna se secó durante 15 minutos en el spit back. Finalmente, se secuenció con ABI PRISM® 310 Genetic Analyzer (Thermo Fisher Scientific, Massachusetts, USA).

RESULTADOS

Modelado tridimensional del DP Pic en Phyre²

La proteasa Pic de EAEC aún no ha sido cristalizada, por lo cual realizar el modelo tridimensional fue esencial para evaluar la interacción molecular de Pic con los receptores candidatos, *in silico*. El modelo fue generado a partir de la secuencia de Pic reportada por Henderson et al. (1999), seleccionamos únicamente la secuencia del dominio pasajero (DP) de Pic (residuos 56 al 1095) y posteriormente, modelamos mediante la herramienta de biología computacional, Phyre², disponible en el dominio público para predecir estructuras tridimensionales y análisis funcionales adicionales. El templado seleccionado fue la estructura cristalizada de la proteína A extracelular (SepA) de *Shigella flexneri* (PDB:5J44) con una índice identidad del 86%.

El modelo tridimensional de DP Pic (Figura 2) comprende 1039 aminoácidos, en su amino terminal se encuentra el subdominio 1 (d1) (residuos 56-318), seguido de una β -hélice estructural (residuos 319-1009) interrumpida por estructuras globulares que corresponden al subdominio 2 (d2) (residuos 530-616), subdominio 3 (d3) (residuos 724-756), α -hélice (residuos 892-917) y, por último, en su carboxilo terminal, el subdominio 4 (d4) (residuos 1010-1095).

Análisis de la estructura tridimensional de DP Pic

Con la finalidad de identificar las actividades efectoras de los subdominios del DP Pic,

procedimos a hacer un análisis comparativo con los dominios de otras proteínas reportadas en RCSB PDB mediante la plataforma DALI server. Como resultado obtuvimos que el subdominio d1 de DP Pic tiene similitud estructural con la tripsina (PDB:1CE5) mientras que el dominio 2 fue estructuralmente similar a la quitinasa (PDB: 7C92) y finalmente, el dominio 4 fue similar al dominio autochaperona. Sin embargo, al dominio 3 no se le encontró similitud estructural con dominios de otras proteínas reportadas.

Figura 2. Estructura tridimensional del dominio pasajero de Pic y su representación esquemática. (A). Modelo tridimensional del DP Pic nativo. Este modelo fue generado utilizando la predicción de la estructura en Phyre² y fue basado en la secuencia identificada por Henderson et. al., 1999. (B). Dentro del DP Pic (residuos 56 a 1095) y proyectándose de la β -hélice (verde) se pueden identificar cuatro subdominios. Subdominio 1 (d1, azul), subdominio 2 (d2, rojo), subdominio 3 (d3, magenta), α -hélice (naranja) y subdominio 4 (d4, cyan) como se indican en la representación esquemática.

Acoplamientos moleculares

Con la finalidad de realizar los acoplamientos moleculares, primero realizamos una revisión bibliográfica para seleccionar los receptores candidatos que activan la vía de señalización de PLC (Tabla 2), que podrían estar involucrada en la secreción de mucinas inducidas por Pic. A partir de estas estructuras, obtuvimos también los ligandos que sirvieron como control en los acoplamientos moleculares con DP Pic.

Tabla 2.	Receptores	candidatos	ocupados	para l	os a	acoplamientos	moleculares	con	DP
Pic.									

Receptor	PDB	Referencias	
Receptor de adenosina A1 (A1R)	5UEN	(Glukhova et al., 2017)	
Receptor activado por proteasa 2 (PAR2)	5NDZ	(Cheng et al., 2017)	
Receptor 2 del péptido formilo/ Receptor de la	6LW5	(Chen et al., 2020)	
lipoxina A4 (ALX/FPR2)	02.110		
Recentor purinéraico P2V2 (P2V2R)	Modelado	En este trabajo	
	en Phyre ²	(Parr et al., 1994)	
Receptor factor de crecimiento epidérmico (EGFR)	1IVO	(Ogiso et al., 2002)	

Los acoplamientos moleculares se hicieron con 2 plataformas: HDock server, plataforma en línea que nos predice los aminoácidos que se unen tanto del receptor como del ligando y Prodigy server, plataforma en línea que nos indica la energía de afinidad del acoplamiento y la constante de disociación; ambos valores nos reportan si el acoplamiento molecular puede ser espontáneo.

Acoplamiento molecular del receptor A1R y DP Pic

El primer acoplamiento que hicimos fue la interacción molecular del receptor A1R y su ligando (DU1), debido a que Glukhova et al. (2017) reportaron cuáles son los aminoácidos de este receptor que se unen con DU1. Así, utilizamos este acoplamiento como control para las siguientes interacciones de A1R con el DP Pic y con cada uno de sus subdominios y β -hélices.

En el acoplamiento control (A1R y DU1) observamos la interacción del receptor

A1R (gris) y su ligando DU1 (naranja) junto con los aminoácidos de A1R que interaccionan con dicho ligando y que son reportados en la literatura marcados en verde (Figura 3A). Cabe destacar que la interacción fue únicamente en la cadena A del receptor A1R. Al hacer un acercamiento al sitio de interacción (Figura 3B) observamos a todos los aminoácidos presentes en la interacción con DU1, marcados en verde a los que corresponden al mismo aminoácido y en la misma posición con lo ya reportado en la literatura. Por lo tanto, podemos usar este acoplamiento como control para las siguientes interacciones de A1R con DP Pic.

En las siguientes Tablas, optamos por tener el mismo sistema de colores para los aminoácidos identificados, en verde son los aminoácidos del receptor que están en la misma posición reportada en la literatura, mientras que en amarillo están los aminoácidos que están en una posición cercana a lo ya reportado.

En la Tabla 3, reportamos los aminoácidos identificados por HDock server, que podrían participar en las interacciones moleculares del receptor A1R y DU1/DP Pic completo. Identificamos todos los aminoácidos del receptor A1R que se unen al ligando y que han sido reportados literatura (marcados en verde), siendo este nuestro control para los siguientes acoplamientos. Cuando hicimos el acoplamiento molecular de A1R con DP Pic, identificamos 4 aminoácidos iguales a los reportados en la literatura, pero en una posición cercana (marcados en amarillo). Además, mediante Prodigy server, calculamos la energía de afinidad, $\Delta Gscore$ y las constantes de disociación cada uno de los acoplamientos. La energía de afinidad nos dio como resultado –10.8 Kcal/mol y $\Delta Gscore$ 55.4 para la interacción A1R Y DU1, mientras que para la interacción A1R y DP Pic fueron de –13.2 Kcal/mol y la constante de disociación, 2.2 × 10⁻¹⁰ M. Por lo tanto, ambos acoplamientos pueden ocurrir en la naturaleza.

Sin embargo, cuando hicimos los acoplamientos con cada uno de los subdominios de DP Pic (Tabla 4) observamos que el mejor acoplamiento posible entre A1R fue con el subdominio d1, ya que identificamos cuatro aminoácidos del receptor (marcados en amarillo) que se unen en una posición cercana a lo reportado en la literatura, por lo tanto, A1R posiblemente interacciona con d1 de DP Pic. Además, el valor de la energía de afinidad de este acoplamiento fue de -11.4 Kcal/mol y su constante de disociación fue de 4.7×10^{-9} M, sugiriendo que esta unión puede ocurrir espontáneamente. Mientras que

en los subdominios d2, d3 y d4, identificamos solamente 3, 1 y 2 aminoácidos (en amarillo), respectivamente (Tabla 4).

Literatura ^a	Ligando (DU1) ^ь	DP Pic ^b		
Y12	Y12			
L88	L88			
F171	F171	F183-748		
M177	M177			
M180	M180			
W247	W247			
L250	L250	L245-F854		
N254	N254			
L253	L253	L248-F854		
T257	T257			
T270	T270			
Y271	Y271			
1274	1274	l256-L858		
Energía de afinidad ΔG (Kcal/mol)	-10.8	-13.2		
∆Gscore	55.4	Kd (M) a 25℃ 2.2 × 10 ⁻¹⁰		

Tabla 3. Acoplamientos moleculares de A1R y DU1/DP Pic.

^aAminoácidos de A1R que interaccionan molecularmente con DU1 (Glukhova et al., 2017). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Adicionalmente, reportamos en la Tabla 5, los acoplamientos moleculares realizados con cada uno de los segmentos de las β -hélices y la α -hélice del DP Pic, siendo el mejor acoplamiento con la β -hélice1, ya que identificó 4 aminoácidos en una posición cercana (en amarillo) del receptor. Además, de tener valores de -7.4 Kcal/mol y 4.10×10^{-6} M, para la energía de afinidad y la constante de disociación respectivamente, indicando que este acoplamiento puede ser espontáneo. Mientras que los acoplamientos con α -hélice, β -hélice2, β -hélice3 y β -hélice4, identificaron solamente

1, 2, 2 y 2 aminoácidos del receptor, respectivamente.

Literaturaª	Li	igando ^ь (DU1)	d1 ^b	d2 ^b	d3 ^b	d4 ^b
Y12		Y12				
L88		L88			L61-Y685	L99-L968
F171		F171				F185-M955
M177		M177				
M180		M180				
W247		W247				
L250		L250	L245-Y187	L276-N508		
N254		N254	N280-Q185			
L253		L253	L248-K150	L300-F493		
T257		T257				
T270		T270				
Y271		Y271				
1274		1274	1272-N230	1286-1490		
Energía de afinidad ∆G (Kcal/mol)		-10.8	-11.4	-10.4	-7.9	-8.6
∆Gscore	55.4	Kd (M) a 25℃	$4.7 imes 10^{-9}$	$2.4 imes 10^{-8}$	1.7 × 10 ⁻⁶	$5.10 imes 10^{-7}$

Tabla 4. Acoplamientos moleculares de A1R y los subdominios del DP Pic.

^aAminoácidos de A1R que interaccionan molecularmente con DU1 (Glukhova et al., 2017). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Debido a que los mejores acoplamientos moleculares con el receptor A1R fueron con el subdominio d1 y la β -hélice1, hicimos un acoplamiento con A1R y el conjunto del subdominio d1 y la β -hélice1 reportado en la Tabla 6. Sin embargo, solo identificamos 2 aminoácidos (en amarillo) en una posición cercana a lo reportado en la literatura, sugiriendo que estos dos segmentos en su conjunto disminuyen la interacción con el receptor.

Literaturaª	L	.igando ^ь (DU1)	α-hélice ^b	β-hélice1⁵	β-hélice2 ^ь	β-hélice3 ^b	β-hélice4 ^ь
Y12		Y12					
L88		L88			L99-V563	L96-F748	L99-A864
F171		F171		F183-L295	F186-G583	F183-T709	
M177		M177					
M180		M180					
W247		W247					
L250		L250		L245-Y435			
N254		N254					N304-R908
L253		L253		L248-Y435			
T257		T257					
T270		T270					
Y271		Y271					
1274		1274	I256-R415	I256-R415			
Energía de afinidad ΔG (Kcal/mol)		-10.8	-7.4	-11.3	-9.2	-12.1	-12.4
∆Gscore	55.4	Constante de disociación Kd (M) a 25℃	4.10 × 10 ⁻⁶	5.6 × 10 ⁻⁹	1.8 × 10 ^{−7}	1.2 × 10 ⁻⁹	7.4 × 10 ⁻¹⁰

Tabla 5. Acoplamientos moleculares de A1R y β -hélices/ α -hélice.

^aAminoácidos de A1R que interaccionan molecularmente con DU1 (Glukhova et al., 2017).

^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Literatura	Ligando (DU1)	d1-β- hélice1
Y12	Y12	
L88	L88	L113-A573
F171	F171	F144-T489
M177	M177	
M180	M180	
W247	W247	
L250	L250	
N254	N254	
L253	L253	
T257	T257	
T270	T270	
Y271	Y271	
1274	1274	
Energía de afinidad ΔG (Kcal/mol)	-10.8	-16.6
∆Gscore	Constante de55.4disociación Kd(M) a 25℃	6.7 × 10 ⁻¹³

Tabla 6. Acoplamientos moleculares de A1R y *d1/*β-hélice1.

^aAminoácidos de A1R que interaccionan molecularmente con DU1 (Glukhova et al., 2017). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Así, el mejor acoplamiento molecular de A1R (gris) fue con el subdominio d1 (azul) (Figura 3C) y, al igual que su acoplamiento con el ligando DU1 (naranja) (Figura 3A, 3B), se une a la cadena A del receptor. Al hacer un acercamiento al sitio de interacción (Figura 3D), observamos 4 aminoácidos presentes en la interacción con el subdominio d1 en una posición cercana (en amarillo) a lo ya reportado en la literatura para el ligando endógeno.

Figura 3. Complejo de acoplamiento molecular e interacciones del receptor A1R y su ligando DU1 o d1. (A). Modelo tridimensional del acoplamiento molecular de A1R y DU1. Las moléculas A1R y DU1 están coloreadas en gris/verde y naranja, respectivamente. (B). Interacciones de aminoácidos del receptor A1R (verde) con su ligando DU1 (naranja). (C). Modelo tridimensional del acoplamiento molecular de A1R (gris/amarillo) y d1 (azul). (D). Interacciones de aminoácidos del receptor A1R (amarillo) con d1 (azul). Los aminoácidos marcados en verde corresponden a los reportados en la literatura, el mismo aminoácido y en la misma posición, mientras que, en amarillo, mismo aminoácido, pero en una posición muy cercana. Las interacciones del todos los acoplamientos fueron realizados por la plataforma HDock.
Acoplamiento molecular del receptor ALX/FPR2 y DP Pic

El segundo receptor candidato fue ALX/FPR2, el acoplamiento molecular que ocupamos como control para este receptor (gris) fue con su ligando, WKYMV (naranja) (Figura 4A). Al hacer un acercamiento al sitio de interacción mediante el análisis con HDock (Figura 4B), identificamos todos los aminoácidos del receptor ALX/FPR2 que interaccionan con su ligando (en verde), a excepción de un aminoácido que fue identificado en una posición cercana (en amarillo) comparado a lo reportado por Chen et al. (2020).

El análisis de las interacciones de ALX/FPR2 con su ligando (WKYMV) y el DP Pic son detallados en la Tabla 7. El acoplamiento molecular ALX/FPR2 con su ligando WKYMV fue utilizado como control, puesto que identificamos con HDock a la mayoría de los aminoácidos reportados en la literatura (en verde) y a un aminoácido que está en una posición cercana (en amarillo). De éstos, únicamente 2 aminoácidos (F110 y W254) no fueron identificados por nuestro acoplamiento. Con respecto, a la energía de afinidad y Δ *Gscore*, los valores obtenidos en este acoplamiento fueron de –6 Kcal/mol y 4.1 × 10⁻⁵, respectivamente. Al identificarse la mayoría de los aminoácidos del receptor que interaccionan con WKYMV por nuestro acoplamiento, procedimos a utilizar este como control para los próximos acoplamientos de ALX/FPR2 y el DP Pic.

Al realizar el acoplamiento molecular de ALX/FPR2 con DP Pic, identificamos 6 aminoácidos que se encuentran en una posición cercana a lo reportado (en amarillo). Además, en este acoplamiento reportamos los valores de la energía de afinidad y constante de disociación siendo favorables: -14.6 Kcal/mol y 2 × 10^{-11} M, respectivamente.

En el análisis de los acoplamientos moleculares de ALX/FPR2 con cada uno de los subdominios de DP Pic (Tabla 8), observamos que el subdominio d2 es el mejor candidato posible para el acoplamiento con ALX/FPR2, ya que identificamos 2 aminoácidos del receptor reportados en la literatura por su interacción con el ligando (en verde) y 5 aminoácidos que están en una posición cercana (en amarillo); siete aminoácidos en total. Además, la interacción de ALX/FPR2 con d2 puede ocurrir en la naturaleza debido a que la energía de afinidad nos da un valor de -12.2 Kcal/mol y una constante de disociación de 2×10^{-11} M.

Literatura ^a	Ligando (WKYMV) ^ь	DP Pic ^b
F5	F5	
V105	V105	V104-A162
D106	D106	
L109	L109	L100-Y161
F110		F96-N56
V113	V160	
L164	L164	L154-T144
F178	F178	F161-Y161
F180	F180	
L198	L198	L162-G75
R201	R201	
R205	R205	
W254		
F257	F257	
L268	L268	
M271	M271	
D281	D281	
N285	N285	
F292	F292	
Energía de afinidad ΔG (Kcal/mol)	-6.0	-14.6
∆Gscore	4.1 × 10 ^{−5} Kd (M) a 25℃	2×10^{-11}

Tabla 7. Acoplamiento molecular del receptor ALX/FPR2 y WKYMV/DP Pic

^aAminoácidos de ALX/FPR2 que interaccionan molecularmente con WKYMV (Chen et al., 2020).

^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

De la misma manera que los acoplamientos con los subdominios de DP Pic, evaluamos los acoplamientos de ALX/FPR2 y las β -hélices/ α -hélice del DP de Pic (Tabla 9), así observamos que las interacciones de ALX/FPR2 con la β -hélice2 y la β -hélice4, se identificaron 7 aminoácidos que están en una posición cercana (en amarillo) al reportado en la literatura. Además, estas interacciones pueden ser espontáneas debido a que los valores de la energía de afinidad y constante de disociación corresponden a -11.7 Kcal/mol y 2.7 × 10⁻⁹ M, respectivamente del acoplamiento de ALX/FPR2 y β - hélice2 mientras que en el acoplamiento de ALX/FPR2 y β -hélice4 obtuvimos un valor de energía de afinidad de -10.3 Kcal/mol y la constante de disociación fue 3×10^{-8} M.

Literaturaª	Ligando [⊳] (WKYMV)	d1 ^b	d2 ^b	d3 ^b	d4 ^b
F5	F5	F53-Y76		F53-F675	F37-P967
V105	V105	V104-			V83-F980
		K156			
D106	D106				
L109	L109	L100-L154		L69-V686	L78-L968
F110		F96-N153			F93-N1004
V113	V160				
L164	L164	L141-K19	L164-T511	L154-Y685	
F178	F178	F161-	F163-I506		
		D149			
F180	F180		F180-I506		
L198	L198	L154-	L162-S509		
		V157			
R201	R201		R190-L525		
R205	R205				
W254					
F257	F257				
L268	L268				
M271	M271				
D281	D281				
N285	N285				
F292	F292				F293-S1026
Energía de afinidad ∆G (Kcal/mol)	-6.0	-12.2	-10.2	-5.9	-6.9
ΔGscore 4.	1 × 10 ^{–5} Kd (M) a 25℃	1.1 × 10 ⁻⁹	3.2 × 10 ^{−8}	$4.4 imes 10^{-5}$	9.3 × 10 ^{−6}

Tabla 8. Acoplamientos moleculares del receptor ALX/FPR2 y subdominios del DP Pic.

^aAminoácidos de ALX/FPR2 que interaccionan molecularmente con WKYMV (Chen et al., 2020). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Literaturaª	Ligando ^ь (WKYMV)	α-hélice ^b	β-hélice1 ^b	β-hélice2 ^ь	β-hélice3 ^b	β-hélice4 ^b
F5	F5		F37-A342	F53-I618		F53-S878
V105	V105	V127-N857	V104-N300	V104-N627		V104-A869
D106	D106					L100-T871
L109	L109		L100-A342	L100-N627		
F110			F96-H365			F96-D889
V113	V160	V131-S846		V147-P623		V147-A865
L164	L164		L154-N296	L158-Q609		L154-E905
F178	F178			F163-T668		F161-D907
F180	F180					
L198	L198			L162-S651		
R201	R201					
R205	R205	R238-L858			R241-S823	
W254						
F257	F257					
L268	L268				L290-P797	
M271	M271				M300-S769	
D281	D281	D308-E860				
N285	N285					
F292	F292	F309-Y862			F293-L767	
Energía de afinidad ΔG (Kcal/mol)	-6.0	-7.8	-12.9	-11.7	-10.3	-10.5
ΔGscore 4.	Kd 1 × 10 ^{−5} (M) 25°0	a 1.9 × 10 ^{−6} C	3.2×10^{-10}	2.7 × 10 ^{−9}	3 × 10 ⁻⁸	1.9 × 10 ^{−8}

Tabla 9. Acoplamientos moleculares del receptor ALX/FPR2 y las β -hélice/ α -hélice del DP Pic.

^aAminoácidos de ALX/FPR2 que interaccionan molecularmente con WKYMV (Chen et al., 2020). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

El análisis usando HDock mostró que los mejores acoplamientos moleculares de ALX/FPR2 fueron con el subdominio d2, la β-hélice2 y β-hélice4, por lo cual hicimos un acoplamiento entre este receptor y el conjunto del subdominio d2 y la β-hélice2 (Tabla 10), sin embargo, solo identificamos 7 aminoácidos (en amarillo) en una posición cercana a lo reportado en la literatura.

Literatura	Ligando (WKYMV)	d2-β-hélice2
F5	F5	F53-F565
V105	V105	
D106	D106	L100-E632
L109	L109	
F110		F96-Q568
V113	V160	V139-K476
L164	L164	L154-S617
F178	F178	F161-H615
F180	F180	
L198	L198	L158-A616
R201	R201	
R205	R205	
W254		
F257	F257	
L268	L268	
M271	M271	
D281	D281	
N285	N285	
F292	F292	
Energía de afinidad ΔG (Kcal/mol)	-6.0	-9.1
∆Gscore 4.1 :	× 10 ^{−5} Kd (M) a 25℃	2.1 × 10 ⁻⁷

Tabla 10. Acoplamiento molecular de ALX/FPR2 y el conjunto de d2-β-hélice2 del DP Pic.

^aAminoácidos de ALX/FPR2 que interaccionan molecularmente con WKYMV (Chen et al., 2020)

^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Al comparar todos los acoplamientos de ALX/FPR2 observamos que el mejor acoplamiento molecular de este receptor (gris/verde/amarillo) fue con el subdominio d2 (rojo) (Figura 4C). Al hacer un acercamiento al sitio de interacción (Figura 4D), observamos 2 aminoácidos presentes en la interacción con el subdominio d2, estos identificados la misma posición (en verde) a lo ya reportado en la literatura y 3 aminoácidos que se encuentran en una posición muy cercana (en amarillo).

Figura 4. Complejo de acoplamiento molecular e interacciones del receptor ALX/FPR2 y su ligando WKYMV o d2. (A). Modelo tridimensional del acoplamiento molecular de ALX/FPR2 y su ligando WKYMV. Las moléculas ALX/FPR2 y WKYMV están coloreados en gris/verde y naranja respectivamente. (B). Interacciones de aminoácidos del receptor ALX/FPR2 (verde) con WKYMV (naranja). (C). Modelo tridimensional del acoplamiento molecular de ALX/FPR2 (gris/verde/amarillo) y d2 (rojo). (D). Interacciones de aminoácidos marcados en verde corresponden a lo reportado en la literatura, el mismo aminoácido y en la misma posición, mientras que, en amarillo, mismo aminoácido, pero en una posición muy cercana. Las interacciones del todos los acoplamientos fueron realizados por la plataforma HDock.

Acoplamiento molecular del receptor PAR2 y DP Pic

El cuarto candidato a receptor de Pic en células caliciformes, es PAR2. El acoplamiento molecular control que utilizamos para PAR2 (gris/verde) fue con su ligando 8UN (naranja) (Figura 6A). Al hacer un acercamiento a dicha interacción (Figura 6B), identificamos todos los aminoácidos del receptor que interaccionan con 8UN (en verde) reportados por Cheng et al. (2017), a excepción de uno (C161).

El análisis de los aminoácidos de PAR2 que interaccionan con 8UN y el DP Pic completo son mostrados en la Tabla 15. En el acoplamiento control (PAR2-8UN) identificamos 6 aminoácidos reportados en la literatura (en verde). En contraste, cuando realizamos el acoplamiento molecular entre PAR2 y el DP Pic, identificamos 4 aminoácidos del receptor que están reportados en la interacción con 8UN (en verde) y 1 aminoácido en una posición muy cercana (en amarillo) a lo reportado en la literatura.

Literaturaª	Ligando ^ь (8UN)	DP Pic ^b
L123	L123	L123-N793
F154	F154	
A157	A157	A197-L741
C161		
W199	W199	W199-Q794
L203	L203	L203-K789
Y210	Y210	Y210-K789
Energía de afinidad ∆G (Kcal/mol)	-12.8	-12.6
۵G _{score}	63.5 Kd 63.5 a 25℃	$5.6 imes 10^{-10}$

Tabla 11. Acoplamientos moleculares de PAR2 y 8UN/DP Pic.

^aAminoácidos dePAR2 que interaccionan molecularmente con 8UN (Cheng et al., 2017). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Los siguientes acoplamientos que realizamos fueron de PAR2 con las subunidades de DP Pic (Tabla 16). En estas interacciones, el mejor acoplamiento fue

con el subdominio d1, HDock nos identificó 5 aminoácidos del receptor (en verde) que interaccionan con los reportados en la literatura y 1 en una posición cercana (en amarillo). Además, cuando analizamos la energía de afinidad y la constante de disociación nos da un valor de -12.6 Kcal/mol y 5.6×10^{-6} M, respectivamente, sugiriendo que este acoplamiento puede ocurrir en la naturaleza.

Literatura ^a	Ligando ^ь (8UN)	d1 ^b	d2 ^b	d3 ^b	d4 ^b
L123	L123	L123-T144	L164-N508		L164-F1027
F154	F154	F154-P200			
A157	A157	A146-A227	A197-S509		A174-M955
C161			C168-N508		
W199	W199	W199- K156	W175-L525		W175-M955
L203	L203	L203-K156	L201-S509		L201-F1027
Y210	Y210	Y210-I229		Y242-L669	
Energía de afinidad ∆G (Kcal/mol)	-12.8	-8.8	-12.3	-9.4	-11.3
ΔG _{score} 63	8.5 Kd (M) a 25℃	$3.6 imes 10^{-7}$	9.2×10^{-10}	1.2×10^{-7}	$5.5 imes 10^{-9}$

Tabla 12. Acoplamientos moleculares de PAR2 y subdominios de DP Pic.

^aAminoácidos dePAR2 que interaccionan molecularmente con 8UN (Cheng et al., 2017). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

También realizamos acoplamientos de PAR2 y las β -hélice/ α -hélices (Tabla 17). De estos acoplamientos, la mejor interacción con PAR2 fue con la β -hélice4, identificamos 6 aminoácidos del receptor (en verde) que interaccionan de acuerdo con lo reportados en la literatura. Además, este acoplamiento es espontáneo debido a sus valores de energía de afinidad y constante de disociación, –10.7 Kcal/mol y 1.4 × 10⁻⁸ M, respectivamente.

Literatura ^a	Ligando ^ь (8UN)	α-hélice ^b	β-hélice1 ^b	β-hélice2 ^b	β-hélice3 ^b	β-hélice4 ^b
L123	L123		L73-E324	L123-M573	L123-F748	L123-S953
F154	F154			F154-M573	F154-S769	F154-S953
A157	A157				A146-V799	A157-F954
C161						
W199	W199				W199-D727	W199-V952
L203	L203		L252-N296		L203-A744	L203-L931
Y210	Y210				Y210-L767	Y210-D930
Energía de afinidad ΔG (Kcal/mol)	-12.8	-8.7	-11.8	-9.3	-10.5	-10.7
	63.5 Kd 63.5 a 25℃	4.2 × 10 ^{−7}	2.1 × 10 ^{−9}	$1.4 imes 10^{-7}$	2.1 × 10 ⁻⁸	1.4 × 10 ⁻⁸

Tabla 13. Acoplamientos moleculares de PAR2 y las β -hélices/ α -hélice de DP Pic.

^aAminoácidos dePAR2 que interaccionan molecularmente con 8UN (Cheng et al., 2017). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Debido a que el mejor acoplamiento de PAR2 fue con el subdominio d1, pero también los acoplamientos con las β -hélices nos dieron resultados muy interesantes, procedimos hacer un último acoplamiento de este receptor con el conjunto de D1 y β -hélice1. En esta interacción obtuvimos 5 aminoácidos del receptor (en verde) que interaccionan y que están reportados en la literatura, y 2 aminoácidos que están en una posición muy cercana. Además, el acoplamiento nos da valores de energía de afinidad de –15.9 Kcal/mol y la constante de disociación 2.1 × 10⁻¹² M.

Literaturaª	Ligando ^ь (U8N)	d1β- hélice1 ^ь
L123	L123	L123-A309
F154	F154	F154-N307
A157	A157	A146-N351
C161		C148-N351
W199	W199	W199-S260
L203	L203	L203-Q306
Y210	Y210	Y210-N307
Energía de afinidad ΔG (Kcal/mol)	-12.8	-15.9
۵G _{score}	Kd 63.5 (M) a 25℃	2.1 × 10 ⁻¹²

Tabla 14. Acoplamiento molecular de PAR2 y conjunto de d1- β-hélice1.

^aAminoácidos dePAR2 que interaccionan molecularmente con 8UN (Cheng et al., 2017). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Al comparar todos los acoplamientos de PAR2 (gris/verde/amarillo), podemos afirmar que el mejor acoplamiento de estos fue con el subdominio d1 (azul) de DP Pic, por lo tanto, posiblemente PAR2 interacciona con D1 de DP Pic (Figura 6C).

Al hacer un acercamiento de la interacción de PAR2 y d1 (Figura 6D) observamos 5 aminoácidos del receptor (en verde) que interaccionan y que están reportados en la literatura, y 2 aminoácidos que están en una posición muy cercana (en amarillo).

Figura 5. Complejo de acoplamiento molecular e interacciones del receptor PAR2 y su ligando 8UN o d1. (A). Modelo tridimensional del acoplamiento molecular de PAR2 y 8UN. Las moléculas PAR2 y 8UN están coloreados en gris y naranja respectivamente. (B). Interacciones de aminoácidos del receptor PAR2 (verde) con 8UN (naranja). (C). Modelo tridimensional del acoplamiento molecular de PAR2 (gris/verde) y d1 (azul). (D). Interacciones de aminoácidos del receptor PAR2 (verde) con d1 (azul). Los aminoácidos marcados en verde corresponden a lo reportado en la literatura, el mismo aminoácido y en la misma posición, mientras que, en amarillo, mismo aminoácido, pero en una posición muy cercana. Las interacciones del todos los acoplamientos fueron realizados por la plataforma HDock.

Acoplamiento molecular del receptor P2Y2R y DP Pic

El tercer receptor candidato que evaluamos como receptor de Pic en células caliciformes, fue P2Y2R. Este receptor lo modelamos al igual que DP Pic con el programa Phyre², ya que aún no ha sido cristalizada la proteína. Una vez modelado P2Y2R realizamos los acoplamientos moleculares. El acoplamiento que utilizamos como control fue con su ligando (UTP), debido a que Attah et al. (2020) reportaron cuáles son los aminoácidos de P2Y2R que se unen a UTP.

En el acoplamiento control (P2Y2R y UTP) (Figura 5A) observamos la interacción del receptor P2Y2R (gris/verde/amarillo) y su ligando UTP (naranja) junto con los aminoácidos de P2Y2R que interaccionan con dicho ligando. Al hacer un acercamiento al sitio de interacción (Figura 5B) observamos a todos los aminoácidos presentes en la interacción con UTP, marcados en verde, que corresponden al mismo aminoácido y a la misma posición con lo ya reportado en la literatura. Además de un aminoácido que está en una posición cercana a lo reportado, marcado en amarillo. Por lo tanto, pudimos usar este acoplamiento como control para las siguientes interacciones de P2Y2R con DP Pic.

El análisis estructural de los aminoácidos identificados por HDock server, que parecen participar en las interacciones moleculares del receptor P2Y2R y UTP o DP Pic completo se muestran en la Tabla 11. En nuestro acoplamiento control identificamos la mayoría de los aminoácidos de dicho receptor que interaccionan con UTP (en verde) y solo un aminoácido que se encuentra en una posición cercana (en amarillo). Al contrario, cuando realizamos el acoplamiento de P2Y2R y DP Pic identificamos 6 aminoácidos iguales a los reportados en la literatura, pero en una posición cercana (en amarillo). Además, mediante Prodigy server, calculamos la energía de afinidad y $\Delta Gscore$ cada uno de los acoplamientos dándonos como resultado en la interacción P2Y2R Y UTP, –8.5 Kcal/mol y 170.9 M, respectivamente, y en la interacción P2Y2R y DP Pic, la energía de afinidad fue de –22.7 Kcal/mol y la constante de disociación fue de 2.3 × 10⁻¹⁷ M. Por lo tanto, ambos acoplamientos pueden ser espontáneos.

Literaturaª	Ligando [⊳] (UTP)	DP Pic⁵
R110	R110A	R95A-Q466
F113		F111A-T723
Y114	Y93A	Y91A-T570
L117		L112A-E705
Y118		
R177	R177A	R152A-K789
H184	H184A	
D185	D185A	
T186	T186A	
F195		
F261		
H262		
R265		
R272	R272A	
Y268	Y268A	
Y269		
Y288		
K289	K289A	
R292	R292A	R315A-Y32
Energía de afinidad ΔG (Kcal/mol)	-8.5	-22.7
ΔG _{score}	Kd 170.9 (M) a 25℃	2.3 × 10 ⁻¹⁷

Tabla 15. Acoplamientos moleculares de P2Y2R y UTP/DP Pic.

^aAminoácidos de P2Y2R que interaccionan molecularmente con UTP (Attah et al., 2020) ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Los siguientes acoplamientos que realizamos mediante HDock fueron con cada uno de los subdominios de DP Pic (Tabla 12). El mejor acoplamiento molecular de P2Y2R fue con el subdominio d2 en el cual identificamos 7 aminoácidos que están en una posición cercana (en amarillo) a lo reportado en la literatura. Además, este acoplamiento podría ser espontáneo ya que su energía de afinidad fue de –8.3 Kcal/mol y su constante de disociación 7.7×10^{-7} M.

Literatura ^a	Liga	ndo ^ь (UTP)	d1 ^b	d2 ^b	d3 ^b	d4 ^b
R110		R110	R146-P46	R137-M505	R137-F675	R61-N1040
F113			F73-P64			
Y114		Y93		Y71-F493		Y91-V989
L117			L81-T111	L133-S491	L122-N684	L81-F1027
Y118				Y149-F493		
R177		R177	R152-P24	R140-G488	R152-G681	
H184		H184				
D185		D185				
T186		T186				
F195						
F261						F307-M979
H262						
R265				R223-L507	R223-R673	R245-P972
R272		R272		R224-N508	R224-S671	
Y268		Y268				
Y269						
Y288						
K289		K289				
R292		R292				
Energía de afinidad ΔG (Kcal/mol)		-8.5	-8.4	-8.3	-8.3	-6.9
ΔG_{score}	170.9	Kd (M) 25°C	$6.6 imes 10^{-7}$	$7.7 imes 10^{-7}$	7.7×10^{-7}	$8.4 imes 10^{-6}$

Tabla 16. Acoplamientos moleculares de P2Y2R y los subdominios de DP Pic.

^aAminoácidos de P2Y2R que interaccionan molecularmente con UTP (Attah et al., 2020) ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Al igual que los acoplamientos con los subdominios de DP Pic, realizamos los acoplamientos moleculares de P2Y2R con las β -hélices/ α -hélice (Tabla 13). De estas interacciones, el mejor acoplamiento fue con la β -hélice1 en el cual identificamos 6 aminoácidos que se encuentran en una posición cercana (en amarillo) a lo reportado. Además, el valor de la energía de afinidad corresponde a –10.1 Kcal/mol y la constante de disociación fue de 3.8 × 10⁻⁸, lo que indica que el acoplamiento puede ser espontaneo.

Literaturaª	Ligando ^ь (UTP)	α-hélice ^b	β-hélice1 ^ь	β-hélice2 ^ь	β-hélice3 ^ь	β-hélice4 [♭]
R110	R110	R137-E848	R137-R415	R148-T570	R95-Q794	R151-A864
F113				F111-R584	F111-T709	F73-S878
Y114	Y93		Y71-Y435		Y91-Q794	
L117		L133-S852	L133-R436	L112-V563	L112-D727	L112-T871
Y118		Y149-A855	Y149-R436			
R177	R177	R152-Y862	R152-Y457	R152-M573	R152-T729	R152-A865
H184	H184					
D185	D185					
T186	T186					
F195						
F261						
H262						
R265			R223-I345			
R272	R272					
Y268	Y268					
Y269						
Y288						
K289	K289					
R292	R292					
Energía de afinidad ΔG (Kcal/mol)	-8.5	-6.0	-10.1	-7.8	-11.6	-10.8
ΔG _{score}	Kd 170.9 (M) a 25℃	3.7 × 10⁻⁵	3.8 × 10 ⁻⁸	1.9 × 10 ⁻⁶	3.3 × 10 ^{−9}	1.3 × 10 ⁻⁸

Tabla 17. Acoplamientos moleculares de P2Y2R y las β -hélices/ α -hélice.

^aAminoácidos de P2Y2R que interaccionan molecularmente con UTP (Attah et al., 2020) ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

El análisis con HDock mostró que las mejores interacciones de P2Y2R fueron con el subdominio d2 y la β -hélice1, por lo cual realizamos acoplamientos de este receptor con los conjuntos de d2/ β -hélice1 y d2/ β -hélice2 (Tabla 14). En ambas interacciones identificamos 5 aminoácidos que están en una posición cercana (en amarillo) a lo reportado. Además, los valores de energía de afinidad y de constante de disociación de ambos acoplamientos, nos indican que pueden ser espontáneos.

Literatura ^a	Ligando ^b (UTP)	D2β-hélice1 ^ь	D2β-hélice2 ^b
R110	R110	R137-R415	R95-A576
F113			F101-L475
Y114	Y93	Y71-Y435	Y91-K476
L117		L133-R436	L105-V563
Y118			
R177	R177	R194-T496	R180-M573
H184	H184		
D185	D185		
T186	T186		
F195			

R272

Y268

K289

R292

-8.5

170.9

R223-I345

-12

 1.6×10^{-9}

-8.5

 2.5×10^{-6}

F261 H262 R265

R272

Y268

Y269 Y288 K289

R292

Energía de afinidad ΔG

(Kcal/mol)

 ΔG_{score}

Tabla 18. Acoplamientos moleculares de P2Y2R y los conjuntos de D2-β-hélice1/D2-βhélice2.

^aAminoácidos de P2Y2R que interaccionan molecularmente con UTP (Attah et al., 2020). ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Kd (M) a 25°C

Al comparar todos los acoplamientos realizados de P2Y2R (gris/verde/amarillo), observamos que el mejor acoplamiento de estos fue con el subdominio d2 (rojo), por lo tanto, posiblemente P2Y2R interaccione con d2 de DP Pic (Figura 5C). Al hacer un análisis usando un acercamiento de la interacción de P2Y2R y d2 (Figura 5D) observamos 7 aminoácidos del receptor en una posición cercana (en amarillo) a lo reportado que interaccionan con el d2.

Figura 6. Complejo de acoplamiento molecular e interacciones del receptor P2Y2R y su ligando UTP o d2. (A). Modelo tridimensional del acoplamiento molecular de P2Y2R y UTP. P2Y2R y UTP están coloreados en gris/verde y naranja respectivamente. (B). Interacciones de aminoácidos del receptor P2Y2R (verde) con UTP (naranja). (C). Modelo tridimensional del acoplamiento molecular de P2Y2R (gris/amarillo) y d2 (rojo). (D). Interacciones de aminoácidos del receptor P2Y2R (amarillo) con d2 (rojo). Los aminoácidos marcados en verde corresponden a lo reportado en la literatura, el mismo aminoácido y en la misma posición, mientras que, en amarillo, mismo aminoácido, pero en una posición muy cercana. Las interacciones del todos los acoplamientos fueron realizados por la plataforma HDock.

Acoplamiento molecular del EGFR Y DP Pic

Otra posibilidad es que Pic desencadene la vía de señalización para la secreción de mucinas en las células caliciformes mediante una comunicación cruzada. Se ha reportado que el receptor ALX/FPR2 al unirse con su ligando, activa a ADAM17 para liberar EGF. El EGF liberado se une al EGFR para activar AKT y ERK 1/2. Además, de activar mecanismos indirectos que incluyen la activación de PLC, PLD o PLA2 (Kaye et al., 2019). Con este antecedente, hicimos los acoplamientos moleculares de EGFR con su ligando (EGF), con el DP Pic y con cada uno de los subdominios de DP Pic.

El acoplamiento control que utilizamos fue EGFR (gris/verde/amarillo) con su ligando EGF (naranja) (Figura 7A), Al hacer un acercamiento a la interacción, identificamos por HDock a la mayoría de aminoácidos que ya habían sido reportados por Ogiso et al. (2002) (en verde) por su interacción con el ligando y 4 aminoácidos que están en una posición cercana (en amarillo) a la interacción (Figura 7B).

El análisis de la interacción de los aminoácidos de EGFR con el ligando EGF y el DP Pic se presenta en la Tabla 19. Como vemos en el acoplamiento de control, de los aminoácidos de EGFR que tienen interacción con EGF, identificamos a 12 aminoácidos que ya han sido reportados por su interacción con el ligando (en verde) y 4 aminoácidos que se presentaban en una posición cercana (en amarillo). Sus valores de energía de afinidad y constante de disociación indican que este acoplamiento puede ser espontáneo (Tabla 19).

Una vez teniendo el control, procedimos hacer la posible interacción de EGFR con el DP Pic completo, en el cual identificamos 5 aminoácidos que corresponden con la literatura (en verde). Además, esta interacción puede ser espontánea debido a que su energía de afinidad es de –14 Kcal/mol y su constante de disociación fue de 5.10×10^{-11} M.

Literaturaª	Ligando ^ь (EGF)	DP Pic ^b
H10		
Y13		L14-S751
L14	L14-A30	
L15		
Q16	Q16-C31	Q16-N713
G18	G18-N32	
M21	M30-W49	
123		
L26	L17-Y37	
K28		
Y29		
C31		
N32	N12-G39	
C33		
R41	R29-W49	
Y45	Y45-M21	
L69	L69-I23	L69-H772
E90	E90-K28	E90-D806
L98	L98-L26	L98-D803
Q43		
R45		
L47		
V350	V350-L15	
D355	D355-R41	
F357	F357-H10	
L382	L382-Y44	
Q384	Q384-R45	
F412		
1438		
Energía de afinidad ΔG (Kcal/mol)	-15.9	-14
Kd (M) a 25°C	2.2×10^{-12}	5.10 × 10 ⁻¹¹

 Tabla 19. Acoplamientos moleculares de EGFR y EGF/DP Pic.

^aAminoácidos de EGFR que interaccionan molecularmente con EGF (Ogiso et al., 2002) ^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server. Al igual que en los receptores anteriores, también evaluamos los acoplamientos de EGFR con cada uno de los subdominios de DP Pic (Tabla 20). De estas interacciones, el mejor acoplamiento molecular posible fue con el subdominio d2, en que identificamos 9 aminoácidos que corresponden a los reportados en la literatura (en verde) y 3 aminoácidos localizados en una posición cercana (en amarillo) a lo ya reportado. Además, esta interacción puede ser espontánea debido a que su energía de afinidad es de -13.2 Kcal/mol y su constante de disociación fue de 2.1×10^{-10} .

Por lo tanto, la interacción de EGFR (gris/verde/amarillo) y el d2 (rojo) (Figura 7C) es la más probable en comparación con los anteriores acoplamientos de EGFR. Al hacer un acercamiento de la interacción de EGFR y D2 (Figura 7D) observamos 9 aminoácidos del receptor (en verde) que interaccionan, y que ya están reportados en la literatura, y 3 aminoácidos que están en una posición muy cercana (en amarillo).

Estos resultados nos indican que en los acoplamientos moleculares de A1R y PAR2 con los subdominios de DP Pic, el subdominio d1 es la región que mejor se une a estos receptores en comparación con los otros subdominios. Mientras que el subdominio d2 es la región que mejor se une con los receptores ALX/FPR2, P2Y2R y EGFR. Todo parece indicar que el subdominio d1 y d2 son candidatos importantes para la interacción de DP Pic y su receptor.

Al comparar los 5 receptores candidatos de los acoplamientos antes mencionados, podemos observar que el mejor candidato para ser receptor de Pic en células caliciformes, a nivel bioinformático, es PAR2 el que interacciona con el subdominio d1, ya que este es el más cercano en los aminoácidos de los receptores que interaccionan con su ligando.

Literatura ^a	Ligando ^ь (EGF)	d1 ^b	d2 ^b	d3 ^b	d4 ^b
H10					
Y13	K13-E40	L14-A225	L14-L530	L14-S693	L14-T995
L14	L14-A30				
L15	T15-C31				
Q16	Q16-C31	Q16-G228	Q16-F538	Q16-S693	
G18	G18-N32	G18-I229	G18-D532	G9-K678	
M21	M30-W49				
123					
L26	L17-Y37		L17-F538	L38-G681	
K28				K13-V676	
Y29					
C31					
N32	N12-G39			N40-D680	
C33					
R41	R29-W49				
Y45	Y45-M21	Y45-Y226	Y45-S529	Y45-V694	Y45-H997
L69	L69-I23	L69-Y226	L69-S529	L69-D700	L69-D1010
E90	E90-K28	E90-K71		L98-N699	L98-K1013
L98	L98-L26				
Q43					
R45					
L47					
V350	V350-L15		V350-N544	V350-E690	
D355	D355-R41	D355-Y161	D355-K543	D344-V686	D323-N1040
F357	F357-H10	F357-V58	F357-T511	F321-V686	F357-V1039
L382	L382-Y44		L348-N544	L348-P688	
Q384	Q384-R45		Q384-Q548		
F412					
1438			I421-Q478		
Energía de afinidad ΔG (Kcal/mol)	-15.9	-12.4	-13.2	-16.6	-11.8
Kd (M) a 25°C	2.2 × 10 ⁻¹²	7.6×10^{-10}	2.1 × 10 ⁻¹⁰	7.1 × 10 ⁻¹³	2.4 × 10 ⁻⁹

Tabla 20. Aco	plamientos m	oleculares de	EGFR y los	subdominios d	e DP Pic.
---------------	--------------	---------------	------------	---------------	-----------

^aAminoácidos de EGFR que interaccionan molecularmente con EGF {Ogiso et al., 2002)

^bTodos los acoplamientos moleculares fueron realizados mediante HDock y Prodigy server.

Figura 7. Complejo de acoplamiento molecular e interacciones del receptor EGFR y su ligando EGF o d2. (A). Modelo tridimensional del acoplamiento molecular de EGFR y EGF. EGFR y EGF están coloreados en gris/verde/amarillo y naranja respectivamente. (B). Interacciones de aminoácidos del receptor EGFR (verde/amarillo) con EGF (naranja). (C) Modelo tridimensional del acoplamiento molecular de EGFR (verde) y d2 (rojo). (D). Interacciones de aminoácidos del receptor *EGFR* (verde) con d2 (*rojo*). Los aminoácidos marcados en verde corresponden a lo reportado en la literatura, el mismo aminoácido y en la misma posición, mientras que, en amarillo, mismo aminoácido, pero en una posición muy cercana. Las interacciones del todos los acoplamientos fueron realizados por la plataforma HDock.

Identificación del pocket del receptor que se une a Pic

Con la finalidad de encontrar el *pocket* molecular del receptor PAR2, que parece ser el mejor candidato a unirse a Pic, medimos con la herramienta de Pymol, las distancias moleculares que existen entre cada uno de los aminoácidos que interaccionan con su ligando (Figura 8A) y con d1 (Figura 8B). El análisis de la posible interacción del ligando conocido en comparación con el subdominio d1, en el *pocket* de interacción del receptor PAR2, mostró una gran similitud entre ambos ligandos (d1 y 8UN). Además, las distancias moleculares que hay entre las interacciones del receptor con ambos ligandos por separado son muy similares entre sus valores (Tabla 21), lo que nos indica que muy posiblemente el receptor PAR2 se une con el subdominio d1.

Acoplamiento molecular	Relación entre los aminoácidos	Distancia molecular ^a (Å)
	L123-F154	5.0
	L123-A157	7.5
	W199-L203	10.5
PAR2-00N	W199-A157	9.7
	L203-Y210	5.5
	Y210-F154	4.7
	L123-F154	5.6
	L123-A146	11.8
PAR2-Subdominio d1	W199-L203	10.5
	W199-L123	7.6
	L203-Y210	5.5
	Y210-A146	10.7

Tabla 21. Distancias intermoleculares del bolsillo de unión de PAR2 y los ligandos (8UN y el subdominio d1)

^aLas mediciones de las distancias intermoleculares fueron realizadas por Pymol.

La única diferencia radica en que, en la interacción con el d1, identificamos un aminoácido (A146) que está en una posición cercana (en amarillo) a lo reportado por la literatura, que es la A157, el cual se identificó en nuestra interacción de PAR2 y 8UN.

Por lo tanto, los resultados sugieren que existe un *pocket* molecular de PAR2 que podría unir a Pic.

Construcción de pTrcHis2B::pic∆d1

Debido a que el análisis bioinformático, nos indicó que los subdominios d1 y d2 son las posibles regiones de Pic que se unen al receptor, procedimos primero a realizar una mutante del subdominio d1 (HB101 pTrcHis2B::*pic*∆d1) para confirmar *in vitro* los resultados *in silico*.

El gen *pic* esta clonado en pTrcHis2B (pTrcHis2B[*pic*]), por lo cual se diseñaron *primers* en dirección opuesta al inicio y final del subdominio d1 para poder amplificar todo el plásmido excluyendo el subdominio d1. Estos *primers* contenían los sitios *AvrII* para permitir la circularización del plásmido (pTrcHis2B::*pic* Δ d1). Para lograr esto, primero realizamos un PCR utilizando un gradiente de temperatura de 51.4-65.9°C, el producto amplificado fue corrido en un gel de agarosa al 1% y observamos amplicones de 7,710 pb pertenecientes a pTrcHis2B::*pic-AvrII* en la temperatura de fusión de 57.5, 53.8 y 51.4°C (Figura 9).

Figura 9. Amplificación por PCR del gen pic excluyendo el subdominio *d***1 del plásmido pTrcHis2B::pic-AvrII usando un gradiente de temperatura.** El ADN plasmídico (pTrcHis2B::pic) total fue extraído a partir de la cepa *E. coli* HB101, el ADN fue digerido con AvrII y separado por un gel de agarosa. Carril 1: marcador de pares de bases (MPB), carril 2: Control negativo: H₂0 (C-), carril 3-7: amplificación con el gradiente de temperatura; 65.9, 62, 57.5 53.8 y 51.4°C. A partir del gel mencionado, cortamos las bandas que corresponden a 7,710 pb y purificamos el ADN plasmídico. Utilizamos bacterias *E. coli* HB101 competentes para llevar a cabo la transformación por el método de CaCl₂ con el plásmido pTrcHis2B::*pic* Δ d1, seguido por la selección en medio LB suplementado con Ampicilina (100 µg/µl), como marcador de selección.

Para corroborar que HB101 se transformó con el plásmido, seleccionamos colonias que crecieron en el medio antes mencionado y extrajimos el ADN para determinar la presencia del gen *pic* en el plásmido pTrcHis2B::*pic* Δ d1 en dichas clonas por PCR utilizando los *primers pic*-pTrcF y *pic*-pTrc-R descritos en la Tabla 1. El fragmento amplificado fue corrido en un gel de agarosa al 1% y obtuvimos que las clonas 4 y 5 tienen el gen *pic* Δ d1 con la longitud esperada de 3,310 pb, calculado teóricamente y siendo más pequeño que el gen *pic* competo que tiene una longitud de 4,137 pb (Figura 10).

Figura 10. Amplificación del gen *pic* y *pic* Δ d1 a partir de la cepa *E. coli* HB101. HB101 fue transformado con pTrcHis2B::*pic* Δ d1 y se comprobó mediante PCR si las clonas tienen el gen *pic* Δ d1 y se comparó con la PCR del gen completo (pic). Carril 1: marcador de pares de bases (MPB), carril 2: *pic*, carril 3-7: clona 1 (C1), clona 2 (C2), clona 3 (C3), clona 4 (C4) y clona 5 (C5).

Realizamos una segunda verificación de que nuestras clonas tuvieran el plásmido *pTrcHis2B::pic* $\Delta d1$. Para ello, se realizó una digestión enzimática con *EcoRI* y *Xbal* del plásmido purificado para linealizar los plásmidos de las clonas seleccionadas y determinar su tamaño; el tamaño esperado para el gen truncado clonado en el plásmido sería de 7,710 pb. En el gel de agarosa, se detectaron 3 clonas con bandas de aproximadamente 7,710 pb, lo cual corresponde con el tamaño del plásmido pTrcHis2B::*pic*\Deltad1 (Figura 11). Esto indica que las cepas HB101 podrán expresar la proteasa Pic Δ d1.

Figura 11. Restricción enzimática del gen *pic* y *pic* Δ d1 a partir de la cepa *E. coli* HB101. HB101 fue transformado con pTrcHis2B::*pic* Δ d1 y se comprobó mediante PCR si las clonas tienen el gen *pic* Δ d1 mediante una doble restricción enzimática con *EcoRI* y *XbaI*. Carril 1: marcador de pares de bases (MPB), carril 2: *pic*, carril 3-7: clona 1 (C1), clona 2 (C2), clona 3 (C3), clona 4 (C4) y clona 5 (C5).

Secreción de Pic y PicAd1

Al confirmar que el plásmido contenía a *pic* Δ d1, procedimos a purificarlo y transformar en *E. coli* BL21 y HB101 para posteriormente, inducir la proteína con IPTG y concentrarla en filtros de retención de 50 kDa ya que se esperaría una proteína Pic truncada de 82.6 kDa. Estos concentrados filtrados fueron corridos en un gel SDS-PAGE y analizados por Western Blot con un anticuerpo anti-Pic. El análisis mostró que la proteína Pic completa tiene un peso molecular de 116 KDa mientras que la mutante Pic Δ d1 mostró un peso molecular de 61.1 KDa en ambas cepas de *E. coli*, HB101 y BL21 (Figura 12). Interesantemente, no pudimos detectar la proteína de 82.6 kDa, lo que sugiere que la proteína se procesó de manera incompleta, por lo que fue necesario secuenciar la clona de *pic* truncada (pic Δ d1) en el plásmido donde se llevó a cabo la mutación.

Secuenciación de *pic∆d1*

La secuenciación del gen $pic\Delta d1$ se hizo a partir del ADN plasmídico de *E. coli* HB101/pTrcHis2B:: $pic\Delta d1$ utilizando el secuenciador ABI PRISM® 310 Genetic Analyzer (Thermo Fisher Scientific, Massachusetts, USA). Al obtener la secuencia, procedimos a realizar un alineamiento de $pic\Delta d1$ secuenciada ($pic\Delta d1Sec$) y $pic\Delta d1$ teórica mediante la herramienta bioinformática MUSCLE. A partir de este alineamiento, notamos que se delecionó tanto el subdominio d1 como 609 pb de la β -hélice 1 (Figura 13A).

Al analizar el alinemiento observamos que los primeros nucleótidos (incluyendo al péptido señal) son idénticos en ambas secuencias, sin embargo, en la posición nucleotídica 140 de *pic* $\Delta d1Sec$ existe un corte, posiblemente asociado a un corte erróneo dentro de la construcción pTrcHis2B::*pic* $\Delta d1$ (Figura 13A). Esto es debido a que en el DP Pic existe una deleción de alanina en la posición 25 de *pic* $\Delta d1Sec$ ocasionando un cambio en el marco de lectura, que deleta parte de la β -hélice 1 (Figura 13B). También hay una sustitución de nucleótidos de alanina a guanina en la posición 79, pero ésta no cambia el marco de lectura. Siguiendo con el análisis del alineamiento observamos que la última parte de la β -hélice 1 y el subdominio d2 siguen presentes en el gen, dando como resultado la proteína truncada de 61.1 kDa (Figura 13C).

Α	pic∆d1							
PS	β–hélice1	D2	β–hélice2 <mark>D</mark>	<mark>3</mark> β–hélice3	^β / ₂ β–hélice4	D4	β-barril	>
1	650		1300	 1950	2	 600	I 325	0
В								
	Pic∆d1 teórica Pic∆d1Sec	ATGGATCCO ATGGATCCO *******	GAGCTCGAGCA GAGCTCGAGCA	FGAAT-AAAGTTT FGAATAAAAGTTT ***** *****	ATTCTCTTAAA ATTCTCTTAAA	ATATTGC ATATTGC	CCCGTCACCGG CCCGTCACCGG *****	
	Pic∆d1 teórica Pic∆d1Sec	GGGGGCTTAT GGGGGCTTAT *******	TGCTGTCTCTC TGCTGTCTCTA	GAACTTGCCCGCA AACTTGCCCGCA *********	GGGTAATAAAA GGGTAATAAAA ********	AAGACA AAGACA	TGCCGAAGATT TGCCGAAGATT *****	
	Pic∆d1 teórica Pic∆d1Sec	AACGCATAT AACGCATAT *******	TCTTCTGGCTC	GGCATTCCAGCAA GGCATTCCAGCAA	TCTGTCTGTGT TCTGTCTGTGT ********	TACTCT TACTCT	CAGATATCCCA CAGATATCCCA *****	
	Pic∆d1 teórica Pic∆d1Sec	GGCGGGTAT GGCGGGT ******	TTAGATCTCCT	AGGACTAGTCTGA	ACTGGACATAC	GACAAA	ACATCAGGCAC	
С	Pic∆d1 teórica	TGATTACGO	GGCGGTGATT	ΑCAAATAATGCAG	CAGCAAAAATC	CCAGCT	TTTACTGGATCT	
	Pic∆d1Sec		ATT/ATT/ ***	ACAAATAATGCA0 ******	CAGCAAAAATC	CCAGCT *****	TTTACTGGATCT	:
	Pic∆d1 teórica Pic∆d1Sec	TAAGGCTCA TAAGGCTCA *******	\GGATACAAAT(\GGATACAAAT(*********	GTCAGTGAACCGA GTCAGTGAACCGA *****	ACGATTGGAAA ACGATTGGAAA ******	TATATC TATATC *****	CCCCTTTGGTGG CCCCTTTGGTGG *****	i i
	Pic∆d1 teórica Pic∆d1Sec	TACCGGCAC TACCGGCAC	CTCCAGGAAAC	CTGTACAGCATGA CTGTACAGCATGA *****	ATACTCAACAG ATACTCAACAG	CCAGAC CCAGAC *****	CCGCTTCTATAT CCGCTTCTATAT ******	•
	Pic∆d1 teórica Pic∆d1Sec	TCTGAAAT(TCTGAAAT(*******	CTGCCAGCTAT CTGCCAGCTAT ********	GGTAACACTCTG GGTAACACTCTG *****	TGGGGGAACAG TGGGGGGAACAG *******	CCTGAA CCTGAA *****	TGATCCGGCTCA TGATCCGGCTCA *********	1 1 *
	Pic∆d1 teórica Pic∆d1Sec	TGGCCGGGG TGGCCGGGG	CGGGCAAAACA CGGGCAAAACA	ACCCGTTATCT ACCCCGTTTATCT **** *****	TTTCATGGTCA TTTCATGGTCA	GCTGAC GCTGAC *****	CGGGAATATGGA CGGGAATATGGA *********	1 1
	Pic∆d1 teórica Pic∆d1Sec	TGTCGCCAT TGTCGCCAT	T-CCACAGGTO	GCCGGGGGGGAAGA GCCGGGGGGGAAGA	AAGGTCATCT	TTGATGO	GTAGCGTGAACC	

Figura 13. Alineamiento de secuencias de nucleótidos de Pic Δ d1 teórica y Pic Δ d1 secuenciada. (A). Mapa gráfico muestra que la región secuenciada (rojo) revela la deleción de la β -hélice 1. (B). Alineamiento de la región del péptido señal muestra que los nucleótidos de la β -hélice 1 fueron deletados. (C). Segunda parte del alineamiento muestra que la última parte de la β -hélice 1 está presente, junto con el subdominio d2, indicando una pérdida de 609 pb. El alineamiento fue realizado con la herramienta MUSCLE (Edgar, 2004).

Figura 14. Amplificación del gen *pic* y *pic* Δ d1 a partir de la cepa *E. coli BL21*. BL21 fue transformado con pTrcHis2B::*pic* Δ d1, se realizó una restricción enzimática con *Xhol* y *EcoRI* se comprobó mediante PCR si las clonas tienen el gen *pic* Δ d1 y se comparó con la PCR del gen completo (*pic*). (A). Carril 1: marcador de pares de bases (MPB), carril 2: *pic*, carril 3-9: clona 1 (C1), clona 2 (C2), clona 3 (C3), clona 4 (C4), clona 5 (C5), clona 6 (6) y clona 7 (7). (B). Carril 1: marcador de pares de bases (MPB), carril 3-9: clona 8 (C8), clona 9 (C9), clona 10 (C10), clona 11 (C11), clona 12 (C12), clona 13 (13) y clona 14 (14).

Secreción de Pic y PicAd1

Al confirmar que los plásmidos contenían a *pic* Δ d1 en las clonas C4, C7 y C12 de BL21, procedimos, a inducir la proteína con IPTG y concentrarla en filtros de retención de 50 kDa. Estos concentrados filtrados fueron corridos en un gel SDS-PAGE y analizados por Western Blot con un anticuerpo anti-Pic (Figura 15). El análisis mostró nuevamente que la proteína Pic completa tiene un peso molecular de 116 KDa mientras que la mutante Pic Δ d1 mostró un peso molecular de 82.6 KDa en la cepa de *E. coli* BL21 de la clona 12. Ahora que comprobamos que Pic Δ d1 tiene el peso molecular correcto, procedimos a realizar la secuenciación de la clona 12 para confirmar que el subdominio d1 fue deletado.

Secuenciación de pic∆d1

El resultado de secuenciación del gen $pic\Delta d1$ lo comparamos junto con la secuencia de $pic\Delta d1$ teórico, mediante un alineamiento de las secuencias nucleotídicas hecho por BLAST (Zhang et al., 2000). En el alineamiento nos indica que tiene un porcentaje de identidad del 99.32%. Observamos que existen 3 mutaciones de sustitución que no cambian el marco de lectura y una inserción. Los sitios de restricción por *Bgll1* (azul), *AvrII* (rojo) y *SpeI* (morado) están marcados en el alineamiento (Figura 16).

Figura 15. Expressión y secreción de Pic, y Pic Δ d1 a partir de las cepas *E. coli* HB101 y BL21. (A). SDS- PAGE de los sobrenadantes concentrados de proteína Pic, y Pic Δ d1 a partir de cultivos de HB101 y BL21 crecidos toda la noche. (B). Western Blot de Pic nativa, Pic (S258I) y Pic Δ d1 a partir de clonas de HB101 y BL21, estas proteínas se concentraron con un filtro de retención de 50 kDa. Las tres proteínas se detectaron mediante transferencia Western Blot con anticuerpos contra Pic. Carril 1: HB101 Pic nativa, carril 2: Pic (S258I), carril 3: HB101 Pic nativa, carril 4: BL21 Pic Δ d1 clona 4 (C4), carril 5: BL21 Pic Δ d1 clona 7 (C7), carril 6: BL21 Pic Δ d1 clona 12 (C12), carril 7: HB101 Pic Δ d1 C4 clonación pasada (CP) y BL21 Pic Δ d1 C5 (CP).

Pic∆d1Sec		CGTCACCGGGGGGCTTATTGCTGTCTCTGAACTTGCCCGCAGGGTAATAAAAAAGACATC			
Pic∆d1 teórica	3	CGTCACCGGGGGGCTTATTGCTGTCTCTGAACTTGCCCGCAGGGTAATAAAAAAGACATG			
Pic∆d1Sec	2	CCGAAGATTAACGCATATTCTTCTGGCTGGCATTCCAGCAATCTGTCTG			
Pic∆d1 teórica	3	CCGAAGATTAACGCATATTCTTCTGGCTGGCATTCCAGCAATCTGTCTG	152		
Pic∆d1Sec	22	GATATCCCAGGCGGGTATTAGATCTCCTAGGACTAGTCTGAACTGGACATACGACATAAA	181		
Pic∆d1 teórica	53	GATATCCCAGGCGGGTAT TAGATCTCCTAGGACTAGT CTGAACTGGACATACGACATAAA	212		
Pic∆d1Sec	82	ACATCAGGCACAGGTACCCTGAGCCAGGGCAGTAAAAACTGGACCATGCACGGGCAGAAA	241		
Pic∆d1 teórica	13	ACATCAGGCACAGGTACCCTGAGCCAGGGCAGTAAAAACTGGACCATGCACGGGCAGAAA	272		
Pic∆d1Sec	42	GACAATGACCTCAATGCCGGT A AAAATCTGGTATTCAGCGGGCAGAATGGTGCAATTATC	301		
Pic∆d1 teórica	73	GACAATGACCTCAATGCCGGTGAAAACCTGGTATTCAGCGGGCAGAATGGTGCAATTATC	332		
Pic∆d1Sec	02	CTGAAAGACAGTGTGACTCAGGGTGCCGGTTATCTCGAATTTAAAGACAGTTACACCGTA	361		
Pic∆d1 teórica	33	CTGAAAGACAGTGTGACTCAGGGTGCCGGTTATCTCGAATTTAAAGACAGTTACCCCGTA			
Pic∆d1Sec	62	TCTGCTGAATCCGGAAAAACATGGACGGGTGCCGGCATTATTACTGACAAGGGGACGAAT	421		
Pic∆d1 teórica	93	TCTGCTGAATCCGGAAAAACATGGACGGGTGCCGGCATTATTACTGACAAGGGGACGAAT			
Pic∆d1Sec	22	GTAACCTGGAAGGTCAACGGCGTTGCCGGTGACAACTTGCATAAGCTGGGGGGAAGGAA	481		
Pic∆d1 teórica	53	GTAACCTGGAAGGTCAACGGCGTTGCCGGTGACAACTTGCATAAGCTGGGGGAAGGAA			
Pic∆d1Sec	82	CTGACCATAAACGGAACAGGTGTAAACCCGGGAGGACTGAAAACGGGAGACGGTATCGTT	541		
Pic∆d1 teórica	13	CTGACCATAAACGGAACAGGTGTAAACCCGGGAGGACTGAAAACGGGAGACGGTATCGT			
Pic∆d1Sec	42	GTACTTAACCAGCAGGCAGACACTGCAGGTAAATATCCAGGCCTTC 587			
Pic∆d1 teórica	73	GTACTTAACCAGCAGGCAGACACTGCAGGT-AATATCCAGGCCTTC 617			

Figura 16. Alineamiento de secuencias de nucleótidos de Pic Δ d1 teórica y Pic Δ d1 secuenciada. Dentro del alineamiento se pueden identificar los sitios de restricción por *Bgll1* (azul), *Avrl1* (rojo) y *Spel* (morado). La sustitución de nucleótidos fue marcada con verde. El alineamiento fue realizado con la herramienta de BLAST (Zhang et al., 2000).. El alineamiento fue realizado con la herramienta de BLAST (Zhang et al., 2000).

DISCUSIÓN

La patogenicidad de EAEC se debe principalmente a la secreción de proteínas y tóxinas con actividades citotóxicas que provocan alteraciones citopatológicas. Entre estas proteínas se encuentra Pic, una serín proteasa que se ha demostrado que es un secretagogo de moco. Hasta el momento, no se conoce el receptor al cual se une Pic que activa la vía de transducción de señales de PLC, a su vez, activando la vía de calcio intracelular, lo que conduce a la producción de DAG y la liberación de IP3, un segundo mensajero de la señalización de calcio. En este trabajo estudiamos mediante acoplamientos moleculares, los posibles receptores que se unen con DP Pic y la secuencia de aminoácidos de DP Pic que se une al receptor de células caliciformes, desencadenando la secreción rápida de moco.

Modelaje de DP Pic muestra 4 subdominios anclados a una β-hélice estructural.

El modelado de la estructura tridimensional del DP Pic (Figura 2) es muy similar a proteínas pertenecientes a la familia SPATEs. Los miembros pertenecientes a este grupo de proteínas están estrechamente relacionadas, que han desarrollado funciones específicas y distintas que se adaptan al nicho particular ocupado por el patógeno, aunque poseen una homología significativa del 40 al 100% a lo largo de la proteína completa (Henderson and Nataro, 2001). El modelaje de DP Pic realizado con Phyre2 presenta una β -hélice estructural en la que destacan pequeños bucles funcionales llamados subdominios d1, d2, d3 y d4. La β -hélice es el sello estructural de las proteínas autotransportadoras, y parece ser que estos subdominios les confieren funcionalidad (Yen et al., 2008).

La estructura tridimensional de DP Pic y el análisis con la plataforma DALI nos ayudó a identificar la posible función de los subdominios que conforman a esta proteasa (subdominios d1, d2, d3 y d4). El subdominio d1 es compartido con otras proteínas SPATEs debido a que este contiene el motivo serín proteasa (GDSGSP) que es altamente conservado y se encuentra en posiciones similares en las proteínas Pet (Djafari et al., 1997), Tsh (Czeczulin et al., 1999), EspP (Benz and Schmidt, 1992), EspC (D'Souza et al., 1988) pertenecientes a *E. coli* y las proteínas pertenecientes a *Shigella*, ShMu (Elsinghorst and Weitz, 1994) y SepA (Crocquet-Valdes et al., 1994). Las funciones específicas de los los subdominios d2 y d3 aún no se han dilucidado, sin embargo, el análisis bioinformático en DALI muestran que el subdominio d2 es similar estructuralmente a la quitinasa y el subdominio d3 no tiene similitud estructural con ningún subdominio de proteínas ya reportadas. En de la literatura se han reportado miembros de las SPATEs que contienen el subdominio d2 adoptando un pliegue similar al de la quitinasa como lo es la serín proteasa EspP, pero aún no se ha identificado su papel funcional (Khan et al., 2011) y la proteasa de hemoglobulina (Hbp) que tiene homología con la región de unión a quitina, pero la propiedad de adherencia aún no se ha confirmado (Otto et al., 2005).

Por último, el subdominio d4 es estructuralmente similar al dominio autochaperona, este dominio tambien es conocido como la región de unión e influye en el plegamiento y la secreción eficiente del dominio pasajero de un autotransportador a través de la membrana externa (Yen et al., 2008).

Una vez obtenida la estructura tridimensional del DP Pic y los receptores candidatos procedimos a realizar los acoplamientos moleculares, los cuales nos indicaron que el subdominio d1 de Pic era el mejor candidato para unirse al receptor de las celulas caliciformes y así, activar la vía de secreción rápida de mucinas.

Acoplamientos moleculares de los subdominios de DP Pic.

Los receptores asociados a la secreción rápida de moco presentes en células caliciformes fueron considerados candidatos para ser el receptor de DP Pic, por lo que nos interesó predecir interacciones entre los diferentes subdominios de DP Pic y cada receptor utilizando técnicas de acoplamiento molecular. Para estandarizar los parámetros de acoplamiento molecular y validar el software empleado utilizamos los ligandos originales de cada receptor candidato. En el receptor A1R obtuvimos una concordancia perfecta entre los aminoácidos predichos y los reportados por la literatura (Glukhova et al., 2017) (Tabla 3) y el acoplamiento molecular muestra el *pocket* del receptor A1R y su interacción con el ligando DU1 (Figura 3A-B). De la misma forma,
obtuvimos una buena concordancia entre los amoinoácidos identificados del receptor ALX/FPR2 con su ligando WKYMV (16 de 19 aminoácidos, Tabla 7). Debido a que la estructura de P2Y2R no se encuentra cristalizada y tuvo que ser modelada, los aminoácidos predichos fueron menos que los reportados por la literatura, obteniendo 10 de los 19 reportados (Shishikura et al., 2016) (Tabla 11). El acoplamiento entre PAR2 y su ligando 8UN fue igualmente bueno (6 de 7 aminoácidos) (Tabla 15). Finalmente, aunque el receptor EFGR ya está cristalizado, no obtuvimos una buena concordancia entre los aminoácidos que interactúan con el EGF y su receptor (16 de 29 aminoácidos, Tabla 19). Aunque los acoplamientos de los receptores con sus ligandos nativos no fueran perfectos, siempre obtuvimos buenos valores de energía de afinidad, entre -6.0 y -15.9 kcal/mol, que están dentro de los parámetros encontrados para otras moléculas, ya sea por acoplamientos moleculares o directamente por experimentación (Du et al., 2016).

Al haber estandarizado los acoplamientos moleculares, procedimos a realizar los acoplamientos con el DP Pic completa, con cada uno de sus subdominios, las β -hélices, la α -hélice y regiones combinadas de β -hélices y sus subdominios contiguos correspondientes. El primer receptor que analizamos fue el A1R y al evaluar su acoplamiento con DP Pic completa encontramos que su energía de afinidad es menor a la de otros receptores con los que se evaluó (-13.2 kcal/mol), además de que su constante de disociación (Kd) fue de 2.2 × 10⁻¹⁰ M. Beauglehole et al. (2000) reportó la Kd de la interacción entre A1R y su ligando (DU1) que dio un valor de 3.7 × 10⁻¹⁰ M, cabe resaltar que en todos los acoplamientos que hicimos con el A1R y DP Pic (completo, subdominios, β -hélice, α -hélice o conjunto entre subdominios y β -hélice) nos muestra una Kd similar a lo ya reportado, es decir nuestros acoplamientos podrían ser espontáneos.

 interacción de A1R y DU1, 3.7×10^{-10} M (Beauglehole et al., 2000) (Tabla 4). Por otro lado, al usar el d1 unido a la β-hélice 1 encontramos que la afinidad aumenta (-16.6 kcal/mol, Tabla 6), lo que podría indicar que la β-hélice1 estabiliza la unión del subdominio d1 a este receptor, aunque se necesitarían experimentos deletando la βhélice1 para comprobar estos datos bioinformáticos. Cabe resaltar que cuando se analizan sólo el subdominio d1 (Tabla 4) o la β-hélice1 (Tabla 5) se obtienen 4 aminoácidos que interaccionan con el receptor, sin embargo, si se unen ambas regiones solo interaccionan 2 aminoácidos (Tabla 6), probablemente debido al plegamiento predicho de la región d1-β-hélice1. Al mapear las interacciones entre los aminoácidos de A1R y el subdominio d1 de DP Pic se observa que los 4 aminoácidos candidatos están relativamente cerca, posiblemente formando un pocket donde se lleve a cabo la interacción (Figura 3C-D).

La interacción del DP Pic con el receptor ALX/FRP2 presentó una mayor afinidad que con el receptor A1R (-14.6 contra -13.2 kcal/mol). Sin embargo, la Kd que obtuvimos de este acoplamiento fue de 2×10^{-11} M, parecida a la de 7.5×10^{-11} M que se reportó de la interaccion de ALX/FPR2 con su ligando nativo WKYMV (Chen et al., 2020) (Tabla 7). Además, el WKYMV se une a una gran variedad de aminoácidos (Figura 4A-B), mientras que DP Pic sólo se une a 6 aminoácidos y éstos están en posiciones cercanas a los aminoácidos que intereaccionan con el ligando nativo. De todas las pruebas de acoplamiento, ninguna tuvo la misma energía de afinidad y sólo el subdominio d2 se unió a dos aminoácidos que concordaban con el ligando natural (Tabla 8), aunque el modelaje de esta interacción mostró que 5 aminoácidos podrían formar un pocket de interacción con este subdominio (Figura 4C-D). Sin embargo, al comparar los valores de Kd, observamos una diferencia significativa en nuestro acoplamiento al tener un valor de 3.2×10^{-8} M para la interacción de ALX/FPR2 y el subdominio d2 comparado con el valor de 7.5×10^{-11} M de la interacción de ALX/FPR2 y su ligando ya reportada (Chen et al., 2020) (Tabla 8). Al hacer la interacción de ALX/FPR2 y el conjunto del subdominio d2- β-hélice2 se obtienen 7 aminoácidos interaccionando con el receptor (Tabla 10), sin embargo, todos estos aminoácidos no interaccionan en la misma posición que la del ligando natural, es decir la interacción mas fuerte con este receptor sigue siendo con el subdominio d2.

En el caso de los acoplamientos moleculares de P2Y2R, en la interacción de este receptor con DP Pic obtuvimos la mejor energía de afinidad (-22.7 kcal/mol, Tabla 11) de todas las interacciones que hicimos con los receptores candidatos y DP Pic. Sin embargo, en el caso de la Kd, el valor que obtuvimos fue de 2.3×10^{-17} M, con una gran diferencia a la Kd de 8.2×10^{-10} M reportado por Attah et al. (2020) de la interacción de P2Y2R con su ligando, UTP. Cabe resaltar que este receptor no tiene una estructura cristalizada reportada, por lo que tuvimos que modelarlo, por lo cual la diferencia en su Kd es predecible. A pesar de eso, se obtuvieron 6 aminoácidos de DP Pic en posiciones cercanas que interaccionaban con el receptor (Figura 5C-D) comparandolo con el acoplamiento de P2Y2R con UTP en donde hay 10 aminoácidos que interaccionan con dicho receptor (9 aminoácidos en la misma posición y 1 aminoácido en una posición cercana) mostrando un pocket de unión (Figura 5A-B). Además, la energía de afinidad de la interacción de P2Y2R y el subdominio d2 fue de -8.3 kcal/mol y su Kd de 7.7 × 10^{-7} M (Tabla 12), un valor más cercano al reportado de 8.2 × 10^{-10} M (Attah et al., 2020), es decir este acoplamiento fue el que nos dio un mejor resultado respecto a los otros con el P2Y2R. Al hacer el acoplamiento con este receptor y el conjunto del subdominio d2 y la β-hélice1, observamos que la interacción es con 5 aminoácidos, mucho menor a lo que se habia encontrado con el subdmionio d2 (Tabla 14), esto podría deberse a que al ser más grande la región de la proteína hay un mayor impedimento estérico que afecta a la unión al receptor P2Y2R (Jin et al., 1994).

El acoplamiento molecular de DP Pic con PAR2, nos mostró que 5 de 7 aminoácidos interaccionaban con dicho receptor, sin embargo, la interacción es menor comparandolo con el acoplamiento de PAR2 y su ligando (8UN) en el cual hubo 6 de 7 aminoácidos formando un *pocket* de unión a dicho receptor (Figura 6A-B). Del mismo modo, el acoplamiento de DP Pic con PAR2 nos mostró una energía de afinidad de -12.6 kcal/mol y una Kd de 5.6×10^{-10} M, comparandolo con la Kd de la interacción reportada de PAR2 con 8UN, de 6.6×10^{-6} M (Cheng et al., 2017), existe una diferencia significativa (Tabla 15). A pesar de esto, el acoplamiento de PAR2 con el subdominio d1 presentó mejores resultados, con 6 aminoácidos que interaccionan con el receptor (Figura 6C-D), una energía de afinidad un poco más baja que con DP Pic, -8.8 kcal/mol, pero su Kd de 3.6×10^{-7} M se asemeja más a lo reportado (6.6×10^{-6} M) (Tabla 16). Al igual, la interacción de este receptor con la β-hélice4 mostró 6 aminoácidos que interacionan con PAR2 (Tabla 17), sin embargo se ha reportado que la β-hélice es un andamio estructural de la preoteína y solo los subdominios son los que confieren funcionalidad (Yen et al., 2008), por lo que hasta el momento, el subdominio d1 es el mejor candidato para unirse a PAR2. Al realizar la interacción de PAR2 con el conjunto del subdominio d1 y la β-hélice1 obtuvimos los 7 aminoácidos (5 aminoácidos en las mismas posiciones y 2 con pocisiones cercanas) que interaccion con solo el subdominio d1, la Kd (2.1×10^{-12} M) varía más a la Kd reportada (6.6×10^{-6} M), por lo tanto el acoplamiento de PAR2 con el subdominio d1 sigue siendo el mejor de todas las interacciones antes predichas (Tabla 18).

La interacción de EGFR con DP Pic, encontramos que 5 aminoácidos interaccionan con el receptor, a diferencia con la interacción con su ligando (EGF) que se encontró 16 aminoácidos dentro de su *pocket* de unión (Figura 7A-B). A pesar de esto, la energía de afinidad de EGFR y DPPic fue de —14 kcal/mol y su Kd fue de 5.1×10^{-11} M, comparado con la Kd reportada de la interacción de EGFR y su ligando EGF (6×10^{-10} M) tiene un valor similar (Sanders et al., 2013). Al interaccionar el subdominio d2 con EGFR observamos una mayor interacción (12 aminoácidos) a comparación con DP Pic (Figura 7C-D), al igual que su Kd 2.1×10^{-10} M que es más similar a lo ya reportado, 6×10^{-10} M (Tabla 20).

Los *pockets* de unión de PAR2 con ambos ligandos (8UN y el subdominio d1) son muy similares entre sí.

De todos los acoplamientos moleculares que hicimos con los receptores candidatos y DP Pic, la mejor interacción fue entre el receptor PAR2 y el subdominio d1. Al realizar una comparación del bolsillo del unión de las interacciones de PAR2 con su ligando o con el subdominio d1 (Figura 8A-B) nos muestra que las distancias intermoleculares entre los aminoácidos que interaccionan, son muy similares entre ambos acoplamientos (Tabla 21). En de la literatura, se reportó que el anillo de 1,3-benzodioxol del ligando 8UN encaja en un bolsillo hidrofóbico creado por la L123 (2.52 Å), F154 (3.31 Å), A157 (3.34 Å), C161 (3.38 Å), W199 (4.50 Å) y L203 (4.54 Å), todos estos aminoácidos pertenecientes a PAR2. Mientras que la Y210 (4.61 Å) forma un enlace de enlace de hidrógeno débil (3,4 Å) con el nitrégeno de 8UN (Cheng et al., 2017). De tal forma, el subdominio d1 parece ser la región de DP Pic con mayor afinidad por el receptor PAR2.

Deleción del subdominio d1 de DP Pic.

Los acoplamientos moleculares nos indicaron que el subdominio d1 de Pic es el mejor candidato para unirse al receptor de las celulas caliciformes y así, activar la vía de secreción rápida de mucinas. Por lo tanto, para comprobar los resultados bioinformaticos obtenidos, construimos una mutante de Pic deletando el subdominio d1 (pTrcHis2B:: $pic\Delta d1$) para evaluar la función de la proteína como secretagogo. De las temperaturas de alineamiento probadas para amplificar el gen truncado, obtuvimos una mayor amplificación a 51.4 °C, lo que concuerda con un estudio que describió que con primers con un alto contenido de adenina y timina, las temperaturas óptimas de alineación están por debajo de 60°C utilizando la polimerasa HIFi Kappa (Nagai et al., 2022). Se esperaba que las clonas transformantes con *pic\Delta d1* amplificaran un fragmento de 3,310 pb, sin embargo, las clonas 4 y 5 amplificaron un fragmento ligeramente menor de unos 2,600 pb aproximadamente (Figura 10). La clona 5 presenta mayor cantidad de amplicón que la clona 4, lo cual podría ser efecto de errores técnicos al no colocar la misma cantidad de muestra de ADN plasmídico en el mastermix. En cuanto a las clonas 1 y 3, no tuvieron ninguna amplificación, que igualmente el error puede ser técnico, o el plásmido se cortó en un lugar diferente y se eliminó el gen pic. Debido a esto, hicimos una segunda verificación de la mutante mediante una digestión enzimática con las enzimas EcoRI y Xbal por separado para linealizar los plásmidos de las clonas 4, 5 y 7 (Figura 11) y concluyeron que el plásmido pTrcHis2B::*pic∆d1* linearizado tiene una logitud de 7,710 pb. Henderson et al. (1999) reportaron por primera vez que el gen pic tiene un tamaño de 4,137 pb, de los cuales el dominio serín proteasa (d1) tiene una longitud de 792 pb. Al clonar *pic* en pTrc, la construcción tuvo una longitud de 8,502 pb y al eliminar el d1 la construcción pTrcHis2B:: $pic\Delta d1$ debería ser de 7,710 pb. Sin embargo, al hacer el corte notamos que el plásmido linealizado tiene una longitud de unos 6,500

pb aproximadamente, por lo que faltan unos 1,200 bp, lo que ayuda a justificar los pb faltantes durante la PCR (Figura 10).

Al obtener la construcción pTrcHis2B::*pic* $\Delta d1$, procedimos a realizar la secreción, purificación y concentración de Pic $\Delta d1$ y Pic a partir de *E. coli* BL21 y HB101. La secreción de la proteasa Pic tuvo un peso molecular de 116 KDa que correponde a lo ya reportado en la literatura (Flores-Sanchez et al., 2020; Henderson et al., 1999; Navarro-Garcia et al., 2010), sin embargo, en la secreción de Pic $\Delta d1$ presentó un peso molecular de 61.1 KDa que no correponde al peso molecular calculado en el programa bioinformático *Expasy compute Pl/Mw tool (Gasteiger et al., 2005)* dandonos una estimación de 82.6 KDa de la proteína mutante (Figura 12). El peso menor de Pic $\Delta d1$, la longitud menor del amplicón de pic y el menor tamaño del plásmido pTrcHis2B::pic $\Delta d1$ linealizado con Xbal/EcoRI indican un posible corte erroneo y la pérdida de una región fuera del subdominio d1. Pese a que la proteína está truncada, sigue teniendo una buena secreción y ésta fue incluso mayor que la de Pic, lo que refiere que sigue teniendo un buen procesamiento para su secreción.

Para confirmar la región faltante del plámisdo pTrcHis2B::*pic* $\Delta d1$, secuenciamos el gen *pic* $\Delta d1$ (*pic* $\Delta d1Sec$) y posteriormente, hacer un alineamiento de *pic* $\Delta d1Sec$ y *pic* $\Delta d1$ teórica en MUSCLE (Edgar, 2004) el cual nos indicó que los primeros 140 nucleoótidos de ambos genes son idénticos, a excepción de la deleción en la pósición 25, lo que cambiaría el marco de lectura y produciría una proteína truncada. También hay una mutación A/G en la posición 79, pero no se cambia el marco de lectura (Figura 13). La región correspondiente a la β -hélice1 está deletada en esta construcción, faltando 609 pb, correspondiendo a unos 20.9 kDa, lo que explica que la proteína secretada tenga un peso de aproximadamente 60 kDa en vez de los 82 kDa que debería tener según la secuencia teórica.

Como las clonas analizadas producían proteínas que tenían una deleción del subdominio d1 así como de la β-hélice 1, decidimos repetir el procedimiento de deleción del subdominio d1 por PCR inversa. De las clonas transformantes analizamos 14 por PCR y encontramos que la C4, la C7 y la C12 producían amplicones de una longitud de unos 3,310 pb (Figura 14), por lo que probamos la secreción de PicΔd1y encontramos que la C12 secretaba una proteína de unos 82 kDa, lo cual coincide con el peso teórico

del DP de Pic∆d1 (Figura 15). Esta proteína también fue reconocida utilizando anti Pic, lo que apoya la noción de que la proteína secretada era en realidad Pic Δ d1, sin embargo, para asegurarnos de que el corte había sido en el sitio correcto decidimos secuenciar nuevamente la región 3' de pic∆d1. Los resultados mostraron que el gen pic tenía los sitios de corte AvrII, BgIII y Spel y que se había deletado correctamente el subdominio d1 (Figura 16). Aunque los sitios de corte estén presentes, existen 3 sustituciones y una deleción, aunque ésta última se encuentra en la región más al extremo del amplicón secuenciado, lo que podría indicar que se trata de un error de secuenciación ya que los extremos de fragmentos largos tienen menores intensidades de fluorescencia (Platt et al., 2007). Las 3 sustituciones restantes (A312/G; T316/C y A405/C) no cambian el marco de lectura de la proteína. Las primeras dos sustituciones (A312/G; T316/C) son mutaciones silenciosas ya que no cambian el aminoácido codificado, sin embargo la tercera sustitución A405/C cambia la treonina 72 por una prolina. De acuerdo con Li et al. (1996) las prolinas son fuertes disruptores tanto de las β-hélices como de las αhélices, por lo que este cambio podría traer consecuencias en el plegamiento de Pic $\Delta d1$, aunque en los experimentos de secreción no vimos una alteración en la secreción de la proteína (Figura 15).

Los acoplamientos moleculares nos permitieron encontrar que el mejor candidato a ser el receptor fue PAR2 y la región a la cual se podría unir del DP Pic es el subdominio d1. Además, en 3 acoplamientos moleculares con los receptores ALX/FPR2, P2Y2R y EGFR encontramos que el subdominio d2 es el que se uniría a dichos receptores, por lo cual realizar una construcción deletando dicho subdominio sería importante para validar los resultados bioinformáticos.

La construcción pTrcHis2B::*pic* $\Delta d1$ se realizó con el fin de saber si el subdominio d1 es la que se une al receptor PAR2. Para comprobar esto, utilizaremos un cultivo de células LS174T que se expondrán a la proteína Pic nativa que sabemos desencadena la secreción rapida de moco, sin embargo, al agregar Pic Δ d1 no debe haber secreción de mucinas en dado caso que sea el subdominio d1 quien active la secreción de moco. En caso de que Pic Δ d1 siga aumentando la secreción de mucinas, se evaluará la función del subdominio d2 como posible ligando de receptores promotores a la secreción de mucinas. Por último, con la finalidad de saber si PAR2 es el receptor que desencadena la secreción de moco en las celulas caliciformes, procederemos a relizar un experimento en el cual a células LS174T tendrán una preincubación con un antagonista de PAR2, para posteriormente agregarles a Pic nativa, si no existe secreción de moco, refiere a que este receptor es el que se une a DP Pic para desencadenar la secreción de mucinas.

CONCLUSIONES

- 1. En este trabajo obtuvimos el modelo tridimensional del DP Pic.
- 2. Los acoplamientos moleculares identificaron la interacción de:
 - A1R con el subdominio d1
 - o ALX/FPR2 con el subdominio d2
 - P2Y2R con el subdominio d2
 - PAR2 con el subdominio d1
 - EGFR con el subdominio d2
- El mejor acoplamiento molecular fue con PAR2 y el subdominio d1 de DP Pic, en el cual identificamos 5 aminoácidos del receptor que están reportados en la literatura y un aminoácido que están en una posición muy cercana.
- 4. Existe un *pocket* en PAR2 en donde se une d1 de DP Pic, similar a su ligando natural.
- Tanto el subdominio d1 como el subdominio d2 podría ser la posible secuencia en Pic que interacciona con el receptor para permitir la señalización que lleva a la activación de la vía de señalización PLC/ IP3-DAG.
- Se logró la deleción del subdominio d1. Posteriormente, *E. coli* HB101 Y BL21 fueron transformados con el plásmido con pTrcHis2B::*pic∆d1*.
- La mutante Pic∆d1 mostró un peso molecular de 82.6 KDa en la cepa de *E. coli* BL21.

PERSPECTIVAS

En este trabajo realizamos la construcción de pTrcHis2B:: $pic\Delta d1$ en *E. coli* HB101 y BL21 para obtener la proteína mutante Pic $\Delta d1$, ya que en el mejor acoplamiento molecular observamos que el subdominio d1 es la región a la cual se une el receptor PAR2, a nivel bioinformático. Por lo tanto, para comprobar esto *in vitro*, necesitaremos utilizar esta mutante en un cultivo de células de LS174T y comprobar que la secreción de moco es nula, a diferencia de Pic nativa que se ha comprobado que propicia la secreción rápida de mucinas (Flores-Sanchez et al., 2020).

En el caso de identificar el receptor que desencadena la vía de PLC/DAG-IP3/Calcio a través de Pic, se utilizará antagonistas del receptor PAR2 preincubados en las células LS174T, después incubarlas con Pic nativa y cuantificar la secreción de mucinas, si nuestras predicciones con los acoplamientos son ciertas, este receptor será el que se una a Pic y propiciará la secreción rápida de moco.

En caso de que el subdominio d1 no sea la región a la cual se une el receptor, observamos que el subdominio d2 también interaccionaba con buena afinidad a los receptores ALX/FPR2, P2Y2R y EGFR. Por lo tanto, construir la mutante Pic∆d2 nos ayudaría a comprobar si el subdominio d2 interacciona con el receptor que desencadena la secreción rápida de mucinas.

BIBLIOGRAFÍA

Adachi, J.A., Ericsson, C.D., Jiang, Z.-D., DuPont, M.W., Pallegar, S.R., and DuPont, H.L. (2002). Natural history of enteroaggregative and enterotoxigenic Escherichia coli infection among US travelers to Guadalajara, Mexico. Journal of Infectious Diseases *185*, 1681-1683.

Adler, K.B., Tuvim, M.J., and Dickey, B.F. (2013). Regulated mucin secretion from airway epithelial cells. Frontiers in endocrinology *4*, 129.

Aranda-Michel, J., and Giannella, R.A. (1999). Acute diarrhea: a practical review. The American journal of medicine *106*, 670-676.

Attah, I.Y., Neumann, A., Al-Hroub, H., Rafehi, M., Baqi, Y., Namasivayam, V., and Müller, C.E. (2020). Ligand binding and activation of UTP-activated G protein-coupled P2Y2 and P2Y4 receptors elucidated by mutagenesis, pharmacological and computational studies. Biochimica et Biophysica Acta (BBA)-General Subjects *1864*, 129501.

Barker, N. (2014). Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nature reviews Molecular cell biology *15*, 19-33.

Beauglehole, A.R., Baker, S.P., and Scammells, P.J. (2000). Fluorosulfonyl-substituted xanthines as selective irreversible antagonists for the A1-adenosine receptor. Journal of medicinal chemistry 43, 4973-4980.

Behrens, M., Sheikh, J., and Nataro, J.P. (2002). Regulation of the overlapping pic/set locus in Shigella flexneri and enteroaggregative Escherichia coli. Infection and Immunity *70*, 2915-2925.

Benjelloun-Touimi, Z., Sansonetti, P.J., and Parsot, C. (1995). SepA, the major extracellular protein of Shigella flexneri: autonomous secretion and involvement in tissue invasion. Molecular microbiology *17*, 123-135.

Benz, I., and Schmidt, M.A. (1992). AIDA-I, the adhesin involved in diffuse adherence of

the diarrhoeagenic *Escherichia coli* strain 2787 (O126: H27), is synthesized via a precursor molecule. Molecular microbiology 6, 1539-1546.

Benz, I., and Schmidt, M.A. (2011). Structures and functions of autotransporter proteins in microbial pathogens. International Journal of Medical Microbiology *301*, 461-468.

Birchenough, G.M., Johansson, M.E., Gustafsson, J.K., Bergström, J.H., and Hansson, G. (2015). New developments in goblet cell mucus secretion and function. Mucosal immunology *8*, 712-719.

Chen, T., Xiong, M., Zong, X., Ge, Y., Zhang, H., Wang, M., Won Han, G., Yi, C., Ma, L., and Ye, R.D. (2020). Structural basis of ligand binding modes at the human formyl peptide receptor 2. Nature communications *11*, 1-9.

Cheng, R.K., Fiez-Vandal, C., Schlenker, O., Edman, K., Aggeler, B., Brown, D.G., Brown, G.A., Cooke, R.M., Dumelin, C.E., and Doré, A.S. (2017). Structural insight into allosteric modulation of protease-activated receptor 2. Nature *545*, 112-115.

Corfield, A.P., Carroll, D., Myerscough, N., and Probert, C.S. (2001). Mucins in the gastrointestinal tract in health and disease. Frontiers in Bioscience-Landmark *6*, 1321-1357.

Crocquet-Valdes, P.A., Weiss, K., and Walker, D. (1994). Sequence analysis of the 190kDa antigen-encoding gene of *Rickettsia conorii* (Malish 7 strain). Gene 140, 115-119.

Czeczulin, J.R., Whittam, T.S., Henderson, I.R., Navarro-Garcia, F., and Nataro, J.P. (1999). Phylogenetic analysis of enteroaggregative and diffusely adherent *Escherichia coli*. Infection and immunity 67, 2692-2699.

D'Souza, S.E., Ginsberg, M.H., Burke, T.A., Lam, S.C.-T., and Plow, E.F. (1988). Localization of an Arg-Gly-Asp recognition site within an integrin adhesion receptor. Science 242, 91-93.

Davis, C.W., and Dickey, B.F. (2008). Regulated airway goblet cell mucin secretion. Annual review of physiology *70*, 487-512. Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., Murray, L.W., Arendall III, W.B., Snoeyink, J., and Richardson, J.S. (2007). MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic acids research *35*, W375-W383.

Deplancke, B., and Gaskins, H.R. (2001). Microbial modulation of innate defense: goblet cells and the intestinal mucus layer. The American journal of clinical nutrition *73*, 1131S-1141S.

Deshmukh, H.S., Case, L.M., Wesselkamper, S.C., Borchers, M.T., Martin, L.D., Shertzer, H.G., Nadel, J.A., and Leikauf, G.D. (2005). Metalloproteinases mediate mucin 5AC expression by epidermal growth factor receptor activation. American journal of respiratory and critical care medicine *171*, 305-314.

Djafari, S., Ebel, F., Deibel, C., Krämer, S., Hudel, M., and Chakraborty, T. (1997). Characterization of an exported protease from Shiga toxin-producing *Escherichia coli*. Molecular microbiology 25, 771-784.

Du, X., Li, Y., Xia, Y.-L., Ai, S.-M., Liang, J., Sang, P., Ji, X.-L., and Liu, S.-Q. (2016). Insights into protein–ligand interactions: mechanisms, models, and methods. International journal of molecular sciences 17, 144.

Edgar, R.C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic acids research 32, 1792-1797.

Elsinghorst, E.A., and Weitz, J.A. (1994). Epithelial cell invasion and adherence directed by the enterotoxigenic *Escherichia coli* tib locus is associated with a 104-kilodalton outer membrane protein. Infection and immunity 62, 3463-3471.

Flores-Sanchez, F., Chavez-Dueñas, L., Sanchez-Villamil, J., and Navarro-Garcia, F. (2020). Pic Protein From Enteroaggregative *E. coli* Induces Different Mechanisms for Its Dual Activity as a Mucus Secretagogue and a Mucinase. Frontiers in immunology, 2963.

Fredholm, B.B., IJzerman, A.P., Jacobson, K.A., Linden, J., and Müller, C.E. (2011).

International Union of Basic and Clinical Pharmacology. LXXXI. Nomenclature and classification of adenosine receptors—an update. Pharmacological reviews *63*, 1-34.

Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S.e., Wilkins, M.R., Appel, R.D., and Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server (Springer).

Glukhova, A., Thal, D.M., Nguyen, A.T., Vecchio, E.A., Jörg, M., Scammells, P.J., May, L.T., Sexton, P.M., and Christopoulos, A. (2017). Structure of the adenosine A1 receptor reveals the basis for subtype selectivity. Cell *168*, 867-877. e813.

Henderson, I.R., Czeczulin, J., Eslava, C., Noriega, F., and Nataro, J.P. (1999). Characterization of Pic, a secreted protease of Shigella flexneri and enteroaggregative Escherichia coli. Infection and immunity *67*, 5587-5596.

Henderson, I.R., and Nataro, J.P. (2001). Virulence functions of autotransporter proteins. Infection and immunity 69, 1231-1243.

Hodges, R.R., Li, D., Shatos, M.A., Bair, J.A., Lippestad, M., Serhan, C.N., and Dartt, D.A. (2017). Lipoxin A4 activates ALX/FPR2 receptor to regulate conjunctival goblet cell secretion. Mucosal immunology *10*, 46-57.

Hollingsworth, M.A., and Swanson, B.J. (2004). Mucins in cancer: protection and control of the cell surface. Nature Reviews Cancer *4*, 45-60.

Holm, L. (2020). Using Dali for protein structure comparison. In Structural Bioinformatics (Springer), pp. 29-42.

Huang, D.B., Mohanty, A., DuPont, H.L., Okhuysen, P.C., and Chiang, T. (2006). A review of an emerging enteric pathogen: enteroaggregative Escherichia coli. Journal of medical microbiology *55*, 1303-1311.

Jeong, Y.S., and Bae, Y.-S. (2020). Formyl peptide receptors in the mucosal immune system. Experimental & Molecular Medicine *52*, 1694-1704.

Jin, X., Talbot, J., and Wang, N.H.L. (1994). Analysis of steric hindrance effects on adsorption kinetics and equilibria. AIChE journal 40, 1685-1696.

Johansson, M. (2013). Sjövall H., Hansson GC. The gastrointestinal mucus system in health and disease. Nat Rev Gastroenterol Hepatol *10*, 352-361.

Kaper, J.B., Nataro, J.P., and Mobley, H.L. (2004). Pathogenic escherichia coli. Nature reviews microbiology *2*, 123-140.

Kawabata, A. (2002). PAR-2: structure, function and relevance to human diseases of the gastric mucosa. Expert reviews in molecular medicine *4*, 1-17.

Kawabata, A. (2003). Gastrointestinal functions of proteinase-activated receptors. Life sciences 74, 247-254.

Kawabata, A., Kinoshita, M., Nishikawa, H., Kuroda, R., Nishida, M., Araki, H., Arizono, N., Oda, Y., and Kakehi, K. (2001). The protease-activated receptor-2 agonist induces gastric mucus secretion and mucosal cytoprotection. The Journal of clinical investigation *107*, 1443-1450.

Khan, S., Mian, H.S., Sandercock, L.E., Chirgadze, N.Y., and Pai, E.F. (2011). Crystal structure of the passenger domain of the *Escherichia coli* autotransporter EspP. Journal of molecular biology 413, 985-1000.

Kaye, R., Botten, N., Lippestad, M., Li, D., Hodges, R.R., Utheim, T.P., Serhan, C.N., and Dartt, D.A. (2019). Resolvin D1, but not resolvin E1, transactivates the epidermal growth factor receptor to increase intracellular calcium and glycoconjugate secretion in rat and human conjunctival goblet cells. Experimental eye research *180*, 53-62.

Kelley, L.A., Mezulis, S., Yates, C.M., Wass, M.N., and Sternberg, M.J. (2015). The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols *10*, 845-858.

Kufe, D.W. (2009). Mucins in cancer: function, prognosis and therapy. Nature Reviews Cancer *9*, 874-885.

Li, S.-C., Goto, N.K., Williams, K.A., and Deber, C.M. (1996). Alpha-helical, but not betasheet, propensity of proline is determined by peptide environment. Proceedings of the National Academy of Sciences 93, 6676-6681.

Lippestad, M., Hodges, R.R., Utheim, T.P., Serhan, C.N., and Dartt, D.A. (2017). Resolvin D1 increases mucin secretion in cultured rat conjunctival goblet cells via multiple signaling pathways. Investigative ophthalmology & visual science *58*, 4530-4544.

Liu, C., Li, Q., Zhou, X., Kolosov, V.P., and Perelman, J.M. (2013). Human airway trypsinlike protease induces mucin5AC hypersecretion via a protease-activated receptor 2mediated pathway in human airway epithelial cells. Archives of biochemistry and biophysics *535*, 234-240.

Liu, L., Saitz-Rojas, W., Smith, R., Gonyar, L., In, J.G., Kovbasnjuk, O., Zachos, N.C., Donowitz, M., Nataro, J.P., and Ruiz-Perez, F. (2020). Mucus layer modeling of human colonoids during infection with enteroaggragative E. coli. Scientific Reports *10*, 10533.

Macfarlane, S.R., Seatter, M.J., Kanke, T., Hunter, G.D., and Plevin, R. (2001). Proteinase-activated receptors. Pharmacological reviews *53*, 245-282.

McNamara, N., Gallup, M., Khong, A., Sucher, A., Maltseva, I., Fahy, J.V., and Basbaum, C. (2004). Adenosine up-regulation of the mucin gene, MU2, in asthma. The FASEB journal *18*, 1770-1772.

Morris, G.M., and Lim-Wilby, M. (2008). Molecular docking. In Molecular modeling of proteins (Springer), pp. 365-382.

Nadel, J.A. (2001). Role of epidermal growth factor receptor activation in regulating mucin synthesis. Respiratory research *2*, 1-5.

Nagai, S., Sildever, S., Nishi, N., Tazawa, S., Basti, L., Kobayashi, T., and Ishino, Y. (2022). Comparing PCR-generated artifacts of different polymerases for improved accuracy of DNA metabarcoding. Metabarcoding and Metagenomics 6, e77704.

Nataro, J.P., and Kaper, J.B. (1998). Diarrheagenic escherichia coli. Clinical microbiology

reviews 11, 142-201.

Navarro-Garcia, F., and Elias, W.P. (2011). Autotransporters and virulence of enteroaggregative E. coli. Gut microbes *2*, 13-24.

Navarro-Garcia, F., Gutierrez-Jimenez, J., Garcia-Tovar, C., Castro, L.A., Salazar-Gonzalez, H., and Cordova, V. (2010). Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infection and immunity *78*, 4101-4109.

Nelson, J.W., Leigh, N.J., Mellas, R.E., McCall, A.D., Aguirre, A., and Baker, O.J. (2014). ALX/FPR2 receptor for RvD1 is expressed and functional in salivary glands. American Journal of Physiology-Cell Physiology *306*, C178-C185.

Nishikawa, H., and Kawabata, A. (2003). Modulation of gastric function by proteinaseactivated receptors. Drug development research *60*, 9-13.

Ogiso, H., Ishitani, R., Nureki, O., Fukai, S., Yamanaka, M., Kim, J.-H., Saito, K., Sakamoto, A., Inoue, M., and Shirouzu, M. (2002). Crystal structure of the complex of human epidermal growth factor and receptor extracellular domains. Cell *110*, 775-787.

Otto, B.R., Sijbrandi, R., Luirink, J., Oudega, B., Heddle, J.G., Mizutani, K., Park, S.-Y., and Tame, J.R. (2005). Crystal structure of hemoglobin protease, a heme binding autotransporter protein from pathogenic *Escherichia coli*. Journal of Biological Chemistry 280, 17339-17345.

Parr, C.E., Sullivan, D.M., Paradiso, A.M., Lazarowski, E.R., Burch, L.H., Olsen, J.C., Erb, L., Weisman, G.A., Boucher, R.C., and Turner, J.T. (1994). Cloning and expression of a human P2U nucleotide receptor, a target for cystic fibrosis pharmacotherapy. Proceedings of the National Academy of Sciences *91*, 3275-3279.

Perin, J., Mulick, A., Yeung, D., Villavicencio, F., Lopez, G., Strong, K.L., Prieto-Merino, D., Cousens, S., Black, R.E., and Liu, L. (2022). Global, regional, and national causes of under-5 mortality in 2000–19: an updated systematic analysis with implications for the

Sustainable Development Goals. The Lancet Child & Adolescent Health 6, 106-115.

Platt, A.R., Woodhall, R.W., and George Jr, A.L. (2007). Improved DNA sequencing quality and efficiency using an optimized fast cycle sequencing protocol. Biotechniques 43, 58-62.

Ríos, J.D., Shatos, M.A., Urashima, H., and Dartt, D.A. (2008). Effect of OPC-12759 on EGF receptor activation, p44/p42 MAPK activity, and secretion in conjunctival goblet cells. Experimental eye research *86*, 629-636.

Sanders, J.M., Wampole, M.E., Thakur, M.L., and Wickstrom, E. (2013). Molecular determinants of epidermal growth factor binding: a molecular dynamics study. PloS one 8, e54136.

Shishikura, Y., Koarai, A., Aizawa, H., Yamaya, M., Sugiura, H., Watanabe, M., Hashimoto, Y., Numakura, T., Makiguti, T., and Abe, K. (2016). Extracellular ATP is involved in dsRNA-induced MUC5AC production via P2Y2R in human airway epithelium. Respiratory Research *17*, 1-14.

Xue, L.C., Rodrigues, J.P., Kastritis, P.L., Bonvin, A.M., and Vangone, A. (2016). PRODIGY: a web server for predicting the binding affinity of protein–protein complexes. Bioinformatics *3*2, 3676-3678.

Yan, Y., Tao, H., He, J., and Huang, S.-Y. (2020). The HDOCK server for integrated protein–protein docking. Nature protocols *15*, 1829-1852.

Yasuda-Onozawa, Y., Handa, O., Naito, Y., Ushiroda, C., Suyama, Y., Toyokawa, Y., Murakami, T., Yasuda, T., Ueda, T., and Majima, A. (2017). Rebamipide upregulates mucin secretion of intestinal goblet cells via Akt phosphorylation. Molecular Medicine Reports *16*, 8216-8222.

Yen, Y.T., Kostakioti, M., Henderson, I.R., and Stathopoulos, C. (2008). Common themes and variations in serine protease autotransporters. Trends in microbiology *16*, 370-379.

Zhang, Z., Schwartz, S., Wagner, L., and Miller, W. (2000). A greedy algorithm for aligning

DNA sequences. Journal of computational biology : a journal of computational molecular cell biology *7*, 203-214.