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El Problema de la Regulación no Lineal con Enfoque de Lógica Difusa
Jesús Alberto Meda Campaña

CINVESTAV del IPN

Unidad Guadalajara

Resumen

La teoría de regulación clásica para sistemas no lineales está basada en la solución de un con

junto de ecuaciones diferenciales parciales conocidas como ecuaciones FIB (ecuaciones de Francis-

Isidori-Byrnes). Estas ecuaciones son muy complicadas en general y en algunos casos resultan im

posibles de resolver por lo que es necesario encontrar soluciones aproximadas.

Por otro lado, el modelado difuso tipo Takagi-Sugeno permite representar, al menos localmente,

la dinámica de un sistema no lineal a través de sistemas lineales. Además, para los sistemas difusos

tipo Takagi-Sugeno, el problema de estabilización puede resolverse empleando técnicas lineales lo

que simplifica significativamente el proceso de diseño de controladores no lineales. Por está razón,

el presente trabajo está dedicado al estudio de un método alternativo para resolver el problema de

seguimiento de trayectorias basado en la teoría de regulación y en el modelado difuso tipo Takagi-

Sugeno.
La primera opción que se presenta es la construcción del regulador difuso a partir de contro

ladores lineales estáticos. Sin embargo, luego de analizar el controlador resultante, se observa que

el diseño local basado en este tipo de controladores, en general, no es suficiente para resolver el

problema de seguimiento exacto.

Este planteamiento, aún cuando sólo garantiza seguimiento aproximado de las señales de refe

rencia, permite considerar la inclusión de reguladores robustos lineales los cuales mejoran claramente

el funcionamiento del regulador difuso. Al igual que en caso anterior, se concluye que el seguimiento

exacto no puede garantizarse mediante el diseño de controladores locales, ya que se debe de conside

rar el modelo difuso completo al momento de construir el regulador.
Por otro lado, la relativa simplicidad con que pueden generarse los controladores locales motiva

la búsqueda de una metodología que permita reducir o incluso eliminar el error en estado estacionario

producido por el regulador difuso. La propuesta llevada a cabo en este estudio consiste en agregar un

término de modos deslizantes a la señal de control generada por el controlador difuso. Se demuestra

que, bajo ciertas condiciones, esta técnica permite el seguimiento exacto de las referencias.

Es importante mencionar que las condiciones de existencia, de los controladores analizados a

lo largo de esta tesis, son tratadas como problemas numéricos, lo que permite realizar el diseño en

una forma práctica. Asimismo, en el caso del controlador difuso con modos deslizantes se propone

un algoritmo que facilita el cálculo del término discontinuo necesario para preservar la propiedad de

estabilidad en el sistema difuso a la vez que la condición de regulación es satisfecha.
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The Nonlinear Regulation Problem from a Fuzzy Point of View
Jesús Alberto Meda Campaña

CINVESTAV del IPN

Unidad Guadalajara

Abstract

The classical regulation .theory for nonlinear systems is based on the solution of a set of partial

differential equations, named FIB equations (Francis-Isidori-Byrnes equations). These equations are

in general hard or even impossible to solve and some approximated solutions have to be found.

On the other hand, the Takagi-Sugeno model formulation has allowed to describe, at least

locally, the dynamics of a nonlinear system by means of linear subsystems. For these Takagi-Sugeno

fuzzy systems, the problem of stabilization can be solved through linear techniques which greatly

simplifies the process of designing nonlinear controllers. For that reason, this work is devoted to the

study of an alternative method to solve the problem of tracking trajectories based on the theory of

regulation and the Takagi-Sugeno fuzzy modelling.
A first attempt to build the fuzzy regulator is made from combining simple linear regulators.

Nevertheless, after analyzing the resulting controller, it is observed that the local design based on

static regulators is not sufficient to solve the problem when the exact tracking of the references is

desired.

Even though this approach ensures approximated tracking, its study leads to consider the in

clusión of linear robust design which clearly improves the behavior of the fuzzy controller. As in the

previous case, it is concluded that the analysis of the overall fuzzy model becomes necessary when

exact tracking is pursued.

However, the relative simplicity involved in the designing of fuzzy controllers from local tech

niques encourages to search for a method capable of reducing or even eliminating the tracking error.

In that sense, the addition of a sliding mode term to the control signal generated by fuzzy controllers

is suggested. It is also shown' that this procedure allows the exact tracking of the references under

the fulfilment of certain conditions.

It is worth mentioning that the existence conditions of the proposed controllers can be treated

like numerical problems allowing the design process to be carried out in a practical way. An algorithm
to compute the discontinuous term is developed to be applied when the fuzzy controller with sliding
modes is considered. This procedure preserves the stability property of the fuzzy system while the

regulation condition is satisfied.
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Chapter 1

Introduction

"Great is the art of beginning,

but greater is the art of ending."

— Lazurus Long

1
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1.1 Preliminaries

Nowadays in the automatic control field, the tracking of desired trajectories is a very important

problem that finds applications in several áreas of science and technology such as telecommunications,

robotics, aeronautics, biology, chemistry, etc.

Specifically, the problem of controlling the output of a system achieving asymptotical tracking

of trajectories and/or asymptotical rejection of undesired disturbances has major importance in

system theory. In this regard, the Linear Regulation Theory establishes the solution conditions

when the problem includes linear, time-invariant and finite dimensional systems. The method takes

into account that the exogenous inputs, namely references and disturbances, are defined by the

trajectories of an autonomous linear system, the so-called exosystem [15, 22].

In the special situations where the reference is constant (i.e. set point control) or the exogenous

disturbance is a sinusoidal signal of known frequency (i.e. the exosystem is a simple harmonic

oscillator), the asymptotical convergence to zero of the tracking error for every possible external

input (i.e. for every desired set point or every amplitude and phase of the disturbing sinusoid) is

guaranteed by a controller including an internal model of the exosystem. The controller designed

in this way is called robust because, under certain conditions, it achieves the control goals despite

parameter uncertainties in a neighborhood of the nominal valúes.

This contrasts with alternative approaches, such as the method which addresses the tracking

of a fixed trajectory, where instead of the assumption that the reference belongs to a class of signáis

generated by an exogenous system, one needs to assume complete knowledge of the past, present and

future behavior of the trajectory to be tracked, as weil as perfect knowledge of all system parameters.

In [14], [15] and [16] an exhaustive presentation of the theory of output regulation for mul

tivariable linear, time-invariant and finite dimensional systems is given, while the extensión to the

analysis of the corresponding design problem for nonlinear systems is treated in [18] and [19].

Basically, the output regulation problem consists of designing either a state feedback or an

error feedback controller such that, when the plant is not affected by external signal the equilibrium

of the closed-loop system is asymptotically stable and the tracking error converges asymptotically to

zero when the plant is under the influence of the exosystem. The control scheme for both the state

feedback and error feedback regulator are depicted in Figure 1.1 and Figure 1.2, respectively.

In [15], both the linear regulator problem and the linear robust regulator are analyzed and the

conditions allowing their solution are derived. The control law for the first case is obtained from the

solution of a set of linear matrix equations, henceforth named Francis equations, while the robust

problem is solved by means of a controller designed using the internal model principie. For this case,

the internal model is the immersion of the exosystem into an observable dynamical system which
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State feedback scheme

References

Exosystem
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State-feedback

controller

Nonlinear
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Output

Figure 1.1: State feedback control scheme.

Error feedback scheme
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Error-feedback

controller
Nonlinear
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Output
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Figure 1.2: Error feedback control scheme.
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generates every possible steady-state input for any allowed parameter valué.

As mentioned before, these results have been extended to the nonlinear setting by Isidori and

Byrnes [18, 19]. They have shown that the solution of the nonlinear output regulator problem

depends on the solvability of a set of partial differential equations henceforth known as Francis-

Isidori-Byrnes equations (FIB equations). Also in this case, the inclusión of an internal model is a

necessary condition to ensure robustness under parameter variations.

In spite of all these studies, the nonlinear problem is still an interesting research topic because

its typical solution includes some very complex aspects, which will be addressed in the following

section.

On the other hand, Takagi-Sugeno (TS) fuzzy models have received great interest during the

last years due to the relative simplicity for constructing them. For instance, the TS fuzzy dynamics

can be inferred by linearizing a nonlinear plant at different operation points. Afterwards, the resulting

linear systems are combined using some information of the behavior of the original system. Basically,

linear controllers can be designed for each local subsystem and the final fuzzy controller is obtained

by blending these local compensators using the same information of the TS fuzzy model.

Another important feature of the TS fuzzy models is that the overall controller can applied to

the original nonlinear plant and the result will depend only on the degree of approximation given by

the fuzzy system.

It is important to say that if the equation of the nonlinear system is available, in many cases

an exact fuzzy representation of the original dynamics can be obtained [39]. This is sufficient to

guarantee the correct performance of the fuzzy controller on the original nonlinear plant.

1.2 Motivation

It is worth noting that although the nonlinear regulator approach proposed by Isidori and

Byrnes [18, 19] gives conditions to solve the nonlinear problem in general, in many cases its application

is not trivially performed, mainly due to:

1) the solution to the set of nonlinear differential equations may be very difficult or even impossible

to obtain,

2) the existence of an immersion of finite dimensión for the exosystem can not be guaranteed in

general [18].

On the other hand, in recent works some authors have tried to avoid the complexity of the

nonlinear regulation problem by applying linear results to the Takagi-Sugeno models [6, 9, 38, 44].
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Nevertheless, as discussed in [12] and [24], in general linear regulators do not ensure the zero

output tracking error in a Takagi-Sugeno fuzzy model.

Therefore, the major encouragement for this dissertation is to develop an alternative method

such that the fuzzy regulator design procedure becomes as simple as possible, while the tracking

error is bounded.

1.3 Objectives

The main objective of this research work is the study of the tracking' problem when both the

plant and the exosystem are represented by Takagi-Sugeno fuzzy models. In that sense, the results

presented in this dissertation satisfy both stability and regulation properties for the fuzzy model,

and the behavior of the original nonlinear plant under the effects of the fuzzy regulator will depend

on the approximation degree provided by the Takagi-Sugeno fuzzy model [43].

To this end, in a preliminary analysis, several partial goals are identified which must be ful-

filled to complete the research work in a satisfactory way. In the following list the most important

intermedíate activities carried out are itemized.

• Integration of Regulation Theory into a Takagi-Sugeno fuzzy modelling scheme in order to find

the mathematical conditions, which allow the tracking error to converge asymptotically to zero

when the fuzzy regulator is applied to the fuzzy plant.

• Identification of the special cases, if any, which can be solved by fuzzy regulators designed by

means of linear local controllers exclusively.

• Obtaining a practical approach to develop both the state feedback fuzzy regulator and the error

feedback fuzzy regulator using numerical techniques and to compare their performance.

• To study the inclusión of a sliding mode term into the fuzzy controller and to find the conditions,

which allow the regulator to fulfill the control goal.

• Validation of the fuzzy regulator approach by applying the controller to the synchronization of

chaotic systems.

In the following chapters, these points are analyzed in detail as they all together give form to

this thesis report.

1.4 Thesis structure

The document is organized as follows:
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• Chapter 2 presents a brief review on regulation theory, Takagi-Sugeno fuzzy modelling and

the Parallel Distributed Compensation approach. Finally, A result establishing that the fuzzy

systems can be considered as universal approximators is ineluded in this chapter, also.

• In Chapter 3, the fuzzy regulation problem when the controller is designed on the basis of linear

local regulators is analyzed. This chapter includes a section devoted to identify the particular

cases where this controller solves the tracking problem in an exact way. Finally, a numerical

example showing how the approach can be applied is presented.

• In Chapter 4, an approach based upon linear robust regulators is studied. This technique

allows improving the performance of the fuzzy aggregate controller. By the end of the chapter

a numerical example is used to illustrate the viability of the method.

• In Chapter 5, an analysis of the fuzzy regulator which includes a discontinuous term is given.

It is shown that, under certain conditions, this controller eliminates the steady-state error

remaining when the overall controller is obtained from linear regulators. Besides, a numerical

algorithm to obtain the sliding mode controller in a practical way is deduced. Finally, an

example is used to show the performance of the algorithm.

• Chapter 6 is devoted to the application of the fuzzy controller in order to synchronize chaotic

systems. In this chapter both Complete Synchronization and Generalized Synchronization are

studied. Some examples. are performed to show the validity of the fuzzy regulator.

• In Chapter 7, the conclusions and final comments are drawn, while some research lines which

may complement the present work are suggested as weil.

• In Appendix A, the fuzzy regulator designed on the basis of linear robust controllers is extended

to the fuzzy time-delay systems.

• In Appendix B, a list of the publications generated during the research work is given.
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Chapter 2

Mathematical background

"Parents can only give good

advice or put them on the right paths,

but the final forming of a person 's

character lies in their own hands.''

— Anne Frank

9
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2.1 Introduction

This chapter is intended to provide an overview of the most important tools used along the

research work; namely, the regulation theory, the Takagi-Sugeno fuzzy modelling and the Parallel

Distributed Compensation approach.

As mentioned before, the classical regulation theory for nonlinear systems is based on the

solution of a set of partial differential equations better known as the FIB equations.

In Section 2.2, the main results on nonlinear regulation are briefly reviewed, the interested

reader is referred to [18], [19] and [35] for a more detailed description of this framework.

Afterwards, Section 2.3 summarizes the Takagi-Sugeno modelling, which allows describing, at

least locally, the dynamics of a nonlinear system by means of linear subsystems.

The stabilization problem for this kind of systems can be solved by means of a controller

computed through linear techniques [38, 39]. This design method, known as the Parallel Distributed

Compensation approach, is presented in Section 2.4.

Finally, in Section 2.5 a result giving conditions for the fuzzy system to be considered as an

universal approximator is presented.

2.2 Nonlinear regulation theory

The nonlinear regulation problem, for a system defined by the following set of equations

x(t) = f(x(t),w(t),u(t)) (2.1)

w(t) = s(w(t)) (2.2)

e(t) = h(x(t),w(t)) (2.3)

where x(t) € U C Rn is the state vector of the plant, w(t) € W C R$ is the state vector of the

exosystem and u(t) € Km is the input signal; consists of finding a controller capable of driving the

output of the plant towards the reference signal given by the external system.

Equation (2.3) describes the tracking error e(t) € Mm, which is usually defined as the difference

between the reference signáis yT(t) and the measurable outputs of the plant y¿(í) with i — l,..,m. It

is also assumed that /(•, , •), s(-) and h(-, ■) are analytical functions satisfying s(0) — 0, /(0, 0, 0) = 0

and h(0, 0) = 0.

Formally, the regulation problem, when full state information of both the plant and the exo

system is available, can be defined as the problem of designing a state feedback controller of the

form

u(t) = a(x(t),w(t)) (2.4)
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such that:

Sa) the equilibrium x(t) = O pf the closed-loop system

x(t) = f(x(t),Q,a(x(t),0))

is asymptotically stable (stability condition),

Ra) there exists a neighborhood V C U x W around (0, 0) such that, for every initial condition

(x(0),w(0)), the solution of the closed-loop system

x(t) = f(x(t),w(t),a(x(t),w(t))),

w(t) = s(w(t)),

e(t) = h(x(t),w(t)),

satisfies

lim e(t) = 0,
t—>oo

(regulation condition).

Considering

A =

dx l(o,o,o), B -

N3u
'

|(0,0,0), ^
=

^dw
'

1(0,0,0),

C¿?/i(x,u>)
i O ds(w) I X"\ ¿?/l(l,U>) ¡

= -

dkm 1(0,0), S =

-^ |(0,0), Q = —

g^ 1(0,0),

the main result in nonlinear regulation with full information is summarized as follows [18]:

Theorem 1 If

Rlfl) every trajectory w(t) defined by w(t) = s(w(t)) and w(0) is bounded,

R2fl) there exists a matrix K such that A 4- BK is Hurwitz,

R3fl) there exist steady-state mappings x3S(t) — -k(w(í)) and uss(t) = c(w(t)) with 7r(0) = 0 and

c(0) = 0, defined in a neighborhood W° C W around the origin, satisfying

°^Ms(w(t)) = f(n(w(t)),w(t),a(n(w(t)),w(t))), (2.5)

0 = h(ir(w(t)),w(t)), (2.6)

for all w(t) € W°:
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then, the regulation problem can be solved by a state feedback controller of the form

u(t) = a(x(t),w(t)) = K [x(t) - n(w(t))] + c(w(t)).

Proof. See [18]. ■

Nonetheless, in real situations full information about the states of the plant is not often available

and the design of an error feedback controller becomes necessary. According to Isidori [19], the setting

for this case includes a dynamical controller of the form

é(t) = 7?(£(í),e(í))( (2.7)

u(t) -•*(£(*)), (2.8)

with £(í) GHci?" and u = n + s, which solves the tracking problem if

Se) the equilibrium (x(t),£(t)) — (0,0) of the closed-loop system

x(t) = f(x(t),0,9(£(t))),

¿(t) = T,(Z(t),h(x(t),0)),

is asymptotically stable (stability condition),

Re) there exists a neighborhood V C U x E x W around (0, 0, 0) such that, for every initial condition

(x(0),£(0),w(0)), the solution of the closed-loop system

x(t) = f(x(t),w(t),9(tit))),

w(t) - s(w(t)),

Í(t) = V(m,e(t)),

e(t) = h(x(t),w(t)),

satisfies

lim e(t) = 0,
t—>oo

(regulation condition).

Thus, considering

F = *%* \™> G = *> l(o.o). and H = S¡fL |(0),

the result giving the existence conditions of the error feedback controller can be written as follows

[18]:
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Theorem 2 //

Rle) every trajectory w(t) defined by w(t) — s(w(t)) and w(0) is bounded,

(A
BH \

rr j? ) *s Hurwitz,

R3e) there exist mappings x(t) — ir(w(t)) and £(í) = a(w(t)) with n(0) — 0 and £(0) = 0, defined

in a neighborhood W° C W around the origin, satisfying

dir(w(t))

dw(t)

da(w(t))

s(w(t)) m f(7r(w(t)),w(t),9(a(w(t)))),

s(w(t)) = r¡(a(w(t)),0)
dw(t)

0 - h(7t(w(t)),w(t)),

for all w(t) e W°.

then, the regulation problem can be solved by an error feedback controller.

Proof. See [18]. ■

Another interesting situation appears when the mathematical model of the plant includes

parameters which are assumed fixed but unknown. This uncertainty may be caused by temperature

variations, aged components, dust, etc.

On the other hand, in this work the exosystem is considered as an auxiliary system which

generates the reference and perturbation signáis. For that reason, it is assumed to be free of uncer

tainties.

The regulation problem under these considerations, i.e., ensuring the tracking of the reference

signáis in the presence of parameter uncertainties is named the robust regulation problem. The

equations describing this kind of systems must explicitly include an unknown parameter vector

fj, £ W. such that the nominal parametric valúes are represented when p,
= 0, i.e.

x(t) = f(x(t),w(t),u(t),n), (2.9)

w(t) = s(w(t)), (2.10)

e(t) = h(x(t),w(t),p,). (2.H)

The design of the robust regulator requires the existence of a neighborhood V around p. = Q

such that it is possible to solve the regulation problem for every valué inside this vicinity (well-defined
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problem). Similarly to the error feedback controller, a dynamical regulator must be designed, taking

care of ensuring:

Sr) the equilibrium (x(t),£(t)) = (0,0) of the closed-loop system

x(t) = f(x(t),0,9(£(t)),n)

¿(i) = r,(m,h(x(t),0,p))

is asymptotically stable (stability condition),

Rr) there exists a neighborhood V C U x E xW around (0, 0, 0) such that, for every initial condition

(x(0),£(0),u;(0)) and for every /i, the solution of the closed-loop system

x(t) = /(*(*), t»(*),7({(*),/i),

w(t) = s(w(t)),

Í(t) = rfá(t), h(x(t),w(t), /i)),

e(t) = h(x(t),w(t),n),

satisfies

lim e(t) = 0,

when the plant is under the effects of the exosystem (regulation condition) .

Defining

m =m^|(000m)) B(jl) =mgxti |(0i0Am)j C(p) =^tei|(00/i))

and considering the extended external system

■wa(t) = sa(wa(t)) =

which generates the signáis

s(w(t))
0

wa(t) =
w(t)

it is possible to deduce the result establishing the existence conditions for the nonlinear robust

regulator [18]:

Theorem 3 The nonlinear robust regulation problem is solvable if and only if there exist mappings

xSs(t) — ira(w(t) , p) and uS3(t) = ca(w(t) , p) , with 7ra(0,/x) = 0 and ca(0,/j.) = 0, both defined in a
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neighborhood W° x V C W x W around the origin, satisfying

d*a{™^] s(w(t)) = /Xír.(u;(í),A*),ti;(*)>c(w(í),M),/*)

O = h(ira(w(t),p,),w(t),fj,),

for all (w(t),p) e W° x P, and such that the autonomous system with output {W° x P,sa,ca} is

immersed into a system of the form

m = vm)

« = 7(í(0).

defined in a neighborhood E° around the origin W, where ip(0) — O, 7(0) = O ana í/ie matrices

*
a? K°)' x

ag l(o)>

guarantee the stability of

( A(0) O \ / B(0) \

V nc(o) $ /
'

v o y

/or some matrix N, and the detectability of the pair

(C(0)0),(^> B<f )
Proof. See [18]. ■

2.3 Takagi-Sugeno fuzzy modelling

The Takagi-Sugeno (TS) fuzzy models, first introduced in [37] by Takagi and Sugeno and later

by Sugeno and Kang in [36], are used to represent nonlinear dynamics by means of a set of IF-

THEN rules. The most important and useful feature of this kind of mathematical models is that the

consequent part of the rules are local linear systems computed from the original nonlinear plant, for

example, by linearizing at different operation points. This is also the main difference between TS

fuzzy models and puré fuzzy systems [43].

The aggregate TS fuzzy model is obtained when the local linear systems are "combined"-

such that, a nonlinear interpolation is achieved among them, resulting in an approximation of the

original nonlinear dynamics. Besides, it is worth mentioning that nonlinear systems can be arbitrarily

approximated using TS fuzzy models (see Section 2.5); however, as it can be easily inferred, the

degree of approximation depends on the complexity of the fuzzy model. On the other hand; in many
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cases, it is possible to obtain an exact representation for the original dynamics instead of a simple

approximation [39].

The structure of a TS fuzzy model is given below, where z(t) = [zi(t), . ..

, zp(t)] are premise

variables that can be functions of the state, perturbations and/or time; M¿ is a fuzzy set and r is the

number of rules in the fuzzy model; x G Rn is the state vector; u G Km is the input vector; y G Rq

is the output vector; with A{ G Rnxn, £< G Rnxm, C¿ G R?xn

Continuous-time case

Rule i

IF zi(t) is M[ and . . . and zn(t) is M¿

THEN í *$- A^)
+ BMt)

(212)
[ y(t) = C{x(t) i = l,...,r.

The overall TS fuzzy system, for a pair (x(t),u(t)), is inferred using a singleton fuzzier1, a

product inference engine and a center average defuzzier [39, 43]. It will be assumed in the rest of

this work that the premise variables do not depend on the input variable u(t) in order to reduce the

complexity during the defuzzification process of the controllers. Thus, the aggregate TS fuzzy model

is:

Continuous-time

J2^i(^(t)){AMt) + BMt)}

Í(t) = —

r (2-13)

t=i

= j^ht(x(t)){AiíB(t) + Biu{t)} (2.14)
¿=i

^2wi(z(t))CiX(t)
y(t) = ^-r (2.15)

i=l

¿/n(z(í))Cix(t), (2.16)
¿=i

'A singleton fuzzier maps the crisp point x eU into a fuzzy set M with support x, where zu(x,) = 1 for i¿ = x

and vj(xí) = 0 for x{ ^ x [27].
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where

Wi(z(t)) = Í\M](Zj(t)\ (2.17)

hi(z(t)) =

3=1

EÚM (2.18)

¿S7i(z(í))
i=l

for all t, and the term M)(zj(t)) is the membership valué for Zj(t) in Mj. Also, since

T

I>i(*(í))>0,
¿=i

ct¿(z(í))>0 ¿ = l,...,r,

one has

(2.19)

][>(*(*)) = 1,
¿=i (2.20)

M¿W)>0 i=l,...,r,

for all t.

2.4 Parallel Distributed Compensation (PDC)

The PDC offers a procedure to design a fuzzy controller from a given Takagi-Sugeno Fuzzy

model. In the PDC design, each control rule corresponds to a rule of the TS fuzzy model, i.e., the

fuzzy controller shares the same fuzzy sets with the TS fuzzy model in the premise parts. Thus, for

the fuzzy model (2.12) one has:

Rule i

IF zi(t) is M¡ and •. . . and zn(t) is M¿

THEN u(t)= K{x(t) i = l,...,r. (2.21)

The fuzzy control rules have a linear controller in the consequent parts. Therefore, the overall

fuzzy controller is represented by

r

u(t) = ^hi(z(t))kix(t). (2.22)
i=l
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In this case, state feedback laws are used to stabilize the local subsystems; however, dynamic

controllers can be also considered. The control design consists in determining the local feedback

gains Ki which results in a simple way to handle nonlinear systems.

It is important to notice that although the fuzzy controller (2.22) is constructed on the basis of

local design, the feedback gains AT¿ should be determined using global design conditions. These con

ditions, which are needed to guarantee the global stability of the overall fuzzy system are established

in the following theorem [39].

Theorem 4 The equilibrium ofthe closed-loop (2.14)-(2.22) is globally asymptotically stable if there

exist a common positive definite matrix P satisfying

ÁlP + PÁu < Oforalli = l,...,r,

ÍÁíj + Áj¡\ P + P ÍÁíj + Á^) < 0 for all i,j = í,...,r, such that h{(z(t)) ■ hj(z(t)) ¿ 0,

where Aíj = Ai + B{Kj.

Proof. See [39]. ■

2.5 The fuzzy system as an universal approximator

As early mentioned, this work considers that the plant and the exosystem are described by

means of Tagaki-Sugeno fuzzy models. For that reason the following questions raise naturally: What

will happen when the fuzzy regulator is applied on the original nonlinear plant? The behavior

observed on the original plant will satisfy the desired control goals?

Unfortunately, the approach proposed along this thesis cannot assure a proper performance

when the fuzzy controller is applied over the nonlinear plant. This behavior will depend on the

approximation degree provided by the Takagi-Sugeno fuzzy model.

However, nonlinear systems can be arbitrarily approximated by means of fuzzy models as stated

in the following theorem:

Theorem 5 Suppose that the universe of discourse U is a compact set in Rn. Then, for any given

real continuous function g(x) on U and arbitrary e > 0, there exists a fuzzy system f(x) in the form
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J2Xi
i=l

114
3=1

/(*)-

i=l j=i

V

\
;

/

(2.23)

with áj G (0, 1], aj G (0, oo) and x¿, ¿j are real-valued parameters, such that

sup|/(¡r)-g(a;)| < e.

xeu

That is, the fuzzy system with singleton fuzzier, product inference engine, center average de-

fuzzier and Gaussian membership functions is an universal approximator.

Proof. See [43] ■

Clearly, the fuzzy system (2.23) can be rewritten as

r

^^i(z)Xi
/(*) =

—r .

J2wi(z)
i=l

r

= ^hi(z)Xi,
t=i

where

vüí(z) = ffa'e \ aJ )
,

hi(z) =

n
3=1

&i(z)
T

^2wí(z)
¿=i

Remark 6 Under certain conditions, it is possible to obtain not only an approximation but an exact

representation of the nonlinear system through a fuzzy model [39].



Chapter 3

Fuzzy regulation through linear

controllers

"

The greatest obstacle

to discovery is not ignorance

- it is the illusion of knowledge.''

— Daniel J. Boorstin

21
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3.1 Introduction

Consider a system with m (vector u) inputs and l (vector y) outputs which has an internal

description of n (vector x) states. A natural way to represent many physical systems is by nonlinear

state-space models of the form:

x = f(x,u),

(3.1)

y
-

h(x,u),

where / and h are nonlinear functions.

Linear state-space models may then be derived from linearizing such models resulting:

x(t) = Ax(t) + Bu(t),

(3.2)

y(t) = Cx(t) + Du(t),

ri f

where A, B, C and D are real matrices. Thus, if (3.2) is obtained by linearizing (3.2) then A =

—,

„ df _ dh . _ dh
B = -±,C= — and£> = —

.

au ox au

It is important to have into account that system (3.2) does not describe the entire dynamics

of (3.1) but only the behavior around the linearization point [13, 21, 25].

However, the design and analysis of nonlinear control systems requires more sophisticated

mathematical tools than those typically used for linear systems.

For that reason, the advantages provided by the Takagi-Sugeno fuzzy modelling in the appro

ximation of nonlinear systems, allowing the extensión of the linear results to a larger región, become

interesting.

It has to be noticed that the results developed in the following sections consider that the plant

and the exosystem are described by means of Takagi-Sugeno fuzzy models. Therefore, stability and

regulation conditions obtained along this work can be only guaranteed on this kind of systems.

In other words, the behavior of the original nonlinear plant influenced by the fuzzy controller

will depend on the approximation degree of the Takagi-Sugeno fuzzy model (see Section 2.5).

This chapter is devoted to the analysis of the fuzzy regulation problem when static controllers

are designed on the local linear subsystems.
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In Section 3.2, the approach to solve the fuzzy regulation problem by means of linear controllers

is addressed. It is shown that this procedure does not guarantee the exact tracking of the reference

signáis in general.

Carrying this analysis further, conditions allowing the output of the plant to tend asymptoti

cally towards the desired reference are established in Section 3.3.

Finally; in Section 3.4, a simple example which illustrates the mathematical approach presented

in this chapter is developed.

3.2 Fuzzy regulation using simple linear controllers

Considering a r-rule TS fuzzy model of the form:

Rule i

IF zi(t) is M{ and . . . and zn(t) is M¿

'

x(t) = A{x(t) + Biu(t) + Piw(t)

THEN i w(t)= SiW(t) (3.3)

e(t) = Cix(t)
- Qiw(t) i = 1, . . . ,r,

then, according to Chapter 2 the resulting composite system is defined by

x(t) = ^hi(z(t)){Aix(t) + BiU(t) + Piw(t)} (3.4)
i=l

r

w(t) = ^^(2(0)5^(0 (3.5)
¿=i

r

e(t) = Y,Hz{t)){Cix(t)-QMt)}. (3.6)
t=i

Thus, in order to solve the tracking problem for system (3.4)-(3.6) the following fuzzy regulation

equations need to be satisfied:

dj^§-Y,Hz{t))Siw(t) = J2hi(z(t)){Aiw(w(t)) + Ba(w(t))-rPiw(t)}, (3.7)

T

0 = ^)k{z(t)){Ci*{w{t))-Qrt*)Y (3.8)
i=l
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As a result, if there exists a fuzzy stabilizer of the form u(t) = 2_] fk(z(t))KiX(t) [39], and if it

¿=i

is possible to solve equations (3.7)-(3.8), then the fuzzy regulation problem has a solution and the

tracking error converges asymptotically to zero. However, as it can be easily observed, the solution

for this set of equations may be difficult to be obtained.

A first attempt to develop a method to solve the fuzzy regulation problem was based on the

design of local linear controllers [3, 44].

In this approach, it is assumed that the mappings n(w(t)) and 7(u>(í)) can be approximated

by

ñ(w(t)) = ^hi(z(t))Tliw(t) (3.9)
i=l

r

7(u/(t)) = 5>(z(í))I>(í), (3-10)
¿=i

respectively, with n¿ and Ti resulting from the solution of the r linear local regulation problems [22]

n¿5¿ = AiUi + BiTi + Pi, (3.11)

0 = dlli-Qi, (3.12)

íoi i — 1,... ,r. As consequence, the following controller is obtained

ti(t)«¿fti(*(t))Ki
i=l

x(t) - ]T hi(z(t))Uiw(t)
i=l

+ Y,hi(z(t))Tiw(t).
¿=i

(3.13)

To determine whether or not these approximations fulfill the regulation condition is necessary

to substitute (3.9)-(3.10) in equations (3.7)-(3.8). Simple algebraic manipulations yield:

J2hi(z(t))Ui+
t=l

r

Y, hiiziWMtylUSj
i,3= l

= Y. hi(z(t))hj(z(t))Aini
i,3=l

+ jM^W^Biri +EW))^. (3-i4)
i,3=l í=l

0 = ^^(2(0)^(2(0)^.^-^^(2(0^. (3.15)
i,j=l t=l

At this point, it can be readily observed that a condition to solve exactly the fuzzy regulation

problem by means of linear controllers is:
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£>(*(0)n< = o, (3.16)
i=l

because this term is not eliminated by the local design in general. On the other hand, a deeper view

to equations (3.14)-(3.15) allows to infer that although if condition (3.16) is satisfied the solution of

the fuzzy regulation problem cannot be achieved by solving the local linear regulation problems, in

general. This is due to the crossed terms, which result from the expansión of equations (3.14)-(3.15).

Henee, the techniques proposed by Tanaka andWang [39, 43] to stabilize TS fuzzy models may not

be sufficient to fulfill the control goal when the exact tracking is pursued [12, 24].
In the next section, this study is extended and some special cases, which are solvable by

designing a fuzzy controller using local regulators are identified.

3.3 Particular cases

Supposing that the steady-state manifold of the fuzzy regulation problem coincides with the

local steady-state manifold of each linear subsystem, i.e., x3S(t) = ir(w(t)).= üi = ...
= IIr = n,

T T

then condition (3.16) is trivially guaranteed because Y^i2^)) = 1 and V^/i¿(2(0) = 0, i.e.,
»=i i=i

r r

5^(2(0)^ = ^(2(0^ = 0.

t=l ¿=1

Therefore, equations (3.14)-(3.15) can be rewritten as:

Y hMtyhMtyllSj = Y hMm^z^AiU
i,3=l «J= l

T T

+ Y fc(*(*))fy(*(0W +Y hi(z(t))Pi, (3.17)
¿,j=i ¿=i

r r

o = 5>(2(0)M*W)an-5>(.*(0)Qi. (3.18)
¿,j=i ¿=i

The set of linear matrix equations defined by Equation (3.17) and Equation (3.18) includes

the r linear matrix equations (3.11) and (3.12). This means that the fuzzy regulator must have the

ability of ensuring the tracking of the reference for every single linear subsystem of the TS fuzzy

model, which is an important feature to be considered in the design of fuzzy controllers.
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The remaining linear matrix equations obtained from Equation (3.17) and Equation (3.18) are

USi + USj = Aiñ + BiTj + Pi + AjYi + BjTi + Pj, (3.19)

0 = dU-Qi-rCjU-Qj, (3.20)

for i = 1, . . .

,
r and j = 1, . . .

, r, such that fh(z(t)) ■

hj(z(t)) ^ 0. As it can be seen, these equations

include the crossed terms of equations (3.17)—(3.18). In other words, the exact tracking in the inter

polaron regions of the fuzzy models is carried out only when equations (3.19)-(3.20) have solution.

Thus, equations (3.11)—(3.12) and (3.19)-(3.20) have to be solved simultaneously. Nevertheless, if

there exists a solution for equations (3.11)—(3.12) then n¿ and Tj are unique [22].

But, even though the exact tracking of references can not be guaranteed in general when a

fuzzy controller based on linear regulators is applied to system (3.4)-(3.6),.it is possible to identify

two particular cases where the design of local controllers proves to be sufficient for solving the fuzzy

regulation problem.

Case 1.- B\ = ... = Br = B. Under these circumstances, equations (3.19)-(3.20) are transformed

into

USi + USj = AiU.+ BTj + Pi + AiU + Bri + Pj, (3.21)

0 = dU-Qi + CjU-Qj, (3.22)

which do not include any crossed term.

Case 2.- rx =
. . .

= Tr = T. When this situation is reached, equations (3.19)-(3.20) can be

rewritten as

nSi + iiSj = AiU + BiT + Pi + Ajn + Bjr + Pj, (3.23)

0 = dU-Qi + CjU-Qj. (3.24)

As in the previous case, the crossed terms are removed from the design process.

Remark 6 In both cases, the solution of equations (3.17)-(3.18) implies the solution of equations

(3.19)-(3.20). That is, the local design ensures the exact tracking of the references for system (3.4)-

(3.6).

Remark 7 // the conditions of Case 2 are satisfied, then the solution of the fuzzy regulation problem

described by equations (3.4)-(3.6) is completely linear and is given by U and V.
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The following theorem summarizes the existence conditions of the fuzzy controller designed on

linear regulators [9, 11, 39].

Theorem 8 Suppose the following assumptions hold:

Hlir) every trajectory w(t) defined by (3.5) and w(0) is bounded,

H2]r) taking Aij = Ai + BíKj, there exist matrices Kj and P satisfying

0 > ÁlP + PÁu

0 > (Áij + Áji)TP + P(Áij-rÁji)

P > 0

for all i = 1, . . .

,
r and j = 1, . . . , r such that hi(z(t)) ■

hj(z(t) ± 0,

r r

H3)r) there exist mappings ñ(w(t)) = Y hi(z(t))IUw andj(w(t)) =Y hi(z(t))TiW whose matrices

i=l ¿=1

Hj and Ti are computed from

UíSí = AíUí + BíTí + Pí

0 = CiUi-Qi

fori= l,...,r,

H4jr) ui = . . .
= Hr = II and conditions for Case 1 or Case 2 are fulfilled,

then, the tracking error for the Fuzzy Regulation Problem by means of Local Linear converges asymp

totically to zero.

Proof. The satisfaction of H2ir implies the existence of a stabilizer of the form

r

u(t) = Yhi(z(t))Kix(t). (3.25)
;=i

On the other hand, when Hlir, and H3ir are satisfied the solution of the local regulator problems

is ensured. And from the previous analysis it follows that the design based on local controllers solve

the fuzzy regulation problem if H4ir is achieved. ■

If condition H2]r is transformed into a numerical problem, then the stabilizer can be computed

in a practical way by taking advantage of LMI design [5, 39] and Theorem 8 can be rewritten as:
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Theorem 9 Suppose the following assumptions hold:

Hlir) every trajectory w(t) defined by (3.5) and w(0) is bounded,

H2Jr) the LMIs

XAj + A{X + BiY + YjBj < 0

for all i = 1, . . .

, r,

X(A{ + Aj)T + (A{ + Aj)X + BíYj + Yj'Bj + Btf + Y?Bj < 0

are feasible, for all i = 1, . . .

,
r and j = 1, . . .

,
r such that hi(z(t)) • hj(z(t) ■£ 0, and

X>0,

r r

H3ir) there exist mappings ñ(w(t)) — Y, hj(z(Í))UiW and^(w(t)) —

}. hi(z(t))FjW obtained from
i=l i=l

UiSi = AiUi + BíTí + Pi

0 = dUi-Qi

fori = í,...,r,

H4ir) Hx = . . .

= nr = n and conditions for Case 1 or Case 2 are fulfilled,

then, Fuzzy Regulation Problem is solved by means of linear local design. Moreover, P = X~l and

Ki = YP

Proof. Follows directly from Theorem 8. ■

Now that conditions for then exact solution of the fuzzy regulation problem are given, it will

be analyzed the problem when assumption H4ir is not satisfied.

To this end, it is assumed the existence of the exact mappings 7r(t<;(0) and j(w(t)) solving the

fuzzy regulation problem, i.e.,

^^¿^(2(0)5^(0 = ¿ hi(z(t)){Aiir(w(t)) + Ba(w(t)) + PMt)},

0 = Y hi(z(t)){Cnx-(w(t)) -Qiw(t)},
i=l

where 7r(u;(0) is the center manifold rendered invariant by 7(it;(0)-
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Besides, if assumptions H2ir (or H2,*r) and H3ir hold, then the fuzzy stabilizer (3.25) and the

local regulators can be computed while the bounded behavior of the external signáis is also guaranteed

by Condition Hl[r.

On the other hand, it has been explained that if (3.9) and (3.10) are considered to solve the

fuzzy regulation problem then equations (3.14)-(3.15) are obtained. From these equations follows

immediately

{r
t r

-

Y hi(z(t))Ui
-

Y IkizQMziWmSj + Y hiMWMtyAilli
i=l i,3=l i,3=l

r t \

+ Y hiW))hiW))BiT¡ + Y hi(z(t))hi(z(t))Fí \ w(t) = 0(\\w(t)\\"), (3.26)
i,3=l i,3=l >

where p > 1 because the premise variable 2(0 ultimately depends on u;(0-
r

Therefore, if Y\hi(z(t)) is bounded then
i=l

\\M(ñ(w(t)))\\ = -Yhi(z(t))Ui
- Y hi(z(t))h¿(z(t))iiisj + YWzWhMt))^

. t=l i,3=l 1,3=1

+ Y hiMWiizWW. + Y hi(z(t))hAz(t))Pi
i,3=l i¿=l <

\Mt)\\<P.

since 0 < hi(z(t)) < 1 and Condition Hlir.

In other words, the manifold ñ(w(t)) defined by the fuzzy mappings (3.9) and (3.10) satisfies

the conditions of the Approximation of the Center Manifold Theorem [8]:

Theorem 10 // a continuously differentiable function ñ(w)) with tt(0) = 0 and
-5— (0) = 0 can be
ow

found such that Af(ñ(w)) = 0(||w;||p) for some p > 1, then

tt(w)
-

ñ(w) = 0(\\w\\p+1).

Proof. See [8] ■

Remark 11 ñ(w(t)) and ñ(w(t)) are not the same in general, because ñ(w(t)) represents the real

steady-state manifold for the fuzzy regulation problem and it depends on approximations (3.9)-(3.10).

Remark 12 // (3.9)-(3.10) do not solve the fuzzy regulation problem then at least a bounded error

is ensured.

These results are stated in the following corollary:
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Corollary 13 //

Hlft.) every trajectory w(t) defined by (3.5) and w(0) is bounded,

H2fr) the LMIs

XAj + AX + BiY + Y?Bj < 0

for all i = l,...,r,

X(Ai +Ajf + (A{ + A¡)X + BíYj + Y¡Bj + BáYi + Y?Bj < 0

are feasible, for all i — 1, . . .

,
r and j = 1, . . .

,
r such that hi(z(t)) ■ hj(z(t) ^ 0, and

X>0,

r t

H3fr) there exist mappings ñ(w(t)) = Y. hi(z(t))UiW and j(w(t)) =Y hi(z(t))TiW obtained from
í=i »=i

IliSi = AíUí + BíTí + Pí

0 = dñi-Qi

fori = l,...,r,

H4fr) there exist ir(w(t)) and f(w(t)) solving exactly

^^-Yhi(z(t))Siw(t) = Yhi(z(t)){Aiir(w(t)) + Ba(w(t)) + Piw(t)},
'

¿=1 i=l

r

0 = J3ft<(*(t)){Clir(w(t))-0«w(*)},
i=i

T

H5fr) í/ie íe77n 5J/ii(2(0) ¿s bounded,
»=i

í/ien, í/ie tracking error for the Fuzzy Regulation Problem solved through simple linear local controllers

is bounded.

Proof. Follows directly from the previous analysis. ■

Remark 14 It is important to notice that the tracking error is bounded even if assumption H4w is

not satisfied. For that reason, the fuzzy regulator built from simple linear controllers is an excellent

choice when the exact tracking of the references is not necessary.
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3.4 Numerical example

In this section, a stiff link system is used to Alústrate the performance of the fuzzy regulator

analyzed previously. The mathematical model describing the nonlinear dynamics of the plant is [44]:

¿i(0 = x2(t),

x2(t) = asin(xi(t)) + bu(t),

(3.27)

(3.28)

with a = -jiT^py, b = j^j, 9
= 9.81m/s2 M = 20%, l = 0.5m and / = 0.8kg ■ m2; while the

reference signal yT is the state wi (t) of the exosystem

Wi(t) = w2(t)

m(t) = -wi(t).

First of all, it is necessary to find a fuzzy model, such that an approximation of the non-

linear behavior of the equations is obtained. For this case, the following two-rule TS fuzzy model

accomplishes such a task:

Rule 1

IF xi(t) is about 0

'

¿(0 = Aix(t) + Bu(t)

THEN l w(t)= Sw(t)

k ei(0= Cix(t)
-

Qiw(t)

Rule 2

IF xi(t) is about \

x(t) = A2a;(0 + Bu(t)

THEN < w(t)= Sw(t)

k e2(t)= C2x(t)
-

Q2w(t),

with matrices:

!!)■*-(£ ¡)-*-»-(¡)'ft-<*-<,0>-

S. = ^=(_°1 ¿ ).«■=«!=( ! 0).
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while the membership functions representing the nonlinearity of the original system are:

hi (xi(t)) = 1-
1

l + e-7(n(t)-7r/4) l+e-7(*,(t)+T/4)
,h2(xi(t)) = l-hi(xi(t)).

Because of the simplicity of the fuzzy model, it is not difficult to obtain the exact mappings

xsa and uss from equations (3.7)-(3.8):

Xlss
=

Wi,

X2sa
=

W2,

Uss =
- í

1 + ahi(wi) + ^ah2(wi)'
u/i. (3.29)

Now, if the local design approach is used to find a solution for the fuzzy problem then equations

(3.11)—(3.12) must to be solved, arising:

n! = n2 =

Ti = (

1 0\

0 1 )

-1-q

o)

which is equivalent to

Xlss — Wl

X2ss
—

W2

(^o)

(hl ^Zil^^w ^-1-T^ (l + ahi(wi) + 2-^h2(wi)\
Uss

=

\hi(wi)
—-— + h2(u¡i)

—*-\wi = -[ — I u/i. (3.30)

It is clearly seen that ni equals Il2 and Bi equals B2, consequently this example satisfies Case

1. This means that the exact steady-state input (3.29) and the steady-state input computed from

linear controllers (3.30) are identical.

The fuzzy stabilizer for this example is computed from:

Kx = ( 91.027 -4.124 ) and

K. = ( 55.379 -4.124 )
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which were obtained using the MATLAB LMI Toolbox.

In Figure 3.1, Figure 3.2 and Figure 3.3 appear the simulation outcomes showing how the fuzzy

regulator designed from local controllers solves the fuzzy regulation problem under these particular

conditions.

Oulput vs referen»

Figure 3.1: Output vs reference when Bi — B2 and the fuzzy regulator is designed from local linear

controllers.

A little change in the scenario will be introduced to demónstrate the lack of effectiveness of

the local design under much more general situations. To this end, it will be considered a similar TS

fuzzy model involving small differences between matrix Bi and matrix B2 , namely:

Rule 1

IF xi(t) is about 0.

THEN {

'

x(t) = Axx(t) + Biu(t)

w(t) = Sw(t)

e(t)= Cx(t)-Qw(t)
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Input signal

Figure 3.2: Input signal when Bi = B2 and the fuzzy regulator is designed from local linear con

trollers.
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Tracking error

25

Time

35 40 45 50

Figure 3.3: Tracking error when Bi — B2 and the fuzzy regulator is designed from local linear

controllers.
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Rule 2

IF n(t) is about f
'

¿(0= A2x(t) + B2u(t)

THEN l 11/(0= Sw(t)

e(t)= Cx(t)-Qw(t),

and where the matrices defining the linear systems are:

^(:iK(!.¡)'"=(:)^=(i)^<iü''

si=*»=(_°i i)-q=(i °).

where a G K and with the same membership functions mentioned earlier.

For this case the exact mappings solving the regulation problem are

Xlss
=

Wl,

X2ss
—

w2,

1 + ahi(wi) + ^ah2(wiY
bhi(wi) + abh2(wi) )

(3.31)

But, when the local design is considered to solve the fuzzy regulation problem, it results:

n! = n2 =

1 0\

0 1 )
'

which can be rewritten as

Xus —

Wl

X2ss
=

w2

Ti = (^ 0),

'»= (=S»0)

Uss
= ihi(wi)—-— + h2(wi)-

1
_

2a

7T

ab
Wl. (3.32)
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Once more ^ equals n2 but Bi is different from B2 and Tx is different from T2 when a ^ 1.

For that reason, neither conditions of Case 1 ñor conditions of Case 2 would be satisfied in this

example. And of course, in accordance with the analysis carried out in this chapter, the steady-state

input computed from linear controllers (3.32) would not coincide with the exact steady-state input

(3.31) either. As consequence, the tracking error will not converge to zero.

The overall regulator for this case is completed by the fuzzy stabilizer computed from:

Kx = ( -25.795 -11.585 ) and

K2 = ( -30.551 -6.2132 ) .

Figure 3.4, Figure 3.5 and Figure 3.6 are the simulation results of taking a = 2. These graphics

confirm the inefficiency of the local design method when the problem does not fit neither in Case 1

ñor in Case 2.

Output vs reference

5I I l I l I I I I 1 l

0 5 10 15 20 25 30 35 40 45 50

Time

Figure 3.4: Output vs reference when Bx ^ B2 with a = 2 and the fuzzy regulator is designed from

local linear controllers.
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Input signal

Figure 3.5: Input signal when Bi ^ B2 with a = 2 and the fuzzy regulator is designed from local

linear controllers.
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Tracking error

45 50

Figure 3.6: Tracking error when Bi ^ B2 with a = 2 and the fuzzy regulator is designed from local

linear controllers.
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Fuzzy regulation based on linear robust

design

'

It does not matter

how slowly you go so

long as you do not stop."

— Confucius

41
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4.1 Introduction

Some authors had shown that the stabilization for TS fuzzy systems can be achieved by means

of linear controllers designed on the local subsystems ineluded in the fuzzy model [38, 39, 42]. Unfor

tunately, from the preceding chapter, it is observed that these results can not be easily extended to the

fuzzy regulation problem because its exact solution implies the explicit inclusión of the membership

functions in the analysis [12].

Nevertheless, the simplicity involved in the design of linear controllers motivates the inclusión

of dynamic controllers instead of static ones during the local design. Before proceeding with this

study, the immersion concept is briefly introduced [18].

Consider a pair of smooth autonomous systems

x = f(x)

y
= h(x)

and

x = f(x)

y
= h(x)

defined on two different space states, X and X respectively, but having the same output space

Y = Rm Assume /(O) = 0, /i(0) = 0, /(O) = 0 and h(0) = 0.

Then, system {X, f, h} is immersed into system {X, f, h} if there exists a Ck mapping

r : X —» X, satisfying r(0) = 0 and

h(x) i- h(z) => h(r(x)) jí h(r(z))

such that

g/(x) = />(*))

h(x) = 7i(t(x))

for all x G X.

This means that any output response generated by {X, f, h} is also an output response of

{X,f,h}. The relevance of immersed systems is because, sometimes, {X,f,h} may have special

properties that {X, f, h} does not have.

For instance, any linear systems can always be immersed into an observable linear system.

This fact will be used in the present chapter in order to design linear dynamic controllers capable of

observing the steady-state input which solves the local regulation problem.
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As a result, in Section 4.2 linear robust regulators are considered to replace the static linear

controllers proposed in Chapter 3.

The linear robust approach provides the ability of compensating certain parameter uncertainties

[18]. As it will be explained later in this chapter, the performance ofthe fuzzy regulator is increased

by taking into account this kind of local design.

An application to time-delay systems is considered in Appendix A to Alústrate how this "minor"

change in the local design is transformed in a significative improvement of the aggregate controller.

4.2 Fuzzy regulation using linear robust controllers

As previously mentioned, in this method the overall fuzzy regulator is obtained by combining

linear robust regulators [22], such that the controller can be described by:

i(t) = 5>(2(o)[F¿(o + Gie(o]
í=i

r

u(t) = J>(z(t))WiÉ(t)

(4.1)

(4.2)
¿=i

where

Fi=^Ai
+ BiKi-Gi0Cl

¿),G4-(gj ),*,-(« H),<t>i = diag{<l>ii,...1<S>im},

/O 1 0

0 0 1

$I

o \
o

0 0 0

V -4,o -4,i "4,: ... -oí

H

,'i-i I

f Hx 0 ... 0 \
0 H2 ... 0

V 0 0 ... Hm I

*i-0 o ■•• o)x ,

with i = 1. . .r, j — l . . .m and a\ as the coefficients of the characteristic polynomial of S¿.

Thus, matrices (Kí,G0í,Gu) must be computed such that

ÁlP + PÁa < 0 (4.3)

for all i = 1 . . . r.

¿>3+AA
P +P(h+yk]<0 (4.4)
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for all i = 1, . . .

, r, j = 1, . . .

,
r satisfying h{(z(t)) ■ hj(z(t)) ^ 0. Where

*> = ( a% T ) <4-5)

and P > 0.

The following theorem presents the conditions for the solution of the Fuzzy Regulation Problem

by means of Linear Robust Regulators [9, 11, 39]

Theorem 15 //

Hlirr) every trajectory w(t) defined by (3.5) and w(0) is bounded,

H2irr) for i — 1, . . .

,
r there exist Ki such that x(t) — Aix(t) + BiKix(t) is stable,

H3]rr) for i = 1, . . .

,
r there exist Gi such that

*® = ( t "ff )m-Gi(ci o)«í)

is stable,

T r

H4irr) there exist mappings Tt(w(t)) ¿\hi(z(t))Tl¿w and;y(w(t)) — Y, hj(z(t))TjW, where matrices

i=l i=l

II¿ and Fi solve

UíSí = AiUi + BiTi + Pi

0 = CíUí-Qí

fori = l,...,r,

H5]rr) there exist triplets (Ki,Go,i,Giti) and matrix P satisfying

0 > ÁIP+PÁh

0 > (Áij+Áji)TP-rP(Áij + Áji)

P > 0

for all i = 1, . . .

,
r and j — 1, . . .

,
r such that hi(z(t)) ■ hj(z(t) / 0,



46 CHAPTER 4. FUZZY REGULATION BASED ON LINEAR ROBUST DESIGN

H6irr) there exist ir(w(t)) and 7(11/(0 ) solving

^Mj2hi(z(t))Siw(t) = ¿Mz(0){A7r(M0) + £i7M0) + ^)},

r

O = £/l¿(2(0){C'i7r(u,(0)-QiU,(0},
i-l

r

H7]rr) the term Y] hi(z(t)) is bounded,
i=i

then, the tracking error for the Fuzzy Regulation Problem by means of Linear Robust Regulators is

bounded.

Proof. If H2irr, H3]rr and H4irr are satisfied, then the existence of local robust regulators is ensured. In

that sense, only the stability and regulation properties for the overall fuzzy system will be inspected.

Stability.- Considering the closed-loop system with w(t) = 0

|(0 )
= E h2(z(t))Áü ( »|j| ) +Y h.(z(t))hMt)) Uü +M ( f$

with Áíj defined as above. Thus, according to the Parallel Distributed Compensation approach

proposed by Tanaka and Wang in [39] and [42], when H5irr is satisfied, the asymptotically stability

of the equilibrium point (x(t),£(t)) = (0,0) IS achieved.

Regulation.- As in the previous chapter, this property is analyzed directly from the fact that

every local controller is a robust regulator for its respective subsystem.

In other words, if assumptions H2irr, H3irr, H4irr and H5jrr are satisfied, then the existence

of a fuzzy stabilizer and r local robust regulators is ensured while the bounded evolvement of

the exosystem is guaranteed also by Condition Hlirr. According to this explanation and since
r

0 < h{(z(t)) < 1 and ^/i,-(2(0) is bounded (Assumption H7irr), from the previous chapter it
¿=i

can be easily proven that 7r(u>(0) is an approximation of ir(w(t)), where ñ(w(t)) is the real steady-

state manifold defined by (3.9) and (3.10) while 7r(u;(0) is the exact solution for the fuzzy regulation

problem.

Obviously, the existence of the exact mappings solving the fuzzy regulation problem is granted

by Assumption H6irr. ■

At this point, the solution of the fuzzy regulation problem on the basis of linear robust re

gulators depends on the a priori calculation of matrices Kit Gq,í, Gi,¿, and afterwards a search for
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matrix P ensuring the stability becomes necessary. If P is not found, new Ki, Go,i, (n,< need to be

computed and then again the search for matrix P must to be carried out. Thus, in the following

analysis, numerical techniques are ineluded in order to solve the fuzzy regulation problem through

linear robust regulators in a more efficient way. Using this approach both the calculation of Ki, Go¿,

d,i and the search for P are performed at the same time.

When matrix (4.5) is expanded, one gets:

/ Ai BíKj BiHj \

Aj = Go,.Cj A{ +B^
-

G0,íCj 0
, (4.6)

\GxmiCi -Gi,íCj $< /

/ / 0 0\

which by means of transformation T = I —I I 0 I
,
is similar to TAíjT 1, i.e.,

V 0 0 I )

Ai + BíKj BíKj BiHj \

0 Aí-GojCj -BiHj (A.7)
0 -Gi.íCj $i j

Therefore, the problem is to stabilize

¿(0 = (Ai + BiKj)x(t) (4.8)

and

((') = {(o' 'I"')
-

(Z ) ( c> ° )}«')• <4'9>

To this end, suitable LMIs (Linear matrix Inequalities) are introduced to replace conditions

H21JT., H3in. and H5in.. In this sense, it can be proved that Equation (4.8) is stable if the following

LMIs are feasible [5]:

XiAf + AXx + B{Yi + Y?Bj < 0 (4.10)

for alH = 1,. . . ,r,

Xi(Aj + Aj)-r(Ai + Aj)Xx + BiYj + YjTBj + BjYi + Y^Bj < 0 (4.11)

for i < j < r such that h{(z(t)) ■ hj(z(t)) ^ 0, and

Xi > 0 (4.12)

for i = 1, . . .

,
r with Pj = Xf1 and K{ = Y¡Pi.

On the other hand, to analyze the stability of Equation (4.9), it is considered
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H = Hi = . . . Hr, Aei (o ~fH)-G'-{Z)mÁC- = (C' 0)'
The procedure follows in a similar way to that presented previously, that is, Equation (4.9) is

stable if the following LMIs are feasible:

AZP. + P^i-MiC^-C^M? < 0 (4.13)

for alH = 1, . . .

, r,

(Ali + AlJ)P2-rP2(Ae,i + Ae¿)-MiCe¿-CjJM?-MjCe<i-CTiMjT < 0 (4.14)

for all i and j such that hi(z(t)) ■

hj(z(t)) ^ 0 and

P2 > 0. (4.15)

Finally, the gains for the observers are obtained from G¿ = P2lMi while the common matrix

guaranteeing the stability of the system is given by

P = T-1dm^(P1)P2)T,

with T defined as above. This analysis is summarized as follows:

Theorem 16 //

Hlirr) every trajectory w(t) defined by (3.5) and w(0) is bounded,

r r

H2irr) there exist mappings ñ(w(t)) = yjll¿u; and j(w(t)) = yjr¿u>, whose matrices II¿ and T¿

imi i=l

solve

IliSi = Ailii + BíTí + Pi

0 = dUi-Qi,

m*irr) LMIs (4.10), (4.U), (4.12), (4.13), (4-14) and (4.15) are feasible,

H4]rr) there exist it(w(t)) and j(w(t)) solving

dl{w^]Yh^(t))Siw(t) = Y **<*(*)) {^*M*)) + BMw(t)) + PMt)}.
Mt) ti

'

tí

0 = ¿Mz(0){C,tt(u;(í))-QMí)},
í=i
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r

H5|rr) the term Y,hi(z(t)) is bounded,
•=i

then, the tracking error for the Fuzzy Regulation Problem by means of Linear Robust Regulators is

bounded. Moreover, the solution is given by K¡ = V^Pj and Gi = P2xMi.

Proof. Follows directly from Theorem 15 and the previous discussion. ■

Remark 17 The immersion ineluded in the robust regulator generates the steady-state input sig

náis needed to solve the regulation problem for all the valúes of the system parameters located in a

neighborhood V, around p.
= 0, where p, G Rp is the vector of unknown parameters [18, 22].

This property improves the performance of the fuzzy regulator; since in this case, the fuzzy

model (3.4)-(3.6) could be considered as a variation ofthe system solved by the aggregate controller

(4-l)-(4-2) designed from linear robust regulators.

Remark 18 Although this design technique shows a better behavior of the closed-loop system, it is

not possible to ensure the asymptotical convergence of the tracking error because the membership

functions are not ineluded in the analysis yet.

4.2.1 Example

In this section, the previous formulation is applied on the example of Chapter 3 with a = 2.

Then, local linear robust regulator problems are solved and the aggregate controller is obtained by

its fuzzy combination. The gain matrices were computed through the LMI Toolbox of MATLAB

getting:

Kx = ( -11.515 -10.057 ) ,

K2 = ( -23.2 -5.4056 ) ,

d = ( 1.1576 -14.807 -0.71843 0.95171 )T and

G2 = ( 1.1326 -8.7182 -0.64677 0.93617 )T

Clearly, the steady-state mappings are similar to those presented in Section 3.4, i.e.,
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Ui = U2 -diy
* - (=** o),

\ ab

2a \
*- 0 ),

which means that the tracking error will not converge asymptotically to zero. The simulation out

comes appear in Figure 4.1, Figure 4.2 and Figure 4.3.

Output vs. reterence

Figure 4.1: Output vs reference when Bx ^ B2 with a = 2 and the fuzzy controller is designed from

linear robust regulators.

A significative reduction of the magnitude of the tracking error and a smoother input signal

are observed when these results are compared with those presented in Figure 3.4, Figure 3.5 and

Figure 3.6 of the previous chapter.

As previously mentioned, although the tracking of reference signáis is better with this approach

it is not yet possible to guarantee zero tracking error because the composite fuzzy model is not

considered during the design process.
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Tracking error

Figure 4.2: Tracking error when Bx ^ B2 with a = 2 and the fuzzy controller is designed from linear

robust regulators.
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Input signal

40r

ü_4gl I I I I I I I I I I

O 5 10 15 20 25 30 35 40 45 50

Time

Figure 4.3: Input signal when Bi ^ B2 with a — 2 and the fuzzy controller is designed from linear

robust regulators.



Chapter 5

Fuzzy regulators with sliding modes

"

If I have a thousand ideas

and only one turns out to be good,

I am satisfied.'

— Alfred Nobel

53



CHAPTER 5. FUZZY REGULATORS WITH SLIDING MODES



5.1. INTRODUCTION 55

5.1 Introduction

Sliding mode control makes system motion robust with respect to system parameter varia

tions, no-modelled dynamics and external disturbances. Roughly speaking, the sliding mode design

approach consists of two steps. In the first step, a sliding surface is designed so that the controller

satisfies some time-domain or frequency-domain requirements. The second step is to design a control

law such that the system remains on (or cióse to) the sliding surface [40] .

In addition, this technique provides efficient control laws for linear and nonlinear plants.

Another distinguishing feature is its order reduction capability, which enables simplification of design

and system decoupling [41].

For those reasons, it results desirable to explore if this methodology can be used to reduce the

steady-state error into acceptable bounds when is combined with a fuzzy controller.

Then, taking into account the simplicity of the method presented in Chapter 3 and the features

of the sliding mode control; in Section 5.2, the ability of sliding mode control of dealing with no-

modelled dynamics is studied when a discontinuous term is added to the fuzzy regulator built through

simple linear controllers.

In Section 5.3, a numerical algorithm which allows the fuzzy controller with sliding modes to

be obtained in a practical manner is developed.

Finally, in Section 5.4, a simple numerical example is used to Alústrate the effectiveness of the

algorithm; showing that in some cases the tracking error tends asymptotically to zero, while in other

cases the steady-state error is considerably reduced.

5.2 The fuzzy regulator with discontinuous term

In this section, an alternative method based on sliding modes is presented, showing that,

under certain conditions, the tracking error tends to zero when the system is defined by equations

(3.4)-(3.6).

Basically, the addition of a discontinuous term to the input signal generated by the fuzzy

controller built from linear regulators is proposed, such that the aggregate controller turns out to be:

u = Uf + v(e) (5.1)

where

Uf
= (¿/ii(2(0)^)x+(¿/ii(2(0)rt-¿/i^2(0)^¿/i,(2(0)ni]u;

\«=1 / \¿=1 t=l j=l /

v(e) = g-sign(e).
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The problem consists of finding triplets (K^IU,^) for all i = l,..,r and g such that the

following conditions are satisfied:

Ssm) the equilibrium (x, w) = (0, 0) of system

¿(0 = ¿M*W)^W + ¿¿>(*(t))M*WW*(*)
i=l t=l .7=1

is asymptotically stable (stability condition) .

R5m) the solution for the closed-loop system

r

x(t) = J]/ii(2(0){Aix(0 + Biu(0 + P¿u/(0}
¿=1

r

w(t) = ^^(2(0)5^(0
1=1

T

e(t) = ^/li(2(0){Gix(0-Qi^(0},
¿=i

with u(t) defined by Equation (5.1), satisfies

lim e(0 = 0,
í—»oo

(regulation condition).

First, the stability property is examined when controller (5.1) is used on the TS fuzzy model.

To this end, a fuzzy plant not affected by exosystem is considered, i.e., with w — 0. As consequence

the tracking error becomes:
r

6 = 5^(2(0)^,
i=l

and the closed-loop system (3.4), (5.13) can be rewritten as

r t

x(t) = YhWWMtWjX +YWzityBig-signiel (5.2)
>,j=i ¿=i

with

% = (At + BiK3) .

Now, considering the Lyapunov function

V = xTPx,
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one has

V = xTQx + 2xTPYhi(z(t))Bi9-si9n(e)
¿=i

r

< xTQx + xTPYhMt))BiYh^z^B^Px (5"3)
<=i »=i

+ g2sign(e)Tsign(e),

with

Q - [Y hi(z(t))hj(z(t))N^P + P^ hi(z(t))hj(z(t))Nij
\ij=l ij=l I

But, from the Parallel Distributed Compensation (PDC) analysis [39, 42], it is deduced that

Q < 0 for allí, j — 1, . . .

,
r if there exist matrices Ki and P such that

N?P + PNu < 0

for all i = l,...,r and

for a\\ i,j — 1,. . . ,r when hi(z(t)) ■ hj(z(t)) ^ 0.
r t r

On the other hand, it is clear that >J/ii(2(0)||5i|| < Yj ||-f?¿|| because yj/i¿(2(0) = 1 and

0 < ht(z(t)) < 1 for aUt = 1 . . . r [20].

Thus, V < 0 when

IIQH - ||P||2 íY \\Bi\\ ) ) ||x||2-^>0

where q is the error signal dimensión.

In this manner, it can be directly inferred that the equilibrium (x, w) — (0, 0) is asymptotically

stable if

\9\ < "i

with ai defined as

ai
=

\
(llQII-||P||2(E[=il|5¿||)2)||x|p'-

> 0. (5.4)
9

In situations where the previous square root has not solution, the recalculation of matrices Ki

and P will be needed.
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To complete the study of the fuzzy regulator with a discontinuous term, the inspection of the

regulation property must be performed. To this end, the steady-state error

x — x
—

ir(w)

have to be considered which allows the tracking error (3.6) to be represented as follows:

r r r

e =Y hi(z(t))dx +Y hi(z(t))Ciir(w) +Y hi(z(t))QiW.
i=l i=l ¿=1

From regulation theory' [18, 19] and Chapter 3, it can be proved that the fuzzy regulation

problem has a solution if and only if

^s(w) =Y hi(z(t))Ai-K(w) +Y hi(z(t))Ba(w) +¿ hi(z(t))PiW (5.5)
i=l i=l i=l

and

0 = Y hi(z(t))dTx-(w) +Y hi(z(t))QiW (5.6)
i=l ¿=1

are fulfilled.

In this way,
r ■

e =Y hi(z(t))dx
¿=i

arises, whose derivative is

é = ^^(2(0)^5 + ^^(2(0)^
í=i í=i

r

= ^/l¿(2(0)G¿í
¿=1

+ Yhi(z(t))d [Yhj(z(t))Ajx + Yhj(z(t))Bju + YhÁ^))P3W-^s(w)^
i=l \j=l 3= 1 3= 1 I

By adding j(w) to and subtracting i(w) from Equation (5.1), one gets

T T ( / r T T \

é = yw<t))Cix +YhMt))Ci\ (YhÁm)A3+Yh¿zWBjY,h^zWKk)i
t=l i=l L \j=l 3

= 1 fc=l /

r r T r,

+ Y hj(z(t))Aj7r(w) +Y hj(z(t))Bji(w) +Y hj(z(t))PjW
-

-£s(w)
j=\ j=i j=i

+ YwzWBi
3=1

-

~/(w) + v(e)}}

Y hk(z(t))Kkn(w)
-

Y hk{z(t))Kk (¿ he(z(t))Ue )w +Y hk(z(t))rkw
k=i k=i \e=i

'
fc=i



5.2. THE FUZZY REGULATOR WITH DISCONTINUOUS TERM 59

which, by means of Equation (5.5), is transformed into

r r / r r r \

é = Y *(*(*))<** + J>(2(0)Gi Y hMt))Ai +Y hÁz(t))BjY hk(z(t))Kk x

i=l t=l 0=1 3=1 k=l

+ ¿^(0)cJ¿^Wí))fl¿
«=1 .3=1

Y hk(z(t))Kk-K(w)
-

Y hk(z(t))Kk YM*(í))n* w

,fc=i fe=i v<=l

+ 5^M«(0)r*w-7M + u(c)
fc=i

Now, if

V = ¿A

is considered as the Lyapunov function, then the derivative V is given by:

V = eTé
r r / t

= eTY hi(z(t))dx + eTY K(z(t))d YM*(*)Mi

with

¿=i t=i vi=l

+ Y hMt))BjY hMWk )x + eTY hi(z(t))d \Y hj(z(t))Bj
3=1 fc=l i=l .¿=1

Y hk(z(t))Kk7r(w)
-

Y hk(z(t))Kk Y ht(z(t))nt w

lk=l fe=l KÍ=1

+ Y hk(z(t))Tkw
-

j(w) + g
■ sign(e)

k=i

< \\e\\\\Mi\\ + \\e\\\\M2\\ + \\e\\\\M3\\ + \\e\\\\Mt\\g,

r

Mx = YkW*))Ci*.
i=l

T / T T T \

m2 = ¿/^wtjjaí^^woMi+EfcíWOjBi^M'W)^)*'
i=l vj=l 3=1 k=l

Yhk(z(t))Kkn(w)
k=i

M3 = X>(*(t))Cj £>(z(í))lJ:
¿=i U=i

- ¿ hk(z(t))Kk iY he(z(t))Ue )w +Y hk(z(t))Tkw
-

y(w)
k=i \e=i
r

M4 = YhMtyhMWCiBjX),

fe=l

and

i,,J=l
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where I Y, hi(z(t))hj(z(t))CiBj 1 must exist.

W=i /

Then, it is readily deduced that the regulation condition is satisfied if

9 < -o¡2,

where

,J|M1|| + ||M2|| + ||M3|L
a2 =

p^
> °- (5J)

Finally, it is possible to conclude that the fuzzy regulation problem is solved by means of a

discontinuous term if

-ai < g < 0 (5.8)

and

9 < -oj. (5.9)

At this point, the existence conditions for a fuzzy controller with a discontinuous term can be

arranged in the following theorem.

Theorem 19 //

Hlsm) every trajectory w(t) defined by (3.5) and w(0) is bounded,

H2sm) the pairs (Ai, Bi) are stabilizable for all i — 1, . . .

, r,

H3sm) there exist matrices Ui and r¿ solving

UíSí = AíUí + BíTí + Pí (5.10)

0 = QIli + Qi (5.11)

for all i = 1, . . . ,r,

H4sm) there exist matrices Ki and P such that

N$P + PNu < 0

for all i — l, ...,r and

for all i, j = 1, . . . ,r when h{(z(t))
■ hj(z(t)) ¿ 0 with

Níj = (Aí + BíKj), (5.12)
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H5sm) there exists a real number g such that —ai < g < O and g < —a2 with ai and a2 defined as

above,

H6sm) there exist n(w(t)) andj(w(t)) solving exactly

^^¿M*(0)siU/(0 = ¿fc*W*)){A»(w(*)) + *y(«(*)) + ft«(*)},

O = ^/ii(2(0){Gi7r(u/(0)-Q¿^(0},
¿=i

r

H7sm) the term Y.hi(z(t)) is bounded,
¿=i

then the fuzzy regulation with sliding modes problem has a solution. Moreover the controller has the

form

ti = (Y hi(z(t))K-\ x+[YM*(*))r4
~

EW*(*))KtY hÁ4t))Uj] w
\>=1 / \¿=1 t=l 3=1 I

+ g
■ sign(e). (5.13)

Proof. Follows directly from the previous analysis. ■

Clearly, this approach includes the overall fuzzy system, which allows the fuzzy regulator to

drive the output of the plant towards the reference signal when the design conditions are satisfied.

Nonetheless, although condition (5.8) could be verified in a relative simple way, inequality (5.9)

is too complex to be satisfied because it depends on the exact mappings n(w(t)) and 7(u;(0) which

are unknown.

Another scenario to solve this problem is obtained when it is supposed that

r

n(w) = YhÁz(t))UiW + fi(w)
¿=1

and
T

1(w) = YhiMt))riw + f2(w),

where fi(w) and /2(u>) indicate the difference between the exact mappings, namely n(w) and j(w),

and their respective fuzzy approximations.

Obviously, when these assumptions are considered the stability condition is not affected.

However; in this case, after deriving the Lyapunov function V = e1 Pe, one gets
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V = eTé
r r / r

= eTY k(z(t))CiX + eTY hí(z(t))d Y hÁ<t))Aj
¿=i ¿=i K3=l

+ Y hÁ<t))BjY hk(z(t))Kk )x + eTY h{z(t))C. \¿ hj(z(t))Bj
i=i fc=i / ¿=i [j=i

Y hk(z(t))Kk (YM«(*))n« ) w + fi(w)-Y hk(z(t))Kk [Y ht(z(t))Ui) w

.fc=i \e=i / k=i

r r

+ Y hk(z(t))Tkw
-

Y hk(z(t))Tkw
-

f2(w) + g
■

sign(e)
fc=i fc=i

r t / T

= eTY hi(z(t))dx + eTY hi(z(t))d Y hÁz(t))Aj +YM*(*))*¿Y hMWk ) i

^e=i

i=l ¿=1 \j=l j=l

+ eTY hi(z(t))d |Y hj{z{t))Bj \h(w)
-

f2(w) + g
■ sign(e)\ \

< \\e\W\MiW + \\e\\\\M¡\\ + ||e||||M3*|| + ||e||||M4%,

it=i

getting

M* = YhMt))CiX,
¿=i

m; =YW))a (¿ k¿(*(*))¿i +¿W))*3-Y hMt))Kk ) x,
¿=1 \Í=1 J'=l ifc=l /

M3* =¿ fc,(*(t))Ci {¿ hj(z(t))Bj \fi(w)
-

f2(w)\ \ and
¿=i U-i J
r

M¡ = ^ hi(z(t))hj(z(t))CiBj > O,

¿,j=i

where I YJ h{(z(t))hj(z(t))CiBj ) must exist.

\¿j=i /

Henee, the steady-state error tends asymptotically to zero when

9 < -ol*2,

where

♦ _ (lililí +IM+JIMIÍK n

(5.14)
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then, it is possible to solve the regulation problem using sliding modes if

-a! <g< 0 (5.15)

and

g < -al (5.16)

Unfortunately, Condition (5.16) cannot be verified directly because functions fi(w) and f2(w)

are unknown. Therefore, the application of numerical techniques is proposed to obtain an approxi

mation for the fuzzy regulator with sliding modes.

5.3 Numerical approach to design the fuzzy regulator with

sliding modes

From the previous analysis can be concluded that the fuzzy regulation problem is solved by

means of sliding modes when there exists an intersection between restrictions (5.8) and (5.9). In other

words, the arbitrary increment of the magnitude of g may produce instability instead of reducing the

tracking error.

That is why in this section the discontinuous term will be obtained from a predefíned valué,

namely /3. On this basis, a practical way to compute matrices K{ and P ensuring the stability of the

overall fuzzy system and the reduction of the tracking error is presented.

To this end, Assumption H2sm is rewritten as an LMI [5], which includes the necessary terms

to ensure the existence of ax > 0 G R. Then, the resulting linear matrix inequality is

-01 > QiAj +XjBj + AiQx + BiX, + XI (5.17)

for allí = 1 . . . r, with A = I YJ \\Bi\\ I . Qi and Xi are the unknowns; with X{ = KtQi and Qi > 0.

P is a design parameter satisfying (3 > 0 and allowing the method to obtain different valúes for ai .

By proceeding in a similar way with Assumption H4sm, the following LMI is obtained

-2/3/ > QiAf +XjBj + QiAj +XjBj + A¡ Qx + BíXj + Aj Qx + BjX{ + 2X2I (5. 18)

for all i.j — 1, ... ,r when hi(z(t)) ■

hj(z(t)) ^ 0. Finally, the common matrix P can be computed

from Qrl [39].

By equations (5.3), (5.4), (5.17) and (5.18), it is possible to infer that the stability property is

satisfied when g
= — /?.

The following algorithm starts with g
= 0 and produces a new valué for the sliding modes gain

in each iteration by incrementing /3 systematically, which can be considered as an approximation of

orí.
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Algorithm 20 Computing Ki, P and g.

Step 1: set f3 = 0 and take any A/3 as an increment.

Step 2: solve the LMIs (5.17) and (5.18). Construct the regulator (5.13) considering g
— -(3.

Step 3: reset ¡3 = /3 + A/3, goto Step 2.

5.4 Example

In this section, Algorithm 20 is applied on the fuzzy model presented in Chapter 3 with a = 2.5.

If /3 and A/3 are initialized as /3 = 0 and A/3 = 2, then it is possible to obtain the following controllers

using the MATLAB LMI toolbox:

Controller 1 with (3 = 0:

Ki = ( -53.5904 -20.9328 )

K2 = ( -36.4632 -8.8450 )

9
= 0

Controller 2 with (3 = 2:

Kx = ( -271.1921 -69.5392 )

K2 = ( -127.2090 -29.0904 )

9
= -2

Controller 3 with (3 = A:

Kx = ( -787.8985 -184.5593 )

K2 = ( -342.1423 -76.9143 )

9
= -4

The behavior of the plant under the action of each one of the previous controllers is simulated

by means of SIMULINK. The tracking errors are presented in Figure 5.1. This graphic is useful to

Alústrate how the performance of the controllers is improved as the absolute valué of g grows. Figure

5.2 compares the output of the plant and the reference signal for the three cases while Figure 5.3

shows the control inputs in the same conditions.
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Figure 5.1: Tracking errors under the action of the fuzzy controllers with sliding modes.
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Output va reference

9 10

Figure 5.2: Output vs reference under the action of the fuzzy controllers with sliding modes.
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Input signal

9 10

Figure 5.3: Control signáis under the action of the fuzzy controllers with sliding modes.
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Chapter 6

Application to chaotic systems

"

A little knowledge that acts

is worth infinitely more than

much knowledge that is idle.''

— Kahlil Gibran

69
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6.1. INTRODUCTION

6.1 Introduction

Chaotic systems can be found in very common real-life processes, for instance the weather,

turbulence in liquids, human heart beating, brain activity, financial markets, population explosión,

among many others. Therefore, the study of chaos has received great importance in recent years. It

is worth mentioning that the control of chaos does not only implies suppressing the chaotic behavior

of the systems, but to modify it or even genérate it as weil. One of the most interesting aspects in

chaos control is synchronization.

The origin of the word synchronization is a Greek root (syn-together and c/ironos-time) which

means "to share the common time" The original meaning of synchronization has been maintained

up to now in the colloquial use of this word, as agreement or correlation in time of different processes

[26]. Historically, the analysis of synchronization phenomena in the evolution of dynamical systems

has been a subject of active investigation since the earlier days of physics. It started in the 17*11

century with the finding of Huygens that two very weakly coupled pendulum clocks (hanging at

the same beam) become synchronized in phase. Other examples are the synchronized lightning of

fireflies, or the peculiarities of adjacent organ pipes which can almost reduce one another to silence

or speak in absolute unisón. For an exhaustive overview of the classic examples of synchronization

of periodic systems the reader is referred to [4] .

Recently, the search for synchronization has moved to chaotic systems. In this framework, the

appearance of collective (synchronized) dynamics is, in general, not trivial. Indeed, a dynamical

system is called chaotic whenever its evolution sensitively depends on the initial conditions. This

implies that two trajectories emerging from two different initial conditions sepárate exponentially in

the course of the time. As consequence, chaotic systems intrinsically defy synchronization, because

even two identical systems starting from slightly different initial conditions would evolve in time in an

unsynchronized manner (the differences in the states of the systems would grow exponentially). This

is a relevant practical problem because initial conditions are never known perfectly in experimental

situations. In that sense, the setting of some collective (synchronized) behavior in coupled chaotic

systems has a great importance and interest.

On the other hand, most of the better-known chaotic systems can be easily represented by TS

fuzzy models. Henee, in this chapter the fuzzy techniques based entirely on linear controllers are

applied in order to obtain synchronization between chaotic systems.
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6.2 Complete synchronization

As stated above, chaotic systems defy synchronization, due to their essential feature of dis-

playing high sensitivity to initial conditions. As a result, two identical chaotic systems starting at

nearly the same initial points in phase space develop onto trajectories which become uncorrelated

in the course of the time. Nevertheless, it has been shown that it is possible to synchronize these

kinds of systems, to make them evolving on the same chaotic trajectory [2, 28, 29, 31]. When one

deals with coupled identical systems, synchronization appears as the equality of the state variables

while evolving in time. This type of synchronization is referred as Complete Synchronization (CS).

Other ñames were given in the literature, such as Conventional Synchronization [32] or Identical

Synchronization .

Considering the following chaotic attractors

w = f(w) as the driver system and

(6.1)

x = f'(x,w,u) as response system,

the existence of CS implies that limt-.oo ||e(0|| = 0; where e(t) is the synchronization error defined

by e(0 = \\x
—

w\\. In other words, the response system forgets its initial conditions, though the

chaotic behavior is still observed.

Naturally, this kind of synchronization can be seen as a regulation problem where it(w) turns

out to be the identity. In [10], an approach to synchronize two Chen's attractors using fuzzy robust

regulators is presented.

In the remainder of this section the fuzzy regulator built on simple linear controllers is consid

ered as the synchronization signal between chaotic attractors, showing that this approach guarantees

Complete Synchronization if the conditions given in Chapter 3 are fulfilled.

First, the fuzzy approach is used to synchronize two Róssler attractors described by the follo

wing equations:

Driver system

wx = -(w2 + w3)

w2
= wi+ aw2

í¿3 = bwx
—

(c
—

wx )wz
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Response system

¿i = ~(X2 + x3)

x2
— x\+ ax2

¿3 = bXi — (c
—

Xi)X3 + ti

with a = 0.34, 6 = 0.4 and c = 4.5.

These systems can be exactly represented by means of the following two-rule TS fuzzy model

when xi G [c-d,c + d] [39]:

Rule 1

IF n(t) is Mi

x(t) = Aix(t) + Bu(t)

THEN l w(t)= Siw(t)

e(t) = Cx(t)
-

Qw(t)

Rule 2

IF xi(0 is M2

¿(0 = A2x(0 + Bu(t)

THEN \ w(t)= S2w(t)

e(t)= Cx(t)-Qw(t),

while the matrices defining the linear systems are

( 0 -1 -1 \ /O -1 -1 \

Ax = Si = 1 a 0 \, A2 = S2 = 1 a 0 ,B=(0 0 lfand
\b 0 -d ) \b 0 d j

C = Q=( 10 0)

For this case, the membership functions representing the nonlinearity of the original system

are given by

hi (xx) = Mx(xx)

m*i)=m2(x,) = Ux-'-^&y
where d = 10.
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The controller capable of synchronize these chaotic systems is obtained from:

n! = n2 =

Tx = T2 = (0 0 0 ) ,

Kx = ( 2.4856 0.6387 8.2318 ) and

K2 = ( 2.4856 0.6387 -11.7682 )

The simulation process is started with the following initial conditions xi = 2, x2 = 5, X3 = 20,

Wx
= 1, w2 = 0, W3 = 0 allowing the systems to evolve during 50 seconds. The results are depicted

in Figure 6.1, Figure 6.2 and Figure 6.3 showing an acceptable performance of the fuzzy regulator.

Róssler attractor

Figure 6.1: Róssler attractor.

Similar results can be obtained when the fuzzy regulator is used to synchronize two Lorenz

attractors of the form:
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Control signal

Error signal

Figure 6.2: Control signal and tracking error for the Complete Synchronization of Róssler systems.

Driver system

Response system

wx
= —awx + aw2

w2
=

cwx
—

w2
—

WxW3

1¿3 = WxW2
— bw3

ix =

—axx + ax2

x2 = cxx
—

x2
—

X1X3 + u

¿3 =
XiX2

— 6x3

with a = 10, b = | and c = 28.

Like the previous example, these systems can be locally exactly represented by means of a

two-rule TS fuzzy model in the región Xi G [-d, d] [39]. The matrices and membership function used

in this case are

—

a a 0 \ / —a a 0

Ax = Sx = | c 1 d },A2 = S2= \ c 1 -d \.B = (0 1 0),C = Q=(1 0 0),
0 -d b 0 d
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Figure 6.3: Driver states versus response states for the Complete Synchronization of Róssler systems.

h (xi) = Mi(xi) =
i (=*$*) and h2 (z_) = M2(xx) = \ (^),

where d = 30.

After applying the design approach, the controller is defined by the following matrices which

can be obtained using MATLAB:

/ 1 0 0

Ux = n2 = oio

\ 0 0 1

ri = r2 = (o o o),

Kx = ( -154.4886 1.1762 76.4093 ) and

K. = ( -154.4886 1.1762 -76.4093 )

The initial conditions considered for this example are X!
= 2, x2 = 5, x3 = 20, Wx

= 1, w2 = 0,

w3
= 0. Figure 6.4, Figure 6.5 and Figure 6.6 show again an acceptable performance of the fuzzy

regulator.

In the same way, the fuzzy regulator can be applied to synchronize two Chen's chaotic systems

described by:
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Loreru «tractor

Driver system

Figure 6.4: Lorenz attractor.

Response system

wx
=

—awi + aw2

w2 = (c
—

a)wi + cw2
—

wxWz

U/3
=

WiW2
— &U/3

¿i = —

axi 4- ax2

x2 = (c — a)xi + cx2
—

X1X3 + u

x3
=

XiX2
— 6x3

with a = 35, b = 3 and c = 28.

The región where a TS fuzzy model of two rules represents exactly the dynamics of the Chen

attractor is xi G [—d, d\ with the same membership functions in the Lorenz case. The matrices

defining the local subsystems for this example are

a 0 \ í —a a 0

c d
, A2 = S2 = c-a c -d ] ,

B =( 0 1 0 ) and
-d b \ 0 d i

Ax=Si =
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Control signal

1000

i i i
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Error signal

Figure 6.5: Control signal and tracking error for the Complete Synchronization of Lorenz systems.

C = Q=( 10 0),

while the matrices solving the local regulator problem and therefore achieving the CS for Chen

systems are:

/ 1 0 0

Ü! = n2 = oio

\ o o i

Tx = T2 = (0 0 0 ) ,

Kx = ( -1002.4 -13.979 90.705 ) and

K2 = ( -1002.4 -13.979 -90.705 ) .

The simulation results under the same conditions considered for the Lorenz synchronization

are given in Figure 6.7, Figure 6.8 and Figure 6.9.

So far, the synchronization problems presented satisfy conditions of Case 1 analyzed in Section

3.3. For that reason, the CS can be easily reached by means of fuzzy regulators designed on local

controllers. However, an even more interesting situation arises when the synchronization of two
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Figure 6.6: Driver states versus response states for the Complete Synchronization of Lorenz systems.

different chaotic systems is required. In the following section an analysis of this problem is carried

out using fuzzy control.

6.3 Generalized synchronization

In the previous section, it has been reviewed the synchronization phenomena between identical

chaotic oscillators. In general, when there exists an essential difference between the coupled systems,

there is no hope to have a trivial manifold in the phase space attracting the system trajectories, and

henee it is not clear at a first glance if nonidentical chaotic systems can synchronize. Two central

issues are the most studied and interesting aspect ofthe subject. The first is that one should generalize

the concept of synchronization to include non-identity manifold between the coupled systems. The

second is that one should design some tests to detect it. Many works have shown that this type of

chaotic synchronization can exist and have called it Generalized Synchronization (GS) [2, 33]. In

most cases, evidence of it has 'been provided for unidirectional coupling schemes.
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30 -40

Figure 6.7: Chen attractor.

Taking the following chaotic systems

w = s(w) as the driver system and

x = f(x,(p(w),u) as response system,

(6.2)

where w is the r-dimensional state vector of the driver, x is the n-dimensional state vector of the

response; and with s and / as vector fields satisfying s : Rr —> Rr and / : Rn —* Rn, respectively;

the chaotic trajectories of the two systems are said to be synchronized in a generalized sense if there

exists a transformation it : w
—► x which is able to map asymptotically the trajectories of the driver

attractor into the ones of the response attractor x(0 = n(w(t)), regardless on the initial conditions

in the basin of the synchronization manifold M = {(w; x) : x = tt(w)}.

Kocarev and Parlitz [23] formulated the necessary and sufficient conditions for the occurrence

of GS. As in the case of CS, the notion of GS is equivalent to

lim [|z(í;xi(0);u/(0»-x(í;x2(0);u;(0))||=0,
Í-.00

where (xi(0),w(0)) and (x2(Q),w(0)) are two generic initial conditions of system (6.2) in the basin
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Figure 6.8: Control signal and tracking error for the Complete Synchronization of Chen systems.

of the synchronization attractor. In other words, a map x = n(w) exists whenever the action of the

driver is responsible for causing that the response system forgets its initial conditions [1, 32].

In literature, one can find many works oriented to analyze the relationship between the states

of different systems. For instance, Pécora, Carroll and Heagy presented a complete discussion on how

to characterize a functional relationship between two dynamical variables whose temporal behavior

is obtained from time series in an experiment [30]. In this work, suitable statistical parameters are

introduced and applied to test the mathematical properties of the map, i.e., to test whether or not

the mapping is continuous, injective, differentiable and with a continuous inverse.

Another method to describe dynamical interdependence among nonlinear systems based on

mutual nonlinear prediction is given in [34]. This method provides information on the directionality

of the coupling, that is why it can be used to detect GS between dynamical variables. This technique

was applied to detect GS in a neuronal ensemble.

On the other hand, an experimental approach to detect GS in an experiment is described in [1]

and [32]. In these works, the authors propose to construct an auxiliary system (a system identical

with the response), driven by the same driving system, namely
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Figure 6.9: Driver states versus response states for the Complete Synchronization of Chen systems.

x' = f(x',<j>(w),u'). (6.3)

Then, x(0 is said to be synchronized with w(t) in a generalized way if Z¿mt_oo||x(0—x'(OI| = 0.

This equals to state that GS between w(t) and'x(0 oceurs if CS takes place between x(0 and x'(0-

The main advantage of this criterion is the easy detection of CS between x(0 and x'(0- On the

other hand, the possibility of building an identical copy of an experimental device is typically a very

difficult task.

Based upon the concepts of latter approach, it will be shown how the fuzzy regulator designed

on local controllers synchronizes chaotic systems in a general way.

In this example, it is considered that the Driver system is the Lorenz attractor and the Response

system is the Chen attractor, both described by a TS fuzzy model of two rules:

IF xi(t) isMi
'

x(t) = Aix(t) + Bu(t)

THEN l w(t)= Siw(t)

b e(t)= Cx(t)-Qw(t)
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Rule 2

IF xx(0 is M2

( ~a a 0

Ai = c
—

a c d
1
l 0 -d b

'

x(t) = A2x(t) + Bu(t)

THEN l w(t)= S2w(t)

e(t)= Cx(t)-Qw(t),

—a a O

Ay = | c-a c -d \,B=(0 1 0),Si =
O d b

-aw aw O

1 d

O -d bw

—a„ aw O

S2 = I c„ 1 -d ) and C = Q = ( 1 O O )
O d bw

'

with a = 35, b = 3, c = 28, aw = 10, bw = |, c„,
= 28 and d = 30. The membership functions for

this case are the same presented in the previous section.

The aggregate controller is constructed from the following matrices:

ni =

n2 =

o o

0.2857 0

-0.0143 1.2861

1 0 0

0.7143 0.2857 0

-3.0041 0.0143 1.2861

Ti = ( -102.2648 -0.7142 -30.0121 ) ,

T2 = ( -102.2648 -0.7142 30.0121 ) ,

Kx = ( -1055 -14.694 99.768 ) and

K2 = ( -1055 -14.694 -99.768 )

As it can be easily seen n¡ ^ Tx2, as a result, and according to the analysis given in Chapter 3

the exact regulation cannot be achieved. This fact is depicted in Figure 6.10 and Figure 6.11.

Still, this kind of controller achieves GS because the fuzzy regulator always takes the states

of the response system to the approximated manifold ñ(w) in spite of the initial conditions (See

Chapter 3).

This fact will be clarified in Section 6.4 where a simple communication example is used to

verify the GS through the fuzzy regulators.
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Control signal

1

0.5

0

-0.5

-1
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Error signal

Figure 6. 10: Control signal and tracking error for the Generalized Synchronization of Lorenz-Chen

systems.
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20 25

Figure 6.11: Driver states versus response states for the Generalized Synchronization of Lorenz-Chen

systems.
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6.4 Using fuzzy regulation in a transmission scheme

In this section, a simple way to apply the results obtained on fuzzy regulation in order to

transmit signáis ciphered by chaos is presented.

The source-receiver approach for this example is given in Figure 6.12 and Figure 6.13. In

words, the fuzzy controller is used to synchronize the source's response system with the source's

driver system. When the synchronization is achieved, the message signal is added to one state of the

regulated system. Then, the resulting signal is transmitted to the receiver.

In the receiver there is a response system which is controlled by another fuzzy regulator. Both,

the response system and the controller are exact replicas of those considered in the source. Thus,

it is sufficient to actívate the controller in the receiver and subtract the same state considered for

mounting the message from the received signal in order to decode the ciohered signal.

Source

Synchronizing information

Fuzzy Response

regulator system
^^^

Figure 6.12: Source scheme.

For this application, it is considered that the driver system is a Lorenz attractor and the

response system are Chen attractors. Therefore, the controller is designed based on the following TS
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Receiver

Synchronizing information

Fuzzy

regulator

Response

system

Coded signal

Decoded

signal

Figure 6.13: Receiver scheme.
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fuzzy model which appears in the previous section:

IF xx(t) is Mx

Rule 2

IF xi(t) is M2

where

Ax =

—a a 0

c
—

a c d I
, A2 =

0 -d b

'

x(t) = Aix(t) + Bu(t)

THEN \ w(t)= Siw(t)

e(t)= Cx(t)-Qw(t)

'

x(t) = A2x(0 + Bu(t)

THEN l w(t)= S2w(t)

e(t)= Cx(t)-Qw(t),

—a a 0

c-a c -d J, B= ( 0 1 0),5i =

0 d b

0

Cw 1 d

0 -d bw

S2 = | ^ 1 -d ) and C = Q = ( 1 0 0 )
0 d bu

With a = 35, b = 3, c = 28, affi
= 10, bm = I, c„, = 28 and d = 30. Again, the membership

functions for this case are

")M*i) = Mi(xi) '= U~¥

ft.(X!)-J4(*l) = ^(^)

and

and the controller is defined by

ni =

i o o

0.7143 0.2857 0

3.0041 -0.0143 1.2861

/10 0

n2 = 0.7143 0.2857 0

\ -3.0041 0.0143 1.2861

Ti = ( -102.2648 -0.7142 -30.0121 )

T2 = (-102.2648 -0.7142 30.0121),

Kx = ( -1055 -14.694 99.768 ) and

K2 = ( -1055 -14.694 -99.768 )
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The message signal used to test the performance of the transmission system is the state xi of

a Róssler system defined by

¿i = -(x2 + x3)

x2
=

xi -I- ax2

x3
= bxx — (c — xx)x3

with a = 0.34, b = OA and c = 4.

Figure 6.14 shows the information signal and the ciphered signal which is transmitted from

the source to the receiver. In Figure 6.15, the original information signal and the signal generated

through the synchronization process are depicted. The decode procedure is started at t = lOs.

Finally, in Figure 6.16 appears the deciphering error.

Information signal

Coded signal

Figure 6.14: Information signal and transmitted signal.

As it can be seen, the response systems forget their initial conditions because of the control

signal. For that reason, the proposed approach allows the original message to be reconstructed from

the received chaotic signal. Although this communication scheme needs to be refined, it clearly
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Information signal

90 100

Decoded signal

Figure 6.15: Information signal and decoded signal.

represents a possible real-life application for the fuzzy regulator. In this sense, some advantages and

drawbacks of the method are given below.

Advantages

• The driver system and the response system can be different chaotic plants.

• Because the tracking error between the driver system and the response system does not need

to be zeroed, the fuzzy controller can be computed entirely from linear controllers.

Drawbacks

• The complete state of the driver system must be sent to the receiver.



6.4. USING FUZZY REGULATION IN A TRANSMISSION SCHEME 91

Decoding error

Figure 6.16: Decoding error.
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Chapter 7

Conclusions and future work

"And in the end,

it's not the years

in your life that count.

It's the life in your years."

— Abraham Lincoln

93
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7.1 Final remarks

Along this dissertation, the regulation problem when TS fuzzy models are available to represent

both the plant and the exosystem has been reviewed.

After devoting Chapter 2 to recall the basic techniques which are the basis for this study,

namely regulation theory, Takagi-Sugeno fuzzy modelling and the Parallel Distributed Compensation

approach; in Chapter 3, the regulator designing based on simple linear controllers is analyzed, showing

that this kind of control guarantees the exact tracking only if very specific conditions are satisfied.

Nonetheless, it was also shown there that this scheme guarantees a bounded error when more relaxed

conditions are fulfilled.

Then, in Chapter 4, the use of linear robust regulator proves to be a good alternative to reduce

the steady-state error, although the exact tracking can not be guaranteed either.

However, even though these linear-based approaches do not solve the fuzzy regulation problem

in general, the simplicity involved in their computing motivates a deeper analysis leading to the

inclusión of a discontinuous term which is presented in Chapter 5. It was proven that under cer

tain conditions this technique compénsate the remaining tracking error when the fuzzy controller is

obtained from simple linear regulators.

Another important consideration, directly affecting the application viability of this approach,

is the use of numerical techniques in order to build the controller. Thus, by expressing the existence

conditions as LMIs [5], computational tools can be employed to solve the problem in polynomial

time, allowing the fuzzy regulator with sliding modes to be designed in a practical way.

The examples ineluded in every chapter were intended to show how numerical tools, as MAT

LAB, facilítate the design process when the dynamics of the plant and the exosystem can be appro

ximated by a Takagi-Sugeno fuzzy model.

It was also shown in Chapter 6 that the fuzzy regulator can be applied in order to synchronize

chaotic systems. Particularly, Complete Synchronization can be achieved by means of the fuzzy re

gulator designed entirely on linear controllers when the driver and the response systems are described

by the same dynamical equations.

Concerning to General Synchronization, the linear approach is unable to guarantee the exact

tracking of the driver signal. . Nevertheless, this approach drives the output signal to an invariant

manifold, not necessarily the desired one, causing that the response system forgets its initial con

ditions. This fact is of great importance in the communication scheme proposed also in Chapter

6.

On the other hand, it becomes obvious that the time and computational resources needed

to solve the numerical problem depend on the number of linear matrix inequalities to be satisfied.
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Henee, very complex TS fuzzy models could be less susceptible to be treated in this way.

But, considering the studies oriented to the development of new numerical techniques and

the accelerated improvement in the capabilities of electronic processing, one supposes that in a near

future this drawback could be less important, which leads to conclude that in some cases the approach

discussed in this work can be taken into account as a valid choice to solve the regulation problem for

TS fuzzy models

7.2 Future work

Of course, the study of the fuzzy regulation problem is very far from be exhausted, and it offers

a wide open space for new research works which might include:

• Validation of the fuzzy regulator with sliding modes by applying it on real systems.

• Inclusión of the immersion of ir(w(t)) in the fuzzy controller.

• Application of adaptive techniques in order to obtain the exact mappings 7r(u;(0) and ^(w(t)).

• Continué with the application to chaotic systems.

• Discretization of the continuous-time TS fuzzy model in order to design a discrete-time fuzzy

controller capable to guarantee the regulation for the continuous-time plant.



Appendix A

An application to time-delay fuzzy

systems

Nonlinear dynamics and time-delays are usually present in real-life processes which must be

controlled and in many cases the outputs of these systems need to track reference signáis. Henee,

it is not surprising the existence of works addressing the nonlinear output regulation problem for

nonlinear time-delay systems [17]. However, the solution proposed by the authors is difficult and in

many cases impossible to obtain.

As referred earlier, in [44] an approach to construct the output regulator when the plant and

the exosystem are described by a Takagi-Sugeno fuzzy model is presented. In that work the authors

proposed a control signal, based in both state feedback and error feedback, designed on the local

subsystems. However, as explained in Section 3.3, these techniques do not solve the regulation

problem in general because the nonlinear interpolation among fuzzy rules is not considered [12, 24].

On the other hand, in section 4.2 it was proposed an approach to construct a fuzzy regulator on

the basis of linear robust regulators in order to track references in a very efficient way. The relative

advantages of this technique is that the design process involves linear techniques exclusively and its

behavior is better than the performance shown by the fuzzy regulator formulated from simple linear

controllers. Therefore, the fuzzy regulator for a nonlinear time-delay system will be obtained by

applying such a method, i.e., combining both the linear robust regulation theory and the TS fuzzy

modelling.

Considering the nonlinear time-delay system

x(0 - f(x(t),x(t-r),w(t),u(t)) (A.l)

w(t) = s(w(t)) (A.2)

e(0 = h(x(t),w(t)) (A.3)

x(t0 + d) = tp(d) (A.4)

97
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where u(t) G Rm is the input signal, x(0 G Kn is the state vector, w(t) G Rs is the state vector of the

exosystem and r G E is a positive time delay. The tracking error e(t) G Rm, given by Equation (A.3),

is the difference between the system output and the reference signal and again, it is assumed that

/(•, . ,/x), s(-) and h(-,-) are 'analytical functions, where s(0) = 0, /(0, 0,0,0) = 0 and h(0,0) = 0

with 0 = to < t and the initial condition tp(d) is a continuous function defined along the interval

[-T 0].

The TS fuzzy approximation for system (A.1)-(A.3) is given by the following set of conditional

statements [38, 43]:

Rule i

IF zx(t) is M¡ and z2(t) is M\ and ... and zp(t) is Mxp
THEN

x(t) = Aix(t) + A\.x(t
-

t) + Biu(t) + Piw(t)

w(t) = Siw(t)

e(t) = Cix(t)-Qi(t)w(t),

for all i = 1, . . . ,r, where r is the number of rules in the model, Zi(t) are the measurable output

signáis, and Mj are fuzzy sets.

Consequently, the aggregate fuzzy model is:

x(0 = ^/i¿(2(0)[A¿x(0 + A[x(í- t) + BiU(t) + Piw(t)} (A.5)
¿=i

r

w(t) = ^^(2(0)5^(0 (A.6)
¿=i

r

e(0 = £M2(0)[Cíz(0-&w(0]. (aj)
¿=1

As before, /i¿ is the normalized weight for each rule. These weights depends on the membership

function for z(t) in M], namely

hl(z(t)) = rMt)) (A.8)

7=1

Wi(z(t)) = f{M)(z(t)) (A.9)
3
= 1
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Í>w*))=i (A-10)
¿=1

hi(z(t)) > O (A.ll)

with ¿(O = [ zi(t) z2(t) . . . zp(t) ] and i = 1, . . .

,
r.

Thus, for the TS fuzzy rriodel (A.5)-(A.7), the Fuzzy Time-Delay Regulator Problem (FTDRP)

is reformulated as the problem of finding, if possible, a dynamical controller of the form

Í(t) = F(S(t),S(t-T),z(t),e(t)) (A.12)

u(t) = H(£(t)) (A.13)

such that:

Std) the equilibrium point (x(0,x(í
—

T),£(t),£(t
—

r)) = (0,0,0,0) of the closed-loop system with

no external signáis

r

x(0 = Y hi(z(t))[AiX(t) + AJx(t
-

t) + BiH(Z(t))}

Í(t) = F(t(tU(t-r),z(t),0)

is asymptotically stable (stability condition) ,

Rtd) the solution of the closed-loop system

r

¿(0 = Y hi(z(t))[Aix(t) + ATix(t-T) + BiH(Z(t)) + Piw(t)}
«=i

T

w(t) = ^/i¿(z(0)$w(0
i=l

T

e(t) = YkWWtxW- QM*)]
»=i

é(t) = F(at),at-r),z(t),e(t))

satisfies

lim e(0 = 0,
t—»c»

(regulation condition).
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The typical method for constructing a fuzzy controller consists of designing r local controllers,

such that the fulfillment of the control goals fór their corresponding subsystem is achieved and at

the same time the aggregate regulator ensures the control goals for the composite system. Similarly,

a solution for the FTDRP is proposed by solving linear local robust regulation problems.

To this end, the PDC results presented in [42] are applied, that is, the design of linear time-delay

robust regulators for each subsystem of the TS fuzzy model at the nominal valúes of the parameters

is suggested, such that the global stability of the fuzzy model is also guaranteed [9]. In other words,

regulator problems for the r subsystems

x(0 = Aix(t) + A]x(t
-

t) + Bíu(i) + PiWi(t)

w(t) = Siw(t)

e(t) = dx(t)
-

QiW(t) i = l,...,r

have to be solved. Then, the fuzzy controller will be composed by rules of the form:

Rule i

IF zx(t) is M\ and z2(0 is M%2 and ... and zp(t) is M¿
THEN

Í(t) = F¿(t) + F!t(t-T) + Gie(t)

u(t) = H¿(t)

for all ¿ = 1 . . . r, with the total controller defined by

T

Í(t) = YhW))[Fm + F^(t-T) + Gie(t)}

where

F =

i=l

u(t) = ¿>(*(*))W¿(í).
i=l

(A.14)

(A.15)

U + BiK - G0,íCí 0 \ ( AJ 0 \ ( G0,i \
_

, .

í 0 10

0 0 1

*)B<M*flc"i*tii}i *«í =

o \
o

o 0 0 ... 1

V -4o -4,i -4,2 • • • -°U-i )
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H = diag{Hi, . . . ,Hm}, Hj = { 1 0 ... 0 )lxa.

and Si = diag{Sn, ■ ■ ■

, Sim} with i = 1 . . . r, j = 1 . . . m and áj, as the coefficients ofthe characteristic

polynomial of Stj [9, 18].

The following theorem gives conditions for the solution of the FTDRP.

Theorem 21 //

Hltd) every trajectory w(t) defined by (A.6) and w(0) is bounded,

H2td) for i = 1, . . . ,r there exist K{ such that x(t) = A¿x(0 + A[(x — r) + BiKix(t) is stable,

H3td) for i = 1, . . .

,
r there exist d such that

m =

(t "**)«*)+(? ¡¡ )«*-*)-<&(<* °)«')

¿5 stable,

r r

H4td) í/iere ex¿sí mappings ñ(w(t)) = 2^^iw and ~f(w(t)) = Y-^iW, whose matrices n¿ and T,

i=l i=l

IliSi = AH + A[n¿e-TSi + BíTí + Pi

0 = Cfri-Qi

fori=l,...,r,

H5td) there exist triplets (Ki: G0,i, Gx,i) and matrices P and W{ [7, 39, 45] satisfying

0 > ÁTP + PÁa + P + PÁTrWiÁlfP

0 > (Áíj + Ájí)tP + P(Áíj + Ájí) + P

+ P(ÁT{ + Á])Wi(Á\ + Á])TP

P > 0

Wt > o

P > w{
-1
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for all i and j such that hi(z(t)) •

hj(z(t) ^ 0, with

Aij
—

Ai BiHj \

jíCj Fi )

and

Ár-(Ah 0 \
Ai ~

{ 0 Ff )

H6td) there exist ir(w(t)) and -y(w(t)) solving exactly

(A.16)

(A.17)

^MYhi(z(t))Siw(t) = J2hi(z(t)){AAw(t)) + A¡7:(w(t-r)) + Ba(w(t))
' ' i=l t=l

+ PiW(t)}

o = YhW)){Ci*(v(t))-QMt)h
i=l

H7td) the term >J hi(z(t)) is bounded,
i=l

then, the tracking error for the Fuzzy Time-Delay Regulation Problem is bounded.

Proof. As in Section 4.2, if Hltd, H2td, H3td and H4td hold, then the existence of the local robust

regulators is ensured, henee only the stability and the behavior of tracking error for the overall fuzzy

system will be verified.

Stability.- Considering the closed-loop system with w(t) = 0

+ y hi(z(t))hj(Z(t)) \(áíj + Áj^ ( |W ) + (át + A]) ( |g : ;j \

with Áíj and Á[ defined as above. By proceeding such as in [7], it is concluded that when H5ta is

satisfied, the equilibrium point (x(t),x(t
-

T),£(t),£(t
-

t)) = (0,0,0,0) is asymptotically stable.

Regulation.- Follows directly from Theorem 15. ■

As it can be easily seen, the solution of the FTDRP depends on the a priori calculation of

matrices Ki, Go,i, Gx¿, and afterwards a search for matrices P and Wi ensuring the stability becomes

necessary. If P and Wi are not found, new Ki, Gq,¿, Gx,í have to be computed and then again the
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search for matrices P and Wi must to be carried out. Thus, in the following analysis, numerical

techniques are ineluded in order to solve the FTDRP in a more efficient way. Using this approach

both the calculation of Kit G0,i, C?i,t and the search for P and Wi are performed at the same time.

When matrix (A.16) is expanded, one gets:

/ Ai BíKj BiHj \

Áij=[ G0,iCj Ai-rBiKj-Go,iCj 0
, (A.18)

\Gi,íCj -GitiCj $i /

/ / 0 0\

which by means of transformation T = \ -I I 0
,
is similar to TA¿_,T_1, i.e.,

V o o / ;

M + BiKj BíKj BiHj \
0 Ai-G0,iCj -BiHj (A.19)
0 -GhiCj $i )

If the same transformation is applied on matrix (A. 17), then

f AT 0 0\

TÁTT-1 = 0 A¡ 0 (A.20)

\ 0 0 0/

is obtained.

Therefore, the problem is to stabilize

x(0 - (Ai + BiKj)x(t) + A\x(t
- t) (A.21)

and

«o = {(í ~T )
-

(Z ) ( c- °'}í(í»+(f l)^-T) <A-22)

To this end, suitable LMIs (Linear matrix Inequalities) are introduced to replace conditions

H2td, H3td and H5ta [5]. In this sense, it can be proved that Equation (A.21) is stable if the following

LMIs are feasible [7]

XiAi + AiXi-rBiYi + YfBl + Xx-rATWiA? < 0 (A.23)

for alH = 1,. .. ,r,

Xi (Af + ATj) + (A{ + Aj) Xi + BíYj + Y¡Bj +

(A.24)

BjYi-rY^Bj + Xx-r(A¡ + ATj)Wi(AT + ATj)T < 0
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for i < j <r such that hi(z(t)) • hj(z(t)) ^ 0,

Xi > 0 (A.25)

and

Wi > Xx, (A.26)

for i = 1, . . . ,r with Pi = X^1 and Ki = IfPi- On the other hand, to analyze the stability of

Equation (A.22) it is considered

H = Hx = . . . Hr, Aei —

(o T)'g-=(g:::).c-=(c< •>-"*-(? !)•
The procedure follows in a similar way to that presented previously, that is, Equation (A. 22)

is stable if the following LMIs are feasible

AliP2-rP2Ae,i-MiCe,i-CjiMj' + P2 *

'

<0 (A.27)

AIJP2 -Zi

(Ali + AlJ)P2 + P2(Ae<i + Ae,j)-MiCe,j \
-d¡jMf-Mjd,i-CliMj + P2

*

< 0 (A.28)

(AZ + AZ) P2 -Zi )

P2 > 0 (A.29)

P2 < Zi (A.30)

for all i and j such that hi(z(t))
■

hj(z(t)) ^¿ 0, with G¿ = P2xMi and where * represents blocks that

can be easily inferred by symmetry.

Finally, the common matrix guaranteeing the stability of the system is given by

P = T-1diag(Pi,P2)T,

with T defined as above. This analysis is summarized as follows:

Theorem 22 //

Hltd) every trajectory w(t) defined by (A.6) and w(0) is bounded,
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H2td) there exist mappings ñ(w(t)) = Y.^iw and i(w(t)) = Y.^iw, whose matrices n¿ and r¿

solve

YliSt = AiUi-rATUie-TSi+BiTi-rPi

0 = dUi-Qi,

H3t*d) LMIs (A.23), (A.24), (A.25), (A.26), (A.21), (A.28), (A.29) and (A.30) are feasible,

H4td) there exist 7r(u>(0) and ~f(w(t)) solving exactly

^MYfli(z(t))SiW(t) = Yhi(z(t)){Ain(w(t)) + A¡n(w(t-r)) + Ba(w(t))

+ PiW(t)}.

r

o = YWzitMCrtwW-QMt)}.
i=l

r

H5td) the term YJ hi(z(t)) is bounded,
i=l

then, the tracking error for Fuzzy Time-Delay Regulator Problem is bounded. Moreover, the solution

is given by K¡ = YíPi and d = P2xMi.

Proof. Follows directly from Theorem 21 and the previous discussion. ■

A.l Numeric simulation

To Alústrate the latter analysis, the numeric design approach is applied on the TS fuzzy model

defined by

Rule 1: IF x2(t) is about Mi (small) THEN

'

x(t)= Axx(t) + ATx(t-T) + Pw(t) + Bu(t)

^ ! : ^ w(t) = Sw(t)

e(t) = dx(t)
- Qw(t)

Rule 2: IF x2(t) is about M2 (big) THEN
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with

Ai

2> =

'

x(0 = A2x(t) + ATx(t
-

t) + Pw(t) + Bu(t)

w(t) = Sw(t)

e(t)= Cx(t)-Qw(t)

3 -2

2 0

5=(-l o)'C=(l °)'^=(1 0)andr-l.

1 ON

o i y

Fuzzy sets

Figure A.l: Membership functions

The membership functions for this example are shown in Figure A.l. While, the solution

obtained using the MATLAB LMI toolbox is given by

Kx = ( -9.3777 -7.3230 ) ,

K2 = ( -6.7428 -1.6044 ) ,

Gi = ( 8.4308 -3.2404 -7.4243 -18.6196 )T and

C2 = ( 9.4903 -11.3126 0.2990 -37.5209 )T
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The steady-state mappings for locáis subsystems can also be computed with the MATLAB

LMI toolbox. For this example, one gets

n ( l ° \
1

V 05793 -2-2702 )
'

Tx = ( -2.0428 -2.6833 ) .

112 =

( 0.5793 -1.2702 ) and

T2 = ( -1.8843 -2.2236 )

As it can be seen, Ux ± ü2 which means that the steady-state error will not converge to zero.

Figure A.2, Figure A.3 and Figure A.4 were obtained after constructing the overall controller through

the fuzzy combination of linear robust regulators. These graphics show the output signal versus the

reference, the tracking error and the input signal, respectively.

At t = 25s parameter variations were introduced to test the robustness of the controller.

Matrices Ax ,
and A2 were changed to

Ax= l
1 Q J and A2 = í

j j , respectively.

As expected, this approach no longer guarantees robust regulation. Nevertheless, the fuzzy

regulator constructed in this way is more efficient than the fuzzy controller designed on simple linear

controllers (see Figure A.5, Figure A.6 and Figure A.7).

As explained above, the rationale behind this is that local robust regulators "assume" some of

the non-considered fuzzy behavior as parametric variations and the controller "try" to compénsate

them.
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Oulput vs reference

_1 5
1 1 1 1 1 1 1 1 1 1 I

0 5 10 15 20 25 30 35 40 45 50

Time

Figure A.2: Output versus reference for the time-delay system when the fuzzy controller is designed
from linear robust regulators.
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Tracking error

Figure A.3: Tracking error for the time-delay system when the fuzzy controller is designed from

linear robust regulators.
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Input signal

Figure A.4: Input signal for the time-delay system when the fuzzy controller is designed from linear

robust regulators.
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Output vs reference

2r

Figure A.5: Output versus reference for the time-delay system when the fuzzy controller is designed
from static regulators.
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Tracking error

_J l_

10 15 20

_1 l_

25

Time

30 35 40 45 50

Figure A.6: Tracking error for the time-delay system when the fuzzy controller is designed from

static regulators.
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Input signal

Figure A.7: Input signal for the time-delay system when the fuzzy controller is designed from static

regulators.
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and ninety-nine percent perspiration.'
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