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Sistemas p-Ádicos del tipo FitzHugh-Nagumo y

Patrones de Turing

T E S I S

Que presenta

M. en C. Carlos Alberto Garcia Bibiano

para obtener el Grado de

Doctor en Ciencias

en la Especialidad de Matemáticas
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Ciudad de México Diciembre, 2023





Centro de Investigación y de Estudios

Avanzados del Instituto Politécnico Nacional
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Resumen

Esta tesis gira entorno a ecuaciones pseudo-diferenciales del tipo Nagumo, sistemas de ecua-

ciones pseudo-diferenciales del tipo FitzHugh-Nagumo, y patrones de Turing en el contexto

p-ádico. La tesis consiste en dos partes. En la primera parte, presentamos una nueva fa-

milia de ecuaciones de evolución p-ádicas no lineales tipo Nagumo. Establecemos el buen

planteamiento local del problema de Cauchy para estas ecuaciones en espacios tipo Sobolev.

Para cierta subfamilia, mostramos que ocurre el fenómeno de la explosión en tiempo finito y

proporcionamos simulaciones numéricas que muestran este fenómeno. En la segunda parte,

presentamos versiones continuas p-ádicas y discretas de un sistema de FitzHugh-Nagumo en

la bola unidimensional p-ádica. Damos criterios para la existencia de patrones de Turing.

Presentamos extensas simulaciones de algunos de estos sistemas. Las simulaciones muestran

que los patrones de Turing son ondas viajeras en la bola unitaria p-ádica. Esta tesis está

basada en las publicaciones [12, 13] escritas en colaboración con mis directores de tesis Dr.

Wilson Álvaro Zúñiga Galindo (University of Texas Rio Grande Valley, USA) y Dr. Leonardo

Fabio Chacón Cortés (Pontificia Universidad Javeriana, Colombia).



Abstract

This dissertation revolves around pseudo-differential equations of the Nagumo type, systems

of pseudo-differential equations of the FitzHugh-Nagumo-type, and Turing patterns in the

p-adic context. The thesis consists of two parts. We present a new Nagumo-type nonlinear

p-adic evolution equation family in the first part. We establish the local well-posedness of the

Cauchy problem for these equations in Sobolev-type spaces. For a particular subfamily, we

show that the explosion phenomenon occurs in finite time and provide numerical simulations

showing this phenomenon. In the second part, we present discrete and p-adic continuous

versions of a FitzHugh-Nagumo system on the p-adic one-dimensional ball. We give criteria

for the existence of Turing patterns. We show extensive simulations of some of these systems.

The simulations present that the Turing patterns are traveling waves on the p-adic unit ball.

This thesis is based on the publications [12, 13] written in collaboration with my thesis

supervisors, Dr. Wilson Álvaro Zúñiga Galindo (University of Texas Rio Grande Valley,

USA) and Dr. Leonardo Fabio Chacón Cortés (Pontificia Universidad Javeriana, Colombia).
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the CINVESTAV bureaucracy.

To my reviewers:

Dra. Oleksandra Antoniuk, Dr. Trond Digernes, and Dr. Andrei Khrennikov, thank you for

reviewing my thesis.

To CINVESTAV-IPN:

Thank you for allowing me to pursue my doctoral studies at this institution.



Overview

Nowadays, the theory of linear partial pseudo-differential equations for complex-valued func-

tions over p-adic fields is a well-established branch of mathematical analysis; see, e.g.,

[1,15,24,34,46,53,56,65], and references therein. Meanwhile, more is needed to know about

non-linear p-adic equations. We can mention some semilinear evolution equations solved us-

ing p-adic wavelets [1,51], a kind of equations of reaction-diffusion type and Turing patterns

studied in [65, 66], a p-adic analog of one of the porous medium equation [29, 46], the blow-

up phenomenon studied in [14], and non-linear integro-differential equations connected with

p-adic cellular networks [61].

In this work, we present the results obtained in the research article “Local Well-Posedness

of the Cauchy Problem for a p-adic Nagumo-Type Equation”. This work was carried out

in collaboration with Dr. Wilson Álvaro Zúñiga Galindo and Dr. Leonardo Fabio Chacón

Cortés, and it was published in p-Adic Numbers, Ultrametric Analysis and Applications, [12].

Among the ultrametric spaces, the field of p-adic numbers Qp plays a central role. Any p-adic

number is represented as a series of the form:

x = x−kp
−k + x−k+1p

−k+1 + · · ·+ x0 + x1p+ · · · , with x−k 6= 0, (0.0.1)

where p is a prime number, the xjs are p-adic digits, i.e., numbers in the set {0, 1, . . . , p− 1}

and k ∈ Z. The set of all the possible series of forms (0.0.1) constitutes the field of p-adic

numbers, Qp. There are natural field operations, sum, and multiplication, on series of form

(0.0.1), see, e.g., [32]. There is a natural norm in Qp defined as |x|p = pk (p-adic norm), for a

non-zero p-adic number x of the form (0.0.1). The field of p-adic numbers with the distance

induced by | · |p is a complete ultrametric space. The ultrametric property refers to the fact

that |x− y|p ≤ max{|x− z|p, |z − y|p} for any x, y, z ∈ Qp (strong triangle inequality).

We set [ξ]p := max
{

1, ‖ξ‖p
}

for ξ = (ξ1, . . . , ξn) ∈ Qn
p , where ‖ξ‖p = max1≤i≤n |ξi|p. Given

ϕ, % ∈ D(Qn
p ) (the Bruhat-Schwartz space, see section 1.1.4) and s ∈ R, we define the scalar

product:

〈ϕ, %〉s =

∫
Qnp

[ξ]sp ϕ̂(ξ)%̂(ξ)dnξ,

where the bar denotes the complex conjugate. We also set ‖ϕ‖2
s = 〈ϕ, ϕ〉s, and denote by

Hs := Hs(Qn
p ,C) = Hs(C) the completion of D(Qn

p ) with respect to 〈·, ·〉s.



We introduce a new family of non-linear evolution equations that we have named p-adic

Nagumo-type equations:

ut = −γDα
xu− u3 + (β + 1)u2 − βu+ P (Dx) (um) , x ∈ Qn

p , t ∈ [0, T ] ,

where γ > 0, β ≥ 0, Dα
x , α > 0, is the Taibleson operator, m is a positive integer and P (Dx)

is an operator of degree δ of the form P (D) =
∑k

j=0CjD
δj , where the Cj ∈ R and δk = δ.

We establish the local well-posedness of the following Cauchy problem:

u ∈ C1 ([0, T ] ;Hs) ;

ut = −γDα
xu− u3 + (β + 1)u2 − βu+ P (Dx) (um) , x ∈ Qn

p , t ∈ [0, T ] ;

u(0) = f0 ∈ Hs,

where T , γ, α, β > 0, and m is a positive integer, see Theorem 2.1.1. We show that the blow-

up phenomenon occurs for a certain subfamily, see Theorem 2.2.1, and provide numerical

simulations showing this phenomenon.

The theory of Sobolev-type spaces used here was developed in [64], see also [30, 53]. This

theory is based on the theory of countably Hilbert spaces of Gel’fand-Vilenkin [20]. Some

generalizations are presented in [21,22]. We use classical techniques of operator semigroups,

see, e.g., [11, 40]. The family of evolution equations studied here contains, as a particular

case, equations of the form:

ut = −γDα
xu− u3 + (β + 1)u2 − βu, (0.0.2)

where x ∈ Qn
p , t ∈ [0, T ], Dα

x is the Taibleson operator, that resembles the classical Nagumo-

type equations, see, e.g., [44].

In [39], the authors study the equations

ut = Duxx − u (u− κ) (u− 1)− εumx , (0.0.3)

where D > 0, κ ∈
(
0, 1

2

)
, ε > 0, x ∈ R, t > 0. They establish the local well-posedness of the

Cauchy problem for these equations in standard Sobolev spaces. There are several crucial

differences between (0.0.2) and (0.0.3). The operators uxx, u
m
x are local while the operators

Dα
x , P (Dx) (·m) are non-local. The p-adic heat equation ut = −γDα

xu has an arbitrary order



of pseudo-differentiability α > 0 in the spatial variable, while in the classical fractional heat

equation ut = D ∂µu
∂xµ

, the degree of pseudo-differentiability µ ∈ (0, 2]. This implies that the

Markov processes attached to ut = −γDα
xu are completely different to the ones attached to

ut = Duxx. In other words, the diffusion mechanisms in (0.0.2) and (0.0.3) are completely

different, since the Markov processes associated with equations (0.0.2) and (0.0.3), respec-

tively, are different. Notice that our non-linear term involves pseudo-derivatives of arbitrary

order P (Dx) (um), while in [39] only of first order umx . Of course, the p-adic Sobolev spaces

behave completely differently from their real counterparts, but the semigroup techniques are

the same in both cases since time is a non-negative real variable.

The following expression gives the Cauchy problem for which we study the blow-up phe-

nomenon: 
ut = −γDα

xu+ F (u) + Dα1
x u

3, x ∈ Qn
p , t ∈ [0, T ] ;

u(0) = f0 ∈ H∞,

(0.0.4)

where F (u) = −u3 + (β + 1)u2−βu. For the Cauchy problem (0.0.4), we establish Theorem

2.2.1. We present two numerical simulations for the solution of problem (0.0.4) (in dimension

one) for a suitable initial datum.

Several models involving parabolic equations have been used in neuroscience to propagate

nerve impulses. Among these models, the one of FitzHugh-Nagumo plays a central role.

Proposed in the 1950s by FitzHugh, this model accurately explains the propagation of electric

impulses along the nerve axon of the giant squid. See [43, 50] and the references therein.

Nowadays, the FitzHugh-Nagumo system is the simplest model to describe pulse propagation

in a spatial region. The simplest version of this system is
∂tu(x, t) = mu− u3 − v + Lu∇2u;

∂tv(x, t) = c(u− av − b) + Lv∇2v,

(0.0.5)

where the system parameters a, b, c,m, Lu, and Lv, are assumed to be positive, and the

functions u and v depend on time t ≥ 0 and the position x ∈ R on the domain of interest.

The variable u promotes the self-growth of u and, simultaneously, the growth of v and can

thus be named an activator, while v plays the role of an inhibitor that annuls the growth of

u.



We present the results obtained in the research article “Turing Patterns in a p-adic FitzHugh-

Nagumo System on the Unit Ball”. These results were obtained in collaboration with Dr.

Wilson Álvaro Zúñiga Galindo and Dr. Leonardo Fabio Chacón Cortés, and it was published

in p-Adic Numbers, Ultrametric Analysis and Applications, [13].

We introduce a p-adic counterpart of system (0.0.5). In the new model, x runs through

the ring of p-adic integers Zp; here, p is a fixed prime number, and t is a real variable.

Geometrically, Zp is an infinite rooted tree; analytically, Zp is a locally compact topological

additive group with a very rich mathematical structure. The system takes the following form:
∂u
∂t

(x, t) = f(u, v)− (Dα
0 − λ)u(x, t);

∂v
∂t

(x, t) = g(u, v)− d (Dα
0 − λ) v(x, t), x ∈ Zp, t ≥ 0,

(0.0.6)

where Dα
0 − λ is the Vladimirov operator on Zp, and f(u, v) = µu − u3 − v, g(u, v) =

γ(u − δv − β), where µ, β are real numbers, and γ, δ, d are positive real numbers. This

system admits a natural discretization of the form:
∂
∂t

[uL(I, t)]I∈GL = [µuL(I, t)− u3
L(I, t)− vL(I, t)]I∈GL − A

α
L [uL(I, t)]I∈GL ;

∂
∂t

[vL(I, t)]I∈GL = [γ (uL(I, t)− δvL(I, t)− β)]I∈GL − dA
α
L [vL(I, t)]I∈GL ,

(0.0.7)

whereGL is a finite rooted tree with L levels, and matrix AαL =
[
AαK,I

]
K,I∈GL

is a discretization

of operator Dα
0 − λ, where

AαK,I =


p−

L
2

1−pα
1−p−α−1

1
|K−I|α+1

p
if K 6= I;

−p−L2 1−pα
1−p−α−1

∑
K 6=I

1
|K−I|α+1

p
if K = I.

We present Turing instability criteria for systems (0.0.6) and (0.0.7), see Theorems 3.1.1,

3.2.1. The conditions for the existence of Turing patterns for both systems are essentially

the same, except for one condition which involves a subset Γ of the eigenvalues of Dα
0 − λ,

in the case of the system (0.0.6), and a subset ΓL of the eigenvalues of matrix AαL, in the

case of (0.0.7). We provide extensive numerical simulations of some systems of type (0.0.7);

in particular, these experiments show that the Turing patterns are traveling waves inside

the unit ball Zp. Our numerical experiments also show that the eigenvalues of matrix AαL

approximate the eigenvalues of Dα
0 − λ. We conjecture that the Turing patterns of (0.0.7)



converge, in some sense, to the Turing patterns of (0.0.6). The results of Digernes and his

collaborators on the problem of approximation of spectra of Vladimirov operator Dα by

matrices of type AαL, [5, 17] provide strong support to our conjecture.

Nowadays, the study of Turing patterns on networks is a relevant area. In the 70s, Othmer

and Scriven pointed out that Turing instability can occur in network-organized systems

[47,48]. Since then, reaction-diffusion models on networks have been studied intensively, see,

e.g., [2,8,9,16,27,41,42,45,48,54,62], and the references therein. In particular, Turing patterns

of discrete FitzHugh-Nagumo systems have also been studied [10]. In [66,67], the last author

established the existence of Turing patterns for specific p-adic systems of reaction-diffusion

equations. Still, these papers do not consider the problem of the numerical approximation of

the Turing patterns. Digernes and his collaborators have studied extensively the problem of

approximation of spectra of Vladimirov operator Dα by matrices of type AαL, [5, 17].

This work presents numerical approximations of Turing patterns associated with specific p-

adic FitzHugh-Nagumo systems. For these systems, we give various visualizations of the

solutions, intending to show several aspects of the Turing patterns.

This thesis is structured as follows. In Chapter 1, we review some essential aspects of the

p-adic analysis, the p-adic fractional operators and the p-adic heat equation on the unit

ball, technical results about Sobolev-type spaces and p-adic pseudo-differential operators,

the definition of the spaces D−LM , and fix the notation. Chapter 2 is organized as follows.

Section 2.1 shows the local well-posedness of the p-adic Nagumo-type equations. See Theorem

2.1.1. Section 2.2 shows a subfamily of p-adic Nagumo-type equations whose solutions blow

up in finite time. See Theorem 2.2.1. Section 2.3 presents a numerical simulation showing

the blow-up phenomenon. Chapter 3 is organized as follows. Section 3.1 introduces our

p-adic FitzHugh-Nagumo system and gives a Turing instability criterion, see Theorem 3.1.1.

In Section 3.2, we study a discrete version of our p-adic FitzHugh-Nagumo system and

give a Turing instability criterion, see Theorem 3.2.1. Finally, Section 3.3 provides extensive

numerical simulation for some discrete FitzHugh-Nagumo systems and their Turing patterns.

In Chapter 4, we give conclusions about the work done in Chapters 2 and 3.
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Chapter 1

Mathematical preliminaries

1.1 Essential Ideas of p-Adic Analysis

In this section, we collect some basic results on p-adic analysis that we use throughout the

work. For a detailed exposition, the reader may consult [1, 33,55,58].

1.1.1 The field of p-adic numbers

Along this work, p will denote a prime number. The field of p-adic numbers Qp is defined as

the completion of the field of rational numbers Q with respect to the p-adic norm | · |p, which

is defined as

|x|p =


0 if x = 0;

p−γ if x = pγ a
b
,

where a and b are integers coprime with p. The integer γ := ord(x), with ord(0) := +∞, is

called the p-adic order of x. We extend the p-adic norm to Qp by taking

‖x‖p := max
1≤i≤n

|xi|p, for x = (x1, . . . , xn) ∈ Qp. (1.1.1)

We define ord(x) : min1≤i≤n{ord(xi)}, then ‖x‖p = p−ord(x). The metric space (Qn
p , ‖·‖p) is

a complete ultrametric space. As a topological space Qp is homeomorphic to a Cantor-like

subset of the real line, see, e.g., [1, 58].

Any p-adic number x 6= 0 has a unique expansion of the form

x = pord(x)

∞∑
j=0

xjp
j,

1



where xj ∈ {0, . . . , p− 1} and x0 6= 0. By using this expansion, we define the fractional part

of x ∈ Qp, denoted {x}p, as the rational number

{x}p =


0 if x = 0 or ord(x) ≥ 0;

pord(x)
∑−ordp(x)−1

j=0 xjp
j if ord(x) < 0.

1.1.2 Basic topology of Qn
p

For r ∈ Z, denote by Bn
r (a) = {x ∈ Qn

p : ‖x − a‖p ≤ pr} the ball of radius pr with center

at a = (a1, . . . , an) ∈ Qn
p , and take Bn

r (0) := Bn
r . Note that Bn

r (a) = Br(a1)× · · · × Br(an),

where Br(ai) := B1
r (ai) = {x ∈ Qp : |xi − ai|p ≤ pr} is the one-dimensional ball of radius pr

with center at ai ∈ Qp. The ball Bn
0 equals the product of n copies of B0 = Zp, the ring of

p-adic interger . We also denote by Snr (a) = {x ∈ Qn
p : ‖x − a‖p = pr} the sphere of radius

pr with center at a = (a1, . . . , an) ∈ Qn
p , and take Snr (0) := Snr . We notice that S1

0 = Z×p
(the group of units of Zp). The balls and spheres are both open and closed subsets in Qn

p . In

addition, two balls in Qn
p are either disjoint or one is contained in the other.

As a topological space
(
Qn
p , ‖·‖p

)
is totally disconnected, i.e., the only connected subsets of

Qn
p are the empty set and the points. A subset of Qn

p is compact if and only if it is closed

and bounded in Qn
p , see, e.g., [58, Section 1.3], or [1, Section 1.8].

Notation 1.1.1. We will use Ω (p−r‖x− a‖p) to denote the characteristic function of the

ball Bn
r (a). For more general sets, we will use the notation 1A for the characteristic function

of a set A.

1.1.3 Integration in Qn
p

We review Haar’s theorem for locally compact topological groups, which allow us to develop

an integration theory in Qn
p . For further details, the reader may consult [1, Chapter 3]

and [58, Chapter 4].

Theorem 1.1.1 ([23, Theorem B, Section 58]). Let (G,+) be a locally compact topological

group. There exists a Borel measure dx, unique up to multiplication by a positive constant,

such that
∫
U
dx > 0 for every non empty Borel open set U , and

∫
x+E

dx =
∫
E
dx, for every

Borel set E.
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The measure dx is called a Haar measure of G. Since (Qn
p ,+) is a locally compact topological

group, by Theorem 1.1.1 there exists a Haar measure of Qp, which we denote by dnx. We

normalize this measure using the condition
∫
Znp
dnx = 1, then dnx is unique. The measure

dnx grees with the product measure dx1 · · · dxn and also is invariant under translations, i.e.,

dn(x+ a) = dnx.

1.1.4 The Bruhat-Schwartz space

A complex-valued function ϕ defined on Qn
p is called locally constant if for any x ∈ Qn

p there

exists an integer l(x) ∈ Z such that

ϕ(x+ x′) = ϕ(x) for any x′ ∈ Bn
l(x). (1.1.2)

A function ϕ : Qn
p → C is called a Bruhat-Schwartz function (or a test function) if it is

locally constant with compact support. Any test function can be represented as a linear

combination, with complex coefficients, of characteristic functions of balls. The C-vector

space of Bruhat-Schwartz functions is denoted by D(Qn
p ) := D. We denote by DR(Qn

p ) := DR

the R-vector space of Bruhat-Schwartz functions. For ϕ ∈ D(Qn
p ), we have that ϕ has

compact support, which implies that there exists the largest number l = l(ϕ) satisfying

(1.1.2) called the exponent of local constancy (or the parameter of constancy) of ϕ.

We denote by Dlm(Qn
p ) the finite-dimensional space of test functions from D(Qn

p ) having

supports in the ball Bm and with parameters of constancy ≥ l. We now define a topology

on D as follows. We say that a succession {ϕj}j∈N of functions in D converges to zero, if the

two following conditions hold:

(1) there are two fixed integers k0 and m0 such that each ϕj ∈ Dk0m0
;

(2) ϕj → 0 uniformly. D endowed with the above topology becomes a topological vector

space.

1.1.5 Lρ spaces

Given ρ ∈ [1,∞), we denote by Lρ := Lρ
(
Qn
p

)
:= Lρ

(
Qn
p , dx

)
, the C-vector space of all the

complex-valued functions g satisfying∫
Qnp

|g (x)|ρ dnx <∞.
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The corresponding R-vector spaces are denoted as LρR := LρR
(
Qn
p

)
= LρR

(
Qn
p , d

nx
)
, 1 ≤ ρ <

∞.

If U is an open subset of Qn
p , D(U) define the space of test functions with supports contained

in U , then D(U) is dense in

Lρ (U) =

ϕ : U → C; ‖ϕ‖ρ =


∫
U

|ϕ (x)|ρ dx


1
ρ

<∞

 ,

where dx is the normalized Haar measure on
(
Qn
p ,+

)
, for 1 ≤ ρ < ∞, see, e.g., [1, Section

4.3]. We denote by LρR (U) the real counterpart of Lρ (U).

1.1.6 The Fourier transform

Set χp(y) = exp(2πi{y}p) for y ∈ Qp. The map χp(·) is an additive character on Qp, i.e.,

a continuous map from (Qp,+) into S (the unit circle considered as multiplicative group)

satisfying χp(x0 + x1) = χp(x0)χp(x1), x0, x1 ∈ Qp. The additive characters of Qp form an

Abelian group which is isomorphic to (Qp,+). The isomorphism is given by κ → χp(κx),

see, e.g., [1, Section 2.3].

Given ξ = (ξ1, . . . , ξn) and x = (x1, . . . , xn) ∈ Qn
p , we set ξ · x :=

∑n
j=1 ξjxj. The Fourier

transform of ϕ ∈ D(Qn
p ) is defined as

(Fϕ)(ξ) =

∫
Qnp

χp(ξ · x)ϕ(x)dxn for ξ ∈ Qn
p ,

where dxn is the normalized Haar measure on Qn
p . We will also use the notation Fx→ξϕ and

ϕ̂ for the Fourier transform of ϕ.

The Fourier transform extends to L2. If f ∈ L2, its Fourier transform is defined as

(Ff)(ξ) = lim
k→∞

∫
‖x‖p≤pk

χp(ξ · x)f(x)dxn, for ξ ∈ Qn
p ,

where the limit is taken in L2.

1.1.7 Distributions

The C-vector space D′
(
Qn
p

)
:= D′ of all continuous linear functionals on D(Qn

p ) is called

the Bruhat-Schwartz space of distributions. Every linear functional on D is continuous, i.e.,
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D′ agrees with the algebraic dual of D, see, e.g., [58, Chapter 1, VI.3, Lemma]. We denote

by D′R
(
Qn
p

)
:= D′R the dual space of DR.

We endow D′ with the weak topology, i.e., a sequence {Tj}j∈N in D′ converges to T if

limj→∞ Tj (ϕ) = T (ϕ) for any ϕ ∈ D. The map

D′ ×D → C

(T, ϕ) → T (ϕ)

is a bilinear form which is continuous in T and ϕ separately. We call this map the pairing

between D′ and D. From now on we will use (T, ϕ) instead of T (ϕ).

Every f in L1
loc defines a distribution f ∈ D′

(
Qn
p

)
by the formula

(f, ϕ) = f (x)ϕ (x) dx.

Such distributions are called regular distributions. Notice that for f ∈ L2
R, (f, ϕ) = 〈f, ϕ〉,

where 〈·, ·〉 denotes the scalar product in L2
R.

1.1.8 The Fourier transform of a distribution

The Fourier transform F [T ] of a distribution T ∈ D′
(
Qn
p

)
is defined by

(F [T ] , ϕ) = (T,F [ϕ]) for all ϕ ∈ D(Qn
p ).

The Fourier transform T → F [T ] is a linear (and continuous) isomorphism from D′
(
Qn
p

)
onto D′

(
Qn
p

)
. Furthermore, T = F [F [T ] (−ξ)].

1.2 p-Adic fractional operators

1.2.1 The Taibleson operator

Let α > 0, the Taibleson operator is defined as

(Dαϕ)(x) = F−1
ξ→x(‖ξ‖

α
p (Fx→ξϕ)),

for ϕ ∈ D(Qn
p ). This operator admits the extension

(Dαf)(x) =
1− pα

1− p−α−n

∫
Qnp

‖y‖−α−np {f(x− y)− f(x)}dny
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to locally constant functions satisfying∫
‖x‖p>1

‖x‖−α−np |f (x)| dnx <∞.

The Taibleson operator Dα is the p-adic analog of the fractional derivative. If n = 1, Dα

agrees with the Vladimirov operator. The operator Dα does not satisfy the chain rule neither

Leibniz formula. We also use the notation Dα
x , when the Taibleson operator acts on functions

depending on the variables x ∈ Qn
p and t ≥ 0.

Given 0 = δ0 < δ1 < · · · < δk−1 < δk = δ, we define

P (D) =
k∑
j=0

CjD
δj , where the Cj ∈ R.

1.2.2 The Vladimirov operator

The one-dimensional fractional operator Dα
x : ϕ(x) → Dα

xϕ(x) is defined on D (Qp) as a

convolution operator

(Dα
xϕ) (x) = f−α(x) ∗ ϕ(x), x ∈ Qp, Re(α) 6= −1. (1.2.1)

The operator Dα
x is called the operator of (fractional) differentiation of order α with respect

to x, for Re(α) > 0; the operator of (fractional) integration of order α with respect to x, for

Re(α) < 0, Re(α) 6= −1; for α = 0,D0
xϕ(x) = δ(x) ∗ ϕ(x) = ϕ(x) is the identity operator.

For Re(α) > 0, the relation (1.2.2) is an extension of (1.2.1)

(Dα
xϕ) (x) =

pα − 1

1− p−α−1

∫
Qp

ϕ(x)− ϕ(ξ)

|x− ξ|α+1
p

dξ

=

∫
Qp

|ξ|αpFx→ξϕ(x)χp(−ξx)dξ, x ∈ Qp.

(1.2.2)

If Re(α) < 0, Re(α) 6= −1, the relation (1.2.1) implies that

(Dα
xϕ) (x) =

1− pα

1− p−α−1

∫
Qp

|x− ξ|−αp ϕ(ξ)dξ

=



∫
Qp

|ξ|αjp Fx→ξϕ(x)χp(−ξx)dξ, Re(α) > −1;

∫
Qp

|ξ|αp (Fx→ξϕ(x)χp(−ξx)−Fx→ξ(0)) dξ, Re(α) < −1.

(1.2.3)
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1.2.3 The p-adic heat equation

For α > 0, the Vladimirov-Taibleson operator Dα is defined as

D(Qp) → L2(Qp) ∩ C (Qp)

ϕ → Dαϕ,

where

(Dαϕ) (x) =
1− pα

1− p−α−1

∫
Qp

ϕ (x− y)− ϕ (x)

|y|α+1
p

dy.

We use the notation Dα
x , in cases where the operator acts on functions depending on several

variables, to indicate that the Vladimirov-Taibleson derivative is with respect to the variable

x.

The set of functions {Ψrnj} defined as

Ψrnj(x) = p−
r
2χp

(
p−1j (prx− n)

)
Ω
(
|prx− n|p

)
,

where r ∈ Z, j ∈ {1, . . . , p− 1}, and n runs through a fixed set of representatives of Qp/Zp,

is an othonormal basis of L2 (Qp) consisting of eigenvectors of operator Dα :

DαΨrnj = p(1−r)αΨrnj for any r, n, j,

[1, Theorem 9.4.2], [30, Theorem 3.29]. We set L(Zp) to be the C-vector space generated by

the functions Ψrnj(x) with support in Zp, which are exactly those satisfying

r ≤ 0, n ∈ prZp ∩Qp/Zp. j ∈ {1, . . . , p− 1}. (1.2.4)

Note that L(Zp) is a closed subspace of L2(Zp).

The p-adic analogue of the heat equation is

∂u (x, t)

∂t
+ aDαu (x, t) = 0, with a > 0.

The solution of the Cauchy problem attached to the heat equation with initial datum

u (x, 0) = ϕ (x) ∈ D(Qp) is given by

u (x, t) =

∫
Qp

Z (x− y, t)ϕ (y) dy,
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where Z (x, t) is the p-adic heat kernel defined as

Z (x, t) =

∫
Qp

χp (−xξ) e−at|ξ|
α
p dξ, (1.2.5)

where χp (−xξ) is the standard additive character of the group (Qp,+). The p-adic heat

kernel is the transition density function of a Markov stochastic process with space state Qp,

see, e.g., [33, 63].

1.2.4 The p-adic heat equation on the unit ball

We define the operator Dα
0 , α > 0, by restricting Dα to D(Zp) and considering (Dαϕ) (x)

only for x ∈ Zp. The operator Dα
0 satisfies

(Dα
0 − λ)ϕ(x) =

1− pα

1− p−α−1

∫
Zp

ϕ(x− y)− ϕ(x)

|y|α+1
p

dy, (1.2.6)

for ϕ ∈D(Zp), with

λ =
p− 1

pα+1 − 1
pα.

Consider the Cauchy problem
∂u(x,t)
∂t

+ (Dα
0 − λ)u (x, t) = 0, x ∈ Zp, t > 0;

u (x, 0) = ϕ (x) , x ∈ Zp,

where ϕ ∈D(Zp). The solution of this problem is given by

u (x, t) =

∫
Zp

Z0(x− y, t)ϕ (y) dy, x ∈ Zp, t > 0,

where

Z0(x, t) := eλtZ(x, t) + c(t), x ∈ Zp, t > 0,

c(t) := 1− (1− p−1)eλt
∞∑
n=0

(−1)n

n!
tn

1

1− p−nα−1
,

and Z(x, t) is given (1.2.5). The function Z0(x, t) is non-negative for x ∈ Zp, t > 0, and∫
Zp

Z0(x, t)dx = 1,

[33]. Furthermore, Z0(x, t) is the transition density function of a Markov process with space

state Zp.

8



1.2.5 p-Adic wavelets supported in balls

The set of functions {Ψrnj} defined as

Ψrnj (x) = p
−r
2 χp

(
p−1j (prx− n)

)
Ω
(
|prx− n|p

)
, (1.2.7)

where r ∈ Z, j ∈ {1, · · · , p− 1}, and n runs through a fixed set of representatives of Qp/Zp,

is an orthonormal basis of L2(Qp) consisting of eigenvectors of operator Dα :

DαΨrnj = p(1−r)αΨrnj for any r, n, j,

see, e.g., [1, Theorem 9.4.2], [30, Theorem 3.29]. By using this basis, it is possible to construct

an orthonormal basis for L2(Zp):

Proposition 1.2.1 ([68, Propositions 1, 2]). The set of functions{
Ω
(
|x|p
)}⋃ ⋃

j∈{1,...,p−1}

⋃
r≤0

⋃
np−r∈Zp
n∈Qp/Zp

{Ψrnj (x)} (1.2.8)

is an orthonormal basis of L2 (Zp). Furthermore,

L2(Zp) = CΩ
(
|x|p
)⊕

L2
0(Zp), (1.2.9)

where

L2
0(Zp) =

f ∈ L2(Zp);
∫
Zp

f dx = 0

 .

Now, by using (1.2.6), (2.2.2), (1.2.8), the functions in (1.2.8) are eigenfunctions of Dα
0 − λ:

(Dα
0 − λ) Ψrnj =

(
p(1−r)α − λ

)
Ψrnj (1.2.10)

for any r ≤ 0, n ∈ prZp ∩Qp/Zp, j ∈ {1, . . . , p− 1}, and

(Dα
0 − λ) Ω

(
|x|p
)

= 0, for x ∈ Zp. (1.2.11)

An eigenvalue problem in the unit ball

We now consider the following eigenvalue problem:
(Dα

0 − λ) θ (x) = κθ (x) , κ ∈ R

θ ∈ L2
R (Zp) .

(1.2.12)
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By using (1.2.10)-(1.2.11), the functions Ψrnj (x) given in (1.2.8) are complex-valued eigen-

functions of (1.2.12) with eigenvalues κ ∈
{
p(1−r)α − λ; r ≤ 0

}
. Therefore

p
−r
2 cos

({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
,

p
−r
2 sin

({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
,

with |p−rn|p ≤ 1 and r ≤ 0, n ∈ prZp ∩Qp/Zp, j ∈ {1, . . . , p− 1}, are real-valued eigenfunc-

tions of (1.2.12) with κ = p(1−r)α−λ. Furthermore, any f(x) ∈ L2
R (Zp) admits an expansion

of the form

f(x) =
∑
rnj

p
−r
2 Re(Arnj)cos

({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
−
∑
rnj

p
−r
2 Im(Arnj)sin

({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
(1.2.13)

+ A0Ω
(
|x|p
)

where

Re(Arnj) = p
−r
2

∫
Zp

f (x) cos
({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
dx,

Im(Arnj) = p
−r
2

∫
Zp

f (x) sin
({
pr−1jx− p−1nj

}
p

)
Ω
(
|prx− n|p

)
dx,

and

A0 =

∫
Zp

f(x)dx.

1.3 Sobolev-Type Spaces

The Sobolev-type spaces used here were introduce in [53, 64]. We follow here closely the

presentation given in [30, Sections 10.1, 10.2].

We set [ξ]p := max
{

1, ‖ξ‖p
}

for ξ = (ξ1, . . . , ξn) ∈ Qn
p . Given ϕ, % ∈ D(Qn

p ) and s ∈ R, we

define the scalar product:

〈ϕ, %〉s =

∫
Qnp

[ξ]sp ϕ̂(ξ)%̂(ξ)dnξ,

where the bar denotes the complex conjugate. We also set ‖ϕ‖2
s = 〈ϕ, ϕ〉s, and denote by

Hs := Hs(Qn
p ,C) = Hs(C) the completion of D(Qn

p ) with respect to 〈·, ·〉s. Notice that if
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r, s ∈ R, with r ≤ s, then ‖·‖r ≤ ‖·‖s and Hs ↪→ Hr (continuous embedding). In particular,

· · · ⊃ H−2 ⊃ H−1 ⊃ H0 ⊃ H1 ⊃ H2 · · · ,

where H0 = L2. We set

H∞(Qn
p ,C) = H∞ :=

⋂
s∈N

Hs.

Since H[s]+1 ⊆ Hs ⊆ H[s] for s ∈ R+, where [·] is the integer part function, then H∞ =⋂
s∈R+
Hs. With the topology induced by the family of seminorms {‖ · ‖l}l∈N, H∞ becomes a

locally convex space, which is metrizable. Indeed,

d(f, g) := max
l∈N

{
2−l

‖f − g‖l
1 + ‖f − g‖l

}
, with f, g ∈ H∞,

is a metric for the topology of H∞ considered as a convex topological space. The metric space

(H∞, d) is the completion of the metric space (D(Qn
p ), d), cf. [30, Lemma 10.4]. Furthermore,

H∞ ⊂ L∞ ∩Cunif ∩L1 ∩L2, and H∞(Qn
p ,C) is continuously embedded in C0(Qn

p ,C). This is

the non-Archimedean analog of the Sobolev embedding theorem, cf. [30, Theorem 10.15 ].

Lemma 1.3.1. If s1 ≤ s ≤ s2, with s = θs1+(1−θ)s2, 0 ≤ θ ≤ 1, then ‖f‖s ≤ ‖f‖
θ
s1
‖f‖(1−θ)

s2
.

Proof. Take f ∈ Hs, then by using the Hölder inequality for the exponents 1
q

= θ, 1
q′

= 1− θ,

‖f‖2
s =

∫
Qnp

[ξ]sp

∣∣∣f̂ (ξ)
∣∣∣2 dnξ =

∫
Qnp

[ξ]θs1+(1−θ)s2
p

∣∣∣f̂ (ξ)
∣∣∣2(θ+(1−θ))

dnξ

=

∫
Qnp

(
[ξ]s1p

∣∣∣f̂ (ξ)
∣∣∣2)θ ([ξ]s2p

∣∣∣f̂ (ξ)
∣∣∣2)1−θ

dnξ

≤

∫
Qnp

[ξ]s1p

∣∣∣f̂ (ξ)
∣∣∣2 dnξ


θ∫

Qnp

[ξ]s2p

∣∣∣f̂ (ξ)
∣∣∣2 dnξ


1−θ

dnξ.

The following characterization of the spaces Hs and H∞ is useful:

Lemma 1.3.2 ([30, Lemma 10.8]). (i) Hs = {f ∈ L2; ‖f‖s <∞} = {T ′ ∈ D; ‖T‖s <∞},

(ii) H∞ = {f ∈ L2; ‖f‖s <∞ for any s ∈ R+} = {T ′ ∈ D; ‖T‖s <∞ for any s ∈ R+}. The

equalities in (i)-(ii) are in the sense of vector spaces.

Proposition 1.3.1. If s > n/2, then Hs is closed for the product of functions. That is, if

f, g ∈ Hs, then fg ∈ Hs and ‖fg‖s ≤ C(n, s) ‖f‖s ‖g‖s, where C(n, s) is a positive constant.
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Proof. By the ultrametric property of ‖·‖p, ‖ξ‖p ≤ max
{
‖ξ − η‖p , ‖η‖p

}
for ξ, η ∈ Qn

p , we

have max
{

1, ‖ξ‖p
}
≤ max

{
1, ‖ξ − η‖p , ‖η‖p

}
, which implies that[

max
{

1, ‖ξ‖p
}]s
≤ max

{
1, ‖ξ − η‖sp , ‖η‖

s
p

}
= max

{
1, ‖ξ − η‖p , ‖η‖p

}s
for s > 0. Therefore

[ξ]sp ≤ [ξ − η]sp + [η]sp . (1.3.1)

Now, for f, g ∈ L2, by using (1.3.1),

[ξ]
s
2
p

∣∣∣f̂ g (ξ)
∣∣∣ =

∣∣∣∣∣∣∣[ξ]
s
2
p

∫
Qnp

f̂(ξ − η)ĝ(η)dnη

∣∣∣∣∣∣∣
≤
∫
Qnp

[ξ − η]
s
2
p

∣∣∣f̂(ξ − η)
∣∣∣ |ĝ(η)| dnη +

∫
Qnp

[η]
s
2
p |ĝ(η)|

∣∣∣f̂(ξ − η)
∣∣∣ dnη

= [ξ]
s
2
p

∣∣∣f̂(ξ)
∣∣∣ ∗ |ĝ(ξ)|+

∣∣∣f̂(ξ)
∣∣∣ ∗ [ξ]

s
2
p |ĝ(ξ)| .

Then

‖fg‖s ≤
∥∥∥[ξ]

s
2
p

∣∣∣f̂(ξ)
∣∣∣ ∗ |ĝ(ξ)|+

∣∣∣f̂(ξ)
∣∣∣ ∗ [ξ]

s
2
p |ĝ(ξ)|

∥∥∥
2

≤
∥∥∥[ξ]

s
2
p

∣∣∣f̂(ξ)
∣∣∣ ∗ |ĝ(ξ)|

∥∥∥
2

+
∥∥∥∣∣∣f̂(ξ)

∣∣∣ ∗ [ξ]
s
2
p |ĝ(ξ)|

∥∥∥
2
.

Since [ξ]
s
2
p

∣∣∣f̂(ξ)
∣∣∣, [ξ]

s
2
p |ĝ(ξ)| ∈ L2, by using the Cauchy-Schwarz inequality with s > n/2, we

have ‖|ĝ(ξ)|‖1 ≤ A(n, s) ‖g‖s,
∥∥∥∣∣∣f̂(ξ)

∣∣∣∥∥∥
1
≤ A(n, s) ‖f‖s, i.e., |ĝ(ξ)|,

∣∣∣f̂(ξ)
∣∣∣ ∈ L1. Now, by a

Young-type inequality, see [55, Chapter II, Theorem 1.7], we obtain that

‖fg‖s ≤ ‖f‖s ‖ĝ‖1 + ‖g‖s
∥∥∥f̂∥∥∥

1
≤ 2A(n, s) ‖f‖s ‖g‖s .

Lemma 1.3.3 ([30, Lemma 10.13 and Theorem 10.15]). For s ∈ R+, the mapping P (D) :

Hs+2δ −→ Hs is a well-defined continuous mapping.

Lemma 1.3.4. Take s− 2δ > n/2 and f, g ∈ Hs+2δ. Then

‖P (D) (fg)‖s ≤ C(n, s, δ) ‖f‖s+2δ ‖g‖s+2δ ,

where C(n, s, δ) is a positive constant that depends of n, s and δ.
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Proof. Since s > n/2 and f, g ∈ Hs+2δ, by Proposition 1.3.1, fg ∈ Hs+2δ, and by Lemma

1.3.3, P (D) (fg) ∈ Hs. Now by using Proposition 1.3.1,

‖P (D) (fg)‖s ≤
k∑
j=0

|Cj|
∥∥Dδj (fg)

∥∥
s

=
k∑
j=0

|Cj|

∫
Qnp

[ξ]sp ‖ξ‖
2δj
p

∣∣∣f̂ g (ξ)
∣∣∣2 dnξ


1
2

≤
k∑
j=0

|Cj|

∫
Qnp

[ξ]s+2δj
p

∣∣∣f̂ g (ξ)
∣∣∣2 dnξ


1
2

=
k∑
j=0

|Cj| ‖fg‖s+2δj
≤

k∑
j=0

|Cj|C(n, s, δj) ‖f‖s+2δj
‖g‖s+2δj

≤

(
k∑
j=0

|Cj|C(n, s, δj)

)
‖f‖s+2δ ‖g‖s+2δ .

1.4 The Spaces D−LM

We fix M ∈ Z and L ∈ N, with L ≥ −M , and define

GL,M = p−MZp/pLZp.

Then, GL,M is a finite ring, with #GL,M = pL+M elements. We define the following set of

representatives for GL,M :

I = I−Mp
−M + I−M+1p

−M+1 + . . .+ IL−1p
L−1,

where the Ij’s are p-adic digits, i.e., elements from {0, 1, . . . , p− 1}.

We define D−LM to be the R-vector space formed by test functions ϕ supported in the ball

p−MZp, having the form

ϕ(x) = p
L
2

∑
I∈GL,M

ϕ(I)Ω
(
pL|x− I|p

)
, with ϕ(I) ∈ R.

Since Ω
(
pL|x− I|p

)
Ω
(
pL|x− J |p

)
= 0 if I 6= J , the set

{
p
L
2 Ω
(
pL|x− I|p

)
: I ∈ GL,M

}
13



is an orthonormal basis for DLM . Then, by using that

‖ϕ‖L2 =

√√√√pL
∑

I∈GL,M

|ϕ(I)|2
∫

p−MZp

Ω (pL|x− I|p) dx

=

√ ∑
I∈GL,M

|ϕ(I)|2,

we have (
D−LM , ‖ · ‖L2

)
'
(
R#GL,M , ‖ · ‖R

)
as Banach spaces,

where ‖ · ‖R denotes the usual norm of R#GL,M .
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Chapter 2

Local Well-Posedness of the Cauchy

Problem for a p-Adic Nagumo-Type

Equation

We introduce a new family of p-adic nonlinear evolution equations. We establish the local

well-posedness of the Cauchy problem for these equations in Sobolev-type spaces. For a

certain subfamily, we show that the blow-up phenomenon occurs and provide numerical

simulations showing this phenomenon.

2.1 Main result

Consider the following Cauchy problem:

u ∈ C1 ([0, T ] ;Hs) ;

ut = −γDα
xu− u3 + (β + 1)u2 − βu+ P (Dx) (um) , x ∈ Qn

p , t ∈ [0, T ] ;

u(0) = f0 ∈ Hs,

(2.1.1)

where T , γ, α, β > 0, and m is a positive integer. The main result of this work is the

following:

Theorem 2.1.1. For s > n/2 + 2δ, the Cauchy problem (2.1.1) is locally well-posed in Hs.
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2.1.1 Preliminary results

We denote by V (t) = e−(γDα+βI)t, t ≥ 0, the semigroup in L2 generated by the operator

A = −γDα − βI, that is,

V (t)f (x) = F−1
ξ→x

(
e−(γ‖ξ‖αp+β)tFx→ξf

)
, for f ∈ L2, t ≥ 0.

Lemma 2.1.1. {V (t)}t≥0 is a C0-semigroup of contractions inHs, s ∈ R, satisfying ‖V (t)‖s ≤

e−βt for t ≥ 0. Moreover, u(x, t) = V (t)f0(x) is the unique solution to the following Cauchy

problem: 

u ∈ C1 ([0, T ] ;Hs) ;

ut = −γDαu− βu, t ∈ [0, T ] ;

u(x, 0) = f0(x) ∈ Hs,

(2.1.2)

where T is an arbitrary positive number.

Proof. We just verify the strongly continuity of the semigroup. Since

∥∥F−1
ξ→x

(
e−(γ‖ξ‖αp+β)tFx→ξf

)
− f (x)

∥∥2

s

=

∫
Qnp

[ξ]sp

∣∣∣f̂ (ξ)
∣∣∣2 {1− e−(γ‖ξ‖αp+β)t

}2
dnξ ≤ ‖f‖2

s ,

it follows from the Dominated Convergence Theorem that

lim
t→0+

‖V (t)f − f‖s = 0.

The existence and uniqueness of a solution for the Cauchy problem (2.1.2) follows from a

well-known result, see, e.g., [40, Theorem 4.3.1].

Lemma 2.1.2. Let f0 ∈ Hs, s ∈ R, λ ≥ 0. Then, there exists a positive constant C(λ, α)

that depends of λ and α such that

‖V (t)f0‖s+λ ≤ e−βt

(
1 + C(λ, α)

(
λ

2αγt

) λ
2α

)
‖f0‖s for t > 0. (2.1.3)
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Proof. We first notice that

‖V (t) f0‖2
s+λ =

∫
Qnp

[ξ]s+λp e−2(γ‖ξ‖αp+β)t |f0 (ξ)|2 dnξ

≤ e−2βt

(
sup
ξ∈Qnp

[ξ]λpe
−2γ‖ξ‖αp t

)
‖f0‖2

s ≤ e−2βt

(
1 + sup

ξ∈QnprZnp
‖ξ‖λp e

−2γ‖ξ‖αp t

)
‖f0‖2

s

≤ e−2βt

(
1 + sup

ξ∈Qnp
‖ξ‖λp e

−2γ‖ξ‖αp t

)
‖f0‖2

s .

We now set y = ‖ξ‖p and h(y) = yλe−2γyαt. By using the fact that h(y) reaches its maximum

at ymax =
(

λ
2αγt

) 1
α
, we conclude that

sup
ξ∈Qnp
‖ξ‖λp e

−2γ‖ξ‖αp t ≤
(

λ

2αγt

) λ
α

e−
λ
α ≤ C (λ, α)

(
λ

2αγt

) λ
α

.

Proposition 2.1.1. Let s > n/2 + 2δ and F (u) = (β + 1)u2 − u3 + P (D) (um). Then

F : Hs −→ Hs−2δ is a continuous function satisfying

‖F (u)− F (w)‖s−2δ≤ L(‖u‖s, ‖w‖s)‖u− w‖s, (2.1.4)

for u,w ∈ Hs, here L(·, ·) is a continuous function, which is not decreasing with respect to

each of their arguments. In particular,

‖F (u)‖s−2δ ≤ L(‖u‖s, 0)‖u‖s. (2.1.5)

Proof. We first notice that

F (u)− F (w) = (β + 1)(u2 − w2)− (u3 − w3) + P (D) (um − wm)

= (β + 1)(u− w) (u+ w)− (u− w)(u2 + uw + w2) + P (D) ((u− w)q(u,w)),

where q(u,w) =
∑m−1

k=0 u
kwm−1−k. By using Proposition 1.3.1 and Lemma 1.3.4, the condition

s > n/2 implies that if u,w ∈ Hs, then any polynomial function in u,w belongs to Hs, and

‖F (u)− F (w)‖s−2δ ≤ C {(β + 1)‖u− w‖s−2δ‖u+ w‖s−2δ+

‖u− w‖s−2δ‖u2 + uw + w2‖s−2δ + ‖u− w‖s ‖q(u,w)‖s
}
,

where C = C(n, s, δ). Then

‖F (u)− F (w)‖s−2δ ≤ A(‖u‖s, ‖w‖s)‖u− w‖s,
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where

A(‖u‖s, ‖w‖s) = C
{

(β + 1)‖u+ w‖s + ‖u2 + uw + w2‖s + ‖q(u,w)‖s
}

≤ C

{
(β + 1)‖u‖s + (β + 1)‖w‖s + ‖u2‖s + ‖uw‖s + ‖w2‖s +

m−1∑
k=0

∥∥ukwm−1−k∥∥
s

}
≤ C(β + 1)‖u‖s + C(β + 1)‖w‖s + C2‖u‖2

s + C2‖u‖s‖w‖s + C2‖w‖2
s+

Cm+1

m−1∑
k=0

‖u‖ks ‖w‖
m−1−k
s =: L(‖u‖s, ‖w‖s).

For M,T > 0 and f0 ∈ Hs, we set

X (M,T, f0) :=

{
u(t) ∈ C ([0, T ];Hs) ; sup

t∈[0,T ]

‖u(t)− V (t)f0‖s ≤M

}
.

We endow X (M,T, f0) with the metric d(u(t), v(t)) = supt∈[0,T ] ‖u(t)− v(t)‖s. The resulting

metric space is complete.

Proposition 2.1.2. Take f0 ∈ Hs with s > n/2 + 2δ, δ > 0. Then, there exists T =

T (‖f0‖s,M) > 0 and a unique function u ∈ C([0, T ];Hs) satisfying the integral equation

u(t) = V (t)f0 +

∫ t

0

V (t− τ)F (u(τ))dτ, (2.1.6)

such that u(0) = f0. Here F (u) = (β + 1)u2 − u3 + P (D)(um) as before.

Remark 2.1.1. Since F (u) is not a locally Lipschitz function because inequality (2.1.5)

involves two different norms, the existence of mild solutions of type (2.1.6) does not follow

directly from standard results in semigroup theory, see, e.g., [40, Theorem 5.2.2].

Proof. Given u ∈ X (M,T, f0), we set

Nu(t) = V (t)f0 +

∫ t

0

V (t− τ)F (u(τ))dτ.

Claim 1. N : X (M,T, f0) −→ C([0, T ];Hs).

Take u ∈ X (M,T, f0), then

‖Nu (t1)−Nu (t2)‖s ≤ ‖(V (t1)− V (t2)) f0‖s (2.1.7)

+

∥∥∥∥∫ t1

0

V (t1 − τ)F (u(τ))dτ −
∫ t2

0

V (t2 − τ)F (u(τ))dτ

∥∥∥∥
s

.
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Since {V (t)}t≥0 is a C0-semigroup in Hs, cf. Lemma 2.1.1, the first term on the right-hand

side of the inequality (2.1.7) tends to zero when t2 → t1. To study the second term, we

assume without loss of generality that 0 < t1 < t2 < T . Then∥∥∥∥∫ t1

0

V (t1 − τ)F (u(τ))dτ −
∫ t2

0

V (t2 − τ)F (u(τ))dτ

∥∥∥∥
s

≤
∫ t1

0

‖{V (t1 − τ)− V (t2 − τ)}F (u(τ))‖s dτ +

∫ t2

t1

‖V (t2 − τ)F (u(τ))‖s dτ.

By using Lemma 2.1.2 with λ = α and Proposition 2.1.1,

‖(V (t1 − τ)− V (t2 − τ))F (u(τ))‖s

≤ ‖V (t1 − τ)F (u(τ))‖s + ‖V (t2 − τ)F (u(τ))‖s

≤

{
2 + C0

(
1

2γ(t1 − τ)

) 1
2

+ C0

(
1

2γ(t2 − τ)

) 1
2

}
‖F (u(τ))‖s−α

≤ 2

{
1 + C0

(
1

2γ(t1 − τ)

) 1
2

}
sup
τ∈[0,T ]

‖F (u(τ)) ‖s−α

= A(T, s, α)

{
1 + C0

(
1

2γ(t1 − τ)

) 1
2

}
∈ L1([0, t1]).

Now, by applying the Dominated Convergence Theorem,

lim
t2→t1

∫ t1

0

‖(V (t1 − τ)− V (t2 − τ))F (u(τ))‖s dτ = 0.

By a similar argument, one shows that

‖V (t2 − τ)F (u(τ))‖s−2δ ≤ 1 + C0

(
1

2γ(t2 − τ)

) 1
2

L(‖u (τ)‖s, 0)‖u (τ)‖s,

and since

‖u(τ)‖s ≤ ‖u(τ)− V (τ)f0‖s + ‖V (τ)f0‖s ≤M + ‖f0‖s, for all τ ∈ [0, T ], (2.1.8)

we have ∫ t2

t1

‖V (t2 − τ)F (u(τ))‖s dτ (2.1.9)

≤ L(M + ‖f0‖s, 0)(M + ‖f0‖s)

(∫ t2

t1

(
1 + C0

(
1

2γ(t2 − τ)

) 1
2

)
dτ

)

= L (M + ‖f0‖s, 0) (M + ‖f0(·)‖s)

(
(t2 − t1) + C0

(√
2(t2 − t1)

γ

))
,
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and consequently, by applying the Dominated Convergence Theorem,

lim
t2→t1

∫ t2

t1

‖V (t2 − τ)F (u(τ))‖sdτ = 0.

Claim 2. There exists T0 such that N (X (M,T0, f0)) ⊆ X (M,T0, f0).

By using a reasoning similar to the one used to established inequality (2.1.9), one gets

‖(Nu)(t)− V (t)f0‖s ≤
∫ t

0

‖V (t− τ)F (u(τ))‖sdτ

≤ L (M + ‖f0‖s, 0) (M + ‖f0‖s)

(∫ t

0

(
1 + C0

(
1

2γ(t− τ)

) 1
2

)
dτ

)

≤ L (M + ‖f0‖s, 0) (M + ‖f0‖s)

(
T + C0

(√
2T

γ

))
.

Now taking T0 such that

L (M + ‖f0‖s, 0) (M + ‖f0‖s)

(
T0 + C0

(√
2T0

γ

))
≤M, (2.1.10)

we conclude that Nu ∈ X (M,T0, f0), for all u(t) ∈ X (M,T0, f0).

Claim 3. There exists T ′0 such that N is a contraction on X (M,T ′0, f0).

Given u(t), v(t) ∈ X (M,T0, f0), by using Proposition 2.1.1, with

C ′0 = L (M + ‖f0‖s,M + ‖f0‖s) ,

see (2.1.8), we have

‖Nu(t)−Nv(t)‖s ≤
∫ t

0

‖V (t− τ)[F (u(τ))− F (v(τ))]‖sdτ

≤
∫ t

0

(
1 + C0

(
1

2γ(t− τ)

) 1
2

)
‖F (u(τ))− F (v(τ))‖s−α dτ

≤ C ′0

∫ t

0

(
1 + C0

(
1

2γ(t− τ)

) 1
2

)
‖u(τ)− v(τ)‖sdτ

≤ C ′0

(
sup

τ∈[0,T0]

‖u(τ)− v(τ)‖s

)∫ t

0

(
1 + C0

(
1

2γ(t− τ)

) 1
2

)
dτ

≤ C ′0

(
T0 + C0

(√
2T0

γ

))
d(u(t), v(t)).
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Thus, taking T ′0 such that

C := C ′0

(
T ′0 + C0

(√
2T ′0
γ

))
< 1, (2.1.11)

we obtain that d(Nu(t),Nv(t)) ≤ Cd(u(t), v(t)), that is, N is a strict contraction in

X (M,T ′0, f0). We pick T such that the inequalities (2.1.10) and (2.1.10) hold true, and

apply the Banach’s Fixed Point Theorem to get u(t) ∈ X (M,T, f0) a unique fixed point of

N , which satisfies the integral equation (2.1.6), where T = T (‖f0‖s,M) > 0.

Lemma 2.1.3 ([40, Theorem 5.1.1]). If h ∈ L1 (0, T ), with T > 0, is a real-valued function

such that

h(t) ≤ a+ b

∫ t

0

h(s)ds,

for t ∈ (0, T ) a.e., where a ∈ R and b ∈ [0,∞) then h(t) ≤ aebt for almost all t in (0, T ).

Proposition 2.1.3. Let f0, f1 ∈ Hs and u(t), v(t) ∈ C([0, T ];Hs) be the corresponding

solutions of equation (2.1.6) with initial conditions u(0) = f0 and v(0) = f1, respectively. If

s > n/2 + 2δ, then

‖u(t)− v(t)‖s ≤ eL(W,W )‖f0 − f1‖s,

where L is given in Proposition 2.1.1 and

W := max

{
sup
t∈[0,T ]

‖u(t)‖s, sup
t∈[0,T ]

‖v(t)‖s

}
.

Proof. By using (2.1.6), we have

u(t)− v(t) = V (t)(f0 − f1) +

∫ t

0

V (t− τ){F (u(τ))− F (v(τ))}dτ.

By using Proposition 2.1.1, we get

‖u(t)− v(t)‖s ≤ ‖f0 − f1‖s +

∫ t

0

‖V (t− τ){F (u(τ))− F (v(τ))}‖sdτ

≤ ‖f0 − f1‖s +

∫ t

0

‖F (u(τ))− F (v(τ))‖s−α dτ

≤ ‖f0 − f1‖s + L(W,W )

∫ t

0

‖u(τ)− v(τ)‖sdτ.

Now the result follow from Lemma 2.1.3, by taking h(t) = ‖u(t) − v(t)‖s, a = ‖f0 − f1‖s,

b = L(W,W ).

21



Proposition 2.1.4. Let s > n/2 + 2δ and δ ≥ 0. Then, the map f0 7→ u(t) is contin-

uous in the following sense: if f
(n)
0 → f0 in Hs and un(t) ∈ C ([0, Tn] ;Hs), with Tn =

T
(∥∥∥f (n)

0

∥∥∥
s
,M
)
> 0, are the corresponding solutions to the Cauchy problem (2.1.1) with

un(0) = f
(n)
0 . Then, there exist T > 0 and a positive integer N = N(γ, f0, T ) such that

Tn ≥ T for all n ≥ N and

lim
n→∞

sup
t∈[0,T ]

‖un(t)− u(t)‖s = 0. (2.1.12)

Proof. By Proposition 2.1.2, the Tn = T
(∥∥∥f (n)

0

∥∥∥
s
,M
)
> 0 are continuous functions of∥∥∥f (n)

0

∥∥∥
s
, then, given T ∗ > 0 there exists N ∈ N such that T ∗ ≤ Tn for all n ≥ N . We set

T := min {T ∗, T1, T2, . . . , TN−1}. Therefore, all the un(t) are defined on [0, T ], furthermore,

u ∈ X
(
M,T, f

(n)
0

)
for all n, and

‖un(t)‖s ≤
∥∥∥f (n)

0

∥∥∥
s

+M ≤ δ +M,

where δ = supn∈N

∥∥∥f (n)
0

∥∥∥
s
. Now

sup
t∈[0,T ]

‖un(t)‖s ≤ δ +M for all n, and sup
t∈[0,T ]

‖u(t)‖s ≤ δ +M.

On the other hand, by reasoning as in the proof of Proposition 2.1.3, we have

‖un(t)− u(t)‖s ≤
∥∥∥f (n)

0 − f0

∥∥∥
s

+ L(δ +M, δ +M)

t∫
0

‖un(τ)− u(τ)‖sdτ,

and by applying Lemma 2.1.3

‖un(t)− u(t)‖s ≤ eTL(δ+M,δ+M)
∥∥∥f (n)

0 − f0

∥∥∥
s
,

which in turns implies (2.1.12).

2.1.2 Proof of the main result

The local well-posedness of the Cauchy problem (2.1.1) in Hs, s > n/2 + 2δ, follows from

Propositions 2.1.2, 2.1.3 and 2.1.4.
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2.2 The Blow-up phenomenon

In this section, we study the blow-up phenomenon for the solution of the equation
ut = −γDα

xu+ F (u) + Dα1
x u

3, x ∈ Qn
p , t ∈ [0, T ] ;

u(0) = f0 ∈ H∞,

(2.2.1)

where F (u) = −u3 + (β + 1)u2 − βu. We will say that a non-negative solution u(x, t) ≥ 0

of (2.2.1) blow-up in a finite time T > 0, if limt→T− supx∈Qnp u(x, t) = +∞. This limit makes

sense since H∞(Qn
p ,C) is continuously embedded in C0(Qn

p ,C), [30, Theorem 10.15].

2.2.1 Pseudo-differential operators and p-adic wavelets

We denote by C(Qp,C) the C-vector space of continuous C-valued functions defined on Qp.

We fix a function a : R+ → R+ and define the pseudo-differential operator

D → C(Qp,C) ∩ L2

ϕ → Aϕ,

where (Aϕ) (x) = F−1
ξ→x

{
a
(
|ξ|p
)
Fx→ξϕ

}
.

The set of functions {Ψrnj} defined as

Ψrnj (x) = p
−r
2 χp

(
p−1j (prx− n)

)
Ω
(
|prx− n|p

)
, (2.2.2)

where r ∈ Z, j ∈ {1, . . . , p− 1}, and n runs through a fixed set of representatives of Qp/Zp,

is an orthonormal basis of L2(Qp) consisting of eigenvectors of operator A:

AΨrnj = a(p1−r)Ψrnj for any r, n, j, (2.2.3)

see, e.g., [30, Theorem 3.29], [1, Theorem 9.4.2]. Notice that

Ψ̂rnj (ξ) = p
r
2χp

(
p−rnξ

)
Ω
(∣∣p−rξ + p−1j

∣∣
p

)
,

and then

a
(
|ξ|p
)

Ψ̂rnj (ξ) = a(p1−r)Ψ̂rnj (ξ) .
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In particular, Dα
xΨrnj = p(1−r)αΨrnj, for any r, n, j and α > 0, and since p(1−r)α,

Dα
x Re (Ψrnj) = p(1−r)α Re (Ψrnj) , Dα

x Im (Ψrnj) = p(1−r)α Im (Ψrnj) .

And,

{Ψrn1 (x)}2 = p−rχp
(
2p−1 (prx− n)

)
Ω
(
|prx− n|p

)
= p

−r
2 Ψrn2 (x) ,

then

Dα
x Re

(
{Ψrn1 (x)}2) = p

−r
2 p(1−r)α Re (Ψrn2(x)) = p(1−r)α Re

(
{Ψrn1 (x)}2) .

Proposition 2.2.1 ([58, VII.2.]). The Parseval-Steklov equality∫
Qp

ϕ(x)ψ(x)dnx =

∫
Qp

(Fϕ)(χ)(Fψ)(χ)dnχ, ϕ, ψ ∈ D(Qp), (2.2.4)

and the equivalent equality∫
Qp

ϕ(x)(Fψ)(χ)dnx =

∫
Qp

(Fϕ)(χ)ψ(χ)dnχ, ϕ, ψ ∈ D(Qp), (2.2.5)

hold.

2.2.2 The Blow-up

In this section, we assume that u(x, t) is real-valued non-negative solution of the Cauchy

problem (2.1.1) in H∞. We set w(x) := Re
(
{Ψrn1 (x)}2), so Dα

xw(x) = p(1−r)αw(x). Thus

w(x)dx defines a (positive) measure. We also set G(t) :=
∫
Qp u(x, t)w(x)dx, where u(x, t) is

a positive solution of (2.2.1), then

G′(t) =

∫
Qp

ut(x, t)w(x)dx = −γ
∫
Qp

(Dα
xu)(x, t)w(x)dx

+

∫
Qp

F (u(x, t))w(x)dx+

∫
Qp

(Dα1
x u

3)(x, t)w(x)dx. (2.2.6)

Now, by using that Dα
xu(·, t), w ∈ L2, and F (u(·, t)), Dα1

x u
3(·, t) ∈ L2 since for s > n/2, Hs

is a Banach algebra contained in L2 cf. Proposition 1.3.1, and applying Proposition 2.2.1,

we get (2.2.6) can be rewritten as

G′(t) =

∫
Qp

(
−γp(1−r)αu(x, t) + F (u(x, t)) + p(1−r)α1u3(x, t)

)
w(x)dx.
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Since the function H(y) = −γp(1−r)αy + F (y) + p(1−r)α1y3 is convex because

H ′′(y) = −6y + 2 (β + 1) + p(1−r)α16y = 6y
(
p(1−r)α1 − 1

)
+ 2 (β + 1) ≥ 0,

for y ≥ 0, and r ≤ 0, we can use the Jensen’s inequality to get G′(t) ≥ H(G(t)), then the

function G(t) can not remain finite for every t ∈ [0,∞). Then there exists T ∈ (0,∞) such

that limt→T− G(t) = +∞, hence u(x, t) blow ups at the time T . Then we have established

the following result:

Theorem 2.2.1. Let u(x, t) be a positive solution of (2.2.1). Then there T ∈ (0,+∞)

depending on the initial datum such that limt→T− supx∈Qnp u(x, t) = +∞.

2.3 Numerical Simulations

In this section, we present two numerical simulations for the solution of problem (2.2.1) (in

dimension one) for a suitable initial datum. We solve and visualize (using a heat map) the

radial profiles of the solution of (2.2.1). We consider equation (2.2.1) for radial functions

u(x, ·). In [35], Kochubei obtained a formula for Dα
xu (x, t) as an absolutely convergent real

series, we truncate this series and then we apply the classic Euler Forward Method (see,

e.g., [52]) to find the values of u(p−ord(x), t), when −20 ≤ ord(x) ≤ 20 (vertical axis) and

when t = {tk : tk = 1/k, k = 1, . . . , 300} (horizontal axis). In Figure 2.1, on the left, the heat

map of the numerical solution of the homogeneous equation ut(x, t) = −Dα
xu(x, t) with initial

data u(x, 0) = 4e−p
|ord(x)|/100 (Gaussian bell type), and parameters p = 3, α = 0.2, γ = 1.

On the right side, we have the numerical solution of the equation ut(x, t) = −Dα
xu(x, t) −

u3(x, t) + (β+ 1)u2(x, t)−βu(x, t) +Dα1
x u

3(x, t), with p = 3, α = 0.2, α1 = 0.1, and β = 0.7.
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Figure 2.1: Numerical Simulations.

On the left side of Figure 2.1, we observe that the solution u is uniformly decreasing with

respect to the variable t. This behavior is typical for solutions of diffusion equations. These

equations have been extensively studied, see, e.g., [30], [63] and the references therein.

On the right side of Figure 2.1, we see that the evolution of u(x, t) is controlled by the diffusion

term −Dα
xu(x, t), up to a time T (blow-up time), this behavior is similar to that described

above. When t > T , the reactive term −u3(x, t)+(β+1)u2(x, t)−βu(x, t)+Dα1
x u

3(x, t) takes

over and u(x, t) grows rapidly towards infinity. The method converges quite fast, but still

lacks a mathematical formalism to support it, for this reason, we refer to it as a numerical

simulation of the solution.
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Chapter 3

Turing Patterns in a p-Adic

FitzHugh-Nagumo System on the

Unit Ball

In this chapter, we introduce discrete and p-adic continuous versions of the FitzHugh-Nagumo

system on the one-dimensional p-adic unit ball. We provide criteria for the existence of Turing

patterns. We present extensive simulations of some of these systems. The simulations show

that the Turing patterns are traveling waves in the p-adic unit ball.

3.1 Homogeneous steady states

A reaction-diffusion system exhibits diffusion-driven instability, or Turing instability, if the

homogeneous steady state is stable to small perturbations in the absence of diffusion but

unstable to small spatial perturbations when diffusion is present. The main process driving

the spatially inhomogeneous instability is diffusion: the mechanism determines the spatial

pattern that evolves. For Turing instability, we require that the system is stable in the absence

of diffusion. For a detailed exposition, the reader may consult [43, Section 2.2, Section 2.3].

From now on, we set u(x, t), v(x, t) : Zp × [0,∞)→ R. We consider the following FitzHugh-

Nagumo system with p-adic diffusion:
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

u(·, t), v(·, t) ∈ L2
R(Zp), for t ≥ 0;

∂u
∂t

(x, t) = f(u, v)− (Dα
0 − λ)u(x, t), x ∈ Zp, t ≥ 0;

∂v
∂t

(x, t) = g(u, v)− d (Dα
0 − λ) v(x, t), x ∈ Zp, t ≥ 0,

(3.1.1)

where

f(u, v) = µu− u3 − v, g(u, v) = γ(u− δv − β), (3.1.2)

and µ, β, γ 6= 0, δ 6= 0, d are real numbers.

We now consider a homogeneous steady state (also called an equilibrium point) of (3.1.1)

which is a positive (u0, v0) solution of
∂u
∂t

= f(u, v), t ≥ 0;

∂v
∂t

= g(u, v), t ≥ 0.

(3.1.3)

The equilibrium points associated with (3.1.3) are given by
µu− u3 − v = 0;

γ(u− δv − β) = 0.

(3.1.4)

Using the substitution method on (3.1.4), we have that (3.1.4) is equivalent to

u3 + ηu+ τ = 0, (3.1.5)

where η := 1−δµ
δ

and τ := −β
δ
. Here we use the hypothesis that γ 6= 0, δ 6= 0. We denote by

u0 a real solution of (3.1.5). Then (u0, v0), with v0 = u0−β
δ

, is the real equilibrium point of

(3.1.3).

We denote by σeigen (Dα
0 − λ) to the set of eigenvalues of Dα

0 − λ. We also set

κ1 =
1

2d

{(
d
(
µ− 3u2

0

)
− γδ

)
−
√

(d (µ− 3u2
0)− γδ)2 − 4d det(A)

}
, (3.1.6)

κ2 =
1

2d

{(
d
(
µ− 3u2

0

)
− γδ

)
+

√
(d (µ− 3u2

0)− γδ)2 − 4d det(A)

}
, (3.1.7)

where

A =

 fu fv

gu gv


u=u0,v=v0

:=

 fu0 fv0

gu0 gv0

 .
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Notice that A is the Jacobian matrix of the mapping (u, v)→ (f (u, v) , g (u, v)). A straight-

forward calculation shows that

A =

 µ− 3u2
0 −1

γ −γδ

 . (3.1.8)

Theorem 3.1.1. Consider the reaction-diffusion system (3.1.1). The steady state (u0, v0) is

linearly unstable (Turing unstable), if the following conditions hold:

1. Tr(A) = µ− 3u2
0 − γδ < 0 ;

2. det(A) = −µγδ + 3γδu2
0 + γ > 0 ;

3. d (µ− 3u2
0)− γδ > 0;

4. The derivatives µ− 3u2
0 and −γδ must have opposite signs;

5. (d (µ− 3u2
0)− γδ)2 − 4d (−µγδ + 3γδu2

0 + γ) > 0 ;

6. Γ = {κ ∈ σeigen (Dα
0 − λ) ;κ1 < κ < κ2} 6= ∅.

Furthermore, there are infinitely many unstable eigenmodes, and the Turing pattern has the

form (3.1.21).

Proof. We observe that (3.1.3) is a system of ordinary differential equations in R2. In order

to linearize about the steady state (u0, v0), we set

w :=

 w1

w2

 =

 u− u0

v − v0

 ,
then the linear approximation is ut

vt

 =

 µ− 3u2
0 −1

γ −γδ

 u− u0

v − v0

 .

By taking wt :=

 ut

vt

, the linearization can be written as

 ut

vt

 = A

 u− u0

v − v0

 .
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The steady state w = 0 is linearly stable, if Re(ρ1,2) < 0, where ρ1,2 are the eigenvalues of A:

det(A− ρI) = det

 µ− 3u2
0 − ρ −1

γ −γδ − ρ

 = 0.

Thus, we have that

ρ2 −
(
µ− 3u2

0 − γδ
)
ρ+

(
−µγδ + 3γδu2

0 + γ
)

= 0. (3.1.9)

Which are given by

ρ1,2 =
±
√

(µ− 3u2
0 − γδ)

2 − 4 (−µγδ + 3γδu2
0 + γ)

2
+

(µ− 3u2
0 − γδ)

2
.

The condition Re(ρ1,2) < 0 is guaranteed, if Tr(A) < 0 and det(A) > 0.

Tr(A) < 0, det(A) > 0. (3.1.10)

Now, we linearize the entire reaction-ultradiffusion system close to the steady state w = 0 := 0

0

:

∂w

∂t
= Aw −D (Dα

0 − λ)w, where D =

 1 0

0 d

 ;

(Dα
0 − λ)w :=

 (Dα
0 − λ)w1

(Dα
0 − λ)w2

 .
(3.1.11)

We now find a solution of the system (3.1.11) satisfying u(·, t), v(·, t) ∈ L2
R (Zp), for t ≥ 0.

First, we determine a solution wκ of the following eigenvalue problem:
(Dα

0 − λ)wκ(x) = κwκ(x);

wκ ∈ L2
R (Zp) ,

(3.1.12)

where wκ =

 w1,κ

w2,κ

. By using the results of section 1.2.5, the solutions to the eigenvalue

problem (3.1.12) are

w1,κ, w2,κ ∈
⊔
rnj

{
p−

r
2 cos

({
p−1j (prx− n)

}
p

)
Ω (|prx− n|p)

}⊔
⊔
rnj

{
p−

r
2 sin

({
p−1j (prx− n)

}
p

)
Ω (|prx− n|p)

}⊔{
Ω
(
p−M |x|p

)}
,
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where the parameters r, j and n as in section 1.2.5. We look for a solution of the form

w(x, t) =
∑

κ,ρCκ,ρe
ρtwκ(x). The function eρtwκ(x) is a non-trivial solution of (3.1.11), if ρ

satisfies

det(ρI − A+ κD) = 0, (3.1.13)

that is,

ρ2 + [κ(1 + d)− Tr(A)]ρ+ h(κ) = 0, (3.1.14)

where

h(κ) = dκ2 − κ
(
d
(
µ− 3u2

0

)
− γδ

)
+ det(A). (3.1.15)

Since κ = 0, isn’t an eigenvalue of the operator Dα
0 − λ, the conditions (3.1.13) and (3.1.9)

are independent. For the steady state to be unstable for spatial perturbations, we need that

Re(ρ(κ)) > 0, for some κ 6= 0, this can happen either if the coefficient of ρ in (3.1.14) is

negative or if h(κ) < 0, for some κ 6= 0 in (3.1.15). For being Tr(A) < 0 of the conditions

(3.1.10) and the coefficient of ρ in (3.1.14) is κ(1+d)−Tr(A), which is positive, so the only way

that Re(ρ(κ)) can be positive is if h(κ) < 0 for some κ 6= 0. Then, we have that det(A) > 0

of (3.1.10), in order for that h(κ) to be negative, it is necessary that d (µ− 3u2
0) − γδ > 0.

Now, since µ − 3u2
0 − γδ = Tr(A) < 0, necessarily d 6= 1 and µ − 3u2

0 and −γδ must have

opposite signs. Thus, we have that an additional requirement to (3.1.10) is that d 6= 1.

This is a necessary, but not sufficient, condition for that Re(ρ(κ)) > 0. For that h(κ) to be

negative for some non-zero κ, the minimum hmin of h(κ) must be negative. Using elementary

calculations, we show that

hmin = det(A)− (d (µ− 3u2
0)− γδ)2

4d
, (3.1.16)

and the minimum is reached at

κmin =
d (µ− 3u2

0)− γδ
2d

. (3.1.17)

Therefore, the condition h(κ) < 0 for some κ 6= 0 is

(d(µ− 3u2
0)− γδ)2

4d
> det(A). (3.1.18)

A bifurcation occurs when hmin = 0, this happens when the condition

det(A) =
(d (µ− 3u2

0)− γδ)2

4d
, (3.1.19)
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is verified. This condition defines a critical diffusion dc, which is given as an appropriate root

of

(
µ− 3u2

0

)2
d2
c + 2

(
−2γ + µγδ − 3γδu2

0

)
dc + γ2δ2 = 0.

The model (3.1.1) for d > dc exhibits Turing instability, while for d < dc it does not. Note

that dc > 1. A critical ‘wavenumber’ is obtained using (3.1.17)

κc =
dc (µ− 3u2

0)− γδ
2dc

=

√
det(A)

dc
. (3.1.20)

When d > dc, there is a range of number of unstable positive waves κ1 < κ < κ2, where

κ1, κ2 are the zeros of h(κ) = 0, see (3.1.6)-(3.1.7). We call to function ρ(κ) the dispersion

relation. We note that, within the unstable range, Re(ρ(κ)) > 0 has a maximum for the

wavenumber κ
(0)
min obtained from (3.1.17) with d > dc. Then as t it increases, the behavior

of w(x, t) is controlled by the dominant mode, that is, those eρ(κ)twκ(x) with Re(ρ(κ)) > 0,

since the other modes go to zero exponentially. Then,

w(x, t) ∼
∑

κ1<κ<κ2

∑
r,n

Arne
ρ(κ)tΩ

(
|prx− n|p

)
+

∑
κ1<κ<κ2

∑
r,n,j

Arnje
ρ(κ)tp−

r
2 cos

({
p−1j (prx− n)

}
p

)
Ω
(
|prx− n|p

)
(3.1.21)

+
∑

κ1<κ<κ2

∑
r,n,j

Brnje
ρ(κ)tp−

r
2 sin

({
p−1j (prx− n)

}
p

)
Ω
(
|prx− n|p

)
,

for t → ∞, where ρ(κ) are eigenvalues of matrix A depending on κ ∈ σeigen(Dα
0 − λ), with

Re(ρ(κ)) > 0. In the above expansion in all series the r’s and j’s take only finite numbers of

values. Thus, all the κ’s are, but one has the form p(1−r)α − λ, the condition κ1 < κ < κ2

implies that there is only one finite number of the r’s. But the n’s run through an infinite

set, which is prZp ∩ Qp/Zp. Now, fixing r, then, for a given x ∈ Zp there exist only finite

numbers of balls of type Br (p−rn) that contains x. This fact implies that the value in (x, t)

of w(x, t) in the expansion (3.1.21) is determined only by a finite number of the n’s, and

consequently the series in expansion (3.1.21) is convergent.
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3.2 A discrete FitzHugh-Nagumo system on Zp

3.2.1 Discretization of the operator Dα
0 − λ

A natural discretization of Dα
0 − λ is obtained by taking its restriction to DL. We denote

this restriction by Dα
L − λ. Since DL is a finite vector space, Dα

L − λ is represented by a

matrix AαL =
[
AαK,I

]
K,I∈GL

, where

AαK,I =


p−

L
2

1−pα
1−p−α−1

1
|K−I|α+1

p
if K 6= I;

−p−L2 1−pα
1−p−α−1

∑
K 6=I

1
|K−I|α+1

p
if K = I,

(3.2.1)

see [67].

Figure 3.1: The heat map for matrix AαL; p = 2, L = 4,M = 0, α = 0.01. Here the parameters L

and M are taken as in section 1.4. The vertical and horizontal scales run through the points of tree

G4.

3.2.2 Discretization of the p-adic Turing System (3.1.1)

A discretization of the Turing system (3.1.1) is obtained by approximating the functions

u(x, t), v(x, t) as
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uL(x, t) =
∑
I∈GL

uL(I, t)Ω
(
pL|x− I|p

)

and

vL(x, t) =
∑
I∈GL

vL(I, t)Ω
(
pL|x− I|p

)
,

where uL(I, ·), vL(I, ·) ∈ C1([0, T ]) for some fixed positive T . We set

uL(x, t) = [uL(I, t)]I∈GL , vL(x, t) = [vL(I, t)]I∈GL .

Notice that

f

(∑
I∈GL

uL(I, t)Ω
(
pL|x− I|p

)
,
∑
J∈GL

uL(J, t)Ω
(
pL|x− J |p

))

=
∑
I∈GL

f (uL(I, t), vL(I, t)) Ω
(
pL|x− I|p

)
=
∑
I∈GL

{
µuL(I, t)− u3

L(I, t)− uL(I, t)
}

Ω
(
pL|x− I|p

)
.

A similar formula holds for function g. Then, using (3.1.2), the discretization of the p-adic

Turing system (3.1.1) has the form:


∂
∂t

[uL(I, t)]I∈GL = [µuL(I, t)− u3
L(I, t)− vL(I, t)]I∈GL − A

α
L [uL(I, t)]I∈GL

∂
∂t

[vL(I, t)]I∈GL = [γ (uL(I, t)− δvL(I, t)− β)]I∈GL − dA
α
L [vL(I, t)]I∈GL ,

(3.2.2)

where AαL =
[
AαK,I

]
K,I∈GL

.

We now rewrite system (3.2.2) in a matrix form. We denote by diag (aI ; I ∈ GL), a diagonal
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matrix of size #GL ×#GL. Now, by using (3.2.1) and (3.2.2), we have

∂

∂t


[uL(I, t)]I∈GL

[vL(I, t)]I∈GL

 = (3.2.3)


diag (f (uL(I, t), vL(I, t)) ; I ∈ GL) 0#GL×#GL

0#GL×#GL diag (g (uL(I, t), vL(I, t)) ; I ∈ GL)



−


I#GL×#GL 0#GL×#GL

0#GL×#GL dI#GL×#GL



AαL 0#GL×#GL

0#GL×#GL AαL




[uL(I, t)]I∈GL

[vL(I, t)]I∈GL

 ,
where 0#GL×#GL denotes a matriz of size #GL ×#GL with all its entries equal to zero, and

I#GL×#GL denotes the identity matrix of size #GL ×#GL.

3.2.3 Discrete homogeneous steady states

We study the equilibrium points of the system

∂

∂t


[uL(I, t)]I∈GL

[vL(I, t)]I∈GL

 = (3.2.4)


diag (f (uL(I, t), vL(I, t)) ; I ∈ GL) 0#GL×#GL

0#GL×#GL diag (g (uL(I, t), vL(I, t)) ; I ∈ GL)

 .
The equilibrium points are the solutions of the following system of algebraic equations:

f (uL(I), vL(I)) = 0

g (uL(I), vL(I)) = 0,

(3.2.5)

where I ∈ GL. Notice that if f (u0, v0) = g (u0, v0) = 0, then uL(I) = u0, vL(I) = v0 is a

solution of (3.2.5) for any I ∈ GL.
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Take η = 1−δµ
δ

and τ = −β
δ
, as before. Then,

[u0]I∈GL

[v0]I∈GL

 (3.2.6)

is one equilibrium point.

3.2.4 The Jacobian matrix

We now consider the following polynomial mapping:

R2#GL → R2#GL


[uL(I)]I∈GL

[vL(I)]I∈GL

 →


[f (uL(I), vL(I))]I∈GL

[g (uL(I), vL(I))]I∈GL

 .
(3.2.7)

We denote by ∇f (u0, v0), the 1× 2 matrix
[

∂f(u0,v0)
∂u

∂f(u0,v0)
∂v

]
, and by

diag (∇f (u0, v0) ; I ∈ GL) ,

the block diagonal matrix 
∇f (u0, v0) 0

. . .

0 ∇f (u0, v0)


of size #GL × 2#GL. In a similar form, we define the block diagonal matrix

diag (∇g (u0, v0) ; I ∈ GL) .

The Jacobian matrix A of mapping (3.2.7) at the equilibrium point (3.2.6) is the 2#GL ×

2#GL matrix

A =



∇f (u0, v0) 0
. . .

0 ∇f (u0, v0)

∇g (u0, v0) 0
. . .

0 ∇g (u0, v0)


=


diag (∇f (u0, v0) ; I ∈ GL)

diag (∇g (u0, v0) ; I ∈ GL)

 .
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We now set

A =

 ∂f(u0,v0)
∂u

∂f(u0,v0)
∂v

∂g(u0,v0)
∂u

∂g(u0,v0)
∂v

 =

 ∇f (u0, v0)

∇g (u0, v0)


as before, and by a finite sequence of swapings of rows, matrix A can be writen as

A′ =


A 0

. . .

0 A

 , (3.2.8)

which is a #GL ×#GL block matrix.

We denote by σ (AαL) the spectrum of A, and use the κ1, κ2 defined in (3.1.6)-(3.1.7).

Theorem 3.2.1. Let us consider the reaction-diffusion system (3.2.3). The discrete steady

state


[u0]I∈GL

[v0]I∈GL

 is linearly unstable (Turing unstable), if the following conditions hold:

1. Tr(A) = µ− 3u2
0 − γδ < 0 ;

2. det(A) = −µγδ + 3γδu2
0 + γ > 0 ;

3. d (µ− 3u2
0)− γδ > 0;

4. The derivatives µ− 3u2
0 and −γδ must have opposite signs;

5. (d (µ− 3u2
0)− γδ)2 − 4d (−µγδ + 3γδu2

0 + γ) > 0;

6. ΓL = {κL ∈ σ (AαL) ;κ1 < κL < κ2} 6= ∅.

Furthermore, the Turing pattern has the form (3.2.18).

Proof. We first linearize sytem (3.2.3) about the steady state (3.2.6). Set
[
w

(1)
L (I, t)

]
I∈GL

[
w

(2)
L (I, t)

]
I∈GL

 :=


[uL(I, t)− u0]I∈GL

[vL(I, t)− v0]I∈GL

 .
Then the linear approximation is

[
w

(1)
L (I, t)

]
I∈GL

[
w

(2)
L (I, t)

]
I∈GL

 = A


[
w

(1)
L (I, t)

]
I∈GL

[
w

(2)
L (I, t)

]
I∈GL

 .
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The equilibrium point 
[0]I∈GL

[0]I∈GL

 (3.2.9)

is linearly stable, if the eigenvalues of A have negative real parts. By a suitable sequence of

swapings of the rows of A, we have

det (A− ρI) = ± det (A′ − ρI) = ± det (A− ρI)#GL .

Then the eigenvalues of A are exactly the eigenvalues of A counted with multiplicity GL:

det (A− ρI) = det

 µ− 3u2
0 − ρ −1

γ −λδ − ρ

 = ρ2 − ρTr(A) + det(A) = 0. (3.2.10)

Then

ρ1,2 =
±
√

(µ− 3u2
0 − γδ)

2 − 4 (−µγδ + 3γδu2
0 + γ)

2
+
µ− 3u2

0 − γδ
2

.

The condition Re(ρ1,2) < 0 is guaranteed, if the trace and the determinant of matrix A satisfy

Tr(A) < 0, det(A) > 0. (3.2.11)

Now, we linearize the entire reaction-ultradiffusion system close to the steady state (3.2.9):

∂

∂t


[
w

(1)
L (I, t)

]
I∈GL

[
w

(2)
L (I, t)

]
I∈GL

 = (A−DLAαL)


[
w

(1)
L (I, t)

]
I∈GL

[
w

(2)
L (I, t)

]
I∈GL

 , (3.2.12)

where

DL :=


I#GL×#GL 0#GL×#GL

0#GL×#GL dI#GL×#GL

 , AαL :=


AαL 0#GL×#GL

0#GL×#GL AαL

 .
The matrices AαL, AαL are real symmetric, and consequently they are diagonalizable. Then,

there exists a basis {eκ} of R#GL such that

AαLeκ = κeκ,

where κ = κ (L). Then

AαL

 eκ

eκ

 = κ

 eκ

eκ

 .
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We now look for a solution of system (3.2.12) of the form
[
w

(1)
L (I, t)

]
I∈GL

[
w

(2)
L (I, t)

]
I∈GL

 ,

where w
(j)
L (I, t) =

∑
κ,ρCκ,ρe

ρteκ, where ρ = ρ (j, I, L), κ = κ (j, I, L). The function eρteκ is

a non-trivial solution of (3.2.12), if ρ satisfies

det(ρI −A+ κDL) = 0. (3.2.13)

By a finite sequence of swapings of rows, we have

det(ρI −A+ κDL) = ± det


ρI2×2 − A+ κD 0

. . .

0 ρI2×2 − A+ κD


= ±det (ρI2×2 − A+ κD)#GL

= ρ2 + [κ(1 + d)− Tr(A)]ρ+ h(κ) = 0, (3.2.14)

where

D =

 1 0

0 d

 ,
and

h(κ) := dκ2 − κ
(
d
(
µ− 3u2

0

)
− γδ

)
+ det(A). (3.2.15)

Since κ = 0 is not an eigenvalue of the matrix AαL, the conditions (3.2.10) and (3.2.14) are

independent. For that the steady state to be unstable for spatial perturbations, we need that

Re(ρ(κ)) > 0, for some κ 6= 0, this can happen either if the coefficient of ρ in (3.2.14) is

negative or if h(κ) < 0, for some κ 6= 0 in (3.2.15). For being Tr(A) < 0 of the conditions

(3.2.11) and the coefficient of ρ in (3.2.14) is κ(1 + d) − Tr(A), which is positive, so the

only way that Re(ρ(κ)) can be positive is if h(κ) < 0 for some κ 6= 0. As det(A) > 0 of

(3.2.11), in order for h(κ) to be negative, it is necessary that d (µ− 3u2
0)−γδ > 0. Now, since

Tr(A) = µ− 3u2
0− γδ < 0, necessarily d 6= 1 and µ− 3u2

0 and −γδ must have opposite signs.

Thus, we have that an additional requirement to (3.2.11) is that d 6= 1. This is a necessary,

but not sufficient, condition for that Re(ρ(κ)) > 0. For that h(κ) to be negative for some
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non zero κ, the minimum hmin of h(κ) must be negative. Using elementary calculations, we

show that

hmin = det(A)− (d (µ− 3u2
0)− γδ)2

4d
,

and the minimum is reached at

kmin =
d (µ− 3u2

0)− γδ
2d

. (3.2.16)

Therefore, the condition h(κ) < 0 for some κ 6= 0 is

(d(µ− 3u2
0)− γδ)2

4d
det(A).

A bifurcation occurs when hmin = 0, this happens when the condition

det(A) =
(d (µ− 3u2

0)− γδ)2

4d
,

is verifiesd. This condition defines a critical diffusion dc, which is given as an appropriate

root of (
µ− 3u2

0

)2
d2
c + 2

(
−2γ + µγδ − 3γδu2

0

)
dc + γ2δ2 = 0.

The model (3.2.3) for d > dc exhibits Turing instability, while for d < dc it does not. Note

that dc > 1. A critical ‘wavenumber’ is obtained using (3.2.16)

κc =
dc (µ− 3u2

0)− γδ
2dc

=

√
det(A)

dc
. (3.2.17)

When d > dc, there is a range of number of unstable positive waves κ1 < κ < κ2, where

κ1, κ2 are the zeros of h(κ) = 0, see (3.1.6)-(3.1.7). We call to function ρ(κ) the dispersion

relation. We note that, within the unstable range, Re(ρ(κ)) > 0 has a maximum for the

wavenumber κ
(0)
min obtained from (3.2.16) with d > dc. Then as t it increases, the behavior

of


[
w

(1)
L (I, t)

]
I∈GL

[
w

(2)
L (I, t)

]
I∈GL

 is controlled by the dominant mode, that is, those eρ(κ)t

 eκ

eκ

 with

Re(ρ(κ)) > 0, since the other modes go to zero exponentially. We recall that κ = κ (L). For

this reason, we use the notation κ = κL. With this notation,

w
(j)
L (I, t) ∼

∑
κ1<κL<κ2

Aκ (j, I) eρ(κL)teκ, for t→∞, (3.2.18)

where j = 1, 2.
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Digernes and his collaborators have studies extensively the problem of approximation of

spectra of Vladimirov operator Dα by matrices of type AαL, [5, 17]. By using the fact that

the eigenvalues ς 6= λ and eigenfuntions Ψrnj of Dα
0 are also eigenvalues and eigenfunctions

of Dα, and Theorem 4.1 in [4], one concludes that for L sufficiently large, the eigenvalues of

matrix AαL approximate the eigenvalues ς 6= λ of Dα
0 − λ, in a symbolic form ΓL ≈ Γ r {λ}.

3.3 Numerical approximations of Turing patterns

In this section, we present numerical approximations of Turing patterns associated with spe-

cific p-adic FitzHugh-Nagumo systems. By suitable choosing of the parameters (µ, γ, δ, β, d,

with d > 1), we find a region where the conditions (1)-(5) of Theorem 3.2.1 are satisfied.

Then, we solve numerically the system of ODEs (3.2.3). Finally, we give various visualiza-

tions of the solutions intending to show several aspects of the Turing patterns. To construct

a region (called the Turing unstable region), we use an (fu1 , gv1) plane, i.e., we set

x = fu1 = µ− 3u2
1, y = gv1 = −γδ.

Figure 3.2 shows a Turing unstable region associated with a steady state of system (3.2.3).

The parameters (µ, γ, δ, β, d, with d > 1) that give rise to green points in Figure 3.2 corre-

spond to some Turing pattern.

Figure 3.2: All the points in the green region of the (fu1gv1) -plane, which satisfies the conditions

(1)−(5) of Theorem 3.2.1. The parameters are p = 2, µ = 1.26, β = 0, δ = 0.9, γ = 1.1, d = 10, L = 9,

and (u1, v1) = (0.3858, 0.4287).
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The last condition in Theorem 3.2.1 is shown in the left part of Figure 3.3. More precisely,

the eigenvalues of matrix AαL between the dotted lines (which represent the values κ1, κ2)

satisfy condition (6) in Theorem 3.2.1. The right part of Figure 3.3 shows the eigenvalues of

operator Dα
0 − λ, see Section 3.2.1. For L sufficiently large, the eigenvalues of AαL approach

to the ones of Dα
0 − λ, such it was discussed at the end of Section 3.2.

Figure 3.3: The left part of the figure shows the first 150 eigenvalues of the matrix AαL, which is

a discretization of the Vladimirov operator Dα
0 − λ. The right part of the figure shows the first 20

eigenvalues of Dα
0 − λ. Notice that eigenvalue λ is very close to 1.

Figure 3.4 and 3.5 show the Turing patterns, which are solutions of the Cauchy problem

associated with system (3.2.3), with an initial datum close to (u1, v1), for t sufficiently large.
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Figure 3.4: The activator states uL(I, ·) for 731 < t < 2000, and L = 9. The vertical scale runs

through the points of tree G9.

Figure 3.5: The inhibitor states vL(I, ·) for 731 < t < 2000, and L = 9. The vertical scale runs

through the points of tree G9.
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Figure 3.6: The left side of the figure shows the activator uL (I, ·), while the right side shows

the inhibitor vL (I, ·). This figure shows the evolution of all the system states (3.2.3) for time

731 < t < 2000. At time t = 0, the initial datum for the Cauchy problem is (
∼
u1,

∼
v1), where

∼
u1 is

a sample of a Gaussian variable with mean u1 and variance 0.01, and
∼
v1 is a sample of a Gaussian

variable with mean v1 and variance 0.01. For any initial state (
∼
u1,

∼
v1), the system (3.2.3) develops

the Turing pattern shown in this figure.

Figure 3.7: This Figure is a 3D version of Figure 3.6. The left side of the figure shows the activator

uL (I, ·), while the right side shows the inhibitor vL (I, ·). It shows the evolution of all the states of

the system (3.2.3) for time 731 < t < 2000. The initial datum for the Cauchy problem is the same

as in Figure 3.6. The Turing patterns are traveling waves.
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Chapter 4

Conclusions

In this thesis, in Chapter 2, for a suitable s ∈ R, we obtained results related to Sobolev-type

spaces Hs. We establish the local well-posedness of the Cauchy problem for a family of p-

adic Nagumo-type equations in Sobolev-type spaces Hs, for when s > n/2 + 2δ. Also, we

show that the blow-up phenomenon occurs in finite time and provide numerical simulations

showing this phenomenon. Our results can serve to study the local or global well-posedness

of the Cauchy problem for other parabolic equations in the p-adic context on Sobolev-type

spaces Hs for a suitable s ∈ R.

In Chapter 3, we considered the discrete and p-adic continuous versions of the FitzHugh-

Nagumo system defined on Zp and GL, respectively. This system on GL can be identified as

a network, cf. [67, Section 5], the activator and inhibitor species react on the nodes and spread

(in two directions) across the available links. In this context, we proved that Turing patterns

can develop. Analytically, we show the conditions and the set of parameters associated with

the onset of the Turing instability in the system (3.1.1). The simulations show that the

Turing patterns are traveling waves on the p-adic unit ball. The results obtained can be used

to study Turing patterns in other reaction-diffusion systems in the p-adic context.
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Appendix A

Evolution equations and the blow-up

phenomenon: basic aspects

A.1 A locally well-posed Cauchy problem

Definition A.1.1. Let X, Y Banach spaces, T0 ∈ (0,∞) and F : [0, T0] × Y −→ X a

continuous function. The Cauchy problem
∂tu(t) = F (t, u (t))

u(0) = φ ∈ Y

(A.1.1)

is locally well-posed in Y , if the following conditions are satisfied.

(i) There is T ∈ (0, T0] and a function u ∈ C([0, T ];Y ), with u(0) = φ, satisfying the

differential equation in the following sense:

lim
h→0

∥∥∥∥u(t+ h)− u(t)

h
− F (t, u(t))

∥∥∥∥
X

= 0,

where the derivatives at t = 0 and t = T are calculated from the right and left, respectively.

(ii) The initial value problem (A.1.1) has at most one solution in C([0, T ];Y ).

(iii) The function φ → u is continuous. That is, let {φn} be a sequence in Y such that

φn → φ∞ in Y and let un ∈ C ([0, Tn] ;Y ), resp. u∞ ∈ C ([0, T∞] ;Y ), be the corresponding

solutions. Let T ∈ (0, T∞), then the solutions un are defined in [0, T ] for all n big enough

and

lim
n→∞

sup
t∈[0,T ]

‖un(t)− u∞(t)‖Y = 0.
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A.2 Essential Ideas of Semigroup Theory

We will give definitions and basic results about Semigroup Theory. This section is based

in [40, Chapter 4].

A.2.1 Semigroups of Linear Operators

We shall study problems related to the abstract differential equation of the form

u′ + Au = 0,

where A is a linear operator in a Banach space X and u′ denotes the derivative of u : [0,∞)→

X in the Banach space, i.e.,

lim
h→0

∥∥∥∥1

h
(u(t+ h)− u(t))− u′(t)

∥∥∥∥ = 0.

Assuming that for given u(0) the equation has a unique solution on [0,∞) implies that there

exist linear operators Q(t), for t ≥ 0, such that

u(t) = Q(t)u(0)

and Q(t)Q(s) = Q(t+ s). Formally, Q(t) = eAt. Assuming continuous dependence on initial

conditions gives us that Q(t) should be a bounded linear map from its domain into X. It can

be arranged in applications so that the domain of Q(t) is the whole X. The map t → Q(t)

has to have some continuity properties. This map and some technical considerations suggest

the following definitions.

Definition A.2.1. A family of bounded linear operators {Q(t)}t≥0 on a Banach space X is

called a strongly continuous semigroup (or C0 semigroup) if

(a) Q(0) = 1 (identity map)

(b) Q(t)Q(s) = Q(t+ s) for all t ≥ U, s ≥ 0

(c) limt→0+ ‖Q(t)x− x‖ = 0 for all x ∈ X.

Definition A.2.2. Let {Q(t)}t≥0 be a strongly continuous semigroup of operators on a Ba-

nach space X. Define D(A) to be the set of all x ∈ X for which there exists y ∈ X such

that

lim
t→0+

∥∥∥∥1

t
(x−Q(t)x)− y

∥∥∥∥ = 0;
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for such x and y define Ax = y. The linear operator, −A, is called the generator (or the

infinitesimal generator) of the semigroup.

The following example is taken directly from [40, EXAMPLE 4.1.3].

Example A.2.1. Let the Banach space X be Cu(R). For t ≥ 0 define Q(t) ∈ B(X), where

B(X) to be the set of all linear operators of X on X, by

(Q(t)f)(x) = f(x− t) for f ∈ X, x ∈ R.

One can easily verify that {Q(t)}t≥0 is a strongly continuous (but not continuous, [40, Exercise

1]) semigroup of operators on X. Let −A be its generator. If f ∈ D(A) and

e(t) =
f −Q(t)f

t
− Af for t > 0,

then limt→0+ ‖e(t)‖ = 0 and, since for all x ∈ R,∣∣∣∣f(x− t)− f(x)

−t
− (Af)(x)

∣∣∣∣ ≤ ‖e(t)‖, ∣∣∣∣f(x+ t)− f(x)

t
− (Af)(x+ t)

∣∣∣∣ ≤ ‖e(t)‖,
we have that Af = f ′ and f ∈ C1

u(R). If f ∈ C1
u(R), then(

f −Q(t)f

t
− f ′

)
(x) =

∫ 1

0

(f ′(x− st)− f ′(x)) ds
t→0−→ 0

uniformly in x, which implies that f ∈ D(A). Thus

Af = f ′ for f ∈ D(A) = C1
u(R).

If f ∈ D(A) and u(t) = Q(t)f , then u(t) ∈ D(A) and∥∥∥∥u(t+ h)− u(t)

h
+ Au(t)

∥∥∥∥ = sup
x∈R

∣∣∣∣f(x− h)− f(x)

h
+ f ′(x)

∣∣∣∣ h→0−→ 0;

hence

u′ + Au = 0 on [0,∞),

where u′ denotes the derivative of u in the Banach space X. Note also that if v(x, t) =

(u(t))(x) = f(x− t), then

vt(x, t) + vx(x, t)− 0 for t ≥ 0, x ∈ R,

where vt, vx denote the classical partial derivatives.
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A.2.2 Basic properties of semigroups

Theorem A.2.1 ([40, Theorem 4.3.1]). Suppose {Q(t)}t≥0 is a strongly continuous semigroup

on a Banach space X and let −A be the generator of the semigroup. Then

(1) There exist M ∈ [0,∞), a ∈ R such that ‖Q(t)‖ ≤Me−at for all t ≥ 0.

(2) t→ Q(t)x is a continuous mapping of [0,∞) into X for every x ∈ X.

(3) If x ∈ X, t ≥ 0, then
∫ t

0
Q(s)xds ∈ D(A) and x−Q(t)x = A

∫ t
0
Q(s)xds.

(4) If x ∈ D(A), u(t) = Q(t)x for t ≥ 0, then for each t ≥ 0 we have that

du

dt
(t) exists, u(t) ∈ D(A),

du

dt
(t) = −Au(t) = −Q(t)Ax.

(5) (A− λ)−1Q(t) = Q(t)(A− λ)−1 for every λ ∈ ρ(A), t ≥ 0.

(6) A is a closed linear operator.

(7) ∩∞n=1D (An) is dense in X.

(8) If τ ∈ (0,∞], u : [0, τ)→ X is continuous and such that

du

dt
(t) exists, u(t) ∈ D(A) and

du

dt
(t) + Au(t) = 0 for t ∈ (0, τ),

then u(t) = Q(t)u(0) for all t ∈ [0, τ).

(9) If {T (t)}t≥0 is a strongly continuous semigroup on X and the generator of this semigroup

is equals −A, then T (t) = Q(t) for all t ≥ 0.

(10) If λ is any scalar, then
{
eλtQ(t)

}
t≥0

is a strongly continuous semigroup on X and the

generator of this semigroup is λ− A.

Theorem A.2.2 ([40, Theorem 4.3.2]). Suppose that −A is the generator of a strongly

continuous semigroup {Q(t)}t≥0 on a Banach space X. Let M ∈ [0,∞), a ∈ R be such that

‖Q(t)‖ ≤Me−at for all t > 0. Then every scalar λ, with Re(λ) < a, belongs to the resolvent

set of A and, moreover,

∥∥(A− λ)−n
∥∥ ≤M(a− Re(λ))−n for n ≥ 1;

(A− λ)−nx =
1

(n− 1)!

∫ ∞
0

sn−1eλaQ(s)xds for n ≥ 1, x ∈ X.

Corollary A.2.1 ([40, Corollary 4.3.3]). Suppose −A is the generator of a strongly con-

tinuous semigroup {Q(t)}t≥0 on a Banach space X. If λ is in the spectrum of A and if
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b ∈ R, b > Reλ, then

supt>0 ‖Q(t)x‖ebt =∞ for some x in X.

Theorem A.2.3 ([40, Theorem 4.3.5]). Suppose that A is a densely defined linear operator

in a Banach space X and that for some M ∈ [0,∞), a ∈ R, we have that (−∞, a) ⊂ ρ(A)

and ∥∥(A− λ)−n
∥∥ ≤M(a− λ)−n for λ ∈ (−∞, a), n = 1, 2, . . . (A.2.1)

Then there exists a strongly continuous semigroup {Q(t)}t≥0 on X whose generator is equal

to −A. Moreover.

‖Q(t)‖ ≤Me−nt for t ≥ 0, (A.2.2)

lim
n→∞

sup
t∈[0,T ]

∥∥Q(t)x− (1 + (t/n)A)−nx
∥∥ = 0 for T ∈ (0,∞), x ∈ X. (A.2.3)

The implicit Euler method for approximating the solution of

u′ + Au = 0, u(0) = u0

is
u(t+ h)− u(t)

~
+ Au(t+ h) ≈ 0.

hence

u(t+ h) ≈ (1 + hA)−1u(t)

u(nh) ≈ (1 + hA)−nu0

u(t) ≈ (1 + (t/n)A)−nu0.

Note that Theorem A.2.3 implies convergence of the approximations whenever −A is the

generator of a strongly continuous semigroup.

Theorem A.2.4 ([40, Theorem 4.3.6]). Suppose that −A is the generator of a strongly

continuous semrgroup {Q(t)}t≥0 on a reflexive Banach space X. Then {Q(t)?}t≥0 is a strongly

continuous semigroup on X∗ whose generator is −A∗.

Thus, the definition of the Hilbert space adjoint and [40, Theorem 2.2.5] imply

Corollary A.2.2. Suppose −A is the generator of a strongly continuous semigroup {Q(t)}t≥0

on a Hilbert space H. Then {Q(t)∗}t≥0 is a strongly continuous semigroup on H whose gen-

erator is −A∗.
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A strongly continuous semigroup {Q(t)}t≥0 is said to be a contraction semigroup if

‖Q(t)‖ ≤ 1 for t ≥ 0.

Theorem A.2.5 ([40, Theorem 4.3.8]). Suppose that A is a linear operator in a Banach

space X. Then −A is the generator of a contraction semigroup if and only if A is a densely

defined accretive linear operator and R(A+ λ) = X for some λ > 0.

A.3 Finite Time Blow-Up for Evolution Equations

We will emphasize the methods and techniques for studying blow-up problems. This section

is based in [26, Chapter 5]. Many methods for studying blow-up issues apply to more general

equations. We shall use the simplest model in our explication to avoid lengthy computations.

The equation

ut −∆u = f(u) in ΩT ≡ Ω× (0, T ), (A.3.1)

u = 0 on ∂Ω× (0, T ), (A.3.2)

u(x, 0) = u0(x) for x ∈ Ω (A.3.3)

can be used to model solid fuel ignition (see [7] for details). The function f(u) is typically

a nonlinear function such as up (p > 1), exp(u), etc. If the source term is on the boundary,

we then have the following system:

ut −∆u = 0 in ΩT ≡ Ω× (0, T ), (A.3.4)

∂u

∂n
= f(u) on ∂Ω× (0, T ), (A.3.5)

u(x, 0) = u0(x) for x ∈ Ω (A.3.6)

where n is the unit exterior normal vector.

The first question is the existence and uniqueness for either (A.3.1)–(A.3.3) or (A.3.4)–(A.3.6).

For the corresponding linear problem, the existence and uniqueness are stated in [26, The-

orem 3.5] for the Dirichlet problem. The Neumann problem can be studied similarly. For

the nonlinear problem, the questions about existence (locally in time) and uniqueness have

been answered in a similar manner. One can, of course, study the problem of combined

heat sources in the interior and on the boundary, the problem of systems of more than one

equation, etc. In recent decades, many results have been obtained on these problems.
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In this Appendix, we want to study whether a solution exists globally in time or has a finite

time blow-up. We want to determine the blow-up rate and the asymptotic behavior near the

blow-up point if the blow-up occurs.

Definition A.3.1 (L∞ blow-up). We say that a solution u blows up (or thermal runaway)

at t = T if there exists (xn, tn), tn ↗ T , such that |u(xn, tn)| → +∞. In this case, we say

that the solution blows up in finite time if T is finite; if there exists a sequence yn and tn ↗ T

such that yn → x and |u(yn, tn)| → +∞, then we say that x is a blow-up point. The collection

of all blow-up points is called the blow-up set.

For the finite time blow-up, Osgood [49] gave a criterion, namely the right-hand side nonlinear

term must satisfy ∫ ∞ ds

f(s)
<∞.

The earliest blow-up results on parabolic equations are due to Kaplan [28] and Fujita [19].

Some early papers appeared in the 1970s: Tsutsumi [57], Hayakawa [25], Levine [36], Levine

and Payne [37, 38], Walter [59], Ball [6], Kobayashi et al. [31], Aronson and Weinberger [3].

We begin by presenting some of their results.

A.3.1 Finite Time Blow-Up: Kaplan’s First Eigenvalue Method

If we drop the diffusion term in (A.3.1), the positive solution of the ordinary differential

equation (ODE) ut = f(u) will blow up in finite time for any positive initial data, provided

f is defined for all u ∈ R, and satisfies

f(u) > 0 for u > 0,

∫ ∞
M

du

f(u)
<∞, (A.3.7)

for some M > 0. So, a natural question is whether the diffusion is strong enough to diffuse

the energy to prevent a finite time blow-up.

Remark A.3.1 (necessary condition). (A.3.7) is a necessary condition for blow-up to occur.

In fact, if

∞∫
M

du

f(u)
=∞, one can then obtain global existence of (A.3.1)–(A.3.3) by comparing

its solution with an ODE solution.

Here, we shall introduce the first eigenvalue method introduced in 1963 by Kaplan [28]. As

we shall see from the proof, it is a straightforward method that applies to a large class of

equations.
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Theorem A.3.1 ([26, Theorem 5.1]). Let Ω be a bounded domain with ∂Ω ∈ C1. Assume

that f is convex (i.e., f
′′ ≥ 0), and (A.3.7) is satisfied. Let u ∈ C(ΩT )∩C2(ΩT ) be a solution

of (A.3.1)–(A.3.3). If

∫
Ω

u0(x)dx is sufficiently large, then the solution u must blow up in a

finite time.

The assumption that the initial datum is “large” cannot be dropped. The solution can exist

globally in time if this assumption is dropped. We use f(u) = up to illustrate this in the

following theorem.

We take φ to be the solution of [26, (5.8)–(5.10)] and take ψ(x) = ηφ(x). If 0 < η � 1, then

−∆ψ − ψp = η(λ1φ − ηp−1φp) ≥ 0. It follows that ψ is a supersolution and u(x, t) ≤ ψ(x)

for all t if initially 0 ≤ u0(x) ≤ ψ(x). We proved

Theorem A.3.2 (Global existence). In the case f(u) = up, if 0 ≤ u0(x) ≤ ψ(x), then the

solution exists globally in time.

A.3.2 Finite Time Blow-Up: Concavity Method

In this section, we introduce another method to establish finite time blow-up. This method,

introduced by Levine–Payne in the papers [37], [38] and Levine [36] in the 1970s, uses the

concavity of an auxiliary function.

For simplicity, we shall only consider (A.3.1)–(A.3.3) with

f(t) = |u|p−1u (p > 1). (A.3.8)

This concavity method is powerful enough to apply to many other types of second parabolic

and evolution equations. It does not use maximum principles, and the following theorem is

only a particular case discussed in [36].

Theorem A.3.3 ([26, Theorem 5.3 (Levine)]). Let Ω be a smooth domain. If f is given by

(A.3.8) and u0(x) satisfies

− 1

2

∫
Ω

|∇u0(x)|2dx+
1

p+ 1

∫
Ω

|u0(x)|p+1dx > 0. (A.3.9)

then the solution of (A.3.1)–(A.3.3) must blow-up in finite time.

Remark A.3.2. The domain Ω can be either bounded or unbounded.

53



Definition A.3.2. Let s ∈ R. We define the Sobolev space of order s, denoted by Hs(Rn),

as:

Hs(Rn) = {f ∈ S ′(Rn) : Λsf(x) = ((1 + |ξ|2)s/2f̂(ξ))∨(x) ∈ L2(Rn)}, (A.3.10)

with norm ‖·‖s,2 defined as:

‖f‖s,2 = ‖Λsf‖2.

Remark A.3.3. The condition (A.3.9) is explicit on the initial datum. Such u0 always

exists. One can pick any non-trivial function ψ ∈ H1(Ω) ∩ Lp+1(Ω) and let u0(x) = λψ(x),

λ� 1.

Remark A.3.4. Note that if the solution of (A.3.1)–(A.3.3) (with f(u) = |u|p+1u) is global,

then we must have

−1

2

∫
Ω

|∇u(x, t)|2dx+
1

p+ 1

∫
Ω

|u(x, t)|p+1dx < 0 for all t > 0,

this estimate is useful in establishing a global bond for global solutions.

A.3.3 Finite Time Blow-Up: A Comparison Method

If the system under consideration has a comparison principle, the solution must blow up if a

subsolution blows up in a finite time. However, there are no general rules on how to construct

comparison functions. Here, we give one example.

Theorem A.3.4 ([26, Theorem 5.4]). Consider the system (A.3.4) and (A.3.6) in a bounded

smooth domain with f(u) = up (p > 1) and u0(x) ≥ 0. In this case, all nontrivial solutions

blow up in a finite time.

A.3.4 Fujita Types of Results on Unbounded Domains

One of the earliest results is Fujita’s critical exponent (Fujita [19]) on the simple system

ut −∆u = up x ∈ Rn, t > 0, (p > 1) (A.3.11)

u(x, 0) = u0(x) ≥ 0, x ∈ Rn. (A.3.12)

We can compare the solution with a blow-up solution of (A.3.1)–(A.3.3) (with f(u) = up), so

that the solution of (A.3.11) and (A.3.12) always blows up in finite time if the initial datum
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u0(x) is large enough in a certain sense. The question is whether or not there are global

solutions for all time. If u is small, then up is very small if p is large. As Fujita observed, if

p is large and u0 is small, global solutions exist. On the other hand, if p is close to 1, then all

positive solutions will blow up in a finite time. In the case of the nonlinearity given by up on

the whole space, the cutoff value, or the critical exponent, is 1 + 2
n
. Fujita’s result does not

include the critical exponent itself. The critical exponent itself actually belongs to the blow-

up case (see Hayakawa [25], Kobayashi et al. [31], Aronson and Weinberger [3], Weissler [60]).

The proof represents the solution in an integral equation regarding its fundamental solution.

This approach does not need a separate proof to include the critical exponent in the blow-up

case. The solution of (A.3.11) and (A.3.12) has an integral representation [18, p. 51, (17)]:

u(x, t) =

∫
Rn

Γ(x− y, t)u0(y)dy +

∫ t

0

∫
Rn

Γ(x− y, t− τ)up(y, τ)dydτ, (A.3.13)

where

Γ(x, t) =
1

(4πt)n/2
exp

(
−|x|

2

4t

)
satisfies (

∂

∂t
−∆

)
Γ(x, t) = 0 for (x, t) 6= (0, 0).

Theorem A.3.5 ([26, Theorem 5.5]). (i) If p > 1 + 2
n

, then the solution of (A.3.11) and

(A.3.12) is global in time, provided the initial datum satisfies, for some small ε > 0,

u0(x) ≤ εΓ(x, 1) for x ∈ Rn.

(ii) If p ≤ 1+ 2
n

, then all nontrivial solutions of (A.3.11) and (A.3.12) blow-up in finite time.
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[15] L. F. Chacón-Cortés and W. A. Zúñiga-Galindo, Nonlocal operators, parabolic-type equa-

tions, and ultrametric random walks, J. Math. Phys. 54 (2013), no. 11, 113503, 17 pp.

x

[16] Soon-Yeong Chung and Jae-Hwang Lee, Blow-up for discrete reaction-diffusion equations

on networks, Appl. Anal. Discrete Math. 9(1), 103-119 (2015). xiv

[17] Trond Digernes, A review of finite approximations, Archimedean and non-Archimedean,

P-Adic Num Ultrametr Anal Appl 10 (4), 253-266 (2018). xiv, 41

[18] L. C. Evans, Partial differential equations, Graduate Studies in Mathematics, Vol 19,

American Mathematical Society, Providence, RI, (1991). 55

[19] H. Fujita, On the blowing up of solutions of the Cauchy problem for ut = ∆u + u1 + α,

J. Fac. Sci. Univ. Tokyo Sect. A. Math. 16 (1966), 105–113. 52, 54

[20] I. M. Gel’fand and N. Y. Vilenkin, Generalized Functions. Applications of Harmonic

Analysis, vol. 4. Academic Press, New York, 1964. xi

57
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