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Abstract

Based on observations of neutrino oscillations in solar, reactor, and atmospheric
experiments, a relationship between measurements emerges: the ratio of squared

mass differences: λ =
√

(∆m2
sol)/(∆m2

atm)≪ 1. If we assume that the mass terms are
functions that can be expanded in a series using λ as the sole expansion parameter,
a matrix structure of neutrino masses emerges, expressed in a general form as
Mν ≈M0 + δM(λ ), where M0 represents the zeroth-order matrix of the expansion,
and δM is a matrix formed by smooth complex functions of λ . In this work, I
introduced a general method for diagonalizing the neutrino mass matrix, which
is applicable independently of the nature and hierarchy of neutrinos. Utilizing
the Takagi’s lemma as the basis for this diagonalization process, I successfully
derived the squared mass differences, ∆m2

sol and ∆m2
atm, as well as determined the

mixing angles and the CP-violating phase. All these observables are expressed
in terms of the expansion parameter λ . As an application of this perturbative
model, I considered Dirac-type neutrinos, which imply a hermitian mass matrix. By
considering ∆m2

sol → 0, the neutrino spectrum becomes doubly degenerate, resulting
in a matrix structure M0. Through the corrections δM(λ ) and the proposed method,
successfully determining the masses and angles mentioned earlier was achieved.
Finally, I conducted a numerical analysis, confirming the validity of the method.





Resumen

A partir de las observaciones de las oscilaciones de neutrinos en experimentos so-
lares, de reactores y atmosféricos, emerge una relación entre las mediciones: la razón

de las diferencias de masas al cuadrado: λ =
√

∆m2
sol/∆m2

atm≪ 1. Si asumimos que
los términos de masa son funciones que pueden expandirse en serie usando a λ como
único parámetro de expansión, surge una estructura matricial de masas de neutrinos,
expresada en forma general como Mν ≈M0 +δM(λ ), donde M0 representa la matriz
a orden cero de la expansión y δM es una matriz formada por funciones complejas
suaves de λ . En este trabajo introduje un método general para diagonalizar la matriz
de masas de neutrinos, el cual es aplicable independientemente de la naturaleza
de los neutrinos y de la jerarquía que ellos poseen. Utilizando el lema de Takagi
como base para este proceso de diagonalizacion, se logro derivar las diferencias de
masas al cuadrado, ∆m2

sol y ∆m2
atm, como también determinar los ángulos de mezcla

y la fase de violación de CP. Todos estos observables en términos del parámetro de
expansión λ . Como aplicación de este modelo perturbativo, se considero neutri-
nos del tipo Dirac, el cual implica una matriz de masas hermitiana. Al considerar
∆m2

sol → 0, se degenera doblemente el espectro de neutrinos dando como resultado
una estructura de la matriz M0, que mediante las correcciones δM(λ ), se aplico el
método propuesto el cual permitió determinar con éxito las masas y ángulos antes
mencionados. Finalmente, realice un análisis numérico el cual confirma la validez
del método.
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Introduction

Three of the four fundamental forces of nature are studied by the Standard Model,
namely, the strong, weak, and electromagnetic forces. This model has successfully
described a large number of phenomenological observations of interactions among
elementary particles, and a vast amount of experimental analyses support the theory.
However, the Standard Model is not a complete theory, as it does not allow for the
prediction of certain experimental observations. For instance, the case of the dark
components of the universe suggests fundamental elements not accounted for in
the model, as well as observations of neutrino oscillations, indicating that neutrinos
have mass and mix.

To attempt to provide an explanation for the masses of neutrinos, as well as
their nature, mixing angles, matter-antimatter asymmetry, and dark matter, the
possible extensions of the Standard Model are often explored. The Standard Model
is constituted by the gauge symmetry group SU(3)C×SU(2)L×U(1)Y . A minimal
extension involves the addition of right-handed neutrinos. It is important to note
that this does not introduce an extra symmetry group, rather, the mere consideration
of right-handed neutrinos introduces new Yukawa couplings that allow for the
generation of mass terms for neutrinos. There are two possible natures for these
particles: Dirac-type and Majorana-type. Neutrinos are said to be of the Dirac type
if the antiparticle and the particle in question are distinct, meaning the antiparticle ν

is different from ν , and of Majorana nature if the particle and its corresponding an-
tiparticle are the same. This latter nature of neutrinos allows for the implementation
of the seesaw mechanism, which explains the relative measurements of the masses
of observed neutrinos compared to quarks and charged leptons, which are much
heavier [1]. However, although this seesaw mechanism explains the smallness of
neutrino masses, it does not provide an explanation for their mixing.

The unitary matrix known as the PMNS matrix (Pontecorvo-Maki, Nakagawa-
Sakata) appears in the vertices of the electroweak flavor-changing interaction through
the W bosons when expressed in the basis of mass eigenstates rather than the weak
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eigenstate basis [2, 3]. This occurs in the Lagrangian of charged current. Likewise,
these weak and mass states are a linear combination weighted by the elements of the
PMNS matrix, which results in neutrino mixing. For this reason, it is said that this
matrix plays the same role in neutrino mixing as the CKM matrix does for quarks.
The mixing matrix in the PMNS parametrization can be written as the product of
three rotations, two real and one complex, namely: U = R23(θ23)R13(θ13,δ )R12(θ12),
where θi j are the mixing angles, and δ is the Dirac CP phase [4, 5].

Neutrino oscillations indicate that experimentally, it is only possible to determine
the squared mass differences of the three standard neutrinos [6]. Experimental data
provide values for the two independent mass scales, ∆m2

sol = 7.41+0.21
−0.20× 10−5eV2

and ∆m2
atm = 2.507+0.21

−0.20

(
2.486+0.026

−0.028

)
×10−3eV2, corresponding to the neutrino oscil-

lation differences for solar and atmospheric neutrinos, respectively, for the normal
(inverted) hierarchy.

By definition, hierarchy refers to the order of the eigenvalues of mass, mi, i= 1,2,3.
It is called the normal hierarchy (NH) when it satisfies m2

3 ≫ m2
2 > m2

1, and it is
called the inverted hierarchy (IH) when it satisfies the relation m2

2 > m2
1≫ m2

3. In
this same context, the following identification is made: ∆m2

sol = ∆m2
21 and ∆m2

atm =

∆m2
31
(∣∣∆m2

32

∣∣), for the normal (inverted) hierarchy, where in general ∆m2
i j = m2

i −m2
j .

For the three mixing angles, we have the following values [6]: sinθ12 = 0.303+0.023
−0.012,

sinθ23 = 0.451+0.019
−0.016, and sinθ13 = 0.02225+0.00056

−0.00059. Additionally, δ/◦= 232+36
−26

(
276+22

−29
)
.

From all of the above, certain peculiarities can be observed. The first one to
note is that by taking the ratio of the atmospheric and solar mass scales, we have

λ =
√

∆m2
sol/∆m2

atm = 0.1719. The tangent of the angle θ13 has a value of 0.1616, which
is of the order of λ . Similarly, the last peculiarity that is noticed is that the difference
between tanθatm and its maximum value is also of the same order. Consequently,
there are two scenarios here, either there is some relationship between these, or it
is simply a numerical coincidence. Apart from this, if it is assumed that the mass
terms are functions of λ , these can be expanded into a Taylor series, giving rise
to a certain matrix structure for the neutrino masses (either for Dirac or Majorana
neutrinos) where the aforementioned apparent connections allow the construction
of the zeroth-order term in the expansion. In other words, using the parameter λ ,
the neutrino mass matrix can be expanded in a Taylor series as Mν = M0 +δM(λ ),
which can then be diagonalized to reproduce all the characteristics of the oscillation
observations [5]. In this approach, at zeroth order, a maximal θ23 is required with a
spectrum of two degenerate neutrinos, while keeping other mixings null. Once this
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degeneracy is lifted to provide the solar scale, all mixings are linked to this single
parameter.

In this thesis work, a general technique for the analytical diagonalization of com-
plex matrices has been developed, explicitly taking into account the observational
fact that the reactor mixing angle, θ13, is relatively small. Using this approach, the
possible connection between atmospheric and reactor mixings was investigated,
suggesting a rather specific structure of neutrino mass matrices. As part of the
exploration of this mechanism, the case of Dirac neutrinos was examined. All of this
also allows for accommodating the expected value of the CP violation phase.

With this in mind, the structure of this document is as follows. In the first chapter,
I study the Standard Model with a deep emphasis on the electroweak sector, which
consists of the gauge symmetry group SU(2)L×U(1)Y . Similarly, I explore how the
implementation of the Higgs Mechanism leads to the masses of the bosons Z and
W± through spontaneous symmetry breaking, as well as the generation of fermion
masses as a consequence of the Higgs mechanism and Yukawa couplings. In this
chapter, I also address the issue of the absence of neutrino masses, which arises due
to the total lack of right-handed neutrinos.

In the second chapter, I investigate the possibility of neutrino masses by adding
three right-handed neutrinos, corresponding to the minimal extension of the Stan-
dard Model. Due to this extension, I discuss the two natures of neutrinos, namely,
Dirac and Majorana neutrinos. Based on the exploration in the central part of my
work, I describe the addition of a new U(1)B−L gauge symmetry, which allows to
consider only Dirac neutrinos and study the absence of anomalies in this symmetry.
To conclude this chapter, I describe the parametrization of a unitary matrix, the
diagonalization of a complex N×N matrix through a biunitary transformation, and
discuss CP violation and the Jarlskog invariant.

In the third chapter, I study the phenomenology of neutrinos, focusing on the
primary observations of neutrino oscillations. I then present the formalism for
neutrino oscillations, applying it to both two and three flavors. I also examine the
effects of matter and how they alter oscillation observables. Finally, I provide a brief
overview of the experiments involved.

The central part of the thesis lies in Chapter 4. In this final chapter, I provide a
general analytical treatment for the perturbative diagonalization of complex mass
matrices, explicitly taking into account that the reactor mixing is relatively small.
This diagonalization technique is closely based on the Takagi factorization, where
the matrix to be diagonalized is the square Hermitian of the mass matrix, that is, a
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technique is developed for the matrix MνM†
ν . This approach allows us to consider

both natures of neutrinos in a general manner. Using the Takagi factorization
lemma, the matrix is diagonalized. Furthermore, this approach permits exploring
the connection between atmospheric and reactor mixings, revealing that neutrino
mass matrices possess a pretty specific structure. Similarly, this method allows for
an analysis of CP violation and the accommodation of the expected value of that
phase, noting that, to enhance the latter, Dirac neutrinos were considered.

To conclude the chapter and my thesis work, I proceed to provide a numerical
analysis of diagonalization on the mass matrix structure, thereby verifying the
correctness of the proposed method, taking into account the oscillation parameter
values reported at the 1σ and 3σ confidence levels.

We present conclusions and some perspectives in Chapter 5. Additionally, we
have included a couple of appendices to enhance technical clarifications regarding
the analytical approaches we are presenting.
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1
The Standard Model

The gauge groups determine (from the physical point of view) the interactions
and the number of vector bosons corresponding to the generators of the group.
In this sense, the standard model is a Gauge theory based on the local symmetry
group SU(3)C×SU(2)L×U(1)Y , which is a direct product of the symmetry groups
of strong interactions, SU(3)C, and electroweak interactions, SU(2)L×U(1)Y , while
the symmetry group of electromagnetic interactions, U(1)em, is a subgroup of the
electroweak interactions. This implies that weak and electromagnetic interactions
are unified.

1.1 The Electroweak Lagrangian

The Standard Model is essentially a gauge theory associated with a specific symmetry
group. As a result, it is possible to determine the generators of the group. In the
present case, we have 8 generators for SU(3)C called gluons, which are massless and
mediate strong interactions. There are also 4 gauge bosons, out of which 3 (W± and
Z) are massive, while one is massless (the photon). These gauge bosons correspond
to specific combinations of the 3 generators of SU(2)L and one of U(1)Y .

Electroweak interactions can be studied independently from color interactions
due to the unbroken symmetry of the strong interaction. The group SU(3)C acts
trivially on the C2 space, which is the Higgs field space, and there is no mixing
between the strong and weak sectors [7]. The weak interaction is the one involved
in neutrino interactions. This force or interaction is very short-range, around 10−17

meters, due to the mass of the W and Z bosons, which have a mass of approximately
90 GeV.
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νeL eL eR uL dL uR dR
I3 1/2 -1/2 0 1/2 -1/2 0 0
Y -1 -1 -2 1/3 1/3 4/3 -2/3
Q 0 -1 -1 2/3 -1/3 2/3 -1/3

Table 1.1 First family of leptons and quarks, right-handed and left-handed. Their third component
of isospin, I3, hypercharge, Y , and charge Q are listed.

The symmetry group SU(2)L is known as weak isospin, which acts non-trivially on
the left-handed chirality components of fermionic fields, i.e., they are doublets, while
the right-handed chirality components are singlets under the action of elements
of the group SU(2)L. The generators of this group (three generators, Iα , where
α = 1,2,3) satisfy the commutation rule [Iα , Iβ ] = iεαβγ Iγ . We also have the group
U(1)Y , known as hypercharge, which is generated by the hypercharge operator Y ,
which is related to I3 and the charge operator Q through the Gell-Mann-Nishijima
relation given by

Q = I3 +
Y
2
.

This relation is useful as it allows us to fix the value of Y for the fermionic fields.
On the other hand, the commutation relation between Y and Iα satisfies the identity
[Iα ,Y ] = 0. The quantum numbers of the fermionic fields (first generation) are listed
in Table 1.1. For the second and third generation, the values are completely identical.

It is necessary for the theory to be locally gauge invariant, which requires the
introduction of three gauge boson vector fields associated with the three generators
Iα of the SU(2)L group, which we denote as Λ

µ

α . Additionally, a gauge boson vec-
tor field associated with the generator of the U(1)Y group, denoted as Mµ , is also
necessary.

Furthermore, to construct the gauge invariant Lagrangian, it is necessary to
define the covariant derivative Dµ , which replaces the ordinary derivative ∂µ in the
Lagrangian. In general, the covariant derivative is given by

Dµ = ∂µ + ikTαAα
µ , (1.1)

where k is a constant, the Tα are the generator matrices for the group SU(N) and Aα
µ

are a new set of fields. Defining Aµ = TαAα
µ . Thus, acting on the fields, the covariant
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derivative is (
DµΦ

)
j = ∂µΦ j + ig

[
Aµ

]
jk Φk.

In the case of a doublet, the derivative is given by

Dµ = ∂µ + igΛ
µ

α Iα + ig′Mµ

Y
2
,

where the constants g and g′ are two independent coupling constants associated
with the SU(2)L and U(1)Y groups, respectively [8]. While in the case of a singlet q j,
we have

Dµq j =
[
∂µ + ig′y jMµ

]
q j.

Let us choose the representation in which we will arrange the fermions, which is
to take the left-handed chiral components of the fermionic field grouped in a weak
isospin doublet, that is

L′αL ≡

(
ν ′

αL

α ′L

)
, (1.2)

Q′1L ≡

(
u′L
d′L

)
, Q′2L ≡

(
c′L
s′L

)
, Q′3L ≡

(
t ′L
b′L

)
,

where L′
αL represents the leptons, α = {e,µ,τ}, and Q′iL represents the quarks,

i = {1,2,3}. Meanwhile, the right-handed chiral components are singlets, for exam-
ple ℓ′eR ≡ e′R, similarly for µ and τ1. While for the quarks, we have the following
configuration q′U

βR = β ′R, where β = u,c, t, similarly q′DkR = k′R, where k = d,s,b. With

1It is convenient to define the following arrays of charged lepton fields: ℓ′L ≡
(
e′L µ ′L τ ′L

)T and
ℓ′R ≡

(
e′R µ ′R τ ′R

)T , which will be used later. The prime symbol indicates that the fields are weak
eigenstates.
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this, it is possible to write the most general Lagrangian that symmetries allow [9]:

L =iL̄′αL ̸D L′αL + iQ̄′jL ̸D Q′jL
+iℓ̄′αR ̸D ℓ′αL + iq̄′D

βR ̸D q′U
βR + iq̄′UkR ̸D q′UkR

−1
4

ΛµνΛ
µν − 1

4
MµνMµν

+
(
DρΦ

)†
(Dρ

Φ)−µ
2
Φ

†
Φ−λ

(
Φ

†
Φ

)2

− ∑
α,β=e,µ,τ

(
Y ′ℓ

αβ
L̄′αLΦℓ′

βR +h.c
)

(1.3)

− ∑
α=1,2,3

∑
β=d,s,b

(
Y ′D

αβ
Q̄′αLΦq′D

βR +h.c
)

− ∑
α=1,2,3

∑
β=u,c,t

(
Y ′U

αβ
Q̄′αLΦ̃q′U

βR +h.c
)
,

where we have Φ as the Higgs doublet, Φ̃ = iτ2Φ∗ with τk is the Pauli matrices and
Y ′ℓ are the elements of the matrix that determines the Yukawa couplings with the
Higgs doublet, which is generally a complex 3×3 matrix.
The Lagrangian (1.3) yields the electromagnetic interaction in the first two lines, the
third line includes the kinetic terms and self-couplings of the gauge fields, the fourth
line represents the Lagrangian for the Higgs fields responsible for spontaneous
symmetry breaking, and the last three lines contain the Yukawa couplings with the
Higgs that generate fermion masses and quark mixing.

If we focus solely on the first two lines, we can obtain the Lagrangian for weak
charged current (CC) and neutral current (NC) interactions, which are given by

L CC
I =− g

2
√

2
jρ

WWρ +H.C (1.4)

L CN
I =− g

2cosθW
jρ

Z Zρ (1.5)

where jρ

W is the fermionic charged current, which is given in terms of the charged
lepton current, Jρ

W,L, and the quark current, Jρ

W,Q [8, 9]. On the other hand, we
have that jρ

Z is the neutral current, which is also given in terms of the neutral
lepton current, Jρ

Z,L, and the quark current, Jρ

Z,Q. The angle θW represents the weak
mixing angle or Weinberg angle. Furthermore, we have defined the field W µ , which
possesses the property of annihilating W+ bosons and creating W− bosons, in a
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manner analogous to the creation and annihilation operators of angular momentum.
The expression is given by W µ

− =
(
Aµ

1 − iAµ

2
)
/
√

2.
The interaction Lagrangian in Eq. (1.4) gives rise to trilinear couplings repre-

sented in the following diagrams. It should be mentioned that these diagrams only
depict the case of an electron interacting with its corresponding neutrino; for the
cases of muon or tau, the situation is analogous:

e−

νe

W

ν̄e

e+

W

νe

e−

W

e+

ν̄e

W

Considering only the first generation of quarks, Eq. (1.4) yields the following
diagrams

d

u

W

u

d

W

There are two other options that arise from the application of the crossing sym-
metry. On the other hand, the Lagrangian of neutral current interaction,Eq. (1.5),
yields the following trilinear couplings:

ν
(−)
e

ν
(−)
e

Z

e(±)

e(±)

Z

u(−)

u(−)

Z

d(−)

d(−)

Z



10 The Standard Model

Analogously for the remaining generations of charged fermions2. It is important
to note that for these expressions, an orthogonal linear combination defines the field
of vector bosons Zµ as follows

Aµ =sinθW Aµ

3 + cosθW Mµ ,

Zµ =cosθW Aµ

3 − sinθW Mµ .

Then, considering only the first family, we obtain the Lagrangian for neutral current
interactions as follows

L CN =− 1
2
(ν̄eL

(
{gcosθW +g′ sinθW} ̸Z +{gsinθW −g′ cosθW} ̸A

)
νeL

−ēL
(
{gcosθW −g′ sinθW} ̸Z +{gsinθW +g′ cosθW} ̸A

)
eL

−2g′ēR(−sinθW ̸Z +cosθW ̸A)eR).

Since neutrinos do not couple to electromagnetic fields, it follows that the Lagrangian
for neutral current interactions leads to

gsinθW =g′ cosθW .

This implies that the coupling constants are connected to the weak mixing angle,
which is an important relationship in particle physics [10].

With this, we understand how the W± and Z bosons interact, but the origin of
their masses and the masses of charged leptons has not been explained yet. In the
following sections, we will study the origin of masses and address the question of
neutrino masses, which will be further explored in Chapter 2.

1.2 Higgs Mechanism

In the Standard Model, the Higgs mechanism is the responsible for the masses of
the W and Z bosons, as well as the fermions. For this pupose, the following Higgs

2From all of this, it is observed that in the charged current, quarks change flavor, while for leptons
their respective neutrino is involved. In the case of the neutral current, the particles interact via the Z
boson, with only an exchange of spin and/or momentum.
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doublet is typically defined

Φ(x) =

(
φ+(x)
φ 0(x)

)
, (1.6)

where the superscript + indicates the charged complex scalar field, while the super-
script 0 indicates the neutral complex scalar field. In the electroweak model, it is
common to introduce the doublet, given in the Eq. (1.6), because this is the simplest
way to induce symmetry breaking. It should be noted that we are working in the
Hermitian basis. The Higgs Lagrangian is

LHiggs =
(
DρΦ

)†
(Dρ

Φ)−µ
2
Φ

†
Φ−λ

(
Φ

†
Φ

)2
, (1.7)

which is invariant under the U(1) group of global transformations [11]. In this basis,
the potential is

V (Φ) = µ
2
Φ

†
Φ+λ

(
Φ

†
Φ

)2
,

it is assumed that the coefficient µ2 is negative, in order to generate the spontaneous
symmetry breaking: SU(2)L×U(1)Y →U(1)em , see Figure 1.1. Neglecting the term
µ4/λ 2, the potential can be rewritten as follows

V (Φ) = λ

(
Φ

†
Φ− 1

2

(
−µ2

λ

))2

.

We define

v =

√
−µ2

λ
, (1.8)

therefore, the Higgs potential can be written in terms of this new constant

V (Φ) = λ

(
Φ

†
Φ− 1

2
v2
)2

. (1.9)

On the other hand, a vacuum vector is defined as an element of the Higgs vector
space W that is a minimun of a real-valued function V . The set of vacuum vectors in
W is called the vacuum space or vacuum manifold of V . From Eq.(1.9), it is easy to
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(a) Higgs potential for µ2 < 0 (b) Higgs potential for µ2 > 0

Fig. 1.1 Higgs potential for the two cases of µ2, always assuming λ to be positive. In (a) spontaneous
symmetry breaking occurs, while in (b) it does not occur.

see that the minimun value of the potential occurs when

Φ
†
Φ =

v2

2
,

so, a vector will be an empty vector for the Higgs potential, v ∈W , if and only
if its magnitude has the expression given in Eq. (1.8). This potential minimum
corresponds to the vacuum value (lowest energy state). When we are in the case of
µ2 < 0, we see from Figure 1.1a that there are a large number of degenerate ground
states, but none of them exhibit the original symmetry of the Lagrangian given in
Eq.(1.7), it is said that symmetry is spontaneously broken. When we have µ2 > 0, we
see from Figure 1.1b that the minimum occurs at the origin, so in the ground state,
the symmetry is present. There is no symmetry breaking.

The vacuum expectation value (VEV) of the Higgs field ⟨Φ⟩ is nonzero and is
due to the neutral scalar field since the vacuum has no electric charge, meaning its
electric charge is identically zero. Therefore, the charged scalar field Φ+ must have a
value of zero in the vacuum, while the neutral scalar field Φ0 can have a nonzero
value in the vacuum. Thus, the VEV is defined as

⟨Φ⟩= 1√
2

(
0
v

)
. (1.10)

The field Φ(x) can be expanded around the vacuum. Let H(x) be a Hermitian scalar
field, which can be interpreted as a perturbation (excitation) of the neutral Higgs
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field about the vacuum. This perturbation represents the physical Higgs bosons,
therefore it can be written as follows (see Eq.1.8)

Φ(x) =
1√
2

(
0

v+H(x)

)
. (1.11)

Furthermore, it is common to use the following expression for the Higgs doublet
[12]

Φ =
1√
2

exp
{

i
2v

ξ⃗ · τ⃗
}(

0
v+H(x)

)
,

where ξ⃗ (x) = {ξ1(x),ξ2(x),ξ3(x)} are real scalar fields, which represent nonphysical
states and τ⃗ = {τ1,τ2,τ3}where τα ,α = {1,2,3}, are the three Pauli matrices. Since
the theory is invariant under SU(2)L, it is possible to write (1.11). Note that under
this transformation, the physical states of the theory appear explicitly, which is called
the unitary gauge.

The concept of the unitary gauge is present in the electroweak theory. Let us
consider the following theorem regarding the existence of the unitary gauge in the
theory.

Theorem 1.2.1 Consider the electroweak theory with gauge group G = SU(2)L×U(1)Y
and the Higgs field is given in the form of 1.6, where each component of the doublet is a
function from M→ C (where M is a connected and simply connected manifold). Let us
assume that the second entry is nonzero ∀x ∈M = R4. Then there exists a physical gauge
transformation η : M→ G such that

η ·Φ =

(
0
ψ

)
,

where ψ : M→ R is a real-valued function. The transformed Higgs field η ·Φ is then in
unitary gauge with respect to the vacuum vector ⟨Φ⟩ (see 1.10)3.

3For more information about the theorem and demostration see [13].
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Considering the expression (1.7) and (1.11), we obtain

LHiggs =
1
2
(∂H)2−λv2H2−λvH3− λ

4
H4 +

g2v2

4
W †

µW µ +
g2v2

8cosθW
2 ZµZµ

+
g2v
2

W †
µW µH2 +

g2v
4cosθW

2 ZµZµH (1.12)

+
g2

4
W †

µW µH2 +
g2

8cosθW
2 ZµZµH2.

The fifth and sixth terms are of significant importance since they correspond to the
mass terms of the W and Z bosons respectively:

mW =
gv
2
, mZ =

gv
2cosθW

. (1.13)

The second term of Eq.(1.12) corresponds to the mass term of the Higgs boson, with a
mass given by mH =

√
2λv2. The third and fourth terms generate the self-interactions

of the Higgs field, the last four terms generate the couplings of the Higgs field with
the gauge bosons (trilinear and quadrilinear couplings).

1.2.1 Nambu-Goldstone Bosons

The Goldstone bosons (also known as Nambu-Goldstone bosons) are bosons that
arise from the spontaneous breaking of symmetry. These bosons are associated
with the generators of the broken symmetry. It should be noted that spontaneous
symmetry breaking occurs when the ground state is not invariant under the trans-
formations of the group. In other words, the Nambu-Goldstone bosons correspond
to perturbations of the Higgs field along the symmetry group orbit. On the other
hand, the Higgs bosons correspond to perturbations orthogonal to the orbit. The
Goldstone’s theorem can be stated as follows [14].

Theorem 1.2.2 Goldstone Theorem: If a Lagrangian is invariant under a continuous sym-
metry group that has n generators, and if its ground state is symmetric under a continuous
group contanining n′ generators, there should be n−n′ massless states4.

Based on what has been said before and the Goldstone’s theorem, we have the
following corollary: For every spontaneously broken continuous symmetry, the
theory must contain massless particles called Nambu-Goldstone bosons, which are

4For a proof of this theorem, see the reference [15].
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scalar fields with zero mass. On the other hand, Higgs bosons are scalar fields with
non-zero mass [16].

1.3 Fermion masses in the Standard Model

A consequence of the Higgs Mechanism is the generation of fermion masses through
the Yukawa coupling of fermion fields with the Higgs doublet. Let us consider the
Lagrangian in Eq. (1.3), particularly the fifth line, as it contains the masses of the
leptons, while the sixth and seventh lines contain the masses of the quarks, which are
not very relevant for the present thesis. Thus, we can derive the masses of leptons
from:

− ∑
α,β=e,µ,τ

(
Y ′ℓ

αβ
L̄′αLΦℓ′

βR +Y ′ℓ∗
αβ

ℓ̄′
βRΦ

†L′αL

)
=− ∑

α,β=e,µ,τ
Y ′ℓ

αβ
L̄′αLΦℓ′

βR +H.c. (1.14)

From this, it can be seen that in the standard model neutrinos are massless because
their fields do not have a right-handed component5. On the other hand, the matrix
of Yukawa couplings Y ′ℓ is, in general, a non-diagonal 3×3 complex matrix. Now,
let us consider the doublet Higgs as in Eq.(1.11), to have

LY,F =−
(

v+H√
2

)
∑

α,β=e,µ,τ
Y ′ℓ

αβ
ℓ̄′αLℓ

′
βR +H.c, (1.15)

where the index Y,F indicate the Yukawa coupling of leptons sector. In the matrix
form the Higgs-lepton Yukawa Lagrangian (1.15) is

LY,F =−
(

v+H√
2

)
ℓ̄′LY ′ℓℓ′R +H.c. (1.16)

Since the matrix Y ′ℓ is not diagonal, the charged lepton fields do not have definite
masses. To obtain these fields with definite masses, it is necessary for Y ′ℓ to be
diagonal. For this, it can be diagonalized through the biunitary transformation (see
Theorem 2.3.1)

V ℓ†
L Y ′ℓV ℓ

R = Y ℓ,

5A fermion mass term must involve a left-handed and right-handed fields, a coupling of type:
f̄ f = f̄L fR + f̄R fL
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with Y ℓ
αβ

= yℓαδαβ . Where V ℓ
L and V ℓ

R are two appropriate 3×3 unitary matrices. This
diagonalization, applied to expression (1.16), leads to

LY,F =−
(

v+H√
2

)
ℓ̄′L
(

V ℓ
LY ℓV ℓ†

R

)
ℓ′R +H.c =−

(
v+H√

2

)(
ℓ̄′LV ℓ

L

)
Y ℓ
(

V ℓ†
R ℓ′R

)
+H.c.

We then define

ℓL =V ℓ†
L ℓ′L =

eL

µL

τL

 , ℓR =V ℓ†
R ℓ′R =

eR

µR

τR

 . (1.17)

They are the mass eigenstates obtained via the rotation. Therefore, the Higgs-lepton
Yukawa Lagrangian can be rewritten as

LY,F =−
(

v+H√
2

)
ℓ̄LY ℓℓR +H.c. (1.18)

Now, writing the fields of the charged leptons with definite masses as ℓα = ℓαL + ℓαR

where α = e,µ,τ we have

−LY,F = ∑
α

yℓαv√
2
ℓ̄αℓα +∑

α

yℓα√
2

H ℓ̄αℓα . (1.19)

The first term of Eq.(1.19) is the mass term for the charged leptons [9]:

mα =
yℓαv√

2
, (1.20)

and the second term, proportional to the Higgs Boson field, gives trilinear couplings
between the charged leptons and the Higgs boson, whereas the neutrinos do not
couple to the Higgs boson. On the other hand, the leptonic charged weak current
can be written as

jρ

W,L = 2ν̄
′
Lγ

ρℓ′L,

where

ν
′
L ≡

ν ′eL

ν ′
µL

ν ′
τL

 . (1.21)
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Using the expression of the mass eigenstates defined in Eq.(1.17), we have

jρ

W,L = 2ν̄
′
Lγ

ρ

(
V ℓ

LℓL

)
.

Let us perform the transformation to the mass eigenstate basis (in a manner analo-
gous to the equation 1.17 ) using the following relation

νL ≡V ℓ†
L ν

′
L =

νeL

νµL

ντL

 . (1.22)

So, the leptonic charged weak current can be rewritten as

jρ

W,L = 2
(

ν̄LV ℓ†
L

)
γ

ρ

(
V ℓ

LℓL

)
= 2ν̄Lγ

ρℓL. (1.23)

From this expression, it can be seen that neutrinos να , where α = e,µ,τ , couples
only with the corresponding charged lepton, that is, νe couples only with e, for
example. These neutrinos να defined in Eq.(1.22) are called flavor neutrino fields.
Furthermore, any linear combination of massless fields is a massless field. Therefore,
flavor neutrino fields are also mass eigenstates. However, in physics beyond the
Standard Model, the flavor neutrino fields are not mass eigenstates, this phenomenon
is known as neutrino mixing [17].
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2
Massive Neutrino

In the previous chapter, I have studied the Higgs mechanism and Yukawa couplings,
which allow for the generation of mass for charged fermions. In the current chapter,
I will discuss the existence of massive neutrinos, as well as the Dirac and Majorana
mass terms and the mass matrix that arises from them.

2.1 On the Hints of Neutrino Mass

We have seen that through Yukawa couplings with the Higgs doublet, it is possible
to generate fermionic masses. For this, both left-handed and right-handed fields
of fermions are necessary. However, in the choice of fermion doublets and singlets
in Eq.(1.2), the possible existence of the neutrino right-handed components, νR,
has not been taken into account, as there was no phenomenological reason to do
so. If the right-handed component of neutrinos is introduced, the left-handed and
right-handed neutrino fields could couple through the Higgs mechanism to generate
a mass term.

Theoretically, there are not sufficiently valid reasons to not consider the right-
handed components νR, since there is no preserved gauge symmetry (as in the case
of the photon) that would indicate the absence of neutrino mass.

As a motivation for the theoretical search for neutrino masses, particle physics
aims to be a unifying theory [1]. In this regard, we must ask the question: How
can we extend the standard model to incorporate massive neutrinos? However, we
must also consider other aspects related to the previous question. It is expected that
the masses of the neutrinos νe, νµ , and ντ differ by orders of magnitude, much like
the case of the e, µ , and τ . Moreover, it is known that the masses of neutrinos are
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much smaller than the mass of the electron1. So, the question arises: Is there any
model capable of explaining the smallness of neutrino masses? The answer is yes.
Currently, there are extended theories of the standard model that provide a certain
degree of response to these questions.

There are two main categories of experiments involving the search for neutrino
masses: kinematic and exclusive [18]. In the first type, any process allowed by the
standard model is considered, with the only condition that neutrinos are present in
the final state. An example of such processes can be the decay of the τ or the pion.
In the case of pion decay, the energy of the muon can be measured, allowing the
determination of the mass of the muonic neutrino, νµ , as the energy depends on the
neutrinos mass.

The second exclusive experiments type essentially revolves around experiments
that seek processes that are not allowed (under the assumption that neutrinos have
no mass). If such a process is observed, it is a clear indication of neutrino mass.
However, not everything is as straightforward, since assumptions need to be made,
and one of the most common assumptions is neutrino mixing. A clear example is
neutrino oscillations and magnetic properties, among others.

Although these two types of experiments, the kinematic one, which we could say
is a direct search, is quite obsolete. This is because, if we observe the final spectrum
of muon momentum, it does not generate monochromatic lines corresponding to
mass eigenstates. However, considering the experimental resolution, upper limits
on the neutrino mass can be obtained (under the assumption of neutrino mixing) [1].

If we consider the standard solar model proposed by Bahcall [19], a certain
amount of neutrino flux is expected to come from the Sun. However, experiments
have shown a deficit in the flux of neutrinos emitted by the Sun, favoring the
consideration of neutrino mixing. To explain this more clearly, let us consider a
beam of pions that decay into muons and muonic neutrinos, which after a certain
time encounter a detector that searches for neutrino interactions. In this detector,
an interaction with an electron in the final state is detected. As we know, muonic
neutrinos do not interact with electrons; it is the electronic neutrinos that do it. The
only way to explain what is detected is if the νµ neutrino had transformed into an
νe neutrino. This is known as neutrino oscillation, and the possibility of having
this phenomenon finds its fundamental basis within the framework of Quantum
theory, where it is possible to write a neutrino produced by the source in terms of a
superposition of mass eigenstates. The evidence of this phenomenon provides two

1In general, it is known that the mass of neutrinos is smaller than that of quarks and fermions.
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very important parameters: the squared mass differences of the neutrinos, ∆m2, and
the mixing angles [20].

2.2 Dirac and Majorana Masses

The mass of neutrinos is a topic of paramount importance in the physics of the
Standard Model and its extended theories. As I have mentioned, the origin of
neutrino mass and its smallness are questions that are currently being actively
explored. There are indications that the neutrino masses are manifestations of low
energy physics beyond the Standard Model, and their smallness is attributed to
a suppression generated by a new high-energy scale. Furthermore, as we saw in
Chapter 1, even the origin of the values of masses for charged quarks and leptons
remains a mystery within the standard model. All of this leads us to believe that
the standard model should be considered as an effective theory derived from the
low-energy limit of a more comprehensive theory, where quark and lepton masses
can be derived from fundamental principles. In the following, we will delve into the
study of Dirac and Majorana neutrino masses.

2.2.1 Dirac Masses

A Dirac neutrino mass can be generated using the same Higgs mechanism as in the
Standard Model. Let us consider the Dirac Lagrangian

LDirac = ψ
(
iγµ

∂µ +mD
)

ψ, (2.1)

where the first term is the kinetic term and the second term is the mass term:

LmD = ψmDψ = mDψψ. (2.2)

Now, let us consider ψ arbitrary spinor. Considering the properties of Weyl spinors
and the anticommutation relation of gamma matrices, we can demonstrate that
ψψ = ψLψL +ψRψR +ψLψR +ψRψL and ψLψL = 0 = ψRψR, so

ψψ = ψLψR +ψRψL. (2.3)
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Therefore, we can write Eq.(2.2) as

LmD = mD (ψLψR +ψRψL) . (2.4)

From this, we can observe that a Dirac mass connects two distinct Weyl fields. On
the other hand, it is evident that the only extension required for the standard model
is the introduction of the right-handed component, νR, of neutrino fields. All of this
leads to the following definitions [21].

Definition 2.2.1 ACTIVE NEUTRINO: We refer to active neutrinos as left-chiral Weyl
neutrinos that transform as doublets under SU(2) and are paired with a charged lepton,
resulting in weak interactions.

This type of neutrinos appears in the representation chosen to order the fermions in
doublets as Eq.(1.2)

Definition 2.2.2 STERILE NEUTRINOS: We refer to Sterile Neutrinos (also know as right-
handed neutrinos, νR) as singlets under SU(2), which do not interact weakly, strongly, or
electromagnetically. They only interact through mixing or interactions beyond the Standard
Model.

Applying this to the Dirac mass term, we notice that it connects an active neutrino
with sterile neutrino:

LmD = mD (νLνR +νRνL) . (2.5)

The number of right-handed neutrinos is not constrained by the theory. However,
only three will be considered, corresponding to e,µ,τ . With this minimal extension,
the Higgs-lepton Yukawa Lagrangian, Eq.(1.14), can be rewritten as follows [9]:

LY,F =− ∑
α,β=e,µ,τ

Y ′ℓ
αβ

L′αLΦℓ′
βR− ∑

α,β=e,µ,τ
Y ′ν

αβ
L′αLΦ̃ν

′
βR +H.c. (2.6)

where Y ′ν is a new matrix of Yukawa couplings and ν ′R is a vector column with
entries ν ′eR,ν

′
µR,ν

′
τR. Let us consider that sterile neutrinos are invariant under the

symmetry of the standard model; that is, they are singlets of SU(3)C×SU(2)L and
have hypercharge equal to zero. For this reason, the structure of the second term
on the right-hand side of equation (2.6) includes Φ̃, which has a hypercharge of -1.
Thus, the entire second term remains invariant under SU(2)L×U(1)Y .
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The diagonalization of the matrices (analogously to the procedure in Section
1.3) Y ′ℓ and Y ′ν , then proceeds through the following definition of chiral massive
neutrinos arrays

nL =V ν†
L ν

′
L =

ν1L

ν2L

ν2L

 , nR =V ν†
R ν

′
R =

ν1R

ν2R

ν2R

 . (2.7)

This leads to a neutrino mass term proportional to the VEV, as in Eq. (1.20) with the
only change of yℓα → yν

k , and also generates couplings with the Higgs field and the
Dirac massive neutrinos. However, this neutrino mass term obtained through the
Higgs mechanism with the mentioned extension is not able to account for the very
small values of the eigenvalues of the new Yukawa matrix, yν

k , leaving, like the mass
of charged quarks and leptons, an unknown in the Standard Model.

The leptonic charged-current interaction can be expressed as follows

jρ

W,L = 2ν ′Lγ
ρℓ′L = 2nLV ν†

L γ
ρV ℓ

LℓL = 2nLV ν†
L V ℓ

L γ
ρℓL (2.8)

Notice that the previous equation depends on the product of two unitary matrices
that were used to diagonalize the corresponding Yukawa matrices (see Eq.1.17).
Since the product of two matrices is unitary, the following definition is relevant.

Definition 2.2.3 The unitary Matrix

UPMNS =V ℓ†
L V ν

L ∈U(3),

is called the Pontecorvo-Maki Nakaga-Sakata (PMNS) matrix. This matrix fulfills the
same function as the one in the quark mixing (CKM matrix) [22]. We designate U as the
mixing matrix within the leptonic sector. The PMNS matrix is frequently represented in the
subsequent manner

UPMNS =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 . (2.9)
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It is customary to define the left-handed flavor neutrino fields as

νL =UnL, with νL =

νeL

νµL

ντL

 .

Now we will briefly examine the case of Majorana mass term.

2.2.2 Majorana Masses

When neutrinos are of Majorana nature, the mass terms for these types of neutrinos
cannot be formed in dimensions less than or equal to 4. Neutrinos acquire Majorana
masses through an effective Lagrangian of at least dimension 5. This dim-5 operator
is suppressed by a factor, Λ, from the mass scale [23, 24]. Thus, the lowest effective
operator that generates Majorana neutrino masses is the dim-5 Weinberg operator

δL =
1
Λ

(
LCLαΦ̃

∗
)(

Φ̃
†LLβ

)
+h.c, (2.10)

If one considers that the Higgs doublet develops vacuum expectation values (VEVs),
that is, after electroweak symmetry breaking, the Weinberg operator induces Majo-
rana masses for the light neutrinos. There are only three ways to generate the dim-5
operator at tree level. These are known as the see-saw mechanism type I, type II,
and type III, with the mediator being an SU(2) singlet fermion, triplet scalar, and
triplet fermion, respectively.

The Majorana mass terms only necessitate a single Weyl field. To comprehend
this, consider the Dirac equation with ψ = ψL +ψR, leading to the following expres-
sion:

iγµ
∂µψL = mψR, (2.11)

iγµ
∂µψR = mψL. (2.12)

Considering a massless fermion, this equation experiences decoupling

iγµ
∂µψL = 0, (2.13)

iγµ
∂µψR = 0. (2.14)

A massless fermion can be described by a single chiral field containing only two
independent components. However, a 4-component spinor is not sufficient to
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describe a massive particle. To account for a massive particle, we can assume that
ψR and ψL are not independent; there exists a relationship connecting ψR with ψL

that satisfies Eq. (2.11) and Eq. (2.12). This implies that the two equations are two
ways of expressing the same equation for an independent field, namely ψL. This is
achieved through the Majorana relation that connects the left and right fields,

ψR = ηCψL
T , (2.15)

where η is an arbitrary phase factor that can be eliminated by rephasing the field ψL

as follows: ψL→ η1/2ψL and C is the charge conjugation matrix. By considering Eq.
(2.11), we obtain the Majorana equation for the chiral field ψR,

iγµ
∂µψL = mCψL

T . (2.16)

The Majorana condition for the field ψ is:

ψ = Cψ
T . (2.17)

As neutrinos exclusively interact through weak interactions, the charge parity of
neutrino fields can be chosen arbitrarily. Taking ψC

L =Cψ
T
L , the Majorana field can

be expressed as

ψ = ψL +ψ
C
L . (2.18)

The Majorana condition can be written as

ψ = ψ
C. (2.19)

Given that neutrinos are neutral, it follows from Equation (2.19) that neutrinos are
the only fermions capable of being described by a Majorana field2. A Majorana mass
term it can be written as

L M
mass =−

1
2

mν
C
LνL +h.c. (2.20)

The total Lagrangian is

L M =
1
2

(
νLi
←→
/∂ νL +ν

C
L i
←→
/∂ ν

C
L −m

(
ν

C
LνL +νLν

C
L

))
, (2.21)

2The Majorana condition necessarily implies the equivalence between particle and antiparticle.
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where the superscript M indicates the Majorana case3. The factor of 1/2 is used to
avoid double counting since νC

L and νL are not independent [25, 9].

2.2.3 B-L Symmetry

As I previously stated, within the standard model, neutrinos are devoid of mass
due to the absence of right-handed neutrinos. However, as illustrated in section
2.2, upon the inclusion of right-handed neutrinos, neutrino mass emerges naturally
since no symmetry prohibits it. Moreover, as highlighted initially, the standard
model hinges on Gauge symmetries, a theory that has adeptly addressed core
inquiries about matter’s essence. Nevertheless, despite its accomplishments, it
remains incomplete, as it inherently fails to predict neutrino mass. This prompts us
to delve into extensions of the standard model, grounded in its Gauge symmetry,
such as the scenario involving the global symmetry U(1)B−L, where the quantum
number B−L signifies the difference between baryon and lepton numbers.4. So, one
type of minimal extension of the standard model is based on the Gauge group

K = SU(3)C×SU(2)L×U(1)Y ×U(1)B−L (2.22)

This can be broken to SU(3)C × SU(2)L×U(1)Y by a vacuum expectation value,
v′, which is assumed to be larger than the Higgs vacuum expectation value, v.
This group K can be written as SU(4′)× SU(2)L×U(1)Y , where the fourth color is
considered to be B−L, which can be seen as a subalgebra of the Pati-Salam model,
which is free from anomalies [26–29]. Therefore, the global symmetry U(1)B−L is
also anomaly-free5. However, it is worth noting that if the U(1)B−L symmetry is
considered as a global symmetry, it is anomaly-free within the standard model with
massless neutrinos, whereas if it is considered as a gauge symmetry (which implies
this symmetry is gauged), the anomalies will be canceled due to the existence of
right-handed neutrinos [30–32]. Thus, it is more useful to consider a U(1)B−L gauge
symmetry in the extension of the standard model, as given in Eq.(2.22).

The invariance of the Lagrangian under this extension of the standard model
gives rise to a new gauge boson denoted as Cµ , in addition to having a new coupling

3Since neutrinos are left-handed, we use the left-handed chiral field νL
4Due to anomaly cancellations, this symmetry predicts the existence of the three right-handed

neutrinos.
5It is worth mentioning that under this minimal extension symmetry, Majorana mass terms are

not allowed as they do not preserve the B−L symmetry. Later, this fact will be justified, resulting in
only Dirac-type mass terms remaining.
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constant, g′′, associated with U(1)B−L. On the other hand, to induce the spontaneous
breaking of U(1)B−L, a complex scalar field η is required in addition to the Higgs
doublet Φ already present [33, 34].

2.3 On a Treatment of Three-Generation Mixing

I have mentioned in Chapter 1 that the Yukawa matrix is not diagonal, and therefore,
the fields of charged leptons do not possess a definite mass. For this reason, a
diagonalization process is necessary. The same applies when we have the Lagrangian
for Dirac masses (Eq. (2.5)) and the Lagrangian for Majorana masses (Eq. (2.21)).
In other words, the aim is to transform the mass terms from their original form to
extract the physical masses. To achieve this goal, two unitary matrices are used,
which I will describe next.

2.3.1 Diagonalization of the Mass Matrix

Theorem 2.3.1 Let M be a complex N×N matrix, and let Q and Γ be two N×N unitary
matrices. Then, Q†MΓ = m, where mi j = miδi j.

Proof. Let us consider the matrix MM†, which is obviously a Hermitian matrix, and
its eigenvalues are positive. This matrix can be diagonalized through a unitary
transformation (This is an immediate implication of Theorem A.1.1 from Appendix
A)

Q†MM†Q = m2,

where Q†Q = I and (m2)i j = m2
i δi j. Let us rewrite the above expression as

MM† = Qm2Q†.

Now, observe that

Qm
(

m−1Q†M
)
= QQ†M = M.

If defined Γ† = m−1Q†M, then

M = QmΓ
†,
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therefore

Q†MΓ = m.

By construction Γ is indeed unitary, as can be deduced from:

Γ
†
Γ =

(
m−1Q†M

)(
m−1Q†M

)†

=m−1Q†MM†Q
(
m−1)†

= m−1Q†
(

Qm2Q†
)

Qm−1 = I■

In general, an N×N unitary matrix has N2 independent parameters, which are
N(N − 1)/2 mixing angles and N(N + 1)/2 phases. However, not all phases are
physical observables6 [35, 9].

On the other hand. A unitary matrix, U , can be expressed as

U = D(ω)ϒ23(θ23,η23)ϒ12(θ12,η12)ϒ13(θ13,η13)

=D(ω)

[
∏
i< j

ϒi j
(
θi j,ηi j

)]
∀i, j = 1,2,3, (2.23)

where D(ω) = diag
(
eiω1,eiω2,eiω3

)
, ω being the set of phases7 and ϒi j are unitary

and unimodular matrices. The elements of this matrix are [36, 37]:[
ϒi j
(
θi j,ηi j

)]
αβ

= δαβ+
(
ci j−1

)(
δαiδβ i +δα jδβ j

)
+si j

(
eiηi jδαiδβ j− e−iηi jδα jδβ i

)
, (2.24)

with ci j ≡ cosθi j and si j ≡ sinθi j.
It is important to note that the order of matrix products in Eq.(2.23) can be chosen

arbitrarily. However, different choices of order result in different parameterizations.
Following the idea discussed earlier from equations (2.23) and (2.24), we have that
there are N(N−1)/2 mixing angles, while there are N(N +1)/2 phases (considering
the general case). However, these latter phases can still be divided into two forms:
N phases ωk and the remaining N(N−1)/2 phases ηi j. By doing this, we can rewrite

6We have (N−1)(N−2)/2 physical phases.
7This form of Eq.(2.23) and D(ω) can be generalized to the N-dimensional case. In this work, I

consider only the case where N = 3, which is why I restrict the indices to i, j = 1,2,3. Otherwise, in a
general case, the indices would be i, j = 1, . . . ,N and ω the set of N phases.
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equation (2.23) in another form8 that allows us to extract N− 1 phases from the
N(N−1)/2 phases ηi j in the product [9, 38].

For simplicity, we consider N = 2. In this case of two generations, a unitary
matrix can be written as

U =

(
cosθeiω1 sinθei(ω2+η)

−sinθei(ω1−η) cosθeiω2

)

=

(
eiω2 0

0 eiω1

)(
eiη 0
0 1

)(
cosθ sinθ

−sinθ cosθ

)(
e−iη 0

0 1

)
.

Notice that we have one mixing angle, θ , and three phases. However, in this simple
case, we can observe that the three phases, ω1,ω2,η , can be removed through a
rephasing of the fields, leaving only the matrix of physical importance:

U =

(
cosθ sinθ

−sinθ cosθ

)
. (2.25)

As we can see, this case is quite simple. However, for the three-generation case,
it becomes more complicated. As I mentioned earlier, there are various ways to
parameterize the mixing matrix U . Nevertheless, the standard parametrization
chosen by the Particle Data Group (PDG) is the following [2]:

UPMNS =

 c12c13 s12c13 s13e−iδ

−s12c23− c12s23s13eiδ c12c23− s12s23s13eiδ s23c13

s12s23− c12c23s13eiδ −c12s23− s12c23s13eiδ c23c13

 . (2.26)

This form of expressing the unitary matrix U is a more convenient parametrization
known as the symmetric form [4]. In the case of three neutrinos, it is given as

UPMNS = ϒ23 (θ23,η23)ϒ13 (θ13,η13)ϒ12 (θ12,η12) , (2.27)

where ϒi j is defined by Eq.(2.24).

8U = D(ω−ϕ)
[
∏i j Ωi j (θi j,ϕi +ηi j−ϕ j)

]
D(ϕ), where ϕ is an arbitrary set of phases that allow us

to extract the N−1 phases from ηi j.
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2.3.2 CP Violation

The union of parity and charge transformations is known as the CP transformation.
In general, when the action is not invariant under this CP transformation, the theory
violates CP. Gravitational, electromagnetic, and strong interactions do not violate CP
symmetry. However, in the electroweak theory, there are cases where CP symmetry
is violated, such as in the decays of the K0 meson and the B meson, as well as
in neutrino interactions, while it is respected in many other processes. This CP
violation is significant because it is related to the matter-antimatter asymmetry in
the universe, namely, the CP violation is a necessary condition for baryogenesis.

The Standard Model allows for CP violation if a complex phase appears in the
CKM matrix (or the analogous matrix for lepton mixing). Let us delve into this in
more detail. When all manipulations are performed to rephase in such a way that
allows us to eliminate all non-physical phases in the Yukawa couplings, we find that
there is only one complex parameter left. This is where the CP violation parameter
resides. In the basis of mass states, this phase appears in the unitary matrix (see
Eq.(2.26), we can say, but with great caution, that the delta phase is the CP violation
phase). This type of rephasing is the form [9]:

Uα j = e−iψαUα jeiψ j . (2.28)

On the other hand, physical observables do not depend on the parametrization of the
mixing matrix. It is both possible and necessary to work with quantities that remain
invariant under rephasing transformations, as specified in Eq.(2.28). The squared
moduli of the amplitudes are always observables, and therefore, any observable is
invariant under the rephasing transformation in Eq. (2.28). We are only interested in
measurable quantities that are invariant under these rephasing transformations; for
example, ∣∣Uα j

∣∣2 =Uα jU∗α j. (2.29)

However, the next invariant term is [39, 40]

αk□β j ≡UαkUβ jU
∗
α jU

∗
βk, ∀α ̸= β ;k ̸= j. (2.30)

This follows from the fact that (as we will see in Chapter 3), the oscillation probability
depends on the product of four elements of the mixing matrix (which is precisely
the product given in Eq. 2.30). Since the oscillation probability is an observable, it
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follows that it is independent of the parametrization of the mixing matrix (angles and
phases). Since, in general, U is complex, then αk□β j is also complex. Their imaginary
parts provide us with a tool that is very useful for assessing the complexity of matrix
U and, consequently, CP violation in an invariant manner. Due to the unitarity of
the matrix U , the imaginary part of αk□β j is unique [9].

We have the following definition.

Definition 2.3.1 The Jarlskog invariant is9[42]:

J = Im
[11□22

]
= Im [U11U22U∗12U∗21] . (2.31)

Using the parameterization given in Eq. (2.26), it follows that the Jarlskog invariant
is given by

J =
1
8

sin2θ12 sin2θ23 sin2θ13 cosθ13 sinδ . (2.32)

Hence, J = 0 if and only if eiδ = ±1 (which happens if and only if the PMNS (or
CKM) matrix can be brought into real form) or if any of the mixing angles is null.

On the contrary, we can assess the level of CP violation at low-energy by examin-
ing the following invariant in the weak basis [43, 44]:

Tr [Hν ,Hℓ]
3 = 6i∆21∆32∆31Im [(Hν)12(Hν)23(Hν)31] , (2.33)

where Hν = MνM†
ν , Hℓ = mℓm

†
ℓ , with Mν the usual light neutrio effective mass ma-

trix10 and ∆21 = (m2
µ−m2

e), analogous expressions for ∆31 and ∆32. On the other hand,
the right side of Eq. (2.33) can be written in terms of observables [45], particularly in
terms of the Jarlskog invariant

Im [(Hν)12(Hν)23(Hν)31] =−∆m2
21∆m2

31∆m2
32J, (2.34)

where the ∆m2
i j represents the usual neutrino mass squared difference, and J denotes

the Jarlskog invariant. Alternatively

J =−Im [(Hν)12(Hν)23(Hν)31]

∆m2
21∆m2

31∆m2
32

. (2.35)

9Without loss of generality, I have particularized the invariant to the case that is most useful in my
development and also the most commonly used in general. The Jarlskog invariant is a multi-linear
map [41].

10In this weak bases invariant, mℓ denote the charged lepton mass matrix.
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It is important to note that even though Eqs. (2.32) and (2.35) represent the same
thing, the latter offers more advantages when performing calculations, as there is no
need to rely on the mixing matrix. In the model presented in Chapter 4, I use this
fact to carry out my research as promised.
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3
Neutrino Phenomenology

A peculiarity of neutrinos is their difficulty in detection. They are only detected
through their weak interactions. The different flavors of neutrinos can only be dis-
tinguished by the flavors of the corresponding charged lepton produced in the weak
charged current interaction. Furthermore, despite the fact that neutrino interactions
have a very small cross-section, it is possible to observe them using sufficiently
massive detectors. However, the study of the solar neutrino problem through the
SNO experiment allowed for the strong postulation of neutrino oscillations.

3.1 In Relation to the Observations and Oscillations

The solar nuclear fusion produces a flux of electron neutrinos on the order of 1038νe/s.
These neutrinos are produced according to the following reaction (PP cycle) [46]:

P+P→ D+ e++νe.

Then, we have the reaction D+P→3
2 He + γ , wich, in turn, leads to one last reaction:

3
2He +

3
2 He→4

2 He +P+P, thus completing the PP cycle. The energy of the neutrinos
produced in this process is low, less than 0.5 MeV, making their detection challenging.
Consequently, experiments involve the detection of high-energy solar neutrinos
originating from the β decay processes of boron-8, 8B, which generates neutrinos1

with energies exceeding 15 MeV.
The first detection experiments used radiochemical techniques to measure the

solar neutrino flux. The Homestake experiment, located in the Homestake Mine in

1The 8B is produced through the fusion of two helium nuclei
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South Dakota, USA, consisted of a 615-ton tank of C2Cl4. It determined the solar
neutrino flux by observing the process νe+

37
17Cl→37

18 Ar+e− and counting the number
of 37Ar atoms. This count yielded an observed rate of 0.48 neutrino interactions per
day. However, an expected rate of 1.7 interactions per day was anticipated, resulting
in a deficit. This deficit is known as the solar neutrino problem. Following this
experiment, two other experiments, SAGE and GALLEX, were conducted. They used
gallium as the detector, providing sensitivity to low-energy neutrinos. Nevertheless,
these experiments also detected the same deficit in solar neutrinos.

In 1989, the Super-Kamiokande experiment was conducted, which is essentially
a 50,000-ton water Cherenkov detector. Here, solar neutrinos are detected through
the proccess of elastic scattering νee− → νee− [46, 10]. The final state electron is
relativistic and can be detected from the Cherenkov radiation photons emitted at
a fixed angle relative to its direction of motion. The number of detected photons
provides a measure of the neutrino’s energy and the direction of the electron.This
allows the observation of elastic scattering interactions of electronic neutrinos. It is
worth noting that this experiment is sensitive to the flux of neutrinos from 8B. The
measurement indicated that the flux of electronic neutrinos is approximately half of
what was expected.

Due to these observations, three explanations were proposed for this. The first
possible explanation is that the theoretical calculations were incorrect. The second
possibility was an error in the experimental measurements, and finally, the third
possible explanation is that neutrinos were not fully understood.

A decade later, the Sudbury Neutrino Observatory experiment took on the task
of measuring both the total solar neutrino flux and the solar electron neutrinos.
This experiment consisted of 1000 tonnes of heavy water in a 12-meter diameter
vessel. The use of heavy water provides the opportunity to detect solar neutrinos
through three different processes2. The charged current is kinematically possible
and is sensitive only to the electron neutrino flux. On the other hand, all flavor
neutrinos can interact with the deuteron through the neutral current, thus, neutral
current processes are sensitive to all three flavor neutrinos [46, 10]. Finally, neutrinos
can interact with atomic electrons through elastic scattering, which is sensitive to all
flavor neutrinos but more significantly to the electron neutrino.

The different angular and energy distributions of Cherenkov radiation from these
interactions allow for the determination of the rates for each process. The observed
charged current (CC) rates were consistent with the electron neutrino (νe) flux, and

2The binding energy of the Deuteron is similar to that boron-8.
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the rates for neutral current (NC) interactions were also consistent with the total
neutrino flux. This provided evidence for an unexpected flux of νµ and ντ from
the Sun. In conclusion, SNO’s data demonstrated that the total neutrino flux from
the Sun is consistent with theoretical expectations. Moreover, it revealed that not
only νe is detected but also contributions from muon and tau neutrinos. Since these
cannot be produced in the Sun, this provided clear evidence for neutrino oscillation,
implying that neutrinos have non-zero mass.

3.2 Neutrino Oscillation

The so called mass states are physical states that are stationary states of the free
particle Hamiltonian, satisfying Hψ = i∂tψ . The mass eigenstates of neutrinos
are defined in Eq.(2.7) and the weak eigenstates in Eq.(1.22). It is important to
mention that these states do not correspond to the weak flavor states να , with
α = e,µ,τ , which are produced along with their respective flavor charged lepton in
weak interactions. In contrast, flavor neutrinos are produced in a charged current
interaction along with the charged lepton (or its antilepton), which are generated by
the Lagrangian given in Eq.(1.4), where

Jρ

W,L = 2∑
α

∑
k

U∗αkνkLγ
ρℓαL. (3.1)

This is a clear distinction between the mass eigenstates and the weak eigenestates
[46, 9]. However, the basis of weak eigenstates is related to the basis of mass
eigenstates through the unitary matrix U , as defined in Definition 2.2.3. This implies
that, for example, an electron neutrino, which is a state produced along with a
positron in a weak charged current interaction, is a linear conbination of the mass
eigenstates. In general, if the masses of the neutrinos νk with k = 1,2,3 are not
the same, a phase difference arises between the components of the wavefunction,
leading to neutrino oscillations.

3.2.1 General Formalism

Based on the above, neutrino oscillations are a consequence of the neutrino mixing
matrix, which in turn implies that the left-handed components of flavor neutrino
fields, να are superpositions of the left-handed components of neutrino fields with
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defined masses, νk:

|να⟩= ∑
k

U∗αk |ψk⟩ . (3.2)

Let us keep in mind that the matrix U is unitary. Therefore, the following natural
conditions follow

UαkU∗βk =δαβ & U∗αkUα j =δk j, (3.3)

Let us assume that the orthonormality conditions for the massive neutrino states are
satisfied:

〈
νk
∣∣ν j
〉
= δi j. On the other hand, from the condition in Eq.(3.3), it follows

that the flavor states are also orthonormal, that is, it satisfies:
〈
να

∣∣νβ

〉
= δαβ . This is

clear considering the fact that

⟨να |= ∑
k

Uα j ⟨νk| . (3.4)

As I mentioned before, the massive states are eigenstates that satisfy

H |νk⟩= Ek |νk⟩ , (3.5)

with eigenenergies E2
k = |p|2 +m2

k . Invoking the Schrödinger equation, it is clear that
we obtain the time evolution, which is

|νk(t)⟩= e−iEkt |νk⟩ . (3.6)

It is possible to express the mass eigenstates in terms of the flavor eigenstates:

|νk⟩= ∑
α

Uαk |να⟩ .

Substituting this into the Eq.(3.6) and Eq.(3.2), we obtain

|να(t)⟩= ∑
β

[
∑
k

U∗αke−iEktUβk

]∣∣νβ

〉
. (3.7)

This indicates that the initial flavor state becomes a superposition of different flavor
states [47].
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The transition amplitudes from one flavor state to another are the coefficients in
Eq.(3.7), namely

A(t)≡
〈
νβ

∣∣να(t)
〉
= ∑

k
U∗αkUβke−iEkt . (3.8)

Thus, the transition probability is simply the square of the amplitude, which is given
by

Pνα−νβ
(t) = ∑

k j
U∗αkUβkUα jU∗β je

−i(Ek−E j)t . (3.9)

Neutrinos in oscillation experiments are ultrarelativistic, so we can approximate their
energy as Ek = E +m2

k/2E, and therefore, the energy difference in the exponential
can be replaced by

Ek−E j ≈
m2

k−m2
j

2E
≡

∆m2
k j

2E
. (3.10)

So, using Eq.(3.10) with Eq.(3.9) yields

Pνα−νβ
=∑

k j
U∗αkUβkUα jU∗β je

−i
∆m2

k j
2E L

=∑
k
|Uαk|2

∣∣Uβk
∣∣2 +2Re ∑

k> j
U∗αkUβkUα jU∗β je

−i∆m2
k jL/2E , (3.11)

where I have used the fact that in experimentation, the propagation time is not
measured, but due to the known distance between the source and the detector, L,
and the fact that they are ultrarelativistic, we can make the approximation t = L.
Thus, we see that the distance L and the energy E are the quantities on which the
experiment depends [47, 46, 9]. Likewise, the oscillation amplitude depends on
the elements of the matrix U , and the phases are determined by the squared mass
differences. Therefore, neutrino oscillation allows us to determine the squared mass
differences and the elementos of the U matrix. It is worth noting that it only provides
information about the squared mass differences and not the absolute values of the
neutrino masses themselves.
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3.2.2 Oscillation Formulas for Two and Three Flavors

Let us consider the case of the mixing of two flavor neutrinos, let us say να and
νβ . In this case, the two flavor states of neutrinos are a linear combination of the
two massive neutrinos, ν1 and ν2, with coefficients given by a 2×2 unitary matrix
expressed in terms of a mixing angle. This matrix is given by Eq.(2.25). Invoking
Eq.(3.9), we have

Pνα−νβ
= sin2 2θ sin2 ∆m2L

4E
, (3.12)

where ∆m2 = m2
2−m2

1. The survival probability is

Pνα−να
= 1−Pνα−νβ

= 1− sin2 2θ sin2 ∆m2L
4E

. (3.13)

This two-neutrino case is very useful because many experiments are not sensitive
to the influence of three neutrino mixing, and the data can be analyzed using
this two-neutrino mixing model. This defines two types of experiments: so-called
appearance experiments, which involve measuring transitions between different
neutrino flavors, and disappearance experiments, which involve measuring the
survival probability of a neutrino flavor by counting the number of interactions
in the detector and comparing it with the expected value. However, this type of
experiment is not very efficient for small values of the mixing angle.

The oscillation length is defined as

Losc
k j =

4πE
∆m2

k j
. (3.14)

For the case of two flavor neutrinos, this is

Losc =
4πE
∆m2 .

Therefore, the transition probability is very small if L≪ Losc and oscillates very
rapidly if L≫ Losc [9]. Finally, to observe neutrino oscillations, ∆m2 must satisfy
∆m2 ≥ E/L, meaning that the experiment is sensitive to the squared mass difference.

Practically all of physics is already addressed in the case of two-flavor neutrinos,
which includes the relationship between the weak and mass eigenstates, and oscilla-
tions arising from the phase difference between the mass eigenstates. However, it is
known that there is no upper limit on the number of massive neutrinos. Neverthe-
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less, it is well-known that the number of active flavor neutrinos is three: νe,νµ ,ντ .
Therefore, the lower bound for massive neutrinos is three, and we are interested in
studying the case of oscillations among three flavors.

In this latter case, the mixing matrix is a complex 3× 3 matrix (see Eq.2.26).
There are many parameterization alternatives; however, the most commonly used
one is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) parameterization, given by
Eq.(2.26) (Note that here we have the presence of 3 mixing angles and one physical
phase, the Dirac phase δ ). Unlike the previous case, here we are dealing with three
squared mass differences, which are

∆m2
21 =m2

2−m2
1, ∆m2

31 =m2
3−m2

1, ∆m2
32 =m2

3−m2
2. (3.15)

However, only two of these are independent because

0 = ∆m2
21 +∆m2

32−∆m2
31.

There are two possible hierarchies for neutrino masses. The first is the normal hierar-
chy: m2

3≫ m2
2 > m2

1, and the second is the inverted hierarchy, in which m2
2 > m2

1≫ m2
3

is satisfied. In most experiments,
∣∣∆m2

32

∣∣ = ∆m2
31−∆m2

21 ≈ ∆m2
31. This allows for

the following identification: ∆m2
sol = ∆m2

21 and ∆m2
atm = ∆m2

31, or for the inverted
hierarchy, m2

atm =
∣∣∆m2

32

∣∣. Current experiments are not capable of distinguishing be-
tween these two possibilities, meaning they lack sufficient sensitivity to differentiate
between NH and IH [46, 9].

3.2.3 Matter Effects in Neutrino Oscillations

When neutrinos propagate through matter, they are subject to a potential due to their
interaction with the medium’s fermions through coherent forward elastic scattering.
Consequently, neutrino flavor oscillations are affected by the coherent scattering of
charged current3, generating an effective potential denoted as V e f f

CC . This effective
potential can be interpreted as a refractive index that modifies neutrino mixing,
resulting in an effective mixing angle in the matter [48, 9].

Therefore, the Hamiltonian of a system of neutrinos propagating through matter
is given by Hm = H0 +Hint , where H0 is the Hamiltonian in vacuum, see Eq.(3.5),

3It can also be affected by incoherent scattering with particles in the medium, but in many cases,
this scattering can be extremely small and can be neglected.
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and Hint is the Hamiltonian associated with the neutrino’s interaction with matter,
meaning that Hint |να⟩=Vα |να⟩, where Vα is the effective potential.

The effective Hamiltonian of CC is

Hcc
e f f =

GF√
2

[
νeγ

ρ(1− γ
5)νe

][
eγρ(1− γ

5)e
]
. (3.16)

The average of the effective Hamiltonian with the electron background in the
medium is given by

Hcc
e f f =

√
2GFNeνeLγ

0
νeL, (3.17)

where Ne is the electron density of the medium. The effective potential is defined
as Vcc =

√
2GFNe. Similarly, it is possible to obtain the effective potential for neutral

current interactions: VNC =−
√

2GFNn/2. Thus, the more general effective potential
is given by Vα =Vccδαe +VNC [9].

Now, for the evolution equation, we have

i
d
dt
|να(t)⟩= Hm |να(t)⟩ , (3.18)

with |να(0)⟩= |να⟩. The amplitude of transition is ψαβ ≡
〈
νβ

∣∣να(t)
〉

with the condi-
tion ψαβ (0) = δαβ . So, the evolution equation becomes

i
d
dx

ψαβ =

(
p+

m2
1

2E
+VNC

)
ψαβ +∑

η

(
∑
k

Uβk
∆m2

k1
2E

U∗ηk +δβeδηeVCC

)
ψαη .

The first term above is irrelevant for the flavor transition, becouse it can be eliminated
by the phase shift. Therefore, the relevant evolution equation is

i
d
dx

ψαβ = ∑
η

(
∑
k

Uβk
∆m2

k1
2E

U∗ηk +δβeδηeVCC

)
ψαη . (3.19)

For the case of two neutrino mixing between, νe,νµ , the Eq.(3.19) can be written as

i
d
dx

(
ψee

ψeµ

)
=

1
4E

(
−∆m2 cosθ +2EVCC ∆m2 sin2θ

∆m2 sin2θ ∆m2 cos2θ −2EVcc

)
︸ ︷︷ ︸

He f f

(
ψee

ψeµ

)
.
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This He f f can be diagonalided by the orthogonal transformation: UT
MHe f fUM =

diag(−∆m2
M,∆m2

M)/4E, where UM is the effective mixing matrix in matter, given by

UM =

(
cosθM sinθM

−sinθM cosθM

)
.

Therefore, the effective mixing angle in matter θM is given by

tan2θM =
tan2θ

1− 2EVCC
∆M cos2θ

. (3.20)

The transition probability then becomes

Pνe→νµ
= sin2 2θM sin2

(
∆m2

Mx
4E

)
. (3.21)

Comparing Eq.(3.12) with Eq.(3.21), we can see that they have the same structure,
with the mixing angle and the squared-mass difference replaced by their effective
values in matter. Furthermore, in Eq.(3.20), we can observe that the mixing angle in
matter is different from the mixing angle in vacuum [48, 9].

3.3 Neutrino Oscillations Experiments

In neutrino oscillation experiments, there are various types, which include Short-
Baseline experiments (SBL), Long-Baseline experiments (LBL), Very Long-Baseline
experiments, Atmospheric neutrino experiments (ATM), and finally, Solar neutrino
experiments (SOL) [9].

For Short-Baseline (SBL) experiments, there are two types. The first is reactor
SBL, which involves using a high isotropic flux of antineutrinos produced by the
beta decay of heavy nuclei. The neutrinos have energies in the MeV range, and
the distance between the source and the detector is several tens of meters, such
that L/E ≤ 10m/MeV → ∆m2 ≥ 0.1eV2. Since the energy is very low, this type only
measures the survival probability. The second type is accelerator SBL, which uses
neutrino beams produced by the decay of pions, kaons, and muons created by a
proton beam hitting a target. For this type, the ratio L/E is L/E ≤ 1km/GeV → ∆m2 ≥
1eV2.

In LBL experiments, the sources are the same nature as in the SBL case, with the
only difference being that the distance between the source and the detector is two or
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three orders of magnitude greater. Similarly, there are reactor-type LBL experiments
where the distance L is on the order of kilometers, and thus L/E ≤ 103m/MeV →
∆m2 ≥ 10−3eV 2. On the other hand, there are accelerator-based LBL experiments that
produce beams of neutrinos or antineutrinos from the decays of pions and kaons.
Here, we have L/E ≤ 103Km/GeV → ∆m2 ≥ 10−3eV 2.

A final type of these experiments is Very Long-Baseline (VLB) experiments,
which, as the name suggests, involve even greater distances than the previous ones.
Regarding reactor VLB, we have L/E ≤ 105Km/MeV → ∆m2 ≥ 10−5eV2. Meanwhile,
for accelerator VLB experiments, the ratio is on the order of L/E ≤ 104Km/GeV →
∆m2 ≥ 10−4eV2.

Atmospheric neutrino experiments involve detecting neutrinos that originate
from the decays of pions and kaons produced by primary cosmic rays interacting
with the upper atmosphere. The detectable energy of these neutrinos ranges from 500
MeV to 100 GeV. The distances between the source and detector are typically around
20 km to 1.3× 104Km. Typical values are L/E ≤ 104Km/GeV → ∆m2 ≥ 10−4eV2.
Finally, we have solar neutrino experiments, which detect neutrinos generated in the
core of the Sun due to thermonuclear reactions. Here, we have L/E ≤ 1012m/MeV →
∆m2 ≥ 10−12eV2

From these experiments, the following experimental values for the oscillation
parameters are reported [6]:

NH IH
1σ 3σ 1σ 3σ

θ12/
◦ 33.41+0.75

−0.72 31.31→ 35.74 33.41+0.75
−0.72 31.31→ 35.74

θ23/
◦ 42.2+1.1

−0.9 39.7→ 51.0 49.0+1.0
−1.2 39.9→ 51.2

θ13/
◦ 8.58+0.11

−0.11 8.23→ 8.91 8.57+0.11
−0.11 8.23→ 8.94

δcp/
◦ 232+36

−26 144→ 350 276+22
−29 194→ 344

∆m2
21/(10−5eV2) 7.41+0.21

−0.2 6.82→ 8.03 7.41+0.21
−0.2 6.82→ 8.03

∆M3ℓ/10−3eV2 2.507+0.026
−0.027 2.427→ 2.590 −2.486+0.026

−0.028 −2.570→−2.406
Table 3.1 Experimental values for the oscillation parameters. Note that for the normal hierarchy,
ℓ= 1, while for the inverted hierarchy ℓ= 2.
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4
A Perturbative Approach for a Dirac-Taylor
Model

4.1 The Model of Masses and Mixing

As seen in previous chapters, there is a need to diagonalize the mass matrices, which
are generally complex matrices that describe the masses and mixings of neutrinos.
Diagonalizing these matrices is done with the aim of identifying the physical masses
(the massive neutrino fields) of the neutrinos. There are various ways to achieve
this goal; however, these methods tend to be tedious and complicated to carry out.
Therefore, I will now present a construction of a general perturbative technique1 for
analytically diagonalizing complex mass matrices, using the observational fact that
the reactor mixing angle θ13 is relatively small. The construction of this technique is
based on the Takagi factorization, which, as we can see from Theorems A.1.2 and
Corollaries 1 and 2 of the Appendix A, allows for the diagonalization of a complex
matrix through unitary matrices (see Eq. (A.1)). This implies that the technique to
be presented is a perturbative generalization of Theorem 2.3.12.

To attain this, let us consider the relationship between the solar and atmospheric
scales (central values), which can be expressed as

κ =

√
∆m2

sol

∆m2
atm

= 0.17192. (4.1)

1By perturbative technique we mean the method applied in quantum mechanics in which a
hamiltonian of the form H = H0 +λH1 is assumed

2Indeed, this very theorem is a somewhat immediate consequence of Corollary 1.
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On the other hand, for the reactor mixing, we have

tanθ13 = 0.15087∼ O(κ). (4.2)

The deviation of the atmospheric mixing from its maximal value is

|tanθ23−1|= 0.0932∼ O(κ). (4.3)

The reason for this similarity among these three quantities lies in the smallness
of κ , or equivalently, in the smallness of the solar scale3. This can be understood
by assuming that if the physical masses are subject to loop corrections from an
unknown interaction with a coupling parameter of the order of κ , then the mass
terms can be regarded as series of functions. In other words, they can be expanded
in a Taylor series, where κ serves as the expansion parameter. In this sense, at zeroth
order of the coupling parameter, we have a spectrum of degenerate neutrino masses,
where the atmospheric mixing is maximal, and the others are zero. Consequently,
the κ-order corrections must be sufficient to reproduce all the characteristics of the
mixing. In summary, the scale ratio κ can be utilized to perform a Taylor expansion
of the general neutrino mass matrix. Therefore, we express the most general mass
matrix (whether Dirac or Majorana) as

Mν = M0 +δM(κ), (4.4)

where M0 is the zeroth-order matrix in the expansion, δM are smooth functions of κ ,
which are generally complex and at least of order one. In the Dirac case, Mν must be
Hermitian, and in the Majorana case, it must be symmetric.

At this point, I must mention the hypotheses that, together with considerations
about numerical relations in Eqs. (4.1) to (4.3), allow me to sucessfully reproduce
the mixings and mass scales observed in neutrino oscillations. It is assumed that the
charged lepton sector should be diagonalized. Additionally, if V is a maximal matrix,
it allows diagonalizing the matrix M0 such that the µ− τ symmetry is satisfied. The
matrix M0 represents a two degenerate neutrino spectrum (where other mixings
are null), so I need to fix one entry of the M0 matrix, in particular, the entry (M0)11.
Finally, the order κ corrections, that is, δM(κ) must be sufficient to predict all
characteristics of the mixings.

3These numerical coincidences had previously been investigated in the context of Majorana
neutrinos [5, 49].
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Let us consider the complex matrix (squared hermitian matrix4)

A =

 α η ε

η∗ β ρ

ε∗ ρ∗ γ

 , (4.5)

where α,β ,γ ∈ R and η ,ε,ρ ∈ C.
Let κ be a dimensionless parameter, this parameter governs the strength of the

perturbation, as I discussed earlier, see Eq.(4.1). So, to construct our perturbative
model, we assume that our matrix A parameters are actually smooth functions of κ .
In this way5, we have: α(κ),β (κ),γ(κ) ∈ R and η(κ),ε(κ),ρ(κ) ∈ C.

Let us proceed to diagonalize, which will be done in blocks (For a better un-
derstanding of the algebraic development, refer to section A.2). First, let us con-
sider the 2-3 block. This block diagonalization gives rise to eigenvalues m±, where
m+ > m−.Without loss of generality, considering the eigenvalue m−, we obtain the
first eigenvector, and by ensuring orthogonality, it is possible to construct the second
vector. The matrix that performs the first rotation is

R23 =
1

N23

(
m−−β ρ

−ρ∗ m−−β

)
, (4.6)

where N23 is the normalization constant. Invoking Corollary 1, the matrix provided
in Eq.(4.5) can be diagonalized for the 2-3 block. It is possible to compare this with
Eq.(2.24), whit α = 2 and β = 3. Specifically,

ϒ23(θ23,η23) =

(
cosθ23 sinθ23eiη1

−sinθ23e−iη1 cosθ23

)
.

We immediately see that

tanθ23 =
|ρ|

m−−β
or tanθ23 =

|ρ|
m+−β

, (4.7)

It is necessary to consider the mass hierarchy. Therefore, it is convenient to define a
parameter, σ , which indicates either the normal hierarchy (NH) or inverted hierarchy

4This is formed by the product of Mν with its respective conjugate transpose matrix, as shown in
Appendix A.2.

5In the development of the diagonalization method, I will use κ as the expansion parameter.
However, in the application, I make the substitution κ → λ
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(IH). Let σ =±, such that − indicates IH and + indicates NH. Thus

tanθ23 =
|ρ|

mσ −β
. (4.8)

After this first rotation, R†
23AR23, we obtain

R†
23AR23 =

α ∆ Ξ

∆∗ m+ 0
Ξ∗ 0 m−

 . (4.9)

where

∆ =
η(mσ −β )− ερ∗

N23
& Ξ =

ηρ + ε(mσ −β )

N23
, (4.10)

Proceeding analogously to the first diagonalization by block, we will have the second
rotation that diagonalizes the 1-3 block:

R13 =
1

N13

(
µσ −α Ξ

−Ξ∗ µσ −α

)
, (4.11)

where µσ is the eigenvalue corresponding to the 1-3 block, and N13 is the normaliza-
tion constant. It is important to note that, once again, this depends on whether we
consider NH or IH. Comparing this with Eq.(2.24), now with α = 1 and β = 3, we
obtain:

tanθ13 =
|Ξ|

µσ −α
. (4.12)

Performing the rotation as given in Eq.(4.11) on the first rotation given in Eq.(4.9),
we consequently obtain the second rotation that form

R†
13R†

23AR23R13 =

µ−σ Π 0
Π∗ m−σ Θ

0 Θ∗ µσ

 , (4.13)

where

Π =
∆(µσ −α)

N13
& Θ =

−Ξ∆∗

N13
. (4.14)
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The eigenvectors are found in the same way as in the previous cases. Similarly, when
compared with ϒ12, we have

tanθ12 =
|Π|

λ+−µ−σ

, (4.15)

where λ is the eigenvalue of the 1-2 block. The rotation matrix for this block is

R12 =
1

N12

(
λ+−µ−σ Π

−Π∗ λ+−µ−σ

)
. (4.16)

Making this last rotation again, we have

R†
12R†

13R†
23AR23R13R12 =

λ+ 0 E
0 λ− H

E∗ H∗ µσ

= d, (4.17)

where

E =
−ΠΘ

N12
& H =

Θ(λ+−µ−σ )

N12
. (4.18)

Finally, it remains to prove that the matrix d is, to a reasonable extent, diagonal. To
do this, let us notice that the parameters E and H are functions of Θ and Π, which
in turn are functions of Ξ and ∆, and these are functions of the entries of the square
Hermitian matrix (see equations 4.14 and 4.10). This matrix A, as seen in Appendix
A, is constructed through the product ΩΩ†. Therefore, in reality, α,β ,γ,η ,ε,ρ are
the product of fundamental parameters of the matrix Ω, which by construction
are functions of κ . Consequently, this assures us that ∆, Ξ and N12 are functions
of order O

(
κ1), whereas Π and Θ are functions of order O

(
κ2). Therefore, the

matrix given in 4.17, is diagonalized to at least the order of O
(
κ2), an order that

is sufficient to provide a good description of the observational data from neutrino
oscillation experiments. Furthermore, this implies that the corrections induced in the
eigenvalues are of the order O

(
κ4), and the corrections in mixing are of the order

O
(
κ2).
As a final remark, in the quark sector, the quark mixing matrix, also known as

the CKM matrix (Cabibbo-Kobayashi-Maskawa), has a parametrization introduced
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by Wolfenstein, namely 1−λ 2/2 λ Aλ 3(ρ− iη)

−λ 1−λ 2/2 Aλ 2

Aλ 3(1−ρ− iη) −Aλ 2 1

 ,

where λ = s12,Aλ 2 = s23,Aλ 3(ρ− iη) = s13e−iδ . This Wolfenstein parametrization is
an approximation to the standard parametrization (similar to the PMNS, but for
the quark sector). It can be interpreted that λ serves as a perturbative expansion
parameter, which also provides motivation for a perturbative treatment of the PMNS
matrix.

4.2 An Application to Dirac Neutrinos

Since we are considering Dirac-type neutrinos, it is necessary to extend the gauge
symmetry group SU(3)C×SU(2)L×U(1)Y by adding the gauge symmetry U(1)B−L,
see section 2.2.3. As mentioned earlier, the addition of U(1)B−L is anomaly-free. On
the other hand, this also allows us to eliminate the Majorana mass term. To see the
latter, consider that in general, the mass Lagrangian is of the form:

−Lm = ∑
α,β=eµ,τ

Y ′ℓ
αβ

L′αLΦℓ′
βR︸ ︷︷ ︸

Lepton mass

+ ∑
α,β=e,µ,τ

Y ′ν
αβ

L′αLΦ̃ν
′
βR︸ ︷︷ ︸

Dirac mass

− 1
2

ν
C
RMνR︸ ︷︷ ︸

Majorana mass

, (4.19)

where L′L is a singlet under SU(3)C, a doublet under SU(2)L, with hypercharge
Y = −1, zero baryon number (B), and a lepton number (L) of 1. Thus, the B− L
quantum number is −1. Similarly, for right-handed leptons, ℓR is a singlet under
both SU(3)C and SU(2)L, with hypercharge Y =−2, and B−L =−1. In the case of
Φ, it is a singlet under SU(3)C, a doublet under SU(2)L, with hypercharge 1, and
B−L = 0. On the other hand, we have added right-handed neutrinos, which, as
mentioned earlier, are singlets under both SU(3)C and SU(2)L, do not interact, have
zero hypercharge, but B−L = −1. In summary, we have the following quantum
numbers in the table 4.1. Having said that, it follows that

∑
α,β=eµ,τ

Y ′ℓ
αβ

L′αLΦℓ′
βR︸ ︷︷ ︸

∆(B−L)=1+0−1=0

+ ∑
α,β=e,µ,τ

Y ′ν
αβ

L′αLΦ̃ν
′
βR︸ ︷︷ ︸

∆(B−L)=1+0−1=0

− 1
2

ν
C
RMνR︸ ︷︷ ︸

∆(B−L)=−1−1=−2

. (4.20)
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Y B L B-L
LL -1 0 1 -1
ℓR -2 0 1 -1
Φ 1 0 0 0
νR 0 0 1 -1

Table 4.1 The representations LL, ℓR, νR, and the Higgs doublet, along with their quantum numbers
(hypercharge, baryon number, lepton number, and the new charge B−L).

So, under U(1)B−L, the Majorana term can be omitted. Thus, to apply our technique
described in Section 4.1 to Dirac neutrinos, we will use the B−L extension of the
Standard Model.

In this case, since the Dirac mass term induces a Hermitian mass matrix, the
matrix Mν given by Eq.(4.4) must necessarily be Hermitian. Consequently, both
M0 and δM(λ ) are also Hermitian. First, let us calculate the zeroth-order matrix,
M0, which has a spectrum of degenerate neutrino masses, with θ23 being maximal
(θ23 = π/4), and θ13 = 0. These considerations mentioned are based on Equations
(4.1) to (4.3). When we take the limit as κ tends to zero, or equivalently as ∆m2

21→ 0,
this limit of κ→ 0 allows us to construct the zeroth-order term in Eq.(4.4), that is, M0.
To construct this matrix, let us consider the biunitary transformation provided by
Theorem 2.3.1. Let Md be a diagonal matrix, namely Md = (m2

1,m
2
2,m

2
3), and let both

V and OR be unitary matrices, such that

Md =V †MOR,

∴ MM† =V MdOR
†ORM†

dV † =V M2
dV †.

For this consideration, we need to diagonalize the 2−3 sector. Using the expres-
sion from (2.24), with α = 2 and β = 3, along with the corresponding rephasing,
θ13 = 0 and θ23 = π/4, we obtain the matrix that diagonalizes to zeroth-order with
respect to λ :

V =

1 0 0
0 1/

√
2 1/

√
2

0 −1/
√

2 1/
√

2

 .
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So, performing the corresponding operations, we have

MM† =


m2

1 0 0

0 m2
2+m2

3
2

m2
3−m2

2
2

0 m2
3−m2

2
2

m2
2+m2

3
2

 . (4.21)

The idea is to parametrize the square root of the square Hermitian matrix MM†.
Which is nothing more than parametrizing M in such a way that (4.21) is satisfied.
There are various ways to parameterize this matrix; however, several are ruled out
considering that we want the degeneracy of m2

1 with m2
2 and the Hermiticity of the

matrix. Therefore, by imposing these requirements, the ideal parameterization is as
follows

M ≡M0 ∝

A 0 0
0 B r
0 r B

 , (4.22)

where A,B,r ∈ R. By demanding both the inverted hierarchy (IH) and the normal
hierarchy (NH) to be met, the parameterization that fulfills all of the above is as
follows

M0 ∝

A 0 0
0 B C
0 C B

 , (4.23)

where C = σr, which will indicate whether we have NH or IH depending on the
sign of sigma (σ = 1 indicates NH and the opposite for IH). Additionally, to meet
the aforementioned conditions, it is necessary that A = B−σr.

On the other hand, the matrix δM(λ ) must be Hermitian and a function of λ of
at least first order, meaning

δM(λ ) ∝

 aλ bλ cλ

b∗λ dλ eλ

c∗λ e∗λ f λ

 , (4.24)

where a,d, f ∈ R, while the others are complex.
Without loss of generality, let us take B = 1 since this only indicates the loca-

tion of our degeneracy. Furthermore, for the sake of simplicity in illustrating the
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diagonalization, we can take, r = 1, so that A = 1−σ . Thus

Mν =

 Γ bλ cλ

b∗λ ξ σω

cλ σω 1

m0, (4.25)

where Γ = (1−σ)+gλ ,ξ = 1+hλ ,ω = 1+ kλ , and c are real. With this, we are fully
prepared to diagonalize the matrix. Furthermore, note that we naturally expect the
real overall mass scale m0 ∼

√
∆m2

atm. This is the matrix that will be diagonalized
(see Appendix B, Eq.B.3).

To conclude the problem setup, I want to clarify what all of the above represents.
The matrix M0 provides the form of the mass matrix to which perturbative corrections
will be applied (recall that, for the construction of M0, I started with the assumption
of having one zero squared mass difference and another non-zero, ∆m2

12 and ∆m2
13,

respectively). After adding the matrix δM(λ ), that is, the corrections, this should
generate the solar scale. Thus, the ansatz of the work is the matrix Mν , which, by
introducing the scale m0, allows writing the equality.

4.2.1 Masses and Mixing

In order to diagonalize Mν , let us consider H = MνM†
ν as given by

H =

 Γ2 +(|b|2 + c2)λ 2 Γbλ +bξ λ + cωσλ Γcλ +bσωλ + cλ

Γb∗λ +b∗ξ λ + cωσλ |b|2λ 2 +ξ 2 +σ2ω2 b∗cλ 2 +σξ ω +σω

Γcλ +σωb∗λ + cλ cbλ 2 +ξ ωσ +σω cλ 2 +ω2 +1

m2
0,

To simplify, the structure of this matrix is in the following form

H ≡MνM†
ν =

 α η ε

η∗ β ρ

ε∗ ρ∗ γ

 .

According to section 4.1, the matrix H can be diagonalized by the product V †HV ,
with V =R23(θ23,δ1)R13(θ13,δ2)R12(θ12,δ3), where each unitary matrix has an explicit
form given by Eq.(2.24). Furthermore, from the product of the matrices, we have
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explicitly that

α =λ
2(g2 + |b|2 + c2)+λ (2(1−σ)g)+(1−σ)2 ≡ α2λ

2 +α1λ +α0,

β =λ
2(h2 + |b|2 + k2)+λ (2h+2k)+2≡ β2λ

2 +β1λ +β0,

γ =λ
2(c2 + k2)+2kλ +2≡ γ2λ

2 + γ1λ + γ0,

ρ =λ
2(σkh+b∗c)+λ (2k+h)σ +2σ ≡ ρ2λ

2 +ρ1λ +ρ0,

η =λ
2(bh+σck+bg)+λ (b(2−σ)+σc)≡ η2λ

2 +η1λ ,

ε =λ
2(cg+σbk)+λ [c(2−σ)+σb]≡ ε2λ

2 + ε1λ .

Let us calculate |ρ|2, as this is used consecutively, for example, in the calculation of
the eigenvalue of the 2-3 block.

|ρ|2 =
∣∣ρ0 +ρ1λ +ρ2λ

2∣∣2 ≈ |ρ0|2 +(ρ0ρ
∗
1 +ρ1ρ

∗
0 )λ +(|ρ1|2 +(ρ0ρ

∗
2 +ρ2ρ

∗
0 ))λ

2

≡|ρ0|2 +ρ01λ +ρ02λ
2 = |ρ0|2

(
1+

ρ01

|ρ0|2
λ +

ρ02

|ρ0|2
λ

2

)
. (4.26)

Likewise, the normalization constants N23 and N13 are

N23 ≈
√

2|ρ0|
(

1+
ρ01 +2|ρ|(mσ −β )

2|ρ0|2
λ

)
≡
√

2|ρ0|(1+ kλ )≈
√

2|ρ0|, (4.27)

N13 =

√
(µσ −α)2 + |Ξ|2 ≈

√
16+8σ(µσ −α)1λ ≈ 4

[
1+

1
4

σ(µσ −α)1λ

]
. (4.28)

This is because we have neglected terms of λ 2, and Ξ is given by

Ξ =
η1ρ0 + ε1(±|ρ0|)√

2|ρ0|
λ =

η1ρ0 +σε1|ρ0|√
2|ρ0|

λ =
η12σ + ε12σ√

2|ρ0|
λ = σ

η1 + ε1√
2

λ . (4.29)
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The eigenvalue of the 2-3 block is then

m± =
1
2

[
(β + γ)±

√
(β − γ)2 +4|ρ|2

]
≈1

2

[
(β0 + γ0)+(β1 + γ1)λ +(β2 + γ2)λ

2±
√

(γ1−β1)2λ 2 +4|ρ|2
]

(4.30)

≈2±|ρ0|+
λ

2

(
β1 + γ1±

ρ01

|ρ0|

)
+

+
λ 2

2

[
β2 + γ2±

1
4
|ρ0|

[
4

(
ρ02

|ρ0|2
+

(γ1−β1)
2

4|ρ0|2

)
−

ρ2
01

|ρ0|4

]]
, (4.31)

where we have used the expansion for both |ρ|2 and
√

ax2 +bx+ c. Furthermore,
neglecting terms of order λ 2, we have

m±−β ≈ 1
2

[
(γ0−β0)±2|ρ0|+λ

(
γ1−β1±

ρ01

|ρ0|

)]
=±|ρ0|+

λ

2

(
γ1−β1±

ρ01

|ρ0|

)
.

(4.32)

Then, the value of tanθ23 is determined by Eq.(4.8). Utilizing Eq.(4.26) and Eq.(4.32),
we obtain

tanθ23 ≈
|ρ0|
√

1+ ρ01

|ρ0|2
λ

±|ρ0|+ λ

2

(
γ1−β1± ρ01

|ρ0|

)
=±1∓ γ1−β1

2|ρ0|
λ =±

(
1+

h
|ρ0|

λ

)
.

Eliminating the phase, thus

tanθ23 ≈ 1+
h
2

λ . (4.33)

Let us now calculate the eigenvalues of the 1-3 block

µq =
1
2

[
α +mσ +q

√
(α−mσ )2 +4|Ξ|2

]
≈1

2
[(α +mσ )0 +(α +mσ )1λ +(α +mσ )2λ

2, (4.34)

where the sign q has been defined. To obtain the tangent of the mixing angle θ13, it
is sufficient to expand the eigenvalues to order λ 1 and consequently the difference
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µq−α . Doing this, we get

tanθ13 =
|η1 + ε1|√
2 [2+ |ρ0|]

λ .

Using the expressions for η , ρ , and ε , it immediately follows that

tanθ13 =
|b+ c|
2
√

2
λ . (4.35)

Invoking the normalization constant N13 and the expression for Π given in Eq.(4.14),
we have.

Π≈1
4

(
1− 1

4
σ(µσ −α)1λ

)[
(µσ −α)1∆1λ +(µσ −α)1∆1λ

2 +(µσ −α)0∆2λ
2]

=
1
4
[
4σ∆1λ +4σ∆2λ

2 +(µσ −α)1∆1λ
2− (µσ −α)1∆1Λ

2]= σ(∆1λ +∆2λ
2),

where ∆i is the coeficient of λ i in the expansion. Likewise, defining Πi = σ∆i with
i = 1,2, we obtain

Π1 =
η1− ε1√

2
(4.36)

Π2 =
σ

2
√

2
[2σ((η2− ε2)− k(η1− ε1))+(mσ −β )1η1− ε1ρ

∗
1 ] . (4.37)

On the other hand, the difference of eigenvalues λ+ with λ− is ∆m2
sol , that is

∆m2
sol = m2

0

√
(m−σ −µ−σ )

2 +4|Π|2 ∝ m2
0λ

2. (4.38)

The latter is because, at zeroth order, we have a degeneracy with m2
1 and m2

2, so it
is necessary to have a sufficient order of perturbation to separate these squared
masses and thus create a gap between them. In other words, we need ∆m2

21 ∝ m2
0λ 2.

Therefore, defining ψ = m−σ −µ−σ and D = |Π|, we have that both ψ and D must be
of order O(λ 2). The tangent of the angle θ12 and ∆m2

sol is therefore

tanθ12 =
1

x+
√

4+ x2
, (4.39)

∆m2
sol = m2

0

√
ψ2 +4D2, (4.40)
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where x = ψ/D. It is necessary to consider two cases: first, the NH (Normal Hierar-
chy), and second, the IH (Inverted Hierarchy).

For NH, we have η1− ε1 = 0, which implies Π1 = 0. For Π2, we have:

D = |Π2|=
1

2
√

2
|[2(b− c)(g− k)+bg−hc]|= 1

2
√

2
|(b− c)(3g−2(k+ c))|. (4.41)

Similarly, for ψ in the case of normal hierarchy, we have

ψ =
1
4

[
(2k−h)2−4g2

]
λ

2. (4.42)

Now let us consider the case of inverted hierarchy (IH). Here, we have η1− ε1 =

2b−2c ̸= 0. So we have

Π =
2√
2
[b− c]λ +O(λ 2).

However, as I mentioned, the quantities involved in equation 5.38 must be of order
λ 2, so we must impose an additional condition, namely:

b =c− ςλ ∀ς ∈ C. (4.43)

This results in

D = |Π|= 1√
2
|2ς +hb|λ 2. (4.44)

Likewise, we also have

ψ = (2h+2k−4g)λ +O
(
λ

2) .
So, similarly, it is necessary to introduce a new condition to ensure that this parameter
is of the required order for the perturbation. Let ϑ ∈ R such that

h+2(k−g) = ϑλ . (4.45)

Then, ψ becomes

ψ =
[
2ϑ +h(h−4k)− k2−|b+ c|2

]
λ

2. (4.46)
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Finally, we need to obtain ∆m2
atm, which, according to our diagonalization process, is

given by

∆m2
atm

NH: m2
3−m2

1→ (m2
1,m

2
2,m

2
3)≡ (λ−,λ+,µ+)

IH: m2
2−m2

3→ (m2
1,m

2
2,m

2
3)≡ (λ−,λ+,µ−)

Making the corresponding approximations for both cases and taking into account the
added conditions for the inverted hierarchy case, we obtain that for both the normal
hierarchy (NH) and the inverted hierarchy (IH), the mass difference ∆m2

31(
∣∣∆m2

23

∣∣) is

∆m2
atm ≈ [4+(4k+2h)λ ]m2

0. (4.47)

From Eq.(4.33), the parameter h is completely determined by data from atmospheric
mixing observations. Therefore, the model has 5 free parameters, of which c, k,
and m0 are common to both hierarchies. For the normal hierarchy, the remaining
parameters are b and g, while for the inverted hierarchy, the free parameters are ς ,ϑ .

4.2.2 CP Violation

The Jarlskog invariant can be used to quantify the amount of CP violation in any
neutrino mass model. As I mentioned in section 2.3.2, the invariant is given by

J =
1
8

sin2θ12 sin2θ23 sin2θ13 cosθ13 sinδcp. (4.48)

On the other hand, by invoking Eq.(2.35) and making an identification: ∆m2
sol ≡ ∆m2

21

and ∆m2
atm = ∆m2

31
(∣∣∆m2

32

∣∣), (H)21 = η∗,(H)32 = ρ∗,(H)13 = ε , we have

J =−
m6

0

∆m2
sol

(
∆m2

AT M

)2 Im [η∗ρ∗ε] .

For hypothesis λ 2 = ∆m2
sol/∆m2

atm, so

J =

(
m2

0

∆m2
AT M

)3

Im [η∗ρ∗ε]λ−2. (4.49)

Let κ = Im [η∗ρ∗ε]/λ 2, which can be expanded in the form κ = κ0 +κ1λ +κ2λ 2 +

O(λ 3). We have two cases: NH and IH, which I will discuss below. Before going
into detail for the hierarchies, I should mention that from Eqs.(4.48) and (4.49) and
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from the settings of the mixing angles, it follows that

sinδCP =
8

sin2θ12 sin2θ23 sin2θ13 cosθ13

(
m2

0

∆m2
AT M

)3

κ

≈0.463
(

4
m2

0

∆m2
AT M

)3

(κ0 +κ1λ ) . (4.50)

Normal Hierarchy

For this case, it is easy to see that κ0 = 0, but κ1 is different. By performing the
corresponding algebra, we can observe that

κ1 = 2|b| [(1−h+ k)c−g]sinφb. (4.51)

Therefore, from Eqs.(4.50) and (4.51) we have

sinδCP ≈ 0.463
(

4
m2

0

∆m2
AT M

)3

(2|b| [(1−h+ k)c−g]sinφb)λ . (4.52)

Inverted Hierarchy

In this case, the expressions for κ0 and κ1, both of which are non-zero, can be easily
determined. Their corresponding expressions are

κ0 =16c|b|sinφb, (4.53)

κ1 =2|b| [3(g+hc)+2c(g− k)]sinφb. (4.54)

Using Eq.(4.50), the following expression arises for the CO phase,

sinδCP ≈ 0.463
(

4
m2

0

∆m2
AT M

)3

2|b| [8c+(3(g+hc)+2c(g− k))λ ]sinφb. (4.55)

As we can see from the expressions in (4.52) and (4.55), the CP phase is controlled by
a single phase, φb. This was expected because, due to the rephasing of the Mν matrix,
the only remaining physical phase is that of b (see Eq.B.3).
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4.2.3 Numerical Verification

To conclude, it is necessary to validate the diagonalization process (described in
Section 4.1 and applied in this Section 4.2) through a numerical procedure to explore
the behavior of the model’s parameters such that they reproduce the observed
mixings and oscillation scales within the current level of precision. To achieve
this, we numerically solve the diagonalization (i.e., solve an eigensystem) of the
Hermitian square matrix H = MνM†

ν , where Mν is given by Eq.(4.25) and random
values are assigned to the parameters of this matrix. Subsequently, by calculating the
expressions for the squared mass differences and the CP phase, we retain only those
parameters that are within one and three standard deviations of the reported mixings
and CP phase values. On the other hand, from Eq.(4.25), the factor m0 plays the role
of a global scaling factor. Therefore, an appropriate choice for a discriminative factor
is to use the scale relation given in Eq.(4.1), thus reducing the number of parameters
for the analysis by one unit.

A numerical analysis was carried out for the normal hierarchy (NH) case. To
do this, the model parameters, namely, h,c,k,b,g, were randomly varied within a
range that reasonably maintains the perturbation hypothesis. From Figure 4.1, we
notice a correlation between the quantities b and c, which is in complete agreement
with Eq.(4.35). Similarly, in the other parameters illustrated in the same figure, an
apparent correlation is observed, which again aligns with our analytical expressions
(4.41) and (4.42). The red points represent parameters that satisfy the conditions to
reproduce the observables obtained from neutrino oscillations at 1 sigma, while the
blue points satisfy them at 3 sigma (this convention is maintained for the subsequent
figures). As we can see from this, there is no strong distinction between the 1 sigma
and 3 sigma regions.

For the case of the inverted hierarchy, it is necessary to explicitly consider the
tuning conditions: b = c− ςλ and h+2(k−g) = ϑλ to focus the parameter search.
Similarly, random values were assigned to these tuning conditions within the inter-
vals: ϑ ∈ [−2.5,2] and ς ∈ [1.6,2.3]. For ϕc, the values ranged from 0 to 2π , while for
h and k, they were between [−3,3], and for b, it was within [−1,1]. This resulted in
the parameter space shown in Figure 4.2. From this figure, it is possible to notice that,
unlike the normal hierarchy, not all parameters exhibit a pronounced correlation.
This is evident, for example, in the parameters h−b in Figure 4.2. On the other hand,
we can see that there is a shift to the left between the values for 1σ and 3σ in the
parameter ς , overlapping in the region ς1 ≡ [2,2.2]⊂ ς . This shift is due to the lack
of control over this parameter, as it was introduced "artificially" to provide the mass
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Fig. 4.1 The allowed parameter space for the normal hierarchy shows b and k as functions of h, and
b also as a function of c. The blue points indicate the points that satisfy the required constraints on
the angles, CP phase and ∆m2

sol/∆m2
atm at 3σ . The same applies to the red points, representing the

points at 1σ .

Fig. 4.2 The allowed parameter space for the Inverted Hierarchy is observed. We are looking at the
subspace of ϑ − ς −|b|−h.
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gap. In the figures of Appendix C, I illustrate the region obtained from the physical
parameters based on the values obtained for both hierarchy cases.

To use the CP phase as a filter for obtaining these parameters, it was necessary to
take into account the existence of a rephasing symmetry (Appendix B.2, Eq.B.14). In
Figure 4.3, the CP phase is illustrated as a function of the parameter k for the normal
hierarchy.

Fig. 4.3 Allowed values for the CP phase in the case of the normal hierarchy. In red, we have the
values at 1σ , while the blue points are at 3σ .
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In Figure 4.4, similarly, the CP phase is shown as a function of the parameter
c for the inverted hierarchy. From it, we observe that the concentration of points
for both 1σ and 3σ is in the interval c ∈ [−0.74,−0.5]∪ [0.5,0.74] ≡ Ωc. However,
from these concentrations, we can see that in the case of the normal hierarchy, all
our points fall within the accepted range for the CP phase, whereas in the case
of the inverted hierarchy, at 1σ , the concentration of points is below the accepted
CP range. This means, for any ε > 0, then ∀c ∈ Ωc, we have E(ci,ε)∩ Fr(δ 1σ

cp ) =

0∧E(ci,ε)∩δ 1σ
cp = 0 , where E(x,r) denotes the disk centered at x with radius r y Fr

denotes the boundary of the accepted CP interval. On the other hand, for the case of
3σ , we have E(ci,ε)∩Fr(δ 3σ

cp ) ̸= 0∧E(ci,ε)∩δ 3σ
cp = 0, that is to say, the points at 3σ

are well below the accepted interval. All of this leads to the indication that through
the process of diagonalization, the mass matrix parametrized under the assumption
of Dirac neutrinos is not sensitive to the inverted hierarchy. In other words, the
inverted hierarchy is marginally, and the 1σ points would be acceptable if the phase
falls within 3σ .

Fig. 4.4 Allowed values for the CP phase in the case of the inverted hierarchy. In red, we have the
values at 1σ , while the blue points are at 3σ
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5
Conclusions and Perspectives

In this work, a diagonalization process focused on a perturbative technique has
been studied due to the smallness of the angle θ13. We employ this technique with
a model that constructs a neutrino mass matrix of the form M0 +δM(λ ), where λ

arises from the ratio of neutrino scales. As an application of the method, we consider
Dirac-type neutrinos.

Observation of oscillations suggest that the tangent of the angle θ13 is of the
order of λ , similar to the deviation from the maximum value of tanθ23, where
λ ∼

√
∆M2

sol/∆M2
atm. This apparent relationship can be understood by considering

the series expansion on λ of the mass matrix which could suggest a perturbative
approach for the origin of neutrino mass terms. Indeed, the diagonalization method
presented in this thesis allows us to express all observables as functions of λ , success-
fully reproducing the parameter’s dependence on the respective observable. It was
found that both the tangent of the angle θ23 and θ13 have the same structure for both
hierarchies (NH and IH), as well as for the difference of masses ∆m2

atm. However,
in the case of the angle θ12 and the squared mass difference ∆m2

sol , it was naturally
obtained that for the normal hierarchy, the parameters Ψ and D are of order λ 2 as
described in the previous text. While for the inverted hierarchy, these parameters are
not naturally of the same order, so to satisfactorily reproduce the mass gap between
m2

1 and m2
2, it is necessary to introduce new parameters that allow us to model this

quadratic dependence artificially, thus raising some level of fine-tuning for such a
hierarchy.

Similarly, a numerical analysis was carried out to verify the analytical method.
From this analysis, it was found that despite the normal hierarchy being very natural
and there being an apparent correlation between the parameters, there is still an
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additional degeneracy that is not very evident. This is illustrated by the points in the
parameter space shown in Figure 4.1, where a tiny variation in the parameters can
move us from the 3σ regime to the 1σ regime and vice versa. On the other hand, in
the case of the inverted hierarchy, it was found that not all parameters are correlated
(see Figure 4.2). However, it is also observed that similar to the normal hierarchy
case, there is still an additional degeneracy (in addition to the parameters ς and ϑ

introduced to reproduce the mass gap. Some of these observations coincide with
the case of Majorana-type neutrinos, as discussed in [5]), as slight variations in the
parameters can transition us from the 1σ regime to the 3σ regime and vice versa.

From observing the CP acceptance bands, it is evident that, in the case of the
inverted hierarchy, the procedure illustrated here is not sensitive to it. This is evident
from Figure 4.4, where no points are within the acceptance interval at 1σ , and only
a concentration near the boundary of the CP angle band is observed at 3σ . On the
other hand, the acceptance of these red points is possible if the phase is allowed to
fall within the 3-sigma range. This restriction arises from the requirements related
to the other parameters. In other words, the Inverted Hierarchy (IH) could still
marginally conform to the observations. Thus, we conclude that by leveraging the
smallness of the angle θ13, it is possible to work with a perturbative method to
diagonalize the mass matrix using a parameter λ , which satisfactorily reproduces
the experimental observations of oscillations for the Dirac case. However, the model
proposed here is only sensitive to the normal hierarchy, thus suggesting that the
proposed correlation among observables may not work for the inverted hierarchy
case.

There is still work to do. As a first point, we should consider the parameter c not
being fixed at one, just like the parameter B as described in the previous text. This
would allow us to play with the value where we fix the squared neutrino mass scale,
thus providing an additional constraint that could improve the distribution of all
parameters. As a second point, we might expect that if we extend the expansion to
order λ 2 instead of λ , we could explore the possibility of improving the predictions
of all mixing characteristics and, in doing so, delve into searching for a new fine-
tuning that would eliminate the degeneracy between 1σ and 3σ in the parameters.
Finally, from the observation of the structure of the mass matrix Mν , the following
questions arise, which we must then provide an answer to. Is this peculiar structure
of the matrix a result of some symmetry? And if so, what is this symmetry?.



References

[1] B Kayser, F Gibrat-Debu, and F Perrier. The Physics of Massive Neutrinos. WORLD
SCIENTIFIC, 1989.

[2] Particle Data Group, Zyla, and et al. Review of Particle Physics. Progress of
Theoretical and Experimental Physics, 2020(8):083C01, 08 2020.

[3] Gustavo C. Branco and M. N. Rebelo. Building the full pontecorvo-maki-
nakagawa-sakata matrix from six independent majorana-type phases. Phys.
Rev. D, 79:013001, Jan 2009.

[4] W. Rodejohann and J. W. F. Valle. Symmetrical parametrizations of the lepton
mixing matrix. Physical Review D, 84(7), oct 2011.

[5] Eduardo Becerra-García and Abdel Pérez-Lorenzana. Are neutrino oscillation
mixings linked to the smallness of solar neutrino scale?, 2022.

[6] Ivan Esteban, M.C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and
Albert Zhou. The fate of hints: updated global analysis of three-flavor neutrino
oscillations. Journal of High Energy Physics, 2020(9), sep 2020.

[7] M.J.D. Hamilton. Mathematical Gauge Theory With Applications to the Standard
Model of Particle Physics, chapter 8, page 474. Universitext. Springer International
Publishing, Munich, Germany, 2017.

[8] T Morii, C S Lim, and S N Mukherjee. The Physics of the Standard Model and
Beyond. WORLD SCIENTIFIC, 2004.

[9] C. Giunti and C.W. Kim. Fundamentals of Neutrino Physics and Astrophysics. OUP
Oxford, 2007.

[10] Michael E. Peskin. Concepts of Elementary Particle Physics. Oxford University
Press, 08 2019.

[11] John F. Gunion. The Higgs Hunter′s Guide. 1990.

[12] Paul Langacker. The Standard Model and Beyond (2nd ed.), pages 262–263. CRC
Press, Boca Raton, 2017.

[13] M.J.D. Hamilton. Mathematical Gauge Theory With Applications to the Standard
Model of Particle Physics, page 457. Universitext. Springer International Publish-
ing, Munich, Germany, 2017.



66 REFERENCES

[14] Claude Itzykson and Jean-Bernard Zuber. Quantum Field Theory, page 519.
Dover, New York, 1980.

[15] Palash B. Pal. An Introductory Course of Particle Physics, page 449. CRC Press,
Boca Raton, 2014.

[16] Paul Langacker. The Standard Model and Beyond (2nd ed.), page 119. CRC Press,
Boca Raton, 2017.

[17] Anca Tureanu. Neutrino oscillations by a manifestly coherent mechanism and
massless vs. massive neutrinos. Physics Letters, Section B: Nuclear, Elementary
Particle and High-Energy Physics, 843, 2023.

[18] Rabindra N Mohapatra and Palash B Pal. Massive Neutrinos in Physics and
Astrophysics, chapter 3. World Scientific, 3rd edition, 2004.

[19] John N. Bahcall. Standard solar models. Nuclear Physics B - Proceedings Supple-
ments, 77(1-3):64–72, may 1999.

[20] Nagashima Y. Beyond the Standard Model of Elementary Particle Physics. John
Wiley and Sons, Ltd, 2014.

[21] Paul Langacker. The Standard Model and Beyond (2nd ed.), page 374. CRC Press,
Boca Raton, 2017.

[22] M.J.D. Hamilton. Mathematical Gauge Theory With Applications to the Standard
Model of Particle Physics, chapter 9, page 536. Universitext. Springer International
Publishing, Munich, Germany, 2017.

[23] Florian Bonnet, Martin Hirsch, Toshihiko Ota, and Walter Winter. Systematic
study of the d = 5 weinberg operator at one-loop order. Journal of High Energy
Physics, 2012(7), jul 2012.

[24] Josu Hernandez-Garcia and Stephen F. King. New weinberg operator for
neutrino mass and its seesaw origin. Journal of High Energy Physics, 2019(5),
may 2019.

[25] K. Zuber. Neutrino Physics. Series in Particle Physics, Cosmology and Gravita-
tion. CRC Press, 2020.

[26] Ali H. Chamseddine, Alain Connes, and Walter D. van Suijlekom. Beyond the
spectral standard model: emergence of Pati-Salam unification. Journal of High
Energy Physics, 2013(11), nov 2013.

[27] R. N. Mohapatra and R. E. Marshak. Local b− l symmetry of electroweak
interactions, majorana neutrinos, and neutron oscillations. Phys. Rev. Lett.,
44:1316–1319, May 1980.

[28] Fabien Besnard. On symmetry breaking in the B-L extended spectral standard
model. Journal of Physics A: Mathematical and Theoretical, 55(26):264010, jun 2022.

[29] De-Sheng Li. Representation of fermions in the Pati-Salam model, 2023.



REFERENCES 67

[30] V.V. Vien. Neutrino mass and mixing in U(1)B˘L extension with Σ(18) symmetry.
Chinese Journal of Physics, 73:47–55, 2021.

[31] Lorenzo Basso, Stefano Moretti, and Giovanni Marco Pruna. Renormalization
group equation study of the scalar sector of the minimal B-L extension of the
standard model. Phys. Rev. D, 82:055018, Sep 2010.

[32] Weijian Wang, Ruihong Wang, Zhi-Long Han, and Jin-Zhong Han. The B-L
scotogenic models for dirac neutrino masses. The European Physical Journal C,
77(12), dec 2017.

[33] W. Buchmüller, C. Greub, and P. Minkowski. Neutrino masses, neutral vector
bosons and the scale of B-L breaking. Physics Letters B, 267(3):395–399, 1991.

[34] Shaaban Khalil. Low-scale B–L extension of the standard model. Journal of
Physics G: Nuclear and Particle Physics, 35(5):055001, mar 2008.

[35] S. M. Bilenky and S. T. Petcov. Massive neutrinos and neutrino oscillations. Rev.
Mod. Phys., 59:671–754, Jul 1987.

[36] Francis D. Murnaghan. The unitary and rotation groups. 1962.

[37] C Giunti, C.W Kim, and M Monteno. Atmospheric neutrino oscillations with
three neutrinos and a mass hierarchy. Nuclear Physics B, 521(1-2):3–36, jun 1998.

[38] Carlo Giunti and Morimitsu Tanimoto. Cp violation in bilarge lepton mixing.
Physical Review D, 66(11), dec 2002.

[39] D. J. Wagner and Thomas J. Weiler. Boxing with neutrino oscillations. Physical
Review D, 59(11), apr 1999.

[40] James D. Bjorken and Isard Dunietz. Rephasing-invariant parametrizations of
generalized kobayashi-maskawa matrices. Phys. Rev. D, 36:2109–2118, Oct 1987.

[41] Klaus Bering. Generalized jarlskog invariants, mass degeneracies and echelon
crosses, 2021.

[42] C. Jarlskog. Commutator of the quark mass matrices in the standard elec-
troweak model and a measure of maximal CP nonconservation. Phys. Rev. Lett.,
55:1039–1042, Sep 1985.

[43] G. C. Branco, M. N. Rebelo, and J. I. Silva-Marcos. Degenerate and quasidegen-
erate majorana neutrinos. Physical Review Letters, 82(4):683–686, jan 1999.

[44] Gustavo C. Branco, Takuya Morozumi, B.M. Nobre, and M.N. Rebelo. A
bridge between cp violation at low energies and leptogenesis. Nuclear Physics
B, 617(1):475–492, 2001.

[45] G. C. Branco, R. González Felipe, F. R. Joaquim, I. Masina, M. N. Rebelo, and
C. A. Savoy. Minimal scenarios for leptogenesis and cp violation. Physical
Review D, 67(7), apr 2003.



68 REFERENCES

[46] M. Thomson. Modern Particle Physics. Modern Particle Physics. Cambridge
University Press, 2013.

[47] C. Giunti. Quantum mechanics of neutrino oscillations, 2001.

[48] Fayç al Hammad, Parvaneh Sadeghi, and Nicolas Fleury. Neutrino flavor
oscillations inside matter in conformal coupling models. Physical Review D,
107(10), may 2023.

[49] Francesco Vissani. A Statistical approach to leptonic mixings and neutrino
masses. In 11th International School on Particles and Cosmology, 11 2001.

[50] A. W. Gillies. The physical content of autonne’s lemma. SIAM Journal on Applied
Mathematics, 19, 1970.

[51] Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University
Press, 2 edition, 2012.



A
P

P
E

N
D

I
X

A
Matrix Manipulation

In this appendix, the mathematical tools necessary for a complete understanding of
the development of this thesis are provided. Section A.1 presents the definitions and
conventions required, followed by section A.2 which illustrates the general process
of diagonalizing 3×3 matrices of masses.

A.1 Basic Concepts

A matrix A over a field K is defined as an ordered table of scalars ai j in the form

A =


a11 a12 · · · a1n

a21 a22 · · · a2n
...

... · · · ...
am1 am2 · amn

 .

More formally, a matrix is an array of size m×n of scalars over the field K. The set of
all m×n matrices over K is denoted as M [K,m×n]. In general, the field K is often
taken to be C, that is, the field of complex numbers. Here, we have ai j ∈C. The main
diagonal of A consists of the elements a11,a22, · · · ,app, where p = min{m,n}.

The transpose of a matrix A = [ai j] ∈M [R,m×n], denoted by AT , is given by
AT = [a ji]. The conjugate transpose of a matrix A = [ai j] ∈M [C,m×n], denoted by
A†, is defined as A† = (A∗)T , where A∗ is the conjugate of each element of the matrix.

There exists a wide range of matrix classes defined based on transpose or con-
jugate transpose operations. However, the three most important matrix classes
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are Hermitian matrices, symmetric matrices, and orthogonal matrices, which are
defined as follows

Definition A.1.1 Let A ∈M [K]. A matrix is said to be symmetric if AT = A, and antisym-
metric if AT =−A.

Definition A.1.2 Let A ∈M [C]. A matrix is said to be Hermitian if A† = A.

Definition A.1.3 Let A ∈M [K]. A matrix is said to be orthogonal if AAT = I.

here I have omitted the dimension of the matrices A. The most relevant case in this
thesis is the case of Hermitian matrices, so only this type of matrices is considered.
On the other hand, an important aspect of matrices is the eigenvectors and eigenval-
ues, as they allow for the diagonalization of a matrix.

Definition A.1.4 Let A ∈ End(K) be a linear transformation and v be a non-zero vector
such that

Av = λv

with λ ∈ C. Then we say that v is an eigenvector and λ an eigenvalue of A.

The abbreviation "End" has been used for endomorphism: End(K). It is important to
note that a matrix can be the representation of a linear transformation in a respective
basis. With these eigenvalues, we have the following theorem.

Theorem A.1.1 A square matrix A of dimension n is similar to a diagonal matrix D if and
only if A has n linearly independent eigenvectors. In such case, the elements of D are the
eigenvalues, and D = P−1AP, where P is the matrix whose columns are the eigenvectors.

In the particular case where P is an orthogonal matrix, then we have D = PT AP.

Furthermore, let us consider the following theorems about diagonalization of matri-
ces, which aid in the diagonalization of the mass matrix [50, 51]:

Theorem A.1.2 (Autonne’s uniqueness theorem) . Let A∈M [C,n×m]≡Mn,m be given
with rank A = r. Let s1, . . . ,sd be the distinct positive singular values of A, in any or-
der, with respective multiplicities n1, . . . ,nd , and let Σd = s2

1In1 ⊕ ·· · ⊕ s2
dInd ∈Mr. Let

A =V ΣW ∗ be a singular value decomposition with Σ =

(
Σd 0
0 0

)
∈Mn,m, so that ΣT Σ =
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s2
1In1⊕·· ·⊕ s2

dInd ⊕0n−r and ΣΣT = s2
1In1⊕·· ·⊕ s2

dInd ⊕0m−r. Let V̂ ∈Mn and Ŵ ∈Mm be
unitary. Then A = V̂ ΣŴ ∗ if and only if there are unitary matrices U1 ∈Mn1, . . . ,Ud ∈Mnd ,
Ṽ ∈Mn−r and W̃ ∈Mm−r such that

V̂ =V (U1⊕·· ·⊕Ud⊕Ṽ ) & Ŵ =W (U1⊕·· ·⊕Ud⊕W̃ )

if A is real and the factors V,W,V̂ ,Ŵ are real orthogonal, then the matrices U1, · · ·Ud , Ṽ and
W̃ may be taken to be real orthogonal.

As consequences of this uniqueness theorem, the following corollaries are obtained:

Corollary 1 ( Autonne-Takagi factorization) . Let A ∈Mn. If A is symmetric, there is
a unitary U ∈Mn such that A =UΣUT , in which Σ is a nonnegative diagonal matrix whose
diagonal entries are the singular values of A , in any desired order.

Corollary 2 (Uniqueness) . Suppose that A is symmetric and rank A = r. Let s1, . . . ,sd be
the distinct positive singular values of A, in any given order, with respective multiplicites
n1, . . . ,nd . Let Σ = s1In1 ⊕·· ·⊕ sdInd ⊕0n−r; the zero block is missing if A is nonsingular.
Let U ,V ∈Mn be unitary. Then A =UΣUT =V ΣV T if and only if V =UZ, Z = Q1⊕·· ·⊕
Qd⊕ Z̃, Z̃ ∈Mn−r is unitary, and each Q j ∈Mn j is real orthogonal. If the singular values of
A are distinct, that is, if d ≥ n−1, then V =UD, in which D = diag(d1, . . . ,dn), di =±1 for
each i = 1, . . . ,n−1, dn =±1 if A is nonsingular, and dn ∈ C with |dn|= 1 if A is singular.

These theorems and corollaries imply that if Ω is a symmetric matrix and if U is a
unitary matrix, such that

D =UT
ΩU (A.1)

where D is a diagonal matrix. Then

D2 = D† ·D =
(
UT

ΩU
)† (

UT
ΩU
)
=
(

U†
Ω

†(UT )†
)(

UT
ΩU
)
=U†

Ω
†
ΩU (A.2)

since U†U = I. The factor H ≡Ω†Ω is a squared Hermitian matrix, and U is the matrix
that diagonalized H, where D2 = diag(h2

1, . . . ,h
2
n) with hk being the eigenvalues of H.

A.2 Diagonalization of the Neutrino Mass Matrix

A direct consequence of Theorem A.1.2 and Corollary 1 indicates that by using a
unitary matrix, which can be written as the product of other unitary matrices1, it is

1For all n, the set of all n×n unitary matrices forms a group under matrix multiplication.
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possible to diagonalize a complex matrix. This is of great utility because, as we will
see next, it is possible to diagonalize a squared mass matrix through sub-blocks of
said matrix. Now, considering the expression A.2, we see that it is possible to obtain
a squared Hermitian matrix from a symmetric matrix. This is also fulfilled when
our matrix Ω is Hermitian from the outset. Therefore, without loss of generality, let
us consider Ω as a complex 3×3 matrix (Hermitian or symmetric). I will illustrate
the general diagonalization process for a mass matrix. For the above reasons, it is
not important whether we are dealing with Dirac neutrinos or Majorana neutrinos
(Hermitian or symmetric mass matrix, respectively). The following method is
applicable to both cases. Let us consider the following squared hermitian matrix

A≡ΩΩ
† =

 α η ε

η∗ β ρ

ε∗ ρ∗ γ

 ,

where α,β ,γ ∈ R and η ,ε,ρ ∈ C. The diagonalization will be carried out by blocks.
Let us consider the 2−3 block, that is

A2−3 =

(
β ρ

ρ∗ γ

)
.

The eigenvalues corresponding to this block are

m± =
1
2

[
γ +β ±

√
(γ−β )2 +4|ρ|2

]
, (A.3)

We observe that the smallest value of these two eigenvalues is m−, that is, m− < m+.
As the eigenvalues of Hermitian matrix are real, and therefore the discriminant will
be positive. Hence, the statement above is fulfilled.

The eigenvectors corresponding to this value are(
β −m± ρ

ρ∗ γ−m±

)(
x1

x2

)
= 0.

Considering the eigenvalue m−, we will have the following system of equations

(β −m−)x1 +ρx2 =0,

ρ
∗x1 +(γ−m−)x2 =0,
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from the first equation we obtain the first eigenvector

v =
1

N23

(
ρ

m−−β

)
,

where N23 is the normalization constant given by N23 =

√
|ρ|2 +(m−−β )2. To con-

struct the eigenvector associated with m+, we can proceed as follows. The eigenvec-
tor associated with m− must be orthogonal to the first one. Let w be that vector, it
must satisfy

v†w = 0→
(

ρ∗ m−−β

)(y1

y2

)
= 0,

this leads to the following expression

ρ
∗y1 +(m−−β )y2 = 0

∴ w =
1

N23

(
m−−β

−ρ∗

)
.

Therefore, our matrix that performs the first rotation is

R23 =
1

N23

(
m−−β ρ

−ρ∗ m−−β

)
.

If we compare this matrix with the rotation matrix

ϒ(θ23,η23) =

(
cosθ23 sinθ23eiη23

−sinθ23e−iη23 cosθ23

)
.

We immediately see that

tanθ23 =
|ρ|

m−−β
. (A.4)

Using a smilar procedure, we obtain

tanθ23 =
|ρ|

m+−β
. (A.5)
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Now, it is necessary to consider the mass hierarchy. Let us observe that when we are
diagonalizing, what we are obtaining in the entry (3,3) of the squared mass matrix,
A, is the squared mass m2

3. On the other hand, for the inverted hierarchy, m2
3 is the

smallest mass, so it corresponds to m−. However, if we are in the normal hierarchy,
m2

3 is the largest mass, so it corresponds to m+. This implies that if we want to work
in the normal hierarchy, we must use the expression A.5, otherwise we should work
with A.4. Let us define σ =±, this way we can synthesize the expressions depending
on the value of σ :

tanθ23 =
|ρ|

mσ −β
. (A.6)

The matrix R23 and the normalization constant remain

R23 =
1

N23

(
mσ −β ρ

−ρ∗ mσ −β

)
& N23 =

√
|ρ|2 +(mσ −β )2.

By performing the first rotation, we obtain

R†
23AR23 =

α ∆ Ξ

∆∗ m+ 0
Ξ∗ 0 m−

 , (A.7)

where

∆ =
η(mσ −β )− ερ∗

N23
, Ξ =

ηρ + ε(mσ −β )

N23
.

Let us proceed to diagonalize the 1−3 block now:

A1−3 =

(
α Ξ

Ξ∗ m−

)
.

The eigenvalues are

µ± =
1
2

[
α +m−±

√
(α−m−)2 +4|Ξ|2

]
.
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Proceeding analogously to the first diagonalization, we will have(
α−µ− Ξ

Ξ∗ m−−µ−

)(
x1

x2

)
= 0,

thus

(α−µ−)x1 +Ξx2 =0,

Ξ
∗x2 +(m−−µ−)x2 =0.

Again, taking the first expression, we obtain the first eigenvector

v =
1

N13

(
Ξ

µ−−α

)
.

To obtain the eigenvector associated with µ+, we impose orthogonality between the
two eigenvectors, so we will have

w =
1

N13

(
µ−−α

−Ξ∗

)
.

In this way, the next rotation that diagonalizes the 1−3 block is

R13 =
1

N13

(
µ−−α Ξ

−Ξ∗ µ−−α

)
.

Once again, taking into account the normal or inverted hierarchy, we reintroduce
the previously defined parameter σ in order to obtain

R13 =
1

N13

(
µσ −α Ξ

−Ξ∗ µσ −α

)
. (A.8)

with

N13 =
(
(µσ −α)2 + |Ξ|2

)1/2
& tanθ13 =

|Ξ|
µσ −α

.
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Performing the obtained rotation A.8 on A.7, we get

R†
13R†

23AR23R13 =

µ+ Π 0
Π∗ m+ Θ

0 Θ∗ µ−

 , (A.9)

where

Π =
∆(µσ −α)

N13
& Θ =

−Ξ∆∗

N13
.

Finally, let us diagonalize the last block. However, we must consider that in expres-
sions A.7 and A.9, we are explicitly considering the inverted hierarchy. To consider
the normal hierarchy, we must change the sign from + to −, meaning that the order
in the diagonal changes. This implies that the eigenvalues of this last block will be
functions of µ−,m− or µ+,m+ for the normal or inverted hierarchy, respectively. To
synthesize this into a single case, let us consider the following matrix

R†
13R†

23AR23R13 =

µ−σ Π 0
Π∗ m−σ Θ

0 Θ∗ µσ

 .

Thus, the last block is

A1−2 =

(
µ−σ Π

Π∗ m−σ

)
,

whose eigenvalues are

λ± =
1
2

[
µ−σ +m−σ ±

√
(µ−σ −m−σ )

2 +4|Π|2
]
.

The eigenvectors are found in the same way as in the previous cases. The rotation
matrix for this block is

R12 =
1

N12

(
λ+−µ−σ Π

−Π∗ λ+−µ−σ

)
,
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where N12 =
(
(λ+−µ−σ )

2 + |Π|2
)1/2

. Therefore, the tangent of the angle θ12 is

tanθ12 =
|Π|

λ+−µ−σ

.
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About the rephasing of complex matrices

As we well know, in general, the complex matrices in question have both physical
and non-physical phases. Therefore, we are interested in determining which of all
the phases contained in the mass matrix or the PMNS matrix are physical. To achieve
this, it is necessary to rephase the matrices in such a way that we can eliminate as
many phases as possible from the corresponding matrices. Let us start with the mass
matrix, denoted as Mν , discussed in Chapter 4.2 and finalizing with the rephasing of
the PMNS matrix.

B.1 In Relation to the Mass Matrix Rephasing

In Chapter 4.2, we encounter the following mass matrix

Mν ∝

 Γ |b|eiφbλ |c|eiφcλ

|b|e−iφbλ ξ σω

|c|e−iφcλ σω∗ 1

 .

Let us eliminate the phase of ω

Mν ∝

1 0 0
0 1 0
0 0 e−iφω


 Γ |b|eiφbλ |c|ei(φc−φω )λ

|b|e−iφbλ ξ σ |ω|
|c|e−i(φc−φω )λ σ |ω| 1


1 0 0

0 1 0
0 0 eiφω

 . (B.1)
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Let us define θc as φc−φω . Similarly, we can eliminate the phase of b

Mν ∝

eiφb 0 0
0 1 0
0 0 e−iφω


 Γ |b|λ |c|ei(θc−φb)λ

|b|λ ξ σ |ω|
|c|e−i(θc−φb)λ σ |ω| 1


e−iφb 0 0

0 1 0
0 0 eiφω

 .

Let us define ϕc as θc−φb. In this form, the final matrix is

Mν ∝

eiφb 0 0
0 1 0
0 0 e−iφω


 Γ |b|λ |c|eiϕcλ

|b|λ ξ σ |ω|
|c|e−iϕcλ σ |ω| 1


e−iφb 0 0

0 1 0
0 0 eiφω

 . (B.2)

In this way, we have been able to absorb two phases from the original matrix, leaving
only the phase of c, and thus, b and ω become real. Similarly, it is possible to keep b
complex and c real. To achieve this, let us reconsider Eq.(B.1) with θc = φc−φω :

Mν ∝

1 0 0
0 1 0
0 0 e−iφω


 Γ |b|eiφbλ |c|eiθcλ

|b|e−iφbλ ξ σ |ω|
|c|e−iθcλ σ |ω| 1


1 0 0

0 1 0
0 0 eiφω


=

1 0 0
0 e−iθc 0
0 0 e−iΘ


 Γ |b|eiϕb |c|λ
|b|e−iϕb ξ σ |ω|
|c|λ σ |ω| 1


1 0 0

0 eiθc 0
0 0 eiΘ

 . (B.3)

where Θ = θc +φω and ϕb = φb−θc. As we can see from Eq. (B.2) and Eq. (B.3), it is
possible to eliminate two of the three phases that are originally present. This can
be done by either keeping c real and making b complex, or by keeping c complex
while making b real. In this work, we chose, without loss of generality, the latter
case, meaning we kept b ∈ C and c ∈ R.

B.2 Of the PMNS Matrix and its Rephasing

In the procces of diagonalization , we have using the following descomposition of
an unitary matriz (see 4.17)

R = R23R13R12, (B.4)
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where using the notation cosθi j = ci j and sinθi j = si j, we have

Ui j ≡Ui j
(
θi j,δi j

)
=

(
ci j si jeiδi j

−si je−iδi j ci j

)
. (B.5)

Performing the product as dictated by Eq.(B.4), we have

U =

 c12c13 c13s12eiφ s13eiψ

−s13s23c12ei(θ−ψ)− c23s12e−iφ −s12s13s23ei(θ−ψ+φ)+ c12c23 c13s23eiθ

−s13c23c12e−iψ + s23s12e−i(θ+φ) −s12s13c23e−i(ψ−φ)− s23c12e−iθ c23c13

 ,

which can be rewritten as the product of two diagonal matrices and a phased matrix,
namely:

U = F†
1

 c12c13 c13s12 s13eiψ

−s13s23c12ei(θ−ψ+φ)− c23s12 −s12s13s23ei(θ−ψ+φ)+ c12c23 c13s23ei(θ+φ)

−s13c23c12e−iψ + s23s12e−i(θ+φ) −s12s13c23e−i(ψ)− s23c12e−i(θ+φ) c23c13

F1.

where F1 = diag(1,eiφ ,1). Simarly, making the same:

U = F†
2

 c12c13 c13s12 s13ei(ψ−θ−φ)

−s13s23c12ei(θ−ψ+φ)− c23s12 −s12s13s23ei(θ−ψ+φ)+ c12c23 c13s23

−s13c23c12e−i(ψ−θ−φ)+ s23s12 −s12s13c23e−i(ψ−θ−φ)− s23c12 c23c13

F2.

where F2 = diag(1,eiφ ,ei(θ+φ)). Let δ = θ +φ −ψ . Finally, the following

U = F†
2

 c12c13 c13s12 s13e−iδ

−s13s23c12eiδ − c23s12 −s12s13s23eiδ + c12c23 c13s23

−s13c23c12eiδ + s23s12 −s12s13c23eiδ − s23c12 c23c13

F2. (B.6)

This last equation reveals that we can identify the PMNS matrix through rephasing.
However, it is not possible extract unambiguously the angle of CP this expresion
Eq.(B.6). This is because when we want to extract the phase from a unitary matrix
unambiguously, it is not sufficient to take just one element from the input since
any rephasing on the eigenvectors (a column of the unitary matrix) will still be an
eigenvector. In the case of the PMNS matrix, this would be equivalent to extracting
the phase of entry 13. This is why the problem of ambiguity arises in determining
the CP phase, considering only the PMNS parametrization. To prove this statement,
consider the following: Let Q = diag(eiω ,e−iσ ,e−iσ ) and P = diag(e−iω ,e−iω ,eiσ ) be
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two matrices that tranform as U →V = QUPMNSP:

V =

 U11 U12 U13ei(ω+σ)

e−i(σ+ω)U21 e−i(σ+ω)U22 U23

e−i(σ+ω)U31 e−i(σ+ω)U32 U33


This means that this transformation causes a redefinition of the phases of the element
Ue3 and the block Uµi,Uτ j for i, j = 1,2. Note that, in general, for all the elements in
the µ− τ block, the phase change is the same when we compare this new expression
with the PMNS matrix in Eq.(B.6), the phase change in Ue3 conserves the complex
nature of the µ− τ ; 1-2 block. For this reason, the Dirac phase cannot be determined
by considering a single element of the matrix, as it is not invariant under the trans-
formation, but it has to be determined by invariant structures. To do this, let us
consider the unitary conditions

∑
k

VikV ∗jk =0, ∑
k
|Vik|2 =1.

And let us consider i = 2, j = 3, so

V21V ∗31 +V22V ∗32 +V23V ∗33 =0 & |V21|2 + |V22|2 + |V23|2 = 1. (B.7)

Using the elements of the latest transformed matrix,V , we obtain the following
expressions

V21V ∗31 =− s2
12s23c23 + s12s13c12c2

23e−iδ − s12s2
23s13c12eiδ + c2

12c23s2
13s23, (B.8)

V22V ∗32 =− c2
12c23s23− c12c2

23s12s13e−iδ + c12s13s12s2
23eiδ + s2

12s2
13c23s23, (B.9)

V23V ∗33 =c2
13s23c23. (B.10)

From these expressions, it can be observed that we eliminate the extra phase resulting
from the transformation, ei(σ+ω), which gives us the possibility to obtain the phase δ

without any ambiguity. Using the first condition in Eq.(B.7), the term containing the
CP phase is nullified, making this first condition not very useful. From the second
condition in Eq.(B.7), we notice that due to the requirement of squared norm, the
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phases are annihilated. Finally, if we subtract Eq.(B.8) from Eq.(B.9), we have:

V21V ∗31−V22V ∗32 =−2s12s2
23s13c12eiδ +2s12s13c12c2

23e−iδ

−s2
12s23c23 + c2

12c23s23 + c2
12s2

13c23s23− s2
12s2

13c23s23

=−2s12s2
23s13c12eiδ+2s12s13c12c2

23e−iδ + c23s23(c2
12− s2

12)+ c23s23s2
13(c

2
12− s2

12)

=2s12s13c12(c2
23e−iδ − s2

23eiδ )+ c23s23 cos2θ12(1+ s2
13).

Thus, by reorganizing we get

V21V ∗31−V22V ∗32− c23s23 cos2θ12(1+ s2
13)

2s12s13c12
= c2

23e−iδ − s2
23eiδ . (B.11)

Expanding the right side of the expression

c2
23e−iδ − s2

23eiδ =c2
23(cosδ − isinδ )− s2

23(cosδ + isinδ )

=(c2
23− s2

23)cosδ − i(c2
23 + s2

23)sinδ ,

and substituting in Eq.(B.11), we then have

(c2
23− s2

23)cosδ − i(c2
23 + s2

23)sinδ =
V21V ∗31−V22V ∗32− c23s23 cos2θ12(1+ s2

13)

2s12s13c12
.

Taking the imaginary part of above expression yields

sinδ =− Im
(

V21V ∗31−V22V ∗32− c23s23 cos2θ12(1+ s2
13)

2s12s13c12

)
=−

Im
(
V21V ∗31−V22V ∗32

)
2s12c12s13

. (B.12)

Let us note the following

|V12||V11|= c12s12c2
13

∴ c12s12 =
|V12||V11|

c2
13

,

and so

s12c12s13 =
|V12||V11|

c2
13

s13 =
|V12||V11|

c2
13s13

s2
13 = tan2

θ13
|V12||V11|

s13
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Finally, from Eq.(B.12), we have

sinδ =−
Im
(
V21V ∗31−V22V ∗32

)
2|V12||V11|

(
sinθ13

tan2 θ13

)
,

=−
Im
(
V21V ∗31−V22V ∗32

)
2tan2 θ13

(
|V13|
|V12||V11|

)
. (B.13)

However, we can express all of this in terms of the elements of the PMNS matrix
without the need for the mixing angle θ13. For this, let us observe that

sinθ13

tan2 θ13
=

c2
13

s13
=

c2
13(s

2
23 + c2

23)

|V13|
=

c2
13s2

23 + c2
13c2

23
|V13|

=
|V23|2 + |V33|2

|V13|
.

Finally, the expression that allows an unambiguous calculation of the CP phase from
a given unitary mixing matrix is given by

sinδ =−
Im
(
V21V ∗31−V22V ∗32

)
2|V13||V12||V11|

(
|V23|2 + |V33|2

)
. (B.14)



A
P

P
E

N
D

I
X

C
About the observables in the parametrization

In this appendix, I will present, for both normal and inverted hierarchy cases, the
graphs of the physical observables generated from the parameters of the Mν matrix
obtained through the numerical diagonalization process illustrated in Section 4.2.3.

C.1 Normal Hierarchy

Fig. C.1 Mass scales as a function of the angles θ12 and θ23.
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Fig. C.2 Physical observables obtained from the parameters acquired in the diagonalization process.

C.2 Inverted Hierarchy

Fig. C.3 Mass scales as a function of the angles θ12 and θ23.
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Fig. C.4 Physical observables obtained from the parameters acquired in the diagonalization process.
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