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Resumen

Las redes de Petri constituyen un paradigma bien conocido y util para modelar sistemas de eventos dis-
cretos. En algunos casos, es necesario adoptar un enfoque de enumeracion de estados para verificar algunas
propiedades de las redes de Petri. Desafortunadamente, para sistemas altamente marcados, el grafo de al-
canzabilidad puede ser tan grande que muchas propiedades son muy complicadas de analizar. Este problema
es conocido como el problema de explosién de estados. Sistemas que normalmente aparecen en la prictica,
por ejemplo: procesos de manufactura reales, sistemas de telecomunicaciones, sistemas de tréfico, sistemas
logisticos; dejan modelos de redes de Petri muy grandes. Por esto, se ha propuesto una técnica alternativa,
llamada fluidificacion, para poder analizar tales sistemas.

La fluidificacién constituye una técnica para estudiar sistemas a través de un modelo continuo similar. Uti-
lizando modelos continuos, se pueden utilizar mds técnicas analiticas para el anélisis de algunas propiedades
de interés. En esta disertacion, se consideran redes de Petri continuas temporizadas bajo semantica de servi-
dores infinitos. La teoria de modelos completamente fluidificados se encuentra todavia en desarrollo, dado
que es un area relativamente nueva. Por lo que es necesario enfocar més esfuerzos en la solucién general
de problemas importantes. Esta disertacion provee el conocimiento tedrico basico necesario para, eventual-
mente, obtener leyes de control efectivas para los sistemas de redes de Petri continuas temporizadas (T'C PN).

En esta disertacion, se estudian tipos generales de sistemas TC PN con el fin de obtener condiciones nece-
sarias de suficiencia y necesidad de alcanzabilidad y controlabilidad, y posteriormente se proponen algunas
estructuras de leyes de control efectivas. Para esto, se introduce un concepto de controlabilidad que es una
adaptacion del concepto clasico de controlabilidad para sistemas lineales. Los sistemas TC PN controlables
son caracterizados'y se resuelve el problema de alcanzabilidad para el caso en que todas las transiciones son
controlables. Para el caso con transiciones incontrolables, se dan condiciones de suficiencia de controlabil-
idad sobre un conjunto de puntos de equilibrio y condiciones de necesidad de alcanzabilidad. También, se
presentan dos estructuras de leyes de control para los casos: sin transiciones incontrolables, y con solo una
transicion controlable.



Summary

Petri Nets constitute a well-known paradigm useful to model discrete event systems. In some cases, an
enumeration approach (state enumeration) has to be used in order to verify some properties of Petri nets.
Unfortunately, for high marked systems, the reachability graph can be so large that many properties are very
complex to analyze. This problem is known as the state explosion problem. Systems that appear normally in
practice, for instance realistic manufacturing processes, telecommunications systems, traffic systems, logistic
systems, leads to large Petri net models. So, in order to be able to analyze such systems, an alternative
technique, named fluidification, has been proposed.

The fluidification constitutes a technique to study discrete systems through a similar but continuous model.
Using fluid models more analytical techniques can be used for the analysis of some interesting properties.
In this dissertation, timed continuous Petri net models with infinite server semantics are considered. The
theory of fully fluidified models is still under development, since this area is relatively new. So, more ef-
forts are needed for general solutions of important problems. This dissertation provides the basic theoretical
knowledge needed to eventually obtain effective control laws for the timed continuous Petri net (TCPN)
systems.

In this dissertation, general kinds of TC PN systems are studied, in order to obtain sufficient and necessary
conditions of reachability and controllability, and then some structures for effective control laws are proposed.
For this, a concept of controllability is introduced as an appropriate adaptation of the linear system classical
controllability concept, in this way, controllability is an structural property of the system. The controllable
TCPN systems are characterized and the reachability problem is solved for the case in which all transitions
are controllable. For the case with uncontrolled transitions, sufficient conditions of controllability over a set
of equilibrium points and necessary conditions of reachability are given. Also, two effective control laws are
provided for both cases: without uncontrolled transitions, and with only one uncontrolled transition.
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Chapter 1

Introduction

Petri Nets constitute a well-known paradigm useful to model discrete event systems. Although many
researchers are investigating Petri nets properties from a standard point of view, in some cases, an enumeration
approach (state enumeration) has to be used, in that case, the verification of some properties of Petri nets is
performed from the knowledge of the Petri net reachability graph. Unfortunately, for high marked systems,
the reachability graph can be so large that many properties are very complex to analyze. This problem
is known as the state explosion problem. Systems that appear normally in practice, for instance realistic
manufacturing processes, telecommunications systems, traffic systems, logistic systems, leads to large Petri
net models. So, in order to be able to analyze such systems, an alternative technique, named fluidification,
has been proposed.

The fluidification constitutes a technique to study discrete systems through a similar but continuous model.
Using fluid models more analytical techniques can be used for the analysis of some interesting properties.
However some modelling or analysis capabilities are missed during fluidification. In this way, the continuous
model is considered as an approximation of the discrete one, and not properly as a model of the physical
system. This technique has been applied to different paradigms. A comparison of those models can be seen
in [5].

In Petri Nets, fluidification has been introduced from different perspectives. We will consider the approach
studied by M. Silva, L. Recalde and coworkers [5], [9]. In this report, timed continuous Petri net models with
infinite server semantics are considered. Based on this model, the firing count vector and the marking are
fluidificated, in order to obtain the continuous model. The obtained continuous model is piecewise linear.

P1

(
G0

Figure 1.1 Example of a Petri net system.

T

In order to clarify the concept of fluidification, see the Petri net of figure 1.1. As a discrete Petri net, the
marking can be changed in integer amounts. For example, say that ¢, is fired once, so the reached marking
is [1, 3]T As a continuous Petri net, transitions can be fired in any enabled positive amount. Suppose that
transition ¢, is fired in an amount of 0.2, then the reached marking is [0.2, 3.8]T. Finally, as a timed continuous
Petri net, the transitions are not fired in certain amount, they are fired with certain speed. Considering infinite
server semantics, say that transitions ¢, and ¢, are fired with an speed of 1 enabling degree by second, then
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the trajectory of the marking (the marking as a function of time) is that shown in figure 1.2.
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Figure 1.2 Marking evolution of the system of figure 1.1, considering it as a timed continuous Petri net.

There exist some interpretations of the marking in the continuous models. One of them, for timed continu-
ous Petri nets, is that the normalized throughput of the transitions in the steady state of the continuous model
approximate the average value of the normalized throughput of the transitions in the steady state of the origi-
nal discrete system. The continuous system can be a good approximation of the discrete one when the tokens
represent a large number of indistinguishable individuals/parts. For further details of this interpretation see

121.

The reader has to keep in mind that the theory of fully fluidified models (continuous models) is still under
development, since this area is relatively new. So, more efforts are needed for general solutions of important
problems. Now, we present some questions, which are mentioned in [9], that represent the most interesting
problems to be solved for continuous Petri nets.

o Given a discrete Petri net system, the continuous model obtained from it is a good enough approximation?
e Which is the best firing semantic for a particular case?
e Given a timing semantic, when does a steady state exist?

e Once a good dynamic control is obtained for the continuous relaxation, how to come back to a “reason-
able” design or control (scheduling) in the original setting?

Besides the problems involved in these questions, marking reachability, observation and control of contin-
uous models deserve more efforts. Reachability in autonomous continuous Petri nets (non timed) has been
studied by Julvez, Recalde and Silva in [6]. In that paper, reachability is introduced as the property of a mark-
ing to be reached from the initial marking, this marking can be reached in three different ways: with a finite
firing sequence, with an infinite firing sequence, or just getting as close as desired to the marking with a finite
firing sequence. The controllability for timed continuous Petri nets has been studied by Jiménez, Julvez, Re-
calde and Silva [8]. They introduced a controllability definition as a property of markings, i.e., a marking is
said to be controllable iff it is reachable and it is an equilibrium point (with a suitable bounded input). They
characterized the set of “controllable markings” for join free Petri nets.

The main goal of this dissertation is to provide the basic theoretical knowledge needed to eventually obtain
effective control laws for the timed continuous Petri net (T'C PN) systems. The objectives are: to propose



a structural controllability definition for TCPN systems, to analyze and to provide necessary and sufficient
conditions for controllability and reachability for general kinds of TCPN systems, and finally to present
control law structures that transfer the state from the initial state to the required state.

Although controllability and reachability have been studied by Jiménez, Julvez, Recalde and Silva, the
results obtained by them are not sufficient to compute effective control laws for general cases of timed con-
tinuous Petri net (TC P N) systems (they solved this problem for the case of join free Petri nets). So, in this
dissertation, we study general kinds of TC PN systems, in order to obtain spﬂicient and necessary conditions
of reachability and controllability, and then we propose some structures for effective control laws.

The main contributions of this dissertation are:

o The characterization of the so called “state space”

e The introduction of the minimum order state equation.

e A definition of controllability for TC PN systems as an adaptation of that for the linear continuous-time
systems.

o The introduction of necessary and sufficient conditions of controllability and reachability for any kind of
TCPN systems, where all transitions are controllable.

e The introduction of sufficient conditions of controllability for any kind of TC PN systems, where there
are uncontrolled transitions.

e The introduction of necessary conditions of reachability for any kind of TC PN systems, where there are
uncontrolled transitions.

e An effective control law structure that transfers the marking from the initial marking to the required
marking for any kind of TC PN, where all transitions are controllable.

e An effective control law structure that transfers the marking from the initial marking in E'S to the required
marking in ES. for any kind of TC PN, where there is only one uncontrolled transition.

This report is organized as follows: In chapter 2, we introduce some basic concepts related to classic
Petri nets, continuous Petri nets and timed continuous Petri nets under infinite server semantic. In the last
section of this chapter we rewrite the state equation into a more useful form. In chapter 3, we present a brief
discussion of the concept of state variable. Also, in this chapter, we present a characterization of the “state
space”, and finally we introduce the minimum order state equation. In chapter 4, a definition of controllability
is introduced as an adaptation of the linear continuous-time classical controllability definition, in this way,
controllability is a structural property of the system. For the case where all transitions are controllable, the
controllable TC PN systems are characterized, and the marking reachability problem is solved. For the case
where there exist uncontrolled transitions, sufficient conditions of controllability over a set of equilibrium
points are given. In chapter 5, two effective control law structures are proposed, one for the case where
all transitions are controllable, and the other for the case where only one transition is uncontrolled. The
conclusions and the future work are presented in chapter 6.
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Chapter 2

Basic concepts on Petri nets, continuous
Petri nets and timed continuous Petri nets

In the first three sections of this chapter basic definitions of classic Petri nets, continuous Petri nets and
timed continuous Petri nets are presented. Also, the notation that will be used along this dissertation is
introduced. These contents are mainly taken from references [4] and [7].

In the last section, a useful form of the state equation for TC PN systems under infinite server semantics
is proposed.

2.1 Petri Nets

In this section basic concepts on Petri nets are introduced. For further details see [4].

Definition 2.1 Nets, pre-sets, post-sets, subnets

Anet N is a 3-tuple (P, T, F), where P and T are two finite and disjoint sets, and F is a relation on PUT
suchthat FN(PxP)=FN(TxT)=2.

The elements of P are called places, and are graphically depicted by circles. The elements of T are called
transitions, represented by boxes. F is called the flow relation of the net, represented by arrows from places
to transitions or from transitions to places. Often, the elements of P U T are generically called nodes of N
or elements of N. The elements of F are called arcs.

Given a node = of N, the set *z = {y|(y,z) € F} is the pre-set of = and the set z* = {y|(z,y) € F} is
the post-set of x. The elements in the pre-set (post-set) of a place are its input (output) transitions. Similarly,
the elements in the pre-set (post-set) of a transition are its input (output) places.

Given a set X of nodes of N, define °*X = Uzex "z and X°® = U exz®
A triple (P1,T1, F1) is a subnet of N if Pt C P, T1 CTand F1=F N ((P' x T")U (T" x P")).

If X is a set of elements of N, then the triple (PN X, TN X,F N (X x X)) is a subnet of N, called the
subnet of N generated by X.

Figure 2.1 shows a Petri net model of some device, where:
P= {p17p2ap3’p4,p5} is the set ofplaces,
T = {t1,ts,t3,t4,1s} is the set of transitions, and

F ={(P1,t2), (P2:tl)’ (p3’t3)1 (P4,t4)’ (P4,t5), (p5,t2)y (tl,Pl), (t27p2)7 (t2,P3), (t37P4), (t41P5)9
(ts,p3)} is the flow relation.

Examples of pre- and post-sets are t3 = {p2, p3} and *{p2, p3} = {t2,5}.
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Figure 2.1 Example of a PN system.

Definition 2.2  Paths, circuits

A path in a net (P, T, F) is a nonempty sequence x...xy of nodes which satisfies (z1, z2) ,..., (Tk-1,
z) € F. A path x,...xy, is said to lead from x; to xy.

A path leading from a node x to a node y is a circuit if no element occurs more than once in it and
(y,z) € F. Observe that a sequence containing one element is a path but not a circuit, because for every
node z, (z,z) ¢ F.

A net (P, T, F) is called weakly connected (or just connected) if every two nodes z, y satisfy (z,y) €
(F U F~1)* Where for any set A, A* is the reflexive and transitive closure of A.

(P, T, F) is strongly connected if Vz,y € PUT, (z,y) € F*, i.e., for every two nodes z, y there is a path
leading from z to y.

In the example of figure 2.1, topat1 p1tops is a path and pst3pats is a circuit. The net is strongly connected.

Next definitions introduce markings and the occurrence rule (firing rule), which transform a net into a
dynamic system.

Definition 2.3 Markings

A marking of a net (P,T, F) is a mapping m : P — {NUOQ}. 4 marking is represented by the vector
[m(p1)...m(pn)]T), where p1,pa, ..., Pn is an arbitrary fixed numeration of P.

A place p is marked at a marking m if m(p) > 0. A set of places R is marked if some place of R is marked.

The total number of tokens (marks) on a set R is denoted by m(R), i.e., m(R) is the sum of all m(p) for
pER.

The null marking is the marking which maps every place to 0.

Definition 2.4 Arc weight
The arc weight is a function w : F — N, which associates a natural number to each arc.

When all arcs have weight equal to 1, the net is called ordinary.

In the graph, the weight of each arc is written near of it. When no weight is written at some arc, the weight
of that arc is taken to be equal to 1.
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Definition 2.5 Occurrence rule

A marking m enables a transition t if for every place p € *t, m(p) > w(p,t). Ift is enabled at m, then

it can occur, and its occurrence leads to the successor marking m/ (written m L m') which is defined for
every place p by

m(p) ifp¢*tandp ¢ t°
mip) = { ™®) —wp.t) ifp€’tandp ¢ t°
m(p) + w(t,p) ifp¢°tandpet®

m(p) — w(p,t) + w(t,p) ifp €° tandp € t*

(w(pin, t) tokens are removed from the place p;,, in the pre-set of t and w(t, pout) tokens are added to the
place poy: in the post-set of t).

A marking m is called dead if it enables no transition in the net.

Graphically, a marking m is represented by m(p) tokens (black dots) or the number m(p) in the place p.
The marking of the net of figure 2.1 maps p; to 4, ps to 1 and all other place to 0. Its vector representa-

tion is [ 4 01 00 ]T The transition ¢3 is enabled, and the marking reached after its occurrence is
T
[ 4 0010 ]

Definition 2.6 Occurrence sequences, reachable markings

; t t t L .
Let m be a marking of N. If m =5 my = ... 5> m,, are transition occurrences then o = tity...t, is an
occurrence sequence leading from m to m,, and it is written as m = m,,. This notion includes the empty
. € .
sequence €, i.e. m — m for every marking m.

It is written m = m', when m is reachable from m, i.e. m < m/ for some occurrence sequence o. The
set of all markings reachable from m is denoted by RS(N,m).

t t ¢ o .. ; R
Ifm = my 3 my > ... for an infinite sequence of transitions ¢ = tytats... then o is an infinite

i i 4
occurrence sequence and it is written as m —.

A sequence of transition o is enabled at a marking m if m = m/ for some marking m/ (if o is finite) or
m 5 (if o is infinite).

Definition 2.7 Pre, Post and Incidence matrices

Let N be the net (P,T, F). The Pre matrix of order |P| x |T| is defined by

. _{ 0 ine¢rF
Pre(p,?) {w(p,t) if(n,t) € F

The Post matrix of order |P| x |T| is defined by

~ 0 if(tp)¢F
Post(p,t) = { w(t,p) llf((t,l;’) eF

The incidence matrix denoted by C is defined as:

C = Pre — Post
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Similarly to the vector representations of simple mappings, the matrix representation of the incidence
matrix depends on enumerations of places and transitions.

The column vector T of C associated to a transition ¢ is denoted by t. Similarly, the row vector P
associated to a place p is denoted by p.

The entry C(p, t) corresponds to the change of the marking of the place p caused by the occurrence of the
transition ¢. Hence, if ¢ is enabled at a marking m and m L, m/ then m’ = m + t. For a generalization of
this equation to sequences of transitions the following definition is needed.

Definition 2.8 Parikh vectors of transition sequences

Let (P, T, F) be a net and let o be a finite sequence of transitions. The Parikh vector @ : T — N of o
maps every transition t of T to the number of occurrences of t in o.

The Parikh vector of the sequence tstststyts is [ 01211 ]T while the Parikh vector of the
. T
sequencetyis[1 0 0 0 O ]

Now, observe that for every transition ¢, t = Cct. Therefore, if m 4 m/, then m! = m + Ct (where m
and m/ are taken as column vectors). For an arbitrary finite occurrences sequence m = m/, m! = m + C7,
as shown in the following Lemma:

Lemma 2.1 Marking equation Lemma

For every finite sequence m = m/ of a net N the following Marking Equation holds:

m=m+C7

The proof of this result is presented in [4].

A net is static - a special kind of graph- while a Petri net is dynamic and has a behavior.

Definition 2.9  Net systems, initial and reachable markings

A net system (or just a system) is a pair (N, mg) where N is a connected net having at least one place
and one transition, and my is a marking of N called the initial marking. A marking is called reachable in a
system if it is reachable from the initial marking.

Now formal definitions of some of the properties of Petri net systems are presented.

Definition 2.10 Liveness and related properties

A system is live if, for every reachable marking m and every transition t, there exists a marking m' €
RS(N,m) which enables t. If (N, mo) is a live system, then it is said that my is a live marking of N.

A system is place-live if, for every reachable marking m and every place p, there exists a marking m/ €
RS(N,m) which marks p.

A system is deadlock-free if every reachable marking enables at least one transition; in other words, if no
dead marking can be reached from the initial marking.

Loosely speaking, a system is live if every transition can always occur again.



Petri Nets 9
Next, boundedness of systems is defined.

Definition 2.11 Bounded systems, bound of a place

A system is bounded if for every place p there is a natural number b such that m(p) < b for every reachable
marking m. If (N, mg) is a bounded system, it is said that mq is a bounded marking of N.

The bound of a place p in a bounded system (N, my) is defined as:

maz{m(p)|m € RS(N,mo)}

A system is called b-bounded if no place has a bound greater than b.

Definition 2.12  P-invariants (P-semiflows)

A P-invariant of a net N is a rational-valued solution of the equation YT - C = 0.

Proposition 2.1 Fundamental property of P-invariants

Let (N, mq) be a system, and let I be a P-invariant of N. If mg = m/, then I -m = I - my.
The proof of this result is presented in [4].

Definition 2.13  T-invariants (T-semiflows)

A T-invariant of a net N is a rational-valued solution of the equation C - X = 0.

Proposition 2.2 Fundamental property of T-invariants

Let o be a finite sequence of transitions of a net N which is enabled at a marking m. Then the Parikh
vector @ is a T-invariant iff m 5 m (i.e., iff the occurrence of o reproduces the marking m).

P-systems are systems whose transitions have exactly one input place and one output place.

Definition 2.14 P-nets, P-systems
A net is a P-net if |*t| = 1 = |t®| for every transition t.

A system (N, myq) is a P-system if N is a P-net.

The fundamental property of P-systems is that all reachable markings contain exactly the same number of
tokens. In other words, the total number of tokens of the system remains invariant under the occurrence of
transitions.

In T-systems places have exactly one input and one output transition.
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Definition 2.15  T-nets, T-systems
A net is a T-net if |*p| = 1 = |p®| for every place p.
A system (N, myp) is a T-system if N is a T-net.

The fundamental property of T-systems is that the token counts of circuits remain invariant under the
occurrence of transitions.

Another kind of net and systems well studied is that of free-choice.

Definition 2.16 Free-choice nets, free-choice systems

Anet N = (P, T, F) is free-choice if (p, t) € F implies *t x p* C F for every place p and every transition
L.

A system (N, myg) is free-choice if its underlying net N is free-choice.

The fundamental property of a free-choice net is that if a marking enables some transition of p®, where p
is a place of the net, then it enables every transition of p®

Definition 2.17 Siphons, proper siphons
A set R of places of a net is a siphon if *R C R®. A siphon is called proper if it is not an empty set.

Two important facts known about siphons are that: unmarked siphons remain unmarked, and live systems
have no unmarked proper siphons.

Definition 2.18 Traps, proper traps
A set R of places of a net is a trap if R®* C°* R. A trap is called proper if it is not the empty set.

Finally, a useful lemma, taken from [4], is presented. The proof in presented in the same reference.

Lemma 2.2 Every live and bounded system (N, mq) has a reachable marking m and an occurrence se-
quence m > m such that all transitions of N occur in o.

2.2 Continuous Petri Nets

Loosely speaking, the fluidification or continuization is a procedure in which a continuous dynamic system
is obtained from a discrete event one.

As it was mentioned in the introduction, the fluidification is one of the classical relaxations of DES
models. This relaxation can be applied to Petri Nets in order to deal with the so called state explosion
problem. The computational gain is usually increased if dealing with highly populated systems, because in
those cases the state explosion problem may become much more acute.

The firing logic of PNs is of the type consumption/serves. Thus, continuization should be introduced
through transitions, and extended to its neighborhood (input and output places). When not all transitions are
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P1

™ T2

P2
Figure 2.2 ContPN system. Only transition ¢, is enabled to fire.

continuized, the obtained model is said to be hybrid. If all the transitions are continuized the net is said to be
continuous (cont PN). This dissertation will focus only in continuous nets.

Unlike discrete PN, the amount in which a transition can be fired in cont PN s is not restricted to a natural
number, actually, a transition ¢ is enabled at m iff Vp €° t, m[p] > 0. Let us see the definition of the enabling
degree of transitions.

Definition 2.19 Enabling degree
The enabling degree of t is

enab(t,m) = min )
T TTPE prelp, 1]

The transition ¢ can fire in a certain amount @ € R, 0 < a < enab(t,m) leading to a new marking
m/ = m + aC|[P, t], where C is the incidence matrix.

If m is reachable from mg through a sequence o, a fundamental equation can be written: m = mg + Co,
where o € (R* U {0})!T! is the firing count vector.

Consider the next example.

Example 2.1 See the contP N system of figure 2.2. The enabling degree of transition t; is enab(ta, mo) =
2, and the enabling degree of t, is enab(t1,mo) = 0, so t1 cannot be fired. Suppose that transition t; is fired

in an amount of 1.5, so, after the firing the marking reached is m = [ 15 1 ]T
Next definitions are equivalents to those for discrete PN systems.

Definition 2.20 Boundedness, liveness and lim-liveness on contPN's.

A contPN is bounded when every place is bounded (Yp € P, 3b, € R withm/[p| < by, at every reachable
marking m). It is live when every transition is live (it can ultimately occur from every reachable marking).
Liveness may be extended to lim-live assuming that infinitely long sequence can be fired. A transition t is non
lim-live iff a sequence of successively reachable markings exists which converge to a marking such that none
of its successors enables a transition t.
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Definition 2.21 Structural boundedness and structural liveness.

A net is structurally bounded when (N, my) is bounded for every initial marking mo and is structurally
live when a my exists such that (N, my) is live.

Definition 2.22  P-semiflows and T-semiflows.

As in discrete PN's, left and right annulers of the incidence matrix C are called P- and T- semiflows,
respectively. The net N is conservative iff 3y > 0, y - C = 0 and it is consistent iff 3z > 0, C -z = 0.

If a contPN is consistent and all transitions are fireable, then the (lim) reachable markings are solutions
of the fundamental equation (m = mg + Co, m > 0, o > 0). Because of consistency, o > 0 can be relaxed
to o € RITI, that is equivalent to BT - m = BT - mg, m > 0 with BT a basis of P-semiflows. The set
of all reachable markings at the limit is denoted by limn — RS. Like in discrete case, nets can be classified
according to their structure.

2.3 Timed Continuous Petri Nets

Like in the discrete case, time can be associated to places, to transitions or to arcs in continuous PN's. A
simple way to introduce time in discrete PNs is to assume that all the transitions are timed with exponential
probability distribution function (pdf). For the timing interpretation of continuous PN's a first order (deter-
ministic) approximation of the discrete case should be used (see [9]), assuming that the delays associated to
the firing of transitions can be approximated by their mean values. For congested systems, this approximation
is valid for any pdf, applying the central limit theorem.

There are some interesting properties of the timed continuous PN systems that differ from that of others
continuous models. In discrete PN, the places are essentially state variables, but redundancies may exist due
to token conservation laws, this redundancies also appear in the timed continuous PN. The evolution of the
timed continuous PN, as that of the discrete PN, takes place according to the information that each transi-
tion receives from its input places. The timed continuous PN have only a flow of material that carries the
information implicitly, and evolve according to information that, in standard uses, is local to each transition.

Now, basic definitions of timed continuous Petri nets are introduced.

Definition 2.23 TCPN

A timed contPN or TCPN = (N, ) is the untimed contPN, N, together with a function A\ : T —
(RH)ITI, where \(t;) = X; is the firing rate of transition t;.

Definition 2.24 TCPN system

A TCPN system is a tuple ¥ = (N, \,mq), where (N, ) is a TCPN and my is the initial marking of
the net.

Now, the fundamental equation depends on time 7: m(7) = mg + C - (7). Deriving this equation with
respect to time, the equation obtained is: m(r) = C - (7). Using the notation f(7) = &(7) to represent the
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Figure 2.3 Example of a TCPN system.

flow of the transition with respect of time, the fundamental equation becomes: m(7) = C f(7), which can
be written in the short form:

m=C-f

but the dependence on time is considered.

Depending on the flow definition, there are many firing semantics. Finite server (or constant speed) and
infinite server (or variable speed) are the more frequently used. This dissertation is focused on infinite server
semantics (I.5S), with the flow of each transition defined by:

= ft] = Ait] min { =Pl
po= 1= i (e |
Observe that the flow of transition ¢ is proportional to its enabling degree by means of the firing rate

/\(t,‘) = M.

Remark 2.1 A TCPN under infinite server semantics is a piecewise linear system due to the minimum
operator that appears in the flow definition.

Example 2.2  Consider the net of figure 2.3. The flows of the transitions are given by:

fi = At1] - mpi]
f2 = Altz] - min(m[p], m[ps])
f3 = Alts] - min(m([ps), m[ps))
fa = Alta] - mpg]

Ifa=[111 1 ]T, for example, then:
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[ mp1] = f2 — f1 = mpa] — mp1]

mlp2] = f1 — f» = m[p1] — min(m[p2], m[ps])

J mps] = f3 — f2 = min(m[ps], m[ps]) — min(m[p,], m[ps])
721[1’4] = f2 — f3 = min(m[p,], m[p3]) — min(m[p4], m[ps])
T[PSJ = fa — f3 = m[pe| — min(m/[p4], m[ps])

| m[ps] = f3 — fi = min(m[p4], m[ps]) — m[pe]

Thus, nonlinearity appears due to synchronization (|*¢| > 1). One linear system is defined by the set of
arcs in Pre limiting the firing of the transitions.

Definition 2.25 Constraint on the dynamics of a transition

Let X = (N,\,mg) be a TCPN and m a reachable marking. It will be said that the arc (p, t) constraints
the dynamic of t at m iff

=2t {p—:’;%}

Definition 2.26 Configuration
A configuration of ¥ at m is a set of (p, t) arcs describing the effective flow of all the transitions.

So, a configuration is a cover of T by its inputs arcs. One possible representation of a given configuration
is a matrix form, © € {0, 1}PIxITI;

. 1_J 1 ifp; is limiting the flow of ¢;
Olpi. tj] = { 0 otherwise

Obviously, © < Pre, even if the net is ordinary (i.e. all arcs have weight one). Each configuration defines

an associated linear system.

Example 2.3 Let us consider the net of figure 2.3 with A\ = [ 1111 ]T. As it was seen in previous
example, this is a piecewise linear system. For the configuration {(p1,t1), (p2,t2), (s, t3). (ps, te)}, m[p2] <
m(ps] and m[ps] < m[ps). Then the active linear system is:

( hlpr] = mlpa] - mipi]
hlpa] = mipy] = mipo
lpa] = mips] - mipa
hlpa] = mipa] - mips
lps] = mip] — mips
[ hips] = mlps] — mipe]

or in matrix form:
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-m 2.1

Se

I
OO0 =~
OO = = =
cococooOoCo
[ = I o e B o I ]

|
—_ -0 O
-0 000

Now, let us consider the configuration {(pi, t1), (P2, t2), (Pa,t3), (P6, te)}. Thenm[ps] > m[ps] andm[po] <
m/[p3] and the linear system associated is:

( rhlps) = mipa] — mip]
lpa] = mlps] - mips]
lpa] = mps] —~ mipa]

A

72‘[1’4] = m[pz] — m[p4]
7:"[1’5] = m[ps] — m|[p4]
m[ps] = m[ps] — m[pe]

or in matrix form:

.m (22

OO0 O -
O O = = =
[ M I = I = i B e}
|
N W = I
(=N = I i e i )
-0 000

Observe that, depending on the marking of the places, the evolution of the system will be given by one or
other linear system. Equation (2.1) and (2.2) describe two of these different linear systems.

Any (reachable) marking defines a configuration. When the marking of several places are limiting the
firing of the same transition, any of the associated linear systems can be used.

The number of minimal configurations (i.e. only one constraining arc per transition is taken) is bound by

the net structure (i.e. it does not depend on the marking) and is equal to H [t:]-
t;€T

Definition 2.27 Matrix H
H = [h;;) is |T| x | P| matrix, where

hi,j _ { P_rel[:ﬂ ifPre[j,z'] >0

0  otherwise

Observe that matrix H is just the transposed of the matrix Pre where the non null elements are not
Pre[p, t] but their inverses.
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Definition 2.28 Matrix operator ©

Let R, W and E be three matrices with identical dimensions. The matrix operator © is defined as:
R=WOQE, wherer; ; = w;j - e; ;.

Definition 2.29 Configuration operator
The configuration operator is the function I1 : RS(N, mq) — RITIX 1P| such that:

I(m) =o(m)® H

where O(m) is the matrix representing the configuration associated to m.

The configuration operator associated to every marking m a matrix |T'| x | P|, such that eachrow ¢ = 1.. |T|
has only one non null element in the position j that corresponds to the place p; that restricts the flow of
transition ¢;. The product II(m) - m(7) is the enabling degree of each transition at time 7, enab(7).

Definition 2.30 Maximum firing rate matrix

The maximum firing rate matrix is denoted by: A = diag(M1, ..., \i1)).

Remark 2.2 According to this notation, the flow vector and the fundamental equation are:

f = A-II(m)-m

m = C-A-II(m)-m
The only action that can be applied to a TC PN system is to slow down their firing flow.

Definition 2.31 Controllable transition and uncontrolled transition

If the flow of a transition t can be reduced or even stopped, it will be said that t is a controllable transition,
otherwise t is an uncontrolled transition.

The forced flow of a controllable transition ¢; becomes f; —u;, where f; is the flow of the unforced system
(i.e. without control) and w is the control action, with 0 < u; < f;. The controlled flow vector is:

f=A-TI(m) - m—u

where u; = 0 if t; is not a controllable transition. Thus the state equation of a controlled TCPN system
becomes:

{7;L=C-(A~H(m)-m—u) 23)

0<u<A-II(m) -m
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2.4 Rewriting the state equation

In order to obtain a simplified version of the state equation, the input vector u is rewritten as:

u = I,AII(m)m 24)

where I, = diag(ly,, luy, .-, Iu,) and I,, € [0, ..., 1].

The meaning of I,,; is the normalized breaking factor of transition ¢;, in this case 0 < I,,; < 1. Substituting
(2.4) into (2.3) results:

m = C(I — I,)AII(m)m

where I is the unit matrix.

Defining the matrix I, = I — I,,, (notice that I, € [0, ..., 1]), the TCPN state equation is rewritten as:

m = CI,AIl(m)m (2.5)

The matrix I, is the new input and represents the actual percentage of transition firings. Notice that I, is
a diagonal matrix and 0 < I, < 1.
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Chapter 3

State variables and state space

The main topic in this dissertation is the study of controllability on TCPN systems. As it was presented
in section 2.2, a TC' PN is built through a procedure from a discrete PN.

Before starting the study of controllability, the concept of controllability for TCPN systems must be
clearly defined. Since TC PN systems are continuous, the concept proposed in this dissertation is similar to
that of continuous systems.

In continuous systems the definition of controllability is based on the concept of state, actually, the concept
of state is basic in the theory of continuous systems, but, unfortunately, it differs from the concept of state for
discrete event systems.

This is the main reason to review the definitions of state, state variable and state space of both continuous
and discrete event systems, and to try to find the common underlaying idea of those definitions.

In the first section of this chapter, a brief discussion of the concepts of staje and state variables is presented.
In the second section, some results on reachability obtained from [6] are presented. In the last two sections,
the admissible states set is defined and characterized, also a minimum order state equation, which is valid in
this set, is obtained.

3.1 State and state variables

In this section, classic definitions of state, state variable and state space of linear continuous-time systems
and discrete event systems are compared. These definitions are mainly taken from [16], [3] and [15].

Valve 1

&

Water level

l Valve 2

Figure 3.1 Water tank with an input flow and an output flow.

For discrete event systems, the states and state variables are usually defined directly from the physical
system during the modelization, and once the states and the state variables are defined, the state space appears
naturally. In other way, there is a formal definition of state through the Nerode equivalence relation.
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Figure 3.2 PN system that models the physical system of figure 3.1.

In order to illustrate this, see the next example.

Example 3.1 Consider the physical system of figure 3.1.

In this system, the water level in the tank is the variable of interest. Three different levels or “states”
named: high, medium and low, can be distinguished. The initial state is high. So, the state variable is the
water level, and the state space is {high, medium, low}. The level can change from high to medium by the
flow of the second valve, when this happen it is said that event d, occurs. Similarly, event dz occurs when
level change from medium to low, event uy when level raise from medium to high, and event uy when level
raise from low to medium.

At this point, we are able to model this physical system into a PN system, as shown in figure 3.2, but here
we are interested in a formal definition of state and state variable, so, we will use a linguistic interpretation
of the system.

The language of the system (the sequences of events that may happen in the system), denoted by L,
includes words like: {e, diu1, d1, diu1di, d1da, diu1dida, did2uady, ...}. This language defines the states
of the system through the Nerode relation.

Figure 3.3 Partition of £* under Nerode equivalence relation.
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[d,d:]

Figure 3.4 PN system formally obtained.

Definition 3.1 Nerode equivalence relation

Let L C X* be an arbitrary language, where X is its alphabet. The Nerode equivalence relation on ©*
with respect to L is defined as follows.

Fors,teX*, s=  tiffVvue L%, su€ Lifftue L.

In other words s =; t iff s and ¢ can be continued in exactly the same way to form a string of L.

Since this is an equivalence relation, it makes a partition of £* (see figure 3.3). Now a formal definition
of state can be introduced.

Definition 3.2 State in discrete event systems.

An state of a discrete event system is an equivalence class or cluster of ©* under the Nerode equivalence
relation.

Loosely speaking, the state variable is a function that takes values on the set of all the states (range of the
state variable). Finally, considering only the states in which the words belong to the language, and the events,
which makes a state change, as transitions, the model of figure 3.4 can be built .

Notice that this PN system is equal to that of figure 3.2, but now the state and the state space (the range
of the state vanable for this example) are formally defined.

Loosely speaking, a state in a discrete event system is a set of the physical states (physical situations or
conditions) for which the observer variables (output variables ) evolve in the same way.

Now, the state definition for continuous systems will be reviewed. The state of a continuous system at
time instant ¢ should describe its behavior at that instant in some measurable way. In system theory, the term
state has a much more precise meaning and constitutes the comerstone of the modeling process and many
analytical techniques.

See the next example.
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u(0) = }'(i{

Figure 3.5 Example of a continuous system.

Example 3.2 Consider the system of figure 3.5. Suppose that at time t = 0 the mass is displaced from its
rest position by an amount uw(0) = ug > 0 and released it. Let the displacement at any time t > 0 be denoted
by y(t). It is known, from simple mechanics, that the motion of the mass defines an harmonic oscillation
described by the second-order differential equation:

Now, suppose that the output y(t) is observed at some time t = t; > to. Mathematically, from the
equation (3.1), it is clear that it cannot be solved for y(¢; + 7) with only one initial condition, i.e. y(¢); also
information about the first derivative y(t, ) is needed .

Observe that together y(t;) and 9(¢;) provide the information required which, along with full knowledge
of the input function, allows to obtain a unique solution and hence the value of y(t; + 7). This leads to the
well-known state definition for continuous time systems.

Definition 3.3  State and state variables in continuous time systems.

The state of a system at time t is the information required at to such that the output y(t), for all t > to, is
uniquely determined from this information and from u(t), t > t.

Like the input u(t) and the output y(t), the state is also generally a vector, commonly denoted by z(t).
The components of this vector are called state variables.

Notice that, according to previous definition, the state and the state variables are conceptually equivalents.

Now, let us introduce the term “state space”.

Definition 3.4 The state space in continuous time systems.

The state space of a system, usually denoted by X, is the set of all possible values that the state may take.

In example 3.2, the state variables have a physical meaning, those are the position and the velocity of the
mass. However, for a general case, sometimes the state variables have not a physical meaning. In fact, in
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some identification techniques only the number of state variables is proposed and the identification process
determines the relation between those and the input and output variables, so the state variables are not physical
variables. However, they are related to some physical variables so they are needed to model the dynamics of
the physical system. The state variables act like dynamic memory elements in the dynamics of the physical
system.

At this point, we can notice that the state definition of both continuous and discrete event systems are
clearly different. So, now we propose the following definition of state variable, which can cover both previous
definitions.

Definition 3.5 Concept of state variable.

An state variable is a function that captures a dimensional property, not necessary measurable, of the
physical system as a value of a set named range of the state variable. The set of all the state variables must
be sufficient to build a dynamic model of the physical system.

It is easy to see that this concept agrees with the definition of state variable in continuous systems. In
those, the dimensional properties can be physical variables such as position, velocity, temperature, pressure,
etc., or physically meaningless variables, but even in this case there must exist something in the physical
system related to the value assigned to this variable which is necessary for the dynamic behavior. The range
of those variables is the set of real numbers.

So, in the continuous system, the “state” is the function named state variable.

For the example 3.1, which is modeled as a discrete event system, the dimensional property is the water
level, and the range of it is the set {high, medium, low}. In discrete event systems, the state is a value that the
state variable can take.

Now, we will focus in the transformation that the state variable suffers when a D E'S model is fluidificated.

Notice that in PN systems, the states, as Heﬁncd in the DES definition, are codified as given marking
distributions, and t_he state variable is codified as the marking (as a function).

For the example of the water tank, the range of the state variable (or the states, according to DES defini-
tions) is equivalent to the set:

1 0 0
0 1 0
0 0 1

which correspond to high, medium and low, respectively.

After fluidification, a continuous system is obtained in which a marking such that m =[0.1, 0.8, 0.1]T
may exist. The distribution of markings that can be generated by this continuous Petri net is shown in figure
3.6, where the places p;, p2 and p3 correspond to those labeled as high, medium and low, respectively, in
figure 3.2.

Now, the range of the state variable is isomorphic to R2, not to a finite set of markings like in DES
systems. Besides, in continuous systems the range of a state variable is R. Notice that after the fluidification,
the marking does not have a direct meaning of the physical situation of the plant, so it cannot be said that a set
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Figure 3.6 The shadowed triangle constitutes the set of markings that can be generated by the contPN.

of state variables is codified into the marking of the TC PN system because there does not exist a function
that maps from the physical system to the marking in the TC PN system. Therefore, it cannot be said that
the marking of a set of places in the TC PN system is a state variable.

Since the TC PN is a continuous model, we will use the continuous linear systems theory concepts to
study the controllability in this, therefore, we need that the state variables (as defined in continuous systems)
be isomorphic to R. So, for TCPN systems, we will consider the marking of a place, which is isomorphic
to R, as a state variable, but we have to keep in mind that it is not, formally speaking, a state variable of the
system.

3.2 Reachability in continuous Petri nets

In this section, some results on reachability obtained by Jilvez, Recalde and Silva [6] are presented . First,
consider the case of untimed continuous Petri net.

The set of all reachable markings for a given system (N, mg) is denoted by RS(N, my).

Definition 3.6 The set of all reachable markings

. ayte agty
RS(N,mgo) ={m)| a finite fireable sequence 0 = a1y, ..xtq, exists such that mg Sy S my

ta
5% my = m whereto, € T and a; € RY)

An interesting property of RS(IV, my) is that it is a convex set (see [10]). That is, if two markings m; and
me are reachable, then for any o € (0, 1], am; + (1 — a)my is also a reachable marking.

Consider the system in figure 3.7 with initial markingmo = [ 0.5 0.5 0 0.5 ]T At this marking
either transition ¢, or transition t3 can be fired. The firing of ¢3 in an amount of 0.5 makes the system evolve
to marking [ 0.5 0.5 0.5 0 ]T from which t2 can be fired in an amount of 0.25 leading to marking
[05 05 0 025 ]T Now, the markings of places p;, p2 and p3 are the same that those of the system
at my, but the marking of p4 is half of its marking at mo. The continuous firing of transition ¢2 and t3 by its
maximum enabling degree causes the elimination of half of the marking of ps. Assume that it goes on firing
transitions ¢, and t3. Then, as the number of firings increases the marking of p4 approaches 0, value that will
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Figure 3.7 Autonomous continuous system and its lim-reachability space.

be reached only in the limit. The marking reached in the limit is [ 05 05 0 0 ]T. Now, the set of such
markings will be defined, i.e. the markings that are reachable with a finite/infinite firing sequence:

Definition 3.7 The set of lim-reachable markings

Let (N,my) be a continuous system. A markingm € (Rt U {0})\P| is lim-reachable, iff a sequence of
reachable markings {m;}i>1 exists such that

4 o o
mo 3 my 3 ma... M;—1 - m;...

and lim;_,.om; = m. The lim-reachable space is the set of lim-reachable markings, and it will be denoted
lim — RS(N, mo).

Consider again the system of figure 3.7. It is not necessary to represent the marking of place p, since
m; = 1 — mgy. The set of lim-reachable markings is composed of the points inside the prism, the points in
the non shadowed sides, the points in the thick edges and the points in the non circled vertices.

The set of reachable markings, RS(IN,my) is a subset of the set of lim-reachable markings, lim —
RS(N,my), and for some systems both sets are identical.

Both RS(N,mg) and lim — RS(N, mg) are not in general closed sets. Consider the system of figure 3.8.
In this figure, the points on the segment going from (0,0) to (0, 1) do neither belong to RS(IN,mg) nor to
lim — RS(N,my). Nevertheless, any point on the right of this segment belong to both sets.

Definition 3.8 Closure of a set

For a given set A, the closure of A is equal to the points in A plus those points which are infinitely close
to points in A, but are not contained in A.

The set 6-reachable markings will be written as § — RS(IN, mo) and accounts for those markings to which
the system can get as closed as desired firing a finite sequence. Formally:
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Figure 3.8 Autonomous continuous system and its reachability and lim-reachability spaces.

Definition 3.9  The set of §-reachable markings

§ — RS(N,myp) is the closure of RS(N,mg) : § — RS(N,mg) = {m| for every ¢ > 0 a marking
m’ € RS(N,myp) exists such |m' —m| < €}.

Since the closure of RS(IN, my) is equal to the closure of lim — RS(N, mg), § — RS(IV, my) is also equal
to the set of markings to which the system can get as close as desired firing an infinite sequence. RS(IN, mq)
and lim — RS(N,my) are, therefore, subsets of § — RS(N, mp).

Therefore, until now three different kinds of reachability concepts have been defined:

- Markings that are reachable with a finite firing sequence, RS(N, my).

- Markings to which the system converges, eventually, with an infinitely long sequence, lim—RS(N, mo).
- Markings to which the system can get as close as desired with a finite sequence, § — RS(N, my).

These reachability spaces can be fully characterized using, among other elements, the state equation.
Moreover, it is decidable whether a marking is reachable according to each concept. Furthermore, there is an
inclusion relationship among the sets of markings : RS(N,mg) C lim — RS(N,mp) C § — RS(N,my).
The only difference among these sets are in the border points of the spaces (i.e., the convex hull).

Full characterization of each reachability space can be seen in [6].

For TC PN systems, consider the following definition of reachability.

Definition 3.10 Reachability for TC PN systems.

Given a TCPN system (N, my), the set of all reachable markings (RS;) is defined as RS;(N,mg) =
{my|3u(r) suitable bounded such that mo = my in finite time}.

A marking that belongs to RS; (N, my) is said to be reachable. Like in the untimed case, the sets lim— RS,
and 6 — RS; are defined.

When all transitions are controllable, there is an important result about reachability introduced in [7].
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Proposition 3.1 Equivalence of lim-reachable sets of timed and untimed contPN s

Given a TCPN system, if all transitions are controllable, then all the reachable markings of the untimed
contPN can be reached in the timed model, maybe at the limit. (lim — RS, = lim — RS).

In the general case in which there exist uncontrolled transitions the reachability spaces presented in this
section are not characterized. Even deciding whether a given marking m is reachable or not is a difficult task.

In the next chapters, the notation RS(N, mg) will be used for the reachable set of the timed continuous
systems.

3.3 Admissible states set and reachable states set

As it was presented in previous section, the characterization of the reachability space is a difficult task
because it strongly depends on the initial marking. So, the reachability and controllability problems will be
studied with a different approach in this dissertation.

In this way, we will propose a set of markings to study if that set is reachable from the initial marking, and
if the system is controllable on it.

As it was presented in section 3.1 we consider the marking of each place as a state variable. Then the range
of a state variable is a subset of R. Considering that the state space of a continuous system is the cartesian
product of the ranges of the state variables, and that the markings of every place are defined as positives, we
introduce next definition:

Definition 3.11 Structural admissible states set
Let N beaTCPN The structural admissible states set is defined as SASS(N) = {R* U {0}}/P!

Given a general TC PN system (N, mg), not always all markings in SASS(N) belong to the state space
of that system, as it can be seen in the system of figure 3.9. However, all reachable markings belong to
SASS(N). (ie., lim — RS(N,mg) C SASS(N)). Actually, when N is conservative, i.e. it has P-
semiflows, there exists a static relation between markings of the places which belong to the same P-semiflow.
It causes that the lim— RS(N, m) be an invariant subset of SASS(NV). In order to characterize this invariant
set, we introduce next definitions.

Definition 3.12 Relation

Let N be a TCPN Let B be the base of the left annuller of the incidence matrix C. The relation
B:SASS(N) — SASS(N), is defined as:

maBmy iff BTm, = BTmy, Vmy,my; € SASS(N)

Notice that 3 is an equivalence relation so it makes a partition of SASS(N).

Definition 3.13  System admissible states set

Let (N,mq) be a TCPN system. The system admissible states set is the equivalent class of the initial
marking Class(mg) under B.
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.

Figure 3.9 A TCPN system, its SASS(N) and its Class(my).

The Class(my) set is not equivalent to the sets of all reachable markings RS(N, myp), lim — RS(N, myp),
or § — RS(N, mp) defined by Julvez, Recalde and Silva [6].

In order to illustrate previous definitions see the figure 3.9, in this example, SASS(N) = {R* U {0}}3;
the shadowed surface corresponds to Class(mg). Notice that m, belongs to Class(mg) but is not reachable
from my in finite or infinite time, i.e. myq ¢ lim — RS(N,my).

Since every reachable marking of the TC PN system (N, mg) must fulfill that BTm = BTm (because
the P-semiflows) and Class(my) is the greatest set of nonnegative markings that fulfills this condition, then
ltm — RS(N, mp) C Class(my).

So, we have defined the set Class(mg) which includes the set limn — RS(N, my). Notice that Class(mg)
is easier to characterize than lim — RS(IN,mo). In next chapter, we will study when either Class(my) or a
subset of Class(mg) (which will be subsequently defined) is reachable and the system is controllable on it.

3.4 The minimum order state equation

Consider a conservative TCPN system. Let {m}, m5, ..., m}} be the set of the markings that belong to
the i — th P — semi flow, therefore:

mi+ms+..+mi=K KeN (3.2)
Deriving previous equation, the following equation is obtained:
ol ot X
my+my+..+my=0

Thus, the marking dynamics can be computed using g—1 places and the conservative marking law imposed
by the i — th P — semi flow.

In order to obtain a TC PN minimum state equation, it is needed to eliminate the linearly dependent rows
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of the incidence matrix C, such that the rank of C is preserved. Let m,, be the state of the TC PN minimum
state equation, then m,,,(7) is a projection of m(7), i.e.:

m, = Pm 3.3)
where P is a projection matrix; P is, in general, not invertible. In order to obtain m(7) from m.,(7) the
following equation is used:

5] [5] -

So, there is a bijection between m(7) and m,, (7). Notice that BT m is constant and contains the information
of the P-semiflows. Now, let define the function G such that:

G(mm(7)) = I(m)m(r) (3.5)

Finally, the TC PN minimum state equation is written as:

Mm = CnIAG(1y) (3.6)

where m,,, (7) is the minimum state vector. This equation does not represent a minimum model of the net
because the P — Semi flows are also needed to compute the whole TC PN marking.

Matrices I and A are the previously defined ones, while C,,, = PC.

Definition 3.14 Minimum order Class of equivalence.

Let (N,mg) beaTCPN system. The minimum order Class of equivalence of my is defined as Class,(mg) =
{mm|mm = Pm,m € Class(my)}.

Proposition 3.2  Characterization of the interior of Classm(my).

Let m = [my,ma,...,mp||T € Class(mg) be a marking. Vi m; # 0 iff mm is an interior point of
Class,(my).

Proposition 3.3  Equivalence of solutions of the state equation and the minimum state equation.

An input u transfers the state m from mg € Class(mg) to m; € Class(myg) at time t, iff u transfers the
state My, from M, 10 My, at time t,. Where mp,, = P mg and m,,, = Pm, .

Proof Let (N, mg) be a TCPN system. Consider the state equation of the system as the equation (2.5),
and its minimum order state equation as the equation (3.6). Let m,,, be the minimum initial marking. Now,
suppose that the input Ic is applied to both the state equation and the minimum order state equation, then the
marking reached by the state equation at time ¢, fulfills with

ty
ml(tl) =mg + CA/ ICII(m)mdt (3.7)
0

and the marking reached by the minimum order state equation at the same time fulfills with
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t1
Mm1(t1) = Mmg + CA [ I.G(myp,)dt. (3.8)
0

For the necessity, premultiplying the equation (3.7) by the projection matrix P, and according to equations
((3.3)) and ((3.5)), the next equation is obtained.

t1
Pmy =mm, + CnAA I.G(my,)dt

to

Comparing to equation (3.8), then m,, = Pm;.

For the sufficiency, follow the same reasoning and the fact that mg and m; can be obtained from m,,, and
M, With the equation (3.4). W
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Chapter 4

Controllability

For classical linear systems controllability has been thoroughly studied. Although TCPN systems are
continuous systems, the classical linear systems definition of controllability cannot be applied to TCPN
systems because the required hypothesis are not fulfilled, i.e. the input should be unbounded and the state
space should be R!”1,

However, an interpretation of the controllability of TCPN systems under that definition is first presented
in this chapter, before introducing a new controllability definition. This interpretation is taken from [7].

The linear system controllability classical definition is the following.

Definition 4.1 Controliability for linear continuous-time systems.

An state equation is fully controllable if there exists an input such that for any two states T, and z3 of the
state space, it is possible to transfer the state from x, to x2 in finite time. Otherwise the state equation is
uncontrollable.

Notice that the reachable markings of a TC PN system does not form a state space (vector space) and the
input of TC PN systems must be positive and bounded. Contrary to linear continuous-time systems in which
the state space is a vector space and it does not exist any constraint imposed to the input.

In system theory, a very well-known controllability criterion exists which allows to verify whether a con-
tinuous linear system is controllable or not, for this, let us introduce the controllability matrix:

Definition 4.2  Controllability matrix.
Given a linear system (1) = A - z(1) + B - u(r), the controllability matrix is defined as:

C=[B,..,A*B,..,A""!B]

Then, next proposition gives sufficient and necessary conditions to controllability in linear continuous
systems:

Proposition 4.1 Controllability of a linear continuous-time system.

A linear continuous-time system (1) = A-z(t)+ B-u(r) is completely controllable iff the controllability
matrix C has full rank. If C is not a full rank matrix then the system has only rank(C) controllable state
variables.

For TCPN systems, every II(m) leads to a linear and time-invariant dynamic system with controllability
matrix C(m). Considering the state equation as in (2.3), the controllability matrix is:



32 Chapter 4 Controllability

C(m) =[C, ..., (C- A -TI(m))*" . C]

Proposition 4.2  Equivalence of spaces generated for C(m) and C.

If all transitions are controllable, Ym, the space generated by the columns of C(m) and C are equal. Thus
rank(C(m)) = rank(C) = |P| — dim(B).

Proof Observethat (C-A-II(m))*1-C=C-(C-A-II(m))*L. Thus, rank(C) = rank(C). B

Notice that C(m) depends on II(m), but the space generated by its columns is always the same, just that
one defined by that of matrix C. Thus is something that can be easily expected because all transitions have
been assumed to be controllable.

Nets with at least one P-semiflow are non controllable in the classical sense of dynamic system for any
firing rate X and any initial marking mg. P-semiflows based token conservation laws make |P| — rank(C)
places linearly-redundant. As it was presented in section 3.3, this token conservation laws causes that the
reachable space be an invariant subset of SASS(N) of dimension rank(C). The difference between the
dimension of the space generated by C and the number of the states variables | P| corresponds to the |P| —
rank(C) zero valued poles of the TCPN system, described in [7]. This zero valued poles, which also are
uncontrollable, are eliminated in the minimum order state equation.

In the next section we propose a definition of controllability for TC PN systems as an adaptation of the
classical linear continuous-time systems controllability definition. In the second section of this chapter we
study the controllability in TC PN systems where all transitions are controllable. Finally, in the last section
we study the controllability for the case with uncontrolled transitions.

4.1 Definitions

Now, we propose a definition of controllability which is an adaptation of that for linear continuous systems.

Definition 4.3  Fully controllability with bounded input BIFC.

Let (N, mo) be a TCPN system. (N, mg) is fully controllable with bounded input (BIFC) if there is an
input such that for any two markings my, mo € Class(my), it is possible to transfer the marking from m, to
my and the input fulfills that 0 < u; < [AIL(m)m); along the trajectory.

This controllability definition can be restricted to a set of states.

Definition 4.4  Controllability with bounded input BIC.

Let (N,mg) be a TCPN system. The TCPN system is controllable with bounded input (BIC) over
S C Class(my) if there is an input such that for any two states m1,ma € S it is possible to transfer the
state from m to my and the input fulfills that 0 < u; < [AII(m)m)]; along the trajectory.

As we demonstrated in section 3.4, there exists an equivalence between the solutions of both the state
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equation and the minimum state equation. Now, next proposition shows the equivalence of controllability for
both equations.

Proposition 4.3  Equivalence of controllability for the state equation and the minimum state equation.

Let (N,mg) be a TCPN system. Consider the state equation of the system as equation (2.5), and its
minimum state equation as (3.6) with initial condition m.,, = Pmg. The system (N,m) is BIFC iff its
minimum state equation is fully controllable over Class,,(mo) and I, € (0, 1] along the trajectory.

Proof  (Sufficiency). Let m, and m; be any two markings that belong to Class(my). Let my,, and mp,
be two markings that belong to Class,,(my) such that mp,, = Pm; and m,,, = Pm,. By hypothesis, the
minimum state equation is fully controllable over Classm, (my) so there is an input u that transfers m; to mq
and 0 < u < AG(my,), i.e. 0 < u < All(m)m. According to proposition 3.3, the same input u transfers the
state from myq to m;, therefore the system is BIFC. The necessity follows from a similar reasoning. ll

Next definition introduces an important concept for the study of continuous systems, which will be very
useful for the study of controllability in case of existing uncontrolled transitions.

Definition 4.5 Equilibrium points.

Let (N,mg) be a TCPN system. Let mq € RS(N,mp) and 0 < ud < A - II(mg) - ma. Then (mq,uq)
is an equilibrium point if mq(uq) = 0.

An equilibrium point represents a state in which the system can be maintained using the defined control
action. Given an initial marking mg and a required marking m4, one control problem is to reach and maintain
mq. From definition, a marking my is an equilibrium marking if C - (A - II(mg) - mq — ug) = 0. Therefore,
the flow of a controlled TC' PN in the equilibrium marking mg, with u4 as input, is a T-semiflow.

A broad study of equilibrium points in TC PN systems can be found in [7].

4.2 The case of all transitions as controllable

In this section we will study the controllability of TCPN systems, according to the definitions of the
previous section, for the case in which all transitions are controllable.

Next theorem gives sufficient and necessary conditions to verify whether a TCPN system is BIC over
the interior of Class(my) or not.

Theorem 4.1 Controllability over the interior of Class(my).

Let (N, mg) be a TCPN system. Consider the minimum state equation of the net as in equation (3.6),
and let . be the order of the minimum state equation. Let S be the set of all interior points of Class,, (mo).
The system (N, mq) is BIC over S iffVd € R™ 3v € {R* U {0}}!T! such that C,v = d.
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Proof  According to proposition 3.2, Vm,,, € S its elements are non zero. (Sufficiency) Let d be any vector
in R™, by hypothesis Jv € {R* U {0}}!7! such that C,,v = d. The vector G(m,y,) can be written as:

™
G(mp) =M(m)m = | ™2 (.1

)

By hypothesis Vi, m; # 0, then m; # 0. From definition A = diag(A1, Az, ..., A7) and I = diag(Ie,, Ieys s Izy)

so the column vector [I.AG(m,,)] can be written as:
Ieidmy
LAG(mp) = | Te2P2m 42)
Lo\ My

Notice that it is always possible to independently change all the elements of the vector [I.AG(my,)]
through I, so there exists a factor « € R* — {0} and an input I with I; € [0, 1] such that:

av = I.AG(m,,)

Applying to the minimum state equation:

My = Cpav

and by sufficiency hypothesis:

My = ad

Therefore it is always possible to direct the field vector in all m,, € Class,(mo) to any desired direction
d, and then to follow any trajectory in Classm(my), and due the convexity of Class,,(my), there is a
trajectory from myy, to any.my,, € Classm,(mop). Finally, the minimum state equation is fully controllable,
besides I, € [0, 1], then the system (N, my) is BIFC.

(Necessity). For the following reasoning, refer to the figure 4.1.

By hypothesis, 3d € R" such that Vv € {R* U {0}}71, C,,v # d (i.e. the vector d is not a positive
linear combination of the columns of Cy, ).

Suppose that d is such that all the elements of CZ,d are not positive, (if it is not the case, a new vector d’ 5
such that all the elements of CT d’ are non positive, can be found from d eliminating its positive components
in the directions of the columns of C,y,).

Let ¢ be an interior point of Class,,(mo), let s be the perpendicular plane to the direction of d that passes
through ¢, then s divides Classm (mo) in two regions, named Qt and Q~, where (d + q) € Q* Then:

YpeQt fT.d>0where f=p—gq

It means that there is a positive component of f in the direction of d, then f is not a positive linear
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P2 P2

Figure 4.1 A TCPN system and its Class(my) set.

combination of the columns of C,,,, so:

vwe R Cv#f

Since I, AG(m,,) € R*IT!, then:

CmIAG(mp) = My, # af wherea € R — {0}, I, € [0,1]

Therefore it is not possible to direct the field vector Mmin s to any point p € Q¥ (i.e. it is not possible to
cross s to Q) then Q7 is not reachable from g, and the system (N, mg) is not BIFC. B

Next theorem provides a condition of controllability easier to test than the condition which is required in
the theorem 4.1.

Theorem 4.2  Equivalent condition of controllability.

vd € R", 3v € {R* U {0}}T! such that Crpv = d iff 3k € kera(Cr), k € RH\T\, where kera(Cm) is
the right annuller of Cy,,.

Proof  (Sufficiency). By hypothesis 3k € keryq(Cr), k € RY1T. Let Cp,r be a matrix built with the first
n linearly independents columns of Cy,, then Cy, is not singular, therefore:

Vd € R™ 3v € R" such that Cp,jv =d

Now, let w be a column vector of order |T|, such that w; = v; if the ¢ column of Cy, is in Cy,y, and w; = 0
otherwise. Then C,,w = d. Let wy,j, be the minimum element of w. In case of wyi, < 0, there is a scalar
a € R such that all the elements of the vector £ = w — awni.k are nonnegative, and C,,z = d; in other
€ase Wmin > 0, thenw € {R* U {0}}I7.

(Necessity). Suppose that Vk € kery(Cr), k ¢ RHITI. Letbe v € R~IT! | i.e. all the elements of v are
negative.
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Let d = Cpv. Since Vw € R!T! such that C,yw = d it happens that w = v + k, k € kerg(Cr), but
k ¢ R*ITl and v € R™IT!, then w ¢ R*IT!. Therefore, there is d such that, Vv that fulfills Crnv = d, it
happens that v ¢ {R* U {0}}/7. B

An useful consequence from the proof of the theorem 4.1 is introduced in the next theorem which provides
necessary and sufficient conditions for reachability.

Theorem 4.3 Reachability.

Let (N,mo) be a TCPN system. Consider the minimum state equation of the net as in equation (3.6), and
let n. be the order of the minimum state equation. Let S C Class,,(mq) be a convex set such that Ymy, € S
its elements are nonzero. The marking mumq € S is reachable from mp,, € S iff v € {R* U {0O}}T! such
that Crnv = (Mmd — Mimg ).

Proof (Sufficiency) Let v € {R+ U {0}}!7! such that Crpv = (Mg — M, ). Consider the column vector
[I.AG(my,)] as in equation (4.2), then it is always possible to independently change all the elements of the
vector [I,AG(m,,)] through I, so there is a factor & € Rt — {0} and an input I, with I; € [0, 1] such that:

av = [, AG(my,)
Applying to the minimum state equation:
My, = Chav
and by hypothesis:
Mo, = (Mg — Mimy)

Therefore it is always possible to direct the field vector in all m,,, € S (including L = {mp,|mpy, = ymm, +
(1 — ¥)Mma, 7y € [0,1]}) to the direction (mmg — Mm, ), and due the convexity of S, to reach m,, 4 through
L. (Necessity). Follow the same reasoning as the proof of the theorem 4.1, with d = (mma — Mm,). B

Notice that the previous theorem provides conditions of reachability whenever the system is BIF'C or
not.

Figure 42 ATCPN system and its Classm (mo). The marking m, is reachable from mq, but the marking
M is not.

The controllability and reachability can be understood from a graphical point of view. Consider the system
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of the figure 4.2. The columns of the matrix Cy, are C,,,; and Cpn2. Notice that the vector (m; — myg) is a
positive linear combination of C,,; and C,,.and since the vector field is a positive linear combination of the
columns of Cy,,, then m, is reachable from mg, and therefore all the points in the shadowed area compose
the set of all reachable markings. The vector (m2 — myg) is not a positive linear combination of the columns
of C,,,, then mg, is not reachable from my.

Now, consider the system of figure 4.3. The net of this system is similar to that of figure 4.2 but it has
another transition. In this system, the vector (my — myg) is a positive linear combination of the columns of
Cin, actually all vectors in R? can be considered as a positive linear combination of the columns of C, so,
this is a BIFC system.

Figure 4.3 A TCP Nsystem. The columns of the matrix Cy, cover all Class,,(my), and then this system is
BIFC.

Next theorem study the possibility of transferring the marking from a border point to an interior point of
Classm(mp).

Theorem 4.4  Controllability at border points.

Let (N,mg) be a TCPN system, such that it is live and bounded as discrete. Let mg be a marking with
null elements. An input, such that I is invertible, transfers the state from mg to some m s, where my has not
null elements.

Proof Consider a place p; without tokens at time 7, so p; cannot lose tokens. When an input such that I,
is invertible is applied, then for any transition ¢;, [AIcm(m)m(7)]; = 0 iff there is an input place to transition
t; without tokens. In the same way p; cannot win tokens iff there exist unmarked input places to all the input
transitions to p;, i.e.:

vm(r); =0, m(r); = 0iff Vt} = p;, Ip, =° ti such that m(7), = 0.

If a place p; has not tokens at time 7 and remains without tokens for future time, then there exists an input
place to p; which remains without tokens for all time. Now, for this new place it should comply the same
rule. Therefore, p; belongs to an initially unmarked siphon, but since the system is live as discrete there is
not such siphon.

Therefore, a control law such that I, is invertible should give tokens to the unmarked places, so the state
will be transferred to some m s which has not null elements. W
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Although liveness of the discrete system does not imply liveness of the continuous system, previous the-
orem is sustained by the liveness of the discrete system. Notice that for the proof, liveness of the TCPN
system is not required, only the property that it does not exist initially unmarked siphon in the system is
required, which follows from the liveness of the discrete system.

Theorems 4.1, 4.2 and 3.2 establish that a TCPN system is BIC over the set of all the interior points of
Classy,(mo) iff 3k € kery(Cr) such that k € R*1TI. Even when Class,,(my) is not open, it is possible to
asymptotically transfer the state to an mg not interior, following an interior points trajectory. By theorem4.4,
if the system is live as discrete, then it is always possible to transfer the marking from a border point to an
interior point of Class(my). So, we conclude that a TC PN system, which is live as discrete, is BIFC iff
3k € kery(Cpy,) such that k € R*ITI.

Notice that the theorem 4.1 gives a structural test of controllability. This structural sense is explored in the
next proposition.

Proposition 4.4  The controllability is an structural property for live systems.

Let N be a TCPN. Then the system (N, mq), which is live as discrete, is BIFC over Class(my) iff
the system (N, m,), which is live as discrete, is BIFC over Class(m,); where mg,m; € SASS(N) and
Class(mg) # Class(m).

Proof Let the system (N, mo) be BIFC, then, according to the theorem 4.1,Vd € R™ Jv € {RtU{0}}!T!
such that C,,v = d, so the system (N, m; ) fulfills the conditions of the theorem 4.1. Therefore it is BIC over
the interior of Class(m, ). Finally, since the system (NN, m,) is live as discrete, according to the theorem4.4,
for any marking in the frontier of Class(m;) there exists an input that transfers the state to the interior,
therefore, the system (N, m,) is BIFC. B

Finally next theorem is presented.

Theorem 4.5  Controllability in live and bounded Petri nets.
Let (N, myg) be a live and bounded discrete Petri net system. Then the respective TC PN is BIFC.

Proof  From lemma 2.2 it is known that there exists an occurrence sequence o for the discrete Petri net
such that ¢ contains all transitions of N, and that m 5 m for some reachable marking m. Consider the
Parikh vector of o as @, then all elements of & are positives. Now, considering the marking equation, then:

m=m+C7T
So, 7 is in the right kernel of the incidence matrix, and according to theorems 4.2 and 4.1 the continuous

system is BIC over Class(my). Now, since the system is live and bounded as discrete, then theorem4.4 can
be applied, so the continuous system is BIFC. B



The case of uncontrolled transitions 39

Figure 44 A TCPN system. Consider transition ¢4 as the only uncontrolled transition.

4.3 The case of uncontrolled transitions

In this section the controllability of TC PN systems is studied for the case with uncontrolled transitions.
The controllability in this case has been explored by Jiménez, Jilvez, Recalde and Silva [8]. They introduced
a controllability definition as a property of markings, i.e., a marking is said controllable iff it is reachable
and it is an equilibrium point (with a suitable bounded input). They characterized the set of “controllable
markings” for join free Petri nets.

In this dissertation, the controllability is studied according to the definitions previously presented in this
chapter. In this section, a definition of the equilibrium points set is introduced and next, the controllability is
studied on this set for a general kind of net. Since this set is defined from the structure, then the controllability
proposed in this dissertation is an structural property of the system, not a pfoperty of markings.

Along this section, both approaches are compared. Remember that, according to definitions of section 2.3,
for any uncontrolled transition ¢;, the input w is such that u(¢;) = 0 and so I.(¢;) = 1.

An important definition, which was introduced in [8] by Jiménez, Jiilvez, Recalde and Silva, is that of the
controllability space, which is shown next:

Definition 4.6 Controllability Space CS.

Given an initial marking mg and a set of controlled transitions Tc C T, the Controllability Space (CS)
is defined as the set of all the controllable markings, i.e, CS = {mg|3u(r) such that m¢ — my and

my(u) = 0}.

An inconvenience with this definition is that CS is defined as a function of mg, not from the structure.
The CS constitutes the set of markings that can be equilibrium markings given T'c and that can be reached
from my. In order to define this concept independently of the initial marking, the next definition is proposed.

Definition 4.7 Equilibrium set ES.

Let (N,mg) be a TCPN system. Given the set of controlled transitions T'c C T, the Equilibrium Set is
defined as ES = {m € Class(mo)|3u bounded with u; = 0,¥t; ¢ T. and m(u) = 0}.

For the cases studied in [8], the equilibrium set and the controllability space are the same, but for a general
case they are not equivalent.
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Figure 4.5 The Class,(my) of the system of the figure 5.2. The bold line at the center of the cube is the
ES, where t4 is the only controlled transition.

In order to illustrate the difference between ES and C'S, consider the net of the figure 4.4 with t4 as the
only controllable transition, and let mg = [0.5,0.5,4,2,0.5,0.5]7 be the initial marking. The Class,,(mo)
is shown in figure 4.5. The bold line inside corresponds to ES. Since ¢4 is the only controllable transition,
the marking my4 = [0.5,0.5, 3,3, 0.5, 0.5]T is not reachable from mg even when both belong to ES, so my
doesn’t belong to C'S. In this case, only the markings in the segment [mg, m,] belong to CS.

Next definition introduce different subsets of E'S.

Definition 4.8 The sets S;, Si™ and S

Let (N,mp) be a TCPN system. Let T, be the set of controlled transitions. The set of all equilibrium
markings with the same configuration I1; is defined as S; = {m € ES|II(m) = I1;}. The interior of S; is
given by Si"t = {m € S;|(m, I3) is an equilibrium point and I%; € (0,1),Vt; € T,}. In the same way,
the subset of S;, in which all equilibrium inputs are positives, is defined as S; = {m € S;|(m,I9) is an
equilibrium point and IZ; € (0,1],Vt; € T.}. Notice that Si*t C S} C S..

Another important result obtained by Jiménez, Jilvez, Recalde and Silva [8] is the convexity of C'S for
join free nets. The generalization of this result is introduced in the next proposition.

Proposition 4.5 Convexity of the sets S;, St and S}

Let (N, mg) be a TCPN system, and T, be the set of controlled transitions. If for a given configuration
I1;, Si™t is not null, then S;, S;" and Si™* are convex sets.

The proof follows directly from the linearity of the flow and it is the same presented by Jiménez, Julvez,
Recalde and Silva in [8].

The projection of these sets over Class,,(mg) are defined in the next definition.



The case of uncontrolled transitions 41

Definition 4.9  The sets Spmi, S;t; and Sint.

The projection of the set S; over Class,,(my) is defined as Spmi = {mm|mm = Pm,m € S;}. In the
same way, the projection of the set S} over Classm(mo) is Sph; = {mm|mm = Pm,m € S;} and the
projection of S{™ is Sint = {m,|m,, = Pm,m € Si"t}.

Since the projection is a linear operator, the sets Sy, S,'ﬁ’u- and Si"} are convex too.

Next definitions are useful to explore the controllability.

Definition 4.10  The input transfer matrix Cp,..

Let (N,mg) be a TCPN system. Let T, = {tc,,tc,, .-, teyre } be the set of controllable transitions, and
define the controllable projection matrix as O, = | €c, €c, .. €cyr, | wheree; isthe j — th column
vector of the unity matrix of order |T|. Then, the input transfer matrix Cy, is defined as Cppe = Cp, O,..

Definition 4.11 The local constant flow vector A; and the local flow matrix J;.

Consider a configuration II(m) = II;, where m € Class(myg). The local constant flow vector A; and the
local flow matrix J; related to I1; are defined such that Ym € {m € Class(mo)|Il(m) = I1;}, it fulfills that
II(m)m = II;m = A; + J;m,,, where m,, = Pm.

Now, we introduce the next theorem, which gives sufficient conditions to controllability in S}

Theorem 4.6 Local controllability with bounded input.

Let (N, mq) be a TCPN system, where the minimum initial marking m.,, belongs to some S}.,. Define
I, as a diagonal matrix where I,.; = 1,Vt; & T, and I,.; = 0,Vt; € T, The system is BIC over Si*’ if

3k € RHTICHD sych that k € kerg([Cmer (CdneAJi)Crmes oo (ConIneAT;)*Cne]) for some z € N

Proof Consider the minimum state equation as in equation (3.6). Define I oy, such that I. = I, + Icon.
Let I/ ,, and I/, be two matrices such that Ioon, = I, + I, then

IC = ITLC + Iéon + Ié:)ﬂ- (4.3)

Considering previous definitions, the state equation can be rewritten as:

M = CoIneAA; + CopIneAJimay + Crp Il AG(mn) + Cr 12 AG(myy,)

Which is valid in S",. Now, consider the equilibrium point (mmgq, I9), where m,q € S, and define
I3, . such that

Ig = Inc + Igon (44)

Let I, be calculated such that

Loy AG(mpy) = I3, AG(mmg) 4.5)
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Then, the state equation is rewritten as:

M = CrlncAA; + CmIncAJi(mm - mmq) + CmIncAJimmq + CmIgonAG(mmq) + CmIZmAG(mm)

Notice that

CrdncNA; + CrInc ATymg + Crnll, AG(Mmpg) = CnIIAG(mpmg) =0

and that C,,, I, . AG(mm) = Cpcug, where the new input u is defined as:

uy = OTI" AG(mp,) 4.6)

and

Tyn _ i
Ococ Icon - Icon

So, substituting in the previous equation:

";m = CmIncAJi(mm = mmq) + Crncus

Define a new variable u = my, — mnq, then ﬁ = m'm, that is:

[.l, = CnlncAdip + Crcus
The solution of this state equation is given by:

u(r) = ST p(0) + / L& Omeualr = )

But, considering mm, (0) = Mg, then (0) = 0. Developing previous equation, then:

W) = Cmehiny(0) 4 [ Omlneh G cua(r - g
Jo

Mm(T) = Mmgq

/ ech"CAJichc'LW (T - C)d(
J 0

r 2
/ [1 + (CIneAT)C + (CmI,wAJi)Z% + .. Ceua(r — Q)¢
. !

Finally, taking out the constant elements from the integral and arranging the equation, the next equation is
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obtained:

/T ug (T — ¢)d¢
0

Mon(r) = Mg = [ Cme  (ConIneAJ))Cme  (ConIneAJi)*Cime . ] / P<”2(T‘<)d¢ @.7)
/0 Sua(r — C)dc

Notice that if the input were unbounded and the matrix [Cpc, (CrnncAJ;)Crmcy (CnIneAdi)*Crnes ...
were a full rank matrix, any marking of Class,,(mo) would be reachable from m,,, but in this case the
input is already bounded. So, in order to investigate the reachability from Mmgq it is necessary to analyze the
boundedness in the input.

Now, consider any controllable transition t; € T,. According to equation (4.4), I, 1 =17 ., duetothe fact
that Ine; = 0. From equation (4.5), I,,.,Gi(mm) = I ..Gi(mpg).
So, according to these equations:
I} ¢ Gi (mmq)
coni Cl G (mm)
Substituting in (4.3):
Gi(mmg)
= . — 12i\lMmg)
con1 IC"r Im. G (mm)
Since I; € [0,1] then:
Gi(mmq) Gi(mmq)
I I ———" ] - 4.
coni [ c G ( m) ct G (mm) ( 8)

Notice that for all m,, € S;f; the corresponding equilibrium input I¢ is such that Vt; € T, I € (0, 1].

Consider the case in which I, € (0,1). Since G(e) is a linear function, there exists a small enough
neighborhood of M, named V (mq) such that for all m, € V(mup,), Ig,%'"—""y < 1. Then, I?,,; can
be done either positive or negative.

In case that I%, = 1, then, according to equation (4.8), I2, ; can be settled as a negative value, and as small
in magnitude as desured, just considering a small enough neighborhood.

Therefore, Vmm, € Si there exists a neighborhood V (my,q) of mumq where 12, can be settled as a
negative value, and as smaller in magnitude as desired. Now, since u; = OTI” AG(m,), then the elements
of uy can be settled also as a negative value, and independently as small in magnitude as desired. Notice that
the negative bound of the input u; is determined by the equilibrium marking, not by the current marking.

Finally, since the elements of the right side vector of equation (4.7) are linearly independent functions
of uy, then the elements of this vector can be settled as a negative value, and independently as small in
magnitude as desired.
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Now, by hypothesis and the theorem 4.2, Vm,,.q € Class,,(my) there exists v € R*IT</(z+1) such that
—(Mmd — Mmq) = [Crmey (CmIncAdi)Crmey (ConIneAT; )2 Cie, ... (ConIncAJ;)?Cinclv, where z > n.

And according to the Calley-Hamilton’s theorem, there is a vector w, where all its elements are negative,
such that

(Mmd — Mumg) = [Crme, (CrTneAdi)Crmcy (CinIneAd;)2Crne, ... Jw 4.9

Notice that it is always possible to find a positive scalar o and an input I/, ., bounded by (4.8), such that
T T T 2 T
w=a| [(ue-0 [ -0k [ Gur-od .. |
Then, substituting w in (4.9) we have:
’- T -
[ uatr - rac
9

a(mmd - mmq) = [ Cmc (CmIncAJi)Cmc (CmIncAJi)2Cmc ] /19 (uz(T - C)dc
[ -0

Comparing this equation with the equation (4.7), we conclude that the marking mmq + & (Mma — Mmq)
is reachable from m,,q, and since it is valid for any mpyq € Class,(mo), then there exists a reachable
neighborhood of m .

This result is also easy to see from equation (4.7), just consider that the hypothesis and the Calley-
Hamilton’s theorem implicate that all directions in Class,(mg) can be covered with an input such that
all its elements are negative, and by the equation (4.8) an input, such that all its elements are negative, can be
always applied, at least for a small neighborhood of m .

Finally, since S}%; is a convex set, and Vmm, € S}, there exists a reachable neighborhood from m,p,,
which includes another markings of S}, then the system is BIC over S;". B

mi®

Next theorem provides a relaxed sufficient condition to controllability in Si"t.

Theorem 4.7  Controllability over Si™t

Let (N, mo) be a TCPN system, where the minimum initial marking m.,, belongs to Si". The system
is BIC over Si™ if the controllability matrix Cont(CmIncAJ;, Cmc) defined as

Cont(CmIncAJi, Cme) = [Crme, (CrmIncAdi)Crmes (CmIneAi)*Crme, ooy (ConIncAJ;) "™ Conel
has full rank.

Proof Consider the proof of the theorem 4.6. Notice that for all mmq € Sinf the corresponding equilibrium
input I9 is such that V¢; € T, IZ. € (0,1). In this case, since G(e) is a linear function, there exists an
enough small neighborhood of m,,, named V(m,q) such that for all my, € V(m,n,), Izi%%(’%':-‘ﬂsl < 1.

Then, according to the equation (4.8) I2,; can be settled as either a positive or a negative value. Since
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uz = OTI” AG(m,,) and the elements of the right side vector of equation (4.7) are linearly independent,
then the elements of this vector can be settled independently as either a positive or a negative value.

According to the hypothesis and the Calley-Hamilton’s theorem, Ym 4 € Class,(mo) there is a vector
w, such that

(Mmd — Mmq) = [Cmes (CinIneA;)Cmes (CmIneA i) Crmey - Jw (4.10)
Notice that it is always possible to find a positive scalar o and an input I”, bounded by (4.8), such that
w=a| [fue-0u [Tcur-0k [ Gur-odx .. ]T
Then, substituting w in (4.10) we have:
[ -0

D
& (Mma = Mng) = [ Cme  (CmIncAdi)Cme  (CrnIncAdi)*Crne ... ] /,0 Cua(r — ¢)d¢
[ Sruatr—oac

L . e

Comparing this equation with the equation (4.7), then we conclude that the marking mmq+a (Mmd — Mmq)
is reachable from m,,, and since it is valid for any m,q € Class,(mg), then there exists a reachable neigh-
borhood of 7m.,4.

Finally, since Si7f is a convex set, and Vm,,, € Si"! there exists a reachable neighborhood from Mmgs

which includes other markings of Si"f, then the system is BIC over Si*t W

Next theorem provides a necessary condition to reachability from the initial marking to another marking,
where both belong to the same configuration.

Theorem 4.8 Reachability.

Let (N, mg) be a TCPN system, where the minimum initial marking m,, belongs to Sp;. Define the set
of all markings with the configuration I1; as S™ = {m € Class(m)|lI(m) = II;}. Consider a marking
mq € SY, and let Mg = Pmy.

If my is reachable from mq through a trajectory in ST, then the vector (Mg — Mum,) is in the range of
the controllability matrix.

Proof  The proof follows by contradiction. Suppose that the vector [mm,q — mpm,] is not in the image of
the controllability matrix, then, due to the Calley-Hamilton’s theorem, the vector is not in the image of the
matrix [ Cme  (CmIneAJi)Cme  (CmIneAJ;)*Cme ... ]. Finally, according to the equation (4.7), there
does not exists an input uy, bounded or not, such that n,,4 be reachable from m,,,. W

The next example illustrate the use of previous theorems.

Example 4.1  Consider the system of the figure 4.6, where the minimum marking is mm = [ m1 mg ]T
In this example, the transition t3 is the only uncontrolled transition, and the structure of the system is given
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by the following matrices:

4 Lo 100 1000
Cpm = _ A=101 0| IIm)=II,=({0 1 0 0|Vm e Class(mg)|mz < ms3
0 11
0 01 0 0 01

The upper shadowed triangle in the figure 4.6 correspond to ES. The matrices defined in the previous
theorems are:

0
Ar=| -1

0

CrnlncAJy = [ 0

. -1 100
_1]C°"t(CmIncAJ1’C'"°)=[ 0 -1 0 1]

According to the theorem 4.7, the system is BIC over the set Si™ if the controllability matrix has full
rank. For this example, considering II; = II;, the shadowed area in the interior of the triangle in figure 4.6
is equivalent to S;,'}f Since for this example the matrix Cont(Cr,IncAJ;, Crmc) has full rank, the system is
BIC over the shadowed area.

Now, the set S,fu., where II; = II;, includes the shadowed area in the interior of the triangle and the edges

e; and e; in figure 4.6.

The controllability S} can be checked using the theorem 4.6. The matrix to be checked with z = 1 is:

1

[Crnes (CrdneAT;)Crmc] = —0 ~

Sincek=[1 1 1 1 ]T € kerg([Cme, (CmIncAJi)Cimc]) N RY4, the system is BIC over S;

Next theorem establishes a sufficient condition of controllability in a subset of E'S, valid when there is
only one uncontrolled transition. Although previous theorems can be applied for this case, the proof of next
theorem will be subsequently useful when the structure of a control law is defined.

Theorem 4.9  Controllability in case of |T — Tc| = 1.

Let (N, mo) bea TCPN system, such that it is live and bounded as discrete. Suppose that 3k € kery (Cm)
such that k € RY\T|. Let Tc be the set of controllable transitions such that |T — Tc| = 1. Let S be a
connected subset of ES such that all markings in S have the same configuration, then the system is BIC
over S.

Proof Let m; be an interior marking of S, and m;,; = Pm;. Since m; € S there is an input 13
such that C,, I°AG(m ;) = 0, with I% = 1, where {t;} ¢ Tc. Since m; is an interior point of S then
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W

Figure 4.6 A TCPN system and its Class,, (mg) set. The transtition ¢3 is uncontrolled, and the transitions
t; and ¢, are controllable. The shadowed area is the corresponding E'S.

I2; € (0,1),Vt; € Te.

Let my be a marking such that m,; € Class(m,) and m,,;, = Pmgy. Since m; € S, there is a vector
k € kerg(Cpm), k € {R* U {0}}!7! such that I AG(mm1) = azk.

Now, let v € R!T! be a particular solution of C;,v = (Mm2 — Mm1), such that vy; = 0 where t; ¢ Tc,
(notice that it is always possible to find such vg because Cy, has a right kernel), then v = ajvo+azk, a1, a2 €
R, is a solution of Cr,v = (M2 — Mm1),@ € RT

As I? is such that 13]. € (0,1),Vt; € Tc, then it is always possible to find a; € R*, such that 0 < v; <
[AG(mm1)];, and therefore I} such that C,, I:AG(Myn1) = a(Mma — Mm1) where a € RY, I € [0,1],
and I}; = 1Vtj ¢ Tc.

So, it is always possible to point the field vector in all the interior markings of S to any m € Class(my).

Because S is a connected set, there exists a trajectory that connects any m; and mq in S. Thus the system is
BICoverS. B
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Chapter 5

Control laws

The main goal of this chapter is to provide effective control laws for TCP N systems, i.e. suitable bounded
control laws that transfer the marking from the initial marking to the required equilibrium marking.

In the first section of this chapter, the behavior of the controlled TC PN system, when a classical feedback
state control law is applied, is studied.

After that, in the following two sections, we will introduce two effective control laws: one for the case
in which all transitions are controllable, and the other for the case in which there is only one uncontrolled
transition.

Finally, in the last section, we will propose a control law scheme for the case in which there are several
uncontrolled transitions.

Along this chapter some stability concepts will be used. For a proper introduction to those concepts see

[11].

5.1 Classical feedback state control law

As it is well known, the classical feedback state control law for a linear continuous-time system z=
A -z + B - u,is a linear state function as:

u=k-z

where the constant matrix k is chosen such that the matrix (A — B - k) has all its eigenvalues as negative.

Now consider a TCPN system (N, mg) in which all transitions are controllable. Let mq be a desired

equilibrium marking.

Consider a feedback state control law as:

ufb=K1(m)-m+K2(m)-md (5.1)

According to equation (2.3), this control law must fulfill that:

0< Ki(m) -m+ Ka(m) -mg < A-TI(m) -m (5.2)

Functions K (e) and K (e) can be defined as constants by configurations, i.e.:



50  Chapter 5 Control.laws

Kl(ml) K1(’Iﬂ2) iff l'I(ml) = H(mz)
Kz(m1) = Kz(mg) iff II(my) = (my)

So, if this control law is applied to the state equation (2.3), the following equation of the closed-loop
system is obtained.

m = C(A -TI(m) - m — K1 (m) - m — Ky(m) - mq) (5.3)

Then for any configuration II; a closed-loop system equation can be written as:

m=C(A-I; - Ky;) - m — Ka; - my

Now, consider the error vector as:

e=mg—m

So, the dynamic behavior of the error in the configuration II; is characterized by the equation:

e=—C(A-II; — Ky;) -m+ Ko; - mg

This equation is equivalent to:

é=C(A'Hi—K1i)'€+C(K2i—A-Hi+K1i)'md

Finally, choosing K (e) such that the matrix C(A - IT; — K);) has all its eigenvalues as negative, and
K2(e) such that Kp; = A - II; — K;, the marking my is the unique asymptotically stable equilibrium point
in the closed-loop system.

This control law has two important problems. The first one is that the input of a TCPN is bounded, so,
we cannot be sure that the control law proposed fulfills the bound of equation (5.2) for all markings along the
trajectory.

The second problem is that the “state space” of a TC PN system is bounded (at least it is positive). So,
the solution of (5.3) may try to transfer the marking outside of Class(my), which is not possible.

In order to illustrate this second problem, consider the figure .5.1. In this figure the “state space” of a
TCPN controlled system, in which the feedback state control law previously described is applied, is shown.

The circle in figure 5.1 corresponds to the Lyapunov surface that passes through mg. So, the points inside
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Figure 5.1 Region of attraction of a closed-loop system with a feedback state control law.

the circle constitutes the region of attraction of the closed-loop system. Even when the trajectory tr is inside
the region of attraction, it includes the point m which does not belong to Class(my). Therefore, the closed-
loop system cannot generate such trajectory.

Actually, the feedback state control law can block the system in a border point of Class(my).

Finally we conclude that this control approach is not always effective.

5.2 The case of all transitions as controllable

Through this section, only TC PN systems such that all transitions are controllable will be considered.

Let (N, my) be a live, bounded and BIFC TCPN system. Let m,,, € Classm,(mg) be a desired
minimum marking, and let m,,, = Pmy be the minimum initial marking such that mn,, is an interior point
of Class, (myg).

The error vector is defined as:
€m = (mmd - mm)
Since (N, my) is BIFC, there is a vector v € R*IT! such that Cpov = €. Let m,, be an interior point of

Class.,(mg), then there is always a function o : R*!T! x R*ITI — R* and an input Ic (with I¢; € [0, 1)),
such that (v, AG(m,))v = I.AG(my,).

Substituting previous equality into the minimum state equation leads:

Mam = a(v, AG(mp))v

Considering that a(v, AG(m,,)) is a scalar function and substituting the error vector equality, then:

M = a(v, AG(mpy))em
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So, the field vector has the error vector direction.

Consider the next function as a Lyapunov candidate function

V=elen .4

Derivating the Lyapunov function:

V= 2(‘31(3,,, = —Zﬁiem = —20(v, AG(mn))el em = —20(v, AG(m:m))V (5.5)

Since a(v, AG(m,,)) € R™, then Vis negative defined. Therefore e, is asymptotically stable. This
control law transfers the marking from m,, to mum,q following a linear trajectory.

Now, let e, be the error vector in m,,, and let vg be such that:

Como = €mg, vo € RYIT.

By controllability hypothesis, there are solutions for a and I, in the equation

(1(’1)0, AG(mm))UO = IcAG(mm) (5.6)

Consider the elements of AG(m,) and v as:

/\17I’1 (41
AG(mn) = | 2™ v= |22
AT YT

If my, is an interior point of Classm(mo), then 3p € R* such that Vi, \;m; > pu, and if Ic is such
that Ic; = 1 (this is always possible) then IcjA;m; > u, and, according to the equality of equation (5.6),
a(vo, AG(mm)) > p/vo; where p/vo; € RT.

Then:

Il i ll= a(vo, AG(mum)) Il €mo 1> (1/v0;) |l €mo |

Consider the Lyapunov candidate function as in equation (5.4), then its derivative is:

V < —@u/vo;) || emo I| ¥V .7)

The above inequality implies that the state m,,4 is reached in finite time.

In order to calculate I it is necessary to solve the equation (5.6). Suppose that « is defined as:

1

a(v,AG(my)) = maz(vy/(Arm1),v2/(A2m2), ooy V7 / (N7 m17y)

(5.8)
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where maz(-) is the greater element of the argument. Then I, is equal to:
1

I.= di A ; A22)y 0y A
e T WP T W Sy et iag(vi/(Mm1),v2/ (Aam2), -y viry/ Ay miT)))
(5.9)
Notice that I; € [0,1] Vi € {1,2,...,|T|},and maz(I.1, Iz, .., Ioj7|) = 1 whenever v # 0.
Finally the original input u can be calculated as:
u = L,AII(m)m = (I — I.)AIl(m)m (5.10)

Example 5.1 Let N be the net of the figure 5.2, which structure is represented by the next matrices:

, A =diag(1,1,1,1)

C OO O = =
—
|

= =0 000

The configuration matrix is given by the next rules:

II(m) = II;, if my<mg and my < mgs
I(m) = I, if mg<my and my <ms
H(m) = I3, if my<m3z and ms < my
II(m) = I, if mzg <me and ms < my
where:
[1 0 0 0 0 O] [1 0 0 0 0 O]
o = 010000 o = 001000
"o oo1o00[’2" (000100
0 000 0 1 0 0 0 0 0 1]
1 0 0 0 0 0] (1 0 0 0 0 O]
. = 010000 I = 001000
" looo0o010/’* l0000T1O0
00 00 0 1] 0 0 0 0 0 1]

Notice that NN is live and bounded, and has 3 P — semi flows, therefore, the order of the minimum state
equation is 3. Consider the minimum state vector as m,, = [m;, ms, ms]T, then:
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The right annuller of Cyy, is kerg(Cm) = 7[1,1,1,1]7, and since k = [1,1,1,1]7 € RHTI nkera(Cm),
then the system (N, m,) is BIFC.

The initial marking is mo = [1,0,6,0,1,0]7 and letmy = [1,0,3,3,0, 1]7 be the required marking. The
corresponding minimum order markings are: m,, = [1,6,1]T and = [1,3,0]7 Notice that both markings
are not interior points of Class,, (mo).

In this example, three steps control law is applied. In the first step, a control law such that Ic is invertible
is applied, so the marking is transferred from m,y, to an interior point of Classm(my). In second step,
the control law obtained with the equation (5.9) is applied, but the central marking m,,, = [0.5,3,0.5]T of
Class;,(myp) is considered as the required marking instead m,n,, thus the central marking is reached in finite
time (because it is an interior point). In the third step, the same control law is applied in order to reach the
original required marking my,,,.

s 0 T

] 10 20 0 o 000 10 2 30 1‘0 5 0 10- 2 3 4;] 5

Figure 5.3 The marking evolution of the net of the example 5.1. The central marking is reached at 38s, after
that, the marking asymptotically goes to the desired marking.

Even when the second step is not necessary, it is very useful because the flow through the transitions
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Figure 5.4 The trajectory of the marking in the Class,,(mg) for the example 5.1. The figure at left is a
projection of Class,,(mg) in the m,,; and the m,,,3 axes. The figure at rigth is the projection in the mm,
and the m,,,5 axes.

decreases considerably in the markings near to the border of Class,, (mo) causing a very slow movement of
the state. The simulation results are shown in figures 5.4 and 5.3.

The linear trajectories of the steps 2 and 3 of the control law can be observed in the figure 5.4. Notice that
the flow through the transitions (proportional to the derivative of the markings observed in the figure 5.3) is
larger in the central marking than in the markings near to the border. The central marking is reached in finite
time (38 seconds) and after that, the state asymptotically goes to the required marking.

This control law is not efficient, i.e. the trajectory followed is not the fastest, but it is effective. This
example was simulated in Simulink of MatLab. The m-files are shown in the appendix.

5.3 The case of only one uncontrolled transition

Consider a BIFC TCPN system described by (N, mg). Let t; € T be the only uncontrolled transition,
then Tc = T — {t;}, and ES the equilibrium set as defined in section 4.3.

Let S be a set defined as S = {m,, € Classy,(mo)|mm = Pm where m € ES and II(m) = II;}.
Consider the minimum initial marking m,,, such that m,, is an interior point of S, and let mp,,q € S be the
minimum required marking.

Define the error vector as:

em = (Mmd — M)
Since (N, mg) is BIFC, for all m,, interior point of S there should exist an input I? such that C,, I°AG(m,,) =
0, with 1% = 1,and I%; € (0,1),Vt; € Te.

Let C,,y be a matrix built with any n linearly independents columns of C,,, except Cy;, then C,,y is not
singular, therefore:

VYd € R™" 3v € R" such that Cp,jv = d
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Let m,, be an interior point of S. Define vf such that:

C’mI'U(I), = (mmd = mm)

Now, let vg be a column vector of order |T'| such that:

_ [ f; ifthej —thcolumn of Cp, isin Cms
Yi = 0 otherwise

For all m,, € S there is a column vector k € kerg(Cn) N {RT U {0}}/7! and a scalar a2 € R* such that
IcAG(my,) = agk. Let ag be such that [AG(mn,)]; = azks.

Then, the vector v defined as v = a;vy + ook, where a; € R™, is such that:
Crv = a1(Mmd — Mim)

and

Vi = [AG(mm)],

Now, it is necessary to find @; € R* such that 0 < v; < [AG(my,)]; (it is always possible to find o1,
because I, gj € (0,1),Vt; € Tc). Then, define the following vector:

minvy = min Yo oz Vo]
0 = —_— iy
kl ) k2 § ey k|T|

If minvg < 0 then a valid value for o is ﬁ;, otherwise calculate the fmax vector as:

Vo 3
other case

AG(my,)];—azk; .
frmag; = { [AGCmm)li—azks  for g0 > 0
and let a; be equal to min(fmaz). Finally, the matrix Ic can be calculated as:

Vi

14 = Retmml;

The original input u can be calculated using the equation (5.10).
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Figure 5.5 The TCPN system for the example 5.2. If all transitions were controllable, the net would be
BIFC.

Example 5.2 Let (N, mg) be the TCPN system of the figure 5.5.

The structure of the net is given by the next matrices:

-1 1 0
1 -1 0 ,
C= 0 -1 1 , A =diag(1,1,1,1)
0 1 -1

The configuration matrix is given by next rules:

Om) = I, if my<ms
H(m) = I, if m3 <mg,
where
1 000 1 000
m=10 1 0 0|,lI;=(0 0 1 0
0 0 01 0 0 01

Notice that the net is live and bounded, and has 2 P — semi flows , therefore, the order of the minimum
state equation is 2. Consider the minimum state vector as m,, = [m;,m3]7, then:

-1 10]

The right annuller of Cy, is kera(Cy) = 7(1,1,1]7, and since k = [1,1,1]7 € R*ITI nkery(Cyn), then
the system (N, mg) is BIFC in the interior points of Class,(my).

Let t3 be the only uncontrollable transition. In this case the equilibrium set E'S is represented by the upper
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03 04 g, 06 o5 1

Figure 5.6 The trajectory of the marking in the set Class,, (my), for the example 5.2. The ES is composed
of all points inside the upper triangle.
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Figure 5.7 Evolution of the marking of example 5.2.

triangle in figure 5.6.

Let mo = [0.6;0.4;2.6;0.4]T be the initial marking and m4 = [0.3;0.7;2.8;0.2]T the required marking,
then the corresponding minimum order markings are: mp,, = [0.6,2.6]7 and m,,, = [0.3,2.8]T Notice
that both markings belongs to E'S. Applying the control law described above the results are shown in figures
5.6 and 5.7.

Notice that the trajectory draws a line, and the required marking is reached in finite time.

Even when this control law is not efficient, it is effective, i.e. the trajectory followed is not the fastest
but the required marking is reached in finite time. This example was simulated in Simulink of MatLab. The
m-files are shown in the appendix.
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5.4 The case of several uncontrolled transitions

In this section we will loosely propose an scheme of a control law fora TC PN system in which there are
several uncontrolled transitions.

Consider a TC PN system (N, mg) where the set of uncontrolled transitions is not null, i.e. |[T'|—|T¢| # 0.
Suppose that m is an equilibrium marking and define II: as its configuration, i.e. IT; = II(mg). Consider
the equilibrium set E'S and the set S,?'"‘ as defined in section 4.3. Let g4 be a desired equilibrium marking
such that my € Si™

Finally, suppose that the system fulfills the conditions of controllability over Si"* established in theorem
4.7,. so the matrix:

Cant(CmIncAJi, Cmc) = [Cmc; (CmIncAJi)Cmca (CmIncAJi)ZCmc’ erey (CmIncAJi)n—ICmc]

has full rank.

Now, consider a control law as defined in equation (4.3), i.e.lo = Inc + I.,,, + I.,,,, where I/, can be
easily calculated to fulfill with equation (4.5). Also, consider the new input u; as in equation (4.6), which is
a function of I ..

Defining a new variable u = m,, — mu,q, the state equation can be transformed to:

b= CIncAJips + Crncia

So, according to the condition of controllability, there exist a matrix K such that

U2 =K[,l.

where the closed-loop transfer matrix (CyIncAJ; — Crmc K) has all its eigenvalues as negative. Therefore
the desired point my is the unique asymptotically stable equilibrium point in S:™* in the closed-loop system.

It can be noticed that this is a feedback state control law as that described in section 5.1. So, it has the
same problems described in that section, but, under the conditions required to the system in this section, these
problems can be avoided.

For this, consider a set of ¢ markings {my;, my., ..., mg,} that belong to S}"‘ as in figure 5.8.
In this example a four state feedback state control law is considered.

In the first step the marking my, is considered as the required marking, since my; € Si™* the controllabil-
ity condition remains, so, a control law as it is described in this section can be applied to the system. Notice
that the region of attraction of my;, named Ry, is included in Si™, so the second problem of the feedback
state control laws is avoided. Now, according to the controllability hypothesis, there exists a neighborhood
of mo in which our control law makes m ¢, be the unique asymptotically stable equilibrium point, so, myy is
defined closed enough to my in order to Ry, be in that neighborhood. In this way, the marking m; can be
reached through this control law.
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B
m(p;)

Figure 5.8 State space of a closed-loop system with a four steps feedback state control law.

Once the marking is closed enough to my; the second step of this control law is applied, for this the
required marking is myo. In this way, in the third step the required marking is my3, and it is applied when
the marking is closed enough to m;.

Finally, in the four step the required marking is mg, and is applied when the marking is closed enough to
mg3.

So, with this control law scheme the marking can reach any required marking my, whenever the conditions
of this section are fulfilled.

However, this control law scheme has two major difficulties. The first one is to define the set of markings
{m1, Mgz, ..., Msq} such that the regions of attraction are included in S;**. The second one is to choose
the eigenvalues for the closed-loop transfer matrix and also the markings {my1, my2, ..., myq} such that the
respective input is properly bounded.

Due to those difficulties, this control law scheme is not applied to an example in this dissertation. So, the
control law for the case with several uncontrolled transitions is still an open problem.
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Chapter 6

Conclusions

This dissertation deals with a new technique in the theory of Petri nets. For this reason, many unsolved
problems and many open questions were found. The answers for some of this questions result essential for a
basic understanding of the studied model. In this report, we tried to unify the previously known results with
our results. So, with this dissertation, the reader is able to introduce himself in the study of TCPN systems.

The main advantage of the results obtained by us with respect to that previously known is that our results
can be applied to different kinds of Petri nets. The contributions of this dissertation are following presented.

e A brief discussion of the concept of state variable was presented. In this, the TCPN systems are finally
considered as a parallel model of the original Petri net system, and not as a proper model of the physical
system.

o The so called “state space” was characterized.

o A definition of controllability for TCPN systems was introduced as an adaptation of that defined for
linear continuous-time systems. The reason for that, is that TC PN systems are more alike linear systems
than discrete event systems.

o For the case where all transitions are controllable, sufficient and necessary conditions of controllability
and reachability, which are easy to test, were given. The hypothesis for those theorems does not im-
pose heavy constraints for its application. Therefore, for this case, the problems of controllability and
reachability have been solved.

o For the case where there are uncontrolled transitions, the problem of controllability is more complex.
Even that, sufficient conditions of controllability over the set of equilibrium points were found.

o In reachability, for the case with uncontrolled transitions and where the initial marking has the same
configuration that the required marking, a necessary condition was found. However, the problem of
finding necessary and sufficient conditions of reachability for a general case is still open.

e A control law structure for the case where all transitions are controllable was proposed. The effectiveness
of this control law structure was demonstrated through a Lyapunov function (it makes the system reach
the required marking). Although it is not an optimal control law, it can be easily modified, in order to
make the marking follow a desired optimal trajectory.

e A second control law structure was proposed for the case in which there exists only one uncontrolled
transition. This control law structure is also effective but limited because the initial marking must be in
the same equilibrium set and configuration that the required marking. So, the problem of finding control
law structures for the case with several uncontrolled transitions is still open.

6.1 Future work

In order to apply and to extend the results obtained in this dissertation for general TCPN systems, the
following problems need to be solved in the future:

e It is necessary to obtain a reachability theorem which gives necessary and sufficient conditions for the
case with uncontrolled transitions. Such theorem must consider the case where the initial marking and the
required marking does not belong to the equilibrium set, and have different configurations. This problem
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is very difficult to solve, due to the hybrid nature of the timed fluidified model.
e In order to apply the theorems 4.6 and 4.7, an easy characterization of the equilibrium set is required.

o In order to easily apply the results of section 4.2, an algorithm to test if a given incidence matrix fulfills
the condition of theorem 4.2 and an algorithm to test if a given TCPN system with a required marking
fulfill the condition of theorem 4.3 are needed. This second algorithm could be obtained analyzing the
projections of the error vector to the columns of the incidence matrix.

Considering that all transitions are controllable, it is necessary to find the optimal trajectory in the state
space, from the initial marking to the required marking, as a function of the marking.

o Considering the case where there are uncontrolled transitions, it is also necessary to synthesize a general
control law which could be applied even when the initial marking does not belong to the equilibrium set
and has a different configuration of that of the initial marking. This problem is very difficult to solve,
because it implies a wide study of stability of TC PN systems, which does not exist yet.

As it was mentioned in the introduction, this theory is still new, so, there are another many unsolved
problems. At this moment, we consider that the main problems, not only for the controllability study but also
for the general understanding of the TC PN theory, are those enunciated next:

e How should the steady states of the TC PN system be interpreted in the original PN system?

e Given an effective control law for the TC PN system, how can a firing policy, which could be applied to
the original PN system with the expecting results, be obtained?

These two questions have to be solved in order to apply the whole TC PN theory. Therefore, we consider
that all efforts in future works should be focused to find the answer of these two questions.
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Appendix A

Computation of A; and J;

The following procedure allows to calculate the local constant flow vector A; and the local flow matrix J;,
described in section 4.3.

Consider the vector [II;m)] as in equation (4.1).
Then Vj € {1,2, ..., |T|} do the next procedure:
Define k and o such that [Tl;m]; = axmy.
Consider the projection matrix P.
If 31 such that Py i) # 0 then define J;j; ;) = ax and A;;) = 0.

If 3 such that Py i # 0 then there exists a conservative marking law such that m; + mp, + mp, +
... +myp_ = Ci, where Cj is a constant value, so axmi = apCr — apmp, — apMp, — ... — My,
and Vp; € {p1,p2,...,pr} i such that Py, ) # 0. Then define J;(;;,) = —ak and A;;) = axCk.

Other elements in J; and A; are defined as zero.
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Appendix B

Simulation of the control law for the case
of all transitions as controllable

Here the model and the m-files of MatLab-Simulink for the simulated example of section 5.2 are presented.

\Visualization of marking blocks group

Computation of m blocks group I— maning 1112
rpemne s | <=
| | < |

Computation of input u blocks group ﬁﬁ'ﬁ \S ‘T f “ l I
r— - ‘ Ceme cfoerm I maning 12-1¢]
1 l >
I | | I I maning 121 |
!

l c:m::::;: Tty l i_ Maytc I I I
I B P (T R S _h |
| ‘ | mim3 |
l ]| | |

g o] |
| Etscs | |
I | Lo omme

Figure B.1 Model of simulation.

Previous figure shows the model for the simulation, with its respective block groups. The apparent com-
plexity of the computation of input u blocks group is due to the three steps control law. The clock is needed

only to set the first step at zero time.

Now, the “Comp. of der m” m-file is presented. This block corresponds to the computation of:

derz = CAII(m)m

function derx=RPF(u)

if u(2)<=u(3) & u(4)<=u(5)
dx1=-u(1)+u(2);
dx2=u(1)-u(2);
dx3=-u(2)+u(4);
dx4=u(2)-u(4);
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dx5=-u(4)+u(6);
dx6=u(4)-u(6);
elseif u3)<u(2) & u(4)<=u(5)
dx1=-u(1)+u(3);
dx2=u(1)-u(3);
dx3=-u(3)+u(4);
dx4=u(3)-u(4);
dx5=-u(4)+u(6);
dx6=u(4)-u(6);
elseif u(2)<=u(3) & u(5)<u(4)
dx1=-u(1)+u(2);
dx2=u(1)-u(2);
dx3=-u(2)+u(5);
dx4=u(2)-u(5);
dx5=-u(5)+u(6);
dx6=u(5)-u(6);
elseif u(3)<u(2) & u(5)<u(4)
dx1=-u(1)+u(3);
dx2=u(1)-u(3);
dx3=-u(3)+u(5);
dx4=u(3)-u(5);
dx5=-u(5)+u(6);
dx6=u(5)-u(6);
end;
derx=[dx1;dx2;dx3;dx4;dx5;dx6];
The block “Computation of u” has the next m-file.
function SalU=RetroF(u)
%cm is the minimum incidence matrix.
cm=[-110;0-11;00-1];
%ker is the right kernel of matrix cm.

ker=[1;1;1;1];
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m=[u(7);u(8);u(9;u(10);u(1 1);u(12)};
md=[u(1);u(2);u3);u(4);u(5);u(6)];
%etapa is a discrete variable. 2 means that the control will take the
%marking to the center of the state space, after that, etapa changes its
%value to 3, then the control will take the marking to md.
%Tiempo is the simulation real time, is used only to reset the value of
%etapa as 2. Notice that for etapa 1 we only need to generate an input
%such that Ic be invertible, but, for this example, etapa 2 generates such
%input, that’s why we don’t set etapa as 1.
etapa=u(13);
tiempo=u(14);
%nmr is the minimum marking. mdr is the desired minimum marking.
mr=[u(7);u(9);u(11)};
mdr=[u(1);u3);u(5)};
%Now, we calculate the vector Ip=AII(m).
if m(2)<=m(3) & m(4)<=m(5)

Ip1=[1 0000 0];

1p2=[0 100 0 0];

1p3=[0001 00];

1p4=[(0 0000 1];
elseif m(2)>m(3) & m(4)<=m(5)

Ip1=[100000];

1p2=[0 0100 0];

1p3=[000100];

Ip4=[000001];
elseif m(2)<=m(3) & m(4)>m(5)

Ip1=[100000];

1p2=[01 000 0];

1p3=(000010];

1p4=[000001];
elseif m(2)>m(3) & m(4)>m(5)
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Ip1=[10000 0];

1p2=[0 0100 0];

Ip3=[000010];

Ip4=[000001];
end;
Ip=(Ip1;Ip2;ip3;lp4];
Ipm=Ip*m;
vic=[0;0;0;0];
%ep is a value which indicates how close will be the marking of the center
%to change the step from 2 to 3.
ep=0.002;
%Now, we calculate the error vector, and a solution v for the
%equation (Cr*v=e), such that all elements in v be positives.
%In step 2, the required marking is the center of the state space
%[0.5,0.5,3,3,0.5,0.5], in step 3 the required marking is md.
if tiempo==0

etapa=2;
end;

if (mr(1)<(.5+ep))&(mr(1)>(0.5-ep)))&((mr(2)<(3+3*ep))&(mr(2)>(3-3*ep)))&((mr(3)<(.5+ep))&(mr(3)>(0.5-
ep)))

etapa=3;
end;
if etapa==2

e=[0.5;3;0.5]-mr;
elseif etapa=—=3

e=mdr-mr;
end;
v=inv(cm)*e;
v=[v;0};
vmin=min(v);
if vmin<0

v=v-2*vmin*ker;



end;
%Now, we calculate the corresponding values of Ic, named ic’s, as a column
%vector vic, where 0<ici<1, v=ic*lp*m.
for i=1:4

if Ipm(i)>0

vie(i)=v(i)/(Ipm(i));
elseif lpm(i)=0
vic(i)=1;

end;
end;
%At this point, vic has the desired direction. Now we multiply it by a
%factor such that the maximum element of vic be 1.
icmax=max(vic);
if icmax>0

vic=(1/icmax)*vic;
end;
%Now, we transform the column vector vic into the matricial form Ic.
ic1=[10 0 0]*vic(1);
ic2=[0 1 0 0]*vic(2);
ic3=[0 0 1 0]*vic(3);
ic4=[0 0 0 1]*vic(4);
ic=[icl;ic2;ic3;ic4];
%Finally, we calculate the input u.

SalU=[(eye(4)-ic)*Ipm;etapa];
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Simulation of the control law for the case
of one uncontrolled transition

The model and the m-files of MatLab-Simulink for the simulated example of section 5.3 are presented.

I :: }'_. MATLAE |,

|
|
| > Funatics
|
I

Semeutstizn o

Figure C.1 Model of simulation.

Previous figure shows the model for the simulation, with its respective block groups.

The “Comp. of der m” m-file is following presented. This block corresponds to the computation of:

derz = CAIl(m)m

function derx=RPFal(u)

if u(2)<=u(3)
dx1=-u(1)+u(2);
dx2=u(1)-u(2);
dx3=-u(2)+u(4);
dx4=u(2)-u(4);

elseif u(3)<u(2)
dx1=-u(1)+u(3);
dx2=u(1)-u(3);
dx3=-u(3)+u(4);

71
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dx4=u(3)-u(4);
end;
derx=[dx1;dx2;dx3;dx4];
The block “Computation of u” has the next m-file.
function SalU=RetroF2(u)
%cm is the minimum incidence matrix.
cm=[-1 1;0 -1];
Y%ker is the right kernel of cm.
ker=[1;1;1];
m=[u(5);u(6);u(7);u(8)];
md=[u(1);u(2);u@);u(4);
%mr is the minimum marking. mdr is the minimum required marking.
mr=[u(5);u(7)};
mdr=[u(1);u(3)];
%Calculate the vector Ip=AIl(m).
if m(2)<=m(3)
Ip1=[100 0];
1p2=[0 1 0 0];
Ip3=[000 1];
elseif m(2)>m(3)
Ip1=[1000];
1p2=[0 0 1 0];
Ip3=[000 1];
end;
Ip=(lp1;1p2;1p3];
Ipm=Ip*m;
vic=[0;0;0];
% We calculate the error vector and an initial solution vo such that
% cm*co=e.
e=mdr-mr;

vo=inv(cm)*e;



vo=[vo;0];
%Now, we calculate the kernel factor f, and the initial solution factor fp.
f=lpm(3);
vomin=min(vo);
if vomin<0
fp=-f/vomin;
else
fori=1:3
if vo(i)}=0
pmax(i)=10000;
elseif vo(i)>0
pmax(i)=(Ipm(i)-f)/vo(i);
end;
end;
fp=min(pmax);
if fp>1

end;
%Now, we find 'the particular solution v.
v=fp*vot+f*ker;
%Now, we calculate the elements of Ic, named ic’s, as a vector vic.
for i=1:3
if Ipm(i)>0
vie(i)=v(i)/(Ipm(i));
elseif Ipm(i)=0
vic(i)=1;
end;
end;
%We consider the uncontrolled transitions and the bound.

for i=1:3
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if vic(i)<0
vic(i)=0;
elseif vic(i)>1
vic(i)=1;
end;
end;
vic(3)=1;
%We transform the input from the vector vic to its matricial form Ic.
ic1=[1 0 0]*vic(1);
ic2=[0 1 0]*vic(2);
ic3=[0 0 1]*vic(3);
ic=[icl;ic2;ic3];
%Finally, we calculate the input u.

SalU=[(eye(3)-ic)*Ipm];
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