

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

DEPARTAMENTO DE FISIOLOGÍA, BIOFÍSICA Y NEUROCIENCIAS

"Efecto de la restricción alimenticia sobre los iones metálicos de los órganos internos de la rata Wistar"

TESIS

Que presenta: M. en C. ALMA ISABEL SANTOS DÍAZ

Para obtener el grado de:

DOCTORA EN CIENCIAS EN LA ESPECIALIDAD DE FISIOLOGÍA CELULAR Y MOLECULAR

Director de Tesis: Dr. Fanis Missirlis

Ciudad de México

Noviembre del 2023

El presente trabajo se realizó con el apoyo del Consejo Nacional de Humanidades, Ciencias y Tecnologías, con el número de beca 191100020, CVU 858866, en el laboratorio del Dr. Fanis Missirlis del Departamento de Fisiología, Biofísica y Neurociencias del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), en la unidad Zacatenco.

El comité tutoral que asesoró el presente trabajo estuvo conformado por:

Dr. Ismael Jiménez Estrada Departamento de Fisiología, Biofísica y Neurociencias del Cinvestav.

Dr. Olivier Christophe Barbier Departamento de Toxicología del Cinvestav.

Dra. Marcia Hiriart Urdanivia.

Instituto de Fisiología Celular de la Universidad Nacional Autónoma de México.

Agradecimientos

Toda investigación requiere siempre de la participación de un equipo de profesionales. Por ello de manera sincera quiero expresar mi agradecimiento al Dr. Fanis Missirlis mi mentor, gracias por su dirección e invaluable apoyo, dedicación, conocimiento y compresión que me brindó durante el desarrollo de este proyecto y durante mi estancia en su laboratorio.

Asimismo, expreso mi total gratitud al Dr. Ismael Jiménez Estrada, que no solo me asesoro durante este proyecto, sino también me confió su modelo de investigación durante siete años.

De la misma forma agradezco a mis asesores, el Dr. Olivier Barbier y la Dra. Marcia Hiriart quienes a través de su conocimiento y experiencia siempre me guiaron a un mejor camino de investigación.

A la Dra. Liliana Quintanar Vera, quien indiscutiblemente es un pilar importante en mi formación como investigadora, gracias por ayudarme a ampliar mi mente en este emocionante mundo de la ciencia.

A la Dra. María Eugenia del Carmen Mendoza Garrido y al Dr. Gerardo Contreras Patiño, por siempre ser amables conmigo y darse el tiempo de revisar esta tesis.

Agradecimientos especiales a la Biol. Beatriz Osorio, a Benjamín Muñoz y a José Carlos Guadarrama quienes siempre me ayudaron al manejo y cuidado de las ratas, sin ellos no habría nada.

A la Dra. Elizabeth Díaz Torres y el Dr. Jordi Solís López por apoyarme en el diseño y desarrollo de los códigos en Python, sin ustedes no lo hubiera logrado.

Al M. en C. Emmanuel Ríos Castro, a la Dra. Dulce Delgadillo Álvarez y a la I.QI Nataly Ramos Buendía no solo por ayudarme en los experimentos de proteómica, sino también por su infinita paciencia siempre que les pedí ayuda. A mis amigos de laboratorio, que nos divertimos y estresamos juntos todo este tiempo. Gracias Carlos, Karen y Jahir, por compartir muchos sentimientos y vivencias especiales.

A mi familia, el tesoro de mi vida: mis padres y hermanos que siempre me brindan su apoyo, amor y confianza. Gracias por creer en mí, alentarme y apoyarme a donde quiera que vaya.

A mi amado Jordi Solís por su amor, su apoyo y paciencia. Incluso en mis peores momentos podías ver lo mejor de mí.

A mi psicóloga Graciela Ortiz, gracias por ayudarme cuando más lo necesité. Gracias por recordarme lo fuerte y valiente que puedo ser.

Agradecimientos especiales al CINVESTAV por la oportunidad de pertenecer a esta institución y en especial a este programa de posgrado. Gracias al Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), por la beca (191100020) que me ayudo a hacer algo que disfruto tanto.

Infinitas gracias a todas aquellas personas que de una manera u otra contribuyeron al desarrollo de este proyecto que disfrute tanto. Cada uno de ustedes ha contribuido a mi fortaleza y ánimo de una manera u otra.

Dedicatoria

A mí hermana Ary, mí ángel.

A mis hermanos: Elena y Tony, quienes son mi inspiración, los amo profundamente.

A mís padres, mí tesoro, quienes siempre dan todo por nosotros, y de quienes estoy profundamente orgullosa.

A Jordí, Carola, Magnus y Olívía B, por distraerme un poco cuando estaba agobiada, su presencia alegra mi vida.

Resumen

La desnutrición se define como el estado patológico resultante de una dieta deficiente en uno o varios nutrientes esenciales o de una mala asimilación de los alimentos. En poblaciones humanas que tienen poco acceso a una alimentación adecuada, es común encontrar deficiencias de micronutrientes como lo son el hierro y el zinc. Sin embargo, no hay reportes que indiquen, si la restricción crónica de alimento por sí sola, altera las concentraciones de diferentes biometales presentes en los distintos órganos del paciente desnutrido.

En este proyecto, se indujo desnutrición con un protocolo de restricción alimenticia en rata, que inicia desde las madres antes del apareamiento y continúa durante toda la gestación, lactancia y post-destete hasta los 60 o 90 días de edad de las crías. Se utilizó espectroscopia de emisión óptica de plasma acoplado inductivamente para medir la concentración de Fe, Zn, Cu, Mn, Ca, Mg, Na, K y P, en el intestino delgado y grueso, corazón, pulmón, hígado, riñón, páncreas, bazo, cerebro, médula espinal y músculos de la pata en muestras de hembras y machos. A raíz de los resultados, se analizó la concentración de Ca, Zn y P, en sistema nervioso central mediante imágenes de microscopia de fluorescencia de rayos X, obtenidas en sincrotrón. Finalmente se comparó la expresión de proteínas presentes en suero en muestras de animales control y sometidas a restricción de alimento. Los resultados muestran que los metales se concentran de manera similar entre los dos sexos en los diferentes órganos y que existen algunas diferencias órgano específicas en contenido de metales por la restricción alimenticia empleada. Sorprendentemente, el páncreas e hígado incrementan la concentración de Fe, Zn, Cu, Mn y otros elementos a consecuencia de la restricción de alimento, mientras que el riñón pierde contenido de Cu. La restricción alimenticia no afecta la concentración de elementos en suero, pero la proteómica sugiere la presencia de hemolisis intravascular que podría tener una función adaptativa ya que no parece estar acompañada por daños tisulares. Los experimentos realizados permitieron también comparar los elementos entre los distintos órganos de la rata. Encontramos que la médula espinal presenta en promedio 9 veces más Ca respecto al cerebro, y observamos por fluorescencia de rayos X que la diferencia se debe a la presencia de agregados de Ca, mientras que el cerebro concentra 2 veces más Zn por las abundantes sinapsis Zn-glutamatérgicas. Concluimos que, aun cuando cada órgano contiene contenido particular de cada uno de los elementos analizados, los sistemas fisiológicos del animal mantuvieron en homeostasis los elementos en la mayoría de los órganos en una situación de restricción de alimento. Proponemos que el incremento de los metales en páncreas e hígado se debe a la disminución de la excreción de los mismos.

Abstract

Undernourishment is defined as the pathological state resulting from a diet deficient in one or more essential nutrients or from poor assimilation of food. In human populations that have limited access to an adequate diet it is common to encounter micronutrient deficiencies, such as in iron and zinc. To date, however, there are no reports to indicate whether chronic food restriction alters per se the content of metal ions in the different organs of the malnourished patient. In this project, we worked with a dietary restriction protocol in rats, which began with the mothers before mating and continued throughout gestation, lactation and post-weaning until the offspring are 60 or 90 days old. Inductively coupled plasma-optical emission spectroscopy was used to determine the concentration of Fe, Zn, Cu, Mn, Ca, Mg, Na, K y P in the small and large intestine, heart, lung, liver, kidney, pancreas, spleen, brain, spinal cord, and leg muscles in samples from female and male rats. On the basis of the results obtained, the concentration of Ca, Zn, and P was analyzed in different parts of the central nervous system using synchrotron X-ray fluorescence imaging. The expression of proteins present in serum was compared in samples from control animals and those subjected to food restriction. The results suggest that metal ion content in organs is similar between the two sexes and that following caloricproteic restriction the pancreas and liver accumulated Fe, Zn, Cu, Mn and other metal ions whereas the kidney specifically lost Cu. Dietary restriction did not affect the concentration of elements in serum, but proteomic analysis suggested the presence of intravascular hemolysis, which may provide an adaptive advantage as it was not accompanied by any obvious tissular damage. Our experimental approach permitted metallome comparisons between organs as well. The spinal cord presented on average 9 times more Ca concentration than the brain due to the presence of Ca aggregates, while the brain concentrated 2 times more Zn, attributable to the presence of Zn-glutamatergic synapses. We conclude that, even though each organ contains particular metal ion content, the animal's physiologic system maintained homeostasis in a situation of sever dietary restriction. We attribute the increased concentration of metal ions in pancreas and liver (contrary to our predictions) to diminished excretion of these elements in the undernourished rat.

Índice

1. I	ntrodu	Jcción	11
1.1	La	a desnutrición como problema de salud en el humano	12
1.2	La	a desnutrición como problema de salud pública en México	. 14
1.3	B La	a desnutrición y las deficiencias de metales	. 14
1.4	- Fι	unciones principales de los iones metálicos en la fisiología celular	16
1.5	6 M	odelos animales de desnutrición	. 18
2. F	Plante	amiento del problema	. 19
3. H	Hipóte	sis	21
4. (Objetiv	vo general	21
5. C	Objetiv	os específicos	22
6. N	Materia	ales y métodos	23
6.1	Ar	nimales	23
6.2	Pr	reparación y análisis de las muestras por ICP-OES	25
6	6.2.1 F	Principio de la espectrometría ICP-OES	25
6	6.2.2 F	Procesamiento de muestras para el ICP-OES	26
6.3	s Ar	nálisis estadístico de los resultados obtenidos por ICP-OES	27
6.4	Ar	nálisis del páncreas por tinción de hematoxilina-eosina	28
6.5 de	i Ar fluore	nálisis de secciones del cerebro y médula espinal por imágenes de microscop scencia de rayos X, obtenidas en sincrotrón	oia 29
6	6.5.1	Principio	29
6	6.5.2	Obtención y procesamiento de las muestras	30
6.6	G Cu	uantificación de resultados de imágenes de fluorescencia de rayos X	31
6.7 ent	′Di teros y	iseño de código para comparar cuantificaciones elementales de órganos / cortes de órganos con resolución bidimensional	.33
6.8	s Ar	nálisis de suero por proteómica	35
6	6.8.1	Principio de la técnica de proteómica	35
6	6.8.2	Procesamiento de la muestra	36
7. F	Result	ados	37
7.1	Di 37	iferencia de peso entre ratas control y ratas sometidas a restricción alimentici	а

7.2 órgan	No se observa dimorfismo sexual en la distribución de iones metálicos entre os de ratas controles o tratadas
7.3 a los 6	Cambios en hígado, riñón y páncreas como resultado de la restricción alimenticia 60 y 90 días de edad
7.4	Análisis morfológico del páncreas por tinciones de hematoxilina-eosina
7.5 los 60	Los músculos respondieron de diferente manera ante la restricción alimenticia a días de edad
7.6	Diferencias en las concentraciones de Ca y Zn entre cerebro y médula espinal 49
7.7	Microscopía de rayos X en cerebro y médula espinal51
7.8 código	Comparación de los resultados de ICP-OES y microscopía de rayos- X mediante o Python
7.9 anima	Los datos de la metalómica muestran que no hay diferencias en el suero de los les C vs los animales R
7.10 pero le grupo	La restricción de alimento no afecta la concentración de elementos en el suero, os estudios de la proteómica, indica la presencia de hemólisis intravascular en el R
8. Disc	cusión61
<i>8.1</i> por la	El páncreas fue el órgano principalmente afectado en su contenido de metales restricción de alimento
8.2	¿Está el riñón actuando como reservorio de Cu?65
8.3	La restricción calórica afecta la concentración de Fe en páncreas, hígado y bazo 67
8.4	La distribución de metales es diferente en cada tipo de fibra muscular 69
8.5	Acumulación de Zn en músculo Sóleo71
8.6	Agregados de Ca en la médula espinal y sinapsis de Zn en el cerebro72
8.7	La proteómica del suero sugiere hemolisis intravascular en los animales R 73
9. Res	umen y conclusiones
10. P	erspectivas
11. B	ibliografía
ANEXO	1. Resultado de las mediciones de ICP-OES en ratas de 60 días de edad 115
ANEXO	2. Resultado de las mediciones de ICP-OES en ratas de 90 días de edad 124
ANEXO edad	3. Análisis estadistico de los datos obtenidos por metalomica a los 60 días de
ANEXO edad	4. Análisis estadistico de los datos obtenidos por metalomica a los 90 días de 134

ANEXOS: 5a. Cuantificación de imágenes de microscopia de fluorescencia de obtenidas en sincrotrón en cerebro	rayos X, 135
	135
ANEXOS: 5b. Cuantificación de imágenes de microscopia de fluorescencia de obtenidas en sincrotrón en médula espinal	rayos X, 136
ANEXO 6. Código Python	138
ANEXO 7. Resultados del análisis de proteómica:	141

1. Introducción

A pesar de que la alimentación es un derecho humano establecido, se estima que entre 702 y 828 millones de personas en el mundo (correspondiente al 8,9 – 10,5 por ciento de la población mundial), se vieron afectadas por el hambre hasta el 2021 [1, 2].

El hambre en el mundo afectó a 46 millones de personas más en 2021, en comparación con 2020 y un total de 150 millones de personas más desde 2019 (Tabla 1), antes de la pandemia de COVID-19. La persistencia de la pandemia y sus consecuencias duraderas, exacerbaron las desigualdades existentes. En África, 278 millones de personas padecieron hambre, 424.5 millones en Asia y 56,5 millones en América Latina y el Caribe, es decir, el 20.2 millones, el 9,1 y el 8,6 % de la población mundial, respectivamente. Si bien la mayoría de las personas desnutridas del mundo viven en Asia, África es la región donde la prevalencia es más alta. Haciendo de la desnutrición un problema de salud pública a nivel mundial [2].

	2010	2015	2016	2017	2018	2019	2020	2021
MUNDO	601.3	588.6	585.1	573.3	590.6	618.4	721.7	767.9
ÁFRICA	171.0	187.4	198.0	203.5	216.8	227.5	262.8	278.0
Norte África	13.0	11.6	12.2	13.1	13.1	13.1	14.6	17.4
África Subsahariana	158.0	175.8	185.8	190.4	203.7	214.4	248.2	260.6
Este de África	89.9	95.2	100.9	104.6	112.3	119.3	134.4	136.4
África central	34.2	40.6	43.6	43.6	46.2	48.9	54.7	60.7
Sur de África	3.4	4.7	4.8	4.8	4.9	5.3	6.2	6.3
África occidental	30.5	35.4	36.5	37.3	40.3	40.8	53.0	57.3
ASIA	381.5	356.4	336.2	320.8	323.1	339.9	398.2	424.5
Asia central	3.7	2.6	2.5	2.3	2.1	1.9	2.3	2.3
Este de Asia	n.r							
Sur-este de Asia	65.3	49.4	43.3	39.1	38.8	36.9	38.6	42.8
Sur de Asia	262.3	258.0	242.1	232.8	233.3	254.1	307.6	331.6
Asia occidental	13.7	24.8	27.4	27.3	27.9	27.5	28.3	28.4
Asia occidental y Norte de Africa	26.6	36.4	39.6	40.4	41.0	40.6	42.9	45.8
LATINOAMÉRICA Y EL CARIBE	39.1	35.9	42.5	40.7	42.5	43.3	52.3	56.5
Caribe	6.3	6.1	6.2	6.2	6.6	6.6	7.2	7.2
Latinoamérica	32.9	29.9	36.3	34.6	36.0	36.7	45.1	49.4
Centro América	11.4	12.7	13.9	13.7	13.9	13.6	14.4	15.2
Sudamérica	21.4	17.2	22.4	20.9	22.1	23.2	30.7	34.2
OCEANIA	2.3	2.3	2.3	2.4	2.4	2.3	2.3	2.5
NORTE AMÉRICA Y EUROPA	n.r							

Tabla 1. Número de personas desnutridas en el mundo (millones) 2010-2021. Los totales regionales pueden diferir de la suma de las subregiones, debido al redondeo y a los valores no comunicados. N.R. = no reportado, ya que la prevalencia es inferior al 2,5 por ciento. FUENTE: FAO.

1.1 La desnutrición como problema de salud en el humano

La desnutrición se define como el estado patológico resultante de una dieta deficiente en uno o varios nutrientes esenciales o de una mala asimilación de los alimentos. La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) clasifica a la desnutrición como: desnutrición aguda a la deficiencia de peso por la altura (P/A), desnutrición crónica al retraso de la altura para la edad (A/E) y desnutrición global a la deficiencia de peso para la edad (P/E) [3].

La deficiencia de nutrientes puede ser especialmente importante durante la infancia, debido a la rápida tasa de crecimiento y desarrollo del individuo, a la vez que existe un incremento de las necesidades de nutrientes [4]. Sin embargo, los trastornos nutricionales leves o graves desde etapas tempranas pueden afectar cualquier sistema del cuerpo, y dichos cambios pueden ser desde alteraciones en la composición corporal, hasta cambios fisiológicos y metabólicos, y/o pérdida de reserva de tejido [5], cambios que pueden ser conservados hasta la etapa adulta.

El 90% de los casos de desnutrición son ocasionados por la sub-alimentación del sujeto, bien sea por deficiencia en la calidad o en la cantidad de los alimentos consumidos [6]. Sin embargo, otros factores como las enfermedades, las infecciones, así como la desigualdad social y económica influyen en el desarrollo de la desnutrición [5,7], haciendo difícil emitir un conjunto único de recomendaciones para su prevención, diagnóstico y tratamiento [8]. Los principales factores de riesgo de la desnutrición pueden considerarse de **tipo biológico**, e incluyen enfermedades infecciosas como la diarrea, la malaria, el VIH, el sarampión y los helmintos intestinales, los estados de malabsorción y las enfermedades sistémicas que causan anorexia. Factores de riesgo de **tipo conductual** incluyen agua y saneamiento deficientes, lactancia materna inadecuada y acceso insuficiente a los alimentos. Y factores de riesgo de **tipo social**, estos incluyen los sistemas políticos, culturales y religiosos, el

12

conocimiento inadecuado y / o inapropiado y / o analfabetismo [5, 9] y pobreza [10].

La desnutrición aguda severa tiene consecuencias inmediatas y a largo plazo. La desnutrición en el útero conduce a bebés con bajo peso al nacer que son propensos a la morbilidad, tienen un mayor riesgo de deterioro cognitivo y mental y alta tasa de mortalidad [11]. También se ha asociado con enfermedades crónicas en la edad adulta como la diabetes mellitus, la hipertensión y las enfermedades coronarias, la llamada hipótesis de los "orígenes fetales" [12, 13]

Los bebés con bajo peso al nacer tienden a crecer y desarrollarse como niños desnutridos con capacidad mental reducida [13] y con disfunción entérica ambiental (EED) que se caracteriza por un embotamiento de las vellosidades, lo que sugiere una menor área de absorción de nutrientes en el intestino delgado [14]. Esto conduciría a adolescentes con retraso en el crecimiento que pueden terminar como adultos con retraso en el crecimiento, y esto podría conducir a una reducción de la capacidad física, que puede ser desventajosa económicamente en entornos que dependen en gran medida del trabajo físico como los que existen en los países en desarrollo [15].

En las mujeres, la desnutrición puede dar lugar a complicaciones obstétricas que pueden conducir a un aumento de la mortalidad materna e infantil. Además, las mujeres desnutridas tienen más probabilidades de tener hijos con bajo peso al nacer y, por lo tanto, el ciclo de desnutrición comienza de nuevo y los efectos de la desnutrición terminan abarcando varias generaciones si no se revierte la situación de hambruna. Actualmente existen varias estrategias para la prevención de la desnutrición, y van desde intervenciones nutricionales dirigidas a una problemática específica, fortificación de alimentos [16], hasta diseño de programas sociales que abarquen más problemáticas. Sin embargo al ser la desnutrición de origen multivariable, es difícil sugerir una serie de recomendaciones dirigidas a todos los causantes del problema, causando que el éxito de estas intervenciones sea discutible [5].

1.2 La desnutrición como problema de salud pública en México

Según los resultados de la encuesta de Salud y Nutrición 2018, el 22.6% de los hogares en México presenta inseguridad alimentaria moderada y severa y el 32.9% restante inseguridad leve [17]. Además 1 de cada 8 niños y niñas menores de 5 años presentan una talla baja (moderada o severa) para su edad [18].

La desnutrición más estudiada es de tipo proteico-energética, sin embargo este tipo de desnutrición no existe aisladamente de las deficiencias específicas de micronutrientes. La deficiencia de micronutrientes causa graves complicaciones en la salud, alterando el funcionamiento físico y cognitivo de los individuos. Existen reportes que indican que hasta 745.000 muertes de menores de 5 años pueden ocurrir cada año debido a deficiencias de micronutrientes [19]. Los iones metálicos tienen un papel esencial para numerosos procesos biológicos, químicos y moleculares [5, 20-32]; participando en la regulación la homeostasis celular, las respuestas inmunitarias humorales y celulares y siendo cofactores de muchas enzimas y moléculas antioxidantes [33], juegan un papel esencial para el metabolismo y mantenimiento de los tejidos [34].

1.3 La desnutrición y las deficiencias de metales

Las carencias de micronutrientes constituyen un importante problema de salud mundial. Durante el período 2003-2019, se registraron 372 millones niños en edad preescolar y 1,2 mil millones mujeres no embarazadas en edad reproductiva con una o más deficiencias de micronutrientes en todo el mundo, siendo las deficiencias de hierro (Fe) y zinc (Zn) las más comunes entre estos grupos [5, 35-37]. Dado que los niños en edad prescolar y las mujeres en edad reproductiva representan solo una parte de la población mundial, es probable que el número

total de personas afectadas sea mucho mayor una vez que se incluyan en la estimación los niños escolares, adolescentes, hombres y adultos mayores [38].

En México, 1 de cada 3 niños preescolares y 1 de cada 4 escolares presentan al menos una deficiencia de micronutrimentos como Fe, Zn, vitamina A, vitamina B12 o vitamina D. Según datos de las encuestas nacionales de salud, la dieta de muchas personas en México es deficiente en micronutrientes claves para el crecimiento, el desarrollo y la salud [39].

A diferencia de la desnutrición proteica y energética, los efectos de la carencia de micronutrientes en la salud no siempre son muy visibles; Por lo tanto, a veces se denomina "hambre oculta". La deficiencia de Zn es especialmente común en los países de bajos ingresos donde las dietas son predominantemente cereales procesados y suelen ser más bajas en proteínas" [40]. Está bien documentado que las deficiencias de Zn no solo causan retraso en el crecimiento, sino también una importante disminución tanto en la concentración plasmática del Factor de crecimiento similar a la insulina I (IGF-I) como en los receptores de la Hormona del crecimiento (GH), que vuelven a la normalidad después de la repleción del metal [20, 21]. Además, a través de su influencia en el sistema GH/IGF-I, se ha observado que la deficiencia de Zn afecta el metabolismo óseo [22]. Las deficiencias de calcio (Ca) y vitamina D también afectan el desarrollo óseo, como se manifiesta a través de la afección conocida como raquitismo [23].

El Fe por su parte es fundamental durante todas las etapas del desarrollo humano. Durante el desarrollo fetal, el hierro desempeña un papel fundamental en el desarrollo de los órganos, especialmente en el cerebro. La evidencia sugiere que el hierro es de particular importancia para el hipocampo, que se desarrolla rápidamente durante las últimas etapas de la gestación. Los niños y bebés con deficiencia de Fe tienen un desarrollo psicomotor y mental disminuido [41-43], y un crecimiento lineal defectuoso. [28-32].

El feto obtiene hierro de la madre a través de la placenta y el 80% se transfiere durante el tercer trimestre del embarazo [44]. Las ratas preñadas con dieta

restringida en Fe produjeron camadas con una reducción significativa en los índices de crecimiento físico (peso corporal, longitud corporal, longitud de la cola y longitud de la cabeza) en comparación con el grupo control [26, 27].

El cobre (Cu) también está involucrado en el crecimiento, se ha demostrado que en los tejidos que contienen elastina y colágeno, como los huesos, vasos sanguíneos y los tendones disminuyen su resistencia mecánica por la deficiencia de Cu, deficiencia que correlaciona con la disminución de la actividad de la lisil oxidasa, enzima que contiene cobre. La lisil oxidasa oxida el grupo amino épsilon de la lisina para producir un grupo aldehído o alisina. Posteriormente, los grupos aldehídos de dos moléculas de alisina reaccionan para producir un enlace cruzado aldólico que impacta en una mayor resistencia en el colágeno [24].

La deficiencia de manganeso (Mn), es menos común y se asocia con anomalías esqueléticas, incluido el retraso en el crecimiento, que puede estar mediado por defectos en la fisiología de los proteoglicanos en la placa de crecimiento [25].

1.4 Funciones principales de los iones metálicos en la fisiología celular

Los iones metálicos se clasifican en función de su ingesta diaria requerida en macrominerales Calcio (Ca), Magnesio (Mg), Fósforo (P), Sodio (Na), Potasio (K), Cloro (Cl) y Azufre (S) y microelementos / oligoelementos Cobre (Cu), Hierro (Fe), Manganeso (Mn), Selenio (Se), Cobalto (Co), Molibdeno (Mo), Cromo (Cr) y Zinc (Zn). Los iones metálicos tienen un papel clave en nuestro cuerpo para realizar las funciones necesarias, especialmente en la homeostasis, el metabolismo, desarrollo y funcionamiento del organismo, además son componentes estructurales de hormonas y enzimas [37, 45, 46]. Como ejemplo, el sodio (Na) y el potasio (K) son dos macrominerales esenciales requeridos por el cuerpo para mantener la homeostasis celular, actúan como cofactores de muchas enzimas y están implicados en las reacciones de oxidación-reducción [47]. El Ca y el fosfato (P) son fundamentales para la función neuromuscular y la mineralización

esquelética [48]. El Ca, además participa en la liberación de neurotransmisores [49], como segundo mensajero [50] y como sello de las uniones adherentes [51]. El fosfato por su parte forma parte de la estructura de ATP a través de su unión por enlaces fosfodiéster [52].

El magnesio (Mg) es el cuarto mineral más abundante en el cuerpo después del Ca, el K, y el Na, y el segundo catión más abundante dentro de las células del cuerpo después del K. Es crucial para la producción de energía (ATP), la fosforilación oxidativa y la glucólisis. También desempeña un papel clave en el transporte activo de iones de Ca y K a través de las membranas celulares, un proceso que es importante para la conducción del impulso nervioso, la contracción muscular, el tono vasomotor y el ritmo cardíaco normal [53, 54].

El ion más abundante en los seres humanos es el Fe, un oligoelemento esencial que desempeña un papel fundamental para la síntesis de proteínas transportadoras de oxígeno, en particular la hemoglobina y la mioglobina, y para la formación de enzimas hemo y otras enzimas que contienen hierro involucradas en la transferencia de electrones y la oxidación-reducción. El Fe además participa como cofactor de varias metaloenzimas como los citocromos, las peroxidasas y las catalasas [55]. El Fe, el Cu y el Zn son cofactores en los procesos de síntesis de proteínas. Esto explica por qué su papel es esencial en el funcionamiento de muchos órganos y sistemas.

El Zn está involucrado en la síntesis de ADN, ARN, proteínas y otras moléculas. Estabiliza los ribosomas, las membranas celulares y tiene efectos protectores al disminuir la peroxidación lipídica y los radicales libres. Es necesario para la espermatogénesis, la embriogénesis y el crecimiento fetal. El Zn, además es un componente en el almacenamiento de la insulina y de esta manera se involucra con el metabolismo de los carbohidratos [55, 56].

El Cu es esencial para los procesos vitales como el metabolismo energético, es un cofactor de la superóxido dismutasa de Cu/Zn enzima indispensable para la desintoxicación de especies reactivas de oxígeno. El papel indirecto del Cu en la

17

función mitocondrial está relacionado con la absorción de hierro mitocondrial, ya que es un cofactor de las ferroxidasas. El poder de las mitocondrias y su capacidad para controlar el metabolismo y el destino celular se basan en la generación de la fuerza motriz del protón por la cadena de transporte de electrones. El correcto ensamblaje y funcionamiento de la cadena de transporte de electrones depende del Cu [35, 55].

El Mn es esencial para el mantenimiento y producción del mucopolisacárido de la matriz orgánica del hueso. Por lo tanto, el Mn es esencial para la formación y la salud de los huesos. También participa como cofactor para enzimas que catalizan el metabolismo de los carbohidratos, las grasas y las proteínas. Una gran parte del manganeso se encuentra dentro de las mitocondrias, donde activa una serie de complejos metal-enzimas, como la piruvato carboxilasa, que regulan el metabolismo de los carbohidratos. El Mn también funciona como cofactor en el metabolismo de los lípidos a través de su papel en la síntesis de colesterol y ácidos grasos [49, 55].

1.5 Modelos animales de desnutrición

Los modelos animales de desnutrición, son herramientas ampliamente utilizadas en la investigación, con el objetivo de desarrollar estrategias que permitan abordar este problema de salud pública, estos modelos son inducidos principalmente por dietas deficientes, la provisión de alimentos en los modelos de restricción calórica varía del 15% al 50% en la literatura [58]. Sin embargo un problema en su uso, es que no están bien esclarecidos los parámetros para definir a la desnutrición, y generalmente el principal parámetro utilizado es la pérdida de peso [58-60]. La restricción alimenticia, conduce a la desnutrición y tiene un impacto total en la homeostasis corporal. El modelo de restricción alimenticia empleada se ha utilizado antes para demostrar los efectos de dicho tratamiento en la mielinización de los axones sensoriales periféricos, influyendo en la generación y propagación de potenciales de acción de la columna dorsal en la médula espinal de la rata, por lo que la transmisión de información sensorial desde la periferia a la médula espinal y el cerebro se ve disminuida [61,62]. Estas alteraciones fisiológicas pueden explicarse por la menor concentración de los neurotransmisores glutamato y GABA [63]. La exposición a la restricción dietética pre y postnatal también condujo a cambios bioquímicos e histológicos en el músculo esquelético. Específicamente, el músculo extensor largo de los dedos (EDL), compuesto principalmente por fibras rápidas, que se ve particularmente afectado por la baja ingesta de alimentos en comparación con los músculos compuestos principalmente de fibras lentas como el sóleo, mostrando un aumento en la proporción de fibras intermedias Tipo IIA / D (oxidativas / glucolíticas e intermedias resistentes a la fatiga) y una reducción en el número de fibras Tipo IIB (rápidas, fatigante y glucolítico) y causando un retraso en la maduración muscular [64-68]. Otros estudios también han demostrado que la restricción dietética afecta cambios drásticos en la generación de fuerza [67-70] y el índice de fatigabilidad [69, 71,72] de los músculos rápidos.

2. Planteamiento del problema

La desnutrición y las deficiencias de iones metálicos son problemas ampliamente presentes en las poblaciones humanas y relacionados entre sí. Se sabe que las deficiencias de iones metálicos pueden causar varios problemas de salud graves, sin embargo, también pueden conducir a reducciones clínicamente menos notables porque, en parte, la mayoría de las deficiencias de micronutrientes permanecen sin diagnosticar de forma temprana, ya que sus síntomas específicos son poco claros y los biomarcadores del estado de los micronutrientes, cuando existen, rara vez se incluyen en encuestas poblacionales [73] dejando una importante laguna de la evidencia sobre la carga de desnutrición de

micronutrientes en todo el mundo. Las deficiencias de micronutrientes como hierro y zinc son de las más comunes y estudiadas en todo el mundo, particularmente en niños y mujeres embarazadas [35, 57]. Por lo anterior, consideramos de gran relevancia analizar si la restricción alimenticia severa, causa deficiencia de metales en la rata o redistribución de los varios micronutrientes inorgánicos importantes para el funcionamiento de los órganos de las ratas. Además, quisimos evaluar si cambios encontrados servían un efecto adaptativo a la restricción alimenticia. No encontramos en la bibliografía otro estudio que intentó relacionar la restricción generalizada de alimento con efectos específicos en los micronutrientes inorgánicos).

Con esta finalidad, hemos utilizado un protocolo de restricción alimenticia severa en ratas Wistar, previamente empleado [61-68] que, comienza 3 semanas antes del apareamiento y continúa durante la gestación, lactancia en las madres y postdestete de las crías, hasta que las ratas alcanzan los 60 días de edad. Los órganos analizados fueron los intestinos, órganos viscerales, músculos y el sistema nervioso central de ratas Wistar hembras y machos. Al analizar la primera serie de resultados decidimos incorporar el análisis de suero a los 90 días de edad y además analizar la misma serie de órganos para corroborar los resultados encontrados a los 60 días. El análisis de suero se generó a partir de la metalómica y proteómica. La proteómica nos permitió identificar efectos adaptativos del animal al procedimiento experimental.

3. Hipótesis

La restricción alimenticia crónica causa redistribución de metales en los órganos internos de la rata, como un efecto adaptativo a la restricción de alimento.

4. Objetivo general

Determinar si la restricción de alimento transgeneracional empleada, causa deficiencia de iones metálicos en intestinos, órganos viscerales, músculos y sistema nervioso central en ratas Wistar, hembras y machos.

5. Objetivos específicos

- a) Obtener el metaloma de ratas macho, control y sometidos a restricción alimenticia crónica y de hembras, control y sometidas a restricción alimenticia crónica, para posteriormente realizar el comparativo del metaloma:
 - I. entre sexo
 - II. entre dieta
 - III. entre los órganos analizados.
- b) Analizar si existen cambios estructurales en el páncreas endocrino y exocrino de los animales sometidos a restricción alimenticia.
- c) Estudiar diferencias encontradas entre Ca y Zn en la médula espinal y el cerebro.
 - I. Mediante imágenes de rayos X
 - II. Mediante modelaje por código Python
- d) Analizar el metaloma en los órganos internos y el suero de ratas a los 90 días de edad.
- e) Analizar por proteómica el suero de ratas a los 90 días de edad.

6. Materiales y métodos

6.1 Animales

El protocolo de restricción alimenticia empleado [61-68] (Fig. 1A) consistió en dos grupos de ratas Wistar hembras se sometieron a las siguientes condiciones de alimentación: a) **Grupo control (C):** ratas hembras adultas, con acceso libre y monitoreado del alimento comercial Formulab 5008; LabDiet Framingham, MA, USA, de composición conocida (Tabla 2). b) **Grupo de ratas con restricción alimenticia (R)**: ratas hembras adultas que fueron alimentadas con aproximadamente la mitad de la ingesta de alimento del grupo control. El consumo de alimento del grupo C ha sido previamente establecido y en base a esta ingesta, se restringe al 50% el consumo del grupo R [74].

MACRONUTRIENTES			
Hidratos de carbono	56%		
Proteína	27%		
Grasas totales	17%		
MICRONUTRIENTES			
Potasio (K)	1.09%		
Calcio (Ca)	0.95%		
Fósforo (P)	0.70%		
Sodio (Na)	0.28%		
Magnesio (Mg)	0.20%		
Hierro (Fe)	0.021%		
Zinc (Zn)	0.009%		
Manganeso (Mn)	0.008%		
Cobre (Cu)	0.001%		

 Tabla 2. Composición nutrimental del alimento Formulab 5008

El protocolo de alimentación comenzó 3 semanas antes del apareamiento y se mantuvo durante la gestación, el parto y la lactancia de las crías (Figura 1). El día del nacimiento de las crías, las camadas se ajustaron a 9 crías (5 machos y 4 hembras) por madre y se alojaron en cajas de acrílico (43 x 53 x 20), sometiendo a las crías en las mismas condiciones de alimentación hasta el destete (día 21 post natal). Después del destete, las crías se alojaron por sexo en jaulas de acrílico (43 × 53 × 20 cm) adquiriendo el mismo protocolo de alimentación que sus madres. Se seleccionaron ratas de 60 días de edad para la sesión experimental (día del sacrificio). No se agregaron suplementos, vitaminas o minerales al suministro de alimento de animales con restricción alimenticia. Todas las ratas independientemente de su dieta tuvieron acceso libre al agua y se mantienen en un ciclo de luz y oscuridad (12 h-12 h) y a temperatura regulada (22–24 °C). En el día experimental, todas las ratas se pesaron antes de ser sacrificadas. El sacrificio consistió en la decapitación de la rata para posteriormente hacer la extracción de los órganos.

Los órganos colectados para su posterior análisis fueron: los intestinos delgado y grueso, el corazón, los pulmones, el hígado, los riñones, el páncreas, el bazo, el cerebro y la médula espinal, además de los músculos de la pata: Extensor Digitorum Longus (EDL), Gastrocnemio y Sóleo (Figura 1B). Estas muestran procedían de 22 ratas C (12 machos y 10 hembras) y 20 ratas con CR (11 machos y 9 hembras) de 60 días y 14 ratas C (7 machos y 7 hembras).

Debido a que queríamos analizar si los cambios observados a los 60 días de edad eran conservados a los 90 días de edad, se seleccionaron 14 machos (7 machos para grupo control y 7 machos para el grupo de restricción alimenticia) y 14 hembras (7 hembras para grupo control y 7 hembras para el grupo de restricción alimenticia). Se extrajeron los órganos previamente mencionados para el análisis y además se añadieron testículos u ovarios y muestras de suero.

Figura 1. Protocolo de restricción alimenticia y órganos analizados. El protocolo de restricción alimenticia se mantuvo desde el apareamiento, gestación, nacimiento de las crías y destete (A panel izquierdo). Una vez destetadas, las crías adquirieron la misma dieta de sus madres hasta los 60 o 90 días de edad que fue la sesión experimental (A panel derecha). Se analizó la concentración de metales en el sistema nervioso, músculos de la pata, vísceras, intestinos, sistema reproductor y suero.

6.2 Preparación y análisis de las muestras por ICP-OES

6.2.1 Principio de la espectrometría ICP-OES

La espectroscopia de emisión óptica de plasma acoplado inductivamente (ICP-OES) es una técnica analítica utilizada para determinar la cantidad de ciertos elementos que hay en una muestra. Así, el ICP-OES utiliza el hecho de que los átomos y los iones pueden absorber energía para mover electrones del estado fundamental a un estado excitado. En ICP-OES, la fuente de esa energía es el calor de un plasma de argón que opera a 10.000 Kelvin. A medida que un electrón regresa de un nivel de energía más alto a un nivel de energía más bajo, generalmente el estado fundamental, emite luz de una longitud de onda muy específica. El tipo de átomo o ion (es decir, qué elemento es) y los niveles de energía entre los que se mueve el electrón determinan la longitud de onda de la luz emitida.

Para calibrar un ICP-OES, se miden soluciones que contienen cantidades conocidas de cada elemento. A partir de estos datos, se crea una curva de calibración. La curva de calibración determina la relación entre la intensidad de la luz emitida a una longitud de onda específica y la concentración del elemento en la solución [75,76].

Figura 2. Principio del Espectroscopia de emisión óptica de plasma acoplado inductivamente

Cuando los electrones excitados en un átomo de un elemento "X" regresan al estado fundamental, emiten luz en esas longitudes de onda muy específicas. El principio ICP-OES mide la cantidad de luz emitida en cada longitud de onda y utiliza esta información para calcular la concentración del elemento "X" en la muestra.

6.2.2 Procesamiento de muestras para el ICP-OES

Una vez extraídos los órganos, el corazón, pulmón y riñón fueron lavados con agua desionizada para quitar el exceso de sangre, los intestinos fueron lavados para evitar que tuvieran residuo alimenticio. Todos los órganos fueron extraídos en hielo, troceados y almacenados a -80°C. Los tejidos de ratas de 60 días se liofilizaron por 36 horas de liofilización, mientras que los tejidos obtenidos de ratas de 90 días se liofilizaron durante 48 horas. Todos los tejidos se pesaron y digirieron con 1 mL de ácido nítrico Fluka Trace al 65% en el sistema de digestión de microondas MARS 6 CEM durante 1 hr. La muestra digerida se aforo a 5 mL con agua milliQ y se procedió a su lectura.

En el caso del análisis de suero, sangre proveniente de 14 ratas C (7 hembras y 7 machos) y 14 ratas R (7 hembras y 7 machos) de 90 días de edad fue colectado en tubos BD Vacutainer Trace Element Serum (REF 368380). La sangre fue centrifugada a 3000 rpm, durante 15 min a temperatura ambiente. Posteriormente el suero fue separado en tubos de 500µL y mantenida a -80° C hasta el momento de su análisis. Para la digestión se analizó por triplicado 10, 20 y 30 µL de cada suero en tubos con 250 µL de ácido nítrico Fluka Trace al 65%, respectivamente. Los tubos se colocaron a 50 °C durante toda la noche. A la mañana siguiente la muestra digerida se aforo a 1 mL con agua milliQ y se procedió a su lectura. La concentración de metales se determinó mediante Espectroscopia de Emisión Óptica por Plasma de Acoplamiento Inductivo (ICP-OES) en un instrumento Optima 8300 (PerkinElmer). Se midieron concentraciones de Fe, Cu, Zn, Mn, Na, K, Mg, Ca y P.

Se utilizaron estándares para obtener curvas de calibración y regular los cambios en las señales de cada lectura durante la operación del equipo.

Cuando fue posible, la determinación elemental se llevó a cabo por triplicado de cada órgano de la rata. Informamos el valor promedio de estas mediciones como un único punto de datos por órgano de cada rata (ANEXO 1 y 2).

6.3 Análisis estadístico de los resultados obtenidos por ICP-OES

Una vez realizadas las mediciones de ICP-OES, los datos se clasificaron por edad, elemento, órgano, sexo y tratamiento. Para determinar el tipo de distribución de datos, se realizaron las pruebas de normalidad Omnibus de Kolmogorov-Smirnov, D'Agostino Pearson y Shapiro-Wilk Test. El ANEXO 3, resume los resultados de este análisis en las ratas de 60 días, mientras que el ANEXO 4 resume los resultados de las ratas de 90 días. Todos los análisis se realizaron por separado para cada elemento y órgano, lo que permite realizar comparaciones por sexo y dieta empleada (C o R). Cuando los datos mostraban distribución normal, utilizamos una prueba de análisis de varianza (ANOVA) de 2 vías para sexo y

dieta, y la prueba post-hoc de comparaciones múltiples de Bonferroni. A su vez, cuando los datos mostraron distribución no normal, la prueba no paramétrica de Kruskall-Wallis fue empleada junto con la prueba post-hoc de comparación múltiple de Dunn. Todas las pruebas estadísticas se realizaron con la ayuda del software GraphPad Prism versión 5.0 y se consideró una diferencia significativa cuando p < 0,01.

6.4 Análisis del páncreas por tinción de hematoxilina-eosina

Para el análisis histológico del páncreas se aislaron 3 páncreas de ratas macho C y 3 páncreas de ratas macho R, de 60 días de edad. Dichos órganos fueron lavados en solución salina con fosfatos (PBS) para remover los residuos de sangre, posteriormente fueron secados y fijados en paraformaldehído al 4%. Se embebieron en parafina, se cortaron en rebanadas de 5 µm de grosor y se tiñeron con el protocolo estándar de hematoxilina-eosina [77]. Las imágenes se obtuvieron con un microscopio compuesto DM500 (Leica Microsystems) y se analizaron con el software ZEN Blue de Zeiss Microscopy. Para el análisis de células acinares, utilizamos imágenes obtenidas con un aumento de 200x y el software ImageJ para delimitar el área de 120 células acinares de ratas C y 120 células acinares provenientes de ratas R. Los islotes de Langerhans se cuantificaron utilizando el software ZEN Blue de Zeiss Microscopy a un aumento de 200x, marcando el borde de todos los Islotes presentes en las muestras de animales C y de animales R, obteniendo un total de 153 frente a 82 islotes cuantificados, respectivamente. El tipo de distribución de los datos recopilados se analizó mediante las pruebas de normalidad Omnibus de Kolmogorov-Smirnov y D'Agostino Pearson. Debido a que los datos mostraron una distribución no normal, se realizó una prueba no paramétrica de Mann-Whitney para comparar los dos grupos.

6.5 Análisis de secciones del cerebro y médula espinal por imágenes de microscopia de fluorescencia de rayos X, obtenidas en sincrotrón

6.5.1 Principio

En el sincrotrón, partículas cargadas (como en nuestro caso fueron los electrones), se ven obligadas a seguir trayectorias curvas bajo campos magnéticos aplicados, y debido a dicho movimiento, emiten radiaciones electromagnéticas (infrarrojas a rayos X duros) conocidas como radiaciones sincrotrón [78-80]

En general, los electrones se generan mediante la emisión termoiónica de un cañón de electrones que sirve como fuente [78-81]. Luego, los electrones son acelerados por un acelerador lineal (LINAC) a varios cientos de MeV de energía. Los electrones se inyectan a un acelerador circular para aumentar su energía al acercarse al anillo principal de almacenamiento de energía de electrones, llamado anillo de refuerzo. Los electrones se transfieren periódicamente a los anillos de almacenamiento desde el refuerzo cuando la corriente del anillo de almacenamiento cae a 1–1/e 70% para mantener la corriente del haz [81]. El anillo de almacenamiento es el componente principal de un sincrotrón, en el que los electrones viajan en un camino cerrado bajo el efecto del campo magnético. Los imanes de flexión obligan a los electrones a seguir el camino cerrado, y el haz se enfoca mediante imanes cuádruples.

Las líneas de luz trabajan según los ejes de inserción ideados y tangenciales a un imán de flexión y el anillo de almacenamiento. Las líneas de luz están diseñadas para aplicaciones específicas, es decir, imágenes de rayos X, espectroscopia de absorción de rayos X (XAS), espectrometría de estructura fina de absorción de rayos X (XAFS), estructura fina de absorción extendida de rayos X (EXAFS), estructura de absorción de rayos X cerca del borde (XANES), dispersión de rayos X (rayos X de ángulo pequeño y gran dispersión) y espectroscopia de fluorescencia/ emisión de rayos X (XRF) [78].

Figura 3. Esquema del funcionamiento del sincrotrón electron synchrotron - shop11320.etjrdc.org

6.5.2 Obtención y procesamiento de las muestras

Para el análisis de imágenes de microscopia de fluorescencia de rayos X, obtenidas en sincrotrón, 3 ratas macho C de 60 días de edad fueron sacrificadas por sobredosis de pentobarbital sódico, y posteriormente fueron perfundidas con solución salina al 0.9%. Después se procedió a la extracción del cerebro y la médula espinal. Todos los tejidos se sumergieron en 2-metilbutano y nitrógeno líquido durante 15-20 segundos, para ser almacenados a -80°C hasta el momento de los cortes. El día de los cortes, los órganos se montaron en una placa de metal fijada en el Lancer Vibratome Series 1000 Sectioning System donde fueron bañados con solución salina al 0.9% a 4°C. En seguida se realizaron los cortes de un grosor de 500µm. Los cortes fueron montados en portaobjetos Thermanox Plastic Coverslips 22x60 mm y lavados en acetato de amonio al 0.1M. Finalmente, dichas muestras fueron desecadas a temperatura ambiente. Las muestras se enviaron a la fuente de luz de radiación de sincrotrón de Stanford (SSRL) para su análisis. Las imágenes de fluorescencia de rayos X se recolectaron utilizando la línea de haz 2-3, con la energía de rayos X incidente seleccionada utilizando un monocromador de doble cristal de Si (111) a 10 keV. Las líneas de fluorescencia de los elementos de interés (Ca, Zn y P) se monitorearon usando un detector de vórtice de deriva de silicio (Hitachi) usando electrónica de procesamiento de pulso Xspress3 (detectores cuánticos). Se proporcionó un haz microenfocado de 1 x 1 micras utilizando un espejo simétrico axialmente SIGRAY. Las intensidades de los rayos X incidentes y transmitidos se midieron con cámaras de iones llenas de nitrógeno. Las muestras se montaron a 45° con respecto al haz de rayos X incidente y se rastraron espacialmente en modo de barrido continuo en el microhaz utilizando una platina Newport VP-25XL-XYZ. El tiempo de permanencia del haz durante la formación de imágenes fue de 25 ms por píxel.

6.6 Cuantificación de resultados de imágenes de fluorescencia de rayos X

El análisis de datos se realizó usando el programa de software Microanalysis Toolkit [82]. Dicho análisis consistió en analizar mediante el uso de "mascaras secciones ubicadas en la materia blanca (MB), secciones dentro de la materia gris (MG), secciones en el hipocampo (ZnS) y secciones de agregados de calcio (CaAg) de cinco imágenes del cerebro y nueve imágenes de la médula espinal (Figura 4), Se registró la intensidad promedio, expresada en µg del elemento por cm2 de Ca, Zn y P de cada región anatómica analizada en cerebro o la médula espinal por rata. Finalmente se calcularon las medias y las desviaciones estándar en materia gris y blanca, de ambos órganos (ANEXO 5).

Figura 4. Ejemplo de la cuantificación de imágenes de rayos X. Por medio de máscaras secciones de MB y MG fueron analizadas en cortes de cerebro (A y C) y en cortes de médula espinal (D). La región denominada como ZnS en cerebro fue analizada en la región con alta señal de Zn, como giro dentado y corteza cerebral (B y C). Para la región denominada CaAg se seleccionaron las regiones con la mayor intensidad de Ca dentro del agregado, en la médula espinal.

El zinc se acumula en las sinapsis de las fibras musgosas (inervación del hipocampo) y en la corteza [83-85]. En consecuencia, dichas áreas se analizaron por separado en las secciones del cerebro. Los agregados de calcio, definidos como áreas donde la intensidad promedio de Ca fue 100 veces mayor que los valores basales, se observaron solo en las secciones de la médula espinal. Estos agregados se excluyeron del análisis de materia gris/blanca y se cuantificaron por separado. Una vez agrupados todos los datos por región anatómica, órgano y rata, se realizaron las pruebas de normalidad Omnibus de Kolmogorov-Smirnov y D'Agostino Pearson para determinar las comparaciones estadísticas adecuadas, las cuales se describen en el texto principal.

6.7 Diseño de código para comparar cuantificaciones elementales de órganos enteros y cortes de órganos con resolución bidimensional

Desarrollamos un código en Python (versión 3.7.6.) (ANEXO 6), que utiliza una serie de ecuaciones con el objetivo de comparar los resultados obtenidos por a) ICP-OES, cuya técnica representa el contenido de los elementos en la totalidad del cerebro y de la médula espinal, y b) los datos obtenidos del análisis de imágenes de microscopia de fluorescencia de rayos X, cuya técnica muestra el contenido de los elementos en secciones de los mismos órganos.

Para poder comparar los resultados obtenidos de ambas técnicas, primero se desarrollaron ecuaciones de los datos recabados para Ca, Zn y P, en ambos órganos, y para ambas técnicas.

El primer par de ecuaciones representa la totalidad del órgano como una suma de las tres regiones analizadas en las imágenes de fluorescencia de rayos X.

En cerebro, δ representa la proporción de materia blanca, θ la proporción de materia gris y ϵ la región donde la sinapsis de zinc es abundante (esta región se definirá más adelante).

Cerebro: $\delta + \theta + \epsilon = 1$

En médula espinal, α toma la proporción de materia blanca, β toma la proporción de materia gris y γ representa las estructuras llamadas agregados de calcio.

*M*é*dula espinal*: $\alpha + \beta + \gamma = 1$

Las siguientes tres ecuaciones expresan la comparación de ambas técnicas. Para evitar problemas relacionados con diferentes unidades de medición de los dos instrumentos, se utilizó la razón de los resultados entre la médula espinal sobre el cerebro.

Los valores obtenidos por el análisis de las imágenes de fluorescencia de rayos X, están expresados en la parte izquierda de la ecuación. Mientras que los valores

obtenidos por ICP-OES se ubican a la derecha. Las tres ecuaciones están diseñadas de la misma forma ya que solo cambia el elemento considerado.

CALCIO

 $\frac{\alpha E ca + \beta F ca + \gamma G ca}{\delta x ca + \theta y ca + \varepsilon w ca} = \frac{C1}{C2}$

ZINC

 $\frac{\alpha Ezn + \beta Fzn + \gamma Gzn}{\delta xzn + \theta yzn + \varepsilon wzn} = \frac{C3}{C4}$

FÓSFORO

 $\frac{\alpha EP + \beta FP + \gamma GP}{\delta xP + \theta yP + \varepsilon wP} = \frac{C5}{C6}$

Las variables "E, F, G" en médula espinal y "x, y, w" en cerebro representan la cuantificación del elemento experimental por la fluorescencia de rayos X. De tal forma que al multiplicar "E, F, G" por la proporción constante del área perteneciente, se obtiene una representación de todo el órgano.

Por su parte, C1 y C2 son las concentraciones de Ca en la médula espinal y cerebro, de la misma manera sucede con Zn (C3, C4) y P (C5, C6).

Una particularidad del código, es que además considerar los valores de la media, considera la desviación estándar obtenida en las diferentes ratas.

El código además fue complementado con un rango de valores que se esperaban para α , β , γ , δ , θ , ε y que varían por 0.005 numéricamente durante las comparaciones que dan soluciones a todas las ecuaciones planteadas.

 $\alpha = 0.45 - 0.75$

 $\beta = 0.215 - 0.515$ $\gamma = 0 - 0.035$ $\delta = 0.15 - 0.45$ $\theta = 0.25 - 0.55$ $\epsilon = 0.10 - 0.45$

Como condicionante se solicitó al código que los valores de α , β , γ , δ , θ , ϵ (cada variable desplazada a lo largo de todo el rango permisivo en un paso de 0,005) las 5 ecuaciones se satisfacen con los datos recopilados para los tres elementos simultáneamente.

Las salidas del código incluyen además de α , β , γ , δ , θ , ϵ las relaciones C1/C2, C3/C4 y C5/C6. En todos los casos se contempló la medición promedio y la desviación estándar de ambas técnicas.

6.8 Análisis de suero por proteómica

6.8.1 Principio de la técnica de proteómica

Una herramienta clave de la proteómica es la espectrometría de masas (MS), que se utiliza para identificar y caracterizar cuantitativamente las proteínas en función de su estructura, sus modificaciones postraduccionales y sus interacciones. La identificación de proteínas implica normalmente la digestión química o enzimática (generalmente con tripsina) de proteínas en péptidos [86]. Los péptidos resultantes de la digestión de la muestra proteica con tripsina u otras endoproteinasas son separados mediante un gradiente cromatográfico en un sistema de cromatografía nano-UPLC y analizados por el equipo de espectrometría de masas acoplado.

Los datos obtenidos son analizados mediante softwares disponible en la red como MASCOT en www.matrixscience.com, este software hace búsquedas en base de datos para determinar la secuencia de las proteínas [87,88].

Las técnicas de cromatografía líquida basadas en nanoflujo y microflujo (UPLC) producen una mayor sensibilidad y resolución cromatográfica, para la cuantificación y los análisis cualitativos, mediante el uso de columnas de identificación más pequeñas llenas de partículas de menos de 2 micras. Nano ACQUITY UPLC M-Class proporciona un buen rendimiento con flujos de 200 nL/min a 100 µL/min y un rango de diámetros internos de columnas de 75 µm a 1,0 mm [89].

6.8.2 Procesamiento de la muestra

Se seleccionaron 100 μ L de cada muestra de suero para la precipitación de proteínas. Primero se añadió 400 μ L de metanol a la muestra y se agitó en el vórtex durante 2 min. Posteriormente se añadió 100 μ L de cloroformo y se agitó nuevamente por 2 min en vórtex. Finalmente se añadieron 300 μ L de agua milliQ y se agitó en el vórtex por 2 min. La muestra final fue centrifugada por 1 min a 14,000 g y se retiró la capa acuosa superior. A la muestra restante se añadió 400 μ L de metanol y se agitó nuevamente durante 2 min en el vórtex. Posteriormente la muestra fue centrifugada 2 min a 14,000 g. El metanol fue retirado tratando de no remover el sedimento. Una vez obtenido el sedimento, este fue tratado conforme al protocolo de PREOMICS iST sample preparation kit [90].

Para ajustar la cantidad de la muestra a inyectar al equipo nano UPLC Acquity M-Class, se realizó una lectura previa de la muestra en el sistema EPOC. Dependiendo de la cantidad de proteína detectada, se añadió la parte proporcional del componente LC-LOAD del kit de Preomics para diluir la muestra, una vez estandarizada la cantidad, se procedió a la lectura de la muestra en el equipo nano UPLC Acquity M-Class acoplado a un espectrómetro de masas QTOF Synapt G2-Si (Waters Corporation).
7. Resultados

7.1 Diferencia de peso entre ratas control y ratas sometidas a restricción alimenticia

En el presente estudio, un grupo de ratas Wistar machos y hembras, cuyas madres fueron sometidas a un protocolo de restricción alimenticia prenatalmente, se mantuvieron con ingesta restringida de alimentos hasta los 60 o 90 días de edad posnatal (Figura 1A).

Tanto las ratas hembra como macho con alimento restringido tuvieron un peso inferior al observado en las ratas control. A los 60 días de edad, el peso promedio de los machos control (C) fue de 328 ± 49 g y el de las hembras (C) fue de 235 ± 15 g (Figura 5A). Por su parte, el peso de los machos del grupo de la dieta restringida (R) fue de 84 ± 14 g, y en las hembras (R) fue de 74 ± 10 g, mostrando una diferencia de peso de alrededor de~70% entre ambos grupos (Figura 5A).

En el caso de las ratas mantenidas hasta los 90 días, se puede observar que los machos del grupo C alcanzaron un peso de 463 ± 25 g vs 284 ± 18 g en el caso de las hembras (Figura 5B) resaltando, aún más, la diferencia por sexo mostrada en las ratas de 60 días. Las ratas de 90 días del grupo R alcanzaron peso promedio de 135 ± 18 g en los machos y 128 ± 8 g en las hembras. Estos datos demuestran que existe una pérdida considerable de peso, y por consiguiente hay cambios en el tamaño animal como consecuencia de la dieta, tanto a los 60 como a los 90 días. Notablemente, la diferencia de peso es muy marcada entre ratas de distinto sexo alimentadas *ad libitum*, pero no así en el caso de las mantenidas bajo el protocolo de la restricción alimenticia empleada. Por consiguiente, nos preguntamos si existía dimorfismo sexual en las concentraciones de metales de los diversos órganos internos de los animales C y R. Por ello analizamos los datos obtenidos como se explica en la metodología.

Figura 5. Peso de ratas de 60 días y 90 días de edad. El grupo sometido a restricción alimenticia a los 60 días de edad mostró una diferencia de peso de aproximadamente el 70% tanto en machos como hembras (A), a los 90 días de edad la diferencia se conserva en los machos pero se acorta la diferencia en las hembras (B). (Valor de p <0.01 = *, p <0.001 = ** y p <0.0001 = ***)

7.2 No se observa dimorfismo sexual en la distribución de iones metálicos entre órganos de ratas controles o tratadas.

Se determinó la concentración de nueve elementos (Fe, Cu, Zn, Mn, Na, K, Mg, Ca y P) mediante ICP-OES en intestinos (intestino delgado e intestino grueso), vísceras (pulmones, riñones, hígado, páncreas, bazo), músculos (corazón, EDL, gastrocnemio, sóleo) y sistema nervioso central (cerebro y médula espinal) de ratas C y R de ambos sexos, a los 60 y 90 días. Sin embargo, las mediciones en suero y sistema reproductor fueron realizadas únicamente en los animales de 90 días.

Para analizar los datos (ANEXO 1 y 2), observamos por separado los resultados obtenidos por elemento y por órgano incluido en este estudio. Cabe destacar que todos los análisis se realizaron separando los datos por edades. Esto permitió sacar conclusiones en una primera etapa del estudio (a los 60 días de crecimiento de las crías, adultos jovenes), mismos datos que publicamos en la literatura científica [91]. Asimismo, nos permitió preguntar la reproducibilidad de los fenómenos encontrados en los animales tratados a los 90 días, adultos maduros.

Primero, nos preguntamos si los datos se distribuían normalmente dentro de cada subgrupo (machos C, hembras C, machos R y hembras R). Los resultados de este análisis se presentan en ANEXO 3 y 4. Como mencionamos en la metodología, cuando los datos se distribuyeron normalmente, se utilizó un ANOVA de 2 vías, mientras que en todos los demás casos nos basamos en la prueba no paramétrica de Kruskall-Wallis. El ANEXO 3 y 4 también resumen las diferencias por sexo o dieta para cada uno de los órganos y elementos, a los 60 y 90 días de edad respectivamente.

La única diferencia observada entre ratas de distinto sexo, fue en el contenido de Fe en hígado a los 90 días de edad, sin embargo a los 60 días no observamos esta diferencia (Figura 6). Específicamente los machos del grupo C, tienen en promedio 0.39 ± 0.13 y 0.38 ± 0.06 mg de Fe por g de peso seco a los 60 y 90 días de edad, respectivamente. Por otro lado, las hembras C mostraron concentraciones de Fe, de 0.68 ± 0.17 y 0.90 ± 0.19 a los 60 y 90 días de edad. Y finalmente, en el caso del grupo R, los machos mostraron 0.57 ± 0.21 , y 0.61 ± 0.08 . Mientras las hembras mostraron concentraciones de Fe de 1.07 ± 0.43 y $1.28 \pm$ 0.22, a los 60 y 90 días de edad, respectivamente.

Sin embargo, solo a los 90 días se observó además una diferencia por dieta, donde los machos y las hembras sometidos a la dieta con restricción calórica presentan una mayor concentración del metal.

Figura 6. Diferencias por sexo en hígado a los 60 y 90 días de edad. Nuestros resultados señalaron que existe dimorfismo sexual al analizar la concentración de Fe en el hígado a los 60 (izquierda) y 90 (derecha) días de edad. (Valor de p < 0.01 = *, p < 0.001 = ** y p < 0.0001 = ***)

En todos los demás casos, no se encontraron diferencias relacionadas con el sexo de la rata en el metaloma de los órganos analizados que fueran conservados para ambas edades. En total solo vimos muy pocos casos donde se observó un cambio (ANEXO 3 y 4). Por tal motivo se decidió hacer dos análisis estadísticos, el primero para los datos de 60 días y el segundo para los datos de 90 días, la dieta empleada fue considerada la única variable, uniendo los datos de hembras y machos. Según el caso específico de interés, la segunda vía de análisis de varianza fue el órgano a comparar.

Los órganos que mostraron cambios en un ion metálico o un grupo de iones metálicos como resultado del tratamiento de restricción alimenticia se muestran a continuación.

7.3 Cambios en hígado, riñón y páncreas como resultado de la restricción alimenticia a los 60 y 90 días de edad

Como se puede observar en material ANEXO 3 y 4, son pocos los cambios en el contenido de metales por masa seca, debido al tratamiento de restricción alimenticia en los diferentes órganos analizados.

El primer resultado a destacar, sugiere que la restricción de la dieta causa un probable reajuste en la homeostasis del Cu, en hígado y riñón (Figura 7). Tanto a

los 60 como a los 90 días, se observa mayor concentración de Cu (+57% y +20% respectivamente) en el hígado de los animales R respecto a los valores del grupo C. Mientras que el riñón muestra una concentración disminuida de Cu (-38% y - 51% respectivamente), que en los animales R. Cabe mencionar que esta es la única diferencia en las concentraciones de los metales, observada en el riñón a causa de la dieta, por lo tanto, es un cambio órgano-especifico. De esta manera la concentración promedio de Cu obtenida en riñón a los 60 días fue de 0.050 ± 0.019 y de 0.031 ± 0.007 , mg de Cu por g de peso seco en el grupo C y R, respectivamente. Mientras que, a los 90 días de edad, los valores fueron de 0.063 ± 0.020 y de 0.031 ± 0.008 mg de Cu por g de peso seco en los grupos C y R. Por su parte los datos obtenidos para hígado fueron de 0.015 ± 0.004 en el caso C, y de 0.021 ± 0.006 en la condición R a los 60 días de edad. A los 90 días de edad, los valores obtenidos fueron de 0.014 ± 0.001 en el grupo C y de 0.019 ± 0.002 en la condición de la dieta R.

Figura 7. Como efecto de la restricción de alimento, la concentración de cobre aumenta en el hígado (A) y disminuye en el riñón (B) a los 60 y 90 días de edad. (Valor de p <0.01 = *, p <0.001 = ** y p <0.0001 = ***)

Observaciones similares (una aparente redistribución de cobre del riñón hacía el hígado) han sido reportadas previamente en un modelo de infección por *Candida albicans* en ratón [92]. En dicho estudio, los autores sugirieron que el incremento de Cu en hígado podría deberse a una mayor síntesis de ceruloplasmina en el órgano, y por lo tanto mayor requerimiento del metal que probablemente proviene

del riñón. En la discusión de los resultados retomaremos esta interpretación, en conjunto con los datos que se presentan más adelante en el suero de los animales.

En la Figura 7, describimos los resultados observados del análisis de Fe en riñón, hígado, páncreas y bazo. En riñón no encontramos diferencias entre el grupo C y el R, a los 60 o 90 días (Figura 8A). Sin embargo, lo que podemos observar es que a los 60 días la concentración promedio del elemento fue mayor tanto en el grupo C como en el grupo R (0.50 ± 0.17 y 0.49 ± 0.16 , respectivamente), comparada con la concentración promedio a los 90 días (0.27 ± 0.06 y 0.25 ± 0.07 , respectivamente).

Como mencionamos previamente, la concentración de Fe en hígado es dependiente del sexo y de la dieta empleada (Figura 6). En el panel B, podemos observar los datos de Fe siendo clasificados solo por edad y dieta. A los 60 días de edad la concentración promedio en el grupo control fue de 0.52 ± 0.21 , mientras que en el grupo R la concentración fue de 0.79 ± 0.41 , mostrando un incremento del 52%. A los 90 días el grupo C presento una concentración promedio de 0.64 ± 0.30 y el grupo R de 0.90 ± 0.40 , mostrando un incremento del 40%.

Al igual que el hígado, el páncreas también mostró una mayor concentración de Fe a los 60 y 90 días en el grupo sometido a restricción de alimento, mostrando aumentos de 48% y 79%, respectivamente (Figura 8D). Por ejemplo, a los 60 días la concentración promedio del elemento fue de 0.06 ± 0.017 y de 0.09 ± 0.03 en el grupo C y R, respectivamente, mientras que a los 90 días fueron de 0.07 ± 0.03 , y en el grupo R, 0.19 ± 0.03 . Cabe señalar que la concentración de Fe total de páncreas es 10 veces menor a la concentración total en Hígado.

Finalmente, debido a la restricción de alimento, el bazo muestra una menor concentración de Fe que solo es apreciable a los 90 días de edad (Figura 8C). Mientras la concentración del grupo control es de 2.46 \pm 1.09 en el grupo C, la

concentración del grupo R es de 0.97 \pm 0.44, marcando una diferencia del 61% menos Fe, en el grupo R.

Figura 8. Resultados de la concentración de Fe en las vísceras. Los valores de Fe no se ven modificados entre los animales C y los animales R en riñón (A). Sin embargo en hígado (B) y páncreas (D) sus valores incrementan, por su parte en se observa una disminución en la concentración a los 90 días de edad. (Valor de p <0.01 = *, p <0.001 = ** y p <0.0001 = ***)

La restricción calórica afectó principalmente el contenido de elementos por masa seca del páncreas: todos los elementos analizados están más concentrados en el grupo R que en el C, tanto a los 60 y como a los 90 días de edad (Figura 9). El páncreas compartió con el hígado el incremento en el contenido de metales de transición (Cu, Fe, Zn, Mn) respecto a la masa seca del órgano. Sin embargo el resto de los elementos (Na, K, Ca, Mg y P) se vieron incrementados solo en páncreas y no en hígado (Material ANEXO 3).

Figura 9. La restricción alimenticia provocó el incremento de las concentraciones de todos los biometales analizados en páncreas, tanto a los 60 (A) como a los 90 (B) días de edad. (Valor de p < 0.01 = *, p < 0.001 = ** y p < 0.0001 = ***)

7.4Análisis morfológico del páncreas por tinciones de hematoxilinaeosina

El páncreas es una glándula rodeada por el estómago, el intestino delgado, el hígado, el bazo y la vesícula biliar. El páncreas tiene dos funciones principales, la función exocrina y la endocrina [93]. La primera consiste en la producción de enzimas importantes para la digestión proteica, de hidratos de carbono y lipídica, como la tripsina y quimotripsina, la amilasa, y lipasa, respectivamente. Cuando los alimentos entran en el estómago, estos jugos pancreáticos se liberan en un sistema de conductos que culminan en el conducto pancreático principal. El conducto pancreático se une al conducto biliar común para formar la ampolla de Vater que se encuentra en la primera porción del intestino delgado, llamada duodeno. El conducto biliar común se origina en el hígado y la vesícula biliar y produce otro jugo digestivo importante llamado bilis. Los jugos pancreáticos y la bilis que se liberan en el duodeno ayudan al cuerpo a digerir grasas, carbohidratos y proteínas [94,95]. Los minerales presentes en el jugo pancreático y bilis son reabsorbidos en el intestino. La principal excreción de Cu en humanos

se realiza a través de la bilis, en el hígado; la segunda a través de jugo pancreático. En el caso de Fe, la cantidad de Fe excretada a través de la bilis y jugo pancreático es aproximadamente 18 µmoles y 2.24 - 3.12 µmoles, respectivamente [96]. A su vez, el transportador *Zip5* es abundante en las superficies basolaterales de los enterocitos y las células acinares, ambos tipos celulares desempeñan un papel clave en la homeostasis del zinc en los mamíferos [97].

El componente endocrino del páncreas consiste en Islotes de Langerhans que liberan hormonas directamente en el torrente sanguíneo. Dos de las principales hormonas pancreáticas son la insulina, secretado por las células β , sirve como regulador primario de homeostasis de la glucosa en sangre, es decir, esta hormona promueve la recepción de glucosa en tejidos periféricos para mantener la concentración de glucosa en niveles normales, y el glucagón, secretado por las células α , hormona importante para prevenir la hipoglicemia. [98]. La insulina se almacena dentro de vesículas o gránulos secretores, donde dos iones Zn²⁺ coordinan seis monómeros de insulina para formar la estructura hexámera en la que se basan los cristales de insulina madurados. El contenido total de Zn²⁺ del páncreas de los mamíferos se encuentra entre los más altos del cuerpo [99, 100], y la concentración de Zn²⁺ alcanza niveles milimolares en el interior del gránulo de núcleo denso (DCG) [101].

Debido a que los resultados demuestran que todos los elementos analizados incrementan su concentración en el páncreas de los animales R, surge la duda de si existen diferencias morfológicas observables en el páncreas endocrino y exocrino. En las rebanadas de páncreas de ratas macho de 60 días, teñidas con hematoxilina-eosina, se observa que la restricción calórica disminuye el tamaño final del páncreas (Figura 10). Así, mientras el área promedio de los islotes C fue de 19,786 \pm 21,348 µm², la de los islotes R fue un 51% menor, 10,105 \pm 10,093 µm². Sin embargo, no se observó diferencia significativa en el tamaño de los acinos pancreáticos. Cabe señalar que a raíz de esta cuantificación solamente podemos

concluir que, a nivel celular el páncreas exocrino parece no verse afectado. Sin embargo, dado que el tamaño total del páncreas en la condición R es menor, es evidente que el número total de células es, a la vez, muy reducido. Hasta el momento los datos apoyan una reducción general y proporcional del órgano (Figura 10).

Figura 10. Análisis histológico del páncreas. Tamaño de un páncreas C (A izquierda) y de un páncreas R (A derecha). El análisis histológico mostró que existe diferencia en el tamaño de los Islotes pancreáticos, siendo de mayor tamaño en la condición C (B izquierda), sin embargo, no se observaron diferencias en el tamaño de los acinos pancreáticos (C). (Valor de p <0.01 = *, p <0.001 = ** y p <0.0001 = ***).

7.5 Los músculos respondieron de diferente manera ante la restricción alimenticia a los 60 días de edad

El músculo esquelético es un tejido heterogéneo compuesto por varios tipos de fibras, que se pueden clasificar según sus características metabólicas y contráctiles como glucolíticas y oxidativas o fibras lentas, intermedias y rápidas, respectivamente [102]. El metaloma en los músculos mostró que cada tipo de fibra responde de diferente manera a la restricción alimenticia. Por una parte, los músculos EDL del grupo R, incrementaron su contenido de Mn y Ca en un 200% y un 43%, respectivamente (Figura 11A y B). Por otro lado, el músculo gastrocnemio de los animales R, tiene menor concentración de Mn y Cu (Figura 11A y C), mientras que el músculo sóleo muestra una menor concentración de Fe en los animales R (Figura 11D), con respecto al grupo C.

Figura 11. Metalómica de los músculos a los 60 días de edad. El análisis de metalomica muestra que el músculo EDL se ve principalmente afectado en la concentración de Mn y Ca, en el grupo de los animales R (A, B). A su vez, el músculo gastrocnemio (GA) muestra diferencias en la concentración de Mn y Cu en los animales C vs R (A, C) y el músculo sóleo (SO) se ve principalmente afectado en la concentración de Fe entre los animales C vs R (D). (Valor de p <0.01 = *, p <0.001 = ** y p <0.0001 = ***)

Estos resultados no se mantuvieron a los 90 días de edad (Figura 12). El músculo EDL mostró valores de Mn similares en ambas condiciones, 0.00036 fue la concentración promedio para el grupo C y 0.00040 para el grupo R. Mientras que la concentración de Ca en el mismo músculo fue de 0.31 ± 0.12 y 0.35 ± 0.13 en el grupo C y R, respectivamente. Por otro lado, la concentración de Cu en el músculo gastrocnemio fue de 0.0052 ± 0.0012 y 0.0043 ± 0.0009 . Finalmente la concentración de Fe en el músculo sóleo también se mostró sin cambios al reportar valores de 0.065 ± 0.01 y 0.060 ± 0.01 para los grupos C y R, respectivamente. Que no se conserven los cambios observados a los 60 días de edad, puede deberse a que los músculos como órganos dinámicos podrían estar cambiando la eficiencia y funcionamiento de la fibra [68] para adaptarse a la limitante energética, de tal forma que algunos de los cambios que observamos pueden ser transitorios y otros permanentes.

Figura 12. Metalómica de los músculos a los 90 días de edad. El análisis de metalomica en los músculos de 90 días, muestra que las diferencias observadas a los 60 días debido a la restricción alimenticia no son conservadas. El músculo EDL no incrementa sus concentraciones de Mn y Ca, en el grupo de los animales R (A, B). El músculo gastrocnemio (GA) muestra concentraciones

promedio similares al grupo control en Mn y Cu (A, C) y el músculo sóleo (SO) no muestra diferencias en la concentración de Fe (D). (Valor de p <0.01 = *, p <0.001 = ** y p <0.0001 = ***)

Generalmente, en los músculos se encontró un contenido similar de los diferentes metales (a pesar de que a los 60 días estos variaron de forma músculo-específica en el grupo R). No obstante, el músculo sóleo mostró aproximadamente 2 veces más Zn comparado con el músculo EDL, y 3 veces más comparado con el músculo gastrocnemio. Este resultado se mantuvo independientemente de la dieta y la edad (Figura 13).

Figura 13. Resultados de Zn en músculos de 60 y 90 días. Los datos muestran que el músculo Sóleo presenta las más altas concentraciones de Zn, comparado con los músculos EDL y gastrocnemio, este resultado es conservado a los 60 y 90 días. (Valor de p <0.01 = *, p < 0.001 = ** y p < 0.0001 = ***).

7.6 Diferencias en las concentraciones de Ca y Zn entre cerebro y médula espinal

El cerebro y la médula espinal forman en conjunto el sistema nervioso central. Sorprendentemente, encontramos que el cerebro acumula dos veces más Zn por gramo de peso seco comparado con la médula espinal (Figura 14). A los 60 días la concentración de Zn en los cerebros C fue de 0.064 ± 0.012 , mientras que en los R fue de 0.068 ± 0.011 mg/ g de peso seco. Por su parte, la médula espinal C contiene 0.032 ± 0.008 mg/ g de peso seco y la médula de los animales R, $0.037 \pm$ 0.011 mg/ g de peso seco. A los 90 días de edad los valores obtenidos fueron 0.055 \pm 0.005 para el cerebro C, 0.059 \pm 0.007 para el cerebro R, y 0.021 \pm 0.004 y 0.022 \pm 0.003 en la médula espinal C y R, respectivamente. A su vez, la médula espinal almacena en promedio 9 veces más Ca que el cerebro, ambos resultados independientemente de la dieta empleada. Aun cuando el Ca muestra un alto nivel de variabilidad en la médula espinal, consideramos que esta variación es biológica, pues en el resto de los elementos analizados en el mismo y otros órganos no observamos este efecto. Nuestros datos señalan que la concentración de Ca a los 60 días en el cerebro C fue de 0.44 \pm 0.47, mientras que el cerebro de los animales R tuvieron 0.30 \pm 0.19. Por su parte, los datos de la médula espinal para la misma edad fueron de 4.19 \pm 3.08 en el grupo C y 2.62 \pm 3.22 para el grupo R. A los 90 días los datos de cerebro fueron de 0.69 \pm 0.85 para el grupo C, 0.22 \pm 0.12 para el grupo R. En médula espinal 5.14 \pm 3.92 para el grupo C y 3.33 \pm 2.99 para el grupo R.

Figura 14. Concentración de Ca y Zn en el sistema nervioso central. Los resultados muestran que el Ca es 9 veces mayor en médula espinal *vs* cerebro (A y D). A la vez que el cerebro tiene 2 veces más Zn en cerebro *vs* médula espinal (B y E), ambos resultados son conservados a los 60 y 90 días e independientemente de la dieta empleada. Por su parte el grupo C de la médula espinal es el responsable de marcar la diferencia entre ambos órganos en la concentración de P (C y F). (Valor de p <0.01 = *, p <0.001 = ** y p <0.0001 = ***)

Con base en estos resultados, mediante Microscopía de fluorescencia de rayos X, analizamos rebanadas de cerebro y médula espinal de ratas macho del grupo R de 60 días, con el objetivo de identificar las regiones anatómicas donde se localizan las altas concentraciones de Zn y Ca. Como las diferencias en los dos elementos son presentes independientes de tratamiento y sexo, llevamos a el sincrotrón muestras de machos del grupo C, exclusivamente.

7.7 Microscopía de rayos X en cerebro y médula espinal

Para identificar la localización de Zn y Ca en cerebro y médula espinal se realizó un análisis de microscopía de fluorescencia de rayos X en el Sincrotrón de Stanford (Stanford Synchrotron Radiation Lightsource- SSRL) en la línea de luz 2-3, en sección de 500 µm de grosor. Como se ha reportado previamente, la región del hipocampo concentra la mayor cantidad de Zn [83], a esta región la denominamos la región de la sinapsis de zinc (Figura 15A panel a la izquierda). En el caso del Ca, se observa una distribución generalmente homogénea en el mismo campo analizado previamente (Figura 15A segundo panel). Para obtener la concentración de los elementos en los axones neuronales (materia blanca) obtuvimos mediciones en el cuerpo calloso, región rodeada de áreas con cuerpos neuronales densos (materia gris), tanto de la corteza cerebral como del caudado putamen.

Los resultados correspondientes a la médula espinal señalan la presencia de agregados de Ca, localizados de forma irregular, tamaño variable y localización aleatoria a lo largo del corte (Figura 15B).

Figura 15. Resultados de Ca y Zn en cerebro y médula espinal por microscopía de rayos X. El giro dentado en el cerebro es la región que presenta la más alta intensidad de Zn (A). Por su parte la medula espinal alberga cúmulos de calcio distribuidos a lo largo del órgano sin un patrón de distribución específico (B). Los colores reflejan la intensidad del espectro específico según la escala a la derecha de la Figura.

Como se describe en la metodología, el análisis cuantitativo consistió en analizar la concentración de Ca, Zn y P, en 5 imágenes de cerebro, 4 cortes de tipo sagital y un corte de tipo coronal (material ANEXO 5). Mientras que de médula espinal se analizaron 9 imágenes totales, de las regiones cervical, torácica lumbar y sacra.

Los resultados señalan que no existe diferencia en la concentración de Zn y Ca en la materia blanca (MB) de ambos órganos (Tabla 3ª), ni tampoco existe diferencia en la concentración de ambos iones en la región de la materia gris (MG) (Tabla 3^b). Sin embargo, la MG tiene una mayor concentración de Zn y Ca en ambos órganos, y la médula espinal tiene en general mayor concentración de P en MB y MG, respecto a las mismas regiones en cerebro. Los datos de P concuerdan con los observados por ICP-OES (Figura 14, panel C y F).

Los resultados también demuestran que la región de sinapsis de Zn (ZnS) contiene las más altas concentraciones de Zn, dos veces más que en la MG y hasta tres veces más que la región de la MB en ambos órganos, explicando así

porqué hay dos veces más Zn en cerebro que en la médula espinal (Figura 14, panel B y E).

A su vez, los datos cuantificados en la región denominada agregados de Ca (CaAg) demostraron una concentración de casi 150 veces más Ca, respecto a la concentración promedio del mismo ion en MG, MB y ZnS (Tabla 3). Por lo tanto, la gran diferencia observada entre ambos órganos en la concentración de Ca, se debe a la presencia de estas estructuras que han sido previamente reportadas en humanos [103].

Summary synchrotron	C	EREBRO		MÉDULA ESPINAL			
µg/cm2	MATERIA BLANCA	MATERIA GRIS	MATERIA GRIS ZINC SINAPSIS		MATERIA BLANCA MATERIA GRIS		
	N= 3	N= 3	N= 3	N= 3	N= 3	N= 3	
Zinc	28.8 ± 5.9ª	46.3 ± 11.9 ^b	94.0 ± 12.6	32.9 ± 6.8ª	49.4 ± 7.9 ^b	142 ± 20	
Calcium	33.2 ± 7.9	35.2 ± 4.6	42.0 ± 9.3	33.8 ± 5.2	43.5 ± 4.5	6317 ± 294	
Phosphorus	15.8 ± 1.1	13.8 ± 0.3	14.4 ± 1.0	19.3 ± 4.3	18.0 ± 3.0	165 ± 18	

Tabla 3. Resultados del análisis cuantitativo de imágenes de microscopía de rayos-X.

^a Representa las diferencias estadísticamente significativas de materia blanca en Zn y Ca. Mientras ^b remarca las diferencias estadísticamente significativas en materia gris en Zn y Ca.

7.8 Comparación de los resultados de ICP-OES y microscopía de rayos- X mediante código Python

El ICP-OES da un valor general de la concentración de un elemento especifico presente en una muestra liquida. Por su parte, los resultados de fluorescencia de rayos X ofrecen información de donde se localiza un elemento determinado en un área específica de la muestra. Debido a los diferentes datos que nos ofrecen ambas técnicas, diseñamos un código en Python que nos permitió comparar los resultados obtenidos por ambas metodologías en cerebro y médula espinal, particularmente de las concentraciones de Ca, Zn y P, con el objetivo de simular

matemáticamente, como sería la distribución de MB, MG, ZnS y CaAg en cerebro y médula espinal, para observar los resultados previamente mostrados (Figura 14).

En las simulaciones, primero representamos al cerebro como la suma de sus partes, es decir la suma de MB, MG y ZnS. De la misma manera la médula espinal se representó con la suma de sus propias regiones, MB, MG y CaAg.

Posteriormente, nos preguntamos cual debería ser el rango de distribución de cada región en la totalidad de cada órgano, es decir, cuanta porción del cerebro es MB, MG y ZnS, y cuanta porción de la médula espinal es MB, MG y CaAg, obviando que la proporción de cada región es conservada independientemente de la técnica empleada. Finalmente, el código toma los valores promedio y las desviaciones estándar, calculadas de cada uno de los elementos en cada técnica, tanto para cerebro como para médula espinal (Ver metodología página 33).

Las simulaciones señalan, como era de esperar, la relación entre la médula espinal y el Ca cerebral depende de la proporción de agregados de Ca, y aumentan en proporción directa al valor de γ (Figura 16, panel A). El valor máximo para γ resulta ser 0,03 o 3 % pues un valor mayor no satisface los resultados para Zn y P. La simulación también muestra que los valores de γ determinan los resultados para el resto de los iones analizados, además la concentración máxima posible de la relación entre el Ca de la médula espinal y el cerebro es 6, lo que se aproxima al valor de 9 encontrado inicialmente mediante el método ICP-OES. Cuando no hay agregados de Ca ($\gamma = 0$), no hay diferencia en el Ca entre la médula espinal y el cerebro y la proporción es 1.

Otro resultado indica que las áreas sinápticas de zinc en todo el cerebro (representadas por ε) deben estar en el rango entre 0.25 y 0.45 o 25-45 % pero no más bajas (Figura 16, panel B), aunque para cumplir también la condición de que la proporción de Ca entre la médula espinal y el cerebro sea mayor que 5, ε debe ser mayor que 0.3. Con estos resultados se concluye que, existe una relación directa entre la proporción de CaAg presentes en médula espinal y la proporción de Zn entre ambos órganos (Figura 16, panel C y D).

54

Si la proporción de ε se establece alrededor de 0.35, los valores para la MG en cerebro pueden ser del 25 y hasta el 50% (Figura 16, panel E), y obviamente en proporción inversa a los valores de la MB (Figura 16, panel F).

Con estos datos, podemos inferir que los hallazgos del análisis elemental en masa están respaldados por los datos de la microscopía de fluorescencia de rayos X, con lo cual con un pequeño porcentaje de agregados de Ca observamos grandes diferencias entre el Ca de la médula espinal vs el Ca del cerebro. Mientras que una porción de aproximada 25-30% del cerebro está inervada por sinapsis de zinc. Dicha inervación de Zn (ZnS) podría estar reducida en la médula espinal causando diferencias en la concentración de Zn en ambos órganos.

Figura 16. Relaciones entre que predice el modelo de distribución de los metales en las regiones del cerebro y la médula espinal. Los datos muestran que la proporción de agregados de Ca de la médula espinal (A) y áreas del cerebro con alto contenido sináptico de Zn (B) influyen fuertemente en las diferencias en las concentraciones de Ca y Zn. Sólo el 3% de agregados de Ca mostrarían una diferencia de 0.6 veces más Zn (C). La proporción calculada entre la médula espinal y el cerebro para Zn se traza como una función de ϵ (D). La distribución de materia gris (E) y materia blanca (F) en cerebro se ajusta en medida de la presencia de ϵ .

7.9 Los datos de la metalómica muestran que no hay diferencias en el suero de los animales C vs los animales R

Se analizó por ICP-OES, el suero de ratas C y de ratas sometidas a restricción alimenticia, de 90 días de edad, con el objetivo de identificar posibles alteraciones en la concentración de iones metálicos que pudieran explicar los cambios órganos mencionados previamente.

Los resultados del análisis muestran que no existe diferencia entre las dietas empleadas, en ninguno de los elementos analizados (Tabla 4). Los valores del Mn no pudieron ser determinados debido a que sus valores se encontraban por debajo del valor mínimo para ser detectado por la técnica. De la misma manera, los valores de K no fueron considerados pues los tubos de colección de muestra contenían K-EDTA. Sin embargo, todos los elementos están en los rangos esperados para una muestra de suero de rata, los valores presentados en µg metal por mL de suero.

Promedio	Ca	Cu	Fe	Mg	Mn	Na	Р	Zn
с	0.12 ± 0.03	0.0020 ± 0.001	0.009 ± 0.006	0.029 ± 0.008	No detectable	2.3 ± 1.1	0.17 ± 0.06	0.0035 ± 0.0018
R	0.13 ± 0.05	0.0021 ± 0.001	0.010 ± 0.007	0.030 ± 0.009	No detectable	2.6 ± 1.2	0.19 ± 0.11	0.0040 ± 0.0028

Tabla 4. Resultados de la metalómica en el suero. Los datos por ICP-OES señalan que no existen cambios en la concentración de metales entre los animales C y los animales R. Mn fue el único elemento que no fue posible analizar debido a que sus valores se encontraban por debajo al índice de detección.

Debido a que los resultados obtenidos por esta técnica no permiten encontrar explicación a la redistribución específica de los elementos estudiados, se analizaron los cambios en la composición proteica en las mismas muestras para identificar posibles cambios causados por las diferentes dietas empleadas.

7.10 La restricción de alimento no afecta la concentración de elementos en el suero, pero los estudios de la proteómica, indica la presencia de hemólisis intravascular en el grupo R

La proteómica en suero arroja 668 proteínas totales detectadas en hembras, de las cuales 14 están reguladas al alta y 17 proteínas reguladas a la baja (material ANEXO 7). En los machos 665 proteínas totales fueron detectadas, con 19 proteínas reguladas a la alta y 30 proteínas reguladas a la baja. Cabe destacar que los experimentos se realizaron utilizando tres sueros C y tres sueros R, para cada sexo. El análisis se realizó mediante el sistema de proteómica label free, un método basado en espectrometría de masas para identificar y cuantificar los cambios de proteína, mediante la extracción del área de los picos cromatográficos bajo la curva o los métodos de intensidad de señal. Para la estadística se utilizó análisis de varianza. Así que los criterios en el análisis realizado por cada sexo separado fueron que, una proteína se considera regulada cuando tiene un cambio en su concentración mayor a 1.5 veces (a la baja o al alta) y un valor estadístico p < 0.05. Sin embargo, decidimos concentrar nuestro análisis en proteínas que se encontraron reguladas al alta o a la baja en ambos sexos. Existen dos proteínas comunes en el grupo R de hembras y machos que están reguladas al alta, y dos proteínas comunes reguladas a la baja con los criterios preestablecidos.

BPI fold-containing family A member 2 (Bpifa2) es una de las proteínas reguladas al alta a causa de la restricción de alimento. Su función surfactante ha sido relacionada con la tensión superficial en la saliva del ratón [104], además se ha observado aglutinación bacteriana en concentraciones relativamente altas de BPIFA2 [105]. Se elaborará en la discusión sobre su posible función en el suero de las ratas del grupo R. La otra proteína a la alta fue la Kelch-like family member 4 (Klhl4) una proteína que se une a la E3 ubiquitina ligasa Cul3 y activa transcripcionalmente el gen p21 que es un regulador negativo de la proliferación [106]. Sin embargo, se desconoce alguna función extracelular para esta proteína.

Las dos proteínas que se detectaron a la baja en los sueros de animales R de ambos sexos fueron la Haptoglobin (Hp) y el Factor H de complemento (FH). La Hp, es un sistema de protección primaria que se une a la Hb libre, formando un complejo que evita la perdida renal de la hemoglobina [107]. El sistema del complemento humano comprende una familia de proteínas que son esenciales para la respuesta inmunitaria humana contra las infecciones [108]. La función del FH es evitar la activación descontrolada del complemento [109]. Nuestro análisis señala que la expresión de FH al igual que la expresión de Hp está regulada a la baja.

En un segundo nivel de análisis, para cada proteína que se encontró al alta en hembras, se investigó su comportamiento en los machos, y a así sucesivamente para los demás grupos de proteínas. En este segundo nivel de análisis se decidió reportar a aquellas proteínas que, además de cumplir con los criterios estadísticos y de cambio en expresión para uno de los dos sexos, mostraron un cambio similar en el otro sexo, relajando el criterio del valor p en los casos que el promedio difiera 2 veces entre condición o reduciendo el criterio de variación siempre y cuando fuese en el mismo sentido y el valor p siguiese < 0.05. Los resultados de esta comparación se muestran en el material Tabla 5.

Otras proteínas que están reguladas a la baja en la condición R, son Hemopexina (Hpx), C3/C5 convertasa (Cfb), Lipasa (Lipo1), Factor semejante a la insulina, Proteína que contiene dominios semejantes a la inmunoglobulina, Nephrocistina 3 (Nphp3), Proteína semejante a la Kinesin (Kif3a), Queratina 20 del citoesquleto tipo I (Krt20), Subunidad 12 de Complejo mediador (Med12) y Proteína relacionada a la actina 5 (Actr5).

Mientras que proteínas como la subunidad alpha y beta de la Hemoglobina (Hb α , β), Factor activador de plaquetas acetilhidrolase (Pla2g7), Fibulina-1 (Fbln1), Cadena alfa del Fibrinogeno (Fga), Integrina alfa 2 (Itga2), Parvina beta, (Parv β) y Proteína activadora de GTPasa 3 con motivos IQ (Iqgap3) están reguladas al alta en la condición R.

La alta concentración de la hemoglobina en suero, combinada con la baja concentración de hemopexina y haptoglobina sugieren que acontece una hemólisis intravascular, como discutiremos. Existe evidencia de la activación del complemento, mientras que la reducción de la lipasa Lipo1 es consistente con la menor presencia de tejido adiposo en los animales R.

Accession	U nique peptides	Anova (p)	Max fold change	Highest mean condition	Mass	beschelder	Average.Intensity.R	Average.Intensity.C
Q63471	16 16	0.02	2 21	R femal e R male	24701 24701	BPI fold-containing family A member 2 , Bpifa2 DECREASES SERUM SURFACE TENSION AND PROMOTES RED BLOOD CELL AGGLUTINATION	19968 122176	8214 5849
P06866	10 10	0.02 0.00	5 7	C femal e C male	39076 39076	Haptoglobin , Hp INTRAVASAL HEMOLYSIS	3115 3563	15241 25072
P 200 59	21 21	0.27 0.04	2 3	C femal e C male	52092 52092	Hemopexin , Hpx INTRAVASAL HEMOLYSIS	15736 13886	27257 47575
P01946	35 35	0.06 0.03	3 8	R femal e R male	15500 15500	Hemoglobin subunit alpha-1/2 , Hbs1 INTRAVASAL HEMOLYSIS	269643 580777	90732 73074
P02091	31 31	0.09 0.06	2 5	R femal e R male	16093 16093	Hemoglobin subunit beta-1 , Hbb INTRAVASAL HEMOLYSIS		51090 46960
G3V9R2	42 42	0.03	2 2	C femal e C male	144850 144850	Complement factor H, Cfh COMPLEMENT ACTIVATION	14940 17397	26872 38993
G3V615	14 14	0.30 0.03	2 3	C femal e C male	86722 86722	C3/C5 convertase , Cfb COMPLEMENT ACTIVATION	19502 9391	36124 29531
A04815Y241	1 1	0.27 0.01	3 3	R femal e R male	46870 46870	Platelet-activating factor acetylhydrolase , Ha2g7 DEGRADES PLATELET ACTIVATING FACTOR - GENE SUPPRESSED IN CALORIC RESTRICTION	541 641	288 252
ADABIGAANS	1 1	0.31 0.02	2 5	R femal e R male	79487 79487	Fibulin-1, F bin1 BINDS TO FIBRINOGEN IN CLOTS	541 1012	242 206
P06399	12 12	0.28 0.04	1 2	R femal e R male	87427 87427	Fibrinagen alpha chain , Fga CLOTS	149878 224945	115735 103154
037001	11	0.08	2	Cfemale	44726	Lipase , Lipo1	8574	14959
	11	0.01	3	Cmale	44726	LIPID METABOLISM	6513	18831
P35859	10	0.06	2	C femal e C male	67610 67610	Insulin-like growth factor-binding protein complex acid labile subunit , Igfals	36282 19625	72603 53418
ADA815Y6E1	6	0.11 0.01	2 3	C femal e C male	67839 67839	PROMOTES STABILITY OF INSULIN GROWTH FACTOR	7826 4356	16558 11554
F1M0Q9	5 5	0.14 0.01	3 4	C femal e C male	55757 55757	Peptidase M20 domain containing 1 , Pm20d1 BIOMARKER OF OBESITY & METABOLIC SYNDROME - GENERATES N-ACYL-AMINO ACIDS	6254 4304	15750 17464
D3ZHI3	3 3	0.02	2 2	R femal e R male	81208 81208	Kelch-like family member 4 , KIH4 BINDS TO Cu3 E3 UGASE - ACTIVATES p21 PATHWAY - INHIBITS PROLIFERATION	15980 19563	8746 12408
A0A0G2K470	4	0.05 0.01	2 3	R femal e R male	129979 129979	Integrin subunit alpha 2 , Itga2 FOCAL ADHESION EXTRACELLULAR RECEPTOR	2872 2583	1252 748
D32KG5	6 6	0.08 0.04	2 2	R femal e R male	41758 41758	Parvin_beta , Parvb FOCAL ADHESION EXTRACELIULAR SUPPORTS INTEGRIN alpha2	4735 3324	2234 2025
D3ZC54	1	0.13	2 2	R femal e R male	183195 183195	IQ motif containing GTPase activating protein 3 , Iggap3 CYTOSKELETON AND RECEPTOR BINDING PROTEIN	13183 14841	8497 8598
A0A815Y662	2 2	0.00	2 2	C femal e C male	12909 12909	Ig-like domain-containing protein , GN=ENSRN OG0000063707	3943 5520	7882 8922
AGA8IGALW9	6 6	0.03 0.14	2 2	C femal e C male	13318 13318	Ig-like domain-containing protein , GN=ENSRNOG0000065952	2303 1775	5556 3032
A0A0G2K3L5	1 1	0.04 0.42	6 2	C femal e C male	13962 13962	Ig-like domain-containing protein , GN=AABR07061001.1	1080 1637	6419 2941
		0.43		Cloude	454752	Notice and A Miles		0125
D4A1W7	4	0.43	4	Cremale	154762	N optrocystin 3 , Norba KIDNEY CILIA MYRISTOYLATED PROTEIN	3911	8126 16846
F1LQZ3	4 4	0.05 0.06	2 2	C femal e C male	80531 80531	Kinesin-like protein , Kif3a KIDNEY CILIA MOTOR	13163 13866	24283 23546
D4A9N5	2	0.13 0.02	5 10	C femal e C male	73459 73459	Tripartite motif-containing 25, Trim25 E3 UBIQUITIN LIGASE INVOLVED IN OXIDATIVE STRESS RESPONSE	947 147	4476 1469
Q5S6T3	1 1	0.15 0.02	2 4	C femal e C male	48564 48564	D-ribitol-S-phosphate cytidylyl transferase , Crppa	1273 1037	2586 4165
P25030	3 3	0.11 0.03	2 2	C femal e C male	49445 49445	Keratin_ type I cytoskeletal 20 , Krt20	5248 5147	9864 9009
D32DE6	2 2	0.01 0.13	6 3	C femal e C male	247276 247276	Mediator complex suburit 12, Med12 LINKS TRANSCRIPTION FACTORS TO RNA POLYMERASE (mTORC1 regulated)	350 733	1946 2476
D3ZAQ1	1	0.03	3 3	C femal e C male	68890 68890	Actin related protein 5 , Actr5	2322 3514	5821 9044

Tabla 5. Proteínas del suero que cambiaron por desnutrición en ambos sexos

8. Discusión

Nuestro estudio provee nueva información que hasta ahora no estaba documentada sobre los efectos de la restricción alimenticia en la concentración de diferentes biometales en trece órganos de la rata. La diferencia de peso observada entre los individuos de ambos sexos del grupo R comparado con las ratas correspondientes del grupo C, muestra que el tratamiento empleado fue lo suficiente restrictivo para generar cambios en la composición física de los animales. Los animales R lucían de menor tamaño respecto al tamaño de los animales del grupo C, y además mostraron una diferencia de peso de aproximadamente 70% en los machos y 60% en las hembras, a los 60 y 90 días de edad. La restricción alimenticia, se asocia con una fuerte disminución del metabolismo energético, incluida una disminución de la tasa metabólica en reposo, una disminución del efecto térmico de los alimentos y una disminución del costo energético de la actividad física. Sin embargo, aún se debate si el gasto energético total se reduce más allá del nivel esperado, es decir, si existe una adaptación metabólica [110].

Como el objetivo principal de este proyecto fue investigar si la restricción alimenticia empleada causaba una deficiencia generalizada de iones metálicos en los diferentes órganos analizados, nuestros datos señalaron que para los trece órganos analizados la hipótesis sugerida no podría mantenerse, ya que de forma general la restricción del 50% de alimento no afecto la concentración de ningún metal en suero pero si observamos algunas diferencias órganos analizados, no causadas por la dieta empleada. El sexo no fue una variable determinante en el análisis de iones metálicos, a excepción de los datos de Fe en hígado, no observamos diferencias entre machos y hembras.

8.1 El páncreas fue el órgano principalmente afectado en su contenido de metales por la restricción de alimento

Casi todo el páncreas (80-85%) consiste en tejido exocrino [111], un 10-15% corresponde a la matriz extracelular y los vasos, mientras que la porción endocrina constituye alrededor del 2% [112]. El páncreas exocrino está compuesto de células acinares y el sistema ductal [111]. Cada unidad funcional básica está formada por células secretoras acinares, células centroacinares y células ductales, dispuestas en grupos redondeados o tubulares. El jugo pancreático es un líquido incoloro, acuoso, de densidad entre 1.007 y 1.035 según la concentración de proteínas, con pH alcalino, que contiene 2 tipos de secreciones: la enzimática y la hidroelectrolítica. La enzimática es la causante de la hidrólisis de las sustancias nutritivas de los alimentos, mientras que la hidroelectrolítica actúa como vehículo de la enzimática y proporciona un medio alcalino, necesario para la actividad de las enzimas. Las células acinares [113], centroacinares y células ductulares son las encargadas de la secreción hidroelectrolítica del páncreas exocrino [114].

Esta secreción está constituida principalmente por agua, en un 98%, y es muy rica en sodio y bicarbonato. Los cationes se encuentran en concentraciones relativamente constantes similares a las del plasma; los principales son sodio (154 \pm 7 mEq/l), potasio (4,8 \pm 0,9 mEq/l), calcio (1,7 \pm 0,3 mEq/l) y magnesio (0,27 \pm 0,08 mEq/l) [95]. Las concentraciones de manganeso, cobre, hierro y zinc también han sido identificadas, aunque en menor concentración [96]. En cuanto a los aniones, son fundamentalmente el cloro y el bicarbonato. Las secreciones del páncreas exocrino están reguladas principalmente por 2 hormonas intestinales: la secretina, que estimula la secreción hidroelectrolítica, y la colecistoquinina (CCK), que estimula la secreción rica en enzimas [96, 114].

Nuestros resultados señalaron que los animales sometidos a restricción de alimento mostraron una mayor concentración de todos los elementos analizados (Ca, Mg, Na, K, Fe, Mn, Cu, Zn y P) en el órgano por peso seco. Sin embargo el

órgano del mismo grupo también mostró ser de un menor tamaño comparado al tamaño del órgano de los animales C y el análisis morfológico señalo cambios en el número y área total de los Islotes de Langerhans, pero no en los acinos pancreáticos.

Los islotes de Langerhans son pequeñas subunidades celulares conformadas de diversos linajes celulares, de entre ellos, las células β -pancreáticas. Las células β pancreáticas son las encargadas de producir insulina, una hormona anabólica central en la homeóstasis metabólica, encargada del ingreso de la glucosa a las células musculares y lipídicas [90]. En respuesta a la comida, la insulina aumenta [115-118]. La cantidad total de insulina liberada depende del número de células βpancreáticas, de la producción de cada una de estas células y de las concentraciones de glucosa presentes [119]. La insulina sintetizada se une con 2 átomos de Zn para formar cristales sólidos de Zn-insulina que posteriormente son almacenadas en los gránulos secretores, la concentración de insulina en estos gránulos es de aproximadamente 40 mM [120] dando lugar a una de las mayores cantidades de zinc celular en el cuerpo humano [99,100]. En una célula β de ratón, hay aproximadamente 13.000 gránulos de insulina. Ocupan más del 10% del volumen total de células [121]. Cada gránulo contiene aproximadamente 200.000 moléculas de insulina. Sin embargo, el contenido de insulina en las células β es muy dinámico. Estudios han demostrado que la insulina se acumula en presencia de nutrientes y disminuye en respuesta a la privación de nutrientes [122].

El Fe a su vez, al ser parte de las proteínas del grupo Fe-S, es necesario para la correcta síntesis y procesamiento de la insulina en las células β -pancreáticas. La absorción de hierro en las células β se realiza mediante dos sistemas diferentes: un transporte mediado por receptores para el hierro unido a transferrina y un transporte de hierro no unido a transferrina (NTBI). Luego, el complejo se internaliza en compartimentos endocíticos junto con el transportador de iones metálicos divalentes DMT1. Las vesículas internalizadas se fusionan con los compartimentos lisosomales, y el medio ácido provoca el cambio conformacional

del complejo Tf-Fe y la liberación de Fe^{3+,} permitiendo su reducción a la forma ferrosa por STEAP3 [123]. Fe²⁺ en los islotes humanos primarios, la absorción de NTBI está mediada por el transportador de zinc ZIP14. La salida del hierro de las células β es controvertida: la ferroportina/Ireg1 hasta ahora es el único exportador conocido de hierro [124, 125]. Las células β -, junto con la insulina, también liberan hepcidina que se sabe que se une a la ferroportina e induce su internalización [126, 127]. Estudios muestran que existe una probable adaptación metabólica inducida por la pérdida de peso debido a la restricción de alimento, estas adaptaciones incluyen: costos energéticos reducidos a la secreción de insulina, procesos anabólicos inducidos por la hormona [118, 128-131] y mejora en la sensibilidad de la insulina [110].

Como hemos mencionado, tanto el páncreas endocrino como el páncreas exocrino cumplen con funciones específicas en la digestión de los alimentos. El jugo digestivo y las hormonas sintetizadas en este órgano son fuentes ricas en nutrientes y una alteración en el funcionamiento de este órgano podría significar el desarrollo de enfermedades. Nosotros sugerimos que aun cuando no observamos diferencias en el tamaño de los acinos pancreáticos entre el grupo C vs el grupo R, este tipo celular es partícipe de la diferencia observada en la concentración de elementos, entre el páncreas C y el sometido a restricción de alimento. Proponemos que los acinos R estarían sintetizando una mayor cantidad de secreción hidroelectrolítica en el páncreas exocrino R y esto favorecería la hidrolisis de los nutrientes, facilitando disponibilidad de los mismos. Por su parte los Islotes pancreáticos se verían afectados en tamaño y número debido a la privación de nutrientes, y aunque hipotéticamente esto implique una menor síntesis de hormonas comparada a la síntesis de los animales C, no necesariamente sería una cantidad insuficiente ya que, probablemente y debido al bajo estimulo de alimento, la síntesis de hormonas como la insulina es lo suficiente en cantidad para la glucosa disponible en esta condición.

8.2 ¿Está el riñón actuando como reservorio de Cu?

Nuestros resultados muestran que el riñón presenta una alta concentración de Cu respecto al resto de órganos analizados, además los riñones de los animales R presentaron una disminución marcada en los niveles de Cu en riñón en comparación con los animales C, en una de las respuestas más evidentes por la restricción de alimento. En contraste, la concentración de Cu incrementa en el hígado de los animales R. Este patrón de cambios inversos entre riñón e hígado habían sido observados previamente en un modelo de infección en ratones por Candida albicans [92]. El hígado es considerado uno de los principales órganos de regulación de la homeostasis de Cu, mediante la transferencia del exceso de Cu a la bilis, que luego de su absorción intestinal lo devuelve al intestino para su excreción fecal [132]. La cantidad de Cu excretada diariamente es de 7,9 -20,5 µmol a través del hígado y de 0,16 -0,94 µmol a través del riñón [95,133]. Estudios en ratas alimentadas con una dieta alta en Cu han demostrado que el metal también puede ser excretado a través del túbulo contorneado proximal en el riñón [134]. Una cantidad considerable de Cu se secreta en el tracto gastrointestinal diariamente, este Cu de la saliva, los jugos gástricos, pancreáticos e intestinales es, en gran parte reciclado (es decir, reabsorbido, redistribuido y secretado). Casi todo el Cu absorbido por el intestino delgado, entra en la vena porta hepática y, por lo tanto, a los hepatocitos del hígado con ayuda de la ATPasa ATP7B [132], interactuando con proteínas endógenas dependientes de Cu y a través de su incorporación a la ceruloplasmina, para su secreción en la sangre; y su incorporación del exceso en la bilis, se mantiene la homeostasis a través de la excreción. ATP7B funciona no solo como un medio para librar al cuerpo del exceso de Cu que ingresa a los hepatocitos, sino también para suministrar el ion metálico a las proteínas dependientes de Cu [135]. En ciertas células, como los enterocitos y el epitelio renal, también puede funcionar para secuestrar / almacenar Cu en vesículas [136, 137]. Las células renales coexpresan dos ATPasas transportadoras de cobre, ATP7A y ATP7B, que trabajan juntas para

mantener el equilibrio de cobre dentro de este tejido. ATP7A desempeña el papel principal en la exportación de cobre de las células renales para su reabsorción en la sangre y en la protección de las células renales contra la sobrecarga de cobre. ATP7B también está implicado en el mantenimiento de los niveles intracelulares de cobre, probablemente a través del secuestro del exceso de cobre en vesículas [136].

Nosotros sugerimos que el riñón de los animales R muestra una menor concentración de Cu debido a que este órgano en condiciones C actúa como reservorio del metal, dado que en la condición de restricción de alimento la disponibilidad de este ion se ve limitada, el Cu disponible se distribuye en las células que lo requieren, por ejemplo, en el desarrollo y la función del sistema inmunológico del cuerpo [138] no restando Cu para ser almacenado.

Como se señaló, el hígado desempeña un papel fundamental en el metabolismo del Cu, por lo tanto, sugerimos que el incremento de Cu en hígado en los animales R se debe a que la excreción de la bilis se ve disminuida. Estudios metabólicos revelan que, en condiciones normales, la cantidad de cobre excretado en la bilis será directamente proporcional al tamaño de la reserva [139] y si consideramos que el riñón participa como reservorio del elemento y en condiciones de restricción alimenticia no hay reservorio, podríamos pensar que la excreción también disminuye. Se ha reportado que en fetos, la excreción biliar está notablemente disminuida y alcanza la capacidad adulta solo después del primer año postnatal [140]. De acuerdo con esta fisiología del desarrollo, el cobre se acumula en el hígado fetal de tal manera que el contenido hepático de cobre al nacer aumenta relativamente. Este cobre hepático almacenado solo está disponible a la vía secretora del hepatocito una vez que el flujo biliar aumenta después del nacimiento [141] y consideramos que el flujo biliar se mantiene disminuido por la disminución de alimento.

Finalmente, es pertinente mencionar que en el modelo de infección de ratones por *Candida albicans* [92], los autores mostraron evidencias que el Cu incrementó también en el suero, donde se observó incrementada la actividad de la enzima ceruloplasmina, una multi-cobre oxidasa que funciona en el tráfico de hierro (al oxidarlo se une a transferrina). En base a estas observaciones, sugirieron que el incremento en el hígado podría ser por la síntesis de ceruloplasmina en este órgano. Sin embargo, en nuestros experimentos, observamos el incremento de Cu en el hígado sin observar cambios de Cu en plasma y sin detectar un incremento en la ceruloplasmina, proteína que fue detectada (es abundante) en los sueros de los animales C y R, pero sin variar por el cambio en la dieta.

8.3 La restricción calórica afecta la concentración de Fe en páncreas, hígado y bazo

La homeostasis del Fe depende del equilibrio entre las ganancias diarias (absorción intestinal y reutilización de eritrocitos viejos) y las pérdidas (descamación epitelial y la pérdida de sangre como en la menstruación) [142]. Solo se requiere 1-2 mg por día de Fe dietético para ser absorbido a través del intestino. Esto se debe al reciclaje altamente eficiente del Fe de los eritrocitos senescentes. El reciclaje lo realizan los macrófagos esplénicos. Los eritrocitos envejecidos a los 120 días de edad sufren cambios específicos en su membrana que son reconocidos por los macrófagos, iniciando así la eritrofagocitosis. En el bazo los macrófagos de la pulpa roja (RPM) se encargan del reciclaje interno de hierro de los glóbulos rojos senescentes (sRBC) [143]. Los macrófagos reconocen el sRBC por una serie de marcadores de senescencia [144]. Tras el reconocimiento y la unión, los glóbulos rojos que presentan marcadores de senescencia se fagocitan, se someten a hemólisis y sus componentes se reutilizan. El Fe se recupera de la degradación de la hemoglobina y el hemo por enzimas hidrolíticas en las vesículas fagocíticas y la hemooxigenasa-1 (HO-1) [143]. El hemo es catabolizado por HO-1 a monóxido de carbono (CO), biliverdina y hierro ferroso que alimenta el "pool" de hierro lábil (LIP) [145,146]. El hierro del LIP es secuestrado por la proteína ferritina, que almacena hierro, compuesta por subunidades H y L [147].

A los 60 días de edad, la concentración de Fe en el bazo no muestra diferencias entre el grupo C y el grupo R. A los 90 días de edad, en los animales C se observa un incremento en el hierro acumulado en el bazo lo que seguramente refleja la retención de una porción del hierro liberado durante el proceso de eritrofagocitosis en los macrófagos esplénicos en la forma de ferritina [142]. Sin embargo, es notable que ese incremento no se observó en los animales del grupo R a los 90 días y en conjunto con la conclusión principal del análisis de la proteómica en el suero que discutiremos en detalle más abajo – el no incremento de Fe con la edad podría reflejar una disminución del proceso de eritrofagocitosis en este órgano. Nuestra propuesta es que, a causa de la restricción de alimento, el reciclaje de los eritrocitos senescentes en los macrófagos del bazo se ve alterado, de manera que probablemente el Fe para reciclaje no está llegando a los macrófagos causando la disminución en la concentración total.

A los 60 y 90 días de edad, la concentración de Fe en el hígado de los animales R es mayor comparada con los valores obtenidos en el grupo C.

El hígado realiza tres funciones esenciales en el mantenimiento de la homeostasis sistémica del hierro: 1) Es el sitio principal para la producción de proteínas que mantienen el equilibrio sistémico de Fe, 2) es un sitio de almacenamiento para el exceso de Fe en ferritina y 3) es fundamental para la movilización de Fe desde los hepatocitos a la circulación para cumplir con los requisitos metabólicos. La desregulación de la capacidad del hígado para mantener el equilibrio de estos tres parámetros conduce a trastornos relacionados con el Fe [148]. Se sabe que en el hígado hay además una alta demanda de nutrientes al sintetizar el 80% de las proteínas de la sangre, entre ellas la albúmina (55%), globulinas (38%) y fibrinógeno (7%). También incluyen factores de coagulación, proteínas

transportadoras y hormonas, apolipoproteínas y otras proteínas implicadas en la homeostasis de micronutrientes [149].

En respuesta a la restricción alimenticia, sugerimos que el metabolismo induce un cambio con el fin de asegurar una mejor absorción de micronutrientes, esto causaría un mayor almacenamiento de los biometales y menor excreción de los mismos (Figura 17), permitiendo el aporte de los biometales al resto de los tejidos del organismo.

Como mencionamos previamente, el páncreas es fundamental para el control del consumo de energía y el metabolismo [114, 150], el Fe y todos los demás elementos analizados están presentes en mayor concentración en la condición R.

Figura 17. Anatomía de hígado y páncreas. Sugerimos que como respuesta a la restricción alimenticia la excreción de biometales se ve disminuida en hígado y páncreas.

8.4 La distribución de metales es diferente en cada tipo de fibra muscular

La desnutrición natal y postnatal temprana no sólo causa una disminución considerable en el peso del músculo EDL en comparación con los animales de control [66] sino que también aumenta la proporción relativa de fibras tipo IIA-IID acompañado de una disminución en el número de fibras tipo IIB que causan un retraso en maduración muscular [65- 68, 71]. En todas las células musculares, la

contracción depende de un aumento en la concentración de calcio citosólico. Las diferencias entre los músculos de contracción rápida, intermedia y lenta se deben a las funciones que realiza cada fibra, incluido el tipo de miosina utilizada y los diferentes niveles de calcio en reposo. Curiosamente nuestros datos muestran que, a los 60 días de edad, existe un aumento significativo en la concentración de Ca en los músculos EDL de los animales R en comparación con los músculos de los animales C, lo que es consistente con un aumento en la proporción de fibras tipo IIA-IID [66], Sin embargo, este cambio no es conservado a los 90 días. Otros resultados observados a los 60 días de edad en los músculos de los animales con deficiencia de alimento, fue el incremento de Mn en el musculo EDL y su disminución en el musculo gastrocnemio, y la disminución de Fe y Cu en los músculos soleo y gastrocnemio respectivamente, tampoco fueron observados a los 90 días de edad.

El envejecimiento se asocia a cambios progresivos en el metabolismo muscular y a una alteración de la capacidad funcional. El envejecimiento primario se refiere al proceso biológico intrínseco relacionado con el tiempo que no depende del estrés, el trauma o la enfermedad, mientras que el envejecimiento secundario es el deterioro fisiológico que se produce de forma secundaria a las influencias ambientales y de estilo de vida, como la dieta y la actividad física [151].

Se ha reportado que la desnutrición crónica ejerce un efecto diferencial en la composición relativa del tipo de fibra, especialmente en los fascículos del musculo EDL, siendo el tercer fascículo (F3) el más afectado. En este estudio, los autores sugirieron que esos cambios en la composición relativa de los tipos de fibras en los fascículos podrían inducir modificaciones en la organización de las fibras intrafascículos [66] debido a que dicha organización de grupos de tipo fibra se utiliza como un mecanismo para aumentar la eficiencia muscular. Todos estos efectos diferenciales sobre las propiedades de los fascículos EDL podrían estar relacionados con su posición anatómica dentro del músculo y la composición del tipo de fibra [68]. La idea de que la restricción alimenticia severa provoca un

cambio en la composición de tipo de fibras es consistente con que dicho cambio incluya alguna adaptación de tipo metabólica. Sin embargo suponer que en los animales de 90 días de edad se podría está produciendo un proceso de envejecimiento secundario causado por la dieta deficiente de nutrientes, ayudaría también a explicar que el cambio en el metabolismo muscular es responsable de provocar un cambio en las concentraciones de los elementos y por tanto en su distribución en las células musculares.

8.5 Acumulación de Zn en músculo Sóleo

El músculo esquelético es un tejido que representa aproximadamente el 40 % de la masa corporal total y contribuye significativamente a las funciones metabólicas adecuadas, sirviendo como principal reservorio del cuerpo de aminoácidos necesarios para mantener la síntesis de proteínas en tejidos y órganos vitales. El tejido muscular proporciona almacenamiento de carbohidratos y otros elementos como Zn o Ca [152-156]. Estudios previos señalan que los músculos que se componen principalmente de fibras rápidas (fatigantes y glicolíticas), como el músculo EDL, se ven más afectados por una baja ingesta de alimentos que aquellos compuestos por fibras lentas (oxidativas y resistentes a la fatiga) como el músculo sóleo [64, 65, 156-158].

Nuestros resultados señalan que el músculo sóleo no presenta cambios en la concentración de metales por la restricción de alimento. Por otro lado si observamos que el Zn se acumula principalmente en el músculo sóleo en ambas edades analizadas. La razón del mayor contenido de Zn en el sóleo en comparación con otros músculos se asocia con la metaloenzima anhidrasa carbónica III (CA III). Esta enzima se encuentra en altas concentraciones en músculos altamente oxidativos [159]. Se ha reportado que su inhibición afecta la contracción isométrica, generando contracciones similares a las observadas en músculos fatigados (disminución en la tensión y contracción, e incremento en el

tiempo de relajación de las contracciones), además disminuye la concentración de ATP e incrementa el fosfato inorgánico (Pi) y disminuye el pH [160].

8.6 Agregados de Ca en la médula espinal y sinapsis de Zn en el cerebro

Nuestras observaciones muestran que, la médula espinal contiene mayor contenido de Ca en comparación al cerebro, sin embargo, este se encuentra en forma de agregados. Estas calcificaciones son estructuras que han sido previamente observadas en animales [160] y humanos, principalmente en la región aracnoides de la médula espinal [103, 161-164]. Sin embargo, hasta ahora no se dispone de una explicación causal para estos agregados [163-165], la edad [161], el depósito sistémico general de Ca, traumatismos espinales [166], meningitis o aracnoiditis terminal han sido relacionados con estas osificaciones. De la misma manera han sido reportados en pacientes, sin que estos representen una significancia patológica [167]. Agregados de Ca previamente identificados en la médula espinal humana han sido clasificados según el tamaño y síntomas que producen [168]. La calcificación tipo I se asocia con calcificación microscópica, típicamente asintomática y encontrada incidentalmente durante una cirugía de columna o en una autopsia. El tipo II consiste en una pieza calcificada más gruesa, que puede comprimir la médula espinal. Las placas de tipo III son las menos comunes y suelen ser masas circunferenciales más grandes de la aracnoides alrededor de la médula espinal. Los agregados de Ca más grandes observados en las secciones de rata presentadas aquí (Fig. 13B) se parecen en su mayoría a osificaciones de Tipo II, aunque es muy probable que también estén presentes calcificaciones de Tipo I.

Otro resultado que obtuvimos fue que el cerebro contiene el doble de concentración de Zn por peso seco en comparación con la médula espinal (Figura 12B y E). El descubrimiento de altos niveles de zinc en las vesículas sinápticas de las neuronas dentro de la corteza cerebral de los mamíferos fue reportado en 1955
[169]. Está bien establecido que el Zn enriquece las sinapsis glutamatérgicas principalmente en el hipocampo [170, 171] y la corteza [170] debido al transportador de zinc 3 (ZnT3) que empaqueta el Zn en vesículas sinápticas [172]. No todas las sinapsis glutamatérgicas contienen Zn; sin embargo, recientemente se demostró que aproximadamente el 34 % de todas las vesículas sinápticas en el cerebro de la rata coexpresan el transportador vesicular de glutamato, VGLUT1, y ZnT3 [173]. Si bien se sabe que el Zn liberado sinápticamente inhibe a los receptores postsinápticos [174, 175], hallazgos recientes muestran que el Zn presináptico facilita el contenido del glutamato vesicular [176] y, por lo tanto, aumenta alrededor de un 20 % el tamaño cuántico postsináptico [173]. Aquí, hemos desarrollado una metodología para comparar los resultados obtenidos por dos métodos, por un lado la técnica ICP nos da información de la concentración total del elemento presente en la muestra y por otro lado la microscopia de fluorescencia de rayos X, nos muestra la ubicación geográfica del elemento, al juntar los datos de ambas metodologías la predicción es que las vesículas de Zn, constituyen la mayor población de vesículas en el cerebro, lo que puede explicar la alta concentración de este ion en la región. Una hipótesis que surge de este trabajo es que el tipo de vesícula sináptica que contiene VGLUT1 y ZnT3 no es abundante en la médula espinal, lo que lleva a una menor concentración de Zn en la médula espinal que en el cerebro. Experimentos realizados por colaboradores en el laboratorio han mostrado que las diferencias que reportamos en rata, son conservadas en el ratón. Además, actualmente hay experimentos en curso para identificar la presencia del transportador ZnT3 en la medula espinal. Proponemos que, ZnT3 en médula espinal se encuentra ausente o muy disminuido en comparación con su abundante expresión en el cerebro [173].

8.7 La proteómica del suero sugiere hemolisis intravascular en los animales R

Contrario a lo que suponíamos, los resultados observados en el análisis de metalómica en el suero mostró que no hay diferencias en la concentración de

metales entre los animales sometidos a restricción alimenticia *vs* los animales controles. Estos resultados *per se* no nos ayudaban a explicar el mecanismo de redistribución de metales entre los órganos.

Los metales en fluidos y órganos biológicos, se unen a diversas proteínas esenciales para regular las reacciones biológicas y las funciones fisiológicas en células y órganos [177]. A través del estudio de proteómica en suero, esperábamos encontrar proteínas que nos ayudaran a explicar los cambios observados en los distintos órganos. A menudo no se aprecia que la inflamación desempeña un papel importante en la fisiopatología de la desnutrición, y se asume que la pérdida de peso es el criterio más importante para un estado de desnutrición [178]. En la siguiente discusión, mostramos una breve introducción sobre los complejos proteicos o los procesos fisiológicos que involucran a varias proteínas cuya concentración en el suero se vio afectada al alza o a la baja en los animales R comparados con los animales C.

El sistema del complemento humano comprende una familia de proteínas que son esenciales para la respuesta inmunitaria humana contra las infecciones [108] porque favorece la generación de anticuerpos y la memoria inmunológica [179]. La activación no deseada del complemento en las propias células del cuerpo es un factor patológico clave en un amplio espectro de enfermedades inmunitarias, incluidas las autoinmunes, inflamatorias y las degenerativas [180-182]. Por esta razón el proceso de activación del Complemento está regulado en todas sus etapas por múltiples proteínas que evitan que se active sobre sus propias células y tejidos.

Actualmente se reconocen tres vías de activación del complemento; éstas son la *vía clásica*, dependiente de complejos antígeno-anticuerpo o por la proteína C reactiva; la *vía alterna*, iniciada por sustancias localizadas en la superficie de microorganismos y la *vía de la lectina* que se une a la manosa (LUM), conocida también como la vía clásica independiente de anticuerpos [183]. La vía clásica del complemento se desencadena cuando los anticuerpos de clase IgG o inmunoglobulina M (IgM) se unen a la superficie celular y termina con la lisis de la

74

célula [183, 184]. Las enzimas convertasas cumplen un papel central en la cascada del complemento. Las convertasas C3 escinden en C3a, una molécula quimioatrayente, y C3b, que se une covalentemente a las superficies diana y desencadena la fagocitosis. Las convertasas C5 escinden en C5a, un potente mediador del reclutamiento de leucocitos y la inflamación, y C5b, el iniciador del complejo de ataque a la membrana y la lisis celular [185].

La regulación de la Vía Alternativa (VA) del Complemento es evolutivamente la más antigua y está permanentemente activada en el plasma debido a la hidrólisis espontánea de un enlace tioéster interno en algunas moléculas de C3. Normalmente, esta activación basal de la VA no supera un umbral perjudicial, gracias a la existencia de componentes del Complemento que la regulan [179].

Cualquier situación, genética o adquirida, que altera la regulación de la VA puede provocar daño autólogo por el Complemento, siendo el riñón uno de los órganos más vulnerables [186, 187]. Las patologías renales comúnmente asociadas a la desregulación de la VA del Complemento son el Síndrome Hemolítico-Urémico atípico (SHUa), la glomerulopatía C3 (GC3) y la nefropatía por IgA (NIgA). Muchos de estos pacientes tienen variantes genéticas patogénicas o autoanticuerpos circulantes que afectan al funcionamiento normal del Factor H (FH), principal regulador de la VA del Complemento y capaz de controlar la activación de C3 [179-188]. Como mencionamos previamente el factor H es la principal proteína reguladora de la vía alternativa del complemento y está compuesto por 20 dominios de proteína de control del complemento (PCC) [189, 190]. Se sintetiza principalmente en los hepatocitos, pero también se expresa en monocitos, fibroblastos, células mesangiales, células endoteliales y células neuronales [191], y se almacena en los gránulos α de las plaquetas [192]. Los mecanismos por los cuales las mutaciones del factor H pueden conducir a las diversas patologías renales no se comprenden del todo, sin embargo, se han observado que las mutaciones pueden causar un reconocimiento defectuoso del huésped, lo que permite que el complemento se active en las células endoteliales del huésped [193-203] y producir a una lesión vascular [196] causando la activación plaquetaria [203]. Cuando se analizó el suero de pacientes con SHUa los niveles de factor H son casi indetectables, los niveles de C3 también muestran una disminución entre el 30% al 50% [188, 201]. Al realizar la prueba de hemolisis de eritrocitos ovinos [204-206], los resultados indican que el factor H del paciente tiene una capacidad disminuida para proteger los eritrocitos, lo que permite que ocurra la hemólisis mediada por el complemento [189].

Durante la hemólisis intravascular, la hemoglobina se libera en el plasma donde normalmente es eliminada por los secuestradores de hemoglobina: haptoglobina. El complejo haptoglobina-hemoglobina expone un neoepítopo que es reconocido por el receptor eliminador de hemoglobina, CD163, en la superficie de los monocitos/macrófagos, que se une al complejo con alta afinidad y media la endocitosis y degradación de la haptoglobina-hemoglobina [207]. Dado que la haptoglobina no se recicla, la formación de grandes cantidades de complejos de haptoglobina-hemoglobina conduce a un rápido agotamiento de la haptoglobina [208]. La hemoglobina también libera hemo férrico en la oxidación, que se une a la hemopexina y es degradado por los hepatocitos en el hígado. La hemólisis excesiva satura y agota estos sistemas de eliminación de hemoglobina y conduce a una acumulación de hemoglobina y hemo en el plasma y orina. La hemoglobina plasmática y el hemo median efectos proinflamatorios, proliferativos y prooxidantes directos en las células endoteliales de los vasos. El exceso de hemoglobina plasmática puede contribuir a la activación plaquetaria y a la trombosis. La función de la hemoglobina sobre la función plaquetaria probablemente esté mediada por la eliminación del óxido nítrico. En modelos animales, la reducción del óxido nítrico provoca aumentos en los productos de división de fibrina y en los complejos de trombina-antitrombina, lo que conduce a importantes depósitos de fibrina y formación de trombos [209]. Diversos autores reportan que los niveles elevados de PLA2G7 han sido fuertemente implicados como un factor de riesgo para el desarrollo de aterosclerosis [210-217]. La placa aterosclerótica tiene 3 componentes principales:

1. Lípidos;

2. Células inflamatorias y musculares lisas;

3. Una matriz de tejido conectivo que puede contener trombos en diversas etapas de organización y depósitos de calcio [218].

La coagulación y la fibrinólisis están generalmente relacionadas con la iniciación y progreso de la ateroesclerosis, a través de la formación de deposiciones de fibrina dentro de la superficie arterial. Niveles elevados de fibrinógeno en plasma son un factor de riesgo para la progresión de la ateroesclerosis y enfermedades cardiovasculares, incluidas enfermedades de arterias oclusivas periféricas.

Por su parte, la fibulina-1 se une al fibrinógeno y puede aislarse de la sangre en complejo con el fibrinógeno [219]. Además, puede favorecer la unión de las plaquetas a través de un puente de fibrinógeno a la integrina plaquetaria $\alpha_{IIB}\beta_3$ [220].

Estudios han demostrado que, si bien una persona puede ser portadora de la mutación del Factor H de Complemento, se requiere un desencadenante para que ocurra el SHUa [221-223]. Este desencadenante sugerimos podría ser la dieta, debido a que la restricción alimenticia podría estar interviniendo en la síntesis de proteínas del complemento, en las inmunoglobulinas y citoquinas, vulnerando de cierta manera el sistema inmunológico del animal. Si bien se ha reportado que la privación de nutrientes es una causa frecuente de inmunodeficiencias que conducen a un aumento de la frecuencia y gravedad de las infecciones, nosotros sugerimos que estas modificaciones podrían deberse a la necesidad de aumentar las vías por las cuales obtener nutrientes.

La proteína BPIFA2 tiene propiedades surfactantes en la saliva [224], además se ha reportado su unión a *Candida* [225] Lipopolisacarido (LPS) [226] y bacterias [203] en este último caso generando aglutinación bacteriana en concentraciones relativamente altas de BPIFA2 [105].

Con el marco teórico presentado arriba, podemos evaluar los resultados alojados de la proteómica en los sueros de las ratas del grupo R en comparación con

aquellas ratas del grupo C que se evaluaron a los 90 días de edad. Nuestros resultados señalan que, a causa de la restricción de alimento, los niveles de la proteína BPIFA2 incrementan en el suero, sugiriendo que a causa de este incremento existe una mayor permeabilidad para el suero, probablemente para favorecer la endocitosis y extracción de nutrientes, sin embargo, de forma simultánea permitiría el paso de agentes infecciosos. De tal forma que este proceso desencadena la "activación" del SHUa y con ello todos los procesos de cadena previamente señalados.

Específicamente, se ve la combinación al alta de hemoglobina (ambas subunidades) y a la baja de haptoglobina y hemopexina que en su conjunto es el diagnóstico clínico de hemólisis intravascular. Suponemos que el incremento de BPIFA2 también contribuye a este fenómeno promoviendo la aglutinación de eritrocitos viejos y promoviendo su hemólisis afuera del bazo. El hecho que el reciclaje de los eritrocitos en el bazo está disminuido explicaría también que no aumenta en ese órgano el hierro. A la vez, la captura de hemopexina por el hígado podría explicar el aumento de hierro en ese órgano.

La disminución del factor de complemento H y de la convertasa C3/C5 en el suero de las ratas R en combinación con el incremento de fibrinogeno y fibulina-1 y proteínas de adhesión extracelular están compatibles con la hipótesis que el complemento se utiliza para remover los eritrocitos que se hemolizan. La ausencia de indicadores inflamatorios y de estrés oxidativo, por otro lado, sugieren que la hemólisis observada por restricción alimenticia, está quizás controlada a nivel fisiológico. ¿Es posible que los eritrocitos y en particular la hemoglobina sirvan como una fuente de aminoácidos para los animales R? El hecho que estos animales viven y alcanzan edades mayores a sus pares del grupo C es un indicio adicional de que la hemolisis intravascular observada podría servir como un mecanismo adaptivo para prevenir la inanición.

Se requieren más estudios para completar la descripción de los cambios en la fisiología del animal R. Sugerimos realizar estudios adicionales de proteómica en órganos claves como lo son el riñón y el hígado y además estudiar los parámetros

de hemograma en los animales R. La hemólisis intravascular debería causar anemia si es un estado patológico; en contraste si es un mecanismo adaptativo, como aquí proponemos, los animales R tendrán parámetros normales en su contenido de hemoglobina y glóbulos rojos.

Figura 18. Hemólisis intravascular como efecto de la activación descontrolada de la vía del complemento.

9. Resumen y conclusiones

Este es el primer estudio que analiza la concentración de varios metales simultáneamente en un modelo de restricción alimenticia. La restricción del 50% de alimento empleada en este protocolo disminuye sustancialmente (60-70 %) el peso de los animales restringidos, pero no afecta de forma generalizada la concentración de metales en los órganos de la rata ni a los 60 ni a los 90 días de edad. Además, encontramos que el sexo no es una variable determinante en el contenido de metales en los varios órganos. La robustez con la que los animales pueden regular las concentraciones de metales, aun alterando su ingesta de macro y micronutrientes diaria es notable. Si bien, la diferencia entre la composición corporal es evidente entre ambos grupos, suponíamos que restringir la ingesta de alimento podía influir negativamente en la ingesta total de nutrientes y con ello ver alteración en la concentración de elementos, sin embargo, solo observamos cambios muy específicos en algunos de los órganos analizados (Figura 19). Probablemente existe un proceso de adaptación celular y sistémica en los diferentes órganos de la rata desnutrida, independientemente del sexo, que no permite la interrupción de la homeostasis de los metales.

Proponemos que hay disminución en la excreción de los metales por la vía biliar en hígado y por el jugo pancreático a través del páncreas exocrino. Queda investigar si los cambios observados en el contenido de los metales se deben a modificaciones en la actividad de sus respectivos transportadores [228].

Cambios órgano- específicos

Figura 19. Resumen de los cambios observados a los 60 y 90 días. El primer cambio producido a causa de la restricción alimenticia fue la diferencia de peso (aproximadamente el 70%) en machos y hembras. El riñón se vio afectado al mostrar menor concentración de Cu respecto a los valores C, sin embargo fue el órgano con los mayores niveles del metal respecto al resto de órganos analizados. Páncreas e hígado mostraron mayores concentraciones de prácticamente todos los elementos analizados, probablemente estén actuando como sitios de reserva ante una posible desnutrición. Por otra parte el musculo sóleo mostró los valores más altos de Zn respecto al resto de músculos y finalmente el cerebro almacena 2 veces más concentración de Zn comparado a la medula espinal, mientras la medula almacena hasta 9 veces más calcio que el cerebro.

Con base a nuestros resultados obtenidos resumimos y concluimos lo siguiente:

- 1. No existen diferencias notables en la concentración de metales entre hembras y machos en los 13 órganos analizados.
- Existen pocas diferencias en la concentración de metales de animales control y sometidos a restricción alimenticia crónica, siendo más bien diferencias órgano-específicas. El páncreas y en segundo lugar el hígado fueron los órganos más afectados, incrementando el contenido de los

metales por gramo de peso seco, resultados observados tanto en los animales a los 60 como a los 90 días de edad. Los datos obtenidos del suero de los animales restringidos de 90 días de edad, tampoco mostraron cambios en la concentración de metales respecto a los datos de suero control. Por lo tanto, se concluye que la restricción crónica de alimento no disminuye la concentración de metales en los órganos.

- La proteómica en suero mostró presencia de hemolisis intravascular y la activación del Sistema de Complemento. Sugerimos que la restricción alimenticia es el factor desencadenante a esta vía posiblemente como mecanismo adaptativo a la desnutrición.
- 4. El páncreas restringido tiene mayor cantidad de metales comparado con su control. El análisis histológico nos mostró que la restricción de alimento influye negativamente en el número y tamaño de los Islotes de Langerhans, sin embargo, no tenemos pruebas que indiquen si su función se ve alterada. Los acinos pancreáticos a su vez, no muestran diferencias en tamaño comparado a los acinos control. Faltan estudios que describan si el páncreas endocrino, exocrino o ambos son los responsables de la acumulación de metales.
- 5. El riñón guarda más Cu que el resto de los órganos analizados. Además observamos que la acumulación de Cu en el riñón del animal con restricción de alimento es menor comparado con los niveles obtenidos en los riñones controles. Simultáneamente el hígado de los animales R muestra mayor concentración de Cu comparado al hígado control. Falta evidencia que describa si el sitio de almacenaje de este elemento es el riñón, pero nuestro estudio apoya esta hipótesis.

- 6. La restricción alimenticia además afecta los niveles de Fe en el bazo, los animales restringidos mostraron una menor concentración de Fe en este órgano, lo que es consistente con el menor reciclaje de glóbulos rojos dentro del sistema vascular en los animales del grupo R.
- 7. La médula espinal posee aproximadamente 9 veces más calcio comparada con el cerebro. Nuestros resultados de la microscopia de fluorescencia de rayos X, muestra que este ion se distribuye en forma de agregados, ubicados de forma aleatoria a lo largo de la médula. El modelo matemático indica que estas estructuras constituyen de un 0 3% total del órgano. Aunque estas calcificaciones se han observado con anterioridad en la literatura, su procedencia y función biológica, son desconocidas.
- 8. A su vez, el cerebro concentra 2 veces más Zn que la médula espinal, este elemento se encuentra principalmente en la zona de sinapsis de Zn. Este resultado sugiere que la modulación del sistema glutamatergico por el Zn quizás esté presente principalmente en el cerebro. Queda considerar las consecuencias fisiológicas para la comunicación neuronal en la médula espinal en futuros trabajos.
- 9. El músculo sóleo es el músculo que guarda la mayor concentración de Zn. Los cambios observados en los músculos EDL, gastrocnemio y sóleo debido a la restricción de alimentos en los 60 días de edad, fueron los únicos resultados no conservados a los 90 días de edad. Sin embargo, estudios previos han mostrado que a los 60 días de edad las fibras musculares están todavía en etapas plásticas y quizás a esto se deben las diferencias en la respuesta de cada tipo muscular en esta etapa.
- 10. Los estudios de metalómica son una parte integral que debe de acompañar a los estudios de la expresión génica y del proteóma como la base sobre la cual se desarrolla la fisiología del animal.

10. Perspectivas

Hasta ahora, podemos concluir que el protocolo de restricción alimenticia empleada en este estudio, en general, no es lo suficiente restrictivo para modificar la concentración de metales a lo largo de trece órganos analizados, sin embargo, con base a nuestros resultados, es necesario realizar una serie de experimentos que permitan explicar como ocurre el mecanismo homeostático en el organismo del animal desnutrido.

Pruebas en sangre para analizar el hematocrito, la concentración de glucosa e insulina, además de la concentración de urea, la creatinina y marcadores de inflamación podrían ser importantes para analizar el funcionamiento adecuado de algunos órganos, como el páncreas, hígado y riñón, órganos principalmente afectados debido a la restricción de alimento.

Además, el realizar mediciones de las concentraciones de cobre y albúmina en orina y heces, complementarían la evaluación del funcionamiento hepático y renal.

Finalmente, evaluar mediante microscopía de fluorescencia de rayos X rebanadas de páncreas, es necesario para ayudar a identificar las regiones anatómicas del órgano que concentran la mayor cantidad de metales.

11. Bibliografía

- Informe SOFI 2023: Hay 122 millones de personas más que en 2019 afectadas por el hambre debido a múltiples crisis, ONU Chile, Julio 2023. <u>Informe SOFI 2023: Hay 122 millones de personas más que en 2019</u> <u>afectadas por el hambre debido a múltiples crisis | Naciones Unidas en</u> <u>Chile</u>
- Food security indicators latest updates and progress towards ending hunger and ensuring food security (fao.org)
- Programa Especial para la Seguridad Alimentaria (PESA) Centroamérica Conceptos básicos, FAO 2023 Conceptos Básicos | Programa Especial para la Seguridad Alimentaria (PESA) Centroamérica | Organización de las Naciones Unidas para la Alimentación y la Agricultura (fao.org)
- Rosales FJ, Reznick JS, Zeisel SH. Understanding the role of nutrition in the brain and behavioral development of toddlers and preschool children: identifying and addressing methodological barriers. Nutr Neurosci. 2009 Oct;12(5):190-202. doi: 10.1179/147683009X423454. PMID: 19761650; PMCID: PMC2776771.
- Maleta K. Undernutrition. Malawi Med J. 2006 Dec;18(4):189-205. PMID: 27529011; PMCID: PMC3345626.
- 6. More than one in three low- and middle-income countries face both extremes of malnutrition (2019) (who.int)
- Sablah M. Causes and Impacts of undernutrition over the Life Course (2019) Nutrition, UNICEF <u>PowerPoint Presentation (un.org)</u>
- Muñoz-Manrique C, Ancira-Moreno M, Burrola-Méndez S, Omaña-Guzmán I, Hoyos-Loya E, Hernández-Cordero S, Trejo-Domínguez A, Mazariegos M, Smith N, Alonso-Carmona S, Mier-Cabrera J, Tavano-Colaizzi L, Sánchez-Múzquiz B, Avendaño-Álvarez F, Muciño-Sandoval K, Rodríguez-Moguel NC, Padilla-Camacho M, Espino-Y-Sosa S, Ibarra-González L, Medina-Avilés C. Quality Appraisal of Nutritional Guidelines to Prevent, Diagnose,

and Treat Malnutrition in All Its Forms during Pregnancy. Nutrients. 2022 Nov 1;14(21):4579. doi: 10.3390/nu14214579. PMID: 36364841; PMCID: PMC9659219.

- Ricardo Uauy. Determinantes sociales, biológicas y económicas de la desnutrición infantil. Santiago de Chile, Mayo 2008 <u>Determinantes-Sociales-</u> <u>Nutricion-Prof-Ricardo-Uauy-Esp.pdf</u>
- 10. Gómez-Santos Federico. Desnutrición. (1946); Bol Med Hosp Infant Mex. 3:543-51 (Reimpresión: Bol Med Hosp Infant Mex. (2016); 73(5):297---301)
- 11. Black RE, Victora CG, Walker SP, Bhutta ZA, Christian P, de Onis M, Ezzati M, Grantham-McGregor S, Katz J, Martorell R, Uauy R; Maternal and Child Nutrition Study Group. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013 Aug 3;382(9890):427-451. doi: 10.1016/S0140-6736(13)60937-X. Epub 2013 Jun 6. Erratum in: Lancet. 2013. 2013 Aug 3;382(9890):396. PMID: 23746772.
- 12. Murray CJL, Lopez AD. *The Global Burdenof Disease*. Cambridge MA: Harvard University Press; 1996. p. 312.
- Barker DJP. Fetal origins of coronary heart disease. *BMJ.* 1995;311:171– 174.
- 14. Amadi B, Besa E, Zyambo K, Kaonga P, Louis-Auguste J, Chandwe K, Tarr PI, Denno DM, Nataro JP, Faubion W, Sailer A, Yeruva S, Brantner T, Murray J, Prendergast AJ, Turner JR, Kelly P. Impaired Barrier Function and Autoantibody Generation in Malnutrition Enteropathy in Zambia. EBioMedicine. 2017 Aug;22:191-199. doi: 10.1016/j.ebiom.2017.07.017. Epub 2017 Jul 19. PMID: 28750860; PMCID: PMC5552244.
- 15. Joseph KS. Validating the fetal origins hypothesis: An epidemiologic challenge. In: Black RE, Michaelsen KF, editors. *Public health issues in infant and child nutrition*. Philadephia: Nestle Nutrition Workshop Series, Nestec Ltd, Vevey/Lippincott Williams & Wilkins; 2002. pp. 199–216
- 16. Tulchinsky TH, Kaluski DN, Berry EM. Food fortification and risk group supplementation are vital parts of a comprehensive nutrition policy for

prevention of chronic diseases. Eur J Public Health. 2004 Sep;14(3):226-8. doi: 10.1093/eurpub/14.3.226. PMID: 15369023.

- 17. Encuesta Nacional de Salud y Nutrición (ENSANUT) 2018 <u>Encuesta</u> <u>Nacional de Salud y Nutrición (ENSANUT) 2018 (inegi.org.mx)</u>
- 18. Desnutrición infantil | UNICEF (<u>www.unicef.org</u>)
- 19. Brown KH, Engle-Stone R, Kagin J, Rettig E, Vosti SA. Use of Optimization Modeling for Selecting National Micronutrient Intervention Strategies: An Example Based on Potential Programs for Control of Vitamin A Deficiency in Cameroon. *Food and Nutrition Bulletin*. 2015;36(3_suppl):S141-S148. doi:10.1177/0379572115599325
- 20.Nishi Y. Zinc and growth. J Am Coll Nutr. 1996 Aug;15(4):340-4. doi: 10.1080/07315724.1996.10718608. PMID: 8829089.
- 21. Rivera JA, Hotz C, González-Cossío T, Neufeld L, García-Guerra A. The effect of micronutrient deficiencies on child growth: a review of results from community-based supplementation trials. J Nutr. 2003 Nov;133(11 Suppl 2):4010S-4020S. doi: 10.1093/jn/133.11.4010S. PMID: 14672304.
- 22. Clausen T, Dørup I. Micronutrients, minerals and growth control. Bibl Nutr Dieta. 1998;(54):84-92. doi: 10.1159/000059449. PMID: 9597174.
- 23. Abrams SA. Nutritional rickets: an old disease returns. Nutr Rev. 2002 Apr;60(4):111-5. doi: 10.1301/00296640260085840. PMID: 12002681.
- 24. Medeiros DM. Copper, iron, and selenium dietary deficiencies negatively impact skeletal integrity: A review. Exp Biol Med (Maywood). 2016 Jun;241(12):1316-22. doi: 10.1177/1535370216648805. Epub 2016 May 5. PMID: 27190269; PMCID: PMC4950270.
- 25. Loveridge N, Noble BS. Control of longitudinal growth: the role of nutrition. Eur J Clin Nutr. 1994 Feb;48(2):75-84. PMID: 8194496.
- 26. Soliman AT, De Sanctis V, Kalra S. Anemia and growth. Indian J Endocrinol Metab. 2014 Nov;18(Suppl 1):S1-5. doi: 10.4103/2230-8210.145038. PMID: 25538873; PMCID: PMC4266864.
- 27.Callahan LS, Thibert KA, Wobken JD, Georgieff MK. Early-life iron deficiency anemia alters the development and long-term expression of

parvalbumin and perineuronal nets in the rat hippocampus. Dev Neurosci. 2013;35(5):427-36. doi: 10.1159/000354178. Epub 2013 Sep 26. PMID: 24080972; PMCID: PMC3888229.

- 28. Ramesh J, Shaik MI, Srivalli J. Impact of Iron indices, mitochondrial oxidative capacity, oxidative stress and inflammatory markers on insulin resistance and secretion: A pathophysiologic perspective. J Diabetes Metab. 2012;3:9
- 29. De-Regil LM, Jefferds ME, Sylvetsky AC, Dowswell T. Intermittent iron supplementation for improving nutrition and development in children under 12 years of age. *Cochrane Database Syst Rev.* 2011:CD009085.
- Beard JL. Iron biology in immune function, muscle metabolism and neuronal functioning. *J Nutr.* 2001;131:568S–79.
- 31. Chowang L, Soemantri AG, Pollitt E. Iron supplementation and physical growth or rural Indonsian children. *Am J Clin Nutr.* 1988;47:496–501.
- 32. Angeles IT, Schultink WJ, Matulssi P, Gross R, Sastroamidjoj S. Increased rate of stunting among anaemic Indonesian pre-school children through iron supplementation. Am J Clin Nutr. 1993;58:339–42
- 33. Cannas D, Loi E, Serra M, Firinu D, Valera P, Zavattari P. Relevance of Essential Trace Elements in Nutrition and Drinking Water for Human Health and Autoimmune Disease Risk. Nutrients. 2020 Jul 13;12(7):2074. doi: 10.3390/nu12072074. PMID: 32668647; PMCID: PMC7400883.
- 34. Shenkin A. The key role of micronutrients. Clin Nutr. 2006 Feb;25(1):1-13.doi: 10.1016/j.clnu.2005.11.006. Epub 2006 Jan 10. PMID: 16376462.
- 35. Stevens GA, Beal T, Mbuya MNN, Luo H, Neufeld LM; Global Micronutrient Deficiencies Research Group. Micronutrient deficiencies among preschoolaged children and women of reproductive age worldwide: a pooled analysis of individual-level data from population-representative surveys. Lancet Glob Health. 2022 Nov;10(11):e1590-e1599. doi: 10.1016/S2214-109X(22)00367-9. PMID: 36240826.
- 36.New WHA resolution to accelerate efforts on food micronutrient fortification (who.int)

- 37. Seyed Mohammad Taghi Gharibzahedi, Seid Mahdi Jafari. The importance of minerals in human nutrition: Bioavailability, food fortification, processing effects and nanoencapsulation, Trends in Food Science & Technology, Volume 62, 2017, Pp 119-132, ISSN 0924-2244, https://doi.org/10.1016/j.tifs.2017.02.017.
- 38.New estimate of the global prevalence of hidden hunger what does it say about zinc? Octubre, 2022.(<u>www.izincg.org</u>)
- 39. De la Cruz-Góngora V, Flores M, Pacheco S, Ayala-Niochet M, Bonvecchio A, García-Guerra A, Dinorah González, Mejía-Rodríguez F, Rivera M, Rodríguez-Ramírez S, Shamah-Levy T y Villalpando S. Anemia y deficiencia de micronutrimentos en niñas, niños, adolescentes y mujeres en edad reproductiva. Instituto Nacional de Salud Pública (México, 2023).
- 40. Ritchie H. and Roser M. "Micronutrient Deficiency". (2017) 'https://ourworldindata.org/micronutrient-deficiency'
- 41.Krebs NF, Lozoff B, Georgieff MK. Neurodevelopment: The Impact of Nutrition and Inflammation During Infancy in Low-Resource Settings. Pediatrics. 2017 Apr;139(Suppl 1):S50-S58. doi: 10.1542/peds.2016-2828G. PMID: 28562248.
- 42.Wachs TD, Georgieff M, Cusick S, McEwen BS. Issues in the timing of integrated early interventions: contributions from nutrition, neuroscience, and psychological research. Ann N Y Acad Sci. 2014 Jan;1308:89-106. doi: 10.1111/nyas.12314. Epub 2013 Dec 19. PMID: 24354763; PMCID: PMC4075015.
- 43. Cerami C. Iron Nutriture of the Fetus, Neonate, Infant, and Child. Ann Nutr Metab. 2017;71 Suppl 3(Suppl 3):8-14. doi: 10.1159/000481447. Epub 2017 Dec 22. PMID: 29268254; PMCID: PMC6143763.
- 44. Widdowson EM, Spray CM. Chemical development in utero. Arch Dis Child.
 1951 Jun;26(127):205-14. doi: 10.1136/adc.26.127.205. PMID: 14857788;
 PMCID: PMC1988372.
- 45. Farag MA, Abib B, Qin Z, Ze X, Ali SE. Dietary macrominerals: Updated review of their role and orchestration in human nutrition throughout the life

cycle with sex differences. Curr Res Food Sci. 2023 Feb 1;6:100450. doi: 10.1016/j.crfs.2023.100450. PMID: 36816001; PMCID: PMC9932710.

- 46. Morris AL, Mohiuddin SS. Biochemistry, Nutrients. [Updated 2023 May 1].
 In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023
 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK554545/</u>
- 47. Pohl H.R., Wheeler J.S., Murray H.E. Sodium and potassium in health and disease. Metal ions in life sciences. 2013;13:29–47.
- 48. Lombardi G., Ziemann E., Banfi G., Corbetta S. Physical activity-dependent regulation of parathyroid hormone and calcium-phosphorous metabolism. Int. J. Mol. Sci. 2020:21
- 49. Trace Elements in book, Diet and Health: Implications for Reducing Chronic Disease Risk, (1989)
- 50.AG Szent-Gyorgyi. Calcium regulation of muscle contraction. (1975) Biophysical Journal Vol15 (7): 707–723.
- 51. Thomas C. Südhof. Calcium Control of Neurotransmitter Release. (2012)Cold Spring Harb Perspect Biol. 4(1)
- 52. Dunn J, Grider MH. Physiology, Adenosine Triphosphate.
- 53.Grober U., Schmidt J., Kisters K. Magnesium in prevention and therapy. Nutrients. 2015;7:8199–8226.
- 54. Firouzi A., Maadani M., Kiani R., Shakerian F., Sanati H.R., Zahedmehr A., Nabavi S., Heidarali M. Intravenous magnesium sulfate: new method in prevention of contrast-induced nephropathy in primary percutaneous coronary intervention. Int. Urol. Nephrol. 2015;47:521–525.
- 55. Microminerals A Guide to the Principles of Animal Nutrition (oregonstate.education)
- 56. Maxfield L, Shukla S, Crane JS. Zinc Deficiency. [Updated 2023 Jun 28]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK493231/</u>
- 57. Micronutrients. World Health Organization (2023) Micronutrients (who.int)
- 58. Salameh E, Morel FB, Zeilani M, Déchelotte P, Marion-Letellier R. Animal Models of Undernutrition and Enteropathy as Tools for Assessment of

Nutritional Intervention. Nutrients. 2019 Sep 16;11(9):2233. doi: 10.3390/nu11092233. PMID: 31527523; PMCID: PMC6770013.

- 59. Petry N, Olofin I, Boy E, Donahue Angel M, Rohner F. The Effect of Low Dose Iron and Zinc Intake on Child Micronutrient Status and Development during the First 1000 Days of Life: A Systematic Review and Meta-Analysis. Nutrients. 2016 Nov 30;8(12):773. doi: 10.3390/nu8120773. PMID: 27916873; PMCID: PMC5188428.
- 60. Thurstans S, Opondo C, Seal A, Wells J, Khara T, Dolan C, Briend A, Myatt M, Garenne M, Sear R, Kerac M. Boys are more likely to be undernourished than girls: a systematic review and meta-analysis of sex differences in undernutrition. BMJ Glob Health. 2020 Dec;5(12):e004030. doi: 10.1136/bmjgh-2020-004030. PMID: 33328202; PMCID: PMC7745319.
- 61. Quiroz-González S, Segura-Alegría B, Olmos JC, Jiménez-Estrada I. The effect of chronic undernourishment on the synaptic depression of cutaneous pathways in the rat spinal cord. Brain Res Bull. 2012 Nov 1;89(3-4):97-101. doi: 10.1016/j.brainresbull.2012.07.008. Epub 2012 Jul 22. PMID: 22828571.
- 62. González SQ, Alegría BS, Olmos JC, Jiménez-Estrada I. Effect of chronic undernourishment on the cord dorsum potentials and the primary afferent depolarization evoked by cutaneous nerves in the rat spinal cord. Brain Res Bull. 2011 Apr 25;85(1-2):68-74. doi: 10.1016/j.brainresbull.2011.02.007. Epub 2011 Feb 24. PMID: 21354275.
- 63. Quiróz-González S, Escartín-Pérez RE, Paz-Bermudez F, Segura-Alegría B, Reyes-Legorreta C, Guadarrama-Olmos JC, Florán-Garduño B, Jiménez-Estrada I. Endogenous content and release of [(3)H]-GABA and [(3)H]-glutamate in the spinal cord of chronically undernourished rat. Neurochem Res. 2013 Jan;38(1):23-31. doi: 10.1007/s11064-012-0881-3. Epub 2012 Sep 15. PMID: 22983619.
- 64. Ruiz-Rosado A, Cabrera-Fuentes HA, González-Calixto C, González-López L, Cázares-Raga FE, Segura-Alegría B, Lochnit G, de la Cruz Hernández-Hernández F, Preissner KT, Jiménez-Estrada I. Influence of chronic food

deprivation on structure-function relationship of juvenile rat fast muscles. J Muscle Res Cell Motil. 2013 Dec;34(5-6):357-68. doi: 10.1007/s10974-013-9357-6. Epub 2013 Sep 14. PMID: 24037259.

- 65. Ruiz-Rosado A, Fernández-Valverde F, Mariscal-Tovar S, Hinojosa-Rodriguez CX, Hernández-Valencia JA, Anzueto-Rios Á, Guadarrama-Olmos JC, Segura-Alegría B, Jiménez-Estrada I. Histoenzymatic and morphometric analysis of muscle fiber type transformation during the postnatal development of the chronically food-deprived rat. J Histochem Cytochem. 2013 May;61(5):372-81. doi: 10.1369/0022155413480149. Epub 2013 Feb 7. PMID: 23392735; PMCID: PMC3636706.
- 66. Vázquez-Mendoza E, Rodríguez-Torres EE, López-García K, Hinojosa-Rodríguez CX, Jiménez-Estrada I. Differential effect of chronic undernutrition on the fiber type composition of fascicles in the extensor digitorum longus muscles of the rat. Acta Histochem. 2017 May;119(4):364-371. doi: 10.1016/j.acthis.2017.03.005. Epub 2017 Apr 2. PMID: 28372808.
- 67. Pereyra-Venegas J, Segura-Alegría B, Guadarrama-Olmos JC, Mariscal-Tovar S, Quiróz-González S, Jiménez-Estrada I. Effects provoked by chronic undernourishment on the fibre type composition and contractility of fast muscles in male and female developing rats. J Anim Physiol Anim Nutr (Berl). 2015 Oct;99(5):974-86. doi: 10.1111/jpn.12274. Epub 2014 Dec 12. PMID: 25495590.
- 68. Rodriguez-Torres EE, Viveros-Rogel J, López-García K, Vázquez-Mendoza E, Chávez-Fragoso G, Quiroz-González S, Jiménez-Estrada I. Chronic Undernutrition Differentially Changes Muscle Fiber Types Organization and Distribution in the EDL Muscle Fascicles. Front Physiol. 2020 Jul 23;11:777. doi: 10.3389/fphys.2020.00777. PMID: 32848813; PMCID: PMC7396705.
- Wareham AC, Whitmore I. A comparison of the mechanical properties of oesophageal striated muscle with skeletal muscles of the guinea pig. Pflugers Arch. 1982 Dec;395(4):312-7. doi: 10.1007/BF00580795. PMID: 6218476.

- 70. Bissonnette DJ, Madapallimatam A, Jeejeebhoy KN. Effect of hypoenergetic feeding and high-carbohydrate refeeding on muscle tetanic tension, relaxation rate, and fatigue in slow- and fast-twitch muscles in rats. Am J Clin Nutr. 1997 Aug;66(2):293-303. doi: 10.1093/ajcn/66.2.293. PMID: 9250107.
- Prakash YS, Fournier M, Sieck GC. Effects of prenatal undernutrition on developing rat diaphragm. J Appl Physiol (1985). 1993 Sep;75(3):1044-52. doi: 10.1152/jappl.1993.75.3.1044. PMID: 8226510.
- Sieck GC, Lewis MI, Blanco CE. Effects of undernutrition on diaphragm fiber size, SDH activity, and fatigue resistance. J Appl Physiol (1985). 1989 May;66(5):2196-205. doi: 10.1152/jappl.1989.66.5.2196. PMID: 2745285.
- 73. Brown KH, Moore SE, Hess SY, McDonald CM, Jones KS, Meadows SR, Manger MS, Coates J, Alayon S, Osendarp SJM. Increasing the availability and utilization of reliable data on population micronutrient (MN) status globally: the MN Data Generation Initiative. Am J Clin Nutr. 2021 Sep 1;114(3):862-870. doi: 10.1093/ajcn/nqab173. PMID: 34036318; PMCID: PMC8408880.
- 74.Chow BF, Lee CJ. Effect of dietary restriction of pregnant rats on body weight gain of the offspring. J Nutr. 1964 Jan;82:10-8. doi: 10.1093/jn/82.1.10. PMID: 14110926.
- 75. ICP-OES Frequently Asked Questions: An Introduction to the Fundamentals of Inductively Coupled Plasma – Optical Emission Spectroscopy (ICP-OES) <u>ICP-OES principle, ICP-OES Analysis, ICP-OES FAQ's | Agilent</u>
- 76. Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) Information Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES) Information | Thermo Fisher Scientific - MX
- 77. Velasco M, Ortiz-Huidobro RI, Larqué C, Sánchez-Zamora YI, Romo-Yáñez J, Hiriart M. Sexual dimorphism in insulin resistance in a metabolic syndrome rat model. Endocr Connect. 2020 Sep;9(9):890-902. doi: 10.1530/EC-20-0288. PMID: 33069157; PMCID: PMC7583132.

- 78.Bharti, A., & Goyal, N. (2019). Fundamental of Synchrotron Radiations. Intech Open. doi: 10.5772/intechopen.82202
- 79. Balerna A, Mobilio S. Synchrotron Radiations: Basics, Methods and Applications. Germany: Springer; 2015;1:3-27
- 80. Willmott P. An Introduction to Synchrotron Radiation: Techniques and Applications. United States: John Wiley& Sons; 2011. pp. 39-71
- 81.Shenoy G. Basic characteristics of synchrotron radiation. Structural Chemistry. 2003;14:3-14. DOI: 10.1023/A:102165672
- 82.Webb, SM. The MicroAnalysis Toolkit: X-ray Fluorescence Image Processing Software. Amer. Inst. Phys. Conf. Proc.1365196-199. (2011)
- 83. Cole TB, Wenzel HJ, Kafer KE, Schwartzkroin PA, Palmiter RD. Elimination of zinc from synaptic vesicles in the intact mouse brain by disruption of the ZnT3 gene. Proc Natl Acad Sci U S A. 1999 Feb 16;96(4):1716-21. doi: 10.1073/pnas.96.4.1716. PMID: 9990090; PMCID: PMC15571.
- 84. Linkous DH, Flinn JM, Koh JY, Lanzirotti A, Bertsch PM, Jones BF, Giblin LJ, Frederickson CJ. Evidence that the ZNT3 protein controls the total amount of elemental zinc in synaptic vesicles. J Histochem Cytochem. 2008 Jan;56(1):3-6. doi: 10.1369/jhc.6A7035.2007. Epub 2007 Aug 21. PMID: 17712179; PMCID: PMC2323120.
- Takeda A, Tamano H. Significance of the degree of synaptic Zn²⁺ signaling in cognition. Biometals. 2016 Apr;29(2):177-85. doi: 10.1007/s10534-015-9907-z. Epub 2015 Dec 24. PMID: 26704989.
- 86. Espectrometría de masas de proteínas. MERCK. Noviembre 2023. Espectrometría de masas de proteínas (sigmaaldrich.com)
- 87. Identificación de proteínas mediante LC MS/MS. Instituto de Biología molecular y celular del cáncer. Unidad de Proteómica. Noviembre 2023.
 Unidad de Proteómica. Centro de investigación del Cáncer Comprehensive Cancer Center Research (usal.es)

- 88.Lau AT, He QY, Chiu JF. Proteomic technology and its biomedical applications. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai). 2003 Nov;35(11):965-75. PMID: 14614532.
- 89. Nano to Microscale Based UPLC Technologies. Walters TM. Noviembre 2023. <u>Nanoflow Microflow UHPLC UPLC chromatographic separations with ultimate sensitivity and re | Waters</u>
- 90.PREOMICS iST Sample Preparation Kit 8X. Pelleted cells & precipitated protein <u>6322f21c2bfa0835b105e683_PreOmics_iST_method_8rxn_v5.pdf</u> (webflow.com)
- 91. Santos-Díaz AI, Solís-López J, Díaz-Torres E, Guadarrama-Olmos JC, Osorio B, Kroll T, Webb SM, Hiriart M, Jiménez-Estrada I, Missirlis F. Metal ion content of internal organs in the calorically restricted Wistar rat. J Trace Elem Med Biol. 2023 Jul;78:127182. doi: 10.1016/j.jtemb.2023.127182. Epub 2023 Apr 28. PMID: 37130496.
- 92. Culbertson EM, Khan AA, Muchenditsi A, Lutsenko S, Sullivan DJ, Petris MJ, Cormack BP, Culotta VC. Changes in mammalian copper homeostasis during microbial infection. Metallomics. 2020 Mar 25;12(3):416-426. doi: 10.1039/c9mt00294d. PMID: 31976503; PMCID: PMC7122220.
- 93. Talathi SS, Zimmerman R, Young M. Anatomy, Abdomen and Pelvis, Pancreas. 2023 Apr 5. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 30422507.
- 94. The Pancreas and Its Functions (2023) <u>Pancreas Functions, Location &</u> <u>Disease | Columbia Surgery</u>
- 95. Hundt M, Basit H, John S. Physiology, Bile Secretion. [Updated 2022 Sep 26]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK470209/</u>
- 96. Ishihara N, Yoshida A, Koizumi M. Metal concentrations in human pancreatic juice. Arch Environ Health. 1987 Nov-Dec;42(6):356-60. doi: 10.1080/00039896.1987.9934359. PMID: 3439813.
- 97.Geiser J, De Lisle RC, Andrews GK. The zinc transporter Zip5 (Slc39a5) regulates intestinal zinc excretion and protects the pancreas against zinc

toxicity. PLoS One. 2013 Nov 26;8(11):e82149. doi: 10.1371/journal.pone.0082149. PMID: 24303081; PMCID: PMC3841122.

- 98. Lima-Martínez MM, Betancourt L, Bermúdez A. Glucagon: a simple bystander or a key player in the pathophysiology of diabetes? Rev Avances en Diabetología. Vol 27 Num 5 pp 160-167, Octubre,2011 DOI: 10.1016/j.avdiab.2011.09.002
- 99.Dodson G, Steiner D. The role of assembly in insulin's biosynthesis. Curr Opin Struct Biol. 1998 Apr;8(2):189-94. doi: 10.1016/s0959-440x(98)80037-7. PMID: 9631292.
- Foster MC, Leapman RD, Li MX, Atwater I. Elemental composition of secretory granules in pancreatic islets of Langerhans. Biophys J. 1993 Feb;64(2):525-32. doi: 10.1016/S0006-3495(93)81397-3. PMID: 8457676; PMCID: PMC1262355.
- Li YV. Zinc and insulin in pancreatic beta-cells. Endocrine. 2014 Mar;
 45(2):178-89. doi: 10.1007/s12020-013-0032-x. Epub 2013 Aug 24. PMID: 23979673.
- 102. Ariano MA, Armstrong RB, Edgerton VR. Hindlimb muscle fiber populations of five mammals. J Histochem Cytochem. 1973 Jan;21(1):51-5. doi: 10.1177/21.1.51. PMID: 4348494.
- 103. Wijdicks CA, Williams JM. Spinal arachnoid calcifications. Clin Anat. 2007 Jul;20(5):521-3. doi: 10.1002/ca.20455. PMID: 17149734.
- 104. Nandula SR, Huxford I, Wheeler TT, Aparicio C, Gorr SU. The parotid secretory protein BPIFA2 is a salivary surfactant that affects lipopolysaccharide action. Exp Physiol. 2020 Aug;105(8):1280-1292. doi: 10.1113/EP088567. Epub 2020 Jun 19. PMID: 32390232; PMCID: PMC9484039.
- Gorr SU, Abdolhosseini M, Shelar A, Sotsky J. Dual host-defence functions of SPLUNC2/PSP and synthetic peptides derived from the protein. Biochem Soc Trans. 2011 Aug;39(4):1028-32. doi: 10.1042/BST0391028. PMID: 21787342; PMCID: PMC3417823.

- Choi SH, Cho SY, Song J, Hur MW. KLHL4, a novel p53 target gene, inhibits cell proliferation by activating p21WAF/CDKN1A. Biochem Biophys Res Commun. 2020 Sep 24;530(3):588-596. doi: 10.1016/j.bbrc.2020.07.100. Epub 2020 Aug 1. PMID: 32753315.
- 107. Deuel JW, Vallelian F, Schaer CA, Puglia M, Buehler PW, Schaer DJ. Different target specificities of haptoglobin and hemopexin define a sequential protection system against vascular hemoglobin toxicity. Free Radic Biol Med. 2015 Dec;89:931-43. doi: 10.1016/j.freeradbiomed.2015.09.016. Epub 2015 Oct 22. PMID: 26475040.
- Walport MJ. Complement. First of two parts. N Engl J Med. 2001 Apr 5;344(14):1058-66. doi: 10.1056/NEJM200104053441406. PMID: 11287977.
- 109. Clark SJ, Bishop PN. Role of Factor H and Related Proteins in Regulating Complement Activation in the Macula, and Relevance to Age-Related Macular Degeneration. J Clin Med. 2015 Jan 1;4(1):18-31. doi: 10.3390/jcm4010018. PMID: 25729613; PMCID: PMC4340553.
- Redman LM, Ravussin E. Caloric restriction in humans: impact on physiological, psychological, and behavioral outcomes. Antioxid Redox Signal. 2011 Jan 15;14(2):275-87. doi: 10.1089/ars.2010.3253. Epub 2010 Aug 28. PMID: 20518700; PMCID: PMC3014770.
- 111. Matsuda Y. Age-related morphological changes in the pancreas and their association with pancreatic carcinogenesis. Pathol Int. 2019 Aug;69(8):450-462. doi: 10.1111/pin.12837. Epub 2019 Jul 24. PMID: 31339204.
- 112. Rikkers LF, Pitt HA, Warshaw AL. Liver, biliary tract, and pancreas. Curr Opin Gen Surg. 1993:233-8. PMID: 7583978.
- Scratcherd T, Hutson D, Case RM. Ionic transport mechanisms underlying fluid secretion by the pancreas. Philos Trans R Soc Lond B Biol Sci. 1981 Dec 18;296(1080):167-78. doi: 10.1098/rstb.1981.0180. PMID: 6121341.

- Sastre J, Sabater L, Aparisi L. Fisiología de la secreción pancreática [Physiology of pancreatic secretion]. Gastroenterol Hepatol. 2005 Feb;28 Suppl 1:3-9. Spanish. doi: 10.1157/13071380. PMID: 15899230.
- Da Silva Xavier G. The Cells of the Islets of Langerhans. J Clin Med.
 2018 Mar 12;7(3):54. doi: 10.3390/jcm7030054. PMID: 29534517; PMCID: PMC5867580.
- Merriman C, Fu D. Down-regulation of the islet-specific zinc transporter-8 (ZnT8) protects human insulinoma cells against inflammatory stress. J Biol Chem. 2019 Nov 8;294(45):16992-17006. doi: 10.1074/jbc.RA119.010937. Epub 2019 Oct 7. PMID: 31591269; PMCID: PMC6851310.
- Schuit FC, In't Veld PA, Pipeleers DG. Glucose stimulates proinsulin biosynthesis by a dose-dependent recruitment of pancreatic beta cells. Proc Natl Acad Sci U S A. 1988 Jun;85(11):3865-9. doi: 10.1073/pnas.85.11.3865. PMID: 3287379; PMCID: PMC280320.
- Most J, Redman LM. Impact of calorie restriction on energy metabolism in humans. Exp Gerontol. 2020 May;133:110875. doi: 10.1016/j.exger.2020.110875. Epub 2020 Feb 11. PMID: 32057825; PMCID: PMC9036397.
- 119. Chen C, Cohrs CM, Stertmann J, Bozsak R, Speier S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Mol Metab. 2017 Jul 8;6(9):943-957. doi: 10.1016/j.molmet.2017.06.019. PMID: 28951820; PMCID: PMC5605733.
- De Meyts P. Insulin and its receptor: structure, function and evolution.
 Bioessays. 2004 Dec;26(12):1351-62. doi: 10.1002/bies.20151. PMID: 15551269.
- Dean PM. Ultrastructural morphometry of the pancreatic -cell. Diabetologia. 1973 Apr;9(2):115-9. doi: 10.1007/BF01230690. PMID: 4577291.

- 122. Fu Z, Gilbert ER, Liu D. Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Curr Diabetes Rev. 2013 Jan 1;9(1):25-53. PMID: 22974359; PMCID: PMC3934755.
- 123. Marku A, Galli A, Marciani P, Dule N, Perego C, Castagna M. Iron Metabolism in Pancreatic Beta-Cell Function and Dysfunction. Cells. 2021 Oct 22;10(11):2841. doi: 10.3390/cells10112841. PMID: 34831062; PMCID: PMC8616520.
- 124. Donovan A., Brownlie A., Zhou Y., Shepard J., Pratt S.J., Moynihan J., Paw B.H., Drejer A., Barut B., Zapata A., et al. Positional Cloning of Zebrafish Ferroportin1 Identifies a Conserved Vertebrate Iron Exporter. *Nature*. 2000;403:776–781. doi: 10.1038/35001596.
- 125. McKie A.T., Marciani P., Rolfs A., Brennan K., Wehr K., Barrow D., Miret S., Bomford A., Peters T.J., Farzaneh F., et al. A Novel Duodenal Iron-Regulated Transporter, IREG1, Implicated in the Basolateral Transfer of Iron to the Circulation. *Mol. Cell.* 2000;5:299–309. doi: 10.1016/S1097-2765(00)80425-6.
- 126. Nemeth E., Tuttle M.S., Powelson J., Vaughn M.B., Donovan A., Ward D.M., Ganz T., Kaplan J. Hepcidin Regulates Cellular Iron Efflux by Binding to Ferroportin and Inducing Its Internalization. *Science.* 2004;306:2090–2093. doi: 10.1126/science.1104742.
- 127. Kulaksiz H., Fein E., Redecker P., Stremmel W., Adler G., Cetin Y. Pancreatic Beta-Cells Express Hepcidin, an Iron-Uptake Regulatory Peptide. J. Endocrinol. 2008;197:241–249. doi: 10.1677/JOE-07-0528
- 128. Müller MJ, Enderle J, Pourhassan M, Braun W, Eggeling B, Lagerpusch M, Glüer CC, Kehayias JJ, Kiosz D, Bosy-Westphal A. Metabolic adaptation to caloric restriction and subsequent refeeding: the Minnesota Starvation Experiment revisited. Am J Clin Nutr. 2015 Oct;102(4):807-19. doi: 10.3945/ajcn.115.109173. Epub 2015 Sep 23. PMID: 26399868.

- 129. Bosy-Westphal A, Schautz B, Lagerpusch M, Pourhassan M, Braun W, Goele K, Heller M, Glüer CC, Müller MJ. Effect of weight loss and regain on adipose tissue distribution, composition of lean mass and resting energy expenditure in young overweight and obese adults. Int J Obes (Lond). 2013 Oct;37(10):1371-7. doi: 10.1038/ijo.2013.1. Epub 2013 Feb 5. PMID: 23381557.
- 130. Bosy-Westphal A, Kossel E, Goele K, Later W, Hitze B, Settler U, Heller M, Glüer CC, Heymsfield SB, Müller MJ. Contribution of individual organ mass loss to weight loss-associated decline in resting energy expenditure. Am J Clin Nutr. 2009 Oct;90(4):993-1001. doi: 10.3945/ajcn.2008.27402. Epub 2009 Aug 26. PMID: 19710198.
- Hron BM, Ebbeling CB, Feldman HA, Ludwig DS. Relationship of insulin dynamics to body composition and resting energy expenditure following weight loss. Obesity (Silver Spring). 2015 Nov;23(11):2216-22. doi: 10.1002/oby.21213. Epub 2015 Sep 16. PMID: 26373701; PMCID: PMC4633340.
- Linder MC. Copper Homeostasis in Mammals, with Emphasis on Secretion and Excretion. A Review. Int J Mol Sci. 2020 Jul 13;21(14):4932. doi: 10.3390/ijms21144932. PMID: 32668621; PMCID: PMC7403968.
- Trace Elements In Human and Animal Nutrition. Can J Comp Med Vet Sci. 1956 Sep;20(9):347. PMCID: PMC1614294.
- 134. WOLFF SM. RENAL LESIONS IN WILSON'S DISEASE. Lancet.
 1964 Apr 18;1(7338):843-5. doi: 10.1016/s0140-6736(64)91573-9. PMID: 14129796.
- Lutsenko S, Barnes NL, Bartee MY, Dmitriev OY. Function and regulation of human copper-transporting ATPases. Physiol Rev. 2007 Jul;87(3):1011-46. doi: 10.1152/physrev.00004.2006. PMID: 17615395.
- 136. Linz R., Barnes N.L., Zimnicka A.M., Kaplan J.H., Eipper B., Lutsenko S. Intracellular targeting of copper-transporting ATPase ATP7A in a normal and Atpb-/- kidney. *Am. J. Physiol. Renal Physiol.* 2008;294:F53– F61. doi: 10.1152/ajprenal.00314.2007.

- Pierson H., Muchenditsi A., Kim B.-E., Ralle M., Zachos N., Huster D., Lutsenko S. The function of ATPase copper transporter ATP7B in intestine. *Gastroenterology*. 2018;154:168–180.
- Cheng F, Peng G, Lu Y, Wang K, Ju Q, Ju Y, Ouyang M. Relationship between copper and immunity: The potential role of copper in tumor immunity. Front Oncol. 2022 Nov 7;12:1019153. doi: 10.3389/fonc.2022.1019153. PMID: 36419894; PMCID: PMC9676660.
- Gollan JL, Gollan TJ. Wilson disease in 1998: genetic, diagnostic and therapeutic aspects. J Hepatol. 1998; 28 Suppl 1:28-36. doi: 10.1016/s0168-8278(98)80373-5. PMID: 9575447.
- Arrese M, Ananthananarayanan M, Suchy FJ. Hepatobiliary transport: molecular mechanisms of development and cholestasis. Pediatr Res. 1998 Aug; 44(2):141-7. doi: 10.1203/00006450-199808000-00001. PMID: 9702905.
- 141. Hamza I, Gitlin JD. Hepatic Copper Transport. In: Madame Curie Bioscience Database [Internet]. Austin (TX): Landes Bioscience; 2000-2013. Available from: <u>https://www.ncbi.nlm.nih.gov/books/NBK6381/</u>
- İdilman İS, Akata D, Özmen MN, Karçaaltıncaba M. Different forms of iron accumulation in the liver on MRI. Diagn Interv Radiol. 2016 Jan-Feb; 22(1):22-8. doi: 10.5152/dir.2015.15094. PMID: 26712679; PMCID: PMC4712893.
- 143. Ganz T. Macrophages and Iron Metabolism. Microbiol Spectr. 2016 Oct; 4(5). doi: 10.1128/microbiolspec.MCHD-0037-2016. PMID: 27763254.
- 144. Bratosin D, Mazurier J, Tissier JP, Estaquier J, Huart JJ, Ameisen JC, Aminoff D, Montreuil J. Cellular and molecular mechanisms of senescent erythrocyte phagocytosis by macrophages. A review. Biochimie. 1998 Feb;80(2):173-95. doi: 10.1016/s0300-9084(98)80024-2. PMID: 9587675.
- 145. Slusarczyk P, Mandal PK, Zurawska G, Niklewicz M, Chouhan K, Mahadeva R, Jończy A, Macias M, Szybinska A, Cybulska-Lubak M, Krawczyk O, Herman S, Mikula M, Serwa R, Lenartowicz M, Pokrzywa W,

Mleczko-Sanecka K. Impaired iron recycling from erythrocytes is an early hallmark of aging. Elife. 2023 Jan 31;12:e79196. doi: 10.7554/eLife.79196. PMID: 36719185; PMCID: PMC9931393.

- 146. Kovtunovych G, Eckhaus MA, Ghosh MC, Ollivierre-Wilson H, Rouault TA. Dysfunction of the heme recycling system in heme oxygenase 1-deficient mice: effects on macrophage viability and tissue iron distribution. Blood. 2010 Dec 23;116(26):6054-62. doi: 10.1182/blood-2010-03-272138. Epub 2010 Sep 15. PMID: 20844238; PMCID: PMC3031391.
- Mleczko-Sanecka K, Silvestri L. Cell-type-specific insights into iron regulatory processes. Am J Hematol. 2021 Jan;96(1):110-127. doi: 10.1002/ajh.26001. Epub 2020 Oct 13. PMID: 32945012.
- Anderson ER, Shah YM. Iron homeostasis in the liver. Compr Physiol. 2013 Jan;3(1):315-30. doi: 10.1002/cphy.c120016. PMID: 23720289; PMCID: PMC3936199.
- 149. Cañamares-Orbis P, Bernal-Monterde V, Sierra-Gabarda O, Casas-Deza D, Garcia-Rayado G, Cortes L, Lué A. Impact of Liver and Pancreas Diseases on Nutritional Status. Nutrients. 2021 May 13;13(5):1650. doi: 10.3390/nu13051650. PMID: 34068295; PMCID: PMC8153270.
- Röder PV, Wu B, Liu Y, Han W. Pancreatic regulation of glucose homeostasis. Exp Mol Med. 2016 Mar 11;48(3):e219. doi: 10.1038/emm.2016.6. PMID: 26964835; PMCID: PMC4892884.
- 151. Shur NF, Creedon L, Skirrow S, Atherton PJ, MacDonald IA, Lund J, Greenhaff PL. Age-related changes in muscle architecture and metabolism in humans: The likely contribution of physical inactivity to age-related functional decline. Ageing Res Rev. 2021 Jul;68:101344. doi: 10.1016/j.arr.2021.101344. Epub 2021 Apr 16. PMID: 33872778; PMCID: PMC8140403.
- 152. Musumeci G, Castrogiovanni P, Coleman R, Szychlinska MA, Salvatorelli L, Parenti R, Magro G, Imbesi R. Somitogenesis: From somite to skeletal muscle. Acta Histochem. 2015 May-Jun;117(4-5):313-28. doi: 10.1016/j.acthis.2015.02.011. Epub 2015 Apr 4. PMID: 25850375.

- 153. H. Mnatsakanyan, R.S.I. Serra, P. Rico, M. Salmeron-Sanchez, Zinc uptake promotes myoblast differentiation via Zip7 transporter and activation of Akt signalling transduction pathway, Sci. Rep. 8 (2018) 13642, https://doi.org/ 10.1038/s41598-018-32067-0.
- 154. Frontera WR, Ochala J. Skeletal muscle: a brief review of structure and function. Calcif Tissue Int. 2015 Mar;96(3):183-95. doi: 10.1007/s00223-014-9915-y. Epub 2014 Oct 8. PMID: 25294644.
- Wolfe RR. The underappreciated role of muscle in health and disease. Am J Clin Nutr. 2006 Sep;84(3):475-82. doi: 10.1093/ajcn/84.3.475. PMID: 16960159.
- 156. Catherine M. Dwyer, Neil C. Stickland, John M. Fletcher, The influence of maternal nutrition on muscle fiber number development in the porcine fetus and on subsequent postnatal growth, *Journal of Animal Science*, Volume 72, Issue 4, April 1994, Pages 911– 917, https://doi.org/10.2527/1994.724911x
- 157. Howells KF, Mathews DR, Jordan TC. Effects of pre and perinatal malnutrition on muscle fibres from fast and slow rat muscles. Res Exp Med (Berl). 1978 Jul 24; 173(1):35-40. doi: 10.1007/BF01851372. PMID: 150634.
- Wareham AC, Mahon M, Bedi KS, Smart JL. Early life undernutrition in rats. 2. Some contractile properties of skeletal muscles from adult animals. Br J Nutr. 1982 May;47(3):433-7. doi: 10.1079/bjn19820054. PMID: 7082616.
- Carter N, Shiels A, Tashian R. Carbonic anhydrase III isoenzyme from human and bovine muscle [proceedings]. Biochem Soc Trans. 1978;6(3):552-3. doi: 10.1042/bst0060552. PMID: 97107.
- 160. Jackson MJ, Jones DA, Edwards RH. Tissue zinc levels as an index of body zinc status. Clin Physiol. 1982 Aug;2(4):333-43. doi: 10.1111/j.1475-097x.1982.tb00038.x. PMID: 6889946.
- 161. Weed, L. H.: The Cells of the Arachnoid, Bull. Johns Hopkins Hosp.31:343, 1920

- 162. Tanaka K, Nishiura I, Koyama T. [Arachnoiditis ossificans after repeated myelographies and spinal operations--a case report and review of the literature]. No Shinkei Geka. 1987 Jan;15(1):89-93. Japanese. PMID: 3102989.
- 163. Faure A, Khalfallah M, Perrouin-Verbe B, Caillon F, Deschamps C, Bord E, Mathe JF, Robert R. Arachnoiditis ossificans of the cauda equina. Case report and review of the literature. J Neurosurg. 2002 Sep;97(2 Suppl):239-43. doi: 10.3171/spi.2002.97.2.0239. PMID: 12296687.
- 164. Frizzell B, Kaplan P, Dussault R, Sevick R. Arachnoiditis ossificans: MR imaging features in five patients. AJR Am J Roentgenol. 2001 Aug; 177(2):461-4. doi: 10.2214/ajr.177.2.1770461. PMID: 11461883.
- Wright MH, Denney LC. A comprehensive review of spinal arachnoiditis. Orthop Nurs. 2003 May-Jun;22(3):215-9; quiz 220-1. doi: 10.1097/00006416-200305000-00010. PMID: 12803151.
- Young W. Role of calcium in central nervous system injuries. J Neurotrauma. 1992 Mar;9 Suppl 1:S9-25. PMID: 1588635.
- Herren, Y. (1939). Occurrence and distribution of calcified plaques in the spinal arachnoid in man. Archives of Neurology and Psychiatry, 41(6), 1180. https://doi.org/10.1001/archneurpsyc.1939.02270180108010
- 168. Slavin KV, Nixon RR, Nesbit GM, Burchiel KJ. Extensive arachnoid ossification with associated syringomyelia presenting as thoracic myelopathy. Case report and review of the literature. J Neurosurg. 1999 Oct;91(2 Suppl):223-9. doi: 10.3171/spi.1999.91.2.0223. PMID: 10505510.
- Maske H. Topochemical detection of zinc in the Ammon's horn of different mammals. Naturwissenschaften. 1955; 42:424.
- Vogt K, Mellor J, Tong G, Nicoll R. The actions of synaptically released zinc at hippocampal mossy fiber synapses. Neuron. 2000 Apr; 26(1):187-96. doi: 10.1016/s0896-6273(00)81149-6. PMID: 10798403.
- Pochwat B, Nowak G, Szewczyk B. Relationship between Zinc (Zn (2+)) and Glutamate Receptors in the Processes Underlying Neurodegeneration. Neural Plast. 2015;2015:591563. doi:

10.1155/2015/591563. Epub 2015 May 27. PMID: 26106488; PMCID: PMC4461779.

- 172. Cole TB, Martyanova A, Palmiter RD. Removing zinc from synaptic vesicles does not impair spatial learning, memory, or sensorimotor functions in the mouse. Brain Res. 2001 Feb 9;891(1-2):253-65. doi: 10.1016/s0006-8993(00)03220-0. PMID: 11164830.
- 173. Upmanyu N, Jin J, Emde HV, Ganzella M, Bösche L, Malviya VN, Zhuleku E, Politi AZ, Ninov M, Silbern I, Leutenegger M, Urlaub H, Riedel D, Preobraschenski J, Milosevic I, Hell SW, Jahn R, Sambandan S. Colocalization of different neurotransmitter transporters on synaptic vesicles is sparse except for VGLUT1 and ZnT3. Neuron. 2022 May 4; 110(9):1483-1497.e7. doi: 10.1016/j.neuron.2022.02.008. Epub 2022 Mar 8. PMID: 35263617.
- 174. Kalappa BI, Anderson CT, Goldberg JM, Lippard SJ, Tzounopoulos T. AMPA receptor inhibition by synaptically released zinc. Proc Natl Acad Sci U S A. 2015 Dec 22; 112(51):15749-54. doi: 10.1073/pnas.1512296112. Epub 2015 Dec 8. PMID: 26647187; PMCID: PMC4697426.
- 175. Vergnano AM, Rebola N, Savtchenko LP, Pinheiro PS, Casado M, Kieffer BL, Rusakov DA, Mulle C, Paoletti P. Zinc dynamics and action at excitatory synapses. Neuron. 2014 Jun 4; 82(5):1101-14. doi: 10.1016/j.neuron.2014.04.034. PMID: 24908489.
- 176. Pan E, Zhang XA, Huang Z, Krezel A, Zhao M, Tinberg CE, Lippard SJ, McNamara JO. Vesicular zinc promotes presynaptic and inhibits postsynaptic long-term potentiation of mossy fiber-CA3 synapse. Neuron. 2011 Sep 22; 71(6):1116-26. doi: 10.1016/j.neuron.2011.07.019. Epub 2011 Sep 21. PMID: 21943607; PMCID: PMC3184234.
- Szpunar J. Metallomics: a new frontier in analytical chemistry. Anal Bioanal Chem. 2004 Jan; 378(1):54-6. doi: 10.1007/s00216-003-2333-z.
 Epub 2003 Nov 12. PMID: 14614587.

- 178. Keller U. Nutritional Laboratory Markers in Malnutrition. J Clin Med.
 2019 May 31; 8(6):775. doi: 10.3390/jcm8060775. PMID: 31159248;
 PMCID: PMC6616535.
- 179. Gómez Delgado, I, Sánchez-Corral P, Contribución de variantes funcionales y cuantitativas del Factor H y las proteínas FHRs (Factor H-Related proteins) del Complemento en patología renal, Nefrología, Volume 42, Issue 3, 2022, Pages 280-289, https://doi.org/10.1016/j.nefro.2021.07.003.
- Ricklin D, Lambris JD. Complement in immune and inflammatory disorders: pathophysiological mechanisms. J Immunol. 2013 Apr 15; 190(8):3831-8. doi: 10.4049/jimmunol.1203487. PMID: 23564577; PMCID: PMC3623009.
- Ricklin D, Mastellos DC, Reis ES, Lambris JD. The renaissance of complement therapeutics. Nat Rev Nephrol. 2018 Jan; 14(1):26-47. doi: 10.1038/nrneph.2017.156. Epub 2017 Dec 4. PMID: 29199277; PMCID: PMC5805379.
- 182. Morgan BP, Harris CL. Complement, a target for therapy in inflammatory and degenerative diseases. Nat Rev Drug Discov. 2015 Dec; 14(12):857-77. doi: 10.1038/nrd4657. Epub 2015 Oct 23. PMID: 26493766; PMCID: PMC7098197.
- 183. Berrón-Pérez R, Penagos-Paniagua MJ, Zaragoza-Benítez JM, Rodríguez-Álvarez J, Blancas-Galicia L. El sistema del complemento. Vías clásica y de la lectina que se une a la manosa, Rev Alergia, Asma e Inmunología Pediátricas, May-Ag (2003) pp 46-52
- 184. Diebolder CA, Beurskens FJ, de Jong RN, Koning RI, Strumane K, Lindorfer MA, Voorhorst M, Ugurlar D, Rosati S, Heck AJ, van de Winkel JG, Wilson IA, Koster AJ, Taylor RP, Saphire EO, Burton DR, Schuurman J, Gros P, Parren PW. Complement is activated by IgG hexamers assembled at the cell surface. Science. 2014 Mar 14;343(6176):1260-3. doi: 10.1126/science.1248943. PMID: 24626930; PMCID: PMC4250092.

- 185. Zwarthoff SA, Berends ETM, Mol S, Ruyken M, Aerts PC, Józsi M, de Haas CJC, Rooijakkers SHM, Gorham RD Jr. Functional Characterization of Alternative and Classical Pathway C3/C5 Convertase Activity and Inhibition Using Purified Models. Front Immunol. 2018 Jul 23; 9:1691. doi: 10.3389/fimmu.2018.01691. PMID: 30083158; PMCID: PMC6064732.
- Vernon KA, Cook HT. Complement in glomerular disease. Adv Chronic Kidney Dis. 2012 Mar; 19(2):84-92. doi: 10.1053/j.ackd.2012.02.015. PMID: 22449345.
- Tan Y, Zhao MH. Complement in glomerular diseases. Nephrology (Carlton). 2018 Oct; 23 Suppl 4:11-15. doi: 10.1111/nep.13461. PMID: 30298653.
- 188. Servais A, Noël LH, Roumenina LT, Le Quintrec M, Ngo S, Dragon-Durey MA, Macher MA, Zuber J, Karras A, Provot F, Moulin B, Grünfeld JP, Niaudet P, Lesavre P, Frémeaux-Bacchi V. Acquired and genetic complement abnormalities play a critical role in dense deposit disease and other C3 glomerulopathies. Kidney Int. 2012 Aug;82(4):454-64. doi: 10.1038/ki.2012.63. Epub 2012 Mar 28. PMID: 22456601.
- 189. Vaziri-Sani F, Holmberg L, Sjöholm AG, Kristoffersson AC, Manea M, Frémeaux-Bacchi V, Fehrman-Ekholm I, Raafat R, Karpman D. Phenotypic expression of factor H mutations in patients with atypical hemolytic uremic syndrome. Kidney Int. 2006 Mar; 69(6):981-8. doi: 10.1038/sj.ki.5000155. PMID: 16528247.
- Zipfel PF, Skerka C. Complement factor H and related proteins: an expanding family of complement-regulatory proteins? Immunol Today. 1994 Mar; 15(3):121-6. doi: 10.1016/0167-5699(94)90155-4. PMID: 8172644.
- Strohmeyer R, Ramirez M, Cole GJ, Mueller K, Rogers J. Association of factor H of the alternative pathway of complement with agrin and complement receptor 3 in the Alzheimer's disease brain. J Neuroimmunol. 2002 Oct; 131(1-2):135-46. doi: 10.1016/s0165-5728(02)00272-2. PMID: 12458045.

- 192. Devine DV, Rosse WF. Regulation of the activity of platelet-bound C3 convertase of the alternative pathway of complement by platelet factor H. Proc Natl Acad Sci U S A. 1987 Aug; 84(16):5873-7. doi: 10.1073/pnas.84.16.5873. PMID: 2956607; PMCID: PMC298965.
- 193. Goodship TH, Cook HT, Fakhouri F, Fervenza FC, Frémeaux-Bacchi V, Kavanagh D, Nester CM, Noris M, Pickering MC, Rodríguez de Córdoba S, Roumenina LT, Sethi S, Smith RJ; Conference Participants. Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference. Kidney Int. 2017 Mar; 91(3):539-551. doi: 10.1016/j.kint.2016.10.005. Epub 2016 Dec 16. PMID: 27989322.
- 194. Frimat M, Tabarin F, Dimitrov JD, Poitou C, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT. Complement activation by heme as a secondary hit for atypical hemolytic uremic syndrome. Blood. 2013 Jul 11; 122(2):282-92. doi: 10.1182/blood-2013-03-489245. Epub 2013 May 21. PMID: 23692858.
- 195. Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, López-Trascasa M, Sánchez-Corral P, Morgan BP, Rodríguez de Córdoba S. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci U S A. 2007 Jan 2;104(1):240-5. doi: 10.1073/pnas.0603420103. Epub 2006 Dec 20. Erratum in: Proc Natl Acad Sci U S A. 2007 Jun 19; 104(25):10749. PMID: 17182750; PMCID: PMC1765442.
- 196. Manuelian T, Hellwage J, Meri S, Caprioli J, Noris M, Heinen S, Jozsi M, Neumann HP, Remuzzi G, Zipfel PF. Mutations in factor H reduce binding affinity to C3b and heparin and surface attachment to endothelial cells in hemolytic uremic syndrome. J Clin Invest. 2003 Apr;111(8):1181-90. doi: 10.1172/JCI16651. PMID: 12697737; PMCID: PMC152934.
- 197. Marinozzi MC, Vergoz L, Rybkine T, Ngo S, Bettoni S, Pashov A, Cayla M, Tabarin F, Jablonski M, Hue C, Smith RJ, Noris M, Halbwachs-Mecarelli L, Donadelli R, Fremeaux-Bacchi V, Roumenina LT. Complement
factor B mutations in atypical hemolytic uremic syndrome-disease-relevant or benign? J Am Soc Nephrol. 2014 Sep; 25(9):2053-65. doi: 10.1681/ASN.2013070796. Epub 2014 Mar 20. PMID: 24652797; PMCID: PMC4147975.

- 198. Noris M, Galbusera M, Gastoldi S, Macor P, Banterla F, Bresin E, Tripodo C, Bettoni S, Donadelli R, Valoti E, Tedesco F, Amore A, Coppo R, Ruggenenti P, Gotti E, Remuzzi G. Dynamics of complement activation in aHUS and how to monitor eculizumab therapy. Blood. 2014 Sep 11; 124(11):1715-26. doi: 10.1182/blood-2014-02-558296. Epub 2014 Jul 18. PMID: 25037630; PMCID: PMC4162105.
- 199. Pérez-Caballero D, González-Rubio C, Gallardo ME, Vera M, López-Trascasa M, Rodríguez de Córdoba S, Sánchez-Corral P. Clustering of missense mutations in the C-terminal region of factor H in atypical hemolytic uremic syndrome. Am J Hum Genet. 2001 Feb; 68(2):478-84. doi: 10.1086/318201. Epub 2001 Jan 17. PMID: 11170895; PMCID: PMC1235280.
- 200. Roumenina LT, Jablonski M, Hue C, Blouin J, Dimitrov JD, Dragon-Durey MA, Cayla M, Fridman WH, Macher MA, Ribes D, Moulonguet L, Rostaing L, Satchell SC, Mathieson PW, Sautes-Fridman C, Loirat C, Regnier CH, Halbwachs-Mecarelli L, Fremeaux-Bacchi V. Hyperfunctional C3 convertase leads to complement deposition on endothelial cells and contributes to atypical hemolytic uremic syndrome. Blood. 2009 Sep 24; 114(13):2837-45. doi: 10.1182/blood-2009-01-197640. Epub 2009 Jul 7. PMID: 19584399.
- 201. Sánchez-Corral P, Pérez-Caballero D, Huarte O, Simckes AM, Goicoechea E, López-Trascasa M, de Córdoba SR. Structural and functional characterization of factor H mutations associated with atypical hemolytic uremic syndrome. Am J Hum Genet. 2002 Dec;71(6):1285-95. doi: 10.1086/344515. Epub 2002 Nov 6. PMID: 12424708; PMCID: PMC378565.

- 202. Schramm EC, Roumenina LT, Rybkine T, Chauvet S, Vieira-Martins P, Hue C, Maga T, Valoti E, Wilson V, Jokiranta S, Smith RJ, Noris M, Goodship T, Atkinson JP, Fremeaux-Bacchi V. Mapping interactions between complement C3 and regulators using mutations in atypical hemolytic uremic syndrome. Blood. 2015 Apr 9; 125(15):2359-69. doi: 10.1182/blood-2014-10-609073. Epub 2015 Jan 21. PMID: 25608561; PMCID: PMC4392009.
- 203. Ståhl AL, Vaziri-Sani F, Heinen S, Kristoffersson AC, Gydell KH, Raafat R, Gutierrez A, Beringer O, Zipfel PF, Karpman D. Factor H dysfunction in patients with atypical hemolytic uremic syndrome contributes to complement deposition on platelets and their activation. Blood. 2008 Jun 1; 111(11):5307-15. doi: 10.1182/blood-2007-08-106153. Epub 2008 Feb 11. PMID: 18268093.
- 204. Sánchez-Corral P, González-Rubio C, Rodríguez de Córdoba S, López-Trascasa M. Functional analysis in serum from atypical Hemolytic Uremic Syndrome patients reveals impaired protection of host cells associated with mutations in factor H. Mol Immunol. 2004 May;41(1):81-4. doi: 10.1016/j.molimm.2004.01.003. PMID: 15140578.
- 205. Heinen S, Sanchez-Corral P, Jackson MS, Strain L, Goodship JA, Kemp EJ, Skerka C, Jokiranta TS, Meyers K, Wagner E, Robitaille P, Esparza-Gordillo J, Rodriguez de Cordoba S, Zipfel PF, Goodship TH. De novo gene conversion in the RCA gene cluster (1q32) causes mutations in complement factor H associated with atypical hemolytic uremic syndrome. Hum Mutat. 2006 Mar;27(3):292-3. doi: 10.1002/humu.9408. PMID: 16470555.
- Harris CL, Pettigrew DM, Lea SM, Morgan BP. Decay-accelerating factor must bind both components of the complement alternative pathway C3 convertase to mediate efficient decay. J Immunol. 2007 Jan 1; 178(1):352-9. doi: 10.4049/jimmunol.178.1.352. PMID: 17182573.

- Nagel RL, Gibson QH. The binding of hemoglobin to haptoglobin and its relation to subunit dissociation of hemoglobin. J Biol Chem. 1971 Jan 10; 246(1):69-73. PMID: 5541775.
- 208. Tabbara IA. Hemolytic anemias. Diagnosis and management. Med Clin North Am. 1992 May;76(3):649-68. doi: 10.1016/s0025-7125(16)30345-5. PMID: 1578962.
- 209. Rother RP, Bell L, Hillmen P, Gladwin MT. The clinical sequelae of intravascular hemolysis and extracellular plasma hemoglobin: a novel mechanism of human disease. JAMA. 2005 Apr 6;293(13):1653-62. doi: 10.1001/jama.293.13.1653. PMID: 15811985.
- 210. Sutton BS, Crosslin DR, Shah SH, Nelson SC, Bassil A, Hale AB, Haynes C, Goldschmidt-Clermont PJ, Vance JM, Seo D, Kraus WE, Gregory SG, Hauser ER. Comprehensive genetic analysis of the platelet activating factor acetylhydrolase (PLA2G7) gene and cardiovascular disease in case-control and family datasets. Hum Mol Genet. 2008 May 1; 17(9):1318-28. doi: 10.1093/hmg/ddn020. Epub 2008 Jan 18. PMID: 18204052; PMCID: PMC2652668.
- 211. Packard CJ, O'Reilly DSJ, Caslake MJ, McMahon AD, Ford I, Cooney J, Macphee CH, Suckling KE, Krishna M, Wilkinson FE, et al. Lipoprotein-associated phospholipase A(2) as an independent predictor of coronary heart disease. N Engl J Med. 2000; 343:1148–1155.
- 212. Tjoelker LW, Eberhardt C, Unger J, Letrong H, Zimmerman GA, McIntyre TM, Stafforini DM, Prescott SM, Gray PW. Plasma plateletactivating-factor acetylhydrolase is a secreted phospholipase A(2) with a catalytic triad. J Biol Chem. 1995;270:25481–25487
- 213. Ballantyne CM, Hoogeveen RC, Bang H, Coresh J, Folsom AR, Heiss G, Sharrett AR. Lipoprotein-associated phospholipase A(2), highsensitivity C-reactive protein, and risk for incident coronary heart disease in middle-aged men and women in the Atherosclerosis Risk in Communities (ARIC) study. Circulation. 2004; 109:837–842.

- 214. Winkler K, Winkelmann BR, Scharnagl H, Hoffmann MM, Grawitz AB, Nauck M, Bohm BO, Marz W. Platelet-activating factor acetylhydrolase activity indicates angiographic coronary artery disease independently of systemic inflammation and other risk factors—the Ludwigshafen risk and cardiovascular health study. Circulation. 2005; 111:980–987.
- 215. Nair S, Lee YH, Rousseau E, Cam M, Tataranni PA, Baier LJ, Bogardus C, Permana PA. Increased expression of inflammation-related genes in cultured preadipocytes/stromal vascular cells from obese compared with non-obese Pima Indians. Diabetologia. 2005; 48:1784–1788.
- 216. Hakkinen T, Luoma JS, Hiltunen MO, Macphee CH, Milliner KJ, Patel L, Rice SQ, Tew DG, Karkola K, Yla-Herttuala S. Lipoprotein-associated phospholipase A (2), platelet-activating factor acetylhydrolase, is expressed by macrophages in human and rabbit atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 1999; 19:2909–2917.
- 217. Singh U, Zhong SM, Xiong MM, Li TB, Sniderman A, Teng BB. Increased plasma non-esterified fatty acids and platelet-activating factor acetylhydrolase are associated with susceptibility to atherosclerosis in mice. Clin Sci. 2004; 106:421–432.
- Thanassoulis G. Aterosclerosis, Haya Aziz, MD, McGill University Revisado/Modificado abr. 2022
- Tran H, Tanaka A, Litvinovich SV, Medved LV, Haudenschild CC, Argraves WS. The interaction of fibulin-1 with fibrinogen. A potential role in hemostasis and thrombosis. J Biol Chem. 1995 Aug 18; 270(33):19458-64. doi: 10.1074/jbc.270.33.19458. PMID: 7642629.
- Litvinov RI, Farrell DH, Weisel JW, Bennett JS. The Platelet Integrin αIIbβ3 differentially Interacts with Fibrin Versus Fibrinogen. J Biol Chem.
 2016 Apr 8; 291(15):7858-67. doi: 10.1074/jbc.M115.706861. Epub 2016 Feb 10. PMID: 26867579; PMCID: PMC4824994.
- 221. Caprioli J, Castelletti F, Bucchioni S, Bettinaglio P, Bresin E, Pianetti G, Gamba S, Brioschi S, Daina E, Remuzzi G, Noris M; International Registry of Recurrent and Familial HUS/TTP. Complement factor H

mutations and gene polymorphisms in haemolytic uraemic syndrome: the C-257T, the A2089G and the G2881T polymorphisms are strongly associated with the disease. Hum Mol Genet. 2003 Dec 15; 12(24):3385-95. doi: 10.1093/hmg/ddg363. Epub 2003 Oct 28. PMID: 14583443.

- 222. Brown JH, Tellez J, Wilson V, Mackie IJ, Scully M, Tredger MM, Moore I, McDougall NI, Strain L, Marchbank KJ, Sheerin NS, O'Grady J, Harris CL, Goodship TH. Postpartum aHUS secondary to a genetic abnormality in factor H acquired through liver transplantation. Am J Transplant. 2012 Jun; 12(6):1632-6. doi: 10.1111/j.1600-6143.2012.03991.x. Epub 2012 Mar 15. PMID: 22420623.
- 223. Raina R, Krishnappa V, Blaha T, Kann T, Hein W, Burke L, Bagga A. Atypical Hemolytic-Uremic Syndrome: An Update on Pathophysiology, Diagnosis, and Treatment. Ther Apher Dial. 2019 Feb; 23(1):4-21. doi: 10.1111/1744-9987.12763. Epub 2018 Oct 29. PMID: 30294946.
- 224. Nandula SR, Huxford I, Wheeler TT, Aparicio C, Gorr SU. The parotid secretory protein BPIFA2 is a salivary surfactant that affects lipopolysaccharide action. Exp Physiol. 2020 Aug;105(8):1280-1292. doi: 10.1113/EP088567. Epub 2020 Jun 19. PMID: 32390232; PMCID: PMC9484039.
- 225. Holmes AR, Rodrigues E, van der Wielen P, Lyons KM, Haigh BJ, Wheeler TT, Dawes PJ, Cannon RD. Adherence of Candida albicans to silicone is promoted by the human salivary protein SPLUNC2/PSP/BPIFA2. Mol Oral Microbiol. 2014 Apr; 29(2):90-8. doi: 10.1111/omi.12048. Epub 2014 Feb 8. PMID: 24506943.
- 226. Abdolhosseini M, Sotsky JB, Shelar AP, Joyce PB, Gorr SU. Human parotid secretory protein is a lipopolysaccharide-binding protein: identification of an anti-inflammatory peptide domain. Mol Cell Biochem. 2012 Jan; 359(1-2):1-8. doi: 10.1007/s11010-011-0991-2. Epub 2011 Jul 16. PMID: 21833535; PMCID: PMC3219827.
- 227. Robinson CP, Bounous DI, Alford CE, Nguyen KH, Nanni JM, Peck AB, Humphreys-Beher MG. PSP expression in murine lacrimal glands and

function as a bacteria binding protein in exocrine secretions. Am J Physiol. 1997 Apr; 272(4 Pt 1):G863-71. doi: 10.1152/ajpgi.1997.272.4.G863. PMID: 9142919.

228. Rodríguez L, Cervantes E, Ortiz R. Malnutrition and gastrointestinal and respiratory infections in children: a public health problem. Int J Environ Res Public Health. 2011 Apr;8(4):1174-205. doi: 10.3390/ijerph8041174. Epub 2011 Apr 18. PMID: 21695035; PMCID: PMC3118884.

													Ca c	oncent	ration	(mg) / d	dry ma	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
										MA	LES														FEN	IALES				
Control_Small intestine	0.63	0.58	0.29	0.24	0.15	0.23	0.25	0.52	0.69	0.35	0.50	0.31									0.50	0.34	0.33	0.42	0.52	0.47	0.35	0.45	0.37	0.29
Restricted Diet_Small intestine	0.70	0.61	0.52	0.21	0.19		0.48	0.45	0.41	0.66	0.83	0.52									0.35	0.44	0.53	0.45	0.45		0.51	0.75	0.52	0.53
C_Large intestine	1.52	1.74	0.64	3.81	0.44		0.70	0.76	1.31	1.58	2.12	1.30									1.27	0.73	0.63	0.93	0.70	1.24	1.09	1.25	0.95	0.80
R_Large intestine	0.73	1.92	2.46	2.02	4.00		1.18	0.64	0.76	1.81	1.40	1.86									0.68	0.60	0.56	0.80	0.85		1.24	1.15	1.10	0.70
C_Liver	0.10	0.09	0.13				0.09	0.09	0.09	0.11	0.20	0.14									0.10	0.10	0.08	0.13	0.15	0.13	0.17	0.18	0.14	0.17
R_Liver	0.10	0.09	0.11				0.10	0.07	0.08	0.19	0.21	0.11									0.08	0.08	0.09	0.12	0.16	0.14	0.14	0.14	0.18	
C Lungs	0.35	0.40	0.34	0.49	0.58	0.44	0.29	0.28	0.27	0.47	0.47	0.48									0.37	0.25	0.27	0.38	0.37	0.38	0.38	0.36	0.38	0.42
R_Lungs	0.37	0.36		0.40	0.50		0.35	0.25	0.26	0.46	0.42	0.55									0.33	0.27	0.25	0.32	0.36	0.40	0.45	0.44	0.43	
C_Kidney	0.16	0.12	0.15	0.28	0.29	0.53	0.41	0.42	0.37	0.43	0.37	0.44									0.32	0.34	0.36	0.28	0.35	0.34	0.28	0.34	0.34	0.36
R_Kidney		0.10	0.36	0.26			0.38	0.45	0.67	0.26	0.26	0.25									0.25	0.34	0.40	0.37	0.28	0.34	0.38	0.30	0.33	
C_Spleen	0.14	0.17	0.15	0.28	0.16	0.19	0.23	0.23	0.26	0.16	0.12	0.18									0.26	0.24	0.24	0.17	0.16	0.19	0.14	0.15	0.16	0.16
R_Spleen	0.39	0.14		0.25	0.21		0.20	0.24	0.18	0.22	0.13	0.22									0.32	0.22	0.22	0.19	0.16			0.20	0.13	0.12
C_Pancreas	0.29	0.16	0.21			0.36	0.32	0.34		0.28	0.27	0.29									0.31	0.33	0.28	0.29	0.25	0.26	0.18	0.13	0.18	0.14
R_Pancreas	0.28	0.40	0.42	0.21		0.37	0.49	0.33		0.31	0.29	0.39									0.38	0.38	0.44	0.36	0.35		0.41	0.44	0.49	0.39
C Heart	0.18	0.21	0.21	0.38	0.27	0.29	0.23	0.22	0.23	0.34	0.40	0.28									0.21	0.18	0.28	0.19	0.18	0.18	0.20	0.28	0.22	0.39
R_Heart	0.14	0.20	0.19	0.30	0.30		0.19	0.22	0.35	0.43	0.29	0.43									0.22	0.41	0.21	0.22	0.16		0.28	0.26	0.22	0.21
C EDL	0.23	0.26	0.25	0.27	0.31	0.17	0.20	0.18	0.24	0.26	0.22	0.34	0.37	0.36	0.36	0.31	0.37	0.28	0.28		0.18	0.14	0.22	0.22	0.23	0.26	0.22	0.26	0.34	0.35
R_EDL	0.40	0.26	0.24	0.26	0.24	0.21	0.15					0.33	0.30	0.31	0.43	0.42	0.52	0.73	0.29		0.54	0.47	0.30				0.12	0.48	0.89	0.44
C_Gastrocnemius	0.15	0.18	0.18	0.32	0.25	0.22	0.23	0.27	0.27	0.26	0.20	0.34	0.27	0.36							0.15	0.15	0.17	0.26	0.26	0.22	0.24	0.33	0.33	0.30
R_Gastrocnemius	0.21	0.18	0.14	0.04	0.11		0.32	0.21	0.34	1.31	0.24	0.23	0.30	0.44							0.17	0.63	0.19	0.09	1.06		2.03	0.31	0.61	0.37
C Soleus	0.36	0.17	0.17	0.23	0.20	0.20	0.31	0.31	0.29	0.31	0.33	0.23	0.21	0.35							0.12	0.14	0.21	0.15	0.16	0.14	0.30	0.27	0.27	0.18
R_Soleus		0.08	0.20				0.26	0.35	0.29	0.39	0.32	0.51	0.16	0.28							0.35	0.18	0.12				0.32	0.31	0.42	0.25
C Brain	0.08	0.10	0.91	0.41	0.15	0.15	0.30	0.25	0.33	0.37	0.30	0.27									0.24	0.22	0.29	0.32	0.19	0.81	0.26	2.27	0.69	0.73
R_Brain		0.09	0.03	0.29	0.23		0.17	0.26	0.31	0.59	0.46	0.28									0.76	0.26	0.25	0.19	0.31		0.59	0.35	0.35	0.31
C. Spinal cord	1 69	2 27	5.96	1 12	4.51	5.68		5 99	3 59		6.27										8 87	4 02	0.74	2 81	0.74	3 42	12 99	0.98	4 85	3 14
R_Spinal cord	6.93	0.47	2.70	1.21	6.01	0.42	0.34	1.84	2.55	3.38	1.46										1.38	2.19	1.48	0.32	2.23	0.42	14.10	0.53	0.90	1.86

ANEXO 1. Resultado de las mediciones de ICP-OES en ratas de 60 días de edad

													Cu o	concent	tration	(mg) / c	dry ma	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
			t.							MA	LES				1										FEM	ALES				
Control_Small intestine	0.0051	0.0058	0.0056	0.0024	0.0021	0.0026	0.0066	0.0086	0.0095	0.0106	0.0096	0.0074									0.0086	0.0082	0.0100	0.0087	0.0092	0.0082	0.0036	0.0019	0.0003	0.0024
Restricted Diet_Small intestine	0.0042	0.0052	0.0063		0.0007		0.0095	0.0113	0.0101	0.0096	0.0088	0.0094									0.0096	0.0094	0.0100	0.0119	0.0089		0.0010	0.0023	0.0016	0.0014
C_Large intestine	0.0052	0.0064	0.0024	0.0137	0.0093		0.0078	0.0088	0.0107	0.0289	0.0164	0.0098									0.0092	0.0115	0.0100	0.0125	0.0087	0.0138	0.0167	0.0162	0.0160	0.0104
R_Large intestine	0.0036	0.0047	0.0048	0.0168	0.0178		0.0139	0.0092	0.0095	0.0160	0.0109	0.0173									0.0096	0.0083	0.0100	0.0129	0.0146		0.0073	0.0097	0.0084	0.0076
C_Liver	0.0139	0.0147	0.0175	0.0077	0.0086	0.0095	0.0142	0.0127	0.0120	0.0204	0.0140	0.0239									0.0135	0.0126	0.0127	0.0140	0.0152	0.0158	0.0180	0.0169	0.0176	0.0184
R_Liver	0.0280	0.0180	0.0415	0.0172	0.0130		0.0199	0.0170	0.0180	0.0197	0.0195	0.0186									0.0220	0.0193	0.0186	0.0186	0.0199	0.0231	0.0260	0.0270	0.0276	
C_Lungs	0.0058	0.0078	0.0061	0.0054	0.0056	0.0091	0.0057	0.0069	0.0065	0.0047	0.0039	0.0039									0.0074	0.0057	0.0100	0.0066	0.0074	0.0066	0.0092	0.0054	0.0070	0.0089
R_Lungs	0.0047	0.0047	0.0084	0.0066	0.0058		0.0061	0.0055	0.0067	0.0057	0.0051	0.0035									0.0061	0.0060	0.0100	0.0064	0.0084	0.0091	0.0093	0.0096	0.0079	
C_Kidney	0.0213	0.0242	0.0225	0.0343	0.0410	0.0485	0.0529	0.0622	0.0505	0.0386	0.0569	0.0493									0.0459	0.0540	0.0400	0.0434	0.0909	0.0709	0.0491	0.0913	0.0387	0.0744
R_Kidney	0.0374	0.0306	0.0424	0.0323			0.0273	0.0329	0.0294	0.0209	0.0201	0.0216									0.0422	0.0245	0.0300	0.0380	0.0256	0.0386	0.0287	0.0342	0.0358	
C_Spleen				0.0110	0.0086	0.0093	0.0071	0.0076	0.0098	0.0043	0.0050	0.0069									0.0065	0.0072	0.0100	0.0054	0.0053	0.0050	0.0025	0.0037	0.0075	0.0036
R_Spleen			0.0002	0.0039	0.0084		0.0063	0.0078	0.0071	0.0026	0.0021										0.0077	0.0071	0.0100	0.0046	0.0045		0.0094	0.0028	0.0105	0.0020
C_Pancreas	0.0025	0.0018	0.0025		0.0032	0.0034	0.0037			0.0023	0.0026	0.0017									0.0038	0.0044		0.0045	0.0043	0.0040	0.0008	0.0008	0.0012	0.0006
R_Pancreas	0.0032	0.0072	0.0021		0.0049	0.0059	0.0060			0.0025	0.0026	0.0052									0.0061	0.0078	0.0100	0.0054	0.0048		0.0030	0.0014	0.0019	0.0036
C_Heart	0.0175	0.0159	0.0172	0.0208	0.0244	0.0222	0.0133	0.0178	0.0188	0.0268	0.0279	0.0276									0.0197	0.0193	0.0200	0.0195	0.0216	0.0206	0.0208	0.0215	0.0213	0.0291
R_Heart	0.0146	0.0185	0.0170	0.0188	0.0227		0.0181	0.0180	0.0242	0.0284	0.0294	0.0263									0.0188	0.0164	0.0200	0.0197	0.0188		0.0223	0.0232	0.0210	0.0249
C_EDL	0.0032	0.0030	0.0054	0.0069	0.0052	0.0036	0.0071	0.0097	0.0064	0.0050	0.0058	0.0061	0.0059	0.0061	0.0050	0.0049	0.0051	0.0099	0.0071	0.0077	0.0043	0.0054	0.0100	0.0039	0.0043	0.0053	0.0006	0.0061	0.0065	0.0063
R_EDL	0.0005	0.0016	0.0024	0.0063	0.0061		0.0009	0.0011	0.0008	0.0163	0.0057	0.0063	0.0171	0.0064	0.0033	0.0142	0.0100	0.0117	0.0085	0.0100	0.0060	0.0060	0.0100	0.0088	0.0725				0.0121	
C_Gastrocnemius	0.0058	0.0060	0.0075	0.0074	0.0062	0.0054	0.0062	0.0089	0.0132	0.0163	0.0103	0.0119	0.0071	0.0088							0.0039	0.0045	0.0100	0.0054	0.0057	0.0073	0.0055	0.0071	0.0055	0.0097
R_Gastrocnemius	0.0050	0.0046	0.0041	0.0053	0.0051		0.0048	0.0053	0.0074	0.0067	0.0056	0.0054	0.0065	0.0057							0.0046	0.0031		0.0057	0.0043		0.0073	0.0065	0.0052	0.0050
C_Soleus	0.0180	0.0054	0.0091	0.0126	0.0076	0.0058	0.0079	0.0061	0.0070	0.0070	0.0058	0.0105	0.0111	0.0110							0.0056	0.0058	0.0100	0.0058	0.0045	0.0043	0.0077	0.0064	0.0062	0.0045
R_Soleus	0.0058	0.0075		0.0193	0.0013	0.0183	0.0104	0.0217	0.0086	0.0100	0.0072	0.0094	0.0092	0.0138							0.0057	0.0050	0.0100	0.0125	0.0107		0.0063	0.0094	0.0056	
C_Brain	0.0083	0.0099	0.0092	0.0102	0.0091	0.0160	0.0136	0.0119	0.0123	0.0141	0.0133	0.0138									0.0129	0.0121	0.0100	0.0103	0.0104	0.0110	0.0113	0.0090	0.0099	0.0092
R_Brain	0.0099	0.0117	0.0110	0.0131	0.0130		0.0067	0.0133	0.0129	0.0154	0.0138	0.0145									0.0127	0.0131	0.0100	0.0121	0.0157		0.0104	0.0103	0.0105	0.0115
C_Spinal cord	0.0050	0.0050	0.0170	0.0240	0.0120		0.0010	0.0030	0.0050	0.0036	0.0019	0.0035									0.0022	0.0023		0.0052	0.0047	0.0066				
R_Spinal cord	0.0050	0.0060	0.0060	0.0120	0.0060		0.0040	0.0020	0.0030	0.0043	0.0039	0.0036									0.0027	0.0014		0.0052	0.0063					

													Fe c	oncent	ration	(mg) / c	lry mas	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
										MA	LES														FEM	ALES				
Control_Small intestine	0.080	0.120	0.090	0.070	0.060	0.070	0.050	0.050	0.060	0.150	0.140	0.080									0.048	0.056	0.083	0.068	0.078	0.082	0.069	0.097	0.102	0.092
Restricted Diet_Small intestine	0.140	0.110	0.070	0.090	0.090		0.060	0.070	0.090	0.110	0.080	0.160									0.069	0.090	0.062	0.083	0.085		0.092	0.113	0.123	0.091
C_Large intestine	0.080	0.090	0.070	0.190	0.120		0.050	0.050	0.050	0.090	0.130	0.060									0.065	0.052	0.072	0.061	0.046	0.077	0.070	0.078	0.078	0.052
R_Large intestine	0.080	0.100	0.100	0.150	0.230		0.060	0.060	0.060	0.090	0.060	0.110									0.064	0.060	0.060	0.057	0.059		0.069	0.072	0.064	0.063
C Liver	0.490	0.650	0.460	0.370	0.280	0.270	0.260	0.270	0.280	0.370	0.540	0.460									0.492	0.523	0.539	0.556	0.606	0.746	0.943	0.599	0.869	0.905
R_Liver	0.330	0.320	0.270	0.550	0.720		0.740	0.740	0.790	0.480	0.440	0.870									1.671	1.119	0.924	0.799	1.899	0.749	0.827	0.886	0.733	
C_Lungs	0.600	0.410	0.410	0.860	0.910	0.720	0.390	0.400	0.340	0.590	0.680	0.490									0.387	0.387	0.322	0.340	0.358	0.419	0.408	0.483	0.550	0.504
R_Lungs	0.260	0.500	0.300	0.850	0.740		0.340	0.440	0.410	0.520	0.440	0.280									0.683	0.415	0.643	0.574	0.371	0.482	0.714	0.401	0.519	
C_Kidney	0.170	0.260	0.220	0.270	0.210	0.250	0.170	0.200	0.150	0.520	0.610	0.520									0.175	0.263	0.213	0.219	0.232	0.258	0.268	0.301	0.406	0.319
R_Kidney	0.260	0.360	0.330	0.280			0.250	0.220	0.250	0.430	0.400	0.460									0.356	0.156	0.194	0.239	0.243	0.379	0.519	0.295	0.295	
C_Spleen	0.740	0.770	0.560	1.120	0.970	1.030	0.600	0.800	0.860	1.000	1.100	0.880									0.644	0.839	1.296	0.703	0.694	0.896	0.910	0.927	1.016	0.882
R_Spleen	0.530	0.490		1.280	1.260		0.710	0.810	0.670	0.540	0.630	0.980									1.363	0.804	0.872	0.879	0.691		0.789	0.910	0.902	0.863
C_Pancreas	0.047	0.069	0.071	0.065	0.070	0.092	0.051	0.037	0.046	0.070	0.110	0.060									0.046	0.056	0.049	0.078	0.066	0.060	0.061	0.049	0.078	0.061
R_Pancreas	0.057	0.064	0.106	0.079	0.075		0.066	0.084	0.065	0.120	0.110	0.190									0.074	0.076	0.068	0.085	0.087		0.105	0.132	0.128	0.126
C_Heart	0.520	0.540	0.410	0.560	0.340	0.340	0.510	0.780	0.520	0.360	0.340	0.260									0.538	0.474	0.538	0.344	0.356	0.355	0.323	0.344	0.377	0.348
R_Heart	0.320	0.320	0.420	0.420	0.640		0.340	0.420	0.410	0.270	0.270	0.360									0.385	0.456	0.352	0.369	0.314		0.404	0.317	0.341	0.319
C EDL	0.060	0.070	0.050	0.070	0.050	0.060	0.040	0.040	0.040	0.040	0.040	0.030	0.040	0.040	0.040	0.040	0.040	0.088	0.066	0.052	0.039	0.040	0.044	0.046	0.040	0.047	0.052	0.054	0.060	0.060
R_EDL	0.060	0.080	0.080	0.070	0.070		0.050	0.040	0.040	0.030	0.040	0.030	0.050	0.040	0.070	0.050	0.040	0.053	0.039	0.052	0.050	0.033	0.038	0.035	0.050		0.047	0.110	0.099	0.053
C_Gastrocnemius	0.047	0.040	0.041	0.060	0.050	0.040	0.030	0.050	0.030	0.040	0.050	0.076	0.067	0.053							0.037	0.039	0.051	0.038	0.044	0.043	0.051	0.057	0.047	0.057
R_Gastrocnemius	0.036	0.040	0.033	0.030	0.030		0.040	0.030	0.050	0.040	0.030	0.040	0.035	0.048							0.060	0.041	0.035	0.041	0.038		0.047	0.062	0.046	0.054
C_Soleus	0.128	0.055	0.077	0.060	0.070	0.060	0.060	0.040	0.040	0.040	0.050	0.105	0.086	0.102							0.061	0.059	0.059	0.073	0.066	0.072	0.061	0.073	0.085	0.065
R_Soleus	0.051	0.051		0.050	0.040	0.050	0.050	0.060	0.060	0.040	0.050	0.044	0.045	0.067							0.055	0.052	0.053	0.068	0.051		0.047	0.050	0.056	0.056
C_Brain	0.100	0.090	0.090	0.100	0.050	0.110	0.100	0.090	0.080	0.070	0.070	0.080									0.102	0.088	0.094	0.060	0.058	0.071	0.076	0.073	0.080	0.080
R_Brain	0.080	0.090	0.090	0.230	0.080			0.090	0.090	0.080	0.070	0.100									0.089	0.090	0.096	0.069	0.068		0.065	0.067	0.073	0.078
C_Spinal cord	0.120	0.120	0.130	0.090	0.080	0.040	0.040	0.060	0.040	0.040	0.040										0.041	0.042	0.028	0.047	0.045	0.039	0.075	0.062	0.050	0.061
R_Spinal cord	0.060	0.080	0.070	0.100	0.070	0.030	0.030	0.040	0.050	0.040	0.060										0.044	0.037	0.023	0.042	0.047		0.073	0.063	0.066	0.063

													Kc	oncent	ration (mg) / d	Iry mas	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
			÷					÷		MA	LES			Ċ.				÷	÷						FEM	ALES				
Control_Small intestine	13.8	15.0	13.2	8.5	8.5	8.6	5.0	6.2	6.4	8.1	7.7	4.6									5.8	6.7	6.8	10.3	10.4	10.2	10.1	10.6	10.8	10.4
Restricted Diet_Small intestine	17.0	15.9	15.0	10.1	9.9		7.0	7.1	7.2	7.3	4.9	8.3									7.4	7.6	6.6	11.6	10.8		7.2	10.4	10.4	10.4
C Large intestine	11.8	11.2	13.9	12.0	13.7		6.2	6.9	7.1	8.5	8.0	4.9									7.6	6.7	6.5	12.0	8.8	12.0	9.6	10.2	9.0	10.3
R_Large intestine	17.6	14.4	15.3	13.3	13.4		8.1	7.6	7.8	7.7	5.3	9.4									6.9	7.5	7.3	11.9	11.5		8.3	10.1	11.0	11.5
C Liver	11.2	10.7	10.9	82	7.8	8.1	5.8	57	59	79	79	79									6.5	6.2	5.8	84	84	82	8.1	8.8	73	8.5
R_Liver	10.5	10.5	11.3	8.0	8.5	0.1	6.8	6.2	6.0	6.8	5.5	7.2									5.9	6.0	7.0	8.2	9.4	8.2	8.4	8.1	8.6	0.0
C Lunge	12.4	12.5	11.0	13.5	13.2	13.1	71	7.0	71	12	2.8	21									67	6.8	6.9	9.5	10.0	10.1	10.5	03	9.6	10.1
R_Lungs	13.4	12.4	12.5	13.0	13.0	10.1	7.5	6.2	7.2	3.9	6.5	5.4									6.6	7.4	7.2	9.2	10.5	10.1	11.3	11.3	11.0	10.1
C. Kidney	97	11.5	12.2	84	7.5	83	6.5	72	5.8	79	8.0	79									52	6.9	7.0	8.3	92	91	84	10.2	10.2	8.9
R_Kidney	13.7	14.2	10.4	8.0			7.2	6.7	7.3	7.9	8.0	8.0									6.1	7.2	7.1	9.1	8.8	10.3	10.9	10.1	9.9	
C Spleen	19.5	19.1	20.3	17.1	15.1	16.9	9.7	10.1	11.0	11.4	10.8	10.3									9.4	9.9	10.1	14.5	14.3	14.2	12.5	12.6	12.8	12.0
R_Spleen	20.2	19.4		17.1	18.5		10.1	10.9	10.5	9.1	9.7	11.7									10.4	10.8	10.6	13.8	13.2		14.6	13.2	13.7	14.3
C Pancreas	6.3	6.3	8.1	3.9	9.3	8.5	6.6	5.0	5.9	4.0	5.2	3.1									6.2	6.8	6.6	7.8	7.7	6.5	4.6	4.2	4.7	4.3
R_Pancreas	11.1	14.8	11.3	9.0			8.0	7.3	7.1	6.8	5.6	8.0									7.2	8.0	7.6	11.0	10.6		8.7	8.5	7.0	8.9
C Heart	12.8	12.9	13.1	8.7	9.1	8.8	6.1	7.4	7.7	6.8	6.1	4.7									7.8	7.4	7.4	9.3	9.7	9.4	8.5	9.0	9.1	9.3
R_Heart	13.1	14.0	13.5	9.5	10.3		7.6	8.2	7.6	6.9	8.1	7.4									7.9	7.2	7.7	9.6	9.7		9.5	9.9	9.4	10.5
C_EDL	15.5	16.9	15.6	13.3	11.8	11.2	8.9	9.7	8.7	8.5	8.9	5.8	8.2	8.3	7.9	7.6	7.3	9.3	6.6	8.2	9.6	9.1	8.4	8.5	8.6	9.1	8.7	8.8	9.6	9.2
R_EDL	17.4	18.2	17.3	12.6	12.0		12.3	13.0	10.2	9.0	10.2	5.9	9.1	8.7	9.7	9.1	9.4	10.9	9.2	9.1	10.3	11.2	13.3	9.6	9.9		9.0	17.2	11.8	9.9
C_Gastrocnemius	8.2	8.4	9.0	8.3	8.2	8.3	8.4	7.7	8.0	8.0	7.6	8.6	8.5	6.3							7.6	8.3	8.6	8.2	7.9	8.4	9.1	8.7	7.5	8.9
R_Gastrocnemius	8.8	8.6	8.0	8.7	8.4		9.1	8.4	8.4	8.4	8.5	8.3	6.2	9.3							7.6	7.9	8.8	8.5	8.4		9.2	9.3	9.5	10.2
C_Soleus	15.2	6.8	8.6	6.8	7.7	7.2	7.5	7.8	7.9	8.2	8.2	8.3	7.4	8.5							8.0	7.3	7.5	6.6	5.6	7.6	8.8	8.2	7.9	7.0
R_Soleus	8.5	8.8		7.9	6.9	7.1	9.0	9.1	8.9	9.1	7.4	10.8	5.5	8.0							7.4	8.4	8.3	7.0	6.8		6.4	8.3	7.6	9.9
C_Brain	17.5	17.7	17.8	10.5	7.9	8.0	9.6	9.4	8.6	11.4	11.8	12.4									9.6	9.3	9.4	10.5	10.5	12.0	10.8	10.7	10.8	10.7
R_Brain	17.6	19.0	19.4	11.7	13.1		9.1	10.7	10.5	12.9	12.7	12.6									10.3	10.6	10.7	12.1	12.8		13.0	12.2	12.2	12.0
C_Spinal cord	8.5	8.0	9.6	8.1	9.0		5.3	5.3	5.7	6.9	6.7	6.9									5.6	5.9	5.3	7.8	7.4	8.1	6.4	6.6	6.3	6.4
R_Spinal cord	8.8	10.1	9.3	8.8	9.0		6.2	6.3	6.4	8.5	8.3	8.2									6.8	6.5	6.1	8.0	9.4		7.4	7.5	7.4	7.7

													Mgo	oncent	tration	(mg) /	dry ma	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
										MA	LES														FEN	ALES				
Control_Small intestine	1.07	1.14	0.96	0.93	0.85	0.81	0.62	0.83	0.88	0.92	0.86	0.66									0.77	0.84	0.82	0.82	0.89	0.87	0.90	0.99	0.98	0.95
Restricted Diet_Small intestine	1.34	1.25	1.26	1.00	1.01		0.98	0.97	0.96	1.17	0.99	1.06									0.94	0.98	1.01	0.96	0.98		0.69	1.11	1.07	1.11
C Large intestine	1.09	1.15	0.97	1.67	1.03		0.96	1.00	1.19	1.07	1.51	1.36									1.17	0.96	0.90	1.11	0.82	1.27	1.07	1.10	0.97	1.03
R_Large intestine	1.27	1.35	1.51	1.44	1.77		1.16	1.11	1.15	1.22	1.07	1.24									1.03	1.08	1.14	0.98	1.01		0.91	1.07	1.18	1.13
C_Liver	0.85	0.78	0.88	0.68	0.73	0.72	0.66	0.62	0.66	0.69	0.67	0.69									0.72	0.67	0.57	0.63	0.66	0.67	0.82	0.91	0.73	0.91
R_Liver	0.83	0.86	0.92	0.80	0.78		0.83	0.71	0.75	0.74	0.83	0.70									0.75	0.72	0.85	0.69	0.81	0.82	0.87	0.91	0.93	
C_Lungs	0.67	0.74	0.66	0.75	0.77	0.75	0.62	0.59	0.61	0.56	0.50	0.41									0.59	0.57	0.65	0.55	0.59	0.58	0.66	0.59	0.61	0.64
R_Lungs	0.74	0.65	0.70	0.73	0.81		0.66	0.52	0.64	0.61	0.59	0.70									0.54	0.65	0.58	0.49	0.60	0.72	0.77	0.85	0.83	
C Kidney	0.76	0.85	0.91	0.84	0.74	0.90	0.92	1.00	0.85	0.79	0.79	0.88									0.76	0.98	0.96	0.73	0.85	0.85	0.96	1.15	1.16	1.01
R_Kidney	0.94	0.92	1.15	0.81			1.02	0.98	1.12	0.88	0.80	0.83									0.86	0.98	1.00	0.82	0.82	1.08	1.13	1.10	1.04	
C_Spleen	1.07	1.09	1.20	1.06	0.87	1.03	1.11	1.10	1.23	0.88	0.79	0.89									1.10	1.08	1.11	0.94	0.92	0.93	0.90	0.95	0.95	0.92
R_Spleen	1.24	1.10		1.01	1.08		1.04	1.17	1.14	0.82	0.87	0.86									1.11	1.11	1.10	0.85	0.81		1.02	0.88	0.99	0.98
C_Pancreas	0.57	0.48	0.67	0.28	1.02	0.95	1.02	0.78	0.88	0.74	0.74	0.60									0.94	1.04	1.02	0.78	0.79	0.70	0.59	0.52	0.61	0.54
R_Pancreas	0.95	1.24	1.48	1.32	0.98		1.14	1.10	1.03	1.11	1.04	1.07									1.15	1.18	1.15	1.14	1.05		1.00	1.04	0.78	1.07
C_Heart	1.03	1.03	1.10	0.89	0.91	1.06	0.72	0.88	0.99	0.93	0.90	0.86									0.98	0.97	0.88	0.79	0.86	0.85	0.87	0.94	0.93	0.99
R_Heart	1.03	0.96	0.93	0.96	1.03		0.95	1.00	1.02	0.97	0.93	0.99									1.05	0.91	1.04	0.81	0.82		0.89	0.98	0.91	1.02
C_EDL	1.28	1.42	1.30	1.38	1.18	1.12	1.06	1.19	1.07	1.14	1.19	0.73	0.88	0.82	0.83	0.79	0.78	1.21	0.81	1.02	1.11	1.01	1.06	1.11	1.09	1.23	1.06	1.07	1.19	1.13
R_EDL	1.31	1.35	1.26	1.17	1.13		1.19	1.37	1.16	0.92	1.00	0.59	0.94	0.90	0.89	0.86	0.95	1.48	1.28	1.04	1.36	1.47	1.49	1.10	1.13		0.96	2.09	1.47	1.29
C_Gastrocnemius	1.00	1.00	1.10	1.16	1.15	1.11	0.93	0.85	0.89	0.91	0.88	1.09	1.07	0.90							0.96	1.00	1.03	1.12	1.11	1.18	1.16	1.12	0.97	1.17
R_Gastrocnemius	1.10	1.10	1.03	1.05	1.05		0.98	0.94	0.90	0.89	0.92	1.08	1.00	1.16							1.02	0.76	1.11	1.07	1.02		1.21	1.12	1.18	1.29
C_Soleus	1.96	0.87	1.07	0.86	1.04	0.97	0.78	0.75	0.76	0.81	0.84	0.96	0.85	1.06							0.88	0.88	0.96	0.89	0.77	0.99	1.08	0.95	0.93	0.77
R_Soleus	0.86	1.01		0.84	0.71	0.84	0.95	0.79	0.82	0.82	0.67	1.39	0.67	0.96							0.90	0.92	0.90	0.73	0.65		0.71	0.94	0.83	1.12
C_Brain	0.76	0.78	0.79	0.67	0.50	0.61	0.81	0.79	0.72	0.78	0.81	0.94									0.78	0.77	0.79	0.58	0.58	0.68	0.75	0.79	0.77	0.77
R_Brain	0.72	0.78	0.79	0.74	0.88		0.68	0.87	0.85	0.86	0.84	0.84									0.84	0.86	0.85	0.68	0.72		0.79	0.78	0.81	0.81
C_Spinal cord	0.81	0.68	0.84	0.62	0.75		0.58	0.66	0.62	0.61	1.21	0.67									0.67	0.60	0.49	0.57	0.51	0.60	0.72	0.51	0.57	0.53
R_Spinal cord	0.75	0.66	0.69	0.62	0.76		0.52	0.53	0.56	0.64	0.64	0.58									0.60	0.62	0.54	0.49	0.60		0.70	0.47	0.53	0.56

													Mno	concent	ration	(mg) /	dry ma	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
		l.	l.	1					1	MA	LES				ļ.	l.				Į.					FEN	IALES				
Control_Small intestine	0.0050	0.0070	0.0050	0.0050	0.0040	0.0050	0.0040	0.0060	0.0080	0.0052	0.0048	0.0029									0.0055	0.0045	0.0028	0.0047	0.0041	0.0035	0.0061	0.0041	0.0060	0.0045
Restricted Diet_Small intestine	0.0060	0.0060	0.0050	0.0030	0.0040		0.0060	0.0050	0.0050	0.0051	0.0154	0.0048									0.0037	0.0057	0.0047	0.0061	0.0064		0.0049	0.0083	0.0092	0.0092
C_Large intestine	0.0210	0.0220	0.0250	0.0590	0.0070		0.0060	0.0050	0.0130	0.0223	0.0240	0.0133									0.0099	0.0078	0.0047	0.0104	0.0107	0.0145	0.0157	0.0159	0.0135	0.0111
R_Large intestine	0.0090	0.0220	0.0250	0.0400	0.0660		0.0140	0.0070	0.0070	0.0262	0.0217	0.0250									0.0067	0.0060	0.0047	0.0135	0.0128		0.0140	0.0143	0.0159	0.0137
C_Liver	0.0080	0.0070	0.0060	0.0060	0.0060	0.0060	0.0050	0.0050	0.0050	0.0084	0.0079	0.0088									0.0055	0.0048	0.0056	0.0060	0.0070	0.0072	0.0083	0.0086	0.0075	0.0091
R_Liver	0.0080	0.0080	0.0050	0.0100	0.0080		0.0080	0.0080	0.0070	0.0094	0.0108	0.0086									0.0090	0.0070	0.0065	0.0074	0.0077	0.0117	0.0098	0.0105	0.0116	
C_Lungs	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010			0.0010	0.0008	0.0006	0.0006									0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0008	0.0006	0.0008	0.0006
R_Lungs	0.0010	0.0010		0.0010	0.0010		0.0010	0.0010		0.0008	0.0006	0.0008									0.0004	0.0003	0.0003	0.0003	0.0004	0.0010	0.0007	0.0009	0.0008	
C_Kidney	0.0030	0.0030	0.0030	0.0030	0.0020	0.0030	0.0030	0.0030	0.0030	0.0033	0.0029	0.0035									0.0027	0.0027	0.0030	0.0026	0.0032	0.0032	0.0039	0.0043	0.0045	0.0041
R_Kidney	0.0030	0.0040	0.0040	0.0030			0.0040	0.0040	0.0040	0.0040	0.0032	0.0033									0.0033	0.0024	0.0029	0.0027	0.0028	0.0039	0.0044	0.0038	0.0035	
C_Spleen	0.0010	0.0010	0.0010	0.0030	0.0010	0.0020	0.0010	0.0010	0.0010	0.0007	0.0006	0.0007									0.0020	0.0009	0.0008	0.0006	0.0006	0.0006	0.0008	0.0008	0.0008	0.0007
R_Spleen		0.0010		0.0010	0.0020		0.0010	0.0010	0.0010	0.0005	0.0006	0.0007									0.0008	0.0006	0.0009	0.0003	0.0003		0.0011	0.0005	0.0011	0.0006
C_Pancreas	0.0023	0.0021	0.0029	0.0019	0.0051	0.0045	0.0044	0.0032	0.0040	0.0044	0.0043	0.0041									0.0040	0.0048	0.0047	0.0042	0.0040	0.0039	0.0038	0.0033	0.0043	0.0038
R_Pancreas	0.0036	0.0056	0.0051	0.0060	0.0043		0.0050	0.0059	0.0046	0.0081	0.0077	0.0074									0.0053	0.0046	0.0047	0.0055	0.0050		0.0043	0.0052	0.0034	0.0058
C_Heart	0.0010	0.0010	0.0010	0.0010	0.0010	0.0020	0.0010	0.0020	0.0020	0.0020	0.0020	0.0023									0.0016	0.0016	0.0014	0.0012	0.0015	0.0014	0.0015	0.0017	0.0015	0.0019
R_Heart	0.0010	0.0010	0.0010	0.0010	0.0010		0.0010	0.0010	0.0020	0.0024	0.0017	0.0016									0.0013	0.0011	0.0012	0.0011	0.0010		0.0014	0.0013	0.0012	0.0012
C_EDL	0.0003	0.0003	0.0005	0.0009	0.0012	0.0005	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0004	0.0002	0.0002	0.0003	0.0005	0.0004	0.0004	0.0002	0.0002	0.0004	0.0004	0.0002	0.0006	0.0002	0.0004	0.0004	0.0004
R_EDL	0.0004	0.0005	0.0002	0.0010	0.0005		0.0007	0.0004	0.0006	0.0010	0.0005	0.0002									0.0012	0.0009	0.0013	0.0014	0.0013		0.0006	0.0007	0.0007	0.0005
C_Gastrocnemius	0.0004	0.0004	0.0003	0.0009	0.0004	0.0006	0.0003	0.0005	0.0004	0.0004	0.0003	0.0005	0.0004	0.0006							0.0003	0.0003	0.0004	0.0004	0.0005	0.0004	0.0004	0.0005	0.0004	0.0005
R_Gastrocnemius	0.0002	0.0003	0.0002	0.0002	0.0003		0.0001	0.0001	0.0001	0.0004	0.0005	0.0003	0.0003	0.0003							0.0004	0.0002	0.0002	0.0004	0.0004		0.0005	0.0004	0.0003	0.0005
C_Soleus	0.0010	0.0004	0.0005	0.0005	0.0005	0.0005	0.0004	0.0005	0.0003	0.0005	0.0003	0.0005	0.0005	0.0007							0.0005	0.0006	0.0008	0.0006	0.0005	0.0007	0.0004	0.0005	0.0006	0.0005
R_Soleus	0.0009	0.0008		0.0007	0.0006	0.0011	0.0012	0.0010	0.0006	0.0004	0.0006										0.0007	0.0007	0.0007	0.0005	0.0007		0.0005	0.0004	0.0006	0.0003
C_Brain	0.0015	0.0013	0.0014	0.0013	0.0010	0.0019	0.0018	0.0017	0.0015	0.0021	0.0020	0.0022									0.0019	0.0016	0.0020	0.0014	0.0015	0.0016	0.0018	0.0016	0.0017	0.0017
R_Brain	0.0013	0.0014	0.0012	0.0019	0.0016		0.0013	0.0018	0.0020	0.0022	0.0019	0.0020									0.0021	0.0017	0.0017	0.0015	0.0015		0.0016	0.0016	0.0017	0.0016
C_Spinal cord	0.0014	0.0012	0.0013	0.0015	0.0011		0.0009	0.0008	0.0010	0.0013	0.0010	0.0014									0.0009	0.0009	0.0009	0.0011	0.0012	0.0011	0.0013	0.0012	0.0012	0.0012
R_Spinal cord	0.0012	0.0025	0.0014	0.0013	0.0014		0.0011	0.0010	0.0011	0.0015	0.0016	0.0013									0.0015	0.0009	0.0008	0.0010	0.0011		0.0014	0.0013	0.0013	0.0015

													Na c	oncent	ration	(mg) / c	dry ma	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
										MA	LES							1							FEN	IALES				
Control_Small intestine	3.9	4.5	3.8	1.4	1.2	1.6	1.5	2.0	1.9	2.3	1.9	1.1									1.9	1.7	1.9	1.8	1.9	1.9	2.5	2.5	2.4	2.1
Restricted Diet_Small intestine	4.3	3.8	3.8	2.0	1.6		2.5	1.8	2.0	1.9	1.7	2.2									2.0	2.0	2.1	1.9	2.3		1.7	2.6	2.5	2.7
C_Large intestine	2.4	2.6	2.9	2.3	2.7		1.8	1.8	2.0	1.8	2.7	1.0									2.2	1.8	2.0	2.5	2.0	2.9	2.2	2.3	2.0	2.3
R_Large intestine	3.8	3.1	3.1	2.6	2.6		1.9	2.1	2.0	1.6	2.0	1.8									2.3	1.9	2.0	2.4	2.4		2.2	2.5	2.6	2.6
C_Liver	1.9	2.1	2.3	1.0	0.9	0.9	0.5	0.5	0.5	2.0	2.9	1.9									0.6	0.7	0.4	1.2	1.3	1.3	1.4	1.4	1.3	1.4
R_Liver	2.1	1.9	2.1	1.2	1.5		0.7	0.6	0.5	2.0	1.5	1.5									0.5	0.6	0.6	1.3	1.5	1.5	1.3	1.7	1.7	
C Lungs	5.6	5.7	5.5	4.8	5.3	4.7	1.6	1.5	1.6	2.2	1.7	0.9									1.4	1.5	1.5	3.5	3.7	3.7	4.1	3.9	3.9	4.0
R_Lungs	5.7	6.0	6.5	4.9	4.8		1.6	1.4	1.6	1.4	2.6	1.8									1.5	1.7	1.7	3.5	3.7	4.3	4.8	4.4	4.6	
C Kidney	3.9	5.2	5.1	2.6	2.4	2.7	2.4	2.7	2.1	3.3	3.3	3.4									2.0	2.5	2.6	2.2	2.8	2.8	3.7	3.7	4.5	3.7
R_Kidney	4.6	5.1	3.3	2.4			2.4	2.3	2.3	4.1	3.7	3.6									1.9	2.3	2.3	2.7	2.9	4.9	4.9	4.4	4.6	
C_Spleen	2.3	2.2	2.5	1.7	1.6	1.9	1.4	1.4	1.6	1.5	1.6	1.2									1.3	1.3	1.4	1.6	1.5	1.6	1.7	1.6	1.6	1.5
R_Spleen	2.2	2.0		1.9	1.9		1.2	1.3	1.3	1.0	1.1	1.2									1.5	1.3	1.3	1.4	1.3		1.7	1.4	1.5	1.6
C_Pancreas	1.4	1.8	2.2	0.6	1.3	1.5	1.5	1.1	1.4	1.2	1.2	0.6									1.4	1.6	1.4	1.4	1.3	1.1	1.1	0.9	1.1	0.9
R_Pancreas	2.5	2.5	3.1	1.5	1.3		1.9	2.1	1.8	1.4	1.4	1.9									1.8	2.3	2.1	1.9	1.9		2.5	2.5	2.3	2.5
C Heart	4.3	4.7	4.7	2.4	2.6	3.1	1.6	1.8	2.0	2.0	1.5	0.7									1.9	1.7	1.9	2.4	2.5	2.5	2.4	2.5	2.5	2.7
R_Heart	3.4	3.5	3.8	2.3	2.6		1.7	2.0	1.8	2.2	1.4	1.8									1.9	2.1	1.9	2.7	2.5		3.0	2.4	2.8	2.5
C_EDL	1.9	2.6	2.3	1.7	1.3	1.8	0.5	0.6	0.5	1.1	1.2	1.0	1.4	1.6	1.5	1.4	1.4	1.0	1.0	0.9	0.5	0.5	0.5	0.9	1.0	1.0	1.4	1.3	1.5	1.4
R_EDL	2.9	4.3	2.6	2.0	1.9		0.6	0.6	0.5	1.4	0.8	0.4	1.1	1.2	1.4	1.3	1.3	0.6	0.7	0.9	0.6	0.6	0.7	0.9	1.1		1.4	2.5	1.8	1.5
C_Gastrocnemius	0.5	0.5	0.5	1.0	1.0	0.9	1.3	1.4	1.4	1.2	1.2	1.1	1.1	0.9							0.5	0.6	0.6	1.1	1.0	1.1	1.3	1.4	1.4	1.3
R_Gastrocnemius	0.6	0.7	0.5	1.0	1.2		1.1	1.4	1.3	1.4	1.2	0.8	0.5	1.4							0.7	0.6	0.6	1.2	1.2		1.9	1.8	1.5	1.7
C_Soleus	2.0	0.9	1.0	1.5	1.5	1.4	1.2	1.3	1.2	1.2	1.2	1.2	1.3	1.5							0.8	0.7	0.7	1.2	1.0	1.3	1.3	1.4	1.4	1.3
R_Soleus	0.7	0.7		1.5	0.9	1.2	1.0	1.2	1.2	1.3	1.0	1.0	0.4	0.8							0.8	0.8	0.7	1.3	1.1		1.4	1.6	1.4	1.5
C_Brain	4.3	4.3	4.4	2.0	1.6	1.8	2.0	2.1	1.8	3.3	3.3	3.6									2.0	2.0	1.9	2.1	2.2	2.4	2.9	2.9	2.9	2.8
R_Brain	3.8	3.9	4.1	2.2	2.5		1.6	2.0	2.0	3.5	3.4	3.7									2.0	2.1	2.1	2.4	2.5		3.3	3.0	3.0	3.0
C_Spinal cord	3.5	3.0	3.6	2.6	3.7		1.9	1.9	2.0	2.6	2.8	2.4									2.0	1.9	1.8	1.8	1.7	2.0	2.1	1.9	2.0	1.9
R_Spinal cord	2.7	2.9	2.9	3.2	3.0		1.9	2.0	2.0	2.4	2.5	2.8									2.3	2.1	2.0	1.8	2.2		2.3	1.8	2.0	2.3

													Рс	oncenti	ration (mg) / d	Iry mas	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
										MA	LES														FEM	ALES				
Control_Small intestine	15.5	16.6	15.4	12.4	11.3	11.1	8.7	10.7	11.5	14.7	13.2	10.2									10.5	11.4	11.0	11.8	13.0	13.5	14.4	14.9	15.3	14.6
Restricted Diet_Small intestine	17.9	17.4	16.4	12.5	12.9		12.4	12.8	12.1	16.2	12.9	16.8									12.4	13.0	12.3	13.7	13.9		9.8	15.4	15.4	16.2
C_Large intestine	12.5	11.8	13.3	14.5	17.1		11.3	11.4	9.5	11.6	11.9	7.6									12.0	9.4	11.5	12.6	8.9	13.2	12.1	12.2	12.3	12.0
R_Large intestine	16.1	14.7	15.1	15.1	15.4		11.1	12.4	13.4	12.8	10.1	13.2									12.1	12.6	12.9	12.7	12.4		10.6	12.4	13.6	13.4
C_Liver	14.0	13.1	14.1	9.3	9.1	9.1	8.4	8.4	8.2	11.9	11.2	11.9									8.9	8.3	7.3	9.4	9.8	10.2	13.6	13.9	12.7	14.8
R_Liver	12.5	13.0	13.4	10.6	10.6		10.5	9.6	9.8	11.3	13.6	10.5									9.7	10.0	11.1	10.3	12.1	13.9	12.9	14.5	14.9	
C_Lungs	11.2	11.6	11.2	15.1	14.6	14.6	9.5	9.0	8.9	10.8	10.1	8.4									8.8	8.3	9.3	9.9	10.2	10.0	12.2	10.9	11.8	12.1
R_Lungs	13.3	11.2	12.4	14.7	15.6		9.5	7.7	9.3	11.3	11.2	12.9									7.9	9.2	8.2	8.1	11.1	14.9	15.4	17.0	16.7	
C_Kidney	10.9	12.9	14.1	10.8	9.5	10.9	12.8	14.3	11.9	12.3	12.2	12.4									11.1	13.9	13.8	10.5	12.3	12.4	14.8	15.6	17.9	15.0
R_Kidney	14.5	13.7	14.0	10.4			14.7	14.3	16.6	13.2	13.2	13.4									11.8	13.6	13.9	12.2	12.2	16.8	17.9	17.5	16.2	
C_Spleen	18.5	17.5	20.9	18.7	16.5	18.8	17.0	16.9	18.9	16.1	14.7	15.8									16.0	16.1	16.4	15.4	15.4	15.7	15.4	16.3	16.6	15.5
R_Spleen	19.0	18.9		18.4	21.4		14.9	17.1	16.7	16.0	17.4	16.0									15.2	15.8	15.4	13.7	12.8		16.5	13.7	16.3	16.8
C_Pancreas	8.9	8.9	11.6	6.0	15.2	14.3	13.0	10.3	11.7	13.5	14.0	14.0									12.4	13.7	13.9	13.0	13.4	11.9	11.1	10.0	11.6	10.6
R_Pancreas	13.6	17.9	23.3	18.6	13.2		14.6	13.5	12.8	20.6	19.8	19.8									13.9	15.0	14.2	18.4	16.7		16.3	17.0	13.0	18.4
C_Heart	10.9	11.0	11.7	7.9	8.6	14.1	7.4	9.2	10.3	11.0	11.0	10.2									10.4	10.1	9.3	8.8	9.5	9.3	9.3	10.0	9.8	10.0
R_Heart	11.8	11.6	10.9	7.9	9.9		10.3	10.6	10.1	11.7	10.7	11.0									10.8	10.1	10.8	9.1	9.2		10.5	11.0	10.6	11.2
C_EDL	11.3	12.3	11.5	11.8	10.5	10.5	8.4	9.1	8.2	8.2	8.5	5.9	7.1	7.0	6.9	6.7	6.5	11.4	8.3	9.7	8.8	8.3	8.4	7.8	7.8	8.3	9.9	10.2	11.1	10.7
R_EDL	11.6	11.9	12.0	10.6	10.0		10.4	9.7	9.0	6.8	8.1	6.5	7.1	6.4	7.1	6.6	6.6	13.2	10.8	10.7	8.9	9.3	10.5	8.0	8.3		10.0	20.2	13.1	11.1
C_Gastrocnemius	8.0	8.2	8.3	8.1	7.9	7.8	7.3	7.0	7.1	7.4	7.0	10.1	10.4	8.8							7.6	7.6	8.1	7.8	7.6	8.0	10.9	10.6	9.5	11.4
R_Gastrocnemius	8.2	8.4	8.0	7.2	7.3		7.8	7.3	7.0	7.4	7.0	9.8	8.4	11.1							7.8	6.7	8.5	7.7	7.7		12.0	11.2	11.5	11.9
C_Soleus	15.3	6.6	8.5	6.6	7.8	7.2	6.4	6.4	6.4	6.8	6.6	9.5	8.3	10.1							7.0	7.0	6.9	6.2	5.6	6.9	10.4	9.1	8.5	7.7
R_Soleus	7.3	7.8		6.4	5.9	6.0	7.1	6.4	6.3	6.5	5.4	12.8	7.1	9.3							7.2	7.4	7.1	5.8	5.9		8.2	9.0	8.2	10.7
C_Brain	15.3	16.3	16.2	11.6	8.6	9.3	15.3	15.1	13.6	17.3	17.4	20.4									15.1	14.7	14.6	11.9	12.3	14.6	16.1	17.6	16.5	16.6
R_Brain	15.9	16.7	17.3	12.9	15.0		14.0	16.6	15.7	18.4	17.2	18.0									16.3	16.2	16.1	13.8	14.5		15.7	15.3	16.2	16.0
C_Spinal cord	23.3	18.5	23.8	18.2	21.4		13.9	16.7	15.1	21.8	27.7	22.0									15.8	14.2	12.0	16.8	15.5	17.2	22.9	17.2	19.4	18.2
R_Spinal cord	19.2	17.1	18.1	22.6	21.4		11.5	12.1	12.4	20.5	21.6	19.9									13.4	13.7	12.2	14.2	16.8		22.1	16.0	16.3	16.9

													Znc	oncent	tration	(mg) / (dry ma	ss (g)												
Organs analyzed by ICP-OES	Rat 1	R2	R3	R4	R5	R6	R7	R8	R9	R10	R11	R12	R13	R14	R15	R16	R17	R18	R19	R20	Rat1	R2	R3	R4	R5	R6	R7	R8	R9	R10
										MA	LES														FEN	ALES				
Control_Small intestine	0.10	0.10	0.10	0.09	0.08	0.08	0.07	0.08	0.09	0.13	0.13	0.12									0.08	0.08	0.09	0.09	0.10	0.11	0.12	0.12	0.12	0.12
Restricted Diet_Small intestine	0.12	0.12	0.10	0.09	0.09		0.09	0.10	0.09	0.16	0.15	0.15									0.09	0.09	0.10	0.11	0.10		0.09	0.12	0.12	0.12
C_Large intestine	0.11	0.11	0.09	0.17	0.13		0.14	0.15	0.11	0.16	0.15	0.12									0.12	0.10	0.15	0.13	0.10	0.14	0.14	0.15	0.14	0.14
R_Large intestine	0.12	0.11	0.13	0.20	0.22		0.13	0.12	0.13	0.16	0.13	0.16									0.12	0.12	0.11	0.14	0.14		0.12	0.15	0.14	0.15
C_Liver	0.11	0.10	0.11	0.07	0.07	0.08	0.08	0.07	0.06	0.11	0.10	0.11									0.06	0.06	0.06	0.07	0.08	0.08	0.12	0.12	0.12	0.12
R_Liver	0.10	0.09	0.14	0.09	0.09		0.08	0.08	0.08	0.10	0.11	0.12									0.08	0.09	0.10	0.11	0.13	0.14	0.11	0.17	0.17	
C_Lungs	0.07	0.09	0.07	0.12	0.12	0.12	0.06	0.06	0.06	0.10	0.09	0.08									0.06	0.05	0.06	0.08	0.09	0.09	0.10	0.09	0.10	0.10
R_Lungs	0.09	0.07	0.07	0.12	0.12		0.06	0.05	0.08	0.10	0.10	0.13									0.05	0.06	0.06	0.07	0.09	0.13	0.14	0.14	0.13	
C_Kidney	0.08	0.09	0.11	0.08	0.07	0.08	0.08	0.09	0.08	0.11	0.11	0.11									0.07	0.09	0.08	0.08	0.10	0.10	0.12	0.13	0.14	0.13
R_Kidney	0.11	0.08	0.10	0.08			0.09	0.08	0.10	0.11	0.10	0.11									0.06	0.07	0.10	0.11	0.11	0.13	0.13	0.13	0.13	
C_Spleen	0.09	0.08	0.09	0.11	0.10	0.11	0.09	0.09	0.10	0.09	0.09	0.10									0.08	0.09	0.09	0.08	0.08	0.08	0.10	0.10	0.10	0.10
R_Spleen	0.08	0.09		0.11	0.13		0.08	0.09	0.09	0.09	0.10	0.09									0.09	0.08	0.09	0.07	0.07		0.10	0.09	0.10	0.12
C_Pancreas	0.04	0.04	0.05	0.03	0.07	0.06	0.06	0.05	0.05	0.08	0.09	0.08									0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.05	0.06	0.05
R_Pancreas	0.07	0.08		0.09	0.07		0.06	0.06	0.05	0.10	0.10	0.12									0.06	0.07	0.08	0.10	0.09		0.09	0.09	0.08	0.09
C_Heart	0.07	0.07	0.07	0.06	0.06	0.07	0.06	0.08	0.08	0.11	0.11	0.11									0.08	0.08	0.08	0.07	0.07	0.07	0.08	0.09	0.08	0.09
R_Heart	0.08	0.07	0.07	0.06	0.07		0.08	0.08	0.09	0.15	0.11	0.12									0.08	0.08	0.09	0.07	0.07		0.09	0.10	0.09	0.09
C_EDL	0.05	0.05	0.06	0.06	0.06	0.10	0.04	0.04	0.04	0.05	0.05	0.06	0.05	0.04	0.04	0.04	0.05	0.08	0.08	0.06	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.07	0.06	0.07
R_EDL	0.12	0.08	0.07	0.18	0.14		0.05	0.05	0.04	0.03	0.04	0.03	0.06	0.04	0.06	0.04	0.04	0.08	0.06	0.07	0.05	0.03	0.05	0.04	0.04	0.06	0.14	0.11	0.07	
C_Gastrocnemius	0.05	0.04	0.04	0.07	0.05	0.05	0.04	0.05	0.04	0.06	0.04	0.08	0.07	0.07							0.04	0.04	0.06	0.04	0.05	0.05	0.06	0.08	0.05	0.07
R_Gastrocnemius	0.04	0.04	0.04	0.04	0.04		0.05	0.04	0.04	0.05	0.04	0.06	0.07	0.06							0.05	0.03	0.04	0.04	0.05		0.07	0.09	0.07	0.07
C_Soleus	0.31	0.15	0.18	0.14	0.17	0.17	0.06	0.05	0.05	0.06	0.06	0.24	0.21	0.22							0.17	0.16	0.15	0.18	0.15	0.19	0.08	0.27	0.26	0.21
R_Soleus	0.17	0.18		0.19	0.14	0.16	0.06	0.14	0.12	0.06	0.10	0.10	0.18	0.23							0.15	0.21	0.16	0.15	0.15		0.17	0.10	0.23	0.09
C Brain	0.06	0.07	0.06	0.05	0.03	0.05	0.07	0.07	0.06	0.08	0.08	0.08									0.06	0.07	0.06	0.05	0.05	0.06	0.07	0.08	0.07	0.08
R_Brain	0.06	0.07	0.07	0.05	0.06		0.03	0.08	0.07	0.09	0.08	0.08									0.07	0.07	0.07	0.06	0.06		0.07	0.07	0.08	0.08
C_Spinal cord	0.05	0.03	0.04	0.03	0.04		0.02	0.03	0.02	0.04	0.06	0.03									0.03	0.03	0.02	0.03	0.03	0.03	0.04	0.03	0.03	0.03
R_Spinal cord	0.04	0.04	0.04	0.04	0.03		0.03	0.03	0.02	0.03	0.04	0.04									0.07	0.03	0.02	0.02	0.03		0.04	0.03	0.03	0.03

								Concentració	n de Ca (mg)	/ peso seco (g))						
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	8	9	10
					MA	сноѕ							HEMBRAS				
I Delgado Ctrol	0.422	0.361	0.365	0.329	0.412	0.688	0.377				0.277	0.259	0.274	0.582	0.390	0.347	0.405
I Delgado DN	0.393	0.391	0.324	0.297	0.317	0.383	0.717				0.647	0.452	0.461	0.496	0.682	0.690	0.511
I.Grueso Ctrol	0.560	0.875	0.738	0.671	0.733	0.837	1.346				0.728	0.468	0.820	1.132	0.600	1.074	0.969
I. Grueso DN	0.768	0.639	1.086	1.012	1.206	1.346	1.198				1.038	0.796	1.432	0.615	0.662	0.776	0.953
Hìgado Ctrol	0.161	0.179	0.196	0.119	0.150	0.178	0.127				0.128	0.131	0.156	0.132	0.103	0.128	0.154
Hìgado DN	0.159	0.182	0.144	0.144	0.146	0.150	0.138	0.106	0.134		0.143	0.132	0.105	0.103	0.130	0.121	0.116
Pulmón Ctrol	0.320	0.382	0.342	0.375	0.354	0.680	0.518				0.282	0.290	0.944	0.517	0.694	0.420	0.463
Pulmón DN	0.607	0.448	0.345	0.360	0.519	0.577	0.405				0.417	0.485	0.284	0.293	0.435	0.337	0.444
Riñón Ctrol	0.313	0.332	0.326	0.324	0.304	0.240	0.454				0.273	0.367	0.905	0.301	0.291	0.854	0.548
Riñón DN	0.199	0.229	0.211	0.153	0.483	0.248	0.283	0.298	1.494		0.333	0.212	0.647	0.340	0.268	0.695	0.358
Bazo Ctrol	0.114	0.130	0.077	0.064	0.081	0.094	0.157				0.200	0.193	0.191	0.172	0.127	0.142	0.151
Bazo DN	0.128	0.058	0.145	0.054	0.063	0.102	0.162				0.131	0.169	0.185	0.185	0.160	0.147	0.119
Páncreas Ctrol	0.134	0.123	0.087	0.168	0.195	0.136	0.281				0.229	0.383	0.098	0.258	0.209	0.239	0.228
Páncreas DN	0.201	0.257	0.245	0.230	0.211	0.190	0.381				0.226	0.187	0.221	0.267	0.379	0.321	0.295
Corazón Ctrol	0.215	0.130	0.175	0.172	0.166	0.151	0.170				0.141	0.181	0.278	0.284	0.166	0.209	0.144
Corazón DN	0.213	0.145	0.172	0.158	0.100	0.124	0.218				0.413	0.154	0.152	0.193	0.188	0.163	0.157
EDL Ctrol	0.195	0.250	0.291	0.306	0.219	0.191	0.404				0.254	0.342	0.182	0.244	0.440	0.501	0.571
EDL DN	0.248	0.371	0.210	0.195	0.250	0.254	0.483				0.350	0.211	0.383	0.421	0.488	0.629	0.472
Gastroc Ctrol	0.221	0.191	0.235	0.193	0.251	0.187	0.288				0.215	0.188	0.209	0.188	0.311	0.390	0.397
Gastroc DN	0.212	0.189	0.216	0.220	0.228	0.216	0.355				0.239	0.292	0.247	0.224	0.343	0.422	0.421
C . I O I	0.244	0.462	0.420	0.450	0.444	0.454	0.222				0.400	0.000	0.000	0.402	0.050	0.427	0.200
Soleo Ctroi	0.214	0.163	0.126	0.169	0.141	0.154	0.322				0.196	0.263	0.082	0.102	0.259	0.437	0.386
Soleo DN	0.151	0.210	0.284	0.259	0.322	0.228	0.385				0.360	0.613	0.126	0.685	0.343	0.409	0.363
1	0.262	0.400	0.220	0.000	0.274	0.054					4.650	0.264	0.204	0.077			
Lumbar Ctroi	0.263	0.189	0.236	0.330	0.271	0.351					1.659	0.364	0.201	0.377			
Lumbar DN	0.385	0.258	0.346	0.379	0.232	1.103					0.311	0.258	0.305	1.823			
Carabro Ctrol	0.220	1 772	2 022	0.155	0 122	0.867	0 194				2 722	0.164	0.164	0.190	0 177	0.725	0 197
Cerebro Cirol	0.239	0.216	2.035	0.133	0.122	0.887	0.194				2.725	0.104	0.164	0.190	0.177	0.733	0.197
CELEDIO DIV	0.135	0.210	0.145	0.138	0.125	0.131	0.301				0.150	0.158	0.157	0.335	0.185	0.333	0.507
Médula ctrol	1 297	6.089	5 669	2 723	11 158	13 802	7 425				7 761	5 695	0.875	4 030	2 130	0.691	2 621
Médula DN	9 398	5 917	0.876	9 5 7 8	4 019	1 487	2 127				0.830	1 291	2 740	4.030	1 666	1 140	1 359
Micuula Div	5.550	5.517	0.070	5.570	4.015	1.407	2.127				0.050	1.2.51	2.740	4.204	1.000	1.140	1.555
Testiculos Ctrol	0.216	0 207	0 199	0.213	0.221	0 175	0.215										
Testiculos DN	0.183	0.186	0.175	0.215	0.185	0.200	0.215	0.260	0.228								
	5.105	0.100	5.175	0.200	0.105	0.200	5.225	0.200	5.220								
Ovarios Ctrol											0.099	0 160	0.090		0 172	0.166	0 157
Ovarios DN											0.162	0.136	0.135	0.144	0.240	0.616	0.293
											0.102	0.100	0.100	0.1	0.2.10	0.010	0.235
Sueros C	0.092	0.085	0.107	0.100	0.086	0.108	0.204	0.140	0.118		0.111	0.101	0.112	0.105	0.173	0.138	0.151
Sueros DN	0.091	0,101	0,094	0,085	0.095	0,090	0,244	0,138	0,135	0,156	0,101	0,096	0,101	0,112	0,172	0,190	0,199

ANEXO 2. Resultado de las mediciones de ICP-OES en ratas de 90 días de edad

								Concentració	n de Cu (mg)	/ peso seco (g))						
	1	2	3	4	5 MA	6 CHOS	7	8	9	10	1	2	3 HEMBRAS	4	8	9	10
I Delgado Ctrol	0.009	0.006	0.006	0.005	0.005	0.004	0.007				0.007	0.006	0.008	0.009	0.010	0.009	0.008
I Delgado DN	0.007	0.007	0.006	0.004	0.004	0.006	0.010				0.008	0.008	0.007	0.008	0.011	0.010	0.009
I Cruces Ctrol	0.010	0.000	0.012	0.011	0.000	0.011	0.016				0.009	0.010	0.006	0.012	0.017	0.020	0.015
I.Grueso Ctroi	0.010	0.009	0.013	0.011	0.009	0.011	0.015				0.008	0.010	0.006	0.013	0.017	0.020	0.015
I. Grueso DN	0.016	0.011	0.012	0.012	0.015	0.026	0.015				0.014	0.011	0.020	0.014	0.014	0.015	0.015
Hìgado Ctrol	0.013	0.014	0.014	0.011	0.013	0.014	0.011				0.015	0.016	0.015	0.013	0.014	0.015	0.023
Hìgado DN	0.018	0.018	0.018	0.018	0.017	0.019	0.017	0.016	0.016		0.019	0.017	0.015	0.013	0.016	0.015	0.015
Pulmón Ctrol	0.006	0.007	0.007	0.005	0.006	0.007					0.007	0.011	0.014	0.010			
Pulmón DN	0.008	0.009	0.007	0.007	0.008	0.010					0.008	0.008	0.006	0.008			
	0.000	0.005	0.007	0.007	0.000	0.010					0.000	0.000	0.000	0.000			
Riñón Ctrol	0.052	0.061	0.063	0.053	0.059	0.053	0.048				0.065	0.063	0.054	0.052	0.112	0.107	0.047
Riñón DN	0.033	0.044	0.033	0.030	0.020	0.017	0.026	0.024	0.028		0.042	0.037	0.042	0.033	0.024	0.030	0.031
Bazo Ctrol	0.006	0.006	0.005	0.005	0.005	0.006	0.006				0.007	0.007	0.009	0.006	0.007	0.007	0.006
Bazo DN	0.006	0.005	0.006	0.006	0.005	0.006	0.006				0.009	0.007	0.005	0.006	0.004	0.007	0.006
Páncreas Ctrol	0.003	0.003	0.003	0.004	0.003	0.003	0.004				0.001	0.007	0.002	0.004	0.003	0.004	0.002
Páncreas DN	0.004	0.005	0.005	0.007	0.005	0.004	0.005				0.007	0.002	0.004	0.004	0.006	0.005	0.005
Corazón Ctrol	0.019	0.022	0.021	0.021	0.023	0.022	0.025				0.022	0.023	0.020	0.020	0.024	0.023	0.024
Corazón DN	0.020	0.023	0.019	0.022	0.021	0.022	0.026				0.022	0.022	0.022	0.026	0.026	0.027	0.026
EDL Ctrol	0.002	0.003	0.001				0.005							0.002	0.005	0.007	0.005
EDL DN	0.005	0.001	0.005				0.005				0.004	0.001	0.003	0.001	0.005	0.006	0.005
Gastras Ctrol							0.007				0.005	0.005	0.002	0.005	0.005	0.005	0.007
Gastroc DN							0.007				0.003	0.003	0.003	0.005	0.005	0.005	0.005
							0.000				0.000	0.001	0.000	0.005	0.000	0.000	0.005
Soleo Ctrol	0.003	0.006	0.006	0.006	0.006	0.005	0.006				0.007	0.005		0.001	0.005	0.006	0.007
Soleo DN	0.003	0.003	0.004	0.005	0.004	0.003	0.005				0.009	0.008	0.001	0.006	0.007	0.005	0.006
Lumbar Ctrol	0.005	0.003	0.005	0.002	0.003	0.003					0.002		0.002	0.003			
Lumbar DN	0.003	0.002	0.004	0.002	0.001	0.002					0.002	0.003	0.001	0.002			
Cerebro Ctrol	0.014	0.015	0.013	0.014	0.013	0.014	0.012				0.017	0.016	0.016	0.017	0.013	0.016	0.017
Cerebro DN	0.015	0.014	0.014	0.015	0.015	0.014	0.015				0.015	0.017	0.017	0.018	0.014	0.015	0.014
Médula ctrol	0.003	0.003	0.004	0.003	0.004	0.003	0.001				0.006	0.006	0.006	0.005	0.003	0.002	0.003
Médula DN	0.004	0.004	0.005	0.004	0.005	0.005	0.003				0.007	0.007	0.006	0.005	0.003	0.004	0.003
Testiculos Ctrol	0.017	0.017	0.016	0.015	0.025	0.015	0.013										
Testiculos DN	0.016	0.015	0.015	0.015	0.015	0.013	0.012	0.011	0.011								
Ovarios Ctrol											0.002	0.003	0.002	0.017	0.017	0.004	0.003
Ovarios DN											0.002	0.002	0.002	0.003	0.004	0.004	0.003
Sueros C	0.0012	0.0012	0.0015	0.0014	0.0013	0.0010	0.003	0.003	0.002		0.0018	0.0019	0.0018	0.0016	0 003	0 003	0.002
Sueros DN	0.0012	0.0012	0.0015	0.0012	0.0013	0.0015	0.003	0.002	0.002	0.002	0.0018	0.0017	0.0017	0.0024	0.003	0.003	0.002

								Concentració	on de Fe (mg) /	peso seco (g)							
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	8	9	10
					MA	CHOS							HEMBRAS				
I Delgado Ctrol	0.032	0.028	0.059	0.044	0.013	0.014	0.058				0.071	0.063	0.053	0.068	0.078	0.064	0.063
I Deigado DN	0.036	0.030	0.027	0.027	0.013	0.021	0.084				0.100	0.101	0.093	0.090	0.066	0.069	0.075
L Crucese Ctreel	0.041	0.020	0.070	0.040	0.026	0.068	0.055				0.062	0.060	0.059	0.078	0.064	0.086	0.071
I.Grueso Ctroi	0.041	0.039	0.070	0.049	0.036	0.068	0.055				0.063	0.060	0.058	0.078	0.064	0.086	0.071
I. Grueso DN	0.064	0.058	0.005	0.060	0.089	0.070	0.007				0.077	0.075	0.077	0.062	0.062	0.054	0.061
Hìgado Ctrol	0 300	0 382	0.447	0.406	0 353	0.421	0.261				1 204	0.971	0.820	0.882	0.811	0.759	0.736
Higado DN	0.592	0.382	0.447	0.400	0.555	0.421	0.201	0.615	0.769		1.234	1 165	1 328	1 329	1 142	1 000	1 282
Inguto Div	0.552	0.457	0.500	0.510	0.070	0.500	0.020	0.015	0.705		1.005	1.105	1.520	1.525	1.142	1.000	1.202
Pulmón Ctrol	0.450	0.388	0.386	0.363	0.502	0.304	0.342				0.773	0.799	0.377	0.860	0.527	0.417	0.514
Pulmón DN	0.476	0.510	0.458	0.378	0.511	0.313	0.012				0.509	0.368	0.704	0.693	0.667	0.776	1.008
Riñón Ctrol	0.260	0.197	0.237	0.307	0.197	0.179	0.194				0.312	0.321	0.332	0.358	0.283	0.302	0.246
Riñón DN	0.275	0.241	0.198	0.152	0.177	0.142	0.206	0.191	0.184		0.368	0.308	0.339	0.343	0.286	0.256	0.271
Bazo Ctrol	1.695	1.344	1.608	1.672	1.069	1.657	1.618				4.591	2.644	3.766	2.959	3.779	3.105	2.892
Bazo DN	0.532	0.505	0.663	0.628	0.698	0.683	0.673				1.330	0.975	1.024	1.239	0.967	1.642	1.994
Páncreas Ctrol	0.066	0.058	0.047	0.058	0.088	0.080	0.052				0.040	0.042	0.067	0.129	0.077	0.068	0.055
Páncreas DN	0.135	0.163	0.111	0.086	0.175	0.139	0.118				0.078	0.069	0.114	0.147	0.121	0.104	0.096
Corazón Ctrol	0.423	0.369	0.443	0.428	0.421	0.448	0.337				0.397	0.430	0.579	0.448	0.374	0.448	0.329
Corazón DN	0.549	0.479	0.474	0.449	0.396	0.389	0.424				0.508	0.493	0.476	0.433	0.406	0.383	0.412
EDL Ctrol	0.037	0.046	0.032	0.185	0.053	0.043	0.048				0.043	0.050	0.046	0.042	0.060	0.073	0.060
EDL DN	0.083	0.043	0.024	0.026	0.031	0.075	0.049				0.047	0.050	0.040	0.043	0.056	0.058	0.057
Gastroc Ctrol	0.027	0.039	0.033	0.026	0.029	0.024	0.062				0.048	0.051	0.023	0.043	0.053	0.052	0.045
Gastroc DN	0.033	0.035	0.030	0.088	0.043	0.078	0.041				0.028	0.034	0.032	0.035	0.045	0.042	0.050
	0.077	0.000	0.074	0.050	0.070	0.000	0.050				0.054	0.052	0.040	0.044	0.067	0.050	0.075
Soleo Ctroi	0.077	0.088	0.074	0.053	0.070	0.066	0.058				0.064	0.062	0.048	0.041	0.067	0.060	0.075
Soleo DN	0.077	0.070	0.056	0.036	0.053	0.071	0.049				0.054	0.057	0.081	0.062	0.062	0.053	0.069
Lumbar Ctrol	0.046	0.042	0.021	0.049	0.044	0.068					0.052	0.045	0.040	0.025			
Lumbar Ctroi	0.046	0.042	0.031	0.048	0.044	0.068					0.052	0.043	0.040	0.035			
	0.029	0.026	0.055	0.050	0.039	0.044					0.062	0.055	0.044	0.019			
Cerebro Ctrol	0.085	0.066	0.070	0.074	0.067	0.063	0.090				0.079	0.072	0.074	0.073	0.091	0.075	0.075
Cerebro DN	0.066	0.070	0.066	0.062	0.064	0.065	0.036				0.073	0.072	0.074	0.078	0.085	0.081	0.080
	0.000	0.070	0.000	0.002	0.001	0.000	0.070				0.075	0.072	0.071	0.070	0.000	0.001	0.000
Médula ctrol	0.043	0.040	0.054	0.091	0.037	0.042	0.091				0.054	0.040	0.057	0.046	0.051	0.047	0.049
Médula DN	0.037	0.065	0.033	0.043	0.054	0.043	0.049				0.050	0.044	0.047	0.058	0.074	0.067	0.055
Testiculos Ctrol	0.130	0.102	0.124	0.110	0.096	0.098	0.099										
Testiculos DN	0.100	0.094	0.096	0.104	0.112	0.097	0.098	0.111	0.107								
Ovarios Ctrol											0.133	0.098	0.097		0.161	0.152	0.128
Ovarios DN											0.131	0.112	0.113	0.125	0.134	0.115	0.109
Sueros C	0.0030	0.0025	0.0043	0.0041	0.0045	0.0043	0.015	0.013	0.012		0.0087	0.0062	0.0069	0.0063	0.018	0.017	0.020
Sueros DN	0.0074	0.0028	0.0029	0.0030	0.0054	0.0038	0.016	0.015	0.015	0.018	0.0052	0.0060	0.0060	0.0061	0.019	0.021	0.017

								Concentracio	ón de K (mg) /	peso seco (g)							
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	8	9	10
				1	MA	CHOS		1	1	1			HEMBRAS				
I Delgado Ctro	11.77	11.42	11.25	9.41	7.52	7.22	8.03				8.60	7.52	7.20	7.81	8.85	8.31	8.58
I Delgado DN	10.67	11.16	10.68	7.18	6.79	7.55	10.09				8.64	9.33	8.27	8.77	9.26	9.11	9.73
L Gruese Ctro	0 00	0 55	8 OC	0.14	0 00	8 E0	8 00				0.25	0.10	7.02	9.47	e 20	0.10	0.20
L Grueso DN	0.00	0.33	0.30	9.14	0.03	0.00	0.70				9.23	9.19	7.92	0.47	0.49	9.19	9.20
I. GIUESO DIN	0.00	5.20	5.55	0.01	0.02	5.05	5.70				8.85	5.25	0.51	0.04	5.48	0.75	5.10
Hìgado Ctrol	10.61	10.70	11.01	10.18	10.16	10.62	9.63				11.05	10.61	9.21	9.27	10.07	10.23	10.19
Hìgado DN	11.39	11.48	10.93	11.08	11.25	11.07	11.37	10.62	10.75		12.28	11.81	10.05	9.78	11.00	11.16	11.14
Pulmón Ctrol	8.39	6.94	7.45	7.03	8.32	6.74	8.77				7.82	8.18	7.15	7.72	10.17	11.80	13.19
Pulmón DN	7.78	7.71	8.00	8.06	7.62	7.94	12.10				7.92	8.22	7.88	7.81	11.77	12.03	11.16
Riñón Ctrol	10.81	10.45	11.11	10.75	9.69	8.63	9.60				10.83	10.81	10.32	10.74	8.84	9.89	9.16
Riñón DN	10.43	11.11	9.29	7.75	7.82	6.96	9.55	10.44	9.42		10.90	10.67	10.53	10.56	9.76	9.72	10.46
Bazo Ctrol	11.11	11.09	10.77	11.04	10.61	11.23	12.77				11.77	11.33	11.20	11.47	12.90	12.86	13.27
Bazo DN	12.00	11.88	11.32	11.54	11.74	11.57	14.00				11.43	11.56	11.38	11.32	14.88	14.20	14.58
	0.07	6.75	5.00	6.05	0.00		0.00				5.95	5.04		40.40		0.70	0.56
Pancreas Ctrc	8.07	6.75	5.28	6.85	8.23	7.45	9.03				5.25	5.31	5.51	10.10	9.34	9.70	8.56
Pancreas DN	9.98	9.12	9.19	9.66	9.67	9.37	13.61				4.82	5.21	9.05	9.93	12.21	12.79	12.40
Corazón Ctro	11 76	11 16	11.25	11.61	11 54	11 55	9.32				11 52	11.25	11 72	11.45	9.29	9.54	9.20
Corazón DN	12.02	11.10	11.25	12.12	12.15	12.36	10.15				11.52	11.25	11.66	11.45	10.26	10.15	10.33
EDL Ctrol	9.54	10.17	9.26	9.23	9.37	10.07	12.45				8.39	8.44	8.54	9.01	13.30	13.58	13.26
EDL DN	10.18	10.11	11.09	10.08	10.07	10.54	12.91				9.32	8.77	8.53	8.78	12.84	12.74	12.21
Gastroc Ctrol	11.26	11.13	12.05	13.11	11.76	12.27	12.68				10.00	9.47	9.82	10.20	13.18	13.11	12.67
Gastroc DN	12.26	11.79	11.85	13.06	12.82	12.46	12.75				10.39	10.10	9.66	9.78	12.98	12.89	12.78
Soleo Ctrol	9.02	9.67	8.21	9.80	9.33	9.27	11.95				8.33	6.98	5.19	5.71	11.11	12.94	13.75
Soleo DN	9.57	9.92	10.15	11.21	10.42	11.06	12.20				7.94	8.48	11.42	8.17	12.27	13.13	11.58
	40.00	10.55		10.01	10.77							0.05	0.50	7.00			
Lumbar Ctrol	10.83	10.55	8.80	10.34	10.77	10.94					9.99	8.85	8.58	7.86			
Lumbar DN	11.51	10.77	10.57	9.71	10.89	10.24					8.94	6.04	0.22	0.87			
Cerebro Ctrol	8.06	7 76	7 99	7 74	7 39	7.91	12 57				8 37	8.05	8 25	8.00	11.02	12.65	12 72
Cerebro DN	8 30	8 14	8.28	8 10	8 18	8 24	13.26				8.37	8.63	8.49	8.05	12.84	12.05	13.02
	0.50	0.11	0.20	0.10	0.10	0.21	10.20				0.25	0.00	0115	0.72	12.01	12.00	10.02
Médula ctrol	6.33	6.49	6.29	6.09	6.28	6.21	7.09				7.06	6.74	5.88	5.60	8.16	7.07	7.87
Médula DN	7.12	7.11	6.99	6.92	6.85	6.53	8.18				6.65	6.59	6.15	5.92	9.03	8.75	8.38
Testiculos Ctr	12.27	11.92	11.66	11.17	11.44	10.63	16.60										
Testiculos DN	12.58	12.70	12.28	12.76	12.66	11.98	17.31	17.78	17.53								
Ovarios Ctrol											2.67	3.40	1.95		6.80	6.45	5.18
Ovarios DN											2.99	2.40	2.83	3.33	7.76	7.09	6.93
-																	
Sueros C	0.23	0.21	0.23	0.25	0.19	0.26	0.890	0.538	0.452	0.050	1.10	0.78	1.03	1.03	0.696	0.578	0.577
Sueros DN	1.34	1.55	1.08	1.10	1.19	1.00	0.936	0.588	0.572	0.652	1.42	1.31	1.42	1.66	0.587	0.731	0.771

Image: state in the s									Concentració	n de Mg (mg)	/ peso seco (g	s)						
ibage of the stage of		1	2	3	4	5 MA	6 CHOS	7	8	9	10	1	2	3 HEMBRAS	4	8	9	10
Integred PM 4.67 0.77 0.37 0.37 0.37 0.30 1.07 0.00 1.00 0.00 0.00 1.00 1.00 1.00 Lewes OW 0.57 0.50	I Delgado Ctrol	0.85	0.84	0.80	0.61	0.56	0.53	0.80				0.86	0.71	0.68	0.80	0.89	0.74	0.84
Lensestrint 0.09 0.89 0.99 0.99 0.99 0.99 0.99 0.99 0.90 0.99 0.90 0.99 0.90 0.99 0.90 0.99 0.90 0.99 0.90 0.99 0.99 0.99 0.99 0.90	I Delgado DN	0.87	0.87	0.77	0.53	0.57	0.68	1.08				0.90	0.93	0.87	0.90	1.00	1.04	1.03
Longero DM 0.97 0.99 1.00 0.97 0.99 1.07 1.02 1.12 1.07 1.02 1.07 1.02 1.12 1.05 1.01 1.00 0.87 0.88 0.84 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.87 0.88 0.87 0.81 0.87 0.81 0.87 0.87	L Grueso Ctrol	0.82	0.88	0.94	0.95	0.97	1.00	1 01				0.97	0.88	0.85	1.05	0.86	1 15	1 12
Norm Dir Dir <thdir< th=""> <thdir< th=""></thdir<></thdir<>	I. Grueso DN	0.97	0.90	1.10	0.99	1.07	1.00	1.01				1.05	1.01	1.06	0.87	0.96	0.94	1.12
Hegeb Civil 0.57 0.80 0.79 0.79 0.67 0.67 0.67 0.80 0.80 0.80 0.72 0.73 0.70 0.72 0.73																		
Highed DN 0.55 0.55 0.57 0.57 0.52 0.52 0.53 0.54 0.72 0.74 0.84 0.83 0.82 Paime Circle 0.59 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.51 0.53 0.55	Hìgado Ctrol	0.75	0.80	0.79	0.69	0.74	0.77	0.67				0.80	0.80	0.72	0.75	0.70	0.72	0.73
pishen chund 0.59 0.51 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.53 0.51 0.53 0.51 0.53 0.55 0.53 0.55 0.53 0.55 0.53 0.55	Hìgado DN	0.85	0.85	0.85	0.87	0.87	0.82	0.86	0.79	0.82		0.93	0.94	0.72	0.74	0.84	0.83	0.82
Paimon N 0.99 0.57 0.62 0.88 0.61 0.69 1 0.58 0.63 0.54 0.63 0.62 0.53 Rind red 0.89 0.88 0.89 0.88 0.89 0.82 0.61 0.53 0.87 0.83 0.85 <	Pulmón Ctrol	0.59	0.51	0.53	0.51	0.59	0.48	0.46				0.49	0.56	0.53	0.47	0.53	0.63	0.72
Refor Ctrol 0.88 0.88 0.88 0.88 0.81 0.71 0.83 0.87 0.83 0.87 0.83 0.85	Pulmón DN	0.59	0.57	0.62	0.62	0.58	0.61	0.69				0.58	0.63	0.54	0.54	0.63	0.62	0.53
Rich Crol 0.88 0.88 0.86 0.81 0.71 0.83 0.87 0.83 0.86 0.87 0.88 0.88 0.85 0.81 0.85 Pincress DM 0.95 0.33 0.44 0.88 0.88 0.31 0.88 0.31 0.81 0.85 0.31 0.31 0.35 0.37 0.36 0.37 0.37 0.37 0.37 0.37 0.37 0.33 0.95																		
Rino DN 0.84 0.91 0.79 0.62 0.81 0.73 0.87 0.88 0.98 0.99 0.99 0.99 0.91 0.11 0.11 0.10 0.98 0.91 0.11 0.91 0.91 0.11 0.91 <th0.91< th=""> 0.91 0.91 <</th0.91<>	Riñón Ctrol	0.89	0.88	0.89	0.86	0.81	0.71	0.83				0.89	0.95	0.83	0.86	0.75	0.87	0.80
Base Oral 0.85 0.87 0.81 0.88 0.83 0.85 1.03 1.07 0.88 0.99 0.99 0.99 0.91 0.11 0.10 0.107 Parcerse Croit 0.37 0.70 0.61 0.76 0.91 0.11 0.98 0.99 0.91 0.91 0.91 0.11 0.98 0.99 0.91 0.91 0.11 0.91 0.11 0.91 0.11 0.91 0.11 0.91 0.11 0.91 <td>Riñón DN</td> <td>0.84</td> <td>0.91</td> <td>0.79</td> <td>0.62</td> <td>0.61</td> <td>0.53</td> <td>0.79</td> <td>0.87</td> <td>0.83</td> <td></td> <td>0.87</td> <td>0.85</td> <td>0.85</td> <td>0.86</td> <td>0.79</td> <td>0.81</td> <td>0.86</td>	Riñón DN	0.84	0.91	0.79	0.62	0.61	0.53	0.79	0.87	0.83		0.87	0.85	0.85	0.86	0.79	0.81	0.86
Baco DM 0.92 0.82 0.86 0.84 0.88 0.96 1.07 0.89 0.90 0.91 0.91 1.12 1.10 1.07 Pincress Croil 0.87 0.70 0.61 0.76 0.91	Bazo Ctrol	0.86	0.87	0.81	0.88	0.80	0.85	1.03				0.98	0.94	0.89	0.95	0.98	0.98	1.05
Pancress Ctrol 0.87 0.70 0.61 0.76 0.91 0.84 0.88 1 0.65 0.45 1.03 0.84 0.90 0.79 Pancress ON 1.05 0.96 1.03 1.04 1.01 0.98 1.25 1 0.67 0.70 0.90 1.01 1.05 1.17 1.13 Corracio DN 0.94 0.92 0.88 0.93 0.97 0.94 1.04 1.04 0.67 0.70 0.99 1.04 1.05 1.02 1.03 1.05 1.02 1.00 1.07 1.00 1.02 1.02 1.01 1.06 1.02 1.00 1.02 1.01 1.02 1.02 1.01 1.01 1.00 1.02 1.02 1.01 1.02 1.02 1.02 1.01 1.02 1.02 1.02 1.01 1.03 1.03 1.04 1.02 1.04 1.02 1.03 1.04 1.02 1.02 1.02 <th1.02< th=""> 1.03 1.04</th1.02<>	Bazo DN	0.92	0.82	0.86	0.84	0.83	0.86	1.07				0.89	0.90	0.91	0.91	1.12	1.10	1.07
Partners LD0 0.37 0.37 0.31 0.34 0.32 0.33 1.35 0.35 1.35 0.35 1.13 Partners DN 0.05 0.95 0.93 0.97 0.94 1.05 0.70 0.30 1.01 1.05 1.17 1.13 Corazón Crol 0.91 0.95 0.93 0.97 0.94 1.04 0.93 0.93 0.92 0.87 1.04 1.03 1.05 Corazón Crol 0.98 1.07 1.02 1.03 1.03 0.99 1.07 1.00 1.05 1.02 1.02 1.09 1.14 1.07 Gastro Crol 1.12 1.03 1.03 0.99 1.07 1.02 1.03 1.03 0.91 1.07 1.00 1.00 1.00 1.00 1.07 1.00 1.04 1.07 1.00 1.05 1.02 1.02 1.04 1.17 1.06 Gastro Crol 1.12 1.99 1.13 1.14 1.14	Dánorozo Ctrol	0.97	0.70	0.61	0.76	0.01	0.94	0.00				0.91	0.69	0.45	1.02	0.94	0.00	0.70
Partice DV 1.03 1.03 1.04 1.01 0.99 1.15 0.05 0.70 0.99 1.01 1.15 1.16 1.17 1.16 1.17 1.16 1.17 1.16 1.17 1.16 1.17 1.16 1.17 1.16 1.17 1.16 1.17 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.13 1.16 1.17 1.02 0.93 0.94 0.97 1.02 1.03 1.01 1.03 1.03 <th1.01< th=""> 1.03</th1.01<>	Pancreas Ctroi	1.05	0.70	1.02	1.04	1.01	0.84	1.25				0.81	0.68	0.45	1.03	1.05	0.90	0.79
Coracio DN 0.94 0.92 0.88 0.93 0.97 0.94 1.04 1.04 0.93 0.96 0.91 0.87 1.04 1.03 1.05 EDL Croacio DN 0.91 0.96 0.93 0.96 0.91 0.92 0.87 0.97 1.05 1.10 1.05 EDL Croil 0.98 1.07 1.02 1.03 1.03 0.92 0.89 0.97 1.05 1.10 1.05 EDL Croil 0.98 1.07 1.06 1.07 1.00 1.02 0.93 0.97 0.91 1.11 1.16 1.15 1.19 1.16 1.17 1.06 0.97 0.96 0.93 0.92 0.89 0.97 0.96 0.93 0.92 0.84 0.97 1.06 1.07 1.00 1.07 1.08 1.10 1.11 1.14 1.18 1.14 1.18 1.14 1.18 1.14 1.18 1.14 1.08 1.03 1.01 1.03 0.91	Fallcleas Div	1.05	0.90	1.03	1.04	1.01	0.58	1.25				0.07	0.70	0.50	1.01	1.05	1.17	1.15
Corracio DN 0.91 0.96 0.96 0.97 0.96 0.97 0.96 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.02 0.93 0.93 0.92 0.89 0.97 1.00 1.02 1.00 1.02 1.00 1.02 0.93 0.94 0.93 0.94 0.95 0.112 0.96 0.12 0.93 0.94 0.95 0.94 0.96 0.12 0.93 0.94 0.95 0.94 0.95 0.94 0.96 0.12 0.96	Corazón Ctrol	0.94	0.92	0.88	0.93	0.97	0.94	1.04				0.93	0.96	0.91	0.87	1.04	1.03	1.05
ED Ctroi 0.98 1.07 1.02 1.03 1.03 0.99 1.07 1.00 1.05 1.02 1.00 1.00 1.02 1.00 1.00 1.02 1.00 1.01 1.03 0.08 0.09 0.08 0.09 0.01 1.03 0.08 0.09 0.01	Corazón DN	0.91	0.96	0.93	0.96	0.97	0.96	1.08				0.93	0.92	0.89	0.97	1.05	1.10	1.05
ED DN 0.98 1.09 1.08 0.96 1.02 1.02 1.01 1.08 1.00 1.00 1.07 1.00 1.02 0.93 Gastroc Ctrol 1.12 1.09 1.27 1.23 1.19 1.19 1.11 1.15 1.16 1.15 1.16 1.15 1.16 1.17 1.06 Gastroc Ctrol 0.33 0.99 0.80 0.98 0.99 0.90 0.98 0.90 0.93 0.84 0.50 0.68 0.94 0.96 1.12 Soleo Ctrol 0.33 0.97 1.02 1.19 1.06 1.04 1.04 0.39 0.84 0.50 0.68 0.94 0.96 1.12 Soleo DN 0.89 0.97 1.02 1.14 1.18 1.14 1.04 0.33 1.08 1.05 0.95 1.00 0.94 Lumbar DN 1.21 1.27 1.16 1.18 1.25 1.20 1.03 1.01 1.03 1	EDL Ctrol	0.98	1.07	1.02	1.03	1.03	0.99	1.07				1.00	1.05	1.02	1.02	1.09	1.14	1.07
Gastroc Ctrol 1.20 1.27 1.28 1.19 1.19 1.11 1.10 1.11	EDL DN	0.98	1.09	1.08	0.96	1.02	1.02	1.01				1.08	1.00	1.00	1.07	1.00	1.02	0.93
Gastroc Ctrol 1.12 1.09 1.27 1.23 1.19 1.11 1.16 1.15 1.16 1.15 1.16 1.16 1.17 1.06 1.18 1.14 1.08 1.11 Sole Ctrol 0.33 0.99 0.80 0.98 0.98 0.99 0.90 0.93 0.84 0.50 0.68 0.94 0.96 1.11 Sole Ctrol 0.33 0.99 0.80 0.98 0.98 0.99 0.90 0.93 0.84 0.50 0.68 0.94 0.96 1.11 Sole OV 0.89 0.97 1.02 1.14 1.14 1.04 0.90 1.01 1.33 0.88 0.97 1.00 0.94 0.96 1.12 Lumbar Ctrol 1.15 1.17 1.16 1.18 1.25 1.20 1.04 1.03 1.01 1.07 0.91 Lumbar Ctrol 0.65 0.68 0.69 0.63 0.61 0.66 0.71 0.66																		
Gastrice DN 1.26 0.38 0.93 0.84 0.50 0.68 0.94 0.96 1.12 Soleo DN 0.89 0.97 1.00 1.06 1.04 0.90 1.01 1.33 0.98 0.97 1.00 0.94 Lumbar Ctrol 1.15 1.10 1.02 1.14 1.18 1.14 1.18 1.14 1.18 1.12 Lumbar ON 1.21 1.27 1.16 1.18 1.25 1.20 1.33 1.08 1.05 0.95 1.00 0.91 1.07 0.91 1.07 0.84 0.81	Gastroc Ctrol	1.12	1.09	1.27	1.23	1.19	1.19	1.11				1.15	1.16	1.15	1.19	1.16	1.17	1.06
Soleo Ctrol 0.93 0.99 0.80 0.98 0.90 0.98 0.98 0.93 0.84 0.50 0.68 0.94 0.96 1.12 Soleo DN 0.89 0.97 1.02 1.19 1.09 1.06 1.04 0.90 0.90 1.01 1.33 0.98 0.97 1.00 0.94 Lumbar Ctrol 1.15 1.10 1.02 1.14 1.18 1.14 1.14 1.14 1.13 1.08 1.05 0.95 1.12 0.91 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.13 1.04 1.05 0.93 1.01 1.07 0.91 1.01 1.00 0.93 0.84 0.50 0.94 <td>Gastroc DN</td> <td>1.26</td> <td>1.21</td> <td>1.25</td> <td>1.26</td> <td>1.31</td> <td>1.24</td> <td>1.06</td> <td></td> <td></td> <td></td> <td>1.29</td> <td>1.24</td> <td>1.19</td> <td>1.18</td> <td>1.14</td> <td>1.08</td> <td>1.11</td>	Gastroc DN	1.26	1.21	1.25	1.26	1.31	1.24	1.06				1.29	1.24	1.19	1.18	1.14	1.08	1.11
Soleo DN 0.89 0.97 1.02 1.19 1.09 1.06 1.04 1.00 0.90 1.01 1.33 0.98 0.97 1.00 0.94 Lumbar Ctrol 1.15 1.10 1.02 1.14 1.18 1.14 1.18 1.14 1.18 1.05 1.05 0.95 1.00 0.94 Lumbar DN 1.21 1.27 1.16 1.18 1.25 1.20 1.00 1.03 1.01 1.07 0.91 1.00 0.94 Cerebro Ctrol 0.65 0.66 0.63 0.64 0.65 0.64 0.86 1.00 1.03 1.01 1.07 0.91 1.00 0.84 0.81 Cerebro DN 0.65 0.64 0.65 0.64 0.86 1.01 1.03 0.67 0.70 0.81 0.83 0.85 Médula DN 0.69 0.63 0.51 0.70 0.76 0.62 1.01 0.64 0.52 0.53 0.54 0.61 0.52 0.59 Médula DN 0.69 0.64 0.58 <td< td=""><td>Soleo Ctrol</td><td>0.93</td><td>0.99</td><td>0.80</td><td>0.98</td><td>0.98</td><td>0.90</td><td>0.98</td><td></td><td></td><td></td><td>0.93</td><td>0.84</td><td>0.50</td><td>0.68</td><td>0.94</td><td>0.96</td><td>1.12</td></td<>	Soleo Ctrol	0.93	0.99	0.80	0.98	0.98	0.90	0.98				0.93	0.84	0.50	0.68	0.94	0.96	1.12
Lumbar Ctrol 1.15 1.10 1.02 1.14 1.18 1.14 1.44 1.45 1.05 1.03 1.01 1.07 0.95	Soleo DN	0.89	0.97	1.02	1.19	1.09	1.06	1.04				0.90	1.01	1.33	0.98	0.97	1.00	0.94
Limbar DN 1.21 1.32 1.42 1.44 1.45 1.20 1.03 1.03 1.01 1.07 0.91 1.44 1.44 Limbar DN 0.65 0.68 0.69 0.63 0.61 0.66 0.80 0.73 0.66 0.66 0.71 0.67 0.70 0.81 0.83 0.85 Médula ctrol 0.49 0.69 0.63 0.51 0.70 0.76 0.62 0.64 0.62 0.52 0.57 0.60 0.52 0.57 0.60 0.52 0.57 0.60 0.52 0.57 0.60 0.52 0.53 0.54 0.61 0.62 0.57 Médula DN 0.69 0.66 <td>Lumbar Ctrol</td> <td>1 15</td> <td>1 10</td> <td>1 02</td> <td>1 14</td> <td>1 18</td> <td>1 14</td> <td></td> <td></td> <td></td> <td></td> <td>1 35</td> <td>1.08</td> <td>1.05</td> <td>0.95</td> <td></td> <td></td> <td></td>	Lumbar Ctrol	1 15	1 10	1 02	1 14	1 18	1 14					1 35	1.08	1.05	0.95			
Cerebro Ctrol 0.65 0.68 0.69 0.63 0.61 0.66 0.80 0.73 0.66 0.66 0.66 0.77 0.84 0.81 Cerebro DN 0.66 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.65 0.64 0.86 0.80 0.66 0.71 0.67 0.70 0.81 0.83 0.83 0.81 Médula ctrol 0.49 0.69 0.63 0.51 0.70 0.76 0.62 0.64 0.64 0.62 0.53 0.53 0.54 0.61 0.62 0.52 0.53 0.53 0.54 0.61 0.62 0.52 0.53 0.53 0.54 0.61 0.62 0.57 0.53 0.53 0.54 0.61 0.62 0.57 0.53 0.53 0.54 0.61 0.62 0.57 0.53 0.53 0.54 0.61 0.62 0.57 Médula DN 0.69 0.60 0.95 0.96 0.	Lumbar DN	1.13	1.27	1.16	1.14	1.15	1.14					1.03	1.00	1.05	0.91			
Cerebro Ctrol 0.65 0.68 0.69 0.63 0.61 0.66 0.80 (1) 0.73 0.66 0.66 0.66 0.77 0.84 0.81 Cerebro DN 0.66 0.64 0.65 0.64 0.65 0.64 0.86 (1) (1) 0.66 0.71 0.66 0.66 0.67 0.81 0.83 0.83 Médula ctrol 0.69 0.69 0.63 0.51 0.70 0.76 0.62 0.52 0.53 0.53 0.54 0.61 0.62 0.53 0.53 0.54 0.61 0.62 0.53 0.53 0.54 0.61 0.62 0.53 0.54 0.61 0.62 0.53 0.54 0.61 0.62 0.57 Médula DN 0.69 0.60 0.54 0.71 0.58 0.48 0.56 (1) 0.61 0.61 0.62 0.53 0.53 0.54 0.61 0.62 0.57 Médula DN 0.69 0.98																		
Cerebro DN 0.66 0.64 0.65 0.64 0.65 0.64 0.86 0.86 0.66 0.71 0.67 0.70 0.81 0.83 0.85 Médula ctrol 0.49 0.69 0.63 0.51 0.70 0.76 0.62 0.64 0.64 0.62 0.52 0.57 0.60 0.52 0.57 Médula DN 0.69 0.69 0.63 0.51 0.70 0.76 0.62 0.64 0.64 0.62 0.52 0.57 0.60 0.52 0.57 Médula DN 0.69 0.69 0.63 0.51 0.70 0.76 0.62 0.64 0.64 0.62 0.52 0.57 0.60 0.52 0.57 Médula DN 0.69 0.69 0.61 0.70 0.76 0.62 0.64 0.64 0.62 0.52 0.57 0.60 0.52 0.57 Testiculos Ctrol 1.07 1.08 1.08 1.04 1.12 1.14	Cerebro Ctrol	0.65	0.68	0.69	0.63	0.61	0.66	0.80				0.73	0.66	0.66	0.66	0.77	0.84	0.81
Médula ctrol 0.49 0.69 0.63 0.51 0.70 0.76 0.62 0.64 0.64 0.62 0.52 0.57 0.60 0.52 0.57 Médula DN 0.69 0.69 0.51 0.71 0.58 0.48 0.56 1.01 0.52 0.53 0.53 0.53 0.54 0.54 0.52 0.57 Testiculos Ctrol 1.05 1.01 0.98 0.96 0.91 1.04 1.12 1.14 1.11 1.11 1.14 1.11 1.11 1.14 1.11 1.11 1.14 1.11 1.11 1.11 1.14 1.11 1.11 1.14 1.11 1.11 1.14 1.11 1.11 1.14 1.11 1.11 1.14 1.11 1.11 1.14 1.11 1.14 1.11 1.14 1.11 1.14 1.11 1.14 1.11 1.14 1.11 1.14 1.11 1.14 1.11 1.14 1.14 1.11 1.14 1.	Cerebro DN	0.66	0.64	0.65	0.64	0.65	0.64	0.86				0.66	0.71	0.67	0.70	0.81	0.83	0.85
Médula DN 0.69 0.60 0.54 0.71 0.58 0.48 0.56 1.00 0.52 0.53 0.53 0.54 0.61 0.62 0.57 Testiculos Ctrol 1.05 1.01 0.98 0.96 0.96 0.91 1.04 <td>Médula ctrol</td> <td>0.49</td> <td>0.69</td> <td>0.63</td> <td>0.51</td> <td>0.70</td> <td>0.76</td> <td>0.62</td> <td></td> <td></td> <td></td> <td>0.64</td> <td>0.62</td> <td>0.52</td> <td>0.57</td> <td>0.60</td> <td>0.52</td> <td>0.59</td>	Médula ctrol	0.49	0.69	0.63	0.51	0.70	0.76	0.62				0.64	0.62	0.52	0.57	0.60	0.52	0.59
Image: Constraint of the state of	Médula DN	0.69	0.60	0.54	0.71	0.58	0.48	0.56				0.52	0.53	0.53	0.54	0.61	0.62	0.57
Testiculos Cirol 1.01 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.021 0.022 0.022 0.023 0.026 0.023 0.023 0.028 0.028 0.028 0.034 0.026 0.040 0.34 Sueros C 0.022 0.018 0.023 0.026 0.028 0.028 0.028 0.034 0.026 0.042 0.029 0.034 Sueros DN 0.024 0.025 0.021 0.022 0.022 0.025 0.027 0.032 0.026 0.023 0.025 0.027 0.048 0.047 0.041	Testiculos Ctrol	1.05	1.01	0.98	0.96	0.96	0.91	1.04										
Ovarios Ctrol O.022 O.018 O.023 O.018 O.026 O.019 O.027 O.049 O.032 O.026 O.034 O.026 O.030 O.18 O.026 O.030 O.16 O.16 O.034 Sueros C 0.022 0.018 0.023 0.026 0.019 0.027 0.049 0.026 0.026 0.034 0.026 0.042 0.029 0.034 Sueros DN 0.024 0.025 0.021 0.022 0.022 0.045 0.028 0.027 0.023 0.026 0.023 0.025 0.027 0.049 0.028 0.027 0.023 0.024 0.025 0.027 0.049 0.028 0.027 0.023 0.024 0.025 0.027 0.049 0.028 0.027 0.023 0.024 0.025 0.027 0.048 0.027 0.032 0.022 0.023 0.027 0.023 0.023 0.025 0.027 0.048 0.047 0.041	Testiculos DN	1.05	1.01	1.04	1.08	1.08	1.04	1.04	1 14	1 11								
Ovarios Ctrol Image: Construction of the structure	resticulos bit	1.07	1.00	1.04	1.00	1.00	1.04	1.12	1.14	1.11								
Ovarios DN Image: Constraint of the constrai	Ovarios Ctrol											0.23	0.30	0.18		0.42	0.40	0.34
Sueros C 0.022 0.018 0.023 0.021 0.021 0.022 0.022 0.021 0.022 0.022 0.023 0.024 0.025 0.021 0.021 0.022 0.025 0.028 0.024 0.023 0.025 0.021 0.021 0.022 0.025 0.028 0.024 0.023 0.025 0.027 0.049 0.028	Ovarios DN											0.33	0.21	0.26	0.30	0.51	0.54	0.50
Sueros DN 0.024 0.025 0.021 0.021 0.022 0.022 0.045 0.028 0.027 0.032 0.024 0.025 0.027 0.048 0.047 0.041	Sueros C	0.022	0.018	0.023	0.026	0.019	0.027	0.049	0.032	0.026		0.028	0.028	0.034	0.026	0.042	0.029	0.034
	Sueros DN	0.024	0.025	0.021	0.021	0.022	0.022	0.045	0.028	0.027	0.032	0.024	0.023	0.025	0.027	0.048	0.047	0.041

								Concentració	n de Mn (mg)/	/ peso seco (g	;)						
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	8	9	10
					MA	CHOS							HEMBRAS				
I Delgado Ctrol	0.0031	0.0026	0.0037	0.0030	0.0019	0.0018	0.0040				0.0026	0.0034	0.0029	0.0059	0.0042	0.0036	0.0046
I Delgado DN	0.0027	0.0031	0.0023	0.0027	0.0029	0.0035	0.0063				0.0046	0.0047	0.0040	0.0040	0.0065	0.0087	0.0051
I.Grueso Ctrol	0.0068	0.0087	0.0094	0.0090	0.0087	0.0089	0.0113				0.0118	0.0087	0.0066	0.0150	0.0077	0.0152	0.0298
I. Grueso DN	0.0091	0.0091	0.0126	0.0132	0.0147	0.0132	0.0137				0.0130	0.0127	0.0162	0.0073	0.0101	0.0107	0.0135
Hìgado Ctrol	0.0078	0.0076	0.0084	0.0071	0.0077	0.0075	0.0069				0.0070	0.0076	0.0073	0.0070	0.0071	0.0074	0.0073
Hìgado DN	0.0092	0.0107	0.0102	0.0094	0.0098	0.0095	0.0101	0.0096	0.0095		0.0105	0.0095	0.0092	0.0077	0.0096	0.0078	0.0084
Pulmón Ctrol	0.0004	0.0005	0.0005	0.0004	0.0004	0.0004	0.0005				0.0004	0.0005	0.0006	0.0004	0.0007	0.0008	0.0009
Pulmón DN	0.0005	0.0003	0.0005	0.0010	0.0004	0.0005	0.0005				0.0005	0.0005	0.0004	0.0004	0.0008	0.0005	0.0005
	0.0005	0.0004	0.0005	0.0010	0.0004	0.0005	0.0000				0.0005	0.0005	0.0004	0.0004	0.0000	0.0005	0.0005
Riñón Ctrol	0.0028	0.0029	0.0030	0.0036	0.0026	0.0023	0.0033				0.0032	0.0027	0.0030	0.0028	0.0040	0.0032	0.0030
Riñón DN	0.0027	0.0032	0.0028	0.0019	0.0021	0.0018	0.0032	0.0033	0.0030		0.0026	0.0025	0.0029	0.0025	0.0032	0.0031	0.0033
Raza Ctrol	0.0005	0.0005	0.0005	0.0006	0.0005	0.0005	0.0005				0.0007	0.0006	0.0006	0.0007	0.0006	0.0007	0.0007
Bazo Choi	0.0003	0.0005	0.0005	0.0000	0.0005	0.0003	0.0005				0.0007	0.0000	0.0000	0.0007	0.0006	0.0007	0.0007
Bazo Div	0.0000	0.0003	0.0003	0.0000	0.0000	0.0000	0.0000				0.0000	0.0000	0.0000	0.0003	0.0000	0.0000	0.0004
Páncreas Ctrol	0.0040	0.0029	0.0029	0.0033	0.0043	0.0037	0.0047				0.003	0.002	0.0020	0.0060	0.0048	0.0053	0.0046
Páncreas DN	0.0054	0.0054	0.0059	0.0055	0.0054	0.0056	0.0065				0.002	0.003	0.0047	0.0056	0.0062	0.0064	0.0063
Corozón Ctrol	0.0014	0.0016	0.0014	0.0016	0.0015	0.0014	0.0015				0.0017	0.0017	0.0017	0.0016	0.0015	0.0014	0.0015
Corazón DN	0.0014	0.0010	0.0014	0.0010	0.0013	0.0014	0.0013				0.0017	0.0017	0.0017	0.0010	0.0013	0.0014	0.0013
Corazon DN	0.0012	0.0015	0.0015	0.0014	0.0014	0.0014	0.0010				0.0012	0.0015	0.0015	0.0013	0.0011	0.0010	0.0009
EDL Ctrol	0.0003	0.0003	0.0002	0.0004	0.0004	0.0005					0.0004	0.0004	0.0004	0.0003			
EDL DN	0.0004	0.0003	0.0005	0.0006	0.0002	0.0004					0.0003	0.0005	0.0003	0.0005			
Gastroc Ctrol	0.0002	0.0003	0.0015	0.0005	0.0002	0.0004					0.0003	0.0003	0.0001	0.0003			
Gastroc DN	0.0002	0.0002	0.0002	0.0003	0.0002	0.0003					0.0004	0.0003	0.0001	0.0002			
	0.0002	0.0002	0.0002	0.0005	0.0000	0.0000					0.0001	0.0000	0.0000	0.0002			
Soleo Ctrol	0.0005	0.0006	0.0005	0.0006	0.0005	0.0006											
Soleo DN	0.0008	0.0006	0.0006	0.0004	0.0005	0.0007					0.001	0.001	0.001	0.001			
Lumbar Ctrol	0.0003	0.0003	0.0004	0.0003	0.0002	0.0003					0.0003	0.0003	0.0003	0.0003			
Lumbar DN	0.0002	0.0002	0.0004	0.0003	0.0003	0.0002					0.0005	0.0003	0.0003	0.0001			
Cerebro Ctrol	0.0016	0.0014	0.0015	0.0016	0.0014	0.0014	0.0016				0.0018	0.0017	0.0018	0.0019	0.0018	0.0018	0.0018
Cerebro DN	0.0015	0.0016	0.0015	0.0015	0.0014	0.0014	0.0017				0.0017	0.0015	0.0017	0.0016	0.0018	0.0016	0.0017
Médula ctrol	0.0007	0.0006	0.0008	0.0011	0.0008	0.0006	0.0009				0.0011	0.0010	0.0012	0.0011	0.0012	0.0013	0.0011
Médula DN	0.0008	0.0008	0.0008	0.0007	0.0007	0.0008	0.0011				0.0009	0.0010	0.0010	0.0009	0.0011	0.0013	0.0010
Testiculos Ctrol	0.0021	0.0019	0.0018	0.0018	0.0018	0.0017	0.0018										
Testiculos DN	0.0020	0.0019	0.0019	0.0021	0.0018	0.0018	0.0018	0.0016	0.0017								
Ovarios Ctrol											0.0006	0.0005	0.0005		0.0011	0.0006	0.0006
Ovarios DN											0.0007	0.0005	0.0006	0.0006	0.0007	0.0035	0.0013
Sueres C																	
Sucros DN																	
Suelos DN																	

								Concentració	n de Na (mg)	/ peso seco (g	:)						
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	8	9	10
					MA	сноѕ							HEMBRAS				
I Delgado Ctrol	2.43	2.42	2.46	1.81	1.57	1.35	0.99				1.48	1.48	1.21	1.84	1.30	1.20	1.14
I Delgado DN	2.23	2.55	2.06	1.48	1.56	1.87	1.48				2.06	1.89	1.83	1.69	1.55	1.46	1.34
l Grueso Ctrol	1 96	2.08	2 20	1 95	1 96	2.00	1.48				2 21	2.08	1.68	1 89	1 17	1 25	1 74
L Grueso DN	1.50	2.00	2.20	2.00	2 31	2.00	1.40				2.21	1.95	1.00	2.07	1.17	1.25	1.74
I. GIUCSO DIV	1.55	2.35	2.40	2.00	2.51	2.00	1.57				2.17	1.55	1.05	2.07	1.55	1.27	1.55
Hìgado Ctrol	1.51	1.55	1.75	1.53	1.60	1.74	1.36				1.64	1.80	2.01	1.61	1.85	1.82	1.80
Hìgado DN	2.29	1.83	2.20	1.83	2.18	1.77	2.07	1.92	1.69		2.13	2.44	1.67	1.89	2.26	2.19	2.05
Pulmón Ctrol	3 46	2 90	3 50	2.89	3 47	2 95	4 40				3 26	3 44	3 01	3 61	5 40	5 54	6 21
Pulmón DN	3 13	3.25	3.26	3.27	3.27	3 32	6.07				3 32	3.73	3.50	3.01	6.16	6 10	6.53
	5.15	5.25	5.20	5.27	5.22	5.52	0.07				5.52	5.25	5.50	5.45	0.10	0.10	0.55
Riñón Ctrol	4.61	4.30	4.75	4.45	3.95	3.45	3.91				4.82	4.90	4.16	4.88	3.99	4.60	4.27
Riñón DN	4.21	5.69	4.62	3.18	3.39	2.67	4.58	4.13	4.18		5.16	4.24	4.78	5.09	4.50	4.55	4.52
Bazo Ctrol	1.24	1.35	1.20	1.23	1.10	1.20	1.05				1.41	1.33	1.43	1.45	1.11	1.10	1.16
Bazo DN	1.32	1.24	1.13	1.14	1.16	1.15	1.07				1.40	1.36	1.42	1.41	1.12	1.05	1.03
Páncreas Ctrol	1 26	1 02	0.86	1 18	1 40	1 23	1 78				0.56	0.60	1 21	1 94	1 99	2 13	1 77
Páncreas DN	1.20	2.08	1 79	1.10	2.03	1.23	2.96				0.50	0.64	1.85	2.12	3 15	3 40	3 14
Tuncicus Bit	1.50	2.00	1.75	1.50	2.05	1.75	2.50				0.05	0.04	1.05	2.12	5.15	5.40	5.14
Corazón Ctrol	4.12	3.54	3.83	3.64	3.90	3.78	1.55				3.38	4.03	3.77	4.14	1.64	1.91	1.68
Corazón DN	4.15	3.96	4.46	3.38	3.12	3.97	1.75				3.84	3.85	4.05	3.50	1.71	1.79	1.87
EDL Ctrol	1.06	1.15	1.02	1.18	0.99	0.99	3.10				0.91	0.88	0.77	0.76	3.42	3.14	3.25
EDL DN	1.10	1.26	1.12	1.26	1.14	1.08	3.69				0.70	0.79	0.87	0.87	3.57	3.68	3.64
Gastroc Ctrol	1 16	1 14	1 14	1.65	1 45	1 23	2 61				0.91	0.96	0.89	0.86	3.06	2 99	2.96
Gastroc DN	1.29	1.34	1.31	1.30	1.37	1.20	3.35				0.78	1.05	0.97	0.95	3.38	3.47	3.69
Soleo Ctrol	1.11	1.58	1.27	1.48	1.41	1.18	2.70				0.97	0.98	0.68	0.59	2.80	2.59	3.29
Soleo DN	1.33	1.39	1.37	1.14	1.28	1.23	3.54				0.85	0.96	1.19	0.83	3.35	3.33	3.21
Lumber Ctrol	0.00	0.82	1.09	0.00	0.04	0.84					0.91	0.67	0.66	0.61			
Lumbar Ctroi	1.06	1.07	1.08	1.04	0.94	1.02					0.81	0.87	0.60	0.61			
	1.00	1.07	1.00	1.04	0.55	1.02					0.75	0.77	0.05	0.55			
Cerebro Ctrol	2.58	2.51	2.56	2.51	2.21	2.40	2.09				2.69	2.44	2.58	2.56	1.95	2.20	2.17
Cerebro DN	2.56	2.46	2.56	2.42	2.44	2.42	2.13				2.45	2.59	2.50	2.63	2.08	2.06	2.06
المعالم	1.01	1.04	2.00	1.00	2.00	2.10	1.64				2.00	2.45	2.10	2.10	1.02	1.00	1.00
Médula Ctroi	1.91	1.94	2.08	1.86	2.08	2.16	1.64				2.60	2.45	2.16	2.16	1.92	1.68	1.86
Medula DN	2.11	2.12	2.06	2.15	2.19	1.89	1.74				2.21	2.07	2.08	2.13	1.93	2.03	1.70
Testiculos Ctrol	5.13	4.65	5.19	4.64	4.83	4.42	3.97										
Testiculos DN	4.73	4.74	4.69	4.83	4.88	4.53	3.94	3.98	3.81								
Ovarios Ctrol											1.12	1.42	0.92		2.07	2.13	1.50
Ovarios DN											1.17	1.00	1.13	1.18	2.28	2.08	2.08
Sueros C	1.46	1.35	1.66	1.55	1.41	1.63	4.721	3.093	2.976		1.71	1.69	1.76	1.70	3.769	3.438	3.455
Sueros DN	1.60	1.86	1.68	1.54	1.66	1.61	4.894	3.079	3.154	3.272	1.72	1.67	1.73	1.85	3.225	4.144	4.788

								Concentraci	ón de P (mg)/	peso seco (g)							
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	8	9	10
					MA	сноѕ							HEMBRAS				
I Delgado Ctrol	11.97	12.09	11.86	9.44	8.23	8.83	11.42				11.42	9.94	10.05	11.19	12.62	9.89	12.11
I Delgado DN	11.70	11.85	11.29	7.89	8.52	9.79	13.61				12.01	12.81	12.11	12.87	13.49	14.08	13.65
I.Grueso Ctrol	8.62	9.15	10.80	10.02	9.10	9.09	11.44				10.43	10.33	8.38	10.49	10.14	12.78	12.70
I. Grueso DN	10.00	9.72	10.59	10.23	10.62	10.44	10.71				10.69	11.23	11.11	10.00	11.35	10.81	12.13
Hìgado Ctrol	10.81	11.04	11.20	9.98	10.83	11.04	10.11				11.53	11.75	10.57	10.82	10.44	10.77	10.20
Hìgado DN	12.53	12.44	13.00	12.79	12.86	12.20	13.04	11.75	12.04		13.62	13.83	11.29	10.24	12.65	12.69	12.82
Pulmón Ctrol	9.52	8.22	8.63	8.54	9.29	7.86	8.36				8.38	9.07	8.56	7.87	9.41	11.77	13.08
Pulmón DN	9.00	8.67	9.68	9.92	9.13	9.73	12.33				9.00	9.75	8.75	8.57	11.51	11.05	9.24
Riñón Ctrol	11.78	12.19	12.11	11.84	10.60	9.50	11.55				11.52	12.09	12.24	12.02	10.81	11.74	11.03
Rinon DN	12.22	12.60	10.87	8.37	8.72	7.22	12.07	11.95	11.58		12.25	11.90	12.31	12.23	11.94	11.82	12.01
Bazo Ctrol	13 16	13 51	12 79	13.68	12 01	12 16	17 71				14 52	14 18	13 48	15.08	16 14	16 70	17 79
Bazo DN	14.23	13.05	12.74	13.13	13.66	13.51	17.70				14.15	14.18	14.48	14.70	19.56	18.31	18.25
Páncreas Ctrol	15.06	12.49	11.20	13.00	15.59	14.35	15.48				10.57	10.00	8.45	16.87	14.22	15.51	13.40
Páncreas DN	16.81	14.68	16.10	16.73	16.43	15.91	20.21				9.45	9.32	14.64	16.39	17.38	19.78	18.95
Corazón Ctrol	10.15	10.42	10.12	10.73	10.70	10.55	10.91				10.75	11.07	10.33	10.32	10.84	11.02	11.12
Corazón DN	10.48	10.57	10.58	10.77	11.16	11.07	11.93				10.69	10.72	10.39	10.87	11.36	11.87	11.59
EDI Ctrol	7 86	8 5 3	7.45	7.46	7 0/	7 78	0.57				7 77	8 18	8 3/	7 76	0.24	10.01	0.25
	7.50	7.88	8.61	7.40	7.94	7.83	8.95				8 20	8 11	7.66	8.05	8.90	9.07	8.62
	7.52	7.00	0.01	7.00	7.50	7.05	0.55				0.20	0.11	7.00	0.05	0.50	5.07	0.02
Gastroc Ctrol	9.34	9.47	10.18	11.16	10.43	10.44	9.72				9.63	9.48	9.33	10.13	10.18	9.86	9.15
Gastroc DN	10.55	10.16	10.51	10.36	10.81	10.12	9.40				10.17	10.05	9.60	8.98	10.05	9.46	9.60
Soleo Ctrol	8.13	8.71	7.33	8.77	8.86	8.54	9.20				8.08	7.19	6.65	5.12	8.34	8.65	9.73
Soleo DN	7.45	8.00	7.82	9.72	8.59	8.36	9.34				7.51	7.34	10.53	7.55	8.77	9.31	8.26
Lumbar Ctrol	9.73	9 77	8 75	9.41	10.13	9.51					10.40	9.04	8.02	7 56			
Lumbar DN	10.51	10.63	9.97	9.15	9.88	9.90					9.54	8.96	8.28	7.51			
Cerebro Ctrol	11.81	12.35	13.04	11.61	11.04	12.15	16.79				13.14	11.70	12.01	11.87	15.05	16.93	16.58
Cerebro DN	12.08	11.60	11.86	11.77	11.60	11.42	16.86				11.90	11.98	11.87	12.39	16.10	16.75	16.75
Médula ctrol	13.79	18.71	16.40	14.43	19.13	21.15	17.58				16.05	15.99	13.08	14.57	18.34	15.42	17.83
Médula DN	18.34	16.04	13.99	18.44	15.60	13.00	16.58				13.05	13.07	13.76	14.25	18.13	18.33	16.00
Testiculos Ctrol	12.48	11.81	11 //7	11 28	11 12	10.47	13.26										
Testiculos DN	12.48	12.47	12.36	12.71	12.65	11.98	15.12	14.47	13.97								
Ovarios Ctrol											3.67	4.00	2.81		5.75	6.17	5.31
Ovarios DN											4.50	3.19	3.61	4.12	7.56	7.33	6.87
Sueros C	0.123	0.110	0.144	0.143	0.102	0.149	0.332	0.202	0.152		0.122	0.126	0.143	0.111	0.267	0.201	0.224
Sueros DN	0.109	0.128	0.102	0.101	0.107	0.110	0.425	0.226	0.220	0.300	0.115	0.117	0.109	0.132	0.296	0.347	0.336

								Concentració	n de Zn (mg) /	/ peso seco (g)						
	1	2	3	4	5	6	7	8	9	10	1	2	3	4	8	9	10
					MA	CHOS							HEMBRAS				
I Delgado Ctro	0.093	0.091	0.095	0.070	0.061	0.070	0.079				0.084	0.065	0.068	0.077	0.086	0.094	0.076
I Delgado DN	0.094	0.088	0.081	0.057	0.059	0.068	0.099				0.084	0.087	0.080	0.085	0.094	0.090	0.093
L Gruoso Ctrol	0.001	0.005	0 102	0.100	0.008	0.000	0 112				0.002	0.100	0.091	0.080	0 107	0.116	0 104
L Grueso DN	0.091	0.093	0.102	0.100	0.098	0.090	0.112				0.093	0.100	0.091	0.089	0.107	0.110	0.104
1. Grueso Div	0.055	0.034	0.057	0.100	0.105	0.100	0.115				0.104	0.104	0.105	0.055	0.110	0.102	0.105
Hìgado Ctrol	0.095	0.099	0.096	0.089	0.093	0.100	0.095				0.094	0.094	0.091	0.082	0.086	0.088	0.086
Hìgado DN	0.124	0.113	0.116	0.119	0.118	0.112	0.125	0.113	0.114		0.119	0.131	0.093	0.083	0.110	0.102	0.108
	0.000	0.054	0.055	0.055	0.050	0.040	0.000				0.055	0.050	0.050	0.050	0.074	0.000	0.000
Pulmon Ctroi	0.060	0.054	0.055	0.055	0.059	0.048	0.063				0.055	0.058	0.052	0.058	0.074	0.088	0.099
Pulmon DN	0.001	0.058	0.062	0.000	0.000	0.004	0.100				0.001	0.062	0.000	0.050	0.091	0.091	0.072
Riñón Ctrol	0.092	0.100	0.096	0.089	0.082	0.073	0.094				0.086	0.094	0.086	0.090	0.095	0.112	0.089
Riñón DN	0.089	0.088	0.073	0.058	0.056	0.046	0.094	0.097	0.096		0.093	0.086	0.093	0.088	0.093	0.092	0.091
Bazo Ctrol	0.058	0.061	0.059	0.062	0.055	0.055	0.086				0.066	0.064	0.062	0.066	0.081	0.085	0.087
Bazo DN	0.064	0.059	0.058	0.061	0.063	0.063	0.092				0.063	0.062	0.067	0.064	0.093	0.090	0.089
Páncreas Ctro	0.059	0.054	0.046	0.063	0.061	0.060	0.073				0.036	0.038	0.034	0.068	0.064	0.074	0.063
Páncreas DN	0.069	0.069	0.067	0.072	0.063	0.060	0.094				0.038	0.035	0.067	0.074	0.100	0.084	0.078
Corazón Ctrol	0.067	0.072	0.073	0.072	0.075	0.075	0.063				0.073	0.074	0.079	0.076	0.061	0.069	0.067
Corazón DN	0.077	0.076	0.078	0.081	0.082	0.079	0.071				0.077	0.079	0.078	0.082	0.069	0.072	0.070
EDL CLUL	0.004	0.420	0.070	0.076	0.000	0.054	0.050				0.072	0.050	0.000	0.070	0.000	0.474	0.072
EDL Ctroi	0.091	0.128	0.079	0.076	0.068	0.051	0.059				0.072	0.069	0.062	0.073	0.060	0.174	0.073
EDL DN	0.069	0.000	0.075	0.165	0.001	0.005	0.062				0.078	0.076	0.007	0.074	0.054	0.025	0.040
Gastroc Ctrol	0.025	0.037	0.028	0.061	0.033	0.058	0.079				0.056	0.056	0.025	0.043	0.067	0.075	0.070
Gastroc DN	0.039	0.044	0.037	0.058	0.048	0.046	0.054				0.028	0.045	0.041	0.044	0.059	0.058	0.061
Soleo Ctrol	0.062	0.206	0.154	0.211	0.190	0.189	0.143				0.206	0.179	0.056	0.116	0.206	0.082	0.223
Soleo DN	0.164	0.178	0.184	0.071	0.174	0.199	0.097				0.170	0.185	0.231	0.159	0.185	0.077	0.205
Lumbar Ctrol	0.060	0.076	0.070	0.033	0.064	0.056					0.056	0.076	0.063	0.049			
Lumbar DN	0.060	0.038	0.059	0.068	0.036	0.045					0.055	0.055	0.052	0.027			
Cerebro Ctrol	0.057	0.052	0.061	0.052	0.046	0.052	0.058				0.054	0.051	0.055	0.051	0.058	0.062	0.063
Cerebro DN	0.079	0.053	0.055	0.054	0.055	0.055	0.063				0.053	0.055	0.056	0.058	0.062	0.062	0.062
Médula ctrol	0.015	0.025	0.020	0.016	0.024	0.025	0.021				0.028	0.025	0.021	0.022	0.020	0.017	0.020
Médula DN	0.026	0.021	0.017	0.024	0.019	0.017	0.021				0.023	0.024	0.023	0.023	0.023	0.024	0.021
Testiculos Ctr	0.170	0.156	0.153	0.149	0.150	0.140	0.093										
Testiculos DN	0.169	0.164	0.166	0.168	0.166	0.154	0.109	0.084	0.083								
Our rise Charl											0.020	0.022	0.021				
Ovarios Ctrol											0.030	0.033	0.021	0.027			
											0.040	0.051	0.050	0.057			
Sueros C	0.0018	0.0019	0.0057	0.0027	0.0022	0.0027	0.006	0.004	0.008		0.0021	0.0018	0.0023	0.0025	0.004	0.004	0.005
Sueros DN	0.0013	0.0014	0.0014	0.0013	0.0015	0.0011	0.009	0.006	0.008	0.008	0.0015	0.0017	0.0031	0.0039	0.007	0.006	0.006

ORGAN	TYPE OF TEST	Ca	Cu	Fe	к	Mg	Mn	Na	Р	Zn
	Normal distribution ¹		F ²		CF		RM		RM	
SMALLINIESTINE	Statistical significance ³					DIET (M) ⁴				
	Normal distribution	CM		RM			CM		CF	RM
LARGE IN LES LINE	Statistical significance					SEX				
	Normal distribution	СМ	RM	RF				CF		
LIVER	Statistical significance		DIET (F) 5			DIET	DIET			
	Normal distribution	CF			CF		М	С		
LUNG	Statistical significance		SEX							
	Normal distribution				RM		М			
KIDNEY	Statistical significance		DIET							
	Normal distribution			RF		CF	С			
SPLEEN	Statistical significance								SEX	
	Normal distribution									
PANCREAS	Statistical significance	DIET	DIET	DIET	DIET	DIET	DIET	DIET	DIET	DIET
	Normal distribution	F	CF	RM, CF			М			
HEART	Statistical significance									
	Normal distribution		RF	СМ	СМ		СМ	RM	RF	м
EDEMOSCEE	Statistical significance	DIET					DIET (F) 6			
	Normal distribution	R			м		СМ		RM	
GASTROCNEMIUS	Statistical significance		DIET							
	Normal distribution				CM	М	СМ		м	
SOLEUS	Statistical significance			DIET						
	Normal distribution	С		RM		CF	RF			RF
BRAIN	Statistical significance									
	Normal distribution	RF	м	CM		CM	RM			RF
SPINAL CORD	Statistical significance							SEX		

ANEXO 3. Análisis estadistico de los datos obtenidos por metalomica a los 60 días de edad

¹ Cuando las pruebas generales de normalidad de Kolmogorov-Smirnov y D'Agostino-Pearson arrojaron una distribución no normal con p < 0,01, se indica el nombre del grupo donde los datos no se distribuyen normalmente.

² Cuando se muestra una sola letra (F-hembra, M-macho, C-control, R- restringido) se deduce que los datos no se distribuyeron normalmente en ambos subgrupos (F significa que tanto CF como UF muestran una distribución no normal).

³ Para comparaciones en las que los datos de cualquier grupo no se distribuyeron normalmente, se realizó un análisis de Kruskall-Wallis seguido de una prueba de comparación múltiple de Dunn. Sólo se consideraron comparaciones entre personas del mismo sexo al evaluar los efectos de la dieta (entre paréntesis, el sexo donde se encontró la diferencia estadística) y solo se consideraron comparaciones entre personas del mismo sexo al evaluar los efectos del a mismo sexo al evaluar los efectos del sexo. Se realizó una prueba de análisis de varianza bidireccional (SEXO, DIETA) cuando los datos se distribuyeron normalmente y los resultados de una prueba de Tukey post-hoc se muestran para p <0,01.

⁴ También se aplicó la prueba t de Student para comparar el efecto de la dieta en el intestino delgado de machos mostrando p< 0,001

⁵ También se aplicó la prueba t de Student para comparar el efecto de la dieta en hígado de hembras mostrando p< 0,0001

⁶ También se aplicó la prueba t de Student para comparar el efecto de la dieta en hembras EDL mostrando p<0,0001

ANEXO 4. Análisis estadistico de los datos obtenidos por metalomica a los 90 días de edad

ORGAN	TYPE OF TEST	Ca	Cu	Fe	К	Mg	Mn	Na	Р	Zn
	Normal distribution ¹	M1					MU			
SMALLINIESTINE	Statistical significance		SEX	SEX						
	Normal distribution		MU1							
LARGE IN LES TINE	Statistical significance									
	Normal distribution		FC							
LIVER	Statistical significance	SEX	DIET (M)	DIET/SEX	DIET	DIET	DIET	DIET	DIET	DIET
	Normal distribution						M, FU	MU		MU
LUNG	Statistical significance			SEX						
	Normal distribution	MU1								
KIDNEY	Statistical significance		DIET (M)	SEX						
SPLEEN	Normal distribution		м		М		M,F		CF	м
	Statistical significance	SEX		DIET/SEX		SEX				
DANODEAO	Normal distribution		MC		MU					
PANCREAS	Statistical significance			DIET	DIET*	DIET	DIET			
	Normal distribution	FU ¹			М			MC		
HEARI	Statistical significance						DIET			DIET
EDL MUSCLE	Normal distribution			MC	M, FC			M,F		MU, FC
	Statistical significance									
CASTROCHEMIUS	Normal distribution	MU1	F					M,F		
GASTROCNEIMIUS	Statistical significance									
	Normal distribution		MC			FU		U (M,F)		
SOLEUS	Statistical significance						DIET			
PDAIN	Normal distribution	MU_FC	MU, FC	FC	M,F	MU			U (M,F)	
BRAIN	Statistical significance		SEX				SEX			
SPINAL CORD	Normal distribution	U					MU			MU
	Statistical significance									
REPROCTIVE	Normal distribution	FC ²	FC ²		М		FU			М
	Statistical significance			SEX	DIET (U)	SEX		SEX	SEX	
SERUM	Normal distribution	М			MC	MU	-	M,F	М	MU
	Statistical significance				DIET (M)		-			

¹ Cuando las pruebas generales de normalidad de Kolmogorov-Smirnov y D'Agostino-Pearson arrojaron una distribución no normal con p < 0,01, se indica el nombre del grupo donde los datos no se distribuyen normalmente.

Cuando se muestra una sola letra (F-hembra, M-macho, C-control, R- restringido) se deduce que los datos no se distribuyeron normalmente en ambos subgrupos (F significa que tanto CF como UF muestran una distribución no normal).

Para comparaciones en las que los datos de cualquier grupo no se distribuyeron normalmente, se realizó un análisis de Kruskall-Wallis seguido de una prueba de comparación múltiple de Dunn. Sólo se consideraron comparaciones entre personas del mismo sexo al evaluar los efectos de la dieta (entre paréntesis, el sexo donde se encontró la diferencia estadística) y solo se consideraron comparaciones entre personas del mismo sexo al evaluar los efectos de la varianza bidireccional (SEXO, DIETA) cuando los datos se distribuyeron normalmente y los resultados de una prueba de Tukey post-hoc se muestran para p <0,01.

ANEXOS: 5a. Cuantificación de imágenes de microscopia de fluorescencia de rayos X, obtenidas en sincrotrón en cerebro

Las rebanadas de cerebro y médula espinal fueron analizadas utilizando el programa MicroAnalysis Toolkit. En total, se obtuvieron cinco imágenes de secciones del cerebro y nueve imágenes de la médula espinal de tres ratas macho. Las concentraciones de Ca, Zn y P fueron registradas. Para el análisis, secciones de la materia gris y de la materia blanca se analizaron por separado utilizando la herramienta de enmascaramiento del software. Para analizar las concentraciones de zinc, se analizaron secciones del hipocampo y la corteza. Los agregados de calcio se analizaron en áreas donde la intensidad media de Ca era 100 veces mayor que los valores iniciales, solo en secciones de la médula espinal.

	white matter
Zn	33.84±0.42
Ca	36.70±4.19
Р	16.70±0.01
	gray matter
Zn	gray matter 59.98±4.67
Zn Ca	gray matter 59.98±4.67 37.57±5.33
Zn Ca P	gray matter 59.98±4.67 37.57±5.33 13.53±0.30

	zinc synapse
Zn	108.49±2.51
Ca	41.63±0.12
Р	13.66±0.05

	white matter
Zn	22.34±0.09
Ca	24.15±1.14
Р	14.50±0.46
	gray matter
Zn	38.55±2.50
Ca	29.92±2.18
Ρ	14.14±0.07
	zinc synapse
Zn	85.05±2.57
Ca	32.88±1.0
Р	13.95±0.33

white matter
30.37±5.84
38.72±5.49
16.11±1.81
gray matter
40.33±1.77
38.21±3.87
13.66±1.26
zinc synapse
88.53±2.65
51.42±10.64
15.58±3.25

ANEXOS: 5b. Cuantificación de imágenes de microscopia de fluorescencia de rayos X, obtenidas en sincrotrón en médula espinal

ANEXO: 5. Cuantificación de imágenes de microscopia de fluorescencia de rayos X, obtenidas en sincrotrón en agregados de calcio

ANEXO 6. Código Python

#Values of synchrotron measurements with their respective standard deviations, for Ca, Zn, P in brain and spinal cord:

x= White matter in brain v=Grav matter in brain	E=WM. Spinal cord F= GM. Spinal cord
w=Zn Synapse G=Calcie	um aggregates
δ= White matter in brain θ= Gray matter in brain ε= Zn Synapse CEREBRO	α= WM. Spinal cord β= GM. Spinal cord γ= Calcium aggregates
from uncertainties import ufloat from uncertainties.umath import * xca=ufloat (33.2,7.9) yca=ufloat(35.2,4.6) wca=ufloat(42.0,9.3) Eca=ufloat(33.8,5.2) Fca=ufloat(43.5,4.5) Gca=ufloat(6317.0,294.0)	¢
xzn=ufloat(28.8,5.9) yzn=ufloat(46.3,11.9) wzn=ufloat(94.0,12.6) Ezn=ufloat(32.9,6.8) Fzn=ufloat(49.4,7.9) Gzn=ufloat(142.2,20.1)	
xP=ufloat(15.8,1.1) yP=ufloat(13.8,0.3) wP=ufloat(14.4,1.0) EP=ufloat(19.3,4.3) FP=ufloat(18.0,3.0) GP=ufloat(164.9,18.0)	

#Values of ICP-OES measurements with their respective standard deviations, for Ca, Zn, P in brain and spinal cord

```
#C1=Ca(SC)
                   C2=Ca(Brain)
C3=Zn(SC)
                   C4=Zn(Brain)
C5=P(SC)
                   C6=P(Brain)
c1=ufloat(4.19,3.08)
c2=ufloat(0.44,0.47)
c3=ufloat(0.032,0.009)
c4=ufloat(0.064,0.013)
c5=ufloat(18.64,3.92)
c6=ufloat(14.84,2.76)
### Spinal cord parameters
rango\alpha = np.linspace(0.45, 0.75, 61)
rango\beta = np.linspace(0.215, 0.515, 61)
rangoy = np.linspace(0, 0.035, 8)
### Brain parameters
rango\delta = np.linspace(0.15, 0.45, 31)
rango\theta = np.linspace(0.25, 0.55, 31)
rangoe = np.linspace(0.10, 0.45, 36)
# print (rango\theta, rango\gamma, rango\beta, rango\alpha, rango\epsilon, rango\delta)
from tqdm import tqdm
import datetime
date = datetime.datetime.now()
fech = date.strftime('%Y-%m-%d')
fech= str(fech)
print(fech)
file1 = open(fech+'.txt', "w")
file1.write("ME \t BRAIN \t th \t gam \t bet \t al \t eps \t del \t res1 \t res1 Desv \t res2 \t res2 Desv \t res3 \t res3Desv \n")
c1_c2 = c1/c2
c3 c4 = c3/c4
c5 c6 = c5/c6
# with tqdm(total=35**6) as pbar:
with tqdm(total=41*48*8*31*31*31) as pbar:
  for i in range (0,rangoα.shape[0], 1):
    \alpha = rango\alpha[i]
    for j in range (0,rangoβ.shape[0],1):
       \beta = rango\beta[j]
```

```
for k in range (0,rangoy.shape[0],1):

\gamma = rango\gamma[k]

for ii in range (0,rango\delta.shape[0],1):

\delta = rango\delta[ii]

for jj in range (0,rango0.shape[0],1):

\theta = rango\theta[jj]

for kk in range (0,rangoɛ.shape[0],1):

pbar.update(1)

\epsilon = rango\epsilon[kk]

# print (\alpha+\beta+\gamma, \delta+\epsilon+\theta)

# if \alpha+\beta+\gamma > 0.994 and \alpha+\beta+\gamma < 0.996 and \delta+\epsilon+\theta > 0.994 and \delta+\epsilon+\theta < 0.996:

if \alpha+\beta+\gamma = 1 and \delta+\theta+\epsilon = = 1:
```

```
resul1= (\alpha^*Eca+\beta^*Fca+\gamma^*Gca)/(\delta^*xca+\theta^*yca+\epsilon^*wca)
resul2= (\alpha^*Ezn+\beta^*Fzn+\gamma^*Gzn)/(\delta^*xzn+\theta^*yzn+\epsilon^*wzn)
resul3= (\alpha^*EP+\beta^*FP+\gamma^*GP)/(\delta^*xP+\theta^*yP+\epsilon^*wP)
```

```
# if resul1>5 and resul2<0.55 and resul3<1.5:
if resul1 > (c1_c2.n - c1_c2.s) and resul1 < (c1_c2.n + c1_c2.s) and resul2 > (c3_c4.n - c3_c4.s) and resul2 < (c3_c4.n + c3_c4.s) and resul3 >
```

```
(c5_c6.n - c5_c6.s) and resul3 < (c5_c6.n + c5_c6.s):
```

```
print ("ME",\alpha+\beta+\gamma, "BRAIN",\delta+\theta+\epsilon)
print (\alpha, \beta, \gamma, \delta, \theta, \epsilon)
print (resul1, resul2, resul3)
```

```
file1.write("%.3f \t %.3f \t
```

ANEXO 7. Resultados del análisis de proteómica:

a. Proteínas con alta expresión en hembras sometidas a restricción de alimento

Accession	Unique peptides	Anova (p)	Max fold change	Highest mean condition	Mass	Description	Av erage. Intensity. R	Average.Intensity.C
D3ZGK7	6	0.000	3	HDN	64618.753	Carboxylic ester hydrolase , Ces1c	73756	24394
P10959	36	0.004	3	HDN	60517.0988	Carboxylesterase 1C , Ces1c	16902	6613
A0A0G2JXM0	4	0.029	2	HDN	85305.6203	MIA SH3 domain ER export factor 2 , Mia2	26015	10509
Q63471	16	0.025	2	HDN	24700.6034	BPI fold-containing family A member 2 , Bpifa2	19968	8214
A0A0G2JWE1	4	0.041	2	HDN	18642.0143	Myosin light chain 6	14814	6773
P60711	46	0.039	2	HDN	42079.017	Actin_ cytoplasmic 1 , Actb	213824	98769
A0A0G2K1Q0	3	0.014	2	HDN	186814.672	Phosphatidylinositol-4-phosphate 3-kinase_ catalytic subunit type 2 beta , Pik3c2b	108386	52126
D4A228	1	0.011	2	HDN	163298.786	Myomesin 3, Myom3	4475	2247
P85972	64	0.015	2	HDN	117185.809	Vinculin , Vcl	59428	31723
D3ZHI3	3	0.023	2	HDN	81207.9308	Kelch-like family member 4 , Klhl4	15980	8746
G3V7C6	3	0.007	2	HDN	49108.2364	Tubulin beta chain, Tubb4b	13480	7847
A0A8I5Y665	5	0.012	2	HDN	254318.92	Cad	7966	4646
P62963	14	0.040	2	HDN	15128.3395	Profilin-1, Pfn1	37505	22434
M0R485	26	0.032	2	HDN	57176.016	Peptidoglycan recognition protein 2, Pglyrp2	60648	36586
P01946	35	0.058	3	HDN	15499.6369	Hemoglobin subunit alpha-1/2, Hba1	269643	90732
P11517	4	0.154	2	HDN	16096.513	Hemoglobin subunit beta-2	3221	2036
P02091	31	0.091	2	HDN	16093.466	Hemoglobin subunit beta-1 , Hbb	111537	51090
A0A8I6AAN5	1	0.311	2	HDN	79486.5573	Fibulin-1 , Fbln1	541	242
A0A0G2K470	4	0.054	2	HDN	129979.4683	Integrin subunit alpha 2 , Itga2	2872	1252
A0A8I5Y241	1	0.271	3	HDN	46870.2744	Platelet-activating factor acetylhydrolase OS=Rattus norvegicus	541	288
P06399	12	0.281	1	HDN	87427.3877	Fibrinogen alpha chain , Fga	149878	115735
070511	1	0.643	2	HDN	285868.7586	Ankyrin-3, Ank3	2812	1593
A0A8I6AAA8	1	0.135	2	HDN	183194.7482	IQ motif containing GTPase activating protein 3 , Iqgap3	13183	8497
A0A0G2KB09	6	0.081	2	HDN	41758.3012	Parvin_ beta , Parvb	4735	2234
A0A0G2K481	3	0.685	1	HDN	239522.6094	Sperm flagellar 2 , Spef2	28170	22552
Q9R095	5	0.685	1	HDN	208672.6993	Sperm flagellar protein 2, Spef2	41711	33392

b. Proteínas con alta expresión en hembras control

Accession	Unique peptides	Anova (p)	Max fold change	Highest mean condition	Mass	Description	Average.Intensity.R	Average.Intensity.C
A0A0G2K3L5	1	0.041	6	HCT	13961.6688	Ig-like domain-containing protein	1080	6419
A0A096MKF8;A0A0G2K4W	2	0.014	6	HCT	247275.811	Mediator complex subunit 12 , Med12	350	1946
A0A8I6A2X1;A0A8I6A773;C	2	0.003	5	HCT	152982.879	Ninein-like , Ninl	13435	72188
P06866;A0A0H2UHM3;A0A	10	0.019	5	HCT	39076.4876	Haptoglobin , Hp	3115	15241
A0A8I5Y7N7;A0A8I5ZWC2;	6	0.027	4	HCT	148672.339	Unconventional myosin-VI, Myo6	19293	85441
A0A815ZXZ6	3	0.033	3	HCT	39400.4349	Fc receptor-like 1 , Fcrl1	1136	3763
Q99P84	9	0.018	3	HCT	258758.067	1-phosphatidylinositol 4_5-bisphosphate phosphodiesterase epsilon-1 , Plce1	3635	11396
Q4V7C8	2	0.018	3	HCT	54337.5963	Centrosomal protein of 55 kDa , Cep55	932	2617
A0A0G2JSW0	5	0.038	3	HCT	19882.3	Myosin light chain 12A , Myl12b	1512	3990
D3ZXB7	1	0.025	3	HCT	58150.0795	Keratin 71 , Krt71	2375	6170
D3ZAQ1	1	0.026	3	HCT	68889.7045	Actin related protein 5 , Actr5	2322	5821
A0A8I6ALW9	6	0.026	2	HCT	13318.2967	Ig-like domain-containing protein	2303	5556
A0A8I6AB30	2	0.011	2	HCT	70222.6524	Similar to alpha-fetoprotein , Albfm1	5563	13294
A0A8I5Y662	2	0.004	2	HCT	12909.4402	Ig-like domain-containing protein	3943	7882
A0A0G2JUD6	4	0.049	2	HCT	80531.1788	Kinesin-like protein , Kif3a	13163	24283
A0A815ZY18	2	0.012	2	HCT	80935.1333	Leucine zipper tumor suppressor family member 3 , Lzts3	646	1188
G3V9R2	42	0.033	2	HCT	144850.213	Complement factor H , Cfh	14940	26872
P20059	21	0.266	2	HCT	52092.3509	Hemopexin , Hpx	15736	27257
A0A8I6ADF8	1	0.430	4	HCT	58345.4174	Chaperonin containing TCP1 subunit 6A , Cct6a	9536	24394
P62738	1	0.527	3	HCT	42408.2561	Actin_ aortic smooth muscle , Acta2	117	326
B5DF07	1	0.250	2	HCT	67749.4153	Mitochondrial ribonuclease P catalytic subunit, Prorp	16	25
D4A9N5	2	0.132	5	HCT	73459.3612	Tripartite motif-containing 25 , Trim25	947	4476
Q4KM33	1	0.918	6	HCT	40338.0124	Pleckstrin , Plek	187	1075
P50398	2	0.568	2	HCT	51107.013	Rab GDP dissociation inhibitor alpha, Gdi1	1318	2027
D4A1W7	4	0.428	2	HCT	154761.833	Nephrocystin 3 , Nphp3	5114	8126
F1M0Q9	5	0.143	3	HCT	55757.2932	Peptidase M20 domain containing 1, Pm20d1	6254	15750
A0A0G2K627	1	0.152	2	HCT	48563.5418	D-ribitol-5-phosphate cytidylyltransferase, Crppa	1273	2586
D3ZK73	5	0.221	1	HCT	111496.036	Cullin 4B , Cul4b	5683	7848
P25030	3	0.105	2	HCT	49444.6948	Keratin_ type I cytoskeletal 20 OS=Rattus norvegicus	5248	9864
A0A8L2QY59	5	0.237	2	HCT	160749.983	Alpha-2-macroglobulin , A2m	1072	1871
G3V9R9	2	0.063	2	НСТ	71180.2317	Afamin , Afm	581	1148
G3V615	14	0.299	2	HCT	86721.8153	C3/C5 convertase , Cfb	19502	36124
D3ZUQ1	11	0.082	2	HCT	44726.1902	Lipase , Lipo1	8574	14959
F1LY69	12	0.357	1	НСТ	167476.815	Intraflagellar transport 140, Ift140	26720	37376
A0A8I5Y6E1	6	0.108	2	HCT	67839.2757	Insulin-like growth factor binding protein_ acid labile subunit , Igfals	7826	16558
P35859	10	0.059	2	HCT	67609.9878	Insulin-like growth factor-binding protein complex acid labile subunit, Igfals	36282	72603

c. Proteínas con alta expresión en machos sometidos a restricción de alimento

Accession	Unique peptides	Anova (p)	Max fold change	Highest mean condition	Mass	Description	Average.Intensity.R	Average.Intensity.C
Q63471	16	0.021	21	MDN	24700.6034	BPI fold-containing family A member 2, Bpifa2	122176	5849
P01946	35	0.033	8	MDN	15499.6369	Hemoglobin subunit alpha-1/2, Hba1	580777	73074
P11517	4	0.032	7	MDN	16096.513	Hemoglobin subunit beta-2	10629	1623
A0A8I6AAN5	1	0.022	5	MDN	79486.5573	Fibulin-1 , Fbln1	1012	206
A0A0G2K470	4	0.012	3	MDN	129979.468	Integrin subunit alpha 2 , Itga2	2583	748
Q5U206	2	0.030	3	MDN	16859.6341	Calmodulin-like protein 3 , Calml3	4705	1685
Q64240	19	0.007	3	MDN	39763.4976	Ambp	149458	56132
A0A8I5Y241	1	0.013	3	MDN	46870.2744	Platelet-activating factor acetylhydrolase, Pla2g7	641	252
P06399	12	0.044	2	MDN	87427.3877	Fibrinogen alpha chain, Fga	224945	103154
Q63416	87	0.020	2	MDN	99439.8701	Inter-alpha-trypsin inhibitor heavy chain H3 , Itih3	185452	85438
Q66H59	6	0.001	2	MDN	35229.5117	N-acetylneuraminate lyase , Npl	6543	3079
070511	1	0.021	2	MDN	285868.759	Ankyrin-3 , Ank3	2373	1165
Q62975	25	0.006	2	MDN	50358.2051	Protein Z-dependent protease inhibitor, Serpina10	60161	30033
A0A8I6AAA8	1	0.024	2	MDN	183194.748	IQ motif containing GTPase activating protein 3 , Iqgap3	14841	8598
A0A0G2KB09	6	0.040	2	MDN	41758.3012	Parvin_ beta, Parvb	3324	2025
D3ZHI3	3	0.016	2	MDN	81207.9308	Kelch-like family member 4 , Klhl4	19563	12408
Q6IRK9	4	0.012	2	MDN	52098.6422	Carboxypeptidase Q , Cpq	23615	15121
Q9R095	5	0.024	2	MDN	208672.699	Sperm flagellar protein 2 , Spef2	38508	25253
A0A0G2K481	3	0.024	2	MDN	239522.609	Sperm flagellar 2, Spef2	26007	17055
A0A0G2JWE1	4	0.422	1	MDN	18642.0143	Myosin light chain 6	10156	7127
A0A8I5Y665	5	0.375	1	MDN	254318.92	Cad	9684	7619
A0A0G2K1Q0	3	0.844	1	MDN	186814.672	Phosphatidylinositol-4-phosphate 3-kinase_ catalytic subunit type 2 beta OS=Rattus norvegicus	73541	59618
M0R485	26	0.407	1	MDN	57176.016	Peptidoglycan recognition protein 2 OS=Rattus norvegicus OX=10116 GN=Pglyrp2 PE=1 SV=3	61404	52209
P02091	31	0.058	5	MDN	16093.466	Hemoglobin subunit beta-1 , Hbb	235217	46960

d. Proteínas con alta expresión en machos control

cession	nique peptides	(d) enou	ax fold change	ghest mean condition	sse	rescription	erage.Intensity.R	rerage.Intensity.C
		<	2	I	2	Vannaa kinding protoin C. MhD	4	1202
	2	0.047	82	NCT	20413.5078	Mannose-binding protein C , Mbiz	10	1308
	2	0.034	119	MCT	121047 601	Chaperonini containing TCPT subunit 6A, Cctoa	41	3277
F1LWL5	3	0.027	15	NCT	121947.601	Artin partis month muscle Arta?	2303	35598
P02738	1	0.048	12	MCT	67740 4152	Attin_ donie smooth muscle , Attaz	40	409
	1	0.047	17	MCT	72450 2612	Tripartite motif containing 2E Trim2E	147	134
0449103	2	0.022	10	MCT	10228 0124		147	1409
Q4KIVISS	10	0.033	3	MCT	20076 4976	Hantoglahin Ha	264	2577
P00800	10	0.001	7	MCT	59070.4870	Pab CDD dissociation inhibitor alpha. Cdi1	5505	25072
P30398	2	0.030	3	MCT	154761 922	Nonbrockstin 2 Naha2	2011	4520
E1M009	4	0.003	4	MCT	55757 2022	Pontidaso M20 domain containing 1 Pm20d1	4204	17464
110003	1	0.012	4	MCT	10EC2 E410	D ribital E nhashbata artidulutransfarasa. Crana	4304	17404
	1	0.022	4	MCT	46505.5416	Ligand dependent nuclear recenter corepressor Logr	220	4105
	2	0.042	4	MCT	60725 5682	Dyruvato kipaso _ Pkr	6245	22/1/
P20059	2	0.006		MCT	52092 2509	Homonovin, Hay	12886	47575
G3V989	21	0.030	3	MCT	71180 2317	Afamin Afm	789	2617
G3V615	1/	0.033	3	MCT	86721 8153	C3/C5 convertase Cfb	9391	2017
D37U01	11	0.007	3	MCT	<i>44726</i> 1902	Linase Lino1	6513	18831
P35859	10	0.007	3	MCT	67609 9878	Insulin-like growth factor-hinding protein complex acid labile subunit Jafals	19625	53/18
A04815V6F1	6	0.023	3	MCT	67839 2757	Insulin-like growth factor binding protein acid labile subunit Jafals	4356	11554
F11V69	12	0.001	2	MCT	167476 815	Intraflagellar transport 140 Ift140	23821	55205
A0A8157K89	12	0.001	2	MCT	215702 866	Dedicator of cytokinesis 5 Dock5	4150	9340
G3V982	4	0.034	2	MCT	144850 213	Complement factor H Cfb	17397	38993
A0A8120V59	+2	0.034	2	MCT	1607/0 092	Alnha-2-macroglohulin_A2m	1069	2310
O6IE75	12	0.009	2	MCT	67378 8367	Keratin 76 Krt76	1009	8/526
063269	5	0.003	2	MCT	307195 515	Inositol 1 4 5-trisphosphate recentor type 3 Itor3	40404	97/15
P25030	3	0.024	2	MCT	19111 6919	Keratin type Lautockeletal 20 Krt20	51/7	9009
A0A9120209	1	0.004	2	MCT	54712 5670		990	1592
	5	0.004	2	MCT	111496 026		6499	10212
032173	12	0.021	2	MCT	51114 5009	Dhospholipase A1 member A Diata	22285	51720
A0A0G2K2L5	1	0.004	2	MCT	12061 6699	In like demain containing protein GN=0.4 PP07061001 1	1627	20/1
40481641W9	6	0.139	2	MCT	13318 2967	Ig-like domain-containing protein GN=ENSRN/06000005952	1775	3032
4048157662	2	0.156	2	MCT	12909 4402	Ig-like domain-containing protein GN=ENSRNOG000000332	5520	8922
A0A096MKE8	2	0.135	2	MCT	247275 811	Mediator complex subunit 12 Med12	733	2476
04/708	2	0.436	2	MCT	54337 5963	Centrosomal protein of 55 kDa Cen55	866	1424
D37A01	1	0.051	2	мст	68889 70/5	Actin related protein 5 Actr5	351/	9011
4048164B30	2	0 331	2	MCT	70222 6524	Similar to alpha-fetoprotein OS=Rattus porvegicus OX=10116 GN=Albfm1 PE=1 SV=1	7452	12406
	4	0.056	2	MCT	80531 1788	Kinesin-like protein Kif3a	13866	23546
10/10020000	-	0.030	2	WICT	00001.1/00	Rifesh inceptotent, Riba	13000	23340
Accession	Unique peptides	Anova (p)	Max fold change	Highest mean condition	Mass	Description	Average.Intensity.R	Average.Intensity.C
-------------	-----------------	-----------	-----------------	------------------------	------------	---	---------------------	---------------------
Q63471	16	0.025	2	HDN	24700.6034	BPI fold-containing family A member 2 , Bpifa2	19968	8214
Q63471	16	0.021	21	MDN	24700.6034	BPI fold-containing family A member 2 , Bpifa2	122176	5849
D3ZHI3	3	0.023	2	HDN	81207.9308	Kelch-like family member 4 , Klhl4	15980	8746
D3ZHI3	3	0.016	2	MDN	81207.9308	Kelch-like family member 4 , Klhl4	19563	12408
D0104C	25	0.022	0		15400 6260	Here a statis submit a late 4/2. The 4	F00777	72074
P01946	35	0.033	8		15499.6369	Hemoglobin subunit alpha-1/2, Hba1	580777	/30/4
P01946	35	0.058	3 F		15499.6369	Hemoglobin subunit alpha-1/2, Hba1	209043	90732
P02091	31 21	0.058	5		16093.466	Hemoglobin subunit beta-1, Hbb	235217	46960
PU2U91	51	0.091	2		16093.400	Hemoglobin subunit beta-1 , Hbb	10620	1622
P11517	4	0.032	,		16096.513	Hemoglobin subunit beta-2	10629	1623
P1151/	4	0.154	2	HUN	10090.513	Hemoglobin subunit beta-2	3221	2036
A0A0G2JWE1	4	0.041	2	HDN	18642.0143	Myosin light chain 6	14814	6773
A0A0G2JWE1	4	0.422	1	MDN	18642.0143	Myosin light chain 6	10156	7127
A0A8I5Y665	5	0.012	2	HDN	254318.92	Cad	7966	4646
A0A8I5Y665	5	0.375	1	MDN	254318.92	Cad	9684	7619
A0A0G2K1Q0.	3	0.014	2	HDN	186814.672	Phosphatidylinositol-4-phosphate 3-kinase_ catalyti	108386	52126
A0A0G2K1Q0.	3	0.844	1	MDN	186814.672	Phosphatidylinositol-4-phosphate 3-kinase_ catalyti	73541	59618
								20500
WUR485	26	0.032	2	HDN	5/176.016	Peptidoglycan recognition protein 2 , Pglyrp2	60648	36586
M0R485	26	0.407	1	MDN	5/1/6.016	Peptidoglycan recognition protein 2 , Pglyrp2	61404	52209

e. Proteínas comunes en restricción de alimento y condición control

A0A8I6AAN5	1	0.022	4.9	MDN	79486.5573	Fibulin-1, Fbln1	1012	206
A0A8I6AAN5	1	0.311	2.2	HDN	79486.5573	Fibulin-1, Fbln1	541	242
A0A0G2K470	4	0.012	3.5	MDN	129979.468	Integrin subunit alpha 2 , Itga2	2583	748
A0A0G2K470	4	0.054	2.3	HDN	129979.468	Integrin subunit alpha 2 , Itga2	2872	1252
A0A8I5Y241.	1	0.013	2.5	MDN	46870.2744	Platelet-activating factor acetylhydrolase, Pla2g7	641	252
A0A8I5Y241.	1	0.271	2.8	HDN	46870.2744	Platelet-activating factor acetylhydrolase OS=Rattus	541	288
P06399.	12	0.044	2.2	MDN	87427.3877	Fibrinogen alpha chain, Fga	224945	103154
P06399.	12	0.281	1.3	HDN	87427.3877	Fibrinogen alpha chain , Fga	149878	115735
070511	1	0.021	2.0	MDN	285868.759	Ankyrin-3 , Ank3	2373	1165
070511	1	0.643	1.8	HDN	285868.759	Ankyrin-3, Ank3	2812	1593
A0A8I6AAA8.	1	0.024	1.7	MDN	183194.748	IQ motif containing GTPase activating protein 3, Igg	14841	8598
A0A8I6AAA8.	1	0.135	1.6	HDN	183194.748	IQ motif containing GTPase activating protein 3. log	13183	8497
			1					
A0A0G2KB09	6	0.040	1.6	MDN	41758.3012	Parvin beta, Parvb	3324	2025
A0A0G2KB09	6	0.081	2.1	HDN	41758.3012	Parvin beta Parvb	4735	2234
Q9R095	5	0.024	1.5	MDN	208672.699	Sperm flagellar protein 2 . Spef2	38508	25253
A0A0G2K481	3	0.024	1.5	MDN	239522.609	Sperm flagellar 2, Spef2	26007	17055
Q9R095	5	0.685	1.2	HDN	208672.699	Sperm flagellar protein 2 . Spef2	41711	33392
A0A0G2K481	3	0.685	1.2	HDN	239522.609	Sperm flagellar 2 . Spef2	28170	22552
P06866	10	0.019	4.9	нст	39076.4876	Haptoglobin . Hp	3115	15241
P06866	10	0.001	7.0	МСТ	39076.4876	Haptoglobin . Hp	3563	25072
G3V9R2:Q5XJW6	42	0.033	1.8	НСТ	144850.213	Complement factor H . Cfh	14940	26872
G3V9R2:05XJW6	42	0.034	2.2	MCT	144850.213	Complement factor H . Cfh	17397	38993
A0A0G2K3L5	1	0.041	5.9	НСТ	13961.6688	Ig-like domain-containing protein	1080	6419
A0A0G2K3L5	1	0.418	1.8	МСТ	13961.6688	Ig-like domain-containing protein GN=AABR070610	1637	2941
A0A8I6ALW9	6	0.026	2.4	НСТ	13318,2967	Ig-like domain-containing protein	2303	5556
A0A8I6ALW9	6	0.139	1.7	МСТ	13318.2967	Ig-like domain-containing protein GN=ENSRNOG00	1775	3032
A0A8I5Y662	2	0.004	2.0	НСТ	12909.4402	Ig-like domain-containing protein	3943	7882
A0A8I5Y662	2	0.156	1.6	МСТ	12909.4402	Ig-like domain-containing protein GN=ENSRNOG000	5520	8922

A0A096MKF8	2	0.014	5.6	HCT	247275.811	Mediator complex subunit 12, Med12	350	1946
A0A096MKF8	2	0.135	3.4	MCT	247275.811	Mediator complex subunit 12, Med12	733	2476
Q4V7C8	2	0.018	2.8	НСТ	54337.5963	Centrosomal protein of 55 kDa , Cep55	932	2617
Q4V7C8	2	0.436	1.6	MCT	54337.5963	Centrosomal protein of 55 kDa, Cep55	866	1424
P20059	21	0.036	3.4	MCT	52092.3509	Hemopexin , Hpx	13886	47575
P20059	21	0.266	1.7	НСТ	52092.3509	Hemopexin , Hpx	15736	27257
D3ZAQ1	1	0.026	2.5	НСТ	68889.7045	Actin related protein 5. Actr5	2322	5821
D3ZAO1	1	0.051	2.6	MCT	68889,7045	Actin related protein 5 . Actr5	3514	9044
A0A8I6AB30:F7FAY5	2	0.011	2.4	НСТ	70222.6524	Similar to alpha-fetoprotein . Albfm1	5563	13294
A0A8I6AB30:F7FAY5	2	0.331	1.7	MCT	70222.6524	Similar to alpha-fetoprotein OS=Rattus norvegicus C	7452	12406
		0.001						
A0A0G21UD6	4	0.049	1.8	нст	80531 1788	Kinesin-like protein Kif3a	13163	24283
	4	0.056	17	мст	80531 1788	Kinesin-like protein, Kif3a	13866	23546
		0.000	1.7	ivier	00001.1700		13000	20040
	1	0.034	118 9	мст	58345 4174	Chaperonin containing TCP1 subunit 64 Cct6a	41	3277
	1	0.430	3.8	нст	58345 4174	Chaperonin containing TCP1 subunit 6A Cct6a	9536	24394
	1	0.450	5.0		50545.4174	chaperonin containing rel 1 subunit of , cetoa	3330	24354
P62738	1	0.048	11.8	мст	42408 2561	Actin agentic smooth muscle Acta?	40	469
P62738	1	0.527	2.8	нст	42400.2501	Actin_ aortic smooth muscle_Acta2	117	326
102730	-	0.527	2.0		42400.2301		11/	520
R5DE07	1	0.047	17 2	мст	677/0 /152	Mitachandrial ribonuclease R satalutic subunit - Prov	12	124
850607	1	0.047	22	ИСТ	677/0/152	Mitochondrial ribonuclease P catalytic subunit, Prof	16	25
550,07	-	0.250	2.5	TICT	07745.4155	Witteriorial insoluciease r catalytic subunit, rior	10	25
	2	0.022	10.0	мст	72/150 2612	Tripartite motif containing 25 Trim25	1/17	1/60
	2	0.022	4.7	нст	73455.5012	Tripartite motif containing 25, Trim25	0/7	405
DAASNS	2	0.132	4.7	TICT	73433.3012	mpartite moth-containing 23, min23	547	4470
O4KM33	1	0.035	9 1	мст	40338 0124	Pleckstrin Dlek	284	2577
	1	0.035	5.1	ИСТ	40338.0124		107	1075
Q4KW33	1	0.918	5.7	TICT	40558.0124		107	1075
D50208	2	0.020	47	MCT	51107 012	Pab GDP dissociation inhibitor alpha Cdi1	066	4520
P50396	2	0.050	4.7		51107.015	Rab GDP dissociation inhibitor alpha, Gdi1	900 1210	4520
FJU330	2	0.508	1.5	пст	51107.013	Rab GDP dissociation inhibitor alpha, Gdl	1219	2027
		0.000	4.2	MCT	154701 000	Newbox wattin 2 Nebr 2	2011	10040
	4	0.009	4.3		154/01.833	Nephrocystin 3, Nphp3	5911	10840
D4A1VV7	4	0.428	1.6	HUI	154/61.833	Nephrocystin 3 , Nphp3	5114	8120
								147

F1M0Q9	5	0.012	4.1	MCT	55757.2932	Peptidase M20 domain containing 1 , Pm20d1	4304	17464
F1M0Q9	5	0.143	2.5	HCT	55757.2932	Peptidase M20 domain containing 1, Pm20d1	6254	15750
A0A0G2K627	1	0.022	4.0	MCT	48563.5418	D-ribitol-5-phosphate cytidylyltransferase, Crppa	1037	4165
A0A0G2K627	1	0.152	2.0	HCT	48563.5418	D-ribitol-5-phosphate cytidylyltransferase , Crppa	1273	2586
D3ZK73	5	0.021	1.6	MCT	111496.036	Cullin 4B , Cul4b	6499	10312
D3ZK73	5	0.221	1.4	HCT	111496.036	Cullin 4B , Cul4b	5683	7848
P25030	3	0.034	1.8	MCT	49444.6948	Keratin_ type I cytoskeletal 20 , Krt20	5147	9009
P25030	3	0.105	1.9	HCT	49444.6948	Keratin_ type I cytoskeletal 20 , Krt20	5248	9864
G3V615	14	0.027	3.1	MCT	86721.8153	C3/C5 convertase , Cfb	9391	29531
G3V615	14	0.299	1.9	HCT	86721.8153	C3/C5 convertase , Cfb	19502	36124
D3ZUQ1	11	0.007	2.9	MCT	44726.1902	Lipase , Lipo1	6513	18831
D3ZUQ1	11	0.082	1.7	HCT	44726.1902	Lipase , Lipo1	8574	14959
F1LY69	12	0.001	2.3	MCT	167476.815	Intraflagellar transport 140 , Ift140	23821	55205
F1LY69	12	0.357	1.4	HCT	167476.815	Intraflagellar transport 140 , Ift140	26720	37376
P35859	10	0.023	2.7	MCT	67609.9878	Insulin-like growth factor-binding protein complex a	19625	53418
A0A8I5Y6E1	6	0.008	2.7	MCT	67839.2757	Insulin-like growth factor binding protein_acid labile	4356	11554
A0A8I5Y6E1	6	0.108	2.1	HCT	67839.2757	Insulin-like growth factor binding protein_acid labile	7826	16558
P35859	10	0.059	2.0	НСТ	67609.9878	Insulin-like growth factor-binding protein complex a	36282	72603