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Resumen

Se diseña un control de modos deslizantes en tiempo discreto para sistemas discretos no

lineales, también se desarrolló la técnica del control por bloques para sistemas discretos no

lineales, y un observador de orden reducido fue desarrollado para sistemas discretos

electromecánicos no lineales. Todas estas técnicas son aplicadas al modelo discreto no

lineal de un motor de inducción que se encontró aquí, que posee dinámicas eléctricas y

mecánicas, en donde el par de carga se considera una perturbación desconocida. Con

mediciones completas de los estados, se satisfacen objetivos de seguimiento de la velocidad

del rotor y de la amplitud del flujo magnético del rotor, en donde la carga desconocida no

afecta la regulación de la velocidad. Luego, es implementado un observador de orden

reducido en donde las mediciones de velocidad y de corriente se emplean para estimar el

par de carga y los flujos que son muy difíciles de medir. El método propuesto tiene un

diseño y procedimiento de estabilidad de análisis directos, conservando una estructura

simple de la ley de control. Las simulaciones predicen que el sistema es robusto con

respecto a varios tipos de pares de carga. Las respuestas de velocidad y de amplitud del

flujo del rotor a las referencias de entrada se desempeñaron muy bien. Estas referencias

tienen una dinámica lineal de segundo orden con constantes de tiempo que pueden ser

elegidas por el usuario del motor. Se consideran los aspectos prácticos para una futura

implementación digital de la ley de control, incluyendo los sensores de velocidad y

corrientes, el acondicionamiento de señales, la transformación de la corriente al marco de

referencia estacionario, PWM y módulos inversores, los cuales fueron vistos con detalle.

Los resultados experimentales se dejan como trabajo futuro.



Summary

A discrete-time sliding mode control was developed for discrete-time nonlinear systems,

also, a block control technique was developed for discrete-time nonlinear systems and a

reduced order observer was developed for discrete-time nonlinear electromechanical

systems . All of these techniques were applied to a nonlinear discrete-time induction motor

model developed here, with both electrical and mechanical dynamics, where the load torque

is considered as unknown parameter. Whh full state measurements, both rotor speed and

rotor flux amplitude tracking objectives are satisfied, where the unknown load does not

affect the speed regulation. Then, a reduced order observer is implemented where speed

measurements help to estimate the load torque and current measurements provide the

estimation for the unreachable fluxes. The proposed approach has a straightforward design

and stability analysis procedure, keeping the control law structure simple. The simulations

predict the system to be robust with respect to several external load torques. Responses to

speed and rotor magnetic flux amplitude reference input which have a second order linear

dynamics whh time constants that may be chosen by the user of the electric drive

performed weil. Practical aspects for a future digital implementation ofthe control law are

considered, topics like current and speed sensors, signal conditioning, current

transformation to the fixed reference frame, PWM, inverter modules are viewed in detail.

Experimental results are left for future work.
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Chapter one

Introduction

Induction motor is one of the most widely used actuator for industrial applications

because of its reliability, ruggedness and relatively low cost. The control of induction motor

systems is challenging, since the dynamical system is multivariable, coupled, and highly

nonlinear. A classical technique for induction motor control is field-oriented control [14];

which involves nonlinear state transformation and feedback for asymptotic decoupling of

the rotor speed and rotor flux, combining linear control methods such as PID control. More

recently, various nonlinear control design approaches have been applied to the induction

motor control problem to improve its performance, like adaptive control [7]-[5], that is used

for parameter uncertainties in the system. Among many works in this increasingly active

research área we may cite input-output linearization [7], backstepping [13], passivity [11],

adaptive input-output linearization [7], and sliding modes [5]-[16]-[17]. All of these

approaches are mostly based on the continuous-time model of the plant, and for practical

implementation in a digital device, is necessary to discretize the continuous controller.

The most recent works on the control of induction motor with sliding modes are

found in [5] and [17]. This works are based on continuous-time sliding mode control. The

algorithms are programmed on a digital processor for implementation where the differential

equations are numerically integrated by Euler's explicit method in order ofminimizing the

computational burden as stated in [17]. This has the disadvantage of not exactly implement

the desired continuos-time control law.

The major difference between continuos-time sliding mode control and the other

control techniques mentioned above for the induction motor, is that sliding modes results in

a discontinuous control law that is applied directly to the driver (inverter) ofthe motor, and

in the other techniques, the control law results in continuos control law, that is applied to

the driver ofthe motor through a PWM. Adding a PWM requires more external electronic

circuits or software, where the real control law is modified.

This work is based on a digital sliding mode [16] with a block control aided design

approach to achieve rotor speed and rotor flux amplitude tracking objectives in the fixed



Chapter one. Introduction 6

reference frame model. The uncertainty accounted for is an unknown load torque. A novel

block control scheme is intended for discrete-time systems combined with a novel digital

sliding mode controller implementation. The reason for using a digital or discrete-time

sliding mode control technique is to avoid the use ofPWM and the easy of implementation

on a digital device of the difference equations that appear in the control law, avoiding

numerical integration.

The highlights ofthis work can be stated as follows. It is developed a discrete-time

sliding mode and block control technique for nonlinear systems. A nonlinear observer for

electric machinery was also developed for discrete-time systems. All of these contributions

are applied to the induction motor.

This work consists of seven chapters. Chapter one was a short review of the

common induction motor control techniques available today. It was also established the

control approach that will be developed to accomplish the rotor speed and rotor flux

amplitude tracking objectives by means of digital techniques for a readily implementation.

Chapter two deals with the induction motor system model differential equations that are

transformed to the fixed reference frame in order to eliminate the time dependency that

appear in the original equations [9]. Then, the continuous-time equations are discretized in

order to obtain a discrete-time versión of the plant. This model will serve to obtain the

discrete-time controller in a subsequent chapter. Chapter three discusses basic control

theoretical tools such as exosystems; these systems provide the reference signáis to be

tracked by the plant. The principies of sliding mode control techniques [15] are shown for

continuos-time systems, where the control design consist of two .steps: step one is to choose

a sliding surface where all the state trajectories are heading to; and step two is to apply the

weil known sliding mode control. These principies are then developed for discrete-time

systems, obtaining a discrete-time sliding mode control. Then, the block control technique

is developed for discrete-time nonlinear systems, this technique consists of a step-by-step

coordínate transformation where the desired dynamics of the transformed system is

proposed in each step, and the last step results in the control law. This technique will be

useful in obtaining a sliding mode surface. Due to the non-observable fluxes, we need the

basics for discrete-time observers, and here are developed for nonlinear electromechanical

discrete-time systems. Chapter four contains the contributions of this research work,
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dealing with the application of the theoretical tools developed in chapter three to the

discrete-time model obtained in chapter two. With the help of the block control technique,

continuos and discontinuous discrete-time sliding mode controls are developed, and their

differences are analyzed. Then, discrete-time observers are implemented for load and fluxes

estimation. Chapter five shows us the simulations for both controls and for different

references and load signáis. Also, observer simulations are shown. Chapter six can be

considered as a background for a future implementation, taking into consideration all the

practical aspects to implement the control law in a digital device. Speed and current sensors

are featured as source devices. They measure the variables needed to obtain our control

objectives. But this signáis needs special treatment in order to be manipulated by a digital

device, all this is seen in the sub-chapter 6.3 titled 'Signal conditioning7 Since the

measured currents are not referred to fixed reference frame, these currents need to be

transformed to that frame. The Pulse Width Modulation process is introduced for a

continuos control implementation. Finally we introduce the inverter. This device is the

responsible for driving the motor, and is fed by a set of pulses coming out ofthe PWM or

directly ofthe discontinuous control law. Chapter seven extracts all the theoretical results

from the previous chapters, and proposes future research for this work.
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Chapter two

Induction motor modelling

2.1 INTRODUCTION

This chapter deals with typical construction and basic concepts of the induction

motor [3]. Voltage and torque equations are established in a state-space realization, which

represent the induction motor in operation [9]. Due to the inductance angular dependency,

the induction motor is a time-variant system, therefore a change of variables is needed in

order to avoid this dependency. This transformation is computed with respect to spinning

reference frames of the machine, that could go from non-spinning (stationary reference

frame) to arbitrary spinning (arbitrary reference frame). The induction motor model is

discretized, and in a subsequent chapter a discrete-time control-law is developed for a fast

and easy computer based system implementation.

2.2 REPRESENTATION OF AN INDUCTION MOTOR

2.2.1 Introduction

This section begins with the basic concepts about energy conversión for

electromechanical systems, then, basic induction motor construction methods and concepts

are shown. We deal with reference frame for transforming equations, which can elimínate

parameter time dependency. These concepts are applied in order to find the induction motor

mathematical model in the stationary reference frame. Moreover, the induction motor

model shows us that the transformation process yields a two-phase model, where the

control law is designed (once discretized), and then with a backward transformation we

transform the two-phase control law into a three-phase one, which is applied to the

induction machine.
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2.2.2 Energy relationships

An electromechanical system is made up an electric system, a mechanical system

and a coupling one in which both of them interact. Electromagnetic fields and/or

electrostatic ones can give the interaction. These fields are reciprocal in each system, being

the transferring energy from one system to another the result of such interactions. Both

coupling fields can co-exist, and the entire system can count with any number of electrical

and mechanical systems. Figure 2.1 shows an electromechanical system, i.e. an electric

system, a mechanical system and a coupling one.

Figure 2.1. Electromechanical system

Defining WE as the total of energy given by an electric source, WM the total of

energy given by a mechanical source, then an energy distribution can be expressed as

wE = we+weL+weS

wM^wm+wmL+w„
(2.2.2.1)

where WeS is the stored energy in electric or magnetic field form, which is not coupled to

the mechanical system. WeL is the heat related lost energy in the electrical system. We is

the transfer energy to the coupling field from the electrical system. W^ is the store energy
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by the mechanical Ímpetus, WmL is the heat related lost energy related in the mechanical

system and Wm is the transferred energy to the coupling field. The supplied energy is

assumed positive in any source.

Ifwe set WF as the total energy transferred to the coupling field, then

WF=Wf+W/L (2.2.2.2)

where Wf is the stored energy in the coupling field and Wji is the lost energy in heat form

inside the coupling field. The electromechanical system obeys the energy conservative law,

so, the total store energy is

wf+wfL=we+wM

wí+wJL=(wE-weL-weS)+(wM-wmL-wmS)
(2223)

If the lost energy inside the coupling field is not considered, then the equation (2.2.2.3)

reduces to

Wf
= We+WM (2.2.2.4)

In the process of energy conversión we conclude that the conversión from one

system to another is independent of the lost energy of each system, the stored energy in

both systems and the lost energy inside the coupling field.

2.2.3 Induction motor construction

As a general overview, induction machines have their field current supplied by

magnetic induction in its excitation windings; their armature windings are placed in the

stator and their excitation windings in the rotor. A three-phase current systems in the

armature windings produce a spinning magnetic field, which interacts with the rotor

magnetic field producing a torque in the shaft ofthe machine.
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We begin with the stator construction that is quite complicated [3]. The stator has

several coils in each phase, which are inside the gaps located in the interior surface. It is

very common that each coil is an independent unit, with several spirals insulated one from

each other and the entire set insulated from the stator. The voltage delivered by one spiral
is

too small and to get a considerable voltage, then, several spirals are needed. This extensive

number of spirals is divided in several coils that are equally space-placed along the stator

surface gaps.

With the exception of very small machines, the stator coils usually are distributed

shaping double layer windings as illustrated in Figure 2.2.

Connector StatOrN COÜ

Figure 2.2. Typical coil ofa stator induction motor.

The double layer windings are easier to construct (less gaps are needed for a given number

of coils) and their connections between their coil termináis are quite easy rather than one

layer winding. Therefore, its manufacture is less expensive. Figure 2.3 shows two pictures

of stator coils, and Figure 2.4 shows a stator ofa two-pole machine.



Chapter two. Induction motormodelling
13

(a)

(b)

Figure 2.3. (a) The stator with its pre-shaped coils view. (b) Detailed view ofthe termináis

ofthe stator coils. Note that one coil side is in a less deep part ofa gap and the other side in

the deepest part. This arrangement lets the making ofthe coils in a uniform way to be

placed then in the stator gaps.
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Figure 2.4. Common stator of an induction motor with its windings.

Now let's see the rotor; there are two different types of rotor for an induction motor,

one is known as squirrel cage rotor and the other one as wound rotor.

Figures 2.5 and 2.6 shows squirrel cage rotors. A squirrel cage rotor of an induction

motor consists ofa series of conducting bars arranged inside the gaps located at the surface

of the rotor with its extremes in short-circuit through rings. This design is known as

squirrel cage rotor because its conductors are similar to the cages where squirrels play.

Figure 2.5. (a) Squirrel cage rotor, (b) Typical squirrel cage rotor.
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fl>)

Figure 2.6. (a) An inside view ofa typical small squirrel cage rotor of an induction motor.

(b) An inside view ofa typical large squirrel cage rotor of an induction motor.

The other kind of rotor is the wound rotor, and it has a complete three-phase

winding that is a kind of minor image reflection of the stator winding. The three winding

phases ofthis rotor are usually connected in Y
,
and their extremes are connected to some

slightly touching rings mounted in the shaft. The rotor windings can be short-circuited

through a set ofbrushes that slightly touch the rings. External resistances can be inserted in

the rotor circuit, due to the fact that the rotor currents are available in wound rotor

induction motors through brushes. This fact enables us to modify the motor torque-velocity

characteristics. Figure 2.7 shows a wound rotor, and Figure 2.8 shows a complete wound

rotor induction motor.
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Figure 2.7. A typical wound rotor for induction motor. Slightly touching rings and bars
that

connect the rotor with such rings can be appreciated.

Figure 2.8. An inside view ofa wound rotor induction motor. Brushes and slightly touching

rings can be seen. We can also see the rotor-winding slope to eliminate the gap harmonics.
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2.2.4 Voltage equations

To calcúlate the state equations ofthe idealized three-phase induction machine, we

will assume the winding configuration shown in Figure 2.9 [9]. In this case the winding

placement is only conceptually shown with the centerline of the equivalent inductors

directed along the magnetic axis ofthe windings. Again an elementary two-pole machine is

considered. 'Balanced' three phase windings are assumed for both the stator and the rotor.

That is, all three windings designated as the as, bs and cs windings are assumed to have the

same number of effective turns, Ns , and the same resistance Rs ; and the bs and cs

windings are symmetrically displaced from the as winding by +120" The subscript V is

used to denote that these windings are stator or stationary windings. The rotor windings are

similarly arranged but have Nr turns and resistance Rr . These windings are designated by

ar, br and cr, where the second subscript reminds us that these three windings are rotor or

rotating windings.

f- 1 ,
Mcs -axis i

Cf-ans

Figure 2.9. Induction motor windings.
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The self-inductance of the stator phase as is denoted by Lam . The subscript m is

used to denote the fact that this inductance is a magnetizing inductance. That is, it is

associated with flux lines which cross the air gap and link rotor as weil as stator windings.

In general, it is necessary to add a relatively small, but important, leakage term to Lam to

account for leakage flux. This term accounts for flux lines that do not cross the gap but

instead cióse with the stator slot itself (slot leakage), in the air gap (belt and harmonic

leakage) and at the ends of the machine (end winding leakage). Henee, the total self-

inductance ofphase as can be expressed as

Lasas =Lh+Lam (2.2.4.1)

Since the windings of the bs and cs phases are identical to phase as, it is clear that the

magnetizing inductances ofthese windings are the same as phase as so that, also

Lbsbs = L¡s+ Lhm

Lcascs=Lls+Lcm (2.2.4.2)

It is apparent that Lam , Lbm and Lcm are equal making the self-inductances also equal. It is

therefore useful to denote the stator magnetizing inductance by _.,_. ,
so that

^asas = Lbsbs = Ajsc_ = L¡s + ¿ms (2.2.4.3)

The mutual inductances between phases as and bs, bs and cs, and cs and as are

equal to minus one halfofthe magnetizing inductance

lasbs
~

Lbscs = ^sas = —

T^ (2.2.4.4)

Let us now turn to the mutual coupling between the stator and the rotor windings.

Referring to Figure 2.9, the rotor phase ar is displaced from the stator phase as by the
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electrical angle 6r where 6r is in this case a variable. Similarly, the rotor phases br and cr

are displaced from bs and cs respectively by Gr. Henee, the corresponding mutual

inductances between the phase ofthe stator and rotor are defined as follows in terms ofthe

magnetizing inductance ofthe stator

Lasar = Lhsbr =^ r
=

--f- Lms cos(é>r ) (2.2A. 5)
NS

2/r
The angle between the as and br phases is 9r +

—

,
so that

N ( 2jf
Ltabr = Lbscr = Lcsar = ^Lms

cosí 0r +
—

\ (2 2.4.6)

2n
Finally, the stator phase as is displaced from the rotor cr phase by the angle 9r

Therefore

N ( 2n"
Láser = Lhsar = Lcsbr = j±Lms

cosí 0r
-—

\ (2.2.4.7)

The self-inductances ofthe rotor are equal, and have the same basic form ofthe self-

inductances ofthe stator, again in terms ofthe magnetizing inductance ofthe stator

'"arar
~ ^brbr ~ '-arar

~ L\f +

y*sj
L^ (2.2.4.8)

where L¡r is the rotor leakage.

The mutual inductances between phases, that is, ar and br, br and cr, and cr and ar

are defined as follows in terms ofthe magnetizing inductance ofthe stator
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'-'arbr
~

'-brcr
~ Lc¡

(N*

K*sJ

y^- (2.2.4.9)
2

Once known the inductive parameters of the induction motor, the stator and rotor

voltage equations are obtained applying KirchofFs voltage law to diagram in Figure 2.9.

The obtained equations are

v -Ri ________

vas "s'as '

i.

d¥bs
Vbs

= Rs'bs +

"-_ -"\SV_

var
= Rr'ar +

Vbr
= Rrhr +

^
= Kier +

dt

dWcs

dt

dWar

dt

dWbr

dt

dWer

dt

(2.2.4.10)

where wm are the linkage fluxes, and are defined in the following form
i xy

Vas
= Lasases + Lasbsibs + LaScs'cs + LasarÍar + Lasbribr + Lascri(

¥bs
~ Lbsas'as + Lbsbs'bs + ¿6_cÁ- + Lbsar'ar + Lbsbribr + LbscrÍt

Ves
~

Lesas'as + ¿c_í>_'¿_ + ¿csc.'c- + LcsarÍar + Lcsbr'br + ¿esc r',

¥ar
~

Laras'as + Larbs'bs + Larcs'cs + Lararlar + Larbrlbr + ^arcrli

¥br
= Lbras'as + LbrbJbs + Lbres'cs + Lbrariar + Lbrhribr + LhrcrÍi

Ver
= Lcras'as + ¿crfts'é- +Lc^cs + Lcrariar + Lerbrhr + Lercr',

cr

cr

i

cr

cr

cr

cr

(2.2.4.11)

As can be appreciated, the voltage equations are quite complicated, due to the time

dependency of the mutual inductances. That justifies that a transformation is needed in

order to elimínate this time dependency. For better handling of the above equations, we

introduce a matrix representation
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* abes ^s^abes "*"

Vabcr ~ RAabcr +

dt

dVqber

dt (2.2.4.12)

abes
— L---Lj_-. + L_,I■'sslabcs

*
abcr

~ ^sAabcs + L—I

srlabcr

rr abcr

where

■abo
~

Jax

fbx

fe,
(2.2.4.13)

the symbol f is used to represent any of the three phase circuit variables such a voltage,

current or flux linkage and the subscript x is used to represent stator or rotor variables.

L__ =

¿fe + Lms - I^a
y
Lms

j
^ms L-ls + L-ms

_,
Aw.

~~ ~

*-1ns
~

~Z Lms ¿fe + Lms

Ns

cos(Or) cos(0r +
—) cos(0r )

COSÍé'- ) COS(-V) COS(0r + )

cos(0_ +—) cos(0r ) co^0r)

L^ =

¿fe +
'»y2
l*.sj

\(n*

kNsj

'N*

K^sj

Lms ¿/r +

'V2

Lms

'.vV

Ns)

'N*

kNs;
Lms

Lms L[r +

[Ns;

(2.2.4.14)
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It is rather apparent that the turns ratio
——

causes these matrices and equations to

Nr

be needlessly cumbersome. The appearance of the turas ratio is of course, not unexpected

since the induction motor is simply another type of coupled magnetic circuit and is related

to the transformer. In fact we can view the induction motor as equivalent to a transformer

with a short circuited and rotating secondary. We can get rid ofthe explicit dependence of

these expressions on the turns ratio by referring the rotor circuits to the stator in much the

same manner as utilized for a transformer. Equations in (2.2.4.12) can be manipulated to

form

* abes

fN*

— D I -l
abes

~

Kslabcs + -7

*r
*
abcr

'_v
,Nrj

?
(Nr

ÍN

VNSJ
*-abcr

+ -

\

K»rJ
1 abcr

dt

*abcs
—

^ss^abes + '-'ms

cos(0r)

2n

cos(é> +
r

3

2ns2n. 2n
—) cos(0r
3 3

COS(0r) COS(0r+y)

cos( cos(0r)

(NR

\NrJ

™

abcr
~ L,'ms

cos(0r
-

~)

<*,+^) cos(6r-^)

cos(6>. ) cos(6>- +
—

) cos(0r
-—

-)

—) cos(0r) cos(0r +
—)

cos(0r)

(n \

-V,K"sJ
*abcr

cos(0r
_>

cos(6>.+—) cos(0r-—)

l_-c_ +

+

\NS)
Llr+L,-ms AL

2™

.\L
2

""

AL
2

™

'iO

^J
L¡r + ¿ms

2¿ms

A.L
2

™

2
™

NsJ
¿fr + ¿ms

\

N_r

,NSJ
*-abcr

(2.2.4.5)
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We now define the primed variables and matrices

fNs
yNr)

rNs_)
yNr)
rN )iyr

kNs)

Ns_

Nr)

'NA

yNrJ

*abcr *abcr

abcr * abcr

\ — V
labcr Rabcr

Rr — Rr

L¡r - L'lr

cos(_>_) cos(0r H ) cos(0r )

2n 2n

L'sr = ¿ms COs(0r
-—) COS(0r) COS(0r +

—

)

2n 2ti

cos(0r +
—

) cos(0_ ) cos(0r)

v
____

(NA

kNsj
Llr+Lms

1

Aros 2¿ms

(Nr*

kNsj
L¡r + Lms --¿_

-I_
2Lms kNs;

Li- + _-_ (2.2.4.16)

Combining the above results, the equations for stator and rotor circuits finally becomes

* abes "s*abcs '

Yjfccr ~ K^'abcr +

dVqbcs

dt

df'aber

dt (2.2.4.17)

I ~h--
—

^SS

sr

•" ^sr^abcr

V =11 +1
'

I'R
abcr RJsrxabcs

^
M-'rríabcr
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2.2.5 Transformation to a rotating reference frame

The aforementioned coupling between the stator and rotor circuits can essentially be

eliminated, if the stator and rotor equations are referred to a common frame of reference.

This common frame of reference can be non-rotating in which case it is associated with the

stator and is called the stator or stationary reference. Alternative the d,q axis can be made

to rotate with the same angular velocity as the rotor circuits, and is termed the rotor

reference frame.

Consider for example, a rotating set of d,q axis as defined by Figure 2.10. Figure

2.10 also shows reference axis corresponding to the magnetic axis ofthe three-phase stator

and three phase rotor circuits. Variables along the a,b and c stator axis can be referred to

the d and q axis by the expressions

fds ~

Jqs
~

(6>) + /6.cos^-^ + /c.co^ +^jfas COSÍ

fassin(0)- fbssin 9
2n

~fessin 0 +
2n

(2.2.5.1)

where the symbol / is used again to represent any ofthe three phase circuit variables such

2
a voltage, current or flux linkage. It should be noted that the coefficient — in these two

2

equations is somewhat arbitrary. The choice of
—

is usually selected so as to maintain the

same modulus ofthe voltage and current signáis for sinusoidal steady state. Since there are

three phases, then in general, it is necessary to define a third new variable to obtain a

unique transformation. This third new variable is typically defined as the zero sequence

component

fos ~ ~\fas +fbs +fcs\ (2.2.5.2)
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Figure 2. 10. Location ofthe rotating d,q axis relative to the magnetic axis ofthe stator and

rotor phases.

In this context the use of the symbol 0 in the subscript of the new variable is used to

desígnate a zero component normal to the d,q plañe.

In practical applications, the machine is connected either in A or in Y
, thus, the

three stator currents sum to zero. As a result, the other significant three phase variables

such as phase voltages, the stator flux linkages and rotor currents also sum to zero. Henee,

it is necessary to concern oneselfonly with projections on the d,q plañe.

From (2.2.5.1) and (2.2.5.2) we obtain a matrix denoted by K., that converts the

aforementioned vector fabcs into the vector fdq0s . Such operation is shown by,

dqOs ™-s*abcs (2.2.5.3)
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where the matrix K. is as follows

Kc

cos(0) cos(0 ) cos(0 +
— )

-sin(6) -sin(0-—) -sin(0 +—)

1 1 1

(2.2.5.4)

the inverse ofthis matrix is

K7' =

cos(0)

cos(0-—)
3

2n

cos(0 +
—)
3

-sin(0) 1

2n

-sin(0-—) 1

3

-sin(0 +
—) 1

3

(2.2.5.5)

where the angular displacement between the d and as axis is denoted by 0 as shown in

Figure 2.10.

Let us now turn to the variables ofthe rotor and transform them into d,q variables.

We observe from Figure 2.10 that the angular displacement between the d and ar axis is

0 - 0r , and denoting this displacement by fi , we obtain a matrix by direct replacement of

fi instead of 0 in (2.2.5.4). Such transformation is as follows,

ldq0r
= Krf(abcr (2.2.5.6)

where the matrix Kr is as follows

Kr =

COS(fi) COS(j9-y) COS(j9 +y)

-sin(fi) -sHfi-^j) -sin(fi +^)
1 1 1

(2.2.5.7)
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and the inverse ofthis matrix is

k;1 =

cos(j_0

COSO!? -y)

COSO-í +y)

-sin(fi) 1

-sin(fi-—) 1

3

-sin(fi + ^-) 1

(2.2.5.8)

2.2.6 Stator and rotor equations transformed into an arbitrary reference

frame

Let us proceed with the stator voltage equation, transforming it into an arbitrary

spinning reference frame, i.e.

d0

dt
-<a (2.2.6.1)

Transforming the stator voltage equation appearing in (2.2.4. 17), we obtain the following

^dqOs
- ^s*abcs

dV
abes-

V<-o0s ~ Ks(RsIabcs + j—)

V<-<jOs
~ Ks^slabcs +K.

dt

dV
abes

dt

(2.2.6.2)

using the following facts

i = \c~ i
labcs **s ldqOs

"abes *^s *dqOs

(2.2.6.3)
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and replacing it in (2.2.6.2), yields the following equation

dKZX dtdaQS
V— » ¥ __.i<r _______

wi i aqvs

dqOs
~

**sldqOs + ^s , ^dqOs + ~7 (2.2.6.4)

-1

Computing separately the derivative of K. in (2.2.6.4), we obtain,

dK~s

dt
(O

-sin(0)

-_w(0-—)
3

-sin(0 +
—)V

3

-

cos(é>) 0

-cos(0-—) 0

3

-cos(0 +
—

) 0

3

(2.2.6.5)

Then we have

K.^
dt

(O

"0 -1 0"

1 0 0

0 0 0

(2.2.6.6)

We define the matrix D as follows

D

"0 -1 0"

1 0 0

0 0 0

(2.2.6.7)

and finally putting all together

dV

VdqOs
=

R^dqOs + ^WVdqQs + -—r
dqOs

(2.2.6.8)
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Proceeding similarly with the rotor voltage equation, we transform it to an arbitrary

reference frame, i.e.

dfi

dt

= 0)-(0. (2.2.6.9)

Then, we start from the following equation

VdqOr
~ ^r^abcr (2.2.6.10)

and with some computations that finally yields

YijOr
=

Kl'dqOr + («
"

<Or)W*dq0r +
dVldqOr

dt
(2.2.6.11)

We continué the transformation process with the flux linkage, when proceeding in

the same way we obtain the following equations

^dqOs
~ KSL-K- Ijqos +K-L-_K_ I_v-i>

*dq0r
= KrL.rK- l<lqQs +KrLfTK_ \¿qQr

(2.2.6.12)

where each operation is as follows

- 3

Lls +
2'ns

0 0

K_L__I_- _ 0
- 3

Lls +~ Lms 0

0 0 ¿fe

(2.2.6.13)
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K^L^K,. -K.L^K. - 0

0

K_L__K, —

¿fr + ^¿n

0

0

L¡r+-L
2

0 ¿fr

(2.2.6.14)

Defining the matrix elements for sake of simplicity

Ls=Lls+M

Lr =Li+M
(2.2.6.15)

where

M (2.2.6.16)

2.2.7 Torque equation

Up to this point we have treated the induction machine as simply an interesting type

of coupled magnetic circuit and the electromechanical properties of this device so far has

been ignore. It is now time to consider where the energy goes that passes into the machine

via the stator and rotor termináis.

The power flow into the induction motor in terms of the newly defined d,q,0

variables must now be examined. The power flowing into an n phase induction machine is

clearly the instantaneous product ofthe voltages across and currents through the n phases of

the machine. In this work the machine is assumed to have three stator and three rotor

phases, the power into the machine can be written
as
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**e ~ ~\ydqOs^dqOs + V'dqoAdqOr \ (2.2.7.1)

Replacing the voltage equations that are shown in (2.2.6.8) and (2.2.6. 1 1) into (2.2.7. 1)

Pe =

RAdq0s+6>Vfdq0s +
dV

dqOs

Kl'dq0r+(.<»-G>r)W9'dqQr +

dt

dVl

ldqOs +

dqOr

dt
ldqOr

(2.2.7.2)

It is interesting to observe that the power into the dq circuits is caículated in a

slightly different fashion to that in the actual circuits ofthe machine due to the appearance

3 2
of the - factor. This is a direct result of the — factor that we selected as the

2 3

proportionality constant between the a,b,c and dq variables.

The right hand expression in (2.2.7.2) can be arranged in the form

Power lost in conductors Time rate of change of stored energy

Pe ~
~

-^s^íAjOjI +K|l-/.?0r|
3

+ —

J 2

dV
dqOs ¥r

df.

dt
ldqOs

+ -

dqOr rT

dt
dqOr

+

-[-jOT^-n .\l„n. + (p-tOrpr'jpJ'hr]
(2.2.7.3)

dq0sRdq0s

Energy conversión term

Henee, the electrical power into the termináis of the machine can be segregated into three

terms. The first term clearly accounts for the power dissipated in the stator and rotor

resistances. The second term corresponds to the time rate of change ofthe magnetic energy

stored in the inductances of the machine. Since the remaining power must be going

somewhere, it is natural to suspect that the third term account for energy conversión, that is

the power being converted from electrical to mechanical form. Let us cali this term Pqonv -

the electromechanical output power.
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With some computations it is easy to obtain the following expression from (2.2.7.3)

PCONV = f<M4_¿* "Wqr) i227 4>

An important expression for (2.2.7.4) can be obtained if equations in (2.2.6.12) are solved

for rotor current rather than stator current, whereupon

V
1

> MT
ldr

=

m¥dr--mIds

v -JL '

____-/
Hr

~

J ^W f
Hs

Substituting (2.2.7.5) into equation (2.2.7.4) yields

(2.2.7.5)

PCONV = \*>M(lqsV'dr
' Ids¥qr) (2-2-76)

The electrical angular velocity ofthe equivalent two pole machine, o>r , is related to

the actual mechanical speed by the pole pairs, i.e.

G>r
=

np<°rm (2.2.7.7)

where n is the number of poles and __»._, is the mechanical speed in radians per second.

Since rotational mechanical power is defined as the product of speed times torque

impressed on the shaft ofthe machine can be expressed as

3 Mn„ i ,
\

Te = --^\iqs¥'dr-hs¥'qr) (2-2.7.8)
Z _L_
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In addition to the equations describing the electrical behavior of the machine, more

equations are, of course, necessary to describe its electromechanical behavior. In its

simplest form, the electromechanical behavior is described by

j
■ J^rm+T (2.2.7.9)

dt
L v '

where __%, is the mechanical angular velocity ofthe rotor in rad/s and TL is the load torque

which may itself be described by additional differential or algebraic equations. Solving

equation (2.2.7.9) and substituting (2.2.7.8) yields

dcvrm_3Mnpír . w ,\ 1

irlqs¥'dr-lds¥'qr)--n (2.2.7.10)
dt 2 JLr

XH"ur USTV'
J

2.2.8 Stationary reference frame model (a-fi model)

There are four reference frames commonly used

> Stationary reference frame ( tv = 0 ).

> Fixed rotor reference frame (__>=<_•_).

> Reference frame that rotates at a synchronal velocity ( ca = toe ).

> Reference frame that rotates at rotor flux velocity ( co = co^ ).

The voltage equations can be obtained from the arbitrary reference frame voltage equations

shown in (2.2.6.8) and (2.2.6. 1 1), by replacing the right valué of co .

The most convenient reference frame is dictated by the machine operational

conditions, i.e., if the voltages are discontinuous or unbalanced, and the voltages that feed

the rotor are balanced or are zero, then, the stationary reference frame can be used in this

case. If the voltages that fed the rotor are unbalanced and the voltages in the stator are in

balance, then is convenient the fixed rotor reference frame. The reference frame that rotates
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synchronously it is useful when analyzing transient and stability dynamics in high power

systems, and also when the frequency is free adjusted and the stator voltages are a set of

sinusoidal balanced waves.

So, the best case that fits this work is the stationary reference frame (co
= 0), due to

the discontinuous voltages that will feed the stator. We show again the voltage equations in

the arbitrary reference frame

VdqOs
~ Rs^dqOs +ü>°fPdq0s +

—

V'dqOr
=

WdqOr + (CO
~

(Dr)DTdqQr +

Expanding these equations and substituting <a = 0, yields

vds
- Ks'ds +—ym

. dy/qs
Vqs Kslqs +

^

v -Ri +f___0_
v0s

~

^VOs + ,

WdqOr
dt

v'dr=Kidr+COr¥'qr+^
dy/'

Vqr=K'qr-(»r¥dr+-^-

V0r
~

K'Or +
d¥Ór

dt

(2.2.8.1)

(2.2.8.2)

Due to the short-circuited rotor circuits, their voltages are zero, that is,

v'dr = v'r =v'0r =0, moreover if we consider a balanced system we can omit the Os and

Or variables, due to its nuil contribution. So far we have considered a two-pole machine, in

order to manipúlate any quantity of pole pairs, we introduce again the variable np as in
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(2.2.7.7), or in other words, we substitute the electrical angular velocity ofthe equivalent

two pole machine, m. , by <or
=

«pO-V-,

d¥ds
vds

=

'Vds
~1» - Tf i -L ^"J

Vj- - K-lj, +

dt

d¥qs
vos

= R.L. +
qs s qs ,

(2.2.8.3)

vdr
=

Kh+»pa>rmy,^ +

d

dt

dy/'
V'qr

=

K'qr
~

"pO>rm¥dr
+

—j¡-

Proceeding in the same way, and omitting the Os and Or variables, we show the flux

linkage equations

¥ds
= Lsids +Mi'dr

¥qs=Lsiqs+Mi'qr

(2.2.8.4)

¥dr=M'ds+L/dr

¥qr
=

Miqs + L/qr

Ifwe take the derivative ofthe first equation of (2.2.8.4) and then substitute it in the first

equation of (2.2.8.3), yields

vds
= Rsids+Ls

—+M-^ (2.2.8.5)ds sds s

dt df

and isolating i'dr from the third equation of (2.2.8.4) and replace its derivative into equation

(2.2.8.5), yieldingto
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vds
= Rs'ds +

( M2^

L

diÉL
+
Mdyf'dr

dt Lr dt
(2.2.8.6)

Proceeding in the same way, we manipúlate the second equation of (2.2.8.3), obtaining the

following voltage equation

qs ^s'qs

(. M2^
s

L

diqs M dy/'qr
dt Lr dt

(2.2.8.7)

Isolating i'dr from the third equation of (2.2.8.4) and then substitute it in the third

equation of (2.2.8.3), yields

r

0 = R^
1 . M; \dy,'dr
- ¥dr--¡~'ds

\Lr Lr

+

—^-+npCOrm¥qr
(2.2.8.8)

solving for
dr

,
results in

d¥dr

dt
~¥dr -"p<»nn¥qr+A—>ds
Lr Lr

(2.2.8.9)

and continuing in the same way, starting from the fourth equation of (2.2.8.4) and (2.2.8.3),

dy/'
we obtain ——

,
as follows

dt

-J-
=

-JL¥qr+ "p<»rm¥dr
+mA^s (2.2.8.10)

Substituting (2.2.8.9) and (2.2.8.10) into (2.2.8.6) and (2.2.8.7) respectively, and

solving for
—— and ——

, yields
dt dt
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**
-

KM , "pM RsL2r+KM2 L,
dt

~

L.iLsL.-M2/* LsL,-M2 rm¥'"~Lr(LsL.-M2)d° LsLr-M2*

**- KM , "pM , RSL2+KM2 4

di -M¿s4-A/2)^ 44 ~M2
mVdr

Lr(LsLr-M2)<° L^-M2**

(2.2.11)

Finally, putting the torque and voltage equations together, and changing the notation

in order to distinguish a stationary reference frame model, we ñame this model as usual in

literature as "a - fi model" We change voltage v by u
,
the index d and q by a and fi

respectively, and we omit the stator an rotor indexes because it is weil known that voltages

and currents are with respect to stator and the angular velocity and fluxes are with respect

to rotor. We also omit the primed variables; it is known that are to respect to the stator.

da inpM , v i

^^2^^-W-J71
dy/a Rm. RM

.

d¥ñ Rr RM .

4___JM__rr.+_J____^,.J_¿í±4_^+____^ltdt Lr(LsLr-M2) LsLr-M2
p

Lr(LsLr-M2) LsLr-M2

%L =
^

_

n¿4
_

r£+rm2
+

4
dt L^L^-M2)

P

LsLr-M2 Lr(LsLr-M2)P LsLr-M2
P

This system is the one to be discretized, where we will design and apply the control

law in discrete-time.
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2.3 DISCRETIZATION OF THE CONTINUOS-TIME INDUCTION

MOTOR MODEL

In this section we develop another representation of the induction motor model,

called discrete-time induction motor model. The states of discrete-time systems are defined

only at discrete instants of time. For example, a digital computer reads and prints out data

that are the valúes of variables at discrete instant of time; henee it is a discrete-time system.

A continuos-time system can also be modeled as a discrete-time system if its responses are

of interest or measurable only at certain instants of time. This is the case of this work,

because, we will read or print out data at discrete instants of time in a digital computer as

just mentioned above.

Under the assumptions of equal mutual inductance and a linear magnetic circuit, a

fifth-order induction motor continuos-time model, which includes both the electrical and

mechanical dynamics, is given as

dco ( .
\ TL

—

=v{Va1f)-VpJa)-
—

~T
=

~axVo. -np°>Vp +cMia
at

dy/R
—£- =

-a¥fi+npü>¥a +cMip
^
.

_}

-f
= a0Va + npP<°¥p -yia+-ua

dt a

diB 1

-r-
=

<*PVp
~

npP<0¥a -rip+-up

where

Rr 1
, M2

a=T,=Tr r=^+* °-L>-yy

P
=

u —
—

oLr 2 JL.
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To face the problem ofdiscretization ofthe continuos time-model, we need to found

the solutions of the fifth-order system equations, but this is a difficult task. To overeóme

this problem we divide this model in a current-fed induction motor third-order model,

where the current inputs are considered as pseudo-inputs, and a second-order subsystem

that only models the currents of the stator with voltages as inputs. The current-fed model

will be exactly discretized by solving the set of differential equations and the other

subsystem will be discretized by a first-order Taylor series.

We present the current-fed induction motor third-order model

dco

~~dt

d¥a

dt

d¥p
dt

, =^aip-Vpia)-Jj-
=

-a¥a
-

npco¥p
+ aMia

=

-<*Vp + npco¥a
+ <*Mp

(2.3.3)

To simplify notation, we define the following matrices

¥a
4* =

Wp

1 =
'«

}f>\
r° _ii3 =

L1 °J

(2.3.4)

yielding the following simplified third-order model versión

dt J

— = -a*¥ + nBü)Z*¥ + aMl
dt

p

(2.3.5)
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Founding a solution to the third-order model is quite complicated, but making use of the

following globally defined change ofcoordinates [10]

Y = e "pff3*¥ X=e~n"03I (2.3.6)

where 0 is the rotor angular displacement, that is,

0=0} (2.3.7)

the exponential factor that appears in (2.3.6) it is a rotational matrix that rotates with the

actual mechanical speed

e~""m =
cos(np0) sin(np0)
-

sin(np0) cos(np0)
(2.3.8)

applying the last transformation to the system (2.3.5) yields the following bilinear model

that can be easily solved

dt J
(2.3.9)

— = -aY + aMX
dt

where the transformed current X can be considered as an input [1] in the third-order model

or a pseudo-input in the fifth-order model. In spite ofthe simplicity ofthe model, this is not

an obvious fact that can be exactly discretized, and is possible only due to the particular

form ofthe bilinear term in (2.3.9).

Founding a solution to (2.3.9) involves integral operations, where we suppose that the

controls are applied in a piecewise constant fashion so that control is constant over the

integration interval [kT,(k + \)T), ¿ = 0,1,2,..., where T > 0 is the sampling time or the

time between data (the super-index T over any vector it means the transpose of that vector).
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We start by solving the second differential equation in (2.3.9)

d\
+ aY=aAfX (2.3.10)

dt

we can easily see that an integral factor ofthis differential equation is

eat (2.3.11)

multiplying the differential equation in (2.3. 10) by the integral factor in (2.3. 1 1)

at d\ at ___,__. crf*

dt
+ aea'Y = aMe a'X (2.3.12)

simplifying and solving (2.3.12), considering that input X is always constant during the

integration interval time

Y(í)-e-a'Y(0)+M(l-í-a')X (2.3.13)

Let us turn to the electromechanical equation; solving it, yields to

^- = /-XT3Y-^
dt J

da>=MXTl3Ydt-1^dt (2-3.14)
J

i

a>(t)= o(0)+ pXT3JY(s)ds --^(t-0)

Solving the last integral of (2.3. 14) separately, where s is a dummy integration variable



Chapter two. Induction motor modelling
42

JY(s)ds = Y(0)\e-asds +MXJds
-

MX^e'^ds
O O 0 0

fY(,)A = -*®L- -ll-A**-^- -l]

(2.3.15)

a a

and using the skew-symmetry of 3

Xr3X = 0 (2.3.16)

we can assure that

MXTz'\Y(S)ds =^(l-e-a'kT3Y(0) (2-3.17)
í a

to finally yield

íy(/)=<í)(0)+^(l-e-a')xT3Y(0)-^(/-0) (2.3.18)

Solution to system (2.3.9) were found from an initial time t0
= 0 to an arbitrary time t, but

in order to change the solution of (2.3.9) equally to the same steps ofthe discrete control

input [1], we define time t as / = tx
- T

co(tl)=o>(t0)+^-(l-e-aT)xT(ío)^(h)-TmT
a

v J (2.3.19)

¥(/,)= e~aT Y(f0)+ m[\ - e-"TJx(í0)

Noting that, only with initial conditions at time t0
= 0 we know the states at time /, . We

can use the state equations in (2.3.19) as recursive equations, that is, taking as initial

conditions the states just founded at time tx , we found the states at time t2 , so, any discrete
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time instant can be known only with the previous information. In a general form, the initial

time is kT and the states are found in a (k + \)T time. This is the way that it is

implemented in a digital computer.

Defining a common notation [12]

XK = X(kT) (2.3.20)

Making use ofthe new notation, we finally have

»*+. =»* +^-e-aT)xTkZYk-
a J

aT

Yk+l=e-a'Yk+M

k

-aT

Lk

\-eaTY
(2.3.21)

This system is a discrete-time versión ofthe transformed one, where it only takes valúes at

time instants múltiples of T To take this system to the original states, we need to make a

backward transformation with the following change ofcoordinates

<P=-eVC!Y i = e"pffS: (2.3.22)

With some computations, we yield to

a \j )

Vk+i
= cos(«^+1 )pl -sin(np0k+])p2

vL\ = sin(np0k+i )p\ +™s(nPek+\ )p2

Lk

(2.3.23)

where

A
=

a\^os{np0k)y/^ + sin(np0k)¥^)+ (l - a)M^os(np0k)i? + sin(np0k)i¡)
p2

= J^sinp0k)¥¡ -sin(np0k)yr^)+(l -a>l/(cos(/»/¿)/f -sin(np0k)tf)
(2.3.24)
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To obtain the rotor position 0 we proceed in the same way, i.e. to solve the

equation, describe it with the right notation, and make a backward change ofcoordinates

d9
= ÍO

dt

dG = codt

0(t)-0(O) = j'oa>(s)ds

0(1) = 0(0) + co(0)¡'ods + ^¡'q(\ -e-«*)dsXT3Y(0)- ?j- fcds
= 0(O) + ü)(O)t +

a

= 0k +o)kT +

a

M

,+IH-i)
a

Xr3Y(0)

Ij
J

T
Lk f2

T 11 - e

a

X[3Y„

2J

Lk rj.2

2J

a
!(,-,-)T U-e
a

M(i¡¥t -itv!)-
Lk T2

2J

We have exactly discretize the current-fed induction motor third-order model, but

there are left two dynamical equations (current differential equations) to discretize, that are

discretized by a first order Taylor series [4]

/&, =i( HaPvi ~npficok¥ak -4 +^4)T

&i =ik Hafirf +npP<okW¡¡ -tu +~uak)T

(2.3.25)

Ifwe define the following variables

cpak = % + apT¥ak + npfiTcok¥l
"M

cpl = ij?+afiTy,£ -npfiTcok¥ak -filg
(2.3.26)

Using the new defined variables, we realize a compact description ofthe current dynamical

equations in (2.3.25)
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T

'*+i =9k + ~uk
o

ifi -(nP+LuPlk+\ ~¥k +

auk

(2.3.27)

Finally, putting all together, we feature the discrete-time versión of the induction

motor model

Wk+i
= cos(np0k+l )Pl - sin(np$k+1 )p2

Vk+\ =siAnP0k+\)p\ +cos(np0k+l)p2

Lk

i o.

¡k+l =<pk +~uk
cr

iP -mP
tk+i=n+-u

T
,p
k

0k+.=0k+<»kT +-

a
r-I(i-a)

a
Wlrf -$¥l)--j*:T2

where

pl
= a(cos(np0k)yr^ + sin(np0k)y,$)+ (l - a)\í(cos(np0k)if + sin(np0k)i¡!)

p2
= a(cos(np0k)y,j* - sin(np0k)¥t)+{\-a)M^(np0k)il - sin(np0k)i^)

<pak=i?+ afiTyak + npfiTcok¥Í " fR*

cpj¡ = i¡ + afiTyst - npfiTcok¥ak
- YRPk

R.
a =

L

P =

r

M

aLr

y
=

M2Rr Rs

a = e

oLLr
-aT

O = Ls~
M

P
=

Mn
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Figure 2.11 confronts continuos-time and discrete-time open-loop simulations,

where the speed is in , voltages are in volts, currents in amperes and fluxes are in wb2 ;
sec

all these states are with respect to the a component.

speed voltages

Figure 2. 1 1 . Continuos states ( ) versus discrete states ( ).

Note that the discrete signáis track the continuous signáis with a considerable amount of

error. The reason ofthis error is that the current equations are numerically integrated using

Euler (first-order Taylor series). The control appears in the current equations, it means that

the error introduced by Euler' s method is satisfied the matching condition, and therefore it

can be eliminated by the control action .
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Chapter three

Theoretical tools

3.1 INTRODUCTION

This chapter introduces the mathematical control tools that are needed to

accomplish the control objectives. Since the output variables are to be controlled; they are

required to track a reference signal provided by exosystems [7], such exosystems are

treated here, even load is considered as an exosystem for simulations proposes. Then,

general concepts for sliding mode control are shown, and are developed to the discrete-time

domain [16] where the control is caículated. Another important issue to deal with, is the so-

called block control technique [16], this technique is developed for nonlinear discrete-time

systems and is useful to transform the system into a tracking error linear one, where a

sliding surface is drawn for sliding mode control. And finally, a section is devoted for state

estimation due to the unreachable fluxes and the difficult to measure load; where an

observer is developed for discrete-time nonlinear electromechanical systems.

3.2 EXOSYSTEMS

Reference signáis represent the desired output behavior ofthe induction motor, and

disturbances (load) affecting the motor as weil, these signáis are generated from external

systems called exosystems. Figure 3.1 shows a generic time response of a second-order

reference signal, where K represents the desired amplitude and l/con is the time constant.

r-'-
—

-

o e

Cl 6-

O 4'

0 2-

cr 2 3 4

Figure 3.1. Graph from the second order exosystem.
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Note that the final valué is reached cióse to 5/co„ seconds, according to the fact that the

steady state is reached in about five time constants. This reference signal is used in velocity

and flux amplitude tracking and is generated by the following continuos-time second-order

exosystem

dco1

dt

dco2
=

.dt

0

-a>n -2<»,

1

TíMft (3.2.1)

where co1 is the reference signal, and the input u corresponds directly to the desired K

amplitude. Now we show this model in matrix form

dm _

— = A-o> + Bcm
dt

(3.2.2)

A discrete-time representation of (3.2.2) with sampling time T is as follows

<*„+i =A_-o-¿+Bd-/¿ (3-2.3)

where

Ad^c(T) =e^=rÍsl-Ac)\

= _r1

s + 2ú)„ 1

{s + G)„f (s + G>„f
-co2 S

(s + conY (s + ú)„)

-<oJ

t=T

e-'fQ + aJT)
- colTe-™7 e-™1 (1

-

coj)

Te'

-anT .

Brf=J*c(v)Bc^=J
ve-m"vco2

e-m"v(\-cm)co2n
ch'

]-o)„Te-ÍO"T -e-m"T

o,¡Te-mJ

(3.2.4)
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Now, Figure 3.2 shows a generic time response ofa sinusoidal reference signal.

so-;

AO

20 i

-__o

-40

-6CH

\
A A A1

17
¿ L 1 i
2 § a i

\/
t

^-^
', ,'

\/

Figure 3.2. Sinusoidal reference graph.

This reference signal is used in velocity tracking only, and is generated by the

following continuos-time exosystem:

(23.5)

dco1

dt
"0 v"V

dco2

.dt .

-v 0 lyJ

where v is the desired frequency in rad/sec . Now we show this model in matrix form

o» = Ac(ú (2.3.6)

A discrete-time representation of (2.3.6) is given as

©-*+!
= A¿<0¿

where

Ad=*c(T)=e*<T=Xr%l-Acyl

= _r' 52+V2 S2+V2
-V S

2 2 2?
S + V¿ S + V

t=T

cos(vj) sin(vT)
-

sin(vT) cos(vr)

(2-3.7)

(2.3.8)
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where cok is the reference signal, T is the sampling period. If we choose equal initial

conditions (¡~4(o) = cok(6)), then the amplitude ofthe signal will be -J2cok{o), with v as the

frequency.

The load torque is always considered constant, but a first-order exosystem will

represent this load. The load is generated by the following exosystem

\y-
T T

TL =—TL+-u (2.3.9)

It is easy to see that a solution (considering u constant in the integral period time) to

(2.3.9) is

TL(t) = e* 71(0) + l-e (2.3.10)

Now, from (2.3. 10), the discrete-time model is obtained in a straightforward manner

TLk+x=eT TLk + l-e »k (2.3.11)

where t is the time constant and ukis the desired constant level. Figure 3.3 shows a typical

response ofthis system

Figure 3.3. Load affecting the motor.
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It can be simulated a square-shape load signal, generated from the sinusoidal exosystem,

just taking the sign ofthe output. For a more realistic load signal, we can add noise to the

output ofthe exosystem load. Figure 3.4 shows an example.

Figure 3 4 Square-shape load with white noise added

3.3 DISCRETE-TIME SLIDING MODE

The term 'sliding mode control" first appeared in the context of variable-structure

systems. Soon sliding modes became the principal operational mode for this class of

control systems. Practically all design methods for variable-structure systems are based on

delibérate introduction of sliding modes which have played, and are still playing, an

exceptional role both in theoretical developments and in practical applications.

A variable structure system consists ofa set of continuous subsystems with a proper

switching logic. The resulting control action is a discontinuous function of the system

states, di.sturbances, and reference inputs. In the course of the entire history of the

automatic control theory development, the intensity of discontinuous control investigation

has been maintained at a sufficiently high level. Particularly during the early stage, relay or

on-off, or bang-bang regulator, ranked highly for the design of feedback control systems.

The reason was twofold: ease of implementation, and efficiency ofcontrol hardware.

The term "variable structure control" arises because the "controller structure"

around the plant is intentionally changed by some external influence to obtain a desired

plant behavior or response.
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Since sliding mode control is quite similar in operation to the classical on-off

control [8], it will be of interest to investigate this oíd technique.

When operating with an on-off control, the final corrective device only has two

positions or operative states. For this reason, the on-off control is also known as a two-

position control. If the error signal is positive then the controller will position the final

corrective device to a desired position. If the error signal is negative then the controller will

position the final corrective device to the other position. The on-off control can

conveniently be seen as (considering as a corrective final device) a coil operated valve.

When a coil operates the valve, this is open or cióse all the way. So, a coil operated valve

match perfectly in an on-off control system. Figure 3.5(a) shows a position graph ofthe

final corrective device (aperture percentage of the valve) for an ideal on-off control. This

Figure considers the temperature as the variable to be controlled with a set point of 120°F

As can be seen, if the measured temperature valué is less than 120°F even for a small

amount, the valve is set 100% open. If the measured temperature valué is great than 120°F

even for a small amount, the valve is set 0% open, or completely cióse.

Figure 3.5(b) shows a typical graph ofthe temperature measured versus time, with

the valve position versus the same time axis. We observe that the real temperature valué

tends to oscillate about the set point. This is a universal characteristic ofthe on-off control.

This particular graph shows an overshoot of 4°F in the positive direction and an overshoot

of 4°F in the negative direction. These valúes have been taking randomly. The real

overshoot depends on the nature of the system and could be different in the negative and

positive directions.

We will see later in the following chapter, that the control task reduces to a current

control problem. It is weil known in the industry that, when the electrical current is the

manipulated variable in a closed-loop control system, the final corrective device is of the

switching type. This fits perfectly in this work due to the switching control signáis

obtained, and that are applied to switching devices like the drive of a motor (inverter), as

we will see later.

Implementation of a continuous controller in a system with discontinuous inputs

(inverter) generally requires PWM, whereas direct implementation of sliding mode control

avoids PWM. This justifies the choice ofa sliding mode control for an induction motor.



Chapter three. Theoretical tools 53

l'inp.

124-

122-

/ \ /

\
/
/

-et point i zo

ne.

' I1

-ptnrt___

v. _r«__

vatv_ \ i
\ i

\ i
\ !

100- \ i 1

116-

J 1 2 3 4 5

100

aperture

•/• ofthe

valvs

u ■

ao116 1.0 124 lunp.

(«) BO-

40'

20-

0>>

Figure 3.5. (a) Valve position versus measured temperature with a set point of 120°F .

(b) Real measured temperature versus time and valve aperture versus time.

We shall first specify the class of discontinuous control systems to be considered.

The discontinuous control in this class of systems are prescribed prior to the stages of

criterion selection and design, unlike, for example, in optimal control where the need for

stepwise control arises in the solution of a variational problem. Consider the nonlinear

system

i = f(x,u,t)

ieR",ueR"
(3.3.1)

A control design for the system (3.3.1) consists of two steps. First, the surface s = O in the

state space

s =(s„...,sm) = 0 (3.3.2)

where the control experience discontinuities.
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And then the continuos control functions »/"(x,f) and u¡ (x,f), beyond the discontinuity

surfaces are selected

f«,+(x,0 if s/x)>0

Ur(«,/) tf s'<*)<0
i = l,..m (3.3.3)

s2(x)=0

sx (x) = 0

Figure 3.6. State trajectories.

Due to the discontinuity, the state velocity vectors may be directed towards one of

the surface, and sliding mode oceurs along it (ares a-b and c-b in Figure 3.6) can arise also

along their intersections (are b-d).

We will clarify all of the above concepts with a numerical example. Consider the

state space model

0 1

1 2

+

0

1
(3.3.4)
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Under the variable structure control law

u = kxx (3.3.5)

Where k can be "2" or "-3". This system has two linear structures, one for each k. When

k = -3
,
the system has complex eigenvalues and with k = 2 the system has real

eigenvalues. When switching to k = -3
,
the feedback produces an unstable free motion [6]

(unstable focus) satisfying

*2_

as shown in Figure 3.7.

Figure 3.7. Phase portrait of system (3.3.6).

-2
(3.3.6)
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When switching to k = 2
,
the feedback becomes positive and the free motion ofthe system

satisfies

"*l

_*2

The unstable equilibrium point (0,0) is now a saddle point [6] with asymptotes x2
- 3jcj

and x2
-

-Xj , as shown in Figure 3.8.

Figure 3.8. Phase portrait of system (3.3.7).

Switching is not selected randomly of course. It oceurs with respect to a sliding or

switching surface, generally denoted as s = 0 . To ¡Ilústrate this notion, consider the surface

defined as s - cxxx + x2
- 0 with c} > 0 If the feedback is switched according to

r-3 if to^o

[2 // s1(xl,x2)xx <0

=

° *T*1
"_3 2¡x2_

(3.3.7)
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this behavior is illustrated in the phase portrait plot ofFigure 3.9

s=o

Figure 3.9. Phase portrait when cx > 0 .

Note that this is an unstable system. All state trajectories intercept the surface but are not

able to remain on it. On the other hand, if we select cx < 1, then, the state trajectories

remain on the surface because all the velocity vectors always point towards the origin

through the surface. Figure 3.10 illustrates this phenomenon.
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As suggested by Figures 3.9 and 3.10, different choiees of switching surfaces produce

radical ly different system responses. The riches ofvariable structure control come from this

ability to choose various controller structures at different point in time. The above example

also illustrates an important notion in VSC. For the switching surface of Figure 3.6, once

the state trajectory intercepts the surface it remains on the surface for all subsequent time.

This property of remaining on the switching surfaces once intercepted is called a sliding

mode. A sliding mode will exist for a system if in the vicinity ofthe switching surface, the

state velocity vector (the derivative ofthe state vector) is directed toward the surface.

Insuring the existence ofa sliding mode on the switching surface is a key necessity

in VSC design. Designing the proper surface is the complementary key problem. Thus VSC

design breaks down into two major phases. The first is the construction of the switching

surface so that the original system or plant restricted to the surface responds in the desired

manner. The second phase entails the development of the switching control law (i.e.,

appropriate switched control gains) which satisfies the set of "sufficient conditions" for the

existence and reachability ofa sliding mode.

Before developing the concept of discrete-time sliding mode, let us revisit the

properties of sliding mode in continuos-time systems with ideal discontinuous control from

an engineering viewpoint. The following observations characterize the nature of sliding

mode systems:

> The time interval between the initial point t=0 and the reaching ofthe sliding manifold

ct ={x: ^x)=0} at /__, is finite, in contrast to systems with a continuos control law,

which exhibit asymptotic convergence to any manifold consisting of state trajectories.

> Once the system is 'in sliding mode' V t >.__,, its trajectory motion is confined to the

manifold ct ={x: s(x)=0} and the order ofthe closed-loop system dynamics is less than

the order ofthe original uncontrolled system.

> After sliding mode has started at /,__,, the system trajectory cannot be backtracked

beyond the manifold ct ={x: s(x)=0} like in systems without discontinuities. In other

words, at any point /0> /__,, it is not possible to determine the time /__, or to reverse

calcúlate the trajectory t0< t based on the information ofthe system state at t0.
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Now we are going to examine a first-order example system modeled in continuos-time as

x(t) = g(t) + u(t) (3.3.9)

with state x(t), bounded dynamics \g(t\\ <gb and control input //(/) To enforce sliding

mode on the manifold

a = {x:x(t) = 0} (3.3.10)

a discontinuous control law may be designed as

u(t) = -u0sign(x(t)) (3.3.11)

with available control resources u0> gb. The usual Lyapunov-based stability analysis

examines

V = -x2(t) (3.3.12)

Taking the derivative of (3.3.12) along the state trajectories ofthe given system with the

discontinuous control (3.3. 1 1), yields to

V(t) = x(t)(g(t))-u0sign(x(t)))
3

V(t)<\x(t)i(gb-u0)

which testilles the convergence ofthe state vectors toward the manifold within finite time.

An example trajectory is shown in Figure 3.11 with g(t) = sin(t) and «0
= 2, starting from

initial conditions x(t = 0) = 3 . At tsm
= 2.256 sec, the system reaches the sliding manifold

x = 0 . Thereafter, the motion trajectory is invariantly confined to the manifold via

discontinuously switching control, illustrated by a black rectangle in the lower diagram of

Figure 3.11.
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Figure 3.11. Ideal sliding mode in the first-order example achieved via direct analogue

implementation ofa discontinuous control law with infinitely fast switching.

A direct discrete implementation with sampling time Ar would result in

**+l =Xk+(gk+«k)&

uk
= -"os'g"(xk)

k = l,2,...

(3.3.14)

where the subscript k denotes the sampling points, e.g. the system state x¿at time tk = kAt .

The motion trajectory may not reach the manifold x = 0 since control uk is only caículated

at the sampling points k, i.e. the switching frequency is limited by the sampling rate HAt.

During the sampling interval At, the control is constant and the system behaves like an

open-loop system.

u(k)

Figure 3.12. Direct implementation of sliding mode control
in discrete time.
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The example with exaggerated sampling time At=0. ls, as depicted in Figure 3.12,

illustrates the need to develop a discrete-time sliding mode algorithm rather than

implementing the continuos-time versión. Note that increasing the sampling rate decreases

the amplitude of the discretization chatter and increases its frequency, but may not

elimínate this discrete-time phenomenon unless At -* 0. Moreover, the sampling rate of a

control system should correspond to the fastest dynamics ofthe system instead of 'wasting'

computational power for the sake ofthe control algorithm.

To obtain a discrete-time sliding mode just like in continuos-time we first make the

following observations. During both time intervals before and after reaching the sliding

manifold, the state trajectories are continuous functions of time, and the relation between

two valúes ofthe state at the ends ofa finite time interval / = [/0,/0 + A/] may be found by

solving (3.3.1) as

x(.0 + __.)=F(x(f0)) (3.3.15)

where F(x(/)) is a continuous function as weil. When derived for each sampling point

tk
= ktst,k - 1,2,..., equation (3.3.15) is nothing but the discrete-time representation ofthe

continuous-time prototype (3.3.9), i.e.

x„+i=F(x¿) ; x*=x(*A/) (3.3.16)

Starting from time /
-_, ,

the state trajectory belongs to the sliding manifold with s(x(/)) = 0
,

or for some Ar__ > -^
,sm

A/,

s(xt) = 0 (V*>0 (3.3.17)

It seems reasonable to cali this motion 'sliding mode in discrete-time' or 'discrete-time

sliding mode' Note that the right-hand side of the motion equation of the system with

discrete-time sliding mode is a continuous state function.
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So far, we have generated a discrete-time description of a continuous-time sliding

mode system. The next step is to derive a discrete-time control law, which may genérate

sliding mode in a discrete-time system. Suppose that for any constant control input u and

any initial condition x(o), the solution to (3.3. 1) may be found in closed form, i.e.

x(.) = F(x(0),u) (3.3.18)

Now also assume that control u may be chosen arbitrarily. With the help of (3.3.18),

follow the procedure below:

1. At time t = 0 select constant control u(x(r = 0\áí) for a given time interval __r such

that s(x(/ = At)) = 0 .

2. At time t = Ai find const-ant control u(x(r = At\At) such that s(x(í = 2A/)) = 0

3. In general, for each k = 0,1,2,..., at t - kAt choose constant u(x¿,A/) such that

s(*„+i) = 0.

In other words, at each sampling point k, select uk such that, this control input is constant

during the next sampling interval At, and will achieve s(x¿+1) = 0 at the next sampling

point (k+1). During the sampling interval, state \{kAt <t <(k + í)At) may not belong to the

manifold, i.e. s(x(/)) * 0 is possible for kAt <t <(k + l)At However, the discrete-time

system

**+1 -F^'U*> (3.3.19)

hits the sliding manifold at each sampling point, i.e. s(x¿+1 ) = 0 \/k = 0,1,2,..., is fulfilled.

By analogy with continuous-time systems, the control law uk that yields motion in

the manifold s = 0 will be called 'equivalent control' or represented by ufc_ Equivalent

control theory may be found in Utkin (1993) [15].
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Since F(x(0),u) tends to x(o) as A/ ->0, the function u(x(o)tA/) may exceed the

available control resources uQ . As a result, the control resources should bound the control

by «0 , to finally yield

ut =<

"tea

for lukeq¡ - u0

«o^n¡ M ||UtJ>«n
«*,eq

keq\

(3.3.20)

fkeq\\

Continuing with the first-order system (3.3.9), instead of discontinuous control (3.3.14),

control uk adopt the form of (3.3.20) for scalar case

Uu =<

<keq

"Oí
Ukeq

\"kea

for \ukeq\ ^ M0

for Ukeq\ > u0

(3.3.21)

where i/te. is caículated as

^+i
=

**+i
=

*k + (gk +% )A/ = 0

«keq=--^Xk-gk

(3.3.22)

As a result, the bounded control (w0 = 2) shown in the lower diagram of Figure

3.13 steers state xk to zero only after a finite number of steps k^ . Thus the manifold is

reached after a finite time interval
.._,

= k^At and thereafter the state xk remains on the

manifold. In analogy to continuos-time systems, this motion may be called 'discrete-time

sliding mode'
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The first-order example clarines the definition of the term 'discrete-time sliding

mode' introduced by Utkin (1999) [16] for an arbitrary fini te-dimensional discrete-time

system.

2 -

1

O

-1

u(k)

K__n-

Figure 3.13. Proper implementation of sliding mode control in discrete-time.

3.4 BLOCK CONTROL TECHNIQUE

Consider a nonlinearMEMO perturbed system

**+i
= f(^) + B(x¿)uA. +d(mk)

y*
= •»(**)

(3.4.1)

where x¿ e R",u¿ e Rm,y¿ e Rm and tak e Rm; the known perturbation term d(<ak)

could result from modelling errors, aging or uncertainties and disturbances which exist in

any realistic problem. In a typical situation, we do not know <ak , but we will consider that

is generated from a known exosystem

<*>„+! =S(©>„) (3.4.2)
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Since reference signáis are generated by exosystems, system (3.4.2) is considered to

genérate these signáis as weil.

3.4.1 Block control form

We present a Block Controllable Form (BCF) MIMO system

4+i =fi(4)+B1(4rá+d1(o*)

4+i =f2(4»4)+B2(4»4)4 +d2(wj

4+1 =*í(*fr,...,x¡t) + BI(x¿,...,xjt)x¡fc+ +d,(ü>¿)
i (3.4.1.1)

4+1 =fr(x.V»-»4) +Br(x*:'-»x!-)Uit +dr(o>jt)

0 = 3 »-lj

y*
= 4

xk g R",Uit g Rm,y* g Rm,a»t g Rm

where xk
=

p¿
••• xk\,XjGR"J, and the set of numbers (nl,...,nr) define the

structure of system (4.3.1.1) as

w,
<
n2 <...<«_

< /w (3.4.1.2)

with the following assumptions:

1. The By matrix has full row rank

rank(Bj)
=

nj Vx g R" y
= l,...r (3.4.1.3)

with
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;=i

Vj
= n (3.4.1.4)

2. The matrix B
,
is bounded

Bj(x\,...,xÍ)<^ (3.4.1.5)

3.4.2 Linearizatíon transformation

In this work, the system (3.4. 1 . 1) will be considered with the following structure:

-n-> =... = n, = m«!-»2 (3.4.2.1)

We start by defining a new variable, z\, but there are two different ways of

defining it depending on the control objectives. If the control objective is that the output yk

(or state vector x\) can track a desired signal x\ (c-¿) generated by exosystem (3.4.2),

then zk is defined as

i
_

i i

zk
~

*k
-

XXr (3.4.2.2)

But, if the control objective is to drive the output toward zero, then z\ is defined as

H =*k (3.4.2.3)

we note that the later is a particular one of (3.4.2.2) where x\ {<ak) = 0, and that we are

looking for a unique objective in both cases, that the state z\ tends asymptotically or in
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finite time to zero. So, the block control design procedure consist of step-by-step

construction ofa transformed system with the states

zÍ=xi-x{', j = l,.,r (3.4.2.4)

d

where xJk is the desired valué of xJk , which will be defined by a step-step transformation.

Once defined the new first variable (3.4.2.2), we continué with taking one step

ahead of that variable

4+1 =f,(4) +B,(4)4+o.(«»*) (3-4.2.5)

where

d,(_-t) =d^^+lV*) (342.6)

The equation (3.4.2.5) is considered as a block with state zk ; and the state xk handled as a

control for this block, must be selected as a function ofthe state vector xk in order to shape

the desired dynamics of this perturbated block. This task can be solved because of the

condition (3.4. 1.5), anticipating the desired dynamic ofthis block as follows

4+1 =fi(4) +B,(4)4 +d,((0*) = K,z[ (3.4.2.7)

where Kj = diag^cn,---,klm} and has the following bound,

|*iJ<l -7
= 1,..., ffi (3.4.2.8)

to assure stability of (3.4.2.7). From (3.4.2.7), xj is caículated as
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4 =K(4)]"1^l4 -*i(4) -*.<«»*)) (34.2.9)

Note that the valué ofthe state xk (3.4.2.9) is not equal to the real valué ofthe state x\ ,

instead, represents the desired behavior of x2k that will drive the first block to the desired

dynamics. In order to avoid confusions we redefine this desired valué of xk as xk , so,

equation (3.4.2.9) is redefined as

4d = k(4>r^l4 -fi(4)-di(«*)) (3.4.2.10)

Proceeding in the same way, we define a second new variable, z2. as follows

4 = *2k-*kd (3.4.2.11)

Taking one step ahead

.2 __2 2
d

z„+l
~

x*+l
~

x*+l

= f2(4»4)+B2(4>xí)x| +d20-¿ -xt+l
1 w2\ . _» /_.! _-2w3 , j __ _2

rf
(3.4.2.12)

we propose the desired dynamic for this block

4+i =f2<4»4)+B2<4.4>4 +»2«a -4+id =K_4 (3.4.2.13)

where K2 = diag{k2l,-,k2m}, with

|*2_|<1 tf
= l,...,ffí (3.4.2.14)

From (3 .4.2. 1 3), xk is caículated as
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x\d = ^2(x\,x2k)]l[K2z2k -f2(4,4 ) + 4+i' -d2«>„ ] (3.4.2.15)

and so on.

as

At the last step, the known variable is xrk ,
and the last new variable zk is defined

zrk=xrk-xrkd (3.4.2.16)

As usually, taking one step ahead

-í+, = fP(Ií,...,4) +Br(xU-.-;).4 ♦.<*.--__' (3A2.17)

The new zJk variables compound a nonlinear transformation ofthe state variables defined

as

i i i
^ ii^

z/t=x*-xJt =9.(»it,x* ,<»k)

4 = 4 -k(4>r^i4 -fi(4)-d,(©*))=p2(x¡.,x!,c_.t)

4 = 4 -^2(4,4)]"! K2z| -f2(x[,x^) + xi+/ -djcojt] = (p3(xi,x|,x|,w/t)(3.4.2.18)

r r r / 1 2 r \

z¿-x¿t-x* -?V(X*>X*>"->X„><0A:,>

in this way, we found the diffeomorphic transformation

zk=<p(xk,(ok) <p
= (<px,...,<prf (3.4.2.19)

that simplifies (3.4. 1 . l)the original system to the following form
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1 12

z*+l
= Kizk + BiZfc

2 2 3

z¿+l
= K2Z* + B2z„

•

(3.4.2.20)

4+1 = Kr-l4~ +Br_iZ„

4+1 = fr(4v..,4) +B-(4>-..,4)u* +dr»¿ -x£+1

3.4.3 Control design

Adding the desired dynamic to equation (3.4.2.17)

4+1 = f-(4»".,x„ ) + Br(x\,...,xrk)uk + d-e-*
- xrk+id = Krzrk (3.4.3. 1)

the control uk is chosen ofthe form

u,
= ^r(x\,...yk)Y[Krzl -f,(4,--,4)+4+ld -dX) (3 4-3.2)

This control law is a continuous function of states and will shape the last block dynamics as

4+1 = KA (3.4.3.3)

where Kr = diag^,--,^}, and each element has the following bound, in order to

assure stability |*J < 1 q
= \,...,m. With this condition, the state zk tends asymptotically

to zero, i.e.

rd
lim(zj:) = 0=>xj;=x¿ (3.4.3.4)

k ->°o
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This means that xk (the pseudo-control for the r-1 block) has reached the desired valué

d

xk ,
then the (r-1) block under the condition (3.4.1.5) will have a similar dynamics to

(3.4.3.3):

4+l=Kr_4-1 (3.4.3.5)

Again, the vector state zk will tends asymptotically to zero, i.e.

lim(z£~ ) = 0 => xk~ = xk~ (3.4.3.6)
k -» oo

and so on. In the last case, i.e., the first block, we will have that xk
=

xk , i.e., x^. has

yd
reached the desired form xk , modeling the first block dynamics under the condition

(3.4.1.5)

4+l=K,z[ (3.4.3.7)

1 11"

then, the tracking error zk will tend asymptotically to zero, implying that xk
-

xk and

accomplishing in that way the original control tracking objectives.

3.4.3.1 Sliding mode control design

For a sliding mode control implementation in the case the control resources are

bounded

¡uk\\<u0 (3.4.3.1.1)

we need a surface and a control law that will drive the states toward the surface. The natural

choice of Sk = 0
,
is
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1 _2
S„ =z_ =

x„
-

x*
=

0>r(X„,x*,-,4,«>„) = O

Then system (3.4.2. 18) will have the following form:

z*+l =Kiz,. +BlZ¿

z„+l
= K2Z*+B2z¿

(3.4.3.1.2)

r-1

z_+l-Kr-lz/t + Br-lz/t

.1 m.r 1 _f.

S„+l -fr(xJt»".,X*) + Br(x¿,...,X¿)Ujt; +d.-.^ -xt+1

Taking in the account (3.4.3. 1 . 1) the control uk can be selected ofthe form

«„

u*-9

«01
«fo

for ¡ukeq¡
^ M0

eej

¡Ukeq
M

(3.4.3.1.3)

fkeqj > «0

where the equivalent control is caículated from Sk+Í - 0 as

"keq
=K(4v,4)r(-fr(4,-,4) + 4+id -dr«í) (3.4.3.1.4)

A stability analysis will prove that the closed-loop system motion over the surface Sk = 0
,

is stable. Let us represent the surface as

s„+i = s* -4 +4 +fr(4.~-.4)+Br(4v..,4)»* +dr«* -4+i (34.3.1.5)

Satisfying Sk+] -Sk < 0, that is Sk decreases to zero, when f*hq\
<
u0 will be provided

by the following condition:
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B;l(tr+d-<ok-xrk + xrk -4+, J <m0 (3.4.3.1.6)

Let us analyze when u¿ > m0. Replacing u¿
=

m0|
—-2¡¡ in (3.4.3.1.5), it can be easily

Pa

seen that

Si+^^S^-x^+f.+d.O-^+xí -x£+1 1- _____

ll"te?l
(3.4.3.1.7)

Handling (3.4.3.1.7), we obtain

S¿+l = lS*-4+fr+drO>_+4 "4+1

( \

1_
"0

P*+iN|S„| +

Sil s _6 II
n *+ l

< P*

f-+d_G>A-x£+x£ -Xk+l

fkeq\

"0

B
-i

(3.4.3.1.8)

Henee |S¿| decreases monotonically to zero in a finite number of steps and then a discrete-

time sliding mode will take place. The transformed system (3.4.3.1.2) oforder n, reduces its

order to n-nr, under the condition (3.4. 1 .5)

z_+l
~ K1ZA + BiZ¿

z_+l
= K2ZA +B2Z¿

ZA+1
~

Kr-lz*

(3.4.3.1.9)

where the matrix K¡ / = l,...,r-l has the desired eigenvalues. The system (3.4.3.1.9)

represents the dynamical sliding mode equations.
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3.5 NONLINEAR OBSERVER

It is not very common that all the states of any system can be measured. Therefore it

is of interest to determine the states of a system from available measurements and a model.

Consider a class ofnonlinear systems that fit into electromechanical systems

yLi=f*(y*>yi.>x*)+DG>*

y*+i=f*(y*,y*,**)+Bu¿ (3.5.1)

x*+i =l_(y_>xA)

where y\ =(y\ ,>>;yk) and yk =(y\ ,..-,yk) are measurable vector state

variables, and xk =(xk'1,...,x1¿m) is a non-measurable vector state variable, u¿ eRm,

matrix B and D are constant and cok is a perturbation generated by an exosystem such as

°>k+\
= Sa>_ (3-5-2)

The problem is thus to estimate the non-measurable state xk and perturbation 0-¿ . Assume

that the measurable and the non-measurable variables in fk and fk are separated as

í=i

f,3(y|,x,) = A3x,+f,3-3(y[,y^)

Replacing (3.5.3) in (3.5.1) yields

m

y*+i =f_'1(y_,y_)+Zn2'1Aux* + Dí°a
;=i

,2 ír2/.,l .,2

(3.5.3)

y„+i-fny_>y_>x_)+Bu* (3-5-4)

x_+i=A3x;t+f/[3'3(yi,y2)
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For this system we need the following assumptions

Al The system (3.5.4) is input-to-state stable [6].

"0 D"
A.2 The pair , [i 0]> is observable.

0 S

A.3 The matrix is A3 is Hurwitz.

It can be noted that system (3.5.4) represents the general dynamics of electrical

motors, where

> The vector y\ represents measurable mechanical variables as position and speed.

> The vector yk represents measurable current variables as stator currents.

> The vector xk represents non-measurable rotor flux variables.

Consider the system (3.5.3). Let us assume that the state vector xk and the

perturbation vector (ak are to be estimated by the state vector xk and by the perturbation

vector _.¿ respectively; yielding to the observer model as

m

y*+i =tl'l(ylyi)+Y.y¡']\ih +T>&k+U(y\ -yi)
/=i

<*>*+i
= S<a* + L2(y¡t - y[) (3-5.5)

4+i = A34+f/t3,3(y^y*)

where L] and L2 are the observer gain matrices. To determine these matrices, we

introduce the reconstruction errors

*í=y\-ñ

tt=iok-cok (3.5.6)

eA
=

XA
-

4

The dynamical error equations are obtained from (3.5.4) and (3.5.5) ofthe form
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e*+l

_e_+l_

=

-Ll

-L2

D

S

'4
A.

+m

_* __

(3.5.7)

m

where fk=/ yk'lAyek. Since by assumption A.3, matrix A3 is Hurwitz, the vector

7= 1

error ek tends asymptotically to zero, implying that xk=xk. By assumption A.l the

functions yk are bounded, therefore, fk - / y\ AXiek = 0 Henee the dynamical

equations (3.5.7) will reduce to

error

í=l

c*+i

«¿y

.e*+l.

-L, D

-L, S
tk

(3.5.8)

By assumption A.2, there exists matrices L] and L2 such that
-L, D

-L2 S.
is Hurwitz.

Henee the error vector (ek ,ek) will converge to zero
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Chapter four

Application

4.1 INTRODUCTION

This section contains the contributions of this work, controlling the rotor magnetic

flux magnitude and speed. Given full state measurements, the control objectives are to

develop velocity and flux amplitude tracking for the electromechanical dynamics found in

the discrete-time induction motor model, using block control and discrete-time sliding

mode techniques. Then a reduced order observer will be developed for the induction motor,

where rotor speed and current measurements provide the unreachable fluxes and load

torque.

Figure 4. 1 shows the overall control system. This control system has a hierarchical

structure, comprising an inner and an outer loop where a speed and flux controller or

master control law (outer loop) responds to the speed and rotor flux magnitude demands,

and issues stator current demands to a current controller or slave control law (inner loop).

Speed & flux

magnitude
Reference

<^
Speed & flux

Magnitude
Controller

Id
^

SM

Current

Controller

inner

loop

U Motor Model

in

alpha-beta

Speed & flux

Outputs

outer

loop

Figure 4.1. Block diagram ofthe control system.
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The control law synthesis is carried out in two distinct stages as just mentioned.

First, it is assumed that the control law operates ideally so, the current vector, i
, exactly

follows the demanded current, i Then, ¡ is the control vector ofthe master control law,

which is formulated to control the rotor speed, according to a second order dynamics

(exosystem) with a prescribed time constant or frequency. In this process, an extra degree

of freedom becomes apparent allowing the rotor flux magnitude to be independently

controlled as part of the master control law, also with second order dynamics and a

prescribed time constant. Second, the slave control law is formulated as a simple robust

discrete-time sliding mode control law of the switched type. This operates with phase

current measurements in a similar way to the conventional hysteresis current controller but

does not require the hysteresis element since software implementation is assumed where the

máximum switching frequency of the power electronics is automatically equal to the

iteration frequency ofthe digital processor.

For the sliding mode control design, we use the discrete-time dynamic model ofthe

induction motor found in chapter two

*%+i -afc+^-a)l4frf -tfrf)-(j)tt
¥k+\

= <x>s(nP0k+.)pi -sin("P0k+.)p2

Vjf+i = si,»Pp0k+l)pl + cos(n^+i)p2

'*+! =iZHafi¥ak+npficok¥k3-7i'Z+]-uak)T

'jf+1 =ik5HaP¥Í¡-npPcok¥kT-7Ík3 + -uk3)T
er

0k+l=0k+o>kT + *\T-±(l-a)}u(i0¥?-%¥l)-7^T2
CC cc ¿J

(4.1.1)

where

p,
= a{cos{np0k )/rak + sin(np0k^)+ (l - a)Kl(cos(np0k )° + sin(np0k >f )

p2
= a(cos(np0kVf - sin{np0k \ak )+ (l - a)M^os(np0k )f - sin(np0k )ak )

(4.1.2)
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Since the model in (4.1.1) does not present the BCF, we need to find a new state

vector xk that presents this form and then apply the transformation process

*k=<P(*k) <P
= {<P\,—,<Prf (4.1.3)

Let us define the control error states as

4

4 =

xk cok-cork
Y1

¥k-¥k.

"4"
.4.

=

jl.

(4.1.4)

where y/k is the rotor flux magnitude modulus, cok and ¥k aTe reference signáis. Then the

system involving states in (4. 1 .4) can be represented in the BCF consisting of two blocks

*\+l=f¡(x\) + Bl(x\)x2k
= fk2(x\,x2k) + B2uk+l

yk =x*

2U* (4.1.5)

It can be easily seen that the dynamical current equations in (4.1.1) adopt the form ofthe

second block. The structure ofthe first block will be revealed next.
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4.2 DISCRETE-TIME SLIDING MODE WITH BLOCK CONTROL

4.2.1 Master control law

To begin, we define the z . variable as

1 1 r

zk =xk =cok-cok (4.2.1.1)

where cok is the reference signal to be tracked, and can be generated by an exosystem as

seen in the previous chapter. Taking the next step of (4.2. 1 . 1), we have

4+1 =
»„+i

-

«>*+i
=

*>* + -(1 -*M?¥k ~ (IwtV f7Vu " «*+i (4-2. 1 -2)

Ifwe define the following variable and constant to simplify (4.2.1.2)

,1 (T\
fk-<Ok-\j\TLk-<°k

Cj =^(l-a>_/

(4.2.1.3)

yielding then following compact description of (4.2. 1 .2)

4+i=/*+4M-írf) (4.2.1.4)

Next, we define the zk variable as

4=xk=¥k~¥k (4.2.1.5)
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Where y/[ is the reference signal to be tracked, and y/k is defined as follows

¥k=H = ¥k2+¥Í'2 (42.1.6)

Taking one step ahead of (4.2. 1.5)

■y *y

4+i=^+i +W+1 -¥k+\ (4.2.1.7)

Next, we separately compute the squared flux summation

¥k+\
= [cos(>¥>0„+i)A - sin(np0k+l)p2f =

= cos2(wp0t+i)pi2 - 2cos(np0k+x)pxsin(np0k+x)p2 + sin2(np0k+l)p22

Vk+\
= M"/>0*+i)¿>i +«>s(>¥>0„+i)/>2F =

= sin2(np0k+^)p? + 2cos(np0k+l)plsin(np0k+l)p2 + eos2 (np0k+l)p22

¥°k+x +rf+l2 = Pi2W

With the last result we can redefine the flux amplitude tracking error dynamics

4+i=A2+P22-ró+l (4.2.1.8)

Continuing in the same way, we perform the squared p function summation; defined in

(4. 1.2). For sake of simplicity, we define the following dummy variables

XI = cos (np 0k Vt + sin (np 0* V f

k 2 = cos (np 0k )f + sin (np 0k >/
(4 2 19)

4 1 = cos (np 0„ V f - sin (np 0t V *

<p 2 = eos (np 0k >/ - «« (np 6>¿ >£
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Rewriting the p functions (4. 1 .2) with the dummy variables (4.2. 1.9)

p\ =a(Al)+(l-a)M(A2)
(4.2.1.10)

p2 =a(fil)+(\-a)M(fi2)

The summation ofthe p functions of (4.2.1.10) elevated to the power of two is shown as

follows

Pl2 =a2(Álf +24-a)M(Al)(A2)+{l-aYM2{A2Y

p2 =a2(^l)2 +2a{l-aM^2)+(l-a)2M2(<-2)2
(4 2

.

n)

p2 +P22 =a2i¿l2 +^l2)+2a(l-í-)1V/(AU2+^2)+(l--í)2M2(.22 +¿22)

Computing each operation separately

Al2 = [cos(np0k)fft +sin(np0k)i/k3\ =

- eos2 (np0k V £ +2cos(np0k)//ksin(np0kyi/l + sin
2

(np 0 k V {

<¡>l2 =|cos(«p0¿yf -sin(np0kyi/t\ =

= eos2 (np0k)i/P -2cos(np0k)y/fsin(np0k)i/¡ + sin2 (np0k)//kx

Al2 + </>l2 =¥*2 +¥k2 =Vk => ¿l2 +^22 ='*2 +'k

AIA2 = cos
2

(np 0k \\pkik + eos (np 0k )sin (np 0k V t
'
'" +

+ cos (np 0k )sin (np0k)y/k i¡¡ + sin 2(np0k^r/k 'k

2 = cos2(np0k)y/k3 i( - cos (np 0k >/« (np 9k)fl i[ +

-

cos (np 0k )sin (np 0k V / ik + sin
2

(np 0* V ¡T 'k

AlA2 + 0l¿2 = y/%i? +¥k'k
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With the new computations we rewrite equation (4.2. 1 . 1 1) in the following form

pf+p2 =a2(y,k) + c2{f,fi? +¥lil)+(l-aYM2[if+il2) (4.2.1.12)

where c2 is defined as

c2=2a(l-a)M (4.2.1.13)

Because, i" and ik are sinusoidal shape signáis, with a 90 degree phase of difference

between them, we can easily see that

if +if = Im| sin2(*) + Im2, cos2(*) = Imf (4.2. 1 . 14)

where Im is the peak valué ofthe sinusoidal currents; and taking into consideration the last

assumption, we have that

pk2+pf =o2(^)+c2^f/f + ¥{il)+(l-aYM2f[ml) (4.2.1.15)

Finally equation (4.2. 1 .7) is

A+l = a2(y,k)+c2(y,?i% +^/jf)+(l-a)2M2^m|)-^+1 (4.2.1.16)

Defining the following variable

fk = a2(¥k)+(l-aYM2(lm2k)-y,rk+l (4.2.1.17)
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We simplify the flux amplitude tracking error dynamics shown in (4.2.1.16) as follows

4+1 = fk+^Wk'k +¥¡il) (4.2.1.18)

Now, ifwe define an error vector as

4 =
r4"

_4_
=4 (4.2.1.19)

equations (4.2. 1 .4) and (4.2. 1 .20) are shown in matrix form

zk+\

Zk+\

fl

fk'
+

cx 0

0 c2

-vl vt

¥k ¥k

(4.2.1.20)

A more compact description of (4.2.1.22) is

zk+\ =f'it+CB/ti„ (4.2.1.21)

from (4.2.1.21) we found the relations ofthe first block of (4.1.5) as f^(x¿ ) = f/¡r,

Bj(x^) - CB¿ and x2, = ¡k . The reason we named the vector current with the upper-index

'd' is that these currents are desired ones, capable of make the dynamical error equations

stable. Then we can view these currents as a "pseudo-control", so, if we desire that the

dynamical error equation to decay asymptotically to zero, we can forcé the dynamics to be

■J+1=i¡[+CBfcií = --:L_l (4.2.1.22)

where
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K' =

|*i|<l

|*a|<l

~kx O

O *,

(4.2.1.23)

These constants will guarantee asymptotic stability, and in order to accomplish it, we

calcúlate the vectorial current from the equation (4.2.1.22) as

if=B]clC-^Xz\-tl\ (4.2.1.24)

this vectorial current indicates the desired behavior ofthe state variables if and /jf in order

to satisfy the speed and flux amplitude tracking requirements.

4.2.2 Slave control law

Proceeding in the same way, we now need that the real currents, /" and ik ,
can

track the desired ones, so we define the following two error signáis

3 ad a

zk=lk ~*k

4 Pd P

zk ='k
~

lk

(4.2.2.1)

Now (4.2.2. 1) is shown in vector form

r 3l
2 H
lk

~

4

A\

z2k=\Í-\k=B¿C-x\í\\-ik\-.k

(4.2.2.2)

Taking one step ahead
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zJt+l
~ ¡Ár+1

_

'¿+1
-

Bk+xC ¡K Zk+l -ft+i J-
T

<Pk »»*
a

»M ='*--■* (4-2.2.3)
a

where

f*2 = B-WlC"1^^ -t¡+l\-n (4.2.2.4)

Finally, the open-loop error dynamical equations are

z*+i =Kzfr+CB*z/t

2 t2
T (422.5)

z„+l ~xk u*

0 A

If we choose control such that zk
= 0

,
this will imply that \k

= ik , making possible the

control tracking objectives, that is

z2=0^M4)=0 (4.226)
AT->oo

It's an obvious fact that control uk will depend on fk in order to elimínate oíd dynamics,

but this function depends of control uk squared, through fk+x . This means that there is an

algebraic loop that makes the system unsolvable. The problem comes when we take one

step ahead of function Im^ shown in (4.2.1.14). To overeóme this problem we design an

observer for Im^ only with current measurements. We assume that Imfr is constant, i.e.

Im¿+1 - Im¿ (4.2.2.7)

and define the observer as the original plant plus a tracking error
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foU+i = ^k+gek

where

(4.2.2.8)

4=Imt-Ímt
_2 «2

(4.2.2.9)

taking one step ahead ,
we obtain the error dynamics

ek+\ =Im*+i_Im*+i

4+\=imk-^mk-g4

4+i=4-s4 = o-s)4+i

(4.2.2.10)

It's easy to see that with the following condition the dynamical error equation will decay

asymptotically to zero

2>g>0 (4.2.2.11)

and the observer will asymptotically track Im*, also will avoid the dependency of uk

squared. Figure 4.2 shows a simulation ofthe observer.

lm (estímate*! valué ln blue)

3436703»

346678-»

Figure 4.2. Graph of Im vs Im and its tracking error.
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4.2.3 Sliding mode control

We are ready to design the control law from the last results. The first step is to

choose a surface, and a good approach is

S*=4=0 (4.2.3.1)

This surface will be zeroing as the state trajectories reach the surface and we will get the

control objectives accomplished as can be seen in (4.2.2.6). The system in (4.2.2.5) is

redefined as

1 11 2

zit+i =Kz* +CB¿z¿

T (4.2.3.2)
*>k+l -h

—

uk
a

The next step is the design of control uk , but we really have two choices for uk .

The discrete-time versión of sliding mode results in a continuos function, that can not be

implemented to the discontinuous inputs of the electronic device (IGBT) that drive the

motor, rather, it is necessary to implement a PWM to drive this device. The other option for

u
A. is to implement it as in continuos-time that is, control u¿ depends on the sign of the

surface. This has the advantage that the control results in a discontinuous function that can

be implemented in a straightforward manner to the discontinuous inputs of the electronic

device that drive the motor, avoiding the use ofPWM. Both cases will be analyzed.

4.2.3.1 Sliding mode control as a continuous function of states

As seen in section 3.3, a discrete-time sliding mode versión is implemented with the

following control

«A

ukea II II

for Wkeql ^ "0
ute(?

J

(4.2.3.1.1)

M°Ín~l ^ K<?II>M0



Chapterfour. Application
89

where ufc(_ is caículated from Sk+X = O

»k,q =f Ib&C-'IjkVm -^+1]-^]=!^ (4.2.3.1.2)

and t/0 is the control resources that bound the control.

Proceeding with a stability analysis, we first verify stability for \ukeq¡ < u0 . To

reveal the structure of ufc? , let us represent it as the sum of two linear functions

ukeq=^Í+Sk-idk+ik) (4.2.3.1.3)

and

S„+i=S*+f*2-if + ¡*--»„ (4.2.3.1.4)
<7

¡S¿ J in order to decrease monotonically to zero, we need to satisfy Sk+X
-

Sk < 0 and using

the fact that control can vary within \ukeq\ ^ "o we found the condition that guarantees

stability on the surface is

(f,2-i£ + «,|<«0 (4.2.3.1.5)

Note that otherwise, the control resources are insufficient to stabilize the system.

11 11 "a™
Let us turn to the case in u^J > u0. Replacing uk

=

m0|
—

n¡
in (4.2.3.1.4) and

¡ukeq¡

with few computations we obtain

s„+i = ls¿ +fk
-

h + h \ ] - r
—

¡

fkeq\\
(4.2.3.1.6)
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Yielding to

Sil— R __. f ^ id , ¡ 1-
"0

, h«?l

fs*+iNis*ll+f/

|S_+i|<|^|

2 ¡rf • II "(

a

T

(4.2.3.1.7)

due to (4.2.3.1.5). Henee ¡Sk\\ decreases monotonically to zero and after a finite number of

steps, ||u¿|<-/0 is achieved. Discrete-time sliding mode will take place from the next

sampling point onwards and is modeled by the following reduced order system

H+\
= K z* (4.2.3.1.8)

4.2.3.2 Sliding mode control as a discontinuous function of states

We propose the following discontinuous control law

u„
= »oSig"(Sk) (4.2.3.2.1)

Once again the control resources are delimited by the natural bound u0 . A .stability analysis

will help us to determine this bound. Satisfying the stability condition Sk+i
-

Sk < 0
,
we

easily found a bound for u0

T Ir
i? + it < u, (4.2.3.2.2)
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4.3 REDUCED ORDER OBSERVER

The last control algorithm works with the full state and parameters measurement

assumption. But actually the rotor fluxes and torque measurement is a difficult task. Here

we design a reduced order nonlinear observer for fluxes and load, with rotor speed and

currents measurements only.

Based on the results of chapter 3, and making analogies with system (3.5.4), we

found that

y*
= fot], yl = Ift.'jff . x*

= [¥k,¥kf and <ok
= [TLk]

We present the plant to be observed with the same structure of (3.5.4)

®*+i
=

*»*+»* -*¥*-

ít\

JJ
■Lk

h+i=<Pk+-'ak
a

Vk+i=aGkVk+(l-a)MGkik

(4.3.1)

where 3 is defined in (2.3.4), the elements ofthe vector cpk are defined in (2.3.26) and Gk

is defined as

G. =

cos(np(0k+l -0k)) - sin(np(0k+, - 0k ))

sin{np(0k+l - 0k )) cos(np(0k+í -0k))
(4.3.2)

it is convenient to describe (4.3.2) in terms ofmeasurable variables as cok

G. =
cos(npTcok) - sin(npTcok)

sin(npTcok) cos(npTa>k)
(4.3.3)
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Next, we show the observer as in (3.5.5).

4+1 =

®k +43V* -I - fe* +h(tok -cbk)

TLk+\ =TLk+l2Í(°k-^k)

<Vk+i = aGk%+(l-a)MGkik

(4.3.4)

Let ef be the difference between the measured rotor speed and the estimated one

ek =cok-cok (4.3.5)

ek the difference between the real load and the estimated one

ek
= TLk

~

TiLk (4.3.6)

and the difference between real flux vector and the estimated one as

4 =

v_-v_ (4.3.7)

Taking one step ahead of equations (4.3.5), (4.3.6) and (4.3.7) we found the dynamical

error equations, just as in (3.5.7)

ek+\

.4+1.
-h

~

-/. 1

rl Cü
—

ek
j L

i KJ
+ lk^ek

(4.3.8)

eLi = aGktf

A Lyapunov function can be used to proof stability of e¿



Chapterfour. Application
93

yT o»

V*=eJ e? (4.3.9)

Taking one step ahead of (4.3.9)

yvT^f-Tg
v„+i=e* a GkGk*k

•p
(4.3.10)

The increment ofthe Lyapunov function should be negative, and is expressed as

AV,=ef(i2G[G,-I2_2^<0 (4.3.11)

where

i(t2GTkGk-I2x2)<0 (4.3.12)

or

a Gji-G^ <I2x2

With some basic manipulations we found that

'a2 0
<

l 0'

0 a2 l° !
a < 1 (4.3.13)

where a = e_aT The condition (4.3. 13) is satisfied due to the fact that T and a are always

positive. So, the increment ofthe Lyapunov function is negative implying that the tracking

error tends asymptotically to zero, i.e.

linñfk = T*

k -><x>

(4.3.14)
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J
Since i¿3 is bounded, (4.3.8) is reduced to

4+1

4+i

•/,
-

j

u i 4
(4.3.15)

Finding suitable /, and l2 constants, the system (4.3.15) will be asymptotically stable and

the observer (4.3.4) will asymptotically track the plant. A weil known Jury's stability test

[1] criterion for a second order system will help to find lx and l2 .

The characteristic equation of (4.3. 15) is

z2+(lx-l)z + (-lx--l2) = 0 (4.3.16)

Comparing (4.3.16) with an algebraic second order equation

2
z + a\z + a2

- 0

«l=(/i-_)

T

a2=(rh--jh)

(4.3.17)

The Jury's stability test establishes for a second order system the following conditions

ax<l

a2 >
-

a2 > -l-ax

a2 > -l + ax (4.3.18)

and with some computations we obtain the following conditions that make the observer a

stable system

1 < /, < 2

/2<0
(4.3.19)
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High power

ub

ü>

____
\1/ \V

abe - > <-/-

i«

--_ _J_. _J__

•« *# H

____.

All state. and load

Conti-llau'

b___B

TT 7TV TFT

Lmvpow-T

Figure 4.3. System configuration diagram.

Finally, Figure 4.3 shows a detailed view ofthe manipulated variables. We observe

that the speed and currents are measurable from the motor. The blocks with labels

abe -> afi and afi -> abe transforms the variables from a,b,c to a,fi and a,fi to a,b,c

respectively depending on the direction of the signáis. We also note the block named

'/«verter' transform the low power control signáis coming out the computer to high power

signáis capable of driving the motor. The fluxes and load are estimated with speed and

current measurements. All the state information is fed to the control law block and the

reference signáis as weil. In chapter six we will deal with details about transformations and

the inverter device, and how to implement the whole system.
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Chapter five

Results

5.1 INTRODUCTION

Simulations are carried out in SIMNON to demónstrate the effectiveness of the

above discrete-time sliding mode and observers. All reference signáis are generated from

second-order exosystems, except for the load that is generated from a first-order exosystem.

The flux magnitude reference is simulated always constant, the speed reference is simulated

constant and with a sinusoidal reference. The load is simulated constant and as a square

shape signal with noise added, and the control law is simulated as a discontinuous and

continuos sliding mode, making a total of eight different simulations. Then, the control law

combined with an observer is simulated to track a constant signal. The load is considered as

a square shape noisy signal and the rotor fluxes is simulated as weil.

5.2 CONTROL LAW SIMULATIONS

In the following table are shown all the induction motor and control law parameters:

PARAMETER VALUÉ DESCRIPTION

Rs 14 ohms Stator Resistance

Ls 400 Mh Stator Inductance

M 377 Mh Mutual Inductance

Rr 10.1 ohms Rotor Resistance

Lr 412.8 mH Rotor Inductance

"p
2 Number of Pole Pairs

J 0.01KgmA2 Moment of Inertia

<»n
168.5 rad/sec Nominal speed
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PARAMETER VALUÉ DESCRIPTION

T 1.1 Nm Nominal Load Torque

T 0.001 sec Sampling Period

«o
330 Voltage bound

*1 0.9 Control law gain

*2 0.9 Control law gain

h 0.5 Observer gain

h -0.5 Observer gain

¥t(0)
0.001 y/" initial condition

vm
0.001 y/% initial condition

4(o)
-0.5 z3k initial condition

4(0)
0.5

zk initial condition

Other initial conditions are zero.

5.2.1 Continuos sliding mode simulations

We set the speed tracking reference signal as a constant signal at the nominal valué.

The flux amplitude tracks a constant signal at 0.2wb2 for all simulations, and the load is

considered as a constant signal at 0.7Nm and in time / = 5 sec raises to the nominal load as

shown in Figure 5.1. The time axis in all the graphics are in seconds.

L o *.-. (Nm)

Figure 5. 1 Load affecting the motor.
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Figure 5.2 shows the output signáis with their references. We observe that the output

signáis exactly tracks the reference signáis, and that the load change does not affect the

outputs due to the robustness of sliding mode.

Speed (f-dJ sec) Flu» maqnilude (wb~2)

—

i 1 1 1 1 1 1 1 1 1

123*56789 10

1 1 1 1 1 1 1 1 1

0123456789 10

Figure 5.2. Output signáis with their references in black

In Figure 5.3 we found the tracking error signáis. We observe that errors zk and zk decay

in finite time due the sliding mode, actually it just took one step to tend to zero. On the

1 7

other hand the errors zk and zk decay asymptotically to zero

23

0 0.01 0.02 0.03 0.0* 0.05 0.06 0.07

u-

0.2-

0.4-

fifi-

1) 0002 0.004 0.006 0.008

24

0.5-

0.3-

0.1

-fil-

') 0.002

i

0.004 0.006 0.008

Figure 5.3. Tracking error signáis.
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Figure 5.4 illustrates the voltages, currents and fluxes flowing through the motor. We note

how the voltages and currents increase their valúes at t = 5 sec just when the load increases,

but the fluxes are not affected by the load change.

Voliacte TiafisnHitvofcag. Steady state- volt.ages

Figure 5.4. Voltages, currents and fluxes signal.

From the last scenario, we only change the reference signal for speed tracking to a

rad
sinusoidal signal with a peak valué of 70 volts and a frequency of 3 . Figure 5.5 shows

sec

the output signáis. We observe that the speed tracks exactly the reference signal and the

flux magnitude tracks the reference with a slight amount of error. Figure 5.6 shows the

tracking error signáis where we observe that error zk decay asymptotically to zero and zk

oscillate a little bit around zero. z\ and zk decay in finite time to zero. Figure 5.7

illustrates the voltages, currents and fluxes of the motor. We observe the rich dynamics

responses due to sinusoidal speed.
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OJ»
F,u" "*-On"«_l_. t«»--21

* tO > 4 V 6 T

Figure 5.5. Output signáis in the second scenario with their references in black.

0.001 0.002 0.003 0.004 0.005

Figure 5.6. Tracking error signáis in the second scenario.

TiansiemewHaeje 2M -teadej-ate vottagere

Figure 5.7. Voltages, currents and fluxes from the second case
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Now we show the simulation results with constant speed reference signal at the

nominal valué and a square shape load with noise as seen in Figure 5.8.

Lo«-

O K

O.O-

m

t 1 1 __ 3 * B e 7 a s IO

Figure 5.8. Square shape load.

Figure 5.9 illustrates the output signáis, and Figure 5. 10 illustrates the error signáis.

Speed (radfceo) Flux magnitud.- (wb"2 J

Figure 5.9. Output signáis with the load ofFigure 5.8.

-i 1 r-

012345678

¡2

0.02

0.01-

012345678

2

1

0

-1

-2

0.1

«ttrr

—

i 1 1
—

0.2 0.3 0.4

0.2 0.3 0.4

Figure 5.10. Error tracking signáis.
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Figure 5.1 1 shows the voltages, currents and fluxes. We observe that the voltage change its

magnitude to get ride ofthe load.

Voltage Tllft-leHtt voltage
?nri

Steadi St ate vohages

IM

mmtoo

~\f~\ i^mf1
50-

0 A \/ A
■50

1 }) J L \\ / li lr J

•MO \ í II í \J\J
-Wl t jL ) \_y
200 ^n\ \s\s

1 1 r

5.47 5.49 5.49 65 551 5.52 5.53

, St.ad*S'atecutrents

Figure 5.11. Voltages, currents, fluxes signal.

Here we present the worst case scenario, compound by the square shape load with

noise and the sinusoidal speed reference. Figure 5.12 shows the output signáis.

on Speed (radfsec)

60

u._o-

n? __——

1
1

1

0.15-

01

005-

0

0 12 3 4 5 6 7 9 10 0123456789 10

Figure 5.12. Output signáis.
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Figure 5. 13 shows the tracking error signáis.

0.1 0.2 0.3

0.05

0.04

0.03-

0.02

0.01

0

—

I 1 1 1 I 1 1 1 1

0123456789 10

30

20

10

0

-10

■20

-30

vW^iW***"

0.1 0.2 0.3

Figure 5.13. Error signáis.

Figure 5.14 illustrates the voltages, currents and fluxes that we found inside the motor.

Voltage Transient eeoltag. Steadt) sute voltages

•tiffWfff
01 '3456789»

. Trai-ient current

6 4 6.5 66 6.7 6.8 69 7 7.1 7.2 7.3

y.
Sle-ade) state currents

6 4 6.5 6.6 6.7 6.8 6 9 7 71 7_ 7.3

Figure 5.14. Voltages, currents and fluxes in the worst case scenario.
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We conclude from all the simulations with the continuous sliding mode control law,

that the voltage changes according load and speed variations. We observe that the fluxes

always preserve the same magnitude due to the constant flux magnitude control. The error

signáis always decays to zero or stay nearby. In general, the control law acceptably

achieves our control objectives.

5.2.2 Discontinuous sliding mode simulations

We will show only one simulation just to compare what control performs the best.

Taking into consideration the simplest case with a constant reference for speed and flux

magnitude and a constant load. Figure 5.15 shows the output signáis. We observe that the

speed is weil tracked and the flux magnitude has a considerable amount of noise around the

set point. From this facts we conclude that the continuos controller performs better than the

discontinuous one.

Speed ([_di.ec)
0.3-1

0.2-

Fluxmagnitude (wb"2)

Figure 5.15. Outputs signáis.

Figure 5.16 shows the tracking error signáis. We observe that the speed error tracking is not

zero by a relatively small amount of error. zk and zk does not perform the sliding mode

principie, instead of that they perform a lot of noise around zero.



Chapterfive. Results 106
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Figure 5.16. Error signáis.

Finally Figure 5.17 illustrates the voltages, currents and fluxes interacting in the motor.

Voltage Trans tent vottage -teadie state voltages

300

200

WO

0

-UTO

•200-

8-

6

4-

2

1 4 002 4 004

Stetad* state currents

4 006 4 008

■?J

-»

6

-te

4 4.002 4.004 4.006 4.008

Steady state (hieres

3 4 5 6 7 4 02 4.03 4.04

Figure 5.17. Voltages, currents and fluxes signal.



Chapterfive. Resulís
107

We note that the voltages are pulses (discontinuous voltage) that can be applied directly to

a device with discontinuous inputs like an IGBT to drive the motor. The currents remain

with the same amplitude but the sinusoidal form is lost. The fluxes are almost the same but

just with a little bit ofdistortion.

5.3 OBSERVER SIMULATIONS

The observer was simulated with a constant reference for speed and flux magnitude,

and with a noisy square shape load. Figure 5.18 illustrates the fluxes ofthe rotor with its

observed fluxes (in blue).

Flus alpha [estimated valué in blue)

4 4.01 4.02

Flux beta (estimated valué in blue)

4.03

Figure 5.18. Simulated plant and observed fluxes.

We appreciate that the fluxes are weü tracked by the observer, due to the stable flux

dynamics. Figure 5.19 illustrates the load observation results
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Load (estimated valué in blue)
1-

o

•1-
1

J123456789 10

Load (estimated valué in blue)

/

/
3.3

Error

3.4 3.5 3.6

JV

3.7

3.3 34 3.5 36 3.7

Figure 5.19. Observed load and tracking error.

Despite that the observer models the load as a constant load, it tracks so fine a square shape

signal. Note when the load change of valué, the observer response is fast. Figure 5.20

shows the output signáis.

180-,

160-

140

120

100

80

80

40

20

Speed (rad/sec) Flu» magnitude (wb"2)

—i r-

0123456789 10 0123456789 10

Figure 5.20. Output signáis with its references in black.

We can appreciate that the output signáis exactly tracks the references, it looks like

the non-observer based simulations. The observer brings the non-accessible information to

accomplish a real time implementation.
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Chapter six

Practical aspects for a real time future implementation

6.1 INTRODUCTION

The last chapters review all the theoretical aspects ofthe induction motor. In chapter

two, a compact induction motor model has been presented with the help of transformation

variables [9] moreover, a discrete-time versión ofthis model has been developed for a real

time future implementation. Then in chapter three we revisit basic concepts of control

theory, like exosystems and sliding modes, and developed block control and sliding mode

technique for discrete-time nonlinear systems. Chapter four is an application of the

concepts developed in chapter three to the discrete-time versión model found in chapter

two. Chapter 5 illustrates all the simulations to prove all the results found in chapter four.

Now it is time to view some practical aspects for a real time future implementation. Figure

6. 1 will serve as a guide for this section.

_ Signal conditioning SÍ£-__1 conditioning;

S_cn_l conditioning
-0

_b

íiit-rf—ce

D/A A A/1.

a->3

T T

_-»_

FWM

«í

Observer

____ >

TL

Control

zr
Computer

Figure 6.1. Block diagram for a real time implementation ofthe induction motor.
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6.2 SENSORS

6.2.1 Speed sensor

To determine the angular velocity ofthe rotor, a shaft coupled tach generator
can be

used. For example, the tach generator BTG 1000, manufactured by BALDOR ELECTRIC

CO., is shown in Figure 6.2

Figure 6.2. Picture ofthe tach generator BTG 1000 by BALDOR ELECTRIC CO.

The next table shows its specifications.
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This dc tachometer supplies a dc voltage that is proportional to the motor rpm, and the

polarity is changed with the direction of rotation. This type is suitable for regulation within

a very wide range of armature speeds. It also has the advantage of generating a very low

ripple-voltage, which results in good regulation at low motor rpm.

6.2.2 Current sensor

To measure the currents that flow to the stator of the motor we can use a current

transducer. For example, the RS 286-327 manufactured by RS is shown in Figure 6.3

Figure 6.3. Current transducer.

This is a fast response PCB mountable current transducer employing the Hall effect

principie to accurately measure ac, and dc currents. The transducer uses the feedback

operating technique and has high accuracy analogue outputs. Passing the conductor through

a lOmm diameter hole senses the primary current. An increase in sensitivity can be

achieved when measuring lower currents than the nominal 50A by increasing the number of

times the primary current conductor passes through the center hole, i.e. to measure 5A, 10

passes of cable can be arranged giving 50 ampere turns and a full output current or voltage

signal is derived. The next table shows its specifications
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RS -lock no 286-327

Nominal curreat 1N SOA rms

Outpul mod-f

1. Current oulpul lmA/A

Measuring range 0to±16QA

(Supply vollage
+ 15V;

í__e_s = 50Q)

Overall accuracy

al +25°C ±0.5% oíU,

2. Vottage ouTpirj lOQmWA

Measuring range fl. io i-SÜK

Overall accuracy

at +2S'C + 1.0OÍIN

Tum. ratio 1:1000

Supply vattag- ±15V(±S%)

Dieledric strenegth 3kVn_s/50H_/l mía

6.3 SIGNAL CONDITIONING

Electrical signáis can be generated by transducers to measure physical phenomena

such speed, currents, temperature, sound, forcé, etc. To measure a signal from transducers,

you must convert them into a form that the computer interface can accept. For example, the

output current of the current transducer is very large. Therefore you may convert it to

voltage, then lower the output and isolating before digitizing. The manipulation of signáis

to prepare them for digitizing is called signal conditioning. The following are some

common types of signal conditioning

> Amplification

> Isolation

> Filtering

> Transducer excitation

> Linearization

In the case ofthe tachometer, in order to use the output ofthis device, it is required that

its voltage output level must be acceptable, for example, if at
1800 rpm we need an output
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of 5V, then we apply a voltage divider with a gain of 5.5556xl0"2 The main inconvenient

ofusing a tachometer is noise level in its output, so, a low pass filter is needed.

The current sensor can opérate in two different output modes, current and voltage

output. Figure 6.4 shows such configurations

r _-.___i GonMofloM
;___??. _»_33

D-twK Ou*_-

\m

il-<?>-_--Oov
O-

-**_o- (>_p_l

-O»

i

2

c

o-

-O-OUT

$7

Figure 6.4. Electrical connections ofRS 286-327.

Suppose that we want to work with the current output configuration, then the Rmeas

resistance is choose to get the desired voltage level.

To isolate the signal ground reference of the incoming signáis to the computer in

order to avoid a short-circuit if something fails outside ofthis. It is necessary to dispose of

isolation amplifiers. For example the IS0122 manufactured by BURR-BROWN is a

precisión isolation amplifier incorporating a novel duty cycle modulation-demodulation

technique. The signal is transmitted digitally across a 2pF differential capacitive barrier.

With digital modulation the barrier characteristics do not affect signal integrity, resulting in

excellent reliability and good high frequency transient immunity across the barrier. Both

barrier capacitors are inbedded in the plástic body of the package. Figure 6.5 shows a

picture ofthe isolation amplifier and a schematic diagram.

Figure 6.5. Schematic diagram and picture of ISO 122.



Chapter six. Real time implementation 114

The ISO122 is easy to use. No external components are required for operation. The

specifications are 0.020% max nonlinearity, 50 kHz of bandwidth, and 200pV/°C Vos

drift. A power supply range of±4.5V to ±18V.

Once the input signáis (currents and speed) are conditioned, they enter the computer

through the A/D converter. The software manipulates these signáis to produce the control

law. The first thing to do is to return this signáis to the original levéis, that is the reason for

the block named 'signal conditioning' inside the computer.

As we will see later, the computer sends digital pulses that drive the IGBT. These

pulses are also isolated in order to avoid computer damage. For example the optocoupler

4N25 is a very common device for digital signal isolation.

6.4 CURRENT TRANSFORMATION

We continué with the signal paths inside the computer, i.e. software execution. The

stator currents are transformed to a,fi currents using equation (2.2.5.3). The matrix K.

defined in (2.2.5.4) depends on the angular position ofthe rotating dq axis, but this axis

has been fixed to the stator, i.e. 0 = 0
, yielding the next matrix

Kc

, =1
2

0
^

-1

2

-J3

2

1 V3
2

-73"

2 2 2

(6.4.1)

Using (6.4. 1) in (2.2.5.3) for current variables and the fact that the sum of all three currents

equals zero, we found these signáis in the a,fi model
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'<.='_»

1
(. -• >, (6-3.2)

'/t
=

jj('_+2*é)

The voltage of the stator in a,fi are transformed into a,b.c variables and if we

substitute ; by u in (6.4.2) and .solve for a,b,c and using the fact that the sum ofthe voltages

equals zero, we yield to the next set ofequations

"_
=

ua

»b
=

1 _/3_
2
«p

uc
=

-"_" «6

(6.3.3)

Then the signal path continúes with the observer and the control law. These parts

have been analyzed in chapter four. It is worth to mention that the exosystems are ineluded

in the control law block. As mentioned in an early chapter, a continuous control will

depend on a PWM, but a discontinuous control will not. If we decide to apply a

discontinuous control we can get rid of the PWM block. The discontinuous voltages

coming from the PWM or the discontinuous control are transformed to a,b,c discontinuous

voltages, where each variable can be -1 or 1, but in order to be considered as digital control

signáis, each of them should be 0 instead of -1 .

6.5 PULSE WIDTH MODULATION

The purpose ofthe PWM component ofthe controller [2], is to genérate pulses that

trigger the transistor switches of the inverter. The pulse-width-modulated signal is created

by comparing a fundamental sine wave from a sine-wave generator with a carrier triangle

wave from a triangle wave generator as in Figure 6.6.

The variable width pulses from the PWM drives the gates of the switching

transistors in the inverter and controls the duration and frequency that these switches turn



Chapter six. Real time implementation 116

on and off. The frequency of the fundamental sine wave of the PWM determines the

frequency ofthe output voltage ofthe inverter. The frequency ofthe carrier triangle wave

ofthe PWM determines the frequency ofthe transistor switches and the resulting number of

square notches in the output waveform ofthe inverter.

,vi Ven

Figure 6.6. PWM operation. VI is compared to Vcarrier. For each time period, T, a square

pulse operates the switch ofthe inverter to output the fundamental waveform Vol

A graph ofthe PWM waveforms together with the resulting pulse is shown below in

Figure 6.7.

Figure 6.7. PWM operation. The square pulse from the PWM is superimposed on the sine

and triangle waves as shown in this Figure. The pulse is high during the interval when the

sine wave is greater than the triangle wave.
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In this case the aforementioned sine waves are the waves generated by the continuos

control. Do not forget that the pulses can only be 0 or 1 for digital purposes. These pulses

are available at the computer interface with the common TTL voltage levéis.

As mentioned in sub-chapter 6.3, these pulses are isolated with optocouplers, i.e. digital

isolators.

6.6 INVERTER

The purpose of the inverter is to convert the dc signal into a three-phase ac signal

with a variable frequency. The output waveform from the inverter is a series of square

waves that the motor 'sees' as a sine wave because the inductance of the motor smoothes

out this 'chopped' waveform. The amplitude ofthe synthesized sine wave is determined by

the widths of these square waves. The relative widths of these square waves represent the

applied voltage. The wider the widths and the narrower the notches between the widths, the

higher the amplitude ofthe synthesized sine wave because more voltage is being applied.

With the help ofFigure 6.8, we will obtain a mathematical model for the inverter to

proof the ability to genérate sinusoidal like signáis.

(l/-)_o

ílljuo

iwl Ó *_<- Ó «w5 Ó

Q Q 9

Figure 6.8. Inverter scheme. The switches represent the IGBT and the 'Z' blocks represents

the stator load ofthe motor.
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We redefine the sliding mode control variables as ^(íicl), X2(sw3) and X3(sw5), where

X,G{0,1}
i = 1,2,3

These variables determine the states of the inverter upper switches. The lower switches

follows the next relations

sw2 - l -swl

sw4 = 1 - sw3

sw6 = l-sw5

(6.4.1)

This means when one upper switch is on, the corresponding lower switch is off and vice

versa. If the states ofthe upper inverter switches are marked as 1 for switch-on state and 0

for switch-off state then fictitious voltage related to the center of dc supply u0 can be

computed from equations (6.4.2). Line to line voltage and motor phase voltages are

determined as described by the set of equations (6.4.3) and (6.4.4), if the system is

symmetrical with isolated center.

Vao = M0

Vbo = «0

Ko =

"0

Ux,

K 2

+ X-, (6.4.2)

— +X,

'ab Vn„-Vibo

Vbc=Vbo (6.4.3)
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va = -\(vca-vab)

Vb=~\{Vab-Vbc) (6.4.4)

vc = -\(vhc-vca)

If we substitute (6.4.2) into (6.4.3) and (6.4.3) into (6.4.4), we yield to a direct relation

between the input and output ofthe inverter, i.e. a relation between the sliding mode control

variables and the motor phase voltages, as shown in the next expression

\v°\
"

2 -1 -1" r*n

vb
____

3
-1 2 -1 *2

kJ -1 -1 2 L*3_

The output control signáis will intrinsically genérate sinusoidal shape signáis at the

output ofthe inverter, but, to proof this feature, we propose a sequence of fired switches in

the next table

Step sequence Fired sequence

Stepl swl sw4 sw5

Step 2 swl sw4 sw6

Step 3 swl sw3 sw6

Step 4 sw2 sw3 sw6

Step 5 sw2 sw3 sw5

Step 6 sw2 sw4 sw5

The fired sequences or fired switches accomplishes that in any step sequence there are only

three active switches, one in each phase ofthe inverter, but, two upper switches and one of

the bottom, or vice-versa. This implies that a complete cycle will be accomplished in six

steps. Figure 6.9 shows the graphics of the voltages in (6.4.2), (6.4.3) and (6.4.4). We

observe that the motor phase voltages are really sinusoidal like signáis.
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Figure 6.9. Fictitious voltages, line to line voltages and motor phase voltages when

operating from a six step voltage inverter.
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A common IGBT module is the 6MBI10GS-060 model manufactured by FUJI

Electric. Figure 6. 10 shows a photo and a schematic diagram ofthis device

Figure 6. 10. Photo and schematic diagram of 6MBI10GS-060 module.

The next table shows the máximum ratings and characteristics ofthis device.

Absoluto máximum ratings (atTc=25°C unless otherwise specified)

Item Symbol Rating Unit

Col __luf -Lrritlc v_llag<. V:*l _ 60C \j

(.alu-L'iiif.er voltayn Vi •: S -20 V

Col :_<_I_t C_n"..n__us 10 A

curren! 1irs k ajlsu 20 A

1 10 A

lns -|. pulse 20 A

Max. powcM dte-ipaüon Pc •1í> W

Operal nu teniper_.lu->- ll • 150 íj

Storago lirnpcalu-c Im; -10 lCl + 1_b v;

l-olaliun vollag- V . AC 200C >: 1-tiii l V

S_r_e// ;orqj<; MOUH" llej 'l 1/ N-n

Hücor-imet-r-itiíalu vu uo "3 :o 1..' N-n iV'i)
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The output ofthe PWM or the discontinuous control can not drive the input gates of

the IGBT, instead, signal conditioning is needed in order to guarantee the turn-on and turn-

off ofthe IGBT with proper current and voltage levéis. This can be achieved with a three-

phase bridge driver. A common device that can do the job is the IR2130 model from

International Rectifier. This device is a high voltage, high speed power MOSFET and

IGBT driver with three independent high and low side referenced output channels. Figure

6.11 shows three typical packages of this device and Figure 6.12 shows a typical

connection ofthis device as weil.

28 Lead SOIC

♦
4^

28 Lead PDIP

44 Lead PLCC w.'o 12 _____

Figure 6. 1 1 . Different packages ofthe IR2130 device.

¿eVI51 •-

'WV ■>■

«cr. «m.t>
-

-INe 1 > <íCel_.3

.IU1 :- 1 Vs,¿:<

Hl'

VA

---. 22

Refer to Load Assignmonls for correct cin configuraticrt)

Figure 6.12. Typical connection ofthe IR2130 device
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Chapter seven

Conclusions and future work

7.1 CONCLUSIONS

This work has shown the three-phase induction motor modelling. The obtained

model is nonlinear and time-variant due to the mutual inductance rotor position dependency

[9]. Dealing with a time-variant system is a difficult task. To overeóme this problem, a

transformation reference frame was proposed, i.e., all the induction motor variables

involved were represented with respect to an arbitrary spinning reference frame, where the

velocity ofthe reference frame is open. In this work we consider the fixed reference frame,

i.e., the reference frame is not spinning, and the induction motor model becomes time-

invariant, even the model order has reduced. Since the objective of this work is to make

possible a future real-time implementation in a digital device, it was necessary to discretize

the continuos-time model. The fifth order model solution is difficult to obtain, but the

current fed model (third order model) is easier. So, the current fed model was exactly

discretized and the dynamical current equations were discretize trough a first-order Taylor

series.

Due to the tracking control objectives, it is very common to prescribe the reference

signáis as constants. This work proposes reference signáis that are generated in an

exosystem. This has the advantage that the output signáis are totally prescribed.

The principies of continuous-time sliding mode were revisited, and from the revealed

properties, a discrete-time sliding mode concept was developed. A discrete-time sliding

mode is necessary in order to avoid chattering in the discrete-time implementation of the

continuos-time sliding mode controller.

A novel block control technique was design for discrete-time nonlinear systems. This

technique consists ofa step-by-step interconnected process where the system is transformed

into an error dynamical system, this is of great help due that error states are good

candidates for a sliding mode surface.
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A discrete-time nonlinear observer was developed for electromechanical systems. The

tracking error dynamical equation was analyzed with a discrete-time Lyapunov approach,

in order to investígate the stability ofthe observer.

The control law design was carried out with the block control technique applied to

the discrete-time system, where we obtained a surface for a discrete-time sliding mode.

Continuos-time sliding mode control is a discontinuous control function, but discrete-time

sliding mode control results in a continuous function, because this control is based in

equivalent control, so, a discrete-time sliding mode discontinuous control was also

proposed with the classical sign function, for later simulation comparison.

The observer considered a constant load for practical reasons. The autonomous flux

tracking error difference equations are analyzed with a discrete-time Lyapunov approach,

that revealed that the flux dynamical equations are stable itself. The other part of the

observer was analyzed with Jury's stability criterion.

Simulations were carried out in Simnon. These were done for various reference

signáis, load signáis and for continuous and discontinuous sliding mode controls. The

continuous control law performed better than the discontinuous control law, but the

continuous control law has the disadvantage of a PWM requirement in order to drive an

inverter device, and the discontinuous control law has the advantage of driving directly the

inverter module.

For a future real time implementation is considered a personal computer as the

digital device to implement the discrete-time control law. The measurement ofthe variables

ofthe motor and how to feed them into the computer was considered. The PWM technique

was explained, and was shown that can be implemented in software. The mathematical

foundation ofthe inverter module revealed the capability of generating a sinusoidal shape

signal and that the inductances ofthe stator smooth this signal.

In general, we conclude that sliding mode control is a powerful tool for nonlinear

dynamical systems, and in particular for systems with discontinuous inputs just like the

induction motor that is driven with the inverter module that have discontinuous inputs. This

gives the opportunity to the induction motor to perform high precisión position control with

appropriate sensors and can replace the expensive d.c. brushless motor in any application.

A drawn paper from this thesis, was submitted to IFAC 2002 in Barcelona, Spain.
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7.2 FUTURE WORK

Let us consider as an extensión for this work

> The development ofa discrete-time adaptive controller for parameter uncertainties.

> The design ofa discrete-time sliding mode controller for the dq model, i.e., co = cor.

> The design of a discrete-time sliding mode controller for the transformed system

(2.3.21).

> The simulation of the continuous plant and the inverter with the discrete-time sliding

mode control law.

> And to perform a real time implementation.
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DISCRETE-TIME SLIDING MODE CONTROL OF AN INDUCTION MOTOR

Alexader G. Loukianov, Jorge Rivera and José M. Cañedo

CINVESTAV del IPN, Automatic ControlDepartment,

LópezMateos Sur 519, Guadalajara, Jalisco 45090, MÉXICO

(louk@gdl.cinvestav.mxUiorger(a).gdl,cinvestav.mxl (canedoi(S!gdl.cinvestav.mxi

Abstract: A discrete-time sliding mode with block control aided design is applied to a

nonlinear discrete-time induction motor model where the load torque is considered as

unknown perturbation. With full state measurements, both rotor speed and rotor flux

amplitude tracking objectives are satisfied. Then, a reduced order observer is

implemented where speed and current measurements provide the observation for the

unreachable fluxes and load torque. The simulations predict the system to be robust with

respect to externa) load torques. Copyright © 2002 IFAC

Keywords: Inductions motors, discrete-time systems, sliding mode control, observer.

1. INTRODUCTION

Induction motor is one of the most used actuator for

industrial applications due to its reliability,

ruggedness and relatively low cost. The control of

induction motor is challenging, since the dynamical

system is multivariable, coupled, and highly
nonlinear. A classical technique for induction motor

control is field oriented control (Blaschke, 1972),
which involves nonlinear state transformation and

feedback for asymptotic decoupling of the rotor

speed and rotor flux, and applying linear control

methods such as PID. More recently, various

nonlinear control design approaches have been

applied to the induction motor control problem for

better performance, like backstepping (Tan, and

Chang; 1999), passivity (Ortega, et al., 1996),

adaptive input-output linearization (Marino, and

Tomei, 1995), and sliding modes (Utkin, et ai,

1999).

All of these approaches are based on the continuous-

time model of the plant, and for practical
implementation in a digital device, is necessary to

design the controller for a discrete-time model of the

plant.

This research work is based on a digital sliding mode

(Utkin, et al., 1999) with block control aided design

approach to achieve rotor speed and rotor flux

amplitude tracking objectives for the fixed reference

frame model. The uncertainty accounted for is an

unknown load torque

The paper is organized as follows. Section 2 briefly
reviews the continuous-time induction motor model

and using the solution of the mechanical and rotor

flux dynamics systems, this model is discretized. The

main results are presented in Section 3, where the

discrete-time sliding mode block control and the

rotor flux and load torque observer, are designed.
Section 4 deals with the proposed control law and

observer simulations. Finally, in Section 5 are some

concluding remarks drawn from simulations and

control technique.

2. DISCRETIZATION OF THE CONTINUOS-

TIME INDUCTION MOTOR MODEL

In this section, it is developed another representation
of the induction motor model, called discrete-time

induction motor model. Under the assumptions of

equal mutual inductance and a linear magnetic

circuit, a fifth-order induction motor model is given

as
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vector, IeR2 is the stator current vector, which in

current-fed motors is the control input, u e R2 is the

control input voltage vector, a> is the rotor angular

velocity, TL is the load torque, J is the rotor

moment of inertia, and

\aP\i>a+npPa>Vp-yia
9

[afiWfi-npPtoVa-fifi

M■■^•± p =

¿- r. aL
r
=
M2Rr Rs

ol* o

.Mnp
2 JL.

Ls. Lr and M are the stator, rotor and mutual

inductance respectively, R. , Rr are the stator and

rotor resistances respectively, and n is the number

ofpole pairs.

To face the problem of discretization it is necessary

to found the solution of the system, but this system
has no analytic solution at all. To overeóme this

problem, the model is divided in a current-fed

induction motor third-order model, where the current

inputs are considered as pseudo-inputs, and a second-

order subsystem that only models the currents ofthe

stator with voltages as inputs. The current-fed model

will be exactly discretized by solving the set of

differential equations and the other subsystem will be

discretized by a first-order Taylor series (Kazantzis
and Kravaris; 1999). Making use of the following

globally defined change of coordínate

v = e-npe3v x = e-"pa3l (1)

where _> = _>, yields the following bilinear model

^ = /_<T3Y-^ (2)
dt l

___.

dt

'

Founding a solution to (2) involves integral

operations, where it is assumed that control is

applied in a piecewise constant fashion. So, the

control is constant over the integration time interval

[kT,(k + 1)7], k = 0,1,2,..., where 7">0 is the

sampling time. The solution to (2) in this time

interval is

_>((* + 1)7-) = a>(kT)+ ^(l - e-*r)x.T (kT)3Y{kT)-^-T

Y((k + \)T)=e-"TY{kT)+m[\ -e"«r Jx(_f)

-aY + aMX

Defining a common notation
X/¡
-

x(kT)< yields

^+1=«*+j(l-e-a7")x7:3Y,-^-7- (3)

^k+l=e-aT\k^M[l-e-"T}ík
Taking (3) to the original states with a inverse

transformation of (1), finally yields

*>*+. =«. +5o-'Mév? -'*v)-(j)i*
V#+i =co{np0k+.)p. -sir(npOk+l)p-

Vk+l =íí«Mu.).«l + ^s(np0k+t)p2

0k+l=0k+mkT + >-

p¡ -fl(M>sfy>4WÍ + sKnp0k)tf)^l-a)M(cosbpek)ik7 +sirinp6k^)
p¡, =4=08^)^ --//(/i/^)+(l-fl)A4:os^/A)if -siiifimOifí)
The rotor position is caículated from ¿> = _>, in the

same way, yielding

There are left two differential current equations to

discretize, by a first order Taylor series

■ir a . a

'k*\=<Pk +-"*
a

where
_
= e~aT and

<p% = if + aprrf + npPTa>kV£ - fr?

4 = i? + aprWP - npprmkV?
- •/_£

Finally, putting all together, the discrete-time versión

ofthe induction motor model, is feature

<»M =<»k +^(l-<MeV* -tflrfl-ÍjVít
itf¡+¡ = co¡{np0k+.)p. -si4np0k+1)pi

vLi =sirinpek+\)pi +cos(_p(?„+i)/>2

ik+\=<Pk + ~"k
a

'i'y ,;>k+-uk'í-J.1 —

Vh t «_■

Ok+i=0k+cokT + í

a r-lo-fl)]*/^-^)-^-^
(4)

Fig. 1 compares the open-loop velocity simulation of

both models
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Fig. 1 . Comparison of the continuous and discrete

velocity.



There is a slight amount of error introduced by the

current dynamical equations that were discretized by

a first order Taylor series. Since the control input

appears in these equations, the error can be

eliminated.

3. DISCRETE-TIME SLIDING MODE CONTROL

Given full state measurements, the control objectives
are to develop velocity and flux amplitude tracking
for the electromechanical dynamics founded in the

discrete-time induction motor model (4), using block

control and discrete-time sliding mode.

3.1 Control design

A
'4

.4.
=
ü)k-0)k

Vk-Vk.
4=

'4'
.4,

=

fk.

(5)

Let us define the following states as

>í

i.

where y/k=y/" + .yf is the rotor flux magnitude,

mj, and y/[ are reference signáis. If the resulting

control, drives the state x[ toward zero, then mk

and yrk will track exactly their respective reference

signáis, accomplishing in that way the control

objectives. The system (4) involving (5), can be

represented in the Block Controllable Form (BCF)

consisting of two blocks

-_4.,=rl(-i)+Bi<4)»* (6)

where

f' =

»Li=f2(*Í.»„) + B2ut

fi.-hjr-r-«ítl
k+\

"c, 0"

.0 «_.

-wi Vk

.

v* vk_

-y =
rf'

I o"
a

o T-
a.

u -Ku*- P

<-
=

_

2_(l

-a

-a

M

)M

Note that matrices
b,

and
u2

nave &" rank> tnat is:

rank(B. ) = rank(B2 ) = 2 ,
and

Applying the block control technique, define an error

vector, -• is defined as z[=[z¿, í„J =4' then'
the

error dynamical equation is

4+i=fV*)+B,(4)4 (8)

Handling J as a fictitious control for (8) and

making the error z. to tends to zero, with the

anticipation of its dynamics as follows

4+i=f,(--)+B1(xi)_f=._1zi (9)

where K, = diag{kuk2} ,
with k, >0 and k2 >0 ;

then, the desired valué x2. of x2 is caículated from

(9) as

*? =B7l(x*)[-f,(xi) + K1zi]

It is desired that -2 _ x2rf. In this way, it is defined a

second new error vector, -A as

4 ~xk ~xk

The error dynamical equation is

where

*Ll=f2-B2u*

with

and

f¿

B,=

=5.1-? + K,zi'i+lj

c> °T-vf+.
0 <-.(.rf+,

VÁ+1

«*+ '_„+!
_

ía-+2

«V*+.)+(l-«)2M2[<(?+,2+i¡f+12]-Ví+-
Since all the states variable are measurable at time

'kT
,
the stares variables at time '(k+l)T are

caículated from (4). It is assumed that the load signal
is constant, so

•Lk

The system (6) in the new coordinates is

z*+l
=Klz4

_

Blz* (10)

zk+\-
= f "B2ut

The next step is to design the control law from the

last results. The first step in sliding mode control is

to choose the surface
st =0. ar>d,

a smart selection is

S*=z|=0
This surface will be zeroing as the state trajectories
reach the surface, and then the control objectives will

be accomplished. The transformed system (10) is

redefined as

zi+,=K,4-B,z. (H)

S„+i=í2-B2u4
In order to design a control law, a discrete-time

sliding mode versión (Utkin, et al., 1999), is

implemented as

"te, M |ufa<7l<«0
«*: "fa*?

"Oj
-, f°r lu/ce9| > "0

where ukeq is caículated from S*.,., =0 ofthe form

ute?=B2'f2]
and u0 is the control resources that bound the

control. Proceeding with a stability analysis, where

the case uJ <
u0 is first analyzed. To reveal the

structure of ute„ and SA+) , let us represent them as

the following functions:

^keq b; fz+S.-xí +xi

and

'*+!
= S,+f2-x2/+x2r-B,u,i (12)

In order to decrease |S¿| monotonically to zero, it is



necessary to satisfy Sk+X
-

SA < 0 ,
and using the

fact that control can vary within ¡ute„|| < u0 , then, the

condition that guarantees sliding mode stability, is

caículated as

■"I?B.'l V + x 'h° (13)

Note that otherwise, the control resources are

¡nsufificient to stabilize the system. Let us turn to the

case when KiAr;I--u0. Replacing ui=u0|r-^
- !"

'KI
(12) yields

S*+i =^+f2-x^+xíll

M*i+--Ha,

J__

h4

|S„+i|<|S„|

due to (13). Henee |St| decreases monotonically to

zero, and, after a finite number of steps, ¡ut|<„0 is

achieved, i.e.

sk=z2k=o=>4 = 4d
Discrete-time sliding mode will take place from the

following sampling point onwards. Under the

condition (7), the transformed system (11) of order 4,

reduces its order to 2, and it is modeled by

2*+i
= Kiz*

This system represents the sliding mode dynamics
which achieves the control objectives.
It is an obvious fact that the proposed control

U/¡

depends on f2 in order to elimínate oíd dynamics,

but this function depends of control uk squared, due

to term i?+l +/f+. ,
that appears in f1, making the

system in that way, unsolvable. To overeóme this

problem it is designed an observer only with current

me,_5urements, for the new variable w
,
defined as

follows

Im'*
=vt +it

It is assumed that \mk is constant, i.e.

Im,/t+l Im¿

then the observer is presented as the original plant

plus a tracking error

Ímt+1 = \mk+ge'k

where e[ = ImA-Imt is the tracking error. Taking

one step ahead

eL=Q-g)e'k
it is easy to see that with the following condition

2>g>0

the observer error will tends asymptotically to zero,

and the estimation Im* will track the real

valué Im* , Avoiding the control dependency of uk

squared. Fig. 2 shows a simulation ofthe observer.

1°

Fig. 2. (1) Comparison of Imt with Im* .

(2) The tracking error.

Again, there is an error that can be eliminated by the

control action.

3.2 Reduced order nonlinear observer

The last control algorithm works with the full state

and parameters measurement assumption. But in

reality, the rotor fluxes and torque measurement is a

difficult task. Here, it is design a reduced order

nonlinear observer for fluxes and load, with the rotor

speed and currents measurements only. System (4) is

written as

%+i =<ok + I„3y„ -{T/J^Lic

lk+l=<Pk+(T/a)uk (14)

yk+l=aGkVk+(l-a)MGklk

where q. is defined as

\coinpTtak) -si/4npTmk)

sir(npTtDk) co^npT(ok)
The proposed observer for the system (14), assumes

the speed and current measurements, and an

unknown constant load

á>*+l=<»-+13<¡»„ jV_*+/iK-<»*)
TLk+i =TLk +_(<»-- ¿>k)

(15)

V*+i=<«G**_+(l-«)MG*_i
Let ¿a be the difference between the measured rotor

speed and the estimated one, i.e

e^ =(»k-¿>k

then the following error definition is ek ,
and

represents the difference between the real and the

estimated load

ek
= 7¿*

_

TLk

and the difference between real flux vector and the

estimated one is as follows

Taking one step ahead of the three error equations, it

yields to the dynamical error equations

rl
«*+i
L

eM

c*+l
= aGk*l

1

+ L3ef (16)



A Lyapunov function can be used to proof stability

ofej
.•v'v

Taking one step ahead ofthe Lyapunov function

Vk+l = tfa2GTkGke^
The increment of the Lyapunov function should be

negative, and is expressed as

where

(fl2GfGA-I2,2)<0
or

a GtGt <I2.2
With some basic manipulations yields

0 a1

I 0

0 I
>a<\

(17)

where.- = -"" The condition (17) is satisfied due

to the fact that T and a are always positive. So, the

increment of the Lyapunov function is negative

implying that the tracking error tends asymptotically
to zero, i.e.

t->00

Since ¡£3 is bounded, (16) is reduced to

(18)et+i

JL
ek+\ rh « y"

Finding suitable
¡^
and /. constants, the system (18)

will be asymptotically stable and the observer (15)
will asymptotically track the plant. A weil known

Jury's stability test (Ástróm and Wittenmark; 1997)
criterion for a second order system will help to find

/, and l2 . The characteristic equation of (17) is

z2 + (/. ■l)z + (-/.--/2): 0 (19)

Comparing (19) with an algebraic second order

equation, yields

z + _]Z + a2
= 0

_.=(/.-l)

The Jury's stability test establishes for a second order

system the following conditions

a, <1

a2 >-\ + ax

a2 > — 1 —

a,

and with some computations the conditions that

make the observer a stable system, are

l</,<2

/2<0

4. CONTROL LAW SIMULATIONS

Simulations are carried out to demónstrate the

effectiveness ofthe above discrete-time sliding mode
control and observers. The worst case scenario is

simulated, i.e., the flux magnitude tracks an

exponential signal and the speed tracks a sinusoidal

shape signal. The unknown load torque is proposed
as a noisy square shape signal that goes from minus

nominal torque to positive nominal torque. Table 1

shows the induction motor parameters and Table 2

shows the control law parameters.

Table 1. Parameters ofthe induction motor. It is

considered a three-phase, two-pole machine, with a

stator-referred rotor.

Parameter Valué Description

Rs 14 ohms Stator Resistance

Ls 400 Mh Stator Inductance

M 377 Mh Mutual Inductance

Rr 1 0.1 ohms Rotor Resistance

Lr 412.8 mH Rotor Inductance

■',> 2 Number of Pole Pairs

J 0.01 KgmA2 Moment of Inertia

<»n 168.5

rad/sec

Nominal speed

TLn 1.1 Nm Nominal Load

Table 2. Parameters used in the control law and the

observer.

Parameter Valué Description

T 0.001 sec Sampling Period

"o 330 Volts Voltage bound

*l 0.9 Control law gain

*2 0.9 Control law gain

'l 0.5 Observer gain

-

-0.5 Observer gain
G 1.9 Observer gain

rt(o) 0.001 wb Initial condition

rf(o) 0.001 wb Initial condition

4(o) -0.5 Initial condition

4(0) 0.5 Initial condition

The flux amplitude tracks an exponential signal at

0.2w¿>2- The rotor velocity tracks a sinusoidal signal
with peak valué of 70 volts .and frequency of 3

rad/sec. The load torque is considered as a noisy

square shape signal. Fig. 3 shows this load signal.

Time (sec)

Fig. 3. Square shape load. The load torque goes from

-I.INmto l.INm.

Fig. 4 illustrates the speed output signal and ¡ts

references, and Fig. 5 shows the tracking error
Time (sec)

Fig. 4. Speed output signal and its reference. Note

that the output exactly tracks its reference
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Fig. 5. Tracking error. Note that the error tends

asymptotically to zero.

Fig. 6 shows the flux amplitude output and its

reference signal as weil. And Fig. 7 shows the

tracking error signal.

q-c
Flu* magnitud» (wb*2)
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—

i
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Fig. 6. Flux amplitude output signal and its

reference. Note that the output tracks its

reference with a slight amount of error
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Fig. 7. Tracking error. Note that the error oscillates

around zero.

Fig. 8 shows the flux observer results

Flux alpha

Time (sec)

Fig. 8. Flux observation graphs. Note that the

amplitude is weil tracked, but, the phase angle
differs a little bit.

Fig. 9 illustrates the load observation results. Despite
that the observer models the load as constant load ,

it

tracks so fine a square shape signal.
Loíd

tv

■1- '

1 1 1 , , ^

.c»d

Tf

•V

/ estimated valué

33

Error

______

11 M 15 M 17

Time (sec)

Fig. 9. Observed load and tracking error. Note when

the load change its valué, the observer response
is fast.

5. CONCLUSIONS

The contributions of this paper can be stated as

follows. The combination of sliding mode and block

control results in a control law that achieves an

excellent performance in the worst case scenario.

With the flux observer it was demonstrated that its

dynamics are stable. The load torque observer

performs weil..
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