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Abstract

In this work it is given for the first time an explicit description of the transversally
locally constant Teichmüller space of certain minimal laminations fibering over an in-
finite type hyperbolic surface. In particular, it is shown that it is a contractible and
separable space. For this it is defined an Ahlfors-Bers model for the Teichmüller space
of laminations fibering over hyperbolic surfaces analogously to the known Ahlfors-Bers
model for Riemann surfaces.

Resumen

En este trabajo se da por primera vez una descripción expĺıcita del espacio Teichmüller
transversal-localmente constante de ciertas laminaciones minimales fibrando sobre su-
perficies hiperbólicas de tipo infinito. En particular se muestra que este espacio es
contráıble y separable. Para esto se define un modelo de Ahlfors-Bers para el espacio
Teichmüller de laminaciones que fibran sobre superficies hiperbólicas analógamente al
conocido modelo de Ahlfors-Bers para superficies de Riemann.





Introduction

In this work it is given an explicit description of the Teichmüller space of laminations
fibering over hyperbolic surfaces. A hyperbolic surface is a Riemannian surface of
constant sectional curvature −1. Only metrically complete surfaces will be considered
here and a hyperbolic surface will be denoted by Σ. Given the well-known relation
between the group of all biholomorphisms on the unit disc Bihol(∆) and the set of all
positively oriented isometries on the unit disc Isom+(∆),

Bihol(∆) = Isom+(∆),

from now on it will be considered a hyperbolic surface as a Riemann surface.
A lamination is a compact and metrizable topological space L locally modeled on

the product of the unit disc by a topological space. It comes with an atlas, whose
transition functions preserve the disc factor of the product structure. When transition
functions are holomorphic along the disc coordinate, L is called a Riemann surface
lamination.

Teichmüller spaces have various applications. For example, in physics they have
been used within string theory (see [32] and [9]). In other areas of mathematics they
have also been used, for example in Sullivan’s proof of the non-wandering domain
theorem (see [31]). Furthermore, conformal structures have been used in the digitization
of three-dimensional scenes, (see [33]).

The Teichmüller space of a Riemann surface lamination was defined by Sullivan in
[29], see also [15]. It was defined as the space of all transversally continuous conformal
structures along the space of leaves up to the action of the group of quasiconformal
isotopies tangent to the leaves. In [30] he proved that this Teichmüller space is a
Banach manifold and he considered those objects which are continuous and locally
constant in the transverse direction, these objects define the transversal-locally constant
Teichmüller space.

Considering this definition, unless the lamination is fibering over a Riemann surface
with discrete fiber, the conformal structures of L cannot be defined as the union of the
conformal structures of the sheets.

Regarding the Teichmüller space of laminations, there are general results such as
[13] and [5].

For explicit descriptions of the Teichmüller space, there are recent works in which
have been considered specific laminations. For example in [3], Alvarez and Lessa con-
sidered the Hirsch foliation. They give a description of the Teichmüller space for the
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Hirsch foliation as the space of closed curves in the plane. In [10], Burgos and Verjovsky
consider the universal hyperbolic lamination Σ∞ of a compact hyperbolic surface Σg

of genus g. This lamination is defined as the inverse limit of the category of unram-
ified holomorphic connected coverings of a Riemann surface Σg. They show that the
Teichmüller space of the universal hyperbolic lamination is biholomorphic to a space of
continuous functions. In [24], Penner and Sǎrić considered the punctured solenoid which
is defined as the inverse limit of all finite covers of any fixed punctured surface with
negative Euler characteristic and they give a description of the decorated Teichmüller
space of this lamination as a space of continuous functions.

Then with the idea of considering more general laminations whose Teichmüller space
is described explicitly, we proceed as follows. Consider a minimal lamination L fibering
over a hyperbolic surface Σ with fiber F , that is to say π : L → Σ is a locally trivial
fibration with fiber F such that π restricted to any leaf is a local diffeomorphism. It is
assumed that F is a Hausdorff compact space. With this hypotheses L is a hyperbolic
surface lamination that is each leaf is a hyperbolic surface. Since the lamination L is
minimal, thus each sheet of the lamination is densely immersed in L.

Note that if the surface Σ is not hyperbolic, according to the uniformization theorem
Σ is the Riemann sphere or a surface with a universal covering biholomorphic to the
plane C. In the first case, since the sphere is simply connected, any minimal lamination
fibering on Σ is a sphere. The Teichmüller space of the sphere is a single point (see page
44), then this case is not considered. In the case of surfaces with universal covering
biholomorphic to the complex plane, it is a work in progress.

Denoting by G the fundamental group of Σ, it can be considered the right holonomic
action on the fiber

Hol : G→ Homeo(F )op, g 7−→ φg, where φg : F → F, φg(k) = k · g. (1)

We can identify the pullback of the fibration π by the uniformization u : ∆ → Σ
with the product F × ∆, then it can be shown that the lamination L is isometric to
(F ×∆)/G, where the diagonal action of G is defined by g · (k, a) = (k · g−1, g · a).
In this work it is given a mathematically tractable definition of the space TTLC(L). For
this, in Chapter 3, it is defined an Ahlfors-Bers model for the Teichmüller space of the
lamination L. The Beltrami differential space of the lamination L is defined as the set
of continuous functions µ : F → Bel(∆) such that for every k ∈ F and each g ∈ G, we
have l∗g(µ(k)) = µ(k · g), and it is denoted by Bel(L). Here Bel(∆) is the set of L∞
section of ω∗ ⊗ ω here ω is the canonical bundle on the disc whose supremum norm is
less than one.

It also is defined on Bel(L) the following equivalence relation:

µ ∼ η if µ(k) ∼ η(k), ∀k ∈ F.

Then, analogously to the case of Riemann surfaces, the Teichmüller space of the lami-
nation L can be defined as the quotient space

T (L) = Bel(L)/ ∼ .
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Let B : Bel(L) → T (L) be the quotient map. The transversally locally constant
Beltrami differential space on the lamination L is by definition

BelTLC(L) = CLC(F,Bel(∆))eq(G)

and it is defined the transversally locally constant Teichmüller space as

TTLC(L) = B(BelTLC(L)).
Now, suppose that Σ is a complete hyperbolic surface without boundary and the

lamination is minimal with Hausdorff compact fiber and holonomy action (1). Given
a pair of pants decomposition of the surface Σ by generalized hyperbolic pair of pants
(see Section 2.6, Chapter 2), it will be said that the fibration has trivial holonomy on
pants if the interior P of every pair of pants in the decomposition verifies

Hol(ι∗(π1(P ))) = {idF}, ι : P → Σ.

In this case it will said that the pants decomposition has trivial holonomy. Then, in
the Chapter 3, it is given the following explicit description of the space TTLC(L) of the
lamination L.

It is shown that given a hyperbolic surface Σ without boundary obtained by gluing
a (possibly finite) sequence of a pair of generalized hyperbolic pair of pants, each glued
to the next along a common boundary geodesic, such that the length of these geodesic
boundaries is uniformly upper bounded and given a minimal lamination L fibering over
Σ with a Hausdorff compact fiber F whose holonomy action continuously extends to
the profinite completion of the fundamental group G and has a trivial holonomy on
pants, then we have the following homeomorphism

TTLC(L) ∼= CLC(F, T (Σ)),

where the left hand is the transversally locally constant Teichmüller space of L and the
right hand is the space of locally constant functions valued on the Teichmüller space of
Σ.

This result provides an explicit description of the transversally locally constant Te-
ichmüller space of laminations fibering over infinite conformal type hyperbolic surfaces
(see Example 7 in Chapter 3). This work is the first time that an explicit description
of a Teichmüller space of laminations fibering over an infinite conformal type surface is
given. Also, laminations are not required to be compact, here it is only asked for the
fiber to be compact.

Let me briefly mention the structure of this thesis. In Chapter 1, notation and
definitions of terms that will be used in the following chapters are given. In Chapter 2,
it is given the definition of the Teichmüller space for Riemann surfaces and some known
results for these spaces are included.

Chapter 3 is original work, the Ahlfors-Bers model for laminations is defined and an
explicit description of the transversally locally constant Teichmüller space for specific
laminations is given (also see [11]). To demonstrate the central result, it was necessary
to prove certain key Lemmas, which although I do not dare to proclaim originality
about them, I could not have these results available since I only found similar but not
exact versions. Such is the case of Lemmas 1.3.7, 1.3.13 and 1.3.21.
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Chapter 1

Preliminaries

In this chapter it is introduced the notation that will be used in the following chapters.
It will be use the term domain to mean a connected open subset of the complex plane
C and unless it will be indicated otherwise, the letter D will denote a domain. Also,
throughout this text the Riemann sphere will be denoted by Ĉ, that is to say, Ĉ =
C ∪ {∞} and C∗ will denote the punctured plane C∗ = C\{0}. A homeomorphism (or
biholomorphism) on a domain D onto its image will be called simply homeomorphism
(or biholomorphism) on D. Also, it will be called measurable subsets to the Lebesgue
measurable subsets.

1.1 Quasiconformal Mappings

In this section, the Beltrami coefficients are introduced which will play a very important
role throughout this text.

Definition 1.1.1. Let D ⊂ C be a domain and let f : D → C be a homeomor-
phism which preserves orientation. It will be said that f is a quasiconformal mapping
(abbreviated as qc mapping) on D if f satisfies the following conditions:

(1) The distributional partial derivatives of f with respect to z and z̄ can be repre-
sented by functions fz, fz̄ ∈ Lloc1 (D), respectively.

(2) There exists k ∈ R such that 0 ≤ k < 1 and |fz̄| ≤ k|fz| a.e. on D.

Let D and D′ be subset of C, it will be denoted by QC(D,D′) the set of quasi-
conformal maps from D to D′, with the topology of uniform convergence on compact
subsets. If D = D′, it will simply be written QC(D).

Remark 1.1.2. If a homeomorphism f : D → C has the derivatives fx and fy a.e. on
D, then f is totally differentiable a.e. on D, see [17, Proposition 4.1]. Now, let f be
a quasiconformal mapping, then it is totally differentiable a.e. on D and the Jacobian
determinant of f is J(f) = |fz|2 − |fz̄|2. By the second item of the above definition, we
have that J(f) > 0.
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If f is quasiconformal mapping on D and k is a constant for which the second item
of the definition 1.1.1 is satisfied, setting K = 1+k

1−k , it will be said that f is a K-qc
mapping on D and K(f) will be called maximal dilatation, where it is defined by:

K(f) = inf

ß
1 + k

1− k
: |fz̄| ≤ k|fz| a.e. on D

™
.

Now, let’s see some examples of quasiconformal mappings.

Example 1. If f is a biholomorphism on D, then f is a quasiconformal mapping. In
fact, since f is infinitely differentiable, it is enough verify the item 2 of the definition
1.1.1. But, in this case fz̄ = 0, then we can take k = 0. Also, f is a 1-qc mapping,
moreover K(f) = 1.

Example 2. Consider the function f : C → C defined by f(z) = az + bz̄ + c with
a, b, c ∈ C. Notice that if b = 0, then the Weyl’s lemma implies that f is holomorphic.
In general, the distributional partial derivatives of f are given by fz = a and fz̄ = b,
thus f is quasiconformal if |b| < |a| and in this case K(f) = |a|+|b|

|a|−|b| .

Example 3. Let f : C → C be the function defined by f(z) = x+ iKy with z = x+ iy
and K ≥ 1. Notice that f can be written as:

f(z) =
z + z̄

2
+K

z − z̄

2
=

1 +K

2
z +

1−K

2
z̄.

Since fz = (1+K)/2 and fz̄ = (1−K)/2, for the Weyl’s lemma again, f is holomorphic
iff K = 1 and f is quasiconformal iff (K − 1)/(K + 1) < 1, the latter happens iff
K < +∞. In this case K(f) = K.

Now, let’s see an example of a homeomorphism which isn’t a quasiconformal map-
ping.

Example 4. Consider the unit disk ∆ and let f : ∆ → C be the function defined by
f(z) = z

1−|z|2 . Let us see that f isn’t a quasiconformal mapping1. A direct calculation
show that

fz(z) =
1

1− |z|2
+

|z|2

(1− |z|2)2
=

1

(1− |z|2)2
, fz̄(z) =

z2

(1− |z|2)2
.

Thus |fz̄ ||fz | = z2, which converges to 1 when |z| → 1. So, we can’t find a constant k such
that the item 2 of the definition 1.1.1 be satisfied.

In the above example, the item 2 of the definition 1.1.1 fails, let’s see an example
in which the condition 1 of that definition is not satisfied.

Remark 1.1.3. In the definition 1.1.1 we can change the item 1 by let f be ACL 2,
and we get an equivalent definition, see [17, Theorem 4.4].

1There exist no quasiconformal mapping of ∆ onto C, (See [17, Proposition 4.32]).
2Absolutely continuous on lines.
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Example 5. Let f : C → C be the function defined by

f(z) =


g(x)+x

2
+ iy if x ∈ [0, 1]

z if x /∈ [0, 1],

where g : [0, 1] → [0, 1] is the function known as “Devil’s staircase”, which assigns to
each x the value g(x) determined as follow:

• Let [x]3 the representation of x as number ternary.

• If [x]3 contains its first 1 at position n, [x]3 = 0.x1x2...xn−11xn+1..., we replace ev-
ery ternary digit following the 1 by a 0, then we consider [T (x)]3 = 0.x1x2...xn−12.
Otherwise, if [x]3 doesn’t have 1′s, then we let [T (x)]3 = 0.x1x2...xn−11xn+1....

• Finally, we remplace all 2′s as 1′s and we interpreted the string that remains as
a binary number which gives g(x).

The function g is not absolutely continuous because g′ = 0 almost everywhere on [0, 1]
3. Therefore the function f is not ACL and by the observation 1.1.3, f does not satisfy
the item 1 of the quasiconformal definition. So, f is a homeomorphism, but it is not a
quasiconformal mapping.

Now, consider f : D → C be a quasiconformal mapping. For every Borel set E ⊂ D,
we define A(E) as the area of f(E). This define a locally finite additive measure and
by Lebesgue’s Theorem, see [19, Page 120], we have A has almost everywhere on D a
finite derivative Jf which is measurable as a function of z. Also, for every measurable
subset E, we have: ∫

E

Jf (z) dxdy < A(E).

(See [19, Lemma 3.3]). Since f is differentiable at almost every z ∈ D, by the observa-
tion 1.1.2 and [19, Lemma 3.2], it result that at almost every z ∈ D,

Jf (z) = |fz(z)|2 − |fz̄(z)|2.

By the item 2 of the definition of quasiconformal mapping, we have the inequality
|fz(z)|2 − |fz̄(z)|2 ≥ |fz|2(1− k2), then:

|fz̄|2 ≤ |fz|2 ≤
Jf

1− k2

almost everywhere on D. Since Jf is locally integrable, It has been shown the following
result:

Proposition 1.1.4. Let f : D → C be a quasiconformal mapping. Then the partial
derivatives fz and fz̄ are locally square integrable on D.

3A absolutely continuous function h : (a, b) → R such that h′ = 0 a.e. on (a, b) is constant.
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Let me notice that even though the partial derivatives of a quasiconformal mapping
are in Lloc2 (D), in the definition of quasiconformal mapping, it is only asked that they
are in Lloc1 (D).

In the example 1 it is seen that a biholomorphism is a 1-qc mapping, now it will be
seen the converse, for this, a geometric definition of quasiconformal mapping is given.

First, a quadrilateral is a pair (Q, q1, q2, q3, q3) of a Jordan closed domain Q and four
points q1, q2, q3, q4 on the boundary ∂Q of Q which are mutually distinct and located
in this order with respect to the positive orientation of ∂Q.

Proposition 1.1.5.[17, Proposition 4.7] For every quadrilateral (Q; q1, q2, q3, q4), there
is a homeomorphism h of Q onto some rectangle R = [0, a]× [0, b] (a, b > 0) which is
conformal in the interior Int(Q) of Q, and satisfies

h(q1) = 0, h(q2) = a, h(q3) = a+ ib, h(q4) = ib.

Moreover, a/b is independent of h.

It will be said that a/b is the module of the quadrilateral (Q; q1, q2, q3, q4), and it
will be denoted by M(Q).

Definition 1.1.6. Let f be a homeomorphism of a domain D into C which preserves
orientation. It will be said that f is quasiconformal on D if f satisfies the following
condition:
There is a constant K ≥ 1 such that

M(f(Q)) ≤ KM(Q) (1.1)

holds for every quadrilateral Q in D.

Now, it is shown that the condition 1.1 is equivalent to the following condition:
There is a constant K ≥ 1 such that

1

K
M(Q) ≤M(f(Q)) ≤ KM(Q) (1.2)

holds for every quadrilateral Q in D.

Let f : D → C be a orientation preserving homeomorphism that satisfies 1.1. Let
Q be a quadrilateral, then there exist conformal homeomorphisms h : Q → R1 =
[0, a]× [0, b] and ĥ : f(Q) → R2 = [0, â]× [0, b̂] such that

h(q1) = 0, h(q2) = a, h(q3) = a+ ib, h(q4) = ib and

ĥ(f(q1)) = 0, ĥ(f(q2)) = â, h(f(q3)) = â+ ib̂, h(f(q4)) = ib̂.

By the definition of module we have that M(Q) = a
b
and M(f(Q)) = â

b̂
. Now, if we

consider the conformal maps ih + b and iĥ + b̂, by the proposition 1.1.5 and 1.1, we

have b̂
â
≤ K b

a
. Thus 1

k
a
b
≤ â

b̂
that is to say 1

K
M(Q) ≤M(f(Q)).

Theorem 1.1.7. The definition 1.1.1 is equivalent to the definition 1.1.6.
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Proof. See [17, Lemma 4.8 and Lemma 4.14].

It will be needed the following lemma, the proof can be consulted in [17, Theorem
4.10].

Lemma 1.1.8. If f : D → C is a K− qc mapping, then f−1 is also a K− qc mapping.

Proof. By the above observation we have

1

K
M(f−1(f(Q))) ≤M(f(Q)).

Therefore, M(f−1(f(Q))) ≤ KM(f(Q)), that is to say f−1 is K-qc.

Theorem 1.1.9. Let f : D → C be a function, then f is a 1-qc mapping if and only if
f is a conformal map.

The proof of the above theorem follows from the Weyl’s lemma which we include
below, Lemma 1.1.10. In fact, if f is a 1-qc mapping, then the distributional partial
derivative satisfies fz̄ = 0, by Lemma 1.1.10, f is holomorphic. Also, by Lemma 1.1.8,
f−1 is also a holomorphic function.

Lemma 1.1.10. (Weyl’s lemma). Let f : D → C be a continuous function with
distributional partial derivative fz̄ ∈ Lloc1 (D). If fz̄ = 0, then f is holomorphic.

Proof. Let K ⊂ D be a compact set and consider a positive real function φ ∈ C∞c (D)
such that ||φ||1 = 1, its support is a disc of radius r centered at 0 and K+supp(φ) ⊂ D.
For each 0 < ε < 1, we define the function φε(x) = 1

ε2
φ(x/ε). Then supp(φε) =

ε · supp(φ). Define fε = f ∗ φε, then fε is defined on K and since φε ∈ C∞c (D),
fε ∈ C∞c (D). By properties of the derivatives of the convolution we have:

(fε)z̄ = (f ∗ φε)z̄ = fz̄ ∗ φε = 0, on the compact subset K.

Therefore, fε is holomorphic on K for every ε. Also, (fε)ε converge uniformly to f on
K when ε tends to zero. We conclude that f is holomorphic on K and because the
compact set was arbitrary, f is holomorphic on D.

The quasiconformal mappings are less rigid than conformal mappings, but they have
good properties as show the following proposition.

Proposition 1.1.11.[17, Proposition 4.11] If f is quasiconformal on D, then fz ̸= 0
a.e. on D.

It will be denoted by L∞(D) the complex Banach space of all bounded measurable
functions on a domain D. It will be considered the norm

||µ||∞ = ess.supz∈D|µ(z)|, µ ∈ L∞(D). (1.3)
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B(D)1 will denote the set of functions in L∞(D) with norm less than 1 with respect
to the norm 1.3. By the Proposition 1.1.11, for every quasiconformal mapping f on D,
we can consider the following quantity called complex dilatation:

µf =
fz̄
fz

a.e. on D.

Since fz and fz̄ are measurable functions, we have that µf is a bounded measurable
function a.e. on D, and satisfies:

ess sup
x∈D

|µf (z)| ≤
K(f)− 1

K(f) + 1
< 1.

Therefore we have the following result.

Theorem 1.1.12. Let f : D → C a homeomorphism. Then f is a quasiconformal
mapping iff there exists µ ∈ B(D)1 such that

fz̄ = µfz a.e. on D (1.4)

where fz, fz̄ ∈ Lloc1 (D) represent the distributional partial derivatives of f .

Equation 1.4 is called Beltrami equation and µ is a Beltrami coefficient on D. By
the Theorem 1.1.12, a Beltrami coefficient let us “measure” the deformation of the
complex structure realized by a quasiconformal mapping, so the Beltrami coefficients
can be thought of as deformation parameters.

Consider fµ and f ν be quasiconformal mappings with µ and ν their respective
Beltrami coefficients. Then the Beltrami coefficient of fµ ◦ (f ν)−1 is given by (see [17]):

µfµ◦(fν)−1 =
f νz
f νz

µfµ − µfν

1− µfνµfµ
. (1.5)

1.1.1 Solutions of the Beltrami Equation

In this section solutions of the Beltrami equation are studied. First, it will be seen how
to get many solutions from a given solution. Then necessary and sufficient conditions
will be obtained for the Beltrami equation to have a solution.

Proposition 1.1.13. Let f : D → D′ be a solution of the Beltrami equation 1.4. If
g : D′ → C is a holomorphic function, then g ◦ f is a solution of the equation 1.4 too.

Proof. By a direct calculation it follows that

(g ◦ f)z = (gw ◦ f)fz + (gw̄ ◦ f)f̄z = (gw ◦ f)f̄z,
(g ◦ f)z̄ = (gw ◦ f)fz̄ + (gw̄ ◦ f)f̄z̄ = (gw̄ ◦ f)fz̄.

Therefore, taking the quotient:

(g ◦ f)z̄
(g ◦ f)z

=

Å
gw̄ ◦ f
gw ◦ f

ã
fz̄
fz

= µ.
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In the Proposition 1.1.13, the function g is not necessarily a homeomorphism, let’s
see the following example.

Example 6. Let f : D → D′ be a qc mapping and consider the function g : C → C
defined by g(z) = (z−a)2 with a /∈ Im(f). Then g is not a homeomorphism because it
is not injective, but gz̄ = 0. Thus (g◦f)z(z) = 2(f(z)−a)fz and (g◦f)z̄ = 2(f(z)−a)fz̄.
This mean that

(g ◦ f)z̄
(g ◦ f)z

=
2(f(z)− a)fz̄
2(f(z)− a)fz

= µ.

Notice that given a solution of the Beltrami equation 1.4, f : D′ → C, if g : D → D′

is a biholomorphism onto a domain D′, then f ◦g is a solution of the Beltrami equation
where the Beltrami coefficient is given by

(µ ◦ g) ḡz̄
gz
. (1.6)

Because if g is a biholomorphism and φ ∈ C∞c (D′), then φ ◦ g−1 ∈ C∞c (D). This
implies that there exist the distributional derivatives (f ◦ g)z and (f ◦ g)z̄. Then we
have (f ◦ g)z = (fw ◦ g)ḡz and (f ◦ g)z̄ = (fw̄ ◦ g)ḡz̄. Therefore

(f ◦ g)z̄
(f ◦ g)z

=

Å
fw̄ ◦ g
fw ◦ g

ã
ḡz̄
gz

= (µ ◦ g) ḡz̄
gz
.

Now, necessary and sufficient conditions will be put for that solutions to the Beltrami
equation there exist. Some results that will be necessary to show the existence are
included, its proof can be consulted in [17, Chapter 4].

Consider the following operators on Lp(C):

Ph(ζ) = − 1

π

∫∫
C

h(z)

Å
1

z − ζ
− 1

z

ã
dxdy h ∈ Lp(C), ζ ∈ C.

Th(ζ) = lim
ϵ→0

®
− 1

π

∫∫
|z−ζ|>ϵ

h(z)

(z − η)2
dxdy

´
h ∈ C∞c (C).

Lemma 1.1.14. For every p with 2 < p < ∞ and for every h ∈ Lp(C), Ph is a
uniformly Hölder continuous function on C, with exponent (1 − 2/p), and satisfies
Ph(0) = 0. Moreover, Pf satisfies (Ph)z̄ = h on C in the sense of distribution.

Lemma 1.1.15. For an arbitrarily given p > 2 and every h ∈ Lp(C),

(Ph)z = Th

on C in the sense of distribution.

Theorem 1.1.16. For every p with 2 ≤ p <∞,

Cp = sup
h∈C∞

0 (C),||h||p=1

||Th||p
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is finite. Hence, the operator T is extended to a bounded linear operator of Lp(C) into
itself with norm Cp. Moreover, Cp is continuous with respect to p. In particular, Cp
satisfies limp→2Cp = 1.

First, it is supposed that µ has compact support. Let K ⊂ C be a compact set. We
denote by BK(C) the subset of L∞(C)1 consisting of functions with support in K.

Theorem 1.1.17. Fix k such that 0 ≤ k < 1 arbitrarily. Take a positive p > 2 with
kCp < 1. The for every µ ∈ B(C)1 with ||µ||∞ ≤ k and with compact support, there
exists a continuous function f such that f(0) = 0, fz − 1 belongs to Lp(C), and f
satisfies

fz̄ = µfz

on C in the sense of distribution. Moreover, such an f is determined uniquely by these
conditions.

Proof. First, we will obtain a condition that the partial derivative fz has to satisfy.
Since fz̄ = µfz has a compact support, and since fz − 1 belongs to Lp(C), then fz̄ also
belongs to Lp(C). Thus P (fz̄) is defined. Let F (z) = f(z) − P (fz̄)(z), z ∈ C. Then
by the Lemma 1.1.14 we have that F is continuous and F (0) = 0. Moreover, since
(Pfz̄)z̄ = fz̄, then Fz̄ = 0 in the sense of the distribution. By the Weyl´s Lemma, F
is holomorphic on the whole C. On the other hand, since fz − 1 and (Pfz̄)z = T (fz̄)
belong to Lp(C), so does F ′−1. Thus we can conclude that F ′(z) = 1, i.e., F (z) = z+a.
Since f(0) = 0, we have a = 0, and hence

f(z) = P (fz̄)(z) + z, z ∈ C.

Taking the derivative with respect to z we obtain the equation that must satisfy f :

fz = P (fz̄)z + 1 = T (fz̄) + 1 = T (µfz) + 1.

Using the above equation, we shall show the uniqueness of the solution. Suppose that
there is another solution g. Then, we have gz = T (µgz) + 1. By the Calderón and
Zygmund Theorem we obtain

||fz − gz||p = ||T (µfz)− T (µgz)||p ≤ Cp||µ||∞||fz − gz||p ≤ Cpk||fz − gz||p.

Since kCp < 1 by the assumption, we get fz = gz a.e. on C. Hence, again by Weyl´s
lemma we conclude that f − g and f̄ − ḡ are holomorphic on C, which in turn implies
that f − g should be a constant. Since f(0) = g(0) = 0, we conclude that f = g, which
implies the uniqueness of the solution. Finally, the existence of the normal solution
follows also from the obtained equation. In fact, repeat substituting the whole right
hand side for fz on the right hand side. Then, we have the following formal series for
fz − 1:

fz − 1 = Tµ+ T (µTµ) + T (µT (µTµ)) + · · · . (1.7)
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The series actually converges in Lp(C), since the linear operator which sends h ∈ Lp(C)
to T (µh) ∈ Lp(C) has the operator norm not greater than kCp < 1. We set h =
Tµ+ T (µTµ) + · · · . Then h belongs to Lp(C). We shall show that

f(z) = P (µ(h+ 1))(z)

is a desired solution. In fact, µ(h+ 1) belongs to Lp(C), for µ has a compact support.
Hence, f is continuous, f(0) = 0, and fz̄ = µ(h+ 1). Moreover, we have fz = T (µ(h+
1)) + 1 = h+ 1. Hence, f satisfies the Beltrami equation fz̄ = µfz, and fz − 1 belongs
to Lp(C).

The function f is called the normal solution of the Beltrami equation for µ.
By the Theorem 1.1.17, the following map is well defined.

M : BK(C) → QC(C,C), (1.8)

µ 7→ fµ.

Proposition 1.1.18. Let k and p be as in Theorem 1.1.17. Let {µn}∞n=1 be a sequence
in B(C)1 satisfying the following conditions:

• ||µn||∞ < k for every n,

• every µn has a support contained in z ∈ C : |z| < M with a suitable constant M
independent of n, and

• µn converges to some µ ∈ B(C)1 a.e. on C as n→ ∞.

Let fn be the normal solution for µn, and f be the normal solution for µ. Then fn → f
uniformly on C as n→ ∞, and

lim
n→∞

||(fn)z − fz||p = 0. (1.9)

Proof. As in the prove of the Theorem 1.1.17, we have:

fz = T (µfz) + 1 y (fn)z = T (µn(fn)z) + 1,

then by the Calderón and Zygmund

||fz − (fn)z||p = ||T (µfz)− T (µn(fn)z)||p
≤ ||T (µn(fz − (fn)z))||p + ||T (µnfz)− T (µfz)||p
= ||T (µn(fz − (fn)z))||p + ||T (µn − µ)fz||p
≤ kCp||fz − (fn)z||p + Cp||(µn − µ)fz||p.

Thus, we have the following inequality

||fz − (fn)z||p ≤
Cp||(µn − µ)fz||p

1− kCp
.
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Since that every µn is uniformly bounded and since µn converges to µ a.e. on C, we
have that 1.9 is satisfied. Now, since f(z) = P (fz̄)(z) + z and fn(z) = P ((fn)z̄)(z) + z,
we obtain

|f(δ)− f(δ)| = |P (fz̄)(δ)− P ((fn)z̄)(δ)| ≤ Kp||fz̄ − (fn)z̄||p|δ|1−2/p

≤ Kp{||µfz − µnfz||p + k||fz − (fn)z||p}|δ|1−2/p

for every δ ∈ C. Since the right side converges to zero and the unique factor which
depends of δ is |δ|1−2/p, we have that fn → f locally uniform on C. Since fn − f is
holomorphic in a fixed neighborhood of ∞ for every n, we conclude that fn converges
to f uniformly on C.

Now, it will be proved that the normal solution is a qc mapping, but we will need
some lemmas, their proof can be consulted in [17].

Lemma 1.1.19. Let u and v be continuous functions on a simply connected domain D
whose distributional partial derivatives can be represented by locally integrable functions.
Further, suppose that uz̄ = vz. Then there exist a function f which is continuously
differentiable and satisfies fz = u and fz̄ = v.

Let µ ∈ L∞(C) with compact support and let M be a fix constant such that {z ∈
C : |z| < M} contains the support of µ. Fix also a sequence {µn}∞n=1 in C∞c (C) with
||µn||∞ ≤ k such that the support of µn is contained in {z ∈ C : |z| < M} for every n,
and that µn → µ a.e. on C as n→ ∞. It will be denoted by fn the normal solution for
µn for every n.

Lemma 1.1.20. If a function f : Ĉ → Ĉ is locally homeomorphism, then f is actually
a homeomorphism of Ĉ onto Ĉ.

Proof. Denote by Ĉz and by Ĉw the Riemann spheres which are the domains and the
target of f , respectively. Since f is an open mapping and Ĉz is compact, f(Ĉz) is
open and compact. We conclude that f(Ĉz) = Ĉw. Next, one way to show that f is
a homeomorphism is to consider f as a holomorphic function. This can be done by
introducing a new complex structure on Ĉz by pulling back the structure on Ĉw. We
have that f−1 has holomorphic branches in a neighborhood of any point of Ĉw. Since
Ĉw is simply connected, the classical monodromy theorem implies that f−1 has a single
valued branch on the whole Ĉw. Thus, f is a homeomorphism.

Lemma 1.1.21. fn is a qc mapping.

Proof. Consider a function g with gz̄ = µgz. Set

u = gz and v = gz̄ = µnu.

By Lemma 1.1.19 if we show that u is a continuous function which satisfies uz̄ = (µnu)z
then we will have that g is a quasiconformal mapping. If we set σ = log u, then

σz̄ = uz̄e
−σ = [(µn)zu+ µnuz]e

−σ = (µn)z + µnσz.
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Thus, it is enough to see that σ is a continuous function and satisfies σz̄ = (µn)z+µnσz.
Now, the above differential equation is solved in a similar way to the case of the Beltrami
equation and as in the prove of the existence Theorem, we can construct a solution h̃
in Lp(C) defined by

h̃ = T (µnh̃) + T ((µn)z).

Then, we define σ = P (µnh̃+(µn)z)+C.We choose C such that limz→∞ σ(z) = 0. Note
that σ is holomorphic in a neighborhood of z = ∞. Since σz = T (µnh̃ + (µn)z) = h́ and
σz̄ = µnh́ + (µn)z, then σ is a solution of the equation:

σz̄ = µnσz + (µn)z.

Now, consider τ = eσ. Then τ is continuous and we have τz̄ = (eσ)z̄ = σz̄e
σ =

(µnh̃ + (µn)z)e
σ = (µnσz + (µn)z)e

σ = (eσµn)z = (µnτ)z. By the Lemma 1.1.19, since
τ and µnτ are continuous and their distributional derivatives are locally integrable
functions, we have that there exist a function g ∈ C1(C) such that gz̄ = µnτ and gz = τ ,
therefore gz̄ = µngz. We can suppose that g(0) = 0. Since gz = τ is holomorphic in a
neighborhood of z = ∞ and limz→∞ σ(z) = 0 implies limz→∞ τ(z) = 1, we have that
gz − 1 is a continuous function and vanishes at infinity, therefore it belongs to Lp(C).
The uniqueness of the normal solution implies that g = fn. Then fn is of class C1.
Finally, if we consider the Jacobian, we have

|(fn)z|2 − |(fn)z̄|2 = |τ |2 − |µnτ |2 = |eσ|2 − |µneσ|2 = (1− |µn|2)|e2σ|,

which is positive, then fn is a local homeomorphism in C. Since fn has a simple pole
in z = ∞, then fn is a local homeomorphism in Ĉ. Thus, by the above lemma, we have
that fn is a homeomorphism of Ĉ.

It will be used the inequality of the following lemma. The proof of the lemma can
be consulted in [17].

Lemma 1.1.22. Every fn satisfy the following inequality:

|z1 − z2| ≤
Kp

(1− kCp)1+2/p
||µn||p|fn(z1)− fn(z2)|1−2/p + |fn(z1)− fn(z2)|,

for every z1, z2 ∈ C.

Theorem 1.1.23. A normal solution of the Beltrami equation is a quasiconformal map
on C, and satisfies µf = µ a.e. on C.

Proof. Consider µnn and fnn as before, then by the Corollary 1.1.18, we have fn → f
uniformly in C. Since ||µn||p → ||µ||p, then the inequality in the Lemma 1.1.22 is
satisfied by f and µ. Therefore f : C → C is a continuous bijection and thus, it is a
homeomorphism. Since fz − 1 belongs to Lp(C), then fz̄ = µfz. By the definition of
quasiconformal mapping we have that f is a quasiconformal mapping.
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Following theorem gives conditions for the existence of solutions to the Beltrami
equation where an arbitrarily Beltrami coefficient is taken.

Now, it will be seen the existence of a quasiconformal mapping with complex dilata-
tion µ for a general µ ∈ L∞(C)1. It will be called the canonical mapping with complex
dilatation µ and it will be denoted by fµ.

Theorem 1.1.24. For every Beltrami coefficient µ ∈ B(C)1, there exists a homeomor-
phism f of Ĉ onto Ĉ which is a quasiconformal mapping of C with complex dilatation
µ. Moreover, f is uniquely determined by the following normalization conditions:

f(0) = 0, f(1) = 1 and f(∞) = ∞.

Proof. Uniqueness: Let g another quasiconformal mapping with complex dilatation µ
and such that g satisfies the normalization conditions. Then, g ◦ f−1 is a conformal
map in f(C) = C. Therefore, g ◦ f−1(z) = αz+ β. Using the normalization conditions,
we have:

g ◦ f−1(0) = β = 0, g ◦ f−1(1) = α = 1, then f = g.

Existence: First, we suppose that µ has compact support. In this case, let F µ be the
normal solution for µ. Then, µf = µ and the wanted homeomorphism is F µ(z)/F µ(1),
because F µ(0) = 0 and F µ(1)/F µ(1) = 1. Now, we suppose that µ = 0 a.e. in some
neighborhood of the origin. In this case, we consider the pullback of µ by a Möbius
transformation and define:

µ̂(z) = µ

Å
1

z

ã
z2

z̄2
, z ∈ C.

Since ||µ̂||∞ = ||µ(1
z
) z

2

z̄2
||∞ ≤ ||µ(1

z
)||∞ < 1, then µ̂ belongs to B(C)1 and it has compact

support because µ has compact support. Thus, there exists a canonical mapping µ̂ −
qc of C, which is denoted by f µ̂. Since f µ̂ is a homeomorphism and it has partial
derivatives a.e. on C, then f µ̂ is totally differentiable a.e. on C. For each point 1/z,
the quasiconformal map defined by

f(z) =
1

f µ̂
(
1
z

)
is also totally differentiable a.e. on C. Then, we can applied the usual chain rule and
we have

µf (z) =
fz̄(z)

fz(z)
=

Ä
f µ̂z̄

(
1
z

)ä (
− 1
z̄2

)Ä
f µ̂z

(
1
z

)ä (
− 1
z2

) =
z2

z̄2
µ̂

Å
1

z

ã
= µ(z), a.e. on C.

Also, f(0) = 0, f(1) = 1, f(∞) = ∞. Therefore f is the wanted homeomorphism.
Finally, suppose that µ is a general Beltrami coefficient. In this case, we define:

µ1(z) =

ß
µ(z) if z ∈ C−∆
0 if z ∈ ∆.

(1.10)
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Then, by the above case, there exists fµ1 . Now, we define:

µ2 =

Ç
µ− µ1

1− µ̄1µ

(fµ1)z

(fµ1)z

å
◦ (fµ1)−1.

Since µ2 has compact support, there exists fµ2 . Moreover g = fµ2 ◦ fµ1 is a quasicon-
formal mapping. Also, µg = µ, because fµ2 = g ◦ (fµ1)−1 and, by 1.5, the Beltrami
coefficient of g ◦ (fµ1)−1 is given by:

µg◦(fµ1 )−1 ◦ fµ1 =
Ç
µg − µ1

1− µ̄gµ1

(fµ1)z

(fµ1)z

å
.

Since fµ2 and fµ1 satisfy the normalization conditions, then g satisfies the normalization
conditions and g is the wanted function.

Now, if f : ∆ → D is a quasiconformal mapping with µf = µ, then f has an
extension of ∆ onto D. In fact, we can define µ = 0 in C − ∆ and thus there exists
a canonical mapping fµ defined on Ĉ. Now, if we consider g = fµ ◦ f−1, then g is a
quasiconformal mapping on D. Moreover, g is a conformal mapping because µg = 0
a.e. on D. Since fµ(∆) is a Jordan domain, by the Caratheodory theorem, g can be
extended to a homeomorphism of D onto fµ(∆). Since f = g−1 ◦ fµ, then f has an
extension of ∆ onto D.

In the Example 4 of the Chapter 1 we saw that there are orientation preserving dif-
feomorphisms defined of ∆ onto C which are not quasiconformal mappings. In general,
there are not quasiconformal mappings of ∆ to C. In fact, if there exists a quasicon-
formal map f : ∆ → C, then µ = µf−1 is defined on C. If we consider g = fµ ◦ f ,
then µg = 0 a.e. on ∆. Therefore g is a conformal map. In the other hand, since
g−1(C) = ∆, then g is a bounded entire function and by the Liouville Theorem, g−1

should be a constant, a contradiction.

We can consider Beltrami coefficients defined on the upper half plane H and we can
show analogously to the Theorem 1.1.24 the following result.

Proposition 1.1.25. Let µ be an arbitrary element of B(∆)1. Then there exists a
quasiconformal mapping w of ∆ onto ∆ with complex dilatation µ. Moreover, such a
mapping w is uniquely determined by the following normalization conditions:

w(i) = i, w(1) = 1, and w(−1) = −1.

There is a dependence of quasiconformal solutions on the Beltrami coefficients as
show the following proposition. For the proof, it can be consulted in [17].

Proposition 1.1.26. If µ converges to 0 in B(C)1, then the canonical µ-qc mappings
fµ converges to the identity mapping locally uniformly on C.
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1.1.2 Analytical Dependence on Beltrami Coefficients

In this subsection it is described the dependence of the solutions of the Beltrami equa-
tion on the Beltrami coefficients. For this, it will be used the Lemma 1.1.27 and some
definitions to show the Theorem 1.1.28. The proof of this theorem give us an explicit
solution of the Beltrami equation but following this proof we do not ensure that the
solution is quasiconformal.

Lemma 1.1.27. Let f : C → C be a continuous function with distributional partial
derivatives represented by fz, fz̄ ∈ Llocp (C), 1 ≤ p < ∞. Suppose that fz̄ has compact
support and f(z) = O(1/|z|), then f satisfies:

1

πz
∗ fz̄ = f. (1.11)

In particular, f ∈ Llocp (C).

Proof. Let (fn)n be a sequence Lp-smoothing. We will see that fn satisfies the equation
1.11. By definition of convolution product we have:Å

1

πz
∗ (fn)z̄

ã
(ξ) =

1

2πi

∫∫
C

(fn)z̄(z)

ξ − z
dz̄ ∧ dz

=
1

2πi
lim
r→0+

∫∫
D(ξ,1/r)−D(ξ,r)

(fn)z̄(z)

ξ − z
dz̄ ∧ dz.

Since that we can write the integrand as:

(fn)z̄(z)

ξ − z
dz̄ ∧ dz =

Å
(fn)(z)

ξ − z

ã
z̄

dz̄ ∧ dz

=

Å
∂z

Å
(fn)(z)

ξ − z

ã
dz + ∂z̄

Å
(fn)(z)

ξ − z

ã
dz̄

ã
dz

= d

Å
(fn)(z)

ξ − z
dz

ã
,

we can simplify the above formula and we obtain:Å
1

πz
∗ (fn)z̄

ã
(ξ) =

1

2πi
lim
r→0+

∫∫
D(ξ,1/r)−D(ξ,r)

d

Å
(fn)(z)

ξ − z
dz

ã
,

then applying the Stokes’s theorem it result thatÅ
1

πz
∗ (fn)z̄

ã
(ξ) =

1

2πi
lim
r→0+

∫
∂(D(ξ,1/r)−D(ξ,r))

(fn)(z)

ξ − z
dz

=
1

2πi
lim
r→0+

Ç∫
∂D(ξ,1/r)

(fn)(z)

ξ − z
dz −

∫
∂D(z,r)

(fn)(z)

ξ − z
dz

å
.
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Because the first term does not contribute to the integral, applying a change of variable
to the second term and using the continuity of fn, we have:Å

1

πz
∗ (fn)z̄

ã
(ξ) = − 1

2πi
lim
r→0+

∫
∂D(z,r)

(fn)(z)

ξ − z
dz

= − 1

2πi
lim
r→0+

∫ 2π

0

(fn)(ξ − reiθ)ireiθ

−reiθ
dθ

=
1

2πi

∫ 2π

0

i(fn)(ξ)dθ = fn(ξ).

Therefore
(

1
πz

∗ (fn)z̄
)
n
converges uniformly on compact sets to f . Also, since ((fn)z̄)n

converge to fz̄ with respect to the norm Lp, then
(

1
πz

∗ (fn)z̄
)
n
converges to 1

πz
∗ (f)z̄.

Hence, 1
πz

∗ (f)z̄ = f .

Now, it is considered the Fourier transform on L1(C) which is given by the formula

f̂(ζ) := f̂(ξ + iη) =

∫
C
f(x+ iy)e−2πi(xξ+yη)dxdy.

It is well known that for every f ∈ L2(C) ∩ L1(C), we have ||f ||2 = ||f̂ ||2. Also the
Fourier transform can be extend to an isometry L2(C) → L2(C).

By properties of the Fourier transform, we have

∂̂f

∂z
(ζ) = 2πiζ̄f̂(ζ),

∂̂f

∂z̄
(ζ) = 2πiζf̂(ζ).

Theorem 1.1.28. The map M defines in 1.8 is analytic, in the sense that it is con-
tinuous, and for each z ∈ C the map µ 7→ fµ(z) is analytic.

Proof. Considering the multiplication by ζ̄/ζ which is an isometry on L2(C), we can
take the unique isometry

L : L2(C) → L2(C) such that ‘L(f) = ζ̄

ζ
f̂ .

Therefore, if a function F ∈ L2(C) has distributional derivatives in L2, then

∂F

∂z
= L

Å
∂F

∂z̄

ã
.

In particular, if µ ∈ BK(C) and we write the solution of Beltrami equation as fµ(z) =
z + gµ(z) with gµ(z) ∈ O(1/|z|), then Beltrami equation becomes

∂gµ

∂z̄
= µ

Å
1 + L

Å
∂gµ

∂z̄

ãã
. (1.12)

Since ||µL|| = ||µ||∞ < 1, id−µL is invertible and the equation 1.12 can be rewritten

(id− µL)−1h = µ.
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The inverse of id−µL is the sum of the convergent geometric series. Applied to equation
1.12 this gives

∂gµ

∂z̄
= µ+ µLµ+ µLµLµ+ · · ·

The sum of this series depends analytically on µ, since it is the sum of a uniformly
convergent series of analytic functions of µ. Thus ∂gµ/∂z̄ depends analytically on µ,
and so does

gµ =
1

πz
∗ ∂g

µ

∂z̄
.

This convolution is well defined, since ∂gµ/∂z̄ has compact support and we have used
the Lemma 1.1.27 to get the equality; fµ also depends analytically on µ, since fµ =
z + gµ(z).

1.2 Riemann Surfaces and Complex Structures

In this section some terms that will be used throughout this text are introduced. Let
X be a connected Hausdorff space, and let {Ui}i∈N be an open covering of X consisting
of domains. Suppose that on each Uj ⊂ X, we have a homeomorphism zj : Uj → Dj

defined by:
zj : p→ zj(p) =

(
z1j (p), ..., z

n
j (p)

)
, p ∈ Uj,

where Dj ⊂ Cn is a domain. Then for each j, k such that Uj ∩ Uk ̸= ∅, the map

τjk : zk(p) → zj(p), p ∈ Uj ∩ Uk,

is a homeomorphism of the open set Dkj = {zk(p) : p ∈ Uj ∩ Uk} ⊂ Dk in Cn onto the
set Djk = {zj(p) : p ∈ Uj ∩ Uk} ⊂ Dj.

If τjk is biholomorphic for any j, k such that Uj ∩ Uk ̸= ∅, each zj : p → zj(p) is
called a local complex coordinates defined on Uj. Each domain Uj is called a coordinate
neighbourhood. The collection {z1, ..., zj, ...} is called a system of local complex coordi-
nates on X. If a system of local complex coordinates {z1, ..., zj, ...} is defined on X, it
will be said that a complex structure is defined on X. A connected Hausdorff space X
with a complex structure defined on it is called a complex manifold. Usually a complex
manifold will be denoted by the letter M . The dimension or complex dimension of X
is defined to be n.

Definition 1.2.1. A Riemann surface is a 1-dimensional connected complex manifold.
Usually a Riemann surface will be denoted by Σ.

Figure 1.1: Examples of Riemann surfaces.
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Consider a Riemann surface Σ. Let p ∈ Σ, the point zj(p) =
(
z1j (p)

)
of C is called

the local coordinate of p. If we choose a coordinate neighbourhood Uj with p ∈ Uj, p is
determined uniquely by its local coordinate zj =

(
z1j
)
= zj(p). Identifying Uj with Dj

via zj, we can consider that Σ =
⋃
j Dj. Then zj ∈ Dj and zk ∈ Dk are the same point

on Σ if and only if zj = τjk(zk).

Any compact Riemann surface is homeomorphic to a sphere with a certain number,
say g ≥ 0, of handles attached. This nonnegative integer g is the genus of the surface.

Definition 1.2.2. A Riemann surface is of finite conformal type if it is obtained from
a compact Riemann surface by removing a finite number of points, and otherwise it is
said to be of infinite conformal type.

1.2.1 Covering Surfaces and Uniformization

In this part it will be seen that any Riemann surface is covered by Ĉ, C or H, then
we can study the complex structures of a Riemann surface, studying the Beltrami
coefficients defined in the first chapter.

Let B and X be topological spaces and let p be a map from X over B. The couple
(X, p) will be called a covering space of B if the following property is satisfied:

for each b ∈ B there exists an open neighborhood U of b in B, a non-empty
discrete space F and a homeomorphism ϕ : p−1(U) → U × F such that the
following diagram commutes:

p−1(U)

p|p−1(U) ##

ϕ
// U × F

pr1
||

U

(1.13)

where pr1 : U × F → U is the first projection map.

With the above notation, it is said that B is the base of the covering, X is the total
space and p−1(b) the fiber over b. If for every b ∈ B, the fiber over b is a finite set of
X, it will be said that (X, p) is a finite covering space and if all fibers have the same
cardinality, say d, then it will be said that (X, p) is a finite covering space of B of degree
d.

We are interested in the special case in which B and X are Riemann surfaces, then
we have the following definition.

Definition 1.2.3. Let Σ̂ and Σ be Riemann surfaces. Let (Σ̂, π) be a covering space of
Σ and let U be an open subset satisfying 1.13. If π is a surjective holomorphic mapping
and π : V → U is biholomorphic, for each connected component V of the inverse image
π−1(U) of U , it is said that Σ̂ is a covering surface of Σ and π is called the projection
of Σ̂ onto Σ. If Σ̂ is simply connected, Σ̂ is called a universal covering surface of R.
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The universal covering surface of a Riemann surface Σ is unique, that is to say, for
any two universal coverings Σ̂ and Σ̂′ of Σ, with projections π and π′ respectively, there
exists a biholomorphic mapping φ of Σ̂ to Σ̂′ with π′ ◦ φ = π.

Now, functions between covering spaces of a same space B can be defined. Let B
be a topological space and (X, p) and (Y, q) two covering spaces of B. A continuous
map f : X → Y will be called morphism of covering spaces of B from (X, p) to (Y, q)
if the following diagram commutes.

X

p
  

f
// Y

q
~~

B

It will be said that a morphism f of covering spaces of B is an isomorphism if there
exists a morphism of covering spaces g : (Y, q) → (X, p) such that the topological maps
g ◦ f and f ◦ g are the identity maps of X and Y respectively. In the particular case in
which X is a Riemann surface and X = Y we have the following definition.

Definition 1.2.4. Let Σ be a Riemann surface and let Σ̂ be a universal covering surface
of Σ with projection π. Any biholomorphism γ : Σ̂ → Σ̂ with π ◦ γ = π is called a
covering transformation of Σ̂.

For a given covering Σ̂, denote by Γ the set of all its covering transformations. By
composition of mappings, Γ forms a group, which is called the covering transformation
group of Σ̂. In particular, if Σ̂ is a universal covering surface of Σ, Γ is called the
universal covering transformation group of Σ̂.

Theorem 1.2.5. Let Σ be a Riemann surface, π1(Σ) its fundamental group and Γ its
universal covering transformation group. Then we have the following isomorphism:

π1(Σ) ≃ Γ.

Riemann surfaces can be represented as quotient spaces. Let Σ̂ be a Riemann surface
and let Γ′ be a subgroup of the covering transformation group of Σ̂. Suppose that Γ′

acts properly discontinuously on Σ̂, that is to say, for every p̂ ∈ Σ̂, there exists a suitable
neighborhood Û of p̂ in Σ̂ such that γ

(
Û
)
∩ Û = ∅ for every γ ∈ Γ′ − {id}.

Two points p̂, q̂ ∈ Σ̂ are said to be Γ′-equivalent if there exists an element γ ∈ Γ′

satisfying q̂ = γ(p̂). Denote by [p̂] the equivalence class of p̂. Let Σ̂/Γ′ be the set of
all these equivalence classes [p̂], which is called the quotient space of Σ̂ by Γ. Define
the projection π : Σ̂ → Σ̂/Γ′ by π(p̂) = [p̂]. Consider the quotient topology on Σ̂/Γ′,
since Σ̂ is connected, so is Σ̂/Γ′. Also, Σ̂/Γ′ is a Hausdorff space, for Γ′ acts properly
discontinuously on Σ̂.

Now, we define a complex structure on Σ̂/Γ′ as follow: for any point p̂ ∈ Σ̂, take a
neighborhood Ûp̂ of p̂ satisfying the hypothesis γ(Û) ∩ Û = ∅ for every γ ∈ Γ′ − {id}.
We may assume that there exists a local coordinate zp̂ on Ûp̂. Then, putting p = π(p̂),

Up = π(Ûp̂), we see that π : Ûp̂ → Up is a homeomorphism. Hence, setting zp = zp̂ ◦π−1,
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we conclude that {(Up, zp)}p∈ ˆΣ/Γ′ defines a complex structure so that Σ̂ is a covering of

Σ̂/Γ′. This Riemann surface Σ̂/Γ′ will be called the quotient Riemann surface of Σ̂ by
Γ.

Theorem 1.2.6. Let Σ be a Riemann surface with universal covering transformation
group Γ. Then the quotient Riemann surface Σ̂/Γ of Σ̂ by Γ is biholomorphically equiv-
alent to Σ.

Now, it will be studied the biholomorphisms on the universal covering of a Riemann
surface.

A Möbius transformation is a map T : Ĉ → Ĉ of the form

T (z) =
az + b

cz + d
(1.14)

where a, b, c, d ∈ C and ad − bc = 1. The set of all Möbius transformations will be
denoted by Möb(Ĉ). Also, if T and S are Möbius transformations, then T−1 and
S ◦ T are Möbius transformations too, consequently, the set Möb(Ĉ) is a group under
composition.

Remark 1.2.7. Consider the Möbius transformation 1.14 such that T ̸= Id, then its
fixed points are given by:

• If c = 0, z = ∞ is a fixed point. Also, if a/b ̸= 1, T has a finite fixed point given
by z = b

d−a . If a/d = 1 and b ̸= 0, then T has a double fixed point in z = ∞.

• If c ̸= 0, the two fixed points of T are obtained solving the equation cz2 + (d −
a)z − b = 0.

Therefore any Möbius transformation, T ̸= Id, has two fixed points. That is to say, if
T is a Möbius transformation with more than two fixed points, then T = Id.

We denote by Möb(C), Möb(H) and Möb(∆) the subgroups of Möb(Ĉ) consist-
ing of all Möbius transformations that preserve C, H and ∆, respectively. Möbius
transformations of canonical domains C, ∆ and H have the following forms:

Proposition 1.2.8.

• Every element of Möb(C) has a form

γ(z) = az + b, where a, b ∈ C with a ̸= 0.

• Every element of Möb(∆) has a form

γ(z) =
az + b

b̄z + ā
, where a, b ∈ C with |a|2 − |b|2 = 1.

• Every element of Möb(H) has a form

γ(z) =
az + b

cz + d
, where a, b, c, d ∈ R with ad− bc = 1.
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Each element of Möb(Ĉ) can be represented by a matrix of non-zero determinant
where the matrix entries are the complex coefficients a, b, c and d. Then there is a
surjective map SL(2,C) → Möb(Ĉ). Notice that if A is a matrix representation
of γ ∈ Möb(Ĉ), then −A is also a matrix representation of γ. Therefore the map
SL(2,C)/{±I} → Möb(Ĉ) is an isomorphism and we have the following identifications

Möb(Ĉ) ∼= SL(2,C)/{±I} ∼= PSL(2,C). (1.15)

Now, by Proposition 1.2.8 we have the following group isomorphisms:

Möb(H) ≃ PSL(2,R), Möb(∆) ≃ PSU(1, 1), (1.16)

where PSL(2,R) is the real projective special linear group of degree 2 and PSU(1, 1)
is the projective special unitary group of signature (1, 1).

Now, it is defined the boundary of a Riemann surface, for this, the following defini-
tions are given ([22, Subsection 1.1.4, pag. 12]).

We consider in SL(2,C) the topology whose base is generated as follows: if we take
γ ∈ SL(2,C) and ε > 0, B(γ, ε) is the set of elements of SL(2,C) whose distance to
γ is, entry by entry, less than ε. Then this topology passes to the quotient PSL(2,C),
and given the identification in 1.15, the group Möb(Ĉ) inherits a topology. We consider
this topology on Möb(Ĉ). Let G be a discrete subgroup of Möb(Ĉ). The set

Ω(G) = {z ∈ Ĉ | G acts properly discontinuously at z}

will be called the region of discontinuity of G. The complementary set L(G) = Ĉ−Ω(G)
is called the limit set of G. It is the set of accumulation points of orbits of G. The
orbit of z ∈ C is the set G(z) = {g(z) | g ∈ G}.

If Ω(G) is nonempty, it will be said that G is a Kleinian group. A Kleinian group
G is called Fuchsian if its limit set lies on a circle C on the Riemann sphere and G
preserves each of the two disks into which Ĉ is separated by C. We may always take
C = R̂ and in this case, we can assume G operates properly discontinuously on H and
H∗. Therefore G can be considered as a subgroup of Möb(H) up to a global conjugation.
The proof of the following theorem can be consulted in [17, Theorem 2.17, page 43].

Theorem 1.2.9. For a subgroup Γ of Möb(H) the following are equivalent:

(1) Γ is a discrete subgroup of Möb(H).
(2) Γ acts properly discontinuously on H.

Considering that a Fuchsian group acts properly discontinuous in H and by the
identification in 1.16, we can define a Fuchsian group as follow.

Definition 1.2.10. A Fuchsian group is a discrete subgroup of PSL(2,R).

Definition 1.2.11. Let Σ = ∆/Γ be a Riemann surface. The boundary of Σ is defined
as

∂Σ = ∂Σ∗ = (Ω(Γ) ∩ R̂)/Γ.
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Theorem 1.2.12 (Uniformization Theorem). Every simply connected Riemann surface
is biholomorphically equivalent to one of the three Riemann surfaces Ĉ, C, or H.

Corollary 1.2.13. For every Riemann surface Σ, there exists a universal covering
surface Σ̂ of Σ, which is biholomorphic to one of the three Riemann surfaces Ĉ, C, or
H.

Corollary 1.2.14. Each Riemann surface Σ with universal covering biholomorphic to
H can be represented as a quotient H/Γ, where Γ is a Fuchsian group.

Proof. By Theorem 1.2.6, we have Σ ∼= H/Γ, where Γ is the covering transformations
group. Since Γ acts properly discontinuously on H, by Theorem 1.2.9, Γ is a discrete
subgroup of Möb(H). Therefore, Γ is a Fuchsian group.

Now, if f : B′ → B is a continuous map between topological spaces B′ and B and
(X, p) is a covering space of B, we can “lift” f to a continuous map g : B′ → X such
that the following diagram commutes.

X

p

��

B′

g
>>

f
// B

The mapping g is called a lifting of f for p. A section of the covering (X, p) is a lifting
of the identity of B for p.

Also, for Riemann surfaces Σ and Σ′, let (Σ̂, π) and (Σ̂′, π′) be their universal cov-
ering, respectively. Let f : Σ → Σ′ be a continuous mapping if f̂ : Σ̂ → Σ̂′ satisfies
f ◦ π = π′ ◦ f̂ , we call f̂ a lift of f .

Theorem 1.2.15. For Riemann surfaces Σ and Σ′ and an arbitrary continuous map-
ping f : Σ → Σ′ there exists a lift of f , f̂ : Σ̂ → Σ̂′, which is uniquely determined under
the condition that f̂(p̂1) = q̂1, where p̂1 ∈ Σ̂ and q̂1 ∈ Σ̂′ are such that π′(q̂1) = f(π(p̂1)).
Moreover, if f is differentiable or holomorphic, then f̂ is also differentiable or holomor-
phic.

1.2.2 Quasiconformal Mappings on Surfaces

In this subsection a definition of quasiconformal mappings is given and it will be seen
another definition in the second section of the following chapter.
Let Σ be a Riemann surface, {z1, ..., zj, ...} the system of local complex coordinates, Uj
the domain of zj, and Uj = zj(Uj). It will be defined a holomorphic mapping from the
Riemann surface Σ to another Riemann surface Σ′. Let {w1, ..., wλ, ...} be the system
of local complex coordinates of Σ′, Wλ the domain of wλ, and Wλ = wλ(Wλ) ⊂ C.
Let Φ : p → q = Φ(p) be a continuous map from a domain D ⊂ Σ into Σ′. Since
zj : p → zj(p) maps Uj homeomorphically onto Uj, and wλ : q → wλ(q) maps Wλ

homeomorphically onto Wλ for λ, j such that Φ−1(Wλ) ∩ Uj ̸= ∅,

Φλj : zj(p) → wλ(q), q = Φ(p), p ∈ Φ−1(Wλ) ∩ Uj,
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is a continuous map from the domain Ujλ = {zj(p) | p ∈ Φ−1(Wλ) ∩ Uj} ⊂ C into Wλ:

Φ−1(Wλ) ∩ Uj

zj

��

Φ
//Wλ

wλ

��

Ujλ Φλj

//Wλ

Definition 1.2.16. If Φλj is holomorphic, quasiconformal or of class Cr for each λ and
j such that Uj∩Φ−1(Wλ)∩D ̸= ∅, Φ : D → Σ′ is said to be holomorphic, quasiconformal
or of class Cr (r = 1, 2, ...,∞) map on D, respectively. If D = Σ, then we simply say
that Φ is a holomorphic, quasiconformal or of class Cr map.

Two surfaces Σ and Σ′ are called biholomorphically equivalent if there exist a bi-
holomorphic map Φ from Σ onto Σ′.

1.2.3 Riemannian Metrics and hyperbolic surfaces

In this section, it is briefly seen the relation between Riemann surfaces and Riemannian
surfaces.

Consider a differentiable manifold M . A Riemannian metric on M is a corre-
spondence which associates to each point p ∈ M an inner product ⟨, ⟩p (that is, a
symmetric, bilinear, positive-definite form) on the tangent space TpM , which varies
differentiably in the following sense: If x : U ⊂ Rn → M is a system of coor-
dinates around q, with x(x1, ..., xn) = q ∈ x(U) y ∂

∂xi
(q) = dxq(0, ..., 1, ..., 0), then¨

∂
∂xi

(q), ∂
∂xj

(q)
∂
q
= gij(x1, ..., xn) is a differentiable function on U .

Definition 1.2.17. A differentiable manifold M with a given Riemannian metric will
be called a Riemannian manifold. If M is 2-dimensional, M is called a Riemannian
surface.

Let M and N be Riemannian manifolds. A diffeomorphism f :M → N is called an
isometry if:

⟨u, v⟩p = ⟨dfp(u), dfp(v)⟩f(p) , for all p ∈M, u, v ∈ TpM.

It is said that a 2-dimensional manifold Σ is a hyperbolic surface if it is a Riemannian
surface of constant sectional curvature −1. Then the universal covering of a hyperbolic
surface is biholomorphic to ∆ and we can identify the fundamental group of Σ with the
set of all positively oriented isometries on the unit disc Isom+(∆). Here, only metrically
complete surfaces will be considered.

Since Isom+(∆) acts on ∆ such that we have the identification Σ ∼= ∆/Isom+(∆) and
Isom+(∆) coincides with the group of all biholomorphisms on the unit disc Bihol(∆),
then Σ ∼= ∆/Bihol(∆). Therefore Σ has a complex structure and it can be considered
as a Riemann surface.
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1.2.4 Deformations of Complex Structures

In this section Beltrami coefficients on surfaces are defined, they will play a very im-
portant role in the following chapters. Let f : Σ → Σ′ be a diffeomorphism. Consider
(U, z) a coordinate neighborhood of Σ and let (V,w) be a coordinate neighborhood of Σ′

with f(U) ⊂ V . Define F = w ◦ f ◦ z−1. Then we can consider the Beltrami coefficient

µ =
Fz̄
Fz

which is a smooth complex function on z(U).
The function µ is transformed under a holomorphic change of coordinates. Let

(Uj, zj) and (Uk, zk) be coordinate neighborhoods of Σ and let (Vj, wj) and (Vk, wk) be
coordinate neighborhoods of Σ′ such that f(Uj) ⊂ Vf and f(Uj) ⊂ Vk. Let µk and µj
be Beltrami coefficients defined wit respect to (Uk, zk) and (Uj, zj). When Uj ∩Uk ̸= ∅,
we have

µj = (µk ◦ zkj) ·
Ç
dzkj
dzj

å¡Å
dzkj
dzj

ã
on zj(Uj ∩ Uk), where zkj = zk ◦ z−1j .

The set of Beltrami differentials defines a differential form of type (−1, 1) on Σ.
Denote this (−1, 1)-differential form by

µf = µ
dz̄

dz
,

this is called the Beltrami differential of f on Σ. Let {(Vα, wα)}α∈Λ be a system of coor-
dinates on Σ′ and for a diffeomorphism which preserve orientation f : Σ → Σ′ consider
a system of coordinates {(f−1(Vα), wα ◦ f)}α∈Λ which defines a complex structure on
Σ. Then we have a new Riemann surface Σf with system of coordinates neighborhood
{(f−1(Vα), wα ◦ f)}α∈Λ. Also, the identity map id : Σ → Σf is a diffeomorphism and
f : Σf → Σ′ is a biholomorphism.

Now, suppose that f : Σ → Σ′ is a quasiconformal mapping between Riemann
surfaces. If f(z) = w represents the mapping in terms of the z and w local coordinates
on Σ and Σ′, respectively, then µf = fz̄/fz is a L∞ section of the complex line bundle
ω∗ ⊗ ω, where ω is the holomorphic cotangent bundle of Σ. Since f is quasiconformal,
we obtain that µf takes values in the unit disk bundle with respect to absolute value
norm on the fibres. Then we can consider ||µf ||∞ and this is a number strictly less than
1. Thus µf lies in the open unit ball of the Banach space of sections L∞(ω

∗ ⊗ ω) for
any quasiconformal f .

Definition 1.2.18. A Beltrami differential on the disc is an L∞, (−1, 1)-form on the
disc, that is to say an L∞ section of ω∗ ⊗ ω. The space of these differentials will be
denoted by Bel(∆).

A Beltrami differential on the disc can be thought of as an element µ in the unit
ball of L∞(∆) such that

γ∗(µ) = µ ◦ γ γ̄
′

γ′
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where γ is any Möbius transformation on the disc.
Now, to represent the Beltrami differential of any hyperbolic surface in terms of

the Beltrami differentials, we proceed as follow: consider a hyperbolic surface Σ and
its Poincaré uniformization u : ∆ → Σ, (see Theorem 1.2.12). Then the group of deck
transformations G is a Fuchsian group.

The group of deck transformations defines an action on the disc

Deck : G×∆ → ∆, (g, a) 7−→ g · a (1.17)

whose orbit space is isometric with the surface Σ, that is to say, Σ ∼= ∆/G.

Definition 1.2.19. A Beltrami differential on Σ is a Beltrami differential on the disc
µ invariant under the corresponding deck action, that is to say

l∗g(µ) = µ, ∀g ∈ G. (1.18)

where lg denotes the deck action (a 7−→ g ·a) on the disc. The space of these differentials
will be denoted by Bel(Σ).

By the existence Theorem 1.1.24, we can find quasiconformal mappings wα(zα) on
each holomorphic coordinate patch (Uα, zα) such that the Beltrami coefficient of wα on
Uα is µ(zα). These wα provide a complex analytic atlas on Σ. Consequently any µ in
L∞(ω

∗⊗ω)1 assigns a complex analytic atlas on Σ whose local charts are quasiconformal
with respect to the original complex structure of Σ. Denote by Σµ the Riemann surface
Σ with the new structure. The identity map Id : Σ → Σµ is a quasiconformal map with
Beltrami differential µ. Also the Beltrami differentials on Σµ are given by definition
1.2.19 replacing G for wµG(wµ)−1.

1.3 Notions of Topology

In this section some definitions and results on topology that will be used in the following
chapters are included. Here it is defined the notion of a lamination, this is one of the
main objects of study in this work.

1.3.1 Laminations and Foliations

A p-dimensional lamination, L, is a separable, locally compact, metrizable space covered
by an atlas {(Ui, φi)}i∈I . Every φi : Ui → Ti × Di is a homeomorphism whose target
space is the product of some topological space Ti with a set Di homeomorphic to an
open subset of Cp in such a way that the transition maps preserve the first factor, that
is to say, the maps φj ◦ φ−1i : φi(Uj ∩ Ui) → φj(Uj ∩ Ui) satisfy:

(1) φj ◦ φ−1i (k, a) = (hji(k), fji(k, a)),

where each map fji is smooth in the second variable and all its partial derivatives with
respect to the second variable are continuous functions of all the variables.

A Riemann surface lamination, denoted by L, is a lamination 1-dimensional whose
transition maps are holomorphic with respect to the second factor, that is
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(2) φj ◦ φ−1i (k, ·) is holomorphic for all k ∈ Ti and ∀i, j ∈ I.

Laminations can have very interesting and complex dynamic behavior. In this re-
gard, see the works [2] and [3].

A foliation F of codimension q (and class Cr) is defined as a lamination where
Ti = Rq, Di is an open subset of Rp and which is differentiable (class Cr), that is to
say, the transition maps φj ◦ φ−1i are differentiable (class Cr).

Given a lamination L, φ−1i (t0 × Di) is called a plaque and the maximal joins of
plaques will be called the leaves of the lamination. In particular, a Riemann surface
lamination has well defined the concept of leaves. In this case, leaves are Riemann
surfaces immersed in the lamination. It will be said that the lamination is minimal if
all the leaves are dense.

Now, consider a Riemann surface lamination L fibering over a complete hyperbolic
surface Σ with fiber F , that is to say π : L → Σ is a locally trivial fibration with fiber
F such that π restricted to any leaf is a local diffeomorphism. Since we can consider
on Σ the atlas whose charts are given by the maps φj ◦ π−1 restricted to the domains
where π is a diffeomorphism, then the map π is a local holomorphic homeomorphism.
This implies that every leaf is a covering of the base and thus it is a hyperbolic surface.
Hence L is a hyperbolic surface lamination.

By the Theorem 1.2.12, we can consider the uniformization of Σ:

u : ∆ → Σ.

Consider the pullback of the fibration π by the uniformization u, that is to say

L̂ = {(l, a) ∈ L×∆ | π(l) = u(a)},

where the hatted morphism are the restrictions of the respective projection on L̂.

L̂

p.b.

û //

π̂
��

L

π

��

∆ u
// Σ

(1.19)

Lemma 1.3.1. (1) L̂ is a lamination.
(2) û is a morphism of laminations.
(3) π̂ is a locally trivial fibration.
(4) L̂ is a lamination fibering over ∆.

Proof. Let C be a collection of open sets of the unit disk ∆ such that u|A is a home-
omorphism for each A ∈ C and u(A) is a trivializing neighborhood of π. Thus, each
A ∈ C is a trivializing neighborhood of π̂. In particular, π̂ is a locally trivial fibration,
this proves item 3. Also, A = {π̂−1(A) | A ∈ C} is an atlas of L̂ as lamination, this
proves items 1 and 2. Item 4 is trivial and follows from the previous ones.
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Since ∆ is simply connected, π̂ is a trivial fibration, hence it is assumed that the
lamination L̂ is F ×∆ and π̂ is the projection on the second factor denoted by p2. The
following commutative diagram will be called the lamination uniformization.

F ×∆

p.b.

û //

p2
��

L

π
��

∆ u
// Σ

(1.20)

1.3.2 Holonomy

In this part it is defined the concept of holonomy. Consider a lamination L. We will call
coordinate disc of L to any open set of L homeomorphic to a coordinate chart Ti ×∆
for some i ∈ I. Consider a sheet Lx of a lamination L at the point x ∈ F and let
γ : [0, 1] → Lx be a continuous path. We will say that a collection of coordinate discs
{Uj}kj=0 is a subordinate chain to γ if it satisfies

• There exists a partition of I = [0, 1], 0 = t0 < t1 < · · · < ti+1 = 1 such that
γ([ti, ti+1]) ⊂ Ui, 0 ≤ i ≤ k.

• If Ui ∩ Uj ̸= ∅, then Ui ∪ Uj is contained in a coordinate disc Vij.

A transversal is a Borel subset of L which intersects each leaf in a countable subsets.
The standard ones are those of the form Ti × x for some chart Ti × Di. Regular
transversals are those contained in some standard transversal.

We can define local homeomorphism between regular transversals. Let us describe
the construction of such homeomorphisms. consider γ : [0, 1] → F a continuous path
and let D̂0 = Tr × {γ(0)} and D̂1 = Ts × {γ(1)} be regular transversals. Fix a subor-
dinate chain to γ, {Uj}kj=0 and a partition 0 = t0 < t1 < · · · < tk+1 = 1 which satisfies
the item 1 of the definition of subordinate chain. For each i ∈ {1, ..., k} we fix an em-
bedded regular transversal Di = T ′i × {γ(ti)} ⊂ Ui−1 ∩ Ui. Consider D0 ⊂ D̂0 ∩ U0 and
Dk+1 ⊂ D̂1 ∩ Uk. For each x ∈ Di sufficiently near of xi, a plaque that passes through
x intersects Di+1 at a single point fi(x). Then we have a homeomorphism defined in a
domain D′i ⊂ Di onto fi(D

′
i). Hence we can consider the function fγ = fk ◦ fk−1 ◦ · · · f0

which is a homeomorphism of a domain D onto fγ(D).
The function fγ is called a holonomy transformation and it is independent of the

regular transversal chosen, of the partition and of the subordinate chain. Let γ1 and
γ2 be continuous paths and x a point in the domain of fγ1 and fγ2 , we say that fγ1
and fγ2 are equivalent if there exist an open set containing to x in which coincide. The
equivalence class of a function fγ is denominated the germ of fγ at x. The set of germs
that fix a point x is denoted by G(x,D) and it is a group with the multiplication

germ(f) · germ(g) = germ(f ◦ g).

The proof of the following proposition can be consulted in [12, Proposition 1.1]
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Proposition 1.3.2. Let γi : I → Ly0 , i = 0, 1 be continuous paths on the leaf Lx such
that γi(0) = y0, γi(1) = y1, i = 0, 1. Let D0, D1 be regular transversals of Ly0 in y0, y1,
D0 ⊃ Vi → D1 holonomy transformations associate to γi and Φγi the germ of fγi at y0.

(1) If γ0 ≃ γ1 rel(0,1) then Φγ0 = Φγ1 .

(2) If y0 = y1 and D0 = D1, then the transformation γ 7→ Φγ induces a homomor-
phism

Φ : π1(Ly0 , y0) → G(y0, D0), Φ([γ]) = Φγ.

Note that by the first item of the Proposition 1.3.2, in this case, the notions of
monodromy and the holonomy coincide.

Definition 1.3.3. The group Hol(Ly0 , y0) = Φ(π1(Ly0 , y0)) is called the holonomy
group of Ly0 at y0.

Now, since the lamination L fiber over the surface Σ, we can consider the action of
the fundamental group G on the fiber F of the lamination. This action will be called
the holonomy action.

Hol : G→ Homeo(F )op, G = π1(Σ). (1.21)

If Σ′ is a Riemann surface such that Σ′ ⊂ Σ we can consider the embedding ι : Σ′ →
Σ. This map induces a homomorphism in the fundamental groups ι∗ : π1(Σ

′) → π1(Σ).
Then it is considered the holonomy of Σ′ as Hol(ι∗(π1(Σ

′))).

Henceforth the following hypotheses on the lamination L are considered.

Hypotheses 1.3.4. Let L→ Σ be a fibration, such that L is minimal, the fiber F is a
Hausdorff compact space and the holonomy action continuously extends to the profinite
completion Ĝ and has trivial holonomy on pants4.

For the proof of the following proposition see [27].

Proposition 1.3.5. The map û in the diagram (1.20) is the canonical map of the
orbit space of the diagonal action on F ×∆ such that the following is an isometry of
laminations

L ∼= (F ×∆)/G, g · (k, a) = (k · g−1, g · a) (1.22)

where the action on the first factor is the holonomy action 1.21 and the one in the
second factor is the deck action 1.17.

Let L be a lamination satisfying the hypotheses 1.3.4. Considering the identification
between L and the quotient space (F ×∆)/G we can define the leaf of the lamination
L at x ∈ F as

Lx = π ({x} ×∆) = {[(x, k)] | k ∈ ∆} (1.23)

where π is the canonical morphism of the quotient by the right diagonal action with
the identification 1.22.

4Pants are defined in the following chapter.
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Remark 1.3.6. On the leaf Lx we will consider the final topology of the map π̃ :
{x} ×∆ → Lx with the usual topology on the disc ∆. Whit this topology the leaf is a
densely immersed manifold in L. Since an open set in {x} ×∆ is not necessarily open
in F ×∆, unless the fiber F is discrete, the topology in Lx is strictly finer the relative
one induced by L.

The leaf Lx is a covering of Σ hence π1(Lx) is a subgroup of G = π1(Σ). Concretely,

π1(Lx) = {g ∈ G | (x, g) ∼ (x, g · k), ∀k ∈ ∆}. (1.24)

For every x in the fiber F , denote by Gx the isotropy group of the holonomy action
1.21,

Gx = {g ∈ G | x · g = x}. (1.25)

Lemma 1.3.7. For every x ∈ F , the isotropy of the holonomy at x coincides with the
fundamental group of the leaf at x,

Gx = π1(Lx), ∀x ∈ F. (1.26)

Proof. Consider g ∈ π1(Lx). By definition of the fundamental group of the leaf, for
every k ∈ ∆, (x, k) ∼ (x, g · k). Let’s fix a k ∈ ∆, by definition of the diagonal action
1.22, there is h ∈ G such that

(x, g · k) = h · (x, k) = (x · h−1, h · k).

Then g · k = h · k, this implies that g = h because every element g ∈ G− {id} acts on
∆ without fix points. Therefore x ·h−1 = x · g−1 = x and we conclude that g ∈ Gx. We
have proved that π1(Lx) ⊂ Gx. For the reverse inclusion, consider g ∈ Gx, by definition
of Gx, x = x · g. Then we have for every k ∈ ∆:

(x, k) ∼ g · (x, k) ∼ (x · g−1) ∼ (x · g−1, g · k) ∼ (x, g · k).

That is to say, g ∈ Lx. We have proved Gx ⊂ π1(Lx) and we have the result.

1.3.3 Collars

In this section it is considered a connected Riemannian manifold (M, g). Let N ⊂M be
a submanifold with the Riemannian metric induced by M . Since the set of rectifiable
curves joining the points q1 and q2 in N is contained in the set of the respective curves
in M , dM is dominated by dN in N , that is

dM(q1, q2) ≤ dN(q1, q2), ∀q1, q2 ∈ N.

It will be said that the submanifold N is a length space if the canonical inclusion
(N, dN) → (M,dM) is an isometric embedding as metric spaces, that is

dM(q1, q2) = dN(q1, q2), ∀q1, q2 ∈ N.
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Definition 1.3.8. A subset S ⊂M is strongly convex if for every pair of points q1 and
q2 in the closure S̄, there is a unique minimizing geodesic joining these points whose
interior is contained in S.

As a consequence of the definition we have that any strongly convex submanifold
is a length space. The converse is false in general, for example if we consider the unit
disc without the zero ∆\{0} in Euclidean space, then this is a length space but there
is no a minimizing geodesic contained in ∆\{0} joining antipodal points in S1.

A careful inspection of Whitehead’s Theorem [14, Proposition 4.2, Chapter 3] con-
cerning strongly convex balls allows the following statement.

Lemma 1.3.9. For every point p in M , there is β > 0 such that Bβ′(p) is strongly
convex for every β′ ≤ β.

Lemma 1.3.10. [14, Corollary 3.9, Chapter 3]. If a piecewise differential curve γ :
[a, b] → M with parameter proportional to arc length, has length less or equal to the
length of any other piecewise differential curve joining γ(a) to γ(b) then γ is a geodesic.
In particular, γ is regular.

Definition 1.3.11. A connected Riemannian manifold (M, g) is uniquely geodesic if
for every pair of points q1 and q2 in M , there is a unique minimizing geodesic in M
joining these points.

By definition strongly convex submanifolds are uniquely geodesic and uniquely
geodesic submanifolds are length spaces.

Definition 1.3.12. Consider an oriented Riemannian surface Σ and a closed minimiz-
ing geodesic C with a neighbourhood U such that U−C has two connected components.
A collar of C is c = C ∪ U ′ where U ′ is a connected component of U − C.

In general, c− C will not be a length space for a collar c of C. However, it will be
so locally on C in the sense of the next lemma.

Lemma 1.3.13. Consider an oriented Riemannian surface Σ and a collar c of a closed
minimizing geodesic C in Σ. Then, for every point y ∈ C, there is a neighbourhood B
of y in Σ such that B ∩ (c − C) is uniquely geodesic. In particular, B ∩ (c − C) is a
length space.

Proof. Consider y ∈ C and B = Bβ′(y) as in Lemma 1.3.9. Recall that, by construction,
B is a normal neighbourhood of y and because C is a minimizing geodesic passing at y,
B∩C is a proper segment of C and B−C has only two distinct connected components
B′ and B′′. Take β′ small enough such that

B′ ⊂ c, B′′ ∩ c = ∅.

It is enough to show that B′ is uniquely geodesic. Consider a pair of points q1 and q2
in B′. There is a unique minimizing geodesic γ from q1 and q2 such that it is contained
in B. It rest to show that γ is contained in B′.
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Suppose that γ : [a, b] → B is not contained in B′. Then, there is t ∈ (a, b) such
that γ(t) ∈ C. Define

t− = min{t ∈ [a, b] | γ(t) ∈ C},
t+ = max{t ∈ [a, b] | γ(t) ∈ C}.

Define the segments α1 = γ|[a,t−], α3 = γ|[t+,b] and α2 as the minimizing geodesic
segment of C from q′1 = γ(t−) to q

′
2 = γ(t+). Because C is a minimizing geodesic, we

have

l(α1 ∗ α2 ∗ α3) = l(α1) + l(α2) + l(α3)

≤ l(α1) + l(γ|[t−,t+]) + l(α3) = l(γ).
(1.27)

Parametrizing the concatenated curve proportional to the arc length, by Lemma
1.3.10 we have that the concatenated curve is a geodesic and in particular a regular
curve. By 1.27, the concatenated curve is a minimizing geodesic joining the point q1 and
q2 and because the minimizing geodesic joining these point is unique, the concatenated
curve coincides with γ up to reparametrization. We have proved that γ is contained in
c and reaches the curves the curve C at the point q′1. Because γ is regular, it must be
tangent to C at q′1 hence γ coincides with C up to reparametrization. This is absurd
since neither q1 nor q2 belong to C by hypothesis and we have proved that B′ is uniquely
geodesic. This concludes the proof.

1.3.4 Profinite Completion

This section contains some results needed in the following chapters about the profinite
completion of groups. For details, see [25, Chapter 1]. Consider a group G and let C be
the set of finite index normal subgroups. For every S, S ′ ∈ C such that S ′ ≤ S, there is
a canonical epimorphism

ηS′S : G/S ′ → G/S.

The collection (ηS′S)S′≤S is an inverse system, that is, if S ′′ is another finite index
normal subgroup of G such that S ′′ ≤ S ≤ S, then ηS′′S = ηS′′S′ ◦ ηS′S.

Definition 1.3.14. The profinite completion of G is the inverse limit Ĝ of the inverse
system (ηS′S)S′≤S, that is,

Ĝ = lim←−
S∈C

G/S.

Example 7. Consider G = Z, then its profinite completion is

Ẑ = lim←−−
n∈N

Z/nZ.

By the Chinese Remainder theorem, we can identify with the product of rings of p-adic
integers:

Ẑ ∼=
∏

p prime

Zp.
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Since every G/S with S a normal finite index subgroup is a finite group with the

discrete topology, the inverse limit Ĝ is a topological group with the following properties.

Proposition 1.3.15. The profinite completion Ĝ is a compact, Hausdorff and totally
disconnected topological group.

Also we can define the profinite completion as follow: we define the profinite topology
on G as the topology generated by the basis of cosets of normal finite index subgroups
of G. We will denote the topological group G with this topology by Gpf . This topology

is inherited from a metric whose completion is the topological group Ĝ.

There is a canonical morphism of groups

η : G→ Ĝ

whose image is dense.

Definition 1.3.16. The group G is residually finite if the intersection of all the normal
finite index subgroups is the trivial subgroup.

Proposition 1.3.17. The following assertions are equivalents.

(1) The group G is residually finite.
(2) The topological group Gpf is Hausdorff.

(3) The canonical map η : G→ Ĝ is injective.

Theorem 1.3.18. The profinite completion Ĝ is a topological group with a fundamental
system U of open neighbourhoods U of the identity element such that each U ∈ C and

Ĝ = lim←−
U∈C

G/U.

Corollary 1.3.19. The profinite completion Ĝ is residually finite. In particular, C is
a fundamental system of open neighbourhoods of the identity.

Proof. By the previous theorem there is a fundamental system U , then we have:

{1} ⊂
⋂
S∈C

S ⊂
⋂
U∈U

U = {1}.

Therefore, we have the result.

Corollary 1.3.20. Every subgroup S ∈ C is open and closed.

Proof. Let S be a finite index normal subgroup of Ĝ. By the Corollary 1.3.19, S is
open. However, Ĝ− S is a finite union of cosets of S which are open as well since Ĝ is
a topological group, hence Ĝ− S is open and we conclude that U is closed.
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Lemma 1.3.21. Consider a group morphism f : G1 → G2 such that the groups G1

and G2 are residually finite. Then there is a continuous extension of f to the profinite
completions of the groups, that is there is a commutative diagram

Ĝ1

f̂
// Ĝ2

G1

f
//

?�

OO

G2

?�

OO
(1.28)

such that f̂ is a continuous group morphism.

Proof. For every finite index subgroup S of G2, we have a monomorphism

G1/f
−1(S) ↪→ G2/S. (1.29)

In particular, f−1(S) is a finite index subgroup of G1 and we have the isomorphism

Ĝ1/÷f−1(S) ∼= G1/f
−1(S). (1.30)

Define the group morphism fS as the composition of the top row in the next commu-
tative diagram

fS : Ĝ1
// Ĝ1/÷f−1(S) ∼= // G1/f

−1(S) �
�

// G2/S

G1
= //

?�

OO

G1

f
//

OO

G2

OO
(1.31)

By the universal property of the inverse limit and Proposition 1.3.17, taking the inverse
limit of diagram 1.31 with respect to the finite index subgroups S gives diagram 1.28
and the morphism f̂ . It is clear that f̂ is continuous since by construction, for every
finite index subgroup U of Ĝ2, we have

f̂−1(U) = ¤�f−1(U ∩G2),

a finite index subgroup of Ĝ1. Then the result is proved.

Theorem 1.3.22. The fundamental group of a surface is residually finite.

If the surface is non compact, then its fundamental group is free [28] with a countable
set of generators hence residually finite [7]. In the case the surface is compact, this was
proved in [20] and there is also a one page proof in [16].
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1.4 Riemann-Roch Theorem

In this section it is presented the Riemann-Roch Theorem and it will be used to show
that the space of holomorphic quadratic differentials of a closed Riemann surface of
genus g is 3g − 3-dimensional. This result will be used in the following chapter.

Let Σ be a compact Riemann surface and let ω be the holomorphic cotangent bundle
of Σ. If we have any nontrivial meromorphic section of a holomorphic line bundle over
Σ, there can be only finitely many zeros and poles. Then we consider the divisor of the
section as the formal sum of the points where there are zeros minus the points where
there are poles (each point being weighted by the multiplicity of the zero or pole there
at). The degree f a divisor D = n1P1 + · · · + nkPk, ni ∈ Z, Pi ∈ Σ, is defined as the
integer

∑k
1 ni.

The degree of the divisor of any nontrivial meromorphic section of a holomorphic
line bundle over a compact Riemann surface Σ is independent of which meromorphic
section is chosen. Since any holomorphic line bundle φ on Σ always has nontrivial
meromorphic sections, we may associate with φ the degree of the divisor of any non-
trivial meromorphic section of φ. This integer is called the degree of φ and it is denoted
deg(φ).

Denote by dim hol(φ) the dimension of the vector space of holomorphic sections of
the holomorphic line bundle φ on Σ. When Σ is a compact surface, dim hol(φ) is finite.
Notice that

deg(φ) < 0 implies that dim hol(φ) = 0. (1.32)

Because if there exists an holomorphic section f , then by definition f is a meromorphic
section. Since the definition of deg(φ) is independent of the meromorphic section chosen,
we can consider the section f and we have deg(φ) = 0.

A family φ = {φj}j of holomorphic functions φh on zj(Uj) for all coordinate neigh-
borhoods (Uj, zj) of a Riemann surface Σ is called a holomorphic quadratic differential
on Σ if it satisfies

φk(zk) = φj ◦ zjk(zk) ·
(
z′jk(zk)

)2
, on Uj ∩ Uk, where zjk = zj ◦ z−1k .

A holomorphic quadratic differential will be denoted by φ = φ(z)dz2 and A2(Σ) will
denote the complex vector space of all holomorphic quadratic differentials on Σ. The
holomorphic quadratic differentials are holomorphic sections of the bundle ω ⊗ ω.

Now, it will be used the Riemann-Roch Theorem to show that the dimension of
A2(Σg) the space of holomorphic quadratic differentials of a closed Riemann surface of
genus g, is 3g − 3 (g ≥ 2).

Theorem 1.4.1 (Riemann-Roch). Let Σg be a compact Riemann surface of genus g
and let φ be any holomorphic line bundle over Σg. Then

dim hol(φ)− dim hol(ω ⊗ φ−1) = deg(φ)− g + 1. (1.33)

Let Σg be a compact Riemann surface of genus g ≥ 2 and consider the holomorphic
line bundle φ = ω ⊗ ω, where ω is the holomorphic cotangent bundle over Σg. Since
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deg(ω) = 2g − 2, deg(ω ⊗ φ−1) = 2− 2g < 0. By 1.32, we have dim hol(ω ⊗ φ−1) = 0.
Using the Riemann-Roch Theorem we have

dim hol(φ) = deg(φ)− g + 1 = 2(2g − 1)− g + 1 = 3g − 3.

Then we have the following result.

Proposition 1.4.2. The space of holomorphic quadratic differentials of a closed Rie-
mann surface of genus g, denoted by A2(Σg), is a complex vector space of dimension
3g − 3.



Chapter 2

Teichmüller Theory for Riemann
Surfaces

In this chapter different ways, in which the Teichmüller space for Riemann surfaces has
been defined, are presented. This definitions coincide in the case of compact surfaces
of finite genus. In the next chapter, based on one of these Teichmüller representations,
it is defined the Teichmüller space for laminations.

2.1 Marked Riemann Surfaces

We can think the Teichmüller space as a parametrization of all the complex structures
on a given surface and before giving a precise definition, let’s see an example. Let Σ1 be
a closed Riemann surface of genus 1. For any point p = (z(p), w(p)) on Σ, we define the
elliptic integral Φ selecting a branch of the algebraic function w(z) =

√
z(z − 1)(z − λ)

and a path from ∞ to z(p), and by setting

Φ(p) =

∫ z(p)

∞

dz√
z(z − 1)(z − λ)

,

The value of this elliptic integral Φ is not determined uniquely. It depends on a path
joining p∞ and p.

The values of Φ along the simple closed curves A1 and B1 (see figure above) are
represented by

π1 = 2

∫ 1

0

dz√
z(z − 1)(z − λ)

and π2 = 2

∫ λ

0

dz√
z(z − 1)(z − λ)

,
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respectively. Setting
Γ = {mπ1 + nπ2 | m,n ∈ Z},

then, we have that the function Φ(p) has infinitely many values which differ from each
other by elements of Γ. Every element of Γ is called a period of Φ. Since the periods
π1, π2 satisfy Im(π1/π2) > 0, they are linearly independent over the real number field R.
Also, every γ = mπ1+nπ2 ∈ Γ can be identified with a translation γ(z) = z+mπ1+nπ2
of C. Then we say that two points z, z′ ∈ C are equivalent under Γ if there exists an
element γ ∈ Γ with z′ = γ(z). This equivalent relation defines a quotient space C/Γ
and we have that Σ1 is biholomorphic to C/Γ. Therefore each torus is represented by
a Riemann surface C/Γ for a lattice group Γ.

We may assume that the generators π1 and π2 for Γ are the canonical ones 1 and τ
with Im(τ) > 0, respectively. Then, we consider a lattice group

Γτ = {γ = m+ nτ | m,n ∈ Z}

where τ ∈ H. In this case, we will denote the surface C/Γτ by Στ
1 and we have the

following theorem. Its proof can be consulted in [17, Theorem 1.1].

Theorem 2.1.1. For any two points τ and τ ′ in the upper half-plane H, two tori Στ
1

and Στ ′
1 are biholomorphically equivalent if and only if τ and τ ′ satisfy the relation

τ ′ =
aτ + b

cτ + d

where a, b, c and d are integers with ad− bc = 1.

Considering the Theorem 2.1.1 we have a parametrization of complex structures
of tori up to biholomorphism given by H/PSL(2,Z) where PSL(2,Z) is the modular
group defined by

PSL(2,Z) =
ß
γ(z) =

az + b

cz + d
| a, b, c, d ∈ Z and ad− bc = 1

™
.

This parametrization is the moduli space of tori, and it is denoted by M1. Then the
Teichmüller space will be a universal covering of this space. In this case the Teichmüller
space is identify with the upper half plane H.

Now, let Σg be a closed Riemann surface of genus g. Consider simple closed curves
A1, B1, ..., Ag, Bg with base point p such that the fundamental group π1(Σg, p) of Σg with
base point p is generated by the homotopy classes [A1], [B1], ..., [Ag], [Bg]. Then Sp ={
[Aj], [Bj]

}g
j=1

is a canonical system of generators of π(Σg, p) and we call it amarking on

Σg. We will say that two markings Sp =
{
[Aj], [Bj]

}g
j=1

and Sp′ =
{
[A′j], [B

′
j]
}g
j=1

on Σg

are equivalents if there exists a continuous curve C0 on Σg such that [A′j] = TC0([Aj])
and [B′j] = TC0([Bj]) for j = 1, ..., g, where TC0 is the isomorphism of π1(Σg, p) to

π1(Σg, p
′) sending any [C] to [C−10 · C · C0]. Let Sp and Sq be markings on closed

Riemann surfaces Σg and Σ′g of genus g, respectively. Two pairs (Σ, Sp) and (Σ′, Sq)
are said to be equivalent if there exists a biholomorphic mapping h : Σ → Σ′ such that
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the marking h∗(Sq) =
{
h∗([A

′
j], h∗([B

′
j]))

}g
j=1

is equivalent to Sp =
{
[Aj], [Bj]

}g
j=1

. The

equivalence class of (Σ, Sp) is denoted by [Σ, Sp] and called a marked closed Riemann
surface of genus g. Then, the Teichmüller space Tg of genus g is the set of all marked
closed Riemann surfaces of genus g.

2.2 Quasiconformal Teichmüller

In this section it will be given a general representation of the Teichmüller space using
quasiconformal maps and also, it will be defined the reduced Teichmüller space.

Consider an arbitrary, not necessarily closed, Riemann surface Σ. For every qua-
siconformal mapping f of Σ onto another Riemann surface Σ′, consider a pair (Σ′, f).
We say that two pairs (Σ′, f1) and (Σ′′, f2) are equivalent if there is a conformal map
h : Σ′ → Σ′′ such that f−12 ◦ h ◦ f1 : Σ ∪ ∂Σ → Σ ∪ ∂Σ is homotopic to the identity by
a homotopy (via continuous mappings) that keeps every point of ∂Σ fixed throughout.
Denote by [Σ, f ] the equivalence class of (Σ, f). We call the set of all such equivalence
classes the quasiconformal Teichmüller space of Σ or simply Teichmüller space of Σ
and denote it by T (Σ). We will call to [Σ, id] the base point of T (Σ), where id is the
identity on Σ.

Remark 2.2.1. The extension to the boundary of the quasiconformal mappings f1 and
f2 in this definition is well defined, see discussion after Theorem 1.1.24. The boundary
of a Riemann surface was defined in 1.2.11.

Now, we say that two pairs (Σ′, f1) and (Σ′′, f2) are weakly equivalent if there is a
conformal map h : Σ′ → Σ′′ such that f−12 ◦h◦f1 : Σ → Σ is homotopic (via continuous
mappings) to the identity. Denote by [Σ, f ] the equivalence class of (Σ, f). We call the
set of all such equivalence classes the reduced Teichmüller space of Σ and denote it by
T#(Σ). Analogously to the Teichmüller space, we will call to [Σ, id] the base point of
T#(Σ).

Remark 2.2.2. Note that if Σ = ∆/Γ is a hyperbolic surface with ∂Σ = ∅, then
T (Σ) = T#(Σ). That is to say, if L(Γ) = R̂, then T (Σ) = T#(Σ).

As it is mentioned in [21, Page 4], there is a substantial difference between the
two theories obtained by consider Teichmüller space or reduced Teichmüller space. For
instance, the Teichmüller space of the unit disk in C is, in the non-reduced theory,
infinite-dimensional (and it is called the universal Teichmüller space), whereas in the
reduced theory, this space is reduced to a point.

Since any orientation-preserving diffeomorphism with compact domain is quasicon-
formal, for any closed Riemann surface of genus g, it is enough to take the pairs (Σ′g, f)
where Σ′g is a closed Riemann surface and f : Σg → Σ′g is an orientation-preserving
diffeomorphism in the definitions above.

Let Σ̂ the universal covering of Σ. By the Uniformization Theorem 1.2.12 we can
suppose that Σ̂ is Ĉ, C or the upper half plane H.
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Let f : Σ → Σ′ be a homeomorphism, by the Lifting Theorem 1.2.15, there exists a
homeomorphism f̂ of Σ̂ to Σ̂′. We say that f is a quasiconformal map if the lifting f̂
is quasiconformal, here we say that a map f on Ĉ is quasiconformal if it is a canonical
mapping of C compound with a Möbius transformation. This definition is independent
to the lifting and it coincides with the definition 1.2.16.

Now, we want to obtain the reduced Teichmüller space of a surface depending on
its cover. First, we suppose that Σ̂ = Ĉ. Then Σ = Ĉ and each quasiconformal map of
Σ is homotopic to the identity id. Therefore, T#(Ĉ) consists of only one point.

Then, we suppose that Σ̂ = C. In this case Σ is conformally equivalent to C, C−{0}
or a tori. If f : Σ → Σ′ is a quasiconformal mapping between surfaces and Σ = C or
Σ = C − {0}, then f(Σ) is conformally equivalent to C or C − {0}, respectively.
Moreover, each quasiconformal map of C is homotopic to the identity id. Therefore
T#(C) consists on only one point. Each quasiconformal map of C − {0} is homotopic
to the identity map or to the conformal map z 7−→ 1/z. Thus, T#(C−{0}) consists of
only one point. Finally, if Σ is the tori, then we saw that T (Σ1) is identified with the
upper half plane H. Since ∂Σ1 = ∅ we have T#(Σ1) = H.

Thus, from here on, it is assumed that Σ̂ is the upper half plane. In this case we have
that the fundamental group of Σ is abelian if and only if Σ is conformally equivalent to
∆, ∆−{0} or ring domains {z ∈ C : 1 < |z| < r(<∞)}. Suppose that Σ = ∆ or Σ =
∆− {0}. Then the image under a quasiconformal map is conformally equivalent to Σ.
Also, each quasiconformal map of Σ is homotopic to id. Therefore, T (Σ) consists of only
one point. Now, if Σ = {z ∈ C : 1 < z < r} then the image under a quasiconformal
map is conformally equivalent to another ring Σ′ = {z ∈ C : 1 < |z| < r′} and each
quasiconformal map of Σ is homotopic to id or to the map z 7−→ s/z. Moreover, by
the reflection principle, we have that ring domains corresponding to different r′ are not
conformally equivalent. Hence, T (Σ) is identified with the open interval (1,+∞).

Now, we suppose that Σ is a Riemann surface which has no-abelian fundamental
group and its covering is conformally equivalent to the upper half plane H. The group
of deck transformations of Σ, Γ, will be called Fuchsian model. In this case Γ is a
subgroup of Aut(H). By the Theorem 1.2.5, we can suppose that the Fuchsian model
is not abelian. Also, the set of fixed points of elements of Γ − {id} contains at least
three points.

We can suppose that 0, 1 and ∞ are fixed points of some element of Γ− {id}. Let
f̂ : H → H be a lifting of a quasiconformal map f : Σ → Σ′, which fix 0, 1 and ∞. This
map is uniquely determined and it is the restriction of a quasiconformal map defined
on Ĉ. We will call to f̂ the canonical lifting.

Remark 2.2.3. Notice that the Beltrami differential of this map f̂ satisfies 1.18.

Now, considering the Remark 2.2.3, we can define the following map:

Θf̂ : Γ → PSL(2,R)

Θf̂ (γ) = f̂ ◦ γ ◦ f̂−1, γ ∈ Γ.
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This map is well defined because if we consider the Beltrami coefficient of Θf̂ , by
the properties of the coefficient Beltrami of a composition 1.5 and the Remark 2.2.3, we
have µΘf̂

= 0, therefore Θf̂ is an element in PSL(2,R). Let us see that Θ is injective:

If Θf̂ (γ) = id, then f̂ ◦ γ ◦ f̂−1 = id, since f̂ is bijective we have γ = id. Now, let us
see that Θf̂ is a homomorphism.

Θf̂ (γ1 ◦ γ2) = f̂ ◦ (γ1 ◦ γ2) ◦ f̂−1 = Θf̂ (γ1) ·Θf̂ (γ2).

Then we have an isomorphism Θf̂ of Γ onto another Fuchsian group Γ1 and another
Riemann surface Σ′ = H/Γ1.

Notice that for any quasiconformal map f̂ : H → H with Beltrami differential µf ,
if Θf̂ (Γ) is an automorphism group, then we have

Θf̂ (γ) ◦ f̂ = f̂ ◦ γ, γ ∈ Γ.

Differentiating with respect to z, since γ and Θf̂ (γ) are Möbius transformations, we
have:

(Θf̂ (γ) ◦ f̂)z = Θf̂ (γ)z ◦ f̂ · f̂z +Θf̂ (γ)z̄ ◦ f̂ · f̂z = Θf̂ (γ)z ◦ f̂ · f̂z,

(f̂ ◦ γ)z = f̂z ◦ γ · γz + f̂z̄ ◦ γ · γz = f̂z ◦ γ · γz.

Analogously, differentiating with respect to z̄, we have:

(Θf̂ (γ) ◦ f̂)z̄ = Θf̂ (γ)z̄ ◦ f̂ · f̂z +Θf̂ (γ)z ◦ f̂ · f̂z̄ = Θf̂ (γ)z ◦ f̂ · f̂z̄,

(f̂ ◦ γ)z̄ = f̂z̄ ◦ γ · γz + f̂z ◦ γ · γz̄ = f̂z̄ ◦ γ · γz.

Therefore, for almost every z ∈ H, we have:

Θf̂ (γ)z ◦ f̂ · f̂z = f̂z ◦ γ · γz

Θf̂ (γ)z ◦ f̂ · f̂z̄ = f̂z̄ ◦ γ · γz.

Taking the quotient between the two equations above, we obtain:

µf = (µf ◦ γ)γz/γz, a.e. on H, γ ∈ Γ. (2.1)

Conversely, if (2.1) is satisfied, then Θf̂ (Γ) is an automorphism group. That is to
say, Θf̂ (Γ) is an automorphism group if and only if 2.1 is satisfied.

Lemma 2.2.4. Two points [Σ′, f1], [Σ
′′, f2] ∈ T#(Σ) satisfy [Σ′, f1] = [Σ′′, f2] in T

#(Σ)
if and only if Θf̂1

= Θf̂2
, where f̂j is the canonical lift of fj for each j = 1, 2.
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Proof. First, we suppose that [Σ′, f1] = [Σ′′, f2]. By definition of the equivalence rela-
tion, there exists a conformal map h : Σ′ → Σ′′ such that f2 ◦f−11 is homotopic to h. By
composing with a conformal mapping, if it is necessary, we can assume that Σ′ = Σ′′

and f1 is homotopic to f2. Let {ft}1≤t≤2 a homotopy between f1 and f2. Let f̂1 the
canonical lift of f1 with respect to Γ. Then the homotopy {ft} has a unique continuous
lift {F̂t} such that F̂1 = f̂1 and {F̂t} give a homotopy between f̂1 and a lift F̂2 of f2.
Fix γ ∈ Γ and z ∈ H arbitrarily. Then the following two paths have the same initial
point f̂1 ◦ γ(z): ¶

F̂t ◦ γ(z) : 1 ≤ t ≤ 2
©
,¶

f̂1 ◦ γ ◦ f̂−11

Ä
F̂t(z)

ä
: 1 ≤ t ≤ 2

©
and they also have the same projection on Σ′, {ft : 1 ≤ t ≤ 2}. Therefore both
paths coincide with each other. In particular, the terminal point F̂2 ◦ γ(z) is equal to
f̂1 ◦ γf̂1(F̂2(z)). Since z was arbitrarily, we conclude that F̂2 ◦ γ ◦ F̂−12 = Θf̂1

(γ). Since

γ was chosen arbitrarily and 0, 1 and ∞ are fixed by some element of Γ, then F̂2 fixes
0, 1 and ∞. Thus, F̂2 coincides with the canonical lift of f2 with respect to Γ and hence
Θf̂1

= Θf̂2
.

Now, we suppose that Θf̂1
= Θf̂2

= Θ. Then for every γ ∈ Γ, we have

f̂j ◦ γ = Θ(Γ) ◦ f̂j, j = 1, 2.

For every t ∈ [0, 1] and every z ∈ H, let gz be the geodesic (with respect to the Poincaré
metric) connecting f̂1 and f̂2. We denote by f̂(z, t) the point which divides gz in the
ratio t : (1− t). Then {f̂t = f̂(z, t− 1) : 1 ≤ t ≤ 2} is a homotopy between f̂1 and f̂2.
Now, we have

f̂t ◦ γ = Θ(γ) ◦ f̂t, γ ∈ Γ, t ∈ [1, 2].

Therefore every f̂t is projected to a continuous map ft of Σ onto Σ′ = Σ′′ and we have
a homotopy between f1 and f2. Hence [Σ′, f1] = [Σ′′, f2].

Remark 2.2.5. Two quasiconformal maps fj : R → Sj (j = 1, 2) satisfy Θf̂1
= Θf̂2

if

and only if f̂1 = f̂2 on the limit set L(Γ) of Γ, see [17, Remark, page 123].

Now, it is defined the reduced Teichmüller of a Fuchsian model as follow:

T#(Γ) = {Θf̂ : f̂ is a canonical qc map of Ĉ such that Θf̂ (Γ) is a Fuchsian group}.

Let me note that in the definition of T#(Γ), it is considered qc mappings defined on
Ĉ, then Θf̂ is not necessarily a Fuchsian group and it does not necessarily act properly

discontinuously on Ĉ.
Now, it is defined the Teichmüller space of a Fuchsian group, for this it is considered

the following set:

QC(Γ) = {w : w is a canonical qc map of Ĉ and Θw(Γ) is a Fuchsian group}.
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It will be said that two elements w1, w2 ∈ QC(Γ) are equivalent if w1 = w2 on R.
We denote by [w] the equivalence class of w. Let

T (Γ) = {[w] : w ∈ QC(Γ)}.
T (Γ) is called the Teichmüller space of Γ.

Let me note that it can be defined the reduced Teichmüller space in terms of QC(Γ)
defining that two elements w1, w2 ∈ QC(Γ) are equivalent if Θŵ1 = Θŵ2 . Then T#(Γ)
is the quotient of QC(Γ) by this equivalence relation. For this and the Remark 2.2.5,
we have that if two mappings determining the same point of T (Γ), they determine
the same point of T#(Γ). That is to say, the equivalence classes in T#(Γ) are larger
than in T (Γ), thus in general, T#(Γ) has fewer elements. Moreover, if Σ = H/Γ is a
closed Riemann surface, then it will be seen that T (Γ) = T#(Γ). To show this, the two
following results will be used, their proof can be consulted in [17, Subsection 2.4.3].

Lemma 2.2.6. Let {γn}∞n=1 be a sequence of Aut(H) which converges uniformly on
compact subsets of H to a holomorphic function f defined in H. Here f admits a
constant function with value ∞. Then either one of the following holds:

(1) f is an element of Aut(H).

(2) f is a constant function c with c ∈ R̂.
Lemma 2.2.7. Let Γ be a Fuchsian model of a closed Riemann surface of genus g ≥ 2.
For an arbitrary point ζ ∈ R̂, there exists a sequence {γn}∞n=1 of Γ such that {γn(z0)}∞n=1

converges to ζ for any point z0 ∈ H.

Proposition 2.2.8. Let Σ be a compact Riemann surface. Two quasiconformal maps
fj : Σ → Sj (j=1,2) satisfy Θf̂1

= Θf̂2
if and only if f̂1 = f̂2 on R.

Proof. Suppose that f̂1 = f̂2 on R. Then for every γ ∈ Γ, Θf̂1
(γ) = Θf̂2

(γ) on R.
Since Θf̂1

(γ) and Θf̂2
(γ) are Möbius transformations and they coincide on more than

two points, by Remark 1.2.7, we have Θf̂1
= Θf̂2

for every γ ∈ Γ, that is to say,
Θf̂1

= Θf̂2
. Conversely, suppose that Θf̂1

= Θf̂2
= Θ. Let z0 be a fixed point in H.

By the Lemma 2.2.7, for every ζ ∈ R̂ there exists a sequence {γn}∞n=1 of Γ such that
{γn(z0)}∞n=1 converges to ζ. Moreover, by the Lemma 2.2.6, such a sequence converges
locally uniformly on H to a constant function ζ. Since

f̂j ◦ γn(z0) = Θ(γn) ◦ f̂j(z0),

we have f̂1 ◦ γn ◦ f̂−11 (f̂1(z0)) = f̂2 ◦ γn ◦ f̂−12 (f̂2(z0)) and taking the limit when n→ ∞,
we conclude that f̂1(ζ) = f̂2(ζ). Since ζ was arbitrarily, we have f̂1 = f̂2 on R.

By definition of the Teichmüller space and the reduced Teichmüller space, the Propo-
sition 2.2.8 implies that T (Γ) = T#(Γ) for compact surfaces. Now, we want to see the
relation of this Teichmüller spaces with the quasiconformal Teichmüller spaces defined
in last section.
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Remark 2.2.9. By Lemma 2.2.6, the limit set L(Γ) of a Fuchsian group Γ, is the set
of all accumulation points of the set {γ(z0) | γ ∈ Γ} for any z0 ∈ ∆. Since L(Γ) is a
closed set and by Lemma 2.2.7, if Σ = ∆/Γ is a compact surface, then L(Γ) = R̂.

Proposition 2.2.10. Let Γ be a Fuchsian model of a Riemann surface Σ. Then the
reduced Teichmüller space T#(Σ) of Σ is identified with T#(Γ).

Proof. Consider the map η : T#(Σ) → T#(Γ) defined by

[Σ′, f ] 7−→ Θf̂ . (2.2)

By the Lemma 2.2.4, this map is well defined and it is injective. For every quasicon-
formal map f̂ of Ĉ such that Θf̂ (Γ) = f̂Γf̂−1 is a Fuchsian group, consider the group

Γ1 = Θf̂ (Γ). Then f̂ can be projected to a quasiconformal map f of Σ = H/Γ onto

Σ′ = H/Γ1. Therefore each quasiconformal map f̂ determines a point [Σ′, f ] ∈ T#(Σ),
that is to say, the map (2.2) is surjective.

Corollary 2.2.11. If Σ is a compact surface, then T (Σ) ∼= T#(Σ) ∼= T#(Γ) ∼= T (Γ).

Proof. By the Lemma 2.2.8, if Σ is a compact Riemann surface, then two maps deter-
mine the same point in T#(Γ) if and only if they determine the same point in T (Γ).
Therefore, if Σ is compact, T#(Σ) is identified with T (Γ). Also, by Remarks 2.2.9 and
2.2.2, if Σ is compact, T (Σ) = T#(Σ). By 2.2.10, we have the result.

2.3 Completeness of Teichmüller Spaces

In this section it is considered a compact Riemann surface Σ of genus g ≥ 2, then it
will not be distinguish between Teichmüller space and reduced Teichmüller space. Let
p1 = [Σ, f1] and p2 = [Σ′, f2] be points in T (Σ). Let Ff1,f2 be the set of quasiconformal
maps of Σ onto Σ′ which are homotopic to f2 ◦ f−11 . Define

d(p1, p2) = inf
g∈Ff1,f2

logK(g), K(g) = inf{K| g is a K-qc map}. (2.3)

We call to d the Teichmüller distance on T (Σ). Let’s see that this function is inde-
pendent of the choice of representatives at p1 and p2. Suppose that [Σ, f1] = [Σ′′, f ′1],
then f̂1 ◦ (f̂ ′1)−1 is homotopic to a conformal mapping h. Let g a quasiconformal map-
ping homotopic to f̂2◦(f̂1)−1 with complex dilatationK(g), then g◦h is a quasiconformal
map homotopic to f̂2 ◦ (f̂ ′1)−1 with complex dilatation K(g ◦ h) = K(g).

Now, we will see that d is a metric. If p1 = p2, then by definition of infimum there
exists a sequence {gn}n in Ff1,f2 such that logK(gn) → 0, that is to say K(gn) → 1
when n → ∞. Let ĝn the canonical lift of gn with respect to Θf̂1

(Γ) for each n. Since
µĝn → 0, by Proposition 1.1.26, ĝn converges to id locally uniform on H. On the other

hand, since gn ∈ Ff1,f2 , then
ˆf2 ◦ f−11 ≃ ĝn. Therefore [Σ′, ˆf2 ◦ f−11 ] = [Σ′, ĝn] and by

Lemma 2.2.4, we have Θ ˆ
f2◦f−1

1

(γ) = Θĝn(γ), γ ∈ Γ, n ∈ N. Taking the limit when
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n → ∞, we have Θ ˆ
f2◦f−1

1

(γ) = γ, γ ∈ Γ. This implies that [Σ, f1] = [Σ, f2], that is to

say p1 = p2. If p1 = p2, the K(g) = 1 for every g ∈ Ff1,f2 and thus d(p1, p2) = 0. Since
K(g) = K(g−1) for every quasiconformal map g, then d is symmetric. The triangle
inequality follows from K(g1 ◦ g2) ≤ K(g1) ·K(g2).

Theorem 2.3.1. The Teichmüller space T (Σ) is complete with respect to the Te-
ichmüller distance.

Proof. Let {pn = [Σn, fn]}n be a Cauchy sequence in T (Σ) with respect to the Te-
ichmüller distance. By definition of d, for every ϵ > 0 we can find a sufficiently large
Nϵ such that for every n,m ≥ Nϵ there exists a quasiconformal map fn,m homotopic to
fm ◦ f−1n and such that ||µn,m||∞ < ϵ, where µn,m = µfn,m . In particular, we can find a
subsequence {pnj

}j and a sequence {fnj ,nj+1
} of quasiconformal maps such that:

||µnj ,nj+1
||∞ < 2−1, j = 1, 2, 3, . . . .

Then, let p0 the base point in T (Σ). Since {d(p0, pn)}n is a bounded sequence, we can
suppose that K(fn) < K for every n ∈ N with K sufficiently large. Since

1 +
1

2j
≤

(
1 + 4 · 2−j

) (
1− 2−j

)
= 1 +

Å
3− 4

2j

ã
· 1

2j
,

we have

K
(
fnj ,nj+1

)
≤ 1 + 2−j

1− 2−j
≤ 1 + 4 · 2−j, j ≥ 1.

Then gj = fnj−1,nj
◦ fnj−2,nj−1

◦ · · · ◦ fn1,n2 ◦ fn1 is a quasiconformal map of Σ onto Σnj .
Also it is homotopic to fnj

, because fnj−1,nj
≃ fnj

◦ f−1nj−1
and it satisfies

K(gj) ≤ K(fnj−1,nj
) · · ·K(fn1) ≤ K ·

j−1∏
j=1

(
1 + 4 · 2−j

)
.

Therefore {K(gj)}j is a bounded sequence. Denote by K1 the supreme of {K(gj)}j.
Let ĝj the canonical left of gj with respect to Γ for each j. Then µj := µĝj belongs to
Bel(Σ) and ||µj||∞ ≤ k1 :=

1−K1

1+K1
< 1, because (Kj + 1)(K1 − 1) ≥ (Kj − 1)(K1 + 1).

Also, we have

1

2
||µj − µj+1||∞ ≤

∣∣∣∣∣∣∣∣ µj+1 − µj
1− µjµj+1

∣∣∣∣∣∣∣∣
∞

=
∣∣∣∣µnj ,nj+1

∣∣∣∣
∞ < 2−j

for every j ∈ N. In particular, {µj}j is a Cauchy sequence in Bel(Σ). Therefore

µ = limj→∞ µj there exists in Bel(Σ) and satisfies ||µ||∞ ≤ k1. Let f̂ be the canonical

map µ- quasiconformal of H. Then f̂ ∈ QC(Γ). Let p = [Σ′, p] be the point determined
by Θf̂ . Since

tanh

Å
d(pnj

, p)

2

ã
≤

∣∣∣∣∣∣∣∣ µ− µj
1− µjµ

∣∣∣∣∣∣∣∣
∞

≤ 1

1− (k1)2
||µj − µ||∞,

then pnj
→ p. Since the limit of a Cauchy sequence is unique, pn → p. Hence, T (Σ) is

a complete metric space.
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Now, it will be seen that the Teichmüller space is independent of the base point.
Let [Σ′, f1] ∈ T (Σ) be a arbitrary point. Define

[f1]∗([Σ
′′, f ]) = [Σ′′, f ◦ f−11 ], [Σ′′, f ] ∈ T (Σ),

then we have a mapping of T (Σ) onto T (Σ′) with base point [Σ′, id] and we have the
following result.

Proposition 2.3.2. The map [f1]∗ : T (Σ) → T (Σ′) is an isometric homeomorphism
with respect to the Teichmüller distance. In particular T (Σ) is homeomorphic to T (Σ′).

Proof. Since [f−11 ]∗ : T (Σ′) → T (Σ) gives the inverse map, then [f1]∗ is a bijection.
Now, for any two points p = [Σn, f ] and q = [Σm, g] in T (Σ), the set Ff,g coincides with
Ff◦f−1

1 ,g◦f−1
1
, because f ◦ g−1 = (f ◦ f−11 ) ◦ (f1 ◦ g−1) = (f ◦ f−11 ) ◦ (g ◦ f−11 )−1. Then

d(p, q) = d([Σn, f ◦ f−11 ], [Σm, g ◦ f−11 ]).

Therefore [f1]∗ is an isometry.

2.4 T (Σg) as a Holomorphic Quadratic Differential

Space

In this section, it will be identified the Teichmüller space with a quadratic differential
space. Consider k ∈ R such that 0 < k < 1 and φ ∈ A2(Σ)−{0}. It will be said that a
quasiconformal mapping f is a formal Teichmüller mapping of Σ for the pair (k, φ) if
the Beltrami differential µf of f is equal to kφ/|φ|. It is considered that the conformal
mappings are formal Teichmüller mapping corresponding to the case k = 0 or φ = 0.

Denote by A2(Σ)1 the unit ball of holomorphic quadratic differential space, that is
to say,

A2(Σ)1 = {φ ∈ A2(Σ) | ||φ||1 < 1},

where φ = φ(z)dz2, ||φ||1 = 2
∫∫

Σ
|φ(z)|dxdy.

Consider φ ∈ A2(Σ) and suppose that k = ||φ||1. Then we simply will call to a
formal Teichmüller mapping of the pair (k, φ) a Teichmüller mapping for φ.

Now, let Σg be a closed Riemann surface of genus g ≥ 2 with Fuchsian model Γ.
Then for every φ ∈ A2(Σ) we have ||φ||1 <∞ and A2(Σ) is a complex Banach space of
dimension 3g − 3, see 1.4.2.

Define

T : A2(Σg)1 → T (Σg)

T (φ) = [Σ′, f ], φ ∈ A2(Σg)1

where f : Σg → Σ′ = f(Σg) is a Teichmüller mapping for φ ̸= 0 and f = id for φ = 0.
Now, we want to show the following result:
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Theorem 2.4.1. The mapping T is a surjective homeomorphism. In particular, T (Σg)
is homeomorphic to R6g−6.

For the proof we will show the followings lemmas and we will use the Theorem 2.4.2,
whose proof can be consulted in [17, Section 5.3].

Theorem 2.4.2. Let f be a Teichmüller mapping for an element φ ∈ A2(Σg)1 and let
T (φ) = [Σ′, f ]. Then every quasiconformal mapping f1 of Σg to Σ′ which is homotopic
to f satisfies

||µf1||∞ ≥ ||µf ||∞.

Moreover, the equality holds if and only if f1 = f .

Lemma 2.4.3. The mapping T is injective.

Proof. Suppose the T (φ1) = T (φ2) with φ1, φ2 ∈ A2(Σg)1. Consider fj the Teichmüller
mappings for φj and T (φj) = [Σj, fj] for every j. Then there exists a conformal map
h : Σ1 → Σ2 such that h ◦ f1 ≃ f2. By the Theorem 2.4.2, we have:

||µf1||∞ = ||µh◦f1 ||∞ ≥ ||µf2||∞.

Analogously, h−1 ◦ f2 ≃ f1, then we have:

||µf2||∞ = ||µh−1◦f2||∞ ≥ ||µf1 ||∞.

By the Theorem 2.4.2, we obtain that h ◦ f1 = f2 and therefore µf1 = µf2 .
If φ1 = 0, φ2 = 0. If φ1 ̸= 0, then ||φ1||1 = ||φ2||1 and φ1/|φ1| = φ2/|φ1| a.e.

on R. Therefore φ2/φ1 is positive a.e. on R. Since φ2/φ1 is a meromorphic function,
it must be constant. Then there exists a positive constant C with φ1 = Cφ2, since
||φ1||1 = ||φ2||2, we conclude that C = 1, that is to say, φ1 = φ2.

It can be shown that for a point [Σ, S] in Tg, the Fuchsian model Γ has a canonical
system of generators {αj, βj}gj=1. This canonical system is written uniquely in the form

αj =
ajz + bj
cjz + dj

, aj, bj, cj ∈ R, cj > 0, ajdj − bjcj = 1,

βj =
a′jz + b′j
c′jz + d′j

, a′j, b
′
j, c
′
j ∈ R, c′j > 0, a′jd

′
j − b′jc

′
j = 1,

for each j = 1, 2, ..., g − 1. Now, we define the Fricke coordinates ‹Fg : Tg → R6g−6 by‹Fg([Σ, S]) = (a1, c1, d1, a
′
1, c
′
1, d
′
1, ..., ag−1, cg−1, dg−1, a

′
g−1, c

′
g−1, d

′
g−1).

The image Fg = ‹Fg(Tg) is called the Fricke space of closed Riemann surfaces of genus
g.

Lemma 2.4.4. The mapping T is a homeomorphism onto its image.
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For the proof of Lemma 2.4.4, we will use that there exists a continuous bijection Fg

between T (Σg) and the Fricke space Fg, see [17, Lemmas 5.6 and 5.8] and ‹T := Fg ◦ T
is a continuous map, [17, Lemma 5.7].

Proof. First, we are going to show that T is continuous. Let φ ∈ A2(Σg)1 and p =
T (φ) = [Σ′, f1] Consider the translation [f1]∗ : T (Σg) → T (Σ′) of the base point, which
maps p to [Σ′, Id]. Then [f1]∗ is a surjective isometry. Define

T1 : A2(Σ
′) → T (Σ′) such that φ 7−→ [Σ′′, f ]

and consider ‹T1 = Fg ◦ [f1]−1∗ ◦ T1 : A2(Σ
′)1 → Fg, then we have‹T (φ) = Fg(p) = Fg ◦ [f1]−1([Σ′, Id]) = Fg ◦ [f1]−1 ◦ T1(0) = ‹T1(0).

Therefore (‹T1)
−1 ◦ ‹T = (‹T1)

−1 ◦ [f1]∗ ◦ T : A2(Σ)1 → A2(Σ
′)1 is well defined in a

neighborhood of φ and it is a homeomorphism onto its image. Hence, T is continuous
at φ if and only if T1 is continuous at the origin. Let {ψn}n be a sequence in A2(Σ

′)1
such that ||ψn||1 → 0. Since the maximal dilatation of Teichmüller mapping for ψn is
equal to (1 + ||ψn||1)/(1− ||ψn||1) for each n, we have:

d(T1(0), T1(ψn)) ≤ log
1 + ||ψn||1
1− ||ψn||1

→ 0.

Then, T1(0) is continuous at the origin. Since φ was arbitrarily, T is continuous.

Lemma 2.4.5. The mapping T is surjective.

Proof. Since T is injective and Fg is bijective, then ‹T is injective, also it is continuous.
Since A2(Σg)1 is homeomorphic to R6g−6, then by the Invariance of domain Theorem

we have that ‹T (A2(Σg)1) is an open set.

Consider E = T (A2(Σg)1) = (Fg)
−1(‹T (A2(Σg)1)), since T (Σg) is a connected space

(see [17, Lemma 5.12]) to show the surjectivity of T it is enough to show that ∂E = ∅.
Suppose that ∂E ̸= ∅ and let [Σ′, f ] be a point in ∂E. Then there exists a sequence
{φn}n in A2(Σg) such that T (φn) → [Σ′, f ] and ||φn||1 → 1. Let fn be a Teichmüller
mapping for φn and T (φn) = [Σn, fn]. By the hypotheses, there exists a quasiconformal
mapping hn : Σn → Σ′ which is homotopic to f ◦ f−1n for every n and such that
||µhn||∞ → 0. In particular, for some k < 1 we have ||µgn||∞ ≤ k, where gn = h−1n ◦ f .
On the other hand, since gn is homotopic to fn, by the Theorem 2.4.2, we obtain

||µgn||∞ ≥ ||µfn||∞ = ||φn||∞ → 1.

This is a contradiction, therefore ∂E = ∅.

The following theorem is a corollary of the Lemma 2.4.5.

Theorem 2.4.6. For every quasiconformal mapping f : Σg → Σ′ there exists a Te-
ichmüller mapping homotopic to f .

Since we are considering Riemann surfaces of genus g ≥ 2, we have the following
result.

Corollary 2.4.7. The spaces T#(Σ), T (Σ), T#(Γ), T (Γ), Fg, R6g−6 are mutually
homeomorphic to each other.
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2.5 T (Σg) as a Derivative Space

In this section it will be considered a closed Riemann surface of genus g. Set µ ∈ Bel(Σg)
then by the Proposition 1.1.25 there exists a canonical quasiconformal mapping wµ of
∆. Now, we define:

µ̃(z) =

 µ(z) if z ∈ ∆

0 if z ∈ C−∆.

By Theorem 1.1.24, for µ̃ there exists a quasiconformal mapping on Ĉ which will be
denoted by wµ.

Remark 2.5.1. Note that wµ, is holomorphic on the outer of the unit disc, ∆∗.

Lemma 2.5.2. Let µ, ν be elements of Bel(Σg), then the following statements are
equivalent:

(1) wµ = wν on S1.

(2) wµ = wν on ∆∗.

Proof. First, we suppose that wµ = wν on R, then we have a homeomorphism f : Ĉ → Ĉ
defined by:

f(z) =

 (wµ)−1 ◦ wν(z) if z ∈ ∆

z if z ∈ ∆∗ ∪ S1.

Since (wµ)−1 ◦ wν is a quasiconformal mapping on C, then it is ACL on C and
the identity function is ACL too. Therefore f is a ACL function on C. By the
Observation 1.1.3 and since the composition of quasiconformal maps is quasiconformal,
we have that the function f is a quasiconformal map. Hence, by the Observation
2.5.1 and since wµ and wν coincide with wµ and wν respectively on ∆, we have that
g := wµ◦f ◦(wv)−1 is a conformal mapping on C. Namely, g is a Möbius transformation
and since g fixes 0, 1,∞ then g is the identity function. We conclude that wµ = wν
on ∆∗ because f is the identity on ∆∗. Conversely, if wµ = wν on ∆∗, then wµ = wν
on ∆∗ ∪ S1, because wµ and wν are continuous and the codomain is Hausdorff, then
the set where they coincide is closed. Therefore, we obtain a quasiconformal mapping
h = wµ ◦ (wµ)−1 ◦wν ◦ (wν)−1 : ∆ → ∆. The mapping h is conformal on C and since it
fixes 0, 1,∞, h has to be the identity function on C. Thus wν = wµ ◦ (µµ)−1 ◦wν = wµ

on R.

Now, we can define that wµ and wν are equivalent, with µ, ν ∈ Bel(Σg), if wµ =
wν on ∆∗. Let Tβ(Γ) be the set of equivalence classes and let

β : Bel(Σg) → Tβ(Γ) (2.4)
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the projection map. By the Lemma 2.5.2, we can identify T (Γ) with Tβ(Γ).

Note that analogously to the case of closed hyperbolic surfaces, for every hyperbolic
surface without boundary, we can define the Teichmüller space as follow: we say that
µ and ν in Bel(Σ) are equivalent, if wµ = wν on S1. The quotient space

T (Σ) = Bel(Σ)/ ∼ (2.5)

with this equivalence relation is called Ahlfors-Bers model of the Teichmüller space of
the surface Σ. By Remark 2.2.2, it coincides with the reduced Teichmüller space.

Now, we associate a derivative to each conformal map. Let f be a conformal mapping
on C, then its Schwarzian derivative is given by

{f, z} =
f ′′′(z)

f ′(z)
− 3

2

Å
f ′′(z)

f ′(z)

ã2

. (2.6)

Lemma 2.5.3. If f and g are conformal maps of D and f(D), respectively, then

{g ◦ f, z} = {g, f(z)} · f ′(z)2 + {f, z}, z ∈ D.

Moreover, a conformal map of D is a Möbius transformation if and only if {f, z} = 0
on D.

Proof. By a direct calculation we have:
(g ◦ f)′(z) = g′(f(z)) · f ′(z),
(g ◦ f)′′(z) = g′′(f(z)) · f ′(z)2 + g′(f(z)) · f ′′(z),
(g ◦ f)′′′(z) = g′′′(f(z)) · f ′(z)3 + 3 · g′′(f(z)) · f ′(z) · f ′′(z) + g′(f(z)) · f ′′′(z).
Then we have

(g ◦ f)′′′(z)
(g ◦ f)′(z)

− 3

2

Å
(g ◦ f)′′(z)
(g ◦ f)′(z)

ã2

=

=

Ç
g′′′(f(z))

g′(f(z))
− 3

2

Å
g′′(f(z)

g′(f(z))

ã2
å

· f ′(z)2 + f ′′′(z)

f ′(z)
− 3

2

Å
f ′′(z)

f ′(z)

ã2

= {g, f(z)} · f ′(z)2 + {f, z}.

Therefore {g ◦ f, z} = {g, f(z)} · f ′(z)2 + {f, z}.
Let γ be a Möbius transformation. Then it is of the form:

γ(z) =
a · z + b

c · z + d
with a, b, c, d ∈ C and ad− bc = 1.

Taking the derivative, we have:

γ′(z) =
1

(c · z + d)2
and γ′′(z) =

−2c

(c · z + d)3
.

Then, we obtain γ′′′(z)
γ′(z)

− 3
2

Ä
γ′′(z)
γ′(z)

ä2
= 0 and therefore {γ, z} = 0.
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Now, suppose that f is a conformal mapping such that {f, z} = 0. Note that

{f, z} = (log(f ′(z)))′′ − 1

2
{(log f ′(z))′}2.

Then we have the differential equation y′′ − 1
2
(y′)2 where y = log f ′(z). Solving this

equation we have that f is of the form C
z+C1

, with C and C1 constants, that is to say,
f is a Möbius transformation.

For every µ ∈ Bel(Σg), we consider

φµ(z) = {wµ, z}, z ∈ ∆∗.

Proposition 2.5.4. If γ ∈ Γ, then

φµ(γ(z)) · γ′(z)2 = φµ(z), z ∈ ∆∗.

That is to say, φµ is regarded as a holomorphic quadratic differential on a Riemann
surface ∆∗/Γ. Moreover, for any two elements µ, ν ∈ Bel(Σg), [wµ] = [wν ] in Tβ(Γ) if
and only if φµ = φν on ∆∗.

Proof. Let γ be an element of Γ. Since µ ∈ Bel(Σg), then γµ = wµ◦γ◦(wµ)−1 is Möbius
transformation. Taking the Schwarzian derivative on both sides of wµ ◦γ = γµ ◦wµ and
considering the Lemma 2.5.3 we obtain:

{wµ ◦ γ, z} = {wµ, γ(z)} · γ′(z)2 + {γ, z} = {wµ, γ(z)} · γ′(z)2,

{γµ ◦ wµ, z} = {γµ, wµ(z)} · w′µ(z)2 + {wµ, z} = {wµ, z}.

Therefore, {wµ, γ(z)} · γ′(z)2 = {wµ, z} on ∆∗. Since φµ(z) = {wµ, z}, we have

φµ(γ(z)) · γ′(z)2 = φµ(z).

If [wµ] = [wν ] in Tβ(Γ), then by definition of the equivalence relation we have
wµ = wν on ∆∗. This implies that φµ = φν on ∆∗. Now, suppose that φµ = φν on ∆∗.
Consider the map F : wµ(∆

∗) → wν(∆
∗) defined by F = wν ◦ (wµ)−1. F is a conformal

map because wµ is a conformal map on ∆∗ and thus w−1µ so is. By Lemma 2.5.3, we
have:

φν(z) = {F ◦ wµ, z} = {F,wµ(z)} · w′µ(z)2 + φµ(z), on ∆∗.

By the hypotheses, we conclude that {F, z} = 0 on wµ(∆
∗). Again, by the Lemma

2.5.3, F is a Möbius transformation. Since F fixes 0, 1,∞, F is the identity. Therefore
wµ = wν on ∆∗, that is to say, [wµ] = [wν ] in Tβ(Γ).

An holomorphic automorphic form of weight −4 on ∆∗ with respect to Γ is a holo-
morphic function φ on ∆∗ such that

φ(γ(z))γ′(z)2 = φ(z), z ∈ ∆∗, γ ∈ Γ. (2.7)



54 CHAPTER 2. TEICHMÜLLER THEORY FOR RIEMANN SURFACES

The space of all holomorphic automorphic forms will be denoted by A2(∆
∗,Γ) and it

is identified with A2(∆
∗/Γ). By Riemann-Roch Theorem 1.4.1, A2(∆

∗,Γ) is a (3g− 3)-
dimensional complex vector space.

Now, we define the following map:

B : Tβ(Γ) → A2(∆
∗,Γ)

[wµ] 7−→ φµ,

where φµ is the Schwarzian derivative. By the Proposition 2.5.4, the map B is well
defined and is injective. It is called Bers’ embedding. The map Φ : Bel(Σg) → A2(∆

∗,Γ)
defined by Φ(µ) = B ◦ β(µ) is called Bers’ projection.

It can be show that B and Φ are continuous maps, (see [17, Proposition 6.5]). Then,
we have the following Remark.

Remark 2.5.5. Notice that the Teichmüller space of a Riemann surface Σg can be
defined as the set

{φµ | µ ∈ Bel(Σg)}.

Now, we define a metric in A2(∆
∗,Γ) as follow. Consider the Poincaré metric on ∆∗

given by

ds2 = λ(z)2|dz|2, (2.8)

where λ(z) = |z|2
|z|2−1 . This metric is invariant under transformation in PSL(2,R),

that is to say,

λ(γ(z))2 · |γ′(z)|2 = λ(z)2, z ∈ ∆.

By 2.7, we have

|γ′(z)|2|φ(γ(z))| = |φ(z)|

and by the invariance of ds2 under PSL(2,R), we have

(λ(γ(z))2)−1|φ(γ(z))| = (λ(z)2)−1|φ(z)|.

Therefore (λ(z)2)−1|φ(z)| can be consider as a function on Σ∗ = ∆∗/Γ. Then, the
L∞-norm in A2(∆

∗,Γ) is defined by

||φ||∞ = sup
z∈∆∗

(λ(z)2)−1|φ(z)|.

Since we are considering closed Riemann surfaces, we can take the supremum over
only a relatively compact fundamental domain, then ||φ||∞ is finite for every φ ∈
A2(∆

∗,Γ), and therefore A2(∆
∗,Γ) is a complex Banach space. Also, we have the

following theorem, (its proof can be consulted in [17, Theorem 6.6]).

Theorem 2.5.6. The Teichmüller space TB(Γ) is contained in the open ball in A2(∆
∗,Γ)

with center 0 and radius 3/2.
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Now, we want to associate a measurable function µφ satisfying (1.18) to each φ ∈
A2(∆

∗,Γ). For this, consider φ an element of A2(∆
∗,Γ) and define ψ ∈ A2(∆,Γ) as

ψ(z) = (φ(z̄−1))−1, for all z ∈ ∆.

Consider the Poincaré metric λ(1/z̄)2|dz|2 with z ∈ ∆, then

ψ(z)dz2/ds2 = λ(z̄−1)2φ(z̄−1)
−1
dz̄/dz

is a Beltrami differential on ∆/Γ because, by the invariance of the Poincaré metric we
have

ψ(z)dz2/ds2 = λ(γ(z̄−1))|γ′(z̄−1)|2φ(z̄−1)
−1
dz̄/dz,

and by the condition 2.7, we obtain

ψ(z)dz2/ds2 = λ(γ(z̄−1))φ(z̄−1)
−1 γ′(z̄−1)

γ′(z̄−1)
−1
dz̄

dz
.

Then, we define µφ(z) = λ(γ(z̄−1))|γ′(z̄−1)|2φ(z̄−1)
−1
dz̄/dz. This Beltrami differen-

tial is called a harmonic Beltrami differential. Set V = {φ ∈ A2(∆
∗,Γ) | ||φ||∞ < 1/2},

then µφ with φ ∈ V belongs to Bel(Σ).
Now, we can define a continuous mapping Ψ : V → Tβ(Γ) by Ψ(φ) = [wµφ ]. Then

we have the Ahlfors and Weill Theorem (see [17, Theorem 6.9]).

Theorem 2.5.7. For any element φ ∈ A2(∆
∗,Γ) with ||φ||∞ < 1/2, the harmonic

Beltrami differential µφ constructed from φ satisfies B([wµφ ]) = φ.

Corollary 2.5.8. For any φ ∈ V , there exists µ ∈ Bel(Σg) such that wµ is real-analytic
on ∆ and B−1(φ) = [wµ].

Moreover, each point [Σ′, f ] of the Teichmüller space T (Σg) of Σg = ∆/Γ is repre-
sented by a real-analytic quasiconformal mapping g of Σ onto Σ′.

By the Theorem 2.5.7, we have that the Teichmüller space of a compact surface
Σg = ∆/Γ can be identified with the open ball in A2(∆

∗,Γ) with center 0 and radius
3/2. That is to say, the Teichmüller space of a Riemann surface of genus g is a 3g − 3-
dimensional complete space.

2.6 Fenchel-Nielsen Coordinates

Let’s fix a Riemann surface Σ. It will be said that Σ is of (topological) finite type if its
fundamental group is finitely generated. Otherwise the surface is said of infinite type
and in this case its fundamental group is free with a countable number of generators.

Remark 2.6.1. A surface of finite type need not be of finite conformal type (see defini-
tion 1.2.2); for instance, the open unit disk is of (topological) finite type, but it is not a
surface of finite conformal type. A surface of infinite type is also of infinite conformal
type.
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A pair of pants is a surface whose interior is homeomorphic to a sphere with three
distinct points deleted and whose boundary is a (possibly empty) disjoint union of
circles, (see figure 2.1).

Figure 2.1: Examples of pair of pants.

Remark 2.6.2. In the definition of pair of pants, the boundary is considered in the
topological sense. We call pair of pants without boundary to a pair of pants such that it
does not intersect to its topological boundary.

Let Σ be a Riemann surface without boundary. A (topological) pair of pants de-
composition of Σ is a family of pairwise disjoint simple closed curves C = {Ci}i∈I in Σ,
such that

• Σ\
⋃
i∈I
Ci is a disjoint union of pairs of pants without boundary;

• it is possible to find a family of pairwise disjoint tubular neighborhoods of these
curves Ci in Σ.

Example 1. Consider the closed Riemann surface Σ2 of genus 2. Then two pair of
pants decomposition of Σ2 had been represented in Figure 2.2. Thus the pair of pants
decomposition is not unique.

Figure 2.2: Example of a pair of pants decomposition of the surface Σ2.

Definition 2.6.3. A generalized hyperbolic pair of pants is a hyperbolic sphere with
three geometric holes, where a geometric hole is either a geodesic boundary component
or a puncture whose neighborhood is a cusp.

The different generalized hyperbolic pair of pants had been represented in Figure 2.3.
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Figure 2.3: Representation of generalized hyperbolic pair of pants.

We call a decomposition of a hyperbolic surface into generalized hyperbolic pair of
pants glued along their boundary components a geometric pair of pants decomposition.

Given a geometric pair of pants decomposition of a hyperbolic surface Σ consider
the boundary components simple closed geodesics

G = {γi | i ∈ Λ}

of the respective pair of pants. We will identify a geometric pair of pants decomposition
with the family of curves G. Every geodesic γi has associates two parameters. These
are length li and twist θi coordinates respectively in R+ and R, and we define them as
follow.

Let H0 be a hyperbolic structure on Σ, the length parameter of each γi ∈ G is the
length of the geodesic γi with respect to the hyperbolic structure H0 and it is denoted
by l(γi). If γi is not a boundary curve of Σ, the twist parameter of γi is defined as
the relative twist amount along the geodesic between the two generalized pairs of pants
that have this geodesic in common and it is denoted by θ(γi).

The collection of these coordinates (l(γi), θ(γi))i∈Gi will be called Fenchel-Nielsen
coordinates of the geometric decomposition G. Also, if H0 and H

′
0 are given hyperbolic

structures we say that they are Fenchel-Nielsen equivalent relative to the pair of pants
decomposition G if their Fenchel-Nielsen parameters are equal.

The Fenchel-Nielsen distance with respect to G between two hyperbolic metrics H0

and H ′0 is defined by:

dFN(H0, H
′
0) = sup

i=1,2,...
max

Ç∣∣∣∣∣log lH0(γi)

lH′
0
(γi)

∣∣∣∣∣ , ∣∣lH0(γi)θH0(γi)− lH′
0
(γi)θH′

0
(γi)

∣∣å .
If γi is in the homotopy class of a boundary component of Σ, then there is not twist

parameter to be considered. Also, the distance dFN depends on the geometric pair of
pants decomposition G.

A homeomorphism f : (Σ, H0) → (Σ, H ′0) that is isotopic to the identity is Fenchel-
Nielsen bounded if dFN(H0, H

′
0) is finite.

Now, consider a Riemann surface Σ. We fix a hyperbolic structure H0 on Σ and
let C be a (topological) pair of pants decomposition on Σ. Let G be a geometric pair
of pants decomposition isotopic to C. Consider the collection of marked hyperbolic
structures (f,H) relative to H0, with the property that the marking f : H0 → H is
Fenchel-Nielsen bounded with respect G.
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We say that two hyperbolic structures (f,H) and (f ′, H ′) are equivalent if there
exists an isometry f ′′ : H → H ′ which is homotopic to f ′ ◦ f−1.

Definition 2.6.4. Let Σ be a Riemann surface and let C be a (topological) pair of
pants decomposition on Σ. Let G be a geometric pair of pants decomposition isotopic
to C. The Fenchel-Nielsen Teichmüller space with respect to C and H0, denoted by
TFN(H0, C), is the space of equivalence classes [f,H] of Fenchel-Nielsen bounded marked
hyperbolic structures (f,H), where f : H0 → H is Fenchel-Nielsen bounded with
respect G.

The function dFN is a distance function on TFN(H0) and the base point in TFN(H0) is
[id,H0].

The map defined as follow

TFN(H0, C) → l∞(C), [f,H] 7−→ (log l(γ), l(γ)θ(γ))γ∈G (2.9)

defines a isometric homeomorphism.

Definition 2.6.5. Consider a surface Σ with hyperbolic structure H0 and pair of pants
decomposition C = {Ci| i ∈ Λ}. The hyperbolic structure H0 is upper-bounded with
respect to C if there is a constant M such that length(γi)≤M for i ∈ Λ, where γi is the
simple closed geodesic freely homotopic to Ci.

The proof of the following theorem can be consulted in [6, Theorem 8.10].

Theorem 2.6.6. Let H0 be a complete hyperbolic structure on Σ, and suppose that H0

is upper-bounded with respect to some pair of pants decomposition C. Then, the natural
map

j : T#(Σ) → TFN(H0, C), [Σ′, f ] 7−→ (li(f,H), θi(f,H))i∈Λ (2.10)

is a locally bi-Lipschitz homeomorphism. (Here H in the image is the hyperbolic struc-
ture of Σ′).

Remark 2.6.7. If Σ is a hyperbolic surface without boundary, then the Theorem 2.6.6,
gives us a locally bi-Lipschitz homeomorphism between the quasiconformal Teichmüller
space T (Σ) and the Fenchel Nielsen Teichmüller space.

Corollary 2.6.8. Consider a complete hyperbolic surface Σ without boundary and sup-
pose that it is upper-bounded with respect to some pair of pants decomposition G. Then,
there is a locally bi-Lipschitz homeomorphism

FNC : T (Σ) → l∞(G).

Let us show the construction of the mapping in the Corollary 2.6.8. Let [µ] be a
point in T (Σ). Considering the Beltrami equation for µ, by the Ahlfors- Bers Theorem,
there is a unique quasiconformal homeomorphism fµ of the disc whose continuous
quasisymmetric extension to the boundary fixes the points 1, i,−1.
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Consider the Fuchsian model of the hyperbolic surface Σ by the Fuchsian group
Γ <Möb(∆), that is

Σ ∼= ∆/Γ. (2.11)

Define the group

Γ[µ] = Θ[µ](Γ) = {fµ ◦ γ ◦ (fµ)−1|γ ∈ Γ}.

The group Γµ is a Fuchsian group and defines a hyperbolic surface

Σ[µ] = ∆/Γ[µ].

Consider the geometric pair of pants decomposition G[µ] isotopic to C whose geodesic
are with respect to the hyperbolic structure of Σ[µ]. The sequence of length and twist
coordinates of G[µ] gives a sequence in l∞(C) via 2.9.
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Chapter 3

Teichmüller Theory for Laminations

In this chapter it is considered the Teichumüller space of a lamination. As it was men-
tioned at the introduction, in recent works, specific laminations have been considered
and they have been explicitly described as function spaces. Then, it is wanted to ex-
tend the description of the Teichmüller space of more general laminations as a function
space.

In [30] Sullivan defined the Teichmüller space of a Riemann surface lamination,
denoted by T (L), as the space of all transversally continuous conformal structures along
the space of leaves up to the action of the group of quasiconformal isotopies tangent to
the leaves.

Sullivan also considered the set of those objects which are continuous and locally
constant in the transverse direction and he denoted it by TTLC(L), (see [30]). Taking
this definition into account I want to give a mathematically tractable definition of
the space TTLC(L). Then, in the first section of this chapter it is defined an Ahlfors-
Bers model to the space TTLC(L), in the second section it is compared the lamination
that is being considered with the universal solenoid and in the following sections some
constructions are done to give an explicit description of this space for a special class of
hyperbolic surface laminations.

Throughout this chapter it is considered a complete hyperbolic surface without
boundary Σ and L a minimal lamination fibering over Σ with Hausdorff compact fiber
F . Also it will be considered the right holonomy action on the fiber

Hol : G→ Homeo(F )op, G = π1(Σ). (3.1)

Remark 3.0.1. It will be considered some results in [6] and this work is in the context
of reduced Teichmüller spaces. Since our surfaces do not have boundary by hypothesis,
the reduced and non reduced Teichmüller spaces coincide and no distinction is made
(see Remark 2.2.2).

3.1 Ahlfors-Bers Model for Laminations

As in the case of surfaces, it is wanted to define a Ahlfors-Bers model to a lamination,
then it is given the following definition of Beltrami differentials on the lamination.
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Definition 3.1.1. A Beltrami differential on the lamination L is a continuous function

µ : F → Bel(∆)

invariant under the diagonal action 1.22, that is to say, for every k in the fiber F and
every g in the group G we have the equivariance

l∗g(µ(k)) = µ(k · g). (3.2)

The space of Beltrami differentials on the lamination will be denoted by Bel(L) and
we have by definition

Bel(L) = C(F,Bel(∆))eq(G). (3.3)

Given a Beltrami differential µ, by definition, µ(k) is a Beltrami differential on
the disc for every k ∈ F . Then by the Ahlfors-Bers Theorem, there exists a unique
quasiconformal mapping fµ(k) on the disc which is a solution of the respective Beltrami
equation fixing the boundary points 1, i,−1 such that these maps vary continuously
along the fiber, (Theorem 1.1.28). The normalization condition is well defined since
these maps uniquely extend as quasiconformal maps on the boundary of the disc (see
the discussion after the existence Theorem 1.1.24). We have a continuous function

fµ : F → QC(∆), k 7→ fµ(k),

where QC(∆) is the space of quasiconformal maps on the disc.
It also is defined on Bel(L) an equivalence relation:

Definition 3.1.2. Let µ, ν Beltrami differentials on the lamination L. We will say
that they are Teichmüller equivalent if for every k ∈ F , µ(k) and ν(k) are equivalents
as Beltrami differentials on the disc

µ ∼ η if µ(k) ∼ η(k), ∀k ∈ F.

Therefore by the equivalence relation between Beltrami differentials on the disc 2.5,
we have:

µ(k) ∼ η(k) ⇐⇒ fµ(k)|S1 = f η(k)|S1 .

Then, analogously to the case of Riemann surfaces, the Teichmüller space of the
lamination L can be defined as the quotient space

T (L) = Bel(L)/ ∼ . (3.4)

Let B : Bel(L) → T (L) the quotient map, it will be called laminated Bers map.
The transversally locally constant Beltrami differential space on the lamination L is by
definition the space of locally constant continuous functions verifying 3.2, that is to say

BelTLC(L) = CLC(F,Bel(∆))eq(G) (3.5)

and the transversally locally constant Teichmüller space is defined as

TTLC(L) = B(BelTLC(L)).
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Henceforth, laminations satisfying the hypotheses 1.3.4 are considered and surfaces
which satisfy the following hypotheses. In the next section we will see the relation of
the laminations satisfying this hypotheses with the universal solenoid.

Hypotheses 3.1.3. Σ is a hyperbolic surface without boundary obtained by gluing a
sequence of generalized hyperbolic pair of pants, each glued to the next along a common
boundary geodesic such that the length of these geodesic boundaries is uniformly upper
bounded.

3.2 Universal solenoid

Before beginning the construction to give the explicit description of the space TTLC(L),
let me describe the relation of the laminations that are being considered (see hypotheses
1.3.4) with the universal solenoid. For a thorough description of the universal solenoid
see [26].

Consider an arbitrary marked compact hyperbolic surface (Σ′, p) where p is a point
in Σ′. Define the universal solenoid Σ∞ as the inverse limit of the inverse system of
finite marked coverings of (Σ′, p). There is a canonical projection from the inverse limit
construction

π′∞ : Σ∞ → Σ′

which is a locally trivial fibration.
If (Σ′′, q) is another marked compact hyperbolic surface, then there is a cofinal

subsystem for both surfaces hence the inverse limit are isomorphic, that is the universal
solenoid Σ∞ is independent of the original chosen marked compact hyperbolic surface
and fibers over any one of them.

Every finite covering of a marked surface (Σ′, p) corresponds to a subgroup of
π1(Σ

′, p). Analogous to Proposition 1.3.5, it can be proved that

Σ∞ ∼= (Ĝ×∆)/G, Ĝ = ÿ�π1(Σ′, p). (3.6)

Under this description, the projection onto Σ′ is given by π∞([(h, k)]) = G · k where
we have identified G-orbits in ∆ with points in Σ′, recall expression 2.11.

Because the right action of G on Ĝ is faithful, the leaves of Σ∞ are densely immersed
discs and it fibers over Σ′ with fiber Ĝ.

Recall that a laminated map sends leaves to leaves, that is it is compatible with the
leaf structure of the laminations.

Proposition 3.2.1. Let Σ be a surface and let L be a lamination fibering over Σ which
satisfy the hypotheses 3.1.3 and 1.3.4. Suppose that Σ is compact. Then, there is a
continuous laminated surjective map

ϕ : Σ∞ → L

compatible with the fibrations, that is the following diagram commutes
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Σ∞
ϕ

//

π∞
  

L.

π
��

Σ

(3.7)

Proof. Denote by F the fiber of the fibration L. Consider x ∈ F and define the map
ρx : Ĝ → F by ρx(g) = x · g. By definition, this map is right Ĝ-equivariant. By
hypothesis, ρx is continuous and by the minimality of the lamination, ρx(G) = x ·G is

dense in F . Therefore, the image of ρ is closed since Ĝ is compact and contains a dense
subset hence it is surjective. Define the map

ϕ̂ : Ĝ×∆ → F ×∆, ϕ̂(h, k) = (ρx(h), k).

This map is Ĝ-equivariant by the diagonal action. Indeed,

ϕ̂(g · (h, k)) = ϕ̂((h · g−1, g · k)) = (ρx(h · g−1), g · k) = (ρx(h) · g−1, g · k) = g · ϕ̂(h, k).

By the description 3.6 of the universal solenoid, ϕ̂ defines a map

ϕ : Σ∞ → L.

By construction this is a continuous laminated surjective map and makes the diagram
3.7 commute since the classes [(h, k)] and [(ρx(h), k)] are mapped to the same G-orbit
G · k and this finishes the proof.

Corollary 3.2.2. There is an isometric embedding of the Teichmüller space of the
lamination into the Teichmüller space of the universal solenoid.

Proof. Recall definition 3.3. Continuing with the proof of Proposition 3.2.1, there is a
monomorphism

ρ∗x : C(F,Bel(∆))eq(G) → C(Ĝ, Bel(∆))eq(G),

given by (ρ∗xµ)(g) = µ(ρx(g)) = µ(x · g) for every g in Ĝ. Then ρ∗x is a monomorphism
since ρx is an epimorphism. Moreover, it is well defined, that is ρ∗xµ is G-equivariant.
Indeed,

l∗s((ρ
∗
xµ)(g)) = l∗s(µ(x · g)) = µ(x · gs) = (ρ∗xµ)(gs),

for every g ∈ Ĝ and every s ∈ G, where it has been used the G-equivariance of µ in the
second equality. Moreover,

µ ∼ ν iff ρ∗xν ∼ ρ∗xµ.

In effect, this follows from the chain of equivalences

µ ∼ ν ⇐⇒ µ(k) ∼ ν(k), ∀k ∈ F ⇐⇒ µ(ρx(g)) ∼ ν(ρx(g)), ∀g ∈ Ĝ

⇐⇒ (ρ∗xµ)(g) ∼ (ρ∗xν)(g), ∀g ∈ Ĝ⇐⇒ ρ∗xν ∼ ρ∗xµ
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where it has been used the definition 3.6 and the fact that ρ is surjective.
Recalling definitions of Beltrami differentials and Teichmüller space of the lamina-

tion L, it has been proved that ρ∗x induce an inclusion of Teichmüller spaces

ι : T (L) → T (Σ∞), [µ] → [ρ∗xµ].

In the model described in definition 3.4, the Teichmüller distance reads as follows

dT (L)([µ], [ν]) = sup
k∈F

dT (∆)([µ(k)], [ν(k)]).

Therefore, by the surjectivity of the map ρx, we have that the inclusion ι is an isometry,

dT (L)([µ], [ν]) = sup
k∈F

dT (∆)([µ(k)], [ν(k)])

= sup
g∈“G dT (∆)([(ρ

∗
xµ)(g)], [(ρ

∗
xν)(g)]) = dT (Σ∞)([ρ

∗
xµ], [ρ

∗
xν]).

In particular, the inclusion ι is an isometric embedding and we have the result.

3.3 Canonical Tower of Coverings

In this section it will be defined a tower of finite coverings of the Riemann surface Σ
such that they are larger and larger until they approximate L. In this line, to ensure
the convergence of the tower, it will be considered the following hypothesis.

Hypotheses 3.3.1. The holonomy action 1.21 continuously extends to the profinite
completion Ĝ of the fundamental group G.

Let S be the set of normal finite index subgroups of the profinite completion of the
fundamental group of Σ, (see section 1.3.4). Let S be an element of S. Then, we can
consider the restriction of the extended holonomic action to the subgroup S and we
have a continuous right action of the subgroup S on the fiber F with respect to the
profinite topology on S,

HolS : S ↪→ Ĝ→ Homeo(F )op. (3.8)

Now, we can consider the orbits generated by the action 3.8 and we define the set
of S-orbits as follow

OS(F ) = {x · S | x ∈ F}.

Then, sending an element of the fiber F to its corresponding orbit we can define a
canonical map ψS as follow:

ψS : F → OS(F ), k ∈ ψS(k). (3.9)

Also, we can consider a canonical right action of Ĝ on OS(F ) given by

(x · S) · g := x · (Sg). (3.10)
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Let us see that this action is well defined. By definition of the action we have (x ·S) ·
g := x · (Sg) and using that S is a normal subgroup, we have x · (Sg) = (x · g) · (g−1Sg).
By definition again, (x · g) · (g−1Sg) = (x · g) · S. Therefore (x · S) · g = (x · g) · S.

Considering the previous calculation we have

ψS(k · g) = (k · g) · S = (k · S) · g = ψS(k) · g, (3.11)

that is to say, the map ψS is right Ĝ-equivariant.

Lemma 3.3.2. For every S ∈ S, the map ψS is continuous and the set of S-orbits is
a finite discrete set.

Proof. Consider the final topology on OS(F ) induced by the map ψS, that is the finest
topology on OS(F ) such that ψS is continuous. By Proposition 1.3.15 and Corollary

1.3.20, the subgroup S is compact in Ĝ hence, by hypothesis 3.3.1 and the fact that
every point in F is compact, every S-orbit in F is compact. Since the fiber is a
Hausdorff space, the final topology on the set of S-orbits is T1, that is points in OS(F )
are closed. Since the holonomy action is transitive, we have that if x · S and y · S
are S-orbits, then there exists an element h ∈ F such that x · h = y and therefore
(x · S) · h = (x · h) · S = y · S. Then the action 3.10 of Ĝ on OS(F ) is transitive. Also

the number of elements of OS(F ) is at most the index of S because the action of Ĝ on

OS(F ) factors through the quotient group Ĝ/S. Since S has finite index, OS(F ) is a
finite set with the discrete topology.

Now, consider normal finite index subgroups S ′ and S ′′ of Ĝ such that

S ′′ ≤ S ′ ≤ S ≤ Ĝ.

We define the map ψS′S : OS′(F ) → OS(F ) such that each S ′-orbit is sending to the
S-orbit that contains it, that is to say,

ψS′S(x · S ′) = x · S, ∀x · S ′ ∈ OS′(F ).

The map ψS′S is right Ĝ-equivariant because

ψS′S((x · S ′) · g) = ψS′S((x · g) · S ′) = (x · g) · S = (x · S) · g = ψS′S(x · S) · g.

Then we can construct the following commutative diagrams of continuous and right
Ĝ-equivariant maps,

F
ψS′

//

ψS
''

OS′(F )

ψS′S

��

OS(F )

OS′′(F )
ψS′′S′

//

ψS′′S
((

OS′(F )

ψS′S

��

OS(F )

(3.12)

These maps define a continuous right Ĝ-equivariant map

ψ : F → lim←−−
S∈S

OS(F ), ψ(k) = (ψS(k))S∈S ,

with the inverse limit topology on the inverse limit.
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Lemma 3.3.3. The map ψ is a homeomorphism. In particular, the fiber F is either a
finite set or a Cantor set.

Proof. Since OS(F ) is finite for every S ∈ S, by the Lemma 3.3.2, the inverse limit is a
Hausdorff, compact and totally disconnected space. Because the fiber F is a compact
space, lim←−−

S∈S
OS(F ) is a Hausdorff space and ψ is a continuous function, it is enough to

prove that the map is bijective.
Let’s see the map ψ is injective. Suppose that ψ(K) = ψ(k′). Then for every S ∈ S,

ψS(k) = ψS(k
′), that is to say k ·S = k′ ·S. Because Ĝ is residually finite, (see Corollary

1.3.19), the intersection of all elements of S is trivial, then

{k} = k ·
⋂
S∈S

S =
⋂
S∈S

k · S =
⋂
S∈S

k′ · S = k′ ·
⋂
S∈S

S = {k′}.

Finally, let’s see that ψ is surjective. Let (mS)S∈S be a sequence in the inverse limit.
Because F is compact and Hausdorff, (mS)S∈S is a nested sequence of compact sets in
F hence it has non empty intersection with some element k ∈ F . By the definition of
the maps ψS and ψ we have ψ(k) = (mS)S∈S . We conclude that ψ is surjective and
therefore a homeomorphism.

For every S ∈ S define the hyperbolic surface

ΣS = (OS(F )×∆)/G, g · (m, a) = (m · g−1, g · a). (3.13)

On the other hand, for each S ∈ S we have an action of S ∩ G on ∆ given by
restriction of the action of Ĝ and we can consider the Riemann surface ∆/(S ∩G).

Lemma 3.3.4. For every S ∈ S, there is an isometric homeomorphism

ΣS = ∆/(S ∩G). (3.14)

Proof. Consider an S-orbit m ∈ OS(F ). Let’s see that up to this choice, the morphism
is canonical. Define the function

α : ∆ → OS(F )×∆, α(k) = (m, k).

Since the space OS(F ) is discrete, by Lemma 3.3.2, we have that α is an isometrically
embedding of the disk and for every s ∈ S ∩ G we have α(s · k) = (m, s · k). Also,
m is an S-orbit, then (m, s · k) = (m · s−1, s · k) and by definition of the action 3.13,
(m · s−1, s · k) = s · (m, k). Therefore α(s · k) = s · α(k). In particular, α induce an
isometric morphism

α̂ : ∆/(S ∩G) → ΣS, (S ∩G) · k 7→ G · (m, k).

Because it is an isometry, it rest to show that α̂ has an inverse. Let G · (m1, k1) be an
arbitrary G-orbit. Since the holonomy action is transitive, there exists g ∈ G such that
m1 = m · g, where m is the S-orbit fixed to the beginning of the proof. Then,

G · (m1, k1) = G · (m · g, k1) = G · (m, g · k1) = G · (m, k)
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where we have defined k = g ·k1. Restricting this orbit to the subgroup S ∩G gives the
orbit (S ∩G) · (m, k) = {m} × (S ∩G) · k and forgetting the first coordinate gives the
orbit (S ∩G) · k. Then we can define the map

ΣS → ∆/(S ∩G), G · (m, k) 7→ (S ∩G) · k

and this is an inverse of the map α̂. This conclude the proof.

For every S ′ ∈ S such that S ′ ≤ S define

ψ̂S′S : ΣS′ → ΣS, ψ̂S′S [(m, a)] = [(ψS′S(m), a)] . (3.15)

Since the map ψS′S is right G-equivariant then ψS′S(m · g−1) = ψS′S(m) · g−1.
Therefore ˆψS′S is well defined, because we have

ˆψS′S [g · (m, a)] =
[
(ψS′S(m · g−1), g · a)

]
=

[
(ψS′S(m) · g−1, g · a)

]
= [g · (ψS′S(m), a)] .

The map ψ̂S′S is a locally isometric finite covering. Remembering the isometry 1.22,
we also can define a map

ψ̂S : L→ ΣS, [(m, a)] 7→ [(ψS(m), a)] (3.16)

This map is also a locally isometric covering. Now, consider S ′ and S ′′ in S such that

S ′′ ≤ S ′ ≤ S ≤ Ĝ.

Since the maps ψS′S define commutative diagrams 3.12, we have the following com-
mutative diagrams of locally isometric coverings

L
ψ̂S′

//

ψ̂S
&&

ΣS′

ψ̂S′S

��

ΣS

ΣS′′
ψ̂S′′S′

//

ψ̂S′′S
''

ΣS′

ψ̂S′S

��

ΣS

(3.17)

Considering the maps ψ̂S′S as bonding maps,
Ä
ψ̂S′S

ä
S′≤S

defines an inverse system.

Definition 3.3.5. The inverse system
Ä
ψ̂S′S

ä
S′≤S

with S and S ′ running over all the

elements of S is the canonical tower.

Proposition 3.3.6. The following diagram commutes

L
ψ̂,∼=

//

!!

lim←−−
S∈S

ΣS

ψ̂S′S
{{

Σ ∼= Σ“G
ψ̂(l) = (ψ̂S(l))S∈S . (3.18)
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Proof. By Lemma 3.3.3, we have the isometric isomorphisms

F ×∆ ∼=
Å
lim←−−
S∈S

OS(F )

ã
×∆, (3.19)

Also, we can consider the following map

((mS)S∈S , a)) 7→ ((mS, a))S∈S .

Then we have the isometric isomorphismÅ
lim←−−
S∈S

OS(F )

ã
×∆ ∼= lim←−−

S∈S
(OS(F )×∆). (3.20)

Denote by Ψ the isometric isomorphism resulting from the composition of the isomor-
phisms in 3.19 and 3.20. There is a natural action by G on the right hand side of 3.20
given by

g · ((mS, a))S∈S = (g · (mS, a))S∈S =
(
(mS · g−1, g · a)

)
S∈S . (3.21)

Let’s see that the isomorphism Ψ isG-equivariant with respect to the action just defined.

Ψ(g · (k, a)) = Ψ((k · g−1, g · a)) =
(
(ψS(k · g−1), g · a)

)
S∈S =

(
(ψS(k) · g−1, g · a)

)
S∈S

= (g · (ψk, a))S∈S = g · ((ψS(k), a))S∈S = g ·Ψ((k, a)).

In particular, the map Ψ induces an isometric isomorphism between the respective
spaces of G-orbits and because of the model 1.22 for the lamination L and the definition
of the action 3.21, this is the isometric isomorphism ψ̂ in 3.18. The projection π“G of

the inverse system onto the Ĝ-coordinate gives the diagram commutative 3.18, where
ψ̂“G is the map 3.16 with S evaluated on Ĝ. Since O“G(F ) consists of only one point
for the holonomy action on the fiber is transitive, by the model 2.11 of the surface we
have Σ = Σ“G and the map ψ̂“G is the fibration of the lamination onto the surface. This
concludes the proof.

Therefore there is an isometric isomorphism between the inverse limit of the canon-
ical tower and the lamination L and the map is also an isomorphism of fibrations over
the surface Σ,

L ∼= lim←−−
S∈S

ΣS.

3.4 Canonical Tower of Teichmüller Spaces

In this section it will be used the canonical tower of coverings constructed in the previous
section. Here, it is assumed that the lamination L satisfies Hypotheses 1.3.4. Another
tower with the Teichmüller spaces associated to each covering will be constructed. Then
it is shown that the direct limit of this tower of Teichmüller spaces can be identify with
the space TTLC(L), L satisfying hypotheses 1.3.4.

The pullback by the map ψS is defined by the formula ψ∗S(ν)(k) = ν(ψS(k)),
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ψ∗S : C(OS(F ), Bel(∆))eq(G) → CLC(F,Bel(∆))eq(G). (3.22)

Let’s see that ψ∗S is well defined. Since ψS is constant on the S-orbits, the image of ψ∗S
is the subspace of functions which are constant on the S-orbits. Let f be an element
of C(OS(F ), Bel(∆))eq(G), then by definition we have

l∗g(ψ
∗
S(f)(k)) = l∗g(f(ψS(k))).

Using the equivariance 1.18 with respect to the right action on the S-orbits, we obtain
l∗g(f(ψS(k))) = f(ψS(k) · g). Also by the right equivariance of the map ψS, we have
f(ψS(k) · g) = f(ψS(k · g)). Then we conclude that l∗g(f(ψS(k))) = ψ∗S(f)(k · g). That
is to say, the image of a G-equivariant f under ψ∗S is G-equivariant.

Analogously we define the pullbacks (ψ∗S′S)S′≤S as follow

ψ∗S′S : C(OS(F ), Bel(∆))eq(G) → C(OS′(F ), Bel(∆))eg(G)

f 7−→ ψ∗S′S(f)(x · S ′) = f(ψS′S(x · S ′)) = f(x · S).

Then (ψ∗S′S)S′≤S defines a direct system. The respective images of this direct system
constitute a nested sequence whose direct limit equals to the union of them.

Lemma 3.4.1. Consider S ∈ S and m ∈ OS(F ). Then, for every g ∈ G such that
m · g = m, there is s ∈ S ∩ G such that the corresponding left actions on the disk
coincide, that is lg = ls.

Proof. Consider g ∈ G such that m · g = m. Then m · g−1 = m and for every k ∈ ∆ we
have

g · (m, k) = (m · g−1, g · k) = (m, g · k).

Fixing k ∈ ∆, by definition of the action in 3.13, we have [(m, k)] = [(m, g · k)] in ΣS

and by the isomorphism 3.14, we obtain g · k ∈ (S ∩ G) · k. In particular, there is an
element s ∈ S ∩G such that lg(k) = ls(k). Since every element g ∈ G− {id∆} acts on
the disc without fix points, we conclude lg = ls.

As in definition 1.2.19, it can be considered the set of Beltrami differentials Bel(ΣS)
on each surface ΣS. Then a differential on ΣS is a Beltrami differential on the disk ∆
such that

l∗s(µ) = µ, ∀s ∈ S ∩G. (3.23)

Lemma 3.4.2. There is an isometric homeomorphism

Bel(ΣS) ∼= C(OS(F ), Bel(∆))eq(G).

Proof. Consider a Beltrami differential µ ∈ Bel(ΣS) and let m be an S-orbit in OS(F ).
Let’s see that the right action of G on OS(F ) is transitive. Let x · S and y · S be
S-orbits in OS(F ). Because the lamination is minimal, the holonomy action on the
fiber F by the group G is transitive, then there exists g ∈ G such that x · g = y.
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Hence (x · S) · g = (x · g) · S = y · S, that is to say, the right action of G on OS(F )
is transitive. Therefore, every S-orbit has the form m · g for some g ∈ G. Define the
function hµ : OS(F ) → Bel(∆) by the formula

hµ(m · g) = l∗g(µ), ∀g ∈ G.

This function is well defined since m ·g = m ·g′ implies m = m · (g′ ·g−1) and by Lemma
3.4.1, there is an element s ∈ S ∩G such that lg′g−1 = ls. In particular,

l∗g′(µ) = (lslg)
∗(µ) = l∗g(l

∗
s(µ)) = l∗g(µ),

where we have used 3.23 in the last equality. Also hµ is equivariant because hµ(m·g·g0) =
l∗g·g0(µ) = l∗g0(hµ(m · g)).

Thus, we have constructed a map

F : Bel(ΣS) → C(OS(F ), Bel(∆))eq(G), µ→ hµ

This is a continuous map, moreover it is an isometry. In fact,

||F (µ)||∞ = max
m∈OS(F )

||F (µ)(m)||∞ = ||µ||∞,

because on every S-orbit m · g we have

||F (µ)(m · g)||∞ = ||l∗g(µ)||∞ = ||µ||∞.

Now, we can define a continuous inverse of F . In effect, consider the map

f → µf = f(m), ∀f ∈ C(OS(F ), Bel(∆))eq(G),

where m is the S-orbit as in the previous part of the proof. This map is well define
since

l∗s(µf ) = l∗s(f(m)) = f(m · s) = f(m) = µf , ∀s ∈ S ∩G,

where we have used the equivariance of f in the second equality and the fact that
m · s = m since s ∈ S ∩ G. In particular, µf ∈ Bel(ΣS). This map is an inverse of
F and it is an isometry since F is so. In particular, the inverse is continuous. This
finishes the proof.

Corollary 3.4.3. The map ψ∗S is an embedding of Beltrami differentials

ψ∗S : Bel(ΣS) → BelTLC(L).

Proof. By the embedding ψ∗S of C(OS(F ), Bel(∆))eq(G) in CLC(F,Bel(∆))eq(G) and by
the Lemma 3.4.2, we have an embedding of Bel(ΣS) in CLC(F,Bel(∆))eq(G). By defi-
nition of the space BelTLC(L) (see definition 3.5), we have the result.
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Lemma 3.4.4. Every ψ∗S induces an embedding of Teichmüller spaces

ηS : T (ΣS) → TTLC(L),

and the union of the images is the space⋃
S∈S

ηS(T (ΣS)) = TTLC(L).

Proof. By Corollary 3.4.3, every map psi∗S is an embedding. Then to prove the embed-
ding between Teichmüller spaces, it is enough to show that

ν ∼ ν ′ iff ψ∗S(ν) ∼ ψ∗S(ν
′).

In effect, this follows from the chain of equivalences

ν ∼ ν ′ ⇐⇒ f ν(m)|S1 = f ν
′(m)|S1 , ∀m ∈ OS(F )

⇐⇒ f ν(ψS(k))|S1 = f ν
′(ψS(k))|S1 , ∀k ∈ F

⇐⇒ fψ
∗
S(ν)(k)|S1 = fψ

∗
S(ν

′)(k)|S1 , ∀k ∈ F

⇐⇒ ψ∗S(ν) ∼ ψ∗S(ν
′).

(3.24)

Thus we have an embedding ηS : T (ΣS) → TTLC(L) defined by

[µ] 7−→ [ψ∗S(µ)].

In particular, we have ⋃
S∈S

ηS(T (ΣS)) ⊆ TTLC(L). (3.25)

Now, consider [µ] ∈ TTLC(L), that is to say, µ is locally constant on the fiber F . Because
the fiber is compact, the number of open sets where µ is constant is finite and because
of the residual finiteness of Ĝ, there is a normal finite index subgroup S such that every
S-orbit is contained in one of these open sets. Hence, µ is the image of some µS by ψ∗S
and we have [µ] = ηS([µS]). Then, we have

⋃
S∈S ηS(T (ΣS)) = TTLC(L).

Lemma 3.4.5. For S and S ′ in S such that S ′ ≤ S, the canonical inclusion Bel(ΣS) ⊂
Bel(ΣS′) induces an inclusion in Teichmüller spaces T (ΣS) ⊂ T (ΣS′).

Proof. Note that since S ′ ≤ S, the condition l∗g(µ), ∀g ∈ S∩G implies that l∗g(µ), ∀g ∈
S ′ ∩G. Then Bel(ΣS) ⊂ Bel(ΣS′). By the Teichmüller equivalence relation, for every
[µ] ∈ T (ΣS), we can consider the corresponding class [µ] in T (ΣS′). This define an
injective function, and we have the inclusion T (ΣS) ⊂ T (ΣS′).

Lemma 3.4.6. There is a canonical homeomorphism

η : lim−−→
S∈S

T (ΣS) → TTLC(L)

induced by the embeddings ηS in Lemma 3.4.4.
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Proof. By the inclusion between Teichmüller spaces, Lemma 3.4.5, (T (ΣS))S∈S is a
directed sequence. By Lemma 3.4.4, there is a canonical embedding

η : lim−−→
S∈S

T (ΣS) → TTLC(L)

whose image is the union of the nested sequence ηS(T (ΣS))S∈S . By the second part of
the Lemma 3.4.4, this union is TTLC(L) hence η is a homeomorphism and we have the
result.

3.5 Canonical Tower of Fenchel-Nielsen Coordinates

In this section he towers defined in the previous sections will be considered. Now,
we want to identify the canonical tower of Teichmüller spaces with a canonical tower
of Fenchel-Nielsen coordinates. It will be denoted by πS the finite locally isometric
covering ψ̂SG : ΣS → Σ defined in the previous section. From now on, it will be
considered the following hypotheses on Σ:

Hypotheses 3.5.1. Let Σ be a hyperbolic surface without boundary obtained by
gluing a (possibly finite) sequence C of generalized hyperbolic pair of pants, each glued
to the next along a common boundary geodesic such that the length of these geodesic
boundaries is uniformly upper bounded. Also every pair of pants P in Σ −

⋃
C∈C C

verifies
Hol(ι∗(π1(P ))) = {idF}, ι : P → Σ.

Let C be a pair of pants decomposition of Σ as in the hypothesis 3.5.1. Since
the length of geodesic boundaries is uniformly upper bounded, then we can consider
the Fenchel-Nielsen Teichmüller space of each surface ΣS defined in 2.6.4. After a
quasiconformal deformation, C will be a topological pair of pants decomposition but no
longer a geometric one in general.

Define the set G of geodesic representatives of isotopic classes of the curves in C.
Since there is a unique geodesic for each isotopic class, G is well defined and it is a
geometric pair of pants decomposition corresponding to the new deformed hyperbolic
structure. Here, it will be abused of notation and it is said that G is isotopic to C.

By Wolpert’s inequality, the lengths of the geodesics in G will be uniformly upper-
bounded ([6, Lemma 8.1]) hence the new deformed hyperbolic structure will be metric
complete [6, Lemma 4.7]. Since G is isotopic to C, the pair of pants decomposition G
has trivial holonomy as well.

Lemma 3.5.2. Consider the pair of pants decomposition C. Then, for every S ∈ S,
the set CS = π−1S (C) is a pair of pants decomposition of ΣS.

Proof. By definition, C = {Ci | i ∈ Λ} is a family of pairwise disjoint simple curves in Σ
such that removing these curves gives a disjoint union of pair of pants without boundary
and there is a family of pairwise disjoint tubular neighbourhoods U = {Ui|i ∈ Λ} of
these curves in Σ such that Ci ⊂ Ui.
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Consider a curve Ci ∈ C. Since the covering πS is finite, then it is a proper map
hence π−1S (Ci) is compact. Also, πS is a local homeomorphism, then π−1S (Ci) is a
one dimensional submanifold without boundary. By the classification of compact one-
manifolds without boundary, we conclude that π−1S (Ci) is a finite disjoint union of
simple closed curves in ΣS. Therefore CS is a disjoint union of simple closed curves in
ΣS.

Consider a pair of pants P in Σ−
⋃
C∈C C. By the definition of the right action of

Ĝ on the set of S-orbits, we have

(x · S) · g := x · (Sg) = (x · g) · (g−1 · S · g) = x · S, ∀g ∈ ι∗(π1(P )),

where we have used in the last equality the normality of the group S and the fact that
the right action on the fiber is the identity since C has trivial holonomy. Then, we have
the holonomy action of the covering πS is trivial on the subgroup ι∗(π1(P )). Therefore,
the locally isometric covering πS restricted to the pair of pants P is trivial hence its
preimage under πS is a disjoint union of homeomorphic copies of P . In particular, we
have proved that ΣS −

⋃
C∈C C is a disjoint union of pair of pants without boundary.

Because every Ci is compact and the covering πS is finite and locally isometric, we
can take every neighbourhood Ui small enough such that π−1S (Ui) is a disjoint union of
tubular neighbourhoods of the preimage curves in π−1S (Ui). In particular,

⋃
U∈U π

−1
S (U)

is a disjoint union of tubular neighbourhoods of the curves in CS. This conclude the
proof.

Recall that if C is a closed minimizing geodesic in ΣS with a neighbourhood U in ΣS

such that U −C has two connected components, then a collar of C is c = C ∪U ′ where
U ′ is a connected component of U − C. Also all of the geodesics isotopic to curves in
C are minimizing.

Lemma 3.5.3. Consider the geometric pair of pants decomposition G isotopic to C in
Σ. Then, for every normal finite index subgroup S of Ĝ, the set G = π−1S (G) is the
geometric pair of pants decomposition in ΣS isotopic to CS. Moreover,

(1) For every collar c′′ of a geodesic in GS, there is a collar c′ ⊂ c′′ of the same geodesic
which is isometrically homeomorphic to a collar c of a geodesic in G via πS.

(2) Every pair of pants in ΣS −
⋃
C∈GS C is isometrically homeomorphic to its image,

a pair of pants in Σ−
⋃
C∈G C, via πS.

Proof. Since πS is a finite locally isometric covering and G is isotopic to C, a similar
argument as in Lemma 3.5.2 shows that

(1) GS is a disjoint union of simple closed geodesics in ΣS and each one of them is
locally isometric to its image via πS.

(2) ΣS −
⋃
C∈GS C is a disjoint union of a pair of pants without boundary and each

one of them is isometrically homeomorphic to its image via πS.
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(3) There is a family of pairwise disjoint tubular neighbourhoods in Σ of the geodesic
in G whose preimage is a family of pairwise disjoint tubular neighbourhoods in
ΣS of the geodesics in GS.

In particular, GS is a geometric pair of pants decomposition of ΣS. Consider a geodesic
γ′ in GS and the geodesic γ = πS(γ

′) in G. Let C be the simple closed curve in C
isotopic to γ. By the unique lifting property of the covering πS, there is a curve C ′ in
ΣS isotopic to γ′ whose image by πS is C. Thus, by definition of CS and Lemma 3.5.2,
C ′ is a simple closed curve in CS isotopic to γ′. It has been proved that GS is isotopic
to CS.

Now, let C ′ be a minimizing closed geodesic in GS and let c′′ be a collar of the curve
C ′. Since πS is a finite locally isometric covering, there is a small enough collar c′ ⊂ c′′

of C ′ which is locally isometric to a collar c = πS(c
′) of the geodesic C = πS(C

′) in G
via πS and c′ − C ′ is contained in a pair of pants P ′ in ΣS −

⋃
C∈GS C. Let´s see that

c′ is isometrically homeomorphic to c. For this, it is enough to show that there is a
continuous inverse map.

Let y be a point in C and consider a sequence (yn)n in c − C converging to y.
Since πS|c′−C′ is an isometric homeomorphism, we can consider the sequence xn =
πS|−1c′−C′(yn). Denote by ω(yn) the set of limit points of the sequence (xn)n. We claim
that ω(yn) consists of just one point. Indeed, since ω(yn) ⊂ C ′ and C ′ is compact,
ω(yn) is non-empty. Suppose that ω(yn) hast two distinct points x and x′. In particular
d = dΣS

(x, x′) > 0, (here the distance between two points is given by the length of the
geodesic that joins them). Then there are subsequences (zm)m and (z′m)m converging
to x and x′ respectively such that

dc′−C′(zm, z
′
m) ≥ dΣS

(zm, z
′
m) ≥ d/2 > 0, ∀m ∈ N.

Therefore,
dc−C(πS(zm), πS(z

′
m)) ≥ d/2 > 0, ∀m ∈ N.

Now, (yn)n is a Cauchy sequence with respect to the distance dΣ, but by Lemma 1.3.13,
(yn)n is a Cauchy sequence with respect to dc−C . Then

lim
m→+∞

dc−C(πS(zm), πS(z
′
m)) = 0

because (πS(zm))m and (πS(z
′
m))m are subsequences of (yn)n. This is a absurd and this

proves the claim. Because the sequence (yn)n was arbitrary, defining

{πS|−1c′ (y)} = ω(yn)

gives the continuous inverse to πS|c′ we were looking for. In effect, if (y′n) is another
sequence in c− C converging to y, then the sequence

(y1, y
′
1, y2, y

′
2, ...)

has the same properties and the limit set of its preimage has only one point. In par-
ticular, the preimages of the sequences (yn)n and (y′n)n have the same limit and the
mentioned inverse map is well defined.
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Since πS|c′ is an invertible locally isometric map, the inverse is continuous and we
have proved that πS|c′ is an isometric homeomorphism. This concludes the proof.

In general, the map πS will not be a homeomorphism on the closure P of a pair of
pants P in ΣS −

⋃
C∈GS C. Let’s see an example.

Example 1. Let Σ be the pinched torus with a cusp and C its pair of pants decomposi-
tion. Then C consists of a single curve C. Consider ΣS the covering resulting from two
copies of the surface but interchanging the boundary components of the pair of pants
in the gluing process, see figure 3.1. Here the map πS is not a homeomorphism in P
because an open set containing points on the geodesic boundary a is not sent under
πS|P to an open set in Σ.

Figure 3.1: Representation of the double covering of pinched torus.

Corollary 3.5.4. For every S ∈ S, the lengths of the geodesic in GS are uniformly
upper bounded and the hyperbolic surface ΣS is complete without boundary.

Proof. Since πS is a locally isometric finite covering, then ΣS is also hyperbolic and
neither has boundary. By the first item in the Lemma 3.5.3, the lengths of the geodesics
in GS are uniformly upper bounded since the same holds for G. In particular, ΣS is
complete, [6, Lemma 4.7].

Corollary 3.5.5. There is an isometric homeomorphism

TFN(ΣS, CS) ∼= C(OS(F ), TFN(Σ, C)).

Proof. From Lemma 3.5.3, it follows that πS is trivial on C hence CS ∼= OS(F )×C since
OS(F ) is the fiber of the covering. In particular, we have the isometric homeomorphisms

l∞(CS) ∼= l∞(OS(F )× C) ∼= C(OS(F ), l∞(C)).

By the isometric homeomorphism between the Fenchel-Nielsen Teichmüller TFN space
and the space of l∞ sequences 2.9, we have the result.



3.5. CANONICAL TOWER OF FENCHEL-NIELSEN COORDINATES 77

Corollary 3.5.6. For S and S ′ in S such that S ′ ≤ S, consider the finite locally
isometric covering ψ̂S′S : ΣS′ → ΣS defined in 3.15. Then,

(a) For every collar c′′ of a geodesic in GS, there is a collar c′ ⊂ c of the same geodesic
which is isometrically homeomorphic to a collar c of a geodesic in GS via ψ̂S′S.

(b) Every pair of pants in ΣS −
⋃
C∈G C, via ψ̂S′S.

(c) For every geodesic in GS, there is a neighborhood U in ΣS′ of the geodesic where
ψ̂S′S is an isometric homeomorphism.

Proof. The first two items follow from Lemma 3.5.3 and the factorization

πS′ = πS ◦ ψ̂S′S.

The third item follows from the first.

Now, we will define maps between the Fenchel-Nielsen Teichmüller spaces of the
surfaces ΣS.

Corollary 3.5.7. For S and S ′ in S such that S ′ ≤ S, there is an embedding of
Fenchel-Nielsen Teichmüller spaces

∆SS′ : TFN(ΣS, CS) → TFN(ΣS′ , CS′) (3.26)

defined through the length and twist coordinates by

∆SS′((lC , θC)C∈CS) = (lC′ , θC′)C′∈CS′

where lC′ = lψ̂S′S(C
′), θC′ = θψ̂S′S(C

′).

Proof. Consider ΣS with another complete hyperbolic structure and denote it by Σ′S.
This is equivalent to consider another Fuchsian group Γ′S in the Fuchsian model and
all of the previous results in this chapter regarding ΣS apply the same for Σ′S. In

particular, by Corollary 3.5.6, the maps ψ̂S′S sends isometrically geodesics in GS′ to
geodesics in GS. Then by definition of the Fenchel-Nielsen coordinates, we have the
embedding 3.26.

For every S ∈ S it is defined the following isometric embedding

Ψ∗S : C(OS(F ), TFN(Σ, C)) → CLC(F, TFN(Σ, C)) (3.27)

by the formula Ψ∗S(f)(k) = f(ψS(k)). In the following lemma, it will be considered the
identification in Corollary 3.5.5.

Lemma 3.5.8. The maps 3.27 define an isometric homeomorphism

Ψ∗ : lim−−→
S∈S

TFN(ΣS, CS) → CLC(F, TFN(Σ, C)). (3.28)
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Proof. Since TFN(ΣS, CS) is identified with C(OS(F ), TFN(Σ, C)), we can consider the
embedding ∆SS′ = C(OS(F ), TFN(Σ, C)) → C(OS′(F ), TFN(Σ, C)). Also, by definition
of the maps ∆SS′ we have for S ′′ ≤ S ′ ≤ S:

∆SS′′ = ∆S′S′′ ◦∆SS′ , Ψ∗S = Ψ∗S′ ◦∆SS′ . (3.29)

Since every ∆SS′′ is an isometrical embedding with respect to the metric induced by
the identification 2.9 with the l∞ sequences, expressions 3.29 show that there is a well
defined metric in the direct limit and the following is an isometrical embedding

Ψ∗ : lim−−→
S∈S

TFN(ΣS, CS) → CLC(F, TFN(Σ, C)).

It rest to show that the image of Ψ∗ is the whole space. In effect, consider a locally
constant function f . Since F is compact and Ĝ is residually finite, there is a normal
finite index subgroup S of Ĝ and a function fS such that Ψ∗(fS) = Ψ∗S(fS) = f and we
have the result.

3.6 Description of the Leaves

Given the hypotheses that we are considering (hypotheses 3.5.1 and 1.3.4), the lam-
ination L is not necessarily compact. Let’s see what the laminations that are being
considered look like. Let C be the set of geodesic boundaries of the pair of pants
decomposition of the surface Σ.

Lemma 3.6.1. For every x in the fiber, the subgroup generated by the freely homotopic
classes of curves in C is contained in the isotropy of the holonomy at x,

⟨[C] ∈ G | C ∈ C⟩ ⊂ Gx, ∀x ∈ F.

Proof. Every curve C in C has a tubular neighbourhood in the surface Σ hence there
is a homotopically equivalent curve C ′ entirely contained in the interior P of a pair of
pants in the decomposition. Since the fibration has trivial holonomy on pants, we have

Hol([C]) = Hol([C ′]) ∈ Hol(ι∗(π1(P ))) = {idF}.

We conclude that Hol([C]) = idF for every curve C ∈ C therefore

x · [C] = Hol([C])(x) = x, ∀C ∈ C, ∀x ∈ F

and we have the result.

Corollary 3.6.2. For every x in the fiber, the subgroup generated by the freely homo-
topic classes of curves in C is contained in the fundamental group of the leaf at x,

⟨[C] ∈ G | C ∈ C⟩ ⊂ π1(Lx), ∀x ∈ F.

In particular, the fundamental group of any leaf of the lamination L has infinite elements
and none of the leaves is simply connected.
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Proof. By Lemmas 1.3.7 and 3.6.1, it rest to show the last statement. If Σ is the sphere
with three cusps, then the surface is a single pair of pants and since the lamination has
trivial holonomy on pants, the fibration is trivial. Because the lamination is minimal,
the lamination consists of a single leaf homeomorphic to Σ whose fundamental group
has infinite elements. If Σ is not the sphere with three cusps, the set C is non-empty
because Σ is obtained by gluing a sequence of generalized hyperbolic pair of pants.
Then we have the result.

Now, we want to associate a graph to each hyperbolic surface considered. Then it
is considered the following. Since the set C is a topological pants decomposition, every
curve C in C has a tubular neighbourhood UC . We can take these tubular neighbour-
hoods small enough such that every one of them is foliated by simple closed curves γCi
equidistant to the corresponding geodesic, then UC =

⋃
i∈I γ

C
i .

On the other hand, by definition, every cusp B has a neighbourhood isometric to
the quotient of the hyperbolic upper-half plane H by the isometry group generated by
the translation z 7→ z + 1,

UB = H/(z 7→ z + 1) = {z = x+ iy | a < y}/(z 7→ z + 1). (3.30)

Also, A = Σ−
(⋃

C∈C UC ∪
⋃
B UB

)
is a disjoint union of topological pair of pants,

where the second union running over all cusps of Σ.
Then the following map is defined:

f : Σ → σ

(1) For every C ∈ C contract each curve γCi to a point.

(2) For every cusp B, contract each of the y-constant circles in 3.30 to a point.

(3) Contract every component of A to a point.

We will call the map f and the graph σ as the contraction of Σ. Let’s see some
examples. The Example 3 show that the graph σ depends of the decomposition C of Σ.

Example 2. Let Σ∗1 be a torus with one cusp. Then the graph associate to Σ∗1 is
represented in the following figure where C represent the geodesic in the pair of pants
decomposition.

Example 3. Let Σ∗2 be a double torus with one cusp. Then two graph associate to Σ∗2
are represented in the following figure where Ci represent a geodesic in each of the pair
of pants decompositions.
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Since each pair of pants in Σ is contracted to a point and it contains three geometric
holes, then σ is the underlying topological space of a trivalent graph which has ”infinite
legs” corresponding to cusps of Σ.

We define a graph with infinite legs as a graph with half real lines attached to their
vertices. Also, as topological space σ has a natural CW -decomposition. We will identify
a graph with its underlying topological space along with its natural CW -decomposition.

In this sense, every interior of either an edge or infinite leg of the graph is a one-
cell of the CW -decomposition, then it has a canonical differential structure. In the
following we will denote by e a one-cell of the CW -decomposition. Considering this,
the following is well- defined.

Definition 3.6.3. We say ϵ : σ → R3 is a smooth embedding of the graphic σ if it is
a continuous embedding and restricted to each one-cell of the CW -decomposition of σ,
it is a smooth embedding.

From now on, we will always consider graphs smoothly embedded in the euclidean
three space such that every infinite leg goes to infinity. We will identify the graph with
its embedded image as usual.

Definition 3.6.4. Consider a smooth embedding of σ in the euclidean three space such
that every infinite leg goes to infinity. A tubular neighbourhood of the graph σ, denoted
by N , is an open set in the euclidean three space containing the graph such that

(1) There is a continuous surjective map πN : N → σ.

(2) For every e of the CW -decomposition, the map πN restricted to π−1N (e) is a tubular
neighbourhood.

We can take N small enough such that N has the structure of a tubular neigh-
bourhood. Now, we can recover the surface Σ from the contraction graph Σ up to
homeomorphism.
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Lemma 3.6.5. There is a tubular neighbourhood N of the embedding of the contraction
graph σ = f(Σ) such that there is a homeomorphism from Σ to the boundary of N .

Proof. Let N be a small enough tubular neighbourhood of σ such that

πN : N → σ

extends to the closure of N . Consider the restriction of πN to the boundary

∂πN : ∂N → σ.

Every component of ∂N −
⋃
C∈C ∂π

−1
N (f(C)) is homeomorphic to a sphere with three

punctures. In particular, every one of these components is homeomorphic to the interior
of a pair of pants P in the decomposition of Σ and the correspondence is bijective. Also,
every curve C ∈ C is a simple closed curve homeomorphic to ∂π−1N (f(C)). Then we
can deform each of these homeomorphisms in such a way that they glue together into
a global homeomorphism. We conclude that Σ is homeomorphic to ∂N .

Lemma 3.6.6. The holonomy action 1.21 factors through f∗ : G→ π1(σ), that is there
is a commutative diagram

G
Hol //

f∗
!!

Homeo(F )op

π1(σ)

holσ

99
(3.31)

Proof. Let P be the interior of a pair of pants in the decomposition of Σ. By definition
of the function f , f(P ) retracts to a point hence f(γ) is contractible for every closed
curve γ contained in P and we have

f∗ι∗π1(P ) = {e}, ι : P ↪→ Σ

where ι is the canonical inclusion. Since the lamination has trivial holonomy on pants
and P was arbitrary, we have π1(σ) ∼= G/ker(Hol). By the first isomorphism theorem
there is a unique homomorphism holσ such that the diagram 3.31 is commutative.

Every locally trivial fibration is determined by its holonomy action

Hol : G→ Homeo(F )op, G = π1(Σ)

and in this formalism, morphisms of these fibrations become right G-equivariant con-
tinuous maps between the fibers

ζ : F → F ′, ζ(k · g) = ζ(k) · g, ∀g ∈ G

where the right action is defined by k · g = Hol(g)(k).

Since the holonomy action extends to the profinite completion Ĝ, then the map ζ
is right Ĝ-equivariant. The same applies for the group π1(σ), that is to say, the map

ζ ′ : F → F ′, ζ ′(k · g) = ζ ′(k) · g, ∀g ∈ π1(σ)

extends to the profinite completion of π1(σ) and it is ’π1(σ)-equivariant.
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Lemma 3.6.7. Consider a hyperbolic surface Σ as in the hypotheses 3.5.1. The category
of laminations verifying the hypotheses 1.3.4 is equivalent to the category of locally trivial
fibrations on the contraction graph σ = f(Σ) whose holonomy continuously extends to

the profinite completion ’π1(σ).
Proof. Denote by Cσ the small category whose objects consist of the set of continuous

group morphism ’π1(σ) → Homeo(F )op for every Hausdorff compact space and given two

objects, the morphisms between them is the set of right ’π1(σ)-equivariant continuous
maps.

Denote by CΣ the category whose objects consist of the set of continuous group
morphism Ĝ → Homeo(F )op such that the diagram 3.31 commute, F is a Hausdorff
compact space and given two objects, the morphisms between them is the set of right
Ĝ-equivariant continuous maps.

Consider the continuous extension of the map f∗ in 3.31 to the profinite completions
(see 1.3.21), which will be denote by “f∗, and define the functor F : Cσ → CΣ on objects
as

F(h) = h ◦ “f∗, where h : ’π1(σ) → Homeo(F )op, “f∗ : Ĝ→ ’π1(σ)
This is well defined since precomposing an object in Cσ with “f∗ gives an object in CΣ.
And we define F on morphisms simply as

F(ζ) = ζ.

This is well defined because for every right ’π1(σ)-equivariant continuous map ζ, it is

Ĝ-equivariant. This follows from

ζ(k) · g = ζ(k) · “f∗(g) = ζ(k · “f∗(g)) = ζ(k · g)

where we have used the right ’π1(σ)-equivariance in the second equality and the com-
mutativity of diagram 3.31 in the first and last equality.

Now, consider an object H in CΣ. By hypothesis, ker(f∗) ⊂ ker(H|G) hence

ker(“f∗) = ÷ker(f∗) ⊂ ÿ�ker(H|G) = ker(H)

and by the first isomorphism theorem, there is an object h in Cσ such that H = h ◦ “f∗.
Define the functor G : CΣ → Cσ on objects as

G(H) = h

and on morphism simply as G(ζ) = ζ. Analogously as before, this define a functor
and it is well defined. By construction, the functors F and G define an equivalence of
categories and the result is proved.

By Lemma 3.6.7, considering the lamination L fibering over Σ with fiber F , we
denote by Lσ the corresponding lamination fibering over the contraction graph σ = f(Σ)
with the same fiber F . We are abusing of the term lamination since the leaves are not
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immersed manifolds. Every leaf of Lσ is a normal covering1 of the graph σ. σx will
denote an arbitrary leaf of Lσ through x with the underlying topology of a graph.
This topology, unless the fiber F is discrete, will be strictly finer than the relative one
induced by Lσ.

Corollary 3.6.8. Consider a lamination L as in the hypotheses 1.3.4. Then, for every
x ∈ F , the graph f(Lx) is homeomorphic to σx.

Proof. By Lemma 3.6.7, the locally trivial fibration on the graph σ corresponding to
Lx is σx. Also, by Lemma 3.6.6, such fibration must be homeomorphic to f(Lx).

Corollary 3.6.9. Any leaf of L is homeomorphic to the boundary of a tubular neigh-
bourhood of some normal covering of σ = f(Σ) whose fiber is dense in F . In particular,
if the fiber F is infinite, then every leaf of L is of infinite type.

Proof. The proof is analogous to the proof of the Lemma 3.6.5, changing Σ by L.

Conversely, we have the following result.

Corollary 3.6.10. Consider a hyperbolic surface Σ as in hypotheses 3.5.1 and a normal
covering σ′ of the graph σ = f(Σ). Then, there is a locally trivial fibration L → Σ
verifying the hypotheses of 1.3.4 such that there is a leaf homeomorphic to the boundary
of a tubular neighbourhood of σ′.

Proof. Denote by F̃ the fiber of the covering σ′ → σ in the hypotheses. Because the
covering is normal, the right action of the group π1(σ) on the fiber is transitive. In
particular, there is a subgroup S of π1(σ) such that the right cosets are in bijective

correspondence with the fiber F̃ ,

π1(σ)/S ∼= F̃ .

Taking the profinite completion of π1(σ), define the new fiber F as the set of right
cosets

F = ’π1(σ)/S.
Then, there is a canonical inclusion of F̃ into F . The fiber F has a natural right action

by ’π1(σ) in such a way that every orbit of π1(σ) is dense in F . In particular, this action
defines a locally trivial fibration Lσ → σ such that Lσ is a minimal lamination and its

holonomy action continuously extends to ’π1(σ). By construction, this lamination has
the property that its leaf through [e] ∈ F coincides with the graph σ′,

σ[e] = σ′, (3.32)

where e denotes the neutral element in π1(σ).

1Here it is said that a covering is normal if the covering transformation group acts transitively on
fibers.
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Precomposing the resulting holonomy action with f∗ as in diagram 3.31, we have a
new holonomy action which defines a locally trivial fibration L → Σ with the required
properties.

In effect, since the fundamental group of a graph is free hence residually finite [7], by
Lemma 1.3.21 and Theorem 1.3.22 the map f∗ continuously extends to the respective
profinite completions. In particular, the new holonomy action continuously extends to
Ĝ. By construction, it verifies that it has trivial holonomy on pants. Finally, because of
3.32 and Lemma 3.6.6 again, by a similar argument as in Lemma 3.6.5 we have that the
leaf of L through [e] ∈ F is homeomorphic to the boundary of a tubular neighbourhood
of σ′,

L[e]
∼= ∂N(σ′),

where N(σ′) denotes a tubular neighbourhood of σ′. This finished the proof.

Example 4. Consider the surface Σ∗1 in the example 2. The following figure represents
a sheet of any lamination with the hypotheses considered. The leaf is homeomorphic
to a cylinder with infinite punctures.

Example 5. Consider the genus two surface Σ2 with the unique decomposition con-
sisting of two pants such that each pair of pants has a common boundary and both
of them glue along the remaining boundary. The following figure represents a sheet of
any lamination fibering over Σ2 with the considered hypotheses, and their respective
graphs.
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Example 6. Given an orientation on the graph σ of the Example 5 in such a way the
concatenation cb is defined. The fundamental group π1(σ) is the free group generated
by the elements a and cbc−1,

π1 = ⟨a, cbc−1⟩.

Consider the normal covering σ′ corresponding to the subgroup of π1(σ) generated by
the elements

(cbc−1)na−n, n ∈ Z.

The graph σ′ is the infinite ladder. By Corollary 3.6.10, there is a locally trivial fibration
L as in the hypotheses 1.3.4 with a leaf homeomorphic to the infinite ladder surface
represented in the following figure.

3.7 Explicit Description of TTLC(L)

In this section it will be used the canonical towers constructed in Sections 3.3, 3.4
and 3.5 to give the desired explicit description of the space TTLC(L). Before to give the
description, note that under the considered hypotheses we can include infinite conformal
type surface laminations. This work is the first time that an explicit description of a
Teichmüller space of laminations fibering over an infinite conformal type surface is
given.

In the following lemma the functions ∆SS′ defined in Corollary 3.5.7 are considered.
Recall that the identification (2.9) of the Fenchel-Nielsen Teichmüller space TFN with
the space of l∞ sequences was used in such a corollary.

Lemma 3.7.1. For S and S ′ in S such that S ′ ≤ S, the following diagram commutes
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T (ΣS′)
FNCS′

//

εSS′

��

TFN(ΣS′ , CS′)

∆S′S

��

T (ΣS)
FNCS // TFN(ΣS, CS)

where εSS′ is the canonical inclusion (see Lemma 3.4.5), ∆SS′ is the embedding in
Corollary 3.5.7 and FN is the locally bi-Lipschitz homeomorphism in Corollary 2.6.8.

Proof. Consider ΓS = {lg | g ∈ G ∩ S} < Möb(∆), this is a Fuchsian group of ΣS. We
have an analogous definition of the Fuchsian group ΓS′ . Then we have ΓS′ ≤ ΓS.

Consider a point [µ] ∈ T (ΣS) and the Fuchsian groups

ΓS,[µ] = Θfµ(ΓS), ΓS′,[µ] = Θfµ(ΓS′),

along with the corresponding hyperbolic surfaces

ΣS,[µ] = ∆/ΓS,[µ], ΣS′,[µ] = ∆/ΓS′,[µ].

Since ΓS′ ≤ ΓS, we have by definition ΓS′,[µ] ≤ ΓS,[µ] hence there is a finite locally
isometric covering

ΣS′,[µ] → ΣS,[µ].

By the embedding between Teichmüller spaces, we have [µ] ∈ T (ΣS′) and the cor-
responding hyperbolic surface is ΣS′,[µ]. Considering the map ψ̂S′S : ΣS′,[µ] → ΣS,[µ]

defined as before, and by construction of ∆SS′ , we have

FNCS′ (ϵSS′([µ])) = ∆SS′(FNCS([µ])).

Because the point [µ] was arbitrary, we have the result.

Theorem 3.7.2. Consider a hyperbolic surface Σ without boundary obtained by gluing a
(possibly finite) sequence of generalized hyperbolic pair of pants, each glued to the next
along a common boundary geodesic such that the length of these geodesic boundaries
is uniformly upper bounded. Consider a minimal lamination L fibering over Σ with
Hausdorff compact fiber F whose holonomy action continuously extends to the profinite
completion of the fundamental group G and has trivial holonomy on pants. Then, there
is a homeomorphism

TTLC(L) ∼= CLC(F, T (Σ)),

where the left hand side is the transversally locally constant Teichmüller space of L and
the right hand side is the space of locally constant functions valued on the Teichmüller
space of Σ. In particular, TTLC(L) is contractible since T (Σ) is so.

Proof. Taking direct limits in the commutative diagram of Lemma 3.7.1 gives the home-
omorphism

FN : lim−−→
S∈S

T (ΣS) → lim−−→
S∈S

TFN(ΣS, CS).
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Composing this maps with the homeomorphisms η and Ψ∗ in Lemmas 3.4.6 and 3.28
respectively gives a homeomorphism

TTLC(L) ∼= CLC(F, TFN(Σ, C)).

Finally, by Corollary 2.6.8 we have

TTLC(L) ∼= CLC(F, T (Σ))

and this concludes the proof.

We have that although the transversally locally constant Teichmüller space is in gen-
eral infinite dimensional, if we consider a surface with separable Teichmüller space, the
Theorem 3.7.2 gives a family of separable contractible infinite dimensional transversally
locally constant Teichmüller spaces.

Example 7. Consider the Jacob´s ladder surface Σ which is the boundary of a small
enough neighbourhood S of a ladder Γ that is infinitely long in both directions. The
canonical inclusion ι : Σ → S̄ induce an epimorphism

ι∗ : π1(Σ) → π1(S̄) ∼= π1(Γ).

Consider the lamination L that is the inverse limit of all finite coverings corresponding
to the preimages by ι∗ of the normal finite index subgroups of π1(Γ). Since the ladder
Γ is homotopically equivalent to the infinite wedge product of circles,

Γ ≃ (S1)∧Z,

the fundamental group of the ladder is the free group with generating set Z and the
fiber of the laminations L is its profinite completion. Then, by Theorem 3.7.2 we have
a homeomorphism

TTLC(L) ∼= CLC

(
F (Z)

p.f
, T (Σ)

)
.

Corollary 3.7.3. Under the hypotheses of Theorem 3.7.2, we have an embedding

C(F, T (Σ)) → T (L).

Proof. If we take the Teichmüller distance on the left hand side of the homeomorphism,
then it is dominated by the supremum distance on the right. Therefore, taking closures
on both sides we have the result.

Corollary 3.7.4. Consider the lamination L as in the hypotheses of Theorem 3.7.2.
Then the Teichmüller space of L is infinite dimensional if and only if there is a leaf in
L of infinite type.

Proof. Consider a surface Σ and a lamination L fibering over Σ with fiber F as in the
hypotheses of Theorem 3.7.2.
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Suppose that T (L) is infinite dimensional. If the fiber F is finite, then, by the
minimality of the lamination, L consists of a single leaf L that is a normal covering
of Σ and verifies T (L) ∼= T (L). The leaf L must be of infinite type otherwise T (L)
would be finite dimensional which is absurd. If the fiber F is infinite, then, by the
minimality of the lamination again, every G-orbit x · G has infinite elements hence,
by the characterization in Corollary 1.23, every leaf Lx is of infinite type. Conversely,
suppose that L has a leaf of infinite type. Then, the fiber F is infinite or Σ is of infinite
type. In either case, C(F, T (Σ)) is infinite dimensional hence, by Corollary 3.7.3, T (L)
is infinite dimensional as well and the result follows.
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[26] Šarić, D., The Teichmüller theory of the solenoid, Handbook of the Teichmüller
theory. Vol. II,811-857, IRMA Lect. Math. Theor. Phys., 13, Eur. Math. Soc.,
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