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Abstract

One of the most popular and best motivated extensions of the standard model of ele-
mentary particle physics consists in adding heavy right-handed neutrinos and generating
the mass of light neutrinos through the so-called Type-I seesaw mechanism, or some of
its lower-energy variants (like the so-called inverse seesaw).

In this work we study the non-unitary constraints arising from the presence of extra
states, which may render the violation of the charged lepton flavor measurable, in the
context of a model with two sterile Majorana neutrinos, that includes both the type-I
seesaw and its inverse realization as limits of interest. In our study, we generate a set
of random values for the three independent heavy-light admixtures. These inputs are
constrained by the results of a global fit to electroweak precision observables and by data
on possible decay and transition processes, where µ → eγ –that violates lepton flavor–
currently dominates. The constraint on the µ → eγ process is taken in the case where
the masses of the two heavy neutrinos are equal and thus form a Dirac field. In this
particular case, we conclude that the unitarity constraints are more stringent than those
coming from charged lepton flavor violating processes, which deserves further study, both
within this simplified model, and more generally, in the context of seesaw scenarios.
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Resumen

Una de las extensiones más populares y mejor motivadas del modelo estándar de la
f́ısica de part́ıculas elementales, consiste en añadir neutrinos derechos pesados, y generar
la masa de los neutrinos ligeros a través del llamado mecanismo Seesaw tipo-I, o alguna
de sus variantes a enerǵıas menores (como el llamado seesaw inverso).

En este trabajo estudiamos las restricciones de no unitariedad provenientes de la pre-
sencia de estados adicionales, que pueden causar que la violación de sabor leptónico en
el sector cargado sea observable, en el contexto de un modelo con dos neutrinos estériles
de Majorana, que incluye el seesaw tipo-I y su realización inversa como ĺımites de interés.
En nuestro estudio, generamos un conjunto de valores aleatorios para las tres mezclas
pesadas-ligeras independientes. Estos inputs están restringidos por los resultados de un
ajuste global a observables de precisión electrodébiles y los datos de diversas transiciones
y desintegraciones posibles, donde µ → eγ –que viola el sabor leptónico– domina actual-
mente. La restricción del proceso µ → eγ se toma en el caso en que las masas de los
dos neutrinos pesados son iguales y, por tanto forman un campo de Dirac. En este caso
particular concluimos que las restricciones de no unitariedad son más fuertes que las de
procesos con violación de sabor leptónico en corriente cargada, lo que merece extender
este estudio, tanto dentro de este modelo simplificado, como de forma más general, en el
contexto de escenarios seesaw.
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Notation

In this work we will use the natural units ℏ = c = 1. Where ℏ = h/2π, with h the
Planck constant and c the speed of light.

Greek indices µ and ν run over the four spacetime coordinate, usually taken as 0,1,2,3.
The Einstein’s summation convention is used, i.e. indices that are repeated are summed
over.
L Lagrangian density, frequently called Lagrangian.
εαβγδ Levi-Civita symbol.
gµν components of the Minkowski metric, diag (1,−1,−1,−1) .
The transpose of a matrix A is AT .
The complex conjugate of a matrix A is A∗. The Hermitian adjoint of a matrix A is
A† = A∗T .
(Aa

Ad)c
b = ifabc is the adjoint representation.

1 is the identity matrix, or sometimes called a unit matrix.
[A,B] = AB −BA Commutator.
{A,B} = AB +BA Anticommutator
/A = γµAµ Feynman slash notation.
Dirac conjugation is expressed by ψ = ψ†γ0.
+h.c is the addition of the Hermitian adjoint or complex conjugate.
The Pauli matrices are given by

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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Chapter 1

Introduction

The Standard Model of Particle Physics (SM) [1–3] is the theory that describes, to the
best of our understanding, Nature correctly at the most fundamental level, up to energy
scales of several TeVs. In some privileged cases, like the anomalous magnetic moment of
leptons, the agreement between experiment and theory is astonishing and reaches many
significant figures.

Despite this tremendous success, which rests upon its renormalizability, enabling pre-
cise multi-loop calculations to be confronted unambiguously to the extremely accurate
measurements, the SM cannot be the final theory in our understanding of the Universe.

A clear and indisputable evidence for this comes from the fact that the SM cannot
explain the observed enormous abundance of matter over antimatter (this could have been
possible with a lighter Higgs, with mass around 75 GeV instead of the 125 measured).
This requires, doubtlessly, physics beyond the SM.

A possible (and elegant) solution goes through the generation of baryon asymmetry
from an initial lepton asymmetry 1.

The required CP violation [6] would then be provided by the decays of heavy right-
handed neutrinos, which naturally appear in the explanation of the minuscule neutrino
masses through the seesaw of type I [7–11]. This theoretically appealing possible origin
of our matter universe is linked to the generation of tiny neutrino masses at scales (of
the right-handed neutrinos) natural for Grand Unification of the electroweak and strong
sectors of the SM.

Unfortunately, this exciting possibility may be untestable 2, which has motivated vari-
ants in which the new physics scale is lowered (rendering it even accessible at the LHC),
even though the unification of interactions would still need to be achieved (if that is the
case). These are generically called low-scale seesaw mechanisms and give some hope for
the soon discovery of charged lepton flavor violation, that would surely provide key in-
sights into the neutrino mass generation.

1Partial transfer of the latter to the former is possible, complying with the B − L symmetry which is
anomaly-free, through non-perturbative effects called sphalerons, that are associated to a second order
phase transition above the electroweak scale. This is called baryogenesis through leptogenesis, see e.g.
refs. [4, 5].

2This can happen for normal ordering of neutrino masses, where there is a portion of parameter space
yielding unobservably small neutrinoless double beta decay rates, with the lightest neutrino mass ≲ 1
meV [12].
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At present, lepton flavor violation has only been found (and measured, with ever-
increasing precision) in neutrino oscillations, where searches for physics beyond the three
light and active neutrinos paradigm (sometimes called minimally extended SM, in which
the three SM neutrinos are endowed with a mass, of unknown origin) are conventionally
pursued by searching for non-standard interactions or possible unitarity violations (the
former would correspond to new forces and the latter to new states).

Additional motivations for the existence of heavy (mostly sterile) neutrinos come from
their possible role as dark matter candidates [13–15] or portals to dark sectors [16–18].

In this thesis we want to investigate the constraints imposed by unitarity tests in
neutrino oscillations (that we will take from the updated analysis of ref. [19]) on a partic-
ularly simple toy model for neutrino masses [20]. Despite its simplicity, it has the virtue of
interpolating smoothly between two cases of interest. On the one hand, it reduces to the
type I seesaw (for high new physics scale), while on the other end it inherits the observ-
able signatures (depending on the heavy-light mixings) of the inverse seesaw, possibly the
simplest among those at low scale. Besides, it has a parameter whose variation connects
continuously the Dirac and Majorana cases for the extra two heavy states.

In ref. [20], the restrictions on the model parameters were worked out using the
best limits on the non-observation of charged lepton flavor violating transitions and
the model was subsequently employed in the study of lepton flavor-changing Higgs de-
cays in ref. [21]. In particular, this thesis aims to to answer if non-unitarity yields
stronger/comparable/weaker constraints than charged lepton flavor violation on this model
parameters. In the first case this will motivate the update of the predictions obtained
in refs. [20, 21] in light of our improved constraints. In the last instance, a prediction of
the class of models represented by our framework would be that non-unitarity effects in
neutrino oscillations should not be discovered anytime soon.

This Master Thesis is organized as follows: after this brief introduction, we succinctly
review the Standard Model of Elementary Particle Physics in section 2, with a special
focus on the mechanism of spontaneous symmetry breaking, that gives rise to all particle
masses but (perhaps) those of neutrinos in section 2.2. After that, in section 3, we explain
the different spinors that can be used in quantum field theory, as this is fundamental for
understanding the possible neutrino mass types which can be generated: Weyl and Dirac
spinors are explained in section 3.1 and helicity is reviewed next, in section 3.2, empha-
sizing that the Lorentz invariant chirality degenerates into it in the massless limit. We
end this chapter by recalling the main features of Majorana spinors in section 3.3, which
correspond to the particular case where (massive) neutrinos are their own antiparticles.
Then, section 4 deals with some of the main different possibilities for describing massive
neutrinos. It is well-known that the tiny neutrino masses can be generated in a natural
way assuming the existence of heavy right-handed neutrinos with masses around Grand
Unification scales (∼ 1015 GeV), in what was christened as the type I seesaw mecha-
nism, which is covered in section 4.1. Unfortunately, as elegant as this mechanism is, it
may be untestable in current or forthcoming experiments, which motivates its low-scale
variants that can be probed nowadays (although typically need ad hoc assumptions and
are less grounded formally). The simplest of these, the inverse seesaw, is introduced in
section 4.2. The model which will be worked out in this thesis, that is described in section
4.4, can be seen as a simplified toy description which in a limiting case (when the new
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physics scale if of few TeVs) falls into the inverse seesaw and that goes asymptotically
to the type I seesaw. We will specifically study if non-unitarity constraints (section 4.3)
restrict the heavy-light mixings of this model beyond the constrictions coming from the
non-observation of charged lepton flavor violation, which was worked out, for this model,
in ref. [20]. This amounts to compare the general constraints on models with a couple of
heavy sterile neutrinos coming from non-unitarity with the findings of ref. [20], which is
the topic of chapter 5. Our conclusions are summarized in chapter 6, where perspectives
for pending future work that we will undertake are also given. Several useful appendices
complement the core material of this thesis. Appendix A reviews the main aspects of
neutrino oscillations in vacuum, appendix B relates our model to the effective field theory
point of view, appendix C explains how the contraints on non-unitarity of the three light
active neutrinos are set, and appendix D illustrates the way in which charged lepton flavor
violating processes are used to restrict the heavy-light mixings of our model.
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Chapter 2

Standard model

The standard model of elementary particle physics, SM, describes strong, weak, and
electromagnetic interactions. This theory is built on the work of Glashow [1], Weinberg [2],
and Salam [3]. The SM is a gauge quantum field theory, in order to be phenomenologically
viable, it undergoes spontaneous symmetry breaking. The theory is invariant under the
Lie symmetry group of local transformations GSM = SU(3)C × SU(2)L × U(1)Y . This
group determines the interactions and the vector bosons mediators of the interactions,
that is to say

• Group SU (3)C , the C index refers to the fact that it is the color group. It has eight
gauge bosons, Gµ (called gluons), which are the mediators of the strong interactions.

• Group SU (2)L ×U(1)Y called electroweak group. The L and Y indices refer to left
isospin and hypercharge (both of weak type), respectively. It has four gauge bosons,
and is spontaneously broken to U (1)em. After spontaneous symmetry breaking,
three massive bosons (W±

µ and Z0
µ) and one massless boson (the photon, Aµ) are

produced.

The matter content of the theory is composed of fermions (quarks and leptons) and
is presented in three generations or also called flavors. The transformation properties of
these particles, under the group GSM are presented in Table 2.1 and the flavors1 in Table
2.2.

So for example

• ℓL =

(
νℓ
ℓ−

)
L

∼
(
1, 2,−1

2

)
(where ℓ = e, µ, τ), transforms as singlet under SU (3)C ,

doublet under SU (2)L and has hypercharge −1
2
.

• qL =

(
uj
dj

)
L

∼
(
3, 2, 1

6

)
(where j = 1, 2, 3), transforms as triplet under SU (3)C ,

doublet under SU (2)L and has hypercharge 1
6
.

In this theory, the left-handed and right-handed components transform in a different
way, so the SM is a chiral theory. Also, the selection of the hypercharge Y is arbitrary
and its value is fixed to obtain the electrical charge observed experimentally.

1Originally the SM was conceived with a null mass for neutrinos, which is not correct due to neutrino
oscillation experiments [22,23].
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Matter SU(3)C SU(2)L U(1)Y
ℓL 1 2 -1/2
eR 1 1 -1
qL 3 2 1/6
uR 3 1 2/3
dR 3 1 -1/3

Table 2.1: Leptons and quarks in the SM and its representations. The subscripts L and
R distinguish between left and right handed fields.

Leptons
Q Flavor Mass (MeV) Flavor Mass (MeV) Flavor Mass (MeV)
-1 Electron e 0.511 Muon µ 105.7 Tau τ 1777
0 νe 0 νµ 0 ντ 0

Quarks
+2/3 Up u 2.2 Charm c 1.28×103 Top t 173.1×103

-1/3 Down d 4.7 Strange s 96 Bottom b 4.18×103

Table 2.2: Leptons ℓ (Antileptons ℓ), with spin=1/2. The νj (j = e, µ, τ) are the corre-
sponding neutrino flavors. Quarks q (Antiquarks q), with spin=1/2. Taken from [24].

The spontaneous electroweak symmetry breaking, called SEWSB, is forced by a scalar
sector. After the SEWSB it is desired to obtain electromagnetism and that the color be
preserved. So the scalar spontaneously breaks SU(2)L × U(1)Y into U(1)em, so there are
three broken generators.

At least three real scalars are needed to play the role of the Nambu-Goldstone bosons,
NGB. The smallest representation containing three scalars is H ∼ (1, 2, YH), this must be
charged under SU (2)L because otherwise it cannot break the symmetry. The hypercharge
is fixed at YH = +1

2
.

The scalar field H, with representation H ∼
(
1, 2, 1

2

)
under GSM , is known as the

Higgs field. This field contains four real scalars, of which three will be NGB and the other
the so-called Higgs boson.

With the given representations of the matter fields, the corresponding covariant deriva-
tives are written. For example, considering left quarks ql ∼

(
3, 2, 1

6

)
, we have

DµqL =

(
∂µ − igsG

b
µTb − igW a

µ

σa
2

− ig′Bµ
1

6

)
qL. (2.1)

2.1 Dynamics of SM

Once we have described the matter content in the SM, the dynamics of the model is
given by the following invariant Lagrangian under GSM ,

L = LGauge + Lfermions + LHiggs + LY uk. (2.2)

The LGauge is associated with the dynamics of gauge bosons that correspond to each

5



group of the GSM . This consists of Yang-Mills type terms, given by

LGauge = −1

4
Gµν

b G
b
µν −

1

4
W µν

a W a
µν −

1

4
BµνBµν , (2.3)

where index a runs from 1 to 3 and index b from 1 to 8, and

Gb
µν = ∂µG

b
ν − ∂νG

b
µ + gsf

bacGa
µG

c
ν ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gfabcW b

µW
c
ν ,

Bµν = ∂µBν − ∂νBµ,

(2.4)

in these terms gs and g are the gauge coupling constants of groups SU(3)C and SU(2)L
respectively.

The structure constants fabc (a, b, c = 1, · · · , N2−1) are defined through the generators
of the groups2 as [

T a, T b
]
= ifabcT c. (2.5)

The term Lfermions contains the coupling of fermionic matter fields with gauge fields.
The coupling is made through covariant derivation. Because they are fermions, these
terms are of Dirac type, but without mass term, LD = ψi /Dψ, so

Lfermions = i
3∑

k=1

(
qkL /D

k
qkL + ℓ

k

L
/D
k
ℓkL + ekR /D

k
ekR + ukR /D

k
ukR + d

k

R
/D
k
dkR

)
, (2.6)

the index k runs over each of the flavors of the fermions.

As it has been said, the Higgs sector is responsible for the SEWSB. The Lagrangian
of this scalar field H is

LHiggs = (DµH)† (DµH)− V (H) , V (H) = −µ2H†H + λ
(
H†H

)2
, (2.7)

where constants µ2 and λ are > 0, so that the potential V (H) has a non-trivial and stable
minimum. The Higgs field is a doublet under SU(2)L, composed of real scalar fields, which
can be written as

H =

(
H+

H0

)
=

1√
2

(
H1 + iH2

H3 + iH4

)
. (2.8)

The scalar-vector interaction is described through the covariant derivative of the Higgs
field

DµH =

(
∂µ − igW a

µ

σa
2

− ig′Bµ
1

2

)
H. (2.9)

The interactions of the scalar Higgs field with fermions is described through LY uk,
which has the form

−LY uk =
3∑

k,j=1

(
Y kj
e ℓ

k

LHe
j
R + Y kj

d qkLHd
j
R + Y kj

u qkLH̃u
j
R

)
+ h.c. (2.10)

where H̃ = iσ2H
∗ is the conjugate of the doublet H, and Y kj

f are the coupling constants
between the fermions and the Higgs field.

2The groups SU(N), with N ≥ 2 are non-abelian.
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Putting all the sectors together, we have the Lagrangian of the SM before the spon-
taneous breaking of the symmetry, given by

L = −1

4
Gµν

b G
b
µν −

1

4
W µν

a W a
µν −

1

4
BµνBµν

+ i
3∑

k=1

(
qkL /D

k
qkL + ℓ

k

L
/D
k
ℓkL + ekR /D

k
ekR + ukR /D

k
ukR + d

k

R
/D
k
dkR

)
+ (DµH)† (DµH) + µ2H†H − λ

(
H†H

)2
−

3∑
k,j=1

(
Y kj
e ℓ

k

LHe
j
R + Y kj

d qkLHd
j
R + Y kj

u qkLH̃u
j
R

)
+ h.c.

(2.11)

2.2 Spontaneous Symmetry breaking in the SM

The spontaneous symmetry breaking, SSB, occurs when the Lagrangian is invariant
under a symmetry group G, but the physical states (particularly the vacuum) are not.
When the symmetry transformation is local, we have the so-called Higgs mechanism
[25–27], where the gauge bosons associated with the spontaneously broken generators
acquire mass. The symmetry SU(2)L × U(1)Y is spontaneously broken, when the Higgs
field acquires a vacuum expected value (vev). The vev is induced by the potential V (H)

dV

d|H|2
∣∣∣∣
min

= 0 =
(
−µ2 + 2λ|H|2

)
|min ⇒ | ⟨H⟩ |2 = v2

2
=
µ2

2λ
. (2.12)

The degeneracy of the vacuum is infinite, and all are equivalent. Conventionally, we
choose

⟨H1⟩ = ⟨H2⟩ = ⟨H4⟩ = 0, ⟨H3⟩ =
v√
2
=

√
µ2

2λ
. (2.13)

So when the Higgs field acquires a vev, we obtain

⟨H⟩ = 1√
2

(
0
v

)
. (2.14)

When the SEWSB occurs, we have a combination of generators that leave the vacuum
invariant, given by

Q = T3 + Y =
σ3
2

+ Y. (2.15)

Since we have the breakdown pattern SU (2)L×U(1)Y → U(1)em, where the subgroup
U (1)em corresponds to the electromagnetic interaction; then the generator Q must be the
electric charge. Once the Higgs field acquires a vev, from the kinetic term |DµH|2, we
obtain

Lmass =
g2v2

4
W+

µ W
µ
− +

v2

8

(
g2 + g′2

)
ZµZ

µ. (2.16)

The charged fields mediators of weak interactions are expressed byW±
µ , and have been

defined as

W±
µ =

1√
2

(
W 1

µ ∓ iW 2
µ

)
. (2.17)

The weak neutral interactions are mediated by the Z0
µ boson, which is a combination

of the Bµ and W µ
3 bosons. From eq. (2.16) we have that, after the SEWSB, the bosons

Z0
µ and W±

µ have acquired a mass given by

MW =
gv

2
, MZ =

v

2

√
g2 + g′2. (2.18)

7



The combination orthogonal to Z0
µ is the boson Aµ, which does not acquire mass in

the SEWSB. Such a boson is identified with the photon.

In the Yukawa sector, after the SEWSB, we obtain Dirac-type mass terms for the
charged leptons and quarks, given by

LY uk = − v√
2

(
eLYeeR + dLYddR + uLYuuR

)
+ h.c. (2.19)

The following two events have taken place in this sector

• Neutrinos have not acquired mass.

• The matrices Ye,d,u, are not diagonal in the flavor space, so we cannot yet associate
a mass to fermions.

The diagonalization of the matrices Ye,d,u is done through a bi-unitary transformation,
of the form

Y = UŶ V †, (2.20)

where Ŷ is a diagonal matrix with positive definite entries. With this diagonalization, we
obtain

LY uk = − v√
2

(
eLUeLŶeU

†
eR
eR + dLUdLŶdU

†
dR
dR + uLUuL

ŶuU
†
uR
uR

)
+ h.c. (2.21)

Now, since physics is invariant under redefinitions of the fields, we perform a unitary
transformation of the fields in the flavor space as follows

fL,R → UfL,R
fL,R. (2.22)

For example, eR → UeReR and, eL → eLU
†
eL
. In this way for the Yukawa sector, we

obtain
LY uk = − v√

2

(
eLŶeeR + dLŶddR + uLŶuuR

)
+ h.c. (2.23)

Thus when SEWSB occurs, quarks and charged leptons acquire a well-defined mass
given by

Mf =
v√
2
Ŷf , where f = e, u, d. (2.24)

Thus we have that the transformations leading to the fermion mass basis at the doublet
level are

ℓ =

(
νL
eL

)
→ UeL

(
νL
eL

)
,

qL =

(
uL
dL

)
→ UuL

(
uL

U †
uL
UdLdL

)
= UuL

(
uL

VCKMdL

)
.

(2.25)

Where we have defined the Cabibbo-Kobayashi-Maskawa matrix, VCKM, which being
a product of unitary matrices is itself a unitary matrix.

Such unitary transformations in the flavor space only have an effect on the vector-
fermion interactions of the SM.

In the lepton sector, the neutral interactions, which involve bosons Z0
µ and Aµ, are of

the form fL,Rγ
µfL,R, that is, they involve the same type of fermions, so the unitary trans-

formations will not modify the neutral interactions. In charged interactions, if we consider

8



that neutrinos are nonmassive, they can be transformed as we wish without changing the
physics, so charged interactions will not be modified either. In other words, there are no
leptonic flavor changes at tree level and for massless neutrinos.

In the quark sector, the neutral interactions are of the same structure as in the lep-
tonic case. Therefore, transformations in the flavor space have no effect. Because the
VCKM is not diagonal, charged interactions change the flavor. That is, there are processes
mediated by W±

µ bosons that violate the flavor in the quark sector.

Since it is essential for this thesis, we will in the following give the explicit form
that charged and neutral current interactions involving neutrinos have in the SM, after
the SSEWSB. This is of central importance in this work, since the constraints on non-
unitarity will be given with respect to the SM couplings of neutrinos (among themselves
and with charged leptons) mediated by the weak Z0 andW± gauge bosons –in the neutral
and charged currents, respectively–, which are

LW± = − g√
2
W−

µ

3∑
i,j=1

Uν
ij ℓ̄iγµPLνj + h.c. ,

LZ = − g

4cW
Zµ

3∑
i=1

ν̄iγ
µPLνi ,

LG± = − g√
2MW

G−
3∑

i,j=1

Uν
ij ℓ̄imℓiPLνj + h.c. (2.26)

In eqs. (2.26), the 3 × 3 matrix Uν
ij is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix [28, 29], encoding the charged current mixing of the three light (massive) and
active neutrinos in the SM with their corresponding charged leptons. Mathematically,
this matrix appears in a completely equivalent way as the Cabibbo-Kobayashi-Maskawa
(CKM) matrix in the quark sector [30,31], although the numerical values of their respective
entries are rather different [24], which is not understood.

2.3 Tree-level Higgs boson physics

To eliminate the Goldstone bosons from the theory (which in the SEWSB process are
“eaten” by the three gauge bosons to acquire their mass) we make use of the unitary
gauge3, in which the Higgs doublet is given by

H (x) =
1√
2

(
0

h+ v

)
. (2.27)

We see that in this gauge H(x) has only one degree of freedom and the physical implica-
tions will be clearer to see. The scalar field h is a radial excitation (in the vev direction).
This is the physical state called the Higgs boson. The physics of the Higgs boson h, refers

3Due to the local symmetry, we can always perform a gauge transformation to completely absorb the
dependence on the Nambu Goldstone bosons

φ = eiξaχa φ̃ → e−iξaχaφ = φ̃.

The Nambu Goldstone bosons disappear from the Lagrangian, it is said that with this transformation L
is in the unitary gauge.
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to the couplings and the mass of the h field.

The Higgs sector of the SM in the unitary gauge is

LHiggs =
1

2
∂µh∂

µh+M2
W

(
1 +

h

v

)2

W+
µ W

µ
− +

M2
Z

2

(
1 +

h

v

)2

ZµZ
µ − V (H) , (2.28)

and the Yukawa sector

−LY uk =
∑
f

mf

(
1 +

h

v

)
fLfR + h.c. (2.29)

From equations (2.28) and (2.29) we have the following observations:

• All Higgs boson couplings are proportional to the mass of the particles, with divisions
between v or v2 to have the correct dimensions.

• The couplings of the Higgs boson with the massive gauge bosons are of linear and
bilinear type.

• The couplings of the Higgs boson with fermions are of linear type.

The above observations have been experimentally tested and we show the most recent
experimental results in Figure 2.1. Similar agreement with SM and data has been found
for the Higgs boson couplings to fermions and bosons (not shown in the figure). Thus, at
the required precision, the Higgs mechanism of SSEWSB appears to be the one realized
in Nature. It is yet unknown if it contributes to neutrino masses, however. In this case,
mass generation related to the Weinberg operator (app. B), like the one considered in
this thesis, may be essential to understand their tiny values.
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Figure 2.1: Couplings of the Higgs boson versus the mass of the SM particles. The Higgs
boson couples with a strength proportional to mass (charged fermions) or mass squared
(gauge bosons). We observe that the more massive a particle, the stronger the coupling
is. Taken from [32] and [33] links.
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But these couplings are only at tree level. Phenomenologically, the most important
ones arise at one loop and are h − Aµ − Aµ (photon-photon) for its decay (h → γγ was
one of the two Higgs discovery modes, together with H → 4ℓ, coming from one on-shell
and one off-shell intermediate Z0 bosons) and h − Ga

µ − Gµa (gluon-gluon) for its main
production channel at the LHC.

We can read the mass of the Higgs boson from the potential4 with the substitution
µ2 = λv2:

V (H) = −µ
2

2
v2
(
1 +

h

v

)2

+
λ

4
v4
(
1 +

h

v

)4

= λv2h2 + λvh3 +
λ

4
h4 − λ

4
v4.

(2.31)

Then, the Higgs boson mass term is m2
h = 2λv2, plus trilinear and quartic self-

couplings. There are two parameters in the Higgs sector, the mass parameter µ and
the quartic coupling parameter λ. One combination of them gives the expected vacuum
expectation value, which is measured via the Fermi constant in the muon decay µ = λv2.
The other combination gives the mass of the Higgs boson measured in 2012 at CERN
λ = m2

h/2v
2. With the above we can express the Higgs self-couplings, only in terms of

observables v2 and m2
h, that is to say

V (H) =
1

2
m2

hh
2 +

1

2v
m2

hh
3 +

1

8v2
m2

hh
4 − 1

8
m2

hv
2. (2.32)

Despite the predictions of the standard model, the tree-level values are very far from
the experimental values (some almost 40σ off). Only when we consider the loop corrections
do we have a formidable accuracy between theory and experiment. Table 2.3 shows some
experimental values together with the predictions of the standard model.

Quantity Exp. Value SM
MZ (GeV) 91.1876± 0.0021 91.1882± 0.0020
ΓZ(GeV) 2.4955± 0.0023 2.4941± 0.0009

Ae 0.15138± 0.00216 0.1468± 0.0003
0.1544± 0.0060
0.1498± 0.0049

Table 2.3: Experimental values as SM predictions for, Z-boson pole mass MZ , the decay
rate ΓZ and asymmetric polarization Ae in Z boson production. For more values and
details see [24].

4The mass term of a scalar field can also be obtained through the second derivative of the potential
evaluated at the minimum, in this case the minimum is equal to extremize and find ⟨h⟩ = 0,

m2
h =

∂2V

∂h2

∣∣∣∣
min

=

[
−µ2 + 3λv2

(
1 +

h

v

)2
]
min

→ m2
h = 2λv2 = 2µ2. (2.30)
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Chapter 3

Dirac, Weyl, and Majorana Spinors

Originally in the SM, neutrinos are massless, but neutrino oscillation experiments indi-
cate otherwise. By including mass to neutrinos, the SM must be extended. To construct
mass terms for neutrinos, Weyl spinors are used. These spinors are irreducible represen-
tations of the Lorentz group. From the Weyl spinors, mass terms are constructed for the
so-called Dirac and Majorana fermions.

Paul Dirac derived in 1928 a relativistic wave equation for the electron. This equation
describes all spin 1/2 fermionic particles, which written in covariant notation is given by

(iγµ∂µ −m)ψ = 0, (3.1)

where ψ is a Dirac spinor, which has four components and γµ are a set of matrices that
satisfy a Clifford algebra

{γµ, γν} = 2gµν . (3.2)

The Dirac equation can be derived using the Euler-Lagrange equations, from the
Lagrangian

L = ψ
(
i/∂ −m

)
ψ. (3.3)

Among the successes of the Dirac equation are the prediction of the existence of
antiparticles and that spin is contained in the theory as a consequence of relativistic
invariance.

3.1 Weyl spinors

The Dirac spinor can be written in terms of two-component spinors

ψ =

(
η
χ

)
. (3.4)

The two-component spinors η and χ are called Weyl spinors. So the Dirac spinors form
a reducible representation of the Lorentz group and the Weyl spinors form an irreducible
representation of the Lorentz group.

If we set η or χ to zero in ψ, eigenstates of the matrix γ5
1 are produced

γ5

(
η
0

)
= +

(
η
0

)
, γ5

(
0
χ

)
= −

(
0
χ

)
. (3.5)

1Where the matrix γ5 is defined by a product of the γµ matrices, as γ5 = iγ0γ1γ2γ3.
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The eigenvalue of γ5 is called the chirality of a spinor. Thus η has a chirality of +1
and χ has a chirality of −1. We will refer to a Weyl spinor with positive chirality as
right-chiral spinor η

R
, and to one with negative chirality as left-chiral spinor χ

L
.

The chirality will specify the representation of the Lorentz group to which a spinor
belongs. We can define the Weyl spinors as the components of the eigenstates of the chi-
rality operator, which are irreducible representations of the Lorentz group. Weyl spinors
η
R
and χ

L
transform under rotations and boosts as follows

η
R
→ η′

R
= U

R
η
R
= e

1
2
(iα−β)·ση

R
≈
(
1+

i

2
α · σ − 1

2
β · σ

)
η
R
, (3.6)

χ
L
→ χ′

L
= U

L
χ

L
= e

1
2
(iα+β)·σχ

L
≈
(
1+

i

2
α · σ +

1

2
β · σ

)
χ

L
. (3.7)

The spinors η
R

and χ
L
transform independently under the Lorentz group. These

spinors are the fundamental building blocks, from which any other spinor representation
can be constructed. Note that the matrices UL,R are not unitary, instead we have

U−1
L = U †

R, U−1
R = U †

L. (3.8)

Now we define the sets composed by the Pauli matrices and the identity as

σµ = (1,σ) , σµ = (1,−σ) , (3.9)

with which the matrices γµ can be written as

γµ =

(
0 σµ

σµ 0

)
. (3.10)

If we substitute these definitions into the Dirac equation, we obtain

(γµpµ −m)ψ =

(
−m σµpµ
σµpµ −m

)(
η
R

χ
L

)
=

(
0
0

)
, (3.11)

so that we have two coupled equations for the Weyl spinors η
R
and χ

L

σµpµχL
= mη

R
,

σµpµηR
= mχ

L
.

(3.12)

Also, we can write the Dirac Lagrangian in terms of the Weyl spinors

L = ψ (γµpµ −m)ψ =
(
χ†

L
, η†

R

)(σµpµχL
−mη

R

σµpµηR
−mχ

L

)
= η†

R
σµpµηR

+ χ†
L
σµpµχL

−m
(
χ†

L
η
R
+ η†

R
χ

L

)
.

(3.13)

In this Lagrangian each term is invariant separately. The kinetic terms do not mix L
and R components (this is called chiral symmetry), unlike the mass terms (which break
it). We know that pµ is a 4-vector, so the quantities η†

R
σµη

R
and χ†

L
σµχ

L
must also be

4-vectors to have Lorentz invariance.

To construct invariant terms only from χL or ηR, we assume that χ†
R
η
R
and η†

R
χ

L
are

invariant. We need to build an object from χ
L
(η

R
) that transforms like η

R
(χ

L
). For this
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purpose we use the equality σ2σ
∗ = −σσ2 and consider the terms iσ2χ

†T
L

and −iσ2η†TR .
Let us see if these terms transform as we wish

iσ2χ
†T
L

→ iσ2χ′†TL = iσ2 (UL
χ

L
)∗

= iσ2

(
1+

i

2
α · σ +

1

2
β · σ

)∗

χ∗
L

= iσ2

(
1− i

2
α · σ∗ +

1

2
β · σ∗

)
χ†T

L

=

(
1+

i

2
α · σ − 1

2
β · σ

)
iσ2χ

†T
L

= U
R
iσ2χ

†T
L
.

(3.14)

Now, let us look at the term −iσ2η†TR
−iσ2η†TR → −iσ2η′†TR = −iσ2 (UR

η
R
)∗

= −iσ2
(
1+

i

2
α · σ − 1

2
β · σ

)∗

η∗
R

= −iσ2
(
1− i

2
α · σ∗ − 1

2
β · σ∗

)
η†T
R

= −i
(
1+

i

2
α · σ +

1

2
β · σ

)
σ2η

†T
R

= U
L

(
−iσ2η†TR

)
(3.15)

Thus, iσ2χ
†T
L

transforms as a right-chirality Weyl spinor (with UR), and −iσ2η†TR as a
left-chirality one (with UL). In summary, we have the following types of transformation

η
R
→ U

R
η
R

iσ2χ
†T
L

→ U
R

(
iσ2χ

†T
L

)}Type I transformations (with UR).

χ
L
→ U

L
χ

L

−iσ2η†TR → U
L

(
−iσ2η†TR

)}Type II transformations (with UL).

Then, we have that the invariant mass-type terms will be of the form (type I)† (type II)
or (type II)† (type I). The possible combinations are

(type I)† (type II) : η†
R
χ

L
, η†

R
(−iσ2) η†TR , χT

L
(−iσ2)χL

.

(type II)† (type I) : χ†
L
η
R
, χ†

L
(iσ2)χ

†T
L
, ηT

R
(iσ2) ηR

.
(3.16)

For clarity and convenience, we introduce the following notation2. For this, for exam-
ple, we focus on invariants built from the left-chirality spinor, the subscript L is eliminated
and two types of dot product between left-chiral Weyl spinors are defined, as follows

χ · χ = χT (−iσ2)χ†T , χ · χ = χ† (iσ2)χ
†T . (3.17)

The bar on Weyl spinors has nothing to do with the bar used to represent the conju-
gation of a Dirac spinor which, as we have mentioned, has four components.

It is very useful to introduce the operators PL and PR, given by

PR =
1

2
(1+ γ5) , PL =

1

2
(1− γ5) . (3.18)

2In the work and use of Weyl spinors, the Van der Waerden notation [34] (“dotted” and “dotless” or
“undotted” spinors) is widely used, but is not employed in this work.
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These operators3 produce chiral projections of ψ, in other words

ψR = PRψ =

(
η
R

0

)
, ψL = PLψ =

(
0
χ

L

)
. (3.19)

Then we have the following eigenequation

γ5ψR,L = ±ψR,L. (3.20)

Any Dirac spinor can be written in chiral projections as ψ = 1ψ = (PR + PL)ψ =
ψR + ψL. Then the Dirac mass term can be written in terms of four-component spinors
as

Lmass = −mψψ = −m
(
ψLψR + ψRψL

)
(3.21)

3.2 Helicity

In the limit case of massless particles, m = 0, the equations (3.12), for χ
L
and η

R
can

be decoupled into two independent equations

σ · p
|p| ηR

= η
R
, and,

σ · p
|p| χL

= −χ
L
, (3.22)

which are known as Weyl equations. If we multiply these equations by 1/2 and given that
the spin operator is S = σ/2 and p̂ = p/|p|, we have

S · p̂η
R
=
η
R

2
, and, S · p̂χ

L
= −χL

2
. (3.23)

where we have the helicity operator given by S · p̂ and its corresponding eigenvalue is
the helicity of the state. Helicity is the projection of spin in the direction of motion of
the particle. So, in the massless limit, the Weyl spinors are eigenstates of the helicity
operator, in this limit the chiral spinors have well-defined helicities. Helicity is easier to
imagine physically than chirality, but chiral eigenstates are those that have well-defined
Lorentz transformation properties.

3.3 Majorana spinors

Before describing a Majorana spinor, we introduce the charge conjugation operation,
which affects only the internal degrees of freedom of the state of a particle. This operation
inverts all internal quantum numbers, such as electric charge, leptonic number, baryonic
number, etc. That is, a particle is transformed into an antiparticle and vice versa. Given
a Dirac spinor for a certain particle p,

ψp =

(
ηp
χp

)
. (3.24)

The charge conjugation operation is defined as

ψa = ψc
p = Cψ

T

p =

(
ηa
χa

)
, (3.25)

3Being projectors, they satisfy the following properties

PL + PR = 1, PLPR = PRPL = 0, P 2
L,R = PL,R.
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where C is the charge conjugation matrix, which satisfies the relations

CγµTC−1 = −γµ, γ5 = CγT5 C
−1, C = C∗ = −C−1 = −CT = −C†. (3.26)

The right (left) chiral spinors for particles ηp(χp) are different from those for antipar-
ticles ηa(χa). One representation of the charge conjugation matrix is to take C = −iγ2γ0,
thus

ψc
p =

(
iσ2χ

†T
p

−iσ2η†Tp

)
=

(
ηa
χa

)
⇒ ηa = iσ2χ

†T
p , and, χa = −iσ2η†Tp (3.27)

So, for example, we can rewrite a Dirac spinor in terms of only left chiral fields

ψp =

(
ηp
χp

)
=

(
iσ2χ

†T
a

χp

)
. (3.28)

Ettore Majorana in 1938 discovered a theory [35], in which a fermionic particle is
its own antiparticle. This means that Majorana fermions are completely neutral. These
fermions are a solution to a version of the Dirac equation, where the γ-matrices are purely
imaginary. By construction, the Majorana spinor ψM is not altered by the conjugation
of the charge ψc

M = ψM , called the Majorana condition, which expresses the fact that
χa = χp = χ, and ηa = ηp = η. Majorana spinor consists of four components. Using the
eq.(3.28) and the Majorana condition, the spinor ψM is given by

ψM =

(
η
χ

)
=

(
iσ2χ

†T

χ

)
. (3.29)

The Lagrangian that describes a free Majorana particle will be

LM =
1

2
ψM (γµpµ −m)ψM , (3.30)

where the factor 1/2 is for the purpose of obtaining canonical kinetic terms, also so that
the parameter m corresponds to the mass of the particle. Let us write this Lagrangian
only in terms of left-chiral spinors

LM =
1

2

(
η†, χ†)(σµpµ 0

0 σµpµ

)(
η
χ

)
− m

2

(
η†, χ†)(χ

η

)
=

1

2

(
χTσµTpµχ

†T + χ†σµpµχ
)
− m

2

(
χT (−iσ2)χ+ χ† (iσ2)χ

†T )
= χ†σµpµχ− m

2
(χ · χ+ χ · χ) .

(3.31)

We can use chiral projection operators eq.(3.18) and act them on ψc
L and ψc

R, so that
we will get the following

PLψ
c
L = 0, PRψ

c
R = 0, PLψ

c
R = ψc

R, PRψ
c
L = ψc

L. (3.32)

This is easy to see, using the relations satisfied by the charge conjugation operator,
eq.(3.26), and the properties of the chiral projection operators. For example

ψc
L = Cψ

T

L = C
(
ψP 2

R

)T
= C

(
ψLPR

)T
= CP T

Rψ
T

L,

but, CP T
R = C

2

(
1+ γT5

)
= 1

2
(C + γ5C) = PRC, then ψc

L = PRCψ
T

L = PRψ
c
L, from this

equality it is easy to see that (1− PR)ψ
c
L = 0 ⇒ PLψ

c
L = 0, and similarly for ψc

R.
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Now the Majorana condition ψ = ψc is broken down into left and right components
with the chiral projection operators, ψL+ψR = ψc

L+ψ
c
R, and we operate on both sides of

this equality with any of the projectors PL or PR. Using the results of eq.(3.32), we get

ψR = ψc
L, and, ψL = ψc

R. (3.33)

We can see that the left (right) component ψL (ψR) of the Majorana field is not
independent, it is related to the right component ψR (ψL) through charge conjugation.
Then we can write the Majorana field as

ψ = ψL + ψc
L, or, ψ = ψR + ψc

R. (3.34)

This is how we have three types of mass terms, Dirac, Majorana right and Majorana
left

Lmass
D = −mD

(
ψLψR + ψRψL

)
,

Lmass
M,R = −mR

2

(
ψ

c

RψR + ψRψ
c
R

)
,

Lmass
M,L = −mL

2

(
ψ

c

LψL + ψLψ
c
L

)
.

(3.35)
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Chapter 4

Massive neutrinos

As mentioned, based on experimental evidence, neutrino oscillations imply that they
are massive particles (see appendix A). There is an enormous number of mechanisms to
describe the mass of neutrinos. Each model involves an energy scale, which is associ-
ated with grand unification or the Planck scale (string theories) and therefore difficult
to observe directly. Other mechanisms lead to deviations from the SM, which may be
observable at the energy scales of current experiments.

The simplest extension to SM is to add right-handed fields, νR, for the three neutrino
flavors. Dirac-type masses are generated by the Higgs mechanism, in the same way as for
other fermions (charged leptons and quarks). However, the key difference with respect to
these is that, for neutrinos, once νRs are introduced, a Majorana mass term build up only
from right-handed fields is possible, so it must happen unless a symmetry (lepton number
conservation) forbids it, and there is not a clear reason for that, unless the lepton number
L is gauged (typically in combination with the baryon number, B, as B − L is preserved
by anomalies in the SM whereas B + L is not).

These right-handed neutrinos should not be charged under the symmetry group GSM ,
that is they are singlets, so there is no symmetry to protect their masses and, therefore,
they can be very large mR ≫ v.

Since neutrinos have no electric charge, they can be Dirac or Majorana particles. Thus,
once right-handed neutrinos are introduced, there is no obstacle to including Majorana
mass terms, as advanced before.

We can use the different types of fermion masses, cf. eq.(3.35), and write their most
general mass term. In the case of only one family of neutrinos, we have

−2Lm = 2mD (νLνR + νRνL) +mL (νLν
c
L + νcLνL) +mR (νRν

c
R + νcRνR) . (4.1)

We use the relation eq.(3.33) and note that 2mDνLνR = mD (νLνR + νcRν
c
L), and similarly

2mDνRνL = mD (νRνL + νcLν
c
R), then

−2Lm = mD (νLνR + νcRν
c
L) +mLνLν

c
L +mRνRν

c
R + h.c

= (νL, ν
c
R)

(
mL mD

mD mR

)(
νcL
νR

)
+ h.c

= χLMχc
L + h.c.,

(4.2)

where χL = (νL, ν
c
R)

T and M is the mass matrix. The eigenvalues of the mass matrix
are the masses of the physical neutrino states. The eigenvalues are obtained from the
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equation det (M−m1) = 0, so the masses of the physical neutrinos are

m1,2 =
1

2

[
mL +mR ∓

√
(mL −mR)

2 + 4m2
D

]
, (4.3)

with m1 and m2 the mass of the light and heavy neutrino, respectively.

4.1 Type I Seesaw Mechanism

This mechanism is based on the following assumptions: (i) a Majorana mass term for
νL is not allowed by the SM symmetries, then mL = 0 1, (ii) the Dirac mass term, is
generated by SEWSB, so mD is of the order of the electroweak scale, (iii) the Majorana
mass is much larger than the Dirac mass, mR ≫ mD. Then the eigenvalues given in
eq.(4.3) are as follows

m1,2 ≈
mR

2

[
1∓

(
1 +

1

2

(
2mD

mR

)2

+ · · ·
)]

⇒ m1 ≈ −m
2
D

mR

, and, m2 ≈ mR. (4.4)

Through the definition of the fields (a phase shift) the negative sign of the mass of the
light neutrino can be absorbed. In this mechanism, the higher mR, the lower m1, hence
the name seesaw.

The mass matrix is symmetric, so it can be diagonalized orthogonally, such that

M̂ = OTMO ⇒ M = OM̂OT , with, O−1 = OT (4.5)

Here M̂ is the diagonal matrix, with elementsm1 andm2. The matrix O is constructed
from the eigenvectors of M, i.e. O = [a1,a2]. The eigenvalues of M and the matrix O
are

a1 =
1

f

(
mR

−mD

)
, a2 =

1

f

(
mD

mR

)
⇒ O =

1

f

(
mR mD

−mD mR

)
; f =

√
m2

D +m2
R (4.6)

We can also define a mixing angle θ, where tan θ = mD

mR
, so that the orthogonal matrix

becomes

O =

(
cos θ sin θ
− sin θ cos θ

)
. (4.7)

If we want to obtain real and positive eigenvalues, the matrix O must be multiplied
by a diagonal matrix of complex phases C of the form

Cij =
√
Ciδij, Ci = Sign( eigenvalue of M). (4.8)

Then the diagonalization is performed through the unitary matrix, U = OC, such
that M̂ = UTMU . Where M̂ is diagonal with positive and real eigenvalues, which is
equivalent to the redefinition of the field, νk → iνk, for the k-field of negative eigenvalue.
In this case

U = OC =

(
cos θ sin θ
− sin θ cos θ

)(
i 0
0 1

)
=

(
i cos θ sin θ
−i sin θ cos θ

)
. (4.9)

1This is consistent with the fact that, within the original SM, neutrino masses need to arise from a
dimension five operator, as pointed out by Weinberg [36], see appendix B.
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The physical states of the neutrinos (mass eigenvectors) are obtained from OTχc
L,

OTχL and are

ν1 = (νL + νcL) cos θ − (νR + νcR) sin θ,

ν2 = (νR + νcR) cos θ + (νL + νcL) sin θ.
(4.10)

Given that mR ≫ mD ⇒ cos θ ≈ 1, and sin θ ≈ mD

mR
, then we have that the light state

ν1 is practically left-handed and the massive state ν2 is practically right-handed. We have
that the ν2 state does not participate in the weak charged or neutral currents, and the
couplings of the light neutrinos to the weak charged currents are practically as in the SM.

In the generalization to n flavors, the Weyl spinors are vectors of n components in
flavor space, in the following way

νL = (ν1L, · · · , νnL)T , NR = (N1R, · · · , NnR)
T , (4.11)

where νiL and NiR are Weyl spinors with flavor i. The masses mD and mR are now ma-
trices MD and MR, with complex elements, and MR =MT

R .

In a seesaw model, in addition to the three active neutrinos, νLi, of the SM, we add
n new singlets fields. The total number of states is n′ = 3 + n, and thus, the symmetric
matrix of masses has dimension n′ × n′ and is given by

Mn′×n′ =

(
03×3 MD3×n

MT
Dn×3

MRn×n

)
. (4.12)

It can be shown [8, 10, 37] that, the matrix of the light neutrinos Mν and heavy
neutrinos MN are given by

Mν = −MDM
−1
R MT

D, MN =MR. (4.13)

Note the analogy with m1. In the type I seesaw mechanism, the masses of the light
neutrinos are suppressed by factor m2

D/mR. This mechanism provides a good hypothesis
for the small mass of neutrinos, but it is only a hypothesis. This hypothesis would be
placed on solid grounds if neutrinos are shown to be Majorana particles.

There are also type II and III seesaw mechanisms, which are not discussed in this
dissertation. In the former a weak-scalar triplet is added to the SM, while in the latter a
SU(2)L triplet fermion with zero hypercharge is included. See also the appendix B.

4.2 Inverse Seesaw

Since in the type I seesaw mechanism, the mass of the right-handed neutrinos NR is
very large, on the order of O >> 1 TeV, experimental tests of this mechanism are very
complicated, if not impossible.

Thus, low-scale seesaw mechanisms (where the new particles can have masses in the
currently testable TeV scale) are attractive from a phenomenological point of view, such
as the inverse seesaw mechanism, ISS.
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In the ISS mechanism, the addition of three right-handed neutrinos NiR and three
singlet neutral fermions SiL is required, along with the three active neutrinos νiL. We
have the following mass effective Lagrangian

−2L = νLmDNR + SLMNR + SLµS
c
L + h.c.

=
(
νcL, NR, S

c

L

) 0 mD 0
mT

D 0 M
0 MT µ

 νL
N c

R

SL

+ h.c.

= χc
LMχL + h.c,

(4.14)

where mD, M and µ are generic 3×3 mass matrices. The mass matrix M can be written
as

M =

(
0 MD

MT
D MR

)
; With: MD = (0,mD) , MR =

(
0 M
MT µ

)
, (4.15)

with the hierarchy |µ| ≪ |mD| ≪ |M |. The diagonalization of this 9× 9 matrix provides
the matrix for the mass of the light and sterile neutrinos

mν = mD

(
MT

)−1
µM−1mT

D, mN =MR. (4.16)

This produces light masses of the order of O = (µm2
D/M

2) are generated. For mD at
electroweak scale, with an M scale of TeV and µ at keV scale, light neutrino masses in
the eV range are obtained.

4.3 Non-unitary mixing

We consider a mixing matrix, that manifestly factors the parameters associated with
the neutral heavy leptons, NHL, from the parameters describing the neutrino oscillations.

In the case of three light neutrinos and n′ = n − 3 NHL, the matrix Un×n (which
diagonalizes the mass matrix) can be decomposed according to ref. [38] as

Un×n =

(
N3×3 S3×n′

Vn′×3 Tn′×n′

)
, (4.17)

we have that the N is a 3 × 3 matrix of the light neutrino sector, and S describes the
coupling parameters for the extra singlet states.

The matrix N can be expressed in several ways, but the most convenient parametriza-
tion [39] for describing the current neutrino experiments is

N = NNPU =

α11 0 0
α21 α22 0
α31 α32 α33

U, (4.18)

where U is the 3×3 lepton mixing matrix, better known as PMNS, which has been tested
in the study of neutrino oscillation. The NNP matrix characterizes the unitary violation
and the new physics.

In addition to the parameters characterizing the unitary mixing, there are four more
parameters: three of them are real α11, α22, α33 and the complex parameter α21 which
contains a single CP violating phase. Regardless of the number of extra singlets, only one
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combination of phase parameters enters the important neutrino oscillation experiments.

As mentioned above, the diagonal elements are real, and are expressed as follows

α11 = c1nc1n−1c1n−2 . . . c14,

α22 = c2nc2n−1c2n−2 . . . c24,

α33 = c3nc3n−1c3n−2 . . . c34,

(4.19)

where cij = cos θij. The off-diagonal terms α21 and α32 are expressed as a sum of n′ terms

α21 = c2nc2n−1 . . . c25η24η14 + c2n . . . c26η25η15c14 + · · ·+ η2nη1nc1n−1c1n−2 . . . c14,

α32 = c3nc3n−1 . . . c35η34η24 + c3n . . . c36η35η25c24 + · · ·+ η3nη2nc2n−1c2n−2 . . . c24.
(4.20)

A similar expression for α31 is

α31 = c3nc3n−1 . . . c35η34c24η14 + c3n . . . c36η35c25η15c14 + · · ·+ η3nc2nη1nc1n−1c1n−2 . . . c14

+ c3nc3n−1 . . . c35η35η25η24η14 + c3n · · · c36η36η26c25η24η14
+ · · ·+ η3nη2nη2n−1η1n−1c1n−2 · · · c14. (4.21)

Phases ηij = e−iϕij sin θij and ηij = −eiϕij sin θij contain all phases that violate CP.
We have a parametrization in which all the information about the additional leptons is
separated in a compact and simple way, with three zeros.

Let us look at the expressions for αij in the case of two extra NHL

α11 = c15c14, α22 = c25c24, α33 = c35c34,

α21 = c25η24η14 + η25η15c14, α32 = c35η34η24 + η35η25c24,

α31 = c35η34c24η14 + η35c25η15c14 + c14η35η25η24η14.

(4.22)

According to ref. [11], the following square matrix describes the couplings of n neutrino
states in the charged current weak interaction

K = (N,S), (4.23)

the unitarity condition is of the form

KK† = NN † + SS† = 1, (4.24)

where the terms that characterize the new physics are

NN † =

 α2
11 α11α

∗
21 α11α

∗
31

α11α21 α2
22 + |α21|2 α22α

∗
32 + α21α

∗
31

α11α31 α22α32 + α31α
∗
21 α2

33 + |α31|2 + |α32|2

 . (4.25)

All the information of the extra states is encoded in the αij parameters in a compact
way, with this parameterization. The mixing of the active light neutrinos with the heavy
states implies non-unitary effects and thus a modification of several SM observables, as
discussed in ref. [39].

Another parameterization widely used in encoding non-unitarity effects due to heavy-
light neutrino mixing, together with the NNP or α-matrix, is the Hermitian parameteri-
zation o η-matrix [40], such that

N = (1− η)Uη, or N = (1− α)Uα (4.26)
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Where α is a lower triangular matrix see eqs.(4.18), and η is a Hermitian matrix given
by

η =

ηee ηeµ ηeτ
η∗µe ηµµ ηµτ
η∗τe η∗τµ ηττ

 . (4.27)

The matrices Uα and Uη are unitary and equivalent to PMNS. We should note that
matrices Uα and Uη are different. Although these matrices are identified with PMNS in
each parameterization, this is only accurate up to small corrections due to deviations from
unitarity. To relate Uα and Uη we perform a unitary rotation V

N = (1− α)Uα = (1− η)V V †Uη, (4.28)

then
1− α = (1− η)V, and Uα = V †Uη. (4.29)

The elements of V to linear order are identified as

V = 1− η̃ = 1−

 0 −ηeµ −ηeτ
η∗µe 0 −ηµτ
η∗τe η∗τµ 0

 , (4.30)

then, the relation between the elements of the two matrices is

1− α = (1− η) (1− η̃) ≃ 1− η̃ − η ⇒ α = η + η̃

α =

αee 0 0
αµe αµµ 0
ατe ατµ αττ

 =

 ηee 0 0
2η∗µe ηµµ 0
2η∗τe 2η∗τµ ηττ

 .
(4.31)

Through eqs.(4.31) we can make a mapping between the two parametrizations.

4.4 The model

We use the model developed in ref. [20], in which five Majorana fields χi = χLi + χc
Li

with χL ≡ (νL1, νL2, νL3, NL, N
c
R) are assumed. In this case n = 2, and the following forms

are chosen for the matrices of eq. (4.12)

MD3×2 =

0 m1

0 m2

0 m3

 , MT
D2×3

=

(
0 0 0
m1 m2 m3

)
, MR2×2 =

(
0 M
M µ

)
. (4.32)

Thus, the mass matrix will be given by

M =


0 0 0 0 m1

0 0 0 0 m2

0 0 0 0 m3

0 0 0 0 M
m1 m2 m3 M µ

 . (4.33)

The diagonalization of the mass matrix eq.(4.33), by a unitary matrix, produces the
eigenvalues mχ1,2,3 = 0, which correspond to the active neutrinos and are identified with
the light neutrinos ν1,2,3, which are exactly massless in this model. This also produces the
positive real eigenvalues

mN1 = mχ4 =
1

2

(√
4M ′2 + µ2 − µ

)
, mN2 = mχ5 =

1

2

(√
4M ′2 + µ2 + µ

)
, (4.34)
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where M ′ =
√
m2

1 +m2
2 +m2

3 +M2 has been defined. The neutrino mass eigenstates are
obtained from

χLi →
5∑

j=1

UijχLj, (4.35)

with U the unitary matrix, which is

U =



− m2√
m2

1+m2
2

− m1m3

m
√

m2
1+m2

2

−m1M
mM ′ −i m1mχ5

M ′
√

m2
χ5

+M ′2
m1√

m2
χ5

+M ′2

m1√
m2

1+m2
2

− m2m3

m
√

m2
1+m2

2

−m2M
mM ′ −i m2mχ5

M ′
√

m2
χ5

+M ′2
m2√

m2
χ5

+M ′2

0

√
m2

1+m2
2

m
−m3M

mM ′ −i m3mχ5

M ′
√

m2
χ5

+M ′2
m3√

m2
χ5

+M ′2

0 0 m
M ′ −i Mmχ5

M ′
√

m2
χ5

+M ′2
M ′√

m2
χ5

+M ′2

0 0 0 i M ′√
m2

χ5
+M ′2

mχ5√
m2

χ5
+M ′2


(4.36)

The three heavy-light mixings (components of the three neutrinos along the sterile
flavor space) are

sνk =
mk√

mN1mN2

=
mk

M ′ . (4.37)

The mass parameter µ takes into account the mass splitting of the two heavy Majo-
rana neutrinos. This mass parameter is the only one that breaks the leptonic number.

For µ = 0 the two heavy neutrinos χ4,5 form a heavy Dirac field of mass M ′. Also,
if we deform the texture of the matrix (4.33), by a small input λ at position M44, we
are able to give a mass to one of the light neutrinos. This mass will be of the order of
mν ≈ λ (m/M)2, very similar to what happens in the inverse seesaw model. However,
the λ term does not change the heavy-light mixings (it has no effect on flavor physics).
In this model, the effects on flavor physics are due to heavy neutrinos (see appendix
C for a sketch of the phenomenological consequences in charged lepton flavor violating
processes). An analogous reasoning applies to possible Dirac mass terms in the fourth
row/column of the matrix (4.33). This mass pattern is approximate, including only the
dominant mass terms, with all others being sub-eV. Vanishing entries are not symmetry
protected, and loop corrections will contribute to them [41]. The actual generation of the
masses and mixing of the three light active known particles would require the addition of
extra singlets (in the minimally extended SM or type I seesaw models) or the small shifts
mentioned above (in inverse seesaw models).

The key is that these deformations will not change significantly the heavy-light mix-
ings, and therefore will be negligible in the charged lepton flavor violating observables
analyzed in refs. [20, 21]. Thus, it will be feasible to predict ℓ → ℓ′γ, ℓ → 3ℓ, ℓ → ℓ′

conversions in nuclei, H/Z → ℓℓ′ decays, ... in a generic and simple model where this
connection is possible (which is not the case in the general framework of e.g. ref. [19]).
This is our main motivation to consider this simplified framework in our analysis, instead
of taking a full-fledged model for lepton mixing and neutrino mass generation. Alterna-
tively, we also preferred this representative model to the effective field theory treatment
(see appendix B), where the number of operators contributing to charged lepton flavor
violation [42] rises to 19 (without accounting for flavor structure, see [43]), complicating
substantially the interpretation of the underlying physics lacking measurements of lepton
flavor violation in the charged sector.
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The charged current involving neutrinos at tree level, introduced by the U matrix, is
described by

LW± =
g√
2
W−

µ

3∑
i=1

5∑
j=1

Bijℓiγ
µPLχj + h.c., (4.38)

where B is a matrix of dimension 3×5 that defines the mixtures in the lepton sector, and
it is in the diagonal charged lepton mass basis δik = U ℓ

ik

Bij =
3∑

k=1

δikUkj. (4.39)

As a consistency test, we remark that we recover the first of eqs. (2.26) replacing
Bij → Uν

ij, and restricting i, j from five to three, as it must be.

The elements of the B matrix can be expressed in terms of the squared mass ratio
parameter r = m2

N2
/m2

N1
and the heavy-light mixtures, as follows

BkN1 = −i r
1
4√

1 + r
1
2

sνk , BkN2 =
1√

1 + r
1
2

sνk , For: k = 1, 2, 3. (4.40)

In a realistic low-scale seesaw scenario, in addition to the restrictions on sνk , we must
be consistent with perturbative unitarity. Such a condition in this model is given by

mN1r
1
4 <

√
2πv

max{sνi}
. (4.41)

We consider, on the heavy-light mixtures, indirect limits (at 90% C.L.) that come from
the global fits to electroweak precision observables [44]

sνe < 0.050, sνµ < 0.021, sντ < 0.075. (4.42)

Taking the maximal values of sνi , then eq.(4.41) implies that mN1r
1
4 < 8.2 TeV.

We use eq.(4.39) and we can identify the S matrix of the eq.(4.23), which will be of
dimension 3× 2 and given by

S =

B14 B15

B24 B25

B34 B35

 . (4.43)

But we need SS†, so now we use eq.(4.40) and get the elements of that matrix, for example
for the following elements we have

(SS†)11 = |B14|2 + |B15|2 =
r1/2s2ν1
1 + r1/2

+
s2ν1

1 + r1/2
= s2ν1 ,

(SS†)23 = B24B
∗
34 +B25B

∗
35 =

r1/2sν2sν3
1 + r1/2

+
sν2sν3
1 + r1/2

= sν2sν3 ,

(SS†)31 = B34B
∗
14 +B35B

∗
15 =

r1/2sν1sν3
1 + r1/2

+
sν1sν3
1 + r1/2

= sν1sν3 .

(4.44)

We proceed similarly, for the other components, and SS† turns out to (expectedly) be

SS† =

 s2ν1 sν1sν2 sν1sν3
sν1sν2 s2ν2 sν2sν3
sν1sν3 sν2sν3 s2ν3

 . (4.45)
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We make use of the unitarity relation given in eq.(4.24), then SS† = 1−NN †, so that

SS† =

 1− α2
11 −α11α

∗
21 −α11α

∗
31

−α11α21 1− α2
22 − |α21|2 −α22α

∗
32 − α21α

∗
31

−α11α31 −α22α32 − α31α
∗
21 1− α2

33 − |α31|2 − |α32|2

 . (4.46)

Through this equality we can identify the αij coefficients for certain values of the sνk
mixtures, as we do in the next chapter.
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Chapter 5

Non-unitary constraints on the αij

The bounds on lepton non-unitarity for the case in which the three light neutrinos mix
with two much heavier ones is presented in [19] (see appendix D for more details). For
the normal ordering (NO) and inverse ordering (IO) at 95% confidence level the limits are

NO: |1− α| <

9.4 · 10−6 0 0
2.4 · 10−5 1.3 · 10−4 0
4.4 · 10−5 2.6 · 10−4 2.1 · 10−4

 ,

IO: |1− α| <

5.5 · 10−4 0 0
2.6 · 10−5 3.2 · 10−5 0
2.8 · 10−4 7.0 · 10−5 4.5 · 10−5

 .

(5.1)

As shown in eq.(4.46), there is a direct way to relate the alpha coefficients to the
admixtures of the active neutrinos and the two heavy neutrinos. So that if we equal the
first component (SS†)11 and (1−NN †)11 we get

s2ν1 = 1− α2
11 =⇒ α11 =

√
1− s2ν1 . (5.2)

In order to compare with the quoted limits on the alpha coefficients, we are interested
in the modulus of these coefficients. After obtaining coefficient α11, it is easy to obtain
the other ones

α21 = −sν1sν2
α11

, α22 =
√

1− α2
21 − s2ν2 , α31 = −sν1sν3

α11

,

α32 = − 1

α22

(sν2sν3 + α21α31) , α33 =
√

1− α2
31 − α2

32 − s2ν3 .
(5.3)

It is also useful to write the heavy-light mixings in terms of the αij, as follows:

sν1 =
√

1− α2
11, sν2 = − α11α21√

1− α2
11

,

sν3 =
√

1− α2
31 − α2

32 − α2
33.

(5.4)

We will determine the coefficients that parameterize the non-unitarity deviations in
two ways in the following (the first being a simplified, though informative, case).
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First, we evaluate the expressions of eq.(5.3) at the limiting values of sνk given in
ref. [20]. We will see below that there are correlations in the limits for the sνi coefficients,
so these bounds are only illustrative. We form the expression |1− α| and obtain

|1− α| <

1.25 · 10−3 0 0
1.05 · 10−3 2.21 · 10−4 0
3.75 · 10−3 1.58 · 10−3 2.82 · 10−3

 . (5.5)

With the exception of the 22 entry for the NO, we see that these bounds are less
restrictive than those given in eqs. (5.1). This suggests than non-unitarity bounds can
be more restrictive on the sνi mixing than the charged lepton flavor violating processes
examined in ref. [20].

This is in agreement with a quick estimation using eq. (5.2), from which one gets
(using the bound in eq. (4.42))

1− α11 ∼ s2ν1/2 ≲ 1.25 · 10−3 . (5.6)

Using eqs. (4.31), in terms of the η parameters, we have

η11 = α11 = 9.987 · 10−1, η21 =
α21

2
= −5.257 · 10−4, η22 = α22 = 9.998 · 10−1

η31 =
α31

2
= −1.877 · 10−3, η32 =

α21

2
= −7.896 · 10−4, η33 = α33 = 9.972 · 10−1

(5.7)

To verify the previous estimates, in the second procedure, a set of random values is
generated for the sνk , within a region bounded by possible processes where the leptonic
flavor violation occurs. The contour of these processes is taken from [20] and is shown in
Figure 5.1.

Figure 5.1: Contour in the sνe − sνµ plane where the different restrictions coming from
charged lepton flavor violating processes are displayed (solid lines for current limits and
dashed ones for future projections) in the case mN1 = mN2 = 0.1 TeV (Dirac field). The
actual indirect limits are shown by the black dot-dashed lines. Plot taken from ref. [20].

The region which contains the possible values of sνe and sνµ , is formed by the indirect
limits of sνe < 0.050 and sνµ < 0.021 (black dot-dashed lines) and the process constraint
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µ→ eγ (blue line). The sντ values are generated in the interval 0 ≤ sντ < 0.075.

The randomly generated points in the region described above are shown in Figure 5.2.
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	0.015

	0.02

	0.025

	0 	0.01 	0.02 	0.03 	0.04 	0.05

s ν
μ

sνe

sνe	−	sνμ
μ→	eγ

Value	contour

Figure 5.2: Points generated in the region bounded by the indirect limits of sν1 and sν2
(black dot-dashed lines) and the µ → eγ process that were employed in our numerical
analysis.

From this set of generated data we obtain the average values of the sνk as well as their
standard deviations (below them the confidence interval at 2σ is indicated), which are
given by

sν1 =0.02± 0.01, sν2 = 0.010± 0.006, sν3 = 0.04± 0.02.

[0.00, 0.04] [−0.002, 0.022] [0, 0.08] .
(5.8)

In terms of the η parameters the corresponding mean values are

η11 = 1.0 · 10−1, η21 = −1.0 · 10−4, η22 = 1.0 · 10−1

η31 = −4.0 · 10−4, η32 = −2.0 · 10−4, η33 = 1.0 · 10−1 (5.9)

Subsequently, we use the formulae of eq.(5.3) and construct the expression |1 − α| and
obtain (at 90% confidence level)

|1− α| <

2.0 · 10−4 0 0
2.0 · 10−4 5.0 · 10−5 0
8.0 · 10−4 4.0 · 10−4 8.0 · 10−4

 . (5.10)

These limits are -as expected- more constraining than those in eq. (5.5) by factors in the
interval [3.5, 6.3], which is reasonable.

In this general case all constraints -but again the 22 entry in the NO case- are less
restrictive than those in eq. (5.1), which confirms that non-unitarity bounds set more
stringent limits on the sνi coefficients than the upper bounds on charged lepton flavor
violation processes examined in ref. [20]. Therefore, the predictions in this reference for
µ → eγ, µ → 3e, etc. (and also of ref. [21] for charged lepton flavor violating Higgs
decays, within the same model, which are any how much smaller than current limits on
them) shall be reviewed taking this into account, which we plan to do in the future.
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A final interesting observation is that the improvement of the limits in eq. (5.1) over
those in eq. (5.10) does depend on flavor: indeed, for the NO case, the difference is
maximal for the electron-related coefficients; while for the IO this happens mostly in the
33 entry, followed by the 32 and 21. In the first instance, it is order 20 for 11 and 31
(∼ 8 for 21); and in the second one it is ∼ 20 for 33, and [6, 8] for 21 and 32. It will
be relevant to investigate how this translates into the different predictions for the diverse
charged lepton flavor violating processes considered in [20] 1.

1It does not appear possible to exploit this big difference in the 33 entry for the IO case, which would
need much better measurements of lepton flavor conserving processes with tau (anti)neutrinos.
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Chapter 6

Conclusions and prospects

One of the main unanswered questions by the extremely successful SM is how the
baryon asymmetry of the universe was generated. There are certainly quite some theoret-
ically attractive possible explanations, one of which produces baryogenesis from an initial
leptogenesis. In this paradigm, the required CP violation is produced at high-energy
scales, in the decays of heavy right-handed Majorana neutrinos. These naturally link
to a plausible explanation of the tiny (compared to the other known massive elementary
particles) neutrino masses, through the so-called seesaw mechanism (this, specifically is of
Type I). Unfortunately, this beautiful theory generally has little prospects of experimental
verification in current or forthcoming experiments, which has motivated the introduction
of the low-scale seesaws (in which Grand Unification is much more challenging than in
the traditional ones). Among them, the inverse seesaw is the simplest possibility, which
has attracted a lot of attention for its bright experimental prospects.

With these motivations in mind, in this Master Thesis we have studied if the con-
strictions from non-unitarity (with respect to the three light neutrinos scenario) are more
restrictive than those coming from charged lepton flavor violation in the context of a
simple model [20] which captures the main features of the Type I as well as of the inverse
seesaw mechanisms, in two given limits. This framework features two sterile Majorana
neutrinos, which fall into a single Dirac field in the degenerate case (therefore being able
to consider both possible neutrino natures within a common setup). The interest of
this setting resides in its flexibility to accommodate these two extreme cases of relevance
(varying the associated new physics scale, which sets the mass of the heavy neutrinos).
Although we are mostly interested in the low-scale mechanism, where the heavy neutrinos
mass is O(TeV), nothing prevents to increase them and end up in the canonical seesaw,
with O(1012 TeV) right-handed neutrino masses, even though the phenomenological in-
terest would be limited (at most) to neutrinoless double beta decay signatures in this
high-energy realization.

Ref. [20] shows that the most stringent constraints on the model heavy-light mixings
come currently from µ → eγ decays 1, where -for heavy neutrino masses in the TeV, or
higher- the predicted branching ratio does not depend on these masses, in such a way that
the upper limit on the non-observation of this process sets s2νes

2
νµ < 5.1 ·10−10 [20]. On the

other hand, ref. [19] -within Type-I seesaw (related-)models- updated and improved global
fit analysis of current flavour and electroweak precision observables to derive bounds on
unitarity deviations of the leptonic mixing matrix and on the mixing of heavy neutrinos

1In the near future, these will be superseded by those imposed by muon-to-electron conversion in
nuclei [20].
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with the active ones, which we used for the two heavy neutrino case in both mass ordering
scenarios. In any case, the largest deviation from unitarity is of the order of [1, 5] · 10−4,
at 90% confidence level (depending on the neutrino mass ordering) in a parameter which
is O(sνisνj).

This motivated the research undertaken in this thesis, where we wanted to see if the
restrictions from non-unitarity (that start generally at tree level) could be more powerful
than those from charged lepton flavor violation (which is a loop process in the SM and most
of their viable extensions, including the class of models considered here). We have verified
that this is indeed the case, which calls for a reanalysis of the results in refs. [20] and [21]
accounting for our improved constraints on the heavy-light mixings. It is not immediate if
this could be a general feature extending to more general mechanisms generating neutrino
mixing by means of heavy neutrinos than the model specifically considered in this work
(which, we recall, encompasses the Type I and inverse seesaw mechanisms as extreme
relevant cases). Studying this question is an obvious interesting extension of our results.
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Appendix A

Neutrino oscillations in vacuum

In this appendix we make a short recap of the main features of neutrino oscillations in
vacuum, which have been the main guidance in our current knowledge of massive neutrino
physics (see the PDG review and references therein [24]).

Neutrino oscillation is a completely complex phenomenon and its proper treatment
requires quantum field theory calculations. The deduction followed here, which uses
quantum mechanics, has a computational validity that depends on the energy regime in
which the experiments are being performed.

The neutrino oscillation phenomenon relies on the fact that we can measure events in
which some charged lepton or antilepton is created along with the emission of a neutrino
of a certain flavor, and these neutrinos are detected far away from the source in a differ-
ent flavor. In other words, the |νk⟩, k = 1, 2, 3, mass eigenstates (neutrino propagation in
space-time) with well-defined energy do not coincide with the |να⟩, α = e, µ, τ , interaction
eigenstates (neutrino detection).

A neutrino of να flavor, created in a charged weak current interaction, will be a su-
perposition of the 3 eigenstates of mass νk

|να⟩ = Uαk |νk⟩ , (A.1)

where Uαk are the elements of the unitary leptonic mixing matrix, known as Pontecorvo-
Maki-Nakagawa-Sakata matrix (PMNS) [28, 29]. For vacuum propagation, we can take
the neutrino as a free particle. Given the initial state |να⟩, its evolution will be given by
the evolution operator e−iHt. Since the Hamiltonian is free, the eigenstates of mass are
also eigenstates of energy

t = 0 : |να (0)⟩ = |να⟩ ,
t ̸= 0 : |να (t)⟩ = e−iHtUαk |νk⟩ = e−iEktUαk |νk⟩ .

(A.2)

We assume that all the components of the eigenstates of mass occur with the same
momentum |p| ≈ E, so the energy Ek is given by the relativistic dispersion relation

Ek =
√

p2 +m2
k. (A.3)

In practice neutrinos are relativistic, Ek ≫ mk, so we can approximate the energy Ek

as

Ek ≈ |p|+ m2
k

2|p| = E +
m2

k

2E
. (A.4)
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Thus, after a distance L = t, the neutrino να can oscillate to a flavor νβ with a
probability given by

P (να → νβ;L) = |⟨νβ|να;L⟩|2 =
∣∣∣∣∣∑

k

U∗
βkUαke

−iEkL

∣∣∣∣∣
2

=
∑
kj

U∗
βkUαkUβjU

∗
αje

i2ϕkj , ϕkj = −
∆m2

kjL

4E
,

(A.5)

where ∆m2
kj = m2

k −m2
j . We make use of the relation ei2ϕ = 1− 2 sin2 ϕ+ i sin 2ϕ, then

P (να → νβ;L) =
∑
kj

Jαβ
kj

(
1− 2 sin2 ϕkj + i sin 2ϕkj

)
, Jαβ

kj = U∗
βkUαkUβjU

∗
αj. (A.6)

We use the unitarity relation of the PMNS, δαβ = U∗
αkUβk, and we obtain

P (να → νβ;L) = δαβ − 4
∑
k>j

Re
(
Jαβ
kj

)
sin2 ϕkj − 2

∑
k>j

Im
(
Jαβ
kj

)
sin 2ϕkj. (A.7)

An expression for antineutrinos is obtained if we make U → U∗, which would change

the sign in the term proportional to Im
(
Jαβ
kj

)
. This oscillation probability satisfies

properties such as

• CPT invariance, P (να → νβ) = P (νβ → να).

• Conservation of probability,∑
β

P (να → νβ) =
∑
β

P (να → νβ) = 1.

By means of the oscillation probability eqs.(A.7), let us see the survival probability of
the electron neutrino

P (νe → νe) = 1− 4 |Ue1|2 |Ue2|2 sin2 ϕ21

− 4 |Ue1|2 |Ue3|2 sin2 ϕ31 − 4 |Ue2|2 |Ue3|2 sin2 ϕ32.
(A.8)

Although this survival probability depends on the three mass differences, ∆m2
21, ∆m

2
31

and ∆m2
32, only two of them are independent. So the difference ∆m2

32 can be expressed
in terms of the other two

∆m2
31 = ∆m2

32 +∆m2
21. (A.9)

The probability of oscillation depends on the quadratic difference of the masses, so
for oscillation to occur, at least one mass eigenvalue must be non-zero. Experimental ev-
idence shows such oscillations, so neutrinos must have mass. In experiments, information
is obtained about mass differences, not about the absolute masses of the states.

Current neutrino oscillation experiments provide difference of the square of the masses
of order

∆m2
21 ∼ 8 · 10−5eV2, |∆m2

32| ∼ 2 · 10−3eV2. (A.10)

Since we do not know the absolute scale of the neutrino mass, there are two possible
hierarchies for the neutrino mass. The normal ordering in which we have m1 < m2 < m3,
and the inverse ordering where m3 < m1 < m2. Current experiments are not sensitive
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enough to discern which ordering is actually present.

In the case of two-flavor neutrino oscillation, U is a real orthogonal 2× 2 matrix with
parameter θ which encodes the mixing. The oscillation and survival probabilities are

P (να → νβ) = sin2 (2θ) sin2

(
∆m2

21L

4E

)
,

P (να → να) = 1− sin2 (2θ) sin2

(
∆m2

21L

4E

)
.

(A.11)

The standard parameterization of the PMNS matrix is given in terms of three angles
θ12, θ13, θ23, one CP-violation phase δ and two additional phases α21, α31 if the neutrinos
are of Majorana type. Explicitely,

U =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 (A.12)

=

 c12c13 s12c13 s13e
−iδ

−s12c23 − c21s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13
s12s13 − c12c23s13e

iδ −c12s23 − s12c23s13e
iδ c23c13

1 0 0
0 eiα21/2 0
0 0 eiα31/2

 .

Wemust say that neutrino oscillation experiments are not sensitive to Majorana phases
and therefore unable to discern whether neutrinos are Dirac or Majorana particles. This
requires an experiment to check the conservation of the leptonic number which is violated
by the Majorana terms (like, par excellence, neutrinoless double beta decay).

Current knowledge of the two independent mass splittings, the three mixing angles
and the Dirac CP violating phase is summarized in the ’Neutrino Masses, Mixing, and
Oscillations’ PDG review [24] (see also refs. [45–47]).
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Appendix B

Weinberg operator

If we allow for non-renormalizable terms in the SM Lagrangian, the mass of neutrinos
could be generated from a five-dimensional operator. The only five-dimensional operator
that is invariant under the SM symmetry group is the so-called Weinberg operator [36].
This operator can be written in several ways, all of which are equivalent, one of them is
as follows

L5D =
cjk
Λ

(
L
c

jH̃
)(

LT
k H̃
)
+ h.c., (B.1)

where Λ is the energy scale at which the operator is generated 1. This Weinberg operator
breaks the leptonic number by two units. In the unitary gauge, the Weinberg operator is
given by

L5D =
cjk
2Λ
νcL,jνL,k (h+ v)2 + h.c, (B.2)

and after the SEWSB, yields a mass for neutrinos

Lmass
5D =

mjk
ν

2
νcL,jνL.k + h.c, mjk

ν =
v2

Λ
cjk, (B.3)

which corresponds to a Majorana mass term. Note that unlike the rest of the fermions,
where the dependence of their mass is linear with v (including a possible neutrino Dirac
mass coming from the Higgs mechanism), the mass of neutrinos mν is quadratic in v.

At the tree level there are only three ways to build the Weinberg operator, which are

• Lj and H combine to form a fermionic singlet (type I seesaw), the intermediate
particle is also a singlet.

• Lj and H combine to form a scalar triplet of SU(2)L (type II seesaw), the interme-
diate particle is a scalar that must belong to SU(2)L.

• Lj and H combine to form a fermionic triplet (type III seesaw), the intermediate
particle is a fermionic triplet as well.

Although the same operator is generated at the tree level, the different realizations
imply different mechanisms in the high energy regime.

An interesting and valuable way to understand the significance of the Weinberg oper-
ator comes from the point of view of quantum effective field theories [48–51], that can be
applied to the Standard Model itself [36,52–54]. From this point of view, one complements

1From the perspective of the Wilson renormalization group, we can interpret quantum field theories
as manifestations of high-energy physical phenomena below a Λ cutoff scale.
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the SM Lagrangian with a tower of operators of increasing mass dimensions, which are
built using only the SM fields and gauge symmetries. Every additional operator dimen-
sion is compensated by a corresponding power of the new physics scale, Λ >> vEW ∼ 246
GeV. In this construction, the Weinberg operator is the single operator which appears
at dimension five. If there is no symmetry reason that suppresses it compared to the
dimension six operators, the Weinberg operator effects at low energies will be enhanced
by a relative factor of E/Λ (where E is the characteristic energy scale of the process
under consideration) with respect to the Fermi-type operators (and others) that appear
at dimension six. Thus, it is natural that the first unequivocal manifestation of beyond
the SM physics comes from the lowest operator dimension, eq. (B.1). This standpoint
singles out Majorana neutrino masses as the most sensitive phenomenon to the ultraviolet
completion of the SM (assuming Λ is a common scale for all new physics, which does not
need to be true).

Interestingly, seesaw mechanisms contribute at dimension six only through non-unitary
effects in lepton mixing [55]. In high-scale seesaws both dimension five and six operators
are expected to be suppressed enough to likely prevent any associated testability. On the
contrary, its low-scale variants suppress the Weinberg operator but not the dimension-six
one 2, so deviations from unitarity could be measurable. This reasoning further motivates
the research tackled in this thesis.

2Precisely, η (4.26) is half of the coefficient of this dimension six operator [55].
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Appendix C

Restrictions from charged lepton
flavor violating processes on the
heavy-light mixings of the model

In this appendix we summarize the main constraints that are obtained [20] on the
model introduced in section 4.4 from the current upper limits on charged lepton flavor
violating processes.

In addition to the charged current involving heavy neutrinos, eq. (4.38) 1, these also
appear in neutral current interactions, that read [20]

LZ = − g

4cW
Zµ

5∑
i,j=1

χ̄iγ
µ(CijPL − C∗

ijPR)χj , (C.2)

where we note that the couplings involve different flavors with both chiralities. In eq. (C.2)
C is a 5× 5 matrix. Explicitely, it is

Cij =
3∑

k=1

(Uν
ki)

∗Uν
kj , (C.3)

whose elements involving heavy neutrinos can again be written in terms of the heavy-light
mixing and the mass ratio between the two heavy states (see also refs. [56, 57]):

CN1N1 =

√
r

1 +
√
r

3∑
k=1

s2νk , CN2N2 =
1

1 +
√
r

3∑
k=1

s2νk , CN1N2 = −CN2N1 =
ir1/4

1 +
√
r

3∑
k=1

s2νk .

(C.4)

The model is renormalizable thanks to the following identities fulfilled by the B (4.39)

1We omitted there the piece corresponding to the would-be Goldstone bosons (G±), which is

LG± = − g√
2MW

G−
3∑

i=1

5∑
j=1

Bij ℓ̄i
(
mℓiPL −mχjPR

)
χj + h.c. (C.1)

As expected, we recover the last two eqs. (2.26) in the SM limit, with: i, j = 1, 2, 3, Bij → Uν
ij , Cij → δij

and C∗
ij = 0.
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and C matrices (C.3)

5∑
k=1

BikB
∗
jk = δij ,

3∑
k=1

B∗
kiBkj =

5∑
k=1

CikC
∗
jk = Cij ,

5∑
k=1

BikCkj = Bij ,

5∑
k=1

mχk
CikCjk =

5∑
k=1

mχk
BikC

∗
kj =

5∑
k=1

mχk
BikBjk = 0 . (C.5)

With these interactions, one has effective lepton flavor violating contributions involv-
ing a gauge boson and a lepton pair, as well as those amid four-fermions, which are
sketched in the following figure.

ℓ ℓ′

f f

γ, Z

ℓ ℓ′

f f

Figure C.1: Generic penguin and box diagrams contributing to ℓ → 3ℓ′ decays (for all
flavor combinations in the final-state) and ℓ→ ℓ′ conversion in nuclei. Figure taken from
ref. [20].

We do not detail the different contributions to the effective boxes (see fig. 3 in
ref. [20]) 2. The diverse contributions to the V ℓℓ′ vertices are represented in the fol-
lowing diagrams (where would-be Goldstone bosons, appearing in the Feynman-’t Hooft
gauge, are not displayed).

W

W

χi

γ, Z

ℓ′

ℓ

W

χi

χj

ℓ

ℓ′

Z γ, Z

W

χi

ℓ

ℓ′

ℓ′

ℓ

ℓ′W

χi

ℓ
γ, Z

Figure C.2: One-loop diagrams contributing to the V ℓℓ′ effective vertex in our model.
Figure taken from ref. [20].

For simplicity, we will focus now on the µ → eγ case, that will suffice here, for our
illustrative purposes. The relevant effective vertex can be written (q2 = 0 for the real
photon in this process)

Γγ
µ(q

2) = e
[
F γ
L(q

2)γµPL + 2iF γ
M(q2)PRσµνq

ν
]
, (C.6)

in terms of the two form factors F γ
L,M(q2), although only the dipole one, F γ

M contributes
for real photons, due to gauge invariance. The corresponding amplitude is simply

M(µ→ eγ) = iemµA2Rū(pe)PRσ
µνqνu(pµ)ϵ

γ
µ(q) , (C.7)

2These include lepton number violating processes.
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where we introduced F γ
M(0) ≡ mµ

2
A2R, the electron mass was neglected and ϵγµ(q) is the

photon (transverse) polarization. Thus, the partial decay width reads

Γ(µ→ eγ) = αm3
µ|F γ

M(0)|2 . (C.8)

The required form factor is

F γ
M(0) =

αW

8πM2
W

mµ

2

5∑
i=1

B∗
µiBeif

γ
M(xi) , (C.9)

where αW s
2
W = α, xiM

2
W ≡ m2

χi
and

fγ
M(x) =

3x3 lnx

2(x− 1)4
− 2x3 + 5x2 − x

4(x− 1)3
+

5

6
. (C.10)

From the previous equation it is straightforward to see that in the limit where xi → ∞
(heavy neutrino masses much larger than the electroweak scale), fγ

M(x→ ∞) → 1
3
, which

explains why the corresponding constraint on sνesνµ is a constant for large enough (≳ 1
TeV) sterile neutrino masses. Specifically, this restriction becomes

BR(µ→ eγ) ∼ 3α

8π
s2νes

2
νµ , (C.11)

resulting in
s2νes

2
νµ < 5.1× 10−10 , (C.12)

at 95% confidence level, which is the main constraint used in fig. 5.1, beyond the individual
limits sνe < 0.050 and sνµ < 0.021 (also sντ < 0.075) used in ref. [20], taken from the
global fit to electroweak precision observables and lepton flavor conserving processes of
ref. [58], which was recently superseded by the analysis in ref. [19] (see appendix D).
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Appendix D

Phenomenological constraints on
lepton non-unitarity

In this appendix we will briefly review how ref. [19] used different neutrino data to
constrain possible deviations from lepton unitarity, that we employed here directly from
their analysis for two heavy sterile states (that is pioneering). This corresponds to the
minimal possible setting, where the dimension five and six operators are fully correlated,
since these one (and consequently α ∼ η) can be completely reconstructed from the for-
mer up to a global scale [59].

The following observables were considered in this global fit (see the full list of references
in ref. [19]):

• The W-boson mass measurements from LEP, Tevatron, LHCb and ATLAS. The
controversial CDF-2 measurement is discussed, but not included in the reference
results, as it is disfavored in the consistency tests.

• The LHC and Tevatron effective weak-mixing angle determinations. Other lower-
energy and less precise measurements are disregarded.

• Five lepton universality tests obtained from weak decays ratios: Rπ
µe, R

π
τµ, R

K
µe, R

τ
µe

and Rτ
µτ . The first three divide the so-called Pℓ2, P → ℓνℓ (P = π,K) decays, for

the different lepton flavors indicated; whereas the last two are the ratios among the
leptonic tau decays, and between the τ and µ decays into eν̄ν, respectively.

• Ten CKM unitarity tests in weak decays: Vud from superallowed Fermi β decays,
Vus from eight different inputs (with assorted dependence on the ηℓℓ parameters)
and the ratio between the Kℓ2 and πℓ2 decays, from which the |Vus/Vud| ratio is
extracted.

• Charged lepton flavor violating observables. Currently, the most constraining ones
are the radiative decays, three-body leptonic decays and µ→ e conversion in nuclei.
All of them, for heavy enough neutrino masses, depend mostly on the modulus of
the relevant non-diagonal η element.

Apart from the latter group of processes, all others are lepton flavor conserving. Rela-
tion between diagonal and non-diagonal processes in flavor space include the use of the
Schwarz inequality (which in this particular case is saturated, i. e. |ηαβ| = √

ηααηββ).
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The SM inputs for the analysis are the PDG values of MZ , GF and αem(0)
1, where it

must be noted that GF and Gµ are no longer the same in presence of non-unitary mixing.
Explicitly, GF = Gµ(1 + ηee + ηµµ +O(η2)). The same dependence on the η parameters
arises from the modification of the relations betweenMW andMZ as well as amid s2W and
α/(GµM

2
Z) with respect to the SM case. This happens analogously for the invisible/full

Z0 decay width, the e+e− hadronic cross-section at the Z0-pole and in the ratios between
the different leptonic Z decay widths over their hadronic counterpart (Rℓ). All previous
precision observables (but the Rℓ ratios) depend also on ηττ , in different ways for each.
Rπ

µe, R
K
µe and R

τ
µe depend on ηµµ − ηee, while R

π
τµ and Rτ

µτ are functions of ηττ − ηµµ.

We quote in the following the ηℓℓ dependence of the different CKM inputs used in the
analysis. It is on ηµµ in the standard Vud determination, as well as in the Vus extractions
from the ratio among one-meson tau decays, and from the different (KL/KS/K

±) → πeν
processes. It is on ηee in the (KL/KS/K

±) → πµν decays. The |Vus/Vud| ratio, which is
obtained by dividing the K over the π ℓ2 decays, is independent of the η parameters, as
they cancel our in the ratio, since both numerator and denominator involve the same final
states. This ratio is still a useful η-independent constraint on the analysis. Finally, the
one-Kaon tau decays are functions of ηee+ ηµµ− ηττ , which is sensitive to a new direction
in parameter space.

The main results of this global fit are summarized in eqs. (5.1), that we used in this
thesis. Very interesting are the regions in the right-handed neutrino mixing flavor space
shown in their figure 3 [19], which are consistent with neutrino oscillation data, fixing
mixings to the best fit values, and floating phases and absolute neutrino mass. In this
minimal case, a preference is seen for non-vanishing ηµµ (trying to alleviate the Cabibbo
angle anomaly). A non-unitary best fit point is found for normal ordering, but not for
the inverse one.

1Appropriate running is included, requiring mt, MH , αS(MZ) and ∆α(MZ) as well.
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