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sin su apoyo durante toda mi vida no hubiera podido seguir un camino en la

ciencia.
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Resumen

La compactificación es una caracteŕıstica importante de la Teoŕıa de Cuerdas

(tanto de Cuerdas Bosónicas como de Supercuerdas). Las variedades de Calabi-

Yau son los candidatos más relevantes para la compactificación, dado que la teoŕıa

4-dimensional resultante coincide, no sólo con la Relatividad General, sino con el

Modelo Estándar de las Part́ıculas. Bajo esta compactificación, se encuentra

el Mecanismo Atractor, un conjunto de ecuaciones que describen la métrica 4-

dimensional de un agujero negro supersimétrico y esféricamente simétrico, y el

espacio modular, de dimensión h2,1, de la respectiva variedad de Calabi-Yau en

términos de la carga central del agujero negro 10-dimensional.

Los flujos sobre una Teoŕıa de Supercuerdas Tipo IIA compactificada sobre

una variedad de Calabi-Yau son equivalentes a una Teoŕıa de Supercuerdas Tipo

IIB compactifacada sobre una variedad Half-flat sin flujos. El espacio modular

de una variedad Half-flat tiene dimensión h2,1 + 1, y puede ser descrita por el

producto cartesiano de dos espacios modulares de ciertas variedades de Calabi-

Yau, de dimensiones 1 y h2,1, respectivamente. La dimensión extra genera una

carga fraccional, conocida como pelo cuántico.

Redefiniendo el Mecanismo Atractor para variedades Half-flat, surge un nuevo

conjunto de ecuaciones que describe tanto el espacio modular como el pelo cuántico.

Analisando el comportamiento asintótico de las soluciones, notamos que no sólo

las cargas clásicas se encuetran en el horizonte de eventos sino que también el pelo

cuántico.
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Abstract

Compactification is an important feature of String Theory (both Bosonic and Su-

per). Calabi-Yau manifolds are the most relevant candidates for compactification

as the resulting 4-dimensional theory agrees not only with General Relativity but

also with the Standard Model of Particles. Under this compactification, it is find

the Attractor Mechanism, a set of equation that describes the 4-dimensional met-

ric of a supersymmetric spherically symmetrical black hole and the moduli space,

of dimension h2,1, of the respective Calabi-Yau manifold in terms of the central

charge of the 10-dimensional black hole.

Fluxes over a Type IIA Superstring Theory compactified on a Calabi-Yau

manifold are equivalent to a Type IIB Superstring Theory compactified on a

Half-flat manifold without fluxes. The moduli space of a Half-flat manifold has

dimension h2,1 + 1, and can be described as the cartesian product of two moduli

spaces of some Calabi-Yau manifolds, with dimensions 1 and h2,1, respectively.

That extra dimension generates an extra fractional charge, known as quantum

hair.

Redefining the Attractor Mechanism to Half-flat manifolds, a new set of equa-

tions surges that describes both the moduli space and the quantum hair. Analyz-

ing the asymptotic behavior of the solutions, we note that not only the classical

charges are found on the event horizon but also the quantum hair.
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Introduction

Since their discovery in 1916, black holes have been object of study. Starting from

being a solution to the Einstein equation in a void Universe that has a singularity,

they called the attention of several physicists around the World. In Chapter 1,

we are doing a review of General Relativity and the most relevant black-hole

solutions to the Einstein equation. For further information about the subject,

you can check on textbooks such as [1], [2].

The fact that black holes generates strong gravitational fields in small scales

made people think that they were the key to prove Unification theories. The

strong gravitational fields made the relativistic effects impossible to neglect, and

the small scales were responsible for feeling the quantum effects.

The first approach to describe the quantum effects in a black hole was made

in the 1960s in papers written by Hawking, Penrose, Bekenstein, etc. about black

hole thermodynamics, where they were able to compute the temperature and

entropy of a black hole macroscopically. Several references and reviews on black

hole thermodynamics can be found in [3], [4], [5], [6], [7], [8].

In Chapter 2, we review the basics of the Bosonic String Theory and the

Superstring Theory, that currently is one of the most relevant theories in physics

and is the starting point of this thesis. There are some textbooks and reviews on

it that the reader may consider for further information, such as [9], [10], [11].

When String (and Superstring) Theory got considered as the most important

and promising candidate for a unification theory, the study of black holes in this

framework gained importance, as well as the comparison of its results with the

ones obtained in classical and semiclassical approaches.
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The problem with Superstring Theory is that it needs to live in 10-dimensional

spacetimes. So the way to relate it to our 4-dimensional world is through com-

pactification of six of those dimensions. The natural candidate for a manifold

that compactifies these dimesions are the Calabi-Yau manifolds, that have been

studied in the String theory framework in the last decades. The reason of this

is that after compactifying a Type II superstring theory, we got a 4-dimensional

supersymmetrical theory with N = 2, that is precisely what it seems to be our

World. Appart from the String Theory references, the reader can learn more

about Calabi-Yau manifolds in [12], [13].

In Chapter 3, we study the black holes treated as Superstring Theory phe-

nomena. Here, black holes are gotten by wrapping D3-branes on certain 3-cycles

of the Calabi-Yau 3-fold. The first attempt to a black hole in String Theory was

proposed by Strominger and Vafa [14]. Some current studies focus on the count of

microstates in order to reproduce the results gotten in the semiclassical approach.

We are not doing this in this work, but to learn more about it, the reader can

check references such as [15].

Nevertheless, in order to describe more general systems, we need to include

fluxes on those manifolds. The most simple way to deal with these fluxes is to

change our Calabi-Yau manifold for a generalised Calabi-Yau manifold, specifically

in this work we are going to study Half-flat manifolds, and how this changes the

well-known Attractor Mechanism.

In Chapter 4, this Half-flat manifolds are studied and characterized. We find

its Kähler potential K, its holomorphic 3-forms Ω and the central charge of a black

hole in a theory compactified in this kind of manifolds Z(Γ), among other relevant

quantities. However, the reader is may check on reviews and papers on the subject

for further information on Half-flat manifolds and fluxes on Calabi-Yau manifolds,

like [16], [17], [18], [19].

Finally, in chapter 5, we study the attractor equations on Half-flat manifolds,

and compare this with the attractor mechanism on Calabi-Yau manifolds. For

further information about attractor mechanism on regular or generalised Calabi-

Yau manifolds, you may check on [20], [21], [22], [23], [24].
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Chapter 1

Black holes in General Relativity

The main characters of this study are the black holes. In order to study them, we

first have to know where they come from. These systems were discovered while

studying the recently born General Theory of Relativity

1.1 General Relativity

Before the General Theory of Relativity was published, Albert Einstein stud-

ied a particular case of it, the Special Theory of Relativity, that is developed

in the Appendix A.

Ten years took to Einstein to get to that General Theory of Relativity. In

1915, he published an article [25], in which he established his famous equation.

But, where does it come from.

General Relativity is based on three principles:

1. General covariance: The laws of physics take the same form in every

reference frame.

2. Equivalence principle: The laws of special relativity apply locally for all

inertial observers.

1
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3. Spacetime curvature: Gravitation is manifested as curvature of the space-

time, and particles that are not affected by forces (other than gravity) will

travel through spacetime in geodesics.

1.1.1 Comparison between General Relativity and New-

tonian Gravity

In order to be able to compare this new theory with the Newtonian Mechanics, we

have to consider the case of static low gravitational field, that is gµν = ηµν + hµν ,

with hµν << 1. Let us calculate the geodesics for this metric. In general, we have

the geodesic equation B.4.3 for massive particles as:

d2xµ

dτ 2
+ Γµ

αβ
dxα

dτ

dxβ

dτ
= 0 (1.1.1)

Note that for small velocities, dxi

dτ
<< dt

dτ
≈ 1 for i = 1, 2, 3. Then, 1.1.1

results:

d2xµ

dτ 2
+ Γµ

00 = 0 (1.1.2)

According with B.3.4

Γµ
00 =

1

2
gµν (∂0g0ν + ∂0gν0 − ∂νg00)

= −1

2
gµν∂νg00

= −1

2
(ηµν + hµν) ∂ν (η00 + h00)

= −1

2
ηµν∂νh00

Then, the spatial components of 1.1.2 results:
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d2xi

dτ 2
− 1

2
ηiν∂νh00 = 0

d2xi

dτ 2
=

1

2
ηiν∂νh00

−→a =
1

2
∇h00

Comparing with Newton’s second law, −→a = −∇Φ, we get:

h00 = −2Φ = 2
GM

r
(1.1.3)

then, g00 = −(1 + 2Φ)

1.1.2 Einstein-Hilbert Action

As well as Newtonian (equivalently, Lagrangian and Hamiltonian) mechanics and

the Special Theory of Relativity, the General Theory of Relativity can be obtained

through an action. The equation we need to get from this action is the Einstein

equationB.5.5, which can be separated into a geometrical part and a dynamical

part. We can do the same for the action.

The geometric part, known as Einstein-Hilbert action, was proposed in

1915 (published in 1924[26]) by David Hilbert, and is:

SH =
1

16πG

∫
R
√
−gd4x (1.1.4)

where R is the Ricci scalar (the trace of the Ricci tensor) but g is the determinant

of the metric gµν .

Note that the factor
√
−gd4x is altogether the (hyper)volume element, accord-

ing to the change of variables theorem. Then, the dynamic part of the action has

to have the following form:

SM =

∫
LM

√
−gd4x (1.1.5)
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Knowing the equation B.5.5 which we want to get, and that R and LM should

only depend on the metric gµν , we are able to know the form of the stress-energy

tensor in terms of the lagrangian density LM :

Tµν = −2
∂LM

∂gµν
+ gµνLM (1.1.6)

Note that B.5.5 is a differential equation, then it can be very complicated.

The easiest scenario is the void (Tµν = 0), that is

Rµν −
1

2
Rgµν = 0 (1.1.7)

Now, note that

gµν
(
Rµν −

1

2
Rgµν

)
= 0

R− 1

2
δµµR = 0

R− 2R = 0

R = 0

Therefore, any void solution has to have R = 0. Then, 1.1.7 is equivalent to:

Rµν = 0 (1.1.8)

1.2 Schwarzschild metric

In order to simplify it even more, let us suppose that the metric is spherically

symmetric and static. Under these assumptions, we can reparametrize any metric

into
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gµν =


−f(r) 0 0 0

0 g(r) 0 0

0 0 r2 0

0 0 0 r2 sin2 θ

 (1.2.1)

Using a program we can calculate the Riemann tensor of this metric. The

non-zero components are

R00 =
f ′(r)

rh(r)
− f ′2(r)

4f(r)h(r)
− f ′(r)h′(r)

4h2(r)
+
f ′′(r)

2h(r)

R11 =
f ′2(r)

4f 2(r)
+
h′(r)

rh(r)
+
f ′(r)h′(r)

4f(r)h(r)
− f ′′(r)

2f(r)

R22 = 1− 1

h(r)
− rf ′(r)

2f(r)h(r)
+
rh′(r)

2h2(r)

R33 = sin2 θ

(
1− 1

h(r)
− rf ′(r)

2f(r)h(r)
+
rh′(r)

2h2(r)

)
= sin2 θR22

Then, we got three independent equations:

f ′(r)

rh(r)
− f ′2(r)

4f(r)h(r)
− f ′(r)h′(r)

4h2(r)
+
f ′′(r)

2h(r)
= 0 (1.2.2)

f ′2(r)

4f 2(r)
+
h′(r)

rh(r)
+
f ′(r)h′(r)

4f(r)h(r)
− f ′′(r)

2f(r)
= 0 (1.2.3)

1− 1

h(r)
− rf ′(r)

2f(r)h(r)
+
rh′(r)

2h2(r)
= 0 (1.2.4)

By adding h(r)× 1.2.2 + f(r)× 1.2.3, we get:
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f ′(r)

r
− f ′2(r)

4f(r)
− f ′(r)h′(r)

4h(r)
+
f ′′(r)

2
+
f ′2(r)

4f(r)
+
h′(r)f(r)

rh(r)
+
f ′(r)h′(r)

4h(r)
− f ′′(r)

2
= 0

f ′(r)

r
+
h′(r)f(r)

rh(r)
= 0

with solution f(r)h(r) = 1. Substituting h(r) = 1
f(r)

in 1.2.2, we get:

f ′(r)f(r)

r
− f ′2(r)

4
+
f ′2(r)

4
+
f ′′(r)f(r)

2
= 0

rf ′′(r) + 2f ′(r) = 0

with solution f(r) = c1
r
+ c2. Same for 1.2.3 and 1.2.4.

Far away from the center, the metric should tend to the metric given by 1.1.3.

So,

f(r) = 1− 2GM

r
(1.2.5)

Then, we get the same metric as Schwarzschild did in 1916[27]:

ds2 = −
(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1

dr2 + r2dΩ2 (1.2.6)

Note that this metric has two singularities, one at r = 0, and the other at

r = 2GM (known as the Schwarzschild radius). The sphere defined by the

Schwarzschild radius is called the event horizon, and it is a removable singularity.

Through a change of coordinates, one can find an equivalent metric that is well

defined at this event horizon. Nevertheless, we cannot get rid of the singularity

at the origin. We can see this through the scalar:

RαβµνRαβµν =
48G2M2

r6
(1.2.7)



1.3. REISSNER-NORDSTRÖM METRIC 7

that diverges as r → 0.

This is the simplest case of a black hole. Nevertheless, we study some phenom-

ena that occurs in this metrics. For example, any particle (massive or massless)

that falls inside the event horizon cannot escape.

1.3 Reissner-Nordström metric

In the case of a charged black hole, we can do the same geometric assump-

tions1.2.1, but a (electric or magnetic) charge generates electromagnetic fields.

Then the stress-energy tensor is not zero. It has the following form:

Tµν = FµρFν
ρ − 1

4
gµνFρσF

ρσ (1.3.1)

And assuming that the charged black hole is not moving, it only produces

electric and magnetic fields in the radial direction, F01 = −F10 = −Q
r2
, F23 =

−F32 = P sin θ, where Q and P are the electric and magnetic charges, respectively.

Then,

F0
1 = g11F01 = (g(r))−1

(
−Q

r2

)
= − Q

r2g(r)
, F1

0 = − Q

r2f(r)
,

F2
3 =

P

r2 sin θ
, F3

2 = −P sin θ

r2
, F 01 =

Q

r2f(r)g(r)
,

F 10 = − Q

r2f(r)g(r)
, F 23 =

P

r4 sin θ
, F 32 = − P

r4 sin θ

F01F0
1 =

Q2

r4g(r)
, F10F1

0 = − Q2

r4f(r)
, F23F2

3 =
P 2

r2

F32F3
2 =

P 2 sin2 θ

r2

FρσF
ρσ = −2

Q2

r4f(r)g(r)
+ 2

P 2

r4
=

2

r4

(
P 2 − Q2

f(r)g(r)

)
The stress-energy tensor is given by
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T00 =
Q2

r4g(r)
+

1

4
f(r)

2

r4

(
P 2 − Q2

f(r)g(r)

)
=

1

2r4

(
P 2f(r) +

Q2

g(r)

)
T11 = − Q2

r4f(r)
− 1

4
g(r)

2

r4

(
P 2 − Q2

f(r)g(r)

)
= − 1

2r4

(
P 2g(r) +

Q2

f(r)

)
T22 =

P 2

r2
− 1

4
r2

2

r4

(
P 2 − Q2

f(r)g(r)

)
=

1

2r2

(
P 2 +

Q2

f(r)g(r)

)
T33 =

P 2 sin2 θ

r2
− 1

4
r2 sin2 θ

2

r4

(
P 2 − Q2

f(r)g(r)

)
=

sin2 θ

2r2

(
P 2 +

Q2

f(r)g(r)

)
All other components are zero.

Then, we got three independent equations, similar to 1.2.2-1.2.4, but equal

to T00, T11, T22 instead of zero. These new equations have solution: f(r) = 1 −
2GM
r

+ G(Q2+P 2)
r2

, g(r) =
(
1− 2GM

r
+ G(Q2+P 2)

r2

)−1

. This gives the metric gotten

independently by Hans Reissner[28] (1916), Hermann Weyl [29] (1917), Gunnar

Nordström[30] (1918) and George Barker Jeffery[31] (1921).

Note that, besides the origin, there are two event horizon-like singularities, at

r± = GM ±
√
G2M2 −G(Q2 + P 2), that is precisely rs = 2GM when Q,P = 0,

but if Q2 + P 2 > M there is no event horizon. We then have three cases:

1. Case Q2 + P 2 > M2: As mentioned above, there is no event horizon.

Then, the physical singularity at the origin is called a naked singularity.

Therefore, any particle is able to approach the singularity and return to

their initial position.

2. Case Q2 + P 2 < M2: Here, we got two event horizon r+, r−. In the case of

the Schwarzschild metric, rs divides the spacetime into two regions: Outside

r is spacelike, but inside r is timelike. Something similar happens for the

Reissner-Nordström metric, r+, r− divide the spacetime into three regions.

Outside of r+ and inside of r−, r is spacelike, but between them, r is timelike.

So, if a particle comes from outside the black hole and passes through r = r+

will fall to the singularity, at least until it crosses r = r−. After that, the
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particle will move freely and will be able to pass the horizon r− again and

”fall” outside the horizon r+.

3. Case Q2 + P 2 =M2: This extremal case gives the metric:

ds2 = −
(
1− GM

r

)2

dt2 +

(
1− GM

r

)−2

dr2 + r2dΩ2 (1.3.2)

with one only event horizon at r0 = GM . Nevertheless, this is not the same

metric as Schwarzschild. Here, t is always timelike, and r is always spacelike.

Then, in or out the event horizon any particle is free to move.

Note that for an extremal Reissner-Nordström black hole, the metric near the

horizon takes the form:

ds2 = −
(
1− r0

r0 + ε

)2

dt2 +

(
1− r0

r0 + ε

)−2

dε2 + r20dΩ
2

= −
(

ε

r0 + ε

)2

dt2 +

(
ε

r0 + ε

)−2

dε2 + r20dΩ
2

= −
(
1 +

r0
ε

)−2

dt2 +
(
1 +

r0
ε

)2
dε2 + r20dΩ

2

≈ −
(r0
ε

)−2

dt2 +
(r0
ε

)2
dε2 + r20dΩ

2

Making the change of variable ε = r02

R
, dε = −

(
r0
R

)2
dR, we get:

ds2 = −
(
R

r0

)−2

dt2 +

(
R

r0

)2 (r0
R

)4
dR2 + r20dΩ

2

= −
(r0
R

)2
dt2 +

(r0
R

)2
dR2 + r20dΩ

2

=
(r0
R

)2
(−dt2 + dr2) + r20dΩ

2
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that is the metric of an spacetime AdS2 × S2.

1.4 Kerr metric

We have studied the cases of a static metric in void (Schwarzschild), and in the

presence of an electromagnetic field (Reissner-Nordström). But, there is one more

scenario to consider, a rotating black hole. This results to be much more complex

than the other ones. It was almost fifty years after Einstein paper about General

Relativity (1963) that Roy Kerr got his metric[32]:

ds2 =−
(
1− 2GMr

ρ2

)
dt2 − 2GMar sin2 θ

ρ2
(dtdϕ+ dϕdt) +

ρ2

∆
dr2 + ρ2dθ2

+
sin2 θ

ρ2
[
(r2 + a2)2 − a2∆sin2 θ

]
dϕ2

(1.4.1)

with ∆ = r2 − 2GMr + a2, ρ2 = r2 + a2 cos2 θ and a = J
M
.

The structure of the Kerr black hole is quite different to the structure of the

Schwarzschild and Reissner-Nordström black holes. This metric has also a double

event horizon at r± = GM ±
√
G2M2 − a2

1.4.1 Killing horizon

Before we continue the analysis of the structure of the Kerr black hole, we need

to introduce some concepts. First, having a vector V = ∂1x for certain frame, it is

defined the Lie derivative LV in that frame as:

LV u
µ = ∂1xu

µ (1.4.2)

Note that in this frame (V µ = (1, 0, 0, 0)):
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[V, u] = V µ∂µu− uµ∂µV

[V, u]µ = ∂µu
µ = LV u

m

Then,

LV u
µ = [V, u]µ (1.4.3)

For other type of tensors, this Lie derivative is defined in a similar way than

the covariant derivativeB.3.3. Then, if a vector ξ satisfies:

Lξgαβ (1.4.4)

is called a Killing vector. Note that eq. 1.4.4 is equivalent to:

∇µξν +∇νξµ = 0

Note that Kα = ∂t is a Killing vector in Schwarzschild, Reissner-Nordström

and Kerr. Let us define the Killing horizon as the hypersurface where the

Killing vectors are null. In the case of Schwarzschild and Reissner-Nordström,

this coincides with the event horizon. But this is different for the Kerr black hole.

In this case, the norm of the Killing vector is given by:

KµK
µ = − 1

ρ2
(∆− a2 sin2 θ) (1.4.5)

that, if is equal to zero, defines a hyperellipsoid, that intersects the outer event

horizon (∆ = 0) at the poles (θ = 0, π). The region between these two surfaces is

called ergosphere. Inside this ergosphere, a particle is able to move in any radial

direction (toward or away from the singularity), but is forced to rotate in the

same direction as the black hole. What happens between the two event horizons

is similar to Reissner-Nordström.
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1.5 No-hair theorem

This three cases look very specific, but in 1967 Werner Israel showed that Schwarz-

schild metric 1.2.6 was the only static void black-hole solution [33]. One year after

that, the same Werner Israel showed that the only static charged black-hole so-

lution was the Reissner-Nordström metric [34]. Then, in 1971, Brandon carter

demonstrated that the Kerr metric 1.4.1 is the only axisymmetric black-hole so-

lution [35].

These three theorems are known as No-hair theorems, as a reference to the

fact that there are no other variables that an external observer can see, black

holes have no hair. A modern version of this theorem can be found in the book

Gravitation[36] and states that Schwarzschild, Reissner-Nordström and Kerr (and

a combination of these last two, known as Kerr-Newman) were the only stationary

black-hole solution.

Then a stationary black hole is fully characterized by four charges: mass M ,

electric charge Q, magnetic charge P and angular momentum J . As we will see

later, this is only valid in a classical theory.

1.6 Black hole thermodynamics

Several papers were published in the 1970s about black holes, specially by Jacob

Bekenstein [3]-[4] and Stephen Hawking [5]-[6] that got to two formulas that relate

some characteristics of black holes to thermodynamic functions:

kT =
ℏκ
2π

(1.6.1)

S =
A

4ℏG
(1.6.2)

where we can see classical black holes quantities, like surface gravity κ, the area

of the event horizon A, the surface gravity κ or just the Newton’s constant G,

thermodynamic functions, like temperature T , entropy S and the Boltzmann’s
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constant k, but also the Planck’s constant ℏ. For further information about

black-hole thermodynamics, the reader may check [37], [38], [39], [40], [41].

1.6.1 Black hole temperature

One way to get 1.6.1 is through the so called Euclidean continuation. First,

recall the partition function Z in quantum mechanics is given by:

Z = Tre−βĤ (1.6.3)

with β = 1
kT

the inverse temperature and Ĥ the Hamiltonian operator. Comparing

with the evolution operator e−itĤ/ℏ, we get

Z = Tre−itĤ/ℏ = TreτĤ/ℏ (1.6.4)

with it/ℏ = β and t = iτ . Here τ is called the Euclidean time, and τ = βℏ.
On the other hand, the Schwarzschild metric 1.2.6 is equivalent for radial

displacements and near the horizon to:

ds2 = −ρ2κ2dt2 + dρ2 = ρ2κ2dτ 2 + dρ2 (1.6.5)

Note that, for θ = κτ , we get the metric of a flat 2-space in polar coordinates.

In this case, θ has period 2π. Then, the Euclidean time has period 2π/κ. And

kT =
1

β
=

ℏ
τ
=

ℏκ
2π

(1.6.6)
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Chapter 2

Superstring theory

Although General Relativity works for most phenomena that are observed, it is

not compatible with the other great revolutionary theory of the XX Century,

the quantum mechanics. It is not possible to quantize the General Theory of

Relativity. So we need a new theory of gravity that can be quantized and in the

low energy limit is General Relativity.

2.1 Nambu-Goto action

A first approach is known as the Bosonic String Theory, that is described with

the Nambu-Goto action:

SNG = − 1

π

∫
dσ2
√

−det(∂αXµ∂βXµ) (2.1.1)

Note that this action describe the area of a surface with metric ∂αX
µ∂βXµ.

This surface is the worldsheet, that is the analog to the worldline that describes

the path of particle, of a string.

This worldsheet is parametrized naturally by the proper time τ , as the world-

line, and an intrinsic parameter of the string σ, σα = (τ, σ). The topology of

this space can be a plane (if the string is open) or a cylinder (if the string is

closed). Nevertheless, this space is not the physical one, the string lives in a (D-

15
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dimensional) spacetime. So, in order to describe the string in this spacetime, we

need to embed the parameters σα to this, Xµ(σα).

In the case of (Special/General) Relativity, we worked on a (D = 4)-dimensional

spacetime, but in the case of String Theory, we need more dimensions so it to be

compatible. In the case of the Bosonic String Theory, it goes up to D = 26, but

for the Superstring Theory, that is going to be studied later, it is D = 10.

2.2 Green-Schwarz action

Although the Bosonic String Theory can be quantized, it fails to describe fermions,

that are fundamental for Quantum Mechanics. Therefore, it surges the need to

modify the action of Nambu-Goto, and then the Bosonic String Theory.

A first modification that can be made is on the metric of the string spacetime:

Gαβ = Πα · Πβ

Πµ
α = ∂αX

µ − Θ̄AΓµ∂αΘ
A

where ΘA are the Weyl-Majorana spinors and A = 1,· · · ,N , with N the

number of supersymmetries of the theory. The standard model, that has proven

its value during the second half of the XX Century, has a N = 2 supersymmetry,

so we want our theory to have it too.

In order to have a κ-symmetry in this theory, we need to add another term to

the action, let us say:

S = S1 + S2

= − 1

π

∫
dσ2

√
−G+

∫
Ω2
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where Ω2 is an exact two-form with

Ω2 = c(Θ̄1ΓµdΘ
1 − Θ̄2ΓµdΘ

2)dXµ − cΘ̄1ΓµdΘ
1Θ̄2ΓµdΘ2

This is known as the Green-Schwarz action, and is the action of the so-

called Type II Superstring Theory. Depending on the chirality of the spinors

there are two Type II theories:

1. Type IIA: Γ11Θ
A = (−1)A+1ΘA

2. Type IIB: Γ11Θ
A = ΘA

2.3 Free superstring spectrum

For an open string, the spectrum consists of a massless vector 8V and a massless

spinor 8C . Note that the only superstring theory that has open strings is Type I.

So, we need to see the spectrum of the closed string in order to study the Type

II (A or B).

In a open string we have a single vibrating mode, it is equivalent if the wave

propagates to the left or to the right, but in a closed string we have to consider

the left-movers and the right-movers as different modes. Recall that Type IIA

superstring has opposite chiralities in its modes, then we have to do the tensorial

product of two supermultiplets with opposite chirality:

(8V + 8C)⊗ (8V + 8S) = 8V ⊗ 8V ⊕ 8V ⊗ 8S ⊕ 8C ⊗ 8V ⊕ 8C ⊗ 8S (2.3.1)

Note that the first and last terms corresponds to bosonic fields, with 8V ⊗8V =

1 + 28 + 35, i.e., a scalar (dilaton), an antisymmetric rank-two tensor and a

symmetric traceless tensor (graviton), and 8S ⊗ 8C = 8V + 56t. While the middle

terms are the corresponding fermionic superpartners.

In contrast, the Type IIB superstring modes have same chirality:
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(8V + 8C)⊗ (8V + 8C) = 8V ⊗ 8V ⊕ 8V ⊗ 8C ⊕ 8C ⊗ 8V ⊕ 8C ⊗ 8C (2.3.2)

with similar decomposition as Type IIA. We can simply denote:

8V ⊗ 8V = ϕ⊕Bµν ⊕Gµν (2.3.3)

Note that 2.3.1 and 2.3.2 have the form:

(NS −NS)⊕ (NS −R)⊕ (R−NS)⊕ (R−R) (2.3.4)

where the different terms define the different field sector. NS stands for Neveu-

Schwarz and R stands for Ramond.

NS −NS and R−R represents the bosonic fields, and NS −R and R−NS

represents the fermionic fields.

2.4 Compactification over Calabi-Yau manifolds

Either the Bosonic or the Superstring theory live in a spacetime with more di-

mensions than ours. For the Bosonic String Theory D = 26, and for the Type II

Superstring theories D = 10. It then surges a question, what can we do about

the extra dimensions? The most logic solution to this is compactification.

To illustrate the compactification, let us see an example. When we look close

at a wire it is cyllindrical 2-dimensional surface, but the wire is getting away from

us, it will start looking as a 1-dimensional line. Maybe that is what is happening,

maybe we live in a 10 dimensional spacetime, but it has six dimensions extremely

small that we cannot see.

2.4.1 Calabi-Yau manifolds

But, how are those extra dimensions? One promising candidate is the so called

Calabi-Yau manifolds, that are Kähler manifolds of n complex dimensions with
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SU(n) holonomy. Note that 3 complex dimensions are equivalent to 6 real dimen-

sions, that are precisely the ones that we need to compactify the 10 dimensions

of the Type IIB Superstring theory into our 4 dimensions. So that, our spacetime

is:

X10 = X4 × CY3 (2.4.1)

One of the reasons of choosing a Calabi-Yau manifold is that when we com-

pactify a Type IIB Superstring Theory with it, we get a N = 2 supersymmetric

theory in 4 dimensions. One property that Calabi-Yau manifolds have is that

there is a non-vanishing holomorphic n-form Ω.

There are several topological characteristics that we can use to describe a

manifold M . One of them is the Betti number bp that is the dimension of the

pth de Rham cohomology of M , Hp(M), defined by B.2.6. For Kähler manifolds,

we also have the Hodge numbers hp,q, that are the number of harmonic (p, q)-

forms on M , and they relate with the Betti number through:

bp =

p∑
q=0

hq,p−q (2.4.2)

By some relations that satisfy the Hodge numbers, we are able to compute the

Euler characteristic of a Calabi-Yau 3-fold CY3 as:

χ(CY3) = 2(h1,1 − h2,1) (2.4.3)

that is an important topological invariant. Informally, this Euler characteristic

counts the number of holes of CY3.

2.4.2 Field content of a Type II Superstring Theory com-

pactified on a Calabi-Yau manifold

As seen in section 2.3, the NS-NS sector can be seen as:
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ϕ⊕Bµν ⊕Gµν (2.4.4)

a dilaton, an antisymmetric 2-form and a graviton. In four dimensions, the gravi-

ton acts as gravitational multiplet, and the antisymmetric 2-form and the dilaton

act as tensor multiplets

However, the R-R sector cosists of gauge fields that depends on what Type II

theory, we are working on. For Type IIA, they are 1 and 3-forms, and for Type

IIB, they are 2 and 4-forms:

A1 ⊕ A3, for Type IIA (2.4.5)

A2 ⊕ A4, for Type IIB (2.4.6)

In Type IIA, the A1 acts on the four-dimensional spacetime as another grav-

itational multiplet, while A3 acts as a linear combination of hypermultiplets and

vector multiplets. In Type IIB, A2 acts as a linear combination of tensor multi-

plets, and A4 acts as a linear combination of hypermultiplets and vector multiplets,

just like A3 in Type IIA.

Another difference between Type IIA and Type IIB Superstring Theory is that

Type IIA has h2,1 + 1 hypermultiplets and h1,1 vector multiplets, while Type IIB

has h1,1 + 1 hypermultiplets and h2,1 vector multiplets. This tells us that there

may be a relationship between Type IIA hypermultiplets and Type IIB vector

multiplets, and viceversa. This will be crucial when we get to Chapter 4.

For more information about this topic, the reader is refered to [13].

2.4.3 Special geometry

Although the Hodge numbers are topological invariants, they are not enough to

totally describe the Calabi-Yau manifolds. You can define an equivalence relation

using the Hodge numbers, and move inside the equivalence classes with deforma-

tions of the parameters that characterize the size and shape of the manifold, this
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is called moduli. The moduli space is often called a Calabi-Yau space.

Let us study the deformations in the metric of the Calabi-Yau manifold gmn.

These deformations are given by smooth fluctuations:

gmn −→ gmn + δgmn (2.4.7)

This new manifold (the one that has the new metric), in order to be Calabi-

Yau, must have vanishing first Chern class, so that,

R = Rmn(g + δg)mn = 0 (2.4.8)

This gives a differential equation for δg. The space of solutions define the

moduli space. On this moduli space there is metric naturally defined by[9] the

deformations of the complex structure and the deformations of the Kähler form:

ds2 =
1

2V

∫
gab̄gcd̄[δgacδb̄d̄ + (δgab̄δgcd̄ − δBad̄δBcb̄)]

√
gd6x (2.4.9)

with V, g the volume and metric of the CY3, and B is the NS-NS 2-form. We can

see this moduli space locally as the product of two spaces M(M) = M2,1(M) ×
M1,1(M).

The first part (deformations of the complex structure) can be described by the

base of (2,1)-forms

χα =
1

2
(χα)abc̄dx

a ∧ dxb ∧ dxc̄ (2.4.10)

(χα)abc̄ = −1

2
Ωab

d̄∂gc̄d̄
∂tα

(2.4.11)

where tα, α = 1,· · · , h2,1 are the coordinates of the complex-structure moduli

space. Knowing this, we can find the relation:

δgāb̄ = − 1

∥Ω∥2
Ω̄cd

ā (χα)cdb̄δt
α (2.4.12)



22 CHAPTER 2. SUPERSTRING THEORY

where ∥Ω∥2 = 1
6
ΩabcΩ̄

abc, and we raise and low indices with the metric gab and its

inverse gab.

In order to see the components of the metric, we need to find an expression of

the form:

ds2 = 2Gαβ̄δt
αδt̄β̄ (2.4.13)

And integrating 2.4.9 we get:

Gαβ̄δt
αδt̄β̄ = −

(
i
∫
χα ∧ χ̄β̄

i
∫
Ω ∧ Ω̄

)
δtαδt̄β̄ (2.4.14)

We then define the Kähler potential K so that Gαβ̄ = ∂α∂β̄K, and we find:

K = − ln i

∫
Ω ∧ Ω̄ (2.4.15)

2.4.4 Special coordinates

Over the Calabi-Yau 3-fold CY3, we can define a basis for the 3-cycles (AI , BJ),

where I, J = 0,· · · , h2,1, chosen so that their intersection numbers are:

AI ∩BJ = −BJ ∩ AI = δIJ AI ∩ AJ = BI ∩BJ = 0 (2.4.16)

and the dual cohomology basis (αI , β
J) are chosen so that:

∫
AJ

αI =

∫
CY3

αI ∧ βJ = δJI ,

∫
BJ

βI =

∫
CY3

βI ∧ αJ = −δIJ (2.4.17)

Using these coordinates, we define a new ones, called the holomorphic sym-

plectic basis (XI , FJ) as:

XI =

∫
AI

Ω, FJ =

∫
BJ

Ω (2.4.18)

We then find that:
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Ω = XIαI − FIβ
I (2.4.19)
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Chapter 3

Black holes in string theory

Probing the value of the String Theory has been quite difficult. It is a theory

whose effects are clear at very large energy levels, that no lab on Earth can reach.

This is why we need an indirect approach to see if it is correct.

String Theory, in a modern vision, is thought as a candidate for a theory that

unifies the General Relativity (gravity) and the Quantum Mechanics (low-scale

space), so the most naturally is to study the black holes.

3.1 Strominger-Vafa black hole

The first attempt to do this was made by Andrew Strominger and Cumrun Vafa in

1996[14]. Starting from Type II string theory compactified on K3×S1. Note that

this manifold has 5 real dimensions, then we get an extremal Reissner-Nordström

metric in five dimensions:

ds2 = −
(
1−

(r0
r

)2)2

dt2 +

(
1−

(r0
r

)2)−2

dr2 + r2dΩ3
2 (3.1.1)

with one particular change from the extremal Reissner-Nordström metric in four

dimensions 1.3.2, r −→ r2. Here, r0 =
(

8QHQF
2

π2

)1/6
, r2 = (x1)2 +· · · + (x4)2 and

dΩ3
2 = dθ2 + sin2 θdϕ2 + cos2 θdψ2. The charges QH , QF are defined by:

25
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QH =
1

4π2

∫
∗e−4ϕ/3H̃dΩ3

2 (3.1.2)

QF =
1

16π

∫
∗e2ϕ/3FdΩ3

2 (3.1.3)

with ϕ is the dilaton, F is a Ramond-Ramond 2-form field strength, commonly

related to the Faraday tensor Fµν , and therefore, with the electromagnetic fields,

and H̃ is a Neveu Schwarz-Neveu Schwarz 2-form axion field strength.

Stromiger and Vafa found that near the horizon, the geometry of the five-

dimensional spacetime is AdS × S3 with a constant dilaton ϕ = ϕh, given by

e2ϕh =
1

2

(
4QF

πQH

)2

(3.1.4)

From 3.1.1, we can see the spherical symmetry, and then the Bekenstein-

Hawking entropy is given by:

SBH =
2π2r40
4G5ℏ

=
2π

G5ℏ

√
QHQF

2

2
(3.1.5)

In that paper, they counted the microstates of such a black hole, and through

the Boltzmann’s equation Sstat = lnW , with W the number of microstates, com-

puted the statistical entropy, for large charges:

Sstat ≈
2π

G5ℏ

√
QH

(
1

2
QF

2 + 1

)
≈ 2π

G5ℏ

√
QHQF

2

2
(3.1.6)

that agrees with 3.1.5, precisely for large charges.

3.2 Attractor mechanism

In string theory, a black hole is obtained by wrapping D3-branes on some special

Lagrangian 3-cycle C ⊂ CY3. Let Γ be the Poincaré-dual 3-form. In order to

describe the electric and magnetic charges as h2,1U(1) gauge fields that come
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from the self-dual 5-form F5, and the graviphoton from the N = 2 supergravity

multiplet, let (AI , BJ), I, J = 1,· · · , h2,1 + 1 be the basis of the 3-cycles, same as

in 2.4.16, and (αI , β
J) the basis of the 3-forms, as in 2.4.17. For the holomorphic

symplectic basis, let us do a rescalation:

XI = eK/2

∫
AI

Ω, FJ = eK/2

∫
BJ

Ω (3.2.1)

Using this basis, we can get the electric and magnetic charges qI , p
J as:

C = pJBJ − qIA
I (3.2.2)

Γ = pIαI − qJβ
J (3.2.3)

Then, we get:

pI =

∫
AI

Γ =

∫
CY3

Γ ∧ βI , qJ =

∫
BJ

Γ =

∫
CY3

Γ ∧ αJ (3.2.4)

And, therefore, the central charge, that depends on the choice of Γ, is:

Z(Γ) = eK/2

(∫
AI

Γ

∫
BI

Ω−
∫
BJ

Γ

∫
AJ

Ω

)
= pIFI − qJX

J (3.2.5)

Now, for a 4-dimensional spherically symmetrical supersymmetrical black hole,

whose metric is:

ds2 = −e2U(r)dt2 + e−2U(r)dx⃗ · dx⃗ (3.2.6)

where r is the distance to the event horizon. Let us assume that also tα = Xα/X0

depends only on r, and also, let τ = 1
r
. Then τ → 0 corresponds to the spatial

infinity and τ → ∞ corresponds to the event horizon.

Through the supersymmetry conditions:

δψµ = 0, δλα = 0 (3.2.7)
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where ψµ is the gravitino and λα are the gauginos, we get to equations for

U(τ), tα(τ) [22]:

dU

dτ
= −eU(τ)|Z| (3.2.8)

dtα

dτ
= −2eU(τ)Gαβ̄∂β̄|Z| (3.2.9)

with Gαβ̄ is the inverse of Gαβ̄ = ∂α∂β̄K. The analogy to classical dynamical

systems is clear, where the parameter τ plays the role of the time. This differential

equations are known as the attractor mechanism.

In the book by Becker-Becker-Schwarz [9], it is proved that 3.2.8, 3.2.9 are

equivalent to:

2
d

dτ

[
e−U(τ)+K/2Im

(
e−iαΩ

)]
∼ −Γ (3.2.10)

where ∼ means that both expressions differs at much by an exact 3-form. This

equation is easy to integrate, given that Γ does not depend on τ :

2e−U(τ)+K/2Im
(
e−iαΩ

)
∼ −Γτ + 2

[
e−U(τ)+K/2Im

(
e−iαΩ

)]
τ=0

(3.2.11)

In their book [9], Becker-Becker-Schwarz prove that this equations implies that

Ω can be computed as a function of the charges of the black hole.

3.3 Electric and magnetic charges

In String theory, electric and magnetic charges are related to the gauge field

A1, that is constructed from the self-dual Ramond-Ramond field stregth

F5 = dA1 ∧ F3. Expanding the 3-form, F3 = eIαI −mIβ
I , we find the non-self-

dual part, that is the electric part, as:
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F5 = F2 ∧ F3 = F2 ∧ (eIαI −mIβ
I) (3.3.1)

We find that C is the Poincaré dual of ∗F3, we then denote the Poincaré dual

of F3 as ∗C. The electric and magnetic charges can be computed by integrating

the 5-forms ∗F5 and F5, respectively, over the over the 5-cycle ∗C5 = S2 ×∗C and

C5 = S2 × C:

Qe =

∫
∗C5

∗F5 = −qN (3.3.2)

Qm =

∫
C5
F5 = pN (3.3.3)

where C∩∗C = N and q =
∫
S2 ∗F2, p =

∫
S2 F2. We find that the coefficients eI ,mI

are related to pI , qI through:

pI = eJAI
J −mJC

IJ (3.3.4)

qI = −eJBIJ −mJA
J
I (3.3.5)

where the elements of the matrices A,B,C are defined by:

AI
J = −

∫
αJ ∧ ∗βI = −

∫
βI ∧ ∗αJ (3.3.6)

BIJ =

∫
αI ∧ ∗αJ =

∫
αJ ∧ ∗αI (3.3.7)

CIJ = −
∫
βI ∧ ∗βJ = −

∫
βJ ∧ ∗βI (3.3.8)

Finally, the total charge is:

Q = Qe +Qm = N(p− q) (3.3.9)
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that is, as a matter of fact, a integer multiple of p− q.



Chapter 4

Half-flat manifolds

Some phenomena in four dimensions can be modeled as fluxes on compactification

Calabi-Yau manifolds. Then, for an electric Neveu-Schwarz flux on a Calabi-Yau

3-foldX3 of a Type IIA superstring theory, this Calabi-Yau manifoldX3 is mapped

through mirror symmetry into a generalized Calabi-Yau 3-fold Y3, known as Half-

flat manifold.

As it was mentioned above, mirror symmetry is the connection between a

Calabi-Yau manifold X3 compactification on a Type IIA superstring theory and a

Half-flat manifold Y3 compactification on a Type IIB superstring theory [17]. In

order to have this mirror symmetry, there are two conditions that Y3 must satisfy,

dImΩ = 0, dReΩ = eiω̃i, i = 1,· · · , h2,1, where ei has to do with the electric part

of the NS-NS field strength and ω̃i is the basis of H4(Y3,Z).

Appart from (αi, β
i), we also have (α0, β

0), as part of the basis of the coho-

mology classes, satisfying:

dα0 = eiω̃
i (4.0.1)

dω̃i = eiβ
0 (4.0.2)

Let us write eiω̃
i as k(niω̃

i), with k = gcd(e1,· · · , eh1,1), ni ∈ Z. Therefore,
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dα0 = k(n1ω̃
i + naω̃

a) (4.0.3)

Then, n1ω̃
1 + naω̃

a, a = 2, . . . , h1,1 is said to be torsional. And (n1ω̃
i +

naω̃
a, ω̃a) is the basis of H2,2(Y3;Z). Then,

H2,2(Y3;Z) = Zk ⊕ Zh1,1−1 (4.0.4)

Let Ω̂p(Y3) be the set of nonclosed p-forms, and TorHp(Y3;Z) the set of tor-

sional (p + 1)-forms, i.e., if σ ∈ Λp(Y3), λ ∈ Λp+1(Y3), such that dσ = kλ, then

σ ∈ Ω̂p(Y3), λ ∈ TorHp(Y3;Z).
Now, note that 4.0.2 is equivalent to:

d(niω̃i) = nik(niβ
0) = k(niniβ

0) (4.0.5)

Then, α̂0 ≡ α0 ∈ Ω̂p(Y3), β̂
0 ≡ niniβ

0 ∈ TorHp(Y3;Z) are the only elements of

their respective sets. So that,

H3(Y3;Z) = Z2h2,1 ⊗ Zk (4.0.6)

In a similar way, we can find all the cohomology groups for Y3. To see it

explicitly, check [16].

Just as we have the basis of 3-forms (α̂0, β̂
0) on the Half-flat manifold, we have

a basis for the 3-cycles Σ̂3 and 3-chains Π̂3. This basis is such as:

kΣ̂3 = ∂Π̂4, ∂Π̂3 = kΣ̂2 (4.0.7)

According to this same article [16], we find that the holomorphic 3-form of the

manifold is given by:

Ω = Ω0 + Ω̃ = X iαi − Fiβ
i + α̂0 − F0β̂

0 (4.0.8)

where Ω0 is a Calabi-Yau manifold-like holomorphic 3-form. The holomorphic

symplectic basis of this manifold is:
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FI = (F0, Fi) =

(∫
Π̂3

Ω̃,

∫
Bi

Ω0

)
XI =

(
X0, X i

)
=

(∫
Σ̂3

Ω̃,

∫
Ai

Ω0

) (4.0.9)

Knowing the holomorphic 3-form Ω for this manifold, we are able to compute

the Kähler potential:

K = − ln i

∫
Ω ∧ Ω̄

= − ln i

∫
(Ω0 + Ω̃) ∧ (Ω̄0 + ¯̃Ω)

= − ln i

(∫
Ω0 ∧ Ω̄0 +

∫
Ω0 ∧ ¯̃Ω +

∫
Ω̃ ∧ Ω̄0 +

∫
Ω̃ ∧ ¯̃Ω

)
= − ln i

(∫
Ω0 ∧ Ω̄0 +

∫
2Im(Ω0 ∧ ¯̃Ω) +

∫
Ω̃ ∧ ¯̃Ω

)
= − ln i

(∫
Ω0 ∧ Ω̄0 +

∫
Ω̃ ∧ ¯̃Ω

)
e−K = e−K0 + e−K̃

(4.0.10)

Note that the two terms in the middle of the third line vanish because Ω0 and Ω̃

corresponds to different spaces.

4.1 Central charge

As it was mentioned in the section 3.2, black holes are modeled in string theory

as D3-branes wrapped on certain 3-cycle, C ⊂ Y3. C and its dual 3-form can be

expanded as:
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C = C̃ ∪ C0 = p0Π̂3 − qoΣ̂3 + piBi − qiA
i (4.1.1)

Γ = Γ̃ + Γ0 = p0α̂0 − q0β̂
0 + piαi − qiβ

i (4.1.2)

where

p0 =

∫
Π̂3

Γ =

∫
Γ̃ ∧ β̂0, q0 =

∫
Σ̂3

Γ =

∫
Γ̃ ∧ α̂0 (4.1.3)

And then, the central charge Z(Γ) is given by:

Z(Γ) = eK/2

(∫
C0
Ω0 +

∫
C̃
Ω̃

)
= Z0(Γ0) + Z̃(Γ̃) (4.1.4)

4.2 Fractional charges

To study the effects of treating a black hole on a half-flat manifold (instead of

a Calabi-Yau), let us wrap a D3-brane over a chain C̃ = p0Π̂3 − qoΣ̂3. Then, in

analogy to the Section 3.3, we got the 3-cycles:

C̃ = p0Π̂3 − q0Σ̂3 (4.2.1)

∗C̃ =
e0

k
Π̂3 −m0Σ̂3 (4.2.2)

where the 1
k
factor is due to 4.0.7. And, therefore, the Poincaré dual to these

3-cycles are the 3-forms:

∗F3 = p0α̂0 − q0β̂
0 (4.2.3)

F3 =
e0

k
α̂0 −m0β̂

0 (4.2.4)

with the coefficients relating each other through:
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p0 =
e0

k
A0

0 −m0C
00 (4.2.5)

q0 = −e
0

k
B00 −moA

0
0 (4.2.6)

and the matrix elements:

A0
0 = −

∫
α̂0 ∧ ∗β̂0 = −

∫
β̂0 ∧ ∗α̂0 (4.2.7)

B00 =

∫
α0 ∧ ∗α0 (4.2.8)

C00 = −
∫
β0 ∧ ∗β0 (4.2.9)

However, according to [17], when working on a half-flat compactification, we

need to consider a nontrivial NS-NS flux H3 = e0β̂
0. In order to get rid of this

flux, and the problems that come with it, known as the Freed-Witten anomaly,

it is necessary that:

∫
C̃

eoβ̂
0 = 0 (4.2.10)

and, therefore, p0 = 0. Then, by 4.2.5, we get:

mo =
e0

k

A0
0

C00
(4.2.11)

After eliminating the Freed-Witten anomaly, the 3-cycles are[16]:

C̃ = −
{
e0

k

}
1

C00
Σ̂3 (4.2.12)

∗C̃ =

{
e0

k

}(
Π̂3 −

A0
0

C00
Σ̂3

)
(4.2.13)
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where {} denotes the fractional part. Knowing this, the electric and magnetic

charges are:

Qe =
Q

C00

{
e0

k

}2

(4.2.14)

Qm = − P

C00

{
e0

k

}2

(4.2.15)

and then the total charge is:

Q =
Q− P

C00

{
e0

k

}2

(4.2.16)

that clearly is not an integer multiple of Q − P . Then, the torsion cycle adds a

fractional charge that is not considered in a Calabi-Yau manifold. This is known

as Quantum hair, as a reference to the No-hair theorem discussed in Section

1.5.



Chapter 5

Attractor mechanism on half-flat

manifolds

In the section 3.2, we found an set of differential equations that describes the met-

ric of a supersymmetric black hole and the moduli space of the compactification

manifold. The most general expression was given by 3.2.10. In order to make it

simpler, we are going to change the ∼ symbol for the = symbol, but we have to

remember that both sides of the equation may differ by closed form. Then, we

part from the equation:

2
d

dτ

[
e−U(τ)+K/2Im

(
e−iαΩ

)]
= −Γ (5.0.1)

In the chapter 4, we described the Half-flat manifolds, finding the expressions

for its Kähler potential K, its holomorphic 3-form Ω, and the 3-form Γ related to

the 3-cycle C around which D3-branes are wrapped.

5.1 Equation on the metric

Let us project both sides of 5.0.1 on e−iα+K/2Ω:
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∫
e−iα+K/2Ω ∧ d

dτ

[
e−U(τ)

(
eK/2−iαΩ− eK/2+iαΩ̄

)]
=

∫
e−iα+K/2Ω ∧ (−iΓ)∫

e−iα+K/2Ω ∧ d

dτ

[
e−U(τ)

(
eK/2+iαΩ̄

)]
= i

∫
e−iα+K/2Ω ∧ Γ

This is due to the fact that Ω ∧ Ω = Ω ∧ d
dτ
Ω = 0.

Let us focus on the left-hand side:

∫
e−iα+K/2Ω ∧ d

dτ

[
e−U(τ)

(
eK/2+iαΩ̄

)]
=

=

∫ [
eK

d

dτ
e−U(τ)Ω ∧ Ω̄ + e−iα+K/2e−U(τ)Ω ∧ d

dτ

(
eK/2+iαΩ̄

)]
Now, note from the definition of the Kähler potential 2.4.15 that:

e−K = i

∫
Ω ∧ Ω̄

−i = eK
∫ (

e−iαΩ
)
∧
(
eiαΩ̄

)
−i =

∫ (
eK/2−iαΩ

)
∧
(
eK/2+iαΩ̄

)
d

dτ
(−i) = d

dτ

∫ (
eK/2−iαΩ

)
∧
(
eK/2+iαΩ̄

)
0 =

∫
d

dτ

(
eK/2−iαΩ

)
∧
(
eK/2+iαΩ̄

)
+
(
eK/2+iαΩ

)
∧ d

dτ

(
eK/2+iαΩ̄

)
∫ (

eK/2+iαΩ̄
)
∧ d

dτ

(
eK/2−iαΩ

)
=

∫ (
eK/2−iαΩ

)
∧ d

dτ

(
eK/2+iαΩ̄

)

(5.1.1)

Then it is real, and do not contribute to Im(e−iαΩ), and we get:∫
e−iα+K/2Ω ∧ d

dτ

[
e−U(τ)

(
eK/2+iαΩ̄

)]
=

∫
eK

d

dτ
e−U(τ)Ω ∧ Ω̄

And note that eK d
dτ
eU(τ) do not depends on the compactification manifold, it
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only depends on the variable τ that corresponds to the distance in the resulting

4-dimensional spacetime. Then,

∫
e−iα+K/2Ω ∧ d

dτ

[
e−U(τ)

(
eK/2+iαΩ̄

)]
= eK

d

dτ
e−U(τ)

∫
Ω ∧ Ω̄ (5.1.2)

For the right-hand side, we get:

i

∫
e−iα+K/2Ω ∧ Γ = ie−iα+K/2

∫
Ω ∧ Γ

= ie−iαZ

= i|Z|

We then get:

−ieK d

dτ
e−U(τ)

∫
Ω ∧ Ω̄ = |Z| (5.1.3)

Comparing with 2.4.15 and 4.1.4, it results:

d

dτ
e−U = |Z| = eK/2

∣∣∣∣∫
C0
Ω0 +

∫
C̃
Ω̃

∣∣∣∣ (5.1.4)

that is equivalent to 3.2.8, for a manifold with a central charge given by 4.1.4.

5.2 Equation on the moduli space

In order to get the equations on the moduli coordinates XI , we project 5.0.1 on

e−iαeKDIΩ. After this, we get the equation:

dXI

dτ
= −2eU(τ)GIJ̄∂J̄ |Z| (5.2.1)

Note that the metric GIJ̄ is given by:
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GIJ̄ = ∂I∂J̄K

= ∂I∂J̄

[
− ln

(
e−K0 + e−K̃

)]
= −∂I

∂J̄

(
e−K0 + e−K̃

)
e−K0 + e−K̃

= ∂I
e−K0∂J̄K0 + e−K̃∂J̄K̃

e−K0 + e−K̃

=
∂I

(
e−K0∂J̄K0 + e−K̃∂J̄K̃

)(
e−K0 + e−K̃

)
(
e−K0 + e−K̃

)2
−

(
e−K0∂J̄K0 + e−K̃∂J̄K̃

)
∂I

(
e−K0 + e−K̃

)
(
e−K0 + e−K̃

)2
=
e−K0∂IK0∂J̄K0 + e−K0∂I∂J̄K0 + e−K̃∂IK̃∂J̄K̃ + e−K̃∂I∂J̄K̃

e−K

+

(
e−K0∂IK0 + e−K̃∂IK̃

)(
e−K0∂J̄K0 + e−K̃∂J̄K̃

)
e−2K

But, recall that K̃ depends only on X0 and K0 depends only on X i, i =

1,· · · , h2,1. Then, G0i = Gi0 = 0, and

G00̄ =
e−K̃∂0K̃∂0̄K̃ + e−K̃∂0∂0̄K̃

e−K +

(
e−K̃∂0K̃

)(
e−K̃∂0̄K̃

)
e−2K

=
e−K̃

e−K

(
∂0K̃∂0̄K̃ + ∂0∂0̄K̃

)
+

(
e−K̃

e−K

)2

∂0K̃∂0̄K̃

=
e−K̃

e−K

(
1 +

e−K̃

e−K

)
∂0K̃∂0̄K̃ +

e−K̃

e−K∂0∂0̄K̃

(5.2.2)
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Gij̄ =
e−K0∂iK0∂j̄K0 + e−K0∂i∂j̄K0

e−2K +

(
e−K0∂iK0

) (
e−K0∂j̄K0

)
e−2K

=
e−K0

e−K

(
1 +

e−K0

e−K

)
∂iK0∂j̄K0 +

e−K0

e−K ∂i∂j̄K0

(5.2.3)

On the other side, we get:

∂0|Z| = ∂0|Z0 + Z̃| = ∂0|Z̃| (5.2.4)

∂i|Z| = ∂i|Z0 + Z̃| = ∂i|Z0| (5.2.5)

Knowing the form of the metric of the moduli space, 5.2.1 can be divided into

two equations:

dX0

dτ
= −2eU(τ)G00̄∂0̄|Z̃| (5.2.6)

dX i

dτ
= −2eU(τ)Gij̄∂j̄|Z0| (5.2.7)

Clearly, 5.2.7 is equivalent to 3.2.9, not only on the form, but with the same

index set {1,· · · , h2,1}. And we get and independent equation 5.2.6 for the new

symplectic coordinate.

5.3 Asymptotic behaviour of the quantum hair

Note that 5.2.6 implies:
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d|Z̃|
dτ

=
dX0

dτ
∂0|Z̃|+

dX̄ 0̄

dτ
∂0̄|Z̃|

= −2eU(τ)G00̄∂0̄|Z̃|∂0|Z̃| − 2eU(τ)G0̄0∂0|Z̃|∂0̄|Z̃|

= −4eU(τ)G00̄∂0̄|Z̃|∂0|Z̃| ≤ 0

Then, the function |Z̃|(τ) is monotonically decreasing. Nevertheless, the fact that

τ −→ ∞ corresponds to the event horizon makes any function of τ convergent at

τ −→ ∞. From this we may conclude:

d|Z̃|
dτ

−→ 0, as τ −→ ∞ (5.3.1)

The same happens to Z̃. Let be

|Z̊| = lim
τ→∞

|Z| (5.3.2)

Then, for large τ ’s, 5.1.4 results:

d

dτ
e−U(τ) = |Z̊| (5.3.3)

that can be integrated to:

e−U(τ)

τ
= |Z̊| (5.3.4)

Substituting this into the metric of an supersymmetric spherically symmetrical

black hole 3.2.6, we get:
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ds2 = −e2U(r)dt2 + e−2U(r)
(
dr2 + r2dθ2 + r2 sin2 θdφ2

)
= − r2

|Z̊|2
dt2 +

|Z̊|2

r2
dr2 + |Z̊|2

(
dθ2 + sin2 θdφ2

)
=

|Z̊|2

R2

(
−dt2 + dR2

)
+ |Z̊|2

(
dθ2 + sin2 θdφ2

)
that is the AdS2×S2 spacetime, just like in the section 1.3 for extremal black holes.

With the metric in this form, the area of the event horizon is easily computed as:

A = 4π|Z̊|2 (5.3.5)

Under this same approximation, 5.0.1 has solution:

2eK/2Im
¯̊
ZΩ ∼ −Γ (5.3.6)

Then, in the near-horizon approximation, we are able to calculate the holo-

morphic 3-form Ω = Ω0+Ω̃ as a function of the central charge Z̊, i.e., the charges

(electric, magnetic, integer, fractional) at the horizon.
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Conclusions

1. String theory is a proposal for a quantum theory of gravity that is able

to reproduce Supergravity and General Relativity phenomena. Thus, the

problems of the classical General Relativity, such as the existence of singu-

larities and the information loss, can be reformulated in terms of the String

Theory.

2. Calabi-Yau manifolds are the main candidates for compactification, because

the resulting 4-dimensional spacetime has supersymmetry N = 2.

3. In general terms, to preserve the No-hair theorem, we need to define the

Attractor mechanism to localise the charges of the black hole to the event

horizon.

4. In order to study fluxes over the compactification manifold, we need to

consider generalised Calabi-Yau manifolds, such as Half-flat manifolds. Half-

flat manifolds has a structure similar to CY manifolds, with its own moduli

space. A new charge, that is additional to the classic black hole charges, is

found for Half-flat manifolds, known as quantum hair.

5. Extending the definition of the Attractor mechanism to a theory compacti-

fied with a Half-flat manifold, it results that quantum hair is also localised

in the event horizon.
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Appendix A

Special Relativity

In 1864, Maxwell achieved to summarize and correct over a century of research

work in electrodynamics in four equations:

∇ · E⃗ =
ρ

ϵ0
(A.0.1)

∇ · B⃗ = 0 (A.0.2)

∇× E⃗ = −∂B⃗
∂t

(A.0.3)

∇× B⃗ = µ0J⃗ + µ0ϵ0
∂E⃗

∂t
(A.0.4)

known as the Maxwell equations [42]. A certain combination of these equations

gives a wave behaviour for the electric and magnetic fields, both with the same

velocity:

∇2E⃗ = µ0ϵ0
∂E⃗

∂t
(A.0.5)

∇2B⃗ = µ0ϵ0
∂B⃗

∂t
(A.0.6)
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That value of velocity agreed unexpectedly with the value of the velocity of

light, 1√
µ0ϵ0

= c, largely measured by people like Galileo, Huygens and Foucault.

This suggested that light actually is an electromagnetic wave.

Two questions surge after this assumption: Which is the frame in which the

velocity of light is measured?, and is there any medium through which the electro-

magnetic waves propagate? Some people suggested the existence of a fluid called

”aether” that covered the universe to answer both questions.

To prove the existence of this aether, in 1887, Michaelson and Morley [43]

measured the speed of light in two directions, one perpendicular to the movement

of Earth and the other parallel to it. Surprisingly, both velocities were the same.

A.1 Lorentz transformation

After the conclusions given by Michaelson and Morley, in 1895, Lorentz got a new

transformation of coordinates:

t′ = γ(t− V

c2
x) (A.1.1)

x′ = γ(x− V t) (A.1.2)

with

γ =
1√

1− V 2

c2

(A.1.3)

that, if the second frame is moving slowly respect to first one, are similar to the

ones proposed by Galileo in the XVII Century:
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t′ = t (A.1.4)

x′ = x− V t (A.1.5)

Ten years later, Albert Einstein taking the invariance of the speed of light

as postulate (and then the transformation of Lorentz), published an article [44]

with a new mechanical theory, that would be called the Special Theory of

Relativity.

The fact that in this theory, the time also transforms is seen easier if we work

with vector in four dimensions (or 4-vectors), as well as tensors in four dimensions,

so that, the Lorentz transformation looks like:

xµ = Λµ
νx

ν (A.1.6)

with

Λµ
ν =

∂xµ

∂xν
(A.1.7)

Note that this expression only involves rotations and boosts, not translations.

Also, it defines a group, known as the Lorentz group. If we add the translations,

i.e.,

xµ = Λµ
ν̄x

ν̄ + aµ (A.1.8)

It defines the Poincaré Group.
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A.2 Relativistic dynamics

We need a 4-vector definition for the classical quantities studied in Newtonian

mechanics, such as momentum, energy, etc. Knowing the position of a massive

particle, xµ, we can define its velocity

uµ =
dxµ

dτ
(A.2.1)

with τ the proper time of the particle, that is, the time that measures the

particle itself. It happens to have the components:

uµ = (γc, γv⃗) (A.2.2)

Then, we can easily define the momentum of a massive particle as:

pµ = muµ (A.2.3)

Note that it does not agree with our classical definition of momentum, even

in the spatial components. But, if the speed of the particle is small compared to

the speed of light, the extra γ factor tends to 1.

This definition of momentum seems to work for massive particles, but what

about photons and other massless particles? We cannot define a proper time for

massless particles (as they travel at the speed of light). Even if we could do it,

see that A.2.2 diverges as v → c.

In order to define a momentum for massless particles, note that the 0-component

of the momentum of a massive particle is p0 = mγc, that indeed is the total energy

of the particle up to a c factor, as Einstein wrote in his 1905 article [44]. So that,

the components of the momentum are
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pµ =

(
E

c
, p⃗

)
(A.2.4)

Recall that the energy of a quantum of light (photon) is E = hν = hc
λ
[45] and

the de Broglie hypothesis for the momentum of a photon, p = h
λ
[46]. So that, we

can use A.2.4 as the definition of the (4-)momentum. This definition let us have

two conservation laws (energy and momentum) into just one, the conservation of

the 4-momentum.

Note that if the energy of a photon (and then its wavelength) are part of a

vector, we can see how it transforms as the source is moving from (or to) the

observer, this is known as Doppler effect. Consider a source of light that emits

a photon with wavelength λ and an observer that moves from the source with

speed V in some certain direction x. Acting A.1.1 over A.2.4, we get that the

wavelength that the observer measures is

λ′ =

√
c+ v

c− v
λ (A.2.5)

A.3 Relativistic action

All this is summarized in the action:

S =

∫
L = −mc

∫ s2

s1

√
ηαβ

dxα

ds

dxβ

ds
ds (A.3.1)

where ηαβ is the metric of the Minkowski spacetime, and it is given by

ηαβ =


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 (A.3.2)
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This action works for free particles, but if we add an electromagnetic interac-

tion, there is an extra term to the lagrangian function, L = Lfree + Lint:

Lint =
e

c

dxα
ds

Aα (A.3.3)

If we apply the Hamilton Principle to this action[47], we get the Lorentz

force

duα

dτ
=

e

mc
Fαβuβ (A.3.4)

Fαβ = ∂αAβ − ∂βAα (A.3.5)

that is, the force that feels a particle with electric charge e in the presence of a

(4-)potential Aα, whose components are:

Aα = (ϕ, A⃗) (A.3.6)

where, ϕ and
−→
A are the classical electrodynamics scalar and vector potentials,

respectively.

Note that the components of the tensor of Faraday F are

Fαβ =


0 −Ex −Ey −Ez

Ex 0 −Bz By

Ey Bz 0 −Bx

Ez −By Bx 0

 (A.3.7)

and that, it is indeed a tensor, i.e., it transform as

F ′αβ = Λα
µΛ

β
νF

µν (A.3.8)

where the Λ’s are the same as in A.1.7.

There is one more action that gives us an interesting equation, that is
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S =

∫ [
− 1

16π
FαβF

αβ − 1

c
JαA

α

]
(A.3.9)

where J is the (4-)current, whose components are

Jα = (cρ, J⃗) (A.3.10)

From this action we get

∂αF
αβ =

4π

c
Jα (A.3.11)

that are the inhomogeneous Maxwell equations. The homogeneous ones can be

get from Jacobi identity.

After all this, Special Relativity seems to be very useful, but it fails to describe

accelerated frames. We need a generalisation of this theory to do that.
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Appendix B

Geometric tools

B.1 Manifolds

Spacetime, as well as our planet, is not plane. Note that Earth cannot be described

by a single coordinate system. Latitude and longitude try, but they fail at the

International Date Line, that is a ”discontinuity” talking about the local time.

This proves that there are geometrical spaces that, in general, cannot be described

by a single coordinate system, but locally we can find it. For example, a map of

Mexico, in the case of the Earth. These spaces are the so called manifolds.

A manifold can be locally identify with a flat space Rn. We can characterize

a manifold M using its metric gµν . The classic concept of scalar product in Rn:

a⃗ · b⃗ = a1b1 +· · ·+ anbn (B.1.1)

is sustituted in a manifold, by

a⃗ · b⃗ = gµνa
µbν (B.1.2)

Note that we are using the Einstein summation convention.

In Special Relativity, the components of the metric is the one given in A.3.2,

but in General Relativity, it only has to be a function g :M ×M −→ K (the field

55
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over which the vector space is defined) bilinear (g(λa, b) = λg(a, b), g(a, λb) =

λg(a, b)), symmetric (g(a, b) = g(b, a)) and non-degenerate (g(a, b) = 0,∀b ∈
M ⇒ a = 0).However, it is customary that every component of the metric is a

”well-behaved” function (continuous, differentiable, etc.) of the coordinates.

In this manifold, tensors (including vectors and one-forms) transform in the

same way as in Special Relativity:

A′α1α2···
β1β2··· =

∂xα1

∂xµ1

∂xα2

∂xµ2
· · · ∂x

ν1

∂xβ1

∂xν2

∂xβ2
· · ·Aµ1µ2···

ν1ν2··· (B.1.3)

B.2 Homology and cohomology

We can define the concept of differential forms over a manifold M as an anti-

symmetric (0, p) tensor[2].

ω =
1

p!
ωµ1···µpdx

µ1 ∧ dxµp (B.2.1)

The set of p-forms is denoted as Λp, and we can define an exterior product,

known as the Wedge product, as ∧ : Λp × Λq −→ Λp+q, with

(A ∧B)µ1···µp+q = A[µ1···µpBµp+1···µp+q ] (B.2.2)

As well as we can define a differential operator, d : Λp −→ Λp+1, with

(dA)µ1···µp+1 = (p+ 1)∂[µ1Aµ2···µp+1] (B.2.3)

Now, note that

d2A = d(dA) = 0,∀A ∈ Λp (B.2.4)

With this in mind, we can define closed and exact forms. A closed form is

the one that dA = 0, and an exact form is the one that A = dω. Note that every

exact form is closed but not every closed form is exact.

Let us define the space of closed p-forms Zp and the space of exact p-forms
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Bp. We have Bp ⊂ Zp. Moreover, we can define an equivalence relation in Zp

as

A ∼ A+ dω (B.2.5)

Then, the quotient space

Hp(M) =
Zp(M)

Bp(M)
(B.2.6)

is known as the de Rham cohomology space (with cohomology classes as

elements).

We shall define one last operator over forms, the Hodge star operator,

∗ : Λp −→ Λn−p, where n is the dimension of M (that is, locally we can associate

M with Rn). This Hodge star operator acts like::

(∗A)µ1···µn−p =
1

p!
ϵν1···νpµ1···µn−p

Aν1···νp (B.2.7)

∗A is known as the Hodge dual of A.

As well as we have a cohomology space Hp(M), we also have a homology

space Hp(M). M is a manifold, therefore it is a topological space. So there are

subspaces N in M of dimension p < n.

The operator ∂ : P(M) −→ P(M), that acts over N giving its boundary,

works as a differential operator. Following this, we call a submanifold A closed, if

∂A = ∅, and exact if there is a N , so that A = ∂N . If N is a non-closed (p+ 1)-

submanifold of M , then A = ∂N ̸= ∅ is called a p-cycle. For example, if N is

a circle (that is a non-closed 2-submanifold), then A = ∂N is its circunference

(1-cycle).

Just as in the caso of the p-forms, we may now construct the sets Zp of closed

p-submanifolds and Bp of exact p-submanifolds. And then, the homology space

is defined as:

Hp(M) =
Zp(M)

Bp(M)
(B.2.8)
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These spaces are related through the Poincaré Duality and the Stoke’s

Theorem: ∫
N

dω =

∫
∂N

ω (B.2.9)

B.3 Covariant deraivative

For forms, we saw that the differential operator transforms p-forms into (p + 1)-

forms. Following this we define the differential operator for tensors∇ : T (M)kl −→
T (M)kl+1 as:

∇ν1A
µ1···µk
ν2···νl+1

=
∂

∂xν1
Aµ1···µk

ν2···νl+1
(B.3.1)

This equation is only valid in one certain reference frame. Let us see how it

transforms for a vector, for example. We want this derivative to be a tensor, so

∇βv
α =

∂xα

∂xµ
∂xν

∂xβ
∇νv

µ =
∂xα

∂xµ
∂xν

∂xβ
∂vµ

∂xν
(B.3.2)

On the other side, note that vµ = ∂xµ

∂xαv
α, ∂

∂xν = ∂xβ

∂xν
∂

∂xβ . So

∇βv
α =

∂xα

∂xµ
∂xν

∂xβ
∂xδ

∂xν
∂

∂xδ

(
∂xµ

∂xγ
vγ
)

=
∂xα

∂xµ
δδβ

∂

∂xδ

(
∂xµ

∂xγ
vγ
)

=
∂xα

∂xµ
∂

∂xβ

(
∂xµ

∂xγ
vγ
)

=
∂xα

∂xµ

(
vγ

∂

∂xβ
∂xµ

∂xγ
+
∂xµ

∂xγ
∂vγ

∂xβ

)
= vγ

∂

∂xβ
∂xµ

∂xγ
∂xα

∂xµ
+
∂xα

∂xµ
∂xµ

∂xγ
∂vγ

∂xβ

=
∂vα

∂xβ
+

(
∂

∂xβ
∂xµ

∂xγ
∂xα

∂xµ

)
vγ
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or,

∇βv
α = ∂βv

α + Γα
βγv

γ (B.3.3)

where ∂β = ∂
∂xβ ,Γ

α
βγ = ∂

∂xβ
∂xµ

∂xγ
∂xα

∂xµ . The Γ’s are called the Christoffel symbols, and

they can be easily calculated through the metric gµν , as

Γα
µν =

1

2
gαβ (∂µgνβ + ∂νgβµ − ∂βgµν) (B.3.4)

B.4 Parallel transport and geodesics

While studying curved manifolds, the concept of parallel transport is important.

In these manifolds, the Euclid’s fifth postulate is not satisfied, so two parallel

lines can intersect in a finite distance. Therefore, they are the best way to study

curvature.

Let f : R −→ M be a curve in M , parametrized by λ, and P ∈ M a point

which this path f passes through. For this point P (= xµ(λ) in certain frame),

we can define a tangent vector space, and a vector −→v (= vν). Let us see how −→v
changes as λ changes. If we want −→v to be transported parallely through the path

f , it has to remain the same, that is

dvν

dλ
= 0 (B.4.1)

dxµ

dλ
∇µv

ν = 0 (B.4.2)

The derivative defined by B.3.3 and B.3.4 is the only one that preserves angles

while parallel-transporting (Actually this is how you get B.3.4).

Note in B.4.2 that dxµ

dλ
is also a vector, the vector tangent to the curve f indeed.

So what if we parallely transpart this vector? We get a differential equation for

the path f , that is then called geodesic.
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dxµ

dλ
∇µ

dxν

dλ
= 0 (B.4.3)

B.5 Curvature

One of the consequences of the curvature of the manifold is that covariant deriva-

tives do not commute with each other. Then we can define a new tensor in the

following way:

Rα
βµνV

β = [∇µ,∇ν ]V
α (B.5.1)

This tensor Rα
βµν is called the Riemann tensor. This tensor can be calcu-

lated using the Christoffel symbols as

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ + Γα

σµΓ
σ
βν − Γα

σνΓ
σ
βµ (B.5.2)

Having this Riemann tensor, we can define the Ricci tensor as

Rµν = Rα
µαν (B.5.3)

as well as the Ricci scalar, also known as the curvature scalar:

R = gµνRµν (B.5.4)

After defining all these new tensors, we can write down the equation that Ein-

stein got in his 1915 paper [25], that would be called later the Einstein equation:

Rµν −
1

2
Rgµν = 8πGTµν (B.5.5)

where Tµν is the stress-energy tensor, and describes the content of the space-

time whose curvature is described by the Ricci tensor, Ricci scalar and metric.
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