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entación experta y su apoyo constante durante mi maestrı́a y doctorado. Además, me gustarı́a agradecerle
por todas las oportunidades que me ha brindado impulsando mi desarrollo profesional. Sus conocimien-
tos y consejos han sido invaluables.
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Resumen

En este trabajo, estudiamos la interacción de los electrones en la bicapa de grafeno con un campo
magnético constante, homogéneo perpendicular a la superficie de la bicapa. Partiendo del hamiltoniano
que describe a la bicapa de grafeno, resolvemos el problema de manera exacta encontrando los niveles de
energı́a del sistema y sus funciones propias asociadas, lo cual constituye el enfoque mecánico-cuántico
estándar. Sin embargo, es posible estudiar este sistema desde una perspectiva alternativa derivando los
llamados estados coherentes. Estos estados representan un enfoque semi-clásico que proporciona infor-
mación complementaria a la obtenida por el método estándar.

Consideramos los estados coherentes de la bicapa de grafeno (ECBG), derivados en un trabajo an-
terior, y exploramos la dinámica del sistema estudiando su evolución temporal a través de la función de
autocorrelación, obteniendo el perı́odo de evolución de estos estados, es decir, el tiempo en el que el
estado coherente evolucionado coincide con el inicial. Además, se calculan las escalas de tiempo asoci-
adas con los ECBG, con el objetivo de analizar la llamada estructura de revivals para la bicapa de grafeno.

En la misma lı́nea, también se han derivado los estados coherentes multifotónicos. Estos estados rep-
resentan una generalización de los ECBG, los cuales se definen como estados propios de un operador de
aniquilación generalizado con un valor propio complejo. Además, se analizan algunas cantidades fı́sicas
para estos estados, incluyendo la relación de incertidumbre de Heisenberg, la densidad de probabilidad,
el valor medio de la energı́a y su evolución temporal.

Como complemento a estos estudios, analizamos el mismo sistema utilizando ahora un gauge simétrico
y coordenadas polares. Derivamos los ECBG con simetrı́a radial. Luego, las densidades de corriente se
derivan en detalle para la bicapa de grafeno y se calculan para los estados propios del sistema y para los
estados coherentes con simetrı́a radial.
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Abstract

In this work, we study the interaction of electrons in bilayer graphene with a constant homogeneous
magnetic field perpendicular to the bilayer surface. Starting from the Hamiltonian describing the bilayer
graphene, we solve the problem exactly by finding the energy levels of the system and their associated
eigenfunctions, which constitutes the standard quantum mechanical framework. However, it is possible
to study this system from an alternative perspective by deriving the so-called coherent states. These
states represent a semi-classical approach that supplies complementary information to that obtained by
the standard method.

We consider the bilayer graphene coherent states (BGCS), derived in a previous work, and the dy-
namics of the system is explored by studying their time evolution through the autocorrelation function,
obtaining the evolution period of these states, i.e., the time at which the evolved coherent state coincides
with the initial one. Additionally, the time scales associated with the BGCS are calculated, with the aim
of analyzing the so-called revivals structure for bilayer graphene.

In the same line, the multiphoton coherent states have also been derived. These states represent a
generalization of the BGCS, which are defined as eigenstates of a generalized annihilation operator with
a complex eigenvalue. In addition, some physical quantities are analyzed for these states, including the
Heisenberg uncertainty relation, probability density, mean energy value, and their time evolution.

As a complement to these studies, we analyze the same system now using a symmetric gauge and
polar coordinates. We derived the BGCS with radial symmetry. Then, the current densities are derived
in detail for bilayer graphene and computed for the eigenstates of the system and the radially symmetric
coherent states.
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Chapter 1

Introduction

Carbon is the basis of all organic chemistry. Due to the flexibility of carbon bonds, it is possible to
obtain different structures, each of them with a variety of interesting physical properties. Graphene, an
allotrope of carbon, is formed by a single layer of carbon atoms organized in a hexagonal lattice struc-
ture [1, 2]. For decades, the scientific community has theorized on the possible existence and fabrication
of such 2D-material, starting from Wallace who in 1946 wrote the first work about the band structure
of graphene [3], until Geim and Novoselov who in 2004 rediscovered and isolated graphene [4]. Thus,
extensive theoretical and experimental research have been carried out on this material. A particularly in-
teresting characteristic of graphene is that its low-energy excitations are massless chiral Dirac fermions
that move at a velocity v0 = c/300. These Dirac fermions behave in unusual ways compared with
conventional electrons placed in external magnetic fields, leading to physical phenomena referred to as
anomalous integer quantum Hall effect [5,6]. Furthermore, several studies have examined the monolayer
graphene under different magnetic field profiles, determining its energy levels and corresponding eigen-
functions through supersymmetric quantum mechanics [7, 8].

Nowadays, it is possible to produce few-layer carbon systems; the simplest one, which is composed
of two layers, is called bilayer graphene and it was initially reported in 2004 [4]. Bilayer graphene can
exist in several stacking configurations [14,15]. In the AA configuration the two layers align perfectly to
each other. On the other hand, in the AB configuration, also known as Bernal stacking, half of the carbon
atoms of the top layer align directly above to atoms of the bottom layer, while the remaining atoms are
placed above the center of the hexagons of the bottom layer. This particular configuration is the most
stable one in nature. Finally, when the two layers are rotated to an specific angle, known as magic angle,
bilayer graphene takes on a unique special form. This rotation induces the appearance of unconventional
superconductivity and Mott-like insulating states [16, 17]. However, in this work we will focus on the
most prevalent configuration, namely, Bernal stacking.

The electronic band structure of bilayer graphene is typically examined using the tight-binding
model [18,19], leading to the existence of four energy bands, two conduction and two valence bands. At
certain symmetry points, a conduction band touches a valence band at zero energy. This implies that, at
low energies, the electrons in bilayer graphene behave as chiral quasiparticles with effective mass m∗ and
parabolic dispersion relation E = ±p2/2m∗, different from the linear relationship found in monolayer
graphene. Recently, some research have been conducted into the behavior of chiral electrons in bilayer
graphene placed in a different magnetic field profiles [20, 21].

1
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Coherent states have been recently derived [22] in the simplest case, where graphene is placed
in a constant homogeneous magnetic field perpendicular to its surface. The importance of coherent
states, from both theoretical and experimental viewpoints, in various fields of physics is well recog-
nized [24–26]. These states were first derived by Schrödinger in 1926 for the harmonic oscillator [28]
and their importance has grown since then. The most notable applications appeared in the early 60s, when
Glauber, Klauder, and Sudarshan used them to describe coherent electromagnetic radiation [29–35]. Re-
cently, these states and their generalizations have been used to study systems based on graphene [41–45].
This supplies us with an alternative semi-classical approach supplementing the information that can be
obtained from the standard quantum mechanical perspective.

On the other hand, one of the most prominent features of coherent states is their time stability, i.e.,
when a coherent state evolves in time it keeps its shape or coherence without deformation [46]. In this
way, its shape remains constant over time and its center follows the motion of a classical particle in a
harmonic oscillator potential. It is well known that the time stability of coherent states comes from the
fact that the energy levels for the harmonic oscillator are equally spaced [46], thus their evolution period
is T = 2π/ω , where ω is the angular frequency of the harmonic oscillator. In contrast, quantum systems
without equidistant energy levels generally lack such a stability [47–49].

Coherent states can be expanded or generalized, i.e., defined appropriately in order to character-
ize various systems in diverse fields of physics. Specifically, the so-called multiphoton coherent states
(MCS) are typically derived as eigenstates of powers of the annihilation operator [56–58]. These have
been obtained recently for the harmonic oscillator within the framework of polynomial Heisenberg al-
gebras [59–63]. The MCS have also recently been generated for the supersymmetric harmonic oscilla-
tor [64]. Let us notice that the MCS can be used as non-classical states of light for multiphoton precesses
occurring in the matter-radiation interaction [66, 67].

With this in mind, and inspired by the pioneering work on coherent states for monolayer graphene
[22], a similar methodology will be applied in this work to derive the coherent states for bilayer graphene
(BGCS) placed in a constant homogeneous magnetic field perpendicular to the bilayer surface [50] (see
also [51]). Starting from this derivation, different quantum properties and generalizations of these states
will be analyzed throughout this thesis.

This thesis begins with a brief overview of certain fundamental aspects of graphene focusing, in par-
ticular, on the bilayer graphene in order to understand better the system under study (see chapter 2). In its
initial section, we examine the crystal structure of bilayer graphene and its band structure in order to de-
termine the Hamiltonian describing the electrons of bilayer graphene. It is important to mention that this
description in the low energy regime is schematic and brief; for a more detailed study we refer the reader
to [18]. After establishing this Hamiltonian, we proceed to calculate the energies and eigenfunctions
considering the interaction of electrons of the bilayer graphene with constant homogeneous magnetic
field perpendicular to the bilayer surface, using the minimum coupling rule and the well-known Landau
gauge. Chapter 2 ends with the calculation of the probability and current densities for these eigenfunc-
tions, often referred to as Landau states of bilayer graphene.

Chapter 3 addresses the derivation of the BGCS, which was carried out for the first time in our pre-
vious study [50]. After deriving these states, we focus on exploring the dynamics of the system, with
special emphasis on studying the time evolution of the BGCS. In this analysis, an expression is supplied
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to calculate approximately the period of evolution. Additionally, the revival structure of these coherent
states will be explored and their associate time scales will be computed. By using the autocorrelation
function, we will make evident these scales, which will allow us to analyze the time evolution of the
BGCS through an additional tool.

Chapter 4 extends and generalizes the coherent states approach to bilayer graphene, by deriving the
corresponding multiphoton coherent states. These states are defined as eigenstates of a generalized an-
nihilation operator with complex eigenvalue α̃ . Several physical quantities are determined to describe
the system using these MCS including the Heisenberg uncertainty relation, probability density and mean
energy value. The time evolution and the time-correlation function for the MCS are also obtained.

In chapter 5, we analyze the bilayer graphene in a constant homogeneous magnetic field using a
symmetric gauge and polar coordinates, instead of the Landau gauge used previously. First we construct
the radially symmetric coherent states for bilayer graphene. Then, we derive and calculate the current
densities of bilayer graphene for both the eigenstates of the system and the radially symmetric coherent
states. The thesis ends up with the conclusions of this work in chapter 6, as well as with a discussion on
the possible future directions of this research.
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Chapter 2

Carbon materials: bilayer graphene

The flexibility of chemical bonding in systems formed by carbon atoms allows to obtain a number of
different structures featuring a wide variety of physical properties [1]. There are allotropes of different
dimensionality, such as the graphite and diamond (three-dimensional systems) or low-dimensional struc-
tures, as fullerenes and carbon nanotubes. Moreover, there is a two-dimensional (2D) carbon allotrope
known as graphene, which is composed of a monolayer of carbon atoms arranged in a hexagonal crystal
lattice [2, 4] and was the first produced stable 2D crystal. Its physical properties have attracted atten-
tion of the scientific community for the fundamental physics and important applications involved in their
study [5, 9, 10]. Moreover, it is possible to manufacture few-layered carbon systems in order to increase
the family of 2D materials, and the most natural one is bilayer graphene. In this chapter some important
features about bilayer graphene will be briefly discussed.

2.1 The carbon atom and the sp2-hybridization

The electronic configuration of carbon in its ground state is 1s22s22p2 [11]. The 2p-orbitals, labelled
2px, 2py and 2pz, are 4eV higher than the 2s orbital, then it is energetically favourable to excite one of
the 2s-electron pairs into one of the empty 2p-orbitals, in order to form covalent bonds with other atoms,
such as H, O or other carbon atoms. Consequently, the carbon atom is now said to be in an excited state,
whose electron configuration turns out to be 1s22s12p3 (see figure 2.1(a)). Therefore, in the excited state
there are four equivalent quantum mechanical states, and a superposition between the |2s〉 and n-|2p j〉
states is called spn-hybridization [12].

When a superposition between the states 2s and two 2p orbitals (e.g. with the states |2px〉 and
|2py〉) is carried out, one obtains the so-called sp2-hybridization which is formed by three quantum
states expressed by [12]

|sp2
1〉=

1√
3
|2s〉−

√
2
3
|2py〉, (2.1a)

|sp2
2〉=

1√
3
|2s〉−

√
2
3

(√
3

2
|2px〉+

1
2
|2py〉

)
, (2.1b)

|sp2
3〉=−

1√
3
|2s〉−

√
2
3

(
−
√

3
2
|2px〉+

1
2
|2py〉

)
. (2.1c)

5
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(a) (b)

Figure 2.1: (a) Electronic configurations for carbon atoms in the ground state and the first excited state.
(b) sp2-hybridization for carbon atoms.

These three hybridized orbitals lie on the xy-plane with mutual 120◦ angle difference and allow the for-
mation of σ -bonds between the neighbouring atoms. The σ -bonds are responsible for the robustness of
the lattice structure in all carbon allotropes, in particular, for the carbon atoms to condense in the hexag-
onal lattice of graphene. The remaining unhybridized 2pz-orbital is perpendicular to the plane and binds
covalently with the nearby carbon atoms; then, since the 2pz-orbitals have one extra electron, a π-band
is formed in each carbon atom, such that, is half filled (see figure 2.1(b)). These bands are responsible
for the peculiar electronic properties of graphene at low energies [13]

On the other hand, in bilayer graphene (which consists of two graphene monolayers) the hybridiza-
tion between the s-orbital and the pz-orbitals is more complex. However, as for monolayer graphene, in
bilayer graphene the π-bands are also formed and are half filled in the non-doping case, i.e., the studies
of the electronic properties of bilayer graphene are based on the knowledge of the electronic structure of
monolayer graphene. Thus, in this chapter the study of the electrons in such π-bands will be discussed
within the tight-binding approximation, which was originally addressed for the honeycomb lattice by
Wallace in 1947 [3].

2.2 Electronic band structure of bilayer graphene

Bilayer graphene, which consists of two interacting layers of carbon atoms each with a honeycomb
crystal structure, can exist in three different arrangements depending on its layer configurations [14],
namely, AA, AB or Bernal phase, and twisted bilayer. The AA bilayer [15] is the most simple form and
likely metastable, since its production has been reported very few works. On the other hand, the Bernal
stacking is the most stable, and its is possible to produce high quality samples and study them in many
experiments. Finally, in twisted bilayer graphene the top layer is rotated with respect to the lower layer
by some angle θ . In this configuration the bilayer graphene displays unconventional superconductivity
and Mott-like insulating states when the angle θ has a value of ' 1.1◦ (the magic angle) [16,17]. In this
work the AB arrangement or Bernal stacking will be considered.
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CHAPTER 2. CARBON MATERIALS: BILAYER GRAPHENE 7

(a) (b)

Figure 2.2: (a) Lattice structure of bilayer graphene. The yellow and blue points correspond to the atoms
A1 and B1 on the lower layer, while the blue and black points to the atoms A2 and B2 on the upper layer,
respectively. (b) Bilayer graphene unit cell, indicated by a shaded rhombus.

2.2.1 The crystal structure

As mentioned before, bilayer graphene consists of two connected single layers of carbon atoms arranged
in a hexagonal crystal lattice with a distance between adjacent carbon atoms of a0 = 1.42Å and an inter-
layer spacing of d = 3.35Å. The primitive lattice vectors a1 and a2 are defined by

a1 =

(
a
2
,

√
3a
2

)
, a2 =

(
a
2
,−
√

3a
2

)
, (2.2)

where a = |a1|= |a2| represents the distance between adjacent unit cell [2, 19]. Figure 2.2(a) shows the
crystal structure of bilayer graphene .

All crystals can be described in terms of the geometry of this unit cell, which is defined as the small-
est repeating unit having the full symmetry of the crystal structure. Each unit cell in bilayer graphene
contains four carbon atoms, labelled A1, B1 for the lower layer and A2, B2 for the upper layer (see figure
2.2(b)). According to the Bernal stacking, the layers arrangement in bilayer graphene runs as follows:
the B1-atoms on the lower layer are directly below to the A2-atoms from the upper layer and are known
as dimer sites, while the other two atoms, A1 and B2, do not have any correspondence with atoms from
the upper or lower layers, and referred to as non-dimer sites [19].

On the other hand, there is a set of points {Γ,M,K,K′} known as crystallographic points, which play
an important role in the electrons behavior of monolayer and bilayer graphene because their low-energy
excitations are focused around points K and K′, which belong to the so-called reciprocal space momen-
tum space.

One can define the direct lattice or physical lattice in the same way as in real space. One can also
define a reciprocal lattice in a space that represents the Fourier transform of the first lattice in real space.
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Figure 2.3: Reciprocal lattice of bilayer graphene showing the crystallographic points and the primitive
reciprocal vectors.

The primitive reciprocal lattice vectors of bilayer graphene fulfill a1 · b1 = a2 · b2 = 2π and a1 · b2 =
a2 ·b1 = 0, which are given by

b1 =

(
2π

a
,

2π√
3a

)
, b2 =

(
2π

a
,− 2π√

3a

)
. (2.3)

These crystallographic points are shown in figure 2.3. Note that, the reciprocal lattice is a hexagonal
Bravais lattice and the shaded hexagon represents the first Brillouin zone which is analogous to the unit
cell in reciprocal space.

2.2.2 The tight-binding model

The electronic band structure can be studied looking for a relationship between the energy and momen-
tum of the electrons in a given material, i.e., trying to find a dispersion relation. In graphene systems, like
bilayer graphene, it is possible to derive their electronic band structure through two different approaches.
The first is the density functional theory [14] (DFT) and the second is the tight-binding model. The last
approach turns out to be more simple and will be briefly described below for bilayer graphene in the way
addressed by McCann and Koshino [19].

The general idea of the tight-binding model is to propose a trial wavefunction constructed from the
atomic orbital wavefunctions φ j(k,r) per unit cell, with k being the wave vector and r the vector position,
in order to find the matrix components of the Hamiltonian H describing the bilayer graphene. Taking
into account the 2pz orbitals on the four atomic sites forming the unit cell of bilayer graphene, which are
labelled as A1, B1, A2 and B2, the Hamiltonian H for bilayer graphene is given by

H =


εA1 −γ0 f (k) γ4 f (k) −γ3 f ∗(k)

−γ0 f ∗(k) εB1 γ1 γ4 f (k)
γ4 f ∗(k) γ1 εA2 −γ0 f (k)
−γ3 f (k) γ4 f ∗(k) −γ0 f ∗(k) εB2

 , (2.4)
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where its matrix elements are defined by H jk = 〈φ j|H|φk〉 and the function f (k) describes the in-plane
hopping. As in monolayer graphene, the parameter γ0 describes the nearest neighbour hopping within a
single layer. The parameter γ1 describes the coupling between the pairs of orbitals on the atoms B1-A2,
γ3 describes the interlayer coupling between the orbitals of the atoms A1-B2, and γ4 describes the inter-
action between atom orbitals A1-A2 or B1-B21.

According to this model, there are four energy bands in bilayer graphene corresponding to the 2pz-
orbitals on each of the four atoms in the unit cell. Moreover, at low energies (|E| ≤ γ1) these bands
are obtained by solving the eigenvalue equation Hψ = Eψ , with H being the Hamiltonian (2.4). As
mentioned before, the low-energy excitations in bilayer graphene arise around the points K and K′.
Thus, in the following discussion we will pay attention to this relevant region.

Effective Hamiltonian around the K points

In order to describe the properties of low energies electrons in bilayer graphene around the K-points, a
momentum around these points must be defined as follows

p = h̄(k−K). (2.5)

Therefore, by expanding in powers of the momentum the function f (k) becomes approximately f (k)≈
−
√

3a(px− ipy)/2h̄. Defining π := px+ ipy, π† := px− ipy, the Hamiltonian of equation (2.4) is reduced
to

H =


εA1 v0π† −v4π† v3π

v0π εB1 γ1 −v4π†

−v4π γ1 εA2 v0π†

v3π† −v4π v0π εB2

 , (2.6)

where v j =
√

3aγ j/2h̄, j = 0,3,4 are the effective velocities. In order to obtain an analytical solution for
the energy bands, the matrix elements containing the hopping parameters γ3 and γ4 will be made equal
to zero, thus the expressions for the four energy bands become [20]:

E l
± =±1

2
γ1

(
1−

√
1+4

v2
0|p|2

γ2
1

)
, (2.7)

Eh
± =±1

2
γ1

(
1+

√
1+4

v2
0|p|2

γ2
1

)
, (2.8)

where |p| =
(

p2
x + p2

y
)1/2. The energies E l

± represent the low-energy bands related to the orbitals on
the non-dimer sites A1, B2 while the energies Eh

± correspond to the high-energy bands resulting of the
strong interlayer coupling between the atoms A2, B1 on the dimer sites. These bands can be plotted in
reciprocal space (see figure 2.4), where it can be seen that at zero energy around the K points the two
low-energy bands touch to each other, whereas the high-energy bands are split away by an energy of the
order of γ1 ≈ 0.4eV.

1The values of the parameters γ j, j = 0,1,3,4 are: γ0 = 3.16eV, γ1 = 0.381eV, γ3 = 0.38eV, γ4 = 0.14eV [19].
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Figure 2.4: Low-energy bands for the bilayer graphene in the reciprocal space around a K-point

Note that for large momentum the bilayer graphene has a linear dispersion relation E l
± ≈ v0|p|

while for small momentum the low energy bands can be approximated by a quadratic dispersion re-
lation E l

± ≈ |p|2/2m∗, with m∗ = γ1/2v2
0 being an effective mass.

Then, at low energies it is possible to derive an effective two-band Hamiltonian describing the orbitals
on the non-dimer sites A1, B2, by dropping the components in the Hamiltonian (2.6) related to the orbitals
on the dimer sites A1, B2. The general procedure is explained in [19] and applied to bilayer graphene.
Thus, an effective Hamiltonian is obtained as an expansion leading to several terms; however, at low
energies |E| � γ1 the only relevant term is

Heff =
1

2m∗

(
0

(
π†
)2

(π)2 0

)
, (2.9)

where π = px + ipy, π† = px− ipy. The solutions to this Hamiltonian are massive chiral electrons with a
quadratic dispersion. It is interesting to note its similarity with the Dirac-like Hamiltonian of monolayer
graphene HMG given by

HMG = v0

(
0 π†

π 0

)
, (2.10)

thus, while in HMG the terms of its anti-diagonal are linear, for the bilayer graphene the terms are
quadratic in the π-momentum. The reason for this difference lies in the fact that the effective jump
between non-dimer atoms A1 and B2 is carried out via the dimer sites, i.e., through the atoms B1 and A2.

2.3 Interaction with a magnetic field

A common approach to describe the band structure of metals and semiconductors consists of studying
its Landau levels through magneto-optics or magneto-transport measurements [14]. For a conventional
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two-dimensional semiconductor, the Landau levels are given by

En = h̄ωc

(
n+

1
2

)
, n = 0,1,2, . . . (2.11)

where ωc = eB/mc is the cyclotron frequency for massive charge particles with a quadratic dispersion
relation. Since the electron density is changed, there is a step in the Hall conductivity when a Landau
level crosses the Fermi level.

The experimental study of monolayer graphene interacting with magnetic fields has attracted the
interest in many branches of physics due to its interesting features. One of these is the discovering
of the anomalous (half-integer) quantum Hall effect, which has been used to demonstrate and explain
the chiral nature of the Dirac-like massless quasiparticles with a linear dispersion relation in monolayer
graphene [5].

The problem of monolayer graphene placed in a magnetic field was studied in detail in several works
[1, 4] were its energy spectrum was derived. In particular, for a constant homogeneous magnetic field
which is orthogonal to the monolayer surface, the vector potential in the Landau gauge can be chosen as
A = (0,B0x,0), obtaining the corresponding Landau levels in monolayer graphene as

En =±h̄ωc
√

n, n = 0,1,2, . . . , (2.12)

where ωc =
√

2v0/`B is the cyclotron frequency, with [s]−1 dimensions and `B =
√

ch̄/eB is the magnetic
length. Moreover, this problem was addressed in [7] by considering different magnetic field profiles, thus
obtaining its energy spectrum and eigenfunctions by using supersymmetry techniques.

2.3.1 Landau levels in bilayer graphene

This work will consider the bilayer graphene placed in a constant homogeneous magnetic field per-
pendicular to the bilayer surface (B = B0êz). According to the minimal coupling rule [2], where the
momentum p is replaced by p− q

c
A, the interaction of the bilayer graphene electrons of charge q =−e

and effective mass m∗ with the field is described by Hamiltonian (2.9), namely,

Heff =
1

2m∗

 0
[
(px +

e
c

Ax)− i(py +
e
c

Ay)
]2[

(px +
e
c

Ax)+ i(py +
e
c

Ay)
]2

0

 . (2.13)

The vector potential is A = B0xêy in the Landau gauge, such that B = ∇×A = B0êz; therefore, the above
Hamiltonian becomes

Heff =
1

2m∗

 0
[

px− i(py +
eB0

c
x)
]2

[
px + i(py +

eB0

c
x)
]2

0

 . (2.14)

It is convenient to introduce the following scalar operators, which naturally appear in equation (2.14):

A± :=
√

c
2h̄eB0

[
px± i

(
py +

eB0

c
x
)]

, N := A+A−, (2.15)
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such that A− = (A+)
†. They satisfy the following commutation relations:

[A−,A+] = I, [N,A±] =±A±, (2.16)

where I is the identity operator. Therefore, the operator set {A±,N, I} generates the well-known Heisen-
berg (or boson) algebra, with N being the corresponding number operator.

By defining the new coordinate ξ :=
√

ω

2

(
x+

2k
ω

)
, where ω = 2eB0/ch̄ is a constant with dimen-

sions of [length]−2, the operators A± can be rewritten as follows

A± =± i√
2

(
ξ ∓ d

dξ

)
. (2.17)

Therefore, the time-independent Dirac-type equation for the Heff in equation (2.14) becomes

HeffΨ(ξ ,y) = h̄ω
∗
c

(
0 (A−)2

(A+)2 0

)
Ψ(ξ ,y) = EΨ(ξ ,y), (2.18)

where ω∗c = eB0/m∗c is the cyclotron frequency for non-relativistic electrons with effective mass m∗.

Taking into account the translational invariance along y-direction, the two-component spinor is pro-
posed as

Ψ(ξ ,y) = exp(iky)
(

ψ+(ξ )
ψ−(ξ )

)
, (2.19)

where k is the wave number in y-direction and ψ±(ξ ) describes the electron amplitudes associated to the
A1 and B2 sites respectively. Then, equation (2.18) yields the next two coupled equations:

(A+)2
ψ

+(ξ ) = ε ψ
−(ξ ), (2.20)

(A−)2
ψ
−(ξ ) = ε ψ

+(ξ ), (2.21)

where ε := E/h̄ω∗c . To decouple the previous system, let us calculate H2
effΨ(ξ ,y) = E2Ψ(ξ ,y) so that

H+ψ
+(ξ ) = ε

2
ψ

+(ξ ), H+ := (A−)2(A+)2, (2.22)

H−ψ
−(ξ ) = ε

2
ψ
−(ξ ), H− := (A+)2(A−)2. (2.23)

Note that, equations (2.20)–(2.23) represent an example of a pair of supersymmetric partner Hamiltoni-
ans H+ and H−, which are connected by the second order intertwining operators (A±)2. Furthermore,
since [A−,A+] = I it is possible to express the scalar Hamiltonians H+ and H− in terms of the number
operator N as follows

H+ = (N +2)(N + I), H− = N(N− I). (2.24)

In a similar way as for the harmonic oscillator, operators A± satisfy equation (2.16) and are considered
creation and annihilation operators. Moreover, since N and H± commute, it is possible to look for si-
multaneous eigenfunctions of all of them. Thus, we can say that these states have a boson number of
excitations n determined by the eigenvalues of N.
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If in equations (2.22)-(2.23) we take

ψ
+(ξ ) := ψn−2(ξ ), ψ

−(ξ ) := ψn(ξ ), (2.25)

with ψn(ξ ) = 〈ξ |n〉 being the eigenfunctions of the shifted harmonic oscillator Hamiltonian, and use
equation (2.24), it is obtained that ε2 = n(n−1). Therefore, the eigenvalues of the Hamiltonian Heff in
equation (2.14) become

E±n =±h̄ω
∗
c

√
n(n−1), n = 0,1,2, . . . , (2.26)

where the plus (minus) sign characterizes the energy of electrons (holes).

On the other hand, the ground state eigenfunction ψ0(ξ ) is characterized by

A−ψ0(ξ ) = 0. (2.27)

It is possible to obtain the excited states eigenfunctions by applying n-times the creation operator A+:

ψn(ξ ) =
1√
n!
(A+)n

ψ0(ξ ). (2.28)

After some calculations, and returning to the x variable, it is found that the normalized eigenfunctions
ψn(x), for n = 0,1,2, . . . turn out to be

ψn(x) =

√
1

2nn!

(
ω

2π

)1/2
Hn

[√
ω

2

(
x+

2k
ω

)]
exp

(
−ω

4

(
x+

2k
ω

)2
)
, ω =

2m∗

h̄
ω
∗
c . (2.29)

Therefore, the Landau states Ψn(x,y) will be written in the form (see [21]):

Ψ
±
n (x,y) =

exp(iky)√
2(1−δn0−δn1)

(
(1−δn0−δn1)ψn−2(x)

±ψn(x)

)
, n = 0,1, . . . (2.30)

We should note that E±0 = E±1 = 0, i.e., the ground state energy has a fourfold degeneracy (a double
degeneracy due to electrons and the same degeneracy due the holes). On the other hand, the levels E±n
for n≥ 2 are non-degenerate.

2.3.2 Probability and current densities for the Landau states in bilayer graphene

Probability density

The probability density ρ(r) is defined in the usual way and for the Landau states Ψ±n (x,y) it will be
denoted as ρn(x), which in the present case can be written in compact form as follows

ρn(x) =
(
Ψ
±
n (x,y)

)†
Ψ
±
n (x,y) =

(1−δn0−δn1)|ψn−2(x)|2 + |ψn(x)|2

2(1−δn0−δn1)
, n = 0,1,2, . . . (2.31)

Note that, although the wave function Ψ±n (x,y) depends explicitly on x and y, the associated probability
density is independent of y due to the translation symmetry along this direction; in addition, it will be
time-independent for stationary states. Figure 2.5 shows the probability density of equation (2.31) for
several Landau states.
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Figure 2.5: Probability density ρn(x) for the first four Landau states Ψ±n (x,y) in bilayer graphene.

Current density

Concerning the current density J for electrons in bilayer graphene, the appropriate expression in the free
case (B0 = 0) was derived in [23], obtaining that the components Jk of such a current take the form

Jk[Ψ] =
h̄

m∗
Im
(
Ψ

† jk Ψ
)
. (2.32)

In the case of Cartesian coordinates, i.e., for k = x,y, the current density operators ( jx, jy) are given by

jx =
i
h̄

(
0 p−

p+ 0

)
, jy =

1
h̄

(
0 p−

−p+ 0

)
, p± = px± ipy. (2.33)

The previous expressions for the current density operators are no longer valid for the bilayer Hamiltonian
(2.14) for the case when there is a constant magnetic field perpendicular to the bilayer graphene surface,
B = B0êz, described by a potential in the Landau gauge. Thus, we must consider that

∂ρ

∂ t
+

i
h̄

[
Ψ

† (Heff Ψ)− (Heff Ψ)†
Ψ

]
= 0. (2.34)

After a somewhat long calculation it is possible to arrive at a continuity equation,

∂Jx

∂x
+

∂Jy

∂y
+

∂ρ

∂ t
= 0, (2.35)

where the correct expression for jx, jy in equation (2.32) is

jx =
i
h̄

(
0 π−

π+ 0

)
, jy =

1
h̄

(
0 π−

−π+ 0

)
, (2.36)

i.e., the momentum operators p± in equation (2.33) for the free case must be replaced, according to the
minimal coupling rule, as follows:

p−→ π
− = p−− ieB0

c
x, p+→ π

+ = p++
ieB0

c
x. (2.37)
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Figure 2.6: Current density Jy[Ψ
+
n ] for some Landau states in bilayer graphene.

Thus, the current density for bilayer graphene is gauge invariant.

Let θ± be the creation and annihilation operators for the functions ψn(x) defined as follows

θ
± :=

1√
2

(
ξ ∓ d

dξ

)
, (2.38)

such that θ± =∓iA±. Thus, the action onto the states ψn(x) is given by

θ
−

ψn =
√

nψn−1,

θ
+

ψn =
√

n+1ψn+1. (2.39)

Thus, the current density operators ( jx, jy) can be rewritten as follows:

jx =
√

ω

(
0 θ−

−θ+ 0

)
, jy =−i

√
ω

(
0 θ−

θ+ 0

)
. (2.40)

Therefore, by applying these operators onto the states Ψ±n (x,y) the components of the current density
can be obtained as follows

Jx[Ψ
±
n (x,y)] =±

h̄
√

ω

m∗
(1−δn0−δn1)

2(1−δn0−δn1)
Im
[√

nψ
∗
n−2(x)ψn−1(x)+

√
n−1ψ

∗
n (x)ψn−1(x)

]
, (2.41)

Jy[Ψ
±
n (x,y)] =∓

h̄
√

ω

m∗
(1−δn0−δn1)

2(1−δn0−δn1)
Im
[
i
(√

nψ
∗
n−2(x)ψn−1(x)+

√
n−1ψ

∗
n (x)ψn−1(x)

)]
. (2.42)

Note that the functions ψn(x) defined in equation (2.29) are real, such that ψn(x) = ψ∗n (x). Thus, ac-
cording to equation (2.32) the x-component of the current density for bilayer graphene given in equation
(2.41) always disappear for all n, while the y-component in equation (2.42) remains non-null for the
Landau states with n≥ 2 and only depends on x, i.e.,

Jx[Ψ
±
n ] = 0 ∀ n, Jy[Ψ

±
n ] 6= 0, n≥ 2. (2.43)

Figure 2.6 shows the current density (2.42) in y-direction for some Landau states Ψ+
n (x,y).
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Chapter 3

Coherent states

In 1900, Max Planck introduced for the first time the concept of quantization to explain black-body radi-
ation [27]. The revolutionary idea that the exchange of energy between radiation and matter takes place
in a discrete way, through quantum units of energy, was the first breakthrough that gave rise to quantum
mechanics, a probabilistic and indeterministic theory describing the microscopic world [27]. Since then,
quantum mechanics has become the basis of modern physics and has been used in different branches,
giving place to many theoretical and technological developments.

Nevertheless, the efforts to establish a connection between quantum and classical theories continue,
and they have contributed to the emergence of different semi-classical approaches. One of them is the
so-called coherent states (CS), which were proposed by Erwin Schrödinger in 1926 for the harmonic
oscillator [28] as quantum states that minimize the Heisenberg uncertainty relation, such that they mimic
their classical counterparts through the time evolution of the expected values of the position and momen-
tum operators [29, 36].

One of the most successful applications of CS happened in the early 1960s, when Glauber, Klauder
and Sudarshan used them to describe coherent electromagnetic radiation [30–35], giving place to a new
area in physics called nowadays quantum optics. The CS can be generalized, i.e., defined appropriately
in order to describe other systems in different areas of physics, as condensed matter, particle, nuclear and
atomic physics, among others [24–26,29]. In this way, the generalized coherent states |z〉 can be defined
as follows [29]:

• They are eigenvectors of an annihilation operator a with complex eigenvalue z:

a|z〉= z|z〉, z ∈ C. (3.1)

Note that, the CS defined in this way are generally referred to as Barut-Girardello coherent states
[37, 38], and it is precisely this definition that will be used along this work.

• They are obtained from the ground state of the system |0〉 by acting an unitary operator, defined
by D(z) := exp

[
1√
h̄

(
za†− z∗a

)]
. Thus:

|z〉= D(z)|0〉= exp
[

1√
h̄

(
za†− z∗a

)]
|0〉. (3.2)

17



18 CHAPTER 3. COHERENT STATES

D(z) is called the displacement operator, thus the above equation means that the CS |z〉 is just
a displaced version of the fundamental state |0〉 of the system. This generalization was pushed
forward by Gilmore and Perelemov [39, 40].

• They minimize the Heisenberg inequality

〈∆Q〉〈∆P〉= 1
2

h̄, (3.3)

where 〈∆B〉 :=
[
〈z|B2|z〉−〈z|B|z〉

]1/2. Thus, the CS are quantum states with minimal uncertainty,
such that they evolve following the classical trajectories of the harmonic oscillator, which was the
original motivation of Schrödinger for proposing such states.

These CS definitions are equivalent for the harmonic oscillator and they are called canonical coherent
states. So, in general for a system whose Hamiltonian is linear in the operators {a,a†,N, I}, if the initial
state (t = 0) is a coherent state then the evolved state will be also a coherent state which will follow the
classical trajectory. Since the mean square deviations ∆Q and ∆P are equal and constant, the wave packet
will not be deformed along such evolution. These are the reasons for the CS to be sometimes called also
quasi-classical states, since they supply a natural framework to analyze the connection between quantum
and classical mechanics [29, 36].

3.1 Bilayer graphene coherent states

Bilayer graphene in a static magnetic field has been described in the above chapter, and in the standard
approach this problem can be solved exactly for a constant homogeneous magnetic filed, leading to the
Landau levels and the associated eigenfunctions, which are different from the monolayer graphene ones.

With this in mind, it seems natural to explore the possibility of generating the bilayer graphene
coherent states (BGCS). This alternative semi-classical approach was implemented in [50], where they
were built as eigenstates of an appropriate annihilation operator. We briefly describe the construction of
these states in the remainder of this chapter.

3.1.1 Annihilation and creation operators

First of all, it is necessary to determine an appropriate annihilation operator A− for the Hamiltonian
(2.14), which can be proposed as follows

A− :=
(

f3(N)θ− 0
0 f (N + I)θ−

)
, (3.4)

where the operators θ± are given in equation (2.38), and f , f3 are two auxiliary real functions.

Note that

A−Ψ
±
n (x,y) =

exp(iky)√
2

( √
n−2 f3(n−3)ψn−3(x)
±
√

n f (n)ψn−1(x)

)
. (3.5)

In order to ensure that A−Ψ±n (x,y) = cnΨ
±
n−1(x,y), the functions f , f3 must fulfill

√
n−2 f3(n−3) =

√
n f (n) =: cn. (3.6)
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Thus, the explicit expression for the annihilation operator A− becomes

A− =

( √
N+3I√
N+I

f (N +3I)θ− 0
0 f (N + I)θ−

)
. (3.7)

Meanwhile, the creation operator A+ is just the Hermitian conjugate of A−, i.e.,

A+ =

(
θ+
√

N+3I√
N+I

f (N +3I) 0
0 θ+ f (N + I)

)
, (3.8)

such that

A+
Ψ
±
0 (x,y) = f (1)Ψ±1 (x,y),

A+
Ψ
±
1 (x,y) =

√
2 f (2)exp(iky)

(
0

±ψ2(x)

)
,

A+
Ψ
±
n (x,y) =

√
n+1 f (n+1)Ψ±n+1(x,y), n = 2,3, . . .

(3.9)

3.1.2 Barut-Girardello coherent states

As mentioned before, the bilayer graphene CS can be constructed as eigenstates Ψα(x,y) of the annihi-
lation operator A− of equation (3.7) with complex eigenvalue α , namely,

A−Ψα(x,y) = αΨα(x,y), α ∈ C. (3.10)

By expressing now the states Ψα(x,y) as a linear combination of the eigenstates with positive energy
Ψ+

n (x,y) in equation (2.30),

Ψα(x,y) =
∞

∑
n=0

anΨ
+
n (x,y) = exp(iky)

[
a0

(
0

ψ0(x)

)
+a1

(
0

ψ1(x)

)
+

∞

∑
n=2

an√
2

(
ψn−2(x)
ψn(x)

)]
,

(3.11)

and substituting this expression in (3.10) we obtain a recurrence relationship for the coefficients an,

a1 =
αa0

f (1)
,

a2 =
αa1

f (2)
,

an+1 =
α√

n+1 f (n+1)
an, n = 2,3, . . .

(3.12)

Three different cases can be identified.

1. Coherent states when f (1) 6= 0 and f (2) 6= 0

Suppose that f (n) 6= 0 ∀n ∈ N, so that the coefficients an become

an =

√
2αn

√
n! [ f (n)]!

a0, n = 2,3, . . . (3.13)

Dennis Itzel Martı́nez Moreno On some quantum features of bilayer graphene coherent states



20 CHAPTER 3. COHERENT STATES

where, for any function q(s) such that s ∈ N, the generalized factorial function is defined by

[q(s)]! :=
{

1 for s = 0,
q(1) · · ·q(s) for s > 0.

(3.14)

Thus, the Barut-Girardello coherent states in this case are

Ψα(x,y) =

[
1+
|α|2

f (1)2 +2
∞

∑
n=2

|α|2n

n!([ f (n)]!)2

]− 1
2

×

[
Ψ

+
0 (x,y)+

α

f (1)
Ψ

+
1 (x,y)+

√
2

∞

∑
n=2

αn
√

n! [ f (n)]!
Ψ

+
n (x,y)

]
.

(3.15)

Note that the states (3.15) were normalized using the free coefficient a0.

2. Coherent states when f (1) = 0 and f (2) 6= 0

If f (2) 6= 0 the free parameter becomes a1. The recurrence relationship for the coefficients an is now

an+1 =

√
2αn√

(n+1)! [g(n)]!
a1, n = 1,2, . . . (3.16)

where g(n) := f (n+1). Substituting this result in equation (3.11), the normalized coherent states are

Ψα(x,y) =

[
1+2

∞

∑
n=1

|α|2n

(n+1)!([g(n)]!)2

]− 1
2
[

Ψ
+
1 (x,y)+

√
2

∞

∑
n=1

αn√
(n+1)! [g(n)]!

Ψ
+
n+1(x,y)

]
.

(3.17)

3. Coherent states when f (1) = 0 and f (2) = 0

On the other hand, if f (2) = 0 it must happen that a1 = 0 so that a2 is now the free parameter. By defining
h(n) := f (n+2) ∀ n ∈ N, the normalized coherent states turn out to be

Ψα(x,y) =

[
∞

∑
n=0

|α|2n

(n+2)!([h(n)]!)2

]− 1
2 ∞

∑
n=0

αn−2√
(n+2)! [h(n)]!

Ψ
+
n+2(x,y). (3.18)

Equations (3.15), (3.17) and (3.18) contain three different sets of BGCS, all of them depending on the
particular choice of the function f (n). Note that these BGCS look similar to the monolayer graphene
coherent states (MGCS) derived in [22].

Several physical quantities, as the Heisenberg uncertainty relation, probability and current densities
as well as mean energy value were computed an analyzed in detail for these families of BGCS in [50].
In this work we will just describe the time evolution of such states.

On some quantum features of bilayer graphene coherent states Dennis Itzel Martı́nez Moreno



CHAPTER 3. COHERENT STATES 21

3.2 Time evolution

Wave packet dynamics has been explored since the early days of quantum mechanics, and then explored
in several areas in physics and chemistry [52]. Starting from Schrödinger and his derivation of the CS
for the harmonic oscillator, up to the development of experimental techniques in atomic physics using
Rydberg atoms [53,54], the studies on the connection between the quantum and classical descriptions of
nature through time evolving wave packets have attracted the interest of the scientific community.

This research can be come quite complex due to quantum interference; however, several types of pe-
riodicity can arise depending on the structure of the energy spectrum [55]. In particular, it is well known
that the time stability of the canonical coherent states comes from the fact that the energy levels of the
harmonic oscillator are equally spaced [46]. In general, this stability does not arise for quantum systems
without equally spaced energy levels [47–49].

In this section, we describe the time evolution of the BGCS. In general, the evolution of a quantum
state is obtained by acting the unitary time evolution operator U(t, t0) as follows [27]:

|Ψ(t)〉=U(t, t0)|Ψ(t0)〉, t > t0. (3.19)

In particular, for time-independent Hamiltonians the evolution operator has the simple form U(t, t0) =
exp
[
− i

h̄(t− t0)H
]
; therefore, the evolved quantum state is given by

|Ψ(t)〉= exp
[
− i

h̄
(t− t0)H

]
|Ψ(t0)〉. (3.20)

3.2.1 Evolution of bilayer graphene coherent states

As mentioned before, the three sets of BGCS derived in equations (3.15), (3.17) and (3.18) depend on the
particular choice of the function f (n), g(n) or h(n); therefore, in order to compute their time evolution a
specific choice of f (n) will be taken for each family of BGCS.

1. Evolution of BGCS when f (1) 6= 0 and f (2) 6= 0

First of all, let us make the particular choice f (N) := I so that the BGCS of equation (3.15) reduce to

Ψα(x,y) =
1√

2exp(ζ 2)−ζ 2−1

[
Ψ

+
0 (x,y)+αΨ

+
1 (x,y)+

√
2

∞

∑
n=2

αn
√

n!
Ψ

+
n (x,y)

]
, (3.21)

where α = ζ exp(iϕ). We calculate now their time evolution for t0 = 0 through equation (3.20), leading
to

Ψα(x,y; t)=
1√

2exp(ζ 2)−ζ 2−1

{
Ψ

+
0 (x,y)+αΨ

+
1 (x,y)+

∞

∑
n=2

√
2αn
√

n!
exp
[
−i
√

n(n−1)ω
∗
c t
]

Ψ
+
n (x,y)

}
.

(3.22)
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2. Evolution of BGCS when f (1) = 0 and f (2) 6= 0

Let us choose now f (N + I) := g(N) :=
√

N√
N+I

, so that f (n+ 1) 6= 0 ∀ n = 1,2, . . . . Then, the coherent
states of equation (3.17) become

Ψα(x,y) =
1√

2exp(ζ 2)−1

[
Ψ

+
1 (x,y)+

√
2

∞

∑
n=1

αn
√

n!
Ψ

+
n+1(x,y)

]
. (3.23)

For these states the time evolution turns out to be

Ψα(x,y; t) =
1√

2exp(ζ 2)−1

{
Ψ

+
1 (x,y)+

∞

∑
n=2

√
2αn−1√
(n−1)!

exp
[
−i
√

n(n−1)ω
∗
c t
]

Ψ
+
n (x,y)

}
. (3.24)

3. Evolution of BGCS when f (1) = 0 and f (2) = 0

Finally, let us take f (N +2) = h(N) = N
√

N+I√
N+2

, thus the coherent states of equation (3.18) reduces to

Ψα(x,y) =
1√

0F2(1,2;ζ 2)

[
∞

∑
n=0

αn

n!
√

(n+1)!
Ψ

+
n+2(x,y)

]
, (3.25)

were pFq is the generalized hypergeometric function defined by

pFq(a1, . . . ,ap,b1 . . . ,bq;x) =
Γ(b1) · · ·Γ(bq)

Γ(a1) · · ·Γ(ap)

∞

∑
n=0

Γ(a1 +n) · · ·Γ(ap +n)
Γ(b1 +n) · · ·Γ(bq +n)

xn

n!
. (3.26)

The time evolution for the BGCS of equation (3.25) is

Ψα(x,y; t) =
1√

0F2(1,2;ζ 2)

∞

∑
n=2

αn−2

(n−2)!
√

(n−1)!
exp
[
−i
√

n(n−1)ω
∗
c t
]

Ψ
+
n (x,y). (3.27)

The probability densities for the evolving states (3.22), (3.24) and (3.27) are shown in figures 3.1, 3.2
and 3.3, respectively.

Discussion

As can be seen from equation (2.26), the Landau levels for bilayer graphene are not equidistant. How-
ever, starting from a certain integer (n & 2 approximately) this spectrum is practically lineal, stabilizing
in time those BGCS for which the contribution of the eigenstates Ψ

+
0 (x,y) and Ψ

+
1 (x,y) can be neglected

when compared with the contribution of all other eigenstates, i.e., with |α| � 1. This can be seen clearly
in figure 3.3(a), where the BGCS (3.27) are stable in time, with the same period as the auxiliary har-
monic oscillator (τ ' 2π/ω∗c ). For the other two examples, equations (3.22) and (3.24), the coherent
states could involve in a non-trivial way the eigenstates Ψ

+
0 (x,y), Ψ

+
1 (x,y) or both, thus making their

time evolution being in general not stable (see figures 3.1(a) and 3.2(a)).

Despite the first two sets of BGCS of equations (3.22) and (3.24) do not have always the period
2π/ω∗c , a way to find a possible approximate period τ for these states was proposed in [50]. First of
all. Note that, τ is closely related to the associated mean energy value and to the eigenvalues bounding
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(a) (b)

Figure 3.1: (a) Probability density |Ψα(x,y; t)|2 for the BGCS of equation (3.22) with f (n) = 1, ζ = 1,
ϕ = 0 and ω∗c = 1. (b) Probability density |Ψα(x,y; t)|2 for some fixed times (the suggested approximate
period and some of its multiples). The blue, orange and green lines correspond to t =

{
0,
√

2π,2
√

2π

}
,

respectively.

(a) (b)

Figure 3.2: (a) Probability density |Ψα(x,y; t)|2 for the BGCS of equation (3.24) with f (n) =√
n−1/

√
n, ζ = 1, ϕ = 0 and ω∗c = 1. (b) Probability density |Ψα(x,y; t)|2 for some fixed times (the

suggested approximate period and some of its multiples). The blue, orange and green lines correspond
to t = {0,2π,4π}, respectively.
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(a) (b)

Figure 3.3: (a) Probability density |Ψα(x,y; t)|2 for the BGCS of equation (3.27) with f (n) = (n−
2)
√

n−1/
√

n, ζ = 1, ϕ = 0 and ω∗c = 1. (b) Probability density |Ψα(x,y; t)|2 for some fixed times (the
suggested approximate period and some of its multiples). The blue, orange and green lines correspond
to t = {0,2π,4π}, respectively.

this average for a given α . Hence, by setting α first 〈Heff〉α must be calculated, then the interval in
which it lies must be determined, bounded by two consecutive proper energies E j+1 and E j, i.e., E j <
〈Heff〉α < E j+1. Finally, the next expression for the possible approximate period for the time-evolution
of the BGCS can be proposed

τ =
2π h̄

E j+1−E j
. (3.28)

Recall that the quantity 〈Heff〉α is calculated as:

〈Heff〉α = 〈Ψα(x,y)|Heff|Ψα(x,y)〉, (3.29)

i.e., it is the mean value of the effective Hamiltonian (2.14) in the states Ψα(x,y).

For states (3.22) with |α| = 1 (such that 0 < 〈Heff〉α = 0.76 h̄ω∗c < E2), we obtain an approximate
period τ '

√
2π/ω∗c , and for states (3.24) such that E2 < 〈Heff〉α = 1.56 h̄ω∗c < E3 it is obtained τ '

2π/ω∗c . In figures 3.1(b) and 3.2(b) we have plotted the probability density at such a τ , and some of its
multiples in each case.

3.2.2 Revival structure of bilayer graphene and autocorrelation function

The phenomena of collapse and revival emerge naturally when exploring the wave-packet dynamics of
quantum physical systems. This revival structure is relevant for a variety of problems since it allows to
study the classical limit of a quantum-mechanical system. There are different types of revival structures
and they share the property of exhibiting an initial periodicity followed by a sequence of collapses and
subsequent revivals [52, 53, 55].

Time scales

To analyze the possible existence of this phenomenon in bilayer graphene, the so-called time scales can
be explored by studying the energy spectrum. First, consider a Taylor series expansion of the energy En
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in the variable n around the mean value n:

En ' En +E ′n(n−n)+
1
2

E ′′n (n−n)2 +
1
6

E ′′′n (n−n)3 + · · · , (3.30)

where E ′n = (dEn/dn)n=n. Each derivative term in equation (3.30) defines a time scale that depends on
the value of n as follows [52, 53]:

Tcl :=
2π h̄
|E ′n|

, Trev :=
2π h̄

1
2 |E
′′
n |
, Tsr :=

2π h̄
1
6 |E
′′′
n |

. (3.31)

The first time scale Tcl is related with the period of classical motion. The second period Trev is associ-
ated with the quantum revival scale, i.e., the time scale in which the probability density almost recovers
its initial shape after spreading and collapsing. Finally, the third time scale Tsr is called super-revival time.

Therefore, the phase factor exp(−iEnt/h̄) involved in the time evolution of the BGCS can be ex-
pressed in terms of these time scales as follows:

exp(−iEnt/h̄) = exp
[
− iEnt

h̄
− 2πi(n−n)t

Tcl
− 2πi(n−n)2t

Trev
− 2πi(n−n)3t

Tsr
+ · · ·

]
. (3.32)

Consequently, the time evolution of BGCS is governed by these three time scales, which are controlled
by the dependence of the energy on the quantum number n. The term containing iEnt/h̄ in equation
(3.32) is n-independent, being unimportant for the expansion of Ψα(x,y; t).

In order to explore the time evolution of the BGCS, the time scales may be computed through
equations (3.30) and (3.31). Before doing that, the probability distribution of the occupation number
Pα(n) = |〈Ψ+

n |Ψα〉|2 must be calculated to determine the mean value n.

For the BGCS of equation (3.21) the probability distribution of the occupation number becomes

Pα(n) = |〈Ψ+
n |Ψα〉|2 =

1
2exp(|α|2)−|α|2−1

×



1 for n = 0,

|α|2 for n = 1,

2|α|2n

n!
for n≥ 2,

(3.33)

where |α|2 = ζ 2.

The probability distribution Pα(n) for the states of equation (3.23) is given by

Pα(n) =
1

2exp(|α|2)−1
×


1 for n = 1,

2|α|2(n−1)

(n−1)!
for n≥ 2.

(3.34)

Finally, for the BGCS of equation (3.25) the probability distribution Pα(n) turns out to be

Pα(n) =
1

0F2(1,2;r2)

(
|α|2(n−2)

(n−1)![(n−2)!]2

)
, for n≥ 2. (3.35)
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(a) (b)

(c)

Figure 3.4: Probability distribution of occupation number Pα(n) for the three sets of BGCS. Subfigures
(a), (b) and (c) correspond to the BGCS in equations (3.21), (3.23) and (3.25), respectively.

These distributions are shown in figure 3.4. Note that for the first two sets of BGCS Pα(n) follows a
Poisson-like distribution centered approximately around |α|2 (see figures 3.4(a) and 3.4(b)). Thus, for
the BGCS (3.21) and (3.23) the distribution Pα(n) has a mean at n ≈ |α|2, as in the canonical coherent
states (see [46]). Meanwhile, for the last set this is no longer true.

In order to illustrate the bilayer graphene time scales, we have chosen a typical value of n = 9, and
from the expressions for the periods in equation (3.31) we can find the time scales of most interest for
our study:

T cl '
2π

ω∗c
, Trev '

9775π

ω∗c
, Tsr '

82800π

ω∗c
. (3.36)

As can be seen, for n = 9 the first time scale is T cl ' 2π/ω∗c , i.e., the classical period of motion for our
BGCS is similar to the period of evolution of the harmonic oscillator. However, the other time scales
Trev and Tsr take very large values. This is the reason to conclude that the wave packets of the previously
derived BGCS do not collapse, thus they cannot have revivals, as it happens for the canonical coherent
states.

Autocorrelation function

A useful tool to analyze the dynamics of a quantum system is the autocorrelation function, which supplies
a qualitative way to know how long a quantum state persists at two different times, and it is defined as
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Figure 3.5: Left: Modulus squared |A(t)|2 of the autocorrelation function for the BGCS (3.21) with
several values of |α|. Right: Probability densities |Ψα(x,y; t)|2 for |α| = 3, |α| = 5 and several fixed
times, multiples of the classical period Tcl ' 2π/ω∗c . The values ϕ = 0 and ω∗c = 1 were taken.

follows
A(t) := 〈Ψ(r,0)|Ψ(r, t)〉=

∫
∞

−∞

Ψ
†(r,0)Ψ(r, t)dr. (3.37)

Through the modulus squared |A(t)|2 of this function it is possible to illustrate the different types of
revival structures that a given quantum system could have. Let us point out that |A(t)|2 is bounded be-
tween 0 and 1. When the modulus squared of the autocorrelation function is close to or equal to one,
|A(t)|2 ' 1, the quantum state Ψ(r, t) approximately matches with the initial state Ψ(r,0). On the other
hand, if |A(t)|2 ' 0 the evolved state is far from the initial one.

The autocorrelation function for the BGCS (3.21) becomes

A(t) =
1

2exp(ζ 2)−ζ 2−1

{
1+ |α|2 +2

∞

∑
n=2

|α|2n

n!
exp
[
−i
√

n(n−1)ω
∗
c t
]}

. (3.38)

The modulus squared |A(t)|2 of such autocorrelation function is shown in figure 3.5 for different values
of |α|.

The autocorrelation function for the second set of BGCS (3.23) turns out to be

A(t) =
1

2exp(ζ 2)−1

{
1+2

∞

∑
n=2

|α|2(n−1)

(n−1)!
exp
[
−i
√

n(n−1)ω
∗
c t
]}

. (3.39)

The modulus squared |A(t)|2 of such autocorrelation function is shown in figure 3.6 for different values
of |α|.
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Figure 3.6: Left: Modulus squared |A(t)|2 of the autocorrelation function for the BGCS (3.23) with
several values of |α|. Right: Probability densities |Ψα(x,y; t)|2 for |α| = 3, |α| = 5 and several fixed
times, multiples of the classical period Tcl ' 2π/ω∗c . The values ϕ = 0 and ω∗c = 1 were taken.

Figure 3.7: Left: Modulus squared |A(t)|2 of the autocorrelation function for the BGCS (3.25) with
several values of |α|. Right: Probability densities |Ψα(x,y; t)|2 for |α| = 3, |α| = 5 and several fixed
times, multiples of the classical period Tcl ' 2π/ω∗c . The values ϕ = 0 and ω∗c = 1 were taken.

Finally, the autocorrelation function A(t) for the last set of BGCS (3.25) is given by

A(t) =
1

0F2(1,2;r2)

∞

∑
n=2

|α|2(n−2)

[(n−2)!]2(n−1)!
exp
[
−iω∗c

√
n(n−1) t

]
, (3.40)

whose modulus squared is shown in the figure 3.7.
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As can be seen, the modulus squared |A(t)|2 of the autocorrelation function has approximately the
same behavior for the three families of BGCS, i.e., for |α| ≥ 3 the function |A(t)|2 is practically equal
to one for times equal to the classic time Tcl ' 2π/ω∗c and its multiplies. Moreover, it has an oscillatory
behavior and disappears for times different from Tcl (see figures 3.5-3.7). Therefore, the three evolved
sets of BGCS Ψα(r; t) are recovered approximately at Tcl and its multiplies.

Dennis Itzel Martı́nez Moreno On some quantum features of bilayer graphene coherent states



30 CHAPTER 3. COHERENT STATES

On some quantum features of bilayer graphene coherent states Dennis Itzel Martı́nez Moreno



Chapter 4

Multiphoton coherent states for bilayer
graphene

4.1 Multiphoton coherent states

As mentioned before, the CS can be generalized, i.e., defined appropriately in order to describe different
systems. The so-called multiphoton coherent states (MCS) are generalizations of the CS, defined as
eigenstates of a generalized or deformed annihilation operator a−g := (a−)k with complex eigenvalues
z̃ [56–58]:

a−g |z̃〉k = z̃|z̃〉k, z̃ ∈ C. (4.1)

The generalized ladder operators a−g , a+g := (a−g )
† and the harmonic oscillator Hamiltonian generate

an algebraic structure called polynomial Heisenberg algebra, in which the Hilbert space H with basis
vectors |n〉 is decomposed as a direct sum of k orthogonal subspaces H j [60–63]:

H =⊕k−1
j=0H j. (4.2)

As a consequence, the MCS |z̃〉k can be constructed on each subspace H j using equation (4.1) by ex-
pressing them as superpositions of the Fock states |kn+ j〉 as follows (see [64])

|z̃〉k = ck
j

∞

∑
n=0

z̃n√
(kn+ j)!

|kn+ j〉, j = 0, . . . ,k−1, (4.3)

with ck
j being normalization constants.

The BGCS were derived in the previous chapter , and their time evolution was explored. In order
to extend and generalize this treatment, in this chapter the multiphoton coherent states for electrons in
bilayer graphene will be constructed as eigenstates of a generalized annihilation operator, analyzing as
well some physical quantities associated to them [65].

4.1.1 Generalized annihilation operator A−g
Consider first a generalized annihilation operator A−g defined as follows

A−g := (A−)k, k ∈ Z+. (4.4)
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Using the expression of A− given in equation (3.7), the operator A−g turns out to be

A−g =


k−1

∏
m=0

f3(N +mI)(θ−)k 0

0
k

∏
m=1

f (N +mI)(θ−)k

 , (4.5)

where, f , f3 will be used to ensure that

A−g Ψ
±
n (x,y) = ck

nΨ
±
n−k(x,y), (4.6)

with ck
n being coefficients to determine later, and {Ψ±n (x,y)}

∞

n=0 are the Landau states of the bilayer
graphene effective Hamiltonian (2.30).

By applying A−g onto the eigenstates Ψ±n (x,y), in order to satisfy equation (4.6), the functions f , f3
must fulfil the following constraint,√

(n−2) · · · [n− (k+1)] f3(n−3) · · · f3 (n− (k+2)) =
√

n · · · [n− (k−1)] f (n) · · · f (n− (k−1)) .
(4.7)

Consequently, the generalized annihilation operator A−g can be rewritten as follows

A−g =


√

(N+3I)···(N+(k+2)I)√
(N+I)···(N+kI)

k+2

∏
m=3

f (N +mI)(θ−)k 0

0
k

∏
m=1

f (N +mI)(θ−)k

 , (4.8)

thus the coefficients ck
n can easily be determined,

A−g Ψ
±
n (x,y) =



0 for n = 0,1, . . . ,k−1,√
(1+δk1)n!

2
[ f (n)]!Ψ

±
0 (x,y) for n = k,

√
n!√
2
[ f (n)]!

f (1)
Ψ
±
1 (x,y) for n = k+1,

√
n!

(n− k)!
[ f (n)]!

[ f (n− k)]!
Ψ
±
n−k(x,y) for n = k+2,k+3, . . . ,

(4.9)

where δi j is the Kronecker delta and [ f (n)]! is calculated according to equation (3.14).

4.1.2 Bilayer graphene MCS as eigenstates of A−g

The bilayer graphene MCS (BGMCS) can be constructed as eigenstates Ψk
α̃
(x,y) of the generalized

annihilation operator A−g of equation (4.8) with complex eigenvalue α̃ ,

A−g Ψ
k
α̃(x,y) = α̃Ψ

k
α̃(x,y), α̃ ∈ C, (4.10)
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where states Ψk
α̃
(x,y) are expressed as linear combinations of {Ψ+

n (x,y)}
∞

n=0, i.e.,

Ψ
k
α̃(x,y) =

∞

∑
n=0

Ck
n Ψ

+
n (x,y). (4.11)

From equations (4.9) - (4.11), and using the linear independence of the states {Ψ+
n (x,y)}

∞

n=0, two recur-
rence relationships for the coefficients Ck

n are obtained, which after some work lead to

Ck
k =

√
2 α̃√

(1+δk1)k! [ f (k)]!
Ck

0, (4.12)

Ck
n+k =

√
2δn1n!
(n+ k)!

[ f (n)]! α̃

[ f (n+ k)]!
Ck

n, n = 1,2, . . . (4.13)

Note that there are k free parameters,
{

Ck
0,C

k
1, . . . ,C

k
k−1

}
=
{

Ck
j

}k−1

j=0
, thus k independent sets of BGMCS

can be constructed, all of them depending on the choice of f (n).

First of all, suppose that f (n) 6= 0 ∀ n = 1,2, . . . In particular, equations (4.12) and (4.13) for
k = 1 lead to

C1
1 =

α̃

f (1)
C1

0 , C1
n+1 =

√
2δn1

(n+1)
α̃

f (n+1)
C1

n , n = 1,2, . . . , (4.14)

with C1
0 being the only free parameter. Since these recurrence relationships are the same as the ones

obtained in equation (3.12), the BGMCS for k = 1 and j = 0 become

Ψ
1
α̃(x,y) =C1

0

[
Ψ

+
0 (x,y)+

∞

∑
n=1

√
21−δn1 α̃n
√

n! [ f (n)]!
Ψ

+
n (x,y)

]
, (4.15)

where C1
0 will be used for normalizing them. These states are identical to the BGCS of equation (3.15)

with α̃ = α , i.e., for k = 1 the BGCS are recovered.

On the other hand, for k > 1, k independent relations arise from equations (4.12), (4.13),

Ck
kn+ j =

[√
2δ j0 +

√
(δ j1 + j)!

]
[ f ( j)]! α̃n√

(kn+ j)! [ f (kn+ j)]!
Ck

j , n = 1,2, . . . , (4.16)

where j = {0,1,2, . . . ,k−1}. Thus, from equations (4.11) and (4.16) the BGMCS turn out to be

Ψ
k
α̃(x,y) =Ck

j

Ψ
+
j (x,y)+

∞

∑
n=1

[√
2δ j0 +

√
(δ j1 + j)!

]
[ f ( j)]! α̃n√

(kn+ j)! [ f (kn+ j)]!
Ψ

+
kn+ j(x,y)

 . (4.17)

The parameters Ck
j will be used for normalizing the BGMCS, which in general depend on the values of

the pair {k, j}. Therefore, it is natural to redefine these states as Ψk
α̃
(x,y) := Ψ

k, j
α̃
(x,y). In this context, k

is used to indicate the order and j represents the family of the BGMCS. This notation will be used from
now on.

Some important explicit expressions of the states Ψ
k, j
α̃
(x,y) will be written next.
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Case k = 2

For k = 2 the index j can take two values, {0,1}, thus two sets of BGMCS will be obtained:

Ψ
2,0
α̃
(x,y) =

[
1+

∞

∑
n=1

2|α̃|2n

(2n)![[ f (2n)]!]2

]−1/2[
Ψ

+
0 +

∞

∑
n=1

√
2α̃n√

(2n)! [ f (2n)]!
Ψ

+
2n

]
, (4.18)

Ψ
2,1
α̃
(x,y) =

[
1+

∞

∑
n=1

2[ f (1)]2|α̃|2n

(2n+1)![[ f (2n+1)]!]2

]−1/2[
Ψ

+
1 +

∞

∑
n=1

√
2 f (1)α̃n√

(2n+1)! [ f (2n+1)]!
Ψ

+
2n+1

]
.

(4.19)
These states can also be obtained as even and odd superpositions of bilayer graphene coherent states,
which has been recently implemented for the particular case when f (n) = 1 in [68].

Case k = 3

On the other hand, for k = 3 the index j can take three values, {0,1,2}, thus three sets of BGMCS are
obtained:

Ψ
3,0
α̃
(x,y) =

[
1+

∞

∑
n=1

2|α̃|2n

(3n)![[ f (3n)]!]2

]−1/2[
Ψ

+
0 +

∞

∑
n=1

√
2α̃n√

(3n)! [ f (3n)]!
Ψ

+
3n

]
, (4.20)

Ψ
3,1
α̃
(x,y) =

[
1+

∞

∑
n=1

2[ f (1)]2|α̃|2n

(3n+1)![[ f (3n+1)]!]2

]−1/2[
Ψ

+
1 +

∞

∑
n=1

√
2 f (1)α̃n√

(3n+1)! [ f (3n+1)]!
Ψ

+
3n+1

]
,

(4.21)

Ψ
3,2
α̃
(x,y) =

[
1+

∞

∑
n=1

2[ f (1) f (2)]2|α̃|2n

(3n+2)![[ f (3n+2)]!]2

]−1/2[
Ψ

+
2 +

∞

∑
n=1

√
2 f (1) f (2)α̃n√

(3n+2)! [ f (3n+2)]!
Ψ

+
3n+2

]
.

(4.22)
Additional sets of BGMCS could be written explicitly, all of them depending on the particular choice of
f (n) and the parameters {k, j}. In order to analyze the electrons behavior in bilayer graphene, several
physical quantities for the states Ψ

k, j
α̃
(x,y) will be computed in the following sections.

4.2 Physical quantities for the BGMCS

The BGMCS belong to the Hilbert space H , thus several physical quantities can be calculated in order
to describe the system behavior in such approach.

4.2.1 Heisenberg uncertainty relation

An important physical quantities useful to characterize a quantum state is the Heisenberg uncertainty
relation (HUR). In order to obtain this quantity for the BGMCS, the following matrix operators Ŝ` and
their squares are defined as follows [69]:

Ŝ` = ŝ`⊗ 1̂, Ŝ2
` = ŝ2

` ⊗ 1̂, (4.23)
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(a) (b)

Figure 4.1: Heisenberg uncertainty product σq̂α̃
σp̂α̃

as function of α̃ for the BGMCS with f (n) = 1 and:
(a) k = 2, j = 0,1; (b) k = 3, j = 0,1,2.

where
ŝ` =

1√
2i`

[
θ
−+(−1)`θ+

]
, (4.24)

ŝ2
` =

1
2

{
2N + I +(−1)`

[
(θ−)2 +(θ+)2]} , (4.25)

with `= 0,1, such that 〈Ŝ`〉|`=0 = 〈q〉 and 〈Ŝ`〉|`=1 = 〈p〉 (similarly for their squares). The mean values
of the operators Ŝ` and their squares turn out to be 〈Ŝ`〉= 0 for all k and

〈Ŝ2
`〉=|Ck

j |2

(1−δ j0−δ j1)
2(2 j−3)+2 j+1

21−δ j0−δ j1
+

 [ f ( j)]!
[√

2δ j0 +
√
(δ j1 + j)!

]
[ f (kn+ j)]!

2

×
∞

∑
n=1

|α̃|2n (2kn+2 j−1)
(kn+ j)!

+(−1)` 2Re(α̃)

[
[ f ( j)]!

[ f (kn+ j)]!
√

21−δ j0−δ j1 j!
+

+

(
[ f ( j)]!

[ f (kn+ j)]!

)2
(

∞

∑
n=1

|α̃|2n

(kn+ j)!
+

∞

∑
n=1

|α̃|2n√
(kn+ j+2)!(kn+ j−2)!

)]
δk2

}
.

(4.26)

The standard deviation for Ŝ` will be found through

σŜ` =
√
〈Ŝ2

`〉−〈Ŝ`〉2, (4.27)

thus, the HUR for the BGMCS fulfills

(σq)α̃
(σp)α̃

≥ 1
2
. (4.28)

For the eigenstates Ψ+
n (x,y), the resulting uncertainty relations are:

(σq)0 (σp)0 =
1
2
, n = 0,

(σq)1 (σp)1 =
3
2
, n = 1,
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(σq)n (σp)n = n− 1
2
≥ 1

2
, n = 2,3, . . .

Figures 4.1(a) and 4.1(b) show the resulting Heisenberg uncertainty product σqα̃
σpα̃

as function of α̃ for
f (n) = 1 and the two k-values k = {2,3}, respectively.

4.2.2 Probability density

The probability density ρ
k, j
α̃
(x) = (Ψk, j

α̃
(x,y))†Ψ

k, j
α̃
(x,y) for the BGMCS of equation (4.17) is

ρ
k, j
α̃
(x) = |Ck

j |2
{
(1−δ j0−δ j1)

2|ψ j−2|2 + |ψ j|2√
21−δ j0−δ j1

+
[
√

2δ j0 +
√

(δ j1 + j)!]
√

22−δ j0−δ j1

[
∞

∑
n=1

ζ̃ n cos(nϕ̃)√
(kn+ j)!

× [ f ( j)]!
[ f (kn+ j)]!

(
(1−δ j0−δ j1)ψkn+ j−2ψ

∗
j−2 +ψkn+ jψ

∗
j
)
+

∞

∑
n′=1

ζ̃ n′ cos(n′ϕ̃)√
(kn′+ j)!

[ f ( j)]!
[ f (kn′+ j)]!

×
(
(1−δ j0−δ j1)ψ

∗
kn′+ j−2ψ j−2 +ψ

∗
kn′+ jψ j

)]
+

[
√

2δ j0 +
√
(δ j1 + j)!]2

2

∞

∑
n=1

∞

∑
n′=1

ζ̃ n+n′ cos[(n−n′)ϕ̃]√
(kn+ j)!(kn′+ j)!

×
[[ f ( j)]!]2(ψkn+ j−2ψ∗kn′+ j−2 +ψkn+ jψ

∗
kn′+ j)

[ f (kn+ j)]![ f (kn′+ j)]!

}
,

(4.29)

where the polar form α̃ = ζ̃ exp(iϕ̃) = ζ̃ (cos ϕ̃ + isin ϕ̃) has been used. Some graphs of ρ
k, j
α̃
(x) for

f (n) = 1, k = 2 and k = 3 are shown in figures 4.2(a)-4.2(e).

4.2.3 Mean energy value

We calculate the expected value of the Hamiltonian to characterize the energy of the system. Thus, the
mean energy value 〈Heff〉α̃ for states Ψ

k, j
α̃
(x,y) is obtained through

〈Heff〉k, jα̃
= 〈Ψk, j

α̃
|Heff|Ψk, j

α̃
〉, (4.30)

with Heff being the bilayer graphene Hamiltonian (2.14). Performing the calculation with the states
Ψ

k, j
α̃
(x,y) in equation (4.17), we obtain

〈Heff〉k, jα̃
= |Ck

j |2h̄ω
∗
c

[√
j( j−1)+

(√
2δ j0 +

√
(δ j1 + j)!

)2 ∞

∑
n=1

[ f ( j)]!2
√

(kn+ j)(kn+ j−1) |α̃|2n

[ f (kn+ j)]!2 (kn+ j)!

]
.

(4.31)
This quantity will be useful later on to analyze the time evolution of the BGMCS in terms of the approxi-
mate period τ , in the same way as in equation (3.28). Figures 4.3-4.4 show the mean energy value (4.31)
as function of |α̃|= ζ̃ for the BGMCS with f (n) = 1 and the two k-values k = {2,3}.

Discussion

Several physical quantities have been calculated previously when the system is in a BGMCS. As can be
seen in figures 4.1(a) and 4.1(b), the corresponding Heisenberg uncertainty relation acquires a minimum
when α̃→ 0 which depends on the eigenstate Ψ

+
j (x,y) with minimum energy eigenvalue involved in the
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(a) k = 2, j = 0 (b) k = 2, j = 1

(c) k = 3, j = 0 (d) k = 3, j = 1

(e) k = 3, j = 2

Figure 4.2: Probability density ρ
k, j
α̃
(x) for the BGMCS with f (n) = 1, ω∗c = 1, k = 2, k = 3 and different

values of ζ̃ = |α̃| with ϕ̃ = 0.
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(a) (b)

Figure 4.3: Mean energy value 〈Heff〉k, jα̃
for the BGMCS with f (n) = 1, k = 2, j = {0,1} and h̄ω∗c = 1.

(a) (b)

Figure 4.4: Mean energy value 〈Heff〉k, jα̃
for the BGMCS with f (n) = 1, k = 3, j = {0,1,2} and h̄ω∗c = 1.

linear decomposition. Thus, for the states Ψ
k, j
α̃
(x,y) with k = 2, j = 0 and k = 3, j = 0 the HUR achieves

the minimum value 1/2, while for the other three cases (k = 2, j = 1; k = 3, j = 1; and k = 3, j = 2)
this quantity tends to 3/2 when α̃ goes to zero. This two values are the same values taken for the states
Ψ+

n (x,y) with n = 0,1,2,3.

On the other hand, the probability density for the BGMCS shows an oscillatory behavior around the
point x0 = −2k/ω∗c , which is similar to what happens for the BGCS [50]. Moreover, this behavior be-
comes more pronounced as ζ̃ increases and ρ

k, j
α̃
(x) extends along x-direction (see figures 4.2(a)-4.2(e)).

Therefore, by choosing a specific α̃ it is possible to find the electrons in a given region with the highest
probability.

Finally, figures 4.3(b)-4.4(b) indicate that the mean energy value for the BGMCS is a continuous
function of |α̃| whose behavior above a certain |α̃| is approximately linear. Moreover, when |α̃| → 0 the
asymptotic value of 〈Heff〉k, jα̃

is different for each set Ψ
k, j
α̃
(x,y), since in this limit the BGMCS tend to the

state Ψ
+
j with minimum energy eigenvalue involved in the linear decomposition, which is different for

different j (see equations (4.18-4.22)).
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4.3 Evolution of the BGMCS

The time evolution operator U(t) = exp(−iHefft/h̄) acting on the states Ψ
k, j
α̃
(x,y) of equation (4.17) will

induce the corresponding dynamical behavior. Thus, the evolved state is given by:

Ψ
k, j
α̃
(x,y; t) =Ck

j

e−i
√

j( j−1)ω∗c t
Ψ

+
j +

∞

∑
n=1

[√
2δ j0 +

√
(δ j1 + j)!

]
[ f ( j)]! α̃n√

(kn+ j)! [ f (kn+ j)]!

×e−i
√

(kn+ j)(kn+ j−1)ω∗c t
Ψ

+
kn+ j

]
.

(4.32)

The evolved probability density for the BGMCS with α̃ = ζ̃ expiϕ̃ becomes

ρα̃(x, t) = |Ck
j |2
{
(1−δ j0−δ j1)

2|ψ j−2|2 + |ψ j|2√
21−δ j0−δ j1

+
[
√

2δ j0 +
√
(δ j1 + j)!]2

2

∞

∑
n=1

∞

∑
n′=1

ζ̃ n+n′√
(kn+ j)!(kn′+ j)!

× [[ f ( j)]!]2

[ f (kn′+ j)]![ f (kn+ j)]!
cos[(

√
(kn+ j)(kn+ j−1)−

√
(kn′+ j)(kn′+ j−1))ω

∗
c t− (n−n′)ϕ̃]

×(ψkn+ j−2ψ
∗
kn′+ j−2 +ψkn+ jψ

∗
kn′+ j)+

[
√

2δ j0 +
√
(δ j1 + j)!]

√
22−δ j0−δ j1

[
∞

∑
n′=1

ζ̃ n′√
(kn′+ j)!

[ f ( j)]!
[ f (kn′+ j)]!

×cos[(
√

(kn′+ j)(kn′+ j−1)−
√

j( j−1))ω
∗
c t−n′ϕ̃] ((1−δ j0−δ j1)ψ

∗
kn′+ j−2ψ j−2 +ψ

∗
kn′+ jψ j)

+
∞

∑
n=1

ζ̃ n√
(kn+ j)!

[ f ( j)]!
[ f (kn+ j)]!

cos[(
√

(kn+ j)(kn+ j−1)−
√

j( j−1))ω
∗
c t−nϕ̃]((1−δ j0−δ j1)

×ψkn+ j−2ψ
∗
j−2 +ψkn+ jψ

∗
j )
]}

.

(4.33)

In figures 4.5-4.9 the evolved probability densities (4.33) are shown, with f (n) = 1 and the two values
k = {2,3}.

Discussion

Similar to the BGCS derived previously, the BGMCS will be stable in time if the contribution of the first
two energy eigenstates Ψ

+
0 (x,y) and Ψ

+
1 (x,y) is either null or small compared with the contribution of

all other eigenstates. Such behavior can be seen in figure 4.9, where the evolved BGMCS for k = 3 and
j = 2 are stable in time, with a period τ ' 2π/3ω∗c . Moreover, as |α̃| grows (|α̃| → ∞) this condition is
also fulfilled, thus the BGMCS in practice are stable in time for all k and j, with a period τ ' 2π/kω∗c .

However, if the contribution of the states Ψ
+
0 (x,y) and Ψ

+
1 (x,y) is non-trivial compared with all other

contributions, the states Ψ
k, j
α̃
(x,y) will be only approximately stable in time, i.e., only for some values

of t the probability density looks similar to what it was at t = 0 (see figures 4.5-4.8). To explain this
evolution, an approximate period τ can be calculated, as obtained previously for the BGCS (3.28). Thus,
by setting α̃ the mean energy value is computed first, then the interval in which it lies is determined,
which is bounded by two energies Ekn+ j+k and Ekn+ j such that Ekn+ j < 〈Heff〉k, jα̃

< Ekn+ j+k. Thus, the
possible approximate period is obtained

τ =
2π h̄

Ekn+ j+k−Ekn+ j
. (4.34)
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(a) (b)

Figure 4.5: Left: Probability density ρ
k, j
α̃
(x, t) for the BGMCS with f (n) = 1, k = 2 and j = 0. Right:

Probability density at some fixed times (suggested approximate period τ '
√

2π and some of its multi-
ples). The values |α̃|= 1, θ = 0 and ω∗c = 1 were taken.

(a) (b)

Figure 4.6: Left: Probability density ρ
k, j
α̃
(x, t) for the BGMCS with f (n) = 1, k = 2 and j = 1. Right:

Probability density at some fixed times (suggested approximate period τ '
√

2π/
√

3 and some of its
multiples). The values |α̃|= 1, θ = 0 and ω∗c = 1 were taken.

On some quantum features of bilayer graphene coherent states Dennis Itzel Martı́nez Moreno



CHAPTER 4. MULTIPHOTON COHERENT STATES FOR BILAYER GRAPHENE 41

(a) (b)

Figure 4.7: Left: Probability density ρ
k, j
α̃
(x, t) for the BGMCS with f (n) = 1, k = 3 and j = 0. Right:

Probability density at some fixed times (suggested approximate period τ '
√

2π/
√

3 and some of its
multiples). The values |α̃|= 1, θ = 0 and ω∗c = 1 were taken.

(a) (b)

Figure 4.8: Left: Probability density ρ
k, j
α̃
(x, t) for the BGMCS with f (n) = 1, k = 3 and j = 1. Right:

Probability density at some fixed times (suggested approximate period τ ' π/
√

3 and some of its multi-
ples). The values |α̃|= 1, θ = 0 and ω∗c = 1 were taken.
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(a) (b)

Figure 4.9: Left: Probability density ρ
k, j
α̃
(x, t) for the BGMCS with f (n) = 1, k = 3 and j = 2. Right:

Probability density at some fixed times (suggested approximate period τ ' 2π/3 and some of its multi-
ples). The values |α̃|= 1, θ = 0 and ω∗c = 1 were taken.

As an example, the approximate period τ for the BGMCS (4.32) with |α̃| = 1, k = 2 and k = 3 has
been obtained. Figures 4.5-4.9 show their probability density ρ

k, j
α̃
(x, t) evaluated at τ and some of its

multiples.

4.3.1 Revival structure and autocorrelation function for the BGMCS

To analyze further the dynamics of the BGMCS, the time scales and autocorrelation function A(t) will
be computed, as in equations (3.31) and (3.37), respectively. For n = 9, the most interesting time scale
for our study corresponds to the classical period T cl, given by

T cl =
4π
√

(3k+ j)(3k+ j−1)
k(6k+2 j−1)ω∗c

. (4.35)

According to equations (4.35), for the BGMCS with k = 2 the classical period is Tcl ' π/ω∗c for both
values of j, while in the case with k = 3 we obtain that Tcl ' 2π/3ω∗c for j = 0,1,2. The other time
scales are not relevant because they are too large.

On the other hand, using equations (4.17) and (4.32) the autocorrelation function for the BGMCS
becomes

A(t) = |Ck
j |2

e−i
√

j( j−1)ω∗c t +
∞

∑
n=1

[√
2δ j0 +

√
(δ j1 + j)!

]2
[[ f ( j)]!]2 |α̃|2n

(kn+ j)! [[ f (kn+ j)]!]2
e−i
√

(kn+ j)(kn+ j−1)ω∗c t

 .
(4.36)

In figures 4.10-4.14 the modulus squared |A(t)|2 of the autocorrelation function for the BGMCS is shown
for k = 2 and k = 3, with ω∗c = 1, f (n) = 1 and several values of |α̃|.

This function supplies a qualitative way to know how long a BGMCS persists at two different times.
More precisely, its modulus squared indicates how close the evolved state at time t > 0 is to the initial
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Figure 4.10: Left: Modulus squared |A(t)|2 of the auto-correlation function for the BGMCS with several
values of |α̃|, f (n) = 1, k = 2 and j = 0. Right: Probability density ρ

k, j
α̃
(x, t) with |α̃|= 3 and |α̃|= 10

for several fixed times, multiples of the first time scale Tcl ' π . The values ϕ̃ = 0 and ω∗c = 1 were taken.

state at t = 0. For the BGMCS with k = 2 and k = 3 |A(t)|2 shows an oscillatory behavior, which de-
pends on the value of |α̃| (see figures 4.10-4.14). If the modulus squared of the autocorrelation function
is very close or equal to one, |A(t)|2 ≈ 1, the states Ψ

k, j
α̃
(x,y; t) and Ψ

k, j
α̃
(x,y;0) are said to be almost

completely correlated, i.e., the BGMCS at t = 0 is reconstructed at some t > 0. In figures 4.10-4.14
the modulus squared of A(t) is shown for several values of |α̃|. From these plots it can be seen that for
values of |α̃| → ∞ the modulus squared of A(t) reaches approximately the value of one at Tcl for any
family of BGMCS, i.e., through this quantity it is possible to identify out the first time scale. In addi-
tion, the probability densities for some fixed times (the time scale Tcl and some multiples) are also plotted.

As it was pointed out before, the BGMCS are stable when the contribution of the states Ψ
+
0 (x,y) and

Ψ
+
1 (x,y) is small compared to the eigenstates with n ≥ 2, as the BGCS derived in chapter 3, and their

period becomes the first time scale Tcl defined in equation (3.31). Moreover, in this regime the period
of the BGMCS turns out to be a fraction of the period of the BGCS (see figures 4.15 and 4.16), i.e.,
T BGMCS

cl = T BGCS
cl /k = 2π/kω∗c , turning them into non-classical states. This is similar to what happens

for the multiphoton coherent states of the harmonic oscillator [59].
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Figure 4.11: Left: Modulus squared |A(t)|2 of the autocorrelation function for the BGMCS with several
values of |α̃|, f (n) = 1, k = 2 and j = 1. Right: Probability density ρ

k, j
α̃
(x, t) with |α̃|= 3 and |α̃|= 10

for several fixed times, multiples of the first time scale Tcl ' π . The values ϕ̃ = 0 and ω∗c = 1 were taken.

Figure 4.12: Left: Modulus squared |A(t)|2 of the autocorrelation function for the BGMCS with several
values of |α̃|, f (n) = 1, k = 3 and j = 0. Right: Probability density ρ

k, j
α̃
(x, t) with |α̃|= 3 and |α̃|= 10

for several fixed times, multiples of the first time scale Tcl ' 2π/3. The values ϕ̃ = 0 and ω∗c = 1 were
taken.
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Figure 4.13: Left: Modulus squared |A(t)|2 of the autocorrelation function for the BGMCS with several
values of |α̃|, f (n) = 1, k = 3 and j = 1. Right: Probability density ρ

k, j
α̃
(x, t) with |α̃|= 3 and |α̃|= 10

for several fixed times, multiples of the first time scale Tcl ' 2π/3. The values ϕ̃ = 0 and ω∗c = 1 were
taken.

Figure 4.14: Left: Modulus squared |A(t)|2 of the autocorrelation function for the BGMCS with several
values of |α̃|, f (n) = 1, k = 3 and j = 2. Right: Probability density ρ

k, j
α̃
(x, t) with |α̃|= 3 and |α̃|= 10

for several fixed times, multiples of the first time scale Tcl ' 2π/3. The values ϕ̃ = 0 and ω∗c = 1 were
taken.
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(a)

(b) (c)

Figure 4.15: (a) Modulus squared |A(t)|2 of the autocorrelation function for the BGCS in (3.21) with
|α| = 5 and the BGMCS (4.19) with |α̃| = 10. From |A(t)|2 ≈ 1 it can be identify the first time scale
Tcl for both sets, being T BGCS

cl ' 2π for the BGCS and T BGMCS
cl ' π for the BGMCS. In (b) and (c) the

probability density ρ
k, j
α̃
(x, t) is plotted for the BGMCS with f (n) = 1, |α̃|= 10, k = 2 and j = 1, in order

to show the periodicity of this state and its period. The values ϕ̃ = 0 and ω∗c = 1 were taken.

On some quantum features of bilayer graphene coherent states Dennis Itzel Martı́nez Moreno



CHAPTER 4. MULTIPHOTON COHERENT STATES FOR BILAYER GRAPHENE 47

(a)

(b) (c)

Figure 4.16: (a) Modulus squared absolute |A(t)|2 of the autocorrelation function for the BGCS (3.21)
with |α| = 5 and the BGMCS (4.22) with |α̃| = 10. From |A(t)|2 ≈ 1 it can be identify the first time
scale Tcl for both sets, being T BGCS

cl ' 2π for the BGCS and T BGMCS
cl ' 2π/3 for the BGMCS. In (b) and

(c) the probability density ρ
k, j
α̃
(x, t) is plotted for the BGMCS with f (n) = 1, |α̃|= 10, k = 3 and j = 2,

in order to show the periodicity of this state and its period. The values ϕ̃ = 0 and ω∗c = 1 were taken.
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Chapter 5

Polar coherent states for bilayer graphene

The main goal of this chapter is to complete the study of the bilayer graphene in a constant magnetic
field, now using a symmetric gauge and polar coordinates, instead of the Landau gauge used in previous
studies. Specifically, the current densities of bilayer graphene will be derived in detail and calculated
for both the eigenstates of the system and for the radially symmetric coherent states, which will be
also constructed in this chapter as eigenstates of an appropriate annihilation operator with a complex
eigenvalue α2 [70].

5.1 Bilayer graphene Hamiltonian in a symmetric gauge

As it is well known, the Hamiltonian characterizing the electronic behavior in a bilayer graphene structure
placed on the x-y plane is given by equation (2.9). Now using the symmetric gauge, the vector potential
is given by

A =

(
−B0

2
y,

B0

2
x,0
)
, (5.1)

such that B = ∇×A = (0,0,B0). The bilayer graphene Hamiltonian of equation (2.9) will take now the
following form after applying the minimal coupling rule

Heff =
1

2m∗

 0
[

px−
eB0

2c
y− i

(
py +

eB0

2c
x
)]2

[
px−

eB0

2c
y+ i

(
py +

eB0

2c
x
)]2

0

 . (5.2)

Let us define the following scalar operators

A ± :=
√

c
2h̄eB0

[
px−

eB0

2c
y± i

(
py +

eB0

2c
x
)]

, (5.3)

which satisfy the commutation relations

[A −,A +] = I , A − = (A +)†, (5.4)

where I is the identity operator. Note that the set {A +,A −,I } generates a Heisenberg (or boson)
algebra.
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It is more convenient to work in polar coordinates since the system has rotational symmetry around
the z-axis. Thus, changing to normalized polar coordinates (χ,θ) defined by

x = r cosθ , y = r sinθ , χ :=

√
m∗ω∗c

2h̄
r, (5.5)

where ω∗c is the cyclotron frequency for non-relativistic electrons with effective mass m∗, the operators
A ± in equation (5.3) are rewritten as follows,

A ± =
±iexp(±iθ)

2

[
∓∂χ −

i
χ

∂θ +χ

]
. (5.6)

Thus, the time-independent Dirac-type equation for Hamiltonian (5.2) becomes

Heff Ψ(χ,θ) = h̄ω
∗
c

(
0 (A −)2

(A +)2 0

)
Ψ(χ,θ) = EΨ(χ,θ). (5.7)

As in the case of the Landau gauge, the eigenstates Ψ(χ,θ) are the two-component spinors

Ψ(χ,θ) =

(
ψa(χ,θ)
ψb(χ,θ)

)
, (5.8)

which, when substituted in equation (5.7), generate the two coupled scalar equations

(A +)2
ψ

a(χ,θ) = ε ψ
b(χ,θ), (5.9)

(A −)2
ψ

b(χ,θ) = ε ψ
a(χ,θ), (5.10)

with ε := E/h̄ω∗c . We square the effective Hamiltonian (5.7), to decouple the previous equations obtain-
ing the following two eigenvalue equations

H1ψ
a(χ,θ) = ε

2
ψ

a(χ,θ), H1 := (A −)2(A +)2, (5.11)

H2ψ
b(ξ ,θ) = ε

2
ψ

b(ξ ,θ), H2 := (A +)2(A −)2. (5.12)

In the next section we address the explicit resolution of these two equations that will allow us to find the
spectrum of the bilayer graphene Hamiltonian (5.7) in the symmetric gauge.

5.1.1 Algebraic treatment and basic symmetries of H1 and H2

Taking into account the rotational symmetry of the problem, as well as the definitions (5.11)–(5.12) of
the two scalar Hamiltonians H1 and H2, we define the following auxiliary operators

Lz :=−i∂θ , N := A +A −, (5.13)

related to the angular momentum operator along the z-direction and to the number operator of the boson
algebra, respectively. It is easy to check that the following commutation relations hold[

Lz,A
±]=±A ±,

[
N ,A ±]=±A ±, [Lz,N ] = 0. (5.14)

From [A −,A +] = I , it is possible to express the scalar Hamiltonians H1 and H2 in terms of the
number operator N as in equation (2.24)

H1 = (N +2I )(N +I ), H2 = N (N −I ). (5.15)
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Moreover, the operators Lz and N defined in equation (5.13) satisfy the following commutation rela-
tions

[N ,H1,2] = 0, [Lz,H1,2] = 0, (5.16)

i.e., they are symmetries of the scalar Hamiltonians H1,2.

On the other hand, we introduce two differential operators B± of variables (χ,θ) as follows

B± :=
±iexp(∓iθ)

2

[
∓∂χ +

i
χ

∂θ +χ

]
, (5.17)

which, together with the operators A ±, close the following algebra

[B−,B+] = I ,
[
A ±,B±

]
=
[
A ±,B∓

]
= 0. (5.18)

The operators B± satisfy the following commutation relations with the symmetries Lz and N[
Lz,B

±]=∓B±,
[
N ,B±

]
= 0. (5.19)

Thus, we constructed two Heisenberg algebras, generated by A ± and B±, which are related by an
inversion in the variable θ , i.e.,

B± = PA ±P, (5.20)

where Pψ(χ,θ) = ψ(χ,−θ).

In the same way as the definition of N is associated with operators A ±, we can introduce another
number operator M associated with operators B±, which fulfills

M := B+B− =⇒
[
M ,B±

]
=±B±, [M ,H1,2] = 0. (5.21)

Therefore, we have arrived at three operators Lz,M ,N that commute to each other, and with H1,2,
although they are not all independent, because

N −M =−i∂θ = Lz. (5.22)

In this context, since N , Lz, M and H1,2 commute, it is possible to look for simultaneous eigen-
functions of all of them. Consequently, the eigenstates ψa,b(χ,θ) of the scalar Hamiltonians H1,2 can
be labeled by two positive integers n, m ∈ Z+ ∪{0}, associated with the eigenvalues of the numbers
operators N and M , respectively. Thus, by defining ψa,b := ψn,m we obtain

N ψn,m = nψn,m, M ψn,m = mψn,m, Lzψn,m = (n−m)ψn,m, n,m = 0,1,2, . . . (5.23)

with a well-defined value of the angular momentum `z = n−m.

The eigenfunctions ψn,m(χ,θ) can be obtained from the ground state ψ0,0 by the successive action
of the appropriate creation operators, i.e.,

ψn,m(χ,θ) =
1√

m!n!
(B+)m(A +)n

ψ0,0(χ,θ), (5.24)
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such that
B−ψ0,0 = A −

ψ0,0 = 0. (5.25)

Note that they lead to two separable differential equations in the variables χ and θ which can be explicitly
solved to obtain

ψ0,0(χ,θ) =C0,0 exp
(
−ξ

2/2
)
, (5.26)

where C0,0 is the corresponding normalization constant.

After some calculations, we find that the normalized eigenfunctions ψn,m(χ,θ), n,m= 0,1,2 . . ., turn
out to be

ψn,m(χ,θ) =

√
m∗ω∗c
2π h̄

min(n,m)!
max(n,m)!

in+m (−1)min(n,m) exp
[
−χ2

2
− i(m−n)θ

]
χ
|m−n|L|m−n|

min(n,m)(χ
2),

(5.27)
where Lα

k (x) are the associated Laguerre polynomials. Taking into account (5.15), the functions ψn,m(χ,θ)
are also eigenfunctions of the scalar Hamiltonians H1,2, i.e.,

H1ψn,m = (n+2)(n+1)ψn,m, H2ψn,m = n(n−1)ψn,m, n,m = 0,1,2, . . . (5.28)

Thus, the eigenfunctions ψn,m can play the roles of both the upper component ψa, as well as the lower
component ψb of the spinor Ψ(χ,θ) in equation (5.8). Therefore, as in the case of the Landau gauge for
n≥ 2 the solutions are [70]:

Ψ
±
n,m(χ,θ) :=

1√
2

(
ψn−2,m(χ,θ)

±ψn,m(χ,θ)

)
, E±n =±h̄ωc

√
n(n−1), n = 2,3, . . . , (5.29)

and the fundamental zero-energy solutions with n = 0,1 are

Ψ
±
0,m(χ,θ) :=

(
0

±ψ0,m(χ,θ)

)
, E±0 = 0, Ψ

±
1,m(χ,θ) :=

(
0

±ψ1,m(χ,θ)

)
, E±1 = 0. (5.30)

5.1.2 Probability and current densities for the energy eigenstates Ψ±n,m(χ,θ)

Probability density

The radial probability density ρn,m(χ,θ) is defined in the usual way for eigenfunctions Ψ±n,m(χ,θ). In
the present case it can be written as follows

ρn,m(χ) =
(
Ψ
±
n,m(χ,θ)

)†
Ψ
±
n,m(χ,θ) =

(1−δn0−δn1)|ψn−2,m(χ,θ)|2 + |ψn,m(χ,θ)|2

2(1−δn0−δn1)
, n = 0,1,2, . . .

(5.31)
Taking into account equation (5.27), it is clear that this expression does not depend on the angular vari-

able θ , and it is the same for positive and negative energy eigenfunctions Ψ±n,m(χ,θ). Figure 5.1 shows
the probability density (5.31) for n = 2 and several values of the index m. As m increases, the centrifu-
gal force induces the density to move away from the origin. However, when the value of the angular
momentum `z = n−m is equal to or close to zero, the probability density for the energy eigenstates of
bilayer graphene is mainly centered at the origin. The radial symmetry of the magnitude under analysis
is evident in the plots.
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(a) m = 0 (b) m = 1

(c) m = 2 (d) m = 3

Figure 5.1: Probability density (5.31) for the eigenstates Ψ±n,m(χ,θ) with for n = 2 and different values
of m. The colors indicate the different values such a density can take.
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Current density

In the polar coordinates of the present chapter, the components k = χ,θ of the current density operator
are denoted as ( jχ , jθ ). Remember that in polar coordinates the divergence of a generic vector field
V = (Vχ ,Vθ ), which must be appear in the continuity equation (2.35), is given by

∇ ·V =
1
χ

∂

∂ χ
(χ Vχ)+

1
χ

∂

∂θ
(Vθ ).

Then, the same procedure applied to Cartesian coordinates (2.32) leads to the components jk of the
current density in polar coordinates, given by

jχ = i
(

0 e−iθ A −

eiθ A + 0

)
, jθ =

(
0 e−iθ A −

−eiθ A + 0

)
, (5.32)

where A ± are the operators in (5.6).

In this way, the radial and tangential current densities for the energy eigenstates of the bilayer
graphene Hamiltonian can be calculated by applying the operators (5.32) to the states Ψ±n,m(χ,θ). The
main result is the following

Jχ [Ψ
±
n,m] = 0 , Jθ (ξ )[Ψ

±
n,m] 6= 0, n≥ 2, (5.33)

As can be seen, the radial current always disappears, while the tangential one remains non-zero and, in
fact, depends only on the radius χ for each eigenspinor. To illustrate these results, figure 5.2 shows some
plots of its behavior for n = 2 and different values of index m. It is important to emphasize that the re-
sults are independent of both the angular variable θ and the sign (±) of the energy. However, states with
angular momentum `z < 2 produce an angular probability current with a strongly oscillating shape. This
indicates the existence of rings in the bilayer graphene where the current density rotates either clockwise
(Jθ < 0) or counterclockwise (Jθ > 0).

After studying both the symmetries and the various physical properties of the Hamiltonian eigenstates
of bilayer graphene, in the next section we will go one step further, by calculating the coherent states that
naturally appear for the bilayer graphene Hamiltonian and discussing how the symmetry operators can
help us to interpret them.

5.2 Polar coherent states of bilayer graphene

We are going to construct the coherent states of the bilayer graphene Hamiltonian Heff (5.2). We will
adopt the standard approach in which the coherent states are eigenstates of an annihilation operator
that must be chosen appropriately according with the system Hamiltonian. Thus, the coherent states
Ψα(χ,θ), of the bilayer graphene Hamiltonian Heff will be eigenstates of an annihilation operator A−,
to be defined later, with a complex eigenvalue that depends on the complex number α . Since each
energy eigenspinor Ψ±n,m involves the scalar wave functions ψn,m and ψn−2,m, it seems natural to define
the operator A− through its action onto the eigenstates Ψ±n,m(χ,θ) of equations (5.29)–(5.30) as follows:

A−Ψ
±
n,m(χ,θ) = g(n)Ψ

±
n−2,m(χ,θ), (5.34)
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(a) n = 2, m = 0 (b) n = 2, m = 1

(c) n = 2, m = 2 (d) n = 2,m = 3

Figure 5.2: Current density Jθ (χ) for the eigenstates Ψ±n,m(χ,θ) with n = 2 and m = 0,1,2,3.
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where g(n) is a function to be determined. We will assume that our coherent state will have a constant
value of the integer m in equation (5.34), thus we will add to it the corresponding subscript,

MΨα,m = mΨα,m,

where M is given by M = M I.

Other options could have been chosen [41, 45], e.g., coherent states with a fixed angular momentum
eigenvalue or with a given value of the energy. However, our purpose here is to show, as an example,
how to apply the symmetry operators in the context of the bilayer graphene coherent states.

Due to the fact that the bilayer graphene Hamiltonian (5.7) involves squared scalar creation and
annihilation operators (A ±)2, which act onto the scalar components of Ψ±n,m, the eigenvalue of A− when
acting on the coherent state Ψ±α,m is taken to be α2, instead of the usual α value (in other words, this
choice is suggested by the “two-electron” character of the bilayer graphene Hamiltonian):

A−Ψ
±
α,m(χ,θ) = α

2
Ψ
±
α,m(χ,θ), α ∈ C. (5.35)

After these considerations, a coherent state will have the following general decomposition

Ψ
±
α,m(χ,θ) =

∞

∑
n=0

anΨ
±
n,m(χ,θ), (5.36)

with certain complex coefficients an. Note that the coherent states in equation (5.36) also include a sign
± to distinguish between states with positive or negative energy built from positive or negative energy
eigenfunctions respectively. Plugging this expression in to equation (5.35) and using (5.34), we get

∞

∑
n=0

(
g(n+2)an+2−α

2a2n
)

Ψ
±
n,m(χ,θ) = 0. (5.37)

Given that the states Ψ+
n,m(χ,θ) 6= 0, are linearly independent ∀n, from the above equation we arrive at

two independent recurrence relations for the coefficients an in terms of the free coefficients {a0,a1}:

a2n =
α2n

[g(2n)]!!
a0, a2n+1 =

α2n

[g(2n+1)]!!
a1, n = 0,1,2, . . . , (5.38)

where

[g(2n)]!! :=

{
1, for n = 0,

g(2) · · ·g(2n), for n > 0,
[g(2n+1)]!! :=

{
1, for n = 0,

g(3) · · ·g(2n+1), for n > 0.
(5.39)

Among the several possibilities to choose the function g(n), there is natural one, given the structure
that these functions have in equation (5.39), i.e., g(n) =

√
n(n−1). With this choice, the two sets

of normalized coherent states that arise by taking only odd or even indices, denoted respectively as
Ψe±

α,m(χ,θ) and Ψo±
α,m(χ,θ), are given by

Ψ
e±
α,m(χ,θ) =

1√
cosh(|α|2)

[
Ψ
±
0,m(χ,θ)+

∞

∑
n=1

α2n√
(2n)!

Ψ
±
2n,m(χ,θ)

]
, (5.40)

Ψ
o±
α,m(χ,θ) =

1√
sinh(|α|2)/|α|2

[
Ψ
±
1,m(χ,θ)+

∞

∑
n=1

α2n√
(2n+1)!

Ψ
±
2n+1,m(χ,θ)

]
, (5.41)
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where both, the explicit form of the eigenstates (5.29)–(5.30) and their normalization (5.27), have been
taken into account.

5.2.1 Expectation values

An important point of a coherent state is the interpretation of the complex parameter α on which it
depends in terms of its position (also in its momentum, but this will not be discussed here). Thus, we
will start by finding the expectation value of χ2 in one of the coherent states derived above. To do this
we start by expressing χ2 in terms of the scalar symmetry operators A ± and B±. From equations (5.6)
and (5.17) we obtain

χ
2 = (A +−B−)(A −−B+). (5.42)

Therefore, it is possible to calculate the expectation value of χ2 for instance in the even and positive
energy coherent states (5.40) as follows

〈χ2〉α,m = 〈Ψe±
α,m|(A +−B−)(A −−B+)I |Ψe±

α,m〉. (5.43)

Note that exactly the same calculation can be done for the odd coherent states. Thus, after performing
the integration over the spatial variables and simplifying, the expected value of χ2 turns out to be

〈χ2〉eα,m =
1

cosh(|α|2)

[
∞

∑
n=1

|α|4n

(2n)!
(2n−1)

]
+(m+1). (5.44)

In particular, for m = 0 this expectation value becomes

〈χ2〉e0,α = 1+ |α|2 tanh(|α|2). (5.45)

Thus, when |α| � 1 the expected value 〈χ2〉 tends to |α|2, consequently we can say that in this limit the
radial coordinate χ is approximated by |α|. Note that although the particular case with m = 0 has been
taken, similar formulas apply for any m.

Similarly, in order to obtain information about the phase ϕ of the coherent state, with α = |α|eiϕ ,
we make use of the expression

−χ
2 exp(2iθ) =

(
A +−B−

)2
. (5.46)

Therefore, the expectation value of this quantity in the even coherent states Ψe±
α,m(χ,θ) for a fixed arbi-

trary m is

〈−χ
2 exp(2iθ)〉e±α,m =

(α∗)2

cosh(|α|2)

[
1√
2
+

1
2

∞

∑
n=1

|α|4n

(2n)!
+

1
2

∞

∑
n=1

|α|4n√
(2n−2)!(2n+2)!

]
. (5.47)

Using this expression and the previous result (5.44) we can substitute α∗ by χ exp(iθ +π/2). Thus, it
can be concluded that there is a relationship between the coordinate θ and the phase ϕ of the complex
eigenvalue α given by θ +π/2 =−ϕ .
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(a) |α|= 6, m = 0, ϕ = 0 (b) |α|= 6, m = 3, ϕ = π/6

Figure 5.3: Probability density for the even coherent states with m = 0,3, and different values of α .
To avoid too cumbersome notation, and since only even coherent states built with eigenstates of positive
energy are shown, this probability density is denoted simply by ρα,m(χ,θ).

5.2.2 Probability and current densities

Probability density

The probability density for the coherent states (5.40)–(5.41) is calculated in the same way as for any
other state, using equation (5.31). For example, for the even coherent state it turns out that

ρ
e±
α,m(χ,θ) =

(
Ψ

e±
α,m(χ,θ)

)†
Ψ

e±
α,m(χ,θ). (5.48)

To illustrate the structure of the probability densities for the even coherent states, the expression (5.48) is
plotted in figure 5.3 for certain values of α = |α|exp(iϕ) with m = 0 and m = 3. In addition, the results
obtained above for the expectation values (see subsection 5.2.1) are as well illustrated. As we can see,
for |α| � 1 the value for the θ polar-coordinate of the position of the coherent state is related with the
phase of the complex number α as θ =−ϕ−π/2 and the χ-radial coordinate of such position matches
the previous calculations in the same limit χ = |α|.

Current density

The current densities can be also calculated for the coherent states derived in this section, for which it is
enough to use expression (5.32). In this case we restrict ourselves to the even coherent states Ψe±

α,m(χ,θ).
The resulting algebraic expressions are too complicated and they do not supply much information on
their own. What it is interesting is to analyze their plots, which illustrate better their physical meaning.
Therefore, figure 5.4 shows the radial and angular current densities, denoted simply as Jχ and Jθ , in a
sufficiently illustrative specific case. The most interesting feature is the behavior of the radial component
Jχ of the density current. In plots (a) and (c) of figure 5.4 two separate regions are displayed with positive
and negative values (red and blue colors). However, this feature is not present in the angular component
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(a) |α|= 6, m = 0, ϕ = 0 (b) |α|= 6, m = 0, ϕ = 0

(c) |α|= 6, m = 3, ϕ = π/6 (d) |α|= 6, m = 3, ϕ = π/6

Figure 5.4: Radial current density Jχ(χ,θ) and angular current density Jθ (χ,θ) for the even coherent
states with m = 0,3, and different values of the complex number α .

Jθ of the current density. This rather strange behavior of Jχ can be explained by expression (5.32) for
both components Jχ and Jθ . In these expressions there are two exponentials e±iθ that cause this split
into two parts. Bilayer graphene coherent states have this property only for the radial component Jχ .
However, this is not specific of bilayer graphene, since it is also present in monolayer graphene or even
in polar coherent states for non-relativistic systems in the plane.
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Chapter 6

Conclusions

In this work, a detailed analysis of the interaction between electrons in bilayer graphene and a constant,
homogeneous magnetic field perpendicular to its surface has been carried out. Starting from the effec-
tive Hamiltonian that characterizes this interaction, the energies and eigenfunctions of the system have
been determined using the standard quantum-mechanical approach. A fundamental difference between
monolayer and bilayer graphene has been identified in terms of nature of their electrons in the low energy
regime. In particular, while in monolayer graphene the electrons behave as massless chiral particles with
a linear dispersion relation, in bilayer graphene they behaves as chiral electrons with an effective mass
m∗ and a parabolic dispersion relation [19]. Moreover, when considering the interaction of monolayer
and bilayer graphene with an external magnetic field, another significant difference (perhaps the most
relevant one) arises, which is related with their energy spectrum or Landau levels. These levels clearly
define the differences between the dynamics of each system when considering the time evolution.

In this way, with the aim of analyzing this quantum system through a different approach from the
standard one, coherent states associated with this system have been constructed, which we call bilayer
graphene coherent states (BGCS). These states have been derived as eigenstates of a matrix annihilation
operator involving an arbitrary function f of the number operator N, thus it is possible to construct dif-
ferent sets of coherent states depending on the choice of such a function. These states were derived in
our previous work [50], where we also analyzed their physical properties. However, this thesis focuses
on the dynamics of the BGCS, thus we notice that, since the Landau levels for bilayer graphene are
approximately equidistant for n & 2, the time evolution is stable for BGCS such that their linear combi-
nation with n & 2 approximates such a state (see figure 3.3), as the standard coherent states [46], with the
same period as the involved harmonic oscillator (τ = 2π/ω∗c ). However, for BGCS where the relative
contribution of the eigenstates Ψ

+
0 (x,y) and Ψ

+
1 (x,y) is significant, the time evolution turns out to be

quasi-stable, as can be seen in figures 3.1 and 3.2. This work also presents a method for estimating the
evolution period of such states (see equation (3.28)), which exhibit quasi-classical behavior (see figures
3.1(b)- 3.3(b)).

On the other hand, it is possible to analyze the so-called revival structure in quantum systems where
a quasi-periodicity exists. This involves to study the motion of localized wave packets. Let us note that
in most situations such wave packets expand and contract in a sequence of collapses and revivals [52,53].
Then, to study the revival structure for BGCS, the so-called time scales were calculated. It was found
that starting from a certain value of |α|, where α is the complex eigenvalue of the BGCS, the first time
scale is related to the classical motion and has a value of Tcl ' 2π/ω∗c , similar to the evolution period of
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the associated harmonic oscillator. Meanwhile, the subsequent time scales are related to the collapse and
revival of these states and take much larger values, making them irrelevant for this study. Therefore, the
BGCS evolve approximately like the standard coherent states and their wave packet does not show these
revivals. This highlights the importance of studying the classical limit of quantum mechanical systems
through these coherent sates. These facts for the BGCS are evident in our analysis of the autocorrelation
function (see figures 3.5- 3.7).

In this study we expanded upon the concept of BGCS, by deriving the multiphoton coherent states
for bilayer graphene (BGMCS). Based on the annihilation operator introduced in equation (3.7), an ap-
propriate generalized annihilation operator was first defined as A−g := (A−)k. Subsequently, the BGMCS
were obtained as eigenstates of such an operator with complex eigenvalue. Moreover, in order to analyze
the system some physical quantities were obtained for such states, including the Heisenberg uncertainty
relation, probability density and mean energy value. It was found that in this approach the complex
eigenvalue α̃ plays an important role, since it defines the system initial conditions.

Once again, the time evolution of the BGMCS was studied, and it was observed that the behavior
is similar to that found for the BGCS. This was expected since what determines the periodicity of a
quantum system is its energy spectrum. However, it is worth to notice that when studying their time
evolution through time scales, the evolution period of these states becomes a fraction of the classical
evolution period previously derived for the BGCS, i.e., T BGMCS

cl ' T BGCS
cl /k ' 2π/kω∗c , turning them

into non-classical states. The autocorrelation function of the BGMCS illustrated in figures 4.15 and 4.16
highlights this behavior. It is important to mention that this phenomenon is also observed in the multi-
photon coherent states of the harmonic oscillator derived in [59]. Meanwhile, for the BGMCS where the
states Ψ

+
0 (x,y) and Ψ

+
1 (x,y) are involved in a non-trivial way, only an approximate evolution period can

be obtained through equation (4.34).

Finally, the same physical system was examined using a symmetric gauge instead of the Landau
gauge [70]. This approach leads us to use polar coordinates, which opens up the possibility of discover-
ing some information about the system that is different from what is found when working in Cartesian
coordinates. Thus, certain symmetries of the system were identified, and a set of polar coherent states
was generated for bilayer graphene. The use of polar coordinates allowed revealing, both graphically and
analytically, an interpretation of the complex parameter α labelling the coherent states (see figure 5.3).
An additional important element of this study is the first-time supply of an explicit expression for the
polar coordinates components of the current density for bilayer graphene in a magnetic field. We have
shown that these components have a covariant and gauge-independent nature. Particular attention has
been given to the behavior of the radial component of the current density for our coherent state, which
appears graphically separated into two regions of opposite sign (see figure 5.4).

In conclusion, it is worth noticing that recent developments are searching for ways to implement
approaches to address different types of two-dimensional systems. For example, recent studies have
explored the evolution of such systems in phase-space through the Wigner function (WF) [71, 72]. In
particular, in [71] the coherent states for uniaxially strained graphene with non-equidistant Landau levels
were derived and the corresponding WFs were evaluated. These time-dependent WFs for the coherent
states exhibit fluctuations between the classical and quantum behavior, as well as a quasi-periodic motion
with time. Moreover, the Wigner function constitutes a valuable tool for contrasting the quantum and
classical behaviors of the BGCS and BGMCS.

On some quantum features of bilayer graphene coherent states Dennis Itzel Martı́nez Moreno



CHAPTER 6. CONCLUSIONS 63

6.1 Perspectives and published works

Based on the results of our study, we can foresee the following perspectives:

• It is possible to address the dynamics of these BGCS in phase space through the Wigner function.
This could give us the chance to observe the quasi-classical behavior of the previously derived
BGCS and make a comparison with the BGMCS.

• Since the current density is given in terms of the θ± operators, we have the possibility to analyze
the revivals of these bilayer graphene currents in the presence a magnetic field. Furthermore,
it could be investigated whether the zitterbewegung phenomenon occurs in bilayer graphene, as
in monolayer graphene [55], when considering a superposition of states with both positive and
negative Landau levels. It should be noted that in this thesis we limit ourselves to consider only
positive energies.

Finally, the published works where the results presented here can be found are:

• Fernández, D.J., and Martı́nez-Moreno, D.I. (2020). Bilayer graphene coherent states. Eur. Phys.
J. Plus, 135, 739.

• Fernández, D.J., and Martı́nez-Moreno, D.I. (2023). Multiphoton coherent states for bilayer
graphene. Phys. Scr., 98, 045219.

• Martı́nez-Moreno, D.I., Negro, J., and Nieto, L.M. (2023). Polar coherent states in bilayer graphene
under a constant uniform magnetic field. arXiv:2307.01213.
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[56] Bužek, V., Jex, I., and Quang, T. (1990). K-photon coherent states. J. Mod. Opt., 37, 159.
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