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Resumen

Las redes de Petri constituyen un paradigma bien conocido y útil para modelar sistemas de eventos dis

cretos. En algunos casos, es necesario adoptar un enfoque de enumeración de estados para verificar algunas

propiedades de las redes de Petri. Desafortunadamente, para sistemas altamente marcados, el grafo de al

canzabilidad puede ser tan grande que muchas propiedades son muy complicadas de analizar. Este problema

es conocido como el problema de explosión de estados. Sistemas que normalmente aparecen en la práctica,

por ejemplo: procesos de manufactura reales, sistemas de telecomunicaciones, sistemas de tráfico, sistemas

logísticos; dejan modelos de redes de Petri muy grandes. Por esto, se ha propuesto una técnica alternativa,

llamada fluidificación, para poder analizar tales sistemas.

La fluidificación constituye una técnica para estudiar sistemas a través de un modelo continuo similar. Uti

lizando modelos continuos, se pueden utilizar más técnicas analíticas para el análisis de algunas propiedades

de interés. En esta disertación, se consideran redes de Petri continuas temporizadas bajo semántica de servi

dores infinitos. La teoría de modelos completamente fluidificados se encuentra todavía en desarrollo, dado

que es un área relativamente nueva. Por lo que es necesario enfocar más esfuerzos en la solución general

de problemas importantes. Esta disertación provee el conocimiento teórico básico necesario para, eventual

mente, obtener leyes de control efectivas para los sistemas de redes de Petri continuas temporizadas (TCPN).

En esta disertación, se estudian tipos generales de sistemas TCPN con el fin de obtener condiciones nece

sarias de suficiencia y necesidad de alcanzabilidad y controlabilidad, y posteriormente se proponen algunas

estructuras de leyes de control efectivas. Para esto, se introduce un concepto de controlabilidad que es una

adaptación del concepto clásico de controlabilidad para sistemas lineales. Los sistemas TCPN controlables

son caracterizados y se resuelve el problema de alcanzabilidad para el caso en que todas las transiciones son

controlables. Para el caso con transiciones incontrolables, se dan condiciones de suficiencia de controlabil

idad sobre un conjunto de puntos de equilibrio y condiciones de necesidad de alcanzabilidad. También, se

presentan dos estructuras de leyes de control para los casos: sin transiciones incontrolables, y con solo una

transición controlable.
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Summary

Petri Nets constitute a well-known paradigm useful to model discrete event systems. In some cases, an

enumeration approach (state enumeration) has to be used in order to verify some properties of Petri nets.

Unfortunately, for high marked systems, the reachability graph can be so large that many properties are very

complex to analyze. This problem is known as the state explosión problem. Systems that appear normally in

practice, for instance realistic manufacturing processes, telecommunications systems, traffic systems, logistic

systems, leads to large Petri net models. So, in order to be able to analyze such systems, an alternative

technique, named fluidification, has been proposed.

The fluidification constitutes a technique to study discrete systems through a similar but continuous model.

Using fluid models more analytical techniques can be used for the analysis of some interesting properties.

In this dissertation, timed continuous Petri net models with infinite server semantics are considered. The

theory of fully fluidified models is still under development, since this área is relatively new. So, more ef

forts are needed for general solutions of important problems. This dissertation provides the basic theoretical

knowledge needed to eventually obtain effective control laws for the timed continuous Petri net (TCPN)

systems.

In this dissertation, general kinds oíTCPN systems are studied, in order to obtain sufficient and necessary

conditions of reachability and controllability, and then some structures for effective control laws are proposed.

For this, a concept of controllability is introduced as an appropriate adaptation ofthe linear system classical

controllability concept, in this way, controllability is an structural property of the system. The controllable

TCPN systems are characterized and the reachability problem is solved for the case in which all transitions

are controllable. For the case with uncontrolled transitions, sufficient conditions of controllability over a set

ofequilibrium points and necessary conditions of reachability are given. Also, two effective control laws are

provided for both cases: without uncontrolled transitions, and with only one uncontrolled transition.
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Chapter 1

Introduction

Petri Nets constitute a well-known paradigm useful to model discrete event systems. Although many

researchers are investigating Petri nets properties from a standard point ofview, in some cases, an enumeration

approach (state enumeration) has to be used, in that case, the verification of some properties of Petri nets is

performed from the knowledge ofthe Petri net reachability graph. Unfortunately, for high marked systems,

the reachability graph can be so large that many properties are very complex to analyze. This problem

is known as the state explosión problem. Systems that appear normally in practice, for instance realistic

manufacturing processes, telecommunications systems, traffic systems, logistic systems, leads to large Petri

net models. So, in order to be able to analyze such systems, an alternative technique, named fluidification,

has been proposed.

The fluidification constitutes a technique to study discrete systems through a similar but continuous model.

Using fluid models more analytical techniques can be used for the analysis of some interesting properties.

However some modelling or analysis capabilities are missed during fluidification. In this way, the continuous

model is considered as an approximation of the discrete one, and not properly as a model of the physical

system. This technique has been applied to different paradigms. A comparison of those models can be seen

in[5].

In PetriNets, fluidification has been introduced from different perspectives. We will consider the approach

studied by M. Silva, L. Recalde and coworkers [5], [9]. In this report, timed continuous Petri net models with

infinite server semantics are considered. Based on this model, the firing count vector and the marking are

fluidificated, in order to obtain the continuous model. The obtained continuous model is piecewise linear.

Figure 1 . 1 Example of a Petri net system.

In order to clarify the concept of fluidification, see the Petri net of figure 1.1. As a discrete Petri net, the

marking can be changed in integer amounts. For example, say that t2 is fired once, so the reached marking
is [1, 3] As a continuous Petri net, transitions can be fired in any enabled positive amount. Suppose that

transition í2 is fired in an amount of0.2, then the reachedmarking is [0.2, 3.8]T. Finally, as a timed continuous
Petri net, the transitions are not fired in certain amount, they are fired with certain speed. Considering infinite

server semantics, say that transitions tx and t2 are fired with an speed of 1 enabling degree by second, then
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the trajectory ofthe marking (the marking as a function of time) is that shown in figure 1.2.
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Figure 1.2 Marking evolution ofthe system of figure 1.1, considering it as a timed continuous Petri net.

There exist some interpretations ofthe marking in the continuous models. One of them, for timed continu

ous Petri nets, is that the normalized throughput ofthe transitions in the steady state ofthe continuous model

approximate the average valué ofthe normalized throughput ofthe transitions in the steady state ofthe origi

nal discrete system. The continuous system can be a good approximation ofthe discrete one when the tokens

represent a large number of indistinguishable individuals/parts. For further details of this interpretation see

[2].

The reader has to keep in mind that the theory of fully fluidified models (continuous models) is still under

development, since this área is relatively new. So, more efforts are needed for general solutions of important

problems. Now, we present some questions, which are mentioned in [9], that represent the most interesting

problems to be solved for continuous Petri nets.

• Given a discrete Petri net system, the continuous model obtained from it is a good enough approximation?

• Which is the best firing semantic for a particular case?

• Given a timing semantic, when does a steady state exist?

• Once a good dynamic control is obtained for the continuous relaxation, how to come back to a "reason-

able" design or control (scheduling) in the original setting?

Besides the problems involved in these questions, marking reachability, observation and control of contin

uous models deserve more efforts. Reachability in autonomous continuous Petri nets (non timed) has been

studied by Júlvez, Recalde and Silva in [6]. In that paper, reachability is introduced as the property ofamark

ing to be reached from the initial marking, this marking can be reached in three different ways: with a finite

firing sequence, with an infinite firing sequence, or just getting as cióse as desired to the marking with a finite

firing sequence. The controllability for timed continuous Petri nets has been studied by Jiménez, Júlvez, Re

calde and Silva [8]. They introduced a controllability definition as a property ofmarkings, i.e., a marking is

said to be controllable iff it is reachable and it is an equilibrium point (with a suitable bounded input). They

characterized the set of "controllable markings" for join free Petri nets.

The main goal ofthis dissertation is to provide the basic theoretical knowledge needed to eventually obtain

effective control laws for the timed continuous Petri net (TCPN) systems. The objectives are: to propose

— m1

--m2
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a structural controllability definition for TCPN systems, to analyze and to provide necessary and sufficient

conditions for controllability and reachability for general kinds of TCPN systems, and finally to present

control law structures that transfer the state from the initial state to the required state.

Although controllability and reachability have been studied by Jiménez, Júlvez, Recalde and Silva, the

results obtained by them are not sufficient to compute effective control laws for general cases of timed con

tinuous Petri net (TCPN) systems (they solved this problem for the case ofjoin free Petri nets). So, in this

dissertation, we study general kinds ofTCPN systems, in order to obtain sufficient and necessary conditions

of reachability and controllability, and then we propose some structures for effective control laws.

The main contributions ofthis dissertation are:

• The characterization ofthe so called "state space"

• The introduction ofthe minimum order state equation.

• A definition of controllability for TCPN systems as an adaptation of that for the linear continuous-time

systems.

• The introduction of necessary and sufficient conditions of controllability and reachability for any kind of

TCPN systems, where all transitions are controllable.

• The introduction of sufficient conditions of controllability for any kind oíTCPN systems, where there

are uncontrolled transitions.

• The introduction ofnecessary conditions of reachability for any kind of TCPN systems, where there are

uncontrolled transitions.

• An effective control law structure that transfers the marking from the initial marking to the required

marking for any kind ofTCPN, where all transitions are controllable.

• An effective control law structure that transfers the marking from the initial marking in ES to the required

marking in ES. for any kind ofTCPN, where there is only one uncontrolled transition.

This report is organized as follows: In chapter 2, we introduce some basic concepts related to classic

Petri nets, continuous Petri nets and timed continuous Petri nets under infinite server semantic. In the last

section ofthis chapter we rewrite the state equation into a more useful form. In chapter 3, we present a brief

discussion ofthe concept of state variable. Also, in this chapter, we present a characterization ofthe "state

space", and finally we introduce the minimum order state equation. In chapter 4, a definition ofcontrollability

is introduced as an adaptation of the linear continuous-time classical controllability definition, in this way,

controllability is a structural property ofthe system. For the case where all transitions are controllable, the

controllable TCPN systems are characterized, and the marking reachability problem is solved. For the case

where there exist uncontrolled transitions, sufficient conditions of controllability over a set of equilibrium

points are given. In chapter 5, two effective control law structures are proposed, one for the case where

all transitions are controllable, and the other for the case where only one transition is uncontrolled. The

conclusions and the future work are presented in chapter 6.
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Chapter 2

Basic concepts on Petri nets, continuous

Petri nets and timed continuous Petri nets

In the first three sections of this chapter basic definitions of classic Petri nets, continuous Petri nets and

timed continuous Petri nets are presented. Also, the notation that will be used along this dissertation is

introduced. These contents are mainly taken from references [4] and [7].

In the last section, a useful form ofthe state equation for TCPN systems under infinite server semantics

is proposed.

2.1 Petri Nets

In this section basic concepts on Petri nets are introduced. For further details see [4].

Definition 2.1 Nets, pre-sets, post-sets, subnets

A netN isa 3-tuple (P, T, F), where P andT are twofinite anddisjoint sets, andF isa relation onPViT

such that F n (P x P) = F n (T x T) = 0.

The elements ofP are calledplaces, and are graphically depicted by circles. The elements ofT are called

transitions, represented by boxes. F is called theflow relation ofthe net, represented by arrowsfrom places
to transitions orfrom transitions to places. Often, the elements ofP U T are generically called nodes ofN
or elements ofN. The elements ofF are called ares.

Given a node x ofN, the set mx = {y\(y, x) € F} is thepre-set ofx and the set x* = {y\(x, y) € F} is

the post-set ofx. The elements in thepre-set (post-set) ofaplace are its input (output) transitions. Similarly,
the elements in thepre-set (post-set) ofa transition are its input (output) places.

Given a setX ofnodes ofN, define *X = Uxex *x andX' = Ux£xx*

A triple (Pt, Tt, Ft) is a subnet ofN ifPi C P.Tl CT andFl = F n ((i" x T') U (V x P')).

IfX is a set ofelements ofN, then the triple (P f\X,T C\ X,F Cx (X x X)) is a subnet ofN, called the
subnet ofN generated by X.

Figure 2.1 shows a Petri net model of some device, where:

P = {Pi>P2,_?3,P4,P5} is the set of places,

T = {íi,Í2.*3)Í4)Í5} is the set of transitions, and

F ={(pi,t2), (P2,h), (p3,t3), (p4)í4), (Pi,h), (P5,t2), (íl.Pl), (t2,p2), (t2,p3), (Í3.P4., (tt.Ps),

(t5,p3)} is the flow relation.

Examples ofpre- and post-sets are t2 = {p2> P3} and *{p2,P3} = {t2, í¿}.
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Figure 2.1 Example of a PN system.

Definition 2.2 Paths, circuits

A path in a net (P,T,F) is a nonempty sequence xx...Xk ofnodes which satisfies (xx, x2) ,..., (xk-i,

Xk) 6 F. A path xx...Xk is saidto leadfrom xx toxk-

A path leading from a node x to a node y is a circuit if no element oceurs more than once in it and

(y, x) 6 F. Observe that a sequence containing one element is a path but not a circuit, because for every
node x, (x, x) £ F.

A net (P, T, F) is called weakly connected (or just connected) if every two nodes x , y satisfy (x, y) €

(F U F-1)* Where for any set A, A* is the reflexive and transitive closure of A.

(P, T, F) is strongly connected ifVx, y € P UT, (x, y) e F*
, i.e., for every two nodes x, y there is a path

leading from x to y.

In the example of figure 2. LÍ2P2Í1P1Í2P3 isapathandp3Í3j.4_5 isacircuit. The net is strongly connected.

Next definitions introduce markings and the occurrence rule (firing rule), which transform a net into a

dynamic system.

Definition 2.3 Markings

A marking ofa net (P, T, F) is a mapping m : P —» {N U 0}. A marking is represented by the vector

[m(pi)...m(pn)]T), where px,p2, ...,pn is an arbitraryfixed numeration ofP.

A place p ismarked at a markingm ifm(p) > 0. __ set ofplaces R ismarked ifsomeplace ofR is marked.

The total number oftokens (marks) on a set R is denoted by m(R), i.e., m(R) is the sum ofallm(p)for
pe R.

The nuil marking is the marking which maps everyplace to 0.

Definition 2.4 Are weight

The are weight is afunction w : F —>N, which associates a natural number to each are.

When all ares have weight equal to 1, the net is called ordinary.

In the graph, the weight of each are is written near of it. When no weight is written at some are, the weight

of that are is taken to be equal to 1.
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Definition 2.5 Occurrence rule

A marking m enables a transition t iffor everyplace p S *_, m(jp) > w(p, t). Ift is enabled at m, then

it can occur, and its occurrence leads to the successor marking mi (written m
—> m') which is definedfor

everyplace p by

m(p) ifp £* t andp ^ t*

rr,,!^ _ J m(P) ~ W(P> <) 'fP €* ' andP Í t#
m W

~

| m(p) + w(t, p) ifpi't andp € f

m(p) — w(p, t) + w(t, p) ifp €* t andp 6 t'

(w(Pm,t) tokens are removedfrom theplace pin in thepre-set oft andw(t,Pout) tokens are added to the

place pout in the post-set oft).

A markingm is calleddead ifit enables no transition in the net.

Graphically, a marking rn is represented by m(jp) tokens (black dots) or the number m(p) in the place p.

The marking ofthe net of figure 2.1 maps px to 4, p3 to 1 and all other place to 0. Its vector representa

tion is [ 4 0 1 0 0 ] The transition .3 is enabled, and the marking reached after its occurrence is

[ 4 0 0 1 0 ]T

Definition 2.6 Occurrence sequences, reachable markings

Letmbea marking ofN. Ifm A mi 4 ...
4 m„ are transition occurrences then a = tit2...tn is an

occurrence sequence leadingfrom m to mn and it is written as rn —* m„. This notion includes the empty

sequence e, i.e. m —* mfor everymarkingm.

It is written m —» m', when mt is reachablefrom m, i.e. m -^ mifor some occurrence sequence a. The

set ofallmarkings reachablefrom m is denoted by RS(N,m).

Ifm-**mx-^ m2 -A ...for an infinite sequence of transitions a = txt2t3... then a is an infinite
occurrence sequence and it is written as m —*.

A sequence of transition o is enabled at a marking m ifm —* mi for some marking mi (if o is finite) or

m
—» (if tr is infinite).

Definition 2.7 Pre, Post and Incidence matrices

Let N be the net (P, T, F). The Pre matrix oforder \P\ x \T\ w defined by

Pre(pt) = ( ° V&QÍF
yre(p't}

\ w(p,t) if(p,t)€F

The Post matrix oforder \P\ x \T\ is defined by

Postiv t)-í ° ^P) * F

Post(p,t)-^ w{tp) ¡f(tp)€F

The incidence matrix denoted by C is defined as:

C = Pre- Post
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Similarly to the vector representations of simple mappings, the matrix representation of the incidence

matrix depends on enumerations ofplaces and transitions.

The column vector T oí C associated to a transition _ is denoted by t. Similarly, the row vector P

associated to a place p is denoted by p.

The entry C(p, t) corresponds to the change ofthe marking ofthe place p caused by the occurrence ofthe

transition t. Henee, if í is enabled at a marking m and m —> mf then mi = m + t. For a generalization of

this equation to sequences of transitions the following definition is needed.

Definition 2.8 Parikh vectors oftransition sequences

Let (P, T, F) be a net and let a be a finite sequence of transitions. The Parikh vector ~~o : T —* N ofa

maps every transition t ofT to the number ofoccurrences oft in o.

The Parikh vector of the sequence Í3Í5Í3Í4Í2 is [ 0 1 2 1 1 ] while the Parikh vector of the

sequence tx is [ 1 0 0 0 0 ]

Now, observe that for every transition t, t = C t . Therefore, ifm —> mi, then mi = m + Ct (where m

and mi are taken as column vectors). For an arbitrary finite occurrences sequencem A mi, mi = m +Ca,

as shown in the following Lemma:

Lemma 2.1 Marking equation Lemma

For everyfinite sequencem —» mi ofa netN thefollowing Marking Equation hólds:

mi = m + C a

The proofofthis result is presented in [4].

A net is static - a special kind of graph- while a Petri net is dynamic and has a behavior.

Definition 2.9 Net systems, initial and reachable markings

A net system (orjust a system) is a pair (N,mo) where N is a connected net having at least one place
and one transition, andmo is a marking ofN called the initial marking. A marking is called reachable in a

system ifit is reachable from the initial marking.

Now formal definitions of some ofthe properties ofPetri net systems are presented.

Definition 2.10 Liveness and relatedproperties

A system is live if, for every reachable marking m and every transition t, there exists a marking mf e

RS(N, m) which enables t. If(N, mo) is a live system, then it is said that mo is a live marking ofN.

A system is place-Uve if, for every reachable marking m and everyplace p, there exists a marking mi e

RS(N, m) which marks p.

A system is deadlock-free ifevery reachable marking enables at least one transition; in other words, ifno
deadmarking can be reachedfrom the initial marking.

Loosely speaking, a system is live if every transition can always occur again.
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Next, boundedness of systems is defined.

Definition 2.1 1 Bounded systems, bound ofaplace

A system is bounded iffor everyplacep there is a natural number b such thatm(p) < bfor every reachable

marking m. If(N, mo)isa bounded system, it is said that m0 is a boundedmarking ofN.

The boundofaplace p in a bounded system (N,mo) is defined as:

max{m(p)\m € RS(N,mo)}

A system is called b-bounded ifno place has a boundgreater than b.

Definition 2.12 P-invariants (P-semiflows)

A P-invariant ofa net N is a rational-valued solution ofthe equation YT ■ C = 0.

Proposition 2.1 Fundamentalproperty ofP-invariants

Let (TV, mo) be a system, and let I be a P-invariant ofN. Ifmo —* m!, then I -m = I ■

mo.

The proofofthis result is presented in [4].

Definition 2.13 T-invariants (T-semiflows)

A T-invariant ofa net N isa rational-valued solution ofthe equation C
■ X = 0.

Proposition 2.2 Fundamentalproperty ofT-invariants

Let ff be afinite sequence of transitions ofa net N which is enabled at a marking m. Then the Parikh

vector ~a isa T-invariant iffm -^» m (i.e., iffthe occurrence ofa reproduces the markingm).

P-systems are systems whose transitions have exactly one input place and one output place.

Definition 2.14 P-nets, P-systems

A net isa P-net if\*t\ = 1 = \t*\for every transition t.

A system (N, mo) is a P-system ifN is a P-net.

The fundamental property ofP-systems is that all reachable markings contain exactly the same number of

tokens. In other words, the total number of tokens ofthe system remains invariant under the occurrence of

transitions.

In T-systems places have exactly one input and one output transition.
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Definition 2.15 T-nets, T-systems

A net is a T-net if\'p\ = 1 = \p'\for everyplace p.

A system (N, mo) is a T-system ifN is a T-net.

The fundamental property of T-systems is that the token counts of circuits remain invariant under the

occurrence of transitions.

Another kind ofnet and systems weil studied is that of free-choice.

Definition 2.16 Free-choice nets, free-choice systems

A netN — (P, T, F) isfree-choice if(p, t) 6 F implies 'txp' C Ffor everyplace p and every transition

t.

A system (JV,mo) isfree-choice ifits underlying netN isfree-choice.

The fundamental property ofa free-choice net is that if a marking enables some transition ofpm, where p

is a place ofthe net, then it enables every transition ofp'

Definition 2.17 Siphons, proper siphons

A set R ofplaces ofa net is a siphon if'R C R*. A siphon is calledproper ifit is not an empty set.

Two important facts known about siphons are that: unmarked siphons remain unmarked, and live systems

have no unmarked proper siphons.

Definition 2.18 Traps, proper traps

A set R ofplaces ofa net is a trap ifR* C* R. A trap is calledproper ifit is not the empty set.

Finally, a useful lemma, taken from [4], is presented. The proof in presented in the same reference.

Lemma 2.2 Every live and bounded system (N,mo) has a reachable marking m and an occurrence se

quencem
—> m such that all transitions ofN occur in a.

2.2 Continuous Petri Nets

Loosely speaking, the fluidification or continuization is a procedure in which a continuous dynamic system

is obtained from a discrete event one.

As it was mentioned in the introduction, the fluidification is one of the classical relaxations of DES

models. This relaxation can be applied to Petri Nets in order to deal with the so called state explosión

problem. The computational gain is usually increased if dealing with highly populated systems, because in

those cases the state explosión problem may become much more acute.

The firing logic of PNs is of the type consumption/serves. Thus, continuization should be introduced

through transitions, and extended to its neighborhood (input and output places). When not all transitions are
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Figure 2.2 ContPN system. Only transition t2 is enabled to fire.

continuized, the obtained model is said to be hybrid. If all the transitions are continuized the net is said to be

continuous (contPN). This dissertation will focus only in continuous nets.

Unlike discrete PN, the amount in which a transition can be fired in contPNs is not restricted to a natural

number, actually, a transition t is enabled atm iffVp 6* t, m\p] > 0. Let us see the definition ofthe enabling

degree of transitions.

Definition 2.19 Enabling degree

The enabling degree oft is

__/* \ m[Pl
enaoit,m) = mmvc »t

——

;
—

r

Pre\p,t)

The transition t can fire in a certain amount a e K, 0 < a < enab(t,m) leading to a new marking

mt = m + aC[P, t], where C is the incidence matrix.

Ifm is reachable from m0 through a sequence a, a fundamental equation can be written: m = mo + Ca,

where a € (K+ U {0})'T| is the firing count vector.

Consider the next example.

Example 2.1 See the contPN system offigure 2.2. The enabling degree oftransition t2 is enab(t2,mo) =

2, and the enabling degree oftx is enab(tx, m0) = 0, so tx cannot befired. Suppose that transition t2 isfired

in an amount ofl.5, so, after thefiring the marking reached is m = [ 1.5 1 ]

Next definitions are equivalents to those for discrete PN systems.

Definition 2.20 Boundedness, liveness and lim-liveness on contPNs.

A contPN is boundedwhen everyplace is bounded (ip £ P, 3bp € R with m\p] < bp at every reachable

marking m). It is live when every transition is live (it can ultimately occurfrom every reachable marking).
Liveness may be extended to lim-live assuming that infinitely long sequence can befired. A transition t w non

lim-live iffa sequence ofsuccessively reachablemarkings exists which converge to a marking such that none

ofits successors enables a transition t.
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Definition 2.21 Structural boundedness and structural liveness.

A net is structurally bounded when (N, mo) is boundedfor every initial marking mo and is structurally
live when a mo exists such that (N, mo) is live.

Definition 2.22 P-semiflows and T-semiflows.

As in discrete PNs, left and right annulers ofthe incidence matrix C are called P- and T- semiflows,

respectively. The net N is conservative iff3y > 0, y
■ C = 0 and it is consistent iff3x > 0, C ■ x = 0.

If a contPN is consistent and all transitions are fireable, then the (lim) reachable markings are solutions

ofthe fundamental equation (m =

mo + Ca, m > 0, a > 0). Because of consistency, a > 0 can be relaxed

to cr € RlTl, that is equivalent to BT - m = BT ■

mo, m > 0 with BT a basis of P-semiflows. The set

of all reachable markings at the limit is denoted by lim
— RS. Like in discrete case, nets can be classified

according to their structure.

2.3 Timed Continuous Petri Nets

Like in the discrete case, time can be associated to places, to transitions or to ares in continuous PNs. A

simple way to introduce time in discrete PNs is to assume that all the transitions are timed with exponential

probability distribution function (pdf). For the timing interpretation of continuous PNs a first order (deter

ministic) approximation ofthe discrete case should be used (see [9]), assuming that the delays associated to

the firing oftransitions can be approximated by their mean valúes. For congested systems, this approximation

is valid for any pdf, applying the central limit theorem.

There are some interesting properties ofthe timed continuous PN systems that differ from that of others

continuous models. In discrete PN, the places are essentially state variables, but redundancies may exist due

to token conservation laws, this redundancies also appear in the timed continuous PN. The evolution ofthe

timed continuous PN, as that ofthe discrete PN, takes place according to the information that each transi

tion receives from its input places. The timed continuous PN have only a flow of material that carries the

information implicitly, and evolve according to information that, in standard uses, is local to each transition.

Now, basic definitions of timed continuous Petri nets are introduced.

Definition 2.23 TCPN

A timed contPN or TCPN = (N, X) is the untimed contPN, N, together with a function X : T ->

(K+)'T', where X(U) = A¿ is thefiring rate of transition U-

Definition 2.24 TCPN system

A TCPN system is a tupie E = (N, X, m0), where (N, X) is a TCPN and m0 is the initial marking of
the net.

Now, the fundamental equation depends on time r: m(r) = mo + C • a(r). Deriving this equation with

respect to time, the equation obtained is: tti(t) = C ■ a(r). Using the notation f(r) = a(r) to represent the
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Figure 2.3 Example ofa TCPN system.

flow ofthe transition with respect of time, the fundamental equation becomes: m(r) = C f(r), which can

be written in the short form:

m = C-f

but the dependence on time is considered.

Depending on the flow definition, there are many firing semantics. Finite server (or constant speed) and

infinite server (or variable speed) are the more frequently used. This dissertation is focused on infinite server

semantics (ISS), with the flow ofeach transition defined by:

Observe that the flow of transition t is proportional to its enabling degree by means of the firing rate

\{U) = Ai.

Remark 2.1 A TCPN under infinite server semantics is a piecewise linear system due to the minimum

operator that appears in theflow definition.

Example 2.2 Consider the net offigure 2. 3. Theflows ofthe transitions are given by:

fi = A[í i] • m\px\

t
h = X[t2] ■ min(m[p2],m[p3])
h = A[.3] • min(m[p4Í,m[p5j)
fi = X[U] ■ m\p6]

IfA = [ 1 1 1 1 ] ,
for example, then:
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m\pi] =Í2-fi— m\p2]
- m]pi]

m\p2] = fi - h = ™\p.\ ~ min(m\p_],m\p3])

m[p3_ = h - h = min(m[p4],m[p5])
- min(m[p2],jn[p3])

m\p*\ —h-h = min(m[p2],m[p3])
- min(m[p4], m[p5])

m\p„\ = /4 - fz = m[p6] - min(m[p4],m[p5])

. ™[P6_ =f3-f4= min(m[p4],m[p5])
- m[pe]

Thus, nonlinearity appears due to synchronization (|*_| > 1). One linear system is defined by the set of

ares in Pre limiting the firing ofthe transitions.

Definition 2.25 Constraint on the dynamics ofa transition

Let £ = (N, A,mo) be a TCPN andm a reachablemarking. Itwill be said that the are (p, t) constraints

the dynamic oft atm iff:

™=™W

Definition 2.26 Configuration

A configuration ofY. atm isa set of(p, t) ares describing the effectiveflow ofall the transitions.

So, a configuration is a cover ofT by its inputs ares. One possible representation ofa given configuration

is a matrix form, D e {0, l}lplxlTl:

3fc.*j] = {í
ifPj is limiting the flow of ti

otherwise

Obviously, 0 < Pre, even if the net is ordinary (i.e. all ares have weight one). Each configuration defines

an associated linear system.

Example 23 Let us consider the net offigure 2.3 with X = [ 1 1 1 1 ] . As it was seen in previous

example, this is apiecewise linear system. For the configuration {(pi,tx), (p2,t2), (p5,t3), (p6,te)}, m[p2] <

m[p3] andm\p<,\ < m\p^. Then the active linear system is:

m[pi] = m[p2] - m[pi]

m[p2] = m\px]
- m[p2]

m¡p3] = m\p5] - m\p_]

m\p4] = m\p2¡ - m\pb)

rn\p5] = m\p6] - m\p5]

m\p6} = m\p5]
- m\pa\

or in matrix form:
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1 1 0 0 0 0

1 -1 0 0 0 0

0 -1 0 0 1 0

0 1 0 0 -1 0

0 0 0 0 -1 1

0 0 0 0 1 -1

• m (2.1)

Now, let us consider the configuration {(pi , _ i), (P2, t2), (p4, t3), (pe, t6)). Thenm\p5]
> m\p4] andm[p2] <

m\p-¿] and the linear system associated is:

m[pi] = mlp.]
- m[pi]

m[p2] = m\px]
- m]p_)

m\p3] = m[p4]
- m[p2]

m[p4] = mlp.]
- m\pA]

m\pb] = mlp6]
- m\p^

m(p6] = m\pi]
- mlp6]

or in matrix form:

1 1 0 0 0 0

1 -1 0 0 0 0

0 -1 0 1 0 0

0 1 0 -1 0 0

0 0 0 -1 0 1

0 0 0 1 0 -1

■ m (2.2)

Observe that, depending on the marking ofthe places, the evolution ofthe system
will be given by one or

other linear system. Equation (2.1) and (2.2) describe two of these different
linear systems.

Any (reachable) marking defines a configuration. When the marking of several places are limiting the

firing ofthe same transition, any ofthe associated linear systems
can be used.

The number of minimal configurations (i.e. only one constraining are per transition is taken) is bound by

the net structure (i.e. it does not depend on the marking) and is equal to J J |*» |-
ueT

Definition 2.27 Matrix H

H = [/uj] is \T\ x |P| matrix, where

1,1

\ 0 otherwise

Observe that matrix H is just the transposed of the matrix Pre where the non nuil elements are not

Pre\p, t] but their inverses.
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Definition 2.28 Matrix operator ©

Let R, W and E be three matrices with identical dimensions. The matrix operator © is defined as:

R = W © E, where r^j
=

Wi¿
■

ei¿.

Definition 2.29 Configuration operator

The configuration operator is thefunction II : RS(N, m0)
—> K'T' x 'p' such that:

II(m) = D(m) © H

where 0(m) is the matrix representing the configuration associated to m.

The configuration operator associated to every markingm amatrix \T\ x \P\, such that each row i = 1.. \T\

has only one non nuil element in the position j that corresponds to the place pj that restricts the flow of

transition í¿. The product II(m) ■ m(r) is the enabling degree of each transition at time r, enab(r).

Definition 2.30 Máximumfiring rate matrix

The máximumfiring rate matrix is denoted by: A = diag(Xx,..., X\t\).

Remark 2.2 According to this notation, theflow vector and thefundamental equation are:

f = A • II(m) • m

m = C ■ A ■ ü(m) ■

m

The only action that can be applied to a TCPN system is to slow down their firing flow.

Definition 2.31 Controllable transition and uncontrolled transition

Iftheflow ofa transition t can be reduced or even stopped, itwill be said that tisa controllable transition,
otherwise t is an uncontrolled transition.

The forced flow ofa controllable transition f¿ becomes fi—Ui, where /¿ is the flow ofthe unforced system

(i.e. without control) and u is the control action, with 0 < Ui < fi. The controlled flow vector is:

/ = A • II(m) -m
—

u

where u¡ = 0 if U is not a controllable transition. Thus the state equation of a controlled TCPN system

becomes:

f m = C ■

(A
• II(m) -m

—

u)

\ 0 < u < A • II(m) ■ m
(2.3)
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2.4 Rewriting the state equation

In order to obtain a simplified versión ofthe state equation, the input vector u is rewritten as:

u = IuAU(m)m (2.4)

where Ju = diag(IUl , Iu. , ..., IUp) and /„. € [0, ..., 1].

The meaning of 7U¡ is the normalized breaking factor of transition U, in this case 0 < IUi < 1. Substituting

(2.4) into (2.3) results:

m = C(I- J„)AII(m)m

where I is the unit matrix.

Defining the matrix Ic = I
- Iu, (notice that ICi € [0, ..., 1]), the TCPN state equation is rewritten as:

m = C7cAII(m)m (2.5)

The matrix _"„. is the new input and represents the actual percentage of transition firings. Notice that Ic is

a diagonal matrix and 0 < ICi < 1.
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Chapter 3

State variables and state space

The main topic in this dissertation is the study of controllability on TCPN systems. As it was presented

in section 2.2, a TCPN is built through a procedure from a discrete PN.

Before starting the study of controllability, the concept of controllability for TCPN systems must be

clearly defined. Since TCPN systems are continuous, the concept proposed in this dissertation is similar to

that of continuous systems.

In continuous systems the definition ofcontrollability is based on the concept of state, actually, the concept

of state is basic in the theory of continuous systems, but, unfortunately, it differs from the concept of state for

discrete event systems.

This is the main reason to review the definitions of state, state variable and state space of both continuous

and discrete event systems, and to try to find the common underlaying idea of those definitions.

In the first section ofthis chapter, a briefdiscussion ofthe concepts of state and state variables is presented.

In the second section, some results on reachability obtained from [6] are presented. In the last two sections,

the admissible states set is defined and characterized, also a minimum order state equation, which is valid in

this set, is obtained.

3.1 State and state variables

In this section, classic definitions of state, state variable and state space of linear continuous-time systems

and discrete event systems are compared. These definitions are mainly taken from [16], [3] and [15].

Vilv- 1

Vilv» ;

Figure 3.1 Water tank with an input flow and an output flow.

For discrete event systems, the states and state variables are usually defined directly from the physical

system during the modelization, and once the states and the state variables are defined, the state space appears

naturally. In other way, there is a formal definition of state through the Nerode equivalence relation.
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Figure 3.2 PN system that models the physical system of figure 3.1.

In order to ¡Ilústrate this, see the next example.

Example 3.1 Consider thephysical system offigure 3. 1.

In this system, the water level in the tank is the variable of interest. Three different levéis or "states"

named: high, médium and low, can be distinguished. The initial state is high So, the state variable is the

water level, and the state space is {high, médium, low). The level can changefrom high to médium by the

flow ofthe second valve, when this happen it is said that event dx oceurs. Similarly, event d2 oceurs when

level changefrom médium to low, event ux when level raisefrom médium to high, and event u2 when level

raisefrom low to médium.

At this point, we are able to model this physical system into a PN system, as shown in figure 3.2, but here

we are interested in a formal definition of state and state variable, so, we will use a linguistic interpretation

ofthe system.

The language of the system (the sequences of events that may happen in the system), denoted by L
,

includes words like: {e, dxui, dx, dxuidx, dxd2, dxuxdid2, dxd2u2d2, ...}. This language defines the states

ofthe system through the Nerode relation.

Figure 3.3 Partition of E* under Nerode equivalence relation.
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Figure 3.4 PN system formally obtained.

Definidos 3.1 Nerode equivalence relation

Let L C E* be an arbitrary language, where Y, is Us alphabet. The Nerode equivalence relation on E*

uith respect to L is defined asfollows.

Fbrs,t 6 E*. s =L t tfriu € E*. su e L #tu € L.

In other words s =£ t iff s and t can be continued in exactly the same way to form a string of I.

Since this is an equivalence relation, it makes a partition of E* (see figure 3.3). Now a formal definition

of state can be introduced.

Definition 3.2 State in discrete event systems.

An state ofa discrete event system is an equivalence class or cluster ot"E* under the Nerode equivalence
relation.

Loosely speaking, the state variable is a function that takes valúes on the set ofall the states (range ofthe

state variable). Finally, considering only the states in which the words belong to the language, and the events,

which makes a state change, as transitions, the model of figure 3.4 can be built .

Notice that this PX system is equal to that of figure 3.2, but now the state and the state space (the range

ofthe state variable for this example) are formally defined.

Loosely speaking, a state in a discrete event system is a set ofthe physical states (physical situations or

conditions) for which the observer variables (output variables ) evolve in the same way.

Now, the state definition for continuous systems will be reviewed The state of a continuous system at

time instant t should describe its behavior at that instant in some measurable way. In system theory, the term

state has a much more precise meaning and consti tutes the comerstone ofthe modeling process and many

analytical techniques.

See the next example.
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um IHIII

u(0)=y(0)_[

Figure 3.5 Example of a continuous system.

Example 3.2 Consider the system offigure 3.5. Suppose that at time t = 0 the mass is displacedfrom its

restposition by an amount u(Q) = i¿o > 0 and released it. Let the displacement at any time t > 0 be denoted

by y(t). It is known, from simple mechanics, that the motion ofthe mass defines an harmonic oscillation

described by the second-order differential equation:

my
= —ky (3.1)

Now, suppose that the output y(t) is observed at some time t = tx > to. Mathematically, from the

equation (3.1), it is clear that it cannot be solved for y(tx + t) with only one initial condition, i.e. y(tx); also

information about the first derivative y(tx) is needed .

Observe that together y(tx) and y(tx) provide the information required which, along with full knowledge

ofthe input function, allows to obtain a unique solution and henee the valué of y(tx + r). This leads to the

well-known state definition for continuous time systems.

Definition 3.3 State and state variables in continuous time systems.

The state ofa system at time to is the information required at to such that the output y(t), for allt > to, is

uniquely determinedfrom this information andfrom u(t), t > to.

Like the input u(t) and the output y(t), the state is also generally a vector, commonly denoted by x(t).
The components ofthis vector are called state variables.

Notice that, according to previous definition, the state and the state variables are conceptually equivalents.

Now, let us introduce the term "state space".

Definition 3.4 The state space in continuous time systems.

The state space ofa system, usually denoted by X, is the set ofallpossible valúes that the state may take.

In example 3.2, the state variables have a physical meaning, those are the position and the velocity ofthe

mass. However, for a general case, sometimes the state variables have not a physical meaning. In fact, in
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some identification techniques only the number of state variables is proposed and the identification process

determines the relation between those and the input and output variables, so the state variables are not physical

variables. However, they are related to some physical variables so they are needed to model the dynamics of

the physical system. The state variables act like dynamic memory elements in the dynamics ofthe physical

system.

At this point, we can notice that the state definition of both continuous and discrete event systems are

clearly different. So, now we propose the following definition of state variable, which can cover both previous

definitions.

Definition 3.5 Concept ofstate variable.

An state variable is a function that captures a dimensional property, not necessary measurable, ofthe

physical system as a valué ofa set named range ofthe state variable. The set ofall the state variables must

be sufficient to build a dynamic model ofthe physical system.

It is easy to see that this concept agrees with the definition of state variable in continuous systems. In

those, the dimensional properties can be physical variables such as position, velocity, temperature, pressure,

etc., or physically meaningless variables, but even in this case there must exist something in the physical

system related to the valué assigned to this variable which is necessary for the dynamic behavior. The range

of those variables is the set of real numbers.

So, in the continuous system, the "state" is the function named state variable.

For the example 3.1, which is modeled as a discrete event system, the dimensional property is the water

level, and the range of it is the set {high, médium, low} . In discrete event systems, the state is a valué that the

state variable can take.

Now, we will focus in the transformation that the state variable suffers when a DES model is fluidificated.

Notice that in PN systems, the states, as defined in the DES definition, are codified as given marking

distributions, and the state variable is codified as the marking (as a function).

For the example ofthe water tank, the range ofthe state variable (or the states, according to DES defini

tions) is equivalent to the set:

1

0

0

0

1

0

0

0

1

which correspond to high, médium and low, respectively.

After fluidification, a continuous system is obtained in which a marking such that m =[0.1, 0.8, 0.1]T

may exist. The distribution ofmarkings that can be generated by this continuous Petri net is shown in figure

3.6, where the places px, p2 and p3 correspond to those labeled as high, médium and low, respectively, in

figure 3.2.

Now, the range of the state variable is isomorphic to R2, not to a finite set of markings like in DES

systems. Besides, in continuous systems the range ofa state variable is R. Notice that after the fluidification,

the marking does not have a direct meaning ofthe physical situation ofthe plant, so it cannot be said that a set
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m(p,)
' »

Figure 3.6 The shadowed triangle constitutes the set ofmarkings that can be generated by the contPN.

of state variables is codified into the marking ofthe TCPN system because there does not exist a function

that maps from the physical system to the marking in the TCPN system. Therefore, it cannot be said that

the marking ofa set of places in the TCPN system is a state variable.

Since the TCPN is a continuous model, we will use the continuous linear systems theory concepts to

study the controllability in this, therefore, we need that the state variables (as defined in continuous systems)

be isomorphic to K. So, for TCPN systems, we will consider the marking of a place, which is isomorphic

to R, as a state variable, but we have to keep in mind that it is not, formally speaking, a state variable ofthe

system.

3.2 Reachability in continuous Petri nets

In this section, some results on reachability obtained by Júlvez, Recalde and Silva [6] are presented . First,

consider the case of untimed continuous Petri net.

The set of all reachable markings for a given system (N,m0) is denoted by RS(N, mo).

Definition 3.6 The set ofall reachable markings

RS(N, mo) =(m\ afinitefireable sequence a = ax tai ..otktak exists such that mo
—»

'

mx
—?2 m2 ...

—

° k

m,k=m where tai € T and ai £ R+)

An interesting property oíRS(N,m0) is that it is a convex set (see [10]). That is, if two markings mx and

m2 are reachable, then for any a __ [0, 1], ami + (1
- a)m2 is also a reachable marking.

Consider the system in figure 3.7 with initial marking m0
= [ 0.5 0.5 0 0.5 ] At this marking

either transition tx or transition t3 can be fired. The firing of í3 in an amount of 0.5 makes the system evolve

to marking [ 0.5 0.5 0.5 0 ] from which t2 can be fired in an amount of 0.25 leading to marking

[ 0.5 0.5 0 0.25 ] Now, the markings of places px, p2 and p3 are the same that those ofthe system

at m0, but the marking ofp4 is half of its marking at m0. The continuous firing of transition t2 and í3 by its

máximum enabling degree causes the elimination of half ofthe marking ofp4. Assume that it goes on firing

transitions t2 and t3. Then, as the number of firings increases the marking ofp4 approaches 0, valué that will
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1 m^)

m(Pi)

Figure 3.7 Autonomous continuous system and its lim-reachability space.

be reached only in the limit. The marking reached in the limit is [ 0.5 0.5 0 0 ] . Now, the set of such

markings will be defined, i.e. the markings that are reachable with a finite/infinite firing sequence:

Definition 3.7 The set oflim-reachable markings

Let (N,mo) be a continuous system. A markingm € (R+ U {0})'p' is lim-reachable, iffa sequence of
reachable markings {mi}i>i exists such that

mo
—* mx

—+ m2...m,i—X —i mi...

and limi-.00mi = m. The lim-reachable space is the set oflim-reachablemarkings, and itwill be denoted

lim -

RS(N, m0).

Consider again the system of figure 3.7. It is not necessary to represent the marking of place px since

mx = 1 —

m2. The set oflim-reachable markings is composed ofthe points inside the prism, the points in

the non shadowed sides, the points in the thick edges and the points in the non circled vértices.

The set of reachable markings, RS(N, mo) is a subset of the set of lim-reachable markings, lim
—

RS(N, mo), and for some systems both sets are identical.

Both RS(N, mo) and lim
— RS(N,mo) are not in general closed sets. Consider the system of figure 3.8.

In this figure, the points on the segment going from (0, 0) to (0, 1) do neither belong to RS(N, m0) ñor to

lim —

RS(N, mo). Nevertheless, any point on the right ofthis segment belong to both sets.

Definition 3.8 Closure ofa set

For a given set A, the closure ofA is equal to the points in A plus those points which are infinitely cióse
to points in A, but are not contained in A.

The set ¿-reachable markings will be written as o -

RS(N, m0) and accounts for those markings to which

the system can get as closed as desired firing a finite sequence. Formally:
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mtft)

1 míp^

Figure 3.8 Autonomous continuous system and its reachability and lim-reachability spaces.

Definition 3.9 The set ofS-reachable markings

S - RS(N,m0) is the closure ofRS(N,m0) : 5 -

RS(N,m0) = {m|/or every e > 0 a marking

m' 6 RS(N,mo) exists such \m' — m\ < e).

Since the closure oíRS(N, m0) is equal to the closure oí lim
- RS(N,mo), 5

—RS(N, m0) is also equal

to the set ofmarkings to which the system can get as cióse as desired firing an infinite sequence. RS(N,mo)

and lim — RS(N,mo) are, therefore, subsets of 5
— RS(N, mo).

Therefore, until now three different kinds of reachability concepts have been defined:

- Markings that are reachable with a finite firing sequence, RS(N, m0).

- Markings to which the system converges, eventually, with an infinitely long sequence, lim-RS(N, m0).

- Markings to which the system can get as cióse as desired with a finite sequence, 6
—

RS(N,mo).

These reachability spaces can be fully characterized using, among other elements, the state equation.

Moreover, it is decidable whether amarking is reachable according to each concept. Furthermore, there is an

inclusión relationship among the sets ofmarkings : RS(N,mo) C lim - RS(N,mo) C 6 — RS(N,m0).

The only difference among these sets are in the border points ofthe spaces (i.e., the convex hull).

Full characterization of each reachability space can be seen in [6].

For TCPN systems, consider the following definition of reachability.

Definition 3.10 Reachabilityfor TCPN systems.

Given a TCPN system (N,m0), the set ofall reachable markings (RSt) is defined as RSt(N,m0) =

{m/|3tt(r) suitable bounded such that mo
—>
mf infinite time}.

A marking that belongs to RSt (N, m0) is said to be reachable. Like in the untimed case, the sets lim-RSt

and S - RSt are defined.

When all transitions are controllable, there is an important result about reachability introduced in [7].
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Proposition 3.1 Equivalence oflim-reachable sets oftimed and untimed contPNs

Given a TCPN system, ifall transitions are controllable, then all the reachable markings ofthe untimed

contPN can be reached in the timedmodel, maybe at the limit. (lim
- RSt = lim - RS).

In the general case in which there exist uncontrolled transitions the reachability spaces presented in this

section are not characterized. Even deciding whether a given markingm is reachable or not is a difficult task.

In the next chapters, the notation RS(N, mo) will be used for the reachable set ofthe timed continuous

systems.

3.3 Admissible states set and reachable states set

As it was presented in previous section, the characterization of the reachability space is a difficult task

because it strongly depends on the initial marking. So, the reachability and controllability problems will be

studied with a different approach in this dissertation.

In this way, we will propose a set ofmarkings to study if that set is reachable from the initial marking, and

if the system is controllable on it.

As itwas presented in section 3. 1 we consider the marking ofeach place as a state variable. Then the range

ofa state variable is a subset of R. Considering that the state space of a continuous system is the cartesian

product ofthe ranges ofthe state variables, and that the markings of every place are defined as positives, we

introduce next definition:

Definition 3.1 1 Structural admissible states set

LetN beaTCPN The structural admissible states set is defined as SASS(N) = {i_+U{0}}lpl

Given a general TCPN system (N, mo), not always all markings in SASS(N) belong to the state space

of that system, as it can be seen in the system of figure 3.9. However, all reachable markings belong to

SASS(N). (i.e., lim - RS(N,m0) C SASS(N)). Actually, when N is conservative, i.e. it has P-

semiflows, there exists a static relation betweenmarkings ofthe places which belong to the same P-semiflow.

It causes that the lim—RS(N, mo) be an invariant subset oíSASS(N). In order to characterize this invariant

set, we introduce next definitions.

Definition 3.12 Relation /?

Let N be a TCPN Let B be the base ofthe left annuller ofthe incidence matrix C. The relation

P : SASS(N) -» SASS(N), is defined as:

mx(3m2 iffBTmx = BTm2, Vmx,m2 € SASS(N)

Notice that /. is an equivalence relation so it makes a partition oíSASS(N).

Definition 3.13 System admissible states set

Let (N, m0) be a TCPN system. The system admissible states set is the equivalent class ofthe initial

markingClass(mo) under /3.
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Figure 3.9 A TCPN system, its SASS(N) and its Class(m0).

The Class(mo) set is not equivalent to the sets ofall reachable markings RS(N,mo), lim — RS(N,mo),

ot S -

RS(N,mo) defined by Júlvez, Recalde and Silva [6].

In order to ¡Ilústrate previous definitions see the figure 3.9, in this example, SASS(N) = {R+ U {O}}3;
the shadowed surface corresponds to Class(mo). Notice that m<¿ belongs to Class(mo) but is not reachable

from mo in finite or infinite time, i.e. mj ^ lim
—

RS(N,mo).

Since every reachable marking ofthe TCPN system (N, mo) must fulfill that BTm = BTmo (because

the P-semiflows) and Class(mo) is the greatest set of nonnegative markings that fulfills this condition, then

lim — RS(N, mo) C Class(mo).

So, we have defined the set Class(mo) which includes the set lim
—

RS(N, mo). Notice that Class(mo)

is easier to characterize than lim — RS(N, mo). In next chapter, we will study when either Class(mo) or a

subset ofClass(mo) (which will be subsequently defined) is reachable and the system is controllable on it.

3.4 The minimum order state equation

Consider a conservative TCPN system. Let {m\,m2, ..., mlq} be the set ofthe markings that belong to

the i — th P — semiflow, therefore:

m\ + m\ + ... + m\ = K, K G N (3.2)

Deriving previous equation, the following equation is obtained:

mx +m2 + ... + mq
= 0

Thus, themarking dynamics can be computed using q— 1 places and the conservativemarking law imposed

by the i
— th P — semiflow.

In order to obtain a TCPN minimum state equation, it is needed to elimínate the linearly dependent rows
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ofthe incidence matrix C, such that the rank ofC is preserved. Let m,-, be the state ofthe TCPN minimum

state equation, then «!„,(?-) is a projection ofm(r ), i.e.:

mm
= Pm (3J)

where P xs a projection matrix; P is, in general, not invertible. In order to obtain m(r) from mTn(T) the

following equation is used:

So, there is a bijection betweenm(r) and mm(r). Notice that BTmo is constant and contains the information

ofthe P-semiflows. Now, let define the function G such that:

Gírr^ír)) = n(m)m(r) (3.5)

Finally, the TCPN mínimum state equation is written as:

¿i» = CmIcAG(mm) (3.6)

wheremmir) is the mínimum state vector. This equation does not represent a minimum model ofthe net

because the P - Semiflows are also needed to compute the whole TCPN marking.

Matrices Ic and A are the previously defined ones, while Cm = PC.

Definition 3.14 Minimum order Class ofequivalence

Let (N,mo) beaTCPNsystem. Theminimum order Class oj"equivalence ofmo is defined as C.assm(mo) =

{«nmlmm = Pm,m 6 Class(mo)}.

Proposition 3.2 Characterization ofthe interior ofClassm(mo).

Let m = [mi,m2,...,m|p|]T € Class(mo) be a marking. Vt mj ^ 0 iffm-n is an interior point of

Classm(mo).

Proposition 3J Equivalence ofsolutions ofthe state equation and the minimum state equation.

An input u transfers the state mfrom m0 € Class(mo) to mx € Class(mo) at time tx iffu transfers the

statem-nfrom m-n. to m™, at time tx. Wherem^
= P mo andmmi

= Pmx .

Proof Let (N,mo) be a TCPN system. Consider the state equation of the system as the equation (2.5),

and its minimum order state equation as the equation (3.6). Letm^ be the minimum initial marking. Now,

suppose that the input Ic is applied to both the state equation and the mínimum order state equation, then the

marking reached by the state equation at time tx fulfills with

mx(t1) = m0 + CA [ IcU(m)mdt (3.7)
Jo

and the marking reached by the minimum order state equation at the same time fulfills with

m„,(T)

BTmo
= m(r) (3.4)
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mmi(tx) =mmo +CmA / IcG(mm)dt. (3-8)
Jo

For the necessity, premultiplying the equation (3.7) by the projection matrix P, and according to equations

((3.3)) and ((3.5)), the next equation is obtained.

Pmx = mm. + CmA
í
/ IcG(mm)dt
Jta

Comparing to equation (3.8), then mmi = Pmx.

For the sufficiency, follow the same reasoning and the fact that m0 and mx can be obtained from mmo and

mmi with the equation (3.4). ■
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Chapter 4

Controllability

For classical linear systems controllability has been thoroughly studied. Although TCPN systems are

continuous systems, the classical linear systems definition of controllability cannot be applied to TCPN

systems because the required hypothesis are not tulfilled, i.e. the input should be unbounded and the state

space should be R'PL

However, an interpretation ofthe controllability oíTCPN systems under that definition is first presented

in this chapter, before introducing a new controllability definition. This interpretation is taken from [7].

The linear system controllability classical definition is the following.

Definition 4.1 Controllabilityfor linear continuous-time systems.

An state equation isfully controllable ifthere exists an input such thatfor any two states xx and x2 ofthe
state space, it is possible to transfer the state from xx to x2 infinite time. Otherwise the state equation is

uncontrollable.

Notice that the reachable markings oí a TCPN system does not form a state space (vector space) and the

input ofTCPN systems must be positive and bounded. Contrary to linear continuous-time systems in which

the state space is a vector space and it does not exist any constraint imposed to the input.

In system theory, a very well-known controllability criterion exists which allows to verify whether a con

tinuous linear system is controllable or not, for this, let us introduce the controllability matrix:

Definition 4.2 Controllability matrix.

Given a linear system x(t) = A- x(t) + B ■ u(t), the controllabilitymatrix is defined as:

C=[B AkB,...,An~1B]

Then, next proposition gives sufficient and necessary conditions to controllability in linear continuous

systems:

Proposition 4.1 Controllability ofa linear continuous-time system.

A linear continuous-time system x(t) = A-x(r)+B-u(t) is completely controllable iffthe controllability
matrix C has full rank. IfC is not a full rank matrix then the system has only rank(C) controllable state
variables.

For TCPN systems, every II(m) leads to a linear and time-invariant dynamic system with controllability

matrix C(m). Considering the state equation as in (2.3), the controllability matrix is:
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C(m) = [C, ..., (C ■ A • n(m))"-1 • C]

Proposition 4.2 Equivalence ofspaces generatedfor C(m) and C.

Ifall transitions are controllable, "im, the spacegenerated by the columns ofC(m) andC are equal. Thus

rank(C(m)) = rank(C) = \P\
-

dim(B).

Proof Observe that (C • A • n(m))"-1 ■ C = C • (C • A • nM)"-1. Thus, rank(C) = rank(C). U

Notice that C(m) depends on n(m), but the space generated by its columns is always the same, just that

one defined by that of matrix C. Thus is something that can be easily expected because all transitions have

been assumed to be controllable.

Nets with at least one P-semiflow are non controllable in the classical sense of dynamic system for any

firing rate A and any initial marking mo. P-semiflows based token conservation laws make |P|
—

rank(C)

places linearly-redundant. As it was presented in section 3.3, this token conservation laws causes that the

reachable space be an invariant subset of SASS(N) of dimensión rank(C). The difference between the

dimensión ofthe space generated by C and the number ofthe states variables \P\ corresponds to the |P| -

rank(C) zero valued poles ofthe TCPN system, described in [7]. This zero valued poles, which also are

uncontrollable, are eliminated in the minimum order state equation.

In the next section we propose a definition of controllability for TCPN systems as an adaptation ofthe

classical linear continuous-time systems controllability definition. In the second section of this chapter we

study the controllability in TCPN systems where all transitions are controllable. Finally, in the last section

we study the controllability for the case with uncontrolled transitions.

4.1 Definitions

Now, we propose a definition ofcontrollability which is an adaptation ofthat for linear continuous systems.

Definition 4.3 Fully controllability with bounded input BIFC.

Let (N, m0) be a TCPN system. {N, m0) isfully controllable with bounded input (BIFC) ifthere is an

input such thatfor any two markings mx , m2 £ Class(mo), it is possible to transfer the markingfrom mx to

m2 and the inputfulfills that 0 < _¿¿ < [AII(m)m]¡ along the trajectory.

This controllability definition can be restricted to a set of states.

Definition 4.4 Controllability with bounded input BIC.

Let (N, m0) be a TCPN system. The TCPN system is controllable with bounded input (BIC) over
S C Class(mo) if there is an input such thatfor any two states mx,m2 € S it is possible to transfer the

statefrom mx tom2 and the inputfulfills that 0 < Ui < [AII(m)m]i along the trajectory.

As we demonstrated in section 3.4, there exists an equivalence between the solutions of both the state
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equation and the minimum state equation. Now, next proposition shows the equivalence ofcontrollability for

both equations.

Proposition 4.3 Equivalence ofcontrollabilityfor the state equation and the minimum state equation.

Let (N, mo) be a TCPN system. Consider the state equation ofthe system as equation (2.5), and its

minimum state equation as (3.6) with initial condition mmo
= Pm.Q. The system (N,mo) is BIFC iff its

minimum state equation isfully controllable over Classm(mo) and ICi € [0, 1] along the trajectory.

Proof (Sufficiency). Let mx and m2 be any two markings that belong to Class(mo). Let mmi and mm.

be two markings that belong to Classm(mo) such that mmi = Pmx and mm2
= Pm2. By hypothesis, the

minimum state equation is fully controllable over Classm(mo) so there is an input u that transfers mx to m2

and 0 < tt < AG(mm), i.e. 0 < u < AII(m)m. According to proposition 3.3, the same input u transfers the

state from mo tomi, therefore the system is BIFC. The necessity follows from a similar reasoning. ■

Next definition introduces an important concept for the study of continuous systems, which will be very

useful for the study of controllability in case of existing uncontrolled transitions.

Definition 4.5 Equilibrium points.

Let (N, mo) be a TCPN system. Let m<¡ € RS(N,mo) and 0 < vd < A • U.(ma) •

m¿. Then (md, u¿)
is an equilibrium point ifm,d(ud) = 0.

An equilibrium point represents a state in which the system can be maintained using the defined control

action. Given an initial markingmo and a required marking rn,i, one control problem is to reach and maintain

m¿. From definition, a marking m<¿ is an equilibrium marking ifC ■ (A • n(m<¿) ■

m¿
— u¿) = 0. Therefore,

the flow ofa controlled TCPN in the equilibrium marking m¿, with Ud as input, is a T-semiflow.

A broad study ofequilibrium points in TCPN systems can be found in [7],

4.2 The case of all transitions as controllable

In this section we will study the controllability of TCPN systems, according to the definitions of the

previous section, for the case in which all transitions are controllable.

Next theorem gives sufficient and necessary conditions to verify whether a TCPN system is BIC over

the interior oíClass(mo) or not.

Theorem 4.1 Controllability over the interior ofClass(m.o).

Let (N, m0) be a TCPN system. Consider the minimum state equation ofthe net as in equation (3.6),
and let n be the order ofthe minimum state equation. Let S be the set ofall interiorpoints ofClassm(mo).
The system (N,m0)is BIC over SiffVdeRn3ve{R+U{0}}W such that Cmv = d.
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Proof According to proposition 3.2, Vmm £ S its elements are non zero. (Sufficiency) Let d be any vector

in RJ1, by hypothesis 3v e {R+ U {0}}lrl such that Cmv = d. The vector G(mm) can be written as:

G(mm) = II(m)m =

TTl

7.2

7T|T|

(4.1)

By hypothesis Vi, m¿ ¿ 0, thenn ¿ 0. From definition A = diag(Xx , X2 ,
. . .

, A|T| ) and Ic = diag(ICl , h. ,

so the column vector [IcAG(mm)] can be written as:

IcAG(mm) =

■^clAl7Tl

Ic2^2^2

Ic\T\^\T\K\T\.

(4.2)

Notice that it is always possible to independently change all the elements of the vector [IcAG(mm)]

through Ic, so there exists a factor a e R+ - {0} and an input Ic with Ici e [0, 1] such that:

av = IcAG(mm)

Applying to the minimum state equation:

and by sufficiency hypothesis:

mm = Cmav

mm = ad

Therefore it is always possible to direct the field vector in all mm e Classm(mo) to any desired direction

d, and then to follow any trajectory in Classm(m,o), and due the convexity of Classm(mo), there is a

trajectory from mmo to any mm<¡ € C7assm(mo). Finally, the minimum state equation is fully controllable,

besides Ic € [0, 1], then the system (N, m0) is BIFC.

(Necessity). For the following reasoning, refer to the figure 4.1 .

By hypothesis, 3d e Rn such that Vw € {R+ U {0}}lTl, Cmv / d (i.e. the vector d is not a positive

linear combination ofthe columns ofCm )•

Suppose that d is such that all the elements ofC^d are not positive, (ifit is not the case, a new vector d',

such that all the elements oíC^d' are non positive, can be found from d eliminating its positive components
in the directions ofthe columns ofCm).

Let q be an interior point oíClassm(m0), let s be the perpendicular plañe to the direction of d that passes

through q, then s divides Classm(mo) in two regions, named f_+ and íí-, where (d + q) e í_+ Then:

Vp e fi+- fT -d>0 where f = p-q

It means that there is a positive component of / in the direction of d, then / is not a positive linear
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n P2 ^*^

rr,.

Figure 4. 1 A TCPN system and its Class(m0) set.

combination ofthe columns ofGm, so:

Vv6/_+lTl. Cmv¿f

Since IcAG(mm) 6 ií+lTl,then:

CmIcAG(mm) =mmjíaf where a 6 R+ - {0}, Jc¡ € [0, 1]

Therefore it is not possible to direct the field vectormmin s to any point p 6 íí+ (i.e. it is not possible to

cross s to ft+) then ft+ is not reachable from q, and the system (N, m0) is not BIFC. ■

Next theorem provides a condition of controllability easier to test than the condition which is required in

the theorem 4.1.

Theorem 4.2 Equivalent condition ofcontrollability.

Vtí € RT, 3v 6 {R+ U {0}}lTl such that Cmv = d iff3k € kerd(Cm), k € i_+|T|, wAere fcerd(Cm) ¿s

/Ae right annuller ofCm.

Proof (Sufficiency). By hypothesis 3k e fcerd(C.m), k e i?+'r|. Let Gmj be a matrix built with the first

n linearly independents columns ofCm, then Gm/ is not singular, therefore:

Vd e Rn 3v e fln such that Gm/v = d

Now, let w be a column vector of order |_T|, such that w¡ = Ui if the i column ofCm is in Cmi, and ^ = 0

otherwise. Then Cmw = d. Let wmin be the minimum element ofw. In case of u>m¡n < 0, there is a scalar

a e R+ such that all the elements ofthe vector x = w - awmink are nonnegative, and Cmx = d; in other

case wm¡n > 0, then w € {R+ U {0}}|T|.

(Necessity). Suppose that VA; 6 kerd(Gm), k £ _B+ITI. Let be v e fí_|T|
,
i.e. all the elements of v are

negative.
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Let d = Cmv. Since Vw € i?lTl such that Cmw = d it happens that w = v + k, k e kerd(Gm), but

k <£ Ü+ITI and v e R~W, then w i fl+l7! Therefore, there is d such that, Vv that fulfills Cmv
= d, it

happens that v <£ {R+ U {0}}lTL ■

An useful consequence from the proofofthe theorem 4. 1 is introduced in the next theorem which provides

necessary and sufficient conditions for reachability.

Theorem 4.3 Reachability.

Let (N, mo) be a TCPN system. Consider theminimum state equation ofthe net as in equation (3.6), and

let n be the order ofthe minimum state equation. Let S C G/assm(mo) be a convex set such that Vmm 6 S

its elements are nonzero. The markingmmd € S is reachablefrom mmo € S iff3v € {R+ U {0}}lTl such
that Cmv = (mmd

-

mmo).

Proof (Sufficiency) Let v 6 {R+ U {0}}'T' such that Cmv = (mm<¡
—

mmo). Consider the column vector

[_"cAG(mm)] as in equation (4.2), then it is always possible to independently change all the elements ofthe

vector [7cAG(mm)] through Ic, so there is a factor a € R+ — {0} and an input Ic with Ici € [0, 1] such that:

av = IcAG(mm)

Applying to the minimum state equation:

mm = Cmav

and by hypothesis:

mm
= a(mmd-mmo)

Therefore it is always possible to direct the field vector in all mm € S (including L = {mm\mm =

7mmo +

(1
—

j)mmd, 7 € [0, 1]}) to the direction (mm¿
—

mmo), and due the convexity of5, to reach mmd through

L. (Necessity). Follow the same reasoning as the proof ofthe theorem 4.1, with d = (mmd
—

mmo). ■

Notice that the previous theorem provides conditions of reachability whenever the system is BIFC or

not.

P1 —

( • )

Tl

(* *)

0 ^ m!

Figure 4.2 A TCPN system and its Classm(m0). The marking mi is reachable from m0, but the marking
m2 is not.

The controllability and reachability can be understood from a graphical point ofview. Consider the system
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ofthe figure 4.2. The columns ofthe matrix Cm are Cmi and Gm2. Notice that the vector (mi - m0) is a

positive linear combination ofCmX and G„,2.and since the vector field is a positive linear combination ofthe

columns of Cm, then mi is reachable from m0, and therefore all the points in the shadowed área compose

the set of all reachable markings. The vector (m2
— mo) is not a positive linear combination ofthe columns

ofCm, then m2 is not reachable from mo.

Now, consider the system of figure 4.3. The net ofthis system is similar to that of figure 4.2 but it has

another transition. In this system, the vector (m2 —mo) is a positive linear combination ofthe columns of

C,n, actually all vectors in R2 can be considered as a positive linear combination ofthe columns oíCm, so,

this is a BIFC system.

Figure 4.3 A TCPNsystem. The columns ofthe matrix Cm cover all Classm(mo), and then this system is

BIFC

Next theorem study the possibility of transferring the marking from a border point to an interior point of

Classm(mo).

Theorem 4.4 Controllability at borderpoints.

Let (N, mo) be a TCPN system, such that it is live and bounded as discrete. Let mo be a marking with

nuil elements. An input, such that Ic is invertible, transfers the statefrom mo to some m./,wherem¡ has not

nuil elements.

Proof Consider a place pi without tokens at time r, so pi cannot lose tokens. When an input such that Ic

is invertible is applied, then for any transition tj, [A/c7r(m)m(T)]J
= 0 iff there is an input place to transition

tj without tokens. In the same way pi cannot win tokens iff there exist unmarked input places to all the input

transitions to p¿, i.e.:

•

Vm(T)i = 0, m(r)i = 0 iffVt£ = pu 3pr =' tk such that m(r)T = 0.

If a place pi has not tokens at time r and remains without tokens for future time, then there exists an input

place to pi which remains without tokens for all time. Now, for this new place it should comply the same

rule. Therefore, pi belongs to an initially unmarked siphon, but since the system is live as discrete there is

not such siphon.

Therefore, a control law such that Ic is invertible should give tokens to the unmarked places, so the state

will be transferred to somem/ which has not nuil elements. ■



38 Chapter 4 Controllability

Although liveness ofthe discrete system does not imply liveness ofthe continuous system, previous the

orem is sustained by the liveness ofthe discrete system. Notice that for the proof, liveness ofthe TCPN

system is not required, only the property that it does not exist initially unmarked siphon in the system is

required, which follows from the liveness ofthe discrete system.

Theorems 4.1, 4.2 and 3.2 establish that a TCPN system is BIC over the set of all the interior points of

Classm(mo) iñ3k G kerd(Gm) such that k G Ü+|TL Even when Classm(m0) is not open, it is possible to

asymptotically transfer the state to an md not interior, following an interior points trajectory. By theorem4.4,

if the system is live as discrete, then it is always possible to transfer the marking from a border point to an

interior point oiClass(m0). So, we conclude that a TCPN system, which is live as discrete, is BIFC iff

3k G kerd(Cm) such that k G Ü+ITL

Notice that the theorem 4.1 gives a structural test of controllability. This structural sense is explored in the

next proposition.

Proposition 4.4 The controllability is an structuralpropertyfor live systems.

Let N be a TCPN. Then the system (N,m0), which is live as discrete, is BIFC over Class(m0) iff
the system (N, mx), which is live as discrete, is BIFC over Class(mx); where m0,mx G SASS(N) and

Class(mo) ^= Class(mx).

Proof Let the system (N,m0) be BIFC, then, according to the theorem 4. 1, Vd G Rn3v G {J_+U{0}}lTl
such that Cmv = d, so the system {N, mx ) fulfills the conditions ofthe theorem 4. 1 . Therefore it is BIC over

the interior ofClass(mx). Finally, since the system (N,mx) is live as discrete, according to the theorem4.4,

for any marking in the frontier of Class(mx) there exists an input that transfers the state to the interior,

therefore, the system (N, mx) is BIFC ■

Finally next theorem is presented.

Theorem 4.5 Controllability in live and bounded Petri nets.

Let (N, mo) be a live and bounded discrete Petri net system. Then the respective TCPN is BIFC.

Proof From lemma 2.2 it is known that there exists an occurrence sequence a for the discrete Petri net

such that a contains all transitions of N, and that m A m for some reachable marking m. Consider the

Parikh vector ofa as ~o, then all elements of~o are positives. Now, considering the marking equation, then:

m = m + Ca

So, ~a is in the right kemel ofthe incidence matrix, and according to theorems 4.2 and 4.1 the continuous

system is BIC over Class(mo). Now, since the system is live and bounded as discrete, then theorem4.4 can

be applied, so the continuous system is BIFC ■
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Figure 4.4 A TCPN system. Consider transition U as the only uncontrolled transition.

4.3 The case of uncontrolled transitions

In this section the controllability oíTCPN systems is studied for the case with uncontrolled transitions.

The controllability in this case has been explored by Jiménez, Júlvez, Recalde and Silva [8]. They introduced

a controllability definition as a property of markings, i.e., a marking is said controllable iff it is reachable

and it is an equilibrium point (with a suitable bounded input). They characterized the set of "controllable

markings" for join free Petri nets.

In this dissertation, the controllability is studied according to the definitions previously presented in this

chapter. In this section, a definition ofthe equilibrium points set is introduced and next, the controllability is

studied on this set for a general kind ofnet. Since this set is defined from the structure, then the controllability

proposed in this dissertation is an structural property ofthe system, not a property ofmarkings.

Along this section, both approaches are compared. Remember that, according to definitions of section 2.3,

for any uncontrolled transition tu the input u is such that u(t ¡) = 0 and so Ic(t.) = 1.

An important definition, which was introduced in [8] by Jiménez, Júlvez, Recalde and Silva, is that ofthe

controllability space, which is shown next:

Definition 4.6 Controllability Space CS.

Given an initial marking mo and a set ofcontrolled transitions Tc C T, the Controllability Space (CS)

is defined as the set of all the controllable markings, i.e., CS = {mf\3u(r) such that mo
—»

m¡ and

m¡(u) = 0}.

An inconvenience with this definition is that CS is defined as a function ofmo, not from the structure.

The CS constitutes the set ofmarkings that can be equilibrium markings given Tc and that can be reached

from mo. In order to define this concept independently ofthe initial marking, the next definition is proposed.

Definition 4.7 Equilibrium set ES.

Let {N, mo) be a TCPN system. Given the set ofcontrolled transitions Tc C T, the Equilibrium Set is

defined as ES = {m € Class(mo)\3u boundedwith m = 0, Víj ^ Tc andm(u) = 0}.

For the cases studied in [8], the equilibrium set and the controllability space are the same, but for a general

case they are not equivalent.
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Figure 4.5 The Classm(mo) ofthe system ofthe figure 5.2. The bold line at the center ofthe cube is the

ES, where t\ is the only controlled transition.

In order to ¡Ilústrate the difference between ES and CS, consider the net ofthe figure 4.4 with í4 as the

only controllable transition, and let m0 = [0.5, 0.5, 4, 2, 0.5, 0.5]T be the initial marking. The Classm(mo)

is shown in figure 4.5. The bold line inside corresponds to ES. Since .4 is the only controllable transition,

the marking md = [0.5, 0.5, 3, 3, 0.5, 0.5]T is not reachable from mo even when both belong to ES, so md

doesn't belong to CS. In this case, only the markings in the segment [mo,mq] belong to CS.

Next definition introduce different subsets ofES.

Definition 4.8 The sets S{, S\nt and S?

Let (N, mo) be a TCPN system. Let Tc be the set ofcontrolled transitions. The set ofall equilibrium

markings with the same configuration Hi is defined as Si = {m G ES\U(m) = uj}. The interior ofSi is

given by S\nt = {m € Si\(m,Ig) is an equilibrium point and 7^ G (0,1), Ví¡ G Tc}. In the same way,

the subset ofSí, in which all equilibrium inputs are positives, is defined as S¡ = {m G Si\(m,I¡) is an

equilibrium point and Iqci G (0, 1] ,
Vii G T. }. Notice that S¡ni CS^CS¡.

Another important result obtained by Jiménez, Júlvez, Recalde and Silva [8] is the convexity of CS for

join free nets. The generalization ofthis result is introduced in the next proposition.

Proposition 4.5 Convexity ofthe sets Si, S¡nt and S*

Let (N, mo) be a TCPN system, and Tc be the set ofcontrolled transitions. Iffor a given configuration
Ui, S\nt is not nuil, then Si, Sf and Sjnt are convex sets.

The proof follows directly from the linearity ofthe flow and it is the same presented by Jiménez, Júlvez

Recalde and Silva in [8].

The projection of these sets over Classm(mo) are defined in the next definition.
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Definition 4.9 The sets Smi, Smi and S%¡.

The projection ofthe set Si over Classm(mo) is defined as Smi = {mm|mm = Pm,m G _?»}. ln the

same way, the projection ofthe set Sf over Classm(m0) is Smi = {mm|mm = Pm,m G Sf} and the

projection ofSÍnt is S£/ = {mm|mm = Pm,m G _>?"'}•

Since the projection is a linear operator, the sets Smi, SZ and S™- are convex too.

Next definitions are useful to explore the controllability.

Definition 4.10 The input transfer matrix Cmc.

Let (N,mo) be a TCPN system. Let Tc = {tCl , tc. , ..., íC|Tc| } be the set ofcontrollable transitions, and

define the controllable projection matrix as Oc =[ eCl ec. ... eC|Tc| ], where ej is the j
— th column

vector ofthe unity matrix oforder \T\. Then, the input transfer matrix Cmc is defined as Cmc = CmOc.

Definition 4.1 1 The local constantflow vector Ai and the localflow matrix J¿.

Consider a configuration U(m) = Tli, wherem G Class(mo). The local constantflow vector Ai and the

localflow matrix Ji related lo Yl, are defined such that Wm G {m G C_ass(m0)|n(m) = Iíj}, itfulfills that

II(m)m = Uim = Ai + Jimm, wheremm = Pm.

Now, we introduce the next theorem, which gives sufficient conditions to controllability in Sf

Theorem 4.6 Local controllability with bounded input.

Let (N,mo) be a TCPN system, where the minimum initial marking mm~ belongs to some SZ. Define

Inc os a diagonalmatrix where Inci = 1, V_¿ ^ Tc, and Inci = 0, Vii G Tc The system is BIC over Sf if

3k G fl+lT'l(2+1) such that ke kerd([Cmc, (CmIncAJ.)Cmc, -, (CmÍncAJi)zCmc]) for some z<E N

Proof Consider the minimum state equation as in equation (3.6). Define 7con such that Ic = Inc + Icon.

Let 1^ and 7"on be two matrices such that Icon = I'con + /£,„, then

■« c
= ¡-nc ~T ¿con ' *con X***}

Considering previous definitions, the state equation can be rewritten as:

mm = CmIncAAi + CmIncAJimm + CmI'conAG(mm) + CmI"onAG{mm)

Which is valid in S+. Now, consider the equilibrium point (mmq, 1%), where mmq G S+, and define

J«on such that

/« = /nc + /«on (4.4)

Let I'con be caículated such that

7¿onAG(mm) = IlonAG(mmq) (4.5)
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Then, the state equation is rewritten as:

mm = CmlncAAi + Gm/„CAJi(mm -

mmq) + Cm/„cAJimm, + CmIqconAG(mmq) + CmI'llAG(mm)

Notice that

CmlncAAi + CmIncAJimmq + CmI¡onAG(mmq) = GmJ«AG(mmg) = 0

and that Cm/"onAG(mm) = Cmcu2, where the new input u2 is defined as:

«2 = OcTJÍ'0„AG(mm) (4.6)

and

O nTT" = i"
kjc^c ±con ícon

So, substituting in the previous equation:

mm = CmIncAJi(mm —

mmq) + Cmcu2

Define a new variable /_
=
mm

—

mmq, then p
= mm, that is:

P
= CmlncAJifJ, + Cmcu2

The solution ofthis state equation is given by:

M(T) = ec™'«<AJ<T/i(0) + í ec-"7-AJiíCmcw2(r - CK
J o

But, considering mm(0) = mmq, then p(0) = 0. Developing previous equation, then:

M(r) = ec-/-"A-,'T/i(0) + /' e0m/-Aj4CGrocu2(T -

CR

mm(T)-mm, = / e^^WCmcMT - 0<K
■I o

= r\l+ (CmlncAJiK + (CmlncAJi)2^ + ... CmcU2(T - ()d£

Finally, taking out the constant elements from the integral and arranging the equation, the next equation is
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obtained:

mm(T) -

mmq
= [ Cmc (CmIncAJi)Cmc (CmIncAJi)2Cmc ... ] c.

¡ §rw2(i
/ o

u2(t - C)dC

Cu2(r-OdC

CR

(4.7)

Notice that if the input were unbounded and the matrix [Cmc, (Gm/„cAJi)Gmc, (Gm/„cAJi)2Gmc, ...]
were a full rank matrix, any marking oí Classm(mo) would be reachable from mmq, but in this case the

input is already bounded. So, in order to investígate the reachability from mmq it is necessary to analyze the

boundedness in the input.

Now, consider any controllable transition U G Tc. According to equation (4.4), Iqt = Iqmi, due to the fact

that 1,^ = 0. From equation (4.5), ^miGi(mm) = /«oniG¡(mm,).

So, according to these equations:

71 .

cont
= iq

Gj(mmq)

Gi(mm)

Substituting in (4.3):

jl - T .
_

Ti G'(mmq)
1coni lci *ci /-i /„, \

^i\m,m)

Since Id G [0, 1] then:

r g jq Gj(mmq)

ciGi(mm)'
Iq Gi(mmq)

Gi(mm)
(4.8)

Notice that for all mmq G Smi the corresponding equilibrium input Iq is such that Ví¡ G Tc, 7|¿ G (0, 1].

Consider the case in which Iqci G (0, 1). Since G(«) is a linear function, there exists a small enough

neighborhood ofmmq named V(mmq) such that for all mm G V(mmq), 1% a'fc^y < 1- Then, 72oni can

be done either positive or negative.

In case that Iq{ = 1, then, according to equation (4.8), I2oni can be settled as a negative valué, and as small

in magnitude as desired, just considering a small enough neighborhood.

Therefore, Vmm, G Sf there exists a neighborhood V(mmq) oí mmq where I2oni can be settled as a

negative valué, and as smaller in magnitude as desired. Now, since u2 = OtI^AG^m), then the elements

of m2 can be settled also as a negative valué, and independently as small in magnitude as desired. Notice that

the negative bound ofthe input u2 is determined by the equilibrium marking, not by the current marking.

Finally, since the elements of the right side vector of equation (4.7) are linearly independent functions

of u2, then the elements of this vector can be settled as a negative valué, and independently as small in

magnitude as desired.
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Now, by hypothesis and the theorem 4.2, Vmmd G Classm(mo) there exists v G R+\™z+1'> such that

-(mmd -

mmq) = [Cmc, (CmIncAJi)Cmc, (Gm7ncAJi)2Gmc> ..., (CmIncAJi)zCmc]v, where z > n.

And according to the Calley-Hamilton's theorem, there is a vector w, where all its elements are negative,

such that

(mmd -

mmq) = [Gmc, (CmIncAJi)Cmc, (C'ml„cAJ.fCmc, -]w (4.9)

Notice that it is always possible to find a positive scalar a and an input J"on, bounded by (4.8), such that

w = a [ |Q u2(t - C)dC I CMr
~

CK f %u2(r - CK ...

Then, substituting w in (4.9) we have:

/\2(r-C)dC
J.J)

Ol (mmd
—

mmq)
=

[ Cmc (CmlncAJi)Cmc (CmlncAJ.) Cmc ... J j C«2(r-C)dC

/ ^U2(r-C)dC
J o

Comparing this equation with the equation (4.7), we conclude that the marking mmq + a (mmd —

mmq)
is reachable from mmq, and since it is valid for any mmd G Classm(mo), then there exists a reachable

neighborhood ofmmq-

This result is also easy to see from equation (4.7), just consider that the hypothesis and the Calley-

Hamilton's theorem implícate that all directions in Classm(mo) can be covered with an input such that

all its elements are negative, and by the equation (4.8) an input, such that all its elements are negative, can be

always applied, at least for a small neighborhood ofmmq.

Finally, since Smi is a convex set, and Vmm, G SZ there exists a reachable neighborhood from mmq,

which includes another markings of Smi> then the system is BIC over Sf. ■

Next theorem provides a relaxed sufficient condition to controllability in S¿nt.

Theorem 4.7 Controllability over S¡nt

Let (N, mo) be a TCPN system, where the minimum initial marking mmo belongs to S%¡}. The system

is BIC over S\nt ifthe controllability matrix Cont(CmIncAJi, Cmc) defined as

Cont(CmIncAJi, Cmc) = [Cmc, (CmIncAJi)Gmc, (Gm/ncAJi)2Cmc, ..., (CmIncAJi)n-lCmc]

hasfull rank.

Proof Consider the proofofthe theorem 4.6. Notice that for all mmq G S%$ the corresponding equilibrium

input Iq is such that Ví¿ G Tc, Iqci G (0, 1). In this case, since G(») is a linear function, there exists an

enough small neighborhood of mmq named V(mmq) such that for all mm G V(mmq), Iq¡%¡j¡f¡*$ < 1.

Then, according to the equation (4.8) 72oni can be settled as either a positive or a negative valué. Since
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«2 = 0TI"onAG(mm) and the elements ofthe right side vector of equation (4.7) are linearly independent,
then the elements ofthis vector can be settled independently as either a positive or a negative valué.

According to the hypothesis and the Calley-Hamilton's theorem, Vmm<¡ G Classm(mo) there is a vector

w, such that

(mmd -

mmq) = [Cmc, (CmIncAJi)Cmc, (Gm/„cAJi)2Gmc, ...]w (4.10)

Notice that it is always possible to find a positive scalar a and an input I"m, bounded by (4.8), such that

w=a\J\(T-0dC ^C^Cr-CK /T£u2(r-CR
Then, substituting tü in (4. 10) we have:

/\2(r-CK
J s>

Ot(mmd~m,mq) = [ Cmc (CmIncAJi)Cmc (Gm/ncAJi) Cmc ■■■ ] J CMt-CK

/ £«2(t-CK
J o

Comparing this equationwith the equation (4.7), then we conclude that themarkingmmq+a (mmd
—

mmq)
is reachable from mm<?, and since it is valid for any mmd G Classm (mo), then there exists a reachable neigh

borhood ofmm,.

Finally, since 5™' is a convex set, and Vmm, G _?„/ there exists a reachable neighborhood from mm<7,

which includes other markings of S™*, then the system is BIC over 5jnt ■

Next theorem provides a necessary condition to reachability from the initial marking to another marking,

where both belong to the same configuration.

Theorem 4.8 Reachability.

Let (N, mo) be a TCPN system, where the minimum initialmarkingmmo belongs to Smi- Define the set

ofall markings with the configuration II¡ as Sj1 = {m G G_ass(mo)|II(m) = n¡}. Consider a marking

md G _?", and let mmd = Pmd-

Ifmd is reachablefrom mo through a trajectory in Sj1, then the vector (mmd —

mmo) is in the range of
the controllability matrix.

Proof The proof follows by contradiction. Suppose that the vector [mm<¿ — mmo] is not in the image of

the controllability matrix, then, due to the Calley-Hamilton's theorem, the vector is not in the image of the

matrix [ Cmc (Gm/ncAJi)Gmc (CmIncAJi)2Cmc ... ]. Finally, according to the equation (4.7), there
does not exists an input u2, bounded or not, such that mmd be reachable from mmo. ■

The next example ¡Ilústrate the use of previous theorems.

Example 4.1 Consider the system ofthefigure 4.6, where the minimum marking is mm = [ mi m3 ]
In this example, the transition t3 is the only uncontrolled transition, and the structure ofthe system is given
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by thefollowingmatrices:

Cm —

-1 1 0

0 -1 1

10 0' '10 0 0"

0 1 0 n(m) = ni = 0 10 0

0 0 1 0 0 0 1

Vm G Class(mo)\m2 < m3

The upper shadowed triangle in the figure 4.6 correspond to ES. The matrices defined in the previous

theorems are:

Ax =

0

-1

-3

1 0

1 0 *nc
—

0 -1

0 0 0

0 0 0 ^TOC —

0 0 1

CmIncAJX —

0 0

0 -1
Cont(CmIncAJX,Cmc)

-1 10 0

0-101

According to the theorem 4.7, the system is BIC over the set S¡nt if the controllability matrix has full

rank. For this example, considering Ui = Ux, the shadowed área in the interior ofthe triangle in figure 4.6

is equivalent to S™*. Since for this example the matrix Cont(CmIncAJi, Cmc) has full rank, the system is

BIC over the shadowed área.

Now, the set Smi, where Ui = Ux, includes the shadowed área in the interior ofthe triangle and the edges

ex and e2 in figure 4.6.

The controllability Sf can be checked using the theorem 4.6. The matrix to be checked with z = 1 is:

[^mc. \SsmlncrLrJi)im*mc\
—

-1 10 0

0-101

Since k = [ 1 1 1 1 ]
T

G kerd([Cmc, (Gm/ncAJi)Gmc]) n i_+4, the system is BIC over Sf

Next theorem establishes a sufficient condition of controllability in a subset of ES, valid when there is

only one uncontrolled transition. Although previous theorems can be applied for this case, the proof of next

theorem will be subsequently useful when the structure ofa control law is defined.

Theorem 4.9 Controllability in case of[T — Tc\ = 1.

Let (N,mo) be aTCPN system, such that itis live and boundedas discrete. Suppose that 3k G kerd(Gm)
such that k G i_+|T|. Let Tc be the set of controllable transitions such that \T -

Tc\ = 1. Let S be a

connected subset ofES such that all markings in S have the same configuration, then the system is BIC

over S.

Proof Let mi be an interior marking of S, and mmi = Pmi. Since mi G S there is an input Io

such that CmIcAG(mmX) = 0, with J°¡ = 1, where {U} $ Tc. Since mx is an interior point of 5 then
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Figure 4.6 A TCPN system and its Classm(mo) set. The transtition t3 is uncontrolled, and the transitions

íi and t2 are controllable. The shadowed área is the corresponding ES.

I°cj€(Q,\),Vtj€Tc.

Let m2 be a marking such that m2 G Class(mx) and mm2 = Pm2. Since mi G S, there is a vector

k G kerd{Cm), k G {R+ U {0}}IT' such that I°AG(mmX) = a2k.

Now, let v0 G ñ|T| be a particular solution of Cmv = (mm2 - mm.), such that v0i = 0 where U $. Tc,

(notice that it is always possible to find such vq because Cm has a right kemel), then v = axvo+a2k, ax,a2 G

R+, is a solution ofCmv = a(mm2
— mmX),a G R+

As 1° is such that _& G (0, 1), Ví¿ G Tc, then it is always possible to find ax G R+, such that 0 < Vi <

[AG(mmi)]i, and therefore I\ such that CmI¡AG(mmX) = a(mm2
-

mmX) where a G R+, 7¿ € [0, 1],

and I\j = 1 Víj Í Tc.

So, it is always possible to point the field vector in all the interior markings of S to anym G GZass(mo).

Because 5 is a connected set, there exists a trajectory that connects any mx and m2 in S. Thus the system is

BIC over S. ■
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Chapter 5

Control laws

The main goal ofthis chapter is to provide effective control laws forTCPN systems, i.e. suitable bounded

control laws that transfer the marking from the initial marking to the required equilibrium marking.

In the first section ofthis chapter, the behavior ofthe controlledTCPN system, when a classical feedback

state control law is applied, is studied.

After that, in the following two sections, we will introduce two effective control laws: one for the case

in which all transitions are controllable, and the other for the case in which there is only one uncontrolled

transition.

Finally, in the last section, we will propose a control law scheme for the case in which there are several

uncontrolled transitions.

Along this chapter some stability concepts will be used. For a proper introduction to those concepts see

[11].

5.1 Classical feedback state control law

As it is weil known, the classical feedback state control law for a linear continuous-time system x =

A ■ x + B -

u, is a linear state function as:

u = fc ■

x

where the constant matrix fc is chosen such that the matrix (A — B ■ fc) has all its eigenvalues as negative.

Now consider a TCPN system (N, m0) in which all transitions are controllable. Let md be a desired

equilibrium marking.

Consider a feedback state control law as:

Ufb
= Kx(m)-m + K2(m)-md (5.1)

According to equation (2.3), this control law must fulfill that:

0 < Kx(m) ■ m + K2(m) ■

md < A • U(m) ■ m (5.2)

Functions Kx(») and K2(u) can be defined as constants by configurations, i.e.:
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Kx(mx) = Kx(m2) iñU(mx) = U(m2)

K2(mx) = K2(m2) iff n(mj) = n(m2)

So, if this control law is applied to the state equation (2.3), the following equation of the closed-loop

system is obtained.

m = C(A ■ II(m) • m - Kx (m) ■ m
-

K2(m) ■ md) (5.3)

Then for any configuration II¡ a closed-loop system equation can be written as:

m = G(A • Ui — KXi) ■ m
— K2i ■

m,d

Now, consider the error vector as:

e = md
—

m

So, the dynamic behavior ofthe error in the configuration Ut is characterized by the equation:

e = -C(A ■ n¿ - Kxi) • m + K2i ■

md

This equation is equivalent to:

é = G(A • Ui - KXi) ■ e + C(K2i - A ■ n¿ + KXi) ■

md

Finally, choosing Kx(») such that the matrix G(A • Iíj -

KXi) has all its eigenvalues as negative, and

K2(») such that K2i = A ■ II¡ - Kxi, the marking md is the unique asymptotically stable equilibrium point

in the closed-loop system.

This control law has two important problems. The first one is that the input of a TCPN is bounded, so,

we cannot be sure that the control law proposed fulfills the bound ofequation (5.2) for all markings along the

trajectory.

The second problem is that the "state space" of a TCPN system is bounded (at least it is positive). So,
the solution of (5.3) may try to transfer the marking outside oíClass(mo), which is not possible.

In order to ¡Ilústrate this second problem, consider the figure .5.1. In this figure the "state space" ofa

TCPN controlled system, in which the feedback state control law previously described is applied, is shown.

The circle in figure 5. 1 corresponds to the Lyapunov surface that passes through m0. So, the points inside
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«n(P;)j

/m_

V / m(p¡)

Figure 5. 1 Región of attraction of a closed-loop system with a feedback state control law.

the circle constitutes the región of attraction ofthe closed-loop system. Even when the trajectory tr is inside

the región ofattraction, it includes the pointm¡ which does not belong to Class(mo). Therefore, the closed-

loop system cannot genérate such trajectory.

Actually, the feedback state control law can block the system in a border point ofG_ass(mo).

Finally we conclude that this control approach is not always effective.

5.2 The case of all transitions as controllable

Through this section, only TCPN systems such that all transitions are controllable will be considered.

Let (N,m0) be a live, bounded and BIFC TCPN system. Let mmd G Classm(mo) be a desired

minimum marking, and let mmo
= Pmo be the minimum initial marking such that mmo is an interior point

ofClassm(mo).

The error vector is defined as:

em = (mmd
~ mm)

Since (N,mo) is BIFC, there is a vector v G i_+'Tl such that Cmv = em. Letmm be an interior point of

Classm(mo), then there is always a function a : fí+|Tl x fí+|Tl —► R+ and an input Ic (with 7cí G [0, 1]),

such that a(v, AG(mm))v = 7cAG(mm).

Substituting previous equality into the minimum state equation leads:

mm = a(v,AG(mm))v

Considering that a(v, AG(mm)) is a scalar function and substituting the error vector equality, then:

mm = a(v, AG(mm))e,
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So, the field vector has the error vector direction.

Consider the next function as a Lyapunov candidate function

"
—

emem

Derivating the Lyapunov function:

• .T ,T
V = 2emem = -2mme.„, ,., -"'»-,„.«.

- -2a(v,AG(mm))emem = -2a(v,AG(mm))V

(5.4)

(5.5)

Since a(v, AG(mm)) G R+, then V is negative defined. Therefore em is asymptotically stable. This

control law transfers the marking from mmo to mmd following a linear trajectory.

Now, let emo be the error vector in mmo, and let vq be such that:

Cmv0 = emo,i>0 G i_+|T|.

By controllability hypothesis, there are solutions for a and Ic in the equation

a(v0, AG(mm))v0 = IcAG(mm).

Consider the elements ofAG(mm) and v as:

(5.6)

AG(mm) =

AlTTl

A27T2

_A|T|7T|T|

Vl

V2

V\T\.

límmd is an interior point oí Classm(mo), then 3p G R+ such that Vi, Af7ri > fj., and if Zc is such

that Icj = 1 (this is always possible) then IcjXj-itj > p, and, according to the equality of equation (5.6),

a(v0,AG(mm)) > n/v0j where fj,/v0j G R+.

Then:

|| mm ||= a(v0, AG(mm)) || em0 ||> (p/voj) || em0 ||

Consider the Lyapunov candidate function as in equation (5.4), then its derivative is:

V < -(2p/v0j) || emo II &V

The above inequality implies that the state mmd is reached in finite time.

In order to calcúlate Ic it is necessary to solve the equation (5.6). Suppose that a is defined as:

1

a(v,AG(mm)) =

TOaa;(«i/(Aiiri),t)2/(A27r2),...,U|r|/(A|T|T|T|))

(5.7)

(5.8)
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wheremax() is the greater element ofthe argument. Then /,. is equal to:

1

Ic =

max(vx/(\xnx),v2/(X2iTr,),...,v\T\/(X\T\TX-iT\))
diag(vx/(Xxnx),v2/(X2ir2),...,v\T\/(^\T\^\T\))

(5.9)

Notice that Ici G [0, 1] Vi G {1, 2, ..., |T|},and max(IcX,IC2,-, h\T\) = 1 whenever v ¿ 0.

Finally the original input u can be caículated as:

tt = 7„An(m)m = (I — Ic)AU(m)m (5.10)

Example 5.1 Let N be the net ofthefigure 5.2, which structure is represented by the nextmatrices:

C =

The configuration matrix is given by the next rules:

1 1 0 0

1 -1 0 0

0 -1 1 0

0 1 -1 0

0 0 -1 1

0 0 1 -1

,A = diag(l,l,l,l)

U(m) = Ux, if m2 < m3 and 7714 < ms

n(m) = II2, if m3 < m,2 and rr_4 < m„

U(m) = II3, if rri2 < m3 and ms < m^

U(m) = Ui, if 7713 < m2 and m5 < m4

where:

n.i =

10 0 0 0 0

0 10 0 0 0

0 0 0 10 0

0 0 0 0 0 1

,n2 =

10 0 0 0 0

0 0 10 0 0

0 0 0 10 0

0 0 0 0 0 1

n, =

10 0 0 0 0

0 10 0 0 0

0 0 0 0 10

0 0 0 0 0 1

,n4 =

100000

001000

000010

000001

Notice that N is live and bounded, and has 3 P - semiflows, therefore, the order ofthe minimum state

equation is 3. Consider the minimum state vector as mm = [mx , m3,m5]T, then:
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Figure 5.2 The TCPN system for the example 5. 1 .

Cm —

-1 1 0 0

0 -1 1 0

0 0 -1 1

The right annuller ofCm is kerd(Cm) = 7[1, 1, 1, 1]T, and since fc = [1, 1, 1, 1]T G R+m n kerd(Gm),

then the system (N, mo) is BIFC

The initial marking is m0 = [1,0, 6, 0, 1, 0]T and letmd = [1,0, 3, 3, 0, 1]T be the requiredmarking. The

corresponding minimum order markings are: mmo = [1, 6, 1]T and = [1,3, 0]T Notice that both markings

are not interior points ofClassm(mo).

In this example, three steps control law is applied. In the first step, a control law such that Ic is invertible

is applied, so the marking is transferred from mmo to an interior point of Classm(mo). In second step,

the control law obtained with the equation (5.9) is applied, but the central marking mm. = [0.5, 3, 0.5]T of

Classm (mo ) is considered as the required marking insteadmmd ,
thus the central marking is reached in finite

time (because it is an interior point). In the third step, the same control law is applied in order to reach the

original required marking mm . .

50 0 1» 20 30 40 50 0 10 20
,

30 tt 50

Figure 5.3 The marking evolution ofthe net ofthe example 5.1. The central marking is reached at 38s, after

that, the marking asymptotically goes to the desired marking.

Even when the second step is not necessary, it is very useful because the flow through the transitions
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Figure 5.4 The trajectory ofthe marking in the Classm(mo) for the example 5.1. The figure at left is a

projection of C___ssm(mo) in the mmi and the mm3 axes. The figure at rigth is the projection in the mmi

and the »i „)5 axes.

decreases considerably in the markings near to the border ofClassm(mo) causing a very slowmovement of

the state. The simulation results are shown in figures 5.4 and 5.3.

The linear trajectories ofthe steps 2 and 3 ofthe control law can be observed in the figure 5.4. Notice that

the flow through the transitions (proportional to the derivative ofthe markings observed in the figure 5.3) is

larger in the central marking than in the markings near to the border. The central marking is reached in finite

time (38 seconds) and after that, the state asymptotically goes to the required marking.

This control law is not efficient, i.e. the trajectory followed is not the fastest, but it is effective. This

example was simulated in Simulink ofMatLab. The m-files are shown in the appendix.

5.3 The case of only one uncontrolled transition

Consider a BIFC TCPN system described by (N,m0). Let U G T be the only uncontrolled transition,

then Tc = T — {U}, and ES the equilibrium set as defined in section 4.3.

Let S be a set defined as 5 = {mm G Classm(mo)\mm = Pm where m G ES and II(m) = Ui}.

Consider the minimum initial marking mmo such that mmo is an interior point ofS, and let mmd G S be the

minimum required marking.

Define the error vector as:

em
= (mmd - mm)

Since (N,m0) is BIFC, for allmm interior point ofS there should exist an input 1° such that CmIc AG(mm) =

0, with I°¡ = 1, and I°cj G (0, 1), W, G Tc.

Let Cmi be a matrix built with any n linearly independents columns ofCm except Cmu then Cmi is not

singular, therefore:

Vd G Rn 3v G Rn such that Gm/u = d

0.8

0.6
■

04 ■

o:

0

\

) o.: 0*
n

06 0.8 1
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Letmm be an interior point of S. Define t$ such that:

CmlVo = (mmd -

mm)

Now, let v0 be a column vector of order |T| such that:

_ j v^j if the j
- th column ofCm is in Cmi

0i'
~

\ 0 otherwise

For allmmeS there is a column vector fc G kerd(Gm) n {R+ U {0}}|T| and a scalar a2 G R+ such that

7cAG(mm) = a2k. Let a2 be such that [AG(mm)]j = a2fci-

Then, the vector v defined as v = axv0 + «2fc» where ax G R+, is such that:

Cmv = ax(mmd
- mm)

and

Vi
= [AG(mm)]i.

Now, it is necessary to find ai G R+ such that 0 < v¡ < [AG(mm)]¿ (it is always possible to find ax,

because I°j G (0, 1), Vt,- G Tc). Then, define the following vector:

. fvox v02 v0\t\ \
mmvo

= mm —,—, ...,

V fcx fc2 fc|T| /\T\

líminvn < 0 then a valid valué for ax is ~°8
,
otherwise calcúlate the fmax vector as:

fmaxj = { v°¡

cxo other case

and let aibe equal to min(fmax). Finally, the matrix Ic can be caículated as:

icj-
-a

[AG(mm)]i

The original input u can be caículated using the equation (5.10).
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Figure 5.5 The TCPN system for the example 5.2. If all transitions were controllable, the net would be

BIFC

Example 5.2 Let (N, mo) be the TCPN system ofthefigure 5.5.

The structure ofthe net is given by the next matrices:

G =

1 1 0
'

1 -1 0

0 -1 1

0 1 -1

,A = diag(l, 1,1,1)

The configuration matrix is given by next rules:

Il(m) = ni, if 7712 < m3

U(m) = U2, if 7713 < 7712

where

ni =

"10 0 0"

0 1 0 0 ,n2 =

0 0 0 1

"i 0 0 0"

0 0 1 0

0 0 0 1

Notice that the net is live and bounded, and has 2 P - semiflows , therefore, the order ofthe minimum

state equation is 2. Consider the minimum state vector as mm = [mx , m3]T, then:

Cm —

-1 1 0

0 -1 1

The right annuller ofCm is ker^Cm) = 7[1, 1, 1]T, and since fc = [1, 1, 1]T g ñ+|Tl n kerd(Gm), then

the system (N,m0) is BIFC in the interior points ofClassm(mo).

Let í3 be the only uncontrollable transition. In this case the equilibrium set ES is represented by the upper
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Figure 5.6 The trajectory ofthe marking in the set Classm(mo), for the example 5.2. The ES is composed
of all points inside the upper triangle.

m1

--

m2

25

2

15

1

05

— m3

— -

m4

02 04 06 00 10 02 04 06

Figure 5 .7 Evolution of the marking of example 5 .2.

triangle in figure 5.6.

Let m0 = [0.6; 0.4; 2.6; 0.4]T be the initial marking and md = [0.3; 0.7; 2.8; 0.2]T the required marking,

then the corresponding minimum order markings are: mmo = [0.6,2.6]T and mmd
= [0.3,2.8]T Notice

that both markings belongs to ES. Applying the control law described above the results are shown in figures
5.6 and 5.7.

Notice that the trajectory draws a line, and the required marking is reached in finite time.

Even when this control law is not efficient, it is effective, i.e. the trajectory followed is not the fastest

but the required marking is reached in finite time. This example was simulated in Simulink ofMatLab. The

m-files are shown in the appendix.
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5.4 The case of several uncontrolled transitions

In this section we will loosely propose an scheme ofa control law for a TCPN system in which there are

several uncontrolled transitions.

Consider aTCPN system (N, mo) where the set ofuncontrolled transitions is not nuil, i.e. |T|— |Tc| ^ 0.

Suppose that mo is an equilibrium marking and define Ui as its configuration, i.e. U¡ = ÍI(mo). Consider

the equilibrium set ES and the set SJnt as defined in section 4.3. Let md be a desired equilibrium marking

such that md G S¡nt

Finally, suppose that the system fulfills the conditions of controllability over S"'* established in theorem

4.7,. so the matrix:

Con_(Cm/ncAJi,Cmc) = [Cmc, (GmincA_/i)Gmc, (Cm/ncA_'i) Cmc,...,(Cm^ncAJi) Cmc\

has full rank.

Now, consider a control law as defined in equation (4.3), i.e./c = Inc + I'con + I'¿m, where /¿on can be

easily caículated to fulfill with equation (4.5). Also, consider the new input u2 as in equation (4.6), which is

a function oíl"^.

Defining a new variable p = mm
—

mmq, the state equation can be transformed to:

p
= CmlncAJiP + CmcU2

So, according to the condition of controllability, there exist a matrix K such that

u2
= Kp

where the closed-loop transfer matrix (GmIncAJi
- CmcK) has all its eigenvalues as negative. Therefore

the desired point md is the unique asymptotically stable equilibrium point in S¡nt in the closed-loop system.

It can be noticed that this is a feedback state control law as that described in section 5.1. So, it has the

same problems described in that section, but, under the conditions required to the system in this section, these

problems can be avoided.

For this, consider a set of q markings {m¡x, m¡2, .... 77i/9} that belong to S\nt as in figure 5.8.

In this example a four state feedback state control law is considered.

In the first step the markingm¡x is considered as the required marking, since m¡x G S¡nt the controllabil

ity condition remains, so, a control law as it is described in this section can be applied to the system. Notice

that the región of attraction ofm¡x, named Rjx, is ineluded in Sjnt, so the second problem ofthe feedback

state control laws is avoided. Now, according to the controllability hypothesis, there exists a neighborhood

ofmo in which our control law makes m/ibe the unique asymptotically stable equilibrium point, so, m¡x is

defined closed enough to mo in order to R¡x be in that neighborhood. In this way, the marking m¡x can be

reached through this control law.
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*n(Pi)

Figure 5.8 State space ofa closed-loop system with a four steps feedback state control law.

Once the marking is closed enough to m¡x the second step of this control law is applied, for this the

required marking is m/2- In this way, in the third step the required marking is m¡3, and it is applied when

the marking is closed enough to m/2-

Finally, in the four step the required marking is md, and is applied when the marking is closed enough to

m/3-

So, with this control law scheme the marking can reach any requiredmarkingmd, whenever the conditions

ofthis section are fulfilled.

However, this control law scheme has two major difficulties. The first one is to define the set ofmarkings

{m/i, m/2, •■•, m¡q) such that the regions of attraction are ineluded in S¡nt. The second one is to choose

the eigenvalues for the closed-loop transfer matrix and also the markings {m¡x, m¡2, ..., m¡q} such that the

respective input is properly bounded.

Due to those difficulties, this control law scheme is not applied to an example in this dissertation. So, the

control law for the case with several uncontrolled transitions is still an open problem.
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Chapter 6

Conclusions

This dissertation deals with a new technique in the theory of Petri nets. For this reason, many unsolved

problems and many open questions were found. The answers for some ofthis questions result essential for a

basic understanding ofthe studied model. In this report, we tried to unify the previously known results with

our results. So, with this dissertation, the reader is able to introduce himself in the study ofTCPN systems.

The main advantage ofthe results obtained by us with respect to that previously known is that our results

can be applied to different kinds of Petri nets. The contributions ofthis dissertation are following presented.

• A brief discussion ofthe concept of state variable was presented. In this, the TCPN systems are finally

considered as a parallel model ofthe original Petri net system, and not as a proper model ofthe physical

system.

• The so called "state space" was characterized.

• A definition of controllability for TCPN systems was introduced as an adaptation of that defined for

linear continuous-time systems. The reason for that, is thatTCPN systems are more alike linear systems

than discrete event systems.

• For the case where all transitions are controllable, sufficient and necessary conditions of controllability

and reachability, which are easy to test, were given. The hypothesis for those theorems does not im

pose heavy constraints for its application. Therefore, for this case, the problems of controllability and

reachability have been solved.

• For the case where there are uncontrolled transitions, the problem of controllability is more complex.

Even that, sufficient conditions of controllability over the set of equilibrium points were found.

• In reachability, for the case with uncontrolled transitions and where the initial marking has the same

configuration that the required marking, a necessary condition was found. However, the problem of

finding necessary and sufficient conditions of reachability for a general case is still open.

• A control law structure for the case where all transitions are controllable was proposed. The effectiveness

of this control law structure was demonstrated through a Lyapunov function (it makes the system reach

the required marking). Although it is not an optimal control law, it can be easily modified, in order to

make ie marking follow a desired optimal trajectory.

• A second control law structure was proposed for the case in which there exists only one uncontrolled

transition. This control law structure is also effective but limited because the initial marking must be in

the same equilibrium set and configuration that the required marking. So, the problem of finding control

law structures for the case with several uncontrolled transitions is still open.

6.1 Future work

In order to apply and to extend the results obtained in this dissertation for general TCPN systems, the

following problems need to be solved in the future:

• It is necessary to obtain a reachability theorem which gives necessary and sufficient conditions for the

case with uncontrolled transitions. Such theorem must consider the case where the initial marking and the

required marking does not belong to the equilibrium set, and have different configurations. This problem
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is very difficult to solve, due to the hybrid nature ofthe timed fluidified model.

• In order to apply the theorems 4.6 and 4.7, an easy characterization ofthe equilibrium set is required.

• In order to easily apply the results of section 4.2, an algorithm to test if a given incidence matrix fulfills

the condition of theorem 4.2 and an algorithm to test if a given TCPN system with a required marking
fulfill the condition of theorem 4.3 are needed. This second algorithm could be obtained analyzing the

projections ofthe error vector to the columns ofthe incidence matrix.

Considering that all transitions are controllable, it is necessary to find the optimal trajectory in the state

space, from the initial marking to the required marking, as a function ofthe marking.

• Considering the case where there are uncontrolled transitions, it is also necessary to synthesize a general

control law which could be applied even when the initial marking does not belong to the equilibrium set

and has a different configuration of that of the initial marking. This problem is very difficult to solve,

because it implies a wide study of stability oíTCPN systems, which does not exist yet.

As it was mentioned in the introduction, this theory is still new, so, there are another many unsolved

problems. At this moment, we consider that the main problems, not only for the controllability study but also

for the general understanding ofthe TCPN theory, are those enunciated next:

• How should the steady states ofthe TCPN system be interpreted in the original PN system?

• Given an effective control law for the TCPN system, how can a firing policy, which could be applied to

the original PN system with the expecting results, be obtained?

These two questions have to be solved in order to apply the whole TCPN theory. Therefore, we consider

that all efforts in future works should be focused to find the answer of these two questions.
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Appendix A

Computation of At and J¿

The following procedure allows to calcúlate the local constant flow vector A, and the local flow matrix Jit

described in section 4.3.

Consider the vector [Uim] as in equation (4.1).

Then \fj G {1, 2, ..., \T\} do the next procedure:

Define fc and a such that [Uim] . = a/_m/,. .

Consider the projection matrix P.

If 3/ such that _P[lifcj ^ 0 then define J^^ = ak andA^ = 0.

If $1 such that P^] ^ 0 then there exists a conservative marking law such thatmk + mPl + mp. +

... +mpr
= Ck, where Ck is a constant valué, so ajtmjt = «fcG/t — o¡kmPl

—

Okmp.
—

...

—

o_jfe.r_pr

and Vpi G {pi,P2, -.Pr} 3_i such that ffyilPi] ^ 0. Then define Jit7iJi]
= -afe andA^ = afcCfc.

Other elements in Ji and __, are defined as zero.
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Appendix B

Simulation of the control law for the case

of all transitions as controllable

Here the model and the m-files ofMatLab-Simulink for the simulated example of section 5.2 are presented.

v¡_ua___-tion ofmuVmg blocks sioup
___

_

Computation ofm block! itoup

1

Computaron ofinputubloclu eroup

B—
—

h . . t=:

□

MATLAB

Funai:r2J-*€H±

^
L j

t «-.i-j 13-14

i- »'»i-; IS-IS

m1,m3

J

Figure B.l Model of simulation.

Previous figure shows the model for the simulation,
with its respective block groups. The apparent

com

plexity ofthe computation of input
u blocks group is due to the three steps control law. The clock

is needed

only to set the first step at zero time.

Now, the "Comp. of der m" m-file is presented.
This block corresponds to the computation of:

derx = CAÜ(m)m

function derx=RPF(u)

ifu(2)<=u(3)&u(4)<=u(5)

dxl=-u(l)+u(2);

dx2=u(l)-u(2);

dx3=-u(2)+u(4);

dx4=u(2)-u(4);
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dx5=-u(4)+u(6);

dx6=u(4)-u(6);

elseifu(3)<u(2) & u(4)<=u(5)

dxl=-u(l)+u(3);

dx2=u(l)-u(3);

dx3=-u(3)+u(4);

dx4=u(3)-u(4);

dx5=-u(4)+u(6);

dx6=u(4)-u(6);

elseif u(2)<=u(3) & u(5)<u(4)

dxl=-u(l)+u(2);

dx2=u(l)-u(2);

dx3=-u(2)+u(5);

dx4=u(2)-u(5);

dx5=-u(5)+u(6);

dx6=u(5)-u(6);

elseif u(3)<u(2) & u(5)<u(4)

dxl=-u(l)+u(3);

dx2=u(l)-u(3);

dx3=-u(3)+u(5);

dx4=u(3)-u(5);

dx5=-u(5)+u(6);

dx6=u(5)-u(6);

end;

derx=[dx 1 ;dx2;dx3 ;dx4;dx5 ;dx6] ;

The block "Computation of u" has the next m-file.

function SalU=RetroF(u)

%cm is the minimum incidence matrix.

cm=[-l 1 0;0 -1 1;0 0-1];

%ker is the right kernel ofmatrix cm.

ker=[l;l;l;l];
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m=[u(7);u(8);u(9);u( 1 0);u( 1 1 );u( 1 2)] ;

md=[u(l);u(2);u(3);u(4);u(5);u(6)];

%etapa is a discrete variable. 2 means that the control will take the

. ¿marking to the center ofthe state space, after that, etapa changes its

%valué to 3, then the control will take the marking to md.

. ¿Tiempo is the simulation real time, is used only to reset the valué of

%etapa as 2. Notice that for etapa 1 we only need to genérate an input

%such that Ic be invertible, but, for this example, etapa 2 generates such

%input, that's why we don't set etapa as 1.

etapa=u(13);

tiempo=u(14);

%mr is the minimum marking. mdr is the desired minimum marking.

mr=[u(7);u(9);u(ll)];

mdr=[u(l);u(3);u(5)];

%Now, we calcúlate the vector lp=An(m).

ifm(2)<=m(3) & m(4)<=m(5)

lpl=[l 0 0 0 0 0];

lp2=[0 10 0 0 0];

lp3=[0 0 0 10 0];

lp4=[0 0 0 0 0 1];

elseifm(2)>m(3) & m(4)<=m(5)

lpl=[l 0 0000];

lp2=[0 0 10 0 0];

lp3=[0 0 0 10 0];

lp4=[00000 1];

elseifm(2)<=m(3) & m(4)>m(5)

lpl=[l 00000];

lp2=[0 10 0 0 0];

lp3=[0 0 0 0 10];

lp4=[0 0 0 0 0 1];

elseifm(2)>m(3) & m(4)>m(5)
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lpl=[l 0 00 0 0];

lp2=[0 0 10 0 0];

lp3=[0 0 0 0 10];

lp4=[0 0 0 0 0 1];

end;

Ip=[lpl;lp2;lp3;lp4];

lpm=lp*m;

vic=[0;0;0;0];

%ep is a valué which indicates how cióse will be the marking ofthe center

%to change the step from 2 to 3.

ep=0.002;

%Now, we calcúlate the error vector, and a solution v for the

%equation (Cr*v=e), such that all elements in v be positives.

%In step 2, the required marking is the center ofthe state space

%[0.5,0.5,3,3,0.5,0.5], in step 3 the required marking is md.

iftiempo=0

etapa=2;

end;

if((mr(l)<(.5+ep))&(mr(l)>(0.5-ep)))&((mr(2)<(3+3*ep))&(mr(2)>(3-3*ep)))&((mr(3)<(.5+ep))&(mr(3)>(0.5-

ep)))

etapa=3;

end;

ifetapa=2

e=[0.5;3;0.5]-mr;

elseifetapa=3

e=mdr-mr;

end;

v=inv(cm)*e;

v=[v;0];

vmin=min(v);

ifvmin<0

v=v-2*vmin*ker;
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end;

%Now, we calcúlate the corresponding valúes of Ic, named ic's, as a column

%vector vic, where 0<ici<l, v=ic*lp*m.

fori=l:4

iflpm(¡)>0

vic(i)=v(i)/(lpm(i));

elseif lpm(i)=0

vic(i)=l;

end;

end;

0
oAt this point, .vic has the desired direction. Now we multiply it by a

? ofactor such that the máximum element of vic be 1.

icmax=max(vic);

ificmax>0

vic=( l/icmax)*vic;

end;

%Now, we transform the column vector vic into the matricial form Ic.

icl=[10 0 0]*vic(l);

¡c2=[0 10 0]*vic(2);

ic3=[0 0 1 0]*vic(3);

ic4=[0 0 0 1]*vic(4);

ic=[icl;ic2;ic3;ic4];

%Finally, we calcúlate the input u.

SalU=[(eye(4)-ic)*lpm;etapa];
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Appendix C

Simulation of the control law for the case

of one uncontrolled transition

The model and the m-files ofMatLab-Simulink for the simulated example of section 5.3 are presented.

Computación of ínputublocks group
Computation ofm block] group

Visualization ofthe martins blocks group

Figure C.l Model of simulation.

Previous figure shows the model for the simulation, with its respective block groups.

The "Comp. of derm" m-file is following presented. This block corresponds to the computation of:

derx = CAU(m)m

function derx=RPFal(u)

ifu(2)<=u(3)

dxl=-u(l)+u(2);

dx2=u(l)-u(2);

dx3=-u(2)+u(4);

dx4=u(2)-u(4);

elseifu(3)<u(2)

dxl=-u(l)+u(3);

dx2=u(l)-u(3);

dx3=-u(3)+u(4);
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dx4=u(3)-u(4);

end;

derx=[dxl ;dx2;dx3;dx4];

The block "Computation of u" has the next m-file.

function SalU=RetroF2(u)

%cm is the minimum incidence matrix.

cm=[-l 1.0-1];

%ker is the right kemel of cm.

ker=[l;l;l];

m=[u(5);u(6);u(7);u(8)];

md=[u(l);u(2);u(3);u(4)];

%mr is the minimum marking. mdr is the minimum required marking.

mr=[u(5);u(7)];

mdr=[u(l);u(3)];

%Calculate the vector lp=An(m).

ifm(2)<=m(3)

lpl=[l 0 0 0];

lp2=[0 10 0];

lp3=[0 0 0 1];

elseifm(2)>m(3)

lpl=[l 0 0 0];

lp2=[0 0 10];

lp3=[0 0 0 1];

end;

Ip=[lpl;lp2;lp3];

lpm=lp*m;

vic=[0;0;0];

% We calcúlate the error vector and an initial solution vo such that

% cm*co=e.

e=mdr-mr;

vo=inv(cm)*e;
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vo=[vo;0];

%Now, we calcúlate the kemel factor f, and the initial solution factor fp.

r=lpm(3);

vomin=min(vo);

ifvomin<0

fp=-Cvomin;

else

fori=l:3

ifvo(i)=0

pmax(i)=10000;

elseifvo(i)>0

pmax(i)=(lpm(i)-f)/vo(i);

end;

end;

fp=min(pmax);

iffp>l

fp=l;

end;

end;

%Now, we find the particular solution v.

v=fp*vo+f*ker;

%Now, we calcúlate the elements of Ic, named ic's, as a vector vic.

fori=l:3

iflpm(i)>0

vic(i)=v(i)/(lpm(i));

elseif lpm(i)=0

vic(i)=l;

end;

end;

%We consider the uncontrolled transitions and the bound.

for ¡=1:3
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ifvic(i)<0

vic(i)=0;

elseifvic(i)>l

vic(i)=l;

end;

end;

vic(3)=l;

%We transform the input from the vector vic to its matricial form Ic.

icl=[10 0]*vic(l);

ic2=[0 1 0]*vic(2);

ic3=[0 0 l]*vic(3);

ic=[icl;ic2;ic3];

%Finally, we calcúlate the input u.

SalU=[(eye(3)-ic)*lpm];
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