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Abstract

This work is an exposition of the mathematical problems present in routing drones in relation to
the  package  delivery  problem.  Two  main  optimization  problems  are  addressed:  firstly,  the
traveling salesman problem, which is the essence of any vehicle routing model (of any kind), and
secondly, the clustering problem. For each of these problems, the classic strategy for solving the
problem is presented, as well as an alternative proposal. Finally, a modern and realistic package
delivery model of a truck that utilizes drones to deliver packages.  In all  cases, a worst-case
analysis is performed.



Resumen

El presente trabajo es una exposición de los problemas matemáticos presentes en el de ruteo de
drones con respecto al problema de entrega de paquetes. Se abordan dos problemas principales
de optimización:  primero,  el  problema del  agente viajero,  el  cual  es la  esencia  de cualquier
modelo  de  ruteo  de  vehículos  (de  cualquier  tipo)  y  segundo,  el  problema  de  agrupamiento
(también llamado clusterización).  Para cada uno de estos problemas se presenta la estrategia
clásica para resolver el problema, así como una propuesta alternativa. Finalmente, se presenta un
modelo moderno y realista de una camioneta que utiliza drones para realizar las entregas de
paquetes. En todos los casos se realiza un análisis del peor caso.
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Introduction
Unmanned Aerial Vehicles (UAV), now better known as drones, were a technology previously
only available for military applications. This trend has changed in the last decade and currently
the interest in civilian applications has surpassed the interest in military applications, at least in
academia.

Probably this  trend started because of the massive introduction to  the market  of  low-cost
drones. We identified at least six civilian applications of drones: package delivery, surveillance,
agriculture,  topography,  telecommunications,  and  cinematography.  Surveillance  and package
delivery are the most researched areas covering 90% of the published articles [27].
  In this work we address the drone package delivery problem. We selected that application,
mainly, because it is the first one that people will notice on a daily basis, faster deliveries are
more common every day, now with some companies even offering one-hour delivery [35].

Despite  the  many  economic,  social  and  political  impacts  of  drone  package  delivery,  the
present work will be purely mathematical. We will study the mathematics that are behind the
drone-truck package delivery problem, we will give a deep insight into the hidden mathematics
that lay behind, and we will exhibit the mathematical techniques used in this type of problems.
Which are, fundamentally, two NP-hard optimization problems: a TSP optimization problem and
a clustering optimization problem.

The structure will be to first present the classical, most widely used, technique to solve a given
problem and later propose an alternative technique for the same problem. 

Chapter 1: The Traveling Salesman Problem

In the  first  chapter  we will  study our  first  optimization  problem, the Traveling  Salesman
Problem. Although being a several centuries old problem, it is still a research problem as it is at
the core of any vehicle routing problem, in particular, at the core of any drone package delivery
problem. 

Although there are even complete books about the TSP [9], no work can be as complete as
including  everything  about  the  TSP.  Still,  we  try  to  give  a  comprehensive  introduction  by
tackling a bit about the history of the problem from the early beginnings, the different types of
TSP problems (all of which are commonly referred as the TSP, which has been a source of great
confusion).

We will provide the first proposed optimization formulation of the problem, which is still one
of the most popular, and introduce the classical nearest neighbor method to solve the problem,
which is still the most popular method (at least as a benchmark to compare new methods).

The alternative we will present will not be Christofides algorithm (or any of its new improved
variants [8]) 
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That  is  because  their  complexity  is  bigger  than  ,  (initially  ,  but  it  has  been
reduced). This justification can be understood because delivery companies need a fast algorithm
rather than a low bound algorithm that takes hours to run (think of the same day or one-hour
deliveries). Hence, in practice, Christofides is not very popular [9]. 

For this reason, we present a Greedy algorithm with a  running time, which in addition,
works for many variants of the TSP such as the asymmetrical version and the TSP without
triangle inequality. Working with a TSP without triangle inequality is important, especially in
relation to trucks (or cars), because of the car traffic and other circumstances found in cities (car
accidents, etc.) that make the triangle inequality not valid in real life. We will show that there is
no -approximation algorithm,  ,  for the TSP without triangle inequality which supports
the argument that the greedy algorithm is a fast and versatile algorithm.

Chapter 2: Clustering

In  this  chapter  we  address  another  NP-hard  problem  [12].  Clustering  is  considered  an
unsupervised machine learning method, that means that its purpose is to find some unknown
hidden features among some given data objects. A clustering task aims to partition the data so
that closely related data objects are partitioned together and in a different partition to unrelated
objects.

The data objects can be of any type and no assumption can be made, such as supposing they
live in some Euclidean space or that they have a metric. Therefore, the partition that is being
sought can have many forms, for instance, it could happen that it is not possible to give a visual
representation. The study in this work will not be as general as to consider those cases, even if
there is not a metric (for example, if there is no triangle inequality) we will assume there is some
type of proximity function between data objects, or at least between clusters. Ultimately the
purpose of the first part is to show that there are alternatives to the sum of the squared error
optimization function that we will present (and with which we will work for the rest of the
work). 

Later,  we  will  present  the  k-means  algorithm  which  is  the  most  widely  used  clustering
algorithm in the literature for vehicle routing problems  [1]. We will prove that the algorithm
constructs  some  local  optimal  solutions,  but  its  random  initialization  nature  can  generate
clusterings as bad as wanted.

We will present an algorithm that has gained popularity just recently  [32], the k-means++
algorithm, and maybe the presented worst-case analysis  will  clarify why we say that the k-
means is easy to understand.

 It  can  be  proved  that  the  k-means++  algorithm has  an  expected  worst  case  of  ,
however for this work we will not delve so deeply and instead we will just prove the main
bound, that is, show that the expected worst case is . However, for the reader eager for
more worst-case analysis, we prepared many interesting results for the next chapter.
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Chapter 3: Drone package delivery

In this last chapter we present a modern drone-truck delivery model, but before presenting the
model, we discuss several worst-case results of drone-truck package delivery.

We highlight the lack of mathematical theoretical articles about drone-truck package delivery
since most of the published articles just present some particular models and computer assisted
heuristics to solve those particular problems which, probably, cannot be applied to other types of
problems. 

On the other hand, the worst case results we present are as general as possible in a very simple
model with as few assumptions as possible. Perhaps one of the most interesting results, that
arises as a consequence of one of the proved theorems, is that even if we know that a single
truck making deliveries should be slower than  trucks making deliveries simultaneously to the
same set of clients, the reverse bound is not that obvious, one can imagine that since the trucks
are working simultaneously they may do the work at least  times faster, but that is not the case
and we prove that they actually do the same job at most  times faster. Finally, we prove that a
fleet of  trucks, each with  drones, delivers to a set of clients at most  times faster and
that the bound is tight.

In the last part we give a brief discussion about the current constraints that drones encounter in
today's world and present a modern and realistic model which considers most of those current
known constraints, the Parking Location and TSP with Homogeneous Drones (PLTSPHD).

 The  problem  is  solved  in  two  parts:  first  a  clustering  problem  is  solved  and  later  an
optimization TSP is solved by using a Deep Reinforcement Learning approach (which we omit),
however we analyze the experimental results which further support our assertion about the great
potential that drones represent.

Overall, we have made our best effort to keep this work self-contained, for which we have
included some long forgotten results,  which explain the inclusion of some old bibliography.
Also, we have avoided the current trend of quoting old results by referencing new articles which
quote the results, thus making the results appear more modern. Instead, we always reference the
original work. No prerequisite is assumed to understand this work.



The Traveling Salesman Problem  15

1. The Traveling Salesman Problem
Probably the most  famous problem in combinatorial  optimization  is  the  Traveling Salesman
Problem (TSP). The problem is simple to understand: a salesman who needs to travel through a
set of  cities, what is the shortest route he can take in terms of distance if at the end he needs to
return to the starting position, and he must visit each city?

The origin of the problem is still a mystery. It can be tracked to a German book from 1832
which was indeed written by a salesman! In the book the author provides some routes to be used
by a salesman willing  to  travel  through regions  of  Germany and Switzerland  [4].  However,
people have faced the problem in some way or another since ancient times.

Before mathematicians studied the problem in the early XX century, the usual way to solve the
problem was to put pegs on a map for each of the locations to visit, then with a string create
routes through the pegs manually. Incredibly, that was the first method to be used by the first
mathematicians who attacked the problem (Dantzing, Fulkerson, and Johnson) however they did
not admit it until later.

Before presenting the formulation of the TSP, it is convenient to review some topics about
complexity theory.

Complexity theory:

In the literature there are many versions of the TSP, different authors use the same term for quite
different problems. Before we talk about the different combinatorial versions of the TSP, we need
to  understand  what  we  mean  by  an  algorithm.  Formally,  in  the  theory  of  computation,  an
algorithm is a systematic method for solving a problem that can be implemented by a Turing
machine [29]. Informally, we will refer to an algorithm as a sequence of instructions that can be
carried out deterministically to solve a problem.  And by deterministic we mean that every time
the algorithm receives the same input it will provide the same output.

Turing machines are theoretical models and thus assumed to have unlimited power, therefore,
memory and computing time are of no concern. In the real world we do need to take them into
account.

A common method to  classify  problems is  to  say  that  a  problem is  in  P if  we know an
algorithm to solve the problem in polynomial time. We say that a problem is  NP if  given a
solution candidate, we can verify it in polynomial time. In addition, we say that a problem is
NP-hard if any problem in NP can be reduced to it in polynomial time, for this reason, problems
in this category are said to be at least as hard as any NP problem. Finally, we say that a problem
is NP-complete if the problem is NP and NP-hard.

TSP

deterministic

P

NP

NP-complete

NP-hard
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In general, if a problem is classified as NP-hard that does not mean that there is no algorithm
that can solve the problem in polynomial time. Instead, it just means currently we do not know
any such algorithm, but if for a NP-hard problem we discovered any such algorithm, then we
would be able to solve every NP problem in polynomial time (but not necessarily every NP-hard
problem).

In summary, finding an algorithm to solve a NP-hard problem in polynomial time would be
tremendously difficult because that would solve, automatically, any NP problem in polynomial
time. 

A different classification

There  are  many ways to  classify problems,  we already presented one.  A different  type  of
classification is related to the type of output that is expected as a solution. Given some input a
problem may ask for a binary solution, that is, for a yes or a no. Such problems are known as
decision problems. Other problems may ask for the solution to be an instance that holds some
properties,  those problems are known as  search problems.  Finally, another class of problems
might ask to find a best solution from a collection of feasible solutions, such problems are known
as optimization problems. 

We already defined, informally, what the TSP problem is, however among different authors the
TSP problem means completely different things. For some authors the TSP problem is a decision
problem, that is, given a distance  the problem asks if there is a route that the salesman can take
(that visits every city and returns to the origin) of distance . Hence, the expected output of the
problem is simply a yes or a no. For other authors, the TSP is a search problem that given  asks
to provide a route of distance  that the salesman can take or indicate that no such route exists. 

It is easy to see that both the decision problem and the search problem of the TSP are NP, if we
are given a candidate solution we can verify,  in polynomial time, that it  is a solution of the
expected length. In fact, it is a well-known fact that both problems are NP-complete. 

Other authors consider that the TSP problem is an optimization problem, to find the minimum
possible length of a route that visits all the cities only once and returns to the origin. Some other
authors refer to this problem as the TSP-O or the TSP-opt. In this work, unless otherwise stated,
the TSP will be a search problem that looks for a route of optimal length. We will follow this
convention for historical reasons, since it is the way it was formulated originally almost two
hundred years ago. 

We should make a final remark, this optimization version of the TSP, with which we are going
to work, is not NP. That is, given a solution we do not have any (known) way to determine in
polynomial time if it is an optimal solution. The only way we could ensure that it is an optimal
solution is if we compute all the feasible solutions and compare them. We do not know how to do
that in polynomial time. 
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However, this can serve as an example to show that if a problem is not NP that does not mean
that it is harder than the NP problems. We can bound the maximum length of any route that the
salesman can take by multiplying the maximum length between any two cities  (from a list of 
cities) by . Then, the maximum length of any route that the salesman can take is less or equal
than  .   Now,  if  we had  an  algorithm that  could  solve  the  search  version  of  the  TSP in
polynomial time , we could do a binary search to find the optimal solution. A binary search
costs  ,  hence  the  optimization  problem  would  cost  in  total

 which is also polynomial. In summary, the search version of the TSP, which is a
NP-complete problem, is at least as hard as the optimization version of the TSP (which is not
even NP), or in other words, even though the optimization version of the TSP is not NP, it is not
harder than the search version which is NP-complete. 

That was just an example to show that not being NP does not mean that it is a harder problem
than the NP problems, there might be problems for which this occurs, but it is not a general rule.

 Since NP problems are difficult to solve, we will rely on methods that do not solve them but
provide  solutions  that  are  close  to  the  optimal  solution.  Such  methods  are  known  as
approximation algorithms, and we will say that any such method is k-optimal, or that it is a k-
approximation, if the value of the provided solution is not more than  k times the value of the
optimal solution (with k being a real number or a polynomial). Finally, there will be problems for
which the presented methods will  not even be able to provide a (polynomial) approximation
guarantee, for example, the problem may ask for a minimum structure of some type, and the
method will just provide a solution with the structure, but we will not know how far the solution
is from the sought minimum solution. We will call such methods heuristics. These distinctions
between the algorithms, approximation algorithms, and heuristics are important because only the
algorithms solve the problems. As we have said, we will not try to present algorithms to solve the
NP-hard problems that we will present. Instead, we will rely on approximation algorithms and
heuristics. Once that is understood, we will abuse the notation and refer to algorithms as exact
algorithms and  use  the  term  algorithms  broadly  (and  informally)  to  refer  to  heuristics,
approximation algorithms, and exact algorithms as is common in literature.

k-optimal

approximation

heuristic

exact 
algorithm
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The Assignment Problem

We will present the optimization formulation of the TSP proposed by Dantzig, Fulkerson, and
Johnson constructively. The first step is to present a preceding model known as the LP relaxation
of the TSP or simply as the Assignment problem. Then, we will explain the drawback of such a
model.

We will represent the cities that the salesman must visit as the vertices of a  complete graph
, and use the following definition:

Definition 1.1. Given a graph   we call a closed walk   a  tour or a Hamiltonian cycle if  
contains every vertex of   exactly once.

The Assignment Problem

Let   be a set of vertices, let  , and let   be the indicator function
defined by:

 

For  let  denote the distance from  to . Consider the following objective function:

 for all .

 for all .

Solving the assignment problem is a challenging task, in principle there are   feasible
solutions. Further, solving the assignment problem does not solve the TSP because the solution
might be composed of several independent cycles instead of exactly one cycle. Hence, some
additional constraints must be enforced to the problem.

tour
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There are many optimization formulations of TSP, one of the most famous is the  Dantzig–
Fulkerson–Johnson formulation (DFJ):

Dantzig–Fulkerson–Johnson (DFJ)

The formulation uses the same objective function and constraints as the assignment problem,
but it adds an additional constraint:

 for all .

 for all ,

 for all .

On closer inspection we can notice that it is not just one additional constraint but  new
constraints, one per each proper subset of  , which guarantee that there is no cycle with any
proper subset of , so that the only cycle is the one with all the vertices of . These new 
constraints make it infeasible to find exact solutions for long values of .

Now we will study some of the earliest methods developed to handle the TSP. Despite the
methods being several  decades  old,  they  are  still  being used today,  mainly  because of  their
simplicity and because of the good approximations they provide.

The classical TSP

We discussed previously that the meaning of the TSP problem changes from author to author, for
some  it  is  a  decision  problem,  for  others  it  is  a  search  problem,  and  for  others  it  is  an
optimization problem. It might appear that the confusion ends there, but that is not the case. Even
after we have decided the type of problems with which we are going to be working, the TSP
divides further depending on the type of distance that we use. There is a metric version of the
TSP, an asymmetric version of the TSP, a Euclidean version of the TSP, a non-Euclidean version
of the TSP,  a  TSP with triangle inequality,  a  TSP without  triangle inequality,  and so on.  In

DFJ
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general, there is no one classical form of the TSP, and we should always be aware of the version
that a particular author is using. First, we will present the metric version. 

It is natural for many mathematicians who work with the TSP to want to calculate distances by
using  the  Euclidean  distance  (or  some  other  metric).  Given  a  space   and  a  function

, we say that  is a metric if the following properties hold: 

For any 

1. .
2.  iff .
3. .
4. .

When in a TSP model (3) does not hold we say that it is an asymmetric TSP (ATSP), when (4)
does not hold we say that it  is a  TSP without triangle inequality.  We will say that a TSP is
Euclidean if we can calculate the distance between any two vertices. 

In this work we will work with the Euclidean version of the TSP with triangle inequality. 

Since the aim of this work is to present results related to Unnamed Aerial Vehicles (UAV) and
because UAV travel  (fly)  in  a straight  line it  is  reasonable to  assume that  the length of  the
shortest  path between any two vertices is  the Euclidean distance between them. That  is,  we
assume that the problem of finding the shortest path between any two pairs of vertices is trivial
so we can assume that the distance matrix of the vertices is already given. Nevertheless, it is
worth noting that in cases where such an assumption is not possible the shortest path problem
should  be  solved  to  construct  the  distance  matrix.  A common  strategy  is  to  use  Dijkstra's
algorithm which can be implemented in  with  the number of vertices and  the
number of edges [30]. We consider the distance matrix to have the form:

where  is the distance from vertex  to  for . Since we want to avoid loops, we write
 for all , i.e.,

From these assumptions, it should be clear that any algorithm that aims to solve the TSP and
provide a near optimal solution should have, at least, a  complexity which is just the time

metric

ATSP

Euclidean
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required to read all the matrix entries. The algorithms that we will present have complexities of
 which is very convenient for the applications we are considering in this work, since fast

solutions are a mandatory requirement.

Algorithms to solve the TSP
Nearest Neighbor

The Nearest Neighbor (NN) is one of the oldest methods known to solve the TSP [28]. It was
developed in the mid 50s to solve ecology problems [3]. The algorithm is still in use because it is
easy to understand, easy to implement, and provides a good approximation. Here we present the
original version [5]:

Algorithm 1. Nearest Neighbor( ):

Input: A distance matrix  of a set of vertices 
Output: A list which corresponds to the TSP route.

1. Pick an arbitrary vertex  and insert it into a new path .
2. Let  be the last vertex of , find   and insert it to .

3. When  insert the initial vertex  to  to form a cycle.

To be convinced that the algorithm has complexity , first we observe that steps 1 and 2
take  each. For step 2, if  has length , then we need to look for the other  vertices not
in  to find , hence it takes .

When the algorithm first appeared, it was not known whether it provided good results or not,
yet mathematicians used it anyway. Fortunately, Rosenkrantz [28] proved the following results:

Theorem 1.1. The Nearest Neighbor algorithm is a  approximation algorithm for

the TSP.

Given a complete graph  , let’s denote by   the length of the optimal tour of  . Before
proving the theorem, we will present two lemmas:

Lemma 1.2. Suppose that  is a graph of order  and  is a function  such
that for any :

(a)  .

(b)   ,

C*

NN
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Then,

.

Note 1.3. We can rename the elements of the set   such that  and such that if
 then . In the following proof we will use that assumption.

Proof (lemma 1.2). First, we will prove that for any  such that  the following holds:

 Let   be  such  that  ,  and  let   be  an  induced  subgraph  of   with
. 

Let  be the tour in  such that the vertices in  are visited in the same order as in the optimal
tour of  (in case there are several tours with distance  we pick one of them and use it as the
representative of ). Let’s denote by  the length of , then:

Let  be the number of edges  such that , by Note 1.3 we have than for
any  such  edge,   so   is  actually  the  number  of  times  that

 for  . By part (a) of the lemma, for any  , it holds that
, hence:

We note that, since  is a tour, for any  it holds that . Then we can give a
lower bound to the equation in (3) if we assume than the associated  of the biggest  are
zero, in particular, since there are at most  vertices in  we can assume that the associated 
of  the   biggest   are  zero,  which  in  turns  means  that  the  associated   of  the

 smallest   are two (note that we are not interested in determining whether
this case is achievable, we are just giving a lower bound). By  Note 1.3 the smallest   are

, then we have the following boundary to equation (4):

(1)

(2)

(4)

(5)

(3)
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Then (3), (4), and (5) together prove (2). 

We proved (2) is valid for any  such that , in particular it is valid for   for any 
such that , that is, for  at least.

Then by using (2) to sum through all those values:

since  starts in zero, and ,

in summary,

and, by part (b) of the lemma hypothesis we know , then,

which is the inequality (1) we wanted to prove.            

Now we are ready to prove the theorem.

Proof (theorem 1.1).  Let   be the function   that assigns to each   the distance
 such that  is the next vertex that the Nearest Neighbor adds to the tour construction after

. We will prove that  satisfies the conditions of Lemma 1.2.
First, to prove (a), let’s take  ,  ,  and assume without loss of generality that  

appears  before   in  the  tour  constructed  by  the  algorithm.  Then,   and  also
. Then .
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To prove that  also satisfies (b) let’s take  and assume that  is the next vertex that the
algorithm takes after , then . 
In the tour that represents , there are two independent paths ,  that go from  to .

By the triangle inequality

and also,

then,

so,

 

Hence,  fulfills the requirements of Lemma 1.2. Finally, if we denote by  the length of the
tour constructed by the algorithm,

by using Lemma 1.2,

so, 

As  the  saying  goes:  sometimes  simple  is  better.  Previously  we  proved  that  the  Nearest
Neighbor is fast, now we proved that it gives a good approximation. For example, for  it
gives a  approximation, and for the applications considered in this work  which will
give 5.5 approximations. This is why these algorithms are preferred to others that give slightly
better approximations but with higher complexity such as  [8].

Several variants of the Nearest Neighbor have being developed since the 60s [5], and despite
the Nearest Neighbor is a greedy algorithm itself, the greedy name is reserved for a more general
algorithm that works by joining at each step the smallest cost possible edge, even if we are left
with independent paths (but no cycles), until we are left with a Hamiltonian path that we close to
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generate  the  final  tour  [9].  This  algorithm  is  currently  the  most  popular  algorithm  for  the
asymmetric TSP.

Greedy Algorithm (GR)

The greedy algorithm is simple to state, we present the version of [14], which as we mentioned
before, is general and does not assume symmetry which means we will consider a complete
bidirected graph instead.

Algorithm 2. Greedy ( ):

Input: A distance matrix D of a set of vertices .
Output: A list which corresponds to the TSP route.

1. Pick the smallest edge available,  contract it and update the weights in D
accordingly.

2. Repeat (1) until there are only two edges available , and .

3. The contracted paths of the cycle  form the sought solution.

Obviously, the contraction operation should be defined, and indeed it is the hard part:

Algorithm 3. Contraction( ):

Input:  A  set  of  vertices  , the corresponding  distance  matrix  
(which defines a distance ), and an edge  with  to contract.

Output: An updated vertex set  of  vertices, with  added, ,  removed,
and an updated weight matrix .

1. Let  be a new vertex and update .

2. For , reassign 

3. Update  and recalculate the weight matrix  of .

Notice that this implementation of the contraction only removes unimportant information from
the  matrix,  that  is,  given  the  edge   to  be  contracted,  the  algorithm  will  only  remove
information about edges of the form   for   and of the form   for   which is
useless information because we are trying to form a cycle, and we already selected the edge .
Although simple to state, the implementation should run in   which is not trivial. For the
present  work  an  implementation  was  programmed  and  it  is  shown  to  run  in   in  the
Appendix.
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The following theorem was first presented by Ong and Moore [22].

Theorem 1.4. The Greedy algorithm is a   approximation algorithm for the TSP.

Proof. Identical to the proof of Theorem 1.1.

As we can see, both proofs depend on the triangle inequality, so the results are not true for the
TSP without triangle inequality. However, we can give a classical result for the TSP without
triangle inequality from [10]:

Theorem 1.5. If P  NP, then for any constant  there is no -approximation algorithm for
the TSP without triangle inequality.

Proof. Let’s suppose  is an -approximation algorithm for the TSP with . 

Let’s consider a graph , let  be the complete graph of the vertex set 
and consider a cost function  defined as:

If  has a tour, such a tour has cost , on the other hand, if we construct a tour that has an
edge not in , such a tour has a cost of at least . 

Now let’s consider the TSP in . We note that the minimum cost possible for any tour in  is
, by hypothesis  can find a tour with approximation ratio . If  finds a tour with, at least, an

edge not in  the ratio would be at least:

Which contradicts the hypothesis that  is a -approximation algorithm. Hence, the tour found
should only have edges contained in , that is,  found a tour in . Therefore,  solved the 
Hamiltonian-tour problem for  which is well-known to be NP-Complete. And to transform the 
problem we only had to construct the complete graph  and the cost function  which we did in 
linear time (i.e., polynomial time). Then P = NP. The theorem follows by contrapositive.

A complete proof that the TSP is NP-complete can be found in [7], in which the author proves
all the way SAT  CLIQUE  VC  HC  TSP.
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2. Clustering
Clustering (also called data segmentation) refers to the methods used in data analysis to partition
some given objects  (which  we will  call  points)  into  sets  called  clusters,  the  objective  is  to
partition them in a way such that objects in the same cluster are similar, whereas objects in
different clusters are different. We will also call  clustering the partition of the given space into
the clusters. Obviously, we need to define what we mean by saying similar or different, as we
will see, that is not an easy task and in most cases, it depends on the application. In this work we
will assume that two clusters never intersect, but there might happen that some objects are not
assigned to any cluster.

We will use the notation   to denote a clustering   of   clusters  
whose centroids are . The centroids are points in the space that act as representatives of
the clusters, later we will ask them to fulfill more conditions. In the next page we will introduce
the concept of proximity, but for the moment suppose we have defined some distance function ,
we will say that a point   belongs to a cluster  ,  , if  . Finally, we

will say that a clustering  is a k-clustering if  has  clusters.
The most famous clustering method is known as the k-means method (or Lloyd’s algorithm)

[1], it is easy to implement and can provide local optimums as we will see next. The following
section is based on [32].

Clustering validation
We would like to have methods to compare, or rank, different clusterings either generated by
different  executions  of  the  same algorithm or  generated  by different  algorithms.  Ideally,  we
would like to have an optimization function associated to every clustering. In general, there are
clustering algorithms that do not have any associated objective function. Optimization problems
do  not  always  have  objective  functions,  hence,  not  even  the  task  of  evaluating  different
clusterings generated by the same algorithm is easy.

No single evaluation metric is widely accepted to compare different clusterings, even more, no
single evaluation metric can be applied in general for any type of data  [32]. However, in most
cases we can define a proximity function to compare the points in some way. As we will see in
the next section, the k-means algorithm uses as a proximity function the square of the Euclidean
distances,  but  in  general  the  proximity  can  take  many  forms  such  as  the  cosine  similarity

 which is not even a metric. For the purposes of this work, we will use the square

of the Euclidean distance as the proximity function, that is, for any two points , and :

cluster

clustering

centroid

C

k-clustering
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Once we have established that in our case the proximity function is the square of the distances,
we  can  introduce  some  key  concepts,  fundamental  to  clustering  validation  study  that  are
generally presented in terms of proximity, but given our assumptions, we will present them in
terms of distances.

Definition 2.1. Given a cluster  we define the cohesion of  as:

Definition 2.2. Given two clusters  we define the separation between  and  as:

Note that those calculations are  . Many times it is preferred to calculate a prototype-
based cohesion and a prototype-based separation based just on the centroids of the clusters. 

Definition 2.3. Given a cluster  with centroid , we define the p-cohesion of  as:

Definition 2.4. Given two clusters  with ,  their respective centroids, we define the 
p-separation between  and  as:

We will also define the p-separation of a single cluster. A p-centroid is constructed by taking
the average coordinates of all the points in the space, i.e., it is the overall mean of all the points
in the space.

Definition 2.5. Given a cluster  with centroid , and  the p-centroid of the space, we define
the p-separation of  as:

cohesion

separation

p-cohesion

p-separation

proximity

p-centroid

p-separation
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Definition 2.6. Given  clusters , with centroids , for  with c the p-centroid, we
define the total separation between clusters or the between sum group of squares (SSB) as:

Definition 2.7. Given  clusters  with , with  the p-centroid. We define the total
sum of squares (TSS) as:

 Some important  observations are  necessary: unlike the centroids of the clusters that  can be
updated as we iterate some clustering algorithm, the p-centroid is always fixed. In the same way,
the TSS is always the same number. 

As can be intuited, if the cohesion is minimized then the separation is maximized. We will
prove this fact, but first we observe that:

 

We will call this last sum  the sum of the squared error (SSE) and it will be a

fundamental  concept  in this  work because it  will  be the objective function of  the clustering
algorithms that we will present. In the last equation, we saw that the sum of the squared error is
analogous to the total cohesion between clusters.

Proposition 2.8.  The sum of the total cohesion and the total separation is a fixed constant, in
fact, it is the total sum of squares: 

Before presenting the proof of the proposition we need an important identity.

SSB

TSS

SSE
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Lemma 2.9.  Given   clusters  , with centroids  , for  , and   the p-centroid, it
holds that:

 

Proof (lemma 2.9): Let ,

 

hence, 

Proof (proposition 2.8): By definition of TSS,
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by Lemma 2.9,

We need to analyze the implications of the previous result. We proved that there is a duality
between cohesion and separation, if we minimize cohesion we maximize separation. 

That is a strong result because it means that we do not need to be concerned about minimizing
the cohesion and maximizing the separation, if we can optimize any of those values then the
other will be optimized as well. The last clustering measure that we will present, the silhouette
coefficient, follows a similar approach of only considering one value.

Silhouette Coefficient

Given  clusters  that partition some space , the silhouette coefficient  is a function
 that summarizes the cohesion and the separation in only one value, it is a tool to

rank  different  clusterings  with  a  single  number.  It  is  an  effective  tool  to  compare  different
clusterings obtained by similar algorithms or by different iterations of the same algorithm.

The objective is to get values close to 1. Then, the goodness of a clustering can be calculated
by taking the average silhouette coefficient of all the points in the space.

Algorithm 4. Silhouette Coefficient 

Input: A set of points  and its clustering .
Output: A number  in the range [-1, 1].

1. Let .
2. For :
3. Let , (we are denoting by  the cluster of ).

4. Let  

5. Let .

6. .

silhouette
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K-means

The  k-means algorithm works by taking a number   as a parameter which is the number of
clusters to construct, then it constructs  clusters by initializing  centroids at random. Then the
algorithm  assigns  the  given  points  to  their  closest  centroid.  After  that,  the  centroids  are
recalculated as the center of mass of their associated points, that is, for a cluster  the updated

centroid becomes    . The formulation of the following algorithm is based in [32]. 

Algorithm 5. K-means( )

Input: A set of vertices , and the required number of clusters .

Output: A cluster assignment function .

1. Select  initial centroids uniformly at random from the space and name them
.

2. Let  for each .

3. Recompute each centroid,  .

4. If the centroids changed in (3) repeat from (2).

One of the main advantages of the K-means algorithm is that it can be assigned an objective
function, the sum of the squared error. As we have seen, the SSE provides a measure related to
cohesion and separation of points, and the objective is to minimize it.

With the SSE as the objective function, we can prove that by taking the centers of mass in step
(3) of the previous algorithm we are getting the optimum solution for each cluster. 

The next result can be found on [32].

Proposition 2.10.  Given a cluster   from a clustering  ,  the centroid   of   that
minimizes the SSE is the center of mass of .

Proof. Let  be the clusters of a clustering , with  their respective centroids.
Let’s  pick   with   and assume  .  We will  calculate  the
optimal value for the coordinate   for  and the reasoning is the same for the rest
of the coordinates. Also, let’s denote any point  as . 

By taking the derivative of the SSE,

k-means

center of 
mass
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since  only appears when ,

since  only appears when ,

then,

which means that,

since this was for any ,

It is important to emphasize that we are only getting local optimums, that is,  is the optimum
centroid for  given the fixed points that  has, but if we wanted to find the optimal clustering,
we would need to consider all the possible points that  can have, and  can have any subset of

 which makes the task of finding global optimums unfeasible.
There are many drawbacks of the K-means algorithm, most of them are related to the random

nature  of  the  initialization.  There  might  not  be  any  convergence  at  all  if,  for  example,  the
generated clusters are empty. Several variants of the algorithm have been developed to fix the
random initialization drawback, one popular strategy is to run the algorithm several times and
choose the clustering with the minimum SSE from those results.



Clustering  34

K-means++

As we have  mentioned,  the  random initialization  of  the k-means algorithm can lead  to  low
quality clusterings. The algorithm picks the initial centroids uniformly at random, but we do not
have any information about the points to be clustered, they might all be concentrated in a small
section,  or  some  other  strange  behavior  might  occur.  Another  disadvantage  of  the  k-means
algorithm is that it can produce empty clusters when a centroid fails to gain any points. However,
the major drawback of the algorithm is that it does not provide any approximation guarantee, that
is, the approximation ratio can be arbitrarily large [20]. 

An algorithm that has gained popularity recently [32] is known as the k-means++ algorithm. In
essence, the algorithm is almost the same as the k-means algorithm but without the  uniformly
random initialization of the centroids of the k-means. The content in this section is based on the
work of [2] (unless otherwise stated). 

Before presenting the algorithm, we need some definitions.

Definition 2.11. Given a clustering  of a set of points , we define the shortest
distance function  as . When working with multiple clusterings we

may use the notation  to denote the clustering that the function is considering.

Definition 2.12.   Given a clustering   of a set of points  , we define the  D²-

probability as .

Definition 2.13.  Given a clustering  of a set of points , and a subset , we define the
potential  function .  When  ,  we  will  abbreviate  the  notation

. 

Now, we are ready to present the algorithm,

D

D²-
probability

ϕ(A)
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Algorithm 6. K-means++( )

Input: A set of vertices , and the required number of clusters .

Output: A cluster assignment function .

1a. Select an initial centroid  uniformly at random from .

1b. For  to :

1c. Choose a new centroid , by selecting  with -probability. 

2. Let  for each .

3. Recompute each centroid, . 

4. If the centroids changed in (3) repeat from (2).

We will say that the three steps 1a, 1b, and 1c together are step 1. Then, we can see that the
only difference between the k-means algorithm and the k-means++ is just step 1, all other steps
are exactly the same. However, in a moment, we will see that because of that small difference we
can provide good guarantees for the expected approximation ratio of the k-means++ algorithm.

Lemma 2.14. If  then ,  for any  and any .

Proof.
 

Now a lemma by Kanungo [20],

Lemma 2.15. Let  be a set of points which have as centroid  the center of mass of , and let 
be an arbitrary point. Then,

Proof. 

step 1
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and because  is the center of mass,

Lemma 2.16.  Let   be a cluster  of an optimal  clustering   with centroid  .  Let   be a
clustering generated with just one centroid chosen uniformly at random from the points of  .
Then .  

Proof. Let’s calculate ,

  
Now, let's calculate the expected value of , which by construction has only  as centroid,

Since  is an optimal clustering, and as a consequence of Proposition 2.10  is the center of
mass of , then by Lemma 2.15,
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We will state a result known as the power-mean inequality.

Lemma 2.17. Given , it holds that 

Proof. Let’s  consider  the  vectors   by  the  Cauchy-Schwarz
inequality:

hence, 

Lemma  2.18. Let   a  cluster  from  an  optimal  clustering  ,  and  let   be  an  arbitrary
clustering. Let’s consider the clustering  which has the same centroids as  plus an additional
centroid  chosen at random from  with the -probability, then .

Proof. Let’s calculate  , note that the probability to choose an   from  with the  

probability is , furthermore, the contribution of a point  to the sum 

is either the same contribution it has to , which is , or it is  in case  is
closer  to   than  its  centroid  in  .  Then,  given  the  new  centroid  ,  the  potential

, hence,

(1)
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Given  let's denote its centroid in  as . Then, for any  it holds

by the triangle inequality,

reordering,

in conclusion, 

by the Lemma 2.17, 

by taking the sum of all ,

which implies that,

substituting in (1),

(2)
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now, we note that,

 
and also,

substituting in (2) we get,

 

by Lemma 2.16,

Let’s stop for a moment to analyze the consequences of the lemma. If we could guarantee that
the cluster  generated by the k-means++ algorithm picked a centroid from each cluster of the
optimal clustering  (optimal with  centroids) then we would have the bound .
Unfortunately,  the algorithm does  not  provide  such guarantees.  It  can happen that  for  some
clusters of  the algorithm did not pick a centroid from them; in such a case we will say that
those clusters are uncovered and also say that the points in those clusters are uncovered. On the
other hand, we will say that a cluster  from  is covered if  has as a centroid a point from 
and we will also say that its points are covered.

In summary, if the clustering generated by the algorithm covers all the clusters of the optimal
clustering, then we have the previous bound and we are done. Now, we need to analyze the case
in which the generated clustering left some uncovered clusters and provide a general bound.

Before continuing, let's introduce some notation.

Notation. For  we denote by  the harmonic sum of the first  numbers:

uncovered

covered

Hₜ
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Lemma 2.19. Let   be a set of points,   its optimal clustering with   centroids, let   be an
arbitrary clustering of . Let’s suppose there are  uncovered clusters from , let  denote
the points in those clusters. Let  denote the points in . Suppose we add  centroids
to , chosen with the -probability. Let  denote the resulting clustering, then,

 

Proof. By strong induction, 

Basis of induction: Let’s prove two cases. First, the case , . 

As  is the empty sum,

remembering that ,

Since , that means we did nothing to  so . Hence 

. 

So,  the  result  holds.  Now,  let’s  prove  another  case  with  ,  so  .  Let’s  consider
. 

We do not have a general bound for  besides the broad bound provided by Lemma 2.14
, so the strategy will be to divide the problem. For some cases we will use

smaller bounds, and for the rest of the cases just the bound of Lemma 2.14 and hope that when
we join all the cases the result holds. 

Let’s consider two events (cases): let  be the event that the chosen centroid was selected from
an uncovered cluster and let  be the event that the chosen centroid was selected from a covered
cluster. Then, by the total expectation law

(1)
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Case 1  :   The centroid was chosen from an uncovered cluster.

Since ,  is actually one cluster from , and we can apply Lemma 2.18 to get,

 
on the other hand, 

for the first term we use (2), and for the second just term notice that by definition of expectation
and by Lemma 2.14,

then by (2), and (3),

 

That will be our bound for case 1, now let’s see what happens with case 2.

Case 2: The centroid was chosen from a covered cluster.

In this case, we just use the broad inequality of Lemma 2.14,

 

Now we just need to calculate the probabilities , and , that is, the -probability of
taking one point from , and the -probability of taking one point from .

By definition of -probability,  

(4)

(5)

(2)

(3)
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analogously,

then, by using (1), (4), (5), (6), and (7),

since  , 

which obviously,

hence, the result holds for both cases of the basis of induction.

Inductive  hypothesis:  Let’s  suppose  the  result  holds  for  any   such  that  ,
, and with  (required by the hypothesis of the statement of the lemma). 

Inductive step: We will prove that if the result holds for   and  , then the
result holds for .  

Just as we did on the basis of induction, we will divide into cases and find bounds for each of
those cases. Let’s consider   events: let   be the event that the first centroid was chosen
from a covered cluster. Suppose that the  uncovered clusters of  are . Let’s call

 the  event  that  the  first  centroid  was  chosen  in   for  .  Then,  by  the  total
expectation law

 .

(6)

(7)

(8)
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First, let’s calculate , similarly to (7) 

,

Let’s  bound  .  Notice  that  for  any  clustering   that  meets  the  construction
hypothesis,  i.e.,   with   the first  point  selected  and  ,  we can
consider  the  cluster   and  because  of  Lemma  2.14,  it  will  always  hold

. Then, since   does not cover any uncovered cluster,  we can apply the induction
hypothesis to  with the same  uncovered clusters than  but just  new centroids, then,  

 

Now, let's see what happens with the other cases . Let’s pick 
and examine . 

similarity to (6),

 

Then, we just  need to bound  .  Given  ,  let’s  call   the event that  the first
selected centroid was . Then , which obviously are mutually exclusive events. Then by
the total expectation law:

The probability  of  selecting   given   is  ,  hence  we just  need to

bound . Let’s denote by  the clustering  . Now, to construct , and
since  was already selected, we only need to pick  centroids that we will add to  which is
a  clustering  in  which   is  covered.  That  is,  in   the  covered  points  are   and  the
uncovered points are , so it has  uncovered clusters . Then, we can
apply the induction hypothesis and we get:

If we denote   by , and substitute in (12) the last equation,

(9)

(10)

(11)

(12)
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multiplying for  to obtain the second term of (8) and by (11) we get that 

by Lemma 2.14 , then

rearranging and because the sum of all the probabilities is 1,

   

by Lemma 2.18 , hence

This  result  was  for   for  some  ,  but  since  we  want

, we need to take the whole sum:
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since ,

by Lemma 2.17    , then

then, by using (8), (9), (10), and (13) we get,

   

since  ,

notice that  , then

 

(13)

(14)
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substituting in (14),

by  hypothesis  of  the  statement  of  the  lemma  ,  then  ,  which  means  that

, then

Theorem 2.20.  If   is  a  clustering  of  a  set  of  points  ,  constructed  with  the  k-means++
algorithm, and  is the optimal clustering of  clusters. Then, .

Proof.  First, notice that after a clustering   with   centroids has been generated by step 1, by
Proposition 2.10 the next steps of the algorithm always reduce the value of  for any clustering

 generated after . Then, if we provide a boundary just for the clustering  generated after step
1 we have finished.

Let’s suppose a clustering  is constructed with the first step of the algorithm, that is,   has
the first  centroids that the algorithm generates. Let’s suppose  is the cluster of  to which the
first generated centroid  belongs, let  be the clustering which only has  as its centroid. Then,
applying the Lemma 2.19,

by Lemma 2.16,
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since  is a decreasing function, we can bound the lower Riemann sum,

 

then,

substituting in (1) we get,

(1)
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3. Drone package delivery
The usage of Unmanned Aerial Vehicles (UAV) has been recorded since the year 400 BC when
the ancient mathematician Archytas invented a steam-powered aerial vehicle known as the flying
pigeon. It is believed that the invention had a military purpose; to generate a weapon with a
longer range than an arrow. However, the earliest large-scale usage of drones did not happen
until 1849 when the city of Venice was attacked with unmanned explosive hot air balloons.

UAV have been used for military purposes for centuries, but it was not until the appearance of
the first commercial and widely available drone in 2013 (DJI Phantom) that scientists became
interested in civil applications as can be seen by the number of published articles about UAV by
year:

In fact,  in 2021 the number of  published articles  about  civilian applications  surpassed the
number of articles about military applications:

Figure 1, source: [23]

Figure 2, source: [27]

Parcel Delivery  
41%

Surveillance / Data 
collection  

49%

Internal logistics 
2%

Entertainment  
4%

Military  
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For this work, we will classify the drone applications in six categories:

1. Package delivery

2. Surveillance/Patrolling

3. Agriculture/Irrigation

4. Topography/Photogrammetry

5. Telecommunications

6. Cinematography/Entertainment

It is important to mention that those six applications are not theoretical, today drones are being
used for those applications: In some rural areas of France drones are being used to make package
deliveries, in the United States drones are used to patrol the frontier with Mexico and reduce
illegal  border crossing of migrants,  in  Japan drones  are  used to irrigate  the paddy fields,  in
Mexico City drones are used by the Natural Resources and Rural Development Commission
(CORENADR) for territorial planning, in Ukraine the company Starlink has deployed drones to
be used as routers to enable (temporary) internet and mobile access in areas affected by the war,
and finally the applications of drones in cinematography require no example [23], [27].

For the current study, we will address only the application of package delivery. Firstly, because
it is one of the areas in which most of the research is being carried out, and secondly, because it
is  an application that  the common man will  actually  notice.  Seeing flying drones delivering
packages will become commonplace.

We should mention that all major companies (DHL, UPS, etc.) are currently doing intense
research  to  make  use  of  the  drone  technology  to  deliver  packages  [1],  currently  the  most
ambitious  project  is  from  Amazon  who  pretends  to  put  in  service  drones  to  deliver  small
packages to their prime clients next year.

Figure 3, source: Amazon

https://www.aboutamazon.com/news/transportation/amazon-prime-air-delivery-drone-reveal-photos
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Worst-case analysis

Although  military  articles  about  Unmanned  Aerial  Vehicles  have  been  written  for  decades,
following the previous discussion, it should not come as a surprise that the first mathematical
article about drones was just published eight years ago in 2015  [21]. Ever since, hundreds of
mathematical  articles  about  drones  have  been  published,  unfortunately  not  so  many  with
theoretical results. For this work we managed to identify just four articles with theoretical results
published in peer-reviewed journals  [6],  [13],  [25],  [34].  The first  two articles present  some
models and study the complexity of those models while the latter two study worst-case results.
We also found a PhD thesis  [11] which works primarily with synchronization problems and a
conference article about approximation algorithms [19].

Following the study of  [34], we will present several quite interesting worst-case results. But
before we announce the results, we need to introduce some notation and describe the models
with which we are going to work.

The VRP (Vehicle Routing Problem) is a well-studied problem, there are even recent books
about the problem [15], [33]. Hence, besides a brief description of the problem, we will not talk
much about it.

In principle,  the  VRPₘ can be thought as a generalization of the TSP in which instead of
having just one salesman to visit a set of   clients (or cities), now there are   salesmen all of
which exit from the same origin, each visits its own subset of clients and returns to the origin.
That is, the set of clients is partitioned, we solve a TSP instance for each of those subsets and the
objective is to minimize the time at which the last salesman returns to the origin. However, since
it is a more modern version of the TSP, now we say that there are  vehicles instead of salesmen,
the vehicles carry packages to be delivered, and they may have additional constraints.

For example,  there may be a large truck pulling a trailer,  that vehicle would have a large
package capacity, but it would be a terribly slow vehicle. On the other hand, a vehicle may be a
motorcycle which would be an extremely fast vehicle but with an exceptionally low package
capacity. A more general definition for the VRP is provided by [33]: 

Given a set of transportation requests and a fleet of vehicles, determine a set of vehicle
routes to perform all transportation requests with the given fleet at minimum cost; in
particular, decide which vehicle handles which requests in which sequence so that all
vehicle routes can be executed.

For our purposes, we will assume there are  clients to be visited (and the request is to deliver
exactly one package to each client) by a fleet of  homogeneous trucks, that is, the trucks have
the same package capacity and travel at the same speed (unless otherwise stated). The cost we
aim to minimize is the trip duration of the last vehicle to return to the origin.

VRP
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Now we will introduce a problem that is more related to our interests. As the name suggests,
the  VRPD  (Vehicle Routing Problem with Drones) is an extension of the VRP model in
which  we  intend  to  visit  (deliver  exactly  one  package)  to   customers  with  a  fleet  of  
homogeneous trucks, each one carrying a fleet of   homogeneous drones, each one capable of
carrying exactly one package and with   speed. The truck package capacity is  , and we will
assume that deliveries are instantaneous, that is, there is no waiting time to deliver a package
once the truck or drone arrives to the client. Formally, we make the following assumptions:

1. A drone can carry exactly one package when flying.
2. A drone has a battery which lasts   units  of time per charge,  for this  study we will

assume  is big enough to allow any drone to carry out its assigned task and travel to the
next pickup location.

3.  We will assume that we are working in a metric space and that the drones and trucks use
the same metric to measure distances.

4. We will assume that the time required to swap the battery of a drone to make it ready for
the next flight is negligible.

5.  We will denote by .

6. A drone launched from a truck must return to the same truck. That can be either at the
same location where it was launched or at a different location.

7. A drone can only be launched when the truck is at the depot or in a client location, and
the drone can only be picked up when the truck is at the depot or in a client location. 

8. The vehicle (drone or truck) that arrives first at the pick-up location must wait for the
other vehicle to arrive.

The objective will be to minimize the time of return of all the trucks and drones, or as we
mentioned earlier, minimize the arrival time of the last vehicle (truck or drone) to the depot. 

Given a solution  to a problem  (TSP, VRP, VRPD, etc.) we will denote by  the cost
of the solution  (time in our case), and we will denote by  the cost of the optimal solution
to a problem , which in our case will always be a minimum, .

We will say that   is a  route if it is a path contained on some tour, and we will denote the
length of route  by .   

Finally, given a vehicle veh that can be either a truck or a drone (which we will abbreviate as
trc and drn respectively) let's denote by  the waiting time of veh at route , let's denote by

 the  trip duration of  veh at route , and let's denote by  the actual travel time of a veh
through route , that is  .

As mentioned before, we will present the results of [34]. First, we will present a result which
gives a bound that relates the trip duration of a single truck with the trip duration of a truck with
 drones. For this result, we will assume that the truck and the drones travel at the same speed,

VRPD
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later we will relax this assumption, but this first result is useful in presenting the proof technique
that will be used through this section.

Theorem 3.1.   and the bound is tight. 

Proof: Let's consider an optimal   solution, we can consider the route   that was
followed by the truck and the routes  that were followed by each of the  drones (the
routes are composed by the part in which they were in the truck and the part when they were
flying).

In figure 4 we have a solution for a  problem with 4 customers, the truck route is
represented with the continuous line:

Figure 4
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and the drone route is represented with the dotted lines:

Notice that the drone is not flying its entire route, sometimes it is being carried by the truck,
but we do not make any distinction. In the previous example, it was carried by the truck when it
traveled from the depot to customer 1, and from customer 4 to the depot, but we do not care. We
will denote the followed paths with arrows such as  to indicate that  was followed by ,
or as  to indicate that route  was followed by route .

Let  be the route generated by traveling with a truck (which has the same speed as a drone by
hypothesis)  through  all  the   routes:  ,  then  the  route   visits  all  the
customers. Because of the waiting time, all the routes  have the same duration for 
hence,

and by definition of  and ,

We can construct a solution   to the TSP by traveling through the route   but skipping any
customer already visited and continuing to the next unvisited client until all clients are visited,
returning to the depot at the end. By the triangle inequality,

By combining (1), (2), (3), and because the optimal value of the TSP is less than any feasible
solution:

Figure 6
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which means, 

Now, we just  need to prove that the bound is tight.  Let’s  consider an example with  
customers  ,  each  at  a  distance  1  from the  depot.  For   and   let

.  Also,  let’s  suppose the truck has capacity for the   packages.  Finally,  let’s
suppose the drones and the truck have speed 1, that is, 1 distance unit per unit of time.

Then, a feasible solution  for the  is to travel with the truck from the depot to the
customer  while at the same time the  drones are launched from the depot, and each one visits
a distinct client from the set of clients . Notice the truck and the drones return to the
depot at the same time after 2 units of time. Hence,

.

Finally, let’s note that any solution to the TSP has a duration of . Then, in particular, 

 

By (4)

In general, it is assumed that drones travel faster than trucks because they are not affected by car
traffic, traffic lights, car accidents, etc. Hence, we will generalize the result from theorem 1.

Theorem 3.2. If ,   and the bound is tight. 

Proof. As we did in the previous proof, consider a solution  of the . It defines 
routes   with  the truck route and the others, the drones' routes. Let   be the route
generated by traveling  . Since   is just a ratio, we can assume that the truck
speed is 1 distance unit per unit of time, which forces the drones to travel at  distance units per
unit of time.  

Then, for   the time required for the truck to travel   is the length of the route
divided by the speed of the truck:

 

(4)

(5)
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We are taking  to only considered the drones' routes, in any such route a drone may have
traveled some part carried by the truck, which travels at a speed less or equal to the speed of the
drone, hence we have the inequality 

The equality holds when  or when the drone did not travel in the truck, then

then by using (5) and (6),

Just  as we did in the proof of  Theorem 3.1, we can construct a solution   to the TSP by
following the route  and skipping clients already visited. By the triangle inequality,

Notice that,

Let , then

since  is the maximum,

(6)

(7)
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by (7)

then, 

Finally, we just need to show that the inequality is tight. Let’s consider an example with 
customers , a truck with capacity for at least   packages,   drones, and a depot  .
Consider the distances:

•

for :

•
•
•

A solution  for the  is to send the truck and the  drones at the same time from the
depot, the truck to the customer  while each of the drones to a different customer from 
.  All  the  drones  and  the  truck  return  at  the  same  time  after  2  units  of  time.  Then,

.
To calculate  we can calculate the cost that every customer contributes to the total cost

of  any  route.  Instead  of  calculating  the  distances  from client  to  client  we can  consider  the
following equivalent costs:

1. Arriving to  has a cost of 1.
2. Leaving  has a cost of 1.
3. Arriving to  has a cost of  for any 
4. Leaving  has a cost of  for any 
5. Arriving or leaving the depot has zero cost.

Now we can see that since in any TSP solution every customer should be visited once and only
once, any such solution has a cost of . Hence, . Then, 
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In general, delivering to a set of clients  with  trucks should be faster than delivering with
just one truck, that is,  . The next result gives the reverse boundary, i.e.,
delivering with  trucks should be faster, but not faster than a given boundary. Let's denote by
TSP  the TSP with a vehicle of speed v.

Theorem 3.3. Let n customers be served by a fleet of m trucks of different speeds , and

call   the combined speed. On the other hand, if the n customers are served by one

truck of speed  with sufficient package capacity, we have:

and the bound is tight.

Proof. Let’s  consider  a   optimal  solution,  we  can  consider  the   routes  
generated by the   trucks. Let   be the route generated after traveling through the   routes

 where the  route corresponds to the route traveled by the truck with  speed
for . Since in this case we are not using drones but only trucks, there is no waiting
time, so, for any  we have , hence,

Let’s call , note that

since  is the maximum,
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We can construct a solution  for the  by taking the route  but skipping any repeated
customer and returning to the depot at the end. Since the  involves a truck with speed , the
length of such route is , and it should hold that . Also, by
the triangle inequality,

by (8),

reordering the elements, 

It  only  remains  to  show that  the  bound  is  tight.  Consider  an  example  with   customers
, and a depot . For ,  let  , and . 

A solution  for the  problem is to send all the trucks at the same time from the depot,
the truck with speed  visits the client  and returns to the depot. In that solution all the trucks
return to the depot at the same time after 2 units of time. So, 

By the same analysis we followed in the previous proof, any solution to the   problem

takes . Then,

 

which means that,

We will generalize  Theorem 3.2. As we mentioned earlier, it  is assumed that drones travel
faster than trucks, at least during the working hours that deliveries take place, but the motivation
to generalize this result and allow drones to travel slower than trucks is to have general results
which can apply in case that occurs for some application.

(8)



Drone package delivery  59

Theorem 3.4.   and the bound is tight. 

Proof. An optimal solution to  defines  routes . Let's suppose  is the
route of the truck and the others, the drones' routes. We will construct as solution for the TSP
from the  routes. Let's pick the drone which traveled a route , for , and
pick a client  that was visited in  but not in . Suppose that in the solution of the 
in order to visit client , the drone was launched from the truck at client  and recovered at client 
.

Let's suppose  (the analysis is analogous in the other case). 

Then, if the truck wanted to visit client  while traveling in ,  it could travel the loop 
and continue.

We will calculate the increase in time to  if the truck travels that loop to
visit . First, let's introduce some notation. In the  solution we will denote by  the
time that passes since the departure of the truck from client i until it arrives to client , and we
denote by   the waiting time of the truck at client   and by   the waiting time of the
drone (that visited client ) at client . Then, by remembering that we always suppose the speed

Figure 7

Figure 8

(9)
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of the truck being 1 and the speed of the drones being , and by denoting  for any
 clients, 

which means that,

then, by the supposition we made at (9),

We are assuming the truck travels at 1 distance unit per unit of time, so the time it takes to
travel  is  , and now we have a bound for  given by . That is,
if the truck decides to visit client  from  and return to , that takes at most . And
this was for an arbitrary client  in  that is not visited in , we can follow the same reasoning
for every customer in  that was not visited in  and calculate the time increase. To formalize
this idea, let's say that a pair of customers  have the property  if 

1. The route  visits customer  and later, at some point, it visits customer .
2. The route  contains the path  for some customer .
3.  is not visited in the route .   

Then, the time increase to  if the truck decided to visit the customers in  that were not
visited in  is at most

Notice  that  for  any  ,  the  time   considered  in  ,  and  if
 it is not possible that in    is visited after  and before  because that would

mean  that   contains  ,  and  that   is  not  visited  by   (by  property  2)  which
contradicts the fact that . By the same reasoning,  cannot be visited after  and before
.  Hence, for  the times  never intersect, then



Drone package delivery  61

That is a bound for the time increase if the truck visits all the customers visited in the route 
but not visited in the route , where  is an arbitrary route of . Therefore, if we
apply the same procedure for all the  routes, the increase of time to visit all the customers not
visited by  is at most

Which means that we can generate a truck route that visits every customer and takes at most 

and it may look something like

From there, we can construct a solution   for the TSP by removing loops, the strategy is to
remove one loop at a time by returning to the next client to be visited instead of returning to the
same client (or the reverse idea if the loop is on the depot at the end). In the previous example,

Figure 10
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and by the triangle inequality,

and also,

by remembering that  we get,

To show that the bound is tight we consider the same example we used to prove the tightness
in Theorem 3.2, and the proof is analogous. 

The next result is a direct consequence of Theorem 3.4.

Corollary 3.5.  and the bound is tight.

Proof. Let's consider an optimal solution of the , since the solution is optimal, by the
triangle inequality, two different trucks never visit the same client. Then we can partition the set
of clients  where  is the set of clients visited by the  truck, or a drone in
that truck, for .

Therefore, the optimal solution to the   for   generates    solutions
 for  each set  of  clients   respectively.  Let's  denote  by   the

 restricted to the set of clients , and by  the  problem restricted to the set
of clients  for  then by Theorem 3.4,

and for the given solution ,

note that because  is the optimal value of the TSP over all the customers,

(10)

TSP⁽ⁱ⁾

VRPD⁽ⁱ⁾
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by (10)

and because   is  the  travel  time of  the  last  truck  to  return  to  the  depot,  i.e.,
, we have,

then, 

Finally, let's show the bound is tight. Let's consider an example with  clients that we
will denote by  with ,   and a depot  . We define the distances
between the clients and depot as:

1.  for .
2.  for  and .

3.  for , .
4.  for , .
5.  for , and   with .

Then, a solution   for the   is to launch the   trucks from the depot to visit the
clients    such that the   truck visits  , and the   drone in the   truck visits
customer   for  ,  . All the trucks and drones return to the depot at
same time after 2 units of time, hence .

cⱼ⁽ⁱ⁾
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On the other hand, following an analysis similar to the one we followed in the proof of the
tightness of Theorem 3.2, we can calculate the contribution that visiting and leaving a customer
has for any TSP solution:

1. Arriving to  has a cost of 1 for .
2. Leaving  has a cost of 1 for .
3. Arriving to  has a cost of  for  and .

4. Leaving  has a cost of  for  and .
5. Arriving or leaving the depot has zero cost.

Given that in any TSP solution every client must be visited once and only once, any TSP
solution  has , then, .

Therefore,

 

Finally, the most important result. Given a fleet of  trucks we will provide a bound on the
time benefit if we give to each truck a fleet of  drones. The result is a corollary of the previous
result but given its importance we will state it as a theorem. 

Theorem 3.6.  and the bound is tight. 

Proof. Just  as we did in the proof of  Corollary 3.5 let's  consider an optimal solution to the

, and partition the set of clients   such that the   are the clients either

served by the  truck or a drone in that truck. 

Also, by using the same notation, in inequality (10) of that proof we had

By the triangle inequality,

 

(12)

(13)

(11)
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Let  , then

by (13),

To show that the bound is tight, let's consider the example of  clients that we saw in
the proof of Corollary 3.5, with the same distances as defined there. In that proof we constructed
a solution  to the  with . Now, let's construct a solution  for
the .

For   let  the   truck  travel  the  tour  .  Then,
every truck returns to the depot after  units of time.

Then, 

Since we are supposing all the trucks have the same speed, by Theorem 3.3,

In (11) of the proof of Corollary 3.5, we calculated

Therefore, by (14), (15), and (16),

then, 

substituting,

(14)

(15)

(16)



Drone package delivery  66

Constraints of drone package delivery

Until  now, we have only talked about theoretical models of drones, we have not considered
important constraints such as government regulations regarding drones. For example, in Mexico
there is a norm which classifies drones according to their weight (with payload included):

From the mentioned norm, we must highlight three important restrictions:

1. Drones with a weight of more than 25 kg cannot fly near residential areas. Hence, only
small  drones  can  be  used  to  make  deliveries,  which  in  turn  means  that  only  small
packages can be delivered.

2. Drones must always be within the line of sight of the pilot (i.e., the pilot must be able to
see the drone as it flies). This restriction is of great concern because it means that even if
the  drone  can  technologically  travel  a  long  distance,  the  effective  range  will  be
considerably limited by the line of sight of the pilot.

3. Based on the previous restriction, no programmed flights are allowed. This restriction
limits the feasible number of drones that can be carried by a truck, every time a drone is
flying a pilot must control it. And these last two restrictions, in principle, make infeasible
drone delivery models in which the drone is recovered at a different location from where
it was launched.

It is believed that as drones become more widely available and the collision avoidance systems
mature, the regulations will relax [23].  However, even if the line of sight restriction was relaxed,

Table 1, source: DOF

CLASSIFICATION OF REMOTELY PILOTED AIRCRAFT SYSTEMS

CATEGORY USE

RPAS Micro 4.10, 4.11, 5.1, 5.2 y 8*

RPAS Small 4.10, 4.11, 6.2 y 8*

RPAS Large 4.10, 4.11, 7.2 y 8*

MAXIMUM 
PAYLOAD

Compliance with the 
Numeral of the Official 

Mexican Norm

Less or equal than
2 Kg

Private Non-
Commercial or 

Commercial

Greater than 2 kg 
and up to 25 Kg

Private Non-
Commercial or 

Commercial

Greater than
25 kg

Private Non-
Commercial or 

Commercial

https://www.dof.gob.mx/normasOficiales/8006/sct11_C/sct11_C.html
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drones certainly have a maximum flight range. The flight range depends, among other things, on
the design of the drone; fixed-wing drones look like airplanes and have longer flight ranges than
rotor  drones  (drones  with  propellers  like  helicopters)  but  cannot  land  easily,  so  unpopular
alternatives have been proposed such as dropping the packages with a parachute. In general,
rotor drones that can land at the delivery location and take off again are preferred.

Unfortunately, the flight range of rotor drones is much more limited than those of fixed-wing
drones. For this work, we identified that the maximum range for commercially available rotor
drones to be 15 km (DJI M300, M30, Mavic 3 enterprise) but this comes with another advantage,
they are cheaper.

It is currently unknown the cost per unit of the drones being developed by delivery companies,
but for now, we can compare the lowest prices that we found for commercial fixed-wing drones:
the eBee X with a cost of 190,000 pesos₁, and the WingtraOne Gen II with a cost of 550,000
pesos₁ to the cost of the most expensive commercial rotor drone we found, the DJI M30, with a
cost of 172,000 pesos₁. That is, the most affordable fixed-wing drones are more expensive than
the most expensive rotor drone. And although that was not a formal market research about prices,
it helps to clarify ideas since it is expected that delivery companies will have much lower cost
per drone unit. Finally, the cost of drone batteries should also be considered.

Other important constraints are the flight time, and payload capacity. We could not find any
commercial rotor drone with longer flight time than 1 hour per battery, while the fixed-wing
drones that we mentioned easily break that mark. And as for the payload, even if drones were
able to carry heavy packages,  current  government  norms classify drones  with respect  to  the
drone  weight  and payload,  so  under  no  circumstance  can  the  weight  of  the  drone  plus  the
payload it carries surpass the 25 kg restriction to visit residential areas.

The last constraint that should be considered is the lifetime of a drone, since package delivery
has not been implemented in large scale, and the drones that will carry out this task are not
operational yet, this constraint is difficult to estimate.

The model that we will review next considers most of the constraints mentioned. It uses a
divide a conquer approach to formulate two optimization problems: first the clustering problem
and later the vehicle route problem. It uses a very modern technique to provide solutions, a Deep
Reinforcement Learning heuristic which in the field of drone package delivery is the first time it
is being used, and it is also presented as an alternative to the current state of the art genetic
algorithms such as the one it will be compared against.

¹ prices according to their official websites eBee, Wingtra, DJI. 1 United States Dollar = 17.2185 Mexican pesos.

https://web.archive.org/web/20230615024808/https://store.dji.com/product/m30t-and-dji-care-enterprise-plus-m30t?vid=113121
https://web.archive.org/web/20230615024721/https://wingtra.com/best-drones-for-photogrammetry-wingtraone-comparison/dji-matrice-300-vs-wingtraone/
https://web.archive.org/web/20230615024614/https://ageagle.com/drones/ebee-x/
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The Parking Location and TSP with Homogeneous
Drones

As we have mentioned, we will  review one of the most recent models about drone package
delivery. The model and results are due [1], and it will make use of most of the theory that we
have presented so far.

The  Parking  Location  and  Traveling  Salesman  Problem  with  Homogeneous  Drones
(PLTSPHD) is a model which assumes there is exactly one truck which must deliver packages to

 clients by using a fleet of   homogeneous drones. Each launched drone will deliver exactly
one package and will return to the truck. Once the truck has launched one or more drones it will
not move until those drones return. Because of this last property, the model can fulfill the line of
sight restriction since the operator can monitor the drones while the truck is parked.

Further, it can be seen that the first problem to solve is to determine those parking locations in
which the truck will  stop and launch the drones to serve the customers. That is,  we need to
cluster the set of clients.

One initial thought can be to just launch all the drones from the depot (and no need for a
truck). That works and certainly can be a solution, if for example, the drones' range, line of sight,
and battery capacity are enough to travel from the depot to any client and return to the depot.
Obviously, to make the problem interesting we will assume that does not happen, that there are
clients far enough such that no drone can visit them and still satisfy the constraints.

An important constraint in this model is that at each cluster the number of packages to be
delivered must be less or equal to the number  of drones in the truck. Notice we are not talking
about the number of clients but about the number of packages to be delivered, that is because we
allow clients to receive more than one package. In principle this is not necessary because when
clients buy multiple items the store packs them in one single package, but it could be the case
that a client ordered from different stores which use the same delivery company. We still assume
that drones can only deliver one package, so in those cases multiple drones will visit any such
client. Then, the restriction is that at any parking location, which will be the centroid of the
clients in that cluster, the number of packages to be delivered is no more than the number of
drones in the truck.

There are ways to avoid that constraint, for instance the drones can be launched and as soon as
they return, they can be launched again to serve the missing customers in that cluster. However,
for this model we will not use that strategy and instead construct clusters such that the number of
packages to be delivered is less or equal than the number of drones in the truck.

Another constraint for the clusters is that the distance from the clients to the parking location
(i.e., the centroid of the cluster) should be close enough such that for any client in the cluster a
drone can travel from the truck to the client and return given the constraints mentioned earlier.

PLTSPHD
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The heuristic to solve this clustering problem is, as in almost all the literature [1], the K-means
algorithm, but a constrained version to keep track of the numbers of packages that were already
added to the cluster.  For  this  constrained k-means there are  no known boundaries,  and it  is
dependent on the initialization as the regular k-means. Hence, the strategy is to run it several
times and pick the best clustering according to the SSE. In principle, the reason to use the K-
means is just because it is easy to implement and very popular but any other clustering algorithm
could have been used, such as the k-means++ or even those available in the literature without an
optimization function (like the SSE) such as DBSCAN, or agglomerative clustering given that
we have already studied efficient  methods to  rank clusters  such as the silhouette  coefficient
discussed in chapter 2.

Once the clusters have been constructed, the dimensionality of the problem has been reduced
and all is needed is to present a tour that the truck must follow to visit each centroid and return to
the depot. That is, we do not care anymore about the clients or package orders and now just
consider the centroids. Then, the problem becomes a VRP  which is essentially a TSP with added
constraints. This last problem is solved with Deep Reinforcement Learning heuristic. 

Figure 11

Figure 12
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Before continuing, let's present the formal assumptions of the PLTSPHD.

• A1. Clients are far enough from the depot, so drones cannot be launched directly from the
depot (in fact we can suppose that clients that were close enough were already served).

• A2. The truck is carrying   homogeneous drones and has unlimited space to carry the
packages.

• A3. The truck can only launch the drones in the  stops (parking locations) and must wait
for all the drones to return before moving to the next stop.

• A4. The weight of any package  is less than the drones' payload  .
• A5. At any given cluster , the packages to be delivered  are not more than the number

of drones .
• A6. At any given cluster a drone will make, at most, one delivery.
• A7. Any customer   with a demand of   packages, with  , will be attended by 

drones.
• A8. Any drone travels in a straight line from the centroid of each cluster (the parking

location) to the client, delivers and returns also in a straight line.
• A9. On any trip, a drone cannot exceed the maximum flight distance .
• A10. Every time a drone returns to the truck, a battery swap is performed to make the

drone available for the next delivery (at a distinct parking location).
• A11. Once a drone has arrived at a customer location, we assume the delivery time is

negligible, as we also do for the time required for battery swaps.

Deep Reinforcement Learning (DRL) is a machine learning method that was born when two of
the  most  powerful  techniques  of  machine  learning  were  joined:  Deep  Learning  and
Reinforcement Learning.  

On the other hand, Deep Learning was the new name given to a set of algorithms developed in
the 1980s, known as Neural Networks, that resurged stronger in 2010 thanks to the large number
of databases available nowadays [18]. 

Notation. Given a vector  of dimension , let's denote the  coordinate of  as  

Neural Networks are supervised machine learning algorithms which means they assume there
is  a  known  training  dataset.   Briefly,  given  a  training  dataset   with

 for  ,  ,  the construction of a neural network of  
layers (of dimensions , with ) given  nonlinear functions from  to

,  consists  of  finding  coefficients   for  ,   ,
 that  minimize  some  function   that  takes  them  as  arguments.  Given

, those coefficients define  vectors  recursively as

DRL

l(i)

L
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for , . The function  is usually referred as the loss function, a typical
example is the SSE [17]:

  

Once the coefficients  that minimize the loss function, at least locally, are found (by
initializing them at random and solving the optimization problem with a gradient descent type
method  [16]) they are fixed, and the predictor function   of the neural network is defined as

. Finally,  it  should be said that the term  deep refers to many layers in the neural
network, which was impractical in the 1980s because of the great computing power they require.

Returning to the PLTSPHD problem and now that we have discussed how neural networks
work, the question that now comes to mind is how to get a training set for the problem? That
would be impractical because it would require calculating many optimal solutions in some way
and the current state of the art exact algorithms take hours and cannot solve problems with more
than 40 orders [26], [35]. The good news is that it is not the case, it is not required to calculate
the optimal solutions because this is exactly where reinforcement learning comes into play.

Reinforcement learning is not a supervised model, but it is also not an unsupervised model
because it does not try to find hidden features in a set of data as supervised models do, but rather
it aims to optimize some function (called the reward function). Hence, it is considered the third
machine learning paradigm [31]. Informally, the way in which it works can be explained with a
diagram:

An agent (for example, a traveling salesman) is in some state and it must take some action
from a set of available actions given its current state. The action to take can be decided at random
or based on some policy. After the action is taken the environment is modified, so the state of the
agent is updated to a new state, and a reward function assigns a value given the action that was

loss 
function

Figure 13, source: [31]
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taken. By a trial and error approach the agent is expected to learn a good policy to maximize
rewards. 

The problem to solve is to find a policy that maximizes the sum of the rewards, one popular
strategy is to use dynamic programming [31].

The construction of the DRL algorithm to solve this problem belongs to the field of artificial
intelligence which is a different area from the subject of this work. We just need to remember
that the DRL model only takes as input the centroids of the clustering, and it outputs the route
that the truck will follow to visit all the centroids. 

More interesting for us are the experimental results generated with the model which we are
going to analyze.

The algorithms were tested experimentally with random locations in Wichita, Kansas. Three
region sizes were considered:

1. small: 70 clients in a 258  area.
2. medium: 110 clients in a 259  area.
3. large: 250 clients in a 518  area.

Each client  was assigned, at random, an order size of . Hence, at the end, the
demand by region was established to be:

1. small: 127 packages.
2. medium: 205 packages.
3. large: 350 packages.

We suppose that the weight of any package is within the payload of a drone, that the truck has
unlimited space to carry all the packages, that any drone has a traveling cost of $1.38 pesos per
km and a fixed cost of $206.62 pesos, and, that the truck has a traveling cost of $38.23 pesos per
km, and a fixed cost of $1,721.85 pesos. There is a fixed cost of $17.22 pesos every time the
truck parks. Those costs were not assigned at random, instead they are the costs commonly found
in the literature [1].

The  DRL algorithm  was  tested  against  the  Nearest  Neighbor  algorithm  (NN),  a  genetic
algorithm (GA), and Google OR-tools solver. Each algorithm was run 30 times. 

First, the delivery problems were solved without any drones, just with one truck that delivers
all the packages, a VRP , and the costs were,

Table 2, source: [1]

1 United States Dollar = 17.2185 Mexican pesos.

GA

Region NN GA OR-tools DRL
Small 6,339.34 6,244.29 6,125.48 6,088.63
Medium 7,417.90 7,204.22 7,109.69 7,038.41
Large 12,856.02 12,513.37 12,461.72 12,418.33
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At first sight those results do not look interesting at all, for instance, in the large region the
improvement of the DRL was less than 5% compared to the NN. But we must remember this is a
work  about  drones,  hence,  let's  see  what  happens  with  the  same  regions  but  this  time  by
considering the truck with three fleets of drones .

Table 3, source: [1]

These  results  are  much  more  interesting,  they  show  the  superiority  of  the  DRL for  the
PLTSPHD, but more interesting for us is that even the results of the NN solution with drones
shows a significant saving compared to the NN solution with only one truck that we saw in the
previous table. In the case of the small region, the NN with a fleet of 5 drones has an 18.29%
saving compared to the NN without drones, in the case of a medium region the NN with a fleet
of 10 drones has a 23.63% saving compared to the NN without drones, and in the large region
the NN with 10 drones has a 46.59% saving compared to the NN without drones. 

In conclusion, these results further support the proposal we have made through this work about
the great potential that Unmanned Aerial Vehicles represent, at least, in package delivery. And we
have also provided an insight into the mathematics that are at the core of any drone package
delivery problem.

Finally, we will mention that this was just a brief example of a DRL application to solve a
combinatorial optimization problem. But DRL has matured to a point that there are now job
offerings (PhD positions) which aim to tackle combinatorial optimization problems with DRL₁.

¹ Bielefeld University.

Region Number of drones NN GA OR-tools DRL

Small
5 28 5,179.67 5,132.32 5,070.33 5,032.45
10 15 5,180.19 5,156.42 5,130.60 5,104.08
15 11 5,814.17 5,790.41 5,790.41 5,790.41

Medium
5 47 6,036.81 5,941.76 5,870.48 5,799.19
10 24 5,664.89 5,593.60 5,546.08 5,522.32
15 19 6,124.96 6,075.03 6,022.86 5,991.87

Large
5 79 8,412.61 8,222.52 8,008.67 7,961.15
10 36 6,866.74 6,780.30 6,724.17 6,676.65
15 25 7,638.13 7,519.32 7,448.03 7,424.27

Average 
number of 
clusters

https://web.archive.org/web/20230615033819/https://uni-bielefeld.hr4you.org/job/view/2532/research-position-deep-reinforcement-learning-for-combinatorial-optimization
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Future work
Currently, there are two schools of thought: those who think that UAV models should be nothing
more  than  extensions  of  TSP  and  VRP  models  and  those  who  believe  that  UAV  are  a
groundbreaking technology, and their models should be addressed in a separate way.

Most proposed UAV models belong to the first school of thought, where constraints such as
battery  capacity  and  payload  are  neglected.  However,  things  become  more  interesting,  and
difficult,  when we address  UAV as  a  different  technology and put  special  attention  to  their
specific constraints and requirements such as battery capacity, battery life (cycles of charge),
payload, energy consumption, speed, landing and launching location requirements, etc.

Since UAV applications, such as package delivery, are not still in widespread use there is a
limited  amount  of  data  to  compare  how realistic  the  current  theoretical  models  are,  hence,
scientists working with UAV models should perform a careful sensitivity analysis considering
the attributes we have mentioned. It will not be until UAV applications execute on a large scale
that we will know if the considered assumptions were enough [24].

Now, the most important unaddressed issues that require extensive research are:

1. Battery  usage/capacity:  Battery  duration  is  strongly  dependent  on  the  payload of  the
drones, the speed at which they fly, and the wind resistance exerted upon them [23], [36].

2. Temporal restrictions: These can be related to adverse weather with strong wind or rain
that makes it impossible for the UAVs to fly safely or some temporal airspace closure
implemented by the airspace authorities [24], [36].

3. Objective functions related to economic costs: Most UAV models aim to minimize the
time of the last vehicle to return, or minimize the flying time of drones, or minimize the
travel length of trucks, etc. Once a solution is found, the economic cost of the solution is
calculated. There is a lack of models that use the economic cost as the initial objective
function [23], [24].

4. Synchronization problems: These problems can range from the most basic scenarios such
as collision avoidance and launching/landing synchronization to more complex problems
related to combined operations such as in-flight payload transfer and in-flight battery
switching [23], [24].

5. Dynamic path replanning: If the weather becomes adverse, or in a malfunction event, or
if a pickup truck takes longer than some threshold, UAVs need to modify their scheduled
path accordingly [24].

6. Multiple  tasks  per  trip:  Multi-parcel  delivery,  delivery  and  pickup,  delivery  while
mapping a region [1], [15], [27].

7. Heterogeneous fleets of drones: Trucks carrying distinct types of drones, some of those
drones can fly longer distances while others can lift heavier packages [24].

8. Safety  and  Risks:  Identify  the  potential  risks  associated  with  UAVs  carrying  parcels
above people and households, as well as the risk associated with the deliveries itself [36].
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Appendix
Greedy algorithm

Run this greedy.py file with:

$ python3 greedy.py

The code assumes there is a file named instance.txt in the same directory as the file with this
code. In the first line it indicates the size of the distance matrix, and then, the matrix (of positive
real numbers). No other assumption is made (not even the triangle inequality). For example:

At the end, we will provide a random instance generator.

import numpy as np
import sys
np.set_printoptions(threshold=sys.maxsize)

### Here modify the name of the instance if it is different than instance.txt:
File = 'instance.txt'

We call  the given matrix. All entries  are assigned the infinity value to avoid loops later.

size = np.genfromtxt(File, dtype=int, max_rows=1)
D = np.genfromtxt(File, skip_header=1)
for i in range(size):
    D[i][i] = float('inf')

First, we create a list  which will have all the entries of the given weight matrix  but ordered
according to their weights.  and  appears before  if and only
if  . We order with Merge sort which takes  . Writing the entries to  
takes , hence this whole operation is in .

D = np.array(D)
ord1 = D.argsort(axis=None, kind='mergesort')
ord2 = np.unravel_index(ord1, D.shape)
L = np.vstack(ord2).T
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The  variable will be the set of edges of the desired tour, it will have all the edges but in no
particular  order.  We append to   the  first  element  of   which  is  the  edge of  the  graph of
minimum value, and we initialize a weight variable.

T = []
T.append(list(L[0]))
weight = D[L[0][0]][L[0][1]]

We create  a  list  of pairs  of  numbers  named  originDestiny.  Given an index  ,  the element
 records the first element   and the last element   of the longest path of   which

contains . This list will be used later in the main loop to avoid cycles.

originDestiny =  [[x,x] for x in list(range(size))]
originDestiny[L[0][0]][1] = L[0][1]
originDestiny[L[0][1]][0] = L[0][0]

Every time we put an element  to , we update the matrix  so that all the entries in the -
row and in the -column have infinity weight so we never need to use them again. Since we just
added  we need to update :

for u in range(size):
    D[u][L[0][1]] = float('inf')
    D[L[0][0]][u] = float('inf')
np.delete(L, 0)

Now we will use the previous procedure but for all the matrix: we take the first element  of 
with weight less than infinity, then by using the originDestiny list we check if that edge is not
creating a loop in which case we add it to  and update the originDestiny list according to the
new origin and destiny of the path (i.e., the new first and last vertex of the two joined paths). The
flgs variable will indicate when there is only one element left in the array (i.e., only the last edge
which closes the path to create the tour). The most expensive operations are the matrix writings:

 values in a row +  values in a column . But we only execute the update procedure once
for each edge of the path, i.e., at most  times. Hence .

flgs = size-1
for i in range(len(L)):
    if flgs == 1:
        break
    if (D[L[i][0]][L[i][1]] != float('inf') and L[i][1] != originDestiny[L[i][0][0]):
        originDestiny[originDestiny[L[i][1]][1]][0] = originDestiny[L[i][0]][0]
        originDestiny[originDestiny[L[i][0]][0]][1] = originDestiny[L[i][1]][1]
        flgs = flgs - 1
        T.append(list(L[i]))
        weight += D[L[i][0]][L[i][1]]
        for u in range(size):
            D[u][L[i][1]] = float('inf')
            D[L[i][0]][u] = float('inf')
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Now  is the set of all the edges in the maximum path but in no particular order, so we must
order  to generate the final solution. We pick the first edge of   and add it to Solution, then
we remove it from  and iterate  to find the next edge which either starts with  or ends with 
and attach it to Solution: at the end in the first case or at the beginning in the second case. 

We repeat this process until  is empty, at most it takes

 operations.

Solution = []
Solution.append(T[0][0])
Solution.append(T[0][1])
T.remove(T[0])
while T != []:
    for x in T:
        if x[0] == Solution[-1]:
            Solution.append(x[1])
            T.remove(x)
        elif x[1] == Solution[0]:
            Solution.insert(0,x[0])
            T.remove(x)

Then we just close the path to get the cycle and sum 1 to each vertex to have the numeration
starting in 1 instead of 0,

weight += D[Solution[-1]][Solution[0]]
Solution.append(Solution[0])
Solution = np.array(Solution)
Solution += 1
print("Greedy:")
print(Solution)
print(weight)
print()

Random instances generator
A small program was written to create instances of a given size with random integers between 1
and 100. It prints the result in the format required for the Greedy program. 

The only parameter that might need to be modified (in the code) is the size of the desired
matrix. It is run with the command:
$ python3 randM.py

import random
# Here we edit the desired size of the matrix:
size = 10

# Random matrix
matrix = [[random.randint(1, 100) for j in range(size)] for i in range(size)]

#Result printed in desired format for greedy.py program:
print(size)
for y in matrix:
    print(" ".join(str(x) for x in y))
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