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Anisotropías Magnéticas desde Primeros Principios

M. en C. Luis Enrique Díaz Sánchez

Resumen

De manera reciente, ha adquirido especial importancia entender el compor

tamiento magnético de los sistemas en los que la dirección del momento magné
tico es no-colineal. Por no-colineal nos referimos a que los momentos magnéticos
asociados con los iones del cristal no están alineados a lo largo de un mismo eje.
Los dos formalismos teóricos básicos para el estudio y comprensión de este

tipo de efecto magnético son la teoría de magnetismo no-colineal y la teoría

de interacción espin-órbita. La teoría de magnetismo no-colineal permite con

siderar todos los grados de libertad del espín de los electrones, es decir, la di

rección de la magnetización se convierte en una variable que cambia de manera

continua con respecto a la posición. La no-colinealidad desacopla el espín de

los electrones de la red cristalina. Una vez que el espín es desacoplado de la

red, la interacción espin-órbita permite acoplar esta magnetización con el mo

mento angular del electrón, el cual se mueve alrededor del núcleo. La inter

acción espin-órbita es también responsable de muchos otros fenómenos físicos,

algunos de ellos presentados en este trabajo. Algo extraño es que la interacción

espin-órbita es un efecto relativista que los investigadores no suelen tener en

cuenta en los cálculos computacionales, incluso para los sistemas con elemen

tos pesados en el que resulta necesario tener en cuenta dicha interacción. Por

otro lado, la teoría funcional de la densidad es uno de los métodos más utiliza

dos para realizar cálculos de dinámica molecular, ab initio, para estudiar las

estructura de los átomos, moléculas, cristales, superficies y sus interacciones

en general. Dentro de esta teoría es posible utilizar las dos aproximaciones
mencionadas anteriormente, las cuales son importantes como ya se había men

cionado, para estudiar las anisotropías magnéticas. En particular, hemos uti

lizado el código ABENIT, el cual es un código basado en la teoría funcional

de densidad, para mostrar la importancia que tiene la interacción espin-órbita
en el cálculo de propiedades vibracionales y termodinámicas para bismuto y

antimonio. También estudiamos propiedades de magnetismo colineal y no co

lineal considerando al mismo tiempo la interacción espin-órbita, es decir, con

siderando ambas aproximaciones de manera simultanea para estudiar paladio y
bismuto. En general este tipo de estudios han adquirido especial interés en en

tender no solo las anisotropías magnéticas, sino también la espintrónica, ondas

de espín o magnetorresistencia gigante.



Magnetic anisotropies from first principies

M. en C. Luis Enrique Díaz Sánchez

Abstract

Nowadays, there is a growing realization of the importance of understanding
the magnetic behaviour of systems in which the magnetic order is noncollinear.

By noncollinear we mean that the magnetic moments associated with individual

ions in the crystal are not aligned along the same axis. The two basic theoretical

formalisms to study this kind ofmagnetic effect are the noncollinearmagnetism
and the spin-orbit interaction theories. The noncollinear magnetic theory per-

mits to consider all the degrees of freedom in the spin of the electrón, i.e., the

direction of the magnetization becomes a continuous variable of position. The

noncollinearity decouples the spin of the electrón from the lattice of the crys

tal. Once the spin is decoupled from the lattice, the spin-orbit interaction permit
to couple this magnetization with the angular magnetic moment of the electrón

that is moving around the nucleus. The spin-orbit interaction is also responsi-
ble for many others physical phenomena some of them presented in this work.

Something unexpected is that the spin-orbit interaction is a relativistic effect

that researchers not normally take into account in computational calculations

even for systems with heavy elements where it might be necessary to consider

this interaction. On the other hand, density functional theory is one of the most

widely used methods for molecular dynamic ab initio calculations of the struc

ture of atoms, molecules, crystals, surfaces, and their interactions. Within this

theory it is possible to use both considerations, previously mentioned, which are

important in studying magnetic anisotropies. In particular we used the ABINIT

software, which is an ab initio code based in density functional theory, to show

the importance role of the spin-orbit interaction in calculating vibrational and

thermodynamic properties for bismuth and antimony. We also studied collinear

and non collinear magnetic properties considering spin-orbit interaction, i.e.,

considering both approximations for palladium and bismuth. In general these

kind of studies have acquired special interest in understanding not onlymagnetic

anisotropies but also in spintronic, spin waves, or giant magnetoresistance.
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Chapter 1

Introduction

At present theoretical computational physics has acquired importance due to the

advances in different theories that have permitted to reproduce, demónstrate and

predict experimental results in many kind of systems. In particular, at present
the Density Functional Theory (DFT) is one of the most used theories that re

searchers have been used in order to understand ground states or excited states.

These properties are important in studying electronic, magnetic and many others

properties. The DFT has been mainly used because the simplicity of the theory
and also because the reliability to implement such equations in an ab initio code.

The topic of this thesis "Magnetic anisotropies from first principies" was

chosen because the interest, mine specially, that have grown in understand many

properties like in spintronic, giant magnetoresistan, magnetic memories, or spin

waves, just to give some examples. The basic theories to study these kind of

magnetic effects are the the noncollinear magnetism and the spin-orbit interac

tion theory. The non-collinear magnetic theory permit to consider all the degrees
of freedom in the spin of the electrón. For that reason, the noncollinearity de-

couples the spin of the electrón from the lattice of the crystal. Once the spin is

decoupled from the lattice, the spin-orbit coupling is the responsible of coupling

again this magnetization with the angular magnetic moment of the electrón that

is moving around the nucleus. The spin-orbit interaction is a relativistic effect

normally not taken into account in computational calculations. Not consider

ing this approximation is appropriate in studying light atoms because the energy
contribution corning from the spin-orbit coupling is small compared to the rest

of the total energy. Once one starts working with heavy atoms, transition met

áis and specially those above the five period in the periodic table, the inclusión

of the spin-orbit interaction becomes crucial in order to reproduce experimental

1



CHAPTER 1. INTRODUCTION

results.

This thesis is divided in two main parís. In ihefirstpart the theoretical back

ground about the density functional theory is explained in detail, though in a

general way. The noncollinear magnetism and the spin-orbit interaction theo

ries are the two main theories necessary to understand magnetic anisotropies.
For that reason, we extended the treatment of both theories at the end of the first

part. In the secondpart we focused mainly in applications. First, we show the

important of considering the spin-orbit interaction relativistic effect in studying
vibrational and thermodynamic properties for bismuth and antimony solids. In

particular bismuth, with atomic number Z=83, is an ideal candidate to analyze
the effect of the spin-orbit interaction on those perturbational properties. Be-

cause palladium clusters have magnetic properties, it is a good material to start

analyzing noncollinear magnetic effects. We determine magnetic properties for

palladium dimer using the spin-polarized approximation as a first step. In partic

ular, we obtain the total energy of the dimer as a function of the magnetization
at different fixed distances between palladium atoms. After this, we continué

with a more general case according to our objectives, i.e., we consider the full

charge density matrix in order to include the noncollinearity in the direction of

the magnetization. The next step was to include the spin-orbit interaction ap

proximation in the calculi. Continué with this treatment we finally use the full

approximation, i.e., the noncollinear magnetic theory and the relativistic spin-
orbit interaction effect were considered both at the same time to study palladium
and bismuth dimers. Finally a theoretical like tight-binding study for bismuth

atom is done in order to explain with a simple model the effect of the spin-orbit
interaction on the independent electrón energies (eigenvalues).

Finally, four appendixes are included. In the first one, we present the deriva-

tion of the density matrix and the spin density vector, usefull in the comprehen-
sion of the continuous variation of the orientatíon of the magnetization. The

second one is devoted to explain the experimental setup used to experimentally
measure phonon dispersión curves. This is done by observing the coherent in-

elastic scattering of monoenergetic neutrons due to a process in which a single

phonon is created in a sample crystal. In the fourth appendix the experimen
tal setup used to measure the heat capacity at low temperatures is presented.
This quantíty is determined by the pulse 6Q supplied to the sample and the

temperature rise ST, then the heat capacity is obtained by applying the identíty
C = SQ/6T. Finally the list of published papers in presented.

2
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Chapter 2

Theory

2.1 Elements of solid state physics

2.1.1 adiabatic approximation

The adiabatic approximation is based on the fact that typical electronic veloc-

ities are much greater than typical ionic velocities. The significant electronic

velocity is ve ss 108cm/sec. On the other hand, typical ionic velocities are at

most of order 105cm/sec. The ions can not follow the motion of the electrons

and they see only a time-averaged adiabatic electronic potential. One therefore

assumes that because the ions move so slowly on the scale of velocities of rele-

vance to the electrons, at any moment the electrons will be in their ground state

for that particular instantaneous ionic configuration, i.e., we can consider the

electrons as moving in the field of fixed nuclei. That assumption comes from

the fact that the mass of the nuclei are much higher than the mass of the elec

trons. Even the lightest of all nuclei, the protón (XH), weighs roughly 1,800

times more than an electrón, and for a typical nucleus such as carbón the mass

ratio well exceeds 20,000. As a result, electrons can respond to ionic motion al

most instantaneously or, in other words, to the electrons the ions are essentially

stationary. In computing the Interatomic Forcé Constants (EFC), that will be

explained later on, one must then supplement the interaction between ion cores

with terms representing the dependence of the additional electronic energy on

the instantaneous ionic configuration [1, 2].

The adiabatic approximation is also known as the Born-Oppenheimer. This

is the basic approximation which allows one to decouple the vibrational from

the electronic degrees of freedom in a solid [3]. Part of this approximation is to

5



2.1. ELEMENTS OF SOLBD STATE PHYSICS CHAPTER 2. THEORY

assume that we can sepárate the electronic and nuclear coordinates and writing

the total wavefunction as _' = (r, R) = </>(r) _>(R). With the Born-Oppenheimer

approximation the Hamiltonian describing a perfect crystal can be expressed as

the sum of three terms,

H = Hi(m_{Rj) + He{ri, RJ0) + tfe-.<m(i., <5R_ ), (2.1)

where Him(Rj) is the Hamiltonian describing the ionic motion under the influ

ence of the ionic potential plus the time-averaged adiabatic electronic potential.

He{ti, Rj0) is the Hamiltonian for the electrons with ions frozen in their equilib
rium position Rj0, and J_"e_ion(r., SRj) describes the changes in the electronic

energy as a result of the displacements ÓRj of the ions from their equilibrium

position. He-ían is known as the electron-phonon interaction and is responsible

for electrical resistance in reasonably puré semiconductors at room tempera-

ture [4].

2.1.1.1 Lattice dynamics from electronic-structure theory

Within the adiabatic approximation, the lattice-dynamical properties of a sys

tem are determined by the eigenvalues e and eigenfunctions <_> of the Schródinger

equation [5]:

(-e4_?+H*(r)=£*(r)' <2-2)

where R/ is the coordínate of the 7th nucleus, M/ its mass, R
= R¡ is the

set of all nuclear coordinates, and E(R) the clamped-ion energy of the system,

which is often referred to as the Born-Oppenheimer energy surface. In practice,

E(R) is the ground-state energy of a system of interacting electrons moving in

the field of fixed nuclei, whose Hamiltonian - which acts onto the electronic

variables and depends parametrically upon R
- reads

ft2 ¿)2 e2 ! Z¡e2

i
»

i^j
J

ll

(2.3)

where Zj is the charge of the Rh nucleus, -e is the electrón charge, and EN(R)

is the electrostatic interaction between different nuclei:

6
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mr>4E
z,z.I¿J

2^|R,-R-
(2.4)

The equilibrium geometry of the system is given by the condition that the

forces acting on individual nuclei vanish. This assumption comes from the fact

that if the nuclei are fixed in space and do not move, their kinetic energy is

zero and the potential energy due to the nucleolus-nucleus repulsión is merely a

constant:

F
- 9E(R)

_

F/ = ~9RT-0' (2.5)

whereas the vibrational frequencies lo are determined by the eigenvalues of the

Hessian of the Born-Oppenheimer energy, scaled by the nuclear masses:

det
d2E(R)

—

u = 0. (2.6)
y/M¡Mj dR¡dRj

The calculation of the equilibrium geometry and of the vibrational proper
ties of a system thus amounts to computing the first and second derivatives of its

Bom Oppenheimer energy surface. The basic tool for accomplishing this goal is

the Hellinann-Feynman theorem (Hellmann 1937; Feynman 1939), which states

that the first derivative of the eigenvalues of a Hamiltonian, Hx, that depends on

a parameter A is given by the expectation valué of the derivative of the Hamilto

nian:

dEx
= *

dHx

d\
*; (2.7)

where _*> is the eigenfunction of Hx corresponding to the Ex eigenvalues:

Hx^x = ExÍ'a- In the Born-Oppenheimer approximation, nuclear coordinates

act as parameters in the electronic Hamiltonian, Eq. (2.3). The forcé acting on

the 7th nucleus in the electronic ground state is thus.

Ft = -

dE(R)

dR!
<_-

dHBO(R)
3Rr

<¡> (2.8)

where _»(r, R) is the electronic ground-statewave function of the Born-Oppenheimer
Hamiltonian. This Hamiltonian depends on R via the electronic-ion interac

tion that couples to the electronic degrees of freedom only through the electrón

charge density. The Hellmann-Feynman theorem states in this case that

7



2.1. ELEMENTS OF SOLID STATE PHYSICS CHAPTER 2. THEORY

J n*(r)«--*_, (2.9)
<9R/ SR/

where Vít(r) is the electron-nucleus interaction,

and nR(r) is the ground-state electrón charge density corresponding to the nu

clear configuration R. The Hessian of the Born-Oppenheimer energy surface

appearing in Eq. (2.6) is obtained by differentiating the Hellmann-Feynman

forces with respect to nuclear coordinates,

**£> __ _™L (211)
dRrfRj <9F/

K ' '

This equation states that the calculation of theHessian of the Born-Oppenheimer

energy surfaces requires the calculation of the ground-state electrón charge den

sity rcR (r) as well as of its linear response to a distortion of the nuclear geometry,

dn_i(r)/dRi. This fundamental result was first stated in the late 1960s by De

Cicco and Johnson (1969) and by Pick, Cohén, and Martin (1970). The Hessian

matrix is usually called the matrix of the interatomic forcé constants.

2.1.2 The Bloch's theorem

Because the ions in a perfect crystal are arranged in a regular periodic array,

we are led to consider the problem of an electrón in a potential Í7(r) with the

periodicity of the underlying Bravais lattice, i.e.,

U(r + R) = U(r), (2.12)

for all Bravais lattice vectors R. Since the scale of periodicity of the potential

í/(~ 10_8cm) is the size of a typical de Broglie wavelength of an electrón in

the Sommerfeld free electrón model, it is essential to use quantum mechanics in

accounting for the effect of periodicity on electronic motion. F. Bloch proved

that the eigenstates tp of the one-electron Hamiltonian can be chosen to have the

form of a plañe wave times a function with the periodicity of the Bravais lattice

[1,6]:

ipnk(r) = unk(r)e^r\ (2.13)

8
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where uk(r) has the period of the crystal lattice,

unk(r)=unk(r + R), (2.14)

for all R in the Bravais lattice. The eigenfunctions of the wave equation for a

periodic potential are the product of a plañe wave exp(ik • r) times a functional

itfc(r) with the periodicity of the crystal lattice.

Considering the expression 2.14 for the periodic potential and the equation

(2.13), it is easy to show that,

^nfc(r + R) = -ik>nfc(r), (2.15)

for every R in the Bravais lattice. Bloch's theorem is sometimes stated n this

alternative form. The eigenstates of H can be chosen so that associated with

each r¡> is a wave vector k such that,

^(r + R) = eikR^(r), (2.16)

for every R in the Bravais lattice.

2.2 The Density Functional Theory

2.2.1 Functionals

In this section we start studying theDensity Functional Theory in detail. In order

to discuss it more carefully it is necessary to introduce a useful mathematical

tool, the functional. Roughly speaking, a functional F[f] is a mapping of an
entire function / onto a valué [7].

A functional F[n] can be defined as a rule for going from a function to a

number, In other words, a functional takes a function as its arguments or input
and returns an scalar, just as a function y — f(x) is a rule (/) for going from a

number (x) to a number (y). Its use goes back to the calculus of variations where

one searches for a function which minimises a certain functional. A particularly

important application in physics is to search for a state of a system which min

imises the energy functional. A simple example of a functional is the particle
number, which is a rule for obtaining the number N, given the function n(r)
[8,9],

N = ¡ _3rn(r) = N[n], (2.17)

9
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the ñame given to the argument of n is completely irrelevant, since the functional

depends on the function itself, not on its variable. Henee we do not need to

distinguish F[n(r)] from, e.g., F[n(r')]. Another important case is that in which
the functional depends on a parameter,

VH[n(r)] = q2 /dV-üÉEL) (2.18)
J | r

—

r |

which is a rule that for any valué of the parameter r associates a valué VH [n{r)]
with the function n(r'). This term is the so called Hartree potential, which we
will repeatedly encounter below.

2.2.1.1 Functional variation

Following the previous example of a function of one variable, y = f(x), one
can think of two types of variations of y, the first coming from variations of x

and the second from variations of /. The variation study in ordinary calculus

shows that for a fixed functional dependence f(x), the ordinary differential dy
measures how y changes as a result of a variation x —> x + dx of the variable x.

On the other hand, the variation studied in variational calculus shows that for a

fixed point x, the functional variation Sy measures how the valué y at this point

changes as a result of a variation in the functional form f(x).

2.2.1.2 Functional derivative

The differential of a functional is the part of the difference F[f + 5f]
—

F[f]
that depends on óf linearly. Each Sf(x) may contribute to this difference. For

very small 6f,

f SF
SF = j —-6f(x)dx, (2.19)

where the quantity 6F/Sf(x) is the first-order functional derivative of F with

respect to / at the point x. The integral arises because the variation in the func

tional F is determined by variations in the function at all points in space. This

equation is the rule for operating on Sf(x) to give a number SF, and is the exten

sión to continuous variables of the formula for the total differential of a function

F(f_j2,...y.dF = j:i(dF/dfi)dfi.
The following general formula covers many cases of interest. Consider the

functional,

10
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F[n}= //(x;n,n(1),n(2),...,n(n))__-, (2.20)

where n^(x) = d^n(x)/dxt, n vanishes at the boundary of x. Then a gen

eral expression SF[n]/Sn(x) for obtaining functional derivatives with respect to

n(x) is given by,

SF[n] =d¿_ d__df_ + d?__d¿_ _ d3__df_
Sn(x) dn dxdn^ dx2 dnW dx3 dn^

This expression is frequently used in DFT to obtainXC potentials fromXC

energies.

2.2.2 An introduction to DFT

In order to introduce the Density Functional Theory (DFT) we start with a short

introduction to the classical quantum mechanics. In this context the time inde-

pendent non-relativistic Schródinger equation [2] is written as,

_71.(r1,r2,... ,r_v.Ri.R2.--- ,R*#) = E%(r1,r2,--- ,rjv,Ri,R2) ,RM)
(2.22)

where H is the Hamiltonian operator representing the total energy for a molec

ular system consisting of M nuclei and N electrons in the absence ofmagnetic
or electric fields. The Hamiltonian H describing a perfect crystal can be written

as,

h <rPi i v Pi
i

*
v

ZiZje

¿-2*1. ¿Í2M/ 2¿Í|R,-RJ
^ Zje2 1

"

e2

-Ejt^rTT + oEi^-h' (2-23)

here, A and B run over the M nuclei while i and j denote the N electrons in

the system. The first two terms describe the kinetic energy of the electrons and

the nuclei respectively. The remaining three terms define the potential part of

the Hamiltonian and represent the attractive electrostatic interaction between the

nuclei and the electrons and the repulsive potential due to the electrón-electrón

11
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and nucleus-nucleus interactions, respectively. ^j stands for the wave function

of the i'th state of the system, which depends on the 3N spatial coordinates, the

N spin coordinates of the electrons, and the 3M spatial coordinates of the nuclei.

The wave function V-". contains all information that can possibly be known about

the quantum system at hand. Finally, _5¿ is the numerical valué of the energy of

the state described by _V

Taking advantage of the adiabatic approximation (see section 2.1.1), it is

possible to write the Schródinger equation for N interacting electrons under an

external potential (usually the Coulomb potential of the nuclei) as,

N N

_>(r1;r2, ■•• ,r_v)

= EV(rur2,---,rN). (2.24)

To solve this equation is not easy even from the computational point of view.

A simple estímate of the computational complexity of this task is to imagine
a real-space representation of _/ on a mesh, in which each coordínate is dis-

cretized by using 20 mesh points (which is not very much). For N electrons,

_> becomes a function of 3iV coordinates (ignoring spin, and taking _> to be

real), and 203iV valúes are required to describe _>* on the mesh. The density

n(r) is a function of three coordinates, and requires 203 valúes on the same

mesh. The Kohn-Sham formulation of DFT additionally employ sets of single-

particle orbitals. N such orbitals, used to build the density, require 203 N val

úes on the same mesh. For N = 10 electrons, the many-body wave function

thus requires 2030/203 ss 1035 times more storage space than the density, and

2030/(10 x 203) ~ 1034 times more than sets of single-particle orbitals. Clever

use of symmetries can reduce these ratios, but the full many-body wave function

remains unaccessible for real systems with more than a few electrons [9].

2.2.3 Fundamentáis ofDensity Functional Theory

Density Functional Theory (DFT) has proved to be highly successful in describ

ing structural and electronic properties in vast class of materials. Furthermore

DFT is computatíonally very simple. For these reasons DFT has become a com

mon tool in first-principles calculations aimed at describing
- or even predicting

- properties of molecular and condensed matter systems.

There exist two fundamental of DFT. The first is that [10], any property

of a system of many interacting particles can be viewed as a functional of the

12
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ground state density n0(r); that is, one scalar function of position no(r), in

principie, determines all the information in the many-body wavefunction for the

ground state and all excited states. The second is that [1 1], the original many-

body problem can be replaced by an auxiliary independent particle problem. In

principie, it leads to exact calculations ofproperties ofmany-body systems using

independent-particlemethods. This approach involves independentparticles but

and interacting density [7].

2.2.4 The Hohenberg-Kohn theorem

According to the Hohenberg-Kohn theorem, no two different potentials acting
on the electrons of a given system can give rise to a same ground-state electronic

charge density [10].

Let us consider a system ofN interacting (spinless) electrons under an exter

nal potential Vext{r) (usually the Coulomb potential of the nuclei as mentioned
in a previous section). If the system has a nondegenerate ground state, it is ob-

vious that there is only one ground-state charge density n(r) that correspond to
a given K_,t(r). Far less obvious result is that in 1964 Hohenberg and Kohn [10]
demonstrated the opposite; there is only one external potential Vext(r) that yields
a given ground-state charge density n(r). The demonstration is very simple and
uses a reductio ad absurdum argument [12].

Let us consider a many-electron Hamiltonian H — T + U + V^., with

ground state wavefunction _*. T is the kinetic energy, U the electrón-electrón

interaction, and Vext the external potential. The charge density n(r), which plays
a central role in electronic structure theory, is given by the expectation valué of

the density operator ñ(r) — _C.=i jv <Hr
~~

ri)>

(_'lñ(r)l_^ í

n(r)=
v ' v '

=N

J \*{r,r2,r3,...,rN)\2d2...drN, (2.25)

that obeying the orthonormality constraint,

(#|tf) = 1. (2.26)

Let us consider now a different Hamiltonian H' = T + U + V'ext (Vext and

V'ext do not differ simply by a constant: Vext -

V'ext ^ const.) with ground state

wavefunction _*'. Let us assume that the ground state charge densities are the

same: n[Vext] — n[V¿xt\. The following inequality holds:

13
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E' = (V\H,\V) < (*|_f'|*> = (*|if + V;xt
- VUI*). (2-27)

that is,

£' < £ + y (Kxt(r)
-

K_t(r))n(r)_r. (2.28)

The inequality is strict because _» and V are different, being eigenstates of

different Hamiltonians. By reversing the primed and unprimed quantities, one

obtains an absurd result. This demonstrates that no two different potentials can

have the same charge density. The density uniquely determines the external po
tential to within a constant. Therefore all properties of the system are completely
determined given only the ground state density n0(r).

A straightforward consequence of the first Hohenberg and Kohn theorem is

that the ground state energy E is &functional E[n(r)] of n(r). We can write,

E[n(r)] = (*\T + U + Ve*\*) = (*\T + U\9) + (*\Vei_t\*)

= F[n(r)] + jn(r)Vext(r)dr, (2.29)

where F[n(r)] is a universal functional of the charge density n(r) (and not of

Vext(r)). By universal it is meant here that the functional is independent of the

external potential acting on the electrons, though it obviously depends on the

form of the electrón-electrón interaction. For this functional, E[n(r)], a vari

ational principie holds: the ground-state energy corresponding to the external

potential Vext(r) is minimised by the ground-state electrón charge density under

the constraint that the integral of n(r) equals the total number of electrons. The

reason why this is possible is that the density and the potential are conjúgate

variables, which means that the contribution of the external potential to the total

energy occurs only via an integral of the potential times the density.

In this way, DFT exactly reduces the _V-body problem to the determination

of a 3-dimensional function n(r) which minimises a functional E[n(r)]. Fur-

thermore, the valué of the minimum coincides with the ground-state energy, i.e.,

the functional E[n(r)] alone is sufficient to determine the exact ground-state

energy and density. Unfortunately this is of little use as F[n(r)] is not known.

That problem can be handled by mapping the system onto an auxiliary system

of noninteracting electrons (see section 2.2.5). An schematic representation for

the relation established by Hohenberg and Kohn is illustrated in Fig. 2.1.
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V„,(r) ^ "o(r)

ü- tr

*/<{!■)) => *o({r})

Figure 2.1: Schematic representation ofHohenberg-Kohn theorem. The smaller

arrows denote the usual solution of the Schródinger equation where the potential

V_x.(r) determines all states of the system _,i(r), including the ground state

_»o(r) and ground state density n0(r). The long arrow labeled "HK" denotes the

Hohenberg-Kohn theorem, which completes the circle (Figure taken from [7]).

2.2.5 The Kohn-Sham scheme

2.2.5.1 Practical implementation ofDFT

In 1965 Kohn and Sham [11] replaced the original many-body problem by an

auxiliary independent particle problem. The Kohn-Sham equations represent

a mapping of the interacting many-electron system onto a system of noninter-

acting electrons moving in an effective potential due to all the other electrons

[13].

Practical implementations of DFT require an explicit construction of the

Hohenberg-Kohn free-energy functional, F[n] = FHK[n], given above. It is

customary to write FhkN f°r interacting electrons as a sum of the noninteract-

ing kinetic energy, Ts[n], and two interaction terms, the electrostatic energy and

the exchange-correlation energy [12]:

FhkHt)] = Ts[n(r)} + E„[n(r)] + Exc[n(r)}, (2.30)

where the last term, Exc[n]> is defined as the remainder and thus contains ev-

erything that is not included in the first two terms. Each of the three terms on

the right hand side is in principie a functional of the independent variable n(r).

Only the second term, the electrostatic energy also known as the Hartree energy,

is easily expressed explicitly:

E»M<)]AjnfAl.aM (2.31)

The first and last terms are much more complicated: knowledge of the for-

mer implies a full understanding of the quantum mechanical noninteracting
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problem; the latter contains all of the manybody physics, and is in principie
even more complex.

For a system of non-interacting electrons the ground-state charge density
is representable as a sum over one-electron orbitals (the Kohn-Sham (KS) or

bitals) ipi(r). The associated electronic one-body density or charge density,

occ

n(r) = £/#.(r)|2, (2.32)

i

is obtained from a single Slater determinant built from the oceupied orbitals,

where /¿ are integer occupation numbers. The KS orbitals are the solutions of

the Schródinger equation,

(-^V2 + Vra(r)) A(r) = eMr), (2.33)

obeying the orthonormality constraints,

/ ^(r)^(r)_r = _-.,, (2.34)

The existence of a unique potential VKs{^) having n(r) as its ground state

charge density is a consequence of the Hohenberg and Kohn theorem, which

holds irrespective of the form of the electrón-electrón interaction U.

2.2.5.2 The Kohn-Sham equations from variational principie

As a self-consistent method, the Kohn-Sham approach involves independent

particles but an interacting density, in such a way that now the problem is to

determine VKS(r) for a given n(r). The set of wave functions V» are given by

the self-consistent solutions to the Kohn-Sham equations. In order to do it, it

is necessary to determine the set of wave functions ipi that minimise the Kohn-

Sham energy functional. This problem is solved by considering the variational

property of the energy but considering the orthonormality constraints given in

Eq. (2.34) [12, 14],

E' = E £ A¿i (| V* (r)^(r) dr
-

S_^ , (2.35)

where Xi3 are Lagrange multipliers, must vanish,

SE' SE'

í#(r)
~

¿V.(r)
~ 0. (2.36)
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It is convenient to rewrite the energy functional as follows,

E = Ts[n(r)) + EH[n(r)} + Exc[n(r)] + f n{r)Vext{r)dr. (2.37)

The first term is the kinetic energy of non-interacting electrons,

r.[n(r)] = -^2^|^(r)VV,(r)<ir, (2.38)
i

the second term, called the Hartree energy, contains the electrostatic interactions

between clouds of charge,

M"(r)] = f/f^*aV, (2.39)

the third term, called the exchange-correlation energy, contains all the remain

ing terms: our ignorance is hidden there. The logic behind such procedure is to

subtract out easily computable terms which account for a large fraction of the

total energy.

Using,

!)"U)
=^(r)-(r-r'), (2.40)

Srdf)

and the formulae given in section 2.2.1, one finds,

^--i.2?^. <"»

and finally,

|V + VH(r) + VXC([n(r)}) + Vext{v)

SEH 2 / n(r') , , , , ,

W)= Iv^k A{rl (2A2)

^(r) = J]Aij^(r), (2.43)

where ■</>. is the wave function of electronic state i, and VH is the Hartree poten
tial of the electrons given by,
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.(rl-./JÍLrV,./ r
— rM

(2.44)

the exchange-correlation potential, Vxc.is given formally by the functional deriva

tive,

VxcHr)]
dExc[n(r)]

dn(r)
(2.45)

The Lagrange multíplier \i3 are obtained by multiplying both sides of Eq.

(2.43) by ipk(r) and integrating,

A /*«(-£V2 + VH(r) + VxcHr)} + Vexí(r) V.(r)dr. (2.46)ik

For an insulator, whose states are either fully oceupied or completely empty,

it is always possible to make a subspace rotation in the space of xp's (leaving the

charge density invariant). We finally get the KS equations,

(HKS
- £i)Mr) = 0, (2.47)

where \ij = S^Ej and the operator HKS, called KS Hamiltonian, is defined as,

Hks = -|V + V„{r) + Vxc(r) + Vext(r) = -^V2 + VKS(r), (2.48)
Zm ¿m,

with,

Vks{t) = VH(r) + Vxc(r) + Vext(r). (2.49)

Equation (2.48) is related to the functional derivative of the energy:

SE

¿Ví(r)
HksMt)- (2.50)

Finally, Eq. (2.47) can be written as a Schródinger equation for this auxiliary

(independent particle) system as,

-f-V2 + V.s(r)
2m

where VKs(r) is given in Eq. (2.52).

ipi(r) = e¿V.(r), (2.51)
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2.2.5.3 Self consistency cycle

Since both V# and Vxc depend on n(r), which depends on the ipi, which in turn

depend on Vks . die problem of solving the KS equations is a nonlinear one.

The usual way of solving such problems is to start with an initial guess for ra(r),
calcúlate the corresponding Vks(*),

VKS(r) = V„(r) + Vxc(r) + Vext(r), (2.52)

and then solve the differential equation,

h2

-¿¡* + V„<r) Mr) = CiM'), (2-53)

for the xpi. From these equation one calcúlales a new density using,

occ

n(r)=ns(r) = £/. | -A(r) |2, (2.54)
i

and starts again. The process is repeated until it converges. The technical ñame

for this procedure is self-consistency cycle. Different convergence criteria (such
as convergence in the energy, the density, or some observable calculated from

these) and various convergence accelerating algorithms (such as mixing of oíd

and new effective potentials) are in common use [15]. The most popular are the

conjúgate gradient and those of Pulay [16] and Broyden [17].

Once one has a converged solution n0(r), one can calcúlate the total energy.
In particular we used the Pulay mixing of the potential based on the seven-Pulay

previous iteratíons [16].

2.2.6 Exchange-Correlation Functional

The most difficult problem in any electronic structure calculation is posed by
the need to take account of the effects of the electrón-electrón interaction. Elec

trons repel reach other due to the Coulomb interaction between their charges.
The Coulomb energy of a system of electrons can be reduced by keeping the

electrons spatially separated, but this has to balanced against the kinetic en

ergy cost of deforming the electronic wave functions in order to sepárate the

electrons. The effects of the electrón-electrón interaction are briefly described

below.
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The exchange-correlation functional is often decomposed as EXc = Ex +

Ec, where Ex is due to the Pauli principie (exchange energy) and Ec is due to

correlations.

2.2.6.1 Fxchange

The wave function of a many-electron system must be antisymmetric under ex

change f any two electrons because the electrons are fermions. The antisym-

metry of the wave function produces a spatial separation between electrons that

have the same spin and thus reduces the Coulomb energy of the electronic sys
tem. The reduction in the energy of the electronic system due to the antisymme-

try of the wave function is called the exchange energy. It is straightforward to

include exchange in a total energy calculation, and this is generally referred to

as the Hartree-Fock approximation [9].

The exchange energy can be written explicitly in terms of the single-partícle
orbitals as,

Fí/Ml e2^ f rj(r)rk(r')rj(r'mr) ,_ ,_,

Ex bPi [n]\ =
-—

}__, / \r~-V\
' ( *

jk

which is known as the Fock term, but no general exact expression in terms of

the density is known.

2.2.6.2 Correlation

For the correlation energy no general explicit expression is known, neither in

terms of orbitals ñor densities. Different ways to understand correlations are

described below [9].

Correlation energy: variational approach. A simple way to understand the

origin of correlation is to recall that the Hartree energy is obtained in a varia

tional calculation in which the many-body wave function is approximated as a

product of single-particle orbitals. Use of an antisymmetrized product (a Slater

determinant) produces the Hartree and the exchange energy. The correlation

energy is then defined as the difference between the full ground-state energy

(obtained with the correct many-body wave function) and the one obtained from

the (Hartree-Fock or Kohn-Sham) Slater determinant. Since it arises from a

more general trial wave function than a single Slater determinant, correlation

cannot raise the total energy, and Ec[n] < 0. Since a Slater determinant is itself
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more general than a simple product we also have Ex < 0, and thus the upper

bound ExC[n] < 0.

Correlation energy: probabilistic approach. Recalling the quantum me

chanical interpretation of the wave function as a probability amplitude, we see

that a product form of the many-body wave function corresponds to treating the

probability amplitude of the many-electron system as a product of the probabil

ity amplitudes of individual electrons (the orbitals). Mathematically, the prob

ability of a composed event is only equal to the probability of the individual

events if the individual events are independent (i.e., uncorrelated). Physically,
this means that the electrons described by the product wave function are inde

pendent. Such wave functions thus neglect the fact that, as a consequence of the

Coulomb interaction, the electrons try to avoid each other.

The fact that both exchange and correlation tend to keep electrons apart has

given rise to the terminology of electrón holes, describing the región of reduced

probability for encountering a second electrón around a given reference electrón.

Unfortunately we shall not discuss this topic here.

2.2.7 The Local Density Approximation

As wasmentioned in section 2.2.5 it is necessary to approximate the Exc energy
in order to solve self consistency the Kohn-Sham equations.

In the Local Density Approximation (LDA) the exchange-correlation energy
of an electronic system is constructed by assuming that the exchange-correlation

energy per electrón at a point r in the electrón gas, exc(r), is equal to the

exchange-correlation energy per electrón in a homogeneous electrón gas that

has the same density as the electrón gas at point r. Thus,

Exc[n(r)} = I -XC(r)n(r)_3r, (2.56)

and,

SExc[n(r)} d[n(r)e%p[n(r)}] f _ ..*%&}
-n(r)

~

Mr)
"

[e*c
+

n{T)aW))
' ( }

The LDA approximation assumes that the exchange-correlation energy func

tional is purely local. In the research work done for this thesis we also tested the

generalized gradient approximation (see subsection 2.2.8) and we did not find

any improvement in our results, that is the reason why we only will mention the
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LDA in next chapters. At this point it is also important to mention that even in

such simple case the exact form of exc is unknown, for that reason we used the

local density approximation as parameterised by Perdew and Zunger [18].
Structural and vibrational properties of solids are in general accurately de

scribed. The correct crystal structure is usually found to have the lowest energy,
bond length, bulkmoduli, phonon frequencies are accurate within a few percent.
We shall show that we got errors ~ 1%, with respect to experimental results, for

lattice constants and frequencies.

2.2.8 The Generalized Gradient Approximation

It is well know that LDA fails in situations where the density undergoes rapid

changes such as in molecules. Nowadays there existmany other approximations
for the Exc that are able to consider this nonuniform charge densities. One of

these is the Generalized GradientApproximation (GGA). In this approximation
a gradient of the density at the pointwhere wewant to calcúlate EXc is included.

This still results in a local expression for EXc, and gives the various gradient-
corrected functionals. Symbolically this can be written as,

Exc = EXc[n(r),Vn(r)}. (2.58)

Some good reviews can be found in the literature about this approximation

[19-22].

2.2.9 Plañe waves basis set

Due to Bloch's theoremplañe waves (PWs) are the natural choice for the repre

sentation of electrón orbitals in a periodic system like crystals.

The eigenstates of any independent particle Schrodinger-like equation in

which each electrón moves in an effective potential (also called VKs), such as

the Kohn-Sham equations, satisfy the eigenvalue equation given by Eq. (2.53),

2

£* +V„._) &(r) = e.V.(r), (2.59)

In a solid it is convenient to require the states to be normalized and obey

periodic boundary conditions in a large volume í_ that is allowed to go to infinity.

Using the fact that any periodic function can be expanded in the complete set of

Fourier components, an eigenfunction tpi(r) can be written as [7],
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Mr) = X¡c..c, x -7=eiqr = J2Ci« x 1*1)' (2.60)

where c.iq are the expansión coefficients of the wavefunction in the basis of

orthonormal PWs |q) satisfying,

Combining the three last equations leads to the Schródinger equation in the

Fourier space,

5_!<q,|-Hjf5|q)cít, = ^ ^(q'|q)c¿,q = -.-.,„, (2.62)

q q

Finally the independent-particle Schródinger equation for any given k can

be written as the matrix equation,

J2 #m,m'(kKm'(k) = _.(k)_i,m(k), (2.63)
m!

were we define q
= k + Gm and q' = k + G'm,

¿WM = (k + Gm|ffivs|k + Gm/> = ^-\k + G\2Sm¡jn, + VKS(Qm-Qm,),

(2.64)

where Gm are the reciprocal lattice vectors. The eigenvalues and eigenfunctions
are labeled as i = 1

, 2, ... for the discrete set of solutions of the matrix equations
for a given k. Equations 2.63 and 2.64 are the basic Schródinger equations in a

periodic crystal.
In the following we will assume that our system is a crystal with lattice

vectors R and reciprocal lattice vectors G. It is not relevant whether the cell

is a real unit cell of a real periodic crystal or if it is a super cell describing an

aperiodic system. The KS wavefunctions are classified by a band index and a

Bloch vector k in the Brillouin Zone (BZ).

As we showed, the plañe wave basis set can be defined as,

<r|k + G) = i_^-' with |^|k + G|2 KE^, (2.65)
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where E^t is a eutoff on the kinetic energy of PWs (from now on, simply "the

eutoff"). PWs have many attractive features: they are simple to use (matrix el

ements of the Hamiltonian have a very simple form), orthonormal by construc-

tion, unbiased (there is no freedom in choosing PWs: the basis is fixed by the

crystal structure and by the eutoff) and it is very simple to check for convergence

(by increasing the eutoff) [12].

Unfortunately the extended character of PWs makes it very difficult to aecu-

rately reproduce localised functions such as the charge density around a nucleus

or even worse, the orthogonalisation wiggles of inner (core) states. En order to

describe features which vary on a length scale S, one needs Fourier components

up to q
~ 2n/S . In a solid, this means 47r(27r/<5)3/3_. PWs (where fi is the

dimensión of the BZ). A simple estímate for diamond is instructive. The ís

wavefunction of the carbón atom has its máximum around 0.3 a.u., so S ~ 0.1

a.u. is a reasonable valué. Diamond has an fcc lattice (fi = (27r)3/(_o/4)) with
lattice parameter a0 = 6.74 a.u., thus yielding ~ 250, 000 PWs. This is clearly
too much for practical use.

In order to decrease to number of plañe waves it is necessary to introduce

the use of pseudopotentials (see section 2.2.10).

2.2.10 Pseudopotentials

2.2.10.1 An introduction to pseudopotentials

Pseudopotentials were originally introduced to simplify electronic structure cal

culations by eliminating the need to include atomic core states and the strong

potentials responsible for binding them.

The physically reasoning behind the pseudopotential (PP) approximation is

simple: since the core-electron wave functions of an atom remain essentially

unchanged when placed into different chemical environments and since that the

core wave functions only major contribution to chemical bonding is to enforce

the valence wave functions orthogonality to the core states, the trae atomic po

tential can justifiably be replaced by a pseudopotential that effectively repro

duces the effects of the core electrons [23].

The valence electrons must be constrained to be orthogonal to the core elec

trons. In the all-electron case this means that the valence wavefunctions have a

large number of nodes near the nucleus. One of the reasons we are pseudizing

is to make the wavefunction variations smoother, so these must be eliminated.

A cut-off radius is chosen, and the pseudopotentials bound states will reproduce

the valence wave-functions outside this radius, and be smooth inside [24].
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Most pseudopotentials are then constructed such that they satisfy four gen
eral conditions. The first is that the valence (the principal quantum number n is

further omitted for simplicity) pseudo-wave-functions generated from the pseu

dopotential should contain no nodes. This stems from the fact that we would like

to construct smooth pseudo-wave-functions and therefore the wiggles associated

with the nodes are undesirable. Second, the normalised atomic radial pseudo-
wave-functions (PP) with angular momentum l is equal to the normalised radial

all-electron wave function (AE) beyond a chosen eutoff radius r¿,

Rfp(r) = RfE(r) for r > rd, (2.66)

or converges rapidly to that valué. Third, the charge enclosed within r^ for the

two wave functions must be equal,

íd | R[p{r) |2 r2dr = f
"

| RfB(r) |2 r2dr. (2.67)

Fourth, almost redundantly, the valence all-electron and pseudopotential

eigenvalues must be equal,

£f
p
- efE (2.68)

2.2.10.2 Norm-Conserving pseudopotentials

Norm-conserving pseudopotentials were first introduced and used by Hamann,

Schluter, and Chiang [26]. In their scheme, inside some core radius, the all-

electron (AE) wave function is replaced by a soft nodeless pseudo (PS) wave

function, with the crucial restriction that the PS wave function must have the

same norm as the all-electron wave function within the chosen core radius; out-

side the core radius the PS and AE wave function are identical. It is now well

estabüshed that good transferability requires a core radius around the outermost

máximum of the AE wave function, because only then the charge distribution

and moments of the AE wave functions are well reproduced by the PS wave

functions see. Therefore, for elements with strongly localised orbitals like first-

row, 3_, and rare-earth elements the resulting pseudopotentials require a large

plane-wave basis set. To work around this, compromises are often made by in

creasing the core radius significantly beyond the outermost máximum in the AE

wave function. But this is usually not a satisfactory solution because the trans

ferability is always adversely affected when the core radius is increased, and
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for any new chemical environment, additional tests are required to establish the

reliability of such soft PPs [25].

2.2.10.3 Ultrasoft pseudopotentials

An elegant solution to this problem was proposed by Vanderbilt [27]. In his

method, the norm-conservation constraint is relaxed and to make up for the re

sulting charge déficit, localised atom-centred augmentation charges are intro

duced. These augmentation charges are defined as the charge density differ

ence between the AE and the PS wave function, but for convenience they are

pseudized to allow an efficient treatment of the augmentation charges on a reg

ular grid. The core radius of the pseudopotential can now be chosen around half

the nearest-neighbour distanceindependent of the position of the máximum of

the AE wave function. Only for the augmentation charges a small eutoff radius

must be used to restore the moments and the charge distribution of the AE wave

function accurately. The pseudized augmentation charges are usually treated on

a regular grid in real space, which is not necessarily the same as the one used

for the representation of the wave functions [25].

2.2.10.4 Separable pseudopotentials

One major advance was the introduction of a separable form by Kleinmann

and Bylander [28], that significantly reduces the computational effort for the

calculations of the nonlocal part, expecially when using a plane-wave basis set.

A simple way was discovered to put model pseudopotentials,

V(r) = J2\Yim)Vi(r)(Ylm\, (2.69)

Irn

into a form which reduces the number of integráis of V(r) required for an

energy-band calculation from mn(n + l)/2 to mn for each l in the sum. n

is the number of plañe waves used in the expansión and m the number of points

in the Brillouin zone at which the calculation is performed.

2.2.10.5 Relativistic Pseudopotentials

We use the Hartwigsen-Goedecker-Hutter (HGH) pseudopotential
which is a

relativistic separable dual-space Gaussian PP, specially because it consider rel

ativistic effects relevant for heavier elements and because it is generated on the
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basis of a fully relativistic all-electron calculation, i.e., solving the two compo
nents Dirac equation [29]. It is important to mention that there exist some other

PP like the Troullier-Martins that also consider this relativistic interaction but

please read an appropriate review for further details [30].

Here we just shall mention that the inclusión of the spin-orbit interaction in

our computational calculations were done through the use of this HGH pseu

dopotential. A detailed explanation about this pseudopotential will be given in

the subsection 2.5.2 devoted to the physical origin of the spin-orbit coupling.
In that subsection, the inclusión of the spin-orbit coupling will be explained in

detail.

2.3 Density Functional Perturbation Theory

The formalism which calculates the response functions of a DFT system is

known as the Density Functional Perturbation Theory (DFPT). This formalism

is used to calcúlate linear-response functions, including phonon frequencies,
heat capacities, thermal expansión coefficients, temperature dependence of the

band gap, elastic, dielectric, and piezoelectric constants, and optical response in

various materials.

In general, the formalism for nonlinear responses has been derived using the

"2n + 1" theorem of perturbation theory
In section 2.1.1 we mentioned that the electron-density linear response of

a system determines the matrix of its interatomic forcé constants. Let us see

now how this response can be obtained within density-functional theory. The

procedure described in the following is usually referred to as density-functional

perturbation theory [3 1-34]. In order to simplify the notation and make the argu-
ment more general, we assume that the external potential acting on the electrons

is a differentiable function of a set of parameters, A
= A¿ ( A¿ = R/ in the case of

lattice dynamics). According to the Hellmann-Feynman theorem, the first and

second derivatives of the ground-state energy read,

d2E [ f d2Vx\r) f dnx(r) dVx(r)
dxjT

~

Jjx-dx-nx{r)dr
+

J dx, dx.
dT- a71)

The electron-density response, dnx(r)/8Xi, appearing in Eq. (2.71) can be

evaluated by linearizing the equations that appear in subsection 2.2.5.3 with
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respect to wave function, density, and potential variation. Linean zation of equa
tion (2.54) leads to,

An(r) = 2Re£ <(r)A^„(r), (2.72)

i

where the finite-difference operator AA is defined as,

i

The superscript A has been omitted in Eq. (2.72), as well as in any subse-

quent formulas where such an omission does not give rise to ambiguities. Since

the external potential (both unperturbed and perturbed) is real, each Kohn-Sham

eigenfunction and its complex conjúgate are degenerate. As a consequence, the

imaginary part of the sum appearing in Eq. (2.72) vanishes, so that the prescrip-
tion to keep only the real part can be dropped.

The first-order correction to a given eigenfunction of the Schródinger equa
tion is often expressed in terms of a sum over the spectrum of the unperturbed

Hamiltonian,

A*(r)-_T^^"'*>, (2.74)

running over all the states of the system, oceupied and empty, with the exception
of the state being considered, for which the energy denominator would vanish.

Using Eq. (2.74), the electrón charge-density response, Eq. (2.72), can be cast

into the form,

Mr) = 2fE rn(r)^(r){^AVKS^ . (2.75)

i m^n

Equation (2.75) shows that the contributions to the electron-density response

corning from products of oceupied states cancel each other, so that the m index

can be thought of as attaching to conduction states only. This is equivalent to

saying that the electron-density distribution does not respond to a perturbation,
which acts only on the oceupied-state manifold (or, more generally, to the com

ponent of any perturbation which couples oceupied states among each other).
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2.3.1 Phonons

In crystalline solids, the nuclear positions appearing in the definition of the in

teratomic forcé constants Eq. (2.6), are labeled by an index I, which indicates

the unit cell / to which a given atom belongs and the positions of the atom within

that unit cell I = {l, _}. The position of the 7th atom is thus [31],

R, = R. + ra + u#(.). (2.76)

where R. is the position of the _th unit cell in the Bravais lattice, ra is the equi
librium position of the atom in the unit cell, and u.,(/) indicates the deviation

from equilibrium of the nuclear position. Because of translational invariance,

the matrix of the interatomic forcé constants, Eq. (2.11), depends on l and m

only through the difference R
= R¡ — R-- :

du-(l)dupt{m)
C:f(l, m) = -

¿- .,

- = C:f(Rt -

R™), (2.77)

where the Greek superscripts indícate Cartesian components. The Fourier

transform of C%0(R) with respect to R, Cff(q), can be seen as the second

derivative of the Born-Oppenheimer energy surface with respect to the ampli
tude of a lattice distortion of definite wave vector:

¿Sftq) =E e'^CffiR) = -L—fE (2.78)
V N^du*sa{^)d<(q_)

where Nc is the number of unit cells in the crystal, and the vector us(q) is
defined by the distortion pattern,

R/[u,(q)] = R( + ts + us(q)ei,lR' (2.79)

Phonon frequencies u(q) are solutions of the secular equation,

1
det CT(q)~^(q) = 0. (2.80)

VMM

Translational invariance can be alternatively stated in this context by saying
that a lattice distortion of wave vector q does not induce a forcé response in

the crystal at wave vector q' ^ q, in agreement with the analysis carried out in

Sec. 2.3. Because of this property, interatomic forcé constants are most easily
calculated in reciprocal space and, when they are needed in direct space, can be

readily obtained by Fourier transform.
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If the dynamical matrices were known everywhere in the Brillouin zone, the

IFCs could be built by inverting Eq. (2.78), which defines the dynamical matrix

from the IFCs [34].

Unfortunately, the dynamical matrices are not known everywhere in the Bril

louin zone: for computational reasons they are only obtained for a small set of

wave vectors. For that purpose, the use of a discrete Fourier transform is tempt-

ing: the dynamicalmatrices on a regular grid of (l xm x n) points in the Brillouin

zone [35] will genérate approximate EFCs in a large box, made of (l x m x n)

periodic cells. Outside of this box, the IFCs, are supposed to vanish.

2.3.2 Heat capacity

The specific heat is calculated in the harmonic approximation from the vibra

tional free energy F(T). First it is necessary to obtain the entire phonon dis

persión relations from total energy calculations, using DFPT, and to use them to

evalúate F(T). The references that the reader can consult are the same as the

presented through this section.

The thermodynamic properties of a system are determined by the appropri-
ate thermodynamic potential relevant to the given ensemble. In an ensemble

where the sample volume and temperature are independent variables, the rele

vant potential is the Helmholtz free energy, F = E — TS. For a soüd in the

adiabatic approximation, the free energy can be written as the sum of an electric

and a vibrational term. The electronic entropy contribution is easily evaluated

in metáis, although usually neglected, whereas it is totally negligible for insu-

lators, Fe¡ ~ Eel. The key quantity to calcúlate in order to have access to the

thermal properties and to the phase stability is the vibrational free energy F(T)

given by,

F(T) =
- í°° |^ + kBTln[2nB{u)}\p(Lü)du;. (2.81)

From Eq. (2.81), the heat capacity is obtained with,

Cv = -T(0)v- (2'82)

In Eq. (2.82), kB is the Boltzmann constant, nB the Bose-Einstein factor,

and p{u) the phonon density of states (PDOS). The high-frequency eutoff of the

latter defines the upper limit of integration in Eq. (2.81).
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2.4 Non-CollinearMagnetism Theory

Nowadays, there is a growing realisation of the importance of understanding
the magnetic behaviour of systems in which the magnetic order is noncollinear.

By noncollinear we mean that the magnetic moments associated with individual

ions in the crystal are not aligned along the same axis . In some cases the ex

istence of noncollinear arrangements of the magnetic moments does not imply
a reduction of the symmetry associated with the high temperature space group.
Noncollinear magnetism occurs even in chemically ordered systems, as well as

a large number of systems based on rare earths [52]. In order to describe ferro-

magnetic or antiferromagnetic order, usually encountered in crystals, it is only

necessary to consider spin alignment throughout the system. This approach is

suitable for describing collinear magnetic structures and usually it is referred

as spin-polarised approximation. However, noncollinearity is crucial for deal-

ing with spin waves, magnetism at finite temperature, or to deal with magnetic
excitations.

To correctly study the noncollinear magnetic structures it is necessary to

introduce a two-component spinor wave function _' for the Kohn-Sham orbitals.

*i(r,s) = (*fS)' (2-83)

where the index i specifies the orbital among the set of Kohn-Sham orbitals

{ .'i} and s
=

{o?, /?} the two spin indexes. The electrón density, n(r), and

the vectorial spin density, m(r), used to represent the noncollinear magnetic
structure are directly related to the density matrix p (see Appendix A for a more

detailed information about this dependence). This matrix can be expanded in

terms of the Pauli spin matrices and the scalar electrón density as follow [53],

1 i

P(r) =

2n(r)I+2^mx^£Tx + mj/^0'3/ +mz^0'^'

= \n(r)l+^m(r)-a. (2.84)

The elements of the density matrix in terms of the Kohn-Sham orbitals _,Q'/3

(see Eq. (2.83)) are given explicitly by,
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í na'a na>P \

Pa'"(r) =

(y y J, (2.85)

/ E./;*.Q(r)*?(r) Ei/i*rW*f(') \
, (2.86)

V Ei/^(r)«f(r) Ei/i^W^fW /

where /¿ is the occupation number of the ¿th Kohn-Sham orbital. In this scheme

the individual eigenstates can have different spin quantisation directions. Fur-

thermore, the spin quantisation axis of each state can vary with position. The

electrón and the vectorial spin densities can be written in terms of the matrix

density in a really simple way,

n(r) = Trp, (2.87)

m(r) = Tr(ptr). (2.88)

The full details about how to get these expressions, can be found in Ap-

pendix A. At this point, it is necessary to generalise all the equations that have

been presented in previous chapters, but now, in terms of the density matrix. Be-

cause the purpose of this chapter is just to show the general noncollinear mag

netism theory and not a deep comprehension of the same, here we shall present

only the general Kohn-Sham expressions in terms of the density matrix. There

exist many papers and reviews devoted to show in detail such generalization

[36-43].

The exact Kohn-Sham density functional becomes (we use atomic units, h
=

m = e2 = 1),

E =E /i<«?|
- |v|*f> + EH[p] + Exc (2-89)

ai

The exchange-correlation energy EXc[n(r), |m(r)|] is computed with the

formula given by Perdew and Zunger [18]. In the LDA approximation EXc

is indeed a functional of n(r) and | m(r) |. The expression for the exchange-

correlation potential V$£(r) can be obtained from EXc- This exchange-correlation

energy is defined in terms of the magnetization density (Eq. 2.87) and the total

charge density (Eq. 2.88) as outlined below,
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[SExcip] f SExcjp] d\m(r)\=

J-SMr)-dr
+
J .|m(r)| am(r)

' m(r)*' (291)

= /^-Mrfr+/f-WKr)|dri (2.92)
7 <5n(r) 7 í|m(0|

the variations of the total energy with respect to the electronic density and the

spin magnetic moment can be transformed and calculated from the equations
used in the conventional collinear spin calculations. As is clear from Eq. (2.88),
the |m(r)| has not only paa and p80 but also pa0 p8". Therefore the exchange-
correlation potential, Vxc y

made from Exc can be divided into diagonal and off-

diagonal parts. Using the notation Vjj-c and Vxc for the diagonal part, and V^0
and V£c for the off-diagonal part, the Kohn-Sham equation is finally written as,

-\v2 + VH + Vext + V%c V.
2

•a/3
XC

v$c -\v2 + vH + vext + v_vxc

(2.93)

X

V *fW )-£i{ *fW ) ' (2"94)

each term was defined in previous chapters.
Note that in this scheme the individual eigenstates can have different spin

quantization directions. Furthermore, the spin quantization axis of each state

can vary with position. The theory presented in this section predict well defined

sets of directions for the spins. When uncoupled from the underlying crystal

lattice, all that is important is the relative orientatíon of the spins, spin-orbit

coupling being necessary to couple the magnetization direction to the crystal
lattice.

2.5 Spin-Orbit Coupling Theory

We start this section with an explanation, from the physical point of view, about

the origin of the spin-orbit interaction. From a qualitative point ofview the spin-
orbit interaction can be understand as follow. Considering a central forcé, the

valence electrón experiences the electric field [54],
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E = —

Wc(r),
e

1 _V(r) r

e _r r

(2.95)

(2.96)

where V(r) = . When the moving charge (an electrón moving at a velocity
r

v = p/me) is subjected to an electric field, e.g. the electrostatic field E created

by the protón, it "feels" an effective magnetic field given by,

Be// =
-

(I) x E. (2.97)

Because the electrón has an intrinsic magnetic moment /_ given by,

eS

mPc

(2.98)

it is easy to guess that the spin-orbit potential contributes to H as follows:

Hls = -/*-Be//, (2.99)

in such a way that substituting las equations in this previous one, one gets,

Hls — -/¿•Be//>

= K¡xE)«
=

eS

mec

_B_ x (-lwc(r))
mec \ e /

=

eS

mec

'

V ..( ldV(r)rY

mec \ e dr rj

=

m%c¿ r dr

=

e2 ]

m2c2 r.(L-S).
(2.100)

here we have used the expression, p x r = -L
,
for the angular momentum

quantum mechanical operator. In last equation it is necessary
to introduce a 1/2
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factor because the motion of the electrón around the nucleus is not rectilinear.

This term is called the giromagnetic ratio. The electrón spin therefore rotates

with respect to the laboratory reference frame.

In general Eq. (2.100) then represents the interaction of the magnetic mo

ment of the electrón spin within the magnetic field "seen" by the electrón be-

cause of its motion in the electrostatic field of the protón.

2.5.1 The Dirac equation

The object is to derive a relativistic wave equation for a spin— particle. It is pos

sible to incorpórate the spin into the general framework of relativistic quantum
mechanics by taking the operator analog of the classical expression [7, 55],

(E2/c2) - p2 = (me)2, (2.101)

and rewritten the equation as,

(2.102)

this alternative form is indistinguishable from the previous one for all practical

purposes when there is no vector potential. It is easy to show such asseveration

using the identity,

(<r-A)(o--B) = A-B + i_"(AxB). (2.103)

Considering the operators,

É = ih— = ihcTr-; p
= -./W, (2.104)

Ol OXq

it is possible to find a second order derivative equation for a free electrón as,

( ih— + a-ihV ) ( ih- a-ihVW = (mc)H, (2. 105)

where _* is a two-component wave function.

It is desirable to obtain a wave equation of first order in the time derivative.

The price that we have to pay in order to get it is to increase the number of
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components when we work with the first order equation. It is possible to show

that the famous Dirac equation can be written as,

_
ó \ _ me

_

or more convement as,

d me .

T

7m o- + -T ) * = °>

where 7M with //
= 1, 2, 3, 4 are the 4x4 matrices given by,

(2.106)

(2.107)

7/.=

which really mean,

0 -id

74

I 0

0 -I
(2.108)

73

/O 0 -t 0 \
0 0 0 i

i 0 0 0

\ 0 -i 0 0 /

74
=

/ 1 0 o o \

0 10 0

0 0-10

\ 0 0 0 -1 /

etc. (2.109)

Equation 2.107 is the famous Dirac equation. Here we just write 73 but 71

and 72 can be written remembering the 2x2 Pauli matrices
defined in Appendix

A.

Here it is important to emphasize that Eq. (2.107) is actually a four differ

ential equations that couple the four components
of \_ represented by a single-

column matrix,

<_■ = (2.110)

A four-component object of this kind is known as a bispinor. Multiplying

Eq. (2.106) by 74, we see that the Dirac equation can also be written in the

Hamiltonian form,

HV = ih{dip/dt), (2.111)
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where,

HV = (-icha-V + (3mc2)V, (2.112)

= (c a- p + f3mc2)V = ih—V, (2.113)
ot

with,

*-*-(. -i)- *-*>*»-(£ o)' (2U4)

Until here we have just written the general expression for the Dirac equation
but the aim of this subsection is to obtain the spin-orbit interaction term, in a

natural way, from the Dirac equation.
In the case of a spherical potential V(r), one can make use of conservation

of parity an total angular momentum denoted by quantum numbers jm. Then

the wavefunction for each principie quantum number n can be written in terms

of radial and angular-spin functions.

/ 9nj(r)ipljm \

*U= a.T .

. (2H5)

V iUr)—^m j
which defines two functions with the same jm but opposite parity for the two

possible valúes. = j ± -. The two-component functions ipjm can be written

explicitly in terms of the spherical harmonícs (see for instance R. Martín book,

page 194 [7]). The resulting equations for the radial functions are simplified if

we define the energy,

a radially varying mass,

-' = --mc2, (2.116)

e' - V(r)
M{r)=m+ 2c2K\ (2.117)

and the quantum number k,

1

! +, if l = j +
-

K = ±(j + -) < 4 (2.118)
2

if 1 = j
-- =^K = -(Z + l)
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Note that k(k + 1) = /(/ + 1) in either case. Then the coupled equations can
be written in the form of the radial equations,

h2 l d >dgn

2M r2 dr \ dr

h2 dV dgn

4M2c2 dr dr AM2c2 dr r

+

h2

v +
h2 i(i + \)
2M r2

dVl + n

9UK

£gn (2.119)

(2.120)

and,

-dr-
=

h¿{V-£)g™ + -

1

fu (2.121)

These are general equations for a spherical potential; no approximations
have beenmade thus far. Equation (2. 1 19) is the same as an ordinary Schródinger

equation except that the mass M is a function of radius and there are two added

terms on the left-hand side, which are, respectively, the Darwin term and the

spin-orbit coupling. The latter can be written out explicitly in terms of the spin

using the relation,

where ipKm

L -<r ipKm = -h(l + k)Vw,

is the appropriate ipljm determined by k.

(2.122)

2.5.1.1 Scalar Relativistic Equation (Spin-Orbit Coupling)

Ifwe make the approximation that the spin-orbit term is small, then we can omit

it in the radial equations for g and / and treat it by perturbation theory. Then last

three equations depend only upon the principie quantum number n and orbital

angular momentum l and can be written in terms of the approximate functions,

gnl and /„., leading to [7, 44],

____!__.
2M r2 dr

>dgni

dr
+ V +

h2 l(l + i)
2M r2

gni
-

h2 dV dgni

AM2c2 dr dr

= e'~gnl,(2A23)

and,
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'-5B.*
with the normalization conditíon,

/ (& + H.)r2dr « 1. (2.125)

Equation (2. 123) is the scalar relativistic radial equation, which can be solved

by the same techniques as the usual non-relativistic equation. The other equa
tions can then be treated easily on the radial grid. Together with relation (2.122)
the spin-orbit Hamiltonian coupling the large components of the wavefunction

has the form,

h2 1 dV

2M2c2r dr

which can often be treated as a small perturbation. Since this term originates
IdV

deep in the core near the nucleus where —— is large, the present spheri-
r dr

cal derivation of the spin-orbit term carries over from the atom to a solid or

molecule.

p2
|

p4 efto-ÍExp) eh2
y £

2m 8m3c2 4m2c2 8m2c2
V = EV. (2.127)

Another way to get the spin-orbit approximation term is applying the Zero-

Order Regular Approximation (ZORA) to the Dirac equation. It is done solving
the ZORA equation, which is obtained as the zero-order equation in the regular

expansión in E/(2c2 —

V) of the Dirac equation. The one-electron relativistic

KohnSham equations are solved in the scalar relativistic and in the fully rela

tivistic case (including the spinorbit operator) [56].

2.5.2 Relativistic Effects Using Pseudopotentials

The way to include relativistic contributions, like the spin-orbit interaction, in

DFT is through the use of pseudopotentials [45]. As was explained in section

2.2.10 there exist different kinds of pseudopotentials such relativistic interac

tion. The Hartwigsen-Goedecker-Hutter (HGH) pseudopotential is just one of

these.
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Pseudopotentials are an essential ingredient for efficient electronic and vi

brational structure calculations . First, by eliminating the core electrons, the

number of orbitals that has to be calculated is reduced. Second, the pseudo-
wave-functions are much smoother in the core región than the all-electron wave

functions and the number of basis functions can therefore be reduced. Espe

cially if plañe waves are used as a basis set this reduction of the size of the

basis set is essential. Concerning relativistic pseudopotentials the introduction

of the norm-conserving property [46] made pseudopotentials an easy to handle

and popular tool for electronic structure calculations. Many attempts have since

then been made to constract norm-conserving pseudopotentials [47], which are

numerically more efficient than the original ones. The introduction of the sepa
rable form of the norm-conserving pseudopotentials was a major advance [48].

More recently also ultrasoft pseudopotentials including spin-orbit coupling have

been introduced [49]. The HGH is a separable dual-space Gaussian [50] pseu

dopotential. This PP is generated on the basis of a fully relativistic all-electron

calculation, i.e., by solving the two-component Dirac equation. This PP is given
in both the local density approximation and the generalized gradient approxi
mation. Just like a remark, it is well known that relativistic effects up to order

a2, where a is the fine-stracture constant [51], can be included in electronic

structure calculations by solving nonrelativistic Kohn-Sham equations with PPs

tailored to reproduce the solution of fully relativistic atomic Dirac-like equa

tions.

The total HGH pseudopotential is given by,

V(r, r') = Vloc(r)S(r
- r1) +E Vt(r, r1) + AVtso(r, r')L • S, (2.128)

i

where Vioc(r) correspond to the local part of the pseudopotential, V¿(r, r1) is

the nonlocal contribution, and V^so(r, r1) is the relativistic, spin-orbit coupling,
contribution to the PP. Each of these are now scalar relativistic quantities but

with the same form as the non-relativistic case.

The full expression for the local part V.oc of the pseudopotential is given by,

r) =
—erf ( —

=
— ) + exp _i(__y2 Vloc)

(2.129)

í r \2 / r \4 /~\61

Cj + C-2 — +C. — +

AiocJ AiocJ Aloe)
(2.130)
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where erf denotes the error function. Zion is the ionic charge of the atomic core,

i.e., the total charge minus the charge of the valence electrons.

Now we write the full expression for the nonlocal contribution V.(r, r1) to

the pseudopotential which is a sum of separable terms,

V¡(r,O __¿E £ ^,m(f)pí(r)/ii,,^(r')^m(r'), (2.131)

»=1 j=l m=-l

where Y.>m are the spherical harmonics, and l the angular momentum quantum

number. The projectors p\(r) satisfy the normalisation condition and in both

real and Fourier space, the projectors have the form of a Gaussian multiplied

by a polynomial, please take a look in [29] to see in detail these expressions.
An special property of this PP is that it has an analytical form if expressed in

reciprocal space. Due to this property the dual-space Gaussian pseudopotential
is the optimal compromise between good convergence properties in real and

Fourier space.

In the relativistic case the spin orbit coupling splits up all orbitals with l 0

into spin-up and spin-down orbitals with an overall angular momentum j =

l ± 1/2. So for each angular-momentum l 0, one spin-up orbital and one spin-
down orbital with different wave functions and pseudopotentials exist.

Finally to express AV^5°(r, r1) we just replace the /iL in equation (2.131)

by different parameters k\j, i.e.,

AVf°(r,0 =EE¿ Kí,m(f)p!(r)^.(r')rí;m(f'), (2.132)
i=\ j=\ m=—l

We used this pseudopotential in our calculations, mainly because the sim-

plicity of the PP but also because since the spin-orbit coupling term is separable,
we were able to include or remove such term according to our convenience as

will be explained in next chapters.

2.6 The ABINIT code

ABINIT is a package whose main program allows one to find the total energy,

charge density and electronic structure of systems made of electrons and nu

clei (molecules and periodic solids) within Density Functional Theory (DFT),

using pseudopotentials and a plañe wave basis. ABINIT also includes options
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to optimise the geometry according to the DFT forces and stresses, or to per

form molecular dynamics simulations using these forces, or to genérate dy
namical matrices, Born effective charges, and dielectric tensors. Excited states

can be computed within the Time-Dependent Density Functional Theory (for

molecules), or within Many-Body Perturbation Theory (the GW approxima
tion). In addition to the main ABINIT code, different utility programs are pro
vided.

Some of the available features are,

• Representation of wavefunctions : Plañe Waves; Prqjector-Augmented
Waves (the latter is not available for all capabilities).

• LDA, GGA, spin-DFT (many functional forms).

• Band structure, DOS, charge density, total energy.

• Many pseudopotential types : availability ofTroullier-Martins and Hartwigsen-
Goedecker-Hutter pseudopotentials for the full periodic table, interface

with different pseudopotential codes, including FHI98PP, and N. Holzwarth

PAW pseudo generator. Generation of alchemical pseudo-atoms.

• Finite systems as well as insulators and metáis (smearings : Fermi, Gaus

sian, Gauss-Hermite, Marzari modifications).

• Automatic k-point sampling of the irreducible Brillouin zone.

• Symmetry analyser (includes a datábase of the 230 spatial groups, and a

datábase of the 1191 Shubnikov magnetic groups).

• Forces, stresses, automatic optimisation of atomic positions and unit cell

parameters (Broyden and Molecular dynamics with damping)

• Molecular dynamics (Verlet or Numerov), Nose thermostat, Langevin dy
namics.

• Spin-orbit coupling compatible with spin-polarisation

• Responses to atomic displacements (even at non-zero wavevectors, with

out need of supercells !) and to homogeneous electric fields, within Density-
Functional Perturbation Theory: dielectric tensor, Born effective charges,

dynamical matrices at any wavevector, phonon frequencies, forcé con

stants phonon density of states, thermodynamic properties in the quasi-

harmonic approximation.
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• Responses to strain perturbations: elastic constants, piezoelectric coeffi

cients.

• Non-linear responses thanks to the 2n+l theorem of perturbation theory :

at present, electro-optic coefficients, Raman cross-sections.

• Susceptibilitymatrix by sum over states excited states of atoms and molecules

within Time Dependent-DFT or Delta SCF.

• Frequency-dependent conductivity in the RPA (Kubo-Greenwood).

• Exact exchange and RPA+ calculation of total energies (one k-point, post-
LDA or post-GGA, not yet available for spin-polarized systems or spinor

wavefunctions).

• GW calculation of excited states.

• MPI parallelisation ofground-state and response-function calculations over

k-points, spins and bands, MPI parallelisation of FFT grid and planewave

operations. coefficients,

As a final remark it is important to mention that the theory given in this

chapters can not be implemented as it is in the ABINIT code. A perfect ex

ample about this issue is the computation of pa'3(r) — _>2n fn(r\ Va){Va\r).
One would like to calcúlate this quantity as was defined in section 2.4, whereas

pa'0(r) is hermitian and in general can have complex elements. The problem
is that in ABINIT the subroutine devoted to do this calculation transforms only
real quantities. The trick is to use only real quantities as follow [42, 57],

Pa'a(r) = £/»<r|*a><*a|r>, (2.133)
n

/./»(r) = E¿»<rl*/,X*/V>' <2-134)
n

n(r) + mx(r) = J2 fn(Va + V0)*n(Va + V0)n, (2.135)
n

n(r) + my(r) = E/»(*a
~ «*/,)„(*a - «^Jn, (2.136)

n

and compute (n(r).m(r)) with the help of the additional quantities,
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n(r) = pQ'a (r) + p0'0 (r) , (2. 1 37)

mz(r) = pa'a(r)
- p0'0^). (2.138)

It is an example that exemplify adaptation to the theory that are necessary in

order to be implemented in the ABINIT code.

To cióse this chapter, I have to mention that the ab initio code that was used

to develop my doctoral research was the ABINIT code.
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Chapter 3

Bismuth Phonons

3.1 Phonon band structure and interatomic forcé

constants for Bismuth: the crucial role of spin-

orbit interaction

The dynamical properties and the interatomic forcé constants for Bismuth (Bi)
are investigated from first principies with the use of density functional theory.
In this context, Bi has two striking characteristics : it is a semimetal with a very

small carrier density, and the spin-orbit (SO) coupling is particularly strong. To

decouple these characteristics, we treat Bi as (i) non-metallic without SO inter

action, (ii) metallic with, and (iii) without SO interaction. Phonon dispersión
relations and interatomic forcé constants are reported and compared with avail

able experimental data, and a very good agreement is obtained only when SO

interaction is taken into account : removing this interaction causes a difference

on the order of 10% in the phonon frequencies and interatomic forcé constants.

Such a difference is also present in the Bi2 molecule. We also determine which

phonon bands are more affected directly by the SO interaction and which bands

are indirectly affected, through changes in cell parameters. The dependence of

the latter with respect to the SO coupling is also reported.

3.2 Introduction

The electronic configuration for bismuth is [_7e]4/145c.106-26p3 but only the

6s26p3 electrons can be considered as valence electrons, that because only s
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and p levéis will mix in the soüd, while the other _-electron and core electrón

levéis will remain practically unchanged. Considering only those five external

electrón configuration it was previously shown that the splitting of the p levéis

further split into two level due to spin-orbit effect [61]. The amplitude of the

p-level splitting is approximately 1.5 eV. This coupling leads to the suppression
of several specific degeneracies, which can be observed in the electronic band

structure.

Crystalline Bismuth (Bi) is the most diamagnetic elemental solid [58] and

presents also the highest Hall effect among such solids. Being a semimetal,

with an extremely low carrier density (less than 2 x 10-5) accompanied by high
carrier mobility, it is in many respects an ideal material for probing quantum

confinement phenomena [59]. At the same time, the Bi nucleus is quite heavy,
with atomic number Z — 83. Because electrons may move at a speed cióse to

üght velocity in the interior of such an atom, a purely non-relativistic description
of Bi does not suffice.

The lowest-order relativistic corrections are of two types : first, a spin-scalar
modification of the kinetic and potential operator, and second, a vector coupling,
between the spin and the electrón momentum. Supposing that an electrón moves

in an electric field E, one can cradely attribute this vector coupling to the fact

that the moving electrón "sees" an apparent magnetic field given by E x (v/c).
Actually, it has the following analytical expression in international units [55]

(— (eh/2mc) a • [E x (v/c)]), which can be expressed for a central field, by a

total spin and orbital angular momentum interaction Hamiltonian [60], propor-
tional to L • S, termed spin-orbit (SO) interaction.

The importance of the latter on electronic properties has been thoroughly

studied, for many different systems. In the case of crystalline Bi, it has been

analyzed from first principies [61]. This work shows that the SO interaction

split the external p atomic levéis, by about 1.5 eV (6pi/2 67J3/2 splitting), an

effect that can be seen in the electronic density of states of the periodic solid.

Because for an s level the angular momentum is equal to zero, the two 6s bands

are practically unaffected by the SO coupling.

The effect of the SO interaction on the total energy, as well as geometri-

cal and dynamical properties of materials has been the subject of less attention.

Scaling roughly as the fourth power of the atomic number Z, the energy changes
are tiny in hydrogen atom, but becomes much more significant for the heavier

elements [62]. One might mention the detailed study of the SO influence on the

crystallographic parameters and bulk modulus of light actinides, in Refs. [63]

and [64]. It was observed that the SO coupling has some importance (less than
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2 percents usually for the lattice parameter, but up to 10 percents for the Nep-
tunium lattice parameter as well as the bulk modulus) and brings systematically
the predicted valúes in better agreement with the experiment. In the very recent

studies of the phonon band structure of Thorium[65] and Bi[66, 67], the SO

coupling was included in all the calculations, but these works do not discuss the

specific impact of the SO interaction on the frequeney spectrum. In the case of

the Bismuth study, the effect of a largely increased density of carrier, obtained

by femtosecond láser irradiation, is seen on the crystallographic parameters.

In the present study, we examine the phonon band structure of Bi, and find

that the semimetallicity has little importance, but that the inclusión of SO is

mandatory for an accurate description of the spectrum, reducing the discrep-

aney from up to fifteen percents down to a few percents in most of the Brillouin

zone. We also analyze the IFCs and find that the SO interaction causes signif-
icant changes both in the longitudinal and transverse components, on the order

of twenty five percent for some specific elements of the EFC matrix, compared
to the same valúes without the SO interaction. Optical branches are more af

fected directly by that coupling than acoustic branches. The crystallographic

parameters of Bi, on the contrary, are hardly affected (less than one percent)

by both semimetallicity and SO coupling, in agreement with previous works

[63, 64], but this modification triggers non-negligible modifications of the the

frequencies for acoustic branches.

We rely on the Density Functional Theory (DFT), with a plane-wave basis

set and norm-conserving pseudopotentials. Instead of using the fully relativistic

Dirac equation to study the periodic solid, one can, in this framework, genérate
ionic pseudopotentials that combine scalar-relativistic and SO terms, and repre-

sent them by fully nonlocal pseudopotentials of separable form [46, 48]. The

usual Kohn-Sham equations can then be solved in the total potential created by
such ionic pseudopotentials.

In section 3.3, we describe our theoretical technique, and discuss the differ

ent cases that allow us to disentangle the modifications due to semimetallicity,
due to the influence of SO coupling on the crystallographic parameters, and due

to the direct influence of SO coupling on the total energy. In section 3.4.1, we

report our study of the crystallographic parameters of Bi, crystallizing in the

rhombohedral A7 structure. Three crystallographic parameters describe tully
this structure : the lattice parameter (a0), the rhombohedral angle (a), and one

internal coordinate _ . In section 3.4.2, we present the full phonon band structure,

and compare it with experimental valúes along the trigonal direction. In section

3.4.3, we discuss the interatomic forcé constants in Bi and consider them with
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respect to both the rhombohedral A7 structure of Bi and the SO coupüng. We

examine them also in the Bi2 molecule including the change due to SO coupling.

3.3 Methodology

In order to calcúlate properties like phonon frequencies structure, and inter

atomic forcé constants for Bi, we used the ABINIT code [68-70]. This package
performs density functional calculations of material properties using pseudopo
tentials and a plane-wave basis set. The exchange-correlation energy was com

puted using the local density approximation (LDA) in the Teter-Pade parametriza-
tion [50]. We used the Hartwigsen-Goedecker-Hutter (HGH) pseudopotential
[29] which is a norm-conserving relativistic separable dual-space Gaussian pseu
dopotential and is generated on the basis of a fully relativistic all-electron calcu
lation. Using this pseudopotential, we included SO interaction effects relevant

for heavier elements like Bi. It is possible to reproduce only scalar relativistic ef
fects by neglecting the terms for the SO contribution from HGH : this pseudopo
tential contains separately an average potential (that contains all scalar parts of

the relativistic pseudopotential), and a vector part. The phonon frequencies and
interatomic forcé constants have been computed in the framework of Density
Functional Perturbation Theory (DFT), also implemented in ABINIT [32, 34]
with and without the SO coupüng.

We used a 12x 12 x 12 Monkhorst-Pack special point grid [71] to approxi-
mate the integráis on the wavevectors of the electronic wavefunction over the

entire first Brillouin-zone. With respect to this parameter, our choice gives a

convergence of 10-5 in lattice parameters (a0), and 10-4 in rhombohedral an

gles (a). The electronic wavefunctions were expanded in plañe waves up to a

kinetic energy eutoff of 15 Hartree, resulting in errors of ~ 1%, or less, in the

phonon frequeney valúes (u). The dynamical matrix were computed on a mesh

of 8 x 8 x 8 wavevectors in the Brillouin zone, using a variational formulation of

the density-functional perturbation theory [32, 34]. Finally, computational re

sults were compared with experimental valúes published by J. L. Yarnell [72]
and reported by D. B. Smith [73]. In Ref. [67], a very similar methodology was
also applied to the study of the phonon band structure of Bi, whereas our sam-

plings of the Brillouin zone for the dynamical matrices is finer, and we primarily
focus here on the role of the SO coupling.

We studied seven different possibilities in order to disentangle the effects

corning from the metallicity, and those related to spin-orbit coupling, corning
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either directly from a modification of the total energy and its derivatives at fixed

crystallographic parameters, or, indirectly, from the modification of the crys

tallographic parameters without change in the treatment (with or without SO)

of the total energy. (a) In the first case, we considered Bi as non-metallic, and

did not take into account the SO coupüng when relaxing the crystallographic

parameters and computing the phonon band structure. This is our only compu
tation corresponding to a non-metallic case. As will be detailed briefly later, the

metaltic or non-metallic treatments give essentiaüy identical results, for both

lattice parameters and phonon band structures. (b) In a second case, we consid

ered Bi as metallic, and again did not take into account the SO coupüng when

relaxing the crystallographic parameters and computing the phonon band struc

ture. "Theoretical crystallographic parameters without SO coupling
- Phonons

without SO coupling" and abbreviate it TCWoSO-PhWoSO. (c) The same re-

laxed ceü parameters (TcWoSO case) were used and the phonon spectra was

calculated with full treatment of the SO coupling (TcWoSO-PhWSO). (d) Then,

the relaxed geometrical cell parameters were obtained taking into account the

SO contribution (TcWSO case). Using this ceU parameter, we obtained the

corresponding phonon frequencies considering the SO contribution (TcWSO-

PhWSO). This is our best ftüly theoretical computation of the phonon band

structure. (e) Using the same crystaUographic parameters (TcWSO case), we

also obtained the phonon spectra in the absence of the SO contribution (TcWSO-

PhWoSO). (f) Experimental crystallographic parameters were also used (Ec), to

start a computation of the phonon band structure with SO interaction (Ec-WSO)

was considered. (g) Finaüy, we considered experimental crystaUographic pa
rameters without the SO contribution (Ec-WoSO).

The scheme used in the metallic case was the Gaussian smearing, corre

sponding to the 2-order Hermite polynomial of Ref. [74]. The broadening of

occupation numbers was determined by a smearing energy of 0.001 Ha.

3.4 Results

3.4.1 Geometry optimization

As mentioned in the Introduction (see section 3.2), Bi has a rhombohedral A7

crystal structure, with two atoms per unit ceü, and three independent parame
ters : the valué of the rhombohedral angle a, the length of the rhombohedral

unit cell primitive vectors a0, and the position of the second atom (labeled as D

in FIG. 3.1) along the trigonal axis determined by the ratio z — BD/BH. The
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A7 crystal structure can be derived from a simple cubic geometry structure, with

a Peierls instability causing the movement of the atoms and the final geometry:
the atom labeled as D is located along the trigonal axis and is very cióse to the

center of the cell (z ~ 0.5), but slightly displaced along the trigonal axis. Due

to this displacement, there exist three nearest and three next nearest neighbors.
In agreement with this picture, Bi might also be thought as being made of a (1

11) stacking of atomic bilayers, a characterization that has been confirmed by
the analysis of the charge density, from first-principles studies [61]. The three

nearest-neighbor atoms are to be found in the other (111) atomic plañe belong-

ing to the bilayer, with an angle between nearest-neighbor atoms that is equal to

94.84 degrees for the case without SO, and equal to 95.63 degrees for the case

with SO.

We report crystallographic parameters in TABLE 3.1 for each of the cases

described in Section 3.3. In addition, we report the corresponding valúes for the

nearest atoms a^N and the distance between the atoms labeled as BD, and DH

in FIG. 3.1.

The variations observed in the crystallographic parameters between the non-

metaüic and metalüc cases are very small, less than 0.2%. When the SO cou

pling is turned on, the lattice parameter expands by about 0.9%, and the internal

parameter z is decreased by about 0.6%, while the rhombohedral angle increase

but is hardly affected. These parameters give a volume for the A7 rhombohedral

unit cell equal to 67.10 Á3, and 69.07 Á3 for the metallic without and with SO

interaction respectively. The corresponding experimental volume [67] is equal
to 69.91k. The theoretical discrepancy with respect to the experimental results

(Ec) is reduced from ~ 4.3 % without SO coupling (TcWoSO) to ~ 1.3 % con

sidering such interaction (TcWSO).

3.4.2 Phonon frequencies

In a A7-type lattice, there are two atoms per primitive unit cell and henee six

phonon branches. These are divided into three acoustic and three optical phonon

branches. Along the T-T direction, corresponding to the z axis, and preserving
the trigonal symmetry, the phonon dispersión curves can be classified as Eg or

Alg, according to whether their displacements are perpendicular or parallel to

the direction of the wave vector q respectively. For the acoustic (A) or optical

(O) Aig phonon modes, the atoms moves in the direction of the trigonal axis.

For the other two acoustic or optical Eg phonon modes, the atoms move in the

perpendicular plañe with respect to this axis. In the related (z=0.5) cubic geom-
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Figure 3.1: A7 rhombohedral unit ceU for Bi.

etry, the _4lp and Eg phonon modes would be degenerate, but the degeneracy is

lifted in the A7 geometry due to the Peierls distortion [75].

In TABLE 3.2, we report phonon frequencies along the T-T direction, from

experiment (Ref. [72]), as well as for three different cases mentioned in section

3.3 (TcWSO-PhWSO ; Ec-PhWSO ; TcWoSO-PhWoSO). We do not report the

valúes for the non-metaüic case, as they do not differ from the metalhc one by

more than 0.6%. The different phonon bands are labelled as foUow, Acoustic

Eg phonon modes (A(Eg)), Acoustic _4i~ phonon mode (A(Alg)), Optical Eg

phonon modes (0(Eg)), and Optical A_g phonon mode (0(_4ig)).

When we compare our results with the experimental data [72] for the cases

without SO coupling, the disagreement is on the order of 10% for many bands

and points. By contrast, the agreement is excellent if we add the SO coupling to

the metaüic case. In FIGs. 3.2 and 3.3, we report the full phonon band structures

for the metallic case, with and without the SO coupling. The phonon band strac-
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Table 3.1: Crystallographic parameters for the unit cell of Bi.

Non- MetaUic Experiment
metaüic

without without SO with SO valúes

SO

a0 (A) 4.6496 4.6525 4.6944 4.7236

a (deg) 57.57 57.48 57.57 57.35

z 0.47102 0.47108 0.46819 0.46814

(¡■nn (A) 3.0385 3.0383 3.0505 3.0624

BD (A) 5.4610 5.4684 5.4805 5.52252

DH (A) 6.1328 6.1396 6.2250 6.27421

ture graphics for the non-metaUic case without SO interaction is very similar to

FIG. 3.2. The major effect due to SO coupling is a softening of aU the phonon

frequencies, this softening being very pronounced in absolute valué in the case

of the 0(Aíg) branch (0.32 THz at the T point), as weü as relatively in the case

of the A(Eg) branch (about 15 % at the T point).

In Fig. 3.4, we analyze in more detail the interplay between the direct effect

of the SO coupling on the phonon frequencies, at fixed crystallographic parame

ters, and the indirect effect of the SO coupling, through modification of the crys

tallographic parameters. The phonon band structures for dotted (black) and the

dot-dash (green) unes correspond to the (TcWoSO-PhWoSO) and (TcWoSO-

PhWSO) cases respectively ; they have been computed for the same crystaUo

graphic parameters. This result clearly show that the inclusión of the SO interac

tion strongly affect the optical bands, as mentioned in last paragraph. The direct

influence of the SO interaction is less pronounced for the acoustic branches, and

bigger for the X-K-r line than for the T-T line (nearly negligible for the latter).

The dashed (blue) line correspond to the Ec-WSO case and the solid (black)

line to the TcWSO-WSO case. The role of the crystallographic parameters is

quite large for the acoustic branches : the indirect effect of the SO coupling is

comparable to the direct effect for the X-K-r, and clearly predominent for the

T-T line. For optical branches, the indirect effect of the SO coupüng is much

smaller than the direct effect.

The SO effect on the phonon band structure calis of course for further anal

ysis.
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Table 3.2: Phonon frequencies (THz) along the T-T direction. Experimental
valúes from Ref. [72]. Theoretical valúes (metalüc treatment) corresponding
to three cases : theoretical crystallographic parameters and phonon valúes with

SO coupling (TcWSO-PhWSO); experimental crystallographic parameters and

phonon valúes with SO coupling (Ec-PhWSO); theoretical crystaUographic pa
rameters and phonon valúes without SO coupüng (TcWoSO-PhWoSO).

A(Eg) A(Alg) 0(Eg) 0(Alg) A(Eg)A(A_g)0(Eg)0(Aig)

Experimental
Valúes

Theoretical cell,

case with SO coupling

(TcWSO-PhWSO)

r

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

T

2.22 3.02

2.26 3.00

2.40 3.05

2.56 3.13

0.56 0.98 2.72 3.19

0.69 1.21 2.84 3.24

0.83 1.40 2.99 3.26

0.96 1.56 2.99 3.27

1.06 1.65 2.04 3.26

1.12 1.76 3.05 3.23

1.16 1.79 3.03 3.24

1.96 2.92

2.12 2.96

2.32 3.05

2.53 3.13

0.61 0.97 2.66 3.19

0.77 1.18 2.81 3.23

0.90 1.37 2.88 3.25

1.01 1.53 2.94 3.26

1.09 1.66 2.97 3.25

1.14 1.73 2.99 3.23

1.15 1.76 2.99 3.23

Experimental cell

with SO coupling

(Ec-PhWSO)

Theoretical cell,

case without SO coupüng

(TcWoSO-PhWoSO)

r

0.1

0.2

0.3

0.4

0.5 .

0.6

0.7

0.8

0.9

T

1.89 2.87

2.05 2.91

2.26 3.00

2.46 3.08

0.58 0.93 2.59 3.14

0.74 1.13 2.74 3.18

0.86 1.32 2.82 3.21

0.97 1.48 2.88 3.21

1.05 1.60 2.91 3.21

1.09 1.67 2.93 3.19

1.10 1.69 2.93 3.19

2.16 3.12

2.37 3.16

2.60 3.28

2.80 3.38

0.70 1.02 2.87 3.43

0.91 1.26 3.06 3.49

1.02 1.44 3.13 3.52

1.17 1.63 3.20 3.54

1.25 1.76 3.20 3.53

1.30 1.84 3.23 3.53

1.34 1.89 3.23 3.55
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Figure 3.2: Phonon frequencies for Bi, metallic case, without SO interaction

(TcWoSO-PhWoSO). Soüd lines : theoretical results ; fuU dots : experimental
data from Ref. [72] ; empty dots : experimental data from Ref. [73]. The lack of

SO interaction is at the origin of most of the disagreement between theoretical

and experimental valúes

3.4.3 Interatomic Forcé Constants

When one atom is displaced from its equiübrium position, it exerts a forcé on the

other atoms. By reaction, a restoring forcé acts upon him. The proportionality
coefficients between the displacement and the forcé between atoms are known

as the interatomic forcé constants (IFCs). A Fourier transform of the IFCs,

followed by proper inclusión of masses, leads to the dynamical matrix, whose

eigenvalues are square of the phonon frequencies. Henee, the modification of

the phonon band structure due to SO can be traced back to a change of IFCs.

Our analysis of the EFCs foUows the one in Ref. [76, 77]. For each pair of

atoms, the IFCs form a 3 by 3 matrix. Except for the interaction of the atom with

itself, the 3 by 3 matrix can be analyzed by expressing it in the coordínate system

in which the vector between the two atoms have been chosen as one of the axis

(longitudinal direction), and the two other vectors leads to a diagonalization of

the 2 by 2 remaining block (transverse directions). For the analysis of the on-site
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Figure 3.3: Phonon frequencies for Bi, metallic case, with SO interaction

(TcWSO-PhWSO). Solid lines : theoretical results ; full dots : experimental
data from Ref. [72] ; empty dots : experimental data from Ref. [73].

IFC, one can simply diagonalize the 3 by 3 matrix (that is symmetric).

The TABLE 3.3 shows our results for the longitudinal and transverse forcé

constants, as well as the trace of the matrix (the sum of the longitudinal and

transverse forcé constants). We do not report the longitudinal-transverse cou

pling valúes, although they are not negligible compared to transverse IFCs.

We consider the atom labeled as Ci in FIG. 3. 1 as the generic (referrer) atom.

We then consider shells ofmore and more distant atoms, the interaction of atom

Ci with itself corresponding to shell 0. We distinguish whether the other atom

lies inside the same bilayer as atom Ci by the presence of an asterisk in TABLE

3.3.

The on-site IFCs, and the longitudinal IFCs between nearest-neighbors (shell

1 e.g. Ci-D) are one order of magnitude bigger than the other IFCs. The de-

crease with distance is quite marked, although the 9th shell IFCs (C1-F3) are

particularly large. Actually, the atoms belonging to the 9th shell would have

reduced coordinates (2 0 0) and equivalent if the structure were cubic. Beyond
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Figure 3.4: Phonon frequencies for Bi. Full dots : experimental data from

Ref. [72] ; empty dots : experimental data from Ref. [73]. The lines correspond
to theoretical results as follow. Dotted (black) line : theoretical cell parameters

without SO coupling, phonons without SO coupling (TcWoSO-PhWoSO) ; dot-

dashed (green) line : theoretical cell parameters without SO coupling, phonons

with SO coupling (TcWoSO-PhWSO) ; solid (black) line : theoretical cell pa

rameters with SO coupling, phonons with SO coupling (TcWSO-PhWSO) ;

dash (blue) line : experimental cell parameter, phonons with SO interaction

(Ec-PhWSO).
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the ninth shell, the IFCs never exceed 1.5 x 10-3 Ha/Bohr2, and go quickly to

zero. Except for the longitudinal EFC of the first shell, the in-layer IFCs are not

systematically bigger than the IFCs for pairs of atoms placed in different layers.

Henee, with respect to its IFCs, Bi is not a quasi-two-dimensional material. Of

course, the longitudinal first-shell IFCs, that are found only within the bilayers

strongly influence the lattice dynamics.

We analyze now the effect of SO coupling. The biggest IFCs, i.e. the on-site

IFCs and the first shell longitudinal IFCs, decrease both by about 15%. Among
the other IFCs, some exhibit much bigger relative changes, and most of them

change by more than 15%, although these noticeable changes only modulate the

quite homogeneous softening brought by the biggest IFCs on the phonon band

structure.

In order to shed some light on the modification of the on-site and shell 1

longitudinal IFCs, we also analyzed the Bi dimer. The technical details are quite
similar to the crystalline case, except that we placed the system in a big cell. We

found that the bond distance between a pair of Bi atoms is equal to 4.8607 Bohr

for the case when the SO is not considered, while it is equal to 4.9 1 66 Bohr when

the SO coupling is taken into account. Going from the molecule to the solid

decreases the nearest-neighbor distance significantly. The SO interaction causes

a little increment in the bond length, in agreement with our previous result for

solid Bi. The longitudinal EFC is equal to the on-site EFC for a dimer. In the case

without SO, we obtain an on-site EFC valué of 157.7 x 10-3 Ha/Bohr2, while

it drops to 130.5 x 10-3 Ha/Bohr2 when the SO coupling is taken into account.

Although the EFCs in the solid and the molecule are quite different, the effect of

SO is qualitatively the same again.

Both the lengthening of the bond length increase and weakening of the EFCs

can be rationalized, in a very qualitative way, by an analysis of the electronic

structure of the molecule. Indeed, in the case without SO, the HOMO corre

sponds to twofold degenerate bonding n states, the LUMO corresponds to anti-

bonding ir' states also twofold degenerate, separated by 2.2 eV only. Turning on

the SO coupling leads to a mixing of bonding and antibonding orbitals, weak

ening the bond and increasing the bond length, on one hand. On the other hand,

it diminishes the energy gap between the HOMO and the LUMO to a valué of

1 .3 eV, an effect that weakens the IFCs.
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3.5 Conclusions

Our results reveáis the role of SO coupling on the phonon band structure and in

teratomic forcé constants ofBi, whose treatment allows to get a very nice agree

ment with experiment. The SO interaction soften the phonon frequencies by
about 10% for many bands and points when compared to experimental valúes,

and it has a much smaller effect on the crystallographic parameters. For optical

bands, the modifications are dominated by the direct SO interaction (crystal

lographic parameters play only a minor role), while the effect on the acoustic

bands is largely mediated by the cell parameters also. A large fraction of the

changes can be attributed to the modification of longitudinal forcé constants

(and the accompanying on-site interatomic forcé constant), also present in the

simple Bi diatomic molecule.

60



CHAPTER 3. BISMUTH PHONONS 3.5. CONCLUSIONS

Table 3.3: Longitudinal (||), and transverse (_L) interatomic forcé constants (in

units of 10"3 Ha/Bohr2), for different shells of atoms. The distances are given
in atomic "Bohr" units. We indícate, in parenthesis, the number of the shell if

the structure were cubic. Several shells in the rhombohedral structure combine

into one shell of the cubic structure. The asterisk indícate shells of atoms that

are in the same bilayer as the referrer atom (see text).

Shell Distance || _L _i_ Trace

Without SO (TcWoSO-PhWoSO)

0*(0) 0.0000 47.50 48.59 48.21 144.31

1*(D 5.7417 -32.48 -2.77 -2.65 -37.90

2(1) 6.4993 -2.72 1.07 0.08 -0.83

3*(2) 8.4562 -2.69 1.44 0.87 -0.39

4(2) 8.7921 -1.19 0.00 1.13 -0.06

5*(3) 10.221 0.05 -0.09 0.12 0.07

6(3) 10.333 0.14 -0.05 -0.05 0.05

7(3) 10.665 -0.08 0.14 0.02 0.08

8(3) 11.602 -0.07 -0.08 -0.08 -0.22

9(4) 12.198 -4.24 -0.57 -0.71 -5.52

With SO (TcWSO-PhWSO)

0*(0) 0.0000 41.67 42.46 42.21 126.34

1*0) 5.7646 -29.13 -2.27 -1.89 -33.28

2(1) 6.6033 -2.37 0.78 0.75 -0.84

3*(2) 8.5436 -2.68 1.83 0.15 -0.70

4(2) 8.8712 -1.20 0.02 0.85 -0.33

5*(3) 10.306 0.04 -0.1 0.19 0.14

6(3) 10.356 0.08 -0.16 -0.16 -0.25

7(3) 10.798 0.00 0.10 0.01 0.11

8(3) 11.763 -0.10 -0.13 -0.13 -0.36

9(4) 12.316 -3.03 -0.44 -0.72 -4.19
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Chapter 4

Thermodynamical properties for

Bismuth

4.1 Effect of the Spin-Orbit Interaction on the Ther

modynamic Properties ofCrystals: SpecificHeat

of Bismuth

We discuss measurements and ab initio calculations of the specific heat for crys
talline bismuth, strictly speaking, a semimetal but in the temperature región ac-

cessible to us (T > 2K) acting as a semiconductor. We extend experimental
data available in the literature and notice that the ab initio calculations with

out spin-orbit interaction exhibit a máximum at ~ 8K, about 20% lower than

the measured one. Inclusión of spin-orbit interaction decreases the discrepancy

markedly: the máximum of C(T) is now only 7% larger than the measured

one. Exact agreement is obtained if the strength of the spin-orbit Hamiltonian

is reduced by a factor of ~ 0.9. We also discuss the dependence of the lattice

parameter and the cohesive energy on spin-orbit interaction.

4.2 Introduction

In the past few years, a number of investigations on the dependence of the spe

cific heat of semiconductors and insulators on temperature and isotopic masses

have been carried out. These works involved careful low temperature experi-

ments (for elemental crystals, see Refs. [78, 79], for binaries, see Refs. [80]
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and references therein) and elabórate ab initio calculations based on electronic

band structures computed in the framework of the local density approximation
(LDA). Recent work involving binary lead chalcogenides with different isotopic

compositions [PbS (Ref. [81]), PbSe (Ref. [82])] yields a low temperature máx

imum in the quantity C(T)/T3 (at ~ 12K) [81, 82] about 25% lower than the

measured one. Correspondingly, the calculated phonon dispersión relations are

on the average 10% higher than those determined with inelastic neutrón scatter

ing (ENS) [83]. The higher phonon frequencies qualitatively explain the lower

specific heats obtained from the calculations.

When trying to ascertain whether the harder phonon frequencies (and lower

specific heats) calculated for PbS and PbSe were due to the lack of spin-orbit

(SO) coupling in the ab initio electronic structure, some difficulties aróse. These

involved not only the extended computational time but also divergences in the

dispersión relations of the optical phonons for q
—> 0. The latter may be related

to the strongly ionic, nearly ferroelectric character of these compounds.

To our knowledge the computation of the q
—» 0 divergences when the spin-

orbit coupling is present has not yet been implemented in existing first-principles
codes. By contrast, for metáis, there is no such divergence, which makes pos
sible the direct computation of phonon band structure and thermodynamical

properties based on density-functional perturbation theory (Ref. [5, 68, 86]),

including spin-orbit, as implemented in the ABINIT software [70]. Thus, we

performed measurements and calculations for crystalline bismuth, which is free

of the ionic divergences present in the lead chalcogenides.

With this work we demónstrate that inclusión of SO coupüng, in fact, con-

siderably reduces the discrepancies between experimental heat capacity data and

ab initio results. In addition, we also discuss the dependence of the rhombohe

dral lattice parameter a0 and the cohesive energy Ec on the magnitude of the SO

coupling. Bismuth is a semimetal closely related to the lead chalcogenides: it

has 10 valence electrons per primitive cell and a rhombohedral structure which

can be derived from that of PbS by making both atoms equal and applying a

Peierls-üke distortion to the PbS cube, involving an elongation of one of its

[111] axes [87]. The distortion converts the simple cubic structure of bismuth,

with one atom per primitive cell, into a rhombohedral one with two atoms per

primitive cell (two sublattices). This structure is characterized by three param
eters: the bond length _0, the rhombohedral angle, and a shift between the two

sublattices [67, 88]. These parameters were determined by energy minimiza-

tion using the ABINIT code. The results obtained for these parameters in Refs.

[67, 88] with and without SO coupling differ by less than 1%.
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4.3 ab initio calculations

The phonon dispersión relations were calculated with ABINIT in Ref. [67] with

SO coupling whereas in Ref. [88] calculations with and without SO coupling
were performed. With SO coupling, excellent agreement with experimental re

sults (Ref. [72] ) was obtained whereas without it, discrepancies of the order of

10% were found, the calculated bands lying higher in frequeney than the mea

sured ones. Similar results were found for PbS (Ref. [81] ) and PbSe (Ref. [82] )

without SO coupling. In view of these results, we proceeded to calcúlate the spe
cific heat C(T) of bismuth. In order to complete the available experimental data

(carried out on polycrystalline samples) [89-93] we also performed measure

ments on high purity (99.9999%, Preussag Puré Metals) single crystals. Recent

data collected by various earlier authors and our own data (our experimental

technique is described in Refs. [78-81]) are compiled in Fig. 4.1, together with

the results of our ab initio calculations performed with and without spin-orbit

coupling.

4.4 Results and discussion

The hitherto available experimental points were measured on polycrystalline

samples.They are rather widely spaced in temperature, with theexception of

Keesoms below 4 K (Ref. [90, 94]). We have therefore performed measure

ments of CP(T) on single crystals for T between 1.8 and 100 K with the mea

suring temperatures spaced by ~0. 1 K up to 50 K and 0.5 K steps above 50

K. The máximum of C(T)/T3 takes place at 7.5 K. According to Ref. [82] it

should be found at ~ 7t¿/6, where TTA ~ 42 K is an Einstein oscillator fre

queney which can be read off the phonon density of states [67]. The temperature
of the máximum in Fig. 4. 1 is found to be 7.5 K, fairly cióse to TTa/6 — 7K.

Although the typical carrier concentrations of the PbS samples are between

1018 and 1019 cm3 [81], no evidence of a free carrier contribution to the specific
heat was found, except possibly below 2 K [90]. Thus, the measured specific
heat represents the contribution of the lattice vibrations vs temperature, obtained

at constant pressure Cv . Most lattice dynamical calculations, such as those of

Elcombe, represent the specific heat measured at constant volume Cv [83]. The

difference between Cv and Cv is given by [98],

CP(T)
- CV(T) = a2v(T)BVmolT, (4.1)
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7(K)

Figure 4.1: Heat capacity of a Bi single crystal, purity 99.9999%. (Red filled)
circles as measured in this work compared with literature data obtained on poly

crystalline samples. (Green) ▲ (Ref. [90]); (blue) 4 (Ref. [90]); D (Ref. [92]);

(black) ■ (Ref. [93]). (Black) solid line : ABINIT results with spin-orbit cou

pling included; (blue) dashed line: ABINIT calculation without spin-orbit cou

pling.

where av is the temperature dependent thermal expansión coefficient, B the

isothermal bulk modulus using the notation of Ref. [84], and Vmoi the molar

volume. According to Eq. (4. 1), the difference Cp—Cv increases with increasing
T. Replacing standard valúes of av(T), B, and Vmot found in the literature [85],

we obtain from Eq. (4.1) the difference Cp
— Cv = 0.18 J/mol K at the highest

temperature used in our measurements (~ 280 K). This difference is smaller

than typical error bars in our measurements and will be neglected here. We

shall therefore denote the specific heat, either theoretical or experimental, by Cp
[81].

Ourmeasurements place the máximum valué oíC/T3 at 2.32 ± 0.03 mJ/molK4.

O

E

t

O
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The valué calculated without SO splitting lies at 1 .940 mJ/mol K4 whereas with

SO coupling one finds 2.500 mJ/mol K4 . Henee, the results of the calcula

tion without SO coupling lie 20% below the experimental data; those with SO

coupling lie only 7% above. Not only is the difference between measured and

calculated valúes of C/T3 3 times smaller when SO interaction is taken into

account, but the agreement with SO coupling above 12 K lies within the experi
mental error, whereas without SO coupling a considerable difference is found.

This improvement illustrates the importance of SO interaction for the cal

culations of thermodynamic properties starting from ab initio electronic band

structures for systems containing heavy atoms and confirms our conjecture that

similar discrepancies between calculated and measured valúes of C/T3 found

for PbS and PbSe [81, 82] must be due to the lack of SO coupling in the elec

tronic structure calculations. These results suggest performing calculations and

measurements for antimony (also a semimetal with the same crystal structure as

Bi) which has a considerably smaller atomic SO coupling than bismuth (0.84

versus 1.7 eV).

The results for Sb are shown in Chapter 5, but here we have pursued yet

another avenue: we have multiplied the spin-orbit coupling Hamiltonian by a

factor 0 < A < 1 and repeated the full ab initio calculations ofC(T) for several

valúes of A. The results obtained for bismuth are shown in Fig. 4.2.

This figure reveáis the strongly supralinear dependence of the SO effect on

C/T3 which can be fitted with the expression

C/T3 = _o[l + c2A2(l + c4A2)] (4.2)

with co = 1.942(2) mJ/mol K4 , c2 = 0.116(7), and c4
= 1.46(13).

The fit is displayed in Fig 4.3(a). For A = 1 the fourth order term surpasses

the quadratic term. Exact agreement between the measured and the calculated

valúes ofC/T3 is obtained if one reduces the SOC coupüng by a factor A = 0.9.

It is expected that other mechanical and thermodynamic properties of Bi

should depend on the SO coupling as well, i.e., on the valué of A. The simplest
of them is probably the rhombohedral lattice parameter _0 . It is shown in Fig.

4.3(b) calculated for the same valúes of A as C(T) and fitted with and expression
similar to Eq. 4.2 with a0(X = 0)

=

c0
= 4.6529(7)Á, a2 = 0.0069(9), and

_4
= 0.29(16). The valúes of the fit parameters c¡ indícate that there is no simple

relationship between the effect of SO splitting on C(T) and the lattice parameter

a0(X). The effect of spin-orbit interaction on C(T), as described by c2 and c4

, is much larger than that on the lattice parameter a0(A). For A = 1, however,

the calculated valué for a0 (4.694Á) is also much closer to the experimental one

67



4.4. RESULTS CHAPTER 4. THERM. PROP. FOR BI
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Figure 4.2: Calculated heat capacities of Bi with varying magnitude of the SO

coupling as indicated in the inset. Note that the máximum shifts to lower tem

peratures (inclined dashed line) with increasing SO coupling, as it corresponds

to decreasing phonon frequencies (see text).

(4.720Á) than that obtained for A = 0 (4.652Á).

We have also calculated the cohesive energy Ec for several valúes of A. Ec

was obtained as the difference between the calculated total energy for the free

atom and that for the solid, both calculated with the LDA approximation for ex

change and correlation using ABINIT and spinorial, spin-polarized wave func

tions. This procedure leads to the A dependence of Ec shown in Fig. 4.3(c).

EC(X) can also be fitted with Eq. (4.2), leading to the parameters c0
= 3.236

eV/atom, c2 = -0.161(4), and c4
= 0.045(26). Henee, like for the other ther

modynamic properties investigated, no linear term in A appears in Ec . The lack

of linear terms in A in the thermodynamic properties contrasts with the results

of the calculations for individual one-electron states [61]. This leads to the con

clusión that upon integration of all one-electron states the linear terms cancel

and only terms of second or higher order in A remain.
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Note that the inclusión of spin-orbit coupling considerably improves the

agreement of calculated and measured of Ec. The calculated valué ü^A =

1) — 2.76 eV is remarkably cióse to the measured one (Ec — 2.16 eV/atom

(Ref. [6]), especially when one considers that it is obtained as the difference of

two large energies, of the order of 150 eV/atom.

4.5 Conclusions

In conclusión, we have investigated the effect of SO interaction on three ther

modynamic properties, C(T), a0 , and Ec , of a solid consisting of the heavy
element bismuth. Such effects, apparently rather substantial for a first principies
calculation of the physical properties, have not received much consideration in

the literature so far. For a discussion of other similar phenomena, see Refs.

[95, 96].

The fit with Eq. 4.2 implicitly implies the absence of cubic terms in A. In

order to check this assumption, we have calculated the quantities in Fig. 4.3

for negative valúes of A and found, e.g., that a0(X = +1) differs slightly from

ao(A = —1). A fit with the equation _.(A) = a_(0)[l + c2A2(l + C3A)] yields

a0(0) = 4.6528(5) Á c2 = 0.0064(2), and c3
= 0.41(2) indicating that cubic

term play an important role.
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Figure 4.3: (a) Máxima of the quantity Cp(Tma;c)/rma:r vs spin-orbit coupling
parameter A. (b) Energy minimized lattice parameter a0 vs spin-orbit coupling
parameter A. (c) Cohesive energy of bismuth vs A, calculated as discussed in the

text. The circles (O) represent our calculations, the dashed lines fits with Eq.
(4.2) which lead to the parameters given in the text.
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Chapter 5

Thermodynamical properties for

Antimony

5.1 Specific heat of Sb: Isotopic and spin-orbit ef

fects from measurements and ab initio calcula

tions

We report measurements of the specific heat C of antimony crystals in the 2 - 50

K temperature range for several isotopic compositions and ab initio calculations

of the specific heat as a function of temperature. The contribution of spin-orbit

interaction and the dependence of C on isotopic mass are discussed and com

pared with previous observations reported for semiconductors and group VA

semimetals. We also discuss the effect of spin-orbit interaction on the trigonal

lattice parameter and the cohesive energy.

5.2 Introduction

In the last years, a number of publications have reported the temperature depen

dence of the specific heat C in monatomic [78, 79, 97] and binary [80, 81, 98]

semiconductors as a function of the isotopic mass of its constituent atoms. Some

general trends were observed in all investigated materials, namely, (i) a peak ap-

pears at low temperature T in the plot of C/T3 vs T, (ii) this peak is higher

for larger isotopic masses M, and (iii) in monatomic crystals, there is a unique

relation between the temperature dependence of _ln(C/T3)/_lnM and that of
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d\n(C/T3)/dlnT. This relation carries over to binary semiconductors if one

considers the sum of the logarithmic derivatives with respect to the isotopic
masses. These trends were reproduced by first-principles calculations based on

the linear response method and density functional perturbation theory. Con-

trary to this, little information is available on the thermodynamic properties of

semimetals, in particular, the specific heat, where both electronic and lattice de

grees of freedom play a role. With the exception of phosphorus, the group of

the VA elements exhibit the A7 rhombohedral structure space group __3m, No.

166 in the International Crystallographic Tables . This structure is generated

by applying a deformation along the threefold axis to an fcc lattice plus a rel

ative displacement of atoms, which results into a primitive cell with two atoms

[99]. Among these elements, antimony is known for the strongly anharmonic

behavior of the crystal lattice, as revealed by the Raman-Brillouin scattering,
in particular, under pressure [100, 101]. The anharmonicity, together with the

semimetallic character of their electronic structure and, for heavier elements, the

increasing importance of spin-orbit interaction, has hindered so far an accurate

investigation of their thermodynamic and lattice dynamical properties by means

of ab initio calculations. For example, only very recently, spin-orbit interac

tion has been taken into account for calculations of these properties in bismuth

[67, 88, 102]. From the experimental point of view, there are only a few works

going back to the 1960s, dealing with the specific heat of arsenic [103-105],

antimony [106-108], and bismuth [109, 1 10]. Due to the limitations of the ex

perimental equipment, the reported data show considerable scattering in the 5

20 K temperature región. It is precisely in this temperature range where the

most interesting effects oceur, i.e., the described trends seen for semiconduc

tors and the deviation from the Debye behavior, as well as the presence of both

electronic and lattice contributions.

In this chapter, we report specific heat measurements of antimony crystals in

the 2 - 50 K temperature range both for natural samples as well as isotopically
enriched 121Sb and 123Sb. The experimental data are compared with ab initio

simulations of the lattice dynamics and the specific heat. These simulations

were performed with a relativistic pseudopotential Hamiltonian that includes

the spin-orbit interaction. The effect of spin-orbit interaction is expected to be

important although not as large as recently reported for bismuth [102].

Concerning the dependence on isotope mass, we found analogous behavior

as that for monatomic semiconductors. Additionally, we have calculated the

effect of spin-orbit interaction on the trigonal lattice parameter and the cohesive

energy. Like in the case of bismuth [102], we found the effects of spin-orbit
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interaction to be approximately quadratic on the spin-orbit coupling parameter,
a linear term being absent.

5.3 ExperimentalMethod

Natural samples of antimony were obtained from the Preussag Puré Metals

(Langelsheim, Germany). They consisted of small single crystals of a purity of

99.9999 %. Isotopically enriched 121Sb and 123Sb with 99% isotope abundance

in either case were purchased from the Oak Ridge National Laboratory. Accord

ing to their assay, the chemical purity of both enriched isotopes was better than

5 x IO-4. They appeared to be, upon microscope observation, single crystals
of about 2 mm3 size. Pieces of the three isotope modifications, weighing about

30 mg, were used as purchased for the specific heat measurements, without any
additional treatment. For details about the calorimeter and the experimental pro

cedure, see Refs. [78, 79, 98] as well as Appendix C. The measurements were

performed under vacuum, i.e., at constant pressure. We do not distinguís!, here

between the specific heat obtained at constant volume or constant zero pressure

since, in the temperature región under consideration, they coincide within error

[81, 98] as explained below.

Most lattice dynamical calculations, such as those of Elcombe, represent the

specific heat measured at constant volume Cv [83]. The difference between Cp
and Cv is given by [98],

CP(T)
- CV(T) = a2v(T)BVmolT, (5.1)

where av is the temperature dependent thermal expansión coefficient, B the

isothermal bulk modulus using the notation of Ref. [84], and Vmoi the molar

volume. According to Eq. (5.1), the difference Cp
—Cv increases with increasing

T. Replacing standard valúes of av(T), B, and Vmol found in the literature [85],

we obtain from Eq. 5.1 the difference Cp
— Cv = 0.18 J/mol K at the highest

temperature used in our measurements (~ 280 K). This difference is smaller

than typical error bars in our measurements and will be neglected here. We

shall therefore denote the specific heat, either theoretical or experimental, by Cp

[81].
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5.4 ab inition Calculations

First-principles methods have preved to be essential to identify the phonon
modes responsible for the temperature dependence of the specific heat in semi

conductors. In this work, we report ab initio calculations of the specific heat of

antimony and the lattice dynamics obtained with the ABINIT software package

[68,70,111].

The electronic structure of antimony in the i_3m phase was calculated us

ing the Hartwigsen-Goedecker-Hutter pseudopotentials which are expressed as

norm-conserving separable dual space Gaussians and generated on the basis of

a fully relativistic all-electron calculation [29]. To this aim, a grid of 12 x 12 x 12

k-points in the Brillouin zone was used for the integration required for the de

termination of the local charge density. The local density approximation to the

exchange and correlation energy was employed [50].

The dynamical matrices corresponding to a grid of 1 2 x 1 2 x 12q points were

calculated within the framework of density functional perturbation theory and

the linear response method. These matrices were then interpolated to obtain, by

integration, the lattice contribution to the specific heat at constant volume [34,

68, 111]. Details of the procedure and equations to calcúlate this contribution

have been reported elsewhere[80].

The implementation of the spin-orbit term in ABINIT follows the same lines

as in Ref. [48], where the spin-orbit term in the Hamiltonian is applied only into

the Kleinmann-Bylander type of nonlocal operator. For the electronic calcula

tions, the spin-orbit Hamiltonian was multiplied by a parameter A. Thus, A = 0

corresponded to neglecting the spin-orbit coupling, whereas for A = + 1, the full

spin-orbit coupling was applied. We also performed calculations for A= 0.5 and

A=-l, so as to confirm the quadratic dependence of thermodynamic properties
on A proposed in Ref. [102].

5.5 Discussion

Figure 5.1 displays the temperature dependence of C/T3 measured for natural

antimony (open squares) together with data previously reported in Ref. [106]

(open circles) . Our measurements provide a much clearer description of the

behavior at temperatures lower than 15 K, whereas at higher temperatures, both

data sets are basically indistinguishable.
In a semimetal, the low temperature ümit of the specific heat can be de

scribed by the equation,
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Figure 5.1: Temperature dependence of the specific heat of natural antimony.
The experimental data (open squares) are comparedwith data from the literature

Ref. [106] (soüd circles) and with ab initio calculations with (black, soüd) and

without (red, dashed) spin-orbit interactions.

C = 7T + /ST3 + aT2 (5.2)

where the linear term represents the electronic contribution, the cubic term

corresponds to the Debye behavior of the crystal lattice, and the T2 term de

scribes the interaction of the nuclear quadrupole moment with the electric field

gradient of the electrons and the lattice. The latter term is negügible within our

temperature range, but it may become appreciable for T < 1 K. The upward

bending at low temperatures (cf. Fig. 5.1) is due to the electronic contribution

("/) to the specific heat [107]. A fit of the low temperature heat capacities with

Eq. (5.2) gives ~, = 0.13(4) mJ mol"1 K~2 and 3 = 0.234(2) mJ mol"1 K~4 (a =

0). These valúes are nearly independent of the isotope composition and in good

agreement with those reported in Refs. [104] and [107].

The peak in Fig. 5.1, located at 14 K, evidences the deviation from the

Debye behavior that is known to oceur at low temperatures. Within the Einstein
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model, this peak should correspond to a phonon frequeney of 7 meV [81], which

coincides with the first máximum of the calculated phonon density of states, i.e.,

it corresponds to transverse acoustic modes [112].

Figure 5.1 also displays the calculated temperature dependence of the spe
cific heat with (black, solid) and without (red, dashed) the spin-orbit interaction.

Both calculations reproduce well the temperature dependence and the peak po
sition in the experimental data. The spin-orbit interaction produces an enhance

ment of the peak ofC/T3 by ~ 4%. Very recently, the contribution of spin-orbit

interaction to the specific heat of bismuth was reported to be quadratic in at low

valúes of A [102]. For 0.5 < A < 1, a cubic term becomes important, but no

linear term in A is observed. Considering that the spin-orbit splitting of bismuth

(1.7 eV) is 2.42 times that of antimony (0.7 eV) [1 13], if we take the valué for

A = 1 / 2.42 = 0.41 in Eq. (5.2) of Ref. [102], we expect an increase of 2.4%

for the peak ofC/T3 for antimony, in qualitative agreement with our direct cal

culations. The difference between 2.4% and 4% might be related to the role of

cubic terms in A, neglected in Eq. (1) of Ref. [102]. Both in bismuth [102] and

antimony, there is a 5% discrepaney between the calculations (including spin-
orbit interaction) and experimental results. This discrepaney might be related to

the intrinsic inaecuracy of local density approximation phonon dispersions, as

compared to the experimental valúes.

Figure 5.2 displays the dependence of the peak of C/T3 on isotope mass.

For the sake of comparison, the linear temperature term has been subtracted

from the experimental data, since it is not taken into account in the calculations.

The curves of Fig. 5.2 show an increase of the peak with increasing isotope

mass, both for the experimental and calculated data. This trend, already reported
for semiconductors in previous works, [78, 80, 81, 98] seems also to be obeyed

by semimetals. The isotope shift of the peak between 121Sb and 123Sb amounts

to 12 pj mol-1 K-4 and agrees reasonably well with the experimental shift, 14.2

pj mol-1 K-4. The calculated curve corresponding to antimony with natural

isotope composition is slightly closer to that of 121Sb due to the closer masses.

In the case of experimental data, we found that this rather subtle effect depends

somewhat on the sample details.

Figure 5.3 displays full circles the logarithmic derivative of C/T3 with re

spect to the isotope mass corresponding to the experimental data obtained after

subtraction of the electronic contribution [7 term in Eq. 5.2]. This derivative

has been reported to be linked to the logarithmic derivative with respect to tem

perature in diamond, silicon, and germanium by [97],
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Figure 5.2: Same as Fig. 5.1 for different isotope compositions. The calcula

tions were performed in all cases including spin-orbit interactions (A= +1).

dln(C/T3)
_

1

dlnM
~

2
3 +

_ln(C/r3)
dlnT

(5.3)

We show in Fig. 5.3 the left- and right-hand sides (rhs) ofEq. (5.3) obtained

from the experimental data with full (red) and open (black) circles, respectively,
and the rhs of Eq. (5.3) calculated from the ab initio data for A= + 1 solid line.

The agreement between both experimental data sets, as well as the agreement
with the ab initio data, is excellent. The good agreement between both sets al

lows us to verify the validity of this equation for semimetals. The peak at 10 K

is followed by two different slopes at higher temperatures, the crossover point

being at ~ 25K. The associated phonon frequeney is 1 1 .5 meV, calculated again

by multiplying the crossover temperature by a factor of 6 [81]. This frequeney

corresponds to the threshold between acoustic and optic phonons, as shown in

the phonon dispersión relations obtained by inelastic neutrón scattering exper-

iments [112] and confirmed by our calculations [114]. Henee, we attribute the
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Figure 5.3: Logarithmic derivative with respect to the isotope mass,

_ln(C/T3)/_lnM (solid red circles) and rhs of Eq. (5.3) (open black circles),

corresponding to the experimental data. The solid line displays the rhs of Eq.

(5.3) obtained from the calculations.

change in slope to the activation of optic phonons at higher temperatures.

In recent works on bismuth [67, 102], a significant contribution of spin-orbit
interaction to vibrational properties such as phonon dispersión relations and spe
cific heat has been found. The relevance of these effects can be evaluated by

performing ab initio simulations of the properties of interest as a function of the

magnitude of the spin-orbit interaction, governed by the coupling parameter A.

Figure 5.4 displays the change in the trigonal lattice constant _0 and the cohesive

energy Ecoh as á function of A. The calculated data show a quasiparaboüc de

pendence on A, with a small but nevertheless significant contribution of a cubic

term. The experimental valué of E^h = 2.7 eV compares well with the calcu

lated valué for A= + 1, i.e., 3.37 eV. A similar agreement was reported in Ref.

[102] for bismuth. The expansión of the spin-orbit Hamiltonian in A using per
turbation theory contains only quadratic ánd higher order terms in A, since linear
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terms in A would imply a splitting between z components of the spin upon the

spin-orbit interaction, a splitting that can only happen in the presence of a mag

netic field. Therefore, no linear term in the dependence of both ao and E^h on A

is expected. Note that the square root of the ratio of the coefficients correspond

ing to the quadratic term in A for the fits of a0 of bismuth [102] and antimony,
which amounts to 2.75, is rather similar to that of the spin-orbit spüttings, i.e.,

1.7 / 0.7 = 2.42 [113]. The difference between 2.75 and 2.42 may be due to the

fact that the corresponding energy denominators are smaller in Bi than in Sb. A

similar comparison can be affected for the cubic root of the ratio of the cubic

terms which for ao turns out to be 2.8, cióse to the ratio of spin-orbit spüttings.
This relation, which also holds for the dependence of the peak C/T3 on A, im-

plies a simple scaling of the effects of spin-orbit interaction on the vibrational

properties.

Figure 5.5 displays the change of the specific heat with A as a function of

temperature. Two main effects are observed, namely, a larger valué of the peak

C/T3 with increasing strength of the spin-orbit interaction and a crossing of the

curves corresponding to A= + 1 and A= -1. The observed crossing suggests a

change in the slope of the phonon dispersión corresponding to low frequeney
acoustic modes, since a shift of the peak to lower temperatures is caused by an

increase of the lowest phonon frequencies. The phonon dispersión data reported
for bismuth in Table 5.6 of Ref. [88] manifest a change of slope of transverse

acoustic [_4(i?9)] modes along the T
— T direction between A= 0 and A= 1, i.e.,

an indication of a crossing of the dispersión relations also for bismuth (unfortu-

nately, no calculations for A= -1 were reported in Ref. [88]. Table 5.6 displays
the acoustic phonon frequencies of antimony along the T — T direction calcu

lated for A= 0, 1, and -1. A higher sound speed is observed in the case ofA(Eg)
modes for A= 1 and -1, as compared to that obtained without spin-orbit interac

tion. On the contrary, the same phonon branch shows higher frequencies for A

= 0 cióse to the zone boundary, thus evidencing a crossing of the A(Eg) bands

similar to that just mentoned for Bi. Table 5.6 also displays a crossing of the A=

+ 1 and the A= -1 bands.

5.6 Conclusions

In conclusión, we have reported measurements of the dependence of the specific

heat of antimony on the isotope mass as a function temperature. The experi

mental data have been analyzed with the aid of first-principles calculations of
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the lattice dynamics and its contribution to the specific heat. The specific heat of

antimony shows a similar behavior with changing isotope mass as observed in

semiconductors, namely, a peak ofC/T3 vs T whose strength increases with the

isotope mass, and a relation between the logarithmic derivatives with respect to

isotope mass and temperature. Moreover, the ab initio calculations allowed us

to evalúate the contribution of the spin-orbit interaction to the specific heat, the

lattice parameter, and the cohesive energy. These three physical quantities de

pend nearly quadratically on the spin-orbit coupling parameter A, with a minor

contribution of a cubic term. The quadratic dependence is proportional to the

square root of the spin-orbit splitting, as evidenced in the comparison of results

for bismuth and antimony.
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Figure 5.4: Dependence of the lattice parameter a0 and the cohesive energyE^

on the strength of the spin-orbit interaction. The solid line displays a fit with a

polynomial of third order, y(X) = y0(0)[l+C2A2(l-r-c3A)] (y = a0, ü^,/.), with

a0
= 4.43244(4), c2 = 0.00089(2), and c3

= 0.136(13) and Eq = 3.4337(3) Á,

c2
= 0.0162(2), and c3

= 0.088(7) for the lattice parameter a0 and the cohesive

energy E^h, respectively (see Discussion in the text).
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Figure 5.5: Dependence of the peak C/T3 on the strength of the spin-orbit
interaction. The symbols display our experimental data for the natural isotope

composition, whereas the curves display the results of the calculations for A= +

1 (black, solid), A = 0 (red, dotted) , and A = -1 (green, dashed).
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Expt. X=0 \ = + l _=-!

ME,) A(Aíg) MES) _(_.„) ME,) MA\g) ME,) A(AU)

r 0.00 0.00 0.00 0.00 0.00 0.00

0.1 1.2 1.31 1.67 1.33 1.61 1.32 1.64

0.2 2.7 2.61 3.16 2.55 3.13 2.59 3.20

03 4.0 3.73 4.55 3.65 4.48 3.69 4.53

0.4 4.8 5.4 4.72 5.94 4.63 5.85 4.68 5.91

05 5.6 6.6 5.67 7.23 5.51 7.07 5.58 7.13

0.6 6.5 7.7 6.47 8.36 6.33 8.22 6.41 8.31

0.7 7.0 8.4 7.21 9.37 7.04 9.23 7.13 9.30

0.8 7.4 9.1 7.70 10.09 7.52 9.94 7.65 10.07

QJ 7.7 9.3 8.04 10.62 7.84 10.45 7.97 10.57

T 7.8 9.6 8.26 10.76 8.04 10.62 8.17 10.74

Figure 5.6: Phonon frequencies (meV) along the T
— T direction, calculated for

Sb, corresponding to transverse A(Eg) and longitudinal A(Aíg) acoustic modes.

Experimental valúes from Ref. [112].
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Chapter 6

Palladium dimer

6.1 Understandingmagnetic properties on small pal
ladium clusters

We did calcúlate the total energy with respect to variations in the distance be

tween two palladium atoms from first principies with the use of density func

tional theory. We found two different curves for the total energy when the two

atoms approach or retire to each other. The curve with the higher energy, around

2.44 Á, correspond to the singlet state and is reached when the two atoms are

far from the internuclear distances and are moved closer. Starting with atoms

at a short distance, we proceed to increase the separation between them and we

follow the curve with the real mínima which correspond to the triplet state. Be-

cause the difference between the singlet and the triplet state is the magnetization
m of the system, with m

= Op andm — 2p respectively, we fixed the distance

between the Pd2 atoms and did calcúlate the total energy vs changes in the mag
netization. At 2.7 Á, there exist only one curve that joins the point with higher

energy and the one with the lowest energy with respect to changes in the magne
tization. Whereas, at shorter distances, e.g., ~ 2.4 Á, there exist several curves

to pass from one energy to the other, that mainly due to the overlap between

different electronic orbitals. A detailed study about this behavior is presented in

this chapter.
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6.2 Introduction

Determining the electronic structure of small metal clusters is of interest inmany
scientific domains ranging from catalysis to new technologies. It remains nev-

ertheless a challenge for scientist to obtain correctly the electronic structure of

small transition metáis clusters, even dimers. Palladium is one of such interest-

ing chemical species for which even the dimer brings many questions. From the

strict point of view of symmetry, the 4d10 closed shell configuration should not

lead to a stable dimer. This Pd2 molecule does however exist as the proximity
of the 4d95s1 configuration allows, through the mixing of both atomic configu
ration, stabilizing the system. This molecule has already been subject to some

theoretical studies using a relativistic core potential (RCP). An extensive MRS-

DCI ab initio study by Balasubramanian [115] identifies some 41 low energy

lying electronic states for Pd2. A local spin density (LDFT) computation by

Songbook Lee and co-workers [116] identifies two triplet ground states while

Taketoshi Nakao and collaborators [117] have treated the dimer at a nonlocal

level using the Becke Perdue functional and obtain also a triplet ground state.

The purpose of our research is to obtain relevant information on small palla
dium clusters such as geometries, binding energies, electronic properties and so

on. Pd2 being the first of them, we have checked our approach on such a system

using a usual atomic orbital basis set associated to the LANDZ core potential
and the hybrid B3LYP density functional, which are known to behave fairly well

for molecular species.

6.3 The problem

Obtaining the energy at a given geometry relies on an initial guess of the density,
which in turn needs a guess at an initial Kohn Sham Orbital set. Currently, the

orbitals are obtained from low cost semi-empiricalmethods or from a previously
obtained density of some closely related geometry. The lowest energy orbitals

are selected to build the density. This may lead to some unexpected results, as

this trial set will induce a well-defined symmetry into the density, which might
differ from the actual symmetry of the system and lead to a state lying above

the fundamental state. Such problem will appear when the KS orbitals are lying
cióse together, due to the proximity of various electrón configurations, or when

orbitals cross each other near definite geometries. This phenomenon is observed

in Pd2 and the curve described starting from large internuclear distances is dif

ferent from the one obtained starting from short distances. It is the case either

86



CHAPTER 6. PALLADIUM DIMER 6.3. THE PROBLEM

for the triplet or for the singlet state. The density build upon the "ra" first KS

orbitals does not correspond to the lowest energy and the self-consistent process
does not select the best set. The multiplicity will be conserved and symmetry

maintained. Even when a reordering appears, as it is the case on the triplet curve

corning from short distances (cióse to 2.9, 2.95 Á), the newly obtained orbitals
are not yet the best. One will expect that this phenomenon be related to the qual

ity of the used basis set. Indeed, for large basis sets, the flexibility introduced in

the density representation should be very efficient and the orbital optimisation

process should always have access to the optimal representation of the density,
while for a smaller the basis set, some rigid constrain will be introduced by a

lack of functions at disposal of the optimisation [122, 123]. This behavior is

presented in Fig. 6. 1 where the curves obtained starting from both sides of the

distances are shown for the triplet as well as for the singlet using an atomic basis

set approach [124].

To solve such an uncertainty, the only way out is a check at the obtained

energy stability using an algorithm such as provided in the Gaussian package.
Nevertheless a systematic check, guaranteeing the minimal energy, is usually
unaffordable in most molecular systems. A very dense functional representation
of the density is obtained in the plañe wave approach of solid-state physics. It is

the object of this paper to confront the atomic basis set approach, subject to the

above presented limitations to the plañe wave approach and to try to get a better

insight in the nature of this problem by analysing both results. In addition to the

previously works that have been reported in the literature about Pd properties

and dimer in general [1 18-121].

Following the plañe wave approach we used the ABINIT code [68-70] which

is a package that performs density functional calculations ofmaterial properties

using pseudopotentials and a plane-wave basis set. The exchange-correlation

energy was computed using the local density approximation (LDA) in the Teter-

Pade parametrization [50] and the pseudopotential used was the Hartwigsen-

Goedecker-Hutter (HGH) pseudopotential [29] which is a norm-conserving rel

ativistic separable dual-space Gaussian pseudopotential and is generated on the

basis of a fully relativistic all-electron calculation. Using this pseudopotential

it is also possible to reproduce only scalar relativistic effects by neglecting the

terms for the SO contribution from HGH : this pseudopotential contains sepa-

rately an average potential (that contains all scalar parts of the relativistic pseu

dopotential), and a vector part.
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Figure 6.1: Total energy vs. bond length considering different kind of approxi-

mations

6.4 Results

Using plañe waves as a basis set as implemented in the ABINIT code we con

sidered different approximations in calculating the total energy of the dimer.

These are the non-spin-polarized, spin-polarized, non-spin-polarized including

spin-orbit interaction, and the full density matrix (spinorial, spin-polarized wave

functions) including spin-orbit interaction (see Fig. 6.2). The latest will be stud

ied in detail in Chapter 7. In the specific spin-polarized case we found a similar

kind of results as the obtained using the atomic basis set approach (see Fig. 6.1

and Fig. 6.3 for compari).

Starting from here we shall be focused in the spin-polarized case approxima

tion. The lowest energy (green line) curve is obtained from calculations starting
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Bond length [A]

Figure 6.2: Total energy vs. bond length considering different kind of approxi-
mations

at short distances (2 Á). This curve has magnetization equal to two, in Bohr

magneton units, that correspond to the triplet state, however, this magnetization

valué is keeped only until the curve joins the others at around 2.9 Á. On the

contrary, the red dotted line has magnetization equal to zero (singlet state) and it

is obtained from a calculation when the atoms are at 4.0 Á. In this case the mag

netization becomes two when the curve jumps down and joins the green dotted

line around 2.2 Á. That means that the triplet state has the lowest energy at short

distances, but around 3.0 Á the curve with the lowest energy correspond to the

singlet state. This effect is showed in Fig. 6.2 (b) where the energy vs. bond

length is plotted for the specific singlet and triplet cases.

Considering the previous result it is quit clear that the magnitude of the mag

netization is the only variable that should be changed in order to jump from the
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singlet to the triplet curve and vice versa. To ensure that this consideration is

trae, we fixed the distance between Pd atoms and changed the magnetization
valué from zero (singlet state) to two (triplet state) and vice versa. When the

two Pd atoms are a bit far to each other, around 2.7 Á and 2.6 Á there exist only
one well defined energy valué in the singlet and the triplet state, henee the curve

that joins these two points is unique. At shorter distances the electronic orbitals

for each atoms start to overlap. At this point more than one valué for the total

energy, in the singlet state, appears and consequently there exist more than one

curve joining these two points. In Fig. 6.3 each curve has an specific and a well

defined electronic configuration an also an specific occupation numbers for each

electronic orbital.
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At 2.4 Á we found that the triplet state has a well defined electronic state that

gives a unique energy valué. On the other hand, in the singlet state there exist

many states, with different energy each of them, near to each other. Something

interesting is that the triplet and the lowest singlet state have a spin restricted

configuration, i.e., although there are partially filled levéis in the iterative pro

cess, the ground state is one of integral occupation numbers [125]

Trying to get and follow an specific curve showed in Fig. 6.3 is not the

only problem using LDA and standard DFT method, but also trying to relax the

structure for fractional occupation numbers and orbital coefficients because it

causes slow convergence during the final stage when orbitals are fairly cióse to

each other and to the Fermi energy.

We anal ysed in detail all the curves showed in Fig. 6.3. Each curve is de

fined in term of its electronic configuration and the orbital occupation number.

It is possible to plot the relative energies of the atomic orbitals as a function

of the magnetization. With that information it is also possible to know how

the electronic structure and the atomic orbitals occupation number is evolving
with respect to variation in the magnetization. The lowest energy correspond to

the triplet state in which the spin up electronic configuration, from the higher
to the lower energy, is given by 7r*(4oíx-iy-)1 afis)1 S*(4dx2_y2tXyY a*(Adz2)1,
and the spin down electronic configuration is o-*(4_22)1 --(.s)1 7r*(4c.I-¡,-)1
S*(4dX2_y2tXy)1.

The Figures, from 6.4 to 6.1 1, are self explained. Each of these curves show

in detail the electronic configuration and the occupation number for each of

these states. At the top, these figures show the magnitude of the eigenvalues
for the spin-up (left hand) and for the spin-down (right hand) configuration. At

the bottom, the occupation numbers for each of the eigenstates are shown. For

simplicity, we show only the occupation of the eigenvalues that have fractional

occupation.

6.5 Conclusions

We did a detailed analysis of the electronic structure and population for palla

dium dimer considering the spin-polarized approximation and we find that the

singlet state is composed for many different energy levéis. The triplet state on

the contrary, which correspond to the real ground state, has a unique and well

defined energy valué. The ground state is a triplet formed for the spin-up config

uration 7r*(4_X2,y-)1 aibs)1 .*(4_I2_y2iI!/)1 <j*(4í-22)1, and the spin-down con-
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figuration cr*(4c_-2)1 <r(5-)1 ir* (4dxz<yZ)1 6*(4dx2_y2tXy)1. This are ordered from

higher to lower energy and Fig. (6.8) shows the way in which each bonding or

antibonding is evolving frommagnetization equal to zero tomagnetization equal

to two. Taking a look in detail in this figure, it is easy to notice that o*(4dz2)1 is

the reponsible for this kind of behavior. Specially analysing the occupation for

the spin-down configuration (see Fig. 6.8d), it is easy to realize that it pass from

an empty to a completely full oceupied state and that the cr(5-)1 is completely

empty along.
Also interesting is that the singlet state with lowest energy has a spin re-

stricted configuration similar to the triplet state, but with an strong polarization
in the charge distribution, i.e., for the spin-up configuration the energy levéis or

dered from highest to lowest energy are a* (4_22)1 with only one atoms having
this charge distribution, lets say the left atom, 7t*(4_~2j!/2)1 double degenerated,

S*(4dx2_y2 -j,)1, double degenerated but this time and again only one atom with

this configuration, but now lets say the right atom with a bit more amount of

charge cr*(4c.22)1
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Figure 6.4: Atomic orbitals (Figures (6.4a) and (6.4b)) and occupation number

(Figures (6.4c) and (6.4d)) to the curve with the highest energy in Figure 6.3.

Figures (6.4a) and (6.4c) correspond to the spin-up case. Figures (6.4b) and

(6.4d) correspond to the spin-down case.
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Figure 6.5: Atomic orbitals (Figures (6.5a) and (6.5b)) and occupation number

(Figures (6.5c) and (6.5d)) to the curve with labeled as (iv-h) in Figure 6.3.

Figures (6.5a) and (6.5c) correspond to the spin-up case. Figures (6.5b) and

(6.5d) correspond to the spin-down case.
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Figure 6.6: Atomic orbitals (Figures (6.6a) and (6.6b)) and occupation number
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Figure 6.7: Atomic orbitals (Figures (6.7a) and (6.7b)) and occupation number

(Figures (6.7c) and (6.7d)) to the curve with labeled as (iii) in Figure 6.3. Fig
ures (6.7a) and (6.7c) correspond to the spin-up case. Figures (6.7b) and (6.7d)

correspond to the spin-down case.
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Figure 6.9: Atomic orbitals (Figures (6.9a) and (6.9b)) and occupation number

(Figures (6.9c) and (6.9d)) to the curve with labeled as (i-h) in Figure 6.3. Fig

ures (6.9a) and (6.9c) correspond to the spin-up case. Figures (6.9b) and (6.9d)

correspond to the spin-down case.
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Figure 6. 10: Atomic orbitals (Figures (6. 10a) and (6. 10b)) and occupation num

ber (Figures (6. 10c) and (6. 10d)) to the curve with labeled as (i-l) in Figure 6.3.

Figures (6.10a) and (6.10c) correspond to the spin-up case. Figures (6.10b) and

(6.10d) correspond to the spin-down case.
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Figure 6.1 1: Atomic orbitals (Figures (6.1 la) and (6.1 Ib)) and occupation num

ber (Figures (6.1 le) and (6.1 Id)) to the curve with the lowest energy, labeled

as 0 in Figure 6.3. Figures (6.1 la) and (6.1 le) correspond to the spin-up case.

Figures (6.1 Ib) and (6.1 Id) correspond to the spin-down case.
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Chapter 7

Non collinear calculations including

spin-orbit interaction

7.1 Non collinear calculations including spin-orbit

interaction

In this chapter we consider the noncollinear magnetic and the spin-orbit cou

pling approximations, both of them at the same time in the calculi. First, we

have started with the most simple case, the non-spin-polarized approximation,
and we continué improving the calculi with new approximations, like the spin-

polarized one. Finally, we compare the results of the previous mentioned ap

proximations with the results we get considering the noncollinearity and the

spin-orbit coupling at the same time. In the first section of this chapter we ana

lyze the electronic structure of bismuth and palladium atom. In the second sec

tion are discusses the electronic properties of the bismuth and palladium dimers.

Finally, in the third section we present a tight-binding like theoretical study.

7.2 Bi and Pd atom, isolated in a big box

In order to calcúlate electronic properties for bismuth and palladium, we used

the ABINIT code [68-70]. As we mentioned en previous chapters, this package

performs density functional calculations of material properties using pseudopo

tentials and a plane-wave basis set. The exchange-correlation energy is com

puted using the local density approximation (LDA) in the Teter-Pade parametriza-

tion [50]. We used the Hartwigsen-Goedecker-Hutter (HGH) pseudopotential
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[29] which is a norm-conserving relativistic separable dual-spaceGaussian pseu
dopotential and is generated on the basis of a fully relativistic all-electron calcu

lation. Using this pseudopotential, we included SO interaction effects relevant

for heavier elements like Bi. It is possible to reproduce only scalar relativis

tic effects by neglecting the terms for the SO contribution from HGH : this

pseudopotential contains separately an average potential (that contains all scalar

parts of the relativistic pseudopotential), and a vector part.

Since we are working with an isolated bismuth and palladium atom there is

no dispersión in the band structure and we just need 1 k point grid to approxi-
mate the integráis on the wavevectors of the electronic wavefunction.

We used a metallic occupation level that correspond to the the Gaussian

smearing, corresponding to the 2-order Hermite polynomial of Ref. [74]. The

broadening of occupation numbers was determined by a smearing energy of 0.01

Ha.

Bismuth nucleus is quite heavy, with atomic number Z = 83. Palladium

cluster is magnetic, with atomic number Z = 46. In bismuth, only the 6s26p3
electrons can be considered as valence electrons, that because only s and p levéis

will mix in the solid, while the other ..-electrón and core electrón levéis will

remain practically unchanged. For palladium, the electronic configuration is

[Kr]4dw5s°, for that reason we consider ten valence electrons for this atom.

First in the most simple approximation, i.e., considering the wavefunction as

an scalar, the spin-unpolarized approximation and considering no spin-magnetization.
For bismuth we obtain that the s level is double oceupied and the p level single

oceupied. Because we are no considering relativistic effects, we did not get any

splitting in the p level. For that reason we only mention that the differences in

energies between the 6s2 and the 6p3 levéis is about 9.9 eV. Followin a similar

study, the differences in energies between the 4_10 and the 4p6 is about 47 eV,

which is really big.

Finally, considering the most general case, i.e., the noncollinearity and the

spin-orbit interaction, we obtain that on bismuth, the spin-orbit interaction split
the external p atomic levéis by about 1 .42 eV (6p1/2 - 6p3/2 splitting), an effect
that can be seen in the electronic density of states of the periodic solid. On

palladium, the spin-orbit interaction split the external d atomic levéis by about

0.44 eV (4d5/2 - 4_3/2).
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7.3 Bi2 and Pd2 isolated in a big box

we also analyzed the bismuth dimer and palladium dimer. The technical details

are quite similar to the crystalline case, except that we placed the system in a

big cell. We found that the bond distance between a pair of Bi atoms is equal
to 4.8607 Bohr for the case when the SO is not considered, while it is equal
to 4.9166 Bohr when the SO coupling is taken into account. Going from the

molecule to the solid decreases the nearest-neighbor distance significantly. The

SO interaction causes a little increment in the bond length, in agreement with

our previous result for solid Bi. The longitudinal IFC is equal to the on-site

IFC for a dimer. In the case without SO, we obtain an on-site IFC valué of

157.7 x IO-3 Ha/Bohr2, while it drops to 130.5 x IO-3 Ha/Bohr2 when the SO

coupling is taken into account. Although the IFCs in the solid and the molecule

are quite different, the effect of SO is qualitatively the same again.
Both the lengthening of the bond length increase and weakening of the IFCs

can be rationalized, in a very qualitative way, by an analysis of the electronic

structure of the molecule. Indeed, in the case without SO, the HOMO corre

sponds to twofold degenerate bonding ir states, the LUMO corresponds to anti-

bonding ir* states also twofold degenerate, separated by 2.2 eV only. Turning on

the SO coupling leads to a mixing of bonding and antibonding orbitals, weak

ening the bond and increasing the bond length, on one hand. On the other hand,

it diminishes the energy gap between the HOMO and the LUMO to a valué of

1 .3 eV, an effect that weakens the IFCs.

In addition to the details previously mentioned. We also calcúlate the total

energy of the bismuth dimer as a function of the distance. A similar study was

done in chapter 6, the big difference with that results is that in chapter 6 we only

consider the spin-polarized approximation, and here, the noncollinearity and the

relativistic effect is considered. Because bismuth is notmagnetic we did not find

differences in the magnitude of the total energy neither starting our calculations

at short distances between bismuth atoms ñor starting the calculations at larger

distances. At distances larger than 3 Á, there exist two curves that have different

energies. This difference is due to the initial magnetic configuration that we

impose to the system and not to a magnetic effect.

For palladium we also did the same kind of calculation. Again we found

an hysteresis effect. This curves was obtained starting the calculation at 4 Á

between palladium atoms. Imposing to the system different initial magnetic

configurations we follow curves with different energies. That shows again the

hysteresis effect, and in general, the magnetic properties in palladium dimer.
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BÍ2

I ■ 1 , 1 , I I I
2 2.5 3 3.5 4

Bond length [Á]

Figure 7. 1 : Total energy vs bond length. Because bismuth is not magnetic we

did not find differences in the magnitude of the total energy neither starting our

calculations at short distances between bismuth atoms ñor starting the calcula

tions at larger distances

7.4 Tight Binding model

In this section we consider again a bismuth atom and we investígate the many-

body treatment of the effect of spin-orbit coupling for the Bi atom using tight

binding like a model. Focusing only on the open shell (6p, with three electrons).
As taking into account closed shells (6s and others, lower in energy) should not

make appear any contribution fromo spin-orbit to first-order, this is the crucial

information.
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Figure 7.2: Total energy vs bond length. It is clear that there exist a hysteresis

effect that split the path in two curves with different energies. This kind of effect

does not oceur in bismuth dimer.

7.4.1 Evaluation of the expectation valué of the Spin-Orbit

operator
- bismuth atom

The electronic configuration for bismuth is Bi = [-_"e]4/145<-106s26p3. Consid

ering l = \(p orbitals) and the two possible valúes for the spin of the electrón,

ms
= ±1/2, the standard basis that should be considered is:

0; T | +1; 1 0; I -1). (7.1)(T +1; T

On the other hand, we want to analize the spin-orbit coupling dependence

defined in the hamiltonian and also the depencende of this term with respect to

a perturbational A parameter:

HSoc = A e(r)L • S. (7.2)
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The spin-orbit operator, at lowest order in many-body theory, is the sum of

independent-particle spin-orbit operators,

/ (Lxj
• bxi + Lyi

•

byi + Lzi
■

bzi), C'.j)

i

The operator L
• S related with the spin-orbit interaction can be rewriten in

terms of the shift (lowering-raising) operators L+, L_, S+, and 5_, adjoints to

each other and the z components,

L-S= ±(L+S- + L.S+) + LZSZ, (7.4)

where each of the shift operators is defined as:

L+ = Lx + iLy.

L_ = Lx
—

íLy.

s+ :== bx + tSy.

5_ = bx __>«. (7.5)

Using the basis given by (7.1) and the latter operators,

L+5_|T + 1> = 0

L+S-\ T 0> = V23\ i + i>

L+5_| T -1> = y/28\ i o>

L+S-\ i + 1> = 0

L+S-\ i 0> = 0

L+S-\ i -1 > = 0

L-S+\ T + 1> ___ 0

L.S+\ T 0> — 0

LS+\ T -1> = 0

L-S+\ i + 1> _s \/2B\ T o>

L-S+\ i 0> = y/23\ T -i >

LS+\ i -1 > = 0
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L2SZ\] +1> = -|T +1>

LZSZ\ T 0> = O

LZSZ\] -1> = -i|| -1>

J_2S2|j +1> = -^|| +1>
¿«5,1 i 0> = O

¿»5,|i -1> |u -i>

In order to determine all the eigenvalues it is necessary to determine the

secular equation given by,

\Hnm(k)
-

E(k)Snm\ = 0,

in matrix notation the secular equation can be written as follow,

(7.6)

/ eT+Af-e 0 0 0 Afv^/? 0 \

0 eT-e 0 0 0 Afv^/3
0 0 eT"-Af-e 0 0 0

0 0 0 ei--Af-e 0 0

Af%/2/3 0 0 0 ei-e 0

V o AfN/2/51 0 0 0 e|+Af-e /

This matrix can be represented as:

/a0005 0\
0 b 0 0 0 g

0 0 c 0 0 0

0 0 0 _ 0 0

g 0 0 0 e 0

VOpOOO//

= 0,

= 0

(7.7)

(7.8)

where the valué for each term in the expression (7.8) is directly related with

(7.7). We find that the secular equation (7.6) can be rewriten as:

cd(ea-g2)(fb-g2) = 0 (7.9)
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The six eigenvalues can be obtained from last equation,

ei
=

cT
- A-;

¿2
= ej-A-;

fo + fa + Ag)) /^eT-(ei + Af)V ,

"

1

" ~

^
=

2 ±y(
—

2

—

J +(7!Aa/3)
In order to find the valué for a it should be enough to put A = 1 and to plot

a linear valué for the energy ei,2. To find the valué for (3 it would be needed to

plot the total energy for the non-linear cases e3i4)5|6 and to change 0 to fix the

curve considering A = 0 or A = 1.
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Chapter 8

Conclusions and perspectives

Density Functional Theory has preved to be highly successful in understanding

magnetic anisotropies, i.e., magnetic properties where the magnetic moment has

a preferential direction. In particular we used this theory to understand one of

the most important relativistic effects, the spin orbit interaction, and its effect

in vibrational and thermodynamic properties. We also show the important of

considering freedom in the orientatíon of the intrinsic electronic magnetic mo

ment. Finally, we analyze our systems with both approximations. We calcúlate

the total energy on different dimers and these results were compared with cal

culations using the spin polarized approximation, i.e., we compare our results

with approximations where only the spin-up and the spin-down configuration
are allowed in a system. The spin-orbit interaction and the noncollinear mag

netization are some the most important theoretical considerations in the field

of magnetism, but of course, these are not the only approximation that play an

important role in to deal with magnetic systems.

It is not necessary to clarify, but important to mention that magnetism is a

young área of research. Young in the sense that recently, it dates back from

1980's, this field of research has acquired importance. Mainly because the 2007

Nobel Prize in physics was awarded to Albert Fert and Peter Griinberg for the

discovery of giant magnetoresistance. Also the discoveries in a new field called

spintronic were quite rapid, and the path toward a new technology started to

appear quite early. That originated a boom in the field of magnetism. The spin

tronic not only exploit the fundamental electronic charge of the electrons but

also the intrinsic spin of electrons and its associated magnetic moment. The

word spintronics is an acronym for spin transport electronics that was first in

troduced in 1996.
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Further applications abound, at present it is normal to apply this effects in

the storage density of hard drives or in magnetic random access memory. The

conventional electronic is based on the charge of the electrón, but thinking in the

future, one could imagine to have full control of the other fundamental property
of the electrón, its intrinsic magnetic moment. To control the spin is very useful

to store much more amount of information in hard disks. Another important

aspect is the spin momentum transfer that might be useful to send information

through long distances in a faster and more secure way. In adition, all these

applications are potentially lower in power, for that reason, that is reflected

in reduction in energy costs. Complementary-metal-oxide-semiconductor are

special magnetic materials like the used in microprocessors, microcontrollers,

statie RAM, and other digital logic circuits. Another interesting topic is the spin
momentum transfer that might be useful to send information through long dis

tances in a faster and more secure way. The purpose of the last thrust, designated

quantum spin effects, was to explore the possibility of using the spin degree of

freedom as a quantum bit for quantum information processing. Underlying all

of these thrusts, one is the development and understanding the behavior of the

spin degree of freedom in various semiconductors, both ferromagnetic and non-

ferromagnetic, and the vigorous pursuit of new ferromagnetic compounds that

have Curie temperatures well above room temperature.
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Appendix A

DensityMatrix and Spin Density

Vector

This appendix is devoted to clarify in a bit more detail the origin of the magne

tization components, mx,my, and m2, in term of the components of the density

matrix pij. The comprehension of the continuous variation in the orientatíon

of the magnetization is crucial for studying systems where magnetic excitations

play an important role, such as spin waves, or to threat magnetism at finite tem

perature. More detailed information about it can be found in section 2.4. First

we shall introduce the density matrices from the general point view.

In his book on statistical mechanics Feynman makes the following statement

about the density matrix. When we solve a quantum-mechanical problem, what

we really do is divide the universe into two parís
- the system in which we are

interested and the rest of the universe. We then usually act as if the system

in which we are interested comprised the entire universe. To motívate the use

of density matrices, let us see what happens when we include the part of the

universe outside the system [133].

In that context, let x describe the coordinates of the system, and let y de

scribe the rest of the universe. Let </?.(_c) be a complete set of wave functions.

The most general wave function can be written,

iP{x,y) = Y,Ci(y)<pi{x)- (A-1)

i

Using Dirac notation, let |</?_) be a complete set of vectors in the vector space

describing the system, and let \6_) be a complete
set for the rest of the universe.

111



APPENDIXA. DENSITYMATRIXAND SPINDENSITY VECTOR

Mx) = (x\<Pi) and .¿(y) = {y\$t). (A.2)

The most general wave function can be written as,

M = Y^CülrilOj) (A.3)

ij

iP(x,y) = (y\(x\iP) = J2Cij(x\M(y\9j)- (A.4)

Equation (A.l) can be obtaining by taking,

Ci(y) = ^2Cij(y\^)- (A-5)

i

Now let A be an operator that acts only on the system; that is to say, A does

not act on the 6j. When A acts on product states (for example, \ip)) we really
mean A | a) \ b) = (_4|a))|¿>). In such a case A does not equal,

]52Au'\<Pí)(<Pí'\, (A.6)

ii'

but equals,

Y^AwlwWiWMwl (A.7)

ii'j

Then,

<A) = (VW> =

^C^C^(^|(^|A|^)|%) (A.8)

_■'

= X^C*.C^(^|A|^), (A.9)

= ^(</?.|A|</v)a., (A.10)

where,

(A.ll)

Pí'í
— yj C*jCiij = density matrix. (A. 12)
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We define the operator p to be such that /_y¿
— (w|p|y_). P operates only

on the system described by x.

(xP\A\iP) = 2>.|¿X>¿)fo'|p|¥>i>. (A.13)

i i'

= ][>¿|,4pk> = TrpA. (A.14)

i

Where we have used the result,

7^_ \<Pi'}{tPi'\
~

1 (by completeness arguments). (A. 15)

i'

From Eq. (A. 12), it is obvious that p is hermitian. Therefore it can be diago-

nalized with a complete orthonormal set of eigenvectors | .) and real eigenvalues

p
= J2^i\i)(i\- (A-16)

i

If we let A be 1, we obtain,

£ vt
= Trp = (A) = (iP\iP) = 1. (A.17)

If we let A be |.) (_'| we have,

^
= TrpA={A) = ^|A|^) = £(<#m>)(<0.IW)) (A.18)

= £l(W,IMI2- (A-19)

Therefore,

?j¿>0 and 52«f = l. (A.20)

i

We now consider the concept of a density matrix independent of the preced-

ing motivation. First let us reformulate quantum
mechanics:

Any system is described by a density matrix p, where p is of the form

£\u.|_H.|and,
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a) the set |.) is a complete orthonormal set of vectors.

b) Vi > 0.

c)5>. = i-

d) Given an operator A, the expectation of A is given by

(A) = TrpA. (A.21)

Notice that,

(A) = TrpA = £<»>A|0 = X>(i'[i)<i|A|¿')
i' i'i

= £_-.<i|A|t>.
•

(A.22)
i

Since (_|A|.) = the expectation valué of A in the state |¿), it is obvious from

(b), (c) and Eq. (A.22) that we can interpret the ->. as the probability that the

system is in state i. If all but one of the t». are zero, we say that the system is in

a puré state; otherwise it is in a mixed state. It is easy to show that a necessary

and sufficient condition for a puré state is p
= p2

Now here lets try the specific example of density magnetization vector in

terms of the density matrix. In quantum mechanics, it is often convenient to

introduce the dimensionless operator cr, proportional to S by,

S = ^<r, (A.23)

here, S represent the intrinsic magneticmoment of the electrons and the matrices

which represent the three components of cr in the {|+), |— )} basis are called the

Pauli matrices which are defined as,

— (.!)■ ».-(!o). -(J-°.)-<^>
Now, we shall consider an arbitrary 2x2 matrix in term of its components,

P(r) = P=(P0U T ). (A-25)
\ P21 P22 /
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this matrix can always be written as a linear combination of the four matrices I,

<X_-, tTy, <T2,

P
=

2
[n(r)I + ™,x(r)(Tx + my(r)cry + mz{r)crz],

1 / n 0

2 0 n

0 mx

mx 0 H
0 —

imy

imy 0

m2 0

0 -m2

( Pll P21 \

V Pl\ P22 /
' (A.26)

where n, mx, mv, and m2 are in general complex numbers and I is a unitary
matrix defined as usual,

I
1 0

0 1
(A.27)

Considering Eq. (A.26) and writing n and m¿ valúes in term of p¿_, compo

nents, it is possible to write the density matrix p as,

Pll+P22T , Pl2+P21_ , ,Pl2~P21_ ,
Pll

~

P22
_ ( K <,<*_

p
= 1 +

^
°* + %

2
v

2

From this equation it is easy to identify n(r), m_(r), my(r), and m2(r) in

terms of the p.j components as follow,

n(r) =

pn + P22,

m_(r) =

Pi2 + P2i,

my(r) = -(P11-P21),

m2(r) =

pn
-

p22,

(A.29)

(A.30)

(A.31)

(A.32)

from here it is clear that p is Hermitian, if and only if n, mi (i = x, y, z) are

real.

Just to simplify the equation (A.28), we shall write
it in a shorter form,
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P(r) =

¿n(r)I + ^[{Tr(p<r.)}<7¿], (A.33)
i

p(r) = -ri(r)i + _^m.(r)tT¿. (A.34)
i

At this point it is important to clarify that letters in Greek represent matrices

and letters in Latin represent vectors, that is just to clarify the notation that have

been used. Finally, last equation can be written as,

p(r) = -n(r)I+im(r)-_r, (A.35)

here it is easy to realize that re(r) andm(r) can be written in terms of the matrix
traces as follow,

n(r) - Trp, (A.36)

m(r) - Tr(po-). (A.37)

From these expressions now it is clear that we can express each component
of the spin density magnetization m(r) in terms of the Pulay matrices a and

density matrix p(r).
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Neutrón Inelastic Scattering

Experiment

The experimental method explained in this appendix is the one expounded in

the paper published by Yarnell J. L., et. al. [72].

The experimental dispersión curves were obtained by observing the coher-

ent inelastic scattering of monoenergetic neutrons due to a process in which a

single phonon is created in the sample crystal. If huí and /.Q are the energy and

momentum transferred from the neutrón to the crystal, then this "one-phonon"

scattering can take place only when u and Q are equal to the frequeney and

extended-zone wave vector of one of the phonons in the vibration spectrum of

the crystal. The first-zone wave vector of the phonon is given by q = Q — G
,

where G is 2ir times a reciprocal lattice vector.

The conditions of the experiment were arranged to keep Q fixed at a desired

valué in the reciprocal lattice of the sample crystal, while scanning a preselected

range of valúes of u. A phonon of wave vector Q was indicated by the detec-

tion of a neutrón group centred at the phonon frequeney, and having a width

determined by the instrumental resolution and the natural width of the phonon.

Thermal neutrons from the Los Alamos Omega West Reactor fall on the

mono chromator crystal, which seleets those having the desired incident energy

by Bragg reflection, and direets them through the incident neutrón collimator

and monitor counter onto the sample crystal. Similarly, the scattered neutrón

collimator and analyzer crystal direct neutrons having the desired final energy

into the B10F3 counter. The neutrón momentum change is determined by the

initial and final energies, and the scattering angle B. Orientatíon of the sample

crystal with respect to the neutrón momentum-change vector is accomplished
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Figure B. 1 : Schematic diagram of the three-axis spectrometer used to determine

dispersión curves in bismuth.

by adjustment of angle C. The sample crystal is initially aligned so that a se-

lected crystallographic plañe is parallel to the plañe of the spectrometer, and the

orientatíon of some axis in that plañe is known in terms of the spectrometer set-

tings. In any given measurement, the incident neutrón energy is held constant,

while angles A, B, and C are varied automatically according to a precomputed

program to produce the desired sean. A diagram of such three-axis neutrón

diffraction is shown in Fig. B.l.
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Calorimeter

In this appendix is explained the experimental setup used to measure the heat

capacity at low temperatures as it was done and exposed in previous chapters.
The applied principie, C = SQ/ST, which describes that the heat capacity

C of the sample, is determined by the pulse heat SQ supplied to the sample
and the temperature rise ST, is well known. Ever since Eucken [129] in 1909

and Nernst [130] in 1910, a great number of improvements have been made to

refine the experimental technique of the method. Efforts were especially made

to measure small samples as well as to improve the adiabatic circumstance of

samples.

In the relaxation method, the sample coupled with the addenda is thermally
connected by a weak heat link to a heat sink held at constant temperature T0;
the heat capacity is derived from modelling the thermal response to the applied

heating power. The methods are therefore beneficial both to permit removal of

the heat switch and to measure the heat capacity of small sample down to very

low temperature. This method also has, however, their inherent limitation. The

relaxation method requires a properly selected heat link, or more precisely, a

proper t_.

Here t_ is a time constant used to characterize the temperature equilibrium
between the sample holder and the heat sink. In relaxation method, for exam

ple, if Ti becomes too long as to approach the adiabatic región, then the time

required for accurate determination of r_ as well as the time awaited for thermal

equilibrium at a new T0 would be excessive. On the contrary, if r_ is too short,

fast electronics are demanded and the serious problem of the "r2 effect" [131],

arises once poor thermal connection occurs among the sample and the addenda.

Since tí(-T) = c.(T)/A/(T) in relaxation method, the limitation on t_ results in
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Sample Holder
CT

sZ0?l

Figure CJ: Model for sample and sample holder with r2 effect.

restriction on the sample mass [or c.(T), more precisely] and the temperature
range ofmeasurement (see Figure C. 1) [132].

The r2 effect, arises from the poor thermal connection between the sample
and the sample holder. A. is the thermal conductance between the heat sink and

the sample holder, and As is the thermal conductance between the sample and

the sample holder. Note that this model can be used to describe the dynamic

temperature response of a real calorimeter simply by the assumption that the

heater and the sensor are firmly attached to the sample holder with immediate

thermal response, and that the thermal conductance of the sample and the holder

is very large in comparison with A. and As . Thus the heat capacities of the sensor

and the heater can be included in the holder c' . It is also assumed that A¿, As , c

and d are all temperature independent within a small temperature rise.

The heat capacities in the temperature range 1 .8 K - 100 K for bismuth and 2

K 50 K for antimony were measured using a Physical Property Measurements

System calorimeter Quantum Design, 6325 Lusk Boulevard, San Diego, CA.

employing the relaxation method. The relaxation method is a remarkable nona-

diabatic technique favoured for small sample calorimetry. A diagram is showed

in Figure C.2.
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Figure C.2: Schematic diagram of immersion cryostat for heat capacity mea

surement (up), and Schematic drawing of simple calorimeter
for CFM (down).
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List of Publications

• L. E. Díaz-Sánchez, A. H. Romero, and X. Gonze, Phonon band structure

and interatomic forcé constants for bismuth: Crucial role of spin-orbit

interaction, Physical Review B 76, 104302 (2007).

• L. E. Díaz-Sánchez, A. H. Romero, M. Cardona, R. K. Kremer, and X.

Gonze, Effect ofthe Spin-Orbit Interaction on the Thermodynamic Prop

erties of Crystals: Specific Heat ofBismuth, Physical Review Letters 99,

165504(2007).
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