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Anisotropias Magnéticas desde Primeros Principios
M. en C. Luis Enrique Diaz Sanchez

Resumen

De manera reciente, ha adquirido especial importancia entender el compor-
tamiento magnético de los sistemas en los que la direccién del momento magné
tico es no-colineal. Por no-colineal nos referimos a que los momentos magnéticos
asociados con los iones del cristal no estdn alineados a lo largo de un mismo eje.
Los dos formalismos tedricos basicos para el estudio y comprension de este
tipo de efecto magnético son la teoria de magnetismo no-colineal y la teoria
de interaccién espin-6rbita. La teoria de magnetismo no-colineal permite con-
siderar todos los grados de libertad del espin de los electrones, es decir, la di-
reccién de la magnetizacidn se convierte en una variable que cambia de manera
continua con respecto a la posicion. La no-colinealidad desacopla el espin de
los electrones de la red cristalina. Una vez que el espin es desacoplado de la
red, la interaccién espin-Orbita permite acoplar esta magnetizacién con el mo-
mento angular del electron, el cual se mueve alrededor del nicleo. La inter-
accién espin-orbita es también responsable de muchos otros fenémenos fisicos,
algunos de ellos presentados en este trabajo. Algo extrafio es que la interaccién
espin-Orbita es un efecto relativista que los investigadores no suelen tener en
cuenta en los célculos computacionales, incluso para los sistemas con elemen-
tos pesados en el que resulta necesario tener en cuenta dicha interacciéon. Por
otro lado, la teoria funcional de la densidad es uno de los métodos maés utiliza-
dos para realizar cdlculos de dindmica molecular, ab initio, para estudiar las
estructura de los atomos, moléculas, cristales, superficies y sus interacciones
en general. Dentro de esta teoria es posible utilizar las dos aproximaciones
mencionadas anteriormente, las cuales son importantes como ya se habia men-
cionado, para estudiar las anisotropias magnéticas. En particular, hemos uti-
lizado el cédigo ABINIT, el cual es un cédigo basado en la teoria funcional
de densidad, para mostrar la importancia que tiene la interaccién espin-Grbita
en el célculo de propiedades vibracionales y termodindmicas para bismuto y
antimonio. También estudiamos propiedades de magnetismo colineal y no co-
lineal considerando al mismo tiempo la interaccion espin-6rbita, es decir, con-
siderando ambas aproximaciones de manera simultanea para estudiar paladio y
bismuto. En general este tipo de estudios han adquirido especial interés en en-
tender no solo las anisotropias magnéticas, sino también la espintronica, ondas
de espin o magnetorresistencia gigante.



Magnetic anisotropies from first principles
M. en C. Luis Enrique Diaz Sanchez

Abstract

Nowadays, there is a growing realization of the importance of understanding
the magnetic behaviour of systems in which the magnetic order is noncollinear.
By noncollinear we mean that the magnetic moments associated with individual
ions in the crystal are not aligned along the same axis. The two basic theoretical
formalisms to study this kind of magnetic effect are the noncollinear magnetism
and the spin-orbit interaction theories. The noncollinear magnetic theory per-
mits to consider all the degrees of freedom in the spin of the electron, i.e., the
direction of the magnetization becomes a continuous variable of position. The
noncollinearity decouples the spin of the electron from the lattice of the crys-
tal. Once the spin is decoupled from the lattice, the spin-orbit interaction permit
to couple this magnetization with the angular magnetic moment of the electron
that is moving around the nucleus. The spin-orbit interaction is also responsi-
ble for many others physical phenomena some of them presented in this work.
Something unexpected is that the spin-orbit interaction is a relativistic effect
that researchers not normally take into account in computational calculations
even for systems with heavy elements where it might be necessary to consider
this interaction. On the other hand, density functional theory is one of the most
widely used methods for molecular dynamic ab initio calculations of the struc-
ture of atoms, molecules, crystals, surfaces, and their interactions. Within this
theory it is possible to use both considerations, previously mentioned, which are
important in studying magnetic anisotropies. In particular we used the ABINIT
software, which is an ab initio code based in density functional theory, to show
the importance role of the spin-orbit interaction in calculating vibrational and
thermodynamic properties for bismuth and antimony. We also studied collinear
and non collinear magnetic properties considering spin-orbit interaction, i.e.,
considering both approximations for palladium and bismuth. In general these
kind of studies have acquired special interest in understanding not only magnetic
anisotropies but also in spintronic, spin waves, or giant magnetoresistance.
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Chapter 1

Introduction

At present theoretical computational physics has acquired importance due to the
advances in different theories that have permitted to reproduce, demonstrate and
predict experimental results in many kind of systems. In particular, at present
the Density Functional Theory (DFT) is one of the most used theories that re-
searchers have been used in order to understand ground states or excited states.
These properties are important in studying electronic, magnetic and many others
properties. The DFT has been mainly used because the simplicity of the theory
and also because the reliability to implement such equations in an ab initio code.

The topic of this thesis “Magnetic anisotropies from first principles” was
chosen because the interest, mine specially, that have grown in understand many
properties like in spintronic, giant magnetoresistan, magnetic memories, or spin
waves, just to give some examples. The basic theories to study these kind of
magnetic effects are the the noncollinear magnetism and the spin-orbit interac-
tion theory. The non-collinear magnetic theory permit to consider all the degrees
of freedom in the spin of the electron. For that reason, the noncollinearity de-
couples the spin of the electron from the lattice of the crystal. Once the spin is
decoupled from the lattice, the spin-orbit coupling is the responsible of coupling
again this magnetization with the angular magnetic moment of the electron that
is moving around the nucleus. The spin-orbit interaction is a relativistic effect
normally not taken into account in computational calculations. Not consider-
ing this approximation is appropriate in studying light atoms because the energy
contribution coming from the spin-orbit coupling is small compared to the rest
of the total energy. Once one starts working with heavy atoms, transition met-
als and specially those above the five period in the periodic table, the inclusion
of the spin-orbit interaction becomes crucial in order to reproduce experimental



CHAPTER 1. INTRODUCTION

results.

This thesis is divided in two main parts. In the first part the theoretical back-
ground about the density functional theory is explained in detail, though in a
general way. The noncollinear magnetism and the spin-orbit interaction theo-
ries are the two main theories necessary to understand magnetic anisotropies.
For that reason, we extended the treatment of both theories at the end of the first
part. In the second part we focused mainly in applications. First, we show the
important of considering the spin-orbit interaction relativistic effect in studying
vibrational and thermodynamic properties for bismuth and antimony solids. In
particular bismuth, with atomic number Z=83, is an ideal candidate to analyze
the effect of the spin-orbit interaction on those perturbational properties. Be-
cause palladium clusters have magnetic properties, it is a good material to start
analyzing noncollinear magnetic effects. We determine magnetic properties for
palladium dimer using the spin-polarized approximation as a first step. In partic-
ular, we obtain the total energy of the dimer as a function of the magnetization
at different fixed distances between palladium atoms. After this, we continue
with a more general case according to our objectives, i.e., we consider the full
charge density matrix in order to include the noncollinearity in the direction of
the magnetization. The next step was to include the spin-orbit interaction ap-
proximation in the calculi. Continue with this treatment we finally use the full
approximation, i.e., the noncollinear magnetic theory and the relativistic spin-
orbit interaction effect were considered both at the same time to study palladium
and bismuth dimers. Finally a theoretical like tight-binding study for bismuth
atom is done in order to explain with a simple model the effect of the spin-orbit
interaction on the independent electron energies (eigenvalues).

Finally, four appendixes are included. In the first one, we present the deriva-
tion of the density matrix and the spin density vector, usefull in the comprehen-
sion of the continuous variation of the orientation of the magnetization. The
second one is devoted to explain the experimental setup used to experimentally
measure phonon dispersion curves. This is done by observing the coherent in-
elastic scattering of monoenergetic neutrons due to a process in which a single
phonon is created in a sample crystal. In the fourth appendix the experimen-
tal setup used to measure the heat capacity at low temperatures is presented.
This quantity is determined by the pulse 6@ supplied to the sample and the
temperature rise 97", then the heat capacity is obtained by applying the identity
C = 8@ /4T. Finally the list of published papers in presented.
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Chapter 2

Theory

2.1 Elements of solid state physics

2.1.1 adiabatic approximation

The adiabatic approximation is based on the fact that typical electronic veloc-
ities are much greater than typical ionic velocities. The significant electronic
velocity is v, =~ 108¢m/sec. On the other hand, typical ionic velocities are at
most of order 105cm/sec. The ions can not follow the motion of the electrons
and they see only a time-averaged adiabatic electronic potential. One therefore
assumes that because the ions move so slowly on the scale of velocities of rele-
vance to the electrons, at any moment the electrons will be in their ground state
for that particular instantaneous ionic configuration, i.e., we can consider the
electrons as moving in the field of fixed nuclei. That assumption comes from
the fact that the mass of the nuclei are much higher than the mass of the elec-
trons. Even the lightest of all nuclei, the proton (*H), weighs roughly 1,800
times more than an electron, and for a typical nucleus such as carbon the mass
ratio well exceeds 20,000. As a result, electrons can respond to ionic motion al-
most instantaneously or, in other words, to the electrons the ions are essentially
stationary. In computing the Interatomic Force Constants (IFC), that will be
explained later on, one must then supplement the interaction between ion cores
with terms representing the dependence of the additional electronic energy on
the instantaneous ionic configuration [1, 2].

The adiabatic approximation is also known as the Born-Oppenheimer. This
is the basic approximation which allows one to decouple the vibrational from
the electronic degrees of freedom in a solid [3]. Part of this approximation is to
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assume that we can separate the electronic and nuclear coordinates and writing
the total wavefunction as ¥ = (r, R) = ¢(r)®(R). With the Born-Oppenheimer
approximation the Hamiltonian describing a perfect crystal can be expressed as
the sum of three terms,

H = Hions(Ry) + Ho(r;, Ryo) + Ho_ion(ri, 6Ry), 2.1)

where I:I,-m(R ) is the Hamiltonian describing the ionic motion under the influ-
ence of the ionic potential plus the time-averaged adiabatic electronic potential.
H, (r;, R o) is the Hamiltonian for the electrons with ions frozen in their equilib-
rium position R ;, and H._ ion (T, 0R ;) describes the changes in the electronic
energy as a result of the displacements JR; of the ions from their equilibrium
position. He _ion is known as the electron-phonon interaction and is responsible
for electrical resistance in reasonably pure semiconductors at room tempera-
ture [4].

2.1.1.1 Lattice dynamics from electronic-structure theory

Within the adiabatic approximation, the lattice-dynamical properties of a sys-
tem are determined by the eigenvalues ¢ and eigenfunctions ¢ of the Schrédinger
equation [5]:

'l
E(R) | (R) = e®(R), 2.2
= ong; oy ER) ) #R) = 2R 22)
where R; is the coordinate of the /th nucleus, M; its mass, R = Ry is the
set of all nuclear coordinates, and F(R) the clamped-ion energy of the system,
which is often referred to as the Born-Oppenheimer energy surface. In practice,
E(R) is the ground-state energy of a system of interacting electrons moving in
the field of fixed nuclei, whose Hamiltonian - which acts onto the electronic
variables and depends parametrically upon R - reads

Hpo(R) = — h2 Z Z Zie 4 Ew(®)
po(R) = — ar2 Ir,—rJI g TR

(2.3)
where Z; is the charge of the Ith nucleus, —e is the electron charge, and En(R)
is the electrostatic interaction between different nuclei:

6
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212y
24)
2 I#ZJ IR, =Ry |

The equilibrium geometry of the system is given by the condition that the
forces acting on individual nuclei vanish. This assumption comes from the fact
that if the nuclei are fixed in space and do not move, their kinetic energy is
zero and the potential energy due to the nucleolus-nucleus repulsion is merely a
constant:

OE(R)
R;

whereas the vibrational frequencies w are determined by the eigenvalues of the
Hessian of the Born-Oppenheimer energy, scaled by the nuclear masses:

Fi=- =0, (2.5)

1 8E(R)
VMM, 0R;0R;

The calculation of the equilibrium geometry and of the vibrational proper-
ties of a system thus amounts to computing the first and second derivatives of its
Born Oppenheimer energy surface. The basic tool for accomplishing this goal is
the Hellmann-Feynman theorem (Hellmann 1937; Feynman 1939), which states
that the first derivative of the eigenvalues of a Hamiltonian, H, that depends on
a parameter A is given by the expectation value of the derivative of the Hamilto-
nian:

det —w? =0 (2.6)

OE\ OH)
TN <\Il,\ Iy \Il> 2.7

where U, is the eigenfunction of H), corresponding to the E) eigenvalues:
H,¥, = E,\¥,. In the Born-Oppenheimer approximation, nuclear coordinates
act as parameters in the electronic Hamiltonian, Eq. (2.3). The force acting on
the I'th nucleus in the electronic ground state is thus.

OER) _ [y |2Hz0(R)
OR; OR;

where ¥(r, R) is the electronic ground-state wave function of the Born-Oppenheimer
Hamiltonian. This Hamiltonian depends on R via the electronic-ion interac-
tion that couples to the electronic degrees of freedom only through the electron
charge density. The Hellmann-Feynman theorem states in this case that

Fr=-

\II> , (2.8)

7
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OVR(r) OEN(r)
F;=— - 2.9
I /TLR(I') 8R1 dr aR] , ( )
where Vz(r) is the electron-nucleus interaction,
Z 162
Wr)=-) —— 2.10
0= -3 2 @10

and ng(r) is the ground-state electron charge density corresponding to the nu-
clear configuration R. The Hessian of the Born-Oppenheimer energy surface
appearing in Eq. (2.6) is obtained by differentiating the Hellmann-Feynman
forces with respect to nuclear coordinates,
2
d’E(R) =_8F1. @.11)
JR[0R; OF;

This equation states that the calculation of the Hessian of the Born-Oppenheimer
energy surfaces requires the calculation of the ground-state electron charge den-
sity ng(r) as well as of its linear response to a distortion of the nuclear geometry,
Ongr(r)/OR;. This fundamental result was first stated in the late 1960s by De
Cicco and Johnson (1969) and by Pick, Cohen, and Martin (1970). The Hessian
matrix is usually called the matrix of the interatomic force constants.

2.1.2 The Bloch’s theorem

Because the ions in a perfect crystal are arranged in a regular periodic array,
we are led to consider the problem of an electron in a potential U(r) with the
periodicity of the underlying Bravais lattice, i.e.,

U(r+R) = U(r), 2.12)

for all Bravais lattice vectors R. Since the scale of periodicity of the potential
U(~ 1078cm) is the size of a typical de Broglie wavelength of an electron in
the Sommerfeld free electron model, it is essential to use quantum mechanics in
accounting for the effect of periodicity on electronic motion. F. Bloch proved
that the eigenstates 1 of the one-electron Hamiltonian can be chosen to have the
form of a plane wave times a function with the periodicity of the Bravais lattice

[1,6]:
Yk (1) = Ui (r) ™, (2.13)

8
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where u(r) has the period of the crystal lattice,

Unk(T) = Unk(r + R), (2.14)

for all R in the Bravais lattice. The eigenfunctions of the wave equation for a
periodic potential are the product of a plane wave exp(ik - r) times a functional
uk(r) with the periodicity of the crystal lattice.

Considering the expression 2.14 for the periodic potential and the equation
(2.13), it is easy to show that,

Ynk(r + R) = e*Rep i (r), (2.15)

for every R in the Bravais lattice. Bloch’s theorem is sometimes stated n this
alternative form. The eigenstates of H can be chosen so that associated with
each 1) is a wave vector k such that,

¥(r+R) = e*Ry)(r), (2.16)

for every R in the Bravais lattice.

2.2 The Density Functional Theory

2.2.1 Functionals

In this section we start studying the Density Functional Theory in detail. In order
to discuss it more carefully it is necessary to introduce a useful mathematical
tool, the functional. Roughly speaking, a functional F'[f] is a mapping of an
entire function f onto a value [7].

A functional F[n] can be defined as a rule for going from a function to a
number, In other words, a functional takes a function as its arguments or input
and returns an scalar, just as a function y = f(z) is a rule (f) for going from a
number (z) to a number (y). Its use goes back to the calculus of variations where
one searches for a function which minimises a certain functional. A particularly
important application in physics is to search for a state of a system which min-
imises the energy functional. A simple example of a functional is the particle
number, which is a rule for obtaining the number N, given the function n(r)
(8,9],

N = / d>rn(r) = Nin], (2.17)
9
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the name given to the argument of n is completely irrelevant, since the functional
depends on the function itself, not on its variable. Hence we do not need to
distinguish F[n(r)] from, e.g., F[n(r’)]. Another important case is that in which
the functional depends on a parameter,

V. — 2 d3 / n(r, ) .
uln(r)] = q / = (2.18)
which is a rule that for any value of the parameter r associates a value Vi [n(r)]
with the function n(r’). This term is the so called Hartree potential, which we
will repeatedly encounter below.

2.2.1.1 Functional variation

Following the previous example of a function of one variable, y = f(z), one
can think of two types of variations of y, the first coming from variations of z
and the second from variations of f. The variation study in ordinary calculus
shows that for a fixed functional dependence f(z), the ordinary differential dy
measures how y changes as a result of a variation z — z + dz of the variable z.
On the other hand, the variation studied in variational calculus shows that for a
fixed point z, the functional variation éy measures how the value y at this point
changes as a result of a variation in the functional form f(z).

2.2.1.2 Functional derivative

The differential of a functional is the part of the difference F'[f + §f] — F[f]
that depends on d f linearly. Each 4 f(z) may contribute to this difference. For
very small é f,

OF

where the quantity §F'/d f(z) is the first-order functional derivative of F with
respect to f at the point x. The integral arises because the variation in the func-
tional F' is determined by variations in the function at all points in space. This
equation is the rule for operating on 6 f () to give a number § F', and is the exten-
sion to continuous variables of the formula for the total differential of a function
F(fi1, fa,...): dF =" .(0OF/0f;)df;.

The following general formula covers many cases of interest. Consider the
functional,

10
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F[n]=/f(z;n,n(l),n(z),...,n("))dz, (2.20)

where n()(z) = d®n(z)/dz’, n vanishes at the boundary of z. Then a gen-
eral expression d F'[n]/dn(z) for obtaining functional derivatives with respect to
n(z) is given by,

GFl) _0f _d 0f & of & of
én(zx)  On  dzon® ' dz2on®  dz3on®’

This expression is frequently used in DFT to obtain X C potentials from X C
energies.

(2.21)

2.2.2 Anintroduction to DFT

In order to introduce the Density Functional Theory (DFT) we start with a short
introduction to the classical quantum mechanics. In this context the time inde-
pendent non-relativistic Schrodinger equation [2] is written as,

FI‘I’i(l'l,l‘z, -+ ,rn, R, Ry, - - ,RM) = E¥;(r,ra,--- ,rn, Ry, Ry, - - ,RM)

2.22)
where H is the Hamiltonian operator representing the total energy for a molec-
ular system consisting of M nuclei and N electrons in the absence of magnetic
or electric fields. The Hamiltonian H describing a perfect crystal can be written
as,

M

Z]ZJe
Z 2m1 zl I#ZJ |R1 _ RJ'
NM
_ Z]C 1 6
i; |r; — R,| 2 ; Ir; —_rj|’ (2.23)

here, A and B run over the M nuclei while ¢ and j denote the N electrons in
the system. The first two terms describe the kinetic energy of the electrons and
the nuclei respectively. The remaining three terms define the potential part of
the Hamiltonian and represent the attractive electrostatic interaction between the
nuclei and the electrons and the repulsive potential due to the electron-electron

11
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and nucleus-nucleus interactions, respectively. W; stands for the wave function
of the 7’th state of the system, which depends on the 3N spatial coordinates, the
N spin coordinates of the electrons, and the 3M spatial coordinates of the nuclei.
The wave function ¥; contains all information that can possibly be known about
the quantum system at hand. Finally, E; is the numerical value of the energy of
the state described by ¥;.

Taking advantage of the adiabatic approximation (see section 2.1.1), it is
possible to write the Schrodinger equation for NV interacting electrons under an
external potential (usually the Coulomb potential of the nuclei) as,

—_sz'*'zvezt(rz)'i'QZ'rl_r]I l'l,rz,--',l‘N)

= E¥(ry,ry,- -+ ,IN). (2.24)

To solve this equation is not easy even from the computational point of view.
A simple estimate of the computational complexity of this task is to imagine
a real-space representation of ¥ on a mesh, in which each coordinate is dis-
cretized by using 20 mesh points (which is not very much). For N electrons,
W becomes a function of 3V coordinates (ignoring spin, and taking ¥ to be
real), and 203" values are required to describe ¥ on the mesh. The density
n(r) is a function of three coordinates, and requires 20 values on the same
mesh. The Kohn-Sham formulation of DFT additionally employ sets of single-
particle orbitals. N such orbitals, used to build the density, require 20 N val-
ues on the same mesh. For N = 10 electrons, the many-body wave function
thus requires 2030/203 =~ 1035 times more storage space than the density, and
2030/(10 x 203) ~ 1034 times more than sets of single-particle orbitals. Clever
use of symmetries can reduce these ratios, but the full many-body wave function
remains unaccessible for real systems with more than a few electrons [9].

2.2.3 Fundamentals of Density Functional Theory

Density Functional Theory (DFT) has proved to be highly successful in describ-
ing structural and electronic properties in vast class of materials. Furthermore
DFT is computationally very simple. For these reasons DFT has become a com-
mon tool in first-principles calculations aimed at describing - or even predicting
- properties of molecular and condensed matter systems.

There exist two fundamental of DFT. The first is that [10], any property
of a system of many interacting particles can be viewed as a functional of the

12
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ground state density no(r); that is, one scalar function of position ny(r), in
principle, determines all the information in the many-body wavefunction for the
ground state and all excited states. The second is that [11], the original many-
body problem can be replaced by an auxiliary independent particle problem. In
principle, it leads to exact calculations of properties of many-body systems using
independent-particle methods. This approach involves independent particles but
and interacting density [7].

2.24 The Hohenberg-Kohn theorem

According to the Hohenberg-Kohn theorem, no two different potentials acting
on the electrons of a given system can give rise to a same ground-state electronic
charge density [10].

Let us consider a system of N interacting (spinless) electrons under an exter-
nal potential V,.(r) (usually the Coulomb potential of the nuclei as mentioned
in a previous section). If the system has a nondegenerate ground state, it is ob-
vious that there is only one ground-state charge density n(r) that correspond to
a given V. (r). Far less obvious result is that in 1964 Hohenberg and Kohn [10]
demonstrated the opposite; there is only one external potential V., (r) that yields
a given ground-state charge density n(r). The demonstration is very simple and
uses a reductio ad absurdum argument [12].

Let us consider a many-electron Hamiltonian H = T + U + V4, with
ground state wavefunction ¥. T is the kinetic energy, U the electron-electron
interaction, and V., the external potential. The charge density n(r), which plays
a central role in electronic structure theory, is given by the expectation value of
the density operator A(r) = 3_,_; v 6(r — r;),

_ (YA _ / 2
n(r) = @y N [ |¥(r,re,r3,...,rN)|%ds ... dry, (2.25)
that obeying the orthonormality constraint,

(U|W) =1. (2.26)

Let us consider now a different Hamiltonian H' = T + U + V., (V. and
V., do not differ simply by a constant: V,,; — V!, # const.) with ground state
wavefunction ¥’. Let us assume that the ground state charge densities are the
same: n[V.z] = n[V,,]. The following inequality holds:

13
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E = (V|H'|V) < (V|H'|¥) = (V|H + V., — Vige|T), (2.27)

ext

that is,

E<E+ / (Viat(r) — V2., (r))n(r)dr. (2.28)

The inequality is strict because ¥ and ¥’ are different, being eigenstates of
different Hamiltonians. By reversing the primed and unprimed quantities, one
obtains an absurd result. This demonstrates that no two different potentials can
have the same charge density. The density uniquely determines the external po-
tential to within a constant. Therefore all properties of the system are completely
determined given only the ground state density ny(r).

A straightforward consequence of the first Hohenberg and Kohn theorem is
that the ground state energy F is a functional E[n(r)] of n(r). We can write,

E[n(r)] = (YT +U+ Vex|¥) = (¥|T + U|¥) + (¥|Vewt|¥)
= Fn(r)]+ /n(r)V;zt(r)dr, (2.29)

where F[n(r)] is a universal functional of the charge density n(r) (and not of
Vezt(r)). By universal it is meant here that the functional is independent of the
external potential acting on the electrons, though it obviously depends on the
form of the electron-electron interaction. For this functional, E[n(r)], a vari-
ational principle holds: the ground-state energy corresponding to the external
potential V,.(r) is minimised by the ground-state electron charge density under
the constraint that the integral of n(r) equals the total number of electrons. The
reason why this is possible is that the density and the potential are conjugate
variables, which means that the contribution of the external potential to the total
energy occurs only via an integral of the potential times the density.

In this way, DFT exactly reduces the N-body problem to the determination
of a 3-dimensional function n(r) which minimises a functional E[n(r)]. Fur-
thermore, the value of the minimum coincides with the ground-state energy, i.e.,
the functional E[n(r)] alone is sufficient to determine the exact ground-state
energy and density. Unfortunately this is of little use as F'[n(r)] is not known.
That problem can be handled by mapping the system onto an auxiliary system
of noninteracting electrons (see section 2.2.5). An schematic representation for
the relation established by Hohenberg and Kohn is illustrated in Fig. 2.1.
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Ve & no)
T 1
wir) = W(r))

Figure 2.1: Schematic representation of Hohenberg-Kohn theorem. The smaller
arrows denote the usual solution of the Schrodinger equation where the potential
Vezt(r) determines all states of the system U;(r), including the ground state
WUy (r) and ground state density no(r). The long arrow labeled “HK” denotes the
Hohenberg-Kohn theorem, which completes the circle (Figure taken from [7]).

2.2.5 The Kohn-Sham scheme
2.2.5.1 Practical implementation of DFT

In 1965 Kohn and Sham [11] replaced the original many-body problem by an
auxiliary independent particle problem. The Kohn-Sham equations represent
a mapping of the interacting many-electron system onto a system of noninter-
acting electrons moving in an effective potential due to all the other electrons
[13]}

Practical implementations of DFT require an explicit construction of the
Hohenberg-Kohn free-energy functional, F[n] = Fgyg|[n], given above. It is
customary to write F i [n] for interacting electrons as a sum of the noninteract-
ing kinetic energy, T[n], and two interaction terms, the electrostatic energy and
the exchange-correlation energy [12]:

FHK[’IL(I')] = Ts[n(r)] + EH[n(r)] + Exc[n(l‘)], (2.30)

where the last term, Exc(n], is defined as the remainder and thus contains ev-
erything that is not included in the first two terms. Each of the three terms on
the right hand side is in principle a functional of the independent variable n(r).
Only the second term, the electrostatic energy also known as the Hartree energy,
is easily expressed explicitly:

e’ [ n(r)n(r)

Bulnn] = 5 [ g

drdr’ (2.31)

The first and last terms are much more complicated: knowledge of the for-
mer implies a full understanding of the quantum mechanical noninteracting
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problem; the latter contains all of the manybody physics, and is in principle
even more complex.

For a system of non-interacting electrons the ground-state charge density
is representable as a sum over one-electron orbitals (the Kohn-Sham (K S) or-
bitals) ;(r). The associated electronic one-body density or charge density,

n(r) = Z fili (o), (2.32)

is obtained from a single Slater determinant built from the occupied orbitals,
where f; are integer occupation numbers. The KS orbitals are the solutions of
the Schrodinger equation,

(—h—2V2 + VKS(r)) Pi(r) = eihi(r), (2.33)

2m
obeying the orthonormality constraints,

[wium & =s 2.34)

The existence of a unique potential Vi s(r) having n(r) as its ground state
charge density is a consequence of the Hohenberg and Kohn theorem, which
holds irrespective of the form of the electron-electron interaction U.

2.2.5.2 The Kohn-Sham equations from variational principle

As a self-consistent method, the Kohn-Sham approach involves independent
particles but an interacting density, in such a way that now the problem is to
determine Vi s(r) for a given n(r). The set of wave functions v; are given by
the self-consistent solutions to the Kohn-Sham equations. In order to do it, it
is necessary to determine the set of wave functions v; that minimise the Kohn-
Sham energy functional. This problem is solved by considering the variational
property of the energy but considering the orthonormality constraints given in
Eq. (2.34) [12, 14],

E'=E - Z Aij </ Y5 (r)y(r) dr — 6ij> , (2.35)
ij
where );; are Lagrange multipliers, must vanish,
/ !
O °B =1 (2.36)

Sgr(r)  oyy(r)
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It is convenient to rewrite the energy functional as follows,

B = Tn(e)) + Buln(o)] + Exofn(®)] + / n(O)Vie(r)dr.  (237)

The first term is the kinetic energy of non-interacting electrons,

T,[n(r)] = —%22 / P (r)V2ep;(r)dr, (2.38)

the second term, called the Hartree energy, contains the electrostatic interactions
between clouds of charge,

!

Enln(r)] = ”l(') (’l) drdr’, (2.39)
the third term, called the exchange-correlatlon energy, contains all the remain-
ing terms: our ignorance is hidden there. The logic behind such procedure is to
subtract out easily computable terms which account for a large fraction of the
total energy.

Using,
on(r)
——— = 9;(r)é(r — '), 2.40
S = VD= ) (2.40)
and the formulae given in section 2.2.1, one finds,
0T, 3
G -_22 V23(r (2.41)
0By _ , [ _n(r)
—— =€ [ —=-dr'y; 242
sor ¢ ) e @4
and finally,
ﬁ,2

—5= V2 + Vi(£) + Vico([n(F)) + Vear(r ]x/),(r Z,\ij . (243)

where 1); is the wave function of electronic state 7, and Vj is the Hartree poten-
tial of the electrons given by,
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_2 [ M)
T)_e_/|r—r’|dr’ (2.44)
the exchange-correlation potential, Vx¢,is given formally by the functional deriva-
tive,

8E XC [n(r)]
on(r)

The Lagrange multiplier \;; are obtained by multiplying both sides of Eq.
(2.43) by 9 (r) and integrating,

Mg = /wk (——V2 + Vi (r) + Vxc[n(r)] + Vm(r)> ¥;(r)dr. (2.46)

For an insulator, whose states are either fully occupied or completely empty,
it is always possible to make a subspace rotation in the space of v’s (leaving the
charge density invariant). We finally get the KS equations,

(Hgs — €:)i(r) =0, (2.47)

where \ij = d;;¢; and the operator Hg s, called KS Hamiltonian, is defined as,

h? h?
HKS — ——V2 + VH( ) + ch(r) + Vemt(r) — ——V2 + VKs(l') (248)
with,
VKS(I') = VH(I') + ch(l‘) + V:zg;t(l'). (249)
Equation (2.48) is related to the functional derivative of the energy:
0E
T e (r). 2.50

Finally, Eq. (2.47) can be written as a Schrédinger equation for this auxiliary
(independent particle) system as,

2
—;——V2 + Vis(r)| ¥i(r) = eii(r), (2.51)

where Vi 5(r) is given in Eq. (2.52).
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2.2.5.3 Self consistency cycle

Since both Vi and Vx¢ depend on n(r), which depends on the v;, which in turn
depend on Vi , the problem of solving the KS equations is a nonlinear one.
The usual way of solving such problems is to start with an initial guess for n(r),
calculate the corresponding Vi s(r),

Vks(r) = Vu(r) + Vxe(r) + Ven(r), (2.52)

and then solve the differential equation,

2
[_2%‘72 + Vis(r) | 9i(r) = eii(r), (2.53)

for the v;. From these equation one calculates a new density using,

n(r) = n,(r) = Zﬁ | gi(r) 2, 2.54)

and starts again. The process is repeated until it converges. The technical name
for this procedure is self-consistency cycle. Different convergence criteria (such
as convergence in the energy, the density, or some observable calculated from
these) and various convergence accelerating algorithms (such as mixing of old
and new effective potentials) are in common use [15]. The most popular are the
conjugate gradient and those of Pulay [16] and Broyden [17].

Once one has a converged solution ny(r), one can calculate the total energy.
In particular we used the Pulay mixing of the potential based on the seven-Pulay
previous iterations [16].

2.2.,6 Exchange-Correlation Functional

The most difficult problem in any electronic structure calculation is posed by
the need to take account of the effects of the electron-electron interaction. Elec-
trons repel reach other due to the Coulomb interaction between their charges.
The Coulomb energy of a system of electrons can be reduced by keeping the
electrons spatially separated, but this has to balanced against the kinetic en-
ergy cost of deforming the electronic wave functions in order to separate the
electrons. The effects of the electron-electron interaction are briefly described
below.
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The exchange-correlation functional is often decomposed as Exc = Ex +
Ec, where Ex is due to the Pauli principle (exchange energy) and E¢ is due to
correlations.

2.2.6.1 Exchange

The wave function of a many-electron system must be antisymmetric under ex-
change f any two electrons because the electrons are fermions. The antisym-
metry of the wave function produces a spatial separation between electrons that
have the same spin and thus reduces the Coulomb energy of the electronic sys-
tem. The reduction in the energy of the electronic system due to the antisymme-
try of the wave function is called the exchange energy. It is straightforward to
include exchange in a total energy calculation, and this is generally referred to
as the Hartree-Fock approximation [9].

The exchange energy can be written explicitly in terms of the single-particle
orbitals as,

e? 5 (D)% ()95 (K)9i(r)
i[n]] = —— dr dr’, 2.55
Bxfuilnl] = -5 Z/ = e, @59
which is known as the Fock term, but no general exact expression in terms of
the density is known.

2.2.6.2 Correlation

For the correlation energy no general explicit expression is known, neither in
terms of orbitals nor densities. Different ways to understand correlations are
described below [9].

Correlation energy: variational approach. A simple way to understand the
origin of correlation is to recall that the Hartree energy is obtained in a varia-
tional calculation in which the many-body wave function is approximated as a
product of single-particle orbitals. Use of an antisymmetrized product (a Slater
determinant) produces the Hartree and the exchange energy. The correlation
energy is then defined as the difference between the full ground-state energy
(obtained with the correct many-body wave function) and the one obtained from
the (Hartree-Fock or Kohn-Sham) Slater determinant. Since it arises from a
more general trial wave function than a single Slater determinant, correlation
cannot raise the total energy, and E¢[n] < 0. Since a Slater determinant is itself
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more general than a simple product we also have Ex < 0, and thus the upper
bound ExC[n] < 0.

Correlation energy: probabilistic approach. Recalling the quantum me-
chanical interpretation of the wave function as a probability amplitude, we see
that a product form of the many-body wave function corresponds to treating the
probability amplitude of the many-electron system as a product of the probabil-
ity amplitudes of individual electrons (the orbitals). Mathematically, the prob-
ability of a composed event is only equal to the probability of the individual
events if the individual events are independent (i.e., uncorrelated). Physically,
this means that the electrons described by the product wave function are inde-
pendent. Such wave functions thus neglect the fact that, as a consequence of the
Coulomb interaction, the electrons try to avoid each other.

The fact that both exchange and correlation tend to keep electrons apart has
given rise to the terminology of electron holes, describing the region of reduced
probability for encountering a second electron around a given reference electron.
Unfortunately we shall not discuss this topic here.

2.2.7 The Local Density Approximation

As was mentioned in section 2.2.5 it is necessary to approximate the E'x¢ energy
in order to solve self consistency the Kohn-Sham equations.

In the Local Density Approximation (LDA) the exchange-correlation energy
of an electronic system is constructed by assuming that the exchange-correlatioen
energy per electron at a point r in the electron gas, exc(r), is equal to the
exchange-correlation energy per electron in a homogeneous electron gas that
has the same density as the electron gas at point r. Thus,

Excln(r)) = [ exo(e)n(r)a’r 2.56)
and,
y n n hom [, hom
()Eg(rcb'([r)(r)] _ o (l');r):(cl:)[ (0)]] = (5’}("5" +n(r)36n—’(‘:)) . (2.57)

The LDA approximation assumes that the exchange-correlation energy func-
tional is purely local. In the research work done for this thesis we also tested the
generalized gradient approximation (see subsection 2.2.8) and we did not find
any improvement in our results, that is the reason why we only will mention the
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LDA in next chapters. At this point it is also important to mention that even in
such simple case the exact form of ¢ x¢ is unknown, for that reason we used the
local density approximation as parameterised by Perdew and Zunger [18].

Structural and vibrational properties of solids are in general accurately de-
scribed. The correct crystal structure is usually found to have the lowest energy,
bond length, bulk moduli, phonon frequencies are accurate within a few percent.
We shall show that we got errors ~ 1%, with respect to experimental results, for
lattice constants and frequencies.

2.2.8 The Generalized Gradient Approximation

It is well know that LDA fails in situations where the density undergoes rapid
changes such as in molecules. Nowadays there exist many other approximations
for the Ex( that are able to consider this nonuniform charge densities. One of
these is the Generalized Gradient Approximation (GGA). In this approximation
a gradient of the density at the point where we want to calculate E'x¢ is included.
This still results in a local expression for E'x¢, and gives the various gradient-
corrected functionals. Symbolically this can be written as,

Exc = Exc[n(r), Va(r)]. (2.58)

Some good reviews can be found in the literature about this approximation
[19-22].

2.2.9 Plane waves basis set

Due to Bloch’s theorem plane waves (PWs) are the natural choice for the repre-
sentation of electron orbitals in a periodic system like crystals.

The eigenstates of any independent particle Schrodinger-like equation in
which each electron moves in an effective potential (also called V), such as
the Kohn-Sham equations, satisfy the eigenvalue equation given by Eq. (2.53),

2
P Vics ()| (r) = (), 259
2m
In a solid it is convenient to require the states to be normalized and obey
periodic boundary conditions in a large volume 2 that is allowed to go to infinity.
Using the fact that any periodic function can be expanded in the complete set of
Fourier components, an eigenfunction ;(r) can be written as (7],
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Yi(r) = Zc"»‘l X %e“‘" = Z Cig X |q), (2.60)

q q

where c; 4 are the expansion coefficients of the wavefunction in the basis of
orthonormal PWs |q) satisfying,

(qlq) = % /Q e TN = 5y g (2.61)

Combining the three last equations leads to the Schrodinger equation in the
Fourier space,

Z(q,IHKS|q>Ci,q =& Z(qll‘vci,q = EiCiq’ (2.62)

q q

Finally the independent-particle Schrodinger equation for any given k can
be written as the matrix equation,

> Ho ()i (K) = €i(K)cim(K), (2.63)

were we defineq =k + G,, andq' =k + G|,

ﬁ2
2m,

Hm,m’ (k) = <k+ GmlHKS|k+ Gm’> = |k+ Glz‘sm,m’ + VKS(Qm - Qm’)7

(2.64)
where G, are the reciprocal lattice vectors. The eigenvalues and eigenfunctions
are labeled as i = 1, 2, ... for the discrete set of solutions of the matrix equations
for a given k. Equations 2.63 and 2.64 are the basic Schrodinger equations in a
periodic crystal.

In the following we will assume that our system is a crystal with lattice
vectors R and reciprocal lattice vectors G. It is not relevant whether the cell
is a real unit cell of a real periodic crystal or if it is a super cell describing an
aperiodic system. The KS wavefunctions are classified by a band index and a
Bloch vector Kk in the Brillouin Zone (BZ).

As we showed, the plane wave basis set can be defined as,

1, h?
rk+G) = 5el<k+G>" with %u( +G|? < Ey, (2.65)
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where E,; is a cutoff on the kinetic energy of PWs (from now on, simply “the
cutoff”’). PWs have many attractive features: they are simple to use (matrix el-
ements of the Hamiltonian have a very simple form), orthonormal by construc-
tion, unbiased (there is no freedom in choosing PWs: the basis is fixed by the
crystal structure and by the cutoff) and it is very simple to check for convergence
(by increasing the cutoff) [12].

Unfortunately the extended character of PWs makes it very difficult to accu-
rately reproduce localised functions such as the charge density around a nucleus
or even worse, the orthogonalisation wiggles of inner (core) states. In order to
describe features which vary on a length scale 4, one needs Fourier components
up to q ~ 2w /4. In a solid, this means 47 (27w/8)3/3Q PWs (where Q is the
dimension of the BZ). A simple estimate for diamond is instructive. The 1s
wavefunction of the carbon atom has its maximum around 0.3 a.u., so § ~ 0.1
a.u. is a reasonable value. Diamond has an fcc lattice (2 = (27)3/(ad/4)) with
lattice parameter ag = 6.74 a.u., thus yielding ~ 250, 000 PWs. This is clearly
too much for practical use.

In order to decrease to number of plane waves it is necessary to introduce
the use of pseudopotentials (see section 2.2.10).

2.2.10 Pseudopotentials
2.2.10.1 An introduction to pseudopotentials

Pseudopotentials were originally introduced to simplify electronic structure cal-
culations by eliminating the need to include atomic core states and the strong
potentials responsible for binding them.

The physically reasoning behind the pseudopotential (PP) approximation is
simple: since the core-electron wave functions of an atom remain essentially
unchanged when placed into different chemical environments and since that the
core wave functions only major contribution to chemical bonding is to enforce
the valence wave functions orthogonality to the core states, the true atomic po-
tential can justifiably be replaced by a pseudopotential that effectively repro-
duces the effects of the core electrons [23].

The valence electrons must be constrained to be orthogonal to the core elec-
trons. In the all-electron case this means that the valence wavefunctions have a
large number of nodes near the nucleus. One of the reasons we are pseudizing
is to make the wavefunction variations smoother, so these must be eliminated.
A cut-off radius is chosen, and the pseudopotentials bound states will reproduce
the valence wave-functions outside this radius, and be smooth inside [24].
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Most pseudopotentials are then constructed such that they satisfy four gen-
eral conditions. The first is that the valence (the principal quantum number 7 is
further omitted for simplicity) pseudo-wave-functions generated from the pseu-
dopotential should contain no nodes. This stems from the fact that we would like
to construct smooth pseudo-wave-functions and therefore the wiggles associated
with the nodes are undesirable. Second, the normalised atomic radial pseudo-
wave-functions (PP) with angular momentum ! is equal to the normalised radial
all-electron wave function (AE) beyond a chosen cutoff radius r,

RFFP(r) = RAE(r) for 1> 7y, (2.66)

or converges rapidly to that value. Third, the charge enclosed within r,; for the
two wave functions must be equal,

Tel Tel
/ | RPP(r) |2 r2dr = / | RAE(r) |2 rdr. 2.67)
l l

Fourth, almost redundantly, the valence all-electron and pseudopotential
eigenvalues must be equal,

e ¥ =eflE (2.68)

2.2.10.2 Norm-Conserving pseudopotentials

Norm-conserving pseudopotentials were first introduced and used by Hamann,
Schluter, and Chiang [26]. In their scheme, inside some core radius, the all-
electron (AE) wave function is replaced by a soft nodeless pseudo (PS) wave
function, with the crucial restriction that the PS wave function must have the
same norm as the all-electron wave function within the chosen core radius; out-
side the core radius the PS and AE wave function are identical. It is now well
established that good transferability requires a core radius around the outermost
maximum of the AE wave function, because only then the charge distribution
and moments of the AE wave functions are well reproduced by the PS wave
functions see. Therefore, for elements with strongly localised orbitals like first-
row, 3d, and rare-earth elements the resulting pseudopotentials require a large
plane-wave basis set. To work around this, compromises are often made by in-
creasing the core radius significantly beyond the outermost maximum in the AE
wave function. But this is usually not a satisfactory solution because the trans-
ferability is always adversely affected when the core radius is increased, and
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for any new chemical environment, additional tests are required to establish the
reliability of such soft PPs [25].

2.2.10.3 Ultrasoft pseudopotentials

An elegant solution to this problem was proposed by Vanderbilt [27]. In his
method, the norm-conservation constraint is relaxed and to make up for the re-
sulting charge deficit, localised atom-centred augmentation charges are intro-
duced. These augmentation charges are defined as the charge density differ-
ence between the AE and the PS wave function, but for convenience they are
pseudized to allow an efficient treatment of the augmentation charges on a reg-
ular grid. The core radius of the pseudopotential can now be chosen around half
the nearest-neighbour distanceindependent of the position of the maximum of
the AE wave function. Only for the augmentation charges a small cutoff radius
must be used to restore the moments and the charge distribution of the AE wave
function accurately. The pseudized augmentation charges are usually treated on
a regular grid in real space, which is not necessarily the same as the one used
for the representation of the wave functions [25].

2.2.10.4 Separable pseudopotentials

One major advance was the introduction of a separable form by Kleinmann
and Bylander [28], that significantly reduces the computational effort for the
calculations of the nonlocal part, expecially when using a plane-wave basis set.
A simple way was discovered to put model pseudopotentials,

V(r) =Y | Yim)Vi(r){Yim |, (2.69)
Im

into a form which reduces the number of integrals of V/(r) required for an
energy-band calculation from mn(n + 1)/2 to mn for each ! in the sum. n
is the number of plane waves used in the expansion and m the number of points
in the Brillouin zone at which the calculation is performed.

2.2.10.5 Relativistic Pseudopotentials

We use the Hartwigsen-Goedecker-Hutter (HGH) pseudopotential which is a
relativistic separable dual-space Gaussian PP, specially because it consider rel-
ativistic effects relevant for heavier elements and because it is generated on the

26



CHAPTER 2. THEORY 2.3. DFPT

basis of a fully relativistic all-electron calculation, i.e., solving the two compo-
nents Dirac equation [29]. It is important to mention that there exist some other
PP like the Troullier-Martins that also consider this relativistic interaction but
please read an appropriate review for further details [30].

Here we just shall mention that the inclusion of the spin-orbit interaction in
our computational calculations were done through the use of this HGH pseu-
dopotential. A detailed explanation about this pseudopotential will be given in
the subsection 2.5.2 devoted to the physical origin of the spin-orbit coupling.
In that subsection, the inclusion of the spin-orbit coupling will be explained in
detail.

2.3 Density Functional Perturbation Theory

The formalism which calculates the response functions of a DFT system is
known as the Density Functional Perturbation Theory (DFPT). This formalism
is used to calculate linear-response functions, including phonon frequencies,
heat capacities, thermal expansion coefficients, temperature dependence of the
band gap, elastic, dielectric, and piezoelectric constants, and optical response in
various materials.

In general, the formalism for nonlinear responses has been derived using the
”2n + 17 theorem of perturbation theory

In section 2.1.1 we mentioned that the electron-density linear response of
a system determines the matrix of its interatomic force constants. Let us see
now how this response can be obtained within density-functional theory. The
procedure described in the following is usually referred to as density-functional
perturbation theory [31-34]. In order to simplify the notation and make the argu-
ment more general, we assume that the external potential acting on the electrons
is a differentiable function of a set of parameters, A = A; ( A\; = R; in the case of
lattice dynamics). According to the Hellmann-Feynman theorem, the first and
second derivatives of the ground-state energy read,

Zf _ 6‘8/;(") na(r)dr, (2.70)
82E _ 62V,\(l') Bn,\(r) aV,\(l')

The electron-density response, dny(r)/0\;, appearing in Eq. (2.71) can be
evaluated by linearizing the equations that appear in subsection 2.2.5.3 with
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respect to wave function, density, and potential variation. Linearization of equa-
tion (2.54) leads to,

An(r) = 2Re Z W2 (1) A, (r), (2.72)
where the finite-difference operator A* is defined as,

aF * (2.73)

The superscript A has been omitted in Eq. (2.72), as well as in any subse-
quent formulas where such an omission does not give rise to ambiguities. Since
the external potential (both unperturbed and perturbed) is real, each Kohn-Sham
eigenfunction and its complex conjugate are degenerate. As a consequence, the
imaginary part of the sum appearing in Eq. (2.72) vanishes, so that the prescrip-
tion to keep only the real part can be dropped.

The first-order correction to a given eigenfunction of the Schrodinger equa-
tion is often expressed in terms of a sum over the spectrum of the unperturbed
Hamiltonian,

An(r) = D )<—1/3’—"E/ﬁ|’/)—"> (2.74)

m#n —E&m
running over all the states of the system, occupied and empty, with the exception
of the state being considered, for which the energy denominator would vanish.
Using Eq. (2.74), the electron charge-density response, Eq. (2.72), can be cast
into the form,

occ - AV .
=23 Y i -——’/’ e|,, _’ESW’ ), (2.75)
i m#n (L

Equation (2.75) shows that the contributions to the electron-density response
coming from products of occupied states cancel each other, so that the m index
can be thought of as attaching to conduction states only. This is equivalent to
saying that the electron-density distribution does not respond to a perturbation,
which acts only on the occupied-state manifold (or, more generally, to the com-
ponent of any perturbation which couples occupied states among each other).
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2.3.1 Phonons

In crystalline solids, the nuclear positions appearing in the definition of the in-
teratomic force constants Eq. (2.6), are labeled by an index /, which indicates
the unit cell / to which a given atom belongs and the positions of the atom within
that unit cell I = {l, s}. The position of the /th atom is thus [31],

R; =R, + 7, +uy(l), (2.76)

where R; is the position of the lth unit cell in the Bravais lattice, 7, is the equi-
librium position of the atom in the unit cell, and u,(!) indicates the deviation
from equilibrium of the nuclear position. Because of translational invariance,
the matrix of the interatomic force constants, Eq. (2.11), depends on ! and m
only through the difference R=R;, - R,,; :
af — 62E _ map
Ci(l,m) = 8ug(l)6uf(m) Cy (R, —Ry,), 2.77)
where the Greek superscripts indicate Cartesian components. The Fourier
transform of C*?(R) with respect to R, C%?(g), can be seen as the second
derivative of the Born-Oppenheimer energy surface with respect to the ampli-
tude of a lattice distortion of definite wave vector:

C*(q Z e WRC(R 1 PE (2.78)
* ~ N.ou(q)ou(q)

where N, is the number of unit cells in the crystal, and the vector u,(q) is
defined by the distortion pattern,

R;[u,(q)] = R, + 75 + u,(q)e'r™ (2.79)

Phonon frequencies w(q) are solutions of the secular equation,

det C%(q) — w?(q)| = 0. (2.80)

1

Mth

Translational invariance can be alternatively stated in this context by saying
that a lattice distortion of wave vector q does not induce a force response in
the crystal at wave vector q' # q, in agreement with the analysis carried out in
Sec. 2.3. Because of this property, interatomic force constants are most easily
calculated in reciprocal space and, when they are needed in direct space, can be
readily obtained by Fourier transform.
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If the dynamical matrices were known everywhere in the Brillouin zone, the
IFCs could be built by inverting Eq. (2.78), which defines the dynamical matrix
from the IFCs [34].

Unfortunately, the dynamical matrices are not known everywhere in the Bril-
louin zone: for computational reasons they are only obtained for a small set of
wave vectors. For that purpose, the use of a discrete Fourier transform is tempt-
ing: the dynamical matrices on a regular grid of ({ X m xn) points in the Brillouin
zone [35] will generate approximate IFCs in a large box, made of (I x m x n)
periodic cells. Outside of this box, the IFC’s, are supposed to vanish.

2.3.2 Heat capacity

The specific heat is calculated in the harmonic approximation from the vibra-
tional free energy F'(T'). First it is necessary to obtain the entire phonon dis-
persion relations from total energy calculations, using DFPT, and to use them to
evaluate F'(T'). The references that the reader can consult are the same as the
presented through this section.

The thermodynamic properties of a system are determined by the appropri-
ate thermodynamic potential relevant to the given ensemble. In an ensemble
where the sample volume and temperature are independent variables, the rele-
vant potential is the Helmholtz free energy, F' = E — T'S. For a solid in the
adiabatic approximation, the free energy can be written as the sum of an electric
and a vibrational term. The electronic entropy contribution is easily evaluated
in metals, although usually neglected, whereas it is totally negligible for insu-
lators, F,; ~ F,. The key quantity to calculate in order to have access to the
thermal properties and to the phase stability is the vibrational free energy F'(T')
given by,

F(T) = — /0 h {E + kgTIn[2n5(w)] } p(w)dw. (2.81)

From Eq. (2.81), the heat capacity is obtained with,
0*F
In Eq. (2.82), kp is the Boltzmann constant, np the Bose-Einstein factor,

and p(w) the phonon density of states (PDOS). The high-frequency cutoff of the
latter defines the upper limit of integration in Eq. (2.81).
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2.4 Non-Collinear Magnetism Theory

Nowadays, there is a growing realisation of the importance of understanding
the magnetic behaviour of systems in which the magnetic order is noncollinear.
By noncollinear we mean that the magnetic moments associated with individual
ions in the crystal are not aligned along the same axis . In some cases the ex-
istence of noncollinear arrangements of the magnetic moments does not imply
a reduction of the symmetry associated with the high temperature space group.
Noncollinear magnetism occurs even in chemically ordered systems, as well as
a large number of systems based on rare earths [52]. In order to describe ferro-
magnetic or antiferromagnetic order, usually encountered in crystals, it is only
necessary to consider spin alignment throughout the system. This approach is
suitable for describing collinear magnetic structures and usually it is referred
as spin-polarised approximation. However, noncollinearity is crucial for deal-
ing with spin waves, magnetism at finite temperature, or to deal with magnetic
excitations.

To correctly study the noncollinear magnetic structures it is necessary to
introduce a two-component spinor wave function ¥ for the Kohn-Sham orbitals.

U,(r, s) = ( 328 ) , (2.83)

where the index ¢ specifies the orbital among the set of Kohn-Sham orbitals
{¥;} and s = {a, 8} the two spin indexes. The electron density, n(r), and
the vectorial spin density, m(r), used to represent the noncollinear magnetic
structure are directly related to the density matrix p (see Appendix A for a more
detailed information about this dependence). This matrix can be expanded in
terms of the Pauli spin matrices and the scalar electron density as follow [53],

pr) = A+ 5 el +my(£)a, + m.(F)o],

= SnT+ () o (2.84)

The elements of the density matrix in terms of the Kohn-Sham orbitals U®#
(see Eq. (2.83)) are given explicitly by,
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SCIE G} 2.89)
> HU() () Y, £ ()P (r)

= . (2.86)
> LU (0)EE(r) Y, £8P () (r)

where f; is the occupation number of the ith Kohn-Sham orbital. In this scheme
the individual eigenstates can have different spin quantisation directions. Fur-
thermore, the spin quantisation axis of each state can vary with position. The
electron and the vectorial spin densities can be written in terms of the matrix
density in a really simple way,

n(r) = Tip, 2.87)
m(r) = Tr(po). (2.88)

The full details about how to get these expressions, can be found in Ap-
pendix A. At this point, it is necessary to generalise all the equations that have
been presented in previous chapters, but now, in terms of the density matrix. Be-
cause the purpose of this chapter is just to show the general noncollinear mag-
netism theory and not a deep comprehension of the same, here we shall present
only the general Kohn-Sham expressions in terms of the density matrix. There
exist many papers and reviews devoted to show in detail such generalization
[36-43].

The exact Kohn-Sham density functional becomes (we use atomic units, i =
m=¢e?=1),

1
E =) f(¥}| - 5VI¥Y) + Eulpl + Exc (2.89)

The exchange-correlation energy Exc[n(r),|m(r)|] is computed with the
formula given by Perdew and Zunger [18]. In the LDA approximation Exc
is indeed a functional of n(r) and | m(r) |. The expression for the exchange-
correlation potential V;}"C@ (r) can be obtained from Ex¢. This exchange-correlation
energy is defined in terms of the magnetization density (Eq. 2.87) and the total
charge density (Eq. 2.88) as outlined below,
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ch[p] = 6—§:T(i'[)p—]dl‘+ Jf;—((’g)]m(r)dr, (290)
5Exc[P] 5EXC[p] )ldl‘ (2 92)
Sjm(r)] )I ’ '

the variations of the total energy with respect to the electronic density and the
spin magnetic moment can be transformed and calculated from the equations
used in the conventional collinear spin calculations. As is clear from Eq. (2.88),
the |m(r)| has not only p** and p?” but also p** pP*. Therefore the exchange-
correlation potential, Vx ¢, made from Ex¢ can be divided into diagonal and off-
diagonal parts. Using the notation Vg and ch for the diagonal part, and V;‘g
and vf}g for the off-diagonal part, the Kohn Sham equation is finally written as,

1 2 aa afy
2V + VH + ‘/eg;t + VXC 1 VXC (2.93)
Vf("c’. —§V2 + Vi + Vege + VES

(3o ) == (36 ) e

each term was defined in previous chapters.

Note that in this scheme the individual eigenstates can have different spin
quantization directions. Furthermore, the spin quantization axis of each state
can vary with position. The theory presented in this section predict well defined
sets of directions for the spins. When uncoupled from the underlying crystal
lattice, all that is important is the relative orientation of the spins, spin-orbit
coupling being necessary to couple the magnetization direction to the crystal
lattice.

2.5 Spin-Orbit Coupling Theory

We start this section with an explanation, from the physical point of view, about
the origin of the spin-orbit interaction. From a qualitative point of view the spin-
orbit interaction can be understand as follow. Considering a central force, the
valence electron experiences the electric field [54],
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1
E = —_VV(), (2.95)
_ _ldv(nr (2.96)
e dr r
a2
where V(1) = - When the moving charge (an electron moving at a velocity

v = p/m,) is subjected to an electric field, e.g. the electrostatic field E created
by the proton, it “feels” an effective magnetic field given by,

v
By =—(2) xE. 2.97)
Because the electron has an intrinsic magnetic moment p given by,
eS
= 2.98
H= (2.98)

it is easy to guess that the spin-orbit potential contributes to H as follows:

Hps = — p Besy, (2.99)

in such a way that substituting las equations in this previous one, one gets,

His = — p Beyy,

v
= M- (E X E) 5
— eS . [ P X (_lv‘/c(r))
meC meC €

eS [ p ( 1dV(r) r)]
— . X _— —_ ,
mec | mecC e dr r

b

1 14V,
= ——-—(L-8),
m2c2r dr ( )
© li.s (2.100)
= mans) |
here we have used the expression, p x r = —L, for the angular momentum

quantum mechanical operator. In last equation it is necessary to introduce a 1/2
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factor because the motion of the electron around the nucleus is not rectilinear.
This term is called the giromagnetic ratio. The electron spin therefore rotates
with respect to the laboratory reference frame.

In general Eq. (2.100) then represents the interaction of the magnetic mo-
ment of the electron spin within the magnetic field “seen” by the electron be-
cause of its motion in the electrostatic field of the proton.

2.5.1 The Dirac equation

The object is to derive a relativistic wave equation for a spin-— particle. It is pos-
sible to incorporate the spin into the general framework of relativistic quantum

mechanics by taking the operator analog of the classical expression (7, 55],
(E?/c?) — p* = (mc)?, (2.101)

and rewritten the equation as,

(% o p) (g to- p> = {meP. 2.102)

this alternative form is indistinguishable from the previous one for all practical
purposes when there is no vector potential. It is easy to show such asseveration
using the identity,

(c-A)(oc:-B)=A:B+ioc- (A xB). (2.103)
Considering the operators,
~ . d 0 ,
E = Zha = ’Lﬁca—xo, P= —th, (2104)

it is possible to find a second order derivative equation for a free electron as,
L 0 . L, 0 . 2
th— +0+ihV | | ihm— — +ihV | ¥ = (mc)*¥, (2.105)
8170 a.’L‘o

where ¥ is a two-component wave function.
It is desirable to obtain a wave equation of first order in the time derivative.
The price that we have to pay in order to get it is to increase the number of
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components when we work with the first order equation. It is possible to show
that the famous Dirac equation can be written as,

0 me
) U+ —T = .
('7 v +748(im0)) + = v =0, (2.106)
or more convenient as,
0 mc
Yarm— T —) v =0, (2.107)
( Y8z © B
where vy, with p = 1,2, 3,4 are the 4x4 matrices given by,
0 —io; (1 0
7# - ( iO'i 0 ) y Y4 = ( 0 . | ) ) (2'108)
which really mean,
0 0 — 0 10 0 O
0 0 0 = 01 0 O
Y3 = i 0 0 0 , Y4 = 00 -1 0 , etc. (2.109)
0 —i 0 0 00 0 -1

Equation 2.107 is the famous Dirac equation. Here we just write -3 but 7y,
and 7, can be written remembering the 2x 2 Pauli matrices defined in Appendix
A.

Here it is important to emphasize that Eq. (2.107) is actually a four differ-
ential equations that couple the four components of ¥ represented by a single-
column matrix,

¥

_ (2
U= vs | (2.110)

(N

A four-component object of this kind is known as a bispinor. Multiplying
Eq. (2.106) by ~4, we see that the Dirac equation can also be written in the
Hamiltonian form,

HY = ik(8y/dt), (2.111)
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where,
HY = (—icha -V + Bmc?)¥, 2.112)
= (ca-p+PBmc)¥ = ih%kll, (2.113)
with,
I 0 . 0
3:74=(0 —1)’ a’°=’74"’°=(ak ‘Bk). (2.114)

Until here we have just written the general expression for the Dirac equation
but the aim of this subsection is to obtain the spin-orbit interaction term, in a
natural way, from the Dirac equation.

In the case of a spherical potential V'(r), one can make use of conservation
of parity an total angular momentum denoted by quantum numbers jm. Then
the wavefunction for each principle quantum number n can be written in terms
of radial and angular-spin functions.

Gnj (T)wgm
l —
Vrim =1  or, |’ (2.115)
ifns(r )—r— m
which defines two functions with the same jm but opposite parity for the two

1 . .
possible values! = j £ —. The two-component functions z/zj.m can be written

explicitly in terms of the spherical harmonics (see for instance R. Martin book,
page 194 [7]). The resulting equations for the radial functions are simplified if
we define the energy,

"'=¢—mc, (2.116)
a radially varying mass,
/ —_—

M(r) =m+ = 2;(T), (2.117)

and the quantum number x,

. o1
1 *, if l=j+=-=>k=1

n=i(j+§) (2.118)

- i l=j-g=me=—(+])
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Note that x(k + 1) = I(l + 1) in either case. Then the coupled equations can
be written in the form of the radial equations,

2 2
_ _h_li (T2dgnn> 4 [V—i— h l(l+ 1)] ,
gnk

2M r2dr dr IM 72
2 dV dgn. R dV1+k

“EEd dr IR dr 9w = €9 (2.119)
(2.120)
and,
dfnr 1 k—1
gr = ﬁ(v - g’)gnn + Tfnﬂ (2121)

These are general equations for a spherical potential; no approximations
have been made thus far. Equation (2.119) is the same as an ordinary Schrodinger
equation except that the mass M is a function of radius and there are two added
terms on the left-hand side, which are, respectively, the Darwin term and the
spin-orbit coupling. The latter can be written out explicitly in terms of the spin
using the relation,

L -0 Ym = —A(L + K)Yem, (2.122)

where 1), is the appropriate %, determined by .

2.5.1.1 Scalar Relativistic Equation (Spin-Orbit Coupling)

If we make the approximation that the spin-orbit term is small, then we can omit
it in the radial equations for g and f and treat it by perturbation theory. Then last
three equations depend only upon the principle quantum number n and orbital
angular momentum ! and can be written in terms of the approximate functions,
G and fr, leading to [7, 44],

R 1 d [ ,dgn Rl +1)] . R*  dV dgn
LI o) V4 — L. 5
2M r?2dr (r dr T 2M 2 It~ AMREE dr dr
= &' g (2.123)

and,
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r h dgnl
n = T 2.124
o= St ar (2.124)
with the normalization condition,
/ (32 + fA)ridr = 1. (2.125)

Equation (2.123) is the scalar relativistic radial equation, which can be solved
by the same techniques as the usual non-relativistic equation. The other equa-
tions can then be treated easily on the radial grid. Together with relation (2.122)
the spin-orbit Hamiltonian coupling the large components of the wavefunction
has the form,

3 ld—VL o
2M?2c?r dr ’
which can often be treated as a small perturbation. Since this term originates

Hso = — (2.126)

deep in the core near the nucleus where ~ar is large, the present spheri-

cal derivation of the spin-orbit term carries over from the atom to a solid or
molecule.

p? p! eho- (Exp) el _
T tedo— b - T TR T V-E|¥=E¥. (212)

Another way to get the spin-orbit approximation term is applying the Zero-
Order Regular Approximation (ZORA) to the Dirac equation. It is done solving
the ZORA equation, which is obtained as the zero-order equation in the regular
expansion in E/(2c¢?> — V) of the Dirac equation. The one-electron relativistic
KohnSham equations are solved in the scalar relativistic and in the fully rela-
tivistic case (including the spinorbit operator) [56].

2.5.2 Relativistic Effects Using Pseudopotentials

The way to include relativistic contributions, like the spin-orbit interaction, in
DFT is through the use of pseudopotentials [45]. As was explained in section
2.2.10 there exist different kinds of pseudopotentials such relativistic interac-
tion. The Hartwigsen-Goedecker-Hutter (HGH) pseudopotential is just one of
these.
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Pseudopotentials are an essential ingredient for efficient electronic and vi-
brational structure calculations . First, by eliminating the core electrons, the
number of orbitals that has to be calculated is reduced. Second, the pseudo-
wave-functions are much smoother in the core region than the all-electron wave
functions and the number of basis functions can therefore be reduced. Espe-
cially if plane waves are used as a basis set this reduction of the size of the
basis set is essential. Concerning relativistic pseudopotentials the introduction
of the norm-conserving property [46] made pseudopotentials an easy to handle
and popular tool for electronic structure calculations. Many attempts have since
then been made to construct norm-conserving pseudopotentials [47], which are
numerically more efficient than the original ones. The introduction of the sepa-
rable form of the norm-conserving pseudopotentials was a major advance [48].
More recently also ultrasoft pseudopotentials including spin-orbit coupling have
been introduced [49]. The HGH is a separable dual-space Gaussian [50] pseu-
dopotential. This PP is generated on the basis of a fully relativistic all-electron
calculation, i.e., by solving the two-component Dirac equation. This PP is given
in both the local density approximation and the generalized gradient approxi-
mation. Just like a remark, it is well known that relativistic effects up to order
o2, where o is the fine-structure constant [51], can be included in electronic
structure calculations by solving nonrelativistic Kohn-Sham equations with PPs
tailored to reproduce the solution of fully relativistic atomic Dirac-like equa-
tions.

The total HGH pseudopotential is given by,

V(rr) = Vie(r)d(x = ¥') + Y _Vi(r,¥') + AVO(r,r)L-S,  (2.128)
l

where Vj,.(r) correspond to the local part of the pseudopotential, Vi(r,r’) is
the nonlocal contribution, and V;5°(r, 1) is the relativistic, spin-orbit coupling,
contribution to the PP. Each of these are now scalar relativistic quantities but
with the same form as the non-relativistic case.
The full expression for the local part Vj,. of the pseudopotential is given by,
_Zio'n

T 1/ 7\
Viee(T) = - erf(\/ﬁrl >+exp ~3 (E—)] (2.129)

2 4 6
Ci+ Cy <TT ) + Cy <r7‘ ) + Cy (%) jl ; (2.130)
loc loc loc
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where er f denotes the error function. Z;,, is the ionic charge of the atomic core,
i.e., the total charge minus the charge of the valence electrons.

Now we write the full expression for the nonlocal contribution V(r,r’) to
the pseudopotential which is a sum of separable terms,

3 3
tmﬂ=22§ﬁmmmmmﬂ ' (E), (2.131)
i=1 j=1 m=-1
where Y] ,,, are the spherical harmonics, and ! the angular momentum quantum
number. The projectors p!(r) satisfy the normalisation condition and in both
real and Fourier space, the projectors have the form of a Gaussian multiplied
by a polynomial, please take a look in [29] to see in detail these expressions.
An special property of this PP is that it has an analytical form if expressed in
reciprocal space. Due to this property the dual-space Gaussian pseudopotential
is the optimal compromise between good convergence properties in real and
Fourier space.

In the relativistic case the spin orbit coupling splits up all orbitals with [ 0
into spin-up and spin-down orbitals with an overall angular momentum j =
[ +1/2. So for each angular-momentum ! 0, one spin-up orbital and one spin-
down orbital with different wave functions and pseudopotentials exist.

Finally to express AVSO(r r’) we just replace the h ; in equation (2.131)

by different parameters k! ., i ol

3 3 +1
AV (e, r) =) N Yim(B)P(r) kL P ()Y (F), (2.132)

i=1 j=1 m=-lI

We used this pseudopotential in our calculations, mainly because the sim-
plicity of the PP but also because since the spin-orbit coupling term is separable,
we were able to include or remove such term according to our convenience as
will be explained in next chapters.

2.6 The ABINIT code

ABINIT is a package whose main program allows one to find the total energy,
charge density and electronic structure of systems made of electrons and nu-
clei (molecules and periodic solids) within Density Functional Theory (DFT),
using pseudopotentials and a plane wave basis. ABINIT also includes options
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to optimise the geometry according to the DFT forces and stresses, or to per-
form molecular dynamics simulations using these forces, or to generate dy-
namical matrices, Born effective charges, and dielectric tensors. Excited states
can be computed within the Time-Dependent Density Functional Theory (for
molecules), or within Many-Body Perturbation Theory (the GW approxima-
tion). In addition to the main ABINIT code, different utility programs are pro-
vided.
Some of the available features are,

e Representation of wavefunctions : Plane Waves; Projector-Augmented
Waves (the latter is not available for all capabilities).

e LDA, GGA, spin-DFT (many functional forms).
e Band structure, DOS, charge density, total energy.

e Many pseudopotential types : availability of Troullier-Martins and Hartwigsen-
Goedecker-Hutter pseudopotentials for the full periodic table, interface
with different pseudopotential codes, including FHI98PP, and N. Holzwarth
PAW pseudo generator. Generation of alchemical pseudo-atoms.

¢ Finite systems as well as insulators and metals (smearings : Fermi, Gaus-
sian, Gauss-Hermite, Marzari modifications).

e Automatic k-point sampling of the irreducible Brillouin zone.

e Symmetry analyser (includes a database of the 230 spatial groups, and a
database of the 1191 Shubnikov magnetic groups).

e Forces, stresses, automatic optimisation of atomic positions and unit cell
parameters (Broyden and Molecular dynamics with damping)

e Molecular dynamics (Verlet or Numerov), Nose thermostat, Langevin dy-
namics.

e Spin-orbit coupling compatible with spin-polarisation

e Responses to atomic displacements (even at non-zero wavevectors, with-
out need of supercells !) and to homogeneous electric fields, within Density-
Functional Perturbation Theory: dielectric tensor, Born effective charges,
dynamical matrices at any wavevector, phonon frequencies, force con-
stants phonon density of states, thermodynamic properties in the quasi-
harmonic approximation.
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e Responses to strain perturbations: elastic constants, piezoelectric coeffi-
cients.

e Non-linear responses thanks to the 2n+1 theorem of perturbation theory :
at present, electro-optic coefficients, Raman cross-sections.

e Susceptibility matrix by sum over states excited states of atoms and molecules
within Time Dependent-DFT or Delta SCF.

e Frequency-dependent conductivity in the RPA (Kubo-Greenwood).

e Exact exchange and RPA+ calculation of total energies (one k-point, post-
LDA or post-GGA, not yet available for spin-polarized systems or spinor
wavefunctions).

o GW calculation of excited states.

e MPI parallelisation of ground-state and response-function calculations over
k-points, spins and bands, MPI parallelisation of FFT grid and planewave
operations. coefficients,

As a final remark it is important to mention that the theory given in this
chapters can not be implemented as it is in the ABINIT code. A perfect ex-
ample about this issue is the computation of p*#(r) = Y fo(r|¥)(TP|r).
One would like to calculate this quantity as was defined in section 2.4, whereas
p*#(r) is hermitian and in general can have complex elements. The problem
is that in ABINIT the subroutine devoted to do this calculation transforms only
real quantities. The trick is to use only real quantities as follow [42, 57],

pR(r) = D falr|TN(TOr), (2.133)
pﬁ’ﬁ(T) = an<r|\11ﬂ)<\llﬁ|r>7 (2134)
n(r) +mg(r) = Z fn(TE + P2 (0% + TP, | (2.135)

n(r) +my(r) = Zf,, T — O (U — 40P, (2.136)

and compute (n(r), m(r)) with the help of the additional quantities,
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n(r) = p**(r) + P (r), (2.137)

m,(r) = p™*(r) — p*P(r). (2.138)

It is an example that exemplify adaptation to the theory that are necessary in
order to be implemented in the ABINIT code.

To close this chapter, I have to mention that the ab initio code that was used
to develop my doctoral research was the ABINIT code.
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Chapter 3

Bismuth Phonons

3.1 Phonon band structure and interatomic force
constants for Bismuth: the crucial role of spin-
orbit interaction

The dynamical properties and the interatomic force constants for Bismuth (Bi)
are investigated from first principles with the use of density functional theory.
In this context, Bi has two striking characteristics : it is a semimetal with a very
small carrier density, and the spin-orbit (SO) coupling is particularly strong. To
decouple these characteristics, we treat Bi as (i) non-metallic without SO inter-
action, (ii) metallic with, and (iii) without SO interaction. Phonon dispersion
relations and interatomic force constants are reported and compared with avail-
able experimental data, and a very good agreement is obtained only when SO
interaction is taken into account : removing this interaction causes a difference
on the order of 10% in the phonon frequencies and interatomic force constants.
Such a difference is also present in the Bi, molecule. We also determine which
phonon bands are more affected directly by the SO interaction and which bands
are indirectly affected, through changes in cell parameters. The dependence of
the latter with respect to the SO coupling is also reported.

3.2 Introduction

The electronic configuration for bismuth is [He]4f1*5d'%6s%6p® but only the
6526p> electrons can be considered as valence electrons, that because only s
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and p levels will mix in the solid, while the other d-electron and core electron
levels will remain practically unchanged. Considering only those five external
electron configuration it was previously shown that the splitting of the p levels
further split into two level due to spin-orbit effect [61]. The amplitude of the
p-level splitting is approximately 1.5 eV. This coupling leads to the suppression
of several specific degeneracies, which can be observed in the electronic band
structure.

Crystalline Bismuth (Bi) is the most diamagnetic elemental solid [58] and
presents also the highest Hall effect among such solids. Being a semimetal,
with an extremely low carrier density (less than 2 x 10~%) accompanied by high
carrier mobility, it is in many respects an ideal material for probing quantum
confinement phenomena [59]. At the same time, the Bi nucleus is quite heavy,
with atomic number Z = 83. Because electrons may move at a speed close to
light velocity in the interior of such an atom, a purely non-relativistic description
of Bi does not suffice.

The lowest-order relativistic corrections are of two types : first, a spin-scalar
modification of the kinetic and potential operator, and second, a vector coupling,
between the spin and the electron momentum. Supposing that an electron moves
in an electric field E, one can crudely attribute this vector coupling to the fact
that the moving electron “’sees” an apparent magnetic field given by E x (v/c).
Actually, it has the following analytical expression in international units [55]
(— (eh/2mc) o - [E x (v/c)]), which can be expressed for a central field, by a
total spin and orbital angular momentum interaction Hamiltonian [60], propor-
tional to L - S, termed spin-orbit (SO) interaction.

The importance of the latter on electronic properties has been thoroughly
studied, for many different systems. In the case of crystalline Bi, it has been
analyzed from first principles [61]. This work shows that the SO interaction
split the external p atomic levels, by about 1.5 eV (6p1/2  6p3/2 splitting), an
effect that can be seen in the electronic density of states of the periodic solid.
Because for an s level the angular momentum is equal to zero, the two 6s bands
are practically unaffected by the SO coupling.

The effect of the SO interaction on the total energy, as well as geometri-
cal and dynamical properties of materials has been the subject of less attention.
Scaling roughly as the fourth power of the atomic number Z, the energy changes
are tiny in hydrogen atom, but becomes much more significant for the heavier
elements [62]. One might mention the detailed study of the SO influence on the
crystallographic parameters and bulk modulus of light actinides, in Refs. [63]
and [64]. It was observed that the SO coupling has some importance (less than
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2 percents usually for the lattice parameter, but up to 10 percents for the Nep-
tunium lattice parameter as well as the bulk modulus) and brings systematically
the predicted values in better agreement with the experiment. In the very recent
studies of the phonon band structure of Thorium([65] and Bi[66, 67], the SO
coupling was included in all the calculations, but these works do not discuss the
specific impact of the SO interaction on the frequency spectrum. In the case of
the Bismuth study, the effect of a largely increased density of carrier, obtained
by femtosecond laser irradiation, is seen on the crystallographic parameters.

In the present study, we examine the phonon band structure of Bi, and find
that the semimetallicity has little importance, but that the inclusion of SO is
mandatory for an accurate description of the spectrum, reducing the discrep-
ancy from up to fifteen percents down to a few percents in most of the Brillouin
zone. We also analyze the IFCs and find that the SO interaction causes signif-
icant changes both in the longitudinal and transverse components, on the order
of twenty five percent for some specific elements of the IFC matrix, compared
to the same values without the SO interaction. Optical branches are more af-
fected directly by that coupling than acoustic branches. The crystallographic
parameters of Bi, on the contrary, are hardly affected (less than one percent)
by both semimetallicity and SO coupling, in agreement with previous works
[63, 64], but this modification triggers non-negligible modifications of the the
frequencies for acoustic branches.

We rely on the Density Functional Theory (DFT), with a plane-wave basis
set and norm-conserving pseudopotentials. Instead of using the fully relativistic
Dirac equation to study the periodic solid, one can, in this framework, generate
ionic pseudopotentials that combine scalar-relativistic and SO terms, and repre-
sent them by fully nonlocal pseudopotentials of separable form [46, 48]. The
usual Kohn-Sham equations can then be solved in the total potential created by
such ionic pseudopotentials.

In section 3.3, we describe our theoretical technique, and discuss the differ-
ent cases that allow us to disentangle the modifications due to semimetallicity,
due to the influence of SO coupling on the crystallographic parameters, and due
to the direct influence of SO coupling on the total energy. In section 3.4.1, we
report our study of the crystallographic parameters of Bi, crystallizing in the
rhombohedral A7 structure. Three crystallographic parameters describe fully
this structure : the lattice parameter (ao), the rhombohedral angle («), and one
internal coordinate 2. In section 3.4.2, we present the full phonon band structure,
and compare it with experimental values along the trigonal direction. In section
3.4.3, we discuss the interatomic force constants in Bi and consider them with
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respect to both the rhombohedral A7 structure of Bi and the SO coupling. We
examine them also in the Bi; molecule including the change due to SO coupling.

3.3 Methodology

In order to calculate properties like phonon frequencies structure, and inter-
atomic force constants for Bi, we used the ABINIT code [68—70]. This package
performs density functional calculations of material properties using pseudopo-
tentials and a plane-wave basis set. The exchange-correlation energy was com-
puted using the local density approximation (LDA) in the Teter-Pade parametriza-
tion [50]. We used the Hartwigsen-Goedecker-Hutter (HGH) pseudopotential
[29] which is a norm-conserving relativistic separable dual-space Gaussian pseu-
dopotential and is generated on the basis of a fully relativistic all-electron calcu-
lation. Using this pseudopotential, we included SO interaction effects relevant
for heavier elements like Bi. It is possible to reproduce only scalar relativistic ef-
fects by neglecting the terms for the SO contribution from HGH : this pseudopo-
tential contains separately an average potential (that contains all scalar parts of
the relativistic pseudopotential), and a vector part. The phonon frequencies and
interatomic force constants have been computed in the framework of Density
Functional Perturbation Theory (DFT), also implemented in ABINIT [32, 34]
with and without the SO coupling.

We used a 12x12x 12 Monkhorst-Pack special point grid [71] to approxi-
mate the integrals on the wavevectors of the electronic wavefunction over the
entire first Brillouin-zone. With respect to this parameter, our choice gives a
convergence of 10~° in lattice parameters (ap), and 10~ in rhombohedral an-
gles (). The electronic wavefunctions were expanded in plane waves up to a
kinetic energy cutoff of 15 Hartree, resulting in errors of ~ 1%, or less, in the
phonon frequency values (w). The dynamical matrix were computed on a mesh
of 8 x8x8 wavevectors in the Brillouin zone, using a variational formulation of
the density-functional perturbation theory [32, 34]. Finally, computational re-
sults were compared with experimental values published by J. L. Yarnell [72]
and reported by D. B. Smith [73]. In Ref. [67], a very similar methodology was
also applied to the study of the phonon band structure of Bi, whereas our sam-
plings of the Brillouin zone for the dynamical matrices is finer, and we primarily
focus here on the role of the SO coupling.

We studied seven different possibilities in order to disentangle the effects
coming from the metallicity, and those related to spin-orbit coupling, coming
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either directly from a modification of the total energy and its derivatives at fixed
crystallographic parameters, or, indirectly, from the modification of the crys-
tallographic parameters without change in the treatment (with or without SO)
of the total energy. (a) In the first case, we considered Bi as non-metallic, and
did not take into account the SO coupling when relaxing the crystallographic
parameters and computing the phonon band structure. This is our only compu-
tation corresponding to a non-metallic case. As will be detailed briefly later, the
metallic or non-metallic treatments give essentially identical results, for both
lattice parameters and phonon band structures. (b) In a second case, we consid-
ered Bi as metallic, and again did not take into account the SO coupling when
relaxing the crystallographic parameters and computing the phonon band struc-
ture. “Theoretical crystallographic parameters without SO coupling - Phonons
without SO coupling” and abbreviate it TCWoSO-PhWoSO. (c) The same re-
laxed cell parameters (TcWoSO case) were used and the phonon spectra was
calculated with full treatment of the SO coupling (TcWoSO-PhWSO). (d) Then,
the relaxed geometrical cell parameters were obtained taking into account the
SO contribution (TcWSO case). Using this cell parameter, we obtained the
corresponding phonon frequencies considering the SO contribution (TcWSO-
PhWSO). This is our best fully theoretical computation of the phonon band
structure. (e) Using the same crystallographic parameters (TcWSO case), we
also obtained the phonon spectra in the absence of the SO contribution (TcWSO-
PhWoSO). (f) Experimental crystallographic parameters were also used (Ec), to
start a computation of the phonon band structure with SO interaction (Ec-WSO)
was considered. (g) Finally, we considered experimental crystallographic pa-
rameters without the SO contribution (Ec-WoSO).

The scheme used in the metallic case was the Gaussian smearing, corre-
sponding to the 2-order Hermite polynomial of Ref. [74]. The broadening of
occupation numbers was determined by a smearing energy of 0.001 Ha.

3.4 Results

3.4.1 Geometry optimization

As mentioned in the Introduction (see section 3.2), Bi has a rhombohedral A7
crystal structure, with two atoms per unit cell, and three independent parame-
ters : the value of the rhombohedral angle «, the length of the rhombohedral
unit cell primitive vectors ao, and the position of the second atom (labeled as D
in FIG. 3.1) along the trigonal axis determined by the ratio z = BD/BH. The
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AT crystal structure can be derived from a simple cubic geometry structure, with
a Peierls instability causing the movement of the atoms and the final geometry:
the atom labeled as D is located along the trigonal axis and is very close to the
center of the cell (z ~ 0.5), but slightly displaced along the trigonal axis. Due
to this displacement, there exist three nearest and three next nearest neighbors.
In agreement with this picture, Bi might also be thought as being made of a (1
1 1) stacking of atomic bilayers, a characterization that has been confirmed by
the analysis of the charge density, from first-principles studies [61]. The three
nearest-neighbor atoms are to be found in the other (1 1 1) atomic plane belong-
ing to the bilayer, with an angle between nearest-neighbor atoms that is equal to
94.84 degrees for the case without SO, and equal to 95.63 degrees for the case
with SO.

We report crystallographic parameters in TABLE 3.1 for each of the cases
described in Section 3.3. In addition, we report the corresponding values for the
nearest atoms a y and the distance between the atoms labeled as BD, and DH
in FIG. 3.1.

The variations observed in the crystallographic parameters between the non-
metallic and metallic cases are very small, less than 0.2%. When the SO cou-
pling is turned on, the lattice parameter expands by about 0.9%, and the internal
parameter 2 is decreased by about 0.6%, while the rhombohedral angle increase
but is hardly affected. These parameters give a volume for the A7 rhombohedral
unit cell equal to 67.10 A3, and 69.07 A3 for the metallic without and with SO
interaction respectively. The corresponding experimental volume [67] is equal
to 69.97A. The theoretical discrepancy with respect to the experimental results
(Ec) is reduced from ~ 4.3 % without SO coupling (TcWoSO) to ~ 1.3 % con-
sidering such interaction (TcWSO).

3.4.2 Phonon frequencies

In a A7-type lattice, there are two atoms per primitive unit cell and hence six
phonon branches. These are divided into three acoustic and three optical phonon
branches. Along the I'-T direction, corresponding to the z axis, and preserving
the trigonal symmetry, the phonon dispersion curves can be classified as £, or
A,,, according to whether their displacements are perpendicular or parallel to
the direction of the wave vector q respectively. For the acoustic (A) or optical
(0) A, phonon modes, the atoms moves in the direction of the trigonal axis.
For the other two acoustic or optical £, phonon modes, the atoms move in the
perpendicular plane with respect to this axis. In the related (z=0.5) cubic geom-
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Trigonal
Axis F3

Figure 3.1: A7 rhombohedral unit cell for Bi.

etry, the A;, and E, phonon modes would be degenerate, but the degeneracy is
lifted in the A7 geometry due to the Peierls distortion [75].

In TABLE 3.2, we report phonon frequencies along the I'-T direction, from
experiment (Ref. [72]), as well as for three different cases mentioned in section
3.3 (TcWSO-PhWSO ; Ec-PhWSO ; TcWoSO-PhWoSO). We do not report the
values for the non-metallic case, as they do not differ from the metallic one by
more than 0.6%. The different phonon bands are labelled as follow, Acoustic
E, phonon modes (A(E,)), Acoustic A;, phonon mode (A(A,,)), Optical E,
phonon modes (O(E,)), and Optical A;, phonon mode (O(Ay,)).

When we compare our results with the experimental data [72] for the cases
without SO coupling, the disagreement is on the order of 10% for many bands
and points. By contrast, the agreement is excellent if we add the SO coupling to
the metallic case. In FIGs. 3.2 and 3.3, we report the full phonon band structures
for the metallic case, with and without the SO coupling. The phonon band struc-
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Table 3.1: Crystallographic parameters for the unit cell of Bi.

Non- Metallic Experiment
metallic
without without SO with SO values
SO
a (A) 4.6496 4.6525 4.6944 47236
a (deg) |57.57 57.48 57.57 57.35
z 0.47102 0.47108 0.46819 0.46814
ann (A) 3.0385 3.0383 3.0505 3.0624
BD (A) |5.4610 5.4684 5.4805 5.52252
DH (A) |6.1328 6.1396 6.2250 6.27421

ture graphics for the non-metallic case without SO interaction is very similar to
FIG. 3.2. The major effect due to SO coupling is a softening of all the phonon
frequencies, this softening being very pronounced in absolute value in the case
of the O(A;,) branch (0.32 THz at the T point), as well as relatively in the case
of the A(E,) branch (about 15 % at the T point).

In Fig. 3.4, we analyze in more detail the interplay between the direct effect
of the SO coupling on the phonon frequencies, at fixed crystallographic parame-
ters, and the indirect effect of the SO coupling, through modification of the crys-
tallographic parameters. The phonon band structures for dotted (black) and the
dot-dash (green) lines correspond to the (TcWoSO-PhWoSO) and (TcWoSO-
PhWSO) cases respectively ; they have been computed for the same crystallo-
graphic parameters. This result clearly show that the inclusion of the SO interac-
tion strongly affect the optical bands, as mentioned in last paragraph. The direct
influence of the SO interaction is less pronounced for the acoustic branches, and
bigger for the X-K-I" line than for the I'-T line (nearly negligible for the latter).

The dashed (blue) line correspond to the Ec-WSO case and the solid (black)
line to the TcWSO-WSO case. The role of the crystallographic parameters is
quite large for the acoustic branches : the indirect effect of the SO coupling is
comparable to the direct effect for the X-K-I', and clearly predominent for the
I'-T line. For optical branches, the indirect effect of the SO coupling is much
smaller than the direct effect.

The SO effect on the phonon band structure calls of course for further anal-
ysis.
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Table 3.2: Phonon frequencies (THz) along the I'-T direction. Experimental
values from Ref. [72]. Theoretical values (metallic treatment) corresponding
to three cases : theoretical crystallographic parameters and phonon values with
SO coupling (TcWSO-PhWSO); experimental crystallographic parameters and
phonon values with SO coupling (Ec-PhWSO); theoretical crystallographic pa-
rameters and phonon values without SO coupling (TcWoSO-PhWoSO).

A(Ey) A(Ayy) O(E,) O(Ay,)

A(Eg) A(41,) O(E,) O(Ay)

Experimental Theoretical cell,
Values case with SO coupling
(TcWSO-PhWSO)

r 222 3.02 196 292
0.1 226 3.00 212 296
0.2 240 3.05 232 3.05
0.3 256 3.13 253 313
0.4 0.56 0.98 272 319 | 061 097 266 3.19
0.5 0.69 1.21 284 324 | 077 118 281 323
0.6 083 140 299 326 | 090 137 288 3.25
0.7 096 156 299 327 | 101 153 294 326
0.8 1.06 1.65 204 326 | 1.09 166 297 325
0.9 1.12 176 3.05 323 | 1.14 173 299 323
T 1.16 1.79 303 324 [ 1.15 176 299 323

Experimental cell Theoretical cell,

with SO coupling case without SO coupling

(Ec-PhWSO) (TcWoSO-PhWoSO)

r 1.89 2.87 216 3.12
0.1 205 291 237 3.16
0.2 226 3.00 260 3.28
03 246  3.08 280 338
04 0.58 0.93 259 314 | 070 102 287 343
0.5 074 1.13 274 318 | 091 126 3.06 3.49
0.6 0.86 132 282 321 | 1.02 144 313 352
0.7 097 148 288 321 | 1.17 1.63 320 354
0.8 105 160 291 321 | 125 176 320 353
0.9 1.09 1.67 293 319 | 1.30 184 323 353
T 1.10 169 293 319 | 1.34 1.89 323 3.55
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Figure 3.2: Phonon frequencies for Bi, metallic case, without SO interaction
(TcWoSO-PhWoSO0). Solid lines : theoretical results ; full dots : experimental
data from Ref. [72] ; empty dots : experimental data from Ref. [73]. The lack of
SO interaction is at the origin of most of the disagreement between theoretical
and experimental values

3.4.3 Interatomic Force Constants

When one atom is displaced from its equilibrium position, it exerts a force on the
other atoms. By reaction, a restoring force acts upon him. The proportionality
coefficients between the displacement and the force between atoms are known
as the interatomic force constants (IFCs). A Fourier transform of the IFCs,
followed by proper inclusion of masses, leads to the dynamical matrix, whose
eigenvalues are square of the phonon frequencies. Hence, the modification of
the phonon band structure due to SO can be traced back to a change of IFCs.
Our analysis of the IFCs follows the one in Ref. [76, 77]. For each pair of
atoms, the IFCs form a 3 by 3 matrix. Except for the interaction of the atom with
itself, the 3 by 3 matrix can be analyzed by expressing it in the coordinate system
in which the vector between the two atoms have been chosen as one of the axis
(longitudinal direction), and the two other vectors leads to a diagonalization of
the 2 by 2 remaining block (transverse directions). For the analysis of the on-site
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Figure 3.3: Phonon frequencies for Bi, metallic case, with SO interaction
(TcWSO-PhWSO). Solid lines : theoretical results ; full dots : experimental
data from Ref. [72] ; empty dots : experimental data from Ref. [73].

IFC, one can simply diagonalize the 3 by 3 matrix (that is symmetric).

The TABLE 3.3 shows our results for the longitudinal and transverse force
constants, as well as the trace of the matrix (the sum of the longitudinal and
transverse force constants). We do not report the longitudinal-transverse cou-
pling values, although they are not negligible compared to transverse IFCs.

We consider the atom labeled as C; in FIG. 3.1 as the generic (referrer) atom.
We then consider shells of more and more distant atoms, the interaction of atom
C, with itself corresponding to shell 0. We distinguish whether the other atom
lies inside the same bilayer as atom C; by the presence of an asterisk in TABLE
33.

The on-site IFCs, and the longitudinal IFCs between nearest-neighbors (shell
1 e.g. C;-D) are one order of magnitude bigger than the other IFCs. The de-
crease with distance is quite marked, although the 9th shell IFCs (C;-F3) are
particularly large. Actually, the atoms belonging to the 9" shell would have
reduced coordinates (2 0 0) and equivalent if the structure were cubic. Beyond
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Figure 3.4: Phonon frequencies for Bi. Full dots : experimental data from
Ref. [72] ; empty dots : experimental data from Ref. [73]. The lines correspond
to theoretical results as follow. Dotted (black) line : theoretical cell parameters
without SO coupling, phonons without SO coupling (TcWoSO-PhWoSO) ; dot-
dashed (green) line : theoretical cell parameters without SO coupling, phonons
with SO coupling (TcWoSO-PhWSO) ; solid (black) line : theoretical cell pa-
rameters with SO coupling, phonons with SO coupling (TcWSO-PhWSO) ;
dash (blue) line : experimental cell parameter, phonons with SO interaction
(Ec-PhWSO).
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the ninth shell, the IFCs never exceed 1.5 x 10~3 Ha/Bohr?, and go quickly to
zero. Except for the longitudinal IFC of the first shell, the in-layer IFCs are not
systematically bigger than the IFCs for pairs of atoms placed in different layers.
Hence, with respect to its IFCs, Bi is not a quasi-two-dimensional material. Of
course, the longitudinal first-shell IFCs, that are found only within the bilayers
strongly influence the lattice dynamics.

We analyze now the effect of SO coupling. The biggest IFCs, i.e. the on-site
IFCs and the first shell longitudinal IFCs, decrease both by about 15%. Among
the other IFCs, some exhibit much bigger relative changes, and most of them
change by more than 15%, although these noticeable changes only modulate the
quite homogeneous softening brought by the biggest IFCs on the phonon band
structure.

In order to shed some light on the modification of the on-site and shell 1
longitudinal IFCs, we also analyzed the Bi dimer. The technical details are quite
similar to the crystalline case, except that we placed the system in a big cell. We
found that the bond distance between a pair of Bi atoms is equal to 4.8607 Bohr
for the case when the SO is not considered, while it is equal to 4.9166 Bohr when
the SO coupling is taken into account. Going from the molecule to the solid
decreases the nearest-neighbor distance significantly. The SO interaction causes
a little increment in the bond length, in agreement with our previous result for
solid Bi. The longitudinal IFC is equal to the on-site IFC for a dimer. In the case
without SO, we obtain an on-site IFC value of 157.7 x 10~3 Ha/Bohr?, while
it drops to 130.5 x 10~ Ha/Bohr? when the SO coupling is taken into account.
Although the IFCs in the solid and the molecule are quite different, the effect of
SO is qualitatively the same again.

Both the lengthening of the bond length increase and weakening of the IFCs
can be rationalized, in a very qualitative way, by an analysis of the electronic
structure of the molecule. Indeed, in the case without SO, the HOMO corre-
sponds to twofold degenerate bonding 7 states, the LUMO corresponds to anti-
bonding 7 states also twofold degenerate, separated by 2.2 eV only. Turning on
the SO coupling leads to a mixing of bonding and antibonding orbitals, weak-
ening the bond and increasing the bond length, on one hand. On the other hand,
it diminishes the energy gap between the HOMO and the LUMO to a value of
1.3 eV, an effect that weakens the IFCs.
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3.5 Conclusions

Our results reveals the role of SO coupling on the phonon band structure and in-
teratomic force constants of Bi, whose treatment allows to get a very nice agree-
ment with experiment. The SO interaction soften the phonon frequencies by
about 10% for many bands and points when compared to experimental values,
and it has a much smaller effect on the crystallographic parameters. For optical
bands, the modifications are dominated by the direct SO interaction (crystal-
lographic parameters play only a minor role), while the effect on the acoustic
bands is largely mediated by the cell parameters also. A large fraction of the
changes can be attributed to the modification of longitudinal force constants
(and the accompanying on-site interatomic force constant), also present in the
simple Bi diatomic molecule.
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Table 3.3: Longitudinal (||), and transverse (L) interatomic force constants (in
units of 103 Ha/Bohr?), for different shells of atoms. The distances are given
in atomic “Bohr” units. We indicate, in parenthesis, the number of the shell if
the structure were cubic. Several shells in the rhombohedral structure combine
into one shell of the cubic structure. The asterisk indicate shells of atoms that
are in the same bilayer as the referrer atom (see text).

Shell Distance I L L Trace
Without SO (TcWoSO-PhWoSO)
0*(0) 0.0000 47.50 48.59 4821 144.31
1*(1) 5.7417 -32.48 2.77 -2.65 -37.90
2() 6.4993 272 1.07 0.08 -0.83
3%(2) 8.4562 -2.69 1.44 0.87 -0.39
4(2) 8.7921 -1.19 0.00 1.13 -0.06
5*%(3) 10.221 0.05 -0.09 0.12 0.07
6(3) 10.333 0.14 -0.05 -0.05 0.05
73) 10.665 -0.08 0.14 0.02 0.08
8(3) 11.602 -0.07 -0.08 -0.08 -0.22
914) 12.198 -4.24 -0.57 -0.71 -5.52
With SO (TcWSO-PhWSO)
0*(0) 0.0000 41.67 42.46 4221 126.34
1*(1) 5.7646 -29.13 -2.27 -1.89 -33.28
2(1) 6.6033 -2.37 0.78 0.75 -0.84
3%(2) 8.5436 -2.68 1.83 0.15 -0.70
4(2) 8.8712 -1.20 0.02 0.85 -0.33
5*%(3) 10.306 0.04 -0.1 0.19 0.14
6(3) 10.356 0.08 -0.16 -0.16 -0.25
7(3) 10.798 0.00 0.10 0.01 0.11
8(3) 11.763 -0.10 -0.13 -0.13 -0.36
9(4) 12.316 -3.03 -0.44 -0.72 -4.19
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Chapter 4

Thermodynamical properties for
Bismuth

4.1 Effect of the Spin-Orbit Interaction on the Ther-
modynamic Properties of Crystals: Specific Heat
of Bismuth

We discuss measurements and ab initio calculations of the specific heat for crys-
talline bismuth, strictly speaking, a semimetal but in the temperature region ac-
cessible to us (" > 2K) acting as a semiconductor. We extend experimental
data available in the literature and notice that the ab initio calculations with-
out spin-orbit interaction exhibit a maximum at ~ 8K, about 20% lower than
the measured one. Inclusion of spin-orbit interaction decreases the discrepancy
markedly: the maximum of C(T') is now only 7% larger than the measured
one. Exact agreement is obtained if the strength of the spin-orbit Hamiltonian
is reduced by a factor of ~ 0.9. We also discuss the dependence of the lattice
parameter and the cohesive energy on spin-orbit interaction.

4.2 Introduction

In the past few years, a number of investigations on the dependence of the spe-
cific heat of semiconductors and insulators on temperature and isotopic masses
have been carried out. These works involved careful low temperature experi-
ments (for elemental crystals, see Refs. [78, 79], for binaries, see Refs. [80]
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and references therein) and elaborate ab initio calculations based on electronic
band structures computed in the framework of the local density approximation
(LDA). Recent work involving binary lead chalcogenides with different isotopic
compositions [PbS (Ref. [81]), PbSe (Ref. [82])] yields a low temperature max-
imum in the quantity C(T)/T? (at ~ 12K) [81, 82] about 25% lower than the
measured one. Correspondingly, the calculated phonon dispersion relations are
on the average 10% higher than those determined with inelastic neutron scatter-
ing (INS) [83]. The higher phonon frequencies qualitatively explain the lower
specific heats obtained from the calculations.

When trying to ascertain whether the harder phonon frequencies (and lower
specific heats) calculated for PbS and PbSe were due to the lack of spin-orbit
(SO) coupling in the ab initio electronic structure, some difficulties arose. These
involved not only the extended computational time but also divergences in the
dispersion relations of the optical phonons for @ — 0. The latter may be related
to the strongly ionic, nearly ferroelectric character of these compounds.

To our knowledge the computation of the q — 0 divergences when the spin-
orbit coupling is present has not yet been implemented in existing first-principles
codes. By contrast, for metals, there is no such divergence, which makes pos-
sible the direct computation of phonon band structure and thermodynamical
properties based on density-functional perturbation theory (Ref. [5, 68, 86]),
including spin-orbit, as implemented in the ABINIT software [70]. Thus, we
performed measurements and calculations for crystalline bismuth, which is free
of the ionic divergences present in the lead chalcogenides.

With this work we demonstrate that inclusion of SO coupling, in fact, con-
siderably reduces the discrepancies between experimental heat capacity data and
ab initio results. In addition, we also discuss the dependence of the rhombohe-
dral lattice parameter a and the cohesive energy E, on the magnitude of the SO
coupling. Bismuth is a semimetal closely related to the lead chalcogenides: it
has 10 valence electrons per primitive cell and a rhombohedral structure which
can be derived from that of PbS by making both atoms equal and applying a
Peierls-like distortion to the PbS cube, involving an elongation of one of its
[111] axes [87]. The distortion converts the simple cubic structure of bismuth,
with one atom per primitive cell, into a rhombohedral one with two atoms per
primitive cell (two sublattices). This structure is characterized by three param-
eters: the bond length a,, the rhombohedral angle, and a shift between the two
sublattices [67, 88]. These parameters were determined by energy minimiza-
tion using the ABINIT code. The results obtained for these parameters in Refs.
[67, 88] with and without SO coupling differ by less than 1%.
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4.3 ab initio calculations

The phonon dispersion relations were calculated with ABINIT in Ref. [67] with
SO coupling whereas in Ref. [88] calculations with and without SO coupling
were performed. With SO coupling, excellent agreement with experimental re-
sults (Ref. [72] ) was obtained whereas without it, discrepancies of the order of
10% were found, the calculated bands lying higher in frequency than the mea-
sured ones. Similar results were found for PbS (Ref. [81] ) and PbSe (Ref. [82])
without SO coupling. In view of these results, we proceeded to calculate the spe-
cific heat C(T') of bismuth. In order to complete the available experimental data
(carried out on polycrystalline samples) [89-93] we also performed measure-
ments on high purity (99.9999%, Preussag Pure Metals) single crystals. Recent
data collected by various earlier authors and our own data (our experimental
technique is described in Refs. [78-81]) are compiled in Fig. 4.1, together with
the results of our ab initio calculations performed with and without spin-orbit
coupling.

4.4 Results and discussion

The hitherto available experimental points were measured on polycrystalline
samples.They are rather widely spaced in temperature, with theexception of
Keesoms below 4 K (Ref. [90, 94]). We have therefore performed measure-
ments of C,(T') on single crystals for T between 1.8 and 100 K with the mea-
suring temperatures spaced by ~0.1 K up to 50 K and 0.5 K steps above 50
K. The maximum of C(T')/T? takes place at 7.5 K. According to Ref. [82] it
should be found at ~ T7,4/6, where Tr4 ~ 42 K is an Einstein oscillator fre-
quency which can be read off the phonon density of states [67]. The temperature
of the maximum in Fig. 4.1 is found to be 7.5 K, fairly close to 774 /6 = 7K.

Although the typical carrier concentrations of the PbS samples are between
108 and 10'° cm? [81], no evidence of a free carrier contribution to the specific
heat was found, except possibly below 2 K [90]. Thus, the measured specific
heat represents the contribution of the lattice vibrations vs temperature, obtained
at constant pressure C, . Most lattice dynamical calculations, such as those of
Elcombe, represent the specific heat measured at constant volume C,, [83]. The
difference between C, and C, is given by [98],

Cp(T) = Co(T) = aﬁ(T)BVmolT, “.1)
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Figure 4.1: Heat capacity of a Bi single crystal, purity 99.9999%. (Red filled)
circles as measured in this work compared with literature data obtained on poly-
crystalline samples. (Green) A (Ref. [90]); (blue) 4 (Ref. [90]); O (Ref. [92]);
(black) B (Ref. [93]). (Black) solid line : ABINIT results with spin-orbit cou-
pling included; (blue) dashed line: ABINIT calculation without spin-orbit cou-

pling.

where «, is the temperature dependent thermal expansion coefficient, B the
isothermal bulk modulus using the notation of Ref. [84], and V,,, the molar
volume. According to Eq. (4.1), the difference C,, —C, increases with increasing
T. Replacing standard values of o, (T"), B, and V;,,; found in the literature [85],
we obtain from Eq. (4.1) the difference C, — C, = 0.18 J/mol K at the highest
temperature used in our measurements (~ 280 K). This difference is smaller
than typical error bars in our measurements and will be neglected here. We
shall therefore denote the specific heat, either theoretical or experimental, by C,
[81].
Our measurements place the maximum value of C/T* at 2.32 £ 0.03 mJ/molK*,
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The value calculated without SO splitting lies at 1.940 mJ/mol K* whereas with
SO coupling one finds 2.500 mJ/mol K* . Hence, the results of the calcula-
tion without SO coupling lie 20% below the experimental data; those with SO
coupling lie only 7% above. Not only is the difference between measured and
calculated values of C/T® 3 times smaller when SO interaction is taken into
account, but the agreement with SO coupling above 12 K lies within the experi-
mental error, whereas without SO coupling a considerable difference is found.

This improvement illustrates the importance of SO interaction for the cal-
culations of thermodynamic properties starting from ab initio electronic band
structures for systems containing heavy atoms and confirms our conjecture that
similar discrepancies between calculated and measured values of C/T* found
for PbS and PbSe [81, 82] must be due to the lack of SO coupling in the elec-
tronic structure calculations. These results suggest performing calculations and
measurements for antimony (also a semimetal with the same crystal structure as
Bi) which has a considerably smaller atomic SO coupling than bismuth (0.84
versus 1.7 eV).

The results for Sb are shown in Chapter 5, but here we have pursued yet
another avenue: we have multiplied the spin-orbit coupling Hamiltonian by a
factor 0 < A < 1 and repeated the full ab initio calculations of C(T") for several
values of A. The results obtained for bismuth are shown in Fig. 4.2.

This figure reveals the strongly supralinear dependence of the SO effect on
C/T? which can be fitted with the expression

C/T? = co1 + caX?(1 + c4\2)) 4.2)

with ¢y = 1.942(2) mJ/mol K* , ¢, = 0.116(7), and ¢4 = 1.46(13).

The fit is displayed in Fig 4.3(a). For A = 1 the fourth order term surpasses
the quadratic term. Exact agreement between the measured and the calculated
values of C/T? is obtained if one reduces the SOC coupling by a factor A = 0.9.

It is expected that other mechanical and thermodynamic properties of Bi
should depend on the SO coupling as well, i.e., on the value of A. The simplest
of them is probably the rhombohedral lattice parameter ao . It is shown in Fig.
4.3(b) calculated for the same values of A as C(T) and fitted with and expression
similar to Eq. 4.2 with ag(A = 0) = ¢; = 4.6529(7)A, a; = 0.0069(9), and
as = 0.29(16). The values of the fit parameters c; indicate that there is no simple
relationship between the effect of SO splitting on C'(T') and the lattice parameter
ao()). The effect of spin-orbit interaction on C(T'), as described by ¢, and ¢4
, is much larger than that on the lattice parameter ao(A). For A = 1, however,
the calculated value for ag (4.694A) is also much closer to the experimental one
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Figure 4.2: Calculated heat capacities of Bi with varying magnitude of the SO
coupling as indicated in the inset. Note that the maximum shifts to lower tem-
peratures (inclined dashed line) with increasing SO coupling, as it corresponds
to decreasing phonon frequencies (see text).

p

C IT* (m/molK*)

(4.720A) than that obtained for A = 0 (4.652A).

We have also calculated the cohesive energy E, for several values of A\. E,
was obtained as the difference between the calculated total energy for the free
atom and that for the solid, both calculated with the LDA approximation for ex-
change and correlation using ABINIT and spinorial, spin-polarized wave func-
tions. This procedure leads to the A dependence of E. shown in Fig. 4.3(c).
E.(\) can also be fitted with Eq. (4.2), leading to the parameters ¢y = 3.236
eV/atom, c; = —0.161(4), and ¢4 = 0.045(26). Hence, like for the other ther-
modynamic properties investigated, no linear term in A appears in £, . The lack
of linear terms in A in the thermodynamic properties contrasts with the results
of the calculations for individual one-electron states [61]. This leads to the con-
clusion that upon integration of all one-electron states the linear terms cancel
and only terms of second or higher order in A remain.
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Note that the inclusion of spin-orbit coupling considerably improves the
agreement of calculated and measured of E.. The calculated value E (A =
1) = 2.76 eV is remarkably close to the measured one (E, = 2.16 eV/atom
(Ref. [6]), especially when one considers that it is obtained as the difference of
two large energies, of the order of 150 eV/atom.

4.5 Conclusions

In conclusion, we have investigated the effect of SO interaction on three ther-
modynamic properties, C(T'), ao , and E, , of a solid consisting of the heavy
element bismuth. Such effects, apparently rather substantial for a first principles
calculation of the physical properties, have not received much consideration in
the literature so far. For a discussion of other similar phenomena, see Refs.
[95, 96].

The fit with Eq. 4.2 implicitly implies the absence of cubic terms in A. In
order to check this assumption, we have calculated the quantities in Fig. 4.3
for negative values of A and found, e.g., that ag(A = +1) differs slightly from
ao(A = —1). A fit with the equation ag(\) = ao(0)[1 + c2A%(1 + c3\)] yields
ao(0) = 4.6528(5) A c; = 0.0064(2), and c3 = 0.41(2) indicating that cubic
term play an important role.
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Figure 4.3: (a) Maxima of the quantity Cp(Trnez)/Tmaz Vs spin-orbit coupling
parameter A. (b) Energy minimized lattice parameter a, vs spin-orbit coupling
parameter A. (c) Cohesive energy of bismuth vs )\, calculated as discussed in the
text. The circles () represent our calculations, the dashed lines fits with Eq.
(4.2) which lead to the parameters given in the text.
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Chapter 5

Thermodynamical properties for
Antimony

5.1 Specific heat of Sb: Isotopic and spin-orbit ef-
fects from measurements and ab initio calcula-
tions

We report measurements of the specific heat C' of antimony crystals in the 2 - 50
K temperature range for several isotopic compositions and ab initio calculations
of the specific heat as a function of temperature. The contribution of spin-orbit
interaction and the dependence of C on isotopic mass are discussed and com-
pared with previous observations reported for semiconductors and group VA
semimetals. We also discuss the effect of spin-orbit interaction on the trigonal
lattice parameter and the cohesive energy.

5.2 Introduction

In the last years, a number of publications have reported the temperature depen-
dence of the specific heat C' in monatomic [78, 79, 97] and binary [80, 81, 98]
semiconductors as a function of the isotopic mass of its constituent atoms. Some
general trends were observed in all investigated materials, namely, (i) a peak ap-
pears at low temperature T in the plot of C/ T3 vs T, (ii) this peak is higher
for larger isotopic masses M, and (iii) in monatomic crystals, there is a unique
relation between the temperature dependence of dIn(C/T?)/dInM and that of
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din(C/T?)/dInT. This relation carries over to binary semiconductors if one
considers the sum of the logarithmic derivatives with respect to the isotopic
masses. These trends were reproduced by first-principles calculations based on
the linear response method and density functional perturbation theory. Con-
trary to this, little information is available on the thermodynamic properties of
semimetals, in particular, the specific heat, where both electronic and lattice de-
grees of freedom play a role. With the exception of phosphorus, the group of
the VA elements exhibit the A7 rhombohedral structure space group R3m, No.
166 in the International Crystallographic Tables . This structure is generated
by applying a deformation along the threefold axis to an fcc lattice plus a rel-
ative displacement of atoms, which results into a primitive cell with two atoms
[99]. Among these elements, antimony is known for the strongly anharmonic
behavior of the crystal lattice, as revealed by the Raman-Brillouin scattering,
in particular, under pressure [100, 101]. The anharmonicity, together with the
semimetallic character of their electronic structure and, for heavier elements, the
increasing importance of spin-orbit interaction, has hindered so far an accurate
investigation of their thermodynamic and lattice dynamical properties by means
of ab initio calculations. For example, only very recently, spin-orbit interac-
tion has been taken into account for calculations of these properties in bismuth
[67, 88, 102]. From the experimental point of view, there are only a few works
going back to the 1960s, dealing with the specific heat of arsenic [103-105],
antimony [106-108], and bismuth [109, 110]. Due to the limitations of the ex-
perimental equipment, the reported data show considerable scattering in the 5
- 20 K temperature region. It is precisely in this temperature range where the
most interesting effects occur, i.e., the described trends seen for semiconduc-
tors and the deviation from the Debye behavior, as well as the presence of both
electronic and lattice contributions.

In this chapter, we report specific heat measurements of antimony crystals in
the 2 - 50 K temperature range both for natural samples as well as isotopically
enriched '2!Sb and 23Sb. The experimental data are compared with ab initio
simulations of the lattice dynamics and the specific heat. These simulations
were performed with a relativistic pseudopotential Hamiltonian that includes
the spin-orbit interaction. The effect of spin-orbit interaction is expected to be
important although not as large as recently reported for bismuth [102].

Concerning the dependence on isotope mass, we found analogous behavior
as that for monatomic semiconductors. Additionally, we have calculated the
effect of spin-orbit interaction on the trigonal lattice parameter and the cohesive
energy. Like in the case of bismuth [102], we found the effects of spin-orbit
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interaction to be approximately quadratic on the spin-orbit coupling parameter,
a linear term being absent.

5.3 Experimental Method

Natural samples of antimony were obtained from the Preussag Pure Metals
(Langelsheim, Germany). They consisted of small single crystals of a purity of
99.9999 %. Isotopically enriched '2*Sb and '23Sb with 99% isotope abundance
in either case were purchased from the Oak Ridge National Laboratory. Accord-
ing to their assay, the chemical purity of both enriched isotopes was better than
5 x 107*. They appeared to be, upon microscope observation, single crystals
of about 2 mm? size. Pieces of the three isotope modifications, weighing about
30 mg, were used as purchased for the specific heat measurements, without any
additional treatment. For details about the calorimeter and the experimental pro-
cedure, see Refs. [78, 79, 98] as well as Appendix C. The measurements were
performed under vacuum, i.e., at constant pressure. We do not distinguish here
between the specific heat obtained at constant volume or constant zero pressure
since, in the temperature region under consideration, they coincide within error
[81, 98] as explained below.

Most lattice dynamical calculations, such as those of Elcombe, represent the
specific heat measured at constant volume C, [83]. The difference between C,
and C, is given by [98],

Cp(T) — Cy(T) = 2(T) BVma T, (5.1)

where a, is the temperature dependent thermal expansion coefficient, B the
isothermal bulk modulus using the notation of Ref. [84], and V,,,,; the molar
volume. According to Eq. (5.1), the difference C,—C, increases with increasing
T. Replacing standard values of o, (T'), B, and V;,,; found in the literature [85],
we obtain from Eq. 5.1 the difference C, — C, = 0.18 J/mol K at the highest
temperature used in our measurements (~ 280 K). This difference is smaller
than typical error bars in our measurements and will be neglected here. We
shall therefore denote the specific heat, either theoretical or experimental, by C,

[81].
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5.4 ab inition Calculations

First-principles methods have proved to be essential to identify the phonon
modes responsible for the temperature dependence of the specific heat in semi-
conductors. In this work, we report ab initio calculations of the specific heat of
antimony and the lattice dynamics obtained with the ABINIT software package
[68, 70, 111].

The electronic structure of antimony in the R3m phase was calculated us-
ing the Hartwigsen-Goedecker-Hutter pseudopotentials which are expressed as
norm-conserving separable dual space Gaussians and generated on the basis of
a fully relativistic all-electron calculation [29]. To this aim, a grid of 12x12x 12
k-points in the Brillouin zone was used for the integration required for the de-
termination of the local charge density. The local density approximation to the
exchange and correlation energy was employed [50].

The dynamical matrices corresponding to a grid of 12x12x 12q points were
calculated within the framework of density functional perturbation theory and
the linear response method. These matrices were then interpolated to obtain, by
integration, the lattice contribution to the specific heat at constant volume [34,
68, 111]. Details of the procedure and equations to calculate this contribution
have been reported elsewhere[80].

The implementation of the spin-orbit term in ABINIT follows the same lines
as in Ref. [48], where the spin-orbit term in the Hamiltonian is applied only into
the Kleinmann-Bylander type of nonlocal operator. For the electronic calcula-
tions, the spin-orbit Hamiltonian was multiplied by a parameter A. Thus, A =0
corresponded to neglecting the spin-orbit coupling, whereas for A = + 1, the full
spin-orbit coupling was applied. We also performed calculations for A= 0.5 and
A=-1, so as to confirm the quadratic dependence of thermodynamic properties
on A proposed in Ref. [102].

5.5 Discussion

Figure 5.1 displays the temperature dependence of C'/T° measured for natural
antimony (open squares) together with data previously reported in Ref. [106]
(open circles) . Our measurements provide a much clearer description of the
behavior at temperatures lower than 15 K, whereas at higher temperatures, both
data sets are basically indistinguishable.

In a semimetal, the low temperature limit of the specific heat can be de-
scribed by the equation,
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Figure 5.1: Temperature dependence of the specific heat of natural antimony.
The experimental data (open squares) are compared with data from the literature
Ref. [106] (solid circles) and with ab initio calculations with (black, solid) and
without (red, dashed) spin-orbit interactions.

C =+T + BT? + oT?, 5.2

where the linear term represents the electronic contribution, the cubic term
corresponds to the Debye behavior of the crystal lattice, and the 72 term de-
scribes the interaction of the nuclear quadrupole moment with the electric field
gradient of the electrons and the lattice. The latter term is negligible within our
temperature range, but it may become appreciable for 7 < 1 K. The upward
bending at low temperatures (cf. Fig. 5.1) is due to the electronic contribution
~) to the specific heat [107]. A fit of the low temperature heat capacities with
Eq. (5.2) gives v = 0.13(4) mJ mol "' K~2 and 3=0.2342) mJ mol ! K~* (a =
0). These values are nearly independent of the isotope composition and in good
agreement with those reported in Refs. [104] and [107].
The peak in Fig. 5.1, located at 14 K, evidences the deviation from the
Debye behavior that is known to occur at low temperatures. Within the Einstein
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model, this peak should correspond to a phonon frequency of 7 meV [81], which
coincides with the first maximum of the calculated phonon density of states, i.e.,
it corresponds to transverse acoustic modes [112].

Figure 5.1 also displays the calculated temperature dependence of the spe-
cific heat with (black, solid) and without (red, dashed) the spin-orbit interaction.
Both calculations reproduce well the temperature dependence and the peak po-
sition in the experimental data. The spin-orbit interaction produces an enhance-
ment of the peak of C/T3 by ~ 4%. Very recently, the contribution of spin-orbit
interaction to the specific heat of bismuth was reported to be quadratic in at low
values of A [102]. For 0.5 < A < 1, a cubic term becomes important, but no
linear term in ) is observed. Considering that the spin-orbit splitting of bismuth
(1.7 eV) is 2.42 times that of antimony (0.7 eV) [113], if we take the value for
A=1/242=041in Eq. (5.2) of Ref. [102], we expect an increase of 2.4%
for the peak of C/T* for antimony, in qualitative agreement with our direct cal-
culations. The difference between 2.4% and 4% might be related to the role of
cubic terms in A, neglected in Eq. (1) of Ref. [102]. Both in bismuth [102] and
antimony, there is a 5% discrepancy between the calculations (including spin-
orbit interaction) and experimental results. This discrepancy might be related to
the intrinsic inaccuracy of local density approximation phonon dispersions, as
compared to the experimental values.

Figure 5.2 displays the dependence of the peak of C/T? on isotope mass.
For the sake of comparison, the linear temperature term has been subtracted
from the experimental data, since it is not taken into account in the calculations.
The curves of Fig. 5.2 show an increase of the peak with increasing isotope
mass, both for the experimental and calculated data. This trend, already reported
for semiconductors in previous works,[78, 80, 81, 98] seems also to be obeyed
by semimetals. The isotope shift of the peak between '*'Sb and '**Sb amounts
to 12 puJ mol~! K=* and agrees reasonably well with the experimental shift, 14.2
uJ mol~! K. The calculated curve corresponding to antimony with natural
isotope composition is slightly closer to that of '2!Sb due to the closer masses.
In the case of experimental data, we found that this rather subtle effect depends
somewhat on the sample details.

Figure 5.3 displays full circles the logarithmic derivative of C/T with re-
spect to the isotope mass corresponding to the experimental data obtained after
subtraction of the electronic contribution [y term in Eq. 5.2]. This derivative
has been reported to be linked to the logarithmic derivative with respect to tem-
perature in diamond, silicon, and germanium by [97],
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Figure 5.2: Same as Fig. 5.1 for different isotope compositions. The calcula-
tions were performed in all cases including spin-orbit interactions (A= + 1).
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We show in Fig. 5.3 the left- and right-hand sides (rhs) of Eq. (5.3) obtained
from the experimental data with full (red) and open (black) circles, respectively,
and the rhs of Eq. (5.3) calculated from the ab initio data for A= + 1 solid line.
The agreement between both experimental data sets, as well as the agreement
with the ab initio data, is excellent. The good agreement between both sets al-
lows us to verify the validity of this equation for semimetals. The peak at 10 K
is followed by two different slopes at higher temperatures, the crossover point
being at ~ 25K. The associated phonon frequency is 11.5 meV, calculated again
by multiplying the crossover temperature by a factor of 6 [81]. This frequency
corresponds to the threshold between acoustic and optic phonons, as shown in
the phonon dispersion relations obtained by inelastic neutron scattering exper-
iments [112] and confirmed by our calculations [114]. Hence, we attribute the

(5.3)
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Figure 5.3: Logarithmic derivative with respect to the isotope mass,
dIn(C/T?)/dInM (solid red circles) and rhs of Eq. (5.3) (open black circles),
corresponding to the ekperimental data. The solid line displays the rhs of Eq.
(5.3) obtained from the calculations.

change in slope to the activation of optic phonons at higher temperatures.

In recent works on bismuth [67, 102], a significant contribution of spin-orbit
interaction to vibrational properties such as phonon dispersion relations and spe-
cific heat has been found. The relevance of these effects can be evaluated by
performing ab initio simulations of the properties of interest as a function of the
magnitude of the spin-orbit interaction, governed by the coupling parameter ).
Figure 5.4 displays the change in the trigonal lattice constant a, and the cohesive
energy E.., as a function of A. The calculated data show a quasiparabolic de-
pendence on A, with a small but nevertheless significant contribution of a cubic
term. The experimental value of E.,, = 2.7 eV compares well with the calcu-
lated value for A= + 1, i.e., 3.37 eV. A similar agreement was reported in Ref.
[102] for bismuth. The expansion of the spin-orbit Hamiltonian in A using per-
turbation theory contains only quadratic and higher order terms in ), since linear
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terms in A would imply a splitting between z components of the spin upon the
spin-orbit interaction, a splitting that can only happen in the presence of a mag-
netic field. Therefore, no linear term in the dependence of both a and E,,;, on A
is expected. Note that the square root of the ratio of the coefficients correspond-
ing to the quadratic term in \ for the fits of ay of bismuth [102] and antimony,
which amounts to 2.75, is rather similar to that of the spin-orbit splittings, i.e.,
1.7/0.7 =2.42 [113]. The difference between 2.75 and 2.42 may be due to the
fact that the corresponding energy denominators are smaller in Bi than in Sb. A
similar comparison can be affected for the cubic root of the ratio of the cubic
terms which for a, turns out to be 2.8, close to the ratio of spin-orbit splittings.
This relation, which also holds for the dependence of the peak C'/T*? on ), im-
plies a simple scaling of the effects of spin-orbit interaction on the vibrational
properties.

Figure 5.5 displays the change of the specific heat with A as a function of
temperature. Two main effects are observed, namely, a larger value of the peak
C/T? with increasing strength of the spin-orbit interaction and a crossing of the
curves corresponding to A= + 1 and A= -1. The observed crossing suggests a
change in the slope of the phonon dispersion corresponding to low frequency
acoustic modes, since a shift of the peak to lower temperatures is caused by an
increase of the lowest phonon frequencies. The phonon dispersion data reported
for bismuth in Table 5.6 of Ref. [88] manifest a change of slope of transverse
acoustic [A(E,)] modes along the I' — T direction between A= 0 and A= 1, i.e.,
an indication of a crossing of the dispersion relations also for bismuth (unfortu-
nately, no calculations for A= -1 were reported in Ref. [88]. Table 5.6 displays
the acoustic phonon frequencies of antimony along the I' — T direction calcu-
lated for A=0, 1, and -1. A higher sound speed is observed in the case of A(E,)
modes for A= 1 and -1, as compared to that obtained without spin-orbit interac-
tion. On the contrary, the same phonon branch shows higher frequencies for A
= 0 close to the zone boundary, thus evidencing a crossing of the A(E,) bands
similar to that just mentoned for Bi. Table 5.6 also displays a crossing of the A=
+ 1 and the A= -1 bands.

5.6 Conclusions
In conclusion, we have reported measurements of the dependence of the specific

heat of antimony on the isotope mass as a function temperature. The experi-
mental data have been analyzed with the aid of first-principles calculations of
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the lattice dynamics and its contribution to the specific heat. The specific heat of
antimony shows a similar behavior with changing isotope mass as observed in
semiconductors, namely, a peak of C'/T" vs T whose strength increases with the
isotope mass, and a relation between the logarithmic derivatives with respect to
isotope mass and temperature. Moreover, the ab initio calculations allowed us
to evaluate the contribution of the spin-orbit interaction to the specific heat, the
lattice parameter, and the cohesive energy. These three physical quantities de-
pend nearly quadratically on the spin-orbit coupling parameter A, with a minor
contribution of a cubic term. The quadratic dependence is proportional to the
square root of the spin-orbit splitting, as evidenced in the comparison of results
for bismuth and antimony.
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Figure 5.4: Dependence of the lattice parameter ag and the cohesive energy E.on
on the strength of the spin-orbit interaction. The solid line displays a fit with a
polynomial of third order, y(\) = yo(0)[1+c2A%(14+¢3A)] (¥ = ao, Econ), With
ao = 4.43244(4), c; = 0.00089(2), and c; = 0.136(13) and E, = 3.4337(3) A,
¢y = 0.0162(2), and c3 = 0.088(7) for the lattice parameter a, and the cohesive
energy E,.», respectively (see Discussion in the text).
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Figure 5.5: Dependence of the peak C/T? on the strength of the spin-orbit
interaction. The symbols display our experimental data for the natural isotope
composition, whereas the curves display the results of the calculations for A= +

1 (black, solid), A = 0 (red, dotted) , and A = -1 (green, dashed).
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Expt. A=0 A=+1 A=-I

AE)  AAy)  AE) Al AE) Ay AE) Ay

r 0.00 0.00 0.00 0.00 0.00 0.00
0.1 12 1.31 1.67 1.33 1.61 1.32 1.64
0.2 27 2.61 3.16 2.55 313 2.59 3.20
03 4.0 3.73 4.55 3.65 4.48 3.69 4.53
04 48 54 4.72 594 4.63 5.85 4.68 591
05 5.6 6.6 5.67 1.23 5.51 7.07 5.58 7.13
0.6 6.5 7.3 6.47 8.36 6.33 8.22 6.41 8.31
0.7 7.0 84 7.21 9.37 7.04 9.23 7.13 9.30
08 7.4 9.1 7.70 10.09 7.52 9.94 7.65 10.07
09 77 9.5 8.04 10.62 7.84 10.45 797 10.57
T 7.8 9.6 8.26 10.76 8.04 10.62 8.17 10.74

Figure 5.6: Phonon frequencies (meV) along the I' — T direction, calculated for
Sb, corresponding to transverse A(E,) and longitudinal A(A,4) acoustic modes.
Experimental values from Ref. [112].

83



5.6. CONCLUSIONS CHAPTER 5. THERM. PROP. FOR SB

84



Chapter 6

Palladium dimer

6.1 Understanding magnetic properties on small pal-
ladium clusters

We did calculate the total energy with respect to variations in the distance be-
tween two palladium atoms from first principles with the use of density func-
tional theory. We found two different curves for the total energy when the two
atoms approach or retire to each other. The curve with the higher energy, around
2.44 A, correspond to the singlet state and is reached when the two atoms are
far from the internuclear distances and are moved closer. Starting with atoms
at a short distance, we proceed to increase the separation between them and we
follow the curve with the real minima which correspond to the triplet state. Be-
cause the difference between the singlet and the triplet state is the magnetization
m of the system, with m = Op and m = 2u respectively, we fixed the distance
between the Pd, atoms and did calculate the total energy vs changes in the mag-
netization. At 2.7 A, there exist only one curve that joins the point with higher
energy and the one with the lowest energy with respect to changes in the magne-
tization. Whereas, at shorter distances, e.g., ~ 2.4 A, there exist several curves
to pass from one energy to the other, that mainly due to the overlap between
different electronic orbitals. A detailed study about this behavior is presented in

this chapter.
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6.2 Introduction

Determining the electronic structure of small metal clusters is of interest in many
scientific domains ranging from catalysis to new technologies. It remains nev-
ertheless a challenge for scientist to obtain correctly the electronic structure of
small transition metals clusters, even dimers. Palladium is one of such interest-
ing chemical species for which even the dimer brings many questions. From the
strict point of view of symmetry, the 4d'° closed shell configuration should not
lead to a stable dimer. This Pd, molecule does however exist as the proximity
of the 4d°5s! configuration allows, through the mixing of both atomic configu-
ration, stabilizing the system. This molecule has already been subject to some
theoretical studies using a relativistic core potential (RCP). An extensive MRS-
DCI ab initio study by Balasubramanian [115] identifies some 41 low energy
lying electronic states for Pd,. A local spin density (LDFT) computation by
Songbook Lee and co-workers [116] identifies two triplet ground states while
Taketoshi Nakao and collaborators [117] have treated the dimer at a nonlocal
level using the Becke Perdue functional and obtain also a triplet ground state.

The purpose of our research is to obtain relevant information on small palla-
dium clusters such as geometries, binding energies, electronic properties and so
on. Pd; being the first of them, we have checked our approach on such a system
using a usual atomic orbital basis set associated to the LANDZ core potential
and the hybrid B3LYP density functional, which are known to behave fairly well
for molecular species.

6.3 The problem

Obtaining the energy at a given geometry relies on an initial guess of the density,
which in turn needs a guess at an initial Kohn Sham Orbital set. Currently, the
orbitals are obtained from low cost semi-empirical methods or from a previously
obtained density of some closely related geometry. The lowest energy orbitals
are selected to build the density. This may lead to some unexpected results, as
this trial set will induce a well-defined symmetry into the density, which might
differ from the actual symmetry of the system and lead to a state lying above
the fundamental state. Such problem will appear when the KS orbitals are lying
close together, due to the proximity of various electron configurations, or when
orbitals cross each other near definite geometries. This phenomenon is observed
in Pd, and the curve described starting from large internuclear distances is dif-
ferent from the one obtained starting from short distances. It is the case either
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for the triplet or for the singlet state. The density build upon the “n” first KS
orbitals does not correspond to the lowest energy and the self-consistent process
does not select the best set. The multiplicity will be conserved and symmetry
maintained. Even when a reordering appears, as it is the case on the triplet curve
coming from short distances (close to 2.9, 2.95 A), the newly obtained orbitals
are not yet the best. One will expect that this phenomenon be related to the qual-
ity of the used basis set. Indeed, for large basis sets, the flexibility introduced in
the density representation should be very efficient and the orbital optimisation
process should always have access to the optimal representation of the density,
while for a smaller the basis set, some rigid constrain will be introduced by a
lack of functions at disposal of the optimisation [122, 123]. This behavior is
presented in Fig. 6.1 where the curves obtained starting from both sides of the
distances are shown for the triplet as well as for the singlet using an atomic basis
set approach [124].

To solve such an uncertainty, the only way out is a check at the obtained
energy stability using an algorithm such as provided in the Gaussian package.
Nevertheless a systematic check, guaranteeing the minimal energy, is usually
unaffordable in most molecular systems. A very dense functional representation
of the density is obtained in the plane wave approach of solid-state physics. It is
the object of this paper to confront the atomic basis set approach, subject to the
above presented limitations to the plane wave approach and to try to get a better
insight in the nature of this problem by analysing both results. In addition to the
previously works that have been reported in the literature about Pd properties
and dimer in general [118-121].

Following the plane wave approach we used the ABINIT code [68—70] which
is a package that performs density functional calculations of material properties
using pseudopotentials and a plane-wave basis set. The exchange-correlation
energy was computed using the local density approximation (LDA) in the Teter-
Pade parametrization [50] and the pseudopotential used was the Hartwigsen-
Goedecker-Hutter (HGH) pseudopotential [29] which is a norm-conserving rel-
ativistic separable dual-space Gaussian pseudopotential and is generated on the
basis of a fully relativistic all-electron calculation. Using this pseudopotential
it is also possible to reproduce only scalar relativistic effects by neglecting the
terms for the SO contribution from HGH : this pseudopotential contains sepa-
rately an average potential (that contains all scalar parts of the relativistic pseu-
dopotential), and a vector part.
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Figure 6.1: Total energy vs. bond length considering different kind of approxi-
mations

6.4 Results

Using plane waves as a basis set as implemented in the ABINIT code we con-
sidered different approximations in calculating the total energy of the dimer.
These are the non-spin-polarized, spin-polarized, non-spin-polarized including
spin-orbit interaction, and the full density matrix (spinorial, spin-polarized wave
functions) including spin-orbit interaction (see Fig. 6.2). The latest will be stud-
ied in detail in Chapter 7. In the specific spin-polarized case we found a similar
kind of results as the obtained using the atomic basis set approach (see Fig. 6.1
and Fig. 6.3 for compari).

Starting from here we shall be focused in the spin-polarized case approxima-
tion. The lowest energy (green line) curve is obtained from calculations starting
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Figure 6.2: Total energy vs. bond length considering different kind of approxi-
mations

at short distances (2 A). This curve has magnetization equal to two, in Bohr
magneton units, that correspond to the triplet state, however, this magnetization
value is keeped only until the curve joins the others at around 2.9 A. On the
contrary, the red dotted line has magnetization equal to zero (singlet state) and it
is obtained from a calculation when the atoms are at 4.0 A. In this case the mag-
netization becomes two when the curve jumps down and joins the green dotted
line around 2.2 A. That means that the triplet state has the lowest energy at short
distances, but around 3.0 A the curve with the lowest energy correspond to the
singlet state. This effect is showed in Fig. 6.2 (b) where the energy vs. bond
length is plotted for the specific singlet and triplet cases.

Considering the previous result it is quit clear that the magnitude of the mag-
netization is the only variable that should be changed in order to jump from the
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singlet to the triplet curve and vice versa. To ensure that this consideration is
true, we fixed the distance between Pd atoms and changed the magnetization
value from zero (singlet state) to two (triplet state) and vice versa. When the
two Pd atoms are a bit far to each other, around 2.7 A and 2.6 A there exist only
one well defined energy value in the singlet and the triplet state, hence the curve
that joins these two points is unique. At shorter distances the electronic orbitals
for each atoms start to overlap. At this point more than one value for the total
energy, in the singlet state, appears and consequently there exist more than one
curve joining these two points. In Fig. 6.3 each curve has an specific and a well
defined electronic configuration an also an specific occupation numbers for each
electronic orbital.
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Figure 6.3: Total energy vs. magnetization. The distance between Pd atoms is
fixed at 2.4A
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At 2.4 A we found that the triplet state has a well defined electronic state that
gives a unique energy value. On the other hand, in the singlet state there exist
many states, with different energy each of them, near to each other. Something
interesting is that the triplet and the lowest singlet state have a spin restricted
configuration, i.e., although there are partially filled levels in the iterative pro-
cess, the ground state is one of integral occupation numbers [125]

Trying to get and follow an specific curve showed in Fig. 6.3 is not the
only problem using LDA and standard DFT method, but also trying to relax the
structure for fractional occupation numbers and orbital coefficients because it
causes slow convergence during the final stage when orbitals are fairly close to
each other and to the Fermi energy.

We analysed in detail all the curves showed in Fig. 6.3. Each curve is de-
fined in term of its electronic configuration and the orbital occupation number.
It is possible to plot the relative energies of the atomic orbitals as a function
of the magnetization. With that information it is also possible to know how
the electronic structure and the atomic orbitals occupation number is evolving
with respect to variation in the magnetization. The lowest energy correspond to
the triplet state in which the spin up electronic configuration, from the higher
to the lower energy, is given by 7*(4d,.;)" 0(5s)' 6*(4dy2_y24,)! 0% (4d,2)1,
and the spin down electronic configuration is o*(4d,2)* o(5s)! m*(4ds.y.)"
0* (4dy2_y2 o).

The Figures, from 6.4 to 6.11, are self explained. Each of these curves show
in detail the electronic configuration and the occupation number for each of
these states. At the top, these figures show the magnitude of the eigenvalues
for the spin-up (left hand) and for the spin-down (right hand) configuration. At
the bottom, the occupation numbers for each of the eigenstates are shown. For
simplicity, we show only the occupation of the eigenvalues that have fractional
occupation.

6.5 Conclusions

We did a detailed analysis of the electronic structure and population for palla-
dium dimer considering the spin-polarized approximation and we find that the
singlet state is composed for many different energy levels. The triplet state on
the contrary, which correspond to the real ground state, has a unique and well
defined energy value. The ground state is a triplet formed for the spin-up config-
uration 7*(4d,. ;)" o(5s)! 0% (4d;2_y2 2y)" 0*(4d;2)", and the spin-down con-
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figuration 0*(4d,2)! o (5s)' 7*(4dgzyz)' 6*(4dy2_y2 zy)*. This are ordered from
higher to lower energy and Fig. (6.8) shows the way in which each bonding or
antibonding is evolving from magnetization equal to zero to magnetization equal
to two. Taking a look in detail in this figure, it is easy to notice that o*(4d,2)" is
the reponsible for this kind of behavior. Specially analysing the occupation for
the spin-down configuration (see Fig. 6.8d), it is easy to realize that it pass from
an empty to a completely full occupied state and that the (5s)! is completely
empty along.

Also interesting is that the singlet state with lowest energy has a spin re-
stricted configuration similar to the triplet state, but with an strong polarization
in the charge distribution, i.e., for the spin-up configuration the energy levels or-
dered from highest to lowest energy are o*(4d,2)! with only one atoms having
this charge distribution, lets say the left atom, 7*(4d,, ,.)* double degenerated,
6*(4dy2_y2 4,)", double degenerated but this time and again only one atom with
this configuration, but now lets say the right atom with a bit more amount of
charge 0*(4d,2)!
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Figure 6.4: Atomic orbitals (Figures (6.4a) and (6.4b)) and occupation number
(Figures (6.4c) and (6.4d)) to the curve with the highest energy in Figure 6.3.
Figures (6.4a) and (6.4c) correspond to the spin-up case. Figures (6.4b) and
(6.4d) correspond to the spin-down case.
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Figure 6.5: Atomic orbitals (Figures (6.5a) and (6.5b)) and occupation number
(Figures (6.5¢) and (6.5d)) to the curve with labeled as (iv-h) in Figure 6.3.
Figures (6.5a) and (6.5¢) correspond to the spin-up case. Figures (6.5b) and
(6.5d) correspond to the spin-down case.
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Figure 6.6: Atomic orbitals (Figures (6.62) and (6.6b)) and occupation number
(Figures (6.6¢) and (6.6d)) to the curve with labeled as (iv-1) in Figure 6.3. Fig-
ures (6.6a) and (6.6c) correspond to the spin-up case. Figures (6.6b) and (6.6d)
correspond to the spin-down case.
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Figure 6.7: Atomic orbitals (Figures (6.7a) and (6.7b)) and occupation number
(Figures (6.7c) and (6.7d)) to the curve with labeled as (iii) in Figure 6.3. Fig-
ures (6.7a) and (6.7c) correspond to the spin-up case. Figures (6.7b) and (6.7d)
correspond to the spin-down case.
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Figure 6.8: Atomic orbitals (Figures (6.8a) and (6.8b)) and occupation number
(Figures (6.8c) and (6.8d)) to the curve with labeled as (ii) in Figure 6.3. Fig-
ures (6.8a) and (6.8c) correspond to the spin-up case. Figures (6.8b) and (6.8d)
correspond to the spin-down case.
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Figure 6.9: Atomic orbitals (Figures (6.9a) and (6.9b)) and occupation number
(Figures (6.9c) and (6.9d)) to the curve with labeled as (i-h) in Figure 6.3. Fig-
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correspond to the spin-down case.
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Figure 6.10: Atomic orbitals (Figures (6.10a) and (6.10b)) and occupation num-
ber (Figures (6.10c) and (6.10d)) to the curve with labeled as (i-1) in Figure 6.3.
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(6.10d) correspond to the spin-down case.
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Figure 6.11: Atomic orbitals (Figures (6.11a) and (6.11b)) and occupation num-
ber (Figures (6.11c) and (6.11d)) to the curve with the lowest energy, labeled
as 0 in Figure 6.3. Figures (6.11a) and (6.11c) correspond to the spin-up case.
Figures (6.11b) and (6.11d) correspond to the spin-down case.
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Chapter 7

Non collinear calculations including
spin-orbit interaction

7.1 Non collinear calculations including spin-orbit
interaction

In this chapter we consider the noncollinear magnetic and the spin-orbit cou-
pling approximations, both of them at the same time in the calculi. First, we
have started with the most simple case, the non-spin-polarized approximation,
and we continue improving the calculi with new approximations, like the spin-
polarized one. Finally, we compare the results of the previous mentioned ap-
proximations with the results we get considering the noncollinearity and the
spin-orbit coupling at the same time. In the first section of this chapter we ana-
lyze the electronic structure of bismuth and palladium atom. In the second sec-
tion are discusses the electronic properties of the bismuth and palladium dimers.
Finally, in the third section we present a tight-binding like theoretical study.

7.2 Bi and Pd atom, isolated in a big bdx

In order to calculate electronic properties for bismuth and palladium, we used
the ABINIT code [68-70]. As we mentioned en previous chapters, this package
performs density functional calculations of material properties using pseudopo-
tentials and a plane-wave basis set. The exchange-correlation energy is com-
puted using the local density approximation (LDA) in the Teter-Pade parametriza-
tion [50]. We used the Hartwigsen-Goedecker-Hutter (HGH) pseudopotential
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[29] which is a norm-conserving relativistic separable dual-space Gaussian pseu-
dopotential and is generated on the basis of a fully relativistic all-electron calcu-
lation. Using this pseudopotential, we included SO interaction effects relevant
for heavier elements like Bi. It is possible to reproduce only scalar relativis-
tic effects by neglecting the terms for the SO contribution from HGH : this
pseudopotential contains separately an average potential (that contains all scalar
parts of the relativistic pseudopotential), and a vector part.

Since we are working with an isolated bismuth and palladium atom there is
no dispersion in the band structure and we just need 1 k point grid to approxi-
mate the integrals on the wavevectors of the electronic wavefunction.

We used a metallic occupation level that correspond to the the Gaussian
smearing, corresponding to the 2-order Hermite polynomial of Ref. [74]. The
broadening of occupation numbers was determined by a smearing energy of 0.01
Ha.

Bismuth nucleus is quite heavy, with atomic number Z = 83. Palladium
cluster is magnetic, with atomic number Z = 46. In bismuth, only the 6s26p®
electrons can be considered as valence electrons, that because only s and p levels
will mix in the solid, while the other d-electron and core electron levels will
remain practically unchanged. For palladium, the electronic configuration is
[K'T]4d'°5s°, for that reason we consider ten valence electrons for this atom.

First in the most simple approximation, i.e., considering the wavefunction as
an scalar, the spin-unpolarized approximation and considering no spin-magnetization.
For bismuth we obtain that the s level is double occupied and the p level single
occupied. Because we are no considering relativistic effects, we did not get any
splitting in the p level. For that reason we only mention that the differences in
energies between the 6s% and the 6p® levels is about 9.9 eV. Followin a similar
study, the differences in energies between the 4d'° and the 4p® is about 47 eV,
which is really big.

Finally, considering the most general case, i.e., the noncollinearity and the
spin-orbit interaction, we obtain that on bismuth, the spin-orbit interaction split
the external p atomic levels by about 1.42 eV (6p'/2 — 6p*/? splitting), an effect
that can be seen in the electronic density of states of the periodic solid. On
palladium, the spin-orbit interaction split the external d atomic levels by about
0.44 eV (4d°/? — 4d%/?).
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7.3 Bi2 and Pd2 isolated in a big box

we also analyzed the bismuth dimer and palladium dimer. The technical details
are quite similar to the crystalline case, except that we placed the system in a
big cell. We found that the bond distance between a pair of Bi atoms is equal
to 4.8607 Bohr for the case when the SO is not considered, while it is equal
to 4.9166 Bohr when the SO coupling is taken into account. Going from the
molecule to the solid decreases the nearest-neighbor distance significantly. The
SO interaction causes a little increment in the bond length, in agreement with
our previous result for solid Bi. The longitudinal IFC is equal to the on-site
IFC for a dimer. In the case without SO, we obtain an on-site IFC value of
157.7 x 103 Ha/Bohr?, while it drops to 130.5 x 103 Ha/Bohr? when the SO
coupling is taken into account. Although the IFCs in the solid and the molecule
are quite different, the effect of SO is qualitatively the same again.

Both the lengthening of the bond length increase and weakening of the IFCs
can be rationalized, in a very qualitative way, by an analysis of the electronic
structure of the molecule. Indeed, in the case without SO, the HOMO corre-
sponds to twofold degenerate bonding 7 states, the LUMO corresponds to anti-
bonding 7* states also twofold degenerate, separated by 2.2 eV only. Turning on
the SO coupling leads to a mixing of bonding and antibonding orbitals, weak-
ening the bond and increasing the bond length, on one hand. On the other hand,
it diminishes the energy gap between the HOMO and the LUMO to a value of
1.3 eV, an effect that weakens the IFCs.

In addition to the details previously mentioned. We also calculate the total
energy of the bismuth dimer as a function of the distance. A similar study was
done in chapter 6, the big difference with that results is that in chapter 6 we only
consider the spin-polarized approximation, and here, the noncollinearity and the
relativistic effect is considered. Because bismuth is not magnetic we did not find
differences in the magnitude of the total energy neither starting our calculations
at short distances between bismuth atoms nor starting the calculations at larger
distances. At distances larger than 3 A, there exist two curves that have different
energies. This difference is due to the initial magnetic configuration that we
impose to the system and not to a magnetic effect.

For palladium we also did the same kind of calculation. Again we found
an hysteresis effect. This curves was obtained starting the calculation at 4 A
between palladium atoms. Imposing to the system different initial magnetic
configurations we follow curves with different energies. That shows again the
hysteresis effect, and in general, the magnetic properties in palladium dimer.
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Figure 7.1: Total energy vs bond length. Because bismuth is not magnetic we
did not find differences in the magnitude of the total energy neither starting our
calculations at short distances between bismuth atoms nor starting the calcula-
tions at larger distances

7.4 Tight Binding model

In this section we consider again a bismuth atom and we investigate the many-
body treatment of the effect of spin-orbit coupling for the Bi atom using tight
binding like a model. Focusing only on the open shell (6p, with three electrons).
As taking into account closed shells (6s and others, lower in energy) should not
make appear any contribution fromo spin-orbit to first-order, this is the crucial
information.
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Figure 7.2: Total energy vs bond length. It is clear that there exist a hysteresis
effect that split the path in two curves with different energies. This kind of effect
does not occur in bismuth dimer.

7.4.1 Evaluation of the expectation value of the Spin-Orbit
operator - bismuth atom

The electronic configuration for bismuth is Bi = [Xe]4f'*5d'°6s*6p°. Consid-
ering [ = 1 (p orbitals) and the two possible values for the spin of the electron,
ms = £1/2, the standard basis that should be considered is:

(1 +1; 1 0; 1 —=1; L +1; | 05 | —1). (7.1)

On the other hand, we want to analize the spin-orbit coupling dependence
defined in the hamiltonian and also the depencende of this term with respect to

a perturbational \ parameter:
HSOC = A é(T‘)L -S. (7.2)
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The spin-orbit operator, at lowest order in many-body theory, is the sum of
independent-particle spin-orbit operators,

Z(Lm . Sa:i =+ Lyi : Syi + Lz’i . Szi)a (73)

The operator L - S related with the spin-orbit interaction can be rewriten in

terms of the shift (lowering-raising) operators L., L_, S, and S_, adjoints to
each other and the z components,

L.S— %(L+S_ +L_S,)+L.S,, (7.4)

where each of the shift operators is defined as:

Ly =L,+iL,
L_=L.—ilL,
S, = S, +15,.
S_ =8, —iS, (1.5)

Using the basis given by (7.1) and the latter operators,

LiS_|T +1> =0
LyS_|1 0> = v28|] +1>
L.S_|T —-1> V2Bl 0>
L.,S_|| +1> =0
L,S|] 0> =0
L.S|| —1> =0

LS, 7 +1> =0
L.S.|T 0> =0
LS )T -1> =0
LS|l +1> = V28|71 0>
L_S.l 0> = v28|1T -1>
LS|l -1> =0
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LS,|1T +1> = %IT +1>
L,S|T 0> = 0
LS|T 1> = —%m ~1>
LS|l +1> = —%H +1>
LS, 0> = 0
LS|l -1> = %|1—1>

In order to determine all the eigenvalues it is necessary to determine the
secular equation given by,

in matrix notation the secular equation can be written as follow,

er+A5—€¢ 0 0 0 AgV28 0
0 € —€ 0 0 0 A$V28
0 0  e-A%—ce 0 0 0 _ 0
0 0 0 €L —A§ —¢ 0 0 -
A%V28 0 0 0 € —¢€ 0
0 AgV28 0 0 0 e +Xr§—c¢
a.m
This matrix can be represented as:
a 000g O
0b0OOGYg
00 cO0O0O]| _
0o00doo |0 (7.8)
g 000 eeO
0 g 000 f

where the value for each term in the expression (7.8) is directly related with
(7.7). We find that the secular equation (7.6) can be rewriten as:

cd(ea — g*)(fb—¢°) =0 (7.9)
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The six eigenvalues can be obtained from last equation,

€ = eT—)\g;

€ = el—)\%;
AL — A2)) 2

o = larlas »)i\/(q e+ 2>) ¢ (hapy
AZ — A9\ 1

o = (6r+(€;+ 2))i\/(5T (6;4" 2)) +(ﬁ)‘aﬂ)2

In order to find the value for « it should be enough to put A = 1 and to plot
a linear value for the energy €; 5. To find the value for 3 it would be needed to
plot the total energy for the non-linear cases €3 456 and to change [ to fix the
curve considering A = 0 or A = 1.
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Chapter 8

Conclusions and perspectives

Density Functional Theory has proved to be highly successful in understanding
magnetic anisotropies, i.e., magnetic properties where the magnetic moment has
a preferential direction. In particular we used this theory to understand one of
the most important relativistic effects, the spin orbit interaction, and its effect
in vibrational and thermodynamic properties. We also show the important of
considering freedom in the orientation of the intrinsic electronic magnetic mo-
ment. Finally, we analyze our systems with both approximations. We calculate
the total energy on different dimers and these results were compared with cal-
culations using the spin polarized approximation, i.e., we compare our results
with approximations where only the spin-up and the spin-down configuration
are allowed in a system. The spin-orbit interaction and the noncollinear mag-
netization are some the most important theoretical considerations in the field
of magnetism, but of course, these are not the only approximation that play an
important role in to deal with magnetic systems.

It is not necessary to clarify, but important to mention that magnetism is a
young area of research. Young in the sense that recently, it dates back from
1980’s, this field of research has acquired importance. Mainly because the 2007
Nobel Prize in physics was awarded to Albert Fert and Peter Griinberg for the
discovery of giant magnetoresistance. Also the discoveries in a new field called
spintronic were quite rapid, and the path toward a new technology started to
appear quite early. That originated a boom in the field of magnetism. The spin-
tronic not only exploit the fundamental electronic charge of the electrons but
also the intrinsic spin of electrons and its associated magnetic moment. The
word spintronics is an acronym for spin transport electronics that was first in-

troduced in 1996.
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Further applications abound, at present it is normal to apply this effects in
the storage density of hard drives or in magnetic random access memory. The
conventional electronic is based on the charge of the electron, but thinking in the
future, one could imagine to have full control of the other fundamental property
of the electron, its intrinsic magnetic moment. To control the spin is very useful
to store much more amount of information in hard disks. Another important
aspect is the spin momentum transfer that might be useful to send information
through long distances in a faster and more secure way. In adition, all these
applications are potentially lower in power, for that reason, that is reflected
in reduction in energy costs. Complementary-metal-oxide-semiconductor are
special magnetic materials like the used in microprocessors, microcontrollers,
static RAM, and other digital logic circuits. Another interesting topic is the spin
momentum transfer that might be useful to send information through long dis-
tances in a faster and more secure way. The purpose of the last thrust, designated
quantum spin effects, was to explore the possibility of using the spin degree of
freedom as a quantum bit for quantum information processing. Underlying all
of these thrusts, one is the development and understanding the behavior of the
spin degree of freedom in various semiconductors, both ferromagnetic and non-
ferromagnetic, and the vigorous pursuit of new ferromagnetic compounds that
have Curie temperatures well above room temperature.
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Appendix A

Density Matrix and Spin Density
Vector

This appendix is devoted to clarify in a bit more detail the origin of the magne-
tization components, m;, my, and m,, in term of the components of the density
matrix p;;. The comprehension of the continuous variation in the orientation
of the magnetization is crucial for studying systems where magnetic excitations
play an important role, such as spin waves, or to threat magnetism at finite tem-
perature. More detailed information about it can be found in section 2.4. First
we shall introduce the density matrices from the general point view.

In his book on statistical mechanics Feynman makes the following statement
about the density matrix. When we solve a quantum-mechanical problem, what
we really do is divide the universe into two parts - the system in which we are
interested and the rest of the universe. We then usually act as if the system
in which we are interested comprised the entire universe. To motivate the use
of density matrices, let us see what happens when we include the part of the
universe outside the system [133].

In that context, let z describe the coordinates of the system, and let y de-
scribe the rest of the universe. Let ¢;(x) be a complete set of wave functions.
The most general wave function can be written,

W(z,y) = Z Ci(y)ei(z). (A1)

Using Dirac notation, let |;) be a complete set of vectors in the vector space
describing the system, and let |6;) be a complete set for the rest of the universe.
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pi(z) = (z|lps) and 6:(y) = (y|6;). (A.2)
The most general wave function can be written as,

¥) Z%ww (A3)

U(z,y) = (ylzly) = ZCU ;) (y165)- (A4)

Equation (A.1) can be obtaining by taking,
Ci(y) =Y _ Ci;(ul6;). (A.5)
J
Now let A be an operator that acts only on the system; that is to say, A does

not act on the ;. When A acts on product states (for example, |¢)) we really
mean A|a)|b) = (A|a))|b). In such a case A does not equal,

> Awleipnl, (A.6)
but equals,
> Aiile:)16;) (0510 (A7)
ii’j
Then,
(A) = (W|Aly) = Z (8] (1) Alips) |657) (A.8)
= Z ileilAlgs), (A.9)
iji’
= > (eilAlpr)pi, (A.10)
(A.11)
where,
pri =Y _ C;Cy; = density matrix. (A.12)
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We define the operator p to be such that py; = (@i |p|p:). p operates only
on the system described by z.

WlAly) = D (wlad lee)(prlele), (A.13)

i

= > (vilAplp:) = TipA. (A.14)

Where we have used the result,
Z lo#) (| =1 (by completeness arguments). (A.15)
From Eq. (Ai. 12), it is obvious that p is hermitian. Therefore it can be diago-
nalized with a complete orthonormal set of eigenvectors |:) and real eigenvalues
Vi,
p =2 vili)Gl (A.16)
If we let A be 1, we obtain, 1

Zvi =Trp = (4) = (Y[¥) = 1. (A.17)

If we let A be |i)(i'| we have,

vy = TrpA = (A) = YlAlY) = Z((wli'>l9‘>)(( il(¥)) (A.18)

- Zl (6,1 )1 (A.19)

Therefore,
v; >0 and sz- =1. (A.20)

We now consider the concept of a density matrix independent of the preced-
ing motivation. First let us reformulate quantum mechanics:
Any system is described by a density matrix p, where p is of the form

Zz Ull >< | and
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a) the set |¢) is a complete orthonormal set of vectors.
b) (2 > 0.
C) Zi v; = 1.

d) Given an operator A, the expectation of A is given by

(A) = TrpA. (A21)
Notice that,

(4) =TipA = Z 'lpAl) sz i)l Al)
= Zvl i|Ald). - (A22)

Since (i| A|i) = the expectation value of A in the state |i), it is obvious from
(b), (c) and Eq. (A.22) that we can interpret the v; as the probability that the
system is in state ¢. If all but one of the v; are zero, we say that the system is in
a pure state; otherwise it is in a mixed state. It is easy to show that a necessary
and sufficient condition for a pure state is p = p?

Now here lets try the specific example of density magnetization vector in
terms of the density matrix. In quantum mechanics, it is often convenient to
introduce the dimensionless operator o, proportional to S by,

S = ga, (A.23)

here, S represent the intrinsic magnetic moment of the electrons and the matrices
which represent the three components of o in the {|+), |—)} basis are called the
Pauli matrices which are defined as,

01 0 —i 1 0
ax=(10), cryz(z. 0), az:(0_1>.(A.24)

Now, we shall consider an arbitrary 2x2 matrix in term of its components,

P11 P12
=p= A.25
plr)=p ( P21 P22 > ' ( :
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this matrix can always be written as a linear combination of the four matrices I,
aI’ ayv az ’

(2 ) (o ) (e )]

11 P21 ) , (A.26)

where n, m,, m,, and m, are in general complex numbers and I is a unitary
matrix defined as usual,

10
I=<0 1). (A.27)

Considering Eq. (A.26) and writing n and m; values in term of p;; compo-
nents, it is possible to write the density matrix p as,

p= P11 ';',0221 4 P2 '; P21 . Pt ; Pz1ay 4 Pu ; '0220'z- (A.28)

From this equation it is easy to identify n(r), m,(r), my(r), and m,(r) in
terms of the p;; components as follow,

n(r) = pu+pa, (A.29)
me(r) = p1z+ pa, (A.30)
my(r) = i(pu1 — pa)s (A.31)
m,(r) = pu — p2, (A.32)

from here it is clear that p is Hermitian, if and only if n, m; (i = z,y, 2) are

real.
Just to simplify the equation (A.28), we shall write it in a shorter form,
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p) = g+ 33 (Tr(po) o, (a3
p(r) = %n(r)l—i—%z:mi(r)a’i. (A.34)

At this point it is important to clarify that letters in Greek represent matrices
and letters in Latin represent vectors, that is just to clarify the notation that have
been used. Finally, last equation can be written as,

p(r) = %n(r)l + %m(r) .o, (A35)

here it is easy to realize that n(r) and m(r) can be written in terms of the matrix
traces as follow,

n(r) = Trp, (A.36)
m(r) = Tr(po). (A.37)

From these expressions now it is clear that we can express each component
of the spin density magnetization m(r) in terms of the Pulay matrices o and
density matrix p(r).
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Appendix B

Neutron Inelastic Scattering
Experiment

The experimental method explained in this appendix is the one expounded in
the paper published by Yarnell J. L., et. al. [72].

The experimental dispersion curves were obtained by observing the coher-
ent inelastic scattering of monoenergetic neutrons due to a process in which a
single phonon is created in the sample crystal. If Aw and ~Q are the energy and
momentum transferred from the neutron to the crystal, then this “one-phonon”
scattering can take place only when w and Q are equal to the frequency and
extended-zone wave vector of one of the phonons in the vibration spectrum of
the crystal. The first-zone wave vector of the phonon is givenby q = Q — G,
where G is 27 times a reciprocal lattice vector.

The conditions of the experiment were arranged to keep Q fixed at a desired
value in the reciprocal lattice of the sample crystal, while scanning a preselected
range of values of w. A phonon of wave vector Q was indicated by the detec-
tion of a neutron group centred at the phonon frequency, and having a width
determined by the instrumental resolution and the natural width of the phonon.

Thermal neutrons from the Los Alamos Omega West Reactor fall on the
mono chromator crystal, which selects those having the desired incident energy
by Bragg reflection, and directs them through the incident neutron collimator
and monitor counter onto the sample crystal. Similarly, the scattered neutron
collimator and analyzer crystal direct neutrons having the desired final energy
into the B'°F; counter. The neutron momentum change is determined by the
initial and final energies, and the scattering angle B. Orientation of the sample
crystal with respect to the neutron momentum-change vector is accomplished
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——NEUTRON BEAM

INCIDENT NEUTRON
COLLIMATOR

FISSION COUNTER
"""  BEAM MONITOR

—— SAMPLE CRYSTAL

SCATTERED NEUTRON
COLLIMATOR

\—x-4XI1S OF \

\ SAMPLE CRYSTAL

Figure B.1: Schematic diagram of the three-axis spectrometer used to determine
dispersion curves in bismuth.

by adjustment of angle C. The sample crystal is initially aligned so that a se-
lected crystallographic plane is parallel to the plane of the spectrometer, and the
orientation of some axis in that plane is known in terms of the spectrometer set-
tings. In any given measurement, the incident neutron energy is held constant,
while angles A, B, and C are varied automatically according to a precomputed
program to produce the desired scan. A diagram of such three-axis neutron
diffraction is shown in Fig. B.1.
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Appendix C

Calorimeter

In this appendix is explained the experimental setup used to measure the heat
capacity at low temperatures as it was done and exposed in previous chapters.

The applied principle, C' = 6Q/4T, which describes that the heat capacity
C of the sample, is determined by the pulse heat 6Q supplied to the sample
and the temperature rise 07, is well known. Ever since Eucken [129] in 1909
and Nernst [130] in 1910, a great number of improvements have been made to
refine the experimental technique of the method. Efforts were especially made
to measure small samples as well as to improve the adiabatic circumstance of
samples.

In the relaxation method, the sample coupled with the addenda is thermally
connected by a weak heat link to a heat sink held at constant temperature 7Ty;
the heat capacity is derived from modelling the thermal response to the applied
heating power. The methods are therefore beneficial both to permit removal of
the heat switch and to measure the heat capacity of small sample down to very
low temperature. This method also has, however, their inherent limitation. The
relaxation method requires a properly selected heat link, or more precisely, a
proper 7.

Here 7, is a time constant used to characterize the temperature equilibrium
between the sample holder and the heat sink. In relaxation method, for exam-
ple, if 7; becomes too long as to approach the adiabatic region, then the time
required for accurate determination of 7; as well as the time awaited for thermal
equilibrium at a new T would be excessive. On the contrary, if 7; is too short,
fast electronics are demanded and the serious problem of the “7, effect” [131],
arises once poor thermal connection occurs among the sample and the addenda.
Since 7, (T') = ¢;(T")/\i(T) in relaxation method, the limitation on 7, results in
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Sample

P

P(t) —=—p Sample Holder ¢ T

c.T

< Heat Sink

Figure C.1: Model for sample and sample holder with 7, effect.

restriction on the sample mass [or ¢;(T), more precisely] and the temperature
range of measurement (see Figure C.1) [132].

The 7, effect, arises from the poor thermal connection between the sample
and the sample holder. J; is the thermal conductance between the heat sink and
the sample holder, and ), is the thermal conductance between the sample and
the sample holder. Note that this model can be used to describe the dynamic
temperature response of a real calorimeter simply by the assumption that the
heater and the sensor are firmly attached to the sample holder with immediate
thermal response, and that the thermal conductance of the sample and the holder
is very large in comparison with ); and ), . Thus the heat capacities of the sensor
and the heater can be included in the holder ¢’ . It is also assumed that \;, A, , ¢
and ¢ are all temperature independent within a small temperature rise.

The heat capacities in the temperature range 1.8 K - 100 K for bismuth and 2
K - 50 K for antimony were measured using a Physical Property Measurements
System calorimeter Quantum Design, 6325 Lusk Boulevard, San Diego, CA.
employing the relaxation method. The relaxation method is a remarkable nona-
diabatic technique favoured for small sample calorimetry. A diagram is showed
in Figure C.2. :
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Figure C.2: Schematic diagram of immersion cryostat for heat capacity mea-
surement (up), and Schematic drawing of simple calorimeter for CFM (down).
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List of Publications

e L. E.Diaz-Sanchez, A. H. Romero, and X. Gonze, Phonon band structure
and interatomic force constants for bismuth: Crucial role of spin-orbit
interaction, Physical Review B 76, 104302 (2007).

e L. E. Diaz-Sénchez, A. H. Romero, M. Cardona, R. K. Kremer, and X.
Gonze, Effect of the Spin-Orbit Interaction on the Thermodynamic Prop-
erties of Crystals: Specific Heat of Bismuth, Physical Review Letters 99,
165504 (2007).

e J. Serrano, R. K. Kremer, M. Cardona, G. Siegle, L. E. Diaz-Sanchez, and
A. H. Romero, Specific heat of Sb: Isotopic and spin-orbit effects from
measurements and ab initio calculations, Physical Review B 77, 054303
(2008).
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