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Abstract

This is a study of iron carbide FesC, under pressure employing state-of-the-
art first-principles calculations under the Projected Augmented Wave Method
(PAW) approach to density-functional theory (DFT) in the ABINIT imple-
mentation. In order to get a deeper understanding of the nature of the pressure
induced magnetic transition from a low-pressure magnetically ordered state to
a high-pressure magnetically disordered state observed in Fe3C, structural and
electronic properties for different spin congurations and residual values were
computed over a large pressure range. Then, the enthalpy was employed as
the parameter that determines the stability of each configuration. This calcula-
tions included an antiferromagnetic system for which three kinds of calculations
were carried out, a non-spin polarized calculation, a zero fixed magnetic moment
calculation (which mimics an antiferromagnetic configuration) and finally an an-
tiferromagnetic structure which belongs to the magnetic space group Shubnikov
type 111 Fedorov space group P 2, 2, 2, #19. The study was complemented by
calculating the electronic structure and the minimal energy configuration of sev-
eral ferromagnetic structure by fixing the magnetic moment to 4, 8, 10, 12, 16,
20, 24, 36, and 48 bohr's magneton. The results showed that the magnetic tran-
sition occurs around 30GPa, and it is accompanied by a discontinuous change of
the axial compressibility. This alloy have been considered as a strong candidate
to be major forming constituent phase of the Earth's inner core. Therefore,
the elastic constant tensor of the high-pressure non-magnetized phase was com-
puted as well. From this last, the elastic properties up to core conditions were
determined. Results were interpreted in conjunction with available seismolog-
ical data. As expected, it was concluded that carbon considerably reduce the
seismic wave velocities and density of the iron-based alloys of the Earth’s core.
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Resumen

El presente trabajo es un estudio de primeros principios del carburo de hierro
Fe3C bajo presion, empleando la aproximacién de ondas planas proyectadas y
aumentadas (PAW por sus siglas en inglés) en el marco de la Teoria del Fun-
cional de la Densidad (T F D) implementado en el cédigo ABINIT. El objetivo
principal, es entender la naturaleza de la transicion magnética inducida por el
efecto de la presién que se ha observado para este compuesto. Esta transicién
tiene lugar de un estado ordenado y magnético a bajas presiones, a un estado
desordenado no magnético a altas presiones. Por este motivo, se llevaron a cabo
calculos estructurales y electronicos para diferentes configuraciones de spin y val-
ores residuales de la magnetizacin, sobre un espectro amplio de presiones. La
entalpia fue empleada como el pariametro que determina la estabilidad de cada
configuracién. Se consideraron sistemas antiferromagnéticos para los cuales tres
tipos de calculos fueron realizados; de spin no polarizado, de momento magnético
fijado a cero y ademads una estructura antiferromagnética que pertenece al grupo
magnético espacial Shubnikov tipo II] grupo espacial Fedorov P 2, 2, 2) #19.
Adicionalmente se consideraron varias configuraciones ferromagnéticas, fijando
el momento magnético total a 4, 8, 10, 12, 16, 20, 24, 36 vy 48 magnetones de
Bohr. Los resultados mostraron, que la transicién magnética ocurre alrededor
de 30GPa y esta acompanada por un cambio discontinuo de la compresibilidad
axial. Este compuesto ha sido considerado como un fuerte candidato a ser una
fase presente en el nicleo de la tierra. Por esta razén, también se ha calculado el
tensor de constantes eldsticas para la fase no magnética estable a altas preiones.
A partir de ello, se determinaron, las propiedades elasticas para un rango de
presiones correspondientes al micleo de la tierra. Los resultados encontrados
fueron interpretados en conjuncién con datos sismolégicos. Como era de esper-
arse, a altas presiones la densidad y las velocidades sismicas medidas para Fe;C
se ven reducidas considerablemente en comparacion a las del hierro hep, v por
lo tanto las propiedades elasticas de Fe;C se aproximan mejor a las condiciones
del micleo de la tierra.
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Introduction

Materials science is one of the disciplines that has taken more advantage by the
improvement of computational techniques. There are many physical properties
that can be computed with the adequate theoretical knowledge and computa-
tional tools. Besides, this is done in a more practical way than its experimental
counterpart. A lot of time, control management and economical cost can be
save with these methods. For instance, in the last years the dramatic effect
that high pressure conditions has on matter has been reveled with the asistance
of computer simulations. In fact, materials present a different behavior from
that at normal conditions because pressure produces changes in the atomie and
electronic structure of matter. When the distance between atoms decrease due
to high pressures, the chemical bonds are affected by the overlapping of atomic
orbitals [1].

Similarly, for long time the study of the earth’s interior composition remained
inaccessible to scientific research. The extreme conditions of high pressure and
temperature in this region makes very ditficult to perforin experiments, thus
only seismological data were available, Nowadays there are many studies on the
subject realized by computer simulations where high pressure and temperature
conditions are easily achieve,

According to one of the most accepted seismological models PREA (Pre-
liminary Reference Earth Model Dzitewonski & Anderson, 1981), the earth’s
core density is about %10 less than that of iron measured under the same tem-
perature and pressure conditions. In spite of, it has been suggested that the
core must be mainly composed of iron alloved with some lower atomic weight el-
ements (lower than iron). Due to its high cosmological abundance the strongest
candidates are H, O, (", St and S [2]. Among these elements, carbon is quite
relevant because meets further constrains.

Based on these assumptions Weod proposed that FeaC' (cementite) might
be the major phase forming the earth’s inner core [3]. He performed thernmody-
namic calculations and derived a equation of state (KOS) which gave a density,
incompressibility Kp and its first derivative K’ at an a average inner core pres-
sure of 338GPa, in excellent agreement with the inner's core density values of
PREM. Similar results were obtained by high pressure X-ray powder diffraction
measurements at room temperature [4], [5]. However, later was demonstrated
that cementite’s magnetic character can be affect either by temperature (from



2 INTRODUCTION

ferromagnetic to paramagnetic behavior |6]) or by pressure (from a low-pressure
magnetically ordered Lo a high-pressure non-maguetically ordered state |7]). Ac-
cordingly, Wood's EOS is not necessarily accurate to model the carth’s inner
core, since the high pressure and temperature conditions will ensure that ce-
mentite will be in a non magnetically ordered state.

AL the moment exist a great variety of studies concerning the pressure in-
duced magnetic phase transition in Feg(' and the possibility of this material
been a forming major phase inside the earth’s inner core. However, there is
great disagreement between them (both theoretical and experimental studies).
Moreover. in order to compare the elastic properties of Fey(*' with scisimic mea-
surements, its high pressure elastic constant tensor is needed. Nevertheless,
these properties have not been measured neither theovetically or experimentally.

For all the aforementioned, it has been decided 1o focus the present work in
a svstematic study of the magnetic character of FeyC' under pressure and to
obtain its high pressure elastic properties. This allows to discern the accuracy
between previous results and it helps as well to answer whether cementite can
be a major phase inside the earth’s inner core or not.

To achieve this goal ab initio calculations based on density-functional theory
were performed since this method provide an excellent tool to obtain physical
properties of matenals, when experimental studies are difficult to perform.

In summary, this study is focus on three points:

e To perform a ground state structural characterization and to study the
cementite’s magnetic character.

e To reproduce the reported pressure induced magnetic phase transition in
FezC and to study its cffects on the equation of state.

e To determine the high pressure elastic properties of FeyC' in order to
investigate the possibility of FesC” being a major phase inside the earth’s
imner core.

This thesis is composed of five chapters. Chapters 1 and 2 contain intro-
ductory information. The first presents the state of the art on the study of the
physical properties of FesC'. The second comprehend a brief description of Den-
sity Functional Theory (DFT), electronic structure calculations and the basic
concepts under the Projected Augmented Wave method (PAW). Chapters 3,
4 and 5 are devoted to present the obtained results. Additionally. each of these
are provided with a specific theoretical introduction, computational details and
methodology. Chapter 3, deals with the ground state structural and electronic
characterization. In chapter 4, the effect of pressure on the magnetic state of
FeaC' s studied and fnally the high pressure elastic properties of Feg(® are
presented in chapter 5.
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Chapter 1

State of the art

1.1 The earth’s interior

The study of the earth’s deep interior it's constrained by its great temperature
and pressure conditions. Hence, its constitution has to be inferred using indi-
rect methods, As a frst approximation, the overall composition of the earth’s
interior must be some how similar to the bulk chemical composition of the sun
(deduce from its light spectrum). In particular is closed to the devolatilized
chondrite meteorites. These have a similar composition to the sun and are be-
lieved to be similar to the material from which the earth accreted. The overall
density and mass of the earth is determined based on measurements of how the
earth perturbs the orbits of other planets and the moon [8].

Seismograms recorded at stations all over the globe. measure the time of
travel of refracted and reflected seismic waves ereated by carthquakes. Veloci-
ties depend on the elastic moduli and density of the medium in which the waves
propagate. In turn, the elastic moduli and the density, depend on the erystal
structure and chemical composition of the constitutive minerals. on pressure
and temperature [9]. This allows to use observations recorded on seismograms
to infer the composition or range of compositions of the planet.

According to one of the most accepted seismological models. PREM (Pre-
liminary Reference Earth Model Dzitewonski & Anderson. 1981) the earth's
structure consist of three major first-order scismic boundaries; the core. the
mantle and the crust (Agure 1.1). Figure 1.2 shows, the variation with depth and
pressure, of density, compressional (P) and shear wave velocities (S) through
the earth’s mantle and core. Note that distinet regions are characterized by the
same level of velocity heterogeneity. i.e. regions with a constant speed increase,
have uniform composition.

As we go downward in depth. density increases hecause pressure increases.
In general waves speed diminish with density, However Lthe extreme pressure
conditions of the earth’s interior makes the elastic modulus to grow faster. As
a result (with the exception of some transition domains) the overall trend is an
increment of seismic wave velocity with pressure (see section 5.1.3). Tempera-

3



4 CHAPTER 1. STATE OF THE ART

ture also increase the speed of waves, but the effect of pressure is higher.

The mantle and the crust are mostly made of silicates. In particular within
the mantle (P = 24—136 GPa, T = 773—4200 "K) there is a convective material
circulation driven by the loss of heat from the earth’s deep interior. Is divided in
two regions, the upper mantle is made of silicates of iron and magnesium. The
outermost part is tough to be liquid rock while with increasing depth it becomes
solid. After this, there is a transition zone were a sudden seismic-velocity dis-
continuity occurs. In this region, as a consequence of increasing pressure there
is rearrangement of atoms in the material to form a denser crystal structure.
Thus the lower mantle is in a denser solid state, composed mainly of sulphides
and oxides of silicon and magnesium.

To be more specific, it is commonly accepted that the mantle must be domi-
nated by M¢5i0;. In the lower mantle this material has the perovskite crystal
structure [10]. Nevertheless, it has been discover that the average atomic num-
ber in the mantle (21.3) is higher than that of MgSiO; (20.1). This difference
it is believed to be due to 10% substitution of Mg by Fe. Additionally, in the
lower mantle there is a also a low content of magnesiowustite (MgO with 30%
of Mg substituted by Fe) [10].
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Figure 1.1: Structure of earth's inte-  Figure 1.2: Density and wave veloc-

rior, showing the major first-order seis- ity variations within the earth based

mic boundaries’ on seismic observations. This model is
called PREM after Preliminary Refer-
ence Earth Model?

Y This picture was taken from http: / /www.huttoncomment aries.com
/subs/PSResearch/PS_Precursor/globe_w.core labels.gif web site, Copyright 2000-2010,
Hutton Commentaries, Inc. All Rights Reserved.

?This picture was taken from http:/ /my.opera.com/nielsol /blog /2008/11/13/core-mantle-
boundary, Ole Nielsen web site.



1.2. THE FE;C COMPOUND 5

The core mantle boundary (CM B), called as well D" layer is composed al-
most certainly of a new crystal structure of M¢gSi0O; (post-perovskite). It is
believed that the origin of the D" seismic discontinuity and anisotropy may be
attributed to the perovskite to post-perovskite phase transition [11).

There are several observations that have contributed to inferred the earth’s
core composition. For instance, it is known that the earth’s must contain metal-
lic elements in high concentration in order to generate its geomagnetic field.
Cosmological abundance and meteoritics indicates that the core must consist
mainly of Fe. Additionally, seismic measurements have shown that in the outer
core shear waves are not transmitted. Since liquids do not support shear stresses,
the conclusion is that this region is in liquid state. The metallic nature of the
core is also beyond doubt because the only credible mechanism for the gen-
eration of the earth’s magnetic field is based on convection-generated electric
currents in the liquid outer core [10].

The PREM model state that the outer core density is about 10% less than
that of liquid iron under the same temperature and pressure conditions. In
spite of, it has been suggested that the outer core must be composed of liquid
iron alloyed with 10wt% of lower atomic weight elements (lower than iron), plus
about 4wt% of Ni. Due to its high cosmological abundance and other consider-
ations the strongest candidates are H, O, C, S and Si (e.g. [2]). Among these
elements, carbon is quite relevant because meets further constrains. From these
five elements we are interested in iron alloyed with C, with the unit formula
F E:;C .

1.2 The Fe3C compound

Iron Carbide, has a cementite structure (Fe3.X), is orthorhombic, space group
Pnma with Z = 4. The unit cell contains 12 Fe atoms and 4 C atoms. Its ce-
mentite structure has been described as derived from a hexagonal closed packed
arrangement composed of pleated layers [12] formed by trigonal prisms made
by a C atom and its six nearest-neighbor Fe atoms [13]. The final cementite
structure is form by the overlay of these sheets. Iron atoms occupy two differ-
ent sites at the lattice with different local magnetic moment. The bonding in
cementite is a complex mixture of covalent ionic and metallic contributions [13].

Iron Carbide Fe3C (or FezC : Fe) can be found in two different systems:

1. In its natural form (known as cohenite), as part of some iron-like mete-
orites mixed whit niquel and cobalt (figure 1.3).

2. As an intermediate metastable phase in the Fe — C system (steel), which
has led to the interest of the metallurgical field on this compound (figure
1.4).

To produce iron carbide an iron-carbon mixture is cooled from liquid to solid.
Within this process two of the most important materials for the metallurgical
industry are produce, steel and cast iron. The phase diagram of the Fe — C
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Figure 1.3: Cohenite mineral, natural Figure 1.4: Phase diagram of the F - C
iron carbide can be found in these iron- system®
like meteorites”.

system is shown in figure 1.4. The percentage of carbon determine the type of
the formed alloy. Therefore, the most important feature of this system is the
equilibrium between cementite and the several phases of iron, yielding to steel
when C < 2%. The equilibrium between graphite and the other phases yields
to cast iron when 2%< C <4%. Cementite can be found alone as a metastable
phase, when the mixture contains approximately 6.67% of carbon and 93.3% of
iron.

At room temperature, Fe;C is ferromagnetic. The transition to the param-
agnetic state occurs at a Curie temperature, T = 483°K [14]. Recently, it has
been observed that the volumetric thermal expansion coefficient of cementite is
very temperature dependent, with the material showing a strong ‘Invar effect’
[14]. Cementite's magnetic character can be affected as well by pressure from a
low-pressure magnetically ordered to a high-pressure non-magnetically ordered
state [T].

1.3 What we know about Iron Carbide as a pos-
sible forming phase of the earth’s inner core

Carbon alloyed with iron in the Fe3C compound is a strong candidate for being
an important forming phase of the earth's inner core. This assumption is based
in the cosmological abundance of carbon in the universe. For instance, there is a
high amount of carbon in the C1 carbonaceous chondrites (3.2wt%), which are
the most common meteorites founded on earth (86%). The parents bodies of
these meteorites are small to medium sized asteroids that were never part of any
body large enough to undergo melting and planetary differentiation. Another
possible evidence is the existence of cementite in its natural form (cohenite), as
part of some iron-like meteorites mixed whit niquel and cobalt. These mete-

*This picture was taken http://www. webmineral.com /specimens/photos/CoheniteSmall. jpg
mineralogy database web site.
1This picture was taken from http://info.lu.farmingdale edu/depts/met /met205 /fe3cdiagram.html



1.3. IRON CARBIDE IN THE EARTH'S INNER CORE 7

orites are thought to be fragments of the core of some differentiated asteroids
that have been shattered by impacts. This last is a good evidence of cementite
presence on earth’s core since not only iron-like meteorites but also terrestrial
planets such as mercury and mars underwent mantle core differentiation and
therefore its composition must be determined by the equilibrium process of ac-
cretion and subsequent differentiation.

Based on these assumptions Wood proposed that cementite might be the ma-
jor phase forming the earth’s inner core [3]. He also performed thermodynamic
calculations and derived a equation of state which gave a density, incompress-
ibility K and its first derivative K’ an a averageinner core pressure of 338GPa,
in agreement with the values obtained for density by PREM and the values
measured by high pressure X-ray powder diffraction with diamond anvil cells
experiments at room temperature for Ko and K’ [5],[4].

Cementite is ferromagnetic at ambient conditions, consequently the EOS
derived by Wood was based on a ferromagnetically ordered cementite. How-
ever, the state of magnetization of Fe;C can be affected either by temperature,
from ferromagnetic to paramagnetic behavior (T = 480°K at room pressure)
[6] or by pressure, from a low-pressure magnetically ordered to a high-pressure
non-magnetically ordered state (P = 60GPa at 0°K) [7]. Consequently, Wood's
EQOS is not necessarily accurate to model the earth’s inner core, where high
pressures and temperatures conditions will ensure that cementite will be in a
non magnetically ordered state.

Nevertheless, recent multi-anvil press and laser-heated diamond anvil cell
experiments have shown the stability of Fe3C under high pressures and tem-
peratures conditions. In particular, it was demonstrated that cementite is stable
between 220°K - 3700 "K and 25GPa - T0GPa [12]. Therefore, further studies
are needed to constrain the possibility of cementite as a major phase in the
earth’s core.
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Chapter 2

Theoretical Background

2.1 Introduction

This thesis proposal is a theoretical study of the electronic and structural prop-
erties of the FesC compound under pressure. The methodology to be used
is based on ab initio or first principles calculations, which now provide a well
established methodology for the accurate prediction of properties of materials
well beyond the pressures achieved by experimentation [15]. In particular this
properties will be analyzed by means of Density Functional Theory (DFT), to
take advantage of its high computational efficiency.

This chapter is devoted to the description of Density functional theory as well
as the basic concepts under the Projected Augmented Wave method (PAW).
In section 2.5 can be found a description of the code ABINIT through which
the calculations were performed.

2.2 Ab initio methods

The accurate simulation of materials properties depend on an adequate quantum-
mechanical description of the atoms, molecules or solids from which is made.
Nevertheless, this task becomes impossible for anything beyond the simplest
of systems without some approximations. The aim of the Ab initio methodol-
ogy is the prediction of the electronic structure properties of atoms, molecules
and solids, using a quantum mechanical approach of the many-body problem,
i.e. by solving the molecular Schrodinger equation associated with the molecu-
lar Hamiltonian of a given system. The cleverness of this methods, lies in the
use of several physical considerations that can be converted into feasible ap-
proximations. This makes possible to avoid the needful of a previous empirical
knowledge of the system an allows an efficient computational treatment of the
problem.

The core calculation of this method, is designed to obtain total energies,
using as input only the atomic numbers of the constituents elements and their
positions within the unit cell of a selected crystal structure [1]. This is essential
since nearly all properties are related to total energies or to differences between

9



10 CHAPTER 2. THEORETICAL BACKGROUND

total energies [16. In this way, the energy of a molecule, its vibrational frequen-
cies, its thermodynamic properties or the values of its molecular orbitals, etc,
can be computed.

2.3 Born Oppenheimer approach

The Born Oppenheimer approximation is a method to separate the variables cor-
responding to the nuclear and electronic coordinates in the Schrodinger equation
associated to the molecular Hamiltonian. This is possible due to the fact that
the mass of electrons is much smaller than the mass of ions. Hence, the nuclear
velocities will be much more slower than the electronic velocities in such a way
that the electrons will follow instantaneously the nuclear motion and relax to
the ground-state of that nuclear configuration.

The many body Hamiltonian of a system can be expressed as:

H=Tu(R;) + Van(Ry) + Te(ry) + Vee(r;) + Ven(r, Ry), (2.1)

where T, and T, are the kinetic energy operators for the nuclei and electrons
respectively. V., and V., are the potential energy operators for the nuclear and
electronic interaction, and ‘Ir’fm stands for the electron-nuclei interaction. These
operators are defined as:

=2 = 2 o it 1
In = Ef o b Ie Z. 3 Vi
- 1 Q@ . 1 1
Vﬂﬂ - = ' 1‘::1: — ¥
2§|R;—RJ| 2§;|r.—r,|
- Q1
Ven = — —_— 2.2
Z IR; — 1] (2.2)

In this set of relations, r, are the electronic coordinates. The sum I extends
over all nuclei in the system, each with charge Q; = Z;e, mass M;, and position
R, in atomic units.

In view of the Born Oppenheimer approximation, one can solve the quantum
mechanical problem (eq. 2.1) only for the system of electrons as if they were in
an irrotational field Elue to fixed nuclei. Thus, the nuclear contribution to the
total kinetic energy 7, can be neglected. The resulting relation is known as the
clamped Hamiltonian, that acts only on functions of the electronic coordinates,

H = T.,_-{l‘,} a ;- ‘}e:{rl} + vm[ran]q (2.3)

and the electronic Schrédinger equation can be rewritten as:

N
HY = Z—E +Zv;.._,{r,}+):v;n{r. R)|[¥=EV.  (24)

E<)
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Even when the Born Oppenheimer approximation is considered, equation
2.4 is extremely difficult to solve. Several techniques has been developed to deal
with it. There are two classes of methods:

e Wave function-based methods: In which an explicit form of the wave
function is written down, then observables are calculated. Among these
there are two subclasses; the perturbational methods, such as the Moller-
Plesset diagrammatic methods and the variational methods, such as the
post-Hartree-Fock conguration interaction (CI) method.

¢ Density-based methods: Instead of the wave function the electronic den-

sity is calculated. Examples are the Thomas-Fermi approximation and
Density Functional Theory (DFT).

2.4 Density Functional Theory

The successful of DFT lies on the ability of the theory to map the many body
problem that represents to solve the Schrédinger equation of a real system, into
a problem based on electron density n(r), which is a function only of three
spatial coordinates. This theory was developed after Hohenberg and Kohn [17]

demonstrate in 1964 that the ground state electronic density ng(r) contains
exactly the same information as the ground state wave function ¥y(r,).

2.4.1 The Hohenberg-Kohn theoremn

The aforementioned is the core of Hohenberg-Kohn's theorem. First they proved
that the non-degenerated ground state wave function is a unique functional of
the ground state density.

‘I"u{!‘l‘l‘g‘ ....l';.,,r] =V [nn(r” ' (25}

as a consequence, the ground state expectation value of any observable Oisa
functional of ng(r) too. Among the most important observables is the ground
state energy (18], that can be found by taking the the minimum value of the
total energy functional i.e.,

Evo = By [no] = min (¥|T, + Vee + Venl¥) = (¥ [no] [H|¥ [no]),  (2.6)

therefore, the density that yields this minimum value is the exact single-particle
ground-state density [16] and has the variational property,

EI.' [nﬂ] < El.l' [n:] . I:E?}

where ng is the ground state density in potential V.. and n' is some other density.
To summarized, Hohenberg-Kohn's theorem can be stated as follows: the total
energy of an electron gas (even in the presence of a static external potential)
is a unique functional of the electron density. The minimum value of the total
energy functional is the ground-state energy of the system, and the density that
vields this minimum value is the exact single-particle ground-state density [16/.
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2.4.2 The Kohn-Sham method

Hohenberg-Kohn theorem is just the starting point in the execution of electronic
structure calculations. The practical use of DFT is possible in a high extent,
due to the work of W. Kohn and L. J. Sham [19]. In 1965, they introduce a
set of equations that maps a system of interacting electrons, onto a fictitious
non-physical system of noninteracting electrons in the presence of an effective
potential. This potential, mimics the real system's many-particle electronic
interaction, and is given by the next expression:

Veffec(T) = Ven(r) + vh(r) + vze(r) (2.8)

where, v..(r) is the static total electron-ion potential of the interacting (many-
body) system, vy (r) is the Hartree potential and vz.(r) is the exchange-correlation
potential. Plugging relation 2.8 into Schrédinger’s equation, one can obtaine an
analogous single particle expression, i.e.,

ﬁ?vi
2m

The wave function ¥,(r) defines the single particle Kohn-Sham orbitals of
the electronic state i, with eigenvalues ;. The key point of this method, is to
set the electronic density n.sy..(r), equal to the ground state electronic density
of the interacting system,

+ uﬂ,”ntc{r ] Yi(r) = &;i9i(r). (2.9)

Negfec(r) = no(r) = ) _ filti(r)P?, (2.10)

.Y

where, according to Pauli’s exclusion principle, the fermionic occupation num-
ber f; takes values between 0 and 2. In this way, it is ensured that vesse(r)
reproduces the real system’s many-particle electron-electron interactions, since
vy (r) and v;.(r) are functionals of ng(r):

SE 4 [ﬂnfl‘}] no(r’)
() e [.:F — (2.11)
_ OE;. [ﬂn(ﬂl_ (2.12)

u.tf.‘(r} =7 {sﬂ{r)

The so called Kohn-Sham equations (egs. 2.8, 2.9, 2.11 and 2.12), must be
solved self-consistently (fig. 2.1) because they are non-linear relations. This
means to take as input an initial density and then solve equation 2.8 with it.
Next, vesgec(r) is insert in equation 2.9 to find ¥;(r) from which a new n(r)
is calculated by means of equation 2.10, and used to start the cycle again.
The cycle is stooped when a chosen convergence criteria is reached. With the

resulting density, the ground state total energy Ej is found. The latter, can be
expressed as:

2 /
Eoln(e) = ¥ fieim 5 [ 200 et 4 B, n(r)) - f vze()no(r)dr+Enn (R1),

Ir — ¢/}
(2.13)
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where the second term is the clasical electrostatic self-interation energy (Hartree
term) of the electronic charge density distribution, and E,,(R;) contains the
coulombic interaction among the ions.

2.4.3 Exchange correlation

The only unknown term in equation 2.13, is the ezxchange-correlation energy
functional E;.. This is a very complicated function of the electron positions,
impossible to find exactly. The exchange part of E,., refers to the energy change
of the system when two electrons of the same spin interchange positions. This
happens because electrons are fermions, therefore its total wave function must
be antisymmetric. The last, is a result of the Pauli’s exclusion principle, which
states that two electrons cannot be in the same quantum state. Moreover, each
electron is affected by the motion of every other electron in the system, i.e. their
motion is correlated; this is known as the correlation property [21].

Since the electron-electron interactions contained in the exchange-correlation
energy functional E;., are very difficult to calculate, several methods have been
conceived to approximate this property. The most simple of all, is the so called
Local Density Approximation (LDA) in which the local exchange-correlation
energy density is taken to be the same as in a uniform electron gas of the same
density [22]. The exchange correlation functional under this approximation can
be expressed as:

ELPAn(r)] = [ ebem (nie)) (2.14)

where, €™ (n(r)) is the exchange-correlation energy per electron at each point
in space of an homogeneous interacting electron gas of density n(r). This
method has shown to give good enough results for structural, elastic and vibra-
tional properties. However, breaks down for systems with very strong electronic
correlation, in which the charge densities are non-uniform (varies from point
to point) an the exchange-correlation energy can deviate significantly from the
uniform case. For instance, lattice constants and band gaps are underestimated
while, cohesive energies and bulk moduli of solids are overestimated. To correct
this deviation, the generalized gradient approximation (GG A) assumed that the
exchange-correlation functional depends locally on the density as well as on the

density gradient:

ESSAn(m)] = [ £(n(e). 9()d*r (2.15)

This method has proven to give a more realistic description of the relative
stability of bulk phases, magnetism and cohesive energies of solids. Besides,
GG A is computationally simpler than the LDA approximation.

2.4.4 Handling electron-ion interactions

Until this point it has been demonstrated that the many body problem of
electron-electron interactions. can be mapped onto a fictitious non-physical sys-
tem of noninteracting electrons in the presence of an effective potential (see
section 2.4.2). Nevertheless, there still remains the formidable task of handling
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Initial guess

n'(r), n*(r)

Calculate effective potential
W) = W), + VUT) +V '), n¥r)]

|
\J

i Solve K-S equation
| (Wr2mV:+ wr) . Jy(r) = er) y(r)

Calculate electron density

nry = L folyml

e ¢ m— = m——

No

Self-consistent?

7 Yes
Output quantities

Compute energy, forces, stresses i

Figure 2.1: Schematic representation of the self consistent loop for solution of
the Khon-Sham equations. In general one must iterate two such loops simuita-
neously for the two spins, with the potential for each spin depending upon the
density of both spins [20].
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an infinite number of noninteracting electrons moving in the static potential of
an infinite number of nuclei or ions [16].

To get a further reduction in the computational effort required to simulate
this interactions, calculations are performed applying periodic boundary con-
ditions trough Bloch’s theorem. This last, states that in a periodic solid each
electronic wave function can be represented as a sum of plane waves [23):

Ui(r) = cinscezplilk + G) - x]. (2.16)
G

this relation contains an expansion using a basis set of plane waves whose wave
vectors k are reciprocal lattice vectors G of the crystal. With this picture, two
basic problems derived from modeling electron-ion interactions, can be solved:

e There is no need to calculate a wave function for each electron in the sys-
tem. This is possible because the electronic wave functions at k points
that are very close are almost identical. Then one can represent the elec-
tronic wave functions over a region of k space by the wave function at a
single k point [16]. One of the most popular methods to calculated the
electronic states using a small number of k points in the Brillouin zone,
has been devised by Monkhorst and Pack [24].

e There is no need of an infinite basis set to expand each electronic wave
function. Since the coefficients ¢; x+¢ for the plane waves with small
kinetic energy are typically more important than those with large kinetic
energy, the plane wave basis set can be truncated to include only plane
waves with kinetic energies smaller than some particular cutoff energy [16].
This condition can be expressed as:

h‘l
E_m"|k + GJ? <€ Ecut- (2.17)

The magnitude in the error introduced by these approximations, can be
reduced by using a denser set of k-points, or a larger value of the cutoff energy
respectively, but at the cost of increasing the computational effort. Thus, is very
important to perform a convergence test (with respect to the k-point sampling
and the cutoff energy) of the property to be calculated.

2.4.5 Projector Augmented Wave Method

In the previous section (2.4.4), the advantages of considering periodic systems
whit electronic states that can be expanded in terms of plane waves basis set,
have been elucidated . Even so, there still remain one issue that prevent the use
of plane waves in order to make practical use of this approach. This difficulty
is related whit the different signatures of the wave function in different regions
of space [25]. For instance,

¢ In the atomic region near the nucleus, the kinetic energy of the electrons
is large, resulting in rapid oscillations of the wave function that require
fine k-point grids for an accurate numerical representation. On the other
hand, the large kinetic energy makes the Schrodinger equation stiff, so
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that a change of the chemical environment has little effect on the shape of
the wave function. Therefore, the wave function in the atomic region can
be well represented by a small basis set [26].

¢ In the bonding region between the atoms the situation is opposite. The
kinetic energy is small and the wave function is smooth. However, the
wave function is flexible and responds strongly to the environment. This
requires large and nearly complete basis sets [26].

Several strategies have been developed to deal with this dilemmas. Among
the most important are the Pseudopotential approach [27] and the Augmented
wave methods (28, 29|. However, in the present work a different technique has
been used, which is a natural extension of both methods. This is the so called
Projector Augmented Wave Method (PAW) introduced by Peter Blichl in 1994
[25].

Firtsly, the PAW method treats different core and valence states. Core
states are imported from those on an isolated atom. This is possible since core
wave functions ¥, do not spread out into the neighboring atoms. Thus, the core
wave function of the isolated atoms and the corresponding core wave functions
of atoms immerse in a molecule or solid, must be identical.

To treat valence states, the PAW method introduces a linear transformation
which produces only wave functions orthogonal to the core electrons,

T=1+ z TR, (2.18)
R

each local contribution 7 acting only within the core region Q2z. This trans-
formation, maps the true wave function ¥, with all its complexity onto proper
auxiliary wave functions ¥, that allow a computationally efficient treatment,

W) = 7|¥,). (2.19)

Additionally, the auxiliary wave function must be a smooth object (polyno-
mial, gaussians or spherical bessel functions etc.) that can be expanded into
auxiliary partial plane waves |¢;) inside the core region:

Wo) =D |di)e within Qg. (2.20)

where the index i refers to the atomic site. Since |¥,) = 7|¥,), the correspond-
ing true wave function ¥, is of the form,

W) = loi)e: within Qpg, (2.21)

whit identical coefficients ¢; in both expressions [25]. This set of partial waves
|¢:) must be chosen to ensure a fast convergence to the Kohn-Sham wave func-
tion. A natural choice are solutions of the radial Schrodinger equation of the
isolated atom, orthogonalized to the core states.
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Moreover, since 1+7g shall change the wave function only locally, the partial
waves |¢;) and their auxiliary counter parts |¢;) are pairwise identical beyond
the core region [26].

¢i(r) = ¢i(r) outside Qp. (2.22)

In order to determine the coefficients ¢, shall be remember that the transfor-
mation 7 must be linear. As a consequence, the coefficients are linear functionals
of the auxiliary wave functions. This condition can be expressed as:

a = (Bi|¥o), (2.23)
where |p,) are projector functions. Then by inserting this coefficients into equa-
tion 2.20, is obtained:

W) = D I8 (Bil¥o) within Qp, (2.24)

which implies the completeness relation 3, |6:)(B:| = 1, within Qg, so that the
one center expansion 2.24 is identical to the auxiliary wave function |¥,) itself.
This indicates as well that,

(ild:) = 6i, within Qp. (2.25)

i.e. the projector functions should be orthonormal to the smooth auxiliary
partial waves inside f2xg. There are no restrictions on p; outside {1z, so for
convenience, they are defined as local functions, i.e. p; = 0 outside 5. On the
other hand, by analogy to equation 2.21, the transformation can be applied to
the partial wave functions. This means that,

|64} = 7ldi) = (1 + D _ 7a)Id:), (2.26)
R
therefore, the local contribution ), 7r to the transformation operator is:

FrIG:) = |:) — [&4)- (2.27)
If now we apply Tg to equation 2.24,

'i"'ﬂl";'u} . z i‘ﬂi'&'t}{ﬁll"i’u} {2.28]

[}

and insert equation 2.27, the transformation operator can be defined in terms
of partial waves and projectors:

=1+ (I6) = [6))Bil- (2.29)

Using this transformation the true wave function can be obtained from the
auxiliary wave function by the following expression:

W) = 180} + D> _(10i) — 16:) (i ¥o) (2.30)

The advantages of this transformation are the following: First, by having
separated the different types of waves functions, these can be treated differently.
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Within the core region, can efficiently be represented on atom centered radial
grids, while outside the core region, the wave functions are all smooth, thus it
can be represented on coarse Fourier or real space grids [30]. Furthermore, the
transformation T consider the effects of the rapid oscillations of the true wave
functions near the nucleus due to the strong attractive potential, into every
expression in the PAW method, with the advantage that the soft auxiliary wave
functions obtained can be represented with a modest number of plane-waves.

2.5 ABINIT

2.5.1 What does the code do?

The characterization of the compounds was made through the ABINIT [15, 31]
code. This software is designed to performed density functional calculations of
material properties. At the present, exists a large variety of codes that are able
to perform electronic structure calculations, however, ABINIT has the advan-
tage of been an open source software available under the GNU General Public
License which makes it ideal for scientific research. Under this same spirit, was
ABINIT created to be self-testing, self-documented and portable across plat-
forms for serial and parallel execution.

ABINIT can perform density functional calculations, using a plane-wave
basis and pseudopotentials, or the Projector Augmented Wave method [32].
For the latter, the atomic dataset containing the projectors p,, partial wave
functions ¢; and auxiliary partial wave functions ¢, can also be generated with
the AtomP AW atomic data generator for the PW PAW package [33], [34] and
then converted to ABINIT's format.

The exchange-correlation functional, can be treated as in the local density
approach LDA, the generalized gradient approach GGA or as in LDA + U.
The k-point sets can be generated automatically, following the MonkhorstPack
scheme [24], or a generalization thereof. Symmetries are used to decrease the
number of k-points needed to sample the Brillouin zone, so that only the ir-
reducible part of it must be sampled. The treatment of state-dependent oc-
cupation numbers can be done in a number of ways, allowing the modeling of
insulators, metals and semiconductors. Collinear magnetism can be handle (to
simulate ferromagnetic and antife;romagnetic systems) using independent spin
up and spin down wave functions, as well as spin orbit coupling, using spinor
wave functions.

Density functional based calculations included in ABINIT can be divided
in three major classes [15]:

Electronic ground-state capabilities

The electronic ground-state structure is calculated as follows: First, from the
input initial atomic positions within the unit cell, ABINIT computes a set of
eigenvalues and wave functions which achieve the lowest (DFT) energy possible
for that basis set (that number of plane waves). The code takes the description
of the unit cell and atomic positions and assembles a crystal potential from the
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input atomic pseudopotentials, then uses either an input wave function or simple
gaussians to generate the initial charge density and screening potential, then
uses a self-consistent algorithm to iteratively adjust the plane wave coefficients
until a sufficient convergence is reached in the energy’. Once the ground state
total energy is found, ABINIT can compute, the equilibrium lattice constants,
density of states, and electronic band structure, among other properties.

Structure-related capabilities

When conducting structural optimization, ABINIT uses the Broyden-Fletcher-
Goldfarb-Shannon minimization (BFGS) algorithm. In this method the opti-
mized parameters (ionic positions and unit cell volume) are iteratively changed
until the lowest energy configuration is reached. At each step a self-consistent
single-point calculation is carried out to determine the forces acting on the ions
and the stresses over the lattice parameters. The forces are computed trough
the Hellmann-Feynman theorem,

OE(R) _ / (}aﬂn{r} _ OEnn(R)
IRy OR; oR;

where the subscript I stands for the nuclear positions. The electron-nuclei inter-
action Vg, (r), and the electrostatic ion-ion interaction are defined in equation
2.2. The computation of the stress tensor is performed under the same frame-
work; lets consider a macroscopic an infinite solid of volume V', for which the
internal stress is balanced by external forces applied at the same boundary.
Such a stress is defined as the derivative of the total energy with respect to
macroscopic strain, so the Hellmann-Feynman stress tensor can be expressed
as:

Fr=- (2.31)

Tug = 2ER) _ OBalR) , [ ) OVenle),

deas i deas [ (3% 2
where the greek subscripts are cartesian components [35]. In this way, the

equilibrium condition for the structural optimization is given by the condition
on forces:

(2.32)

dE(R)
OR;

In practice, this procedure continues until the forces and stresses converged
to a minimum value, where the ground state equilibrium configuration is found.
Forces and stresses can be used to generate an optimized structure using as
well, the modified Broyden algorithm and Verlet algorithm. Molecular dy-
namics trajectories can be constructed, using the Verlet or Numerov algorithm.

Fr =~ = 0. (2.33)

Analogously, external hydrostatic pressure can be applied upon a crystal.
The code performs a full optimization of cell size and shape iteratively, until the
Hellmann-Feynman forces on the atoms are zero, and the Hellmann-Feynman
stress tensor matches the one corresponding the imposed external pressure.

'The information provided in this paragraph was taken from http
/ fuwww.abinit.org/documentation/helpfiles/ for — v5.8/users/new_user_guide html#6
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To avoid the Pulay error in the stress tensor [36], a smearing technique
is applied to the kinetic energy that allows to get smooth energy curves as a
function of the energy cut-off or lattice parameters, automatically including the
Pulay stress. This error occurs, because the plane wave basis set is not complete
with respect to changes of the volume. Thus, unless absolute convergence with
respect to the basis set has been achieved during a structural relaxation, the
calculation of the diagonal components of the stress tensor is incorrect. The
error is almost isotropic, and has the effect to decrease the real fully relaxed
volume.

Response-function capabilities

At the present, ABINIT deals with the responses to atomic displacements and
static homogeneous electric elds, so that the phonon band structure can be con-
structed. From this, several thermodynamic properties are generated such as:
the phonon free energy, the phonon internal energy, the phonon entropy and
the phonon heat capacity. For insulators, one can obtain, the non-linear optical
susceptibilities, the Raman tensor and the electro-optic coefficients. Dielectric
polarization can be also computed within the Berry phase formulation for in-
sulators, magnetic or non-magnetic systems, among several other capabilities.

Excited states can be computed in the framework of the Many-Body Per-
turbation Theory (GW approximation) or Time-Dependent Density Functional
Theory (for molecules). Within the latter, ABINIT also allows the calculation
of the frequency-dependent polarizability and optical spectra.

2.5.2 ABINIT reliability

ABINIT provide a equilibrium, between the number of atoms to be model,
accuracy, speed of calculation and CPU memory needed. The accuracy of
the properties that can be computed with ABINIT, relies on the chosen ap-
proximations and calculations methods. For instance, in the treatment of the
exchange-correlation energy, the accuracy of the Local density approximation
LD A for crystal bulk lattice constants is within 3%, but usually underestimated.
This means that LDA hardens the bonds making the bulk modulus too large,
(higher 10% error not uncommon for d-metals). Binding energies, activation en-
ergies in chemical reactions and relative stability of crystal bulk phases can be
uncertain, however, electronic structure properties such as density of states and
band structures are useful enough (except for band gaps)[37]. For band gaps a
discrepancy of less than 0.2 eV’ can be achieved using instead the GW approach.

On the other hand, the Generalized Gradient approximation GGA corrects
some of the LDA overbinding. GG A improves the accuracy in cohesive energies
of solids, activation energy barriers in chemical reactions (but still too low), rel-
ative stability bulk phases and get a better description of magnetic solids [37].
In figure 2.2 are display the error in bulk lattice constant and cohesive energies
calculations, for several materials with both these methods [38]. As can be seen
from this figure, due to a more repulsive exchange-correlation GG A softens the
bonds, increasing lattice constants (and decreasing the bulk moduli). In most
cases, there is a notorious improvement in the accuracy of the calculation of lat-
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tice constants with respect to the LDA approach. Nevertheless, in some others
(Ge an Cu) the percentage error is almost the same for both approaches, so in
this sense, there is not a consistent improvement over the LD A approximation.

Bulk lattice constant Cohesive energies

#eﬁb C 9 a‘é’#‘bﬁ* e oo é‘uﬂ‘iﬁ*
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Figure 2.2: Comparisson of LDA versus GG A accuracy (38|

Concerning the Projected Augmented Wave method PAW. this predicts
binding energies within a few tenths of an electron volt, bond lengths in the 1-
2% range, and 15% for elastic constants. The PAW method gives the accuracy
of all-electron calculations, given that the frozen core approximation is valid
for the system considered, and that there are enough projector functions for all
atoms. Hence is better to compare PAW calculations with results obtained by
all-electron methods and not against pseudopotential methods, since these last
only treat valence states.

Table 2.1, shows the lattice constant a and bulk moduli b for some selected
crystals, as well as the magnetic moment of Fe bee [39] calculated with sev-
eral ab initio methods. These results were obtained using only one functional,
namely LDA. As can be notice, the agreement between the results obtained
with PAW and the different methods and experimental values is excellent.

The PAW formalism is only valid for non-overlapping augmentation regions
(i.e the areas of space defined by core states). Therefore, great care should be
taken to ensure that the distances between atoms are large enough to avoid
overlap. Nontheless, in practice a small overlap (~ 5%) between spheres is ac-
ceptable, but an overlap of the compensation charge densities has to be avoided.

2.5.3 ABINIT parallelization

For ground-state calculations, the code has been parallelized on the k-points,
spins, bands, and on the fast Fourier transform grid (FFT) and plane wave
coefficients. For the k-point and spin parallelizations (using Multiprocessing
by Message Passing M PI library of subroutines/functions), the communication
load is generally very small. This allows it to be used on a cluster of work-
stations. However, the number of nodes that can be used in parallel might be
small, and depends strongly on the physics of the problem. The band paral-
lelization (also using M PI) can be used concurrently with the k point and and
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Table 2.1: Properties of selected ervstals, using the local density approximation
and various methods that involve plane waves: norm-conserving pseudopoten-
tials (NCPP), projected augmented waves (PAW), “ultrasoft” pseudopotentials
(USPP) and linearized augmented plane waves (LAPW) [39].

& St Cal% bee Fe
hMethod a b a b a b A b I

NCPP* 3.54 460 539 98 521 90 2.75° 2.26“

PAW"? 354 460 3538 98 534 100

PAW?® 394 460 340 95 534 101 2.75 247 2.00
USPP® 354 461 540 95 534 101 272 237 208
LAPW® 354 470 541 98 533 110 2729 2457 2.04¢
EXP® 356 443 543 99 545 8590 2.87¢ 172¢ 2.12¢
Since the results depend upon many details of the calculations, the values shown are
mainly from two references that carried out careful comparissons: “Holzwarth, et al.
[40] and *Kresse and Joubert [41). Other values for Fe are form “Cho and Scheffler

[42] and “Stixrude, ot al. [13). References for experimiental values are cited in [10] and
[43]. This table has been taken entirely from reference [39).

spin parvallelization, but is less cfficient. The FFT grid parallelization (using
Open A PI) works only for SM P machines, and is still to be optimized. Alter-
natively, a M PI version is under ?development.

*The information provided in  this scction was taken from  hittp
[ fwww.abinit.org/documentation fhelpfiles| for — v5.8/users/new_user_guide hitml#6
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Chapter 3

Ground State Properties

3.1 Introduction

In this chapter we present an ab initio study of the ground state properties of
the Fea(' compound (cementite). We have calculated structural and electronic
properties for several ground state energy configurations to identify which are
the most energetically stable. The structural relaxation included diflerent spin
configurations in order to continuously change the system magnetization,

3.1.1 Thermodynamics

The total energy contained on an assembly made of atoms (molecules or peri-
odic solids), is called the internal energy and can be viewed as the sum of the
kinetic and potential energies of all the atoms. This physical property is very
important, since almost all physical properties are related to total energies or
to differences between total energies [16]. Therefore, if these differences can be
computed, almost any physical quantity can be determined.

The first law of thermodynamics states that for an infinitesimal change
within the system due to changes in the external environment:

dU = dQ — dW, (3.1)

where [/ represents the internal energy. Q is the heat flow and 1V is the me-
chanical work made by or on the system. For instance, the change in volume
due to the action of hvdrostatic pressure, is given by:

dW = PdV, (3.2)

and the enthalpy or heat content is given by,

H=U+ PV, (3.3)

Therefore, using equation 3.1.
dH = dU + PdV + VdP (3.4)

23
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Equation 3.3 is an equation of state that can be determined by first princi-
ple methods. At constant pressure (or fixed volume) and for a simple crystal
in which the positions of the atoms in the unit cell are completely fixed by
symimetry, one can carry out total energy first principle calculations repeated
at different unit cell volumes and then determine the equilibrium volume and
the ground state equation of state (eq. 3.3) of the system.

3.2 Methodology

The present results were obtained by using DFT as implemented in the ABINIT?
software [15, 31]. The ground state relaxed geometry of Fe3C was calculated as
follows. First, the crystal structure of cementite was built from the experimental
structure data [44], which provided the initial atomic positions within the unit
cell, cell angles and lattice constants. Then, the structural optimization was
performed, first, by modifying the ionic positions, fixing the cell and changing
the inner parameters. From the relaxed coordinates obtained, a second calcu-
lation was carried out, relaxing only the volume, but allowing an homogeneous
dilatation of the lattice parameters. Finally, a complete optimization of the
cell geometry (nuclear positions and unit cell volume) was carried out over this
configuration.

ABINIT performs the structural optimization using the Broyden-Fletcher-
Goldfarb-Shannon minimization (BFGS) algorithm. In this method the opti-
mized parameters (ionic positions and unit cell volume) are iteratively changed
until the lowest energy configuration is reached. At each step a self-consistent
single-point calculation is carried to determine the forces acting on the ions
and the stresses over the lattice parameters. This procedure continues until the
forces and stresses converged to a minimum value, and so, the ground state
equilibrium configuration is found.

Once the relaxed structure at 0 GPa was stimated, the structure was com-
pressed from 0 to 360 GPa, for all the spin configurations. The method included
a full optimization of cell size and shape, combined with a target stress tensor to
specify an external hydrostatic pressure applied upon the crystal from all three
directions. This procedure was repited several times at different pressures, tak-
ing as input the optimized atomic positions calculated at a previous pressure,
until the desired range of pressures was reached.

3.2.1 Computational details

The calculations were performed using the projector augmented wave method
(PAW) [25), as implemented in Abinit [32]. The set of partial-waves and pro-
jector functions for each atomic species were taken from the abinit projector
and basis functions database. Namely Fe-GGA-sp_semicore-atompaw.paw for
iron and C-GGA-hard.paw for carbon and were generated with the computer

1'The ABINIT code is a common project of the Université Catholique de Louvain, Corning
Incorporated, the Université de Liége, the Commissariat a I'Energie Atomique, Mitsubishi
Chemical Corp., the Ecole Polytechnique Palaiseau (URL http://www.abinit.org).
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program AtomPaw.

The exchange-correlation functional was described within the generalized
gradient approximation (GGA) as parameterized by Perdew, Burke, and Ernz-
erhof (PBE). A plane-wave basis set was used with a cutoff energy of 16 Ha,
while the energy cut-off for the fine "double grid” that allows the transferability
from the normal fast Fourier transform (FFT') grid to the spherical grid around
each atom, was set to 36 Ha. Additionally a 8 x 8 x 8 Monkhorst-Pack k-mesh
constructed in the full Brillouin zone, was used to define the number of k-points,
in each of the three spatial dimensions [24).

3.2.2 Types of calculations

Since iron carbide (Fe3zC) was proposed to be a major phase present in the
earth’s core (3], there has been an avid dissertation about the effect of pressure
on the magnetic state of this compound that impacts its physical properties.
This situation has brought to light a shortcoming in the use of an equation of
state based on an erroneous magnetic character. In view of this picture, we de-
cide to performe a series of calculations considering different spin configurations
and residual values in order to vary the magnetization of the system and to find
out which spin arrangement is the most energetically favored in the considered
pressure range. These calculations are:

1. Non spin polarized (NS), for which spin up and spin down cannot be
disentangled. Consequently this is a non magnetic configuration.

2. Antiferromagnetic spin configuration (AFM-S), with a fixed local
magnetic moment of atoms and providing a geometric configuration to
ensure there are not magnetic domains (fig. 3.1). This structure belongs
to the magnetic space group Shubnikov type IIl Fedorov space group
P2,2,2, #19.

3. Spin polarized, with separate and different wave functions for spin up
or spin down electrons for each band and k-point. This allow the atoms
to have a net magnetic moment if that is the state that minimizes the
energy of the system. The code determines at every self-consistent cycle,
the spin-up and spin-down densities and the difference is define as the
spin polarization or spin magnetic moment. Of these calculations, several
possibilities were considered. These are:

- Ferromagnetic (FM), providing the initial electronic spin magne-
tization of each atom to break the symmetry.

- Antiferromagnetic (AFM), fixing the total magnetic moment to
Zero.

- Fixed magnetic moment (FMM) to 0,4,8,10,12,16,20, 24, 36
and 48 Bohr's magneton calculations, which is the maximun number of
unparied electrons that the 12Fe atoms of the unit cell could contribute.
An initial spin magnetization per atom to brek the symetry was included

as well.
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Figure 3.1: Unit cell for the Antiferromagnetic spin configuration (AFM-S). This
structure belongs to the magnetic space group Shubnikov type III Fedorov
space group P2:2:2, #109.

From this point, the abreviations shown in parentesis will be used in some
cases when referred to the performed calculations for different types of configu-
rations.

3.3 Results

3.3.1 Structural relaxation

Iron Carbide Fe3C, has a cementite structure, and crystallizes in an orthorhom-
bic space group Pnma (No0.62), with four formule units Z = 4 in the unit cell.
The unit cell contains 12 Fe iron atoms and 4 C carbon atoms. Cementite
unit cell [44] has been described as derived from a hexagonal closed packed ar-
rangement composed of pleated layers [12] formed by trigonal prisms made by
a C atom and its six nearest-neighbor Fe atoms [13|. These iron atoms occupy
two different sites with slightly different magnetic moments. Within the trigonal
prism there are two Fe atoms in special positions (labeled as Fe,) which have 14
nearest-neighbor’s with twelve Fe,— Fe bonds and two Fe,—C bonds; four iron
atoms in general potions (labeled as Fey), also with 14 nearest-neighbor’s but
with eleven Fe, — Fe bonds and three Fe, — C bonds. The carbon atoms have
8 nearest-neighbor’s. The Wyckoff positions of the atoms are Fes(x1,y1, z1),
Fegy(z2,0.25,22) and C(23,0.25, 23). The final cementite structure is formed
by the overlay of these sheets (fig. 3.2).

In table 3.1 and 3.2 are listed the equilibrium lattice constants at 0GPa
obtained for the different configurations. The last three columns show the rel-
ative error with respect to the experimental data |44]. Since cementite exhibits
a ferromagnetic behavior at ambient conditions, the calculated lattice param-
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Figure 3.2: Unit cell of cementite, showing iron atoms in general positions Fe,,
special positions Fe, and the four carbon atoms C.

Figure 3.3: Crystal structure of cementite. Iron atoms in general Fe, and
specials Fe, positions, are shown as white and yellow spheres repectively, the
carbon correspond to red spheres [13].



28 CHAPTER 3. GROUND STATE PROPERTIES

eters are in better agreement with experiment for those calculations in which
the magnetic state of cementite has been considered. For example, the relative
error in the ferromagnetic calculation (table 3.1) is less than 2% for all the three
unit cell parameters and similarly, the relative error is lower than 2%, for those
configurations with fixed magnetic moment between 16up an 24up (table 3.2).
This is an excellent result that give us confidence in the capability of DFT to
simulate ground state properties of materials.

Table 3.1. Unit cell parameters and volume V, at 0GPa

Configuration Vo a b c Err.a Emr. b Ermr. c

_ A A A A m R (%
NS 144.380 4916 6.684 4.394 327 0.73 2.8l
AFM 144.359 4916 6.683 4.394 327 074 281
AFM-S 145.496 4.938 6.698 4.399 283 052 2.7
FM 148.211 5.008 6.661 4443 146 107 173
Exp. (44 154.70 5.082 6.733 4.521

Table 3.2. Unit cell parameters of FesC and volume V, at 0GPa for fixed
magnetic moment calculations (FMM).

Configuration Vo a b C Err.a Err. b Ermr. c
A) (A @A) @A) (%) (%) (%)
FMM py=0 144.380 4.916 6.684 4.394 3.27 0.73 2.81
FMM po=4 146.256 4.950 6.706 4.406 2.59 0.41 2.54
FMM po =8 145496 4.938 6.698 4.399 2.82 0.52 2.7

FMM po = 10 145.818 4.947 6.693 4.404 2.65 0.59 2.58
FMM po =12 146.390 4.960 6.688 4413 24 0.67 2.39
FMM pp = 16 147955 4.996 6.676 4.436 1.69 0.84 1.87
FMM po = 20 150.302 5.045 6.659 4474 073 110 1.05
FMM po = 24 153.429 5.100 6.644 4.528 0.35 1.32 0.15
FMM po = 36 170.500 5.306 6.738 4.769 441 007 549
FMM po = 48 201.763 5450 7.360 5.030 7.24 931 11.26
Experimental [44] 154.70 5.082 6.733 4.521

We have also calculated the inter-atomic distances in cementite. Figure 3.4,
3.5 and 3.7, show the computed bond lengths as a function of magnetic moment
at the ground state (P = 0GPa). The data shown in these figures, corresponds
to the fixed magnetic moment calculations FMM. The figures can be read as
follows: the letters in the subscripts labels indicate the two possible sites for
iron atoms (¢ = general, s = special) and the numbers refer to the specific
location in the unit cell, that can be tracked from figure 3.6. For comparison
it is depicted as well the bond length for the ground state stable phase of iron
(Fe bee) at its equivalent magnetic moment.

The net effect of magnetization is to expand the structure. Indeed the ground
state volume obtained for the magnetic phases FM and AFM-S, is larger than
that of the non-magnetic phases, NM and AFM calculation (table 3.1). The
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Figure 3.4: Bond legths between iron atoms in general Fe, positions. For Fe
bee reference is [45]. Label Fegyyz, indicates, that this atom is found when the
unit cell in figure 3.6, is repeated one’s along the x and y directions.
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Figure 3.5: Bond lengths between iron atoms in general Fe, and special Fe,.
For Fe bee reference is [45].

effect is more obvious from table 3.2, where one can see a constant increase of
Vo as a function of the magnetic moment for the FMM calculation.

Considering that carbon is much more smaller than iron, it seems at a first
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Figure 3.7: Bond lengths between iron and carbon atoms. For Fe bee reference
is [45]. Label Fe,;. indicates, that this atom is found when the unit cell in
figure 3.6, is repeated one's along the z direction

sight that the carbon atoms could occupy interstitial sites in the Fe — Fe lattice.
In fact, when carbon atoms are added interstitially to Fe bec, the net effect is
a volume expansion generated because carbon atoms push iron atoms apart
increasing interatomic distances [46]. Nevertheless, from figure 3.4, 3.5, and
3.7 one can see that at the average magnetization per Fe atom of Fe bec, all
the interatomic distances of Fe3C are smaller than those of iron, indicating
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Table 3.3: Magnetic moment and inter-atomic distances in
Fe3C at 0GPa.

Magnetic moment (upg) AFM-S FM
My Fe, 0.5 1.38, 1.931
My Fe, 1.35 1.65, 1.981
My Fe 0.93 1.45, 1.72% ,1.78°

Inter-atomic distance (A) AFM-S FM
d(F €g2 = Fegs) 2.45 2.44
d(Fegs — Fegs) 2.47 2.49
d(Fegy — Fegyy;) 2.50 2.49
d(Feg — Feg) 2.57 2.61
d(Fegs — Fegyp) 2.52 2.49
d(Fegs — Feg) 2.54 2.54
d(Feg7 — Fesp) 2.56 2.60
d(Feys — Feqo) 2.59 2.61
d{FE,g - FE_,m] 2.99 2.63
d(Fegz — Cs) 1.96 1.99
d(Fegs — Cs) 1.97 1.99
d(Feg0 — Cy) 1.97 1.98
dI:FE,a_-W ) 1.95 1.96
d(C, — C3) 3.01 2.95
d(Cs — Cy) 4.21 4.22
d(C3z — C3) 5.08 5.21

! Theoretical value from reference [47]
? Experimental value from reference [48]
2 Experimental value from reference [49]

that the stability of Fe;C is related to a different matter., In particular the
Fe— Fe distances range from 2.45 Ato 2.7 A, which indicates a relative difference
from pure Fe (2.86A) of 14.3% to 5.6% respectively. The same behavior was
observed for the antiferromagnetic AFM-S and ferromagnetic FM structures and
the results are displayed in table 3.3. From these same figures and more clearly
from table 3.3, is evident that in Fe3zC all Fe — C interatomic distances are
smaller than Fe — Fe distances. Meaning that Fe — C interactions are stronger
and probably covalent. If the covalent bonding dominates, this must be the
main source, firstly because each carbon atom possesses six nearest-neighbor
atoms, all iron: 2Fe, and 4Fe, and secondly because C' — C bonds are to far
away from each other to play an important role. Actually C — C interatomic
distances in Fe3C are about twice the bond length in pure carbon [46].

3.3.2 Magnetic properties

In table 3.3 are presented some of the magnetic properties of FezC at the ground
state (0GPa) for ferromagnetic FM and antiferromagnetic spin AFM-S config-
urations. Because of the covalent Fe — C bonds in Fe3zC, the net magnetic
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moment is smaller than that of iron (2.29up [23]). In fact the existence of a
p — d hybrid band formed by the transfered 2p electrons of carbon atoms to the
d electrons of iron atoms reflected on its density of states, is the main reason
for the relative weakening of the Fe moment in cementite as compared to Fe
bee[50]. The average magnetic moment per Fe atom obtained was ~ 1.45upg in
the ferromagnetic case and ~ 1.67 for fixed magnetic moment calculations (fig.
4.3 in next chapter).

There are some other factors affecting the magnetic state of iron atoms in
Fe3C, such as their coordination, the type of neighbors and the corresponding
inter-atomic distances. These components are the reason for the difference in
local magnetic moment of iron atoms at different positions. As can be observed,
the local magnetic moment obtained for Fe, iron atoms (see table 3.3) is smaller
than that for Fe,. This effect has been described before as a consequence of
the stronger interactions between Fe, and its iron environment. Due to shorter
Fey, — Fe distances and the bonding interactions between Fe and C atoms
(d(Fey — C) > d(Fey — C)), there is a reduction of the ezchange splitting® of
Fe, d electrons that determine the lower local magnetic moments for Fe, atoms
[47).

For example, from figures 3.4, 3.5, 3.7, can be observed that the differ-
ent kinds of atomic bonds follow the trend d(Fe; — Fe,) > d(Fey, — Fe,) >
d(Fe; — Fey) > d(Fey — C) > d(Fes — C) [44]. This shows that the bonds
between Fe, atoms present the largest length, due to the higher electronic in-
teraction which is reflected in a larger local magnetic moment. Additionally,
the two main factors that determine the exchange splitting (shorter Fe, — Fe
distances and d(Fey — C) > d(Fes— C)) are enhanced with increasing magnetic
moment. All the above mentioned is true in the case of the fixed magnetic mo-
ment calculations FMM, but the interatomic distance tendency d(Fes — Fe,) >
d(Fe, — Fe,) > d(Fey, - Feg) > d(Feg — C) > d(Fey; — C) is not followed so
severely for the. antiferromagnetic AFM-S and ferromagnetic calculations FM
(see table 3.3).

To visualize the magnetism in Fe3C, the spin polarization charge density
(An(r) = n'(r)=n!(r)) maps for two differrent planes of the unit cell are shown
in figures 3.8 and 3.9 for the FM and AFM-S configurations respectively. This
charge density difference can be interpreted as a rough approximation of a local
magnetic moment. As it can be observed, in the FM configuration the elec-
tronic charge density is located mainly around the iron atoms located at special
positions Fe,, which confirm our stimation of a higher local magnetic moment

for these type of atoms.

For the AFM-S structure the situation is similar. The spin polarization
charge density is located as well mainly around the iron atoms located at special
positions Fe,, but this time, there is a combination of spin down an spin up
charge density (with the same absolute value for An(r) but opposite in sign in
the scale). The overall effect of this configuration is to cancel the local magnetic

?The exchange splitting refers to the separation between the spin-up and spin-down energy
levels that results from the exchange interaction in magnetic systems.
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Figure 3.8: Polar charge density map for the ferromagnetic (FM) configuration.
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Figure 3.9: Polar charge density map for the antiferromagnetic spin (AFM-S)
configuration.

moments of atoms and produce an antiferromagnetic material.
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Chapter 4

Effect of pressure on the
magnetic state of FegC

4.1 Introduction

The structural ground state properties of Fez(' have been presented in chap-
ter 3. In this chapter we aim to investigate in large detail the structural and
magnetic evolution of Fe3C, when subjected to pressure. Previous studies have
shown that FesC undergoes two main magnetic states under compression, that
can alflect its elastic, thermodynamic, and vibrational properties. For this rea-
soun, calculations over a large varicty of spin configurations and residual values
were perforined in this study. All the configurations were compressed (rom zero
to 300G Pa. In this way the FOS was determine and the data was fitted to the
third order Birch-Murnaghan equation of state.

4.1.1 Thermodynamics

The Gibbs energy G is a chemical potential that is minimized when a system
reaches equilibrium at constant pressure and temperature. In consequence, be-
tween two phases of a material, phase 1 is more stable than phase 2 when
Gy < Gy , and the reverse is true when G < Gy. The two phases co-exist
in thermodynamic equilibrium when G(P,T) = G2( P, T), and this condition
determines the relation between P and 7" on the phase boundary [9]. The Gibss
energy is defined as:

G(V.P,T)=U + PV - ST. (4.1)

where U is the internal energy. S the entropy and 7" the temperature. Equation
4.1 can also be expressed in terms of the enthalpy H as,

G(V.P.T)= H+ ST (4.2)

For a process at zero temperature, equation 4.2 indicates that [I{V, P) =
(;(V, P). Under this condition, the enthalpy can be used as the physycall quan-
tity that determines the satbility of a system. and a transition between two
phases can be stablished when both have the same enthalpy.

S
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Under the Ehrenfest classification scheme, phase transitions are clasified
according to the degree of non-analyticity involved. For instance, a first-order
phase transition involves a discontinuity in the first derivative of the Gibbs free
energy with respect a thermodynamic variable. In a second-order transition the
first derivatives of the Gibbs free energie (or chemical potentials) are continuous
but the second derivatives with respect to temperature and pressure (i.e. heat
capacity, thermal expansion or compressibility) are discontinuous [51].

4.1.2 The invar effect

The invar phenomena refers to a decrease of the volumetric expansion coefficient,
over some temperature range. It has been observed in several transition metal
alloys. In the ground state Invar-type alloys, the atomic volume dependence
of the binding energy incorporates a high-spin (HS) state in the vicinity of the
equilibrium volume V4. At volumes about 5% less than V4, a low-spin (LS) is en-
ergetically favorable over the HS state [52]. Therefore this magnetostriction can
be induce as well by pressure. Recently it has been observed that the volumetric
thermal expansion coefficient of cementite is very temperature dependent, with
the material showing a strong ‘Invar effect’ [14]. In this study we are concern
only about the magnetostrictions effects induced by pressure, however some of
our results can be used to elucidate the origin of the Invar phenomena in FesC
with respect to that in Fez2Ptas.

4.1.3 Equation of state

An equation of state is a relation that describes how a material behaves under a
given set of physical conditions. In geophysics, we are particularly interested in
those EOS's concerning the thermodynamic state of solids under the influence
of high temperature and pressure conditions, prevalent in the earth’s interior.
Nevertheless, for solids the effect of temperature is very light compared to gases
and as a result it is commonly introduce only as a thermal expansion correction
to the isothermal equation of state [14].

One of the most commonly used equation of state to fit high pressure volume-
energy data, is the so called Birch-Murnaghan EQOS. This relation is based on a
non-linear, finite strain, elastic description, that takes into account that at high
pressures it is more difficult to compress a solid. Under these circumstances the
inter-atomic forces opposing further compression, generate large strains in the
crystal volume and lattice parameters, which produces an enlargement of the
bulk modulus at high pressures [9][53].

The third-order Birch-Murnaghan isothermal equation of state is given by,

RO R O

where V; and K, are the equilibrium volume and isothermal bulk modulus
respectively and Kj is the first pressure derivative of Ko. By integration of
equation 4.3, an analogous equation of state for the energy can be obtained,
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where Ej, stands for the equilibrium Helmholtz free energy.

E(V) = Ep+ g‘f’:" {

The isothermal bulk modulus K is given by the expression,

daP
K=-V (ﬂ_V)T'. (4.4)

i.e. a volume derivative at fixed temperature. Additionally, the compressibil-
ity 3 is defined as the reciprocal value of the bulk modulus and represents the
difficulty of changing the volume under pressure. Thus, a material with low
compressibility 3 and high bulk modulus K would be very easy to compress.

4.2 Methodology

In order to investigate the structural and magnetic evolution of Fe3;C as a
function of pressure, the ground state equation of state was determined from
zero to 300G Pa for all calculations. Afterwards, the obtained E — V' data was
fitted to a third order Murnaghan equation of state and estimated the zero
pressure parameters such as its zero pressure volume V; bulk modulus Ky and
its first derivative K. The enthalpy was employed as the physical descriptor to
define the stability of the structure and thus determined which of the proposed
magnetic configurations is the most stable over the proposed range of pressures.

4.3 Results

4.3.1 Pressure-induced magnetic phase transition

In the search of the lowest-energy phase of Fe3C among the calculated spin
configurations, the enthalpy as a function of pressure was determined as shown
in figure 4.1. To be more precise, this picture contains the difference between
the enthalpy of one of the phases and the enthalpy of the non spin polarized
configuration Hys, i.e. AH = H — Hxs. Calculating AH makes easier to
distinguish between the stability one phase an another, since the difference be-
come more numerically pronounced than for the enthalpy alone.

At high pressures, the non-magnetic phases considered, stabilizes over the
magnetic configurations. However, the differences in enthalpy between the non-
magnetic phases are within the computational error (~ £1mHa), therefore, we
assumed that at high pressures the magnetic state of Fe3C is better modeled by
the NS calculation. What happens at low pressures is more legible from figure
4.2, where the evolution of AH is plotted only to 30GPa. Clearly in the low
pressure regime the lowest enthalpy phase correspond to the ferromagnetic case.
This result is in agreement with previous observations of the high spin to low
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spin magnetic phase transition in Fe3C [7].

Although this situation, the calculation of the FMM phases is well justified,
since its curves intersect in a smooth manner, resembling the behavior of the
FM configuration. In fact, at 0GPa the most stable phase correspond to the
FMM calculations with g = 16up and py = 20up, these two phases are de-
generate and exhibit the lattice parameters and unit cell volume closer to the
experimental value (see table 3.2). Is also important to note that between zero
and 15G Pa, there is a lack of data at intermediate pressures for the FM calcula-
tion. Is in this region where the FMM calculations can provide a better insight
of the evolution of the transition from a high spin to a low spin state.

Magnetic transitions like this have been observed as well by XES and
synchrotron Madssbauer spectroscopy experiments for Fe3S at approximatelly
21GPa. Therefore is also possible to encounter a similar magnetic transition
for other Fe3 X compounds [54)].

The calculations of the antiferromagnetic phases, support the idea pointed
out by Khmelevskyi et al [50], who observed that for Fe3C' “the transition oc-
curs between a high moment ferromagnetic state and a non-magnetic (non-spin-
polarized) state without stabilization of any intermediate antiferromagnetic-like
state” However, there are a large number of ways in which antiferromagnetic
configurations (of the type of the AFM-S ) can be arranged for the crystal struc-
ture of cementite, therefore, the calculations presented in this work, can serve
only to exclude them to be stable phases across the transition in FesC. This
feature is important to elucidate the origin of the Invar phenomena in Fes;C
with respect to that in Fe2Ptos. For the latter, Matsuhita et al [55], found
experimental evidence of the formation of an intermediate antiferromagnetic-
like phase between ferromagnetic and non magnetic phases under applied pres-
sure. In addition a broad hysteresis was detected when high pressure X-ray
magnetic circular dichroism (X MCD) measurements of a Fes3 Ptog disordered
sample where performed [56]. This experiment showed different magnetic states
with the same crystallographic structure under compression as compared when
pressure was released from the sample. The appearance of the intermediate
antiferromagnetic-like state in Fe72Ptzs could be the desire 'pining’ entity,
which causes the observed hysteresis in Fess Ptzs, and if such a feature is absent
in FezC it may serve as an explanation for the difference in character of the

transitions between these materials [30].

4.3.2 Magnetic transition parameters

Figures 4.3 and 4.4 show the evolution of magnetization as a function of pressure
and volume respectively. For all three calculations, there is a collapse in local
magnetic moment of iron atoms in Fe3C, with increasing pressure or decreas-
ing volume. Nevertheless, there are notable differences for each calculations.
For the AFM — S calculation, the collapse doesn't represent a change on the
magnetic state for the whole crystal. Instead for the FM and FM M structures
this magnetic collapse is the responsible of the aforementioned magnetic phase
transition. Additionally the drop in the local magnetic moment of iron atoms
is larger for the AF M — 8§ structure, and takes placein a smaller gap of pressures.
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Figure 4.1: Relative enthalpy with respect to the non-spin polarized calculation,
from zero to 300G Pa. For an explanation about the abreviations corresponding
to a type of configuration go to section 3.2.2.
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Figure 4.2: Relative enthalpy with respect to the non-spin polarized calcula-
tion Hys, from zero to 30GPa. For an explanation about the abreviations
corresponding to a type of configuration go to section 3.2.2.
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In table 4.1 are enlisted the magnetic transition parameters for these three
calculations, plus some available experimental and theoretical results concern-
ing the effect of compression on Fe3zC. As can be observed there is a big dis-
crepancy between the results obtained by these previous studies. For instance,
experimental studies lack of accuracy because hydrostaticity is very difficult to
achieve in practice. On the other hand, the pressure induced magnetic phase
transition of cementite was predicted for the first time by Vocadlo et. al. (7],
and they demonstrated as well that this transition affect the parameters nec-
essary to defined a correct high pressure regime equation of state. Before this
study, theoretical calculations didn’t take into account this feature and end up
with wrong results. In special, based on thermodynamical calculations, Wood
et. al (3] predicted that cementite could be a major phase forming the earth's
inner core. This assumption was derived from the determination of density at
inner core conditions arising out of an equation of state that didn’t consider this
issue. Vocadlo et. al. come out with a different result, questioning the valid-
ity of this assumption. This study, pretends to bring light into this affair, by
performing a more consistent study of the magnetic state of cementite at high
pressures. It has been showed that the calculations presented here, portrait
correctly the announced magnetic phase transition, and it would be pointed out
more clearly that this calculations are in agreement with experimental evidence.

Comparison between experimental and theoretical results is not straightfor-
ward. The former are performed at room temperature and the later (if these
are done by means of DFT) are calculated at zero kelvin since DFT can only
calculate ground state properties.

Having pointed out this constrains, here there are some remarks:

In contrast to Wood et. al. in the present work it has been consider the
correct magnetic state of cementite when subjected to pressure. By perform-
ing calculations over a large variety of spin configurations and residual values
(FMM calculation) we were able to investigate the actual magnetic phase tran-
sition through a more reliable procedure than by performing spin polarized
calculations. Here are presented both methods and the results are consistent
with another. There is a shortcoming on executing spin polarized calculations
to examine magnetic character. In many cases is common that from some start
configuration the energy function has many local minima separated by large en-
ergy barriers. Codes often get trapped in a local-minimum spin state. Therefore
it is difficult to determine the magnetization state of the arrangement. Trying
different starting points can help, for instance by changing the initial electronic
spin-magnetization for each atom to break the spin symmetry, allows to find
stable local spin fluctuations. For this reasons this work represents a more sys-
tematic study of the magnetic character of Fe3sC under pressure than the one
of Vocadlo et. al.

According to table, 4.1, the values of the transition volume Vr and the vol-
ume change associated to the magnetic collapse AV, corresponding to the FM
and FMM calculations, are closer to the theoretical results obtain by Vocadlo
et. al. than those obtained by Khamelevstyi et. al.. AV was calculated by
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considering the difference in volume between the ground state V; volume and
the transition volumen V. Nevertheless the transition pressure Pr is far away
from the value obtained by Vocadlo et. al..

Also important is that our results (Vr and AV') are more consistent with the
experimental data showed in this table, than the results obtained by Veocadlo
et. al.. A remarkable agreement is found for V¢ and Pr with the results of Scott
et. al. and Lin et. al.. It most be mentioned that the study of Scott et. al. con-
sisted on a synchrotron-based x-ray diffraction experiment, hence the magnetic
transition was no measured and no structural phase transition was detected.
Nevertheless, the compression data clearly showed a discontinuity at 30 GPa in
the axial ratios (¢/a and b/a) and in the pressure-volume plot. Therefore Vr .
AV and Pr showed in table 4.1 correspond to this dicontinuity. There is more
to be said about it, therefore we will comeback to this in the next section 4.3.3.
For the moment, it has been shown clearly enough, that the Pr lies near 30
G Pa and not around 60 GaP as Vocadlo et, al. conclude.

These calculations show an improvement of accuracy with respect to the
work performed by Vocadlo et. al. because the Projected Augmented Wave
Method PAW to treat electron-ion interactions was used. Kresse et. al. [41]
derived a formal relationship between both methods, and presented critical tests
to compare the accuracy and efciency of the PAW and the US — PP method
with relaxed core all electron methods, paying particular attention to the bulk
properties and magnetic energies Fe, Co and Ni. In contrast to the US — PP
method employed by Vocadlo et. al., the PAW method demonstrated to give
very accurate results for transitions metals with large magnetic moment. In
especial, its study of the structural properties of bee ferromagnetic Fe and hep
non magnetic Fe, showed that the US— PP seriously overestimates the magnetic
energy. Moreover, they evaluated the transition from the ferromagnetic bee
to non magnetic hcp phase and obtained (using PAW) a transition pressure
in excellent agreement with other theoretical studies. However, the standard
U S — PP calculation predicted a transition pressure value to high in comparison
with all the other methods. The same situation can be appreciated in table 4.1.
The transition pressure obtained by Vocadlo et. al. is to high in comparison
with theoretical calculations (including this study) and with experimental data.

4.3.3 Effect on Compressibility

During the compression the unit cell deforms in a continuous way and the ma-
terial retains orthorhombic symmetry. Nevertheless, this deformation is not
completely isotropic. Figures 4.5 and 4.6 gives a clue about the deformation
mechanism taking place. These figures show the relative axial compressibility
for both ferromagnetic and fixed magnetic moment calculations, that is to say
in which direction the structure compresses more relative to another axis at a
given pressure. Note the presence of a small discontinuity; from 0GPa to ap-
proximately 30G Pa the axial ratios a/b and a/c decreases while the b/c ratio
increases significantly. This means that @ is more compressible relative to ¢ and
b in the low pressure region, following the relative compression trend a < ¢ < b.
From this point the compression mechanism is inverted (a > ¢ > b), and turns
out to be quite isotropic at high pressures.
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Table 4.1: Magnetic transition parameters for Fe3C, showing ground state
volumen Vj, transition volumen Vi, pressure Pr and change of volumen

required to induce the transition AV.

Vo Vr AV Pr
This study* (A3) (A%) (%) (GPa)
AFM-S 145.44 132.7 8.84 20
FM 148.16 132.7 10.50 30
FMM 150.24 132.7 11.75 30
Experimental®
5| Scott et al.4  155.26+.14 137.41 11.50 30
4] Li et al. 155.2 No transition - No transition
detected detected
57] Lin et al 148 133.2 10 25
58 Duman et al. 151 144 4.64 10-12
59] Gao et al. 154.97 - - 4.3-6.5
Theoretical®
3| Wood et al. 154.82 No transition - No transition
predicted predicted
7] Vocadlo et al. 143.36 126.4 11.83 60
50| Khmelevstyi 150 145 3.33 -

% Values at 0K.
b Values at 300K.

€ Values at 0K except for refence [3] which were calulated at 300K.

4 No structural phase transition was detected, nevertheless, the compression data
clearly showed a discontinuity at 30 GFPa in the axial ratios (¢/a and b/a) and
in the pressure-volume plot. Therefore Vi, AV and Pr correspond to this

dicontinuity.
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Figure 4.6: Relative compressibility for fixed magnetic moment (FMM) calcu-
lation.

To corroborate the above mentioned, the axial compression for both, ferro-
magnetic and fixed magnetic moment calculations, is depicted in figures 4.7 and
4.8. By this we mean the decrease in volume when the structure is subjected to
hydrostatic pressure. The compressibility curve extracted from the fixed mag-
netic moment data, was constructed by taking the most stable magnetic phase
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at each pressure (i.e. the minimal enthalpy configuration). With these data,
the unit cell parameters evolution is thereby traced in a compressibility curve
of the ratio ;‘; as a function of pressure, ! being any of the unit cell parameters
at a given pressure and lp, any of the the unit cell parameters measured at
0GPa. As expected, the a axis has the largest compressibility, followed by the
compressibility of the ¢ and b axis. The same trend is observed for both calcu-
lations, although this difference is greater for the constrained magnetic moment
calculations.

It is also interesting to notice, that even when the discontinuity in the rel-
ative axial compressibility is small, it takes place approximately at the same
pressure (~ 30GPa) where the magnetic transition was identify in this study.
There is another feature that supports the idea of this, being a consequence of
the magnetic transition, namely, that a similar discontinuity in the a/b and a/c
ratios has been observed at the same pressure, experimentally by Scott et. al.
[5]. As has been already mention, that study consisted on a synchrotron-based
x-ray diffraction experiment, hence the magnetic transition was no measured.
Nevertheless, just as here, no structural phase transition was detected and there
is a remarkable agreement between the magnetic transition parameters of such
study, and this work (see table 4.1).

All of this means that the volume reduction due to the magnetic collapse is
accompained by a small structural rearregment that does not affect the whole
symetry of the structure. In order to investigate this in more detail, the bond
lenghts and angle compressibility as a function of pressure, are depicted in fig-
ures 4.10, 4.9, 4.12 and 4.11 for both FM and FMM calculations. Only some
of the most ilustrative bonds an angles have been considered. Ones again, the
letters in the subscripts labels indicate the two possible sites for iron atoms
(g = general, s = special) and the numbers refer to the specific location in the
unit cell, that can be tracked from figure 3.6. In addition, in figure 4.13 are
displayed the considered angles with its respectives labels.

After a detailed analisis of figures 4.10, 4.9, 4.12 and 4.11, one can obtain
the next observations holding for both calculations:

1. The angle Fegy — Fegs — Fegs (figure 4.13 A) remains constant and as a
result the bond Feg, — Fegg is the less compressible.

2. The structure is been compressed more or less in the xz plane, accord-
ingly the angles with larger positive compressibilitty (increasing value)
are Fey — Fegs — Fegs and Fey — Feys — Fega (figure 4.13 B and G
respectively).

3. By the contrary the angle with larger negative compressiblility (decreasing
value) is Fegs— Fegq— Fegg (figure 4.13 D). While the angle Fe gy — Feg6—
Fegqo (figure 4.13 E ) remains almost constant.

4. This means that the upper and lower part of the structure, are getting
closer along to the line that joins atoms Fegs and Fegg (see the arrows
in figure 4.13 D and E). This is corroborated by the fact that the bond

Fe,s — Fegs presents the smaller compressibility.
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Figure 4.8: Compressibility for ferromagnetic (FM) calculation.

Also interesting, is that the discontinuity in the relative axial compressibil-
ity is reflected in the angle compressibility as well. In figures 4.9 and 4.11 one
can recognize an abrupt change in the slope of the compressibility of angles
Cy — Feyp — Fegg and Fegy — Cy — Fegp at low pressures, while the compress-
ibility curves of all the other angles are quite smooth. For both calculations, at
the beginning the slope is very sharp and suddenly (around 30 GPa) the slope
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becomes less pronounced. Note that this bonds involve C and Fe atoms. This
make sense because as mentioned before, at the ground state, the existence of a
p — d hybrid band formed by the transfered 2p electrons of carbon atoms to the
d electrons of iron atoms reflected on its density of states, is the main reason
for the relative weakening of the F'e moment in cementite as compared to pure
bee Fe [50). Therefore the loss of magnetization induced by pressure, is related
as well to the bonding interactions between Fe and C atoms.

The magnetism in Fe3C is a result of the contributions of local magnetic
moments of iron atoms in general Fe, and special positions Fe,. At the ground
state (see section 3.3.2), the magnetic moment of Fe, atoms is larger than that
of Fey, atoms. Here, it hasn't been measured the magnetic moment evolution
of Fe, and Fe; atoms as a function of pressure. Nevertheless according to
figures 4.10 and 4.12 the same characteristics responsible for the difference in the
magnetic moment of iron atoms at different sites, still holds at large pressures.
That is to say, stronger interactions between Fe, and its iron environment due
to shorter Fe, — Fe distances and the bonding interactions between Fe and
C atoms (d(Fey, — C) > d(Fes — C)). Therefore, is possible that one of the
ingredients for the loss of magnetization, is the reduction of local magnetic
moment of Fe, atoms enhanced by pressure.

4.3.4 Equation of state

There are two main considerations that were taken into account to adjust the
data of the calculations to an equation of state, and to the interpretation of
the results obtained. Firstly, to select an EOS proper to adjust high pressure
volume-energy data, which means to choose an EOS that takes into account
the fact that at high pressures it is more difficult to compress the solid. And
secondly, the magnetic state of the calculations.

Here, all calculations have been adjusted to the so called third order Birch-
Murnaghan EOS which is one of the most commonly used EOS to fit high

pressure volume-energy data. Nevertheless, in this special case one must care-
ful, since we are dealing with a second order magnetic transition and therefore,

there is a different trend of the V — P data before and after the transition.

To illustrate the effect of magnetization on the equation of state, in fig 4.2
are shown the equation of state parameters obtained for each of the FMM con-
figurations. As can bee seen, the ground state volume V; increases directly with
the value of the magnetization while the bulk modulus Ky decreases. This is
because magnetism produces an interatomic repulsion that increases the atomic
volume and softens the structure giving rise to a corresponding decrease in the
bulk modulus.

Due to the presence of a high pressure phase transition, the behavior of the
material can not be represented by a solely EOS such as the third order Birch-
Murnaghan EOS. One option is to merely fit the corresponding P-V data to
differently parametrized EOS for each phase. Actually a second-order magnetic
phase transition requires that there is a discontinuity in the second derivative

? -
of the Gibbs free energy. At constant temperature, 7% = %5; however, a dis-
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Table 4.2: Equation of state parameters for
FMM calculations. The data was fitted to a
third order Birch-Murnhagan equation of state

between 0 and 30G Pa.

Configuration Vo Ky K
(A%) (G Pa) (Ha/ua%)
po = Opp 144.38 292.68 4.53
uo = 4up 144.46 3293 1.69
po = 8up 145.54 269.12 5.68
po = 10up 145.88  276.5 2.18
o = 12up 146.43 274.47 5.32
po = 16up 14799  276.03 4.62
po = 20up  150.29 264.64 4.77
up = 24dup 153.4 254.63 4.54
o =36up 17052 195.12 4.86
o = 48up  201.85 119.42 5.99

continuity in g; is incompatible with the third order Birch-Murnaghan EOS,
in which §% is a continuous function (7).

A consequence of this, is that the EOS turn out to be pressure dependent.
To demonstrated this, in table 4.3 are compared the EOS parameters acquired
by fitting our results to the third order Birch-Murnaghan EQOS using different
pressure ranges.

The P — V data has to different trends before and after the transition. This
is reflected in the large difference of EQS parameters for different pressure
regimes. The responsible, is the magnetic state of the material. In the low
pressure regime, the material is magnetic, therefore the EOS predicts a large
Vo which in turn produces large values of K. But for the same calculations in
the high pressure regime, the material is in a not magnetic state hence, Vj is
lower and Ky increases considerably. Note that Ky is extremely high, if we take
into account that the bulk moduli of iron is about 165G Pa and for diamond,
one of the most incompressible substances is 442G Pa.

In table 4.3 are reported as well, the results from fit the data to a solely
EOS. As can be observed, the value of K is more reasonable. However, it has
been mentioned that because of the presence of a high pressure magnetic phase
transition, this is not a valid procedure. In fact, the only way to overcome this
difficulty, it would be to fit the data to an EFOS that consider analytically the
effect of the magnetization. At the moment, there is no such EOS and deeper
research is desirable in this field. A lot of progress could be made in the study
of matter at high pressure conditions, where is commonly to encounter this kind

of phenomena.
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Table 4.3: Equation of state parameters. The data was
fitted to a third order Birch-Murnhagan EOS

Vo Ko K,
(A*) (G Pa) (Ha/ua?)
0< Pr(GPa) <30

FM 149.23  160.57 8.11
FMM 149.02 167.86 7.42
NM 144.38 291.54 4.75

30< Pp(GPa) <360

FM 144.07 304.133 4.35
FMM 143.97  306.91 4.32
NM 143.92 308.11 4.31

0< Pr(GPa) €360

FM 146.30 256.36 4.88
FMM 146.52  254.66 4.84
NM 144.19 302.41 4.35

In table 4.4 are displayed the EQS parameters of some recent experimental
and theoretical studies. Some of this results suffer of the same problems we
found when calculating the EQS parameters. For instance the first two exper-
imental results ([5], [4]), where fitted to a unique EQOS. Following the same
procedure (third set of table 4.3), we obtained values of K that are as much
as 47% higher. This huge discrepancy is due to the fact that in these experi-
ments the compression reached at the best 73G Pa (5], while in the present study
a compression of 300G Pa was achieved. Thus, the experimental Ky resemble
more the behavior of the material on its low-pressure non-magnetized state.
One proof of this is that the K extracted for FM and FMM calculations, is
higher only about 8.5% for FM and 4.3% for FMM, when the data was fitted
to the low pressure regime (first set of table 4.3).

On the other hand, our results are in better agreement with Lin et. al [57]
and Vocadlo et. al [7], since they calculated the EOS parameters by fitting the
corresponding P — V data to differently parametrized EOS for each phase. In
particular the calculated value of Kj is closer than the obtained by Vocaldo et.
al to the experimental results of Lin et. al. For instance, in the low-pressure
magnetized regime (first set of table 4.3), the computed K is 10.5% lower for
FM and 6.4% for FMM, whereas Vocadlo et. al show a disagreement of 27.4%.
In the high-pressure non magnetized regime (second set of table 4.3) the agree-
ment is improved since the calculated Ky are off by about 5.6% for FM, 6.6%
for FMM and 7% for NM, whereas for Vocadlo et. al the error reaches 10%.

A consequence of the high Ky obtained by Vocadlo et. al, is their predic-
tion of a extremely high transition pressure (Pr = 60GPa). Indeed, if the bulk
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Table 4.4: References for equation of state parameters of Fe;C,
showing ground state volumen Vp, bulk modulus K and its first
derivative with respect to pressure K.

Vo Ko Ky
(A3) (GPa) (Ha/ua*)
Experimental®
[5] Scott et al. 155.26+.14°  175.4+3.5  5.1£0.3
[4] Li et al. 155.2 174.0+£6 4.8+0.8
[57] Lin et al 148.0 179.4£7.87 4.8+1.69
- 288.0+42¢ 4°¢
Theoretical®
3] Wood et al. 154.88 174.0 5.1
7] Vocadlo et al. 153.04/ 228.55/ 5.36/
143.367 316.62¢ 4.39
50] Khmelevstyi 150.0" 203" -

All data were fitted to a third order Birch-Murnaghan EoS with
exeption of [3] wich are thermodymamic estimates, and [50]
obtained from a third order fit, but the type is not especified.

% Values at 300K .

® Values at 0K except for refence [3] which were calulated at 300K,
€ Not extracted from the fitting.

d Ferromagnetic state.

© Non-magnetic state, with fixed K’ = 4

f Spin polarized calculation.

9 Non-spin polarized calculation.

h Ferromagnetic calculation.

moduli is high, then the material is less compressible, and a higher pressure
is needed to induce the transition. This is why the predicted Pr = 30GPa is
closer to the experimental results of Lin et. al (Pr = 25GPa).

To conclude this section it can be stated that the EOS parameters depend
notably on the state of magnetization and the pressure (or volume) range over
which the fit is performed. Therefore, one has to be careful, when making pre-
dictions about the physical properties of FezC under high pressure conditions.
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Chapter 5

Elastic Properties

5.1 Introduction

For elastic properties, one should understand the ability of a material 1o return
to its original condition after stress is applied. This is exactly the information
that can be obtained from a seismic ieasurement. For instance, when a stress is
suddenly released, such as in an earthquake, the change in strain of the earth’s
forming inaterial propagates as an elastic seisimic wave. Seismic measurements
of the travel and arrival times of these waves, allows to construct models in
order to constrain the composition, structure and elastic properties of the carth’s
interior. Therefore. to have some knowledge of elastic properties of the materials
that presumably formm the earth’s interior is extremely important. This chapter
is devoted to the study of the elastic properties of Fe3C, and to the comparison
of the results with the Preliminary Reference Earth Model (PREA/).

5.1.1 Stress-strain relations

The response of an isotropic, homogeneous solid to the application of stress or
strain, is given by the so-called generalized Hooke's law [9],

T3 = CipklSkt- {5.[]

Equation 5.1 relates the second order tensor of stress o, and strain =g,
trought the fourth rank elastic constant tensor ¢, k. This equation defines nine
equations with nine terms each. giving it a total of 81 components. However,
7i; and £g are symmetric reducing it to only 36 components. Also. in the linear
clastic regime where Hooke's law applies and under isothermal conditions, the
free energy is dependent only on the state of the body. This makes the ¢; 4
tensor symmetric and thereby further reduces the 36 components to 21 inde-
pendent ones. Svmmetry constraints imposed in crystal systems above triclinie
reduce the number of independent components even more, down to only three
in the cubic system [60). /e3¢ has an orthorombic crystal structure, for this
symetry the number of independent components reduces to nine and equation
2.1 in Voigt's notation looks like:

et
|
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:I‘}le mechanical stability of a crystal implies that its strain energy must be
positive against any homogeneous elastic deformation [13]. For an orthorombic
crystal as Fe3C, this condition is given by the following constrains:

C” +C22 +C;33 +2C;2 + 2(:'23 + 2013 >0 C“ >0 (for i=1,6).

Cn+Cp>2C12, and Ca+ Ciz > 20;s. (5.2)

5.1.2 The Voigt-Reuss scheme

The elastic properties of a crystal, can be computed straightforward from the
single-crystal elastic constants ¢;;. Nevertheless, in general, the elastic moduli
of a single crystal will give an anisotropic elastic moduli tensor reflecting the
symmetry of the crystal lattice. Instead, one aims to calculate properties of a
polycrystalline aggregate and not single-crystal properties, if a comparison with
seismological models wants to be done.

For this reason, and arithmetic average can be performed taking as extremes
two bounds, namely a lower bound calculated assuming that the stress is uni-
form in the aggregate and that the strain is the total sum of all the strains of
the individual grains in series (Reuss bound), and an upper bound calculated
assuming that the strain is uniform and that the stress is supported by the
individual grains in parallel (Voigt bound). The arithmetic average of the two
bounds is called the Voigt — Reuss scheme.

Ones the single-crystal elastic constants ¢;; are obtained, the elastic proper-
ties for both bounds can be derived from the next set of equations. Where Gg
and Kp stands for the Reuss's shear and bulk modulus respectively, and Gg,
K for the Voigt's shear and bulk modulus respectively.

15
G = 5.3
R™ 4(s11 + 822 + 833) — 4(812 + 813 + 823) + 3(S44 + 355 + 566) (53)
1 1
Gu — 1—5{[':11 +Cx»2+C33—Ci2—Cj13 — E‘g;} + E{i‘“ + C55 "'l"ﬂﬁ.ﬁ} {5&1]
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1
Kr= 9.0
R™ (o11 + 822 + 833) + 2(812 + 813 + 823) (3-5)
1 2
Ky = §{C11 + €22 + c33) + E{fu + €13 + C23). (5.6)

In this equations, s;; are the componentes of the compliance tensor, related to
the elastic constant matrix by $ = ¢~}

With these elements, the Vogit — Reuss scheme can be applied (equations
5.1.2 and 5.1.2), and then the whole elastic modulus tensor for an isotropic
material can be determined. This last, has only two independent variables,
which can be the shear G and bulk modulus K, therefore, the Y oung’s modulus
E and the Poisson's ratio v can be derived, using equations 5.1.2 and 5.1.2.

1
G= E{GH+GV} (5.7)
1
K=§[KR+KV} (5.8)
OKG
E=3k+c (5.9)
3K — 2G
Y= 3BK +G) (=10;

5.1.3 Seismic waves and density

As a result of an earthquake, explosion or impact, the change in strain of the
earth’s forming material propagates as an elastic seismic wave. There are three
types of seismic waves, surface waves, P — waves and S — waves. The last two
are body waves, since they propagates trhought the earth’s interior.

P-waves

P — waves are longitudinal or compressional waves and can travel through any
type of material. This ability allows the waves to travel through the earth's core
and outer crust.

S-waves

S —waves are transverse or shear waves and can travel only through solids, since
fluids do not support shear stresses. This phenomenon was original evidence for
the now well-established observation that the earth has a liquid outer core, as
demonstrated by Richard Dixon Oldham [9]. In general, their speed is about
60% of that of P waves.
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Body waves propagation velocity depends on several factors such as the den-
sity and elasticity of the medium. In turn, density and elasticity, vary according
to temperature, composition, phase and pressure from depth. The velocity in
the medium is inversely dependent on the density of the medium. Therefore
the velocity and the attenuation of the wave are used to determine the density.
Changing density causes seismic energy to reflect and change direction incre-
mentally or abruptly. Mapping the travel times of P — waves allows inferences
on the density and composition of layers in the earth. Mapping of P and S
wave arrival times show significant circular regions where P and/or S waves do
not arrive allowing inference on size, structure and composition of earth’s core.

The speed of P — waves is given by the next expression:

ﬂp: _;— (5-11}

where K is the bulk modulus, G is the shear modulus and p is the density of
the material through which propagates. Similarly, the S — wave propagation

speed is given by:
G
Vg = — 512
1/ > (5.12)

It is known that density and seismic wave velocities in the erath’s interior,
increase with depth (and therefore with pressure). Looking at both expression
one might expect that both S and P wave speeds to decrease in the earth’s
interior. However, the opposite happens (figure 1.2). The reason is that the
elastic modulus increases more rapidly. This is an example of how important is
to study the pressure effect on the elastic properties of Fe;C

5.2 Methodology

The elastic constants tensor was determined for a set of pressures that goes
from the mantle-core boundary to the earth’s inner core pressure conditions.
Consequently, as a first step the equilibrium structure of the NM unit cell con-
figurationn was determined for 100, 150, 230, 300, 330 and 360 GPa. Secondly,
for each structure at a given pressure, small positive and negative strains of an
amplitude of 1% were applied. For an orthorhombic crystal only six distortion
matrices are needed to compute all nine elastic constants. Then, to obtain the
stress tensor, the atomic positions are re-optimized in the strained configura-
tion. And finally the elastic constants are calculated from strain-stress relations

by solving equation 5.1.
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5.3 Results

5.3.1 Ground state elastic properties
Single crystal elastic constants

The elastic constant tensor at the ground state was determined for the FM
calculation and FMM with g = 16 and g = 20 Bohr's magneton since these
are the calculations that resemble better the magnetic state of cementite at the
ground state. The results are displayed in table 5.1, together with some theo-
retical ([13], [61]) references. Just as in the present study, in both references, ab
initio calculations were performed under the projected augmented wave method
(PAW) and the generalized gradient approximation (GG A).

In general for Cy;,Ca2, Cy2, C23, Css and Cgg elastic constants the agreement
between the obtained results and both references is at the most 15%. But can
be bigger for the rest of elastic constants. In special for the FM calculation, Cyy
is negative, which violates the elastic stability conditions for the orthorhombic
symmetry (equation 5.2).

The results of reference [61], revealed an extreme elastic anisotropy with a
very small Cy; amounting to only about 1/10 of Css and Cgs. Additionally,
by performing X-ray diffraction stress measurements, on the basis of analysis
of the hkl-dependence of the stress-induced reflection shifts, experimental con-
firmation of the extreme elastic anisotropy of FesC was provided in the same
study. Similarly to reference (13|, for FMM calculations with gy = 16 and
po = 20, Cy4 amounts about 1/15 of Css, Cgs. Moreover for FM calculation
Ci4 even becomes negative, indicating an elastic instability, which could hint
at a ferroelastic elastic phase transition or at melting [62], [63], [61]. However,
no observations, hinting at an unusual effect due to a negative Cyq of Fe;C,
have been reported in the literature [61]. As a remainder it should be men-
tioned that for this calculation the obtained ground state magnetic moment is
17 Bohr's magneton per unit cell. Nevertheless FMM with up = 16 and uo = 20
are elastically stable, indicating that elastic stabilization can be induced by a

small change of the magnetic state.

At the ground state FMM puo = 16 and po = 20 are degenerate, have the
lowest enthalpy (figure 4.2) and are elastically stable (table 5.1). FM calculation
is very closed but higher in enthalpy, and is not elastically stable. Which means
that the calculation is probably trapped in a local minimum. To determined the
right magnetic character at the ground state is necessary to perform a more re-
fined scanning of magnetization between go = 16 and o = 20 Bohr's magneton.

Since magnetization plays such an important role on the elastic properties,
the differences between the obtained results and theoretical references must be
attributed to it. For instance, magnetization tends to expand the structure.
Besides, the magnetic moment of FMM up = 16 and pp = 20 is smaller than
the obtained by [13], and [61]. As a result the predicted ground state volume is
smaller and this increases the bulk modulus. The shear modulus is a more com-
plex quantity and is difficult to say in which way the magnetic state is affecting
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this parameter. It is known that depends mostly on the Cyy elastic constant
and that is directly proportional to it. However, for all shown theoretical results
(including this work) an unusual small value of Cy; was obtained. Addition-
ally the shear modulus is inversely proportional to the off-diagonal shear elastic
constants. Hence the discrepancy arises mainly from the high values predicted
for the off-diagonal shear elastic constants as compared to references [13] and
{61]. In consequence, such a low value of G, is responsible for the low Young's
modulus reported.

After 0GPa, the enthalpy difference evolution of the FM and FMM po = 16,
po = 20 remains very closed along the compression and the differences in en-
thalpy are within the computational error (figure 4.2). The C,,'s for these
calculations were not measured after 0GPa, therefore there is no way to know
if elastic stability was reached. However the stability of Fe;C has been ex-

perimentally measured up to 73 GPa at room temperature [5| and between
220°K-3700°K and 25GPa-70GPa [12].

For cementite the full set of single-crystal elastic constants has not been re-
ported experimentally. For the experimental polycrystalline elastic properties
some data can be found in literature, and they are reported as well in table
5.1. Comparison between experimental and theoretical results must be done
carefully, since many factors might affect the accuracy of both theoretical and
experimental results. Experimental accuracy can be affected by microstrucral
defects and by alloy preparation. On the other hand, the calculation of elastic
constants, involves second derivatives of the total energy with respect to lat-
tice distortion (which implies a lowering of the crystal symmetry and that the
strain energy is very small), the relative error will certainly be larger than that
for isotropic properties such as equilibrium volume which needs only the first
derivatives of the total energy. Therefore a highly precise approach is necessary
for the calculation of the elastic constants [64].

Additionally, experiments are performed at room temperature while theoret-
ical studies involve zero temperature measurements. Because of thermal expan-
sion experimental results show a lower bulk modulus than theoretical studies,
as can be corroborated in table 5.1.

5.3.2 High pressure elastic properties
Polycrystalline elastic constants

The elastic constants tensor was determined for the high-pressure non-magnetized
phase of Fe3C. Accordingly, calculations were carried out for the NM configu-
ration. Figure 5.1 shows the calculated variation of C;;, with pressure together
with the theoretical results for the elastic constants of of the high pressure stable
phase of iron (Fe hcp) taken from reference |66]. This last results have been
included because a direct comparison between the high pressure elastic prop-
erties of FezC and hep iron, is desirable in order to investigate the possibility
of carbon being one of the iron alloying elements in the eart’s core (section
5.3.2 and 5.3.3). In that study the full-potential linearized-augmented plane-
wave method LAPW and the generalized gradient approximations GG A to the
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Table 5.1: Elastic constants and elastic moduli at 0GPa. The bulk K, shear
G, and Y oung’'s moduli are in GPa, while Poisson's ratio v is a dimensionless

quatity.

Elastic constants Cp, Cypp Caz Ci2 Ciza Co3 Cy Css Ces
FM 414 380 422 189 188 158 -22 139 139
FMM po = 16 469 326 401 124 213 166 21 136 145
FMM po = 20 449 368 366 196 207 207 18 132 140
Ref. [13] 495 347 325 158 169 163 18 134 135
Ref. |61] 385 341 316 157 162 167 13 131 131

Elastic moduli K G Y v

FMM pyo =16 240 55 152 0.39
FMM po = 20 266 47 132 0.42
Ref. [13] 227 75 208 0.35
Ref. [61] 224 68 185 0.52
Experimental  174[4] 74(65)

exchange-correlation potential was employed.

At the moment we do not have knowledge, of first principle calculations made
to determine the elastic properties of FesC on such a high pressure regime. Adi-
tionally, experiments are very extremally difficult to perform, not only because
high pressure experiments are difficult and expensive, but also from problems
preparing a sample that is pure, void-free, homogeneous, texture-free, stoichio-
metric and sufficiently large [46]. Therefore there is no experimental data which
to compare the present results. These calculations allow for the first time the
comparison of the high-pressure elastic properties of Fe3C with iron and PREM
values.

According to the obtained results, under compression the elastic constants
of FesC obey all conditions in equation 5.2, indicating that cementite is an
elastically stable structure at high pressures.

The compression is quite isotropic, this is reflected in the permanent increase
for all the C,; with pressure and the fact that non of the curves cross with each
other. The same can be deduce from figures 4.5 and 4.6 of chapter 3, where the
relative axial compressibility showed a nearly constant variation of the a/b, a/c
and b/c ratios in the high pressure regime, for both FM and FMM calculations.

One can distinguish three groups among the Cj;s. The first group is com-
posed by the uniaxial constants Cy,, C22 and C33, and they present the largest
values. Following them is the off-diagonal shear elastic onstants integrated by
Cy2. C13, Ca3 and finally the diagonal shear elastic constants group (Cis, Css
and Cgg) with the lowest values and also the smallest slope. Althought this last,
in average all constants duplicate its value from 100G Pa to 360G Pa, with some
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Figure 5.1: Elastic constants as a function of pressure, NS calculation. Also in
the picture, are displayed theoretical results for the high pressure stable phase
of iron [66).

marked exeptions, for instance Cy4 increases ~200% and Css only ~76%.

Among the uniaxial elastic constants, it can be noted that FeszC posess
some elastical anisotropy. For instance Cy; presents the highest value, followed
by Ci3 and Cy;. This indicates that the crystal is less compressible in the b axis
folowed by the ¢ and a axis. The same compression mechanism was deduced by
computing the axial compressibility in section 4.3.3 for FM and FMM calcula-
tions above 30G Pa (see figures 4.5, 4.6, 4.7 and 4.8).

There are some similarities between cementite and Fe hcp at high pressures.
Both iron and cementite are non magnetic. Just as for cementite, the compres-
sion is quite isotropic. Therefore for Fe hep the elastic constants increase with
pressure and non of the curves cross with each other. Nevertheless, with the
exception of Cyz, and Ci3, all elastic constants of Fe hcp are higher or equal
(Cgs) to those of FesC. This could imply that the packing is denser in Fe than
in cementite.

For hep iron anisotropy is larger. For instance the difference between Cyy
and Cas in Fe is bigger than in Fe3;C. At 100GPa, the discrepancy between
both uniaxial elastic constants is about 3.6%, in Fe3C and 9.2% for Fe hcp.
Similarly at 323GPa, the difference is about 5.7% in Fe3C and 9.7% for Fe hep.
This means that at high pressures Fe hep is more anisotropic, but the degree
of anisotropy increases more as a function of pressure for Fe;C

Although these observations, it is known that temperature greatly affects
the elastic constants of Fe hcp. And it is possible that the same applies for
cementite. Therefore a more accurate comparison of the elastic properties of
these materials must include temperature effects.
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Bulk and shear modulus

From the single crystal elastic constants, the polycrystalline bulk (K') and shear
modulus (G) were determined and its evolution up to 360 GPa is shown in figure
5.2 along with the results for Fe hcp [66] and PREM values up to inner’s core
conditions.

Interestingly, despite the difference in the predicted single crystal elastic con-
stants, different crystal structure, mass density and composition, the predicted
evolution of Fe3zC bulk modulus differ little from that of hcp iron. By the con-
trary the shear modulus of Fe3C is quite lower.

This implies two things. As observed before, the degree of anisotropy is
higher for hep iron, which yields a higher shear modulus. On the other side, one
could guess that the presence of carbon in Fe3zC enhance covalency. Accord-
ingly the shear modulus of Fe3C should be higher than that of iron. However,
this is not the case, not even at the ground state. Therefore, this probes that
the bonding in cementite is dominated in a higher extent by ionic interactions
than by covalency. For instance, in ionic compounds electrostatic interactions
are omnidirectional yielding low bond bending force constants which result in
low shear modulus [67]. At the ground state, it has been found that the chemi-
cal bonding in Fe3C exhibits a complex mixture of metallic, covalent, and ionic
characters [13].

When comparing with PREM's elastic moduli, one must take into account
a few aspects:

Due to stratification of the earth’s interior and because it is been considering
Fe;C as a crystalline solid, it is more pertinent to compare results with PREM
values for the inner core region. The mantle (lower mantle 100-127 GPa in figure
5.2) is solid but composed mainly of silicates. The outer core is liquid (there-
fore G approaches zero) and the inner core is solid. Furthermore, the PREM
model state that the core’s density (both liquid outer core and solid inner core)
is lower than that of pure iron measured experimentally at high pressure and
temperature conditions. This led to the conclusion that the earth's core must be
composed of iron alloyed with some lower atomic weight elements (lower than
iron) such as carbon.

By adding carbon, density decreases and one expects a decrease of the bulk
modulus that would equal better PREM values. However in the form of FesC,
adding carbon does not have a considerable effect on the bulk modulus over that
of iron hep. But it does help to match better the shear modulus with PREM at
the inner core. By extrapolating teinle — Neumann et. al [66] G results for hcp
iron up to inner’s core pressure, one can see that the agreement with PREM
is highly improved by Fe3;C. At the outer-inner core boundary (P = 230GPa)
the percentage difference is 49% for Fe3C whilst the shear modulus of kcp iron
is 280% higher than PREM . This difference decrease a little bit at the earth’s
center, being 36.8% for Fe3C and 263% for hep iron.
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Figure 5.2: Bulk K and shear G modulus.

Poisson’s ratio

Figure 5.3.2, shows the computed Poisson's ratio for Fe3¢ along with iron hcp
and PREM results. In general the Poisson’s ratio for Fe3C shows little pressure
dependence with and average value of 0.43.

0.5 is the upper limit, infinite elastic anisotropy i.e. liquids Poissons ratio is
associated with the volume change during uniaxial deformation, 0.5 no volume
change occurs during elastic deformation.

In average the observed value of the inner core is 0.44

At 300 K, the measured Poissons ratios of iron, Fe-Ni alloys, FeHx, Fe3S and
Fe0.855i0.15 are smaller than 0.35 and show little pressure dependence [Mao et
al., 2001: Lin et al., 2003, 2004b, 2005; Mao et al., 2004]. The Poissons ratio
of the non-magnetic Fe3C at 300 K falls into a comparable range to other iron-
rich alloys, but gradually increases from 0.30 at 6.6 GPa to 0.36 at 50 GPa,
approaching the PREM value.

How is affected Poisson by temperature.

Note that the Poissons ratio of the outer core is equal to 0.5 as expected for a
liquid, but the Poissons ratio of the inner core is also quite high ( : 0.44). Various
explanations have been given, including the possibility of liquid inclusions in the
inner core. However, such conclusions are unnecessary, since a high Poissons
ratio does not necessarily imply the

important to realize that Poissons ratio results from a complicated combi-
nation of elastic constants and can take widely dierent values depending on the
material. A value of close to 0.5 does not mean that there is some proportion of
uid present: solid gold, for instance, at room temperature, has a Poissons ratio
of about 0.42. Poissons ratio can be negative, if cracks
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Figure 5.3: Poisson’s ratio as a function of pressure

5.3.3 Sound Velocities and Density

Sound velocities

Figure 5.4 shows the computed sound wave velocities as a function of pressure
along with PREM and hep iron data [66]. As explained in chapter 1, it is now
well established that the earth’s core must consist mainly of iron. Differences in
density and sound wave velocities between iron and the earth’s core, indicate the
presence of elements with lower atomic weight than iron. As can be observed,
compared to hep iron Fe3zC provides a better match of compressional (Vp) and
shear (Vs) wave velocities to the seismically observed values of the earth’s core,
supporting carbon as a light element in the earth’s core.

For instance, at 233 GPa in the middle of the outer core Vp of FesC is
about 7.8% smaller than that of hep iron, while PREM's value is 14.7% lower
than Fe3C and 23% lower than hcp iron. Although, this region is in liquid
state (Vs approach to zero) and both FesC and hep iron results correspond to
a crystalline solid. In reality, Vp of FesC and hep iron in liquid state must be
smaller and therefore closer to PREM.

For the same reason the agreement for both Vp and Vs at the solid inner
core region is improved. At the outer-inner core boundary PREM's Vp are
7.8% smaller than Fe;C and 13.7% smaller than iron hcp. Likewise PREM's
Vs is 21.7% smaller than Fe3C and 46.6% smaller than hep iron. In contrast,
up to 360 GPa the difference for Vp shows a narrow increment whilst for Vg
diminish. PREM's Vp are 7.9% smaller than Fe3sC and 14.7% smaller than
iron hep. And PREM's Vs is 15.3% smaller than Fe3sC and 45.3% smaller

than hep iron at 360 GPa.

Here it has been shown that Fe3C is elastically anisotropic at ambient con-
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Figure 5.4: Compressional Vp and shear Vs wave velocities

ditions. Additionally, the high pressure elastic constants show as well that some
degree of anisotropy persists up to core conditions. Besides, the earth’s inner
core is seismically anisotropic, compressional sound waves travel 3-4% faster
along the spin axis than in the equatorial plane. Therefore the anisotropy of
FesC is consistent with similar observations for the inner core.

Density

The computed density as a function of pressure is showed in figure 5.5. These
results indicated that in comparison to hep iron, Fe3C is considerably lighter
at high pressures. Therefore FezC provides a better match of the density
to the seismically observed values of the earth's core. For instance Fe3C
density is about 9% lighter than hep iron at 150 GPa, and by extrapolating
Steinle — Neumann [66] results up to 364 GPa one can see that the difference

reaches 10%.

A similar analysis can be done to compare these results with PRE M values.
According to [66] at 150 GPa PREM'’s density is about 15% lighter tan hcp iron
and the difference decreases to around 8.5% at the outer-inner core boundary.
This discrepancy is larger than the reported difference in the literature for the
outer core. At the moment it is believed that the outer core is about 6-10% less
dense than pure liquid Fe, while the solid inner-core is a few percent less dense
than crystalline Fe [2]. As mentioned before, Steinle — Neumann calculations
correspond to a crystalline solid while the outer core is in liquid state and it
must present lower density. The same applies for Fe3C, but the agreement is
substantially better. In the outer core pressure domain PREM’s density are
about 6.5% lighter than Fe3C and becomes about 1% heavier in the inner core

region.

Using the EOS parameters of table 4.4, Wood derived the density of Fe;zC
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Figure 5.5: Density for NS calculation and comparisson with hep iron and
PREM.

considering an average inner core pressure of 338 GPa, and obtained 12.94
Mg/m® Then he applied a thermal expansion correction to an average inner
core temperature of 5300°K and calculated a final density of 12.74 Mg/m? in
excellent agreement with PREM s inner core data [3]. Vocadlo et al. did the
same and obtained 12.71 Mg/m® and 12.35 M g/m® ones they considered tem-
perature effects. This values are well below the PREM range for inner core
density (12.76 -13.09 Mg/m?).

The computed density of FesC at the inner core region, takes values going
from 12.66 M g/m? at 330 GPa (outer-inner core boundary), to 12.91 Mg/m? at
364 GPa. Nevertheless thermal expansion can further reduce the density. With
the calculations performed in this study there is no way to estimate directly
temperature effects. On the other hand, in Wood's and Vocadlo's et al. stud-
ies density decreased about 1.5% and 3% from their initial values ones thermal
correction was applied.

According to our zero temperature results, the density at an average inner
core pressure of 338 GPa for Fe3C, is about 12.73 Mg/m® and 12.91 M g/m? at
364GPa which is inside PRE M s inner core density range (12.76-13.09 M g/m?®).
However, if we consider that the density decreases in the same amount as Wood
did, one comes out with no so favorable results, being 12.53 Mg/m?® at 338GPa
and 12.72 Mg/m® at 364GPa. This values are two low and were obtained con-
sidering the minimal thermal expansion effect reported in both studies. This
procedure gives some idea about the temperature dependence of Fe3zC density,
but definitely a more rigorous study is needed in order to exclude completely
the presence of Fe3C in the earth’s core.

Here can only be stated that in comparison to hep iron, FezC provides a
better match of density, compressional and shear wave velocities to the seismi-
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cally observed values, supporting carbon as a light iron alloying element in the
earth’s core. In order to constrain further the possibility of Fe3C as a major
forming phase, some extra considerations has to be taken into account. For
instance, is important to revisited the exact nature of the anisotropy in Fe;C
in relation with seismic observations for the inner core. On the other hand,
recent studies shown that high temperature conditions greatly affects the sound
velocities of hep iron. The Vp and Vs of hep iron decrease significantly with
increasing temperature under high pressures [68]. Therefore, the temperature
dependence on the Vp and Vs must be further investigated for Fe3C as well.
And finally, is extremely important to study the presence of other light alloying
elements in the earth’s core.



Conclusions

In this work a first principle study of iron carbide Fe3C under pressure was
performed. The main goal is to get a deeper understanding of the pressure in-
duced magnetic transition from a low-pressure magnetically ordered state to a
high-pressure magnetically disordered state observed for this compound. Conse-
quently, structural and electronic properties for different spin congurations and
residual values were computed over a large pressure range. Then the enthalpy
was employed as the parameter that determines the stability of each congura-
tion. Additionally, this alloy have been considered as a strong candidate to be
major forming constituent phase of the Earth’s inner core. Therefore, elastic
properties for the high-pressure non-magnetized phase were computed as well.
The following conclusions were obtained.

o At the ground state the most stable phase correspond to FMM calculations
with po = 16up and pg = 20up per unit cell. These two phases are
degenerate in enthalpy and exhibit the lattice parameters and unit cell
volume closer to the experimental value.

¢ A transition occurs at 30 GPa, between a high moment ferromagnetic
state and a non-magnetic state without stabilization of any intermedi-
ate antiferromagnetic-like state” in agreement with previous experimental
results. However, there are a large number of ways in which antiferromag-
netic configurations (of the type of the AFM-S) can be arranged for the
crystal structure of cementite. Therefore, the antiferromagnetic configu-
rations presented in this work, can serve only to exclude them to be stable
phases across the transition in Fe,C.

» For the AFM-S configuration around 20 GPa, a transition from high spin
state to a low spin state in the local magnetic moment of iron atoms was
observed as well. In comparison to the transition observed for FM and
FMM configurations, the drop of the local magnetic moment of iron atoms
is larger and takes place in a smaller interval of pressures.

e During the compression the unit cell deforms in a continuous way and
the material retains its orthorhombic symmetry. The compression data
clearly showed a discontinuity at 30 GPa in the axial ratios (¢/a and b/a).
Indicating that the a axis is more compressible relative to ¢ and b in the
low pressure regime, following the relative compression trend e < ¢ < b.

69
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CONCLUSIONS

From this point the compression mechanism is inverted (a > ¢ > b), and
turns out to be quite isotropic at high pressures.

The discontinuity in the relative axial compressibility is reflected in the
angle compressibility as well. Around 30 GPa an abrupt change in the
slope of the compressibility of angles between Fe and C atoms (Cz2—Fego—
Fege and Fegy — C — Fegp) was detected at low pressures. Accordingly,
at the ground state the existence of a p — d hybrid band formed by the
transfered 2p electrons of carbon atoms to the d electrons of iron atoms
reflected on its density of states, it has been suggested as the main reason
for the relative weakening of the Fe moment in cementite as compared to
pure bee Fe [50]. Therefore the loss of magnetization induced by pressure,
is related as well to the bonding interactions between Fe and C atoms.

Supporting the aforementioned idea, it has been found that the same char-
acteristics responsible for the difference in the magnetic moment of iron
atoms at different sites (at the ground state), still holds at large pressures.
That is to say, stronger interactions between Fe, atoms and its iron envi-
ronment due to shorter Fey — Fe distances and the bonding interactions
between Fe and C atoms (d(Fe, — C) > d(Fe, — C)). Therefore, is
possible that one of the ingredients for the loss of magnetization, is the
reduction of local magnetic moment of Fe, atoms enhanced by pressure.

Due to the observed magnetic phase transition in FezC the P — V data
has to different trends before and after the transition. As a result the
EQOS parameters depend notably on the state of magnetization and the
pressure (or volume) range over which the fit is performed. Therefore, one
has to be careful, when making predictions about the physical properties
of Fe3C under high pressure conditions. The only way to overcome this
difficulty, it would be to fit the data to an EOS that consider analytically
the effect of the magnetization. At the moment, there is no such EOS
and deeper research is desirable in this field.

The elastic constant tensor at the ground state was determined for the
FM calculation and FMM with puy = 16 and pp = 20 Bohr's magneton
since these are the calculations that resemble better the magnetic state of
cementite at the ground state.

In general for Cy; ,C22 ,C)2 ,Ca3 ,Css and Cgg elastic constants the agree-
ment between the obtained results and references [13], [61)] is at the most
15%. But can be bigger for the rest of the elastic constants. In particular
for the FM calculation, Cy4 is negative, which violates the elastic stability
conditions for the orthorhombic symmetry. The obtained ground state
magnetic moment is 17 Bohr’s magneton per unit cell, nevertheless FMM
with pg = 16 and pp = 20 are elastically stable, this indicates that elastic
stabilization can be induced by a small change of the magnetic state.

For FMM with pg = 16 and pp = 20 the results show that Cyq amounts
about 1/15 of Css, Cgs which means that at the ground state cementite
presents some degree of elastic anisotropy.

The elastic constants tensor was determined for the high-pressure non-
magnetized phase of FesC (NS calculation), for pressure values in the
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range 100GPa to 364GPa. The full set of single-crystal elastic constants
has not been reported experimentally (not even at the ground state).
These calculations allow for the first time the comparison of the high-
pressure elastic properties of Fe3C with iron and PREM values.

According to the obtained results, under compression Fe3C is an elasti-
cally stable structure at high pressures. Fe;C posses some elastic anisotropy
at high pressures. For instance Cz; presents the highest value, followed
by C33 and C;;. This indicates that the crystal is less compressible in
the b axis followed by the c and a axis. Corroborating the compression
mechanism deduced by computing the axial compressibility for FM and
FMM calculations above 30 GPa.

At high pressures hcp iron is more anisotropic, but the degree of anisotropy
increases more as a function of pressure for Fe;C.

Interestingly, despite the difference in the predicted single crystal elastic
constants, different crystal structure, mass density and composition, the
predicted evolution of Fe3C bulk modulus differ little from that of hep
iron. By the contrary the shear modulus of Fe3C is quite lower. By adding
carbon, density decreases and one expects a decrease of the bulk modulus
that would equal better PREM values. However in the form of FesC,
adding carbon does not have a considerable effect on the bulk modulus
over that of iron hep. But it does help to match better the shear modulus
with PREM. For instance at the outer-inner core boundary the difference
with respect to PREM shear modulus is 49% and 280% for Fe3C and hep
iron respectively and 36.8% and 263% at the earth’s center.

Carbon would considerably reduce the seismic wave velocities and density
of the iron-based alloys of the Earths core in comparison to Fe alone.
However we have calculated density values going from 12.66 Mg/m? at
329GPa, to 12.947 Mg/m® at 364GPa which are inside PREM’s density
range for the inner core, but probably to low if the presence of other light
alloying elements has to be consider.
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