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Observability in Discrete Event Systems modeled by

Interpreted Petri Nets

Summary

The aim of this work is to study the observability and observer design problems in
Discrete Event Systems (DES) modeled by Interpreted Petri Nets (IPN). More precisely, we

investígate the following three problems: 1) determine under which conditions an IPN is

observable, 2) given a non-measured IPN, compute a minimal cost sensor configuration
such that the net is observable and, 3) provide an algorithm to design asymptotic observers.

A structural and sufficient condition for observability in IPN is provided based on

the notion of input and output sequence invariants of an IPN. This condition is similar to

the one stated by M. Wonham for linear continuous systems using a geometric approach.
For live, conservative and cyclic IPN, it is shown that observability can be tested through
the properties of event-detectability and marking-detectability. Event-detectability is a

structural property so it can be tested in polynomial time. On the other hand, some

sufficient conditions for marking-detectability are provided based on the concepts of

marking conservative laws and the synchronic distance among the transitions ofthe net.

The notions ofW-observability and observability with respect to a firing language
are introduced. These kinds of observability are less restrictive than the notion of

observability. W-observability is related to the possibility of computing the marking of a
net even if it enters to execute an infinite behavior. On the other hand, observability with

respect to a firing language, or L-observability, implies the possibility of computing the

marking of a net whose behavior is known to be confined into a given sublanguage of the

firing language. Some sufficient conditions are given for W-observability and L-

observability in live, conservative and cyclic IPN. These conditions are based on the

concepts of event-detectability and W-marking-detectability, in the first case, and L-event-

detectability and L-marking-detectability, in the second case.

For live, conservative and cyclic IPN, a simple algorithm to choose a minimal cost

sensor configuration is developed. This algorithm assumes that only state sensors are

available and that a sensor can be assigned to several places ofthe net.

Finally, a procedure to design an asymptotic observer is presented. This procedure
is derived from the analysis of the observer estimation error, resulting in an asymptotic
observer that can be represented as an IPN.



Observabilidad en los Sistemas de Eventos Discretos

modelados con Redes de Petri Interpretadas

Resumen

Este trabajo presenta un estudio de los problemas de observabilidad y diseño de

observadores asintóticos en los Sistemas de Eventos Discretos (SED) modelados con Redes

de Petri Interpretadas (RPI). En particular, se abordan los siguientes problemas: 1)

determinar bajo que condiciones una RPI dada es observable, 2) dada una RPI no medible,

calcular un conjunto de sensores mínimo en costo tal que se preserve la propiedad de

observabilidad y, 3) desarrollar un algoritmo para el diseño e implementación de

observadores asintóticos.

Una condición suficiente y necesaria para la observabilidad en RPI es presentada. Esta

condición está basada en la noción de invariantes de secuencias de entrada y de salida de

una RPI. Esta condición es similar a la presentada por M. Wonham para los sistemas

lineales continuos usando el enfoque geométrico. Dada la complejidad de esta condición,

para RPI vivas, conservativas y cíclicas se demuestra que la observabilidad puede ser

verificada a través de las propiedades de evento-detectabilidad y marcado-detectabilidad.

La propiedad de evento-detectabilidad depende de la estructura de la red y puede ser

verificada en tiempo polinomial. Por otro lado, varias condiciones suficientes para

marcado-detectabilidad son presentadas. Estas están basadas en los conceptos de leyes

conservativas de marcado y la distancia sincrónica entre las transiciones de la red.

Las nociones de W-observabilidad y observabilidad con respecto a un lenguaje fueron

introducidas. La W-observabilidad está relacionada con la posibilidad de calcular el

marcado de una red aún si esta se mantiene ejecutando un comportamiento infinito. En

cambio, la observabilidad con respecto a un lenguaje, o simplemente L-observabilidad,

implica la posibilidad de calcular el marcado de la red cuando se sabe que su

comportamiento es restringido a un sublenguaje su lenguaje de disparos. Así, se presentan
varias condiciones suficientes para W-observabilidad y L-observabilidad. Dichas

condiciones están basadas en los conceptos de evento-detectabilidad y W-marcado-

detectabilidad, para el primer caso, y en los conceptos de L-evento-detectabilidad y L-

marcado-detectabilidad, en el segundo caso.

También se presenta un algoritmo simple para calcular una configuración de sensores

mínima en costo para RPI vivas, conservativas y cíclicas. El algoritmo propuesto supone

que sólo hay disponibles sensores de estado y que un sensor puede ser asignado a varios

lugares de la red.

Finalmente, se presenta un procedimiento para diseñar observadores asintóticos para RPI

observables. Este procedimiento se derivó del análisis realizado al modelo del error de

estimación, resultando en un observador asintótico que puede representarse como una RPI.
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Chapter 1

Introduction

1.1 Overview

ADES is a dynamic system, whose space state is countable and the state changes in response to

event occurrences. Examples ofDES are the flexible manufacturing systems, datamanagement

systems, traffic systems, computer nets and communication protocols, among others.

A continuous system also can be modeled as DES when the states are discretized, [13]. In

order to discretize the state, relevant valúes of the state variables are fixed; thus, if a variable

reaches a valué within a preestablished interval, it is though that the system is in a given state,

say _»•

The change from a state to another is given by the occurrence of events. The event occur

rences depend on the internal system dynamics or can be forced by actuator signáis. When

a system reaches a state, some sensors are activated. These sensor signáis are present at the

system output as long as the system remains at that state. Generally, the actuator and sensor

signáis are modeled as input and output alphabets, respectively, [23].

In several DES applications, it is necessary to have a complete knowledge of the system

state, in order to perform control or monitoring tasks. Unfortunately, in most of real-time

applications, due to a poor instrumentation or the existence of variables that cannot be directly

measured, it is impossible to perform all the required measurements in order to completely

determine the actual system state. However, if the knowledge of the system structure and the

input and output sequences suffices to compute the system state, then the system is said to

be observable. This leads to the observability issue: determine the system state through the

information provided by its structure and the sequences of input and output symbols.



2 Introduction

Input word
Discrete Event

System

Output word

Asymptotic
Observer

A

Estimated

Figure 1.1: General scheme of the pair system-observer.

The task of determining the state of an observable system is performed by au observer.

Figure 1.1 shows a general block diagram of the pair DES
— Observer. The use of an observer

allows to reduce the number of required sensors, since it is not necessary to measure the states

that can be inferred from the others. This represents a sensor cost reduction. Moreover, since

the number of signáis is reduced in the communication system, hard traffic and high complex

telemetric systems can be avoided, [44]. The observers had been used in fault tolerant systems,

[12], [18]; monitoring and alarm systems, [12], [14]; and in estimated-state feedback control, [8],

[12], [17].

There exist some similar concepts to observability such as diagnosability, testability and

invertibility. The concept of diagnosability is used in fault tolerant systems. It is related to

the possibility of detecting the unobservable fault event occurrences within a finite interval of

events, [32]. Since the fault event set is partitioned into equivalence classes, it is not required

to detect every system event; diagnosability only implies the detection of fault events belonging

to different classes. On the contrary, observability requires the detection of every system event

in order to reconstruct the actual system state.

Similarly, the property of testability is related to the possibility of distinguishing the coset

to which belongs the states of a system under partial event observations, [4]. The cosets are

formed according to a given set of possible faults. For testability, the order of the observations is

irrelevant as long as the observations are sufficient to discern among the cosets of failure states.

On the contrary, since observability implies possibility of exactly determining the actual system

state, the order of the observations is relevant.

Similarly, the property of testability is related to the possibility of distinguishing among

the failure states of a system under partial event observations, The set of system events is

L. Aguirre
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partitioned according to a given set of possible faults. This leads to define a partition of the

system state space. For testability, the order of the observations is irrelevant as long as the

observations are sufficient to discern among the cosets of failure states. On the contrary,
since

observability implies possibility of exactly determining the actual system state, the order of the

observations is relevant.

On the other hand, the concept of invertibility is related to the possibility of completely

reconstructing every sequence of system events from the knowledge of the observable event

sequences, [25]. As it will be seen later, this concept is closely related to the concept of

event-detectability in Petri nets. However, in the general case, invertibility does not implies

observability, since the knowledge of the system event sequences is not sufficient to reconstruct

the initial or actual system state.

This work deals with the observability problem, the exact computation of the actual system

state. In particular, it is devoted firstly, to find out a characterization of observable DES.

Next, to provide a methodology to select a minimal cost sensor configuration to preserve the

observability property and finally, to provide a procedure for the design of asymptotic observers.

1.2 Relevant literature

The observability problem in DES has been addressed by several authors, most of them in

the framework of DES modeled by Finite State Machines (FSM). For example, in [42], M.

Wonham studies the observability problem from the supervisory control point of view in DES

modeled by FSM under partial observations. The behavior of the FSM modelling a DES is

constrained to a sublanguage K of its marked language Lm. The sublanguage K is observable

with respect to Lm, if the information provided by the observed event sequences suffices to

compute a control law such that the system can be constrained to K.

This notion of observability has been extended by several authors in order to solve the

controller design problem. For example, in [44], the authors show that observability of a

language is a necessary condition for the existence of a supervisor. However, since observability

is not preserved under the unión of languages, it is introduced the concept of normal languages.

A language is normal if two partial observer words can be distinguished using the knowledge of

the FSM structure. It is shown that normality implies observability and the supremal normal

language always exists. Thus, formulae for computing the supremal normal sublanguage are

presented in [5] and [19] .

In [19], the authors extend the notion of observability proposed by Wonham to the context

of decentralized supervisory control and introduces the concept of co-observability for a set of

CINVESTAV del IPN L. Aguirre



4 Introduction

decentralized supervisors. In [22], [26] and [44] ,
the authors use the concept of co-observability

to show the existence of decentralized controllers in DES modeled by FSM under partial event

observations.

In [7], Cieslax et. al. extend the Wonham's works to DES modeled by non-deterministic

FSM under partial event observations. The authors introduce the concepts of invariant lan

guages, controllable languages and distinguishable languages in order to solve the supervisory

design problem.

Another extensión to the Wonham's works is presented, in [37], where the observability

problem is addressed from the augmented language point of view and it is shown that ob

servability is a necessary condition for the existence of a supervisor for systems whose desired

behavior is given by non-regular languages. Similarly, in [20], Kumar et. al. introduces the

concepts of lj
—

observability and w
— normality in DES modeled by sequential behaviors

under partial observations.

In most of the previous works, the observability of a DES is characterized in terms of the

language generated by the FMS modeling the system in order to establish existence conditions

of a supervisor. However, the exact computation of the system state is not addressed. Only few

works in FSM address the problem of determining the actual system state. For example, in [28],

P. Ramadge studies the problem of determining the current system state of a non-deterministic

FSM under full event observation and partial state observation. The observability problem

is stated as the exact reconstruction the system state after the occurrence of every event.

In [8], Ozveren and Willski address the observability and observer design problems for DES

modeled by FSM under event partial observations. The authors introduce the concept of stable

languages to characterize observable FSM and provide a procedure to design observers, which

allow the existence of state ambiguities, i.e. the system state is uniquely known only in certain

time intervals. Also the notion of resilient observers is introduced. This kind of observers are

able to recover the system state even under communication burns (e.g. wrong measurements).

Although the FSM formalism is suitable for describing DES, their application is limited

to small size systems, since the models explicitly take into account all the possible system

states, resulting in quite large models when the size of the system grows. In order to cope with

the state explosión problem, Petri Nets (PN) are being adopted as DES modeling formalism.

Besides compact models, PN provide clear graphical descriptions and a simple mathematical

support, allowing to represent causal relationships, process synchronization, resource allocation

and concurrence, inherent to DES behavior ([11], [24]).

The observability problem also has been studied from the PN point of view. One of the

earliest reported works on observability using PN is [17]. In that paper, Ichikawa and Hiraishi

L. Aguirre



1.2 Relevant literature
5

dealt with the observability problem in a class of augmented PN, where a set of external places

represent the sensor signáis. Thus, if a external place gets marked then it means
that the event

associated with its input transition occurred. In this context the authors divide the observability

problem into two subproblems: firstly, to compute the sequence of event occurrences ae given a

sequence ofmarkings aM in the external places; secondly, to compute the set of possible initial

state given the sequence of event occurrences ae. The authors provide a necessary and
sufficient

condition to guarantee that a sequence of event occurrences can be uniquely determined. Also,

based on the state equation of a PN, a procedure to compute the set of possible initial states

is provided.

More recently, in [12] and [14], Giua and Fanni introduce a kind of asymptotic observers

for DES under complete event observation. The proposed observer consists of an augmented

PN model with an algorithm representing the observer dynamics. This kind of observers uses

an incremental method for estimating the system state: the observer initial marking is equal

to zero and, as the .system evolves, it increments the number of tokens, thus, the observation

error is non decreasing. On the other hand, if the number of total resources is known, the

upper bounds for the state error can be given. This kind of observers are able to determine
the

marking of a PN when the firing of all transitions is known and the lower marking bound of

every place is zero. An extensión to this work is presented in [33]. The authors provide several

notions of observability such as marking observability, uniform observability and structural

observability, which are related to the existence of event sequences that lead the estimation

error to zero.

On the other hand, in [2], the observability problem is addressed from the Interpreted Petri

Net (IPN) point of view. A DES is modeled by a live, 1-bounded and cyclic IPN where every

event is assumed to be measurable and controllable. For this kind of IPN, the authors provide

an algorithm to design an asymptotic observer represented as an IPN; thus, further analysis

can be realized on the pair system-observer using the well-known PN techniques. An extensión

to that work is presented in [29], where an event can be uncontrollable and a controllable event

is not necessarily measurable. In [31], a generalization of the previous works is presented. The

provided observer consists of an extended system model, where input and output transitions has

been added to the observer places in order to regúlate the estimation error. The convergency

of the observer marking to the system state is shown in terms of the system event sequences.

In [30], the authors present a methodology to design asymptotic observers for DES modeled

by cyclic, live and conservative IPN where the lower marking bound of every place can be

greater than zero. The proposed methodology is derived from a convergency analysis on the

estimation error model, which is also represented as an IPN. The last four works form part of

the research presented in this dissertation.

CINVESTAV del IPN L. Aguirre



6 Introduction

A common assumption in the previous works (in FSM and PN) is that the sensor config

uration is given a priori. However, while designing a system, it is important to determine the

set of measurable state variables in order to preserve the observability property. This problem

is referred as the minimal sensor choice for observability. This problem has been the subject

of several investigation in the literature, mainly for DES modeled by FSM under partial ob

servations. For example, in [44], Young and Garg present a greedy algorithm to select a set of

observable events. Similarly, in [15], Haji-Valizadeh and Loparo provide algorithms to define

sufficient observable spaces, i.e. a set of events whose observation by a supervisor is enough

to realize a desired behavior. In these two works, the observability property is defined in

supervisory control terms like in [42] and [44]. EVom the PN net point of view, in [3], an

algorithm to compute a minimal cost sensor choice for observability in live, conservative and

cyclic Interpreted Free-Choice nets is presented. This last work also forms part of the research

presented in this dissertation.

1.3 General Objectives

This work is devoted to study the observability and observer design problem in Discrete Event

Systems (DES). The Interpreted Petri Nets (IPN), an extensión to the Petri Net (PN)

formalism, were selected as modeling formalism since they preserve all the advantages of the

PN formalism and allow to represent the input signáis associated to controllable events (tran

sitions) and the output signáis generated when a state (marking) is reached. Thus, an IPN

model is suitable for the study the observability property in a natural way.

The main objectives of this thesis are:

1. To establish necessary and sufficient conditions for observability in DES modeled by

IPN.

2. To provide a polynomial algorithm to obtain a minimal cost sensor configuration such

that a given IPN preserves the observability property.

3. To provide an procedure for the design of asymptotic observers for observable IPN.

1.4 Outline of the thesis

Chapter 2 briefly presents the Interpreted Petri Net (PN) formalism and the required nota

tion. Firstly, the definitions of PN and some related properties are presented. This allows to

L. Aguirre



1.4 Outline of the thesis 7

introduce the Interpreted Petri Nets (IPN), an extended PN formalism, and some concepts

related to the input and output languages of an IPN.

In Chapter 3, a definition of observability in IPN terms is presented. Then, the concepts

of input and output sequence invariants are presented. This sequence invariants are used

to characterize observable IPN. However, since the computation of the sequence invariants

represent a NP problem, the second part of this chapter is devoted to obtain a structural

characterization of observable IPN. Thus, the concepts of event-detectability and marking-

detectability are presented. Also, a necessary and sufficient condition for event-detectability

and several sufficient conditions for marking-detectability are presented. It is shown that, these

two properties represent a necessary and sufficient condition for observability in live, cyclic and

conservative IPN.

Chapters 4 and 5 introduces the concepts ofW-observability and L-observability. The first

one for systems whereat least a firing sequence leading to a distinguishable marking exists and

the second for IPN confined into a specific behavior. Characterizations of these two notions

of observability are also provided. Based on the concepts ofW-marking-detectability, L-event-

detectability and L-marking-detectability.

Chapter 6 addresses the minimal cost sensor choice problem for observability in IPN.

Firstly, the concepts of non-measurable IPN and sensor configuration are defined. These

concepts are used to formally establish the minimal cost sensor choice problem for observability

in IPN. Then, a characterization of the measurable nodes preserving the event-detectability

property of an IPN is provided. This characterization leads to a simple algorithm to compute

a minimal cost sensor configuration preserving the observability property. However, in order

to improve the computation complexity of this algorithm, a reduction operation over the set

of sensor configurations is performed. This leads to an improved algorithm. The presented

algorithm can be used also to compute minimal cost sensor configurations for W-observability

or L-observability.

In Chapter 7, a methodology to build asymptotic observers for systems modeled by ob

servable, W-observable or L-observable IPN is presented. This procedure is derived from a

convergency analysis realized on the observer estimation error model, which is also represented

as an IPN. This analysis allows to find out conditions that must be satisfied to achieve an

asymptotic convergency of the observer state to the actual system state.

Finally, in Chapter 8, conclusions are provided together with a discussion of original con

tribution and directions for further work.

CINVESTAV del IPN L. Aguirre
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Chapter 2

The Interpreted Petri Net Formalism

.SUMMARY. This chapter briefly introduces the main concepts, properties and the no

tation related to the PN and IPN modelling formalisms.



10 The Interpreted Petri Net Formalism

2.1 Introduction

The Petri nets (PN) are being used as modeüng formalism for DES since they provide clearer

graphical descriptions and, simple and sound mathematical support, allowing to represent
DES

properties such as process synchronization, concurrence, causal relationships, etc. [34]. In

particular, the Interpreted Petri Net (IPN) formalism, an extensión of PN, is used to model

DES. The IPN formalism uses input and output languages to capture the control and sensor

signáis of a DES, respectively; this allows a more realistic representation of the DES behavior

and to study certain system properties such as controllability, stability and observability. This

chapter briefly introduces the main concepts and the notation related with PN, [9], [24], and

IPN, [23].

2.2 Petri Nets

Definition 2.1 A Petri net structure is a 4-tuple N = (P, T, I, O), where

• p = {pi,p2, —,pn} is a finite set ofn places, depicted as circles,

• T = {-i,Í2, —,tm} is a finite set ofm transitions, depicted as lines or bars,

• I : P x T —> {0, 1} is a function representing the ares going from places to transitions,

and

• O : P xT—► {0, 1} is a function representing the ares going from transitions to places.

A PN structure N can be also represented by its incidence matrix C = [cy]nxm, where

cij
= 0(pi,tj)-l(jpi,tj).

Definition 2.2 Let x, y € TüP, then
*

(x) = {y | there is an are from y to x} and (x)' = {y \

there is an are from x to y} are the sets ofpredecessors and successors of the node x, respectively.

Definition 2.3 A subnet of a net N = (P,T,I,0) is a 4-tuple Q = (P',T ,T ,0'), where

p, cP,T QT andVp € F Vi e V it holds that F(p,t) = I(p,t) and 0(p,t) = 0(p,t). The

net Q is also called the subnet generated by the set of nodes X = P' U T'

Definition 2.4 A p-invariant Y of a PN is a rational-valued solution of equation YTC = 0.

The support of a p-invariant Yi is the set \\Yi\\ = {pj\Y(p) =¿ 0}.

L. Aguirre



2.2 Petri Nets 11

Definition 2.5 The marking of a PN is a function M : P -» Z+, where Z+ = N U {0}, that

assigns to each place ofN a non-negative number of tokens, depicted as black dots inside the

places.

The marking at the k-th instant is often represented by a vector Mk = \Mk(pi) . . . Mk(pn)]T

or by a list Mk = [aj1,^,. . . ,ajj*], where Oj is the index of the i
— th place, _•<

= Mk(pi) and, if

Mk(pi) = 0 then <i¡ is omitted and if Mk(pi) = 1 then 6< is omitted (see the example at the end

ofthis section).

Definition 2.6 A PN system (N, M0) is a PN structure N with an initial marking M0.

The marking of a PN system evolves according to the following rules:

1. A transition tj G T of a given PN system is enabled at a marking Mk if Vpi 6 P,

Mk(pi) ^ I(pi,tj). The .set of enabled transitions at a marking Mk is

E(Mk) = {í|Vp e P,Mk(p) > I(p, i)}

2. If tj is enabled at a marking Mk then it can be fired. In this case, a new marking Mk+i

is reached. Mk+i, which can be computed using the equation:

Mk+1 = Mk + Cvk (2.1)

where vk is the firing vector of the enabled transition tj, [9], which is defined as

lO, otherwise

Definition 2.7 A firing sequence of a PN system (N, M0) is a sequence a = tjtj...tk such that

M0 -?U Mi -X ...
-X Mk.

Observe that, a firing sequence is an enabled sequence at M0; thus, the fact of reaching Mk

from Mq by firing the sequence is denoted by M0 ~^~* Mk.

Definition 2.8 Let (N, M0) be a PN system.

CINVESTAV del IPN L. Aguirre



12 The Interpreted Petri Net Formalism

• The set of all firing sequences of (N, M0)

£(N, M0) = {o = titj...tw\M0Xm1X ...
-X Mk -^ -VU

is called firing language of (N, M0) .

• A firing sequence o € £(N,Mj) where Mj -^-» Mk is called blocking sequence if Mk is a

blocking marking, i.e. no transition is enabled at it.

Definition 2.9 The set H(N, M0) = {Mk\M0 -?-+ Mk} of (N, M0) is called reachability set of

a PN system (N, M0) .

Boundeness and liveness are two important properties of a DES. Boundeness is often

interpreted as stability and it is used to identify the existence of system overflows; while,

liveness means that, for every system event ek and for any system state, it is always possible to

reach a state, at which ek can occur. Moreover, if a SED is live then it is deadlock-free, [45].

In PN terms, boundeness and liveness are defined as follows:

• A place Pi of a PN is b-bounded, if VMfc e R(iV, M0), Mfc(p¿) < b, where b is an nonneg

ative integer. A PN is b-bounded, if all its places are b-bounded.

• A transition tk is said to be Uve if VM,- € R(iV, Mo), 3a such that Mj -^ Mr and tk 6 o.

A PN is live if all its transitions are live.

Another desired property of a SED is a cyclic behavior. A SED has a cyclic behavior

if there exists a sequence of events that allows to reach the initial state from any reachable

state, it means that any task could be infinitely often performed. In PN terms a global cyclic

behavior is defined as follows, [34].

• A PN is cyclic if VM e R(_V,M0), Ba such that M ^ M0.

A cyclic PN is also usually known in the literature as "a reversible net"

The following example illustrates some of the above concepts.

L. Aguirre
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Figure 2.1: A PN system.

Example 2.10 Consider the PN system of Figure 2.1. The incidence matrix of this net is

C =

-1 0 0 1

-1 1 0 0

1 -1 0 0

-1 1 0 0

0 -1 1 0

0 1 -1 0

0 0 -1 1

0 0 1

0 0 -1 1

The sets of predecessors and successors of _2 are *(í2) = {p3,P¡¡} ond (t2)* = {P2,Pí,P6},

respectively. A p-invariant of the net is yi = [10 10 0 10 1 0]T The support of yx is

Hí/ill = {Pi,P3,Pe,Ps}- The initial marking is M0 = [1 1 0 1 0 2 1 0 1]T or, in list form,

MQ = [1,2,4,62,7,9]. It is easy to verify that, (N,M0) is a 3-bounded, live and cyclic PN

system. The set of enabled transitions at M0 is E(M0) = {ti, ¿3}- Suppose that, the transition

t3 is fired. The firing vector of a = t3 isa = [0 0 1 0]T In this case, after firing a, the marking

Mi = [1,2,4,5,6,8] ¿s reached.

2.3 Interpreted Petri Nets

The Interpreted Petri Net (IPN) formalism is an extensión to PN. An IPN consists of a

PN system plus input and output alphabets assigned to the transitions and places of the net

by certain functions. These alphabets represent the actuator and sensor signáis of the system.

Thus, an IPN has the possibility ofmodeling the sequences of commands given to the actuators

CINVESTAV del IPN L. Aguirre



14 The Interpreted Petri Net Formalism

and the sensor signáis emitted each time a new state is reached. This modelling capacity of an

IPN allows to study system properties such as stability, controllability and observability. An

IPN is formally defined as follows.

Definition 2.11 An Interpreted Petri Net (IPN) is a 5-tuple Q = (N1, S, <_>, A, ip) where

• N' = (N, M0) is a PN system,

• E = {<_i,a2,...,au} is the input alphabet, where ai is an input symbol,

• 3> = {^i,^_, ...,^8} is the marking output alphabet, where fa is an output symbol,

• A:T->SU {e} is a function that assigns an input symbol to each transition of the net,

where e represents an internal system event. This function has the following restriction:

Vtj,tk eT,j^k ifl(putj) = I(pi,tk) j- 0 and both A(í3), A(í„) ¿ e, then X(tj) f X(tk),

• (p : R(N, M0)
—> _> is a function that assigns an output symbol to each reachable marking

of the net.

Remark 2.12 To enhance the fact that there exists an initial marking in an IPN, hereafter

it will be written (Q,M0) instead of Q.

The transition input alphabet £ of an IPN can be thought as actuator signáis attached to

the transitions of the net. Similarly, the marking output alphabet 3> of the net can be thought

as state sensor signáis. In this context, it is possible to distinguish between controllable and

uncontrollable transitions, and between measurable and non-measurable places of the net as

established in the following definitions.

Definition 2.13 A transition tj £T is said to be controllable, i/A(.<) ^ e, and uncontrollable,

otherwise.

The set Tc = {í|A(í) ^ e} is the set of controllable transitions andTu = (í|A(í) = e} is the

set of uncontrollable transitions. Observe that, T = Tc U T„ and Tc (1 Tu = 0.

Graphically, a controllable transition is represented as a unfilled bar, while a uncontrollable

transition as a filled bar.

A controllable transition represents an event which occurrence can be prevented (e.g. open

a valve, turn off a power source), while a uncontrollable transition represent an event which

occurrence depends on the internal dynamics of the system.

L. Aguirre



2.3 Interpreted Petri Nets 15

This work focuses in the case where _> = [Z+]r and y» is a linear function defined as tp :

[Z+]n —► [Z+]r, where n = \P\ and r is the number of available marking outputs. In this case,

the function tp can be represented as a matrix

<P
= [*>«]. xn =

where, {pu,Pv¡ • ■ • >í>t_} is the ret of places whose marking is available at the output and e¿ is the

i-th elementary vector (ej [i] = 1 and ef|j'y i] = 0, Vi = 1, 2, . . .

, n). The places whose marking

is available at the output are called measurable places. Formally these places are defined as

follows.

Definition 2.14 A place p4 e P is said to be measurable, ifSj 6 1, 2, . . . ,r such that tpj
= ef,

where tp¿ is the j-th row of tp; otherwise, p¿ is called non-measurable.

The set Pm = {p\3j G 1,2,... ,r such that tpj
= ef} is the set of measurable places and

Pnm — P\Tm is the set of non-measurable places:

A measurable place is depicted as a unfilled circle, while a non-measurable place is depicted

as a fdled circle.

The marking of an IPN evolves according to the following rules:

1. A transition tj € T is enabled at a marking M if Vp» € P, M(j>í) $s I(pi,tj).

2. If tj is an enabled uncontrollable transition then it can be fired, but if tj is an enabled

controllable transition and the symbol A(íj) = Oj ^ e is present at the input of the net

then tj must fire. In both cases, if tj fires at a marking Mk, then a new marking M„+1 is

reached, which can be computed using the equation 2.1.

Observe that in the definition of an IPN, the function A does not allows that two transitions

sharing the same input place have the same input symbol different from e. This is due to the

firing rules of an IPN : if these transitions get enabled at the same marking and the input

symbol is present, then both transitions must be fired, resulting in a negative marking. On the

other hand, suppose that these transitions are labelled with e. Since the symbol e represents

internal events then their firing depends on the system internal dynamics, so without loss of

generality it can be thought that one of them can occur before the other.

eT
u

eT
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16 The Interpreted Petri Net Pormalism

Since the firing of enabled uncontrollable transitions depends on the internal dynamic of

the modeled SED and the firing of enabled controllable transitions depends of the presence of

the input symbols attached to them, the incidence matrix C of the net can be split into two

matrices: C = [Ce':Cc], where Ce = [ctfnxfr^ and Cc = [-$]n„|r„| are formed by the columns

of the uncontrollable and controllable transitions, respectively. Similarly, the firing vector
of a

sequence at the k-th event can be split into vectors vk = [vf. | £¡£], where

e/-\ í VfcW> titTnm ,

vk(i) = <
.

and

0, otherwise

*É« =

0, otherwise

Henee, the state equation of an IPN can be written as:

Mk+1 = Mk + C£ifk + CcE(Mkyk) (2.2)

yk+i
= tpMk+1

where yk+i is the output signal vector of the measurable places at the k + 1 instant and

S : R(_V, M0) x R71 —► R171 is a function that returns the firing vector of the enabled transitions

contained in v^; thus, E(Mk,vk) = vk such that

v'c(i) = { v*w- ú^ e p- M^) > I(pyi)

[O, otherwise

The function __ represents the fact of accepting or not an input word given to the system,

i.e. preventing the firing of non-enabled controllable transitions. Thus, if an input symbol is

given to the system and the corresponding transition is not enabled then it is not fired. Figure

2.2 shows the block diagram of an IPN. The block named "uncontrollable firings'1' represents

the occurrences of events due to the internal dynamics of the system.

Due to the input and output alphabets, an IPN can genérate the following languages.

Definition 2.15 The input language of (Q, M0) is

£in(Q, M0) = {u = X(ti)X(tj)...X(tk)\a = Utj...tk € £(Q, Mo)},

while its output language is

£*ut{Q, M0) = {z = tp(M0)tp(M1)...tp(Mk)\M0 -XMx-X ... -±*MkA M_-f* e £(Q, M0)}.

L. Aguirre
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Uncontrollable

firings

Figure 2.2: Block diagram representation of an IPN.

Definition 2.16 Let (Q, M0) be an IPN andu e £in(Q, M0) be an accepted input word. The

set of possible firing sequences generated when lj is accepted is

£»{Q,M0) = {a = Utj...tv\X(a) = X(U)X(tj)...X(tv) = lj}

The set of possible reached markings when lj is accepted is

ÍU(Q, M0) = {M|M0 -i. M A a E £a(Q, M0)}

where a is a prefix ofa.

The set of possible output signal sequences generated when lj is accepted is

*„{Q,Mo) = MMj)tp(Mk)...tp(Mh)\Mj,Mkí... ,Mh € LU(Q,M0)}

Observe that, £U(Q, M0) Q £(Q, M0) and ^(Q, M0) C £out(Q, MQ).

To illustrate the above concepts, consider the manufacturing cell of the following example,

adopted from [45].

Example 2.17 A production cell consists of two machines, M\ and M2, two robots, _.j and

R-i, for loading and unloading parts from Mi and M_ respectively. An incoming conveyor (IC)
carries a part to be pre-processed by M\. The pre-processed part is unloaded by Rx and left in a

intermedíate 2-slot buffer B. Then i.2 takes it and loads M2. A finished part is deposited in an

outgoing conveyor (OC). Figure 2.3 shows a scheme of the production cell and Figure 2.4, an

IPN model for it.
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Incoming
Conveyor

ac>

Outgoing
Conveyor

(OQ

Robot Rl RobotR2^S1
Machine

!___■___■__■ Machine

■Dq
Buffer B

Figure 2.3: Scheme of a typical automated production cell.

Pu '''
p„

'«o p10 !» P«

Uh y>
Pl7

o

Figure 2.4: An IPN model of the automated production cell.
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2.3 Interpreted Petri Nets 19

The interpretation of each place and transition, and their respective input and output symbols

are the following

Place Interpretation Transition Interpretation

Pi Part available h Load Mi

Pi (l>s) Loading Mi (M2) k End loading Mi

Ps (Po) Mi (M2) loaded k Start Mi

Pi (Pío) Mi(M_) working íi Stop Mi

P- Part preprocessed k Unload Mi

P6 Unloading to buffer te End unloading Mi

Pt Parts buffered k Load M2

Pii Part processed k End loading M_

P12 Unloading to the OC k Start Mi

Pl3 Part outgoing tío Stop M-¡

Pu (Pn) Mi (M2) idle til Unload M2

Pl5 (Pie.) Ri (R2) available til End unloading M2

Pl6 Available slots hz Enter a new part

The input and output labeling functions are

ti k k k U k te tn k k ko tu k_ Í13

x(u) a e b c d £ e e f 9 h £ i

tp
= [ei e3 e7 eg eí2 e14 e15 e17 ei8]T

In this case, the input alphabet is E = {a, b, c, ... , i}, Tc = {ti, t3, í4, í5, í7, tg, tw, tn,

Í13} and Tu = {í2, í6, í8, í12}. On the other hand, Pm = {p1; p3, p7, p9, pn, pu, p15, p17,

pí8} and Pnm = {p2, p^ p5, p6, pa, pw, pn, p13, p16}. The initial marking is M0 = [1, 7, 9,

14, 15, 162], which means that a part is available, there is a buffered part and a part in M2,

the Mi is idle, the -.j is available and two buffer slots are empty. At this marking, the net

yields the output y0 = tp(M0) = [101101100]T It is easy to verify that, (Q,M0) is live, cyclic

and 3-bounded. An input word is lj = abe, which yields the firing sequence a
= íií2í3í4 and the
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20 The Interpreted Petri Net Formalism

output word

0 0 0

0 1 0

1 1 1

1 1 1

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

2.4 Discussion

In this chapter, the Petri Net and Interpreted Petri Net formalisms were reviewed in order to

introduce the necessary notation for the remaining of this manuscript. As it will be seen in

next chapters, due to its capability of representing the input and output languages of a Discrete

Event System, the Interpreted Petri Nets represent a suitable formalism not only to model a

Discrete Event System, but also to study some qualitative system properties; in particular, to

study the observability and asymptotic observer design problems.
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Chapter 3

Observability in IPN

SUMMARY. This chapter addresses the observability problem in DES modeled by IPN.

A definition of the observability property is presented in IPN terms. A characterization of

observable IPN is provided based on the concepts of input and output sequence invariants.

Several characterizations of observable IPN are provided for live, bounded and cyclic IPN,
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3.1 Introduction

Observability is an important property of dynamic systems since it implies the possibility

of estimating the system states that cannot be measured. Observability is defined in ünear

continuous systems as the possibility of determining the initial state of the system
in a finite

time by using the knowledge of its inputs, outputs and structure [6]. In the DES área, some

definitions of observability has been proposed. Most of these definitions have been stated in

regular language terms, where the concept of observability has been tied to the supervisor

existence problem. Only in a few number of works the observability has been independently

addressed. On the other hand, from the Petri net point of view, the concept of observability

has been established depending of the method used to estimate the system state.

In this chapter, the observability property is studied from the PN point of view. Firstly, a

definition of observability is provided. This definition is similar to the one used in continuous

system theory. Then, the concepts of input and output sequence invariants are presented. This

sequence invariants are used to characterize observable IPN. However, since the computation of

the sequence invariants represent a NP problem, the second part of the first section is devoted

to obtain a structural characterization of observable IPN.

3.2 Basic definitions

While modeling a DES in IPN terms, the knowledge of resources contained in the system and

the number of codifications of the state variables is usually known. For example, the number

of available robots, machines, etc. is known; in the case of discretized systems, it is known

that in the state variables of model are codified into different valúes (e.g. in a water tank three

levéis can be defined: low, normal, high). This knowledge reduces the number of possible initial

markings of an IPN.

This leads to the concepts of conservative marking laws (CML), a set of equations that

indicates the number of tokens contained in a set of places for any reachable marking.

Definition 3.1 Let (Q, M0) be an IPN and Y = 0. Y¡ . . . Y3} be the set of all the minimal

p-semiflows of the net. The set

CML(Q,M0) = <

'

Y1TM = ki
'

Y?M = k2

Y7M = ks J
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is called conservative marking laws, where kt = Y?Mo and M = [M(j>i) M(j>2) . . . M(pn)]T

A CML is well-defined, i/VPj e Pnm 3Í. such that Yt(pj) > 0, i.e. all non-measurable

places of the net are contained in at least one equation.

Definition 3.2 Let (Q, M0) be an IPN and £< := [Y?M = kj] € CML(Q, M„) be a conser

vative marking law. The support of£{ is

Observe that a CML depends on the initial marking of the net. This dependency
is related

to the number of tokens initially contained in the net and on less degree to their location. In

this sense, the concept of a CML is analogous to the concept of "macro-markings" in [14]. A

CML can be determined by the knowledge of resources into the system, for instance,
number

of machines, number of workshops, buffer and machine capacities, etc. Note that, the number

of machines is known, but the state of these machines (working, idle, etc.) could be unknown.

In IPN terms, the observability is defined as follows.

Definition 3.3 An IPN given by (Q,M0) is observable in k steps i/Vw <= £in(Q,M0), such

that k < \lj\ < oo
,
the information provided by the knowledge of the input word _.,

the output

word generated by lj, the system structure and CML(Q, M0) suffices to uniquely determine M0

and the firing sequence generated by u, au = t{tj . . . tT.

Observe that this definition implies that, after the occurrence of a k-length input word, it

is possible to reconstruct the reached marking Mk and every reached marking from M0 to Mk.

Example 3.4 Consider the IPN of Figure 3.1.a). The CML ofthis net is M(pi) +M(j>2) = 1.

Suppose that the input word lj = a is observed; however, since no place is measurable, then no

output word is observed. Thus, it is impossible to determine whether the transition ti is fired

or not. Henee, it is impossible also to determine if M0 = [10]T or M0 = [01]T Therefore, the

net is not observable.

Now, consider the IPN ofFigure S.l.b). The CML ofthis net is M(pi)+M(p2)+M(p3) = 1.

The initial output is 2_
= [0]. Suppose that when the input wordu

= a is given, the output word

zi
= [1] is observed. Henee, the actual marking is Mi = [001]T Although, the current marking

of the net can be determined, it cannot be determined which transition was fired. Thus, also it

cannot be determined which was the initial marking M = [100]r or M' = [010]T
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Figure 3.1: Several unobservable and observable IPN.

Consider the IPN of Figure 3.1.c). The CML of this net is M(p{) + M(p2) + M(pA) +

M(p5) + M(p6) = 2. Suppose that the input word lj = baac is given. In this case, the following

sequence of outputs is observed:

0

0

1

0

2

0

3

0

2

1

Thus, it is known that the current marking is M = [53, 6] and the initial marking was M0 = [l2] .

However, it cannot be determined whether a' = tit2t3ti or a" = tit3t2ti was fired: Henee, the

net is not observable.

Consider the net of Figure 3.1.d). The CML of this net is

M(pi) + M(p2) + M(p3) = 2

M(pi) + M(pi) + M(p6) = 1

M(p2) + M(p5) + M(p6) = 1

Suppose that the input word lj = aac is given. In this case, the following sequence of outputs is

observed:

'

0

0

'

1

1

"

2

1

2

0

Thus, it is known that the current marking is M = [3,6], the initial marking was M(

and the sequence &
= tit2t3 was fired: Henee, the net is observable.
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The knowledge ofCML(Q, MQ) allows to reduce the set of possible initial markings to those

that agree with the knowledge of the plant resources and state codification.

Definition 3.5 Let (Q, M0) be an IPN and CML(Q, M0) be its set of conservative marking

laws. The set of markings that agree with M0 is

R(Q,M0) = {Me (Z+)m\tp(M) = tp(M0) A V^ : [lfM = fc] € CML(Q,M0),Y?M = fc}

Definition 3.6 Let (Q, M0) be an IPN,

1. The sequence invariant of an input wordu € £in(Q, M0) is the set

Iu = {MiMj . . . Mk\Mi -X Mj -t* ...
-^ Mk A A(í,)A(ír) . . . X(tt) = ljA

MieR(Q,M0)}

2. The sequence invariant of an output word z € £<yut(Q, M0) is the set

O. = {MiMj . . . Mk\Mi -^ Mj -^ ...
-^ M„ A tp(Mi)tp(Mj) ■ ■ ■ tp(Mk) = zA

MiER(Q,Mo)}

Definition 3.7 Let (Q, M0) be an IPN and CML(Q, M0) be its set of conservative marking

laws. The set of correlated input and output words of lenght greater or equal to k is

Ak = {(lj, z)\lj e £in(Q, M0) A \lj\ > k A z € £m.t(Q, M0) Az= is the output yielded by lj}.

Using these sequence invariants, the following characterization of observable can be stated.

Theorem 3.8 An IPN given by (Q, M0) is observable in k steps if and only i/V(a;,z) 6 Ak,

it holds that |.-_,riO-| < 1.

Proof. fNecessity). Let (Q, Mo) be an ob.servable IPN; thus, there exists a function

\& : A* —» R(Q, Mq). Suppose that there exists an input invariant, say Iu, with |a»| > k, and

an output invariant, say Oz, such that \I¡j fl 0^| > 1. It means that, there exist two marking

sequences MiMj . . . Mk, MqMr ...M„€ Iu such that MiMj . . . Mk,MqMr ...M„eOz. Thus,

íS>((lj,z)) = Mfc and 1í((u;, z)) = M3. In this case, & is not a function, a contradiction.

('Sufficiency). Suppose that the biggest cardinality of an intersection of an input invariant

and an output invariant of (Q, M0) is equal to one for Va; € £in(Q, Mq) such that \lj\ >

k. Let MtMj . . . Mfc, MqMr . . . Ms € 0Z be marking sequences belonging to the invariant 0Z
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M,

ciar*

¡py-\b

M3
d

M4

e

[00]T 3oi]T

Mw/
c

a)

Figure 3.2: An IPN system and the merge of the reachability graphs of M' = [1] and M" =

[2,3].

of the output word z. Since, by hypothesis they belong to different input invariants, say

MiMá ... Mk E IUi and MqMr . . . Ma 6 IUj, where \lJí\ > k and \lJj\ > k, then the function *

can be built as follows *((_;., 2)) = Mk and *((o;i; z)) = Ms. Therefore, (Q, M0) is observable.

It means that, the markings that cannot be distinguished through the output sequence,

must be distinguished through the input word. Observe that, this characterization is similar

to the one presented for linear continuous systems using the geometric approach, [41].

Example 3.9 Consider the IPN system shown in Figure 3.2.a), where the set of conservative

marking laws is the following

CMUO M)-í M(Pl) + M(P2) + M(Ps) = X 1CML(Q, M0) -

| M{pi) + M(p3) + M{pi) =
.

|
In this case, since y0

= [00]T the set of markings that agree with M0 is

__(Q,M0) = {[1],[2,3]}

Figure 3.2.b), shows the graph resulting of merging the reachability sets of each marking of

R(Q,M0). The 2-dimensional vector shown below each node corresponds to the output vector

of the given marking.

For short, a symbol is assigned to each output vector as follows:

= rnnir0 = [00]

x = [10]a

y
= [oi?

^ = [ii]3
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In this case, some of the output invariants of the net are

i Xi oZi

1 0 {Mi,M3}

2 0X {MiM2,M3M2}
3 0xz {MiM2M5,M3M2M6}
4 0xz0 {MiM2M¡,Mi, M3M2MbMx}

5 0y {MiMi,M3Mi}

6 0yz {MiMAM5,M3M4Ms}

7 0yz0 {MiM4M5Mi, M3M4M5Mi}

8 X {M2}

i z» oZi

9 xz {M2M6}

10 XZ0 {M2M5Mi}

11 y {Ma}

12 yz {M4M5}

13 yz0 {MtM5Mi}

14 z {M5}

15 Z0 {M5Mi}

Observe that the marking sequences belonging to the same output invariant are indistinguishable

from each other by the output. For example, the marking sequences MiM2, M3M2 and MiM4,

M3Mi are indistinguishable by the output since they yield the same output word. Now, some of

the input invariants of the net are

3 Uj I».
1 a {MiM.}

2 ad {MiM2M5}

3 ade {MiM2M5Mi}
4 c {M3M2,MAM5}
5 cd {M3M2M5}

6 cde {MtM5Mi}

j w¿ Ih
7 b {MiMj

8 bc {MiMiMs}

9 bce {MiMAM5Mi}

10 d {M2M5,M3M¿

11 dc {M3MAM5}

12 dce {M3MiM5Mi}

3 Uj 4.
13 de {M2M5Mi}

14 dea {M2M5MiM2}

15 deb {M2M6MiMi}

16 ce {MtMbMi}

17 cea {M4M5MiM2}

18 ceb {MiMsMiMt}

Notice that, MiM2 E Ia and M3M2 E _-• It means that, although they are indistinguishable by

the output (both yield the output word 0x), they can be distinguished by the input.

In general, observe thafi(u,z) 6 A2, the intersection ofthe corresponding input and output

invariants has at most one element. Therefore, by Theorem 3.8, the IPN system is observable

in 2 steps.

Example 3.10 Consider the IPN system shown in Figure 3.3.a), where the set of conservative

marking laws is the following

CML(Q, M0) =
M(pi) + M(p2) + M(p5) = 1

M(pi) + M(p_) + M(p4) = 1

and the set of markings that agree with Mo is

R(Q.M0) = {[1],[2,3]}
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a) b)

Figure 3.3: An IPN system and the merge of the reachability graphs of M' = [1] and M" =

[2,3].

Figure 3.3.b), shows the graph resulting of merging the reachability sets of each marking of

R(Q,M0).

Observe that, the only difference between this IPN system and the one of the previous

example is that transitions ti and t3 are uncontrollable. In this case, conserving the notation

of the previous example, some of the output invariants are

i Zi o.,

9 xz {M2M5}

10 XZ0 {M2M5Mi}

11 y {Ma}

12 yz {MaM5}

13 yz0 {M^Mi}

14 Z {M5}

15 Z0 {M5Mi}

i «i o_,

1 0 {Mi,M3}

2 0X {MiM2, M3M2}

3 0XZ {MiM2M5, M3M2M5}

4 0(xz0)+ {Mi(M2M5Mi)+, M3(M2M5Mi)+}

5 0y {MiM4,M3M4}

6 0yz {MiMAM5, M3M4M5}

7 0yz0 {MjMíMoMi, M3M4M5M1}

8 X {M2}

but some of the input invariants are

j U!j I»,

1 e {MiM2, M3M2,MaM5}

2 b {MiMa,MiMaM5}

3 d {M2Mb, MiM2M5, M3Ma, M3MaM5,M3M2M5}

4 e {M5MU M5MiM2, M4M5Mi, M4M5MiM2}

5 (ede)+ {Mi(M2M5My, M3(M2M5Mi)+}
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Pl tj P2

Utl)

Figure 3.4: A unobservable IPN.

Notice that for _j2 and z5, the intersection of these invariants is

L. n 0_5 = {Mi(M2M5Mi)+, M3(M2M5Mi)+}

whose cardinality is bigger that one. Thus, Mi and M3 are indistinguishable. Moreover, since

uj2 is infinite, then it is not possible to find a k as stated in the definition 3.3; therefore, by

Theorem 3.8, the IPN system is not observable in k steps.

Observe that, in the approach herein presented, the output of an IPN is only related to its

measurable places. Henee, if an input symbol is given to the net, only a change in the output

indicates that it was accepted. i.e. the corresponding transition was fired; similarly, the firing

of an uncontrollable transition can be only detected through a change in the output. Thus, it

has no sense to talk about the sequence invariant of a given input word if the firings yielded by

it cannot be detected.

For example consider the IPN shown in Figure 3.4, where no place is measurable. Let

Mi = [10]T and M2 = [01]T be the reachable markings ofthis net. Suppose that, M0 = Mx and

the input symbol X(ti) is given to the net. Since ía is enabled and A(ía) is present, its firing

leads to M = [01]T; however, the output does not change. On the other hand, if M0 = M2

and A(.i) is given, since íj is not enabled it cannot be fired; however the output
is the same.

Thus, in both cases the output does not provides information to determine the initial marking.

Therefore the net is unobservable.

If the observability of this net is tested using the invariant approach, the following sequence

invariants can be obtained: O0 = {Mi,M2,M1M2} and /A(tl)
= {MiM2}. In this case, O0 !~l

h(ti) = {MiM2}, |O0 n/A(tl) | = 1 and, by Theorem 3.8, the net seems to satisfy observability.

However, since the firing of _i does not yield a change in the output, it has no sense to talk

about the invariant _A(ti)>
so the net is unobservable.

Therefore, in order to obtain a valid result in the observability test through sequence in

variants it needs to be verified that the firing of any transition affects the output.

Unfortunately, finding out the sets of related markings by the input or by the output words
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of a given IPN implies a searching algorithm in its reachability set, which can be quite complex.

However, for a certain class of IPN, the observability test is relatively simple and, in some

cases, observability can be tested from the structure, as it is shown in the next section.

3.3 Characterization of observable IPN

As it will be seen in this section, from definition 3.3, to achieve observability in an IPN two

points have to be fulfilled. Firstly, in order to reconstruct M0 or any reachable marking, it is

necessary to have the complete knowledge of the firing sequence generated by an input word

given to the net, i.e. to detect the occurrence of each event. Secondly, it is necessary to

completely determine the actual marking of the net, the marking Mk, in a finite number of

input events, (i.e. k < oo). This leads to the event-detectability and marking-detectability

issues of an IPN.

3.3.1 Event-detectability

Definition 3.11 An IPN given by (Q,M0) is event-detectable (ED) if every transition firing

can be uniquely determined.

In a SED, the state changes due to the occurrence of events. Thus, if every change of state

yields a change in the output symbol, then the occurrence of a system event can be detected

through those changes. In IPN terms, it means that, the net has the sufficient amount of

measurable places to distinguish the change from one state to another and, in consequence, the

firing of all transitions. To proof this affirmation, suppose that Mj and Mk are two reachable

consecutive markings, i.e. Mo -^-* Mj ——* Mk. Since tk is enabled at Mj,

Mfc = Mj + Ctk (state equation)

tp(Mk) = tp(Mj + Ctk ) (applying tp to both sizes)

tp(Mk) = tp(Mj) + tp(Ctk ) (since tp is linear)

tp(Ctk ) = tp(Mk)
-

tp(Mj) (solving for tp(Ctk ))

where tp(Ctk ) is the k-th column of the matrix formed by the rows of C corresponding to the

measurable places of the net. Observe that, the column <p(Ctk ) represents the change in the

output (i.e. a change in the marking of the measurable places) due to the firing of the transition

ífc. In other words, every difference in the system output corresponds to a column in the matrix

tpC.
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Now, the following problems arise: what does it happen if there exists a transition, say tj,

having no effect in the marking of the measurable places, i.e. tpCtj = 0?; and what does it

happen if there is two or more transitions, say tr, ta having the same effect in the marking of the

measurable places; i.e. tpCtr = tpCta?. In the first case, it means that, two consecutive markings

have the same output symbol, so it is not possible to detect change of state and the firing of tj.

In the second case, the tracking of the system evolution gets ambiguous, since the firings of tr

and tr may lead to different markings. However, if these transitions have associated different

input symbols, then they can be distinguished from each other, precisely by the presence of

the corresponding input symbol (remember that, since no time is attached to transitions, it is

assumed that only one transition can occur at a time; in the case, that two transitions occur

simultaneously, it can be thought that their occurrence is separated for a sufficient small time

interval, so they occurred one after another). Thus, to achieve event-detectability, the matrix

tpC must have no nuil columns and the repetitive columns must have associated different input

symbols as it is formally stated in the following proposition.

Proposition 3.12 An IPN given by (Q, M0) is event-detectable if and only if

1. Vie [1,2,... ,m], <pC(;i) ¿0, and

2. Vj^ke [1,2, ... ,m] such that tpC(;j) = tpC(;k), X(tj) ¿ X(tk),

where tpC(*,x) is the column oftpC corresponding to the transition tk.

Proof. (Sufficiency) Suppose that, Vi E [1,2,... ,m], tpC(;i) ^ 0. Let Mr,M3 E

R(-V, M0) be two consecutive markings, such that Mr
—-* M¡. Rrom the state equation of

(Q,M0), it is easy to see that, tpC(»,j) = tp(Ma)
—

tp(MT). Since tpC(»,j) ^ 0, it follows that,

tp(M8)
-

tp(Mr) ^ 0 or tp(Ma) ,¿ tp(Mr). Thus, M3 E Ov{Mll) and Mr e O^m^. Henee, the

firing of tj produces a change in the net output, ¡so its firing can be detected.

Now, suppose that, Vj, k E [1,2,. . . ,m] with jy k such that tpC(»,j) = tpC(», k), X(tj) ^

A(ífc). Let MU,MV,MW,MX E K(N,M0) and t¡,tk be two transitions such that Mu
—*-» M„

and Mw -^ M_. Since X(t¡) ¿ X(tk), MUMV E 7A(tj.) and MWMX E IX(tky Thus, whether

MUMV E O^m^m^ and MWMX E O^MuM^v) or not> *^e firing of tj can be distinguished

from the firing of tk.

Observe that, in both cases, the firings of tj and tj can be uniquely determined. Therefore,

(Q, M0) is event-detectable.

(Necessity) Suppose that, (Q,M0) is event-detectable. Let í¿ be a transition such that

tpC(*,i) = 0 and tj,tk be two transitions such that tpC(»,j) = tpC(»,k) and X(tj) = X(tk). In

the first case, suppose that Mr -^+ M„ where MT,MaE R(-V, M0). Thus, <¿>C(», i) = 0 implies
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that tp(Ma) = tp(Mr), so the firing of U does not produces a change in the net output and,

therefore, it cannot be detected. In the second case, tpC(»,j) = tpC(»,k) and X(tj)
= A(t„J

imply that the firing of tj and tk have the same effect in the output and both need the same

input symbol to get fired. Thus, firing of tj is confused with the firing of tk. In both cases,

(Q, Mo) is not event-detectable, a contradiction. ■

This result can be explained as follows: if the matrix tpC has a nuil column, it means that

the transition associated to this column has no measurable input and output places,
so its firing

has no effect in the output y and its firing cannot be detected. On the other hand,
if there are

two equal columns in tpC, the corresponding transitions have one or more common
measurable

input or output places, so their firing produce the same effect in the output y
and their firings

cannot be distinguished from each other.

Example 3.13 Consider the IPN of Figure 3.5, where the input and output functions are

k k í_ t» k k k k k k ko ki

A(t,) a e b c d 9 a b c d 9

tp
=

0100000000

0001000000

0000100000

0000010000

0000000100

Thus, the matrix tpC is

tpC

1 0 -1 0 0 1 0 0 0 0 0

0 0 0 1 -1 0 0 0 0 0 0

0 1 0 0 0 0 -1 0 0 0 0

0 0 0 0 0 0 1 -1 0 0 1

0 0 0 0 0 0 0 0 1 -1 0

In this case, all columns are no nuil and different from each other, except columns number 1

and 6. However, since A(íj) = a and X(t6) = g, by Proposition 3.12, the net is event-detectable.

3.3.2 Marking-detectability

Definition 3.14 An IPN given by (Q, M0) is marking-detectable (MD) in k steps if and only

í/Vcj E £in(Q,Mo), such that \w\ < k < oo
,
the information provided by the knowledge of
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Figure 3.5: An IPN.

the input word lj, the output word generated by lj, the system structure and a CML suffices to

uniquely determine Mk E R(_V,M0), where M0 —* Mk and a is the firing sequence generated

by lj.

In a bounded IPN given by (Q, M0), the marking of a place has an upper and a lower

bounds, which determine the range of different valúes that the marking of a place can reach.

In a conservative IPN given by (Q, M0), the marking of a place has an upper and a lower

bounds, which determine the range of different valúes that the marking of a place can reach.

Formally, the upper and lower bounds of a place are defined as follows.

Definition 3.15 Let (Q, M0) be a conservative IPN. The upper and lower marking bounds

that a place Pj can reach given an initial marking M0 are

MUB(pj) = m¡a.(M(pj)\MEB.(Q,M0)) and

MLB(pj) = nún(M(pj)\MER(Q,M0))

The range of possible reachable markings of a place p¡ is B(pj) = MUB[pj)
—

MLB(jpj).

In the case of marked graph and state machines, the upper and lower marking bounds of

every place can be obtained from the CML by solving the following integer linear programming
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problems

MLB(pk) = minM(pk) MUB(jpk) = maxM(pk)

s.t. s.t.

Y?M = fc Y?M = h

Y?M = fc f2TM = k2

YaTM = fc YJM = fc

In .some class of systems, it is possible to determine when a place reaches its upper or

lower marking bound. Thus, its making becomes known, and from this moment, having the

knowledge of the subsequent firing sequence the marking of the place remains known. If the

above is true for every place and there exists a firing sequence such that all places
reach their

upper or lower bounds, then the net becomes marking-detectable.

Definition 3.16 Let (Q, M0) be an IPN and G(Q, M0) C £ (Q, M0). The synchronic distance

of a set of transitions RC.T with respect to another set of transitions S QT in G(Q,M0)

denoted by SD(G(Q,M0), R, S), is the máximum number of firings of the transitions of R

that can occur in all possible firing sequences of G(Q, M0) without firing any transition of S.

If G(Q, M0) = £(Q, M0), then the synchronic distance between R and S is simply denoted

by SD((Q,M0), R, S).

Once obtained the knowledge of a CML, the upper and lower markings bounds of every

place can be computed, [24]. Then, if synchronic distance between the sets of input and output

transitions of a place holds, then it is possible to determine that the place has reached either

its lower or upper marking bound.

Definition 3.17 Let (Q, Mo) be an IPN. The set of reachable markings

C = {Mh Mj, ..., Mfc|M0 -^ Mi -^ Mj -±> ...
-^ Mk -^ Mi}

is called marking cycle and the firing sequence ac
= tqtrtatv is called the firing sequence or

repetitive stationary sequence ofC

Observe that all the markings belonging to a marking cycle C are reachable from M0.

Using the above definitions, the following theorem states that, given an IPN, if the firing

sequence of every marking cycle of an IPN leads to the lower or upper marking bound of every

non-measurable place then in every cycle there exist a marking
that can be determined, so the

IPN is marking-detectable.
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Theorem 3.18 Let (Q, M0) be a live, cyclic, and conservative and event-detectable IPN,

where M0 is unknown, but the CML(Q,M0) can be obtained. (Q, M0) is marking-detectable in

k steps if for every marking cycle Cj of the net it holds that Vp,- E Pnm either

i) SD(aCi,'(Pj), (Pj)') = m(pj) or

ii) SD(aCi, (pjY -(pj)) = B(pj)
where Wfoj) = MUB(pj)

-

MLB(pá) and SD(aCi, R, S) is the synchronic distance between

the set of transitions R and S in the sequence aCi ■

Proof. FVom the CML(Q,M0), Vp E Pnm the marking bounds MLB(p) and MUB(p) can

be computed. Let pk E Pnm be a non-measurable place and suppose that the net enters to

execute the marking cycle Ci at the marking M{ E Q. Let set M0 = M*. Assume that i)

holds in Ci5 then there exists a firing sequence ak E a^¡, such that the number of firings of

transitions in
*

(pk) without firing any transition in (pk)' is equal to B(pfc). The sequence ak

will eventually occur since the net is executing the cycle Q. The sequence ak can be split into

(Tk
=

Oia2, such that <r2 does not contain any transition in (pj)* and the transitions in
*

(j>j)

appears _I(p„) times. Then

Mj(pk) = Moipk) + C(pk,*)al + C(pk,*)a^

= M„(pfc) + B(pfc)

= Mn(pk) + MUB(pk)-MLB(pk)

We claim that, Mn(pk) = MLB(pk) and Mj(pk) = MUB(jpk). To prove it, assume that Mn(pk) =

MLB(pk) + AM, this implies that AM > 0, then

Mj(pk) = MLB(pk) + AM + MUB(pk)-MLB(pk)

= MUB(pk) + AM

> MUB(pk)

which is a contradiction. Thus, after firing ak the marking of pk is MUB(pk), which can be

determined.

Now, assume that ií) holds, then there exists a firing transition sequence a'k E £(Q, Mo)

such that the number of firings of transitions in (pk)' without firing any transition in *(pk)

is equal to ü>(pk). Following a similar procedure like in the previous case, after firing a'k the

marking of pk can be determined and remains known for any future evolution since the net is

event-detectable.

Moreover, using this procedure, the marking of the remaining non-measurable places can

be determined. Since the net is bounded, if an infinite sequence oceurs, it means that the net
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is reaching at least one already visited marking, so the length of the largest marking cycle is

finite, say h. Henee, the whole marking will be known after the firing of a transition sequence

a E £(Q, M0), which length is at most k = h; therefore, (Q, M0) is marking-detectable.
■

Note that, the test for the existence of finite firing sequences of length equal to or less than

k, as stated in the definition of marking-detectability, is made by inspection on the marking

cycles. This approach seems to be useless, since the computation of the marking cycles is NP

complex. However, for certain classes of PN, in [10], it has been shown that the marking cycles

can be obtained from the net structure in polynomial time.

Theorem 3.19 Let (Q, Mq) be a live, cyclic, conservative and event-detectable IPN, where M0

is unknown, but the CML(Q, M0) can be obtained. (Q, M0) is marking-detectable in k steps if

for every marking cycle Ci of the net it holds that V£¿ : Y?M = ki E CML(Q, M0) , 3p¿ E P

such that Yi(pj) ¿ 0 and SD((aCi,
•

(pj) , (p,-)*) = fc, where Dfo) = MUB(pj)
- MLB(pó) and

SD(aCi,R, S) is the synchronic distance between the set of transitions R and S in the sequence

o-Ci-

Proof. The CML(Q, M0) can be arranged as:

a{M(pi)+ ... +aiM(pn) =fc

i : : i (3-1)

afM(pi)+ ... +<M(p„) =kw

where a,
■■■ al

•
T

— Yi is the ith p-invariant.

Suppose that the net enters to execute the marking cycle Q at the marking Mj E C.. Let set

M0 = Mi. Let Zi-.Y?M = h be the i-th law of CML(Q, M0) and pk E P be a place such that

Yi(Pj) ^0^0 and fc = MUB(pk). Assume that i) holds, then there exists a firing sequence

ak £ ó^ such that the number of firings of transitions in
*

(pk) without firing any transition in

(ps)* is equal to MUB(pk). The sequence ak will eventually occur since the net is executing the

cycle Cj. Then, after the firing of ak the marking Mj(pk) = fc is reached. Since in a live and

bounded PN every reachable marking agrees with the p-invariants [9], MLB(pk) = 0. Thus,

YíV ¥" Pk such that Yi(pT) ^0^0, Mj(pr) = 0. Henee, the marking of every place belonging to

the support of the i-th p-invariant becomes known and remains known for any future evolution

of the net since it is event-detectable. Following a similar procedure for the remaining CML,
the whole marking of the net can be completely determined

Since the net is bounded, if an infinite sequence oceurs, it means that the net is reaching
at least one already visited marking, so the length of the largest marking cycle is finite, say h.
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Henee, the whole marking will be known after the firing of a transition sequence a E £(Q, M0)

of length k = h; therefore, (Q, M0) is marking-detectable. ■

The following theorem states that if every marking cycle contains a marking whose output

is unique then the net is marking-detectable.

Theorem 3.20 Let (Q, Mo) be a live, cyclic, bounded and event-detectable IPN, where Mo is

unknown, but the CML(Q, M0) can be obtained. (Q, M0) is marking-detectable in k steps iffor

every marking cycle Q 3M E C¿ such that tp~*(tp(M)) = {M}.

Proof. Since (Q, M0) is conservative, by Proposition ??, a CML can be obtained. Suppose

that the net enters to execute the marking cycle Q. Let M E Q be a reachable marking

belonging to C¿ such that tp~í(tp(M)) = {M}. Thus, when the output tp(M) is presented,

the only solution for the CML(Q,Mo) is the marking M. Thus, the marking of every non-

measurable place becomes known and remains known for any future evolution of the net.

Since the net is conservative, if an infinite sequence oceurs, it means that the net is reaching

at least one already visited marking, so the length of the largest marking cycle is finite, say h.

Henee, the whole marking will be known after the firing of a transition sequence a E £(Q, M0)
of length k = h; therefore, (Q, M0) is marking-detectable. ■

Example 3.21 Consider the live cyclic and bounded IPN and its reachability graph shown in

Figure 3.6. The set of measurable places is Pm = {pA,Pb}; thus

[ 0 1 0 1 -1

Note that tpC(;l) = tpC(»,3) but e = X(ti) ¿ X(t3) = S. Similarly, tpC(;2) = <pC(;4) but

T = A(í2) ^ A(í4) = e. Henee, by Proposition 3.12, the net is event-detectable.

The outputs of each marking are the following :

i 1 2 3 4 5 6 7 8

<P(Mi) [00]T [ioF [oif [20f [H]T [2lf [ooF [_0]T

Note that the outputs of the markings M3,M±, M¡¡ and M6 are unique. From Figure 3.6, it is

easy to see that at least one of these markings belongs to every marking cycle of the net. Henee,

by Theorem 3.20, the net is marking-detectable in a finite number of steps, i.e. 3k < oo.

3.3.3 Observable IPN

Theorem 3.22 An IPN given by (Q, M0) is observable in k steps if and only if it is event-

detectable and marking-detectable.
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Figure 3.6: A live, bounded and cyclic IPN and its reachability graph.

Proof. (Sufficiency) Since (Q, M0) is marking detectable in fc steps, 3fc < oo such that M„

is known. Due to the event-detectability property, the firing sequence aw
= í¿íj . . . tv yield

by the input word lj and the output word z = tp(M0)tp(Mi) . . . tp(Mk) are known, where

M0 -^-> Mr -^ ...
-^ Mt. It means that, \Oz fl IJ\ = {M0Mr . . . Mk}; otherwise, Mt were

undistinguished yet. In this case, M0 can be computed recursively solving the set of equations:

M¿_! = Mi-CX

Mi = M2-Ct¡

M0 = Mi-CX

(observe that the terms Ck ,Ct¡ ,...,Ctk are known by the event-detectability property).

Thus, M0 can be computed using the information provided by the system structure, input and

output sequences.

Now, suppose that, a transition sequence aui
= tutw...tx fires from Mk. Thus, the

marking sequence MkMk+i . . . Mk+i is yield, where Mk
—► Mk+1

—>
...

—^ Mk+i, and

i = |crw'|. Since the net is event-detectable, every transition firing is be detected and uniquely

determined; thus, MkMk+i . . . Mk+i is the only sequence that yield the output word y
=

tp(Mk)tp(Mk+1) . . . tp{Mk+i),.i.e. Oy = {MfcMfc+1 . . . Mk+i}. Henee, and V/w., \IUi nO„| = 1 and

the marking Mk+i can be uniquely determined.

Therefore, (Q, M0) is observable in fc steps.

(Necessity) Suppose that, (Q, M0) is not event-detectable. Although a marking Mk, such

that M0 ~y Mfc, can be determined, the firing sequence a E £í0{Q,M0) cannot be uniquely
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determined. Thus, it is not possible to compute the initial marking Mo- Henee, (Q, M0) is not

observable in fc steps, a contradiction.

Now, suppose that, (Q, M0) is not marking-detectable in A; steps. It means that, for at

least a marking Mk E R(N,M0), 3M0Mt...Mj and M0Mr...Mk such that MoMi.-.M.,-,

MoM-.-.M* E Iu and M0Mí...Mj, M0Mr...Mk E Oz, where u E £in(Q,M0) and z E

£out(Q,M0), with |<_>| infinite. Thus, by Theorem 3.8, (Q,M0) is unobservable, a contradiction.

■

The following corollaries are derived from the above theorem and from the results of the

previous subsection.

Corollary 3.23 Let (Q, Mq) be a live, cyclic and conservative IPN, where M0 is unknown,

but the CML(Q,M0) can be obtained. (Q,M0) is observable in k steps ifit is event-detectable

and for every marking cycle Ci of the net it holds that Vp, E Pnm either

i.SD(aCi,'(pj),(pjy) = m(Pj)

2. SD(aCi, (pj)' •(pj)) = H(pj)
where filfa) = MUB(pj)

—

MLB(pj) and SD(aCi, R, S) is the synchronic distance between

the set of transitions R and S in the sequence aa-

Corollary 3.24 Let (Q, M0) be a live, cyclic and bounded IPN, where Mq is unknown, but

the CML(Q, M0) can be obtained. (Q, Mq) is observable in k steps if it is event-detectable and

for every marking cycle Ci of the net it holds that V£¿ : Y?M = ki E CML(Q, M0) 3pj E P

such that Yi(pj) ¿ 0 and SD((aCi,
'

(p¿) , (pá)') = fcj.

where H(pj) = MUB(pj)
—

MLB(j)j) and SD(ac.,R,S) is the synchronic distance between the

set of transitions R and S in the sequence Oq.

Corollary 3.25 Let (Q,M0) be a live, cyclic and conservative IPN, where M0 is unknown,

but the CML(Q,Mo) can be obtained. (Q, Mo) is observable in k steps ifit is event-detectable

and for every marking cycle Ci 3M E C¡ such that tp_1(tp(M) = {M}.

3.4 Examples

Example 3.26 Consider the IPN of Figure 3.2. Since the measurable places are Pn¡

{Pa.Pi.},

tpC =
10 10-1

0 10 1-1
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Observe that the lst and 3th columns are equal, tpC(»,ti) = <pC(»,t3), but a = A(íx) ^ A(í3) =

c. Similarly, tpC(»,t2) = tpC(;t4), butb = X(t2) ^ A(í4) = d. Henee, by Proposition 3.12, the

net is event-detectable.

It is easy to show that, the net is live, cyclic and 1-bounded. The marking M4 = [4, 5] is

the only marking in the reachability set that has the output tp(MA) = [H]T Thus, by Corollary

3.25, the net is observable in a finite number of steps, as indicated in Example 3.9.

Example 3.27 The IPN of Figure 3.3 is live, cyclic and 1-bounded; however, since Pm =

{Pa,Ps} andT. = {t2, tA, tb}, thus,

_ [ 1 0 1 0 -1

'

tpC =

[ 0 1 0 1 -1

and tpC(;ti) = tpC(;t3) with X(ti) = X(t3) = e. Henee, by Proposition 3.12, the net is not

event-detectable. Therefore, by Theorem 3.22, the net is unobservable in k steps, the same

result of Example 3.10.

3.5 Discussion

In this chapter, the observability problem in DES modeled by IPN was addressed. Firstly, a

definition of observability in Interpreted Petri Net (IPN) terms was provided. To characterize

observability, the concepts of input and output sequence invariants of an IPN were introduced.

This characterization is similar to the one for linear continuous systems using a geometric ap

proach. Although, the provided characterization represents a necessary and sufficient condition

to determine whether or not a given IPN satisfies observability, it leads to algorithms with high

computational complexity. However for live, cyclic and bounded IPN, the test for observabil

ity can be reduced to the verification of the event-detectability and marking-detectability. The

property of event-detectability can be tested in polynomial time. Thus, several necessary and

sufficient conditions for event-detectability, and sufficient conditions for marking-detectability
were provided.

The conditions for marking-detectability are based on the concepts of the set of marking
conservative laws of a IPN and the synchronic distance among the transitions of the net

The computation of the synchronic distance in every firing sequence has a high complexity.

However, in the approach herein presented the synchronic distance conditions are only tested

in every elemental marking cycle that, for certain classes of PN, can be obtained from the net

structure. Thus, the verification of the synchronic distance conditions can be performed in a

polynomial time.
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Chapter 4

W-observability

SUMMARY. In this chapter, the concepts ofW-observability andW-marking-detectability

are introduced. It is shown that, event-detectability andW-marking-detectability are necessary

and sufficient conditions for W-observability. In this context, several sufficient conditions for

W-marking-detectability are provided. In particular, it is shown that event-detectability is a

necessary and sufficient condition for W-observability in live, cyclic and bounded interpreted

free-choice nets.
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4.1 Introduction

The notion of observability presented in the previous chapter seems to be too restrictive, since

it implies the possibility of determine a reachable marking in every cyclic behavior of the

net. This chapter addresses a less restrictive notion of observability called W-observability.

This notion of observability is related with the possibility of determining at least a reachable

marking M and, then the initial marking M0 and every subsequent reachable marking from

M. In order to establish a characterization of W-observable IPN the concept of W-marking-

detectability is introduced. Several sufficient conditions for this property are presented. This

conditions lead to some characterizations of W-observable IPN. In particular, it is shown that

event-detectability is a necessary and sufficient condition for W-observability in live, cyclic and

bounded interpreted free-choice nets.

4.2 Basic definitions

In the previous chapter, it has been shown that an IPN is observable if and only if it is

event-detectable and marking-detectable. However, marking-detectability seems to be a very

restrictive condition since it implies the possibility of determine the actual marking of the net

in every cyclic behavior. In this case, only a few IPN are observable in the strict sense. In

order to overeóme this restriction, the concept ofW-observability is introduced. the property

ofW-observability implies the existence of at least a finite input word lj such that the initial

and every reached marking by lj can be completely determined.

Definition 4.1 An IPN given by (Q,Mq) is W-observable in fc steps if and only if Vu. E

£in(Q,Mo), 3z such that ljz E £in(Q,M0) with \z\ < fc < oo and the information provided

by the knowledge of the input word ljz, the output word generated by ljz the system structure

and CML(Q.M0) suffices to uniquely determine M0 and the firing sequence generated by ljz

a = titj ...tr.

It means that, there exists the possibility of complete every input word to a word such that

the reached marking can be determined.

4.3 Characterization of W-observable IPN

Similarly as for observability, to achieve W-observability two points must be fulfilled. Firstly,

to detect the occurrence of each system event; and, secondly, it is necessary to completely
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determine the actual marking of the net, the marking Mk, in a finite number of input events,

(i.e. k < oo). The first condition is related to the concept of event-detectability introduced

in the previous chapter. The second point is related to the concept of marking-detectability.

However, since W-observability only requires the existence of a finite input word, the concept

ofW-marking-detectability is introduced.

4.3.1 W-marking-detectability

Definition 4.2 An IPN given by (Q, M0) is w-marking-detectable (MD) in k steps if and

only i/Vo. E £in(Q,M0), 3z such that \z\ < k < oo, uz E £in(Q,M0) and the information

provided by the knowledge of the input word uz, the output word generated by uz the system

structure and CML(Q, M0) suffices to uniquely determine Mk E Rf-V, M0), where M0 -^-* Mk

and a is the firing sequence generated by ljz.

Observe that, W-observability implies the existence of a finite input word whose occurrence

leads to determine the reached marking.

The following results represent sufficient conditions for W-marking-detectability. This con

ditions are similar to the ones for marking-detectability presented in the previous chapter, with

the difference that they must hold for the whole net and not for every marking cycle.

Theorem 4.3 Let (Q, M0) be a live, cyclic, conservative and event-detectable IPN
,
where M0

is unknown, but the CML(Q, M0) can be obtained. (Q, M0) is w-marking-detectable in k steps

ifVpj e Pnm either 1) SD((Q, M0),
'

(pá) , (pj)') = Ufo) or 2) SD((Q, MQ), (pj)'
'

(pá)) =

B(pj), where Dfo) = MUB(pj)
-

MLB(pj).

Proof. Let pk E Pnm be a non-measurable place. Assume that i) holds, then there exists a

firing sequence ak E £(Q, M0) such that the number of firings of transitions in
*

(pk) without

firing any transition in (pk)' is equal to B(pfc). If ak does not oceurs immediately from M0,

since (Q, M0) is cyclic, then it will return to Mo and eventually ak will occur. The sequence

ak can be split into ak = 0i02, such that a2 does not contain any transition in (pj)* and the

transitions in
*

(pj) appears _i(p„) times. Then

Mj(pk) = M0(pk) + C(pk,»)a¡ + C(pk,»)a¡

= M„(pfc) + ©(pfc)

= Mn(pk) + MUB(Pk)-MLB(pk)
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We claim that, Mn(pk) = MLB(pk) and Mj(pk) = MUB(pk). To prove it, assume that Mn(pk) =

MLB(pk) + AM, this implies that AM > 0, then

Mj(pk) = MLB(pk) + AM + MUB(pk)-MLB(pk)
= MUB(pk) + AM

> MUB(pk)

which is a contradiction. Thus, after firing ak the marking of pk is MUB(pk), which can be

determined.

Now, assume that ii) holds, then there exists a firing transition sequence a'k E £(Q,Mq)

such that the number of firings of transitions in (p„)* without firing any transition in *(pk)

is equal to -D(p„). Following a similar procedure like in the previous case, after firing a'k the

marking of pk can be determined and remains known for every future evolution since the net

is event-detectable.

Using this procedure, the marking of the remaining non-measurable places can be determine

after the firing of the sequence a
=

okuOj . . .uac, where ak, Oj, . .

., ac are the sequences

satisfying the synchronic distance conditions for each non-measurable place respectively and

u, ... ,v E £(Q,M0). Henee, since z = X(a) E £in(Q,M0) and \z\ < oo, then (Q, M0) is

w-marking-detectable in fc steps. ■

Conditions i) and ii) of the previous theorem are called the synchronic distance conditions

for W-marking-detectability (SD conditions). For example, the first condition indicates that,

for every non-measurable place of the net pj, there exists a firing sequence Oj such that the

number of occurrences of the transitions in
*

(pj) without firing any transition of (pj)' is equal
to MUB(pj)

—

MLB(pj), so after the firing of Oj, it is known that the marking of the place Pj
is equal to its upper bound, MUB(pj).

Theorem 4.4 Let (Q, M0) be a conservative IPN, where M0 is unknown, but the CML(Q, M0)
can be obtained. (Q, M0) is w-marking-detectable in fc steps if 3M E R(-V, M0) such that

y(tp(M)) = {m}.

Proof. Let M 6 R(_V,M0) such that tp~l(tp(M)) = {M}. Thus, when the output tp(M)
is presented, the only solution for the CML is the marking M. Thus, the marking of every

non-measurable place becomes known. Therefore, (Q, M0) is w-marking-detectable. ■

Theorem 4.5 Let (Q, M0) be a live, cyclic, conservative and event-detectable IPN, where M0

is unknown, but the CML(Q, MQ) can be obtained. (Q, M0) is w-marking-detectable in k steps if

V& : Y? M = ki E CML(Q, M0) , 3Pj E P such thatYi(p¡) ¿ 0 andSD((Q,M0),
'

(pó) , (p.)') =

fc.
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Proof. Let ^ : Y? M = fc be the i-th conservative marking law and pk E P be a place

such that Yi(pj) ^ 0 and SD((Q, M0),
*

(pj) , (Pj)') = fc. Then, there exists a firing sequence

o'k G £{Q> Mo) such that the number of firings of transitions in
*

(pk) without firing any

transition in (p*)* is equal to ki. If ak does not oceurs immediately from Mo, since (Q,Mo)

is cyclic, then it will return to Mo and eventually ak will occur. Then, after the firing of

ak the marking Mj(pk) = k{ is reached. Thus, Vpr ^ pk such that Yi(pT) ^ 0, Mj(pT) = 0.

Henee, the marking of every place belonging to the support of the i-th conservative marking law

becomes known and remains known for every future evolution since the net is event-detectable.

Following a similar procedure for the remaining CML, the whole marking of the net can be

completely determined after the firing of the sequence a = akuaj . . . uac, where ak, aj, ..., ac

are the sequences satisfying the synchronic distance conditions for each non-measurable place

respectively and tt, . . . ,v E £(Q, M0). Henee, since z = X(a) E £in(Q, M0) and \z\ < oo, then

(Q, Mo) is w-marking-detectable in fc steps. ■

Unfortunately, the synchronic distance conditions in the previous theorems depend on the

initial marking of the net, which is unknown. However, for Uve, cyclic and 1-bounded IPN an

for a large class of IPN called Interpreted FVee-Choice Petri nets (IFCN), these conditions

are implicitly satisfied as stated in the following corollary and theorem.

Corollary 4.6 Let (Q, M0) be a live and cyclic IPN, where MQ is unknown, but the CML(Q,M0)

can be obtained. (Q, M0) is w-marking-detectable in k steps if it is 1-bounded and event-

detectable.

Proof. Since the net is 1-bounded, the synchronic distance between the input and output

transitions of each place is 0 or 1. Thus, Vp 6 P, SD((Q, M0), *(p), (p)') = 1 = MUB(pj)
-

MLB(pj). Therefore, the SD conditions ofTheorem 4.5 hold and, (Q, M0) is marking-detectable.

Definition 4.7 Let (Q, Mo) be an IPN. A subnet Si of Q generated by a nonempty set of

S of nodes is a S-component of Q ifMp E S,
'

(p)' C S, and Si is a strongly connected state

machine.

Definition 4.8 Let (Q, M0) be an IPN and Si be a S-component of Q. The characteristic

vector of a S-component 5f is xt, where if pj E S then XíÍPj) = 1 and XiÍPj) = Q> otherwise.

Proposition 4.9 Let (Q, M0) be a live, cyclic, structurally bounded Interpreted Free-choice

Petri Net (IFCN). Let S={Si, S2, ..., Sh} be the set of all the S-components of Q and

Y={_i, Y2, . ..

, Yfc} the set of all the minimal p-invariant of Q. Then, Vp^ E P

min{XfM0|Si E §AXi(pj) = 1} = min{lfM0|_. E YAY^) = 1}
Pj pj
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Proof. By Proposition 5.7 of [9]. VSi £ S, Xi is a minimal p-invariant of Q and, since

(Q, M0) is live and bounded, by Theorem 5.6 of [9], Q is covered by S-components, i.e. Vp 6 P

3Si E S such that Xiip) = 1- Thus, X = {xJSi E S} C Y.

By Theorem 5.9 of [9], the upper marking bound of a place p E P is MUB(p) = r =

mm{xfM0\Si E SAXi(p) = 1}. Observe that, R(_V, M0) C {M|YTM = YTM0}- Thus, in the

general case, r > min{Y?,Mo|Y'i E YAYi(p) = 1}.

We prove that r > miníY^Molli E YÁYi(p) = 1} is false. Suppose that, it is true.

By Theorem 5.9 of [9], the marking Mk, where Mk(p) = r, is a reachable marking. In this

case, by Theorem 9.6 of [9], the marking Mk must agree with the p-invariants of the net, i.e.

YTMk = YTM0. However, in this case, YTMk > YTM0. It means that, Mk is not reachable

and r > MUB(p), a contradiction. Thus, r < min{Y;TMo|Y; 6 YAYi(p) = 1}.

Therefore, min_{xfM0|Si E §AXi(p) = 1} = min-O^Mol*. E YAYi(p) = 1} ■

Theorem 4.10 Let (Q, M0) be a live, cyclic, structurally bounded Interpreted Free-choice Petri

Net (IFCN), where M0 is unknown, but the CML(Q, M0) can be obtained. (Q, M0) is w-

marking-detectable in k steps if it is event-detectable.

Proof. Since (Q,M0) is live and bounded, by Proposition 4.9, Vp E P, MUB(p) =

min{y;rMo|Fi E YAYt(p) = 1}. By Theorem 5.9, the marking Mk(pr) = MUB(pr) can be

reached and there exists & : Y?M = k¿ E CML such that l.(p-) ^ 0 and MUB(pr) = fc¿. In

this case, when Mk is reached, Vp¿ ^ Pi E ||£¿||, Mk(j}j) = 0. Henee, 3r/ = aar E £(Q, M0) such

that Mo —► M —r-+ Mfc where aT is the required sequence of Theorem 4.5.

Now, if Mfc is set as the initial marking, then this procedure can be repeated until the

marking of the all non-measurable places becomes known. Therefore, (Q, M0) is w-marking-

detectable. ■

Another important corollary of Theorem 3.18 states that if a IPN is live, cyclic and 1-

bounded, then the synchronic distance conditions hold and, henee, it is w-marking-detectable.

Example 4.11 Consider the strongly connected IPN of Figure 4-1. The set of measurable

places is Pm = {pi,P3,P5,P7,P9,Pii},' thus,
"

-1 OOOOOOOOOO l"

01-1000000000

0001-10000000
V?_

000001-100000

00000001-1000

OOOOOOOOO 1-10
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Pu

•

p,

w

Figure 4.1: A five, cychc and bounded IPN.

2)

3)

4)

= 4

= 1

= 1

= 3

= 1

= 2

Since there is no nuil columns and all of them are different from each other, by Proposition

3.12, the net is event-detectable. The following CML can be obtained from its p-invariants:

1) M(pi) + M(p2) + M(p3) + M(pi) + Af (p_) + M(p6)+

M(pr) + M(p8) + Af (ft) + M(pw) + M(pn) + M(pt2)

M(p_) + M(p3) + M(pi) + M(pu)

M(p2) + M(p3) + M(pi) + Af (ft) + M(p6) + M(pi_)

M(p6) + Af(p.) + M(pi6)

5) M(ps) + M(p9) + M(pw) + M{pn) + M(pn) + M(pw)

6) M(p&) + M(ft) + M(pio) + M(pn)

Thus, Vpi E P the lower and upper marking bounds are

4, ÍE{1}

3, i E {7,16}

2, i £{17}

1
,
otherwise

Let us select a set of places such that V[ct)M(pj)
= fc¿] E CML, aj jí 0, for example the set

7r = {p3,Pn,Pi6,Pi7}- The synchronic distance between the input and output transitions of each

place of tt is

MUB(pi) = { MLB(pi) =
1, i €{17}

0, otherwise

j 'fe) fe)' SD((Q,M0),'(Pi), (Pj)') 3(Pj)

3 {¿2} {h} 1 1

11 {tío} {kl} 1 1

16 {tl} {t5} 3 3

17 {ho} {h} 1 1
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Observe that, for each place of n, the synchronic distance SD is equal to range of possible
reachable markings B. Henee, by Theorem 4.5, the net is w-marking-detectable. In fact, for

example the marking Mk = [l2, 3, 11, 63, 172] E RfiV", M0) can be determined.

4.3.2 W-observable IPN

Theorem 4.12 An IPN given by (Q, M0) is W-observable in k steps if and only if it is event-

detectable and w-marking-detectable in k steps.

Proof. (Sufficiency) Since (Q,M0) is w-marking-detectable in k steps, 3fc < oo such

that MA is known. Due to the event-detectability property, the firing sequence au = titj . . . tu

yield by the input word u and the output word z = tp(M0)<p(Mi) . . . tp(Mk) are known, where

M0 -^ Mr -X. ... -^ Mfc. It means that, \Oz íl I„\ = {M0Mr . . . Mk}; otherwise, Mk were

undistinguished yet. In this case, M0 can be computed recursively solving the set of equations:

M ={Mi_1 = Mi- CX, ..., Mi = M2- Ci~¡, M0 = Mi- Cl¡}. Observe that the terms

Cti ,Ctj ,...,Ctk are known by the event-detectability property. Thus, M0 can be computed

using the information provided by the system structure, input and output sequences.

Now, suppose that, a transition sequence a^i
= tutw...tx fires from Mk. Thus, the

marking sequence MkMk+x . . . Mk+i is yield, where M„ -^ Mk+1 -^ ...
-^ Mk+i, and

* = 1eru'\- Since the net is event-detectable, every transition firing is be detected and uniquely

determined; thus, MfcMfc+i . . . Mk+i is the only sequence that yield the output word y
=

tp(Mk)tp(Mk+i) . . . tp(Mk+i),.i.e. Oy = {MfcMfc+1 . . . Mk+i}. Henee, and V/^, \Imr\Oy\ = 1 and

the marking Mk+i can be uniquely determined.

Therefore, (Q, M0) is W-observable.

(Necessity) Suppose that, (Q, M0) is not event-detectable. Although a marking Mk, such

that M0 -*-* Mfc, can be determined, the firing sequence a E £u(Q,M0) cannot be uniquely
determined. Thus, it is not possible to compute the initial marking M0. Henee, (Q, M0) is not

W-observable, a contradiction.

Now, suppose that, (Q,M0) is not w-marking-detectable in fc steps. It means that, for

at least a marking Mk E R(N, M0), 3M0Mi ...Mj and M0Mr . . . Mk such that M0Mi . . . M-,

M0Mr...Mk E Iu and MoM^.-Mj, M0Mr...Mk E Oz, where u E £in(Q,Mo) and z E

£<mt(Q, M0) Thus, by Theorem 3.8, (Q, M0) is not W-observable in fc steps, a contradiction. ■

The proves of the following corollaries are straightforward from the previous Theorem and

the results on W-marking-detectability of the previous subsection.
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Corollary 4.13 Let (Q, M0) be a live, cyclic and bounded IPN, where M0 is unknown, but the

CML(Q,M0) can be obtained. (Q,M0) is W-observable in k steps if it is event-detectable and

VPj E Pnm either SD((Q, M0),
'

fe) , fe)*) = Dfo) or SD((Q, M0), (p,)'
'

(p,)) = B(Pj),

where Dfa) = MUB(p¡)
-

MLB(pj).

Corollary 4.14 Let (Q,Mo) be a live, cyclic and conservative IPN, where M0 is unknown.

(Q, M0) is W-observable in k steps if it is event-detectable and it holds that V£¡ : _^TM = kt E

CML(Q, M0) 3pj E P such that Yt(ps) ¿ 0 and SD(((Q, M0),
'

fe) , fe)*) = fc.

Corollary 4.15 Let (Q, M0) be a live, cyclic and 1-bounded IPN, where M0 is unknown, but

the CML(Q,MQ) can be obtained. (Q,M0) is W-observable in k steps ifit is event-detectable.

Corollary 4.16 Let (Q, Mo) be a live, cyclic and conservative IPN, where Mo is unknown,

but the CML(Q, M0) can be obtained. (Q, Mo) is observable in k steps if it is event-detectable

and 3M E R(N,M0) such that tp^^M)) = {M}.

Corollary 4.17 Let (Q, M0) be a live, cyclic and conservative IFCN, where M0 is unknown,

but the CML(Q,M0) can be obtained.. (Q,M0) is W-observable in k steps if it is event-

detectable

4.4 Example

Consider the live, bounded and cyclic IPN of Figure 4.2. The measurable places are Pm — {Pi,

P_> Pa, P6> ft» Pío} and the controllable transition are Tc = {ti, t2, í4, í6, í9, tu, k2}. In this

case, the output matrix is

"

-1-1 OOOOOOOO 1 0"

1 0-10010000 0 0

0 0 01-100000 0-1

^
=

0 0 00001-100 o o

0 0 0000001-10 1

0 0 00000001-10

Thus, by Proposition 3.12, the net is event-detectable. Consider the reachable marking M =

[1,2,6] whose output is tp(M) = [11010 0]T It can be shown that, VM'R(_V,M0) with

M' t¿ M, it holds that <p(M') ^ ^p(M). Henee, by Corollary 4.16, the net is W-observable in a

finite number of steps.
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J-\
- P5 *t P( - P, *t i

3hé-K>HHK)'-
£ e f

*n Pío *io

—

lK>f
—

Figure 4.2: An live, bounded and cyclic IPN.

4.5 Discussion

In this chapter, the concepts ofW-observability in fc steps was introduced. In order to charac

terize W-observable IPN, the property ofW-marking-detectability was introduced. The prop

erty ofW-marking-detectability is a less restrictive notion than marking-detectability since the

former allows a net to enter an infinite cyclic behavior in which the actual marking cannot be

determined, only if there exists the possibility of exit the cyclic behavior and reach a identifiable

marking.

It was shown that, event-detectability and W-marking-detectability represent a necessary

and sufficient condition for W-observability. In this context, several sufficient conditions for

W-marking-detectability were provided. In particular, it is shown that event-detectability is a

necessary and sufficient condition for W-observability in live, cyclic and bounded interpreted

free-choice nets. All these results are based on the concept of synchronic distance among the

input and output transitions of the places of the net and the knowledge of a set of conservative

marking laws. This allows to verify that a place has reached it upper or lower marking bound,

so its marking becomes known.

The concept of W-observability is less restrictive than the concept of observability since

the latter implies the possibility of determine a reachable marking in every cyclic behavior of

the net and W-observability only implies the existence of a finite input word whose occurrence

leads to determine the reached marking, so a net is allowed to enter infinite cycle behaviors

where no reachable marking can be determined. In this context, note that observability implies

W-observability but not the contrary.
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Chapter 5

Observability with respect to a

Language

SUMMARY. This chapter addresses the observability problem for IPN whose behavior is

confined into a sublanguage of the firing language. Thus, concept of observability with respect

to a prefix closed sublanguage is introduced, L-observability for short. A characterization of

this kind of observability is derived.
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5.1 Introduction

In the two previous chapters, the observability and w-observability problems were studied

under the assumption that any system firing sequence can be fired. However, when the system

behavior is confined into a prefix closed firing sublanguage L(Q, M0), only a part of the system
is involúcrate. In this case, the tests for observability performed in the whole net may return

wrong results. Then, it is necessary to establish under which conditions the actual system state

can be recovered in a finite-length word of the sublanguage L(Q, M0). Note that although, the

system can be observable or w-observable, when it is confined into a prefix closed sublanguage,

say L(Q, M0) Q £(Q, M0), it could be the case of no firing sequence a E L(Q, MQ) leads to a

distinguishable marking, so the system is not marking-detectable and therefore unobservable

with respect to L(Q,M0). It is assumed that, L(Q,M0) is realizable language, i.e. the IPN

can be forced to execute only the sequences belonging to L(Q, M0). In particular, the case of

an IPN confined to a realizable cyclic sublanguage is addressed in this chapter.

5.2 Basic definitions

Definition 5.1 Let (Q,M0) be an IPN and Gin(Q,M0) be a prefix closed sublanguage of

£m(Q,Mo). (Q,M0) is observable in fc steps with respect to Gin(Q,Mo) if and only ifVu E

Gin(Q,M0) __ £in(Q,M0), 3z with k < \z\ < oo such that uz E Gin(Q,M0) and the infor

mation provided by the knowledge of uz, the output word generated by uz the system structure

and CML(Q, M0) suffices to uniquely determine M0 andthe firing sequence generated by uz,

a = titj . . . tT .

Observe that, the input sublanguage Gin(Q, M0) generates a firing language; thus, in this

chapter, the concept of observable with respect to a firing sublanguage is used instead of ob

servable with respect to an input sublanguage.

In Chapter 3, it is shown that a live, conservative and cyclic IPN is observable if and only

if it is both event-detectable and marking-detectable. In that chapter, it is concluded that,

event-detectability depends on the net structure; while marking-detectability depends on the

initial marking, i.e. it is a behavioral property.

Since a firing sublanguage G(Q, M0) involucrates only a subset of the transitions of the net,

say TG C T, then it is only necessary to test event-detectability for the transitions belonging to

TG. Similarly, since G(Q, Mo) C £(Q,Mo), for testing marking-detectability it is only necessary
to verify if the synchronic distance conditions hold in the language G(Q, Mq).
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Definition 5.2 Let (Q, M0) be an IPN and L(Q,M0) be a prefix closed sublanguage of£(Q, M0)

Let TL = {tE Q\t is part of any a E L(Q, M0)} be the set of transitions belonging to L(Q,M0).

The net (Q, M0) is event-detectable with respect to L(Q, M0), or L-event-detectable for short,

if the firing of every transition t ETL can be uniquely detected.

In this case, the incidence matrix of an IPN can be split into two matrices: C = [CL:CL],

where CL is formed by the columns of C corresponding to the transitions belonging to TL,

while CL is formed by the columns of C corresponding to the transitions no belonging to TL.

Definition 5.3 Let (Q, M0) be an IPN and L(Q,M0) be aprefix closed sublanguage of£(Q,M0)

The net (Q,M0) is marking-detectable in k steps with respect to L(Q,M0), or L-marking-

detectable for short, if and only if Vct e L(Q, M0), 36 such that \6\ < k < oo, 06 E L(Q, M0)

and the information provided by the knowledge of ab, ihe output word generated by uz, the sys

tem structure and a CML suffices to uniquely determine Mk E R(N, M0), where Mo
—► Mk.

5.3 Characterization of L-observable IPN

The following characterizations of L-observable IPN are particularizations of the results pre

sented in Chapter 3, considering that if the behavior of an IPN is confined into a cyclic firing

sublanguage L(Q,Mo), then it means that every firing sequence of L(Q, Mo) will be occur at

least once.

5.3.1 L-event-detectable IPN

Proposition 5.4 Let (Q, M0) be an IPN, L(Q, M0) be a sublanguage of £(Q, M0) and is

L-event-detectable if and only if

1. Vi €[1,2,... ,m], tpCL(;i)¿0, and

2. Vj ¿ fc E [1,2, ... ,m] such that tpCL(;j)
= tpCL(;k), X(tj) ¿ X(tk),

where CL(», i) is the i-th column of the matrix CL

Proof. Similar to the proof of Proposition 3.12 considering that only the transitions be

longing to Tl are being analyzed. ■
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5.3.2 L-marking-detectable IPN

Definition 5.5 Let (Q, M0) be an IPN and L(Q, M0) be a sublanguage of £(Q,M0). The set

of reachable markings by L(Q, M0) is

B-LÑ, M0) = {ME R(N,M0)\M0 -^MAaE L(Q, M0)}

Definition 5.6 Let (Q,M0) be an IPN. A language L (Q,M0) __ £(Q,M0) is a cyclic lan

guage ifVM E RL(Q, M0) 3a E L(Q, M0) such that M -^ M.

Definition 5.7 Let (Q, M0) be an IPN and L(Q,M0) be a prefix closed sublanguage of£(Q, M0) .

The synchronic distance of a set of transitions RC.T with respect to a set of transitions S QT

in L(Q, M0), denoted by SD((Q, M0)\L R, S), is the máximum number of firings of the tran

sitions of R that can occur in all possible firing sequences a E L(Q, Mo) without firing any

transition of S.

Theorem 5.8 Let (Q, M0) be a conservative IPN, where M0 is unknown, but the CML(Q, M0)

can be obtained. (Q, M0) is marking-detectable in k steps with respect to a cyclic prefix closed

sublanguage L(Q, M0) of £(Q, M0), if it is L-event-detectable and Vp¿ E Pnm either

i) SD((Q, M0)\L,
'

(pj) , (pj)') = M(Pj) or

ii) SD((Q, M0)\L, (pj)'
'

fe)) = B(pj)

where B(pó) = MUB(pj)
-

MLB(pj).

Proof. Similar to the proof of Theorem 3.18, considering that the firing language of the

net is confined into L(Q, M0). ■

Theorem 5.9 Let (Q, M0) be a conservative IPN, where Mo is unknown, but the CML(Q, Mo)
can be obtained. (Q,Mo) is marking-detectable in k steps with respect to a cyclic prefix closed

sublanguage L(Q, M0) of£(Q, M0), ifit is L-event-detectable andV^ -.Y?M = ktE CML(Q, M0)

3pj E P such that Vífe) =£ 0 and

SD(Q,M0)\L,'(pj), fe-n = fc

Proof. Similar to the proof of Theorem 3.19, considering that the firing language of the

net is confined into L(Q, Mq). ■
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Observe that, the markings bounds MUB and MLB of each place are defined from the

CML. However, when the system behavior is confined into a sublanguage L(Q, Mq) of the

firing language, a place could reach different marking bounds according to the set of reached

markings R_,(Q, Mo) by the sequences of L(Q, M0).

Definition 5.10 Let (Q,M0) be an IPN and L(Q,M0) be a sublanguage of £(Q,M0). The

upper and lower marking bounds of a place Pi E P with respect to L(Q, M0) are

M™(pi) = max(M(pi)ERL(Q,Mo))

MtB(Pi) = min(M(pi)eRL(Q,M0))

Example 5.11 Consider the IPN shown in Figure 5.1 and the cyclic prefix closed sublanguage

L(Q, M0) = (t¿t5ti)+ The set of reachable markings by L(Q, M0) is

RL(Q,M0) = {Mi,M3,M6}

Thus, the lower and upper marking bounds with respect to L(Q, Mo) are

i M¿*(Pi) M£B(P_)
1 0

2 0

3 1

4 0

5 0

In general, when the system behavior is confined into a cyclic prefix closed sublanguage

L(Q,M0) of the firing language, M£B(Pi) > MiB(Pj) and M£B(Pi) < MUB(Pi). Henee, if

the set Rl(Q, M0) is available, then the marking bounds can be redefined and the following

condition must be satisfied to achieve marking-detectability.

Theorem 5.12 Let (Q, M0) be a conservative IPN, where M0 is unknown, but the CML(Q, M0)

can be obtained. (Q,Mo) is marking-detectable in k steps with respect to a cyclic prefix closed

sublanguage L(Q,M0) of £(Q,M0), if it is L-event-detectable andVpj E Pnm either

i) SD((Q,M0)\L,'(pj) fe)*) = filfa) or

ii) SD((Q,M0)\L, fe)' ,

'

fe)) = UVP.)

where BL(Vj) = M"B(pj)
- M^fo).
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Proof. Similar to the proof of Theorem 3.18, considering that the firing language of the net

is limited to L(Q, M0) which is cyclic and the marking of each place can reach a valué within

the integer interval [M£B(pj) . . . M%B(pj)]. ■

Theorem 5.13 Let (Q, M0) be a conservative IPN, where M0 is unknown, but the CML(Q, M0)

can be obtained. (Q,Mq) is marking-detectable in k steps with respect to a cyclic prefix closed

sublanguage L(Q,M0) of£(Q,M0), 3M E RL(Q,M0) such that tp~x(tp(M)) = {M}.

Proof. Let M E RL(Q, M0) such that y?_1(<£>(M)) = {M}. Thus, when the output tp(M)

is presented, the only solution for the CML is the marking M. Thus, the marking of every

non-measurable place becomes known. Therefore, (Q,M0) is w-marking-detectable in fc steps.

5.3.3 L-observable IPN

Theorem 5.14 Let (Q, M0) be a conservative IPN, where M0 is unknown. (Q, M0) is observ

able in k steps with respect to a cyclic prefix closed sublanguage L(Q, M0) of £(Q, Mo) if and

only if it is event-detectable and marking detectable with respect to L(Q, M0).

Proof. (Sufficiency) Since (Q, M0) is marking-detectable in fc stepswith respect to L(Q, M0),

3k < oo such that the reached marking Mk is known. Due to the L-event-detectability prop

erty,when the input word u is given, the firing sequence au
= ktj . . . tv E L(Q, M0)and the

output word z = tp(M0)tp(Mi) . . . tp(Mk) are known, where M0 —> Mr —'-*
...

—► Mk. It

means that, \Oz n IJ\ = {M0Mr . . . Mk}; otherwise, Mk were undistinguished yet. In this case,

M0 can be computed recursively solving the set of equations:

Mi^i = Mi-CX

Mj = M2~CTj

Mo = Mi-CX

(observe that the terms C ti ,Ctj ,...,Ctk are known by the L-event-detectability property).

Thus, Mq can be computed using the information provided by the system structure, input and

output sequences.

Now, suppose that, a transition sequence o^
= tutw . . . tx E L(Q, M0) fires from Mk.

Thus, the marking sequence MkMk+i . . . Mk+i is yield, where Mk —► Mfc+1 —>
...

—y Mk+i,

and i = |_v |- Since the net is L-event-detectable, every transition firing is be detected and
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uniquely determined; thus, MkMk+i . . . Mk+i is the only sequence that yield the output word

y
= <p(Mk)tp(Mk+i) . . . tp(Mk+i),.i.e. 0y = {MfcMfc+1 . . . Mk+i}. Henee, and VIUi, \ImnOy\ = 1

and the marking Mk+i can be uniquely determined.

Therefore, (Q, M0) is observable in fc steps with respect to L(Q, M0).

(Necessity) Suppose that, (Q, M0) is not L-event-detectable. Although a marking M„, such

that M0 -^-» Mfc where a E L(Q,M0) can be determined, the firing sequence a E £U1(Q,M0)

cannot be uniquely determined. Thus, it is not possible to compute the initial marking M0.

Henee, (Q, Mo) is not observable with respect to L(Q, Mo), a contradiction.

Now, suppose that, (Q, Mo) is not marking-detectable in fc steps with respect to L(Q, Mo).

It means that, for at least a marking Mk E R(N, M0), 3M0Mi ...Mj and M0Mr . . . Mk such that

M0Mi . . . Mj, M0Mr ...MkE __,
and M0Mi . . . Mj, M0MT ...MkEOz, where u E £in(Q, M0)

and z E £mt(Q, M0) Thus, [1^ f~l 0Z| > 1 and, by Theorem 3.8, (Q, M0) is unobservable in fc

steps with respect to L(Q, M0), a contradiction. ■

Corollary 5.15 Let (Q, M0) be a conservative IPN, where M0 is unknown, but the CML(Q, Mo)

can be obtained. (Q, Mo) is observable with respect to a cyclic prefix closed sublanguage L(Q, Mo)

of £(Q,M0), ifit is L-event-detectable andVpj E Pnm either

1. SD((Q, M0)\i,
*

fe) , fe)') = Ufa) or

2.SD((Q,Mo)\L,(pj)' '(pj)) = Bfa)
where Tifa) = MUB(pj)

-

MLBfa).

Corollary 5.16 Let (Q,M0) be a conservative IPN, where M0 is unknown, but the CML(Q, M0)

can be obtained. (Q, M0) is observable in k steps with respect to a cyclic prefix closed sublan

guage L(Q, M0) of £(Q, MQ), if it is L-event-detectable and V£¿ : Y?M = ki E CML(Q, M0) ,

3pj E P such that Yífe) t¿ 0 and

SD(Q,M0)\L,'(pj), fen = fc

Corollary 5.17 Let (Q, M0) be a conservative IPN, where M0 is unknown, ,
but the CML(Q, M0)

can be obtained. (Q, M0) is observable in fc steps with respect to a cyclic prefix closed sublan

guage L(Q,M0) of £(Q, M0), if it is L-event-detectable andVpj E Pnm either

1. SD((Q,M0)\i,
•

fe) , fe)*) = B_/P.) or

2. SD((Q,M0)\L,(pj)' -fe)) = ®ifa)

where f¡Lfa) = MYB(pj)
- MfBfe).
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Figure 5.1: An observable IPN and its reachability set showing a sublanguage of £in(Q, M0).

Corollary 5.18 Let (Q, MQ) be a conservative IPN, where M0 is unknown, but the CML(Q, M0)

can be obtained. (Q, M0) is observable in k steps with respect to a cyclic prefix closed sub

language L(Q,M0) of £(Q,M0) if it is event-detectable and 3M E RL(Q,M0) such that

y(<p(M)) = {m}.

5.4 Example

Consider the live and bounded IPN and its reachability set shown in Figure 5.1. Suppose that

the net is being confined into the cyclic prefix closed language L(Q, M0) = (t3t¿t5t2t5ti)+ C

£(Q, M0). In this case, TL = T.

The set of observable places is Pm = {p4,P5}, while all the transitions are controllable. i.e.

Tc = T. Thus,

tpCL = tpC :

10 10-1

0 10 1-1

Although, tpC(; 1) = tpC(;3) and tpC(;2) = tpC(;4), a = A(íj) ¿ A(í3) = c and b = A(t,) ^

X(t3) = d. Thus, by Proposition 5.4, the net is L-event-detectable.

A CML can be defined on the elementary p-invariants of the net

CML =
Zi-.M(Pi) + M(p3) + M(pi) = 2,

£2 : M(pi) + M(p2) + M(p5) = 1
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The upper and lower marking bounds of each place are the following

i MiB(Pi) MUB(Pi)
1 0 1

2 0 1

3 0 2

4 0 2

5 0 1

In L(Q, Mo) = (t3tAtst2t5ti)+ ,
the synchronic distances are the following

i *fe) fe)' SD(Q,M0)|L, •&),&)•)
1 {«.} {hM i

2 {k} M i

3 M M i

4 {hM M 2

5 {hM M 1

Observe that, fi(^) = 2 > 1 = SD(Q,M0)|L,
*

(ft) , (ft)'). However, for ^ it holds that

SD((Q, MQ)\i,
•

fe) , fe)') = fc = 2 and, for £2, it holds that, SD(Q, M0)\L,
'

(p2) , fe)') =

fc2 = 1. Thus, by Corollary 5.16, (Q, M0) is observable with respect to L(Q, M0).

5.5 Discussion

In this chapter, the problem of estimating the actual state of a system confined into a cyclic

prefix closed sublanguage of the firing language L(Q, Mo) was studied. It is assumed that,

L(Q, M0) is a realizable language, i.e. the IPN can be forced to execute only the sequences

belonging to L(Q, M0).

The concept of observability with respect a firing sublanguage was introduced. Also, the

concepts of event-detectability and marking-detectability with respect a firing sublanguage

were introduced. If an IPN exhibits this property, then it is possible to distinguish a reachable

marking M in a finite number of event occurrences of the sequences of L(Q, M0). In this con

text, the characterizations of marking-detectable IPN presented in the previous chapters were

generalized for marking-detectable IPN with respect to a firing sublanguage. Moreover, it was

shown that a event-detectability and marking-detectability with respect to a firing sublanguage

are necessary and sufficient conditions for observability with respect to a firing sublanguage.

The concept of l-observability seems to be more general than the concept of observabil

ity, since in the latter the firing language of the system is not constrained, i.e. L(Q, M0) =
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£{Q,M0). However, l-observability does not implies observability, but observability implies

l-observability.

In the herein presented approach, to test the observability with respect a firing language, it

is required the knowledge of the reached markings by the sequences of L(Q, M0).
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Chapter 6

Sensor Choice for Observability

SUMMARY. This chapter studies the minimal sensor choice problem such that the observ

ability of an IPN model is preserved. The main result is a polynomial algorithm for computing

a minimal initial cost sensor configuration for observability that can be applied to any class of

live, conservative and cyclic IPN.
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6.1 Introduction

Reducing costs is a common practice in all engineering áreas, such is the case in designing and

operating Discrete-Event Systems (DES). An interesting problem on this topic is concerned

with the selection of the lowest cost sensor configuration such that certain system properties

like observability were preserved.

This problem has been addressed in DES modeled by Finite State Machines (FSM). For

example, in [15] and [44], authors provide algorithms to choose a minimal set of measurable

events such that the resulting FSM is observable in the sense of definition presented in [22]. In

such approach, the state space is partitioned into equivalence classes according to a controllable

language. In [4], the state space of a FSM is also partitioned, but in this case, the partition

is performed according with several a priori known possible failure scenarios. Based on this

knowledge, the authors provide an algorithm to determine the minimal number of event sensors

needed to distinguish failure events belonging to different failure scenarios. In none of these

works, however, the complete computation of the non-measurable events occurrences or the

exact reconstruction ofthe system state is not required. An extensión to these works is presented

in [25], where aDES is modeled by timed FSM. In that work, the authors provide an algorithm

to compute a minimal cost event and state sensor configuration such that the event sequence

can be completely reconstructed.

The approach herein presented provides an algorithm for computing a minimal initial cost

sensor configuration for observability that can be applied to any class of Uve, conservative and

cyclic IPN. This algorithm considers that the actuator signáis are attached to the transi

tions of the net. Additionally, the algorithm considers the unavailability of sensors for certain

places of the net (e.g. it is difficult to implement a sensor for measuring the working state

of a machine) and that a state sensor may be attached to several places of the net (e.g. a

continuous level sensor can emit a signal for every discretized level in a water tank). The al

gorithm exploits the structural characterization of event-detectability and the characterization

of marking-detectability presented in Chapter 3.

6.2 Basic definitions

The observability of an IPN depends on the way of assigning the signáis of the available sensors

to its nodes. To solve the minimal sensor choice problem for observability, it is assumed that

there exists non-measured IPN to which a set of sensor signáis will be assigned.
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Definition 6.1 A non-measured IPN is an IPN given by

Qnm = (N',Z,$ = {},X,tp = 0)

where 0 is anx n zero matrix.

Observe that, the actuator signáis are already assigned to the transitions ofthe net and every

place is non-measurable. Thus, the minimal sensor choice problem for observability consists of

assigning the signáis of a subset of the available sensors rCSto the places of the net, such that

the resulting IPN is observable with the minimal sensor cost. The sensors herein considered

are not necessarily binary sensors, i.e. a sensor can emit more than two signáis.

This subset of sensors together with the corresponding function to attach their signáis to

the places of a given net is called a sensor configuration, which is formally defined as follows.

Definition 6.2 Let Qnm = (N',Y., 3> = {}, A, tp = 0) be a non-measured IPN and S be its set

of available state sensors for the places of the net. A sensor configuration of N' is a 4-tuple

re
= (r,^s,fs,Gs), where

• r C S is a subset of the available sensors

• _>s = {i_, v2, ... ,vz} is the set of signáis emitted by the state sensors,

• fs : &s —* S is a function that indicates the sensor that emits a given signal, where e is

the nuil signal, 0 represents the nuil sensor and /s(e) = 0-

• Gs ■ R(Q, M0)\p —t^sisa function that indicates the sensor signal attached to a reach

able marking of a given place, where R(Q,M0)\P is the set of reachable markings of a

given place andVp E P, ifM(p) = 0 then Gs(M(p)) = e, where e is the nuil signal. This

function has the following restrictions:

a) VPi,pj E P andMMu(pi) E R(Q,M0)\Pi, Ai. fe) € R(Q,M0)|Pi, if Gs(Mu(pi)) E

_>5 andGs(Mv(pj)) E Vs, then Gs(Mu(pi)) ^ G5(M„fe)). It means that, a sensor

signal can be only assigned to a marking.

b)VPEP andVMjip), Mk(p) E R(Q, M0)\p, ifGs(Mj(p)) E tfs andGs(Mk(p)) E #s,

then fs(Gs(Mj(pi))) = fs(Gs(Mk(pi))). It means that, the sensor signáis of the

markings of a given place are emitted by the same sensor.

Figure 6.1 shows a scheme of functions Gs and fs-
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R(Q,M0)|P *fs s

Figure 6.1: The domains and codomains of functions Gs and fs.

Since all the sensor signáis assigned to the reachable markings of a given place are emitted

by the same sensor, it can be thought that a state sensor is attached to the place; thus,

xs : P->S

*s(p) = í fs{Gs{Mi(p)))> G^Mi^ E **

1 0, otherwise

where Xs(p) = 0 means that no sensor is attached to the place p. Function xs can be extended

to a set of places in the following way:

x!s : 2P -> 2S

y¿s(z) = {xs(pi),xs(pj), ... , Xsfe)} = (J xs(pr)
Pr£-

where z = {Pi,pj} . . . ,pk} E 2P

Similarly, x!s can be extended to a family of sets of places as follows:

xg : 22" -» 2S

¿S(X) = KW,Í.(.) «= [J^siZr)
Zr€X

where X = {zí,Zj, . . . ,zk} is a family of set of places.

Observe that, an IPN can be thought as conformed by a non-measured IPN together with

a sensor configuration, if the sensor configuration is attached to the nodes of the net as follows.

Definition 6.3 A non-measured IPN given by Qnm = (N1, E', <_> = {}, A', tp = 0) and a sensor

configuration rc
= (r, *5, /s, Gs) form the IPN given by Q = (N, E, <í>, A, tp) where
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Pj
n

Pt
n

3-0ir»3}
P» t«

'lll P.2 ''>
P„

•» p„
*• P, ¡¡

» Pi»

Figure 6.2: An IPN model of an automated manufacturing cell.

1. N = _V,

2. E = E7,

3. $ = tfs.

4. A = A',

5. Assume that the set of places is ordered as {pi . . . p. \pr+i ■ ■ Pn} snch that Vp E {pi . ■ ■ p„}

if M(pi) jí 0 then Gs(M(pi)) E <Sfs. Thus, Vi € 1, 2, . . .

,
r

<P
- [ei e2 ... ev]T

Example 6.4 Consider the IPN of Figure 6.2. The sensor configuration is the following:

• r= {Si,S2,S3,Si,S5,S6,S7,SS,Sg}

• *s = {ki,k2,k3,l,ni,n2,n3, q,r,s,u,v,w}

i> ki k2 k3 1 ni n2 n3 q r s u V w e

W) Si «i «i s2 «3 s3 s3 Si Sb «6 s7 «8 Sq 0

CINVESTAV del IPN L. Aguirre



66 Sensor Choice for Observability

Gs(M(Pi)) = {

fc, i = 1 A M(pi) = 1

fc2, i = 1 A M(pi) = 2

fc3, i = 1 A M(pi) = 3

l, i = 3 A M(pi) = 1

ni, i = 7 AM(j>i) = l

n2, i = 7 A M{pi) = 2

n3, i = 7 A M(pi) = 3

q, i - 9 A Mfe) = 1

r, i = 12 A Mfe) =

s, i = 14 A Mfe) =

í., i = 15 A Mfe) =

v, i = 17 A Mfe) =

w, i = 18 A Mfe) =

e, otherwise

Pi Pl P3 P7 P9 Pl2 Pl4 Pl5 Pl7 Pl8

*s(Pi) Si S2 S3 S4 s5 se S7 s8 s9

Pi P\{Pl, P3: P7. P. > Pl2. Pl4> Pl5. Pl7,Pl8}

^s(Pi) 0

For simplicity, hereafter, a sensor configuration will be referred as a set of sensors, under

the assumption that its respective functions are weil defined. Also, the notation s = pk is used

instead of _

= xs(pk) E S. In the same way, the notation
*

(x)m is used instead of (x)' U* (x),
where x E T U P.

Since the selection of a particular sensor configuration is defined in cost terms, the following

sensor cost function is established: W : 2S —> R+. where 2S is the power set of S.

Definition 6.5 Let Qnm = (AT',E, _> = {},A,<¿> = 0) be an non-measured IPN, S be the set

of available sensors ofN' andr. = (r,^s,fs,Gs) be a sensor configuration ofN' The sensor

configuration rc satisfies observability if the IPN, resulting of assigning the sensor signáis of

rc to the nodes ofN, is observable.

Remark 6.6 The set of all sensor configurations of N' that satisfies observability of the re

sulting (Q, Mq) is denoted by S(Q, Mo).
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Now, the problem of finding out a minimal cost sensor configuration can be defined as

follows.

Definition 6.7 Let Qnm = (N', E, $ = {}, A, tp = 0) be an non-measured IPN, S be the set of

available sensors ofN' Let w : S —► R+ be a sensor cost function that assigns a cost to a each

sensor of S, w(s E S) = k, andW : 2S —* R+ be a cost function that assigns a cost to a set of

elements of S andW({sí, Sj, ... , sk}) = w(sí) + w(sj) + ... + w(sk). be a sensor cost function

defined over S. The minimal sensor choice problem for observability is defined as to compute

w* =r E S(Q, M0)min W(r)

and then selecting r* E S(Q, M0), such that W(r*) = w*

Therefore, to solve the minimal cost sensor choice problem for observability, first, it is

necessary to compute the set of all sensor configurations that satisfy observability, then to

obtain the cost of those configurations and finally to select a minimal cost one. The following

sections discuss the computation of. the set S(Q, M0) and the solution of the minimal sensor

choice problem.

6.3 Minimal sensor choice

In the previous three chapters, it was stated that to guarantee the observability, W-observability

or L-observability of an IPN, it is necessary to satisfy event-detectability. Moreover, in live,

cyclic and conservative IFCN and in live, cyclic and 1-bounded IPN, the w-observability

problem is reduced to the event-detectability problem. Thus, in those chapters, a test for

event-detectability is provided. For the contrary, this section is devoted to obtain a method

of selecting a sensor configuration for event-detectability an then to provide an algorithm to

determine a minimal cost sensor configuration for observability and, since observability implies

W-observability and L-observability, the algorithm is also useful to compute a minimal cost

sensor configuration preserving W-observability or L-observability.

The following theorem establishes a characterization of the set of measurable nodes of an

IPN exhibiting event-detectability.

Theorem 6.8 An IPN given by (Q,M0) is event-detectable if and only if

Í.Vífc e T, 3pr E Pm such thatpr €* (tk)' \' (tk) n (tk)' and

2. V^ ¥= tj E T with X(U) = X(tj), 3pr E Pm, such that pr E* (U)\* (U) H* (tj) or

Pre(ky\(ti)'n(tj)'
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Proof. (Necessary) Here, we prove that, event-detectability implies points (1) and (2).

Since (Q, M0) is event-detectable, by Proposition 3.10 the columns in tpC are no nuil and

different from each other:

Let tpC(; fc) be the k-th column of tpC corresponding to a transition, say tk. Since there are

no nuil columns in tpC, 3r such that tpC(r, fc) ^ 0, which corresponds to a measurable input or

output place of tk that is not in self-loop with tk, i.e. pr €* (tk)' \* (tk) n (tk)'

Now, let tpC(»,i) and tpC(»,j) be two columns of tpC, which correspond to two transitions,

say h and tj, respectively, such that A(í¿) = X(tj). Thus, by Proposition 3.10, <pC(»,i) ^

tpC(»,j). It means that, they differ at least in one entry, say tpC(r,i) ^ tpC(r,j). It is clear

that, the rth row of tpC corresponds to a non-common input or output measurable place of both

transitions, say pr, i.e. pT E% (k) \* (ti) fl* (tj) or pr E (k)' \ (ti)' íl (tj)'

(Sufficiency) Here, we prove that, if points (1) and (2) hold then (Q, M0) is event-detectable.

Let ífc be a transition such that 3pT E Pm andpr E' (tk)' \* (tk) fl (ífc)* Thus, by Proposition

3.10, tpC(r,k) t¿ 0 and, therefore, tpC(»,k) is a no nuil column.

Now, let k,tj be two arbitrary different transitions (i =fi j) such that A(í¿) = A(í¿), and let

pr be a measurable place, such that pr E' (k) \* (ti) lT (tj) or pr E (k)' \ (h)' <~\ (tj)' Thus,

tpC(r,i) t¿ tpC(r,j) and, therefore, tpC(»,i) and tpC(»,j) are different from each other.

Henee, (Q, Mo) is event-detectable. ■

From Theorem 3.17, it is known that if a live, cyclic and conservative IPN is event-

detectable and the SD conditions for marking-detectability are satisfied then the net is ob

servable.

Proposition 6.9 Let (Qnm, A/o) be a non-measured IPN and rc = fe U rSD, *s, fs,Gs) be a

sensor configuration of the net, where ri C S and rSD are the sensors attached to the places

that do not satisfy the SD conditions of Theorem 3.17. Ifrc satisfies event-detectability, then

the IPN resulting by attaching r. to (Qnm, M0) is observable.

Proof. Let Psd be the set of places that do not satisfy the SD conditions of Theorem

3.17 and rSD the sensors attached to them. Since rSD C r, then Vp E Psd, P E Pm. Thus,

Pnm D PSD = 0. Henee, every measurable place satisfies the SD conditions, so by Theorem

3.17, the net is marking-detectable. Since r also satisfies event-detectability, by Theorem 3.21,

the net is observable. ■

Thus, given a non-measured IPN system and the set of places not satisfying the SD

conditions, if those places are set as measurable and some of the remaining places are selected
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as measurable such that the resulting IPN is event-detectable, then the net is observable. The

following paragraphs are devoted to obtain an algorithm that exploits this fact and the result

of Theorem 6.8 to compute a minimal cost sensor configuration for observability in IPN.

Firstly, let us introduce some definitions and lemmas.

Definition 6.10 The f-union of two families of sets A andB isAUB = {al)b\a E AAb E B}.

Lemma 6.11 Let (Q, M0) be a non-measured IPN and tk ET be a transition.

1. The set of measurable nodes making detectable the transition tk is

S(tk) = {{Pr}\PrE'(tk)'\'(tk)n(tk)'}

2. The set of measurable nodes making distinguishable tj and tk from each other is

( S(tj)US(tk), X(tj)¿X(tk)

s
| S(tj)uS(tk)\{{a,b}ES(tj)US(tk)\

J'*

] [a E' (h) nm (tj) V a E (k)' n (tj)']A otherwise

[ [bE'(ti)n'(tj)ybE(kyn(tj)'}}

Proof. Obviously from Theorem 6.8. ■

It means that, given a transition, if there is a sensor signal attached to any of its in

put/output places then its firing can be detected. However, to make it distinguishable from

another transition, then its sets ofmeasurable nodes must be f-joined and, if necessary, the sets

containing only common input or output places must be removed.

Example 6.12 In the IPN of Figure 6.2,
*

(h)' = {p1; p2, Pi4,pi5} and
*

(í4)* = {p4, p5,

Pu}. Thus, S(h) = {{pi}, {p2}, {pii},{pi<i}} and S(U) = {{p4}, {p5}, {pu}}. In this case,

S(h)US(ti) = {{Pl,p4}, {Pl.Ps}, {Pl,Pl4}, {P2,P.}, {P2,Ps}, {P2,Pu}, {Pl4,Pl}, {Pl4,Ps},

{Pía}, {Pi5,Pa}, {Piz.,Ps}, {Pl5,Pl4}}-

Since a = X(h) ^ A(í4) = c, the set of measurable nodes making transitions h <w>d í4

distinguishable from each other is 5li4 = S(h) U 5(í4).

Unfortunately, in most of cases, there is not an available sensor for each node of the net;

thus, the set S(í*) is reduced to the set ofmeasurable nodes that, make detectable the transition

i* and have attached available sensors or simply, the set of available measurable nodes.
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Corollary 6.13 Let (Q, M0) be a non-measured IPN, S be the set of available sensors of the

net, and tj,tk ET be two transitions.

1. The ¡3et of available measurable nodes making detectable the transition tk is

S(h) = {{Pr}|fe e' (i*)* V (ífc) n (ífc)*) a x5fe) e 5}

2. The set of available measurable nodes making distinguishable í,- and ífc from each other

is

Sj¿ = {

( s(tj)us(tk), Htj)¿x(tk)

S(tj)US(tk)\{{a,b}ES(tj)US(tk)\

[a E' (h) rr (tj) V a E (k)' n (t¡)*]A otherwise

L [bE'(ti)n-(tj)vbE(ti)'r.(tj)'}}

Observe that, if |5(ífc)| = 0 or |iS¿,fc| = 0 then the transition ífc will be undetectable or

indistinguishable from tj, respectively.

The second point of the previous definition suggests that, to make distinguishable a tran

sition h from the others, the sets of available measurable nodes that make distinguishable

transition í¿ from each tj where j E {1,2,... ,|T|}\{i} must be computed; and then, the

f-union of all this sets also must be computed.

Lemma 6.14 Let (Q, M0) be a non-measured IPN. The family set ofmeasurable nodes making

transition í¿ distinguishable from each tj E T\{h} is

_

f S(k),
_

\T\ = 1

| U Sitj, otherwise

Proof. If |T| = 1, then _.¿
= S(k). Thus, by definition of eS(íi),every element of Zt makes

í¿ detectable.

If IT"! > 2, by induction on the number of transitions r.

Let |T| = 2. Thus, Zx = Si2 and, by Lemma 6.11, every element of Z¿ is a set of nodes that

make í¿ distinguishable from tj.

k
_

Suppose that for 2 < |T| = fc, Vc €_.*=[] 5^-, c is a set of nodes that make distinguishable
i=i

h from every tj E {í2, í3, . . . M-
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Let \T\ = k + 1. We proof that, Vc E Z*+1 = Zf U Silk+Í, c is a set of nodes making

distinguishable tt from every tj E {t2,t3 í„+i}. Let a = {pr,P.,- -P.} £ Zi and 6 =

{Px,Pz} € Si>k+i. Thus, the set c = aL¡ b = {pr,p, pv,Px,Pz} is an element of Zf+1. Henee,

the places of c make distinguishable íj from every tj E {t2, t3, . . .

, tk+i}.

Therefore, Zi make distinguishable íi from every t¡ E T\{k}. ■

Henee, in order to obtain the sets of measurable nodes making distinguishable every tran

sition from each other, the sets Zj of every transition must be joined through the f-union.

Lemma 6.15 Let (Q, M0) be a non-measured IPN. The family set of available measurable

nodes making distinguishable the transitions of the net from each other is

'

S(k), \T\ = 1

r = < m

J Zi, otherwise

Proof. Suppose that, |T| = 1. Thus, by definition R = S(k) containing all the sets of

nodes that make í¿ detectable.

Let |T| = 2. Henee R = ZXUZ2 = 5i2U521. Thus, VaER,a makes h and í2 distinguishable

from each other.

Suppose that for |T| = fc with 2 < fc < |T|, Vc e R, c makes distinguishable from each other

every transition í € {h,t2,...tk}.

Let |T| = fc -I- 1. Thus, R = Zj U Z2 U . . . U Zfc+1. Let ax
= {pr,. . .pj € Zx, a2 =

{Pu, ■ ■ ■ >P.} € Z2, Oj
= {px, . . . ,pv} E Zu and so on. By lemma 6.14, the set of measurable

nodes Oi, a2, . . .

, Oi, . . .

, ak+i make distinguishable every transition í¿ from the others, respec

tively. Henee, d = a1Uo2U...UfliU...U a„+1
= {pr, ...p„, pu, . . ■

, pv, ■• -Px, ■•-, Py,

..., pw, ..-, pz} E R contains all the necessary measurable nodes to make every transition

distinguishable from the others. ■

Once the family set i. is computed, in order to obtain the sets of available measurable nodes

that make the net observable, it must be added to each set of R the .set of places no-satisfying

the SD conditions.

Lemma 6.16 Let (Q,M0) be a non-measured IPN and PSD = {{pw,px,. ■■ ,py}} be the set

of places no-satisfying the SD conditions in (Q,M0). The family set of available measurable

nodes making (Q, M0) observable is

R = RUPSD
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Proof. Let r = {pT,p3,...pu} E R be a set of available measurable nodes that make

distinguishable the transitions of the net. Thus, if the corresponding sensors of these nodes

are attached to the places of the net as indicated in Definition 6.3 then, by Theorem 6.8, the

resulting IPN is event-detectable.

Now, let a = r U {pw,px, . . . ,py} = {pr,Ps, ■ ■ -P_,Pi_,P_, • • • ,Py} E R. Since the places of

Psd are set as measurable, every non-measurable place satisfies the SD conditions of Theorem

3.17, so the resulting net of attaching the corresponding sensors of the set a to the net, make

the resulting net marking-detectable. Henee, the net is observable.

Therefore, R is the family set of available measurable nodes that make (Q, Mo) observable.

■

Since we are searching a sensor configuration, the sets of available measurable nodes must

be converted to sets of available sensors.

Proposition 6.17 Let (Q, M0) be a non-measured IPN, S be the set of available sensors and

tj,tk be two transitions of the net.

1. The family set of available sensors that make detectable the transition tk is

X(ífc) = xs(S(tk))

= {{sr}|fe e" (i*)' V (ífc) n (ík)*) a sr
= xfe) e S}

2. The family .set of available sensors that make transitions tj and tk distinguishable from

each other is

Xj,k
= ¿s(Si.k)

Proof. Straightforward from Lemma 6.16 and the definition of function x" m

Observe that, if for any tk E T, S(tk) = {} then tk is not detectable and the whole net is

not event-detectable. On the other hand, notice that

*g(A)U*S(B) = xg(_4U__)

where A, B are sets of measurable nodes. In this case, it is easy to prove that,

£ = *§(__)

is the family set of available sensors that make the net observable.
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Using the previous results the following algorithm to choose a minimal cost sensor configu

ration for observability is derived.

Algorithm 6.18 Minimal sensor choice for observability in live, cyclic and conser

vative IPN (first approximation)

INPUTS:

C - incidence matrix, X the labeling function of transitions

S set of available sensors, xe, xs
- sensor assignment functions

W - sensor cost function PSD places not satisfying the SD conditions

OUTPUTS:

r" a minimal cost sensor configuration, w* the minimal cost

1. Initialization

*-{{}},Z-{{}}

2. Compute the set of available measurable nodes of each transition tk ET

S(h) «- {{x}\(x = Pr E' (ífc)' V (ífc) O (ífc)*) A x(x) E S}

3. IF \T\ = 1 THEN {

Assign the set of available measurable nodes of t to R: R <— S(t)

}

4. IF \T\ > 2 THEN {

FOR i FROM 1 TO \T\
- 1 DO {

Z^{{}}

FOR j FROM i + 1 TO \T\ DO {

a) Compute the f-union ofthe set of available measurable nodes o/íj andtj-.

Si,ó = '

f s(k)us(tj), Kk)¿Kh)

S(k)US(tj)\{{a,b}ES(ti)uS(tj)\

[a E' (k) rr (tá) V a E (k)' n (tj)']A ,
otherwise

{ [bE'(ti)n'(tj)wbE(tiyn(tj)'}}
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b) Join the sets of Sy with the previous sets:

Z <- Z U Sy

}

Join the sets of Z with the previous sets:

i_«- RUZ

}

}

5. Join the sets of R to the set of places no-satisfying the SD conditions and elimínate

redundances:

R^RUPSd

6. Convert the sets of available measurable nodes to available sensor configurations:

S+-x>¿(R)

7. Compute the minimal sensor cost:

w* <— r E SminW(r)

8. Select a sensor configuration r* whose cost is equal to w* :

r' ES

such that W(r*) = w*

9. RETURN r* andw*

Observe that the algorithm contemplates the unavailability of sensors for certain nodes ofthe

net, since the set S(t) is used instead of the set 5(í). Moreover, also algorithm contemplates

the fact that a state sensor may be attached to several places, since it does not makes any

restriction respect to functions >%, xs.

Unfortunately, the cardinality of S can be too large. In fact the space complexity of the

algorithm in the worst case is (n + m)2 where n is the number of places and m is the number

of transitions. However, in order to reduce the number of final sets in 5, some redundant sets

can be removed just after a f-union operation is realized.
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Definition 6.19 The operation reduction of a family set A is

reí (A) = A\{o E A\a 2 b E A}

Some properties of the operation te. with respect to the f-union are the following:

1. teD(_4 U B) = te_(te_(A) U teí(fi)),

2. xt*(A UA) = teü(A),

3. re_((A U B) U (A U C)) = reí (A UBUC)

The following lemma states that, the application of the reduction operation does not affect

the selection of the minimal cost sensor configuration.

Lemma 6.20 Let A and B be two families of sets of available measurable nodes.

min({r = W(cí)\Cí E xs(xeo(A U B))}) = min({r = W(di)\di E xs(A U B)})

where W is the sensor cost function.

Proof. Let r = {clí, o,-, . . .

, ak}, s = {ar,as,.. .

, av} E A U B, such that r C s, sor has re

dundant elements. By translating these sets into sensors, the sets r
= {x(ai), x(a¡), . . .

, x(ak)}

and s = {x(ar), x(a8), ... , x(av)} are obtained. Since r C s, s has more nodes than r. Thus,

f C. s and w(f) < w(s). Henee, s can be removed from A U B without affecting the minimal

valué selection. ■

A way of limiting the number of sets in S is to avoid certain f-union operations in sets Zj

of R that result in redundant sets.

\T\

Lemma 6.21 Let (Q, M0) be a non-measured IPN such that \T\ > 2 and R = \_j Zt be the

family set that makes distinguishable every transition of the net.

/m-i m \

reí»(i.) = te_ |J |J Sy

y i=i ¿=i+i I

\T\ _

Proof. By definition, R = \J Z¿ = Zj U Z2 U . . . U Zm = 51)2 U Sli3 U . . . U 52ii U 52j3 U

i=l

. . . U S¡T\,i U «§|T|i2 U . . . U S|r|,|T|-i- By commutativity, Sitj = Sj¿; thus, R = 5i,2 U SJ>2 U
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^1,3 U Sli3 U . . . U S|r|_ii(r| U _>|t|-i,|t|- By applying the reí) operation to R, teo(R) = teí(Sii2 U

51)2 U S1>3 U Si>3 U . . . U S|r|-i,|r| U S|r|-_,,n)- Since re_((A U B) U (A U C)) = te.(A UBUC),
~ _ _ |T|-1 |T|

_.

= te.(51,2US1,3U...U51,|T|U52>3US'2>4U...US|T_1|im). Henee, te.(_.)=te_( |J |J Sy).
i=i j_=i+i

■

Now, we prove that eliminating some Sitj does not affect the final selection of the minimal

cost sensor configuration. In the following lemma, the set U contains all the sets Sj ¡ of tran

sitions íi and tj that have the same input symbol and at least one common input or output

place; while, the set V consists of sets S(tk) of transitions no ineluded in any set S^j E U. It

means that, if the places of a transition tk axe already considered in a set Síj E U, then they do

not need to be considered again since they genérate redundant sets; thus, S(tk) can be removed

from the f-union.

m
Lemma 6.22 Let (Q, M0) be a non-measured IPN such that \T\ > 3 and R = \_\ Z^ be the

t=i

family set that makes distinguishable every transition of the net.

re.(_.) = re. í Í|j5-Juí|j5ft(ífc)
where S>. EU = {Sy |5y C S(ts) U S(tk)} (see Lemma 6.11) and Sh(tk) E V = {S(tk)\$S^j E

U}.

(\T\-1 \T\ \
Proof. By Lemma 6.21, te. (i.) = teí |J J Sitj = ttd(Si>2 U S1>3 U . . . U Si m US23U

\ i=i _=i+i
'

/

S2>4_J..._J_?|T_1|||T|). Let us order the sets Sy of i. in the following way: R =

Sy U Sfk U . . . U

%Ll5^1U...U5y, such that Vj 6 {1,2,... ,q} S)k = S(tj)US(tk); and V¿ E {q+l,q+2, . . .r}

SitkcS(ta)uS(tk).

Thus, for i E {1, 2, . . . ,q} every set Sj k can be split into S(tj) U 5(ífc). Henee,

xtD(R) = tei»(SyU5?fcU...US?fcU5J+1U...USrj
= teí(S(íj) U S(tj) U S(ti) U S(ífc) U . . . U S(tj) U S(ífc) U SJ+1 U . . . U Sy)
= te.(te.(S(íj) U S(tj) U 5(íj) U S(tk) U . . . U S(tj) U S(tk)) U te.(5«+1 u . . . U S,>))
= te_(teí.(5(íj) U S(tj) U S(ífc) U . . . U S(ím)) U vzD(S¡^ U . . . U S^))
= tea(S(íj) u S(h) u 5(ífc) u . . . u 5(ím) u SJ+1 u . . . u srj

Let T' = {ti,tj,tk . . . ,tm} be the set of transitions corresponding to the sets Sj,., where i e

{1,2,... ,q}. Suppose that, for any íx E V 3S™k for any w E {q + 1, q + 2, . . . r}.
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We prove that,

te_(S(í-)US-,fc) = te_(S_i„)

Le* ÍPr} = o, E S(tx) and {p„pv} = b E SXtk. Two cases are possible: a C b or a <£ b. In the first

case. Pr
=

P. or pr
=

p„, then c = {pr,pv} = bE S_,„. In the second ca.se, d
= {pT,pB,pv} E _?_,„.

Since the elements of the set S(í_) are ineluded in SXik ,
both cases occur. Thus, by applying

the Red operation the set d is eliminated, since dD c. Henee, te5(S(í_) U Sx¡k) = ttD(Sx¡k).

Therefore, some S(í,) sets can be omitted. Let T" = {í-, tb, . . . ,tc} =T\ {tj \ 3Sj k, where

i€ {1,2,... ,q}A3Slk where _. 6 {q+ l,q + 2,.. .r}}.

te.(i.) = te3(S(í_) U S(tb) U . . . U S(íc) U S9+1 U . . . U Sr)

=

teWÍJjSh(ífc)juí[li^
where S£ EU = {Sy|Sy C S(í,) U S(tk)} and Sft(ík) € V = {S(tk)\$S^ E U}. U

The following algorithm for selecting of a minimal cost sensor configuration for observability

in Uve, cyclic and conservative IPN resumes the above lemmas.

Algorithm 6.23 Minimal sensor choice for observability in live, cyclic and conser

vative IPN (improved versión)

INPUTS:

C - incidence matrix, X the labeling function of transitions,

S set of available sensors, xE, xs sensor assignment functions,

W - sensor cost function, PSD places not satisfying the SD conditions

OUTPUTS:

r* o minimal cost sensor configuration, w* the minimal cost

1. Initialization:

R+-{{}},

B -{{}},

s = {},

TAnalyzed *~ {}

2. Compute the set of available measurable nodes of each transition tk ET
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S(tk) «- {{x}\(x = pr E' (ífc)* \* (ífc) n (ífc)') A x(x) E S}

3. IF \T\ = 1 THEN {

Assign to R the set of available measurable nodes oft:

R ^ S(í)

}

4. IF \T\ > 2 THEN {

4.1 FOR i FROM 1 TO \T\
- 1 DO {

FOR j FROM i + 1 TO \T\ DO {

IF X(ti) = X(tj) and (-(i,) fT (tá) f 0 or (k)' n (tj)' ¿ 0) THEN {

a) Compute the f-union of the set of available measurable nodes of í¡ and tj :

Sy^S(íi)USfo)\{Ks2.eSy|

[siE'(k)n'(tj)vsiE(ti)'n(tj)']A

[s2 e' (k) rr (tj) v s2 e (k)' n (tj)'} }

b) Elimínate the redundant sets of Si¿:

Sitj .- te.(Sy)

c) Join the sets of Sitj with the previous sets:

R+-RU Sy

d) Elimínate the redundant sets of R:

R «- te_(_?)

e^ Seí íj and tj as analyzed:

1
Analyzed

*"" 1Analyzed
U (íti íj /
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}

}

4-2 Compute the set of non-analyzed transitions:

Inan-analyzed
=

* Y* Analyzed

4.3 FOR i FROM1 TO \Tnm.malyzed\ DO {

Compute the f-union of the sets S(t) of the non-analyzed transitions, eliminating

redundant sets:

B «- te.(_. U S(íj))

}

4-4 J°in the sets of R and B, eliminating redundant sets:

_.<-te_(__U_.)

}

5. Join the sets of R to the set of places no-satisfying the SD conditions and elimínate

redundances:

R^RUPsd

6. Convert the sets of available measurable nodes to available sensor configurations:

S^x>¿(R)

7. Compute the minimal sensor cost:

w* <— r E Sminiy(r)

8. Select a sensor configuration r* whose cost is equal to w* :

r' ES

such that W(r*) = w*

9. RETURN r' andW
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Theorem 6.24 Let (Q, M0) be a live, cyclic and conservative non-measured IPN, S be the

set of available sensors of the net, xE, xs be sensor assignment functions, W be a sensor cost

function defined over 2S and Psd = {pfD • ■ •

, Pw°} be the set of places not satisfying the SD

conditions. The Algorithm 6.23 solves the minimal sensor choice problem for observability in

ÍQ,M0).

Proof. By Lemma 6.22, the family set R, computed at step 3 or 4 contains the non-

redundant sets of available measurable nodes that make distinguishable every transition of the

net. By Lemma 6.16, the family set R, computed at step 5 contains all the non-redundant

sets of available measurable nodes that make the net observable. Thus, the set S = x''(R),

computed at step 6, consists of all non-redundant sets of available sensors that make observable

the net. At step 7, these sets are evaluated and w* is computed as the minimal sensor cost,

by Lemma 6.20. Thus, at step 8, r* E S, such that W(r*) = w* is selected as a minimal cost

sensor configuration satisfying observability in the resulting IPN.

Therefore the algorithm 6.23 solves the minimal sensor choice problem for observability. ■

6.4 Example

The following example, adopted from [45], uses the Algorithm 6.23 to compute a minimal cost

sensor configuration that preserves the observability property of an automated manufacturing

system. The algorithm was implemented in a personal computer using Maple V 5.0.

Example 6.25 Consider the automated manufacturing cell shown in Figure 6.3. The cell is

devoted to produce two types of parts: Pl andP2. It consists of three machines: MI, M2 and

M3, one robot: R, an incoming conveyor: CI and an outgoing conveyor: CO. The robot R

handles the parts between machines, loading and unloading from the conveyors. To produce a

Pl product, an available Pl part is processed in the machines in the following order: first in

MI, then in M2 and, finally in M3. Similarly, to produce a P2 product, a P2 part is processed

in M2, then in MI and finally in M3.A PN model for this cell and the physical meaning of

its nodes are shown in Figure 6-4-

Suppose that there is an available sensor for each node of the net, which are attached to

them as follows

*sfe) = Si
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Incoming

conveyor

(CI)

Machine 1

(MI)

v Robot

Outgoing

conveyor

(CO)

Machine 2

(M2)

Machine 3

(M3)

Figure 6.3: A typical automated manufacturing cell.

Figure 6.4: A PN model of the automated production cell.
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The sensor cost function is the following.

W(Si) =
25, i = 1,6

75, i = 2, 3, 4, 5, 7, 8, 9, 10

60, i = 11, 12, 13

Clearly, the net is live, cyclic and 1-bounded. Henee, by Corollary 4-7, every place satisfies the

SD conditions for w-marking-detectability, so Psd = {}■

Initially, R = {{}}, B = {}, S = {} and TAnalyzed = {}. Since \T\ = 10, after computing

the sets of available measurable nodes of each transition, the algorithm enters the step 4. From

Figure 6.4, it is easy to see that, the condition of the IF statement becomes true only when

i and j take the following valúes: (1,7), (2,6,), (3,8/ Firstly, when i = 1 and j = 7. The

family set S1)7 = {{pn, p¡}, {pu, p8}, {p2, p7}, {p2, p8}, fe, p7}, {px, p¡,}, {p2, p12},

fei, Pn}, fen, P12}, {P2, P11}, fei, P12}} is computed. Observe that the set {pn} is not

ineluded, since
'

(h) IT (í7) = {pn}. In this case, the family set Sii7 has no redundant sets;

thus, Sii7 <— teD(Si!7) = Sii7. Since this is the first family set computed at step 4, R — Si¡7 and

1
Analyzed

= {h.h}-

Similarly, when, i = 2 and j = 6, the family set S2te is computed, and after removing the

redundances, S2>6 <- teü(S2i6) = {{pn, p7}, {p2, p7}, {pn, p6}, {p2, p6}, {p3, p6}, {p3, p-},

{Pz, P12}, {P2, P12}, {P12, Pe}, {P12, Pt}, {Pn, P12}} is obtained. This family set is f-joined to

R and, after removing the redundances, the set R = {{pn, p7}, {P2, Pr}, {pi, p3, Pt}, {pi, P12,

Pt}, {Pi, Ps, Pe, Ps}, {P2, Pe, Ps}, {Pn, Pe, Ps}, {Pi, P12, Pe}, {P2, Pu, Pe}, {Pi, Ps, P12}, {Pi,

Pn, Pe}, {P2, P12}, {Pu, P12}} is obtained. Now, TAnalyzed = {h,t2,t6,t7}.

In the same way, when, i = 3 and j = 8, the family set S3i& is f-joined to the current R

and then eliminated the redundances. Henee, after step 4'. R = {fei, P11, P4, Pe}, {Pi, P11, Pz,

Pe}, {Pi, Ps, Pr, Ps}, {Pi, Pz, Pe, Ps}, {P2, Pz, Pe, Ps}, {P2, Pz, Pt, Ps}, {Pn, Pz, Pr}, {Pn,

Pz, Pe, Ps}, {P2, P12, Ps}, {Pu, Pa, Pe, Ps), fe, Pn, P3, Pe}, {P2, P12, P13}, {P2, P12, P.}, fe,

P12, Pe, Ps}, ÍP2, P4, Pt, P13}, {P2, P4, Pt, Ps}, {P2, P4, Pt, Pq}, fe, Pt, Pq, Piz}, {P2, Pt, Ps,

Piz}, {pi, Pz, Pt, Piz}, fe, P3, Pt, Pq}, fen, Pr, Piz}, fen, P4, Pt}, {P2, Pn, P4, Pe}, fei,

P3, P12, P13}, fe, P3, P12, Pg}, {P2, Pu, Pe, Piz}, {Pu, Pe, Ps, Piz}, {Pi, Pn, Pe, Piz}, {Pi,

P12, Pt, Pq}, {Pi, P3, P12, Ps}, ÍPi, P12, Pe, P13}, ÍPi, P12, Pe, P.}, fe, P12, Pt, Piz}, fe2, P3,

Pt, Pq}, fe, P12, Pt, Ps}, {P2, Pa, Pe, Ps}, fe, P3, Pt, P13}, fei, P12}, fe, Pe, Ps, P13}} and

TAnalyzed = {h,t2,t3,t6,t7,ta} .

Thus, Tnon-anaiyzed = {í4,í5,í9,íio}- In this case, B
= te_(S(í4) US(í5) US(í9) US(í10)) =

{{Ps, Pe, P13}, fes, Pe, Pq}, fe, Pe, P13}, fei, Pío, P4}, fe, P4, Pe, Pq}, fe, Pío, pJ3}, fe8,

Pío}}-

Afterwards, at step 5, the family sets R and B are f-joined an reduced the redundances,
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Figure 6.5: The resulting IPN of assigning the sensor configuration a = fe, s6, -12, S13}.

R = teo(R U B), resulting in 93 no redundant sets of available measurable nodes that make the

net event-detectable. Since the net is live, cyclic and 1-bounded, these sets make also the net

observable, i.e. PSD = {{}} and R = R.

At step 6, the sets of R are translated into sets of available nodes. In this case, every place

has an unshared available sensor.

From these sensor configurations, at step 7, the minimal cost is computed. Thus, uf =170,

and the sensor configurations that have this cost are a={si, .%, s12, sí3} and b={si, .%, Sn, Si3}.

In this case, Pm = {pi,Pe,Pi2,Pi3} or Pm = {Pi)P6,Pn,Pi3}- Figure 6.5 shows the resulting

IPN of assigning the sensor configuration a.

6.5 Discussion

In this chapter, a simple algorithm to choose a minimal cost sensor configuration for preserving

observability of a live, conservative and cyclic Interpreted Petri Nets was derived. However it

is also useful for w-observability or l-observability by providing the set of places that do not

satisfy the SD conditions for w-observability or l-observability instead of the set of places that

do not satisfy the SD condition for observability.

This algorithm exploits a characterization of the set of measurable nodes preserving the
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event-detectability property and certain synchronic distance conditions on the transitions of

the net, which represent a sufficient condition for observability. The algorithm only considers

state sensors. Additionally, the algorithm contemplates the unavailability of sensors for certain

nodes of the net and the fact that a state sensor may be attached to several places.

Besides the sensor cost reduction, the algorithm allows to significantly reduce the system

design time due to its simplicity. Finally, the algorithm was successfully applied to an illustra-

tive example, where it was obtained a significant reduction in the number of sensors and in the

acquisition cost.
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Chapter 7

Asymptotic Observer Design

SUMMARY. This chapter is devoted to solve the asymptotic observer design problem in

IPN. A procedure to design an asymptotic observer is presented. The observer convergency

analysis is based on the observer estimation error, which is also represented as an IPN. This

observer can be used to estimate the actual marking of an observable, W-Observable or L-

observable IPN.



86 Asymptotic Observer Design

7.1 Introduction

In several real-time discrete event system applications such as state feed-back control [12] and

fault tolerant systems [18], there exists the necessity of having a complete knowledge of the

system state. However, in actual systems, it is not possible to associate a sensor to each state due

to the technical limitations, economic reasons or avoiding complicated communication systems.

In these cases, it is needed the use of an external entity called observer to estimate those states

that cannot be directly measured. Moreover, in fault tolerant systems, when the system state

becomes totally or partially unknown due to communication failures, an asymptotic observer

can be used to estimate the system state.

This chapter presents a methodology to build asymptotic observers for systems modeled by

observable, w-observable or l-observable IPN. This procedure is derived from a convergency

analysis realized on the observer estimation error model, which is also represented as an IPN.

This analysis allows to find out conditions that must be satisfied to achieve an asymptotic

convergency of the observer state to the actual system state.

7.2 Observer issues

In Chapters 3, 4 and 5, it was presented a test to decide when a given IPN exhibits the

observability, w-observability or l-observability properties. Also, in Chapter 6, it was pro

posed an algorithm to select a minimal cost sensor configuration for observability given a

non-measured IPN. Once it is determined that an IPN satisfies observability, w-observability

or l-observability, the next step is to provide a mechanism to compute the actual marking of

the net. This goal can be achieved using the following procedure derived from the definition of

sequence invariants.

1. Compute all possible initial markings that agrees the output yo •"

Ro = {M E R(N, M0)\<p(M) = y0}

2. Each time an output change Ayfc = <p(Mk)
—

ip(Mk-i) is detected:

(a) Compute the transition that was fired by selecting the column of (pC such that:

ipC(;k) = ip(Mk)
- ip(Mky and

X(tk) =
_.„

where ujk is the input symbol accepted.
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P:

P3

i
tp,«s_h

p^

< r ir

p5

Ro=

¡y \

[1*], [1,2,5], [2,5*]

«i- r

R.= [1.2,4], [22,4,5]

t,, 1

R2= [1,2,5], P*,*]
>-. _-

«> '

R3= [22,4,5]

y.= [00p

y,
= [0i]T

y2= [OO]1

y3=[oir

a) b)

Figure 7.1: An observable IPN and its sets of reachable markings due to a given firing sequence.

(b) Compute the set of possible reached markings by firing tk that agree the output

yk
= (p(Mk)

Rk = {ME R(JV, M0)|M„_! -^ M A <p(M) = yk}

3. Goto Step 2.

Example 7.1 Consider the observable IPN shown in Figure 7.1.a). Suppose that, the initial

marking of this net is unknown. Since the initial output is y0
= [00]T the set of possible

markings is Ro = {[l2], [1,2,5], [22,52]}, i.e. all the reachable markings M such that ipM =

[oop

~

Now, suppose that, the transition ti is fired at M0 and the output yi = [0l]T is generated by

the net. In this case, _?i = {[1,2,4], [22,4,5]} where <¿>([1,2,4],) = (p([22A,5\) = yi and these

markings could be reached from a marking of Ro by firing ti . It means that, the actual marking

is [1,2,4] or[22,4,5].

Figure 7.1b) shows the estimation tree for the firing sequence o
= ht3h- Observe that,

\R3\ = 1, so the marking M = [22,4,5] is the actual marking of the net after firing o.

Although this approach is quite simple to understand and to implement, it implies the

computation of the whole reachability set of the net in order to compute every set Ri, i.e. a

NP problem. In order to avoid problems like this, an asymptotic observer can be used to

CINVESTAV del IPN L. Aguirre



88 Asymptotic Observer Design

estimate the system state. In particular, an asymptotic observer can be used to estimate the

system state as it evolves. Formally an asymptotic observer is defined as follows.

Definition 7.2 Let S be an observable discrete event system and O be a model of S. The

model O is an asymptotic observer ofS if and only if for every input wordw accepted by S and

O,

1) \\xq
-

x0\\ > lfe
-

¿ill > •••
> lfe

-

«fc || and

2) lim |fe -xk ||=0.
|í-|—>oo

where x¿ and £i are the system and observer states at the i-th event, respectively; |_.| is the

length of the input word and [fe —

á¿|| = e¿ is the norm of the estimation error.

In other words, if the same input word is accepted by the system and the observer, then the

estimation error must tend asymptotically to zero while the length of the input word increases.

This goal can be achieved by selecting an appropriate observer initial condition and an effective

observer dynamic.

7.3 Observer design

In this section, a methodology to design an asymptotic observer is presented. This methodology

is derived from a convergency analysis realized on the observer estimation error model, which

is also represented as an IPN.

In this work, the scheme of the asymptotic observer shown in Figure 7.2 is used. The

asymptotic observer consists of

• An IPN system model extended with a set of output transitions (block F), whose firings

are used to correct the estimation error.

• A block called System Firing Detector, which determines the transitions that have been

firing in the system from the knowledge of the output difference, yk+i
—

yk = ip(Mk+i)
—

tp(Mk), and the input word uj given to the system.

• A block called Marking Corrector, which generates firing sequences for the transitions of

the block F.

L. Aguirre



7.3 Observer design 89

i Y
I 'k+l

r___--i y„

Mktl

Figure 7.2: The block diagram of the system-asymptotic observer pair.

Definition 7.3 Let S be a DES and Ns = (N, E, $, X, ip) be an IPN model for S, where its

state equation is:

Mk+i = Mk + Cev°k + CcE(Mkyk)

yk+i
= ipMk+i

(7.1)

77ien the IPN given by N0 = (N, S, $, A = Id, ip = Id) is an observer for S if the state

equation of NQ is:

Mk+Í = Mk + Ceifk + C'~(Mkyk) + T(M„
-

Mk)

yk+i
= ipMk+i

where Id is the identity matrix.

(7.2)

Note that, the observer has the same basic structure ofthe system. However, in the observer,

all the places are measurable and all transitions are controllable. Moreover, the terms Cevk and

CcE(Mk,vk) are the same of the system since the System Firing Detector block computes them

and the incidence matrix C is known; while the term T(<pMk —

<pMk) represents the Marking

Corrector block.

Based on the above definition, the observer estimation error is given by the equation

ek+i
= Mk+i

-

Mk+i (7.3)
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] t" t

• • •

Figure 7.3: The equation of the observer estimation error represented as an IPN.

By substituting equations 7.1 and 7.2 in equation 7.3,

ek+i
= Mk+Í

-

Mk+i

= Mk + C% + C"E(Mk , vl) + T(<pMk -<pMk)-Mk + C*vFk + CcE(Mk , 0*)

= Mk-Mk + T(ipMk-<pMk)

=

ek + T(<pek)

where ek
= Mk — Mk.

Thus, the dynamics of the observer estimation error is

e*+i
=

ek + T(tpek) (7.4)

Since r is a design parameter, the following valué is proposed for T:

T(<pek) = F$k = -Id0k) (7.5)

where Id is an identity matrix of appropriated dimensions and ¡3k is a firing vector. In this

case, the error equation becomes:

ejfc+i = e_
- Id0k) (7.6)

Observe that equation (7.6) represents an IPN, like the one depicted in Figure 7.3 where all

transitions are controllable. In the figure, the places of the error net are labeled as p\ , p\ ,
. . . ,pe.

Thus, Mk(pf) = ek(pi) = \Mk(pi)
-

Mfcfe)|.

Using the above result, the observer equation can be stated as follows:

vk

Mk+i = Mk + [C | -Id]

yk+i
= Mfc+i

where F = —Id and vk is the transition sequence fired in the system.

(7.7)
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Now, if the observer initial marking is greater or equal than the system initial marking, it

could be concluded that

e0
= M0 - M0 > 0

i.e. the initial marking in the error equation is:positive; thus, it is a valid IPN marking. In

order to fullfil this requirement, the observer initial marking can be defined as follows:

Definition 7.4 Given an observable IPN, (Q, M0), where a CML is defined, and its observer

net, No- The observer initial marking M0 is:

M0fe) = í M°^ +M°^' Pi & Pnm

| M0fe), otherwise

where

Me(pi) i mÍn«M(P') lM&) = k¡
~

^M0> U {M™(Pi)}). Pi € Pnm 1
(? g)

[ 0, otherwise I

are thewhere kj is the total amount of tokens in the j
— th CML, A,- = aj ... a¿

coefficients of the j
— th CML such that ce? > 1, and

(A/ofe),
pkEPm

Mofe), Pk e ||.r|| for any solved £r 6 CML

0, otherwise

is the marking of the measurable places belonging to the j
— th CML

For a place p\ the marking MJfe) represents the actual number tokens in pf , while M^fe)

is an estimation of the number of tokens that may be in p\. Observe that, for the computation

M¡], initially only the marking of the measurable places is known; however, if this information

is enough to solve some of the conservative marking laws, then the marking of some non-

measurable places becomes known and this knowledge is used to solve another conservative

marking law. This procedure is repeated until it is not possible to solve another conservative

marking law or the complete CML has been solved.

Note that, in the case of observable or W-observable IPN, the termíM^fe)} has no

effect in the equation 7.8 since M¿Bfe) = Mt/Bfe). This term is used only in the case of

L-observable nets where MfBfe) < MÜBfe).

In general, every observer reachable marking can be represented as

Mk(pi) = M«fe) + Mek(pi)
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where

a{ ... a-\

'

min( {Mfe) |Mfe) = kj
-

AáM°+1}U Pi E Pnm

Mek+i(Pi) = l {M(pi)\M(pi) = MYB(pi) -

AjM£+1}),
0, otherwise

such that pi E ||£,-|| E CML (i.e. a¿
> 1), kj is the total amount of tokens in £,, Aj =

are the coefficients of f j, and Vpr E P

A_j?+1(pP) = max(0,Mfc°fe) + C(r, k))

Thus, Mk(pi) is. the sum of the number of known tokens in pf and the estimated number

of tokens that may be in p<. Note that, if p¿ is a measurable place Vft M|fe) = 0. Otherwise, if

Pi is a non-measurable place then M^fe) > 0. On the other hand, Mk+1 is computed from the

evolution of the system.

As in the definition of the observer initial marking, in the case of observable or w-observable

IPN, the term {Mfe)|Mfe) = M^Bfe)
-

AjM'k+1}) has no effect in the equation 7.2, since

M¿Bfe) = MUB(pi). This term has effect in the case of L-observable nets since M¿Bfe) <

MUB(pi).

The above representation of the observer marking has the advantage of distinguishing be

tween the actual marking and the estimated marking of each non-measurable place. This fact

can be exploited by a state feedback controller to compute the control law.

In order to reach the zero marking in the estimation error net, for every Pi E P, since

^ofe) > 0, the transition t" must be fired eofe) times, and then e„fe) = 0.

However, ifp¿ is a non-measurable place, then the valué eofe) = Mofe)—Mofe) is unknown,

because the marking M0fe) is unknown. Thus, the number of times that the transitions of

Fmust be fired in order to reduce the error to zero is also unknown. To cope this problem,

an estimate of the observer error and a firing policy for the transitions of F are proposed as

follows.

Definition 7.5 Let Ns = (Q, M0) be the IPN of a system S and N0 be its observer with an

initial marking as in Definition 7-4- Suppose that the system transition tj is fired at the marking

Mk . The i-th element of the firing vector ¡3k of NQ is computed as:

(3k(i) = Mk(pi) + C(i, j)
-

[Mfc°+1fe) + Mek+i(pi)] (7.9)

In the equation 7.9, the valué M„fe) + C(i,j) represents the current observer marking

reached after firing the transition ij-, and, since the valué, M^+1fe) represents the .actual tokens
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in ft and M£+1fe) the tokens that may be in piy the valué M£+1fe) + M^+1fe) represents the

estimated marking that must have the observer. Thus, the valué Pk(i) represents the number

of exceeding tokens in the reached observer marking.

Lemma 7.6 Let (Q, M0) be the IPN model for a system S and O be its observer with an

initial marking as in Definition 7-4- If the firing vector ¡3k is computed like in definition 7.5,

then the observer estimation error is not increasing.

Proof. By definition of M0, for a place pr E P, e0fe) = Mofe)
-

M0fe) > 0. Suppose

that the system transition tk is fired at Mk. Then, the corresponding observer transition tk is

enabled and also fired at Mk. Let fik+1(r) = Mjt+ife)
-

Mk+1(pr) + Mk+Í(pr)). The following

cases are possible:

1. Suppose that for a place pr E' (tk) , Mk = 0:

(a) Forp-e* (í„),

Mfc+1fe) =Mfcfe)-l
= M«fe) +M|fe)-l

On the other hand, M£+1fe) = M£ and M£+1(pr) = M|fe)
- 1. Thus,

W) = M^fe) + Mffe)
- 1 -

[MfHPr) + M£fe)
-

1]
= 0

ande„+1fe) = ek(pr).

(b) Let p„ E (4)* such that pv,pr E ||^||, where £ E CML. Thus,

Mfc+ife) =Mfcfe) + l

= M«fe) + Mffe) + 1

While M«+1fe,) = Mffe)
- 1 and M«+1fe) = M»fe) + 1. Henee,

Pk+1 (v)
= M«fe) +M|fe) + 1 -

[Mfc°fe) + 1 +M¿fe)
-

1]
= 1

and efc+1fe) = efcfe)
- 1.

(c) Let pu £' (ik)' such that pu,pT E ||^||, where £¿ E CML such that M£+1fe) =

Mffe)
- 1. Thus,

Mfc+ife) = Mk(pu) = Mfc°fe) + Mffe)
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and M»+1fe) = Afjffe,). Henee,

Pk+i (u) = Mffe,) +M|fe)
-

[Mfc°fe) + M£fe)
-

1]
= 1

and efc+1fe) = efcfe)
- 1.

(d) For any other place p-, MAe+1fe) = Mfcefe) and Mfca+1fe) = Af¡?(p_). Thus,

and efc+1fe) = efcfe).

2. Suppose that for a place pr E' (ífc), Mk(pr) > 0.

(a) Let C¿ 6 CML such that pr 6 |fo||. Since Mífe) > 0, then Vph € ||^||, Mfc°+1fe) =

Mífe)- Thus, it is easy to see that

andefc+ife) = efcfe).

(b) For any other place, p-, M|+1fe) = Mfcefe) and Mí+1fe) = Mífe). Thus,

&+_(*) =0

andefc+ife) = efcfe).

Observe that in any case, efc+ife) < efcfe). Therefore, the error is not increasing. ■

It means that, when an unknown token is moved from one place to another, it becomes

known, so the number of unknown tokens of each place belonging to the same conservative

marking law must be adjusted and the error decreases. Note that, it is not necessary that a

place have reached its upper marking bound to fire its G-transition. On the other hand, when

a known token is moved, no new information is obtained, so the error does not change.

Theorem 7.7 Let (Q,M0) be a cyclic, live, conservative and event-detectable IPN model for

a system S, where M0 is unknown. Let O be the observer of (Q, M0) with an initial marking
as in definition 7.4- If it is fired a sequence that satisfies the synchronic distance conditions of

Corollary 3.22, 3.23 or 3.24 and the firing vector ¡3k is computed like in definition 7.5 then the

observer estimation error asymptotically tends to zero.
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Proof. Let Q a marking cycle of (Q, M0) and oCi its firing sequence. Let pr be a non-

measurable place. Suppose that it is fired a firing sequence a E &q that satisfies the condition

SD(oCi,
'

fe) , fe)*) = ©fe) of Corollary 3.22. Thus, in the sequence o the difference in the

number of firings between
*

fe) and fe)* is Ufe) = MUB(pr) — MiBfe). Suppose that o is

fired in S and, since the net is event-detectable then it is detected and fired also in O. The

firing of a in S leads to a marking Mk where Mfcfe) = MUB(pr). It means that all the tokens

of the places belonging to the support of a £{ E CML where moved to pr. In particular, the

tokens whose localization was unknown at Mo were also moved to pr. Thus, the cases l.b) and

l.c) of Lemma 7.6 have occurred _ofe) times. Henee, fi(j) = e0fe) and therefore, e„fe) = 0.

Since this holds for every non-measurable place or at least one place of the support of every

£ E CML, eventually the marking estimation error of every non-measurable place becomes

equal to zero.

In a similar way, it can be also proved that the observer estimation is equal to zero after the

firing of a sequence that satisfies the synchronic distance conditions of Corollaries 3.22, 3.23 or

3.24. ■

Theorem 7.8 Let (Q, M0) be a live, cyclic, conservative and event-detectable IPN, where M0

is unknown. Let O be the observer of (Q, M0) with an initial marking as in definition 7.4-

If it is fired a sequence that satisfies the synchronic distance conditions of Corollaries 4-10,

4-11, 4-12 or 4H and the firing vector J3k is computed like in definition 7.5 then the observer

estimation error asymptotically tends to zero.

Proof. Similar to the proof of Theorem 7.7. ■

Theorem 7.9 Let (Q, M0) be a conservative and event-detectable IPN, where M0 is unknown.

Let O be the observer of (Q,M0) with an initial marking as in definition 7.4- lf it is fired a

sequence that satisfies the synchronic distance conditions of Corollaries 5.15, 5.16, 5.17 or 5.18

and the firing vector ¡3k is computed like in definition 7.5 then the observer estimation error

asymptotically tends to zero.

Proof. Similar to the proof of Theorem 7.7. ■

7.4 Examples

The following example illustrates the use of the asymptotic observer proposed in the previous

section to estimate the state of a typical manufacturing cell.
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P^assembly Cell ...Assembly CeJ|

Quality Control Cell

Figure 7.4: Scheme of an automated assembly cell dedicated to produce ovens.

Example 7.10 Consider the automated cell for assembling microwave ovens depicted in Figure

7.4- The cell consists offour machines (Mi, M2, M3, M4/) and four transporting conveyors (Ti,

T2, T3, T^ to carry preprocessed parts from a machine to another. Once a part is on the i-

th conveyor, it can by loaded into the i-th machine or transported to the next conveyor. A

part visits the machines in a specific order depending on a pre-established production plan. A

conveyor and a machine can hold only a part and, for security, only three machines can be

working at once.

An IPN model for a machine and its transporting conveyor is shown in Figure 7. 5. Notice

Vv/ i
TWT—»| I Transporting i

y^y^yyrr r &™*r i
ENTER ^*^ EXIT

||
Empty J

Figure 7.5: An IPN model for a machine and a conveyor ofthe assembly celL
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Machine 1 Machine 2

Machine 4 Machine 3

Figure 7.6: The complete IPN model of the automated assembly cell.

that, the place representing that the machine is working is measurable, while the transitions

representing the events of entering and leaving the conveyor are controllable. Figure 7.6 shows

the complete IPN model of the assembly cell. The place p17 represents available parts.

The functions X and ip of the net are the following:

t¿ k k k k k k k k k ko ki -12 kz

Afe) a e b c d e e f e 9 h £ i

The output matrix is

<p
= [e3 e7 en eibf

ipC =

-111-1000 000 000

0001-11-1000 000

0000 001-11-1000

0000 000 001-11-1J

Observe that, <pC(;2) = <pC(;3), bute = Afe) ± Afe) = b. Similarly, ipC(; 11) = <pC(; 13),
but h = Afei) ^ A(í13) = i. Thus, by Proposition 3.10, the net is event-detectable.
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The initial marking in list form is M0 = {2,4,5,8,10,12,14,15,17}, indicating that all

machines, except M2 are idle, only conveyor T4 is occupied and there is one pre-assembled part.

This initial marking makes the net live, cyclic and 3-bounded.

According to the cell description, for any reachable marking it holds that:

1. A machine can be idle or processing a part:

Mfe) +Mfe) = 1

Mfe) +Mfe) = 1

Mfe) + Mfeo) = 1

Mfe3) + Mfe4) = 1

2. A conveyor can be empty or occupied:

Mfe) +Mfe) = 1

Mfe) +Mfe) = 1

M(pn) +Mfe2) = 1

Mfe5) + Mfe6) = 1

3. Only three parts can be in the cell:

Mfe) +Mfe) +Mfe) +Mfe)+

Mfe) + Affei) + Mfe3) + Mfe5) + Mfe7) = 3

These equations form a CML. From them, it can be established that

MUB(Pi) =
rUB /_ . I *i l ~ *■'

1
,
otherwise

and

\/Pi E P, MLB(pi) = 0

L. Aguirre
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Figure 7.7: The observer net for the assembly cell.

It can be shown that,

cmli Pfc SD((Q,M0),
•

(p_) , cp_r ) k*

1 Pi 1

2 Pe 1

3 P- 1

4 Pl3 1

5 P3 1

6 Pr 1

7 Pn 1

8 Pie 1

9 Pn 3 3

Thus, by Theorem 4-10, the net is w-observable and, by Theorem 7.7, an asymptotic observer

can be constructed. Figure 7. 7 shows the IPN observer net for the assembly cell with an initial

marking computed as in Definition 7-4-

M0 = [1 1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 2]T

Thus, the initial estimation error is

eo
= [l 000010010001000 l]r
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-5 oH •",

>*®-H «"»

*cH «••,

"sO-H *'••

•«CH «"„

pnCH «",,

".oCH •
10

>.®~H «**.

Figure 7.8: The observer error _"PiV" which is marked with the initial error.

Figure 7.8 shows the observer error net with the initial error.

Initially,

M0° = [00010001000100100]T

M0e = [1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 2}T

Observe that, y0 = yo
= [0 0 0 1]T Suppose that, the uncontrollable transition í6 fires, so

the folloiving marking is reached:

Mi = [0 1 0 1 0 1 1 0 0 1 0 1 0 1 1 0 1]T

and the output yx = [0 1 0 1]T is generated. Thus, Ay = ya
-

y0
= [0 1 0 0]T = (pC(;é) =

<pC(•,&); however, since uj = e, it is determined that í6 was fired. Since the transition t6 is

enabled at M0, it is fired and the observer net reaches the marking

M* = [1 1 0 1 0 2 1 0 1 1 0 1 1 1 1 0 2]r

and,

Mf = [0 0 0 1 0 1 1 0 0 0 0 1 0 0 1 0 0]T

Mf = [110000001100 11001]T

so

p. = m;-(m? + m?)

= [o 000010000000000 i]T

1

.», h-Op,

.-3 h-o.

'"« [*—O P>5

'"" |*-0 "14

'"- |*-<S)»I3
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or

0i = «Mr

By firing pu the observer marking is

Mi = [1 1 0 1 0 1 1 0 1 1 0 1 1 1 1 0 1]T

while the current error is

ei = [1 000000010001000 0]T

Now, suppose that the input word u = b is given to the system, so í3 is fired and the system
reaches the marking

M2 = [0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0]T

Then, using a similar reasoning as in the previous firing, t3 is identified by the observer, so í3

is fired and the new observer marking is

M* = [1 1 1 0 0 1 1 0 1 1 0 1 1 1 1 0 0]T

and

MI = [0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 0 0]r

M\ = [01 0000 0001 000 100 0]T

so

^ = [1 000000010001000 0]r

or

H2
~

t,_t,9t-_

By firing f32, the observer reaches the marking

M2 = [0 1 1 0 0 1 1 0 0 1 0 1 0 1 1 0 0]r

Thus,

ej
= [0 000000000000000 0]T

i.e. M2 = M2. From this moment the observer marking will be equal to the system marking for

any evolution of the system. ■
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The following example illustrates the design and the convergency of an asymptotic observer

of a manufacturing cell constrained to a firing sublanguage.

Example 7.11 Consider again the manufacturing cell of the previous example. Suppose that,

its behavior is constrained to the cyclic language L(Q, M0) = (í3 íi í2 í4 í3 t7 ti í8 í2 í4 í9 t7

ho tg h3 í9 íio íi3)+ and its current marking is M0 = [2 3 6 8 9 12 14 16 17]; however, due to

a communication error this marking becomes unknown, so it is necessary to recover it through

an asymptotic observer.

From the previous example it is knovm that the net is event-detectable. By setting the CML

as the one of example 7.10, the lower and upper marking bounds with respect to L(Q, M0) are

MÍb(Pí) =

<flfe) = <

i = 6, 14, 17

otherwise

0, i = 5,13

3, i = 17

1 , otherwise

while the synchronic distance between the input and output transitions of the non-measurable

places with respect to L(Q, M0) are the following:

k SD((Q.M0)|£,-(pfe). (PfcD hVp*) k SD({Q,M0)L,'(pfc),(p„n B_.(pfc)
1 1 1 10 1 1

2 1 1 12 1 1

4 1 1 13 0 0

5 0 0 14 0 0

6 0 0 16 1 1

8 1 1 17 2 2

9 1 1

Henee, by Theorem 5.12 (Q,M0) is marking-detectable -with respect to L(Q,M0). In this case,

by Theorem 5.14, (Q,M0) is observable with respect to L(Q,M0), so an asymptotic observer

can be constructed.

Thus, the asymptotic observer initial marking is

M0 = [1 1 1 0 0 1 0 1 1 1 0 1 0 1 0 1 2]T

computed as stated in Definition ??. Notice that, the markings ofps, pe, Piz andpn are forced

to their upper marking bound with respect to L(Q, M0). Thus, the initial estimation error is

e0=[l 000000001000000 lf
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[Suppose that, transition í4 fires. Thus,

Mi = [0 1 0 1 0 1 1 0 1 0 0 1 0 1 0 1 1]T

Since í4 is detectable, í4 fires in the observer, reaching the marking

M* = [1 1 0 1 0 1 1 0 1 1 0 1 0 1 0 1 2]T

Thus,

MI = [0 0 0 1 0 1 1 0 0 0 0 1 0 1 0 1 0]T

M{ = [1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 2]T

and

& = [0 000000000000000 0]T

So Á_í = Mi = [1 1 0 1 O 1 1 O 1 1 O 1 O 1 O 1 2}T and ex
=

e0.

Now, the uncontrollable transition í9 fires. In this case,

M2 = [O 1 O 1 O 1 1 O O 1 1 O O 1 O 1 1]T

Also, íg is fired; thus,

M* = [1 1 O 1 O 1 1 O O 2 1 O O 1 O 1 2]T

and

M2° = [O O O 1 O 1 1 O O 1 1 O O 1 O 1 0]T

M\ = [1 100000000000000 1]T

and

^2 = [O 000000001000000 l]r

i.e. í'30 andt"7 are fired. The observer reaches the marking

M2 = [1 1 O 1 O 1 1 O O 1 1 O O 1 O 1 l]r

and the estimation error is

e2
= [l 000000000000000 0]T

Following in the same way, after the firing of o~ = t7 ho ts h3 íg íio íi3 Í3 h S L(Q,Mo),

the estimation error becomes equal to zero.
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7.5 Discussion

This chapter presents amethodology to design asymptotic observers for Discrete Event Systems

modeled by cyclic, live and conservative IPN. The proposed methodology is useful to estimate

the actual marking of observable, w-observable or l-observable IPN.

The observer design parameters were derived from an analysis on the estimation error model,

which is also represented as an IPN. Using the stabiüty concepts presented in [30], it was shown

that for the kind of proposed asymptotic observers, there exists a firing sequence, such that the

estimation error becomes equal to zero.

The proposed asymptotic observer uses the information provided by the CML of the net to

set an observer initial marking closer to the actual system state than other approaches. Also,

the CML is used to compute the corrector firing vector /3 as the system-observer pair evolves.

Moreover, by using the information provided by the evolution of the system, the observer

convergency ratio is reduced.

The observer marking is represented as a sum of the actual number of tokens and the

estimated number of tokens that could be in every place. The first valué is computed from

the system evolution, while the second valué is computed using the CML. This fact can be

exploited by a state feedback controller to compute the control law, since there is known the

tokens which location is correct.
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Chapter 8

Conclusions and Further Work

8.1 Conclusions

This work has addressed the observability, the minimal cost sensor choice for observability and

asymptotic observer design problems in Discrete Event Systems (DES) modeled by Interpreted
Petri Nets (IPN). The original contributions are the following:

For observability:

1. A definition of DES observability in IPN terms, which is independent of the method

used to estimate the system state.

2. The concepts of input and output .sequence invariants of an IPN were introduced. These

invariants lead to establish a necessary and sufficient condition for observability. This

powerful characterization of observability is similar to the one given for linear continu

ous systems using geometric approach. Although, the resulting test is quite simple, in

the general case, the computation of the sequence invariants has a high computational

complexity.

3. For live, cyclic and conservative IPN, the characterization using sequence invariants can

be reduced to a structural characterization, which consists of the verification of the event-

detectability and marking-detectability properties. Necessary and sufficient conditions

for event-detectability, and sufficient conditions for marking-detectability are provided.

Event-detectability can be tested in polynomial time, while for certain classes of nets

marking-detectability also can be tested in polynomial time.
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4. The previous characterizations of observability require that the synchronic distance be

satisfied by every input word of length equal or greater than k. This condition seems to

be too restrictive for a lot of nets. Then the notion ofW-observability was introduced.

The W-observability property is related to the existence of at least an input word that

satisfies the synchronic distance. It has been shown, that event-detectability and W-

marking-detectability are necessary and sufficient conditions forW-observability. Several

sufficient conditions for W-marking-detectability have been provided, leading to several

characterizations ofW-observability. In particular, it has been shown that W-marking-

detectability holds in every live, cyclic and conservative Free-Choice Petri net; henee,

event-detectability is a necessary and sufficient condition for W-observability in this class

of IPN.

5. The provided notions of observability andW-observability consider all the possible firing

sequences of the net under study. However, the firing language of a SED is usually con

fined into a realizable and cyclic desired behavior. Thus, only the firing sequences belong

ing to the desired language occur during the system operation. In this context, the concept

of observability with respect to a language, L-observability, has been introduced. In or

der to check this property, it has been introduced the concepts of event-detectability and

marking-detectability with respect to a language, L-marking-detectability and L-event-

detectability, respectively, resulting on several sufficient conditions for L-observability

that can be tested in a polynomial time.

For sensor choice:

1 . A structural characterization of the set ofmeasurable places preserving the event-detectability

property of a IPN is given.

2. A simple algorithm to choose a minimal cost sensor configuration for preserving observ

ability of a live, bounded and cyclic IPN is provided This algorithm was derived from the

characterization ofmeasurable places preserving event-detectability and knowledge of the

places no satisfying the synchronic distance conditions ofthe characterizations ofmarking-

detectability. If the set of synchronic distance conditions for observability is changed by

the set of synchronic distance conditions forW-observability or L-observability, the algo

rithm can be used to choose a minimal cost sensor configuration for preserving these two

properties. The proposed algorithm only considers state sensors and assumes that the

actuator signáis are already attached to the transition of the net. Additionally, the algo

rithm contemplates the unavailability of sensors for certain nodes of the net and the fact

. Aguirre
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that a state sensor may be attached to several places. Besides the sensor cost reduction,

the algorithm allows to significantly reduce the system design time due to its simplicity.

For the asymptotic observer design:

1. Amethodology to design asymptotic observers for observable, L-observable orW-observable

IPN is given. The observer consists of an extended IPN model where an output transi

tion has been added to each place of the observer. These transitions allows to reduce the

observer estimation error while the system evolves. Since the observer is also represented

as an IPN, further analysis of the properties of the pair DES
— Observer such as sta

biüty and liveness can be performed using the well-known PN techniques. The observer

uses a decreasing convergency method: the observer initial marking is equal or greater

than the system initial marking; as the system evolves, a firing policy, derived from an

analysis realized on the estimation error model, allows to reduce the error in a faster ratio

than the previous approaches. This king of observers requires the knowledge of the total

among of resources contained in the system (the CML) and, in the case of L-observable

nets, the knowledge of the states visited by the firing sequences of the desired behavior

is also required. Thus, the proposed observer can be used to estimate in a easy way the

actual marking of observable, W-observable and L-observable IPN.

8.2 Recommendations for further work

It is recommended that further work be carried out in the following áreas:

1. In this research, it has been seen that a necessary and sufficient condition for marking-

detectability is the existence of a sequence that solves the CML. Although some char

acterizations of such sequences have been provided in this work, they represent only

sufficient conditions. Henee, it is necessary to deeply study such sequences in order to

obtain also necessary conditions.

2. The study of L-observability can be extended to non-eyelie firing sublanguages.

3. The proposed definitions of the observer initial marking and the firing policy of the

additional output transitions can be extended to the observer proposed in [30], where

there is also an input transition to each observer place. This will allow to have a wider

range of observer initial markings and, may be, a faster convergency ratio.
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4. The use of the state estimates of the presented asymptotic observers for state feedback

control is also another open research área.

5. The presented results can be extended to nets with several home-spaces, where it is

necessary to identify the home-space to which the current system marking belongs.

6. Also, the presented results can be extended to Timed Interpreted Petri Nets. In this case,

it is necessary to study how the time information can help to reduce the convergency ratio.

7. Finally, it is desirable to implement the proposed asymptotic observer in a real system.

L. Aguirre
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