

KKC/0?fS4.í)

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

Unidad Guadalajara

"Scheduling de Sistemas de Eventos

Discretos Modelados por Máquinas de

Estados Sincronizadas"

CINVESTAV
IPN

ADQUISICIÓN
_ DE LIBROS
Tesis que presenta

José Luis Córdova Barba

Para obtener el grado de

Maestro en Ciencias

En la especialidad de

Ingeniería Eléctrica

CINVESTAV I.P.N?
SECCIÓN DE INFORMACIÓN

Y DOCUMENTACIÓN

Guadalajara, Jal., Enero de 2003

"Scheduling de Sistemas de Eventos

Discretos Modelados porMáquinas de

Estados Sincronizadas"

ir~, AP.g -t~¿
—

s X£sis de Maestría en Ciencias

ADQUIS.: 5¡5|_ v5

FECHA: ^77/-^ .x
Ingeniería Eléctrica

ü

Por:

José Luis Córdova Barba

Ingeniero en Comunicaciones y Electrónica

Universidad de Guadalajara
CUCEI 1994-1998

Becario del CONACyT, expediente no. 143885

Directores de Tesis

Dr. Antonio Ramírez Treviño

Dr. Luis Ernesto López Mellado

CINVESTAV del IPN Unidad Guadalajara, Enero de 2003

Centro de Investigación y de Estudios Avanzados

del Instituto Politécnico Nacional

Unidad Guadalajara

"Scheduling ofDiscrete Event Systems
Modelled by Synchronised State

Machines"

Thesis submitted by
José Luis Córdova Barba

For the degree of

Master of Sciences

In the speciality of

Electrical Engineering

Guadalajara, Jal., January 2003

"Scheduling ofDiscrete Event Systems
Modelled by Synchronised State

Machines"

Thesis ofMaster of Sciences

Electrical Engineering

By

José Luis Córdova Barba

Communications and Electronics Engineer
Universidad de Guadalajara

CUCEI 1994-1998

Scholarship CONACyT, no. 143885

Thesis Advisors

Dr. Antonio Ramírez Treviño

Dr. Luis Ernesto LópezMellado

CINVESTAV del IPN Unidad Guadalajara, January 2003

Resumen

Esta tesis aborda el problema de scheduling de Sistemas de Evento Discretos (SED)
modelados con Redes de Petri Temporizadas (RPT). Se presenta un método para

calcular un schedule óptimo para un subclase de RPT llamada Máquinas de Estados

Sincronizadas (MES).

Se muestra que las MES tienen la capacidad de describir una gran variedad de SED; y

además, las MES presentan la propiedad de optimalidad local, la cual es utilizada en el

método propuesto.

La técnica propuesta reduce el proceso de análisis a través de la búsqueda de una base

de T-semiflujos para cada máquina de estados, para la cual se da un vector del ratio de

visitas.

El algoritmo incluye una heurística que esta basada en la idea de que un tiempo de ciclo

mínimo en el sistema es equivalente a la máxima utilización de los recursos; de forma

tal que el algoritmo encuentra un schedule óptimo en tiempo polinomial.

Se incluyen dos ejemplos detallados que ilustran la aplicación del algoritmo propuesto.

Abstract

This thesis addresses the problem of scheduling discrete event dynamic systems

(DEDS) modelled with timed Petri nets (TPN). A method to compute an optimal
schedule for a TPN subclass called Synchronised State Machines (SSM) is presented.
It is shown that the expressiveness of SSM copes with a wide variety of DES;

furthermore SSM exhibit the local optimality property that is exploited in the proposed
method.

The technique herein proposed reduces the analysis process by searching a T-semiflows

basis for every state machine, which the visit ratio vector is given. The algorithm
includes a heuristic that is based in the idea that a minimum time schedule is equivalent
to the máximum transition utilisation schedule; so the algorithm obtains an optimal
schedule in polynomial time.

It is included two detailed examples that illustrate the application of the proposed
method.

Contents

1 INTRODUCTION 1

1.1 Introduction 2

1.2 Problem Phrasing 2

1.2.1 Operations Research Methods 3

1.2.2 Artificial Intelligence Methods 4

1.3 Discrete Event Dynamic Systems 5

1.3.1 DEDS Performance 6

1.4 Outline of the work .
7

1.5 Conclusions 7

2 SCHEDULING OF DEDS MODELLED BY PETRI NETS 9

2.1 Introduction .
10

2.2 Petri Nets Basics 10

2.2.1 Primitives 10

2.2.2 Evolving Rules 14

2.2.3 Invariants 16

2.2.4 Representational Power 17

2.3 Subclasses 17

2.3.1 Marked Graphs 17

2.3.2 State Machines 19

2.3.3 Pree-Choice 19

2.4 Timed Petri Nets 19

2.4.1 Deterministic Timed Transitions Petri Nets 21

2.4.2 Deterministic Timed Places Petri Nets 22

2.5 Scheduling in Petri Nets 22

2.5.1 Marked Graphs 22

2.5.2 State Machines 24

2.5.3 Free Choice Petri Nets 28

2.6 Conclusions 30

3 MODELING WITH SYNCHRONISED STATE MACHINES 31

3.1 Synchronised State Machines Petri nets 32

3.2 Cases of Study 34

3.2.1 Sales Company 34

3.2.2 Manufacturing Company 36

3.3 Conclusions 41

4 SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES 43

4.1 Introduction . 44

4.1.1 Discovery 45

4.2 Synchronised State Machines Analysis 46

ni

IV CONTENTS

4.2.1 State Machines Analysis 46

4.2.2 T-cover of State Machines 51

4.3 Application to the Sales Company 57

4.4 Application to the Manufacturing Company 59

4.5 Conclusions 62

5 CONCLUSIONS 65

5.1 Introduction 65

5.2 Advantages 66

5.3 Future Work 67

A MATHEMATICAL PRELIMINARIES 71

B PETRI NETS PROPERTIES 73

B.l Behavioural Properties 73

B.l.l Reachability 73

B.1.2 Boundedness and Safeness 73

B.l.3 Liveness 74

B.1.4 Home Markings and Cyclicity 75

B.2 Structural Properties 76

B.2.1 Structural Liveness 76

B.2.2 Structural Boundedness 76

B.2.3 Conservativeness 77

C SYSTEM'S ANALYSIS 79

C.l Introduction 79

C.2 Transformation Methods 79

C.2.1 Synthesis techniques 80

C.2. 2 Analysis techniques 83

C.3 Description Methods 84

C.3.1 Bottom-Up Methods 84

C.3.2 Top-Down Methods 86

C.4 Structural Analysis 86

C.4.1 Invariants Method 86

Chapter 1

INTRODUCTION

The necessity to improve the benefits of a discrete system, leads to the scheduling theory. Efficient scheduling

of resources is critical to the proper functioning of systems in today's competitive environment. Scheduling

focuses on theoretical as well as applied aspects of the resources optimisation. This optimisation seeks the best

performance of a system with the minimum number of resources or invested time, fulfilling the characteristic

system's restrictions.

Due to the discrete nature of man made systems, the scheduling problem is a very complex problem, either for

the combinatory quantity of states or for the restriction to entire valúes of the system parameters.

As consequence, different methods have been developed to solve specific characterizations of the problem.

Unfortunately, many of them require a large amount of time and in some cases they obtain a solution near to

the optimal one.

1

2 CHAPTER 1. INTRODUCTION

1.1 Introduction

Systems optimisation has been a need since humans require improving systems performance due to the lim-

itation of resources. Optimisation is not a single problem by itself, it includes some stages, two of the most

important stages are planning and scheduling. Frequently these terms are confused; an intuitive definition will

be introduced in order to state the differences between these two stages.

Planning is the stage where it is stated what is going to be done. In this stage, time and resources are assigned

to tasks, and also the relationship between tasks is defined. The result of this stage is a plan. This stage

presents its own optimisation problems.

Scheduling deals with the allocation of scarce resources to tasks over time. The aim of this stage is to improve

systems performance by defining the tasks starting time depending on the tasks relationship. Scheduling can

be formally represented as a decision-making process with the goal of optimising one or more objectives.

Resources and tasks in a organization can take many forms. The resources may be machines in a workshop,

runway at an airport, crews at a construction site, processing units in a computing environment, and so on.

Each task may have certain priority level, an earliest possible starting time, and a due date. The objectives

can also take many forms. One objective may be the minimization of the completion time of the last task, the

minimization of the number of tasks completed after their respective due dates, or the minimization of the cost

of a project.

Since one of the main difficulties that optimisation problem presents is the intractability due to the combinatory

quantity of states or the restriction to entire valúes of the system parameters. Many approximations have been

studied, which have been classified on different methods: operation research, artificial intelligence, etc.

Researches in scheduling theory have evolved over the last fifty years and have been the subject of much

significant literature. Not surprisingly, approaches have been formulated from a diverse spectrum of researchers

ranging from management scientists to production workers. However with the advent of new methodologies,

such as neural networks and evolutionary computation, researchers from fields such as biology, genetics and

neurophysiology have also become regular contributors to scheduling theory emphasising the multidisciplinary

nature of this field.

1.2 Problem Phrasing

In scheduling terminology, a distinction is often made among a sequence, a schedule, and a schedulinq policy

A sequence usually corresponds to a permutation of tasks. A schedule usually refers to an allocation of tasks

within a more complicated setting of tasks, allowing possible for preemptions of tasks by other tasks that are

leased at later points in time. The scheduling policy prescribes an appropriate action for each state the system

may be in.

There exist optimisation functions allowing to formúlate the schedule objectives mathematically, and to evalúate

the obtained solution with regard to a desired objective.

1.2. PROBLEM PHRASING 3

Depending on the system's structure, different classifications to the scheduling problem are proposed, some of

they are:

• Job-Shops scheduling problem: It consists on determining the order and the starting time of the processing

of a piece in each machine.

• Assembly lines balance: It consists on determining the minimal number of machines to be assigned to a

task, or to minimize the production cycle time.

• Project Scheduling: It consist on determining the starting time of a task depending on the precedence

relationship between tasks in order to minimize the cost and the invested time in the project..

The scheduling problem is an NP problem, in other words, the required time to find out an optimal schedule

cannot be represented by a polynomial in the size of the input data. To deal with NP complete problems, the

divide and concord technique is used to improve results in the computation of the optimal solution. In the

scheduling problem, the divide and concord technique is translated to achieve local optimisations.

Local optimisation technique consists in three phases:

1. To divide a system into subsystem,

2. to optimise the subsystems, and

3. to intégrate the optimal solutions of the subsystems.

This technique simplifies the computation of the optimal schedule substantially, but not all the systems exhibit

the local optimality property. Therefore, in this work will be shown that system which previous results prove

that is not possible to achieve local optimisations in, can be locally optimised through a statistic perspective.

In the solution of the scheduling problem, different methods are combined. Some of the methods that will be

used to deal with and give solution to scheduling problem are mentioned below.

1.2.1 Operations Research Methods

Operation research seeks the determination of the best (optimum) course of action of a decisión problem under

limited resources. The term operations research quite often is associated almost exclusively to the use of

mathematical techniques to model and analyse decisión problems. Although mathematics and mathematical

problems represent a cornerstone of operation research, there are more factors involved in problem solving than

the construction and solution of mathematical models. Specifically, decisión problems (as scheduling) usually

include important intangible factors that cannot be translated directly in terms of the mathematical model.

Foremost among these factors is the presence of the human element in almost every decisión environment.

Indeed, in decisión situations where the human behaviour influence the decisión problem, the solution obtained

from the mathematical model is deemed impractical.

4 CHAPTER 1. INTRODUCTION

British scientists were the pioneers on operations research during World War II. Although their works were

concerned primarily with the optimum allocation of the limited resources of war materiel, the team included

scientíst from such fields as sociology, psychology, etc.

Linear Programming

The success of an Operation Research technique is ultimately measured by its acceptance as a decision-making

tool. Since its introduction in the late 1940's, linear programming has proven to be one of the most effective

Operations Research tool. Its success resides on its flexibility in describing multitudes of real-life situations.

Additionally, the availability of very efficient computer codes for solving very large linear programming problems

is an important factor in the widespread use of the technique.

Linear programming is a deterministic tool, meaning that all the model parameters are assumed to be known

with certainty. In real life, however, it is rare to encounter a problem in which true certainly prevails. Linear

Programming technique compensates for this 'deficiency' by providing systematic postoptimal and parametric

analyses that allow the decisión maker to test the sensitivity of the ''static" optimum solution to discrete or

continuous changes in the parameters of the model.

One and the most used methods in Linear Programming is the Simplex Method.

1.2.2 Artificial Intelligence Methods

The field of Artificial Intelligence attempts to understand intelligent entities. Thus, one reason to study it

is to learn more about humankind. But unlike philosophy and psychology, which are also concerned with

intelligence, Artificial Intelligence strives to build intelligent entities as well as understand them. Although no

one can predict the future in detail, it is clear that computers with human-level intelligence (or better) would

have a huge impact on our everyday lives and on the future course of civilization.

Artificial Intelligence techniques comprise methods for searching 'problems spaces', planning sequences of actions

to solve decisión problems, methods of reasoning and deduction, and techniques for representing knowledge.

Any particular application will typically cali on numerous AI methods and techniques. Historically a proportion

of AI research has been application driven whilst other work has looked at extending the available methods and

techniques.

AI is often characterized as the attempt to build computational models of intelligent processes. The art of

AI modelling consist of the ability to specify the problem to be solved. Specification is the art of computer

modelling.

Search Strategies

The majority of work in the área of Search has gone into finding out the right Search strategy for a problem.

In the study of the decisión making problems (as scheduling) the strategies will be evaluated in terms of four

criteria:

1.3. DISCRETE EVENT DYNAMIC SYSTEMS 5

• Completeness: Guaranties to find out a solution when there is one.

• Time complexity: Determines how much time takes to find out a solution.

• Space complexity: Determines how much memory it is needed to perform the search.

• Optimality: Determines the strategy used to find out the highest-quality solution.

There exist different search strategies, but they can be classified into two classes:

• uninformed search, and

• informed search.

This classification is done depending if the strategy has information or not about the cost of the goal.

Uninformed search strategies have no information about the number of steps of the path cost from the current

state to the goal state; all they can do is distinguish the goal state from a nongoal state. They can find

solutions to problems by systematically generating new states and testing them against the previous generated.

Unfortunately, these strategies are incredibly inefficient in most cases.

Informed search strategies can find solutions more efficiently. They explore more states by combining different

heuristics and exploring not only the best-first state. Therefore, informed search strategies are able to distinguish

a local optimum from the optimal one. Some informed search strategies are:

One and the most used search strategies is the A* search strategy.

1.3 Discrete Event Dynamic Systems

Modern technology has increasingly created dynamic systems which are not easily described by ordinary or

partial differential equations. The state of such dynamic systems changes only at certain time instants instead

of continuously. Such are called discrete event dynamic systems (DEDS's) as opposed to the more familiar

continuous variable dynamic systems in the physical world that are described by differential equations.

Almost all DEDS are man made:

• Computer Systems (operating, communication, and processing systems),

• Discrete Production Systems (manufacturing systems),

• TVansport Systems (traffic systems, airports, and train stations),

• Military Commands,

• Engineering (Control Systems),

6 CHAPTER 1. INTRODUCTION

• Mathematics,

• Chemistry, and

• Judicial Systems.

Although there exist many different types of DEDS's, they share some common characteristics, which include:

Event-driven. A DEDS may be viewed as a sequence of events. The completion of an activity may initiate one

or more new activities. Moreover, the order of occurrence of events is not necessarily unique.

Concurrent. Many activities take place simultaneously.

Asynchronous. The evolution of system events is aperiodic. This may be due to variable processing routines

and processing times.

Deadlock. When a DEDS reaches a particular state, where the systems cannot evolve any more. A well-designed

system ought to be able to detect and resolute deadlock states.

Conflict. This may happen when two or more processes require a common resource at the same time.

1.3.1 DEDS Performance

Performance evaluation plays a vital role in the operation of a DEDS. In the life cycle of a DEDS, decisión making

is involved at various stages of planning, design and operation of the system. Therefore, a good scheduling policy

for a DEDS will lead to an optimum performance.

Performance models for DEDS's can be partitioned into two fields: one is models simulation. and tho other is

models analysis.

In the case of models simulation, models are ''run'' rather than ''solved" ; that is, an artificial history of the

system is generated based on the model assumptions, and observations are collected to be analysed and to

estimate the true system performance measures. A model simulation can be built as accurate as one desires,

limited only by cost and time. However, models simulation validation is quite difficult.

Models analysis uses the mathematical deductive reasoning to solve the performance analysis. One of the most

used analytical modelling tools for DEDS is the Petri nets. Petri nets are a formal tool to model the flow of

information and control in systems, especially those which exhibit asynchronous and concurrent properties.

In the first instance it must to be asked whether the model is consistent. A model is consistent if it does not

genérate contradictions, if its various components fit together so as to form a coherent whole. It can also be

asked if the model is complete. Does the specification cover the range of desired cases to model, does it have

the need scope? A further feature which is hard to define absolutely is elegance. Does the model represent the

original system in an elegant fashion, are the general principies captured without too many special exceptions,

1.4. OUTLINE OF THE WORK 7

or does the model has to be resorted to little bits and pieces which make it work but which have no realization in

the original system? It can also be seen if the model is superficial. To what extent have simplifying assumptions

been made which simplify away crucial problems? Further, it can be asked if the model is predictive. Does it

genérate novel behaviour which nevertheless seems reasonable? This often arises out of computational models

which have a degree of complexity and generality. Indeed the ability 'of computational models to reveal the

consequences of complex changing processes is a feature which no pen and paper model can easily conveny.

Finally, it ought to be considered whether the model is capable of refutation; can it be lain against the original

and said to be adequate or inadequate, right or wrong?

1.4 Outline of the work

This work focuses on both theory and application of scheduling. The theoretical side deals with the detailed

sequencing and scheduling of tasks. Given a set of tasks to be done, the problem is to sequence the tasks,

subject to precedence relations, in such a way that one or more performance criteria are optimized.

Thousands of scheduling problems and models have been studied and analysed in the past. Obviously, only a

reduced number are considered in this work.

Although the applications driving the models in this work come mainly from manufacturing and production

environments, it is clear that scheduling plays a role in a wide variety of situations. The models and concepts

dealt with in this work are also applicable to other applications or environments.

This work is divided in five chapters. Chapter 1 defines what scheduling is, and states the problem. Chapter 2

introduces Petri nets as a formal tool to model and analyse DEDS, and presents previous results for scheduling

in free choice Petri nets. Chapter 3 introduces a subclass of free choice Petri nets which previous results prove

that is not possible to achieve local optimisations in, and exhibits two DEDS modelled by this subclass. Chapter

4 presents an heuristic (using local optimization by isolating the optimization of parallel branches) to find out

an optimal schedule for systems modelled by Synchronised State Machines Petri Nets. Chapter 5 contains the

conclusions, advantages and extensions of the work done here in.

1.5 Conclusions

The scheduling problem is an optimisation problem for discrete event systems. To solve this problem, there

exist different methods such as operations research and artificial intelligence. The main advantage of these

methods is their flexibility to combine them; providing new and better heuristics for specific applications like

the scheduling problem.

Operations research methods can solve some specific scheduling problems by the system representation as a set

of linear equations. In the practice is difficult to apply these methods on discrete event systems, either for the

combinatory quantity of states or for the restriction to integer valúes of the system parameters. Operations

research must be viewed as both a science and an art. The science aspect lies in providing mathematical

8 CHAPTER 1. INTRODUCTION

techniques and algorithms for solving appropriate decisión problems. Operations Research is an art because

success in all the phases that precede and succeed the solution of a mathematical model depends largely on

the creativity and personal abilities of the decisión making analysts. Thus gathering of the data for a model

construction, validation of the model, and implementation of the obtained solution will depend on the ability

of the Operations Research team to establish good lines of communication with the sources information as well

as with the individuáis responsible for implementing recommended solutions.

Artificial intelligence based methods represent systems describing its behaviour and the inner relationships.

These methods find out a good solution in a reasonable amount of time, considering that the solution fulfils the

stated constraints. In most of the cases it is not possible to prove if the solution is the optimal one.

The difficulties to solve a scheduling problem depend on the accuracy of the model used for the analysis and

on the reliability of the input data required. Therefore, Petri nets are chosen a as modelling tool since they

capture DEDS features through a strong mathematical support allowing to analyse properties and characterize

systems from a formal model.

Different methods can be combined and applied to systems modelled by Petri nets, taking advantage of having

a unique model, simplifying the scheduling problem abstraction, and exposing systems properties simplifying

the computation of the optimal schedule by heuristics.

Chapter 2

SCHEDULING OF DEDS

MODELLED BY PETRI NETS

There exist different formal tools to model DEDS. Each one of these different tools captures some DEDS

properties. Petri nets are a graphical, mathematical, and formal modelling tool applicable to many systems.

This formalism is used in this work to describe DEDS, since they are suitable to capture and analyse most of

the characteristics of the DEDS, for example concurrence, causal relationship, mutual exclusión, etc. Petri nets

are also useful to analyse qualitative and quantitative properties of DEDS.

To describe the time in DEDS, this work uses a class of Petri nets called timed Petri nets. This class of Petri

nets are defined introducing the concept of time into the Petri net structure, providing it the ability to represent

actions' delays or duration.

This chapter summarizes concepts and notation of Petri nets and timed Petri nets, and presents previous results

in scheduling theory using timed Petri nets.

9

10 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

2.1 Introduction

Petri nets were first introduced in the year» 1960-1962 ln Cali Adam Peni, ivhiii he n rutf Iii*» PliD on <> gfiifial

purpose mathematical tool for describing relations existing between conditions and events, capable to model

those aspects of systems behaviour which can be expressed in terms of causality and choice. Since then, Petri

nets become a useful tool in considerable research áreas due to they allow modelling some system characteristics

such as process synchronization, asynchronous events, sequential operations, concurrent operations, and conflicts

or resource sharing.

Complex requirement specifications can be easily represented graphically using Petri nets instead of using

ambiguous textual descriptions or mathematical notation which is difficult to understand by the customer.

Evolution rules of Petri nets are easy to understand, even for people who are not familiar with the details of

Petri nets.

Petri nets combine a graphical environment with a powerful underlying mathematical formalism. As a mathe

matical tool, Petri net models can be described by a set of linear algebraic equations, reflecting the behaviour

of the system. This allows performing a formal check of properties related to the behaviour of the underlying

system.

In real world every event is time related, therefore DEDS's models should include the time notion in their

structure. Ordinary Petri nets do not capture the time, thereby considering this necessity, several extensions

to Petri nets including the "time" have been proposed. When a Petri net Luntaiiib a tune variable, it becoiiit**-.

a Timed Petri Net.

Typical examples of application of DEDS áreas are manufacturing systems, communication networks, traffic

control systems, military command and control systems, etc. Petri nets also find applications in a number of

different disciplines including engineering, manufacturing, business, chemistry, mathematics, and even within

the judicial system.

2.2 Petri Nets Basics

2.2.1 Primitives

Since the beginning, there have been variations on the initial structure of Petri nets, but most of these variations

are simply additions to the basic definition of a Petri net.

Definition 2.1 A Petri Net Structure (PN) is the 4-tuple N = (P,T, Pre, Post), where

P = {Pi>P2t ••••Pn} is a finite set of places

T = \t\,t2,...,tm) is a finite set of transitions

Pre: P x T —

> N is the previous incidence function representing directed ares from places to transitions

2.2. PETRI NETS BASICS 11

where N is a set of nonnegative integers.

Post: T x P —> N is the subsequent incidence function representing directed ares from transitions to places,

where N is a set of nonnegative integers.

Definition 2.2 Ordinary Petri Nets (OPN) are Petri Nets whose Pre and Post incidence functions take valúes

in {0, 1}. The incidence function of a given are in a nonordinary Petri net is called weight or multiplicity.

A Petri net is a bipartite graph whose two different kind of nodes are named places (P) and transitions (T), where

PnT = 0 and PUT *¿ 0. Graphically, transitions are represented by bars or boxes, see Figure 2.1 a); and places

by circles. see Figure 2.1 b). The Pre function denotes a flow relation ofthe net, and graphically is represented

by ares (arrows) leading from places to transitions, see Figure 2.1 c). The Post function denotes another flow

relation ofthe net, different from the Pre function, and graphically is represented by ares leading from transitions

to places, see Figure 2.1 d). An input place pi of a transition tj, denoted by Pre(pi,tj) = 1, defines a directed

are from p¿ to tj. Similarly, an output place pi of a transition tj, denoted by Post(tj,pi) = 1, defines a directed

are from tj to pi. If Pre(pi,tj) = k (Post(tj,pi) = k), then there exist k directed (parallel) ares connecting

place pi to transition í¿ (connecting transition tj to place pi). Usually, in the graphical representation, parallel

ares connecting a place (transition) to a transition (place) are represented by a single directed are labelled with

its multiplicity, or weight k, see Figure 2.1 d).

I D O© G^-D hk)
a) b) c) d)

Figure 2.1: Nodes and ares of a Petri net

Given a node x\x € P U T, the set »x ■= {y|Pre(x,y) > 0} is defined as the pre-set of x and the set x» =

{y\Post(x,y) > 0} is defined as the post-set of x. In other words, the elements in the pre-set (post-set) of a

place are its input (output) transitions. Similarly, the elements in the pre-set (post-set) of a transition are its

input (output) places.

Definition 2.3 Paths, circuits

ApathofanetN = (P,T, Pre, Post) is a nonempty sequence of nodes x\,...,xk which satisfies (x\,x2), (x2,x3),

• •

, (xk-i,Xk) £ Pre U Post, and no element occurs more than once in it. A path is said to lead from Xi to xfc.

A path leading from a node x to a node y is a circuit if x =

y. Observe that a sequence containing one el

ement is a path but no a circuit, because for every node x, (x,x) £ Pre U Post.

A net N = (P, T, Pre, Post) is called weakly connected (or just connected) if for every two nodes x and y,

12 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

there exist a path leading from x to y.

A net N = (P, T, Pre, Post) is called strongly connected if for every two nodes x and y, there is a path leading

from x to y, and another leading from y to x.

Note that every strongly connected net is also weakly connected.

Definition 2.4 Incidence Matrix

Let N = (P,T, Pre, Post) be a net where P = {pi,p2,...,pn} and T = {ti,t2, ...,tm}. The incidence matrix

N = [nij] of the Petri net N ,
where i = 1, ...,n, and j = l,...,m, is defined by ra-j

= Post(tj,pi)
—

Pre(j>i,tj).

Similarly the pre- and post-íncidence matrices are defined as N~ = [aij] and N+ = [bij], where aij = Pre(pi,tj)

and b,j = Post(tj,pi).

Notice that different nets can have the same incidence matrix, due to self loops (for some transition t and some

place p : p £ •t(~)t»). A net containing no self loops is called puré. It is easy to see that the mapping 7 between

the set of puré nets and the sets of matrices on {—1,0, 1} given by f(N) = N is a bijection.

Example 2.1 The incidence matrix of the puré Petri net shown in Figure 2.2 is:

N =

-1 0 0 1

1 -1 0 0

0 1 0 -1

1 0 -1 0

0 0 1 -1

Figure 2.2: A puré Petri net

Example 2.2 The incidence matrix of the non-pure Petri net shown in Figure 2.3 is:

-10 0 1

1-10 0

0 10-1

10-10

0 0 1-1

0 0 0 0

Definition 2.5 Marking

2.2. PETRI NETS BASICS 13

V s

Figure 2.3: A nonpure Petri net

A function M : P —» N. (usually represented in vector form) is called marking. A marked Petri Net (N, Mo) is

a Petri Net N with an initial marking Mo-

A place is marked in a marking M if M(p) > 0. Graphically, a marking M(p) is represented by tokens (black

dots) into the place p. A token is a primitive concept for Petri nets (like transitions and places). Tokens reside

into places and control the execution of the transitions of the net.

Definition 2.6 Cluster

Let x be a node of a Petri net. The cluster of x, denoted by Cl(x) ,is the minimal set of nodes such that

• x e Cl(x)

• If a place p belongs to Cl(x) then p« is included in Cl(x), see figure 2.4 a), and

• If a transition t belong to Cl(x) then «í is included in Cl(x), see figure 2.4 b).

< %
a) b)

Figure 2.4: a) A cluster with one place and two transitions, b) a cluster with two places and one transition.

Figure 2.5 shows a Petri net together with the partition of its nodes into clusters.

Definition 2.7 A system (Petri net) is a pair (N, Mq) where

• N is a connected net having at least one place and one transition, and

• Mq is a marking of A^ called initial marking.

14 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

Figure 2.5: Partition of the nodes of a Petri net into clusters.

2.2.2 Evolving Rules

The execution of a Petri net is controlled by the number and distribution of tokens in the Petri net, and

such number and position of tokens may change during the execution. A Petri net evolves by firing enabled

transitions. Now, the enabling rule and firing rule of a transition will be introduced, these rules govern the

tokens flow in the Petri net.

1. Enabling Rule: A transition t is said to be enabled if each input place p of t contains at least the number

of tokens equal to the weight of the directed are connecting p to í, i.e.

Vp | p G •£ : M(p) > Pre(p, t)

2. Firing Rule:

(a) An enabled transition t may or may not fire depending on the system nature or control law; and

(b) The firing of an enabled transition t removes Pre(p, i) tokens from each input place. It also adds

Post(t,p) tokens in each output place.

Mathematically, the firing of a transition í at the marking M yields to a new marking M', this firing of transition

t is denoted by M
—> M' The Marking Equation defines the relationship between an initial marking M and a

reached marking M' by means of the firing of transitions:

M'(p) = M(p)
-

Pre(p,i) + Post(t,p) Vp | p e P (2.1)

Notice that since only enabled transition may fire, the number of tokens in each place remains nonnegative

when a transition is fired. The transition firing cannot remove a token that not exists.

A sequence of transitions o = t\t2...tn is a firing sequence of (N,Mo) if and only if there exists a sequence

of markings M0 -■■> Mi
--* M2... -A Mn such that the marking M- enables íi+1. In this case Mn is said to be

reachable from Mo by firing a, and is denoted by Mr¡
—> Mn. The expression M -* denotes a firable sequence a

from a marking M.

2.2. PETRI NETS BASICS 15

A marking is called dead marking if it enables no transition in the net. Analogously a transition is called dead

transition if no reachable marking enables it.

Definition 2.8 Parikh vector

A vector a : P —» N. is called the Parikh vector of the firable sequence c This Parikh vector maps every

transition t ET into the number of occurrences of t in a.

Example 2.3 For the Petri net in Figure 2.6, the Parikh vector of the sequence 0\ = t\t-¿t\t2t\t-¿ is ai =

(3,1,2,0), while the Parikh vector ofthe sequence <y2=t^ isa2 = (0,0,0,1). Now suppose that the sequence

a = oi<j2
= ¿1*3*1*2*1*3*4, then the Parikh vector of o is a =

ai + a2 = (3, 1,2,0) + (0,0,0, 1) = (3, 1,2, 1).

Figure 2.6:

If Mo —> M, then it can be written in the vector form as M = Mo + N ~a , which is referred as the state

equation of the net. Now, observe that for every transition í, the fired vector t = N* í ; is the column of N

corresponding to transition t multiplied by the number of occurrences of t in o.

A reachable marking Mn can be computed from a marking Mo using the state equation and the Parikh vector

of the firable sequence a
= tit2t3...tn such that Mo

—* Mn

Mi = M0 + N • Ti
M2 = Mi + N • t2 = M0 + N • (ti + í2)

M3 = M2 + N ■ í¡ = M0 + N ■

(ti + t2 + h)

Mn = Mn_i + N •

tn = M0 -I- N ■

(íi + t2 + t¡ + ... + í^)

Therefore, the resulting expression

Mn = M0 + N • a (2.2)

is called the state equation of the Petri net.

16 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

2.2.3 Invariants

An invariant of a dynamic system is an assertion that holds for every reachable state. For DEDS's modelled

by Petri nets, it is possible to compute certain vectors of rational numbers (directly from the structure) which

induce invariants. Below are shown two techniques of invariants analysis based on the determination of valid

relationships independent of the net evolution.

Place Invariants

Given an arbitrary Petri net, it is difficult to characterize all the vectors Y such that Y M remains constant

for every reachable marking M. However, it is easy to derive a sufficient condition from the marking equation.

Consider the Petri net of Figure 2.7. It is easy to see that for every reachable marking M the equation M(p2) +

M(p¡) = 1 holds, i.e., it is an invariant ofthe system. This equation can be rewritten as

[0 1 1]
M(pi)

M(p2)

M(P3)

= 1 or just [0 1 1] M = 1

Figure 2.7: The vector Y = (0, 1, 1) is an P-semiflow.

Definition 2.9 A P-semiflow Y of a net N is a nonnegative rational-valued solution Y of the equation

Y • N = 0 (2.3)

Transition Invariants

T-semiflows of a Petri net N are vectors X satisfying N • X = 0. It seems natural to study if T-semiflows also

have interesting properties. It will be shown that T-semiflows are related to the occurrence of sequences which

reproduce a marking (cyclicity property), i.e., those that lead from a marking to itself.

Definition 2.10 A T-semiflow X of a Petri net N is a nonnegative rational-valued solution ofthe equation

N*X=0
(2.4)

The set of T-semiflows of a Petri net constitutes again a vector space over the field of rational numbers.

2.3. SUBCLASSES 17

2.2.4 Representational Power

Concurrence, decisión making, and synchronization, are some DEDS's characteristics, and they can be effec-

tively modelled by Petri nets. Figure 2.8 shows some Petri nets structures representing these DEDS's main

characteristics.

1. Sequential Execution. In Figure 2.8 a), transition í2 can fire only after the firing of *i. Imposing the

precedence constraint "t2 after *i" This Petri net models the precedence relationship among tasks.

2. Conflict. Set of transitions having the same predecessors. In Figure 2.8 b), transitions *i and í2 are in

conflict. Both are enabled but the firing of any transition leads to the disabling of the other transition.

Such a situation will arise, for example, when two tasks have the same precedence relationship.

3. Concurrence. In Figure 2.8 c), the transitions *i, and t2 are concurrent. Note that a necessary condition

for transitions to be concurrent is the existence of a forking transition that deposits a token in two or

more output places. This situation arises when two tasks can be achieved at the same time.

4. Synchronization. On a DEDS, often the precedence relationship defines that a later task can be achieved

only after two or more previous tasks are completed. The resulting synchronization of activities can be

captured by transitions of the type shown in Figure 2.8 d). Here, *i is enabled only when each of pi and

p2 receives a token. Essentially, transition *i models the joining operations.

5. Merging. When tasks from several streams are assigned to the same resource, the resulting situation can

be depicted as in Figure 2.8 e).

6. Confusión. It is a situation where concurrence and conflicts coexist. An example is depicted in Figure 2.8

f). Both *i and Í3 are concurrent while *i and t2 are in conflict, and t2 and Í3 are also in conflict.

7. Mutually Exclusive. Two tasks are mutually exclusive if they cannot be performed at the same time due

to constraints on the usage of shared resources. Figure 2.8 g) shows this structure. For example, a robot

may be shared by two machines for loading and unloading.

2.3 Subclasses

2.3.1 Marked Graphs

A Marked Graph is a Petri Net whose places have exactly one input transition and exactly one output transition.

Definition 2.11 A Petri Net N = (P, T. Pre, Post) is a Marked Graph if and only if Vp e P : | rnjt] = |p« | = 1.

In Marked Graphs synchronizations are allowed while decisions are not. A system is a decision-free system if its

Petri net model is a marked graph. In a marked graph, tokens at a given place are generated by a predefined

transition (its only input transition) and consumed by a predefined transition (its only output transition).

Example 2.4 Figure 2.9 shows a marked graph.

18 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

(•H-OhO

a) Sequential b) Conflict

c) Concurrent

e) Merging

d) Synchronization

f) Confusión

g) Mutual exclusive

Figure 2.8: Petri nets primitives representing DEDS's main characteristics.

O

WfOf

Figure 2.9: A Marked Graph

2.4. TIMED PETRI NETS 19

2.3.2 State Machines

A State Machine is a Petri Net whose transitions have exactly one input place and exactly one output place.

Definition 2.12 A Petri Net N = (P, T, Pre, Post) is a State Machine if and only ifVt 6 T : \ • í| =]t • | = 1

In State Machines decisions are allowed while synchronizations are not. The fundamental property of state

machines is that they are strictly conservative. This subclass has been named State Machines due to its

similarity with State Machines in the sense of autómata theory.

Example 2.5 Figure 2.10 shows a state machine.

Figure 2.10: A strongly connected state machine.

2.3.3 Free-Choice

Marked Graphs allow only synchronizations while State Machines allow only decisions. Free-Choice is a subclass

including both synchronization and decisión, but in such a manner that they do not coexist.

Definition 2.13 A Petri Net N = (P, T, Pre, Post) ü a Free Choice Petri Net if and only if Vp 6 P : \p • | >

1 =•*. .(p.) = {p}

Free Choice subclass is defined to rule the following situations out: in them, the result of the choice between

two transitions can never be influenced by the rest of the system. The easiest way to enforce this is to keep

places with more than one output transition apart from transitions with more than one input place.

Example 2.6 Figure 2.11 shows a free-choice Petri net.

2.4 Timed Petri Nets

Time has been introduced in different forms into Petri Nets, the most common is associating time to transitions,

because transitions represent the actions of the system.

Timed Petri nets can be divided into two classes: Deterministic Timed Petri Nets (DTPN's), in which each

transition, place or directed are is associated with deterministic firing time or time interval; and Stochastic

CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

Figure 2.11: A free choice Petri net.

Nets 1

Deterministic Timed Petri Nets

Deterministic Timed Transitions Petri Nets

Deterministic Timed Places Petri Neis

Deterministic Timed Ares Petri Nets

Time Petri Nets

Stochastic Timed Petri Nets

Stochastic Petri Nets

Gcncralizcd Stochastic Petri Nets

High-Levcl Stochastic Petri Nets

Colored Saw.ha-.tlc Peni Nci*.

Stochastic High-Levcl Petri Nets

Scini-Markosian Stochastic Petri Neis

Extended Stochastic Petri Neis

Delenninistic-Slochaslic Petri Nets

Arbitrary Stochastic Petri Neis

" -

{

Figure 2.12: Classification of timed Petri nets.

2.4. TIMED PETRI NETS 21

Timed Petri Nets (STPN's), in which only transitions are associated with random firing times. Figure 2.12

shows a classification of timed Petri nets.

The introduction of the deterministic time function into Petri Nets was first attempted by Ramchandani

[Ram74]. In his approach, labels were associated to each transition, denoting the fact that transitions are

often used to represent actions, and actions take time to be achieved. The obtained extended Petri nets are

called Deterministic Timed Transitions Petri Nets.

A different time function was proposed by Coolahan and Roussopoulos [CR83]. In their approach time labels

are assigned to places in a Petri net, recognizing the fact that places in their models are mostly used to represent

processes that consume time. The obtained extended Petri nets are called Deterministic Timed Places Petri

Nets.

2.4.1 Deterministic Timed Transitions Petri Nets

Associating time to transitions indicates:

• A firing delay (time elapsed between enabling and firing a transition) [Ram74] [RH80] . The firing of a

transition í¡ holds Pre(pJtti) tokens into the input places pj at the time interval [x
—

d„x), it removes

Pre(pj,ti) tokens from the input places p¡ at the time x, and it puts Post(ti,pk) tokens into the output

places pk at the time x. See figure 2.13.

(D-JUD

er|po
a) i is enabled

al time i-*/

GKfyo
erro

b) holding tokens

at time interval fx-d„x)

0-A-**©

err®
c) firing of t,

at time .v

Figure 2.13: Time as a firing delay.

• A firing time. The firing of a transition tt removes Pre(pj,tt) tokens from the input places p3 at the time

x and puts Post(ti,pk) tokens into the output places pk at the time x + d,. See figure 2.14.

Definition 2.14 A deterministic timed transition Petri net (DTTPN) is the 6-tuple N = (P, T, Pre, Post,

Mq, D), where:

(P,T, Pre, Post): is a Petri net

Mq: is an initial marking.

D: T —> R+ is the function that associates transitions with deterministic time delays.

22 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

o-tV-o crfvO o-^y-o
erro erro o^r®

a) l, is enabled b) Firing oft, c) After the firing oft,

at timer at time interval (x,x+dj atúmex+d,

Figure 2.14: Time as a firing time.

For a DTTPN, the transition firing rules for ordinary Petri nets are extended to include the following one: A

transition U in a DTTPN can fire at time x if and only if

1. for any input place pj of this transition, there must be a number of tokens equal or greater than the weight

of the directed are connecting pj to t¿ continuously during the time interval [x
— di,x); where di is the

associated firing time of transition í¿;

2. for any input place connected by an inhibitor are of this transition, no token must reside in the input

place continuously during the time interval [x
— di,x); and

3. at time x, each of its input places pj donates a quantity of tokens equal to the weight of the directed are

connecting pj to U, while each of its output places pk receives a quantity of tokens equal to the weight of

the directed are connecting U to pk.

2.4.2 Deterministic Timed Places Petri Nets

In place timed Petri nets, time is associated to places and indicates the time that a token must remain in a

place before it can enable a transition.

Example 2.7 A timed transition is equivalent to two transitions and a timed place, see Figure 2.15 a); the

firing duration of transition ti is represented by the time the token remains no available into the place pti-

Analogously, a timed place is equivalent to two places and a timed transition, see Figure 2.15 b); the delay

associated to pj is represented by the firing duration associated to tpj .

2.5 Scheduling in Petri Nets

2.5.1 Marked Graphs

Optimal Cycle Time

For a marked graph (decision-free system), the máximum performance can be computed quite easily [RH801.

Theorem 2.1 [RH80] For a decision-free Petri net, the number of tokens in a circuit remains constant after

any firing sequence.

2.5. SCHEDULING IN PETRI NETS 23

r~n => O R O => r~~i

T\d' Tdl H ' Á '

/ * t,JL / \ P)2Q

a) Transformation b) Transformation

DTTPN into DTPPN DTPPN into DTTPN

Figure 2.15:

Theorem 2.2 [RH80J All transitions in a decision-free Petri net have the same cycle time.

For marked graphs, the minimum cycle time (máximum performance) is equal to the cycle time of the slowest

p-semiflow [RH80], and can be computed in polynomial time by solving the following linear equations system

using the simplex method [Mag84]:

n = max X ■ N_D
Y

s.t:

X N = 0

X ■ M0=l

X>0

where D is the vector containing the firing delays of transitions. Note that this method does not need to

enumérate all circuits to find out the optimal cycle time.

Optimal Schedule

Note, however that knowing the optimal cycle time does not mean knowing the optimal schedule. Below an

example illustrates this assertion.

Example 2.8 Assume that transitions íi,*2,Í3,*4 of figure 2.2 have a delay of 0, 3, 1, 1 respectively. The

optimal cycle time ofthe net is 4 (time associated to the circuit formed by transitions íl,í2,*4 and the respective

input and output places). There exist an infinite number of schedules whose cycle time is equal to the optimal

cycle time [RH80J.

Fortunately, for marked graphs there is no need to solve linear equations systems, the following rule obtains the

optimal schedule.

Theorem 2.3 [Car84j, [Car88] "Firing transitions as soon as become enabled" yields to an optimal schedule.

The application of this rule is based on the fact that there is no decisión in the net. Henee, the firing of a

transition cannot yield to a wrong decisión; the firing of transitions as soon as they become enabled avoids

delays in the slowest circuit.

24 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

2.5.2 State Machines

Opposite to marked graphs, state machines have decisions instead synchronizations. The analysis performance

of state machines is achieved through the execution of T-invariants. More emphasis will be paid on state

machines since this subclass is the cornerstone of the next chapter.

Optimal Cycle Time

The computation of the optimal cycle time can be achieved in polynomial time solving the following linear

programming problem [Cam90]

ir = max X ■ N_D
Y

s.t:

X N = 0

X ■ M0=l

X>0

The previous problem searches the slowest P-semiflow. The solution of the previous problem is the optimal

cycle time since a state machine has only one P-semiflow, there is no synchronization in the net, and every

marking belongs to the same and unique home marking (every state is reachable).

Since there exist no synchronization in the net, there exist no operation involving the máximum between

elements; there exist only transitions' time additions. Henee, the optimal cycle time is a weighted addition of

the transitions' delay.

Optimal Schedule Computation Algorithm

The equation N
• X = 0 provides a set of T-semiflows, and a basis of minimal T-semiflows.

Theorem 2.4 [TV84] Every strongly connected state machine is covered by T-invariants.

State machines have the following characteristics:

1. A positive basis of T-semiflows can be found for a state machine [Sil85].

2. The optimal cycle time, of the executions satisfying the visit ratio constraints, can be computed in poly

nomial time [Cam90].

3. The visit ratio is a nonnegative linear combination of a basis /3T of elemental T-semiflows [Ram93].

Example 2.9 Figure 2.16 shows a state machine whose T-semiflows are:

(Ti) = {tl,U,tb),

(T2) = {tl,*3>*10-*17**12-*5}*

(7i)={íll,*17,*12},

(TJ) = {*6,*13i*12,*5}i

2.5. SCHEDULING IN PETRI NETS 25

Figure 2.16: Example of a state machine.

C7"5)--={í2,t8,í7},

(T¿) = {t2-*9**16**18-*14-*7}*

(Tr) = {*i5,*i8.*i4},

(T"s) = {*6,*13,*14,*7},

and, the conflicts are:

Ci = {*3,*4}.

C2 — {*1,*2,*6}-

C3 = {t8,*9},

C4 = {<5-*ll }.

C5 = {Í7*Í15}.

Ce = {*i2,*i4}-

then, the computed visit ratio for this state machine is:

vT
= [2, 2, 1, 1, 3, 2, 3, 1, 1, 1, 3, 5, 2, 5, 3, 1,4,4].

Appling the algorithm proposed by Ramírez [Ram93], the visit ratio is decomposed into the following T-semiflows

vr=Tl+T2 + 3T3 + Ti + T5+T6 + 3T7 + %

Proposition 2.1 Firing the transitions of a T-invariant as soon as they become enabled; and executing a¿ times

every T-invariant can obtain an optimal schedule. If a new T-invariant becomes enabled, then its execution must

start. Once a T-invariant has been executed cti times, then it must not be considered again in the actual cycle;

the execution continúes with the remaining T-invariants.

26 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

Figure 2.17: A schedule that does not fulfil the visit ratio.

Figure 2.18: A schedule that fulfils the visit ratio.

2.5. SCHEDULING IN PETRI NETS 27

Example 2.10 For the state machine of Figure 2.16, with just one token into place p¡, the proposed algorithm

works as follows:

1. Ti,T2,Tz and 7i are enabled.

2. It begins to execute T3 3 times and Ti, T2, and % are pushed into the stack. During the first execution

of T3, place pío enables 7é, Tr, and T».

3. T3 ¡s pushed into the stack and it is not taken into account.

4. Anyone of recently enabled T-invariants is executed and the others are pushed into the stack. For example,

T7 is selected and executed, %, % are pushed into the stack. Since no other T-invariant becomes enabled

during the execution of Tr, then T7 is executed three times with no interruption. When Tr finishes its

execution, it returns the token back into pío.

5. Now Ts is popped from the stack and executed. When place p2 becomes marked Ts is enabled. (At this

moment T¡ is the unique T-invariant, the remaining have been pushed into the stack).

6. 7¿ is pushed into the stack.

7. 7¿ is executed. When 7s finishes its execution, it returns the token back into p2, and no T-invariant is

enabled. Therefore, the popping of the stack begins.

8. 7¿ is popped from the stack, its execution is finished returning the token back into the place pío.

9. Tg is popped from the stack and executed.

10. The three executions of T3 are finished with no interruption, returning the token back into the place ps.

11. T4 is popped from the stack and executed, returning the token back into the place P5.

12. Ti is popped from the stack and executed, returning the token back into the place p5.

13. T2 is popped from the stack and executed, returning the token back into the place ps.

The final sequence is:

*11,*17, *14i *15. *18. *14. *15, *18- *14- *15* *18- *14 i *7,*2,*8, *7i *2- *9. *16. *18i *14. h, *6, *13,

T, 3T7 Ta Ts, Te Tk

¿12, ¿11, *17, ¿12, *11, *17i *12. *5i*6.*13i*12i *5i*l.*4, *5* *1 i *3. *10> *17i*12

3T3 % T, Ti

The optimal cycle time is reached by firing transitions as soon as they become enabled in the order ¡ndicated

by this sequence. Therefore, the obtained sequence is an optimal schedule.

The T-invariants depicted below transitions in the previous firing sequence correspond to the executed T-

invariant. When it appears more than once is because T-invariants enable other T-invariants during their

execution. The last time that a T-invariant appears in the firing sequence, it meets the number of times that

such T-invariant occurs in the visit ratio.

28 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

Case for non-safe State Machines

Until now, the obtained method is valid only for safe (1-bounded) state machines. However the method is

easily extended to the non-safe state machines case.

The solution is the separately application ofthe previous algorithm to every token; resulting in a set of sequences,

one sequence for each token such that all sequences can be executed in parallel. Every sequence in this set of

sequences has the same period, since they have exactly the same transitions (but in different order).

The cycle time of a safe state machine is equal to the period of the found sequence. While, for non-safe state

machines, the existence of more than one sequence redefines the cycle time to the time period of a sequence

divided by the number of tokens in the net. For state machines and every bounded and cyclic Petri net, the

schedule becomes k periodic due to such schedule is repeated each k • n~ time units, where 7r* is the optimal

cycle time. Note that the initial marking is repeated each cycle time.

Example 2.11 Consider again the machine state shown in Figure 2.16. Suppose that both places ps andp^ have

a token each one, then two sequences are computed, one for the marking M(p¡) = 1 and other for M(ps) = 1.

The case when p¡, is marked was analysed in the case for safe state machines; for the case when pe is marked,

the obtained sequence is:

*13 i *12 i *5 i ¿2i*8i*7i *l-*4i *11* *17i *12i *11* *17. *12* *lli *17i *14i *15i *18. *14> *15i *18i *14**15i*18i

T4 T-., T, T5 T, 3T¡ 3T7

*14,*7, t2, *9,*16,*18, *12**5**1* *3. *10**17- *12i *5>*6 - *13**14 1 *7i *6

Te Ti T\ Tt

The optimal schedule is obtained executing both sequences concurrently; the unique constraint is to execute

transitions as soon as they become enabled in the order indicated by their respective sequence.

2.5.3 Free Choice Petri Nets

Analysis Complexity

The computation complexity to solve the optimal schedule, and the optimal cycle time problems for free choice

Petri nets increases substantially. Both problems, optimal schedule, and optimal cycle time computation are

NP-complete [Mag87].

Theorem 2.5 [Mag87j The minimum cycle time computation of a live and safe free choice Petri net is an

NP-Complete problem.

For the computation of a lower bound nk of the free choice Petri net cycle time, the following linear programming

problem will be used [Cam90],

i*
> f*

= max(V N~ • diag(D) ■

vk) (2.5)

s.t.

2.5. SCHEDULING IN PETRI NETS 29

y-N = O

Y-M0 = 1

Y > 0

where D is a matrix of dimensión \T\ x |T| ; the element D[i,i] = D(i) (the time associated to transition í¿);

and D[i,j] -= 0 if i **¿ j.

This problem searches for the slowest P-semiflow and takes it as a lower bound of the cycle time. When there

are no decisions (marked graphs) ñor synchronizations (state machines), this cycle time bound is a tight bound

[RH80], [Cam90], but in the general case it is only a lower bound of the minimum cycle time.

A. Ramírez [Rain93] proposed a classification for free choice Petri net whose optimal schedule and optimal cycle

time computation can be achieved in polynomial time performing local optimisations.

Free Choice A*

Definition 2.15 A free choice Petri net is A* if it do not have selection places between fork-join couples in

any elemental T-invariant.

The characterization of a free choice A* can be achieved in polynomial time. Just finding out a basis of elemental

T-invariant and proving that erasing a selection place of the original net, then such T-invariant becomes acyclic.

Since there exist only one T-semiflow in the subsystem (for a safe free choice A*), the optimal cycle time of

the net can be computed as the weighted addition of the T-invariants' cycle time. Furthermore, the optimal

schedule reaches the optimal cycle time by executing T-invariants as soon as they become enabled.

R-ee Choice B*

Definition 2.16 A free choice Petri net B* is a safe and live free choice Petri net that has just one selection

place between every fork-join couple.

Since a token can enable different T-semiflows while different P-invariants of the previous enabled T-semiflow

still enabled, then free choice B* Petri nets can have more than one T-semiflow working at the same time.

Let define Qd as the set of T-invariants including the selection place and the fork-join couple, and let define Q¿

as the set of T-invariants including the selection place and excluding the fork-join couple.

If the optimal cycle time of the net can be computed as the weighted addition of the T-invariants belonging to

Qd, then the execution of the T-invariants belonging to Q¿ is carried out in the looseness times

If pa is a selection place between a fork-join couple and |ps • | > 1, then this is the same case that Magott proved

been equivalent to the bin packing problem. The heuristic proposed by [Ram93] finds out a good schedule, but

in the general case the problem remains NP Complete.

30 CHAPTER 2. SCHEDULING OF DEDS MODELLED BY PETRI NETS

Free Choice C*

Definition 2.17 Let N = (P, T, Pre, Post) be a free choice Petri net with just a unique fork-join couple [tk,th],

and let P3 be the set of selection places in the net. N is a free choice C* if and only if:

• tk and th belongs to every elemental T-invariant of the net, and

• VpuPj ■= P»i Pi anc-* Pj d° no belong to the same P-semiflow of a given T-invariant.

This is a class of free choice Petri nets which the optimal schedule can be found in polynomial time applying

the following rule.

Rule: For every selection place, find out the slowest branch; the slowest branches of every selection place are

executed in parallel, and they are not taken in future executions. The process is repeated until every transition

has been fired according to the visit ratio.

The optimal schedule for this subclass can be found in polynomial time. A disadvantage of this subclass is that

it can only model a narrow variety of DEDS.

2.6 Conclusions

Deterministic timed Petri nets can be used to compute production cycle time, identify bottlenecks, and verify

timing constraints. The use of DTTPN or DTPPN is indistinct: always it is possible to transform a DTTPN

model into a DTPPN model and vice versa. Therefore, the scheduling analysis will be achieved using DTTPN.

The scheduling problem for an arbitrary free choice Petri net is an NP-complete problem, but this subclass

include more subclasses such that their schedule is not an NP-complete problem. Therefore, the study of the

scheduling complexity on free choice Petri nets yields to develop heuristics and algorithms for specific subclasses

of free choice Petri nets.

The analysis made for free choice Petri nets have been developed for systems that do not have T-semiflows

working in parallel, excluding free choice B* and C* Petri nets. However, the analysis for Petri nets where there

exist T-semiflows working in parallel becomes more complex due to the relationship between such T-semiflows

working in parallel. Therefore, the scheduling problem for system capable to execute T-semiflows in parallel

becomes a combinatorial problem.

Modelling DEDS with Petri nets solves the first and second phases ofthe scheduling problem (assigning resources

to task and defining the precedence relationship amog tasks respectively).

Chapter 3

MODELING WITH

SYNCHRONISED STATE

MACHINES

This chapter defines a subclass of free choice Petri nets named Synchronised State Machines. This subclass

belongs to the set of Petri nets subclasses which previous results proves that it is not possible to optimise using

local optimisations.

It is shown that this subclass is capable to model a wide variety of DEDS; two detailed examples are provided

to illustrate the application of this subclass.

31

32 CHAPTER 3. MODELING WITH SYNCHRONISED STATE MACHINES

3.1 Synchronised State Machines Petri nets

Definition 3.1 Let N = {Ni, N2,...Nm} be a set of state machines, and let tin be a transition belonging to

the support of every T-semiflow on the state machine Nn € N. A synchronised state machines Petri net is a

Petri net obtained when all transitions ti¡n are merged into a single one.

If N\ and N2 are two state machines, then the resulting net of the merging function is a synchronised state

machines Petri net. If A^i is a state machine, N2 is a synchronised state machines Petri net, and the merging

function merges a transition í¿ € Ni and the synchronisation transition tk E N2, then the resulting net of the

merging function is a synchronised state machines Petri net. If Ni and N2 are two synchronised state machines

Petri nets, and the merging function merges the synchronization transitions of A^i and N2, then the resulting

net of the merging function is also a synchronised state machines Petri net.

Example 3.1 Let Ni, N2 and N3 be three state machines as show figure 3.1. Since transition tij¡ belongs to

the support of every elemental T-semiflow of the state machine i, then the state machines Ni , N2 and N3 can

be merged by merging transitions t\fi *2,5 *3,5 into a single one. The merging of the state machines Ni and

N2 through transitions t\¿ andt2¿ generates the synchronised state machines Petri net N4 shown in figure 3.2.

The merging of the state machine N3 and the synchronised state machines Petri net N4 through transitions ¿3,5

and *i:5 2,5 generates the synchronised state machines Petri net N¡ shown in figure 3.3.

N, N2 N3

Figure 3.1: Three state machines

Synchronised State Machines Petri nets belongs to the set of Petri nets subclasses which [Ram93] proves that it

is not possible to optimise using local optimisations, since the synchronisation transition represents the fork-join

couple and there exist more than one selection place in every P-semiflow inside the fork-join couple.

3. 1 . SYNCHRONISED STATE MACHINES PETRI NETS 33

Vs 2.'

Figure 3.2: A synchronised state machines Petri net resulting from merging the state machines Ni and N2.

Figure 3.3: A synchronised state machines Petri net resulting from merging the state machine N3 and the

synchronised state machines Petri net Af4.

34 CHAPTER 3. MODELING WITH SYNCHRONISED STATE MACHINES

3.2 Cases of Study

3.2.1 Sales Company

The policy of the company defines a route for each salesperson. Every route has a set of clients and there exist a

precedence relation for visiting clients. At the end of the journey all of the salespersons together have a meeting

to make bilis. For simplicity, let to analyse the case of just two salespersons.

The model of the route for the first salesperson is shown in figure 3.4. The model of the route for the second

salesperson is shown in figure 3.5.

Figure 3.4: Model of the first route.

Figure 3.5: Model of the second route.

The company model is built by merging the models ofthe two routes. The Petri net shown in figure 3.6 represents

model of the company.

The policy of the company establishes that for every conflict, the proportion of resources utilization must be

equal. Therefore, the firing proportion for every transition in a conflict is 1.

Model Description

The company model is a DTTPN N = (P, T, Pre, Post, M0, D), where T and D are described as show the

following syntax.

3.2. CASES OF STUDY

Figure 3.6: Sales company model.

Syntax: Transition ti (time delay di): Action.

*i,i(0.5) : Salesman 1 visits and assists a client 1.

*i,2(l) • Salesman 1 visits and assists a client 2.

¿1,3(1.5) : Salesman 1 visits and assists a client 3.

¿1,4(3) : Salesman 1 visits and assists a client 4.

*i,5(0-5) : Salesman 1 visits and assists a client 5.

*i,6(2.5) : Salesman 1 visits and assists a client 6.

¿1,7(4) : Salesman 1 visits and assists a client 7.

¿i,s(3.5) : Salesman 1 visits and assists a client 8.

¿1,9(1) : Salesman 1 visits and assists a client 9.

¿i,lo(2) : Salesman 1 visits and assists a client 10.

¿i,n(2) : Salesman 1 visits and assists a client 11.

¿1,12(2) : Salesman 1 visits and assists a client 12.

¿2,1 (2) : Salesman 2 visits and assists a client 1.

¿2,2(1-5) : Salesman 2 visits and assists a client 2.

¿2,3(1-5) : Salesman 2 visits and assists a client 3.

¿2,4(3.5)
*

Salesman 2 visits and assists a client 4.

¿2,5(0.5) : Salesman 2 visits and assists a client 5.

í2,6(2.5) : Salesman 2 visits and assists a client 6.

¿2j(4) : Salesman 2 visits and assists a client 7.

¿2,8(3.5) : Salesman 2 visits and assists a client 8.

¿2,9(1) : Salesman 2 visits and assists a client 9.

36 CHAPTER 3. MODELING WITH SYNCHRONISED STATE MACHINES

¿2,10(2)

¿2,11 (4)

¿2,12(2)

Salesman 2 visits and assists a client 10.

Salesman 2 visits and assists a client 11.

Salesman 2 visits and assists a client 12.

¿13(1) : Salesman 1 and 2 make the bilis.

3.2.2 Manufacturing Company

The organization chart of a manufacturing company is shown in figure 3.7. This company has a well defined

procedure to manage the involved processes which is shown in figure 3.8. The manufacturing and administrative

processes are exposed with more detail in figures 3.9 and 3.10 respectively.

Field

Department

ii
/ \

>i

Asscmbly

Department

Quality Control

Department

Office

Department

Aecountancy

Department

üutcr Relations

Department

d
/ \

•4

Purchase

Department

Sales

Department

Figure 3.7: Organization chart of a producer company.

Product

Request

Negociation Product

Sale

Down -

Payment -

Collection

► Manufacturing
-

Process

» Handing over

p the Product

Administrative

Process

Figure 3.8: Procedure to manage the involved processes.

Raw Material

Purchase

Assembly Calibration Quality
Control

Packinsí

Figure 3.9: Manufacturing Process.

Below is shown a brief description of the departments in the organization chart: their immediate personnel staff

and their relationship with the processes.

• General Management

3.2. CASES OF STUDY 37

Obtaining
Product

Infonnation

*►
Documental ion

And

Formalities

»
Facturing

>
Remaining

Charges
Aulhorízation

»
Remaining

Charges
Collection

>
Payments

Figure 3.10: Administrative Process.

- General Manager (Negotiation, Billing, Remaining Charges Authorization, Remaining Charges Col

lection, and Handing Over the Product)

- General Manager Secretary (Documentation and Formalities,)

• Purchase Department

-

Supplier 1 (provides raw material)

—

Supplier 2 (provides raw material)

-

Supplier 3 (provides raw material)

—

Supplier 4 (provides raw material)

• Sales Department

— Salesman (assists the product request)

• Field Department

—

Supervisor (supervises the field department processes)

• Assembly Department

-

Manufacturing Supplier (Assembly, Calibration, Packing, and Quality Tests)

- Automatic Machine (Assembly, Calibration, and Packing)

— Semi-Automatic Machine (Assembly, and Calibration,)

- Manual Assembly Line (Assembly)

- Manual Calibration Line (Calibration)

-

Packing Line 1 (Packing)

-

Packing Line 2 (Packing)

• Quality Department

—

Laboratory 1 (Quality Tests)

—

Laboratory 2 (Quality Tests)

—

Laboratory 3 (Quality Tests)

• Office Department

38 CHAPTER 3. MODELING WITH SYNCHRONISED STATE MACHINES

- Office Manager (Remaining Charges Authorization, Remaining Charges Collection)

- Office Manager Secretary (Documentation and Formalities, Billing,)

- Data Collector 1 (Collection of Product Information)

- Data Collector 2 (Collection of Product Information)

- Data Collector 3 (Collection of Product Information)

• Accountancy Department

- Counter (Billing)

- Collector (Remaining Charges Collection)

-

Pay desk (Down Payment Collection, Remaining Charges Collection, Payments)

Once the relationship between the personnel staff and the processes has been defined, then there exist a set

of elements in the personnel staff authorized to carry out such process. Figures 3.11, 3.12, and 3.13 show the

authorized personnel staff for the process.

Product

Request

Negociation Product

Sale

Down -

Payment -

Collection

* Manufacturing
-

Process

» Handing over
► the Product

General

Salesman Manager Salesman Paydesk

Administrative

Process

General

Manager

Figure 3.11: Procedure to manage the involved processes and their respective authorized personnel staff.

Raw Material

Parchase

Assembly Calibration Packing Quality
Control

Supplier I Manual AS Line Manual C Line Packing Line I Laboratory I

Supplier 2 Scmi-A Machine Scmi-A Machine Packing Line 2 Laboratory 2

Supplier 3 Automatic Machine Automatic Machine Automatic Machine Laboratory 3

Supplier 4 Manufacturer Manufacture! Manufacturer Manufacturer

Figure 3.12: Manufacturing Process and their respective authorized personnel staff.

Obtaining
Product

Information

Documentation

And

Formalities

lacturing Remaining

Charges
Authorization

Rcmnining

Charges
Collection

Payments

Dala Collector I

Dala Collector 2

Data Collector 3

OM. Secretary
Ci M Secrelary

Counter

General Manager

Office Manager
General Manager

Collector

Paydesk
General Manager

Paydesk

Figure 3.13: Administrative Process and their respective authorized personnel staff.

3.2. CASES OF STUDY 39

The Petri net shown in figure 3.14 represent the processes model of the company. Where transitions represents

the processes, and actions with their respective time amount.

Figure 3.14: Manufacturing company model.

Model Description

The company model is a DTTPN N = (P, T, Pre, Post, M0, D), where T and D are described as show the

following syntax.

Syntax: Transition t, (time delay di): Action.

¿i(2) : Salesman assists the Product Request.

t2(2) : General Manager negotiates the product features.

¿3(1) : Salesman negotiates the product price, and sales the product.

¿4(4) : Pay desk collects a down payment.

¿5(1) : Supplier 1 provides raw material.

¿6(4) : Supplier 2 provides raw material.

¿7(5) : Supplier 3 provides raw material.

¿8(14) : Supplier 4 provides raw material.

¿g(18) : Automatic machine assembles the product.

¿io(2) : Automatic machine calibrates the product.

¿n(l) : Automatic machine packs the product.

40 CHAPTER 3. MODELING WITH SYNCHRONISED STATE MACHINES

íi2(26) : Semi-Automatic machine assembles the product.

¿13(2) : Semi-Automatic machine calibrates the product.

¿14(32) : Manual assembly line assembles the product.

¿is(3;

¿16(2:

¿17(4

¿18(2;

¿19(5

¿20(6

¿21(1

: Manual calibration line calibrates the product.

: Packing line 1 packs the product.

: Packing line 2 packs the product.

: Laboratory 1 applies and evaluates quality tests.

: Laboratory 2 applies and evaluates quality tests.

: Laboratory 3 applies and evaluates quality tests.

: A transportation company sends the raw material to a outsourcing manufacturer company.

¿22(10) : Manufacturer company assembles the product.

¿23(1) : Manufacturer company calibrates the product.

¿24(1) : Manufacturer company packs the product.

¿25(1) : Manufacturer company applies and evaluates quality tests.

Í26(l) : A transportation company brings back the product from the manufacturer company.

¿27(1) : Data Collector 1 collects product, required documentation and required formalities information.

¿28(4) : Data Collector 2 collects product, required documentation and required formalities information.

¿2g(5) : Data Collector 3 collects product, required documentation and required formalities information.

¿3o(l) '■ Office Manager Secretary accomplishes the documentation and formalities.

¿3i(l) ¡ Counter accomplishes the billing.

¿32(2) : Office manager accomplishes the documentation and formalities.

¿33(2) : Office manager accomplishes the billing.

¿34(2) Office manager authorizes the remaining charges collection.

¿35(3) : Collector collects the remaining charges.

¿36(8)
*

Pay desk collects the remaining charges.

¿37(3) : General manager secretary accomplishes the documentation and formalities.

¿38(3) : General manager secretary accomplishes the billing.

¿3y(l) : General manager authorizes the remaining charges collection.

*4o(2) : General manager collects the remaining charges.

Í41 (1) : General manager hands over the product.

Since the policy of the company establishes that for every conflict, the proportion of resources utilization must

be equal, and then the firing proportion for every transition in a conflict is 1.

Model Abstraction

Once the company structure is modelled by a Petri net, the model must be simplified (preserving the physical

meaning) in order to make the analysis easier. Therefore, reduction will be achieved preserving just conflicts in

order to help the general manager to find out the best sequence which minimize the production cycle time.

Reducing the model, meiosis technique is applied in order to better apply a sequence of fusión technique later

on. The sequence of transformations applied to the model is shown below and figure 3. 15 shows the resulting

3.3. CONCLUSIONS

Petri net representing the reduced modell..

Fuaton(¿4i,¿4)[¿0, 10]

Pusion(í9,tii)[¿6i21]

Pusion(t*2,¿i3)[¿c,28]

Fusion(*i4, ti5)[tá, 35]

Fusionfoi, ¿26)[¿c* 15]

Afe¿os¿s(»Í34, ¿34)

Fusion(t30, ¿34)[¿/, 4]

Fusion(i32,¿34)[¿--,6]

Fuston(t37,Í4o)[¿*,,9]

V*

r*

Figure 3.15: Company reduced model.

3.3 Conclusions

Synchronised state machines is a subclass of free choice Petri net capable to model a wide variety of DEDS,

including other subclasses as state machines, free choice C*, etc. Systems modelled by synchronised state

machines can become more complex by merging subsystems modelled by state machines or other synchronised

state machines.

Synchronised state machines facilítate the description and analysis of a complex model by allowing differentiating

subsystems easily.

CHAPTER 3. MODELING WITH SYNCHRONISED STATE MACHINES

Chapter 4

SCHEDULING OF DEDS MODELED

WITH SYNCHRONISED STATE

MACHINES

"Local optimality'' property guaranties the system optimality through the optimisation of subsystems. Local

optimality property can be easily analysed in systems modelled by timed Petri nets. This analysis is done

through the cyclicity property using a structural method: invariants method.

This chapter proves that synchronised state machines exhibit the local optimality property. An heuristic is

proposed to compute a good schedule for systems whose model is represented by this subclass of free choice

Petri nets.

It is also studied the relationships between P-semiflows and T-semiflows in a free choice Petri net. The analysis

resides on the use of a T-cover; it seems a natural extensión of the works done for marked graphs and state

machines.

43

44 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

4.1 Introduction

Although results for free choice Petri nets are quite pessimistic, this subclass is studied to determine the causes

of the NP-Completeness, or at least to find:

• subclasses of free choice Petri nets (different from marked graphs and state machines) where the optimal

schedule and the optimal cycle time can be computed in polynomial time.

• heuristics based on the previous analysis, allowing to find good schedules.

An optimistic bound of the minimum cycle time can also be found in polynomial time. This bound could be

used to guide the search of a good schedule algorithm.

There exists a result [Ram93] stating that performing local optimisations do not lead to a global system op

timisation. But in many cases, however, systems can be globally optimised through local optimisations. The

interest of studying systems exhibiting local optimality is due to they can be optimised easier and faster.

For a problem whose complexity is greater than polynomial, the divide and concord idea is useful since the

problem can be solved faster through local optimisations than through a global optimisation. In other words,

if r(X) is the required time to solve the schedule problem of the global system, and r(xj) is the required time

to solve the schedule problem of a subsystem xit where U"_0Xt = X and x¿ fl Xj
= 0 Vx¿ / Xj then

n

r(X) > £>(*•)
i=0

Defínition 4.1 [Ram93bJ If a system can be divided into subsystems and the optimal performance of the sub

systems guaranty the optimal performance of the global system, then the system exhibits the local optimality

property with respect to such splitting.

The procedure to optimise a system through local optimisation consists in three phases:

1. To divide a system into subsystem,

2. to optimise the subsystems, and

3. to intégrate the optimal solutions of the subsystems.

Where the subsystems are represented by timed Petri nets whose optimal cycle time and optimal schedule can

be computed through well defined procedures.

Previous results [Ram93] of systems with parallel branches establishes that there exist a relationship between

such branches. Therefore, these branches cannot be optimized independently.

4.1. INTRODUCTION 45

Example 4.1 Let the synchronised state machines Petri net shown in figure 4.1 represent the abstract model

of a DEDS. The model has two state machines synchronised by transition tj. Let D = [0, 3, 4, 3, 4, 7] be the time

vector and let Vr = [2, 1, 1, 1, 1, 2] the visit ratio. The cycle time of the T-semiflows in the T-cover of the global

system is equal to the slowest P-semiflow of such T-semiflow, and such relationship impedes to optimise the

state machines separately.

Therefore, if the first state machine has four elemental T-semiflows whose cycle time is:

Ti = [1,1,0, 1,0,0], c*=6

T2 = [1,1,0,0,1,0], c2=7

T3 = [1,0,1,1,0,0], c3 = 7

T4 = [1,0,1,0,1,0]. c4=8

and the second state machine has just one elemental T-semiflow whose cycle time is:

T5 = [1,0,0,0,0,1], c5
= 7.

Then, since every elemental T-semiflow of the first state machine is synchronised with T$, then, in order to

avoid delays, the T-invariants of the first state machine must have a cycle time as equal as possible to c¡.

Figure 4.1: Abstract model of a DEDS.

4.1.1 Discovery

In spite of the NP Completeness of the scheduling problem in free choice Petri nets, it is possible to study other

systems' features. One of such features is the cycle time, the one we are interested in.

By building several T-covers and schedules for several systems with parallel branches, a discovery was found:

The T-covers with the minimal cycle time were those which its P-semiflow have the same cycle time in the

different T-semiflows of the T-cover.

Example 4.2 The Petri net shown in figure 4-1 has two possible schedules represented by two T-covers. Figure

4-2 shows the cycle time of the P-semiflows of every T-semiflow belonging to the first T-cover, while figure 4-3

46 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

shows the cycle time of the P-semiflows of every T-semiflow belonging to the second T-cover. The white bars

represent the cycle time of one P-semiflow and the black bars represent the cycle time of the other P-semiflow.

Note that the variance of the cycle time of a P-semiflow in the different T-semiflows of the T-cover is minimal,

then the cycle time of such T-cover is minimal.

% r4

Figure 4.2: A T-cover whose cycle time is 15.

Figure 4.3: A T-cover whose cycle time is 14.

Therefore, this chapter proves that it is possible to use local optimisations and find a good (or optimal) schedule

for systems with parallel branches through a statistic perspective.

4.2 Synchronised State Machines Analysis

4.2.1 State Machines Analysis

Theorem 4.1 For every state machine N
= (P, T, Pre, Post), if there exist a transition t, e T belonging to the

support of every elemental T-semiflow, then the number of elemental T-invariants required to build an elemental

T-cover fulfilling the visit ratio is always the same.

4.2. SYNCHRONISED STATE MACHINES ANALYSIS 47

Proof. Let Vr = [u1,...,vm] be the visit ratio such that t*¿ > 0. Since every elemental T-semiflow is a vector

whose entries are mappings to the set {0, 1}, then tu represents the number of elemental T-semiflows that

transition U requires to fulfil the visit ratio.

Since transition í¿ belongs to the support of every elemental T-semiflow of the net, then the entry v¿ represents

the number of elemental T-semiflows required to build the T-cover. Therefore, the number of elemental T-

invariants required to build an elemental T-cover (fulfilling the visit ratio) is constant. ■

Example 4.3 Figure 4-4 shows a state machine where t¡ belongs to the support of every elemental T-semiflow.

Let Vr = [1, 1, 1, 1, 2] be the visit ratio, then the number of elemental T-semiflows required to build a T-cover is

2. For this Petri net, there exist two elemental T- covers fulfilling the visit ratio Ci = {Ti , TJ), and C2 = {T2,T3}

where

T! = [1,0,1,0,1],

T2 = [1,0,0,1,1],

T3 = [0,1, 1,0,1],

T4 = [0,1,0,1,1].

It can be seen that both Ci and C2 have 2 elemental T-semiflows, the same number of the valué in the visit

ratio for transition t5 .

Figure 4.4: A state machine where transition ¿5 belongs to the support of every elemental T-semiflow.

Corollary 4.1 Let N = (P, T, Pre, Post) be a state machine, Cl be a specific cluster, and Tc = { U | í¿ € Cl }

be the set of transitions ti belonging to Cl ■ If for every elemental T-semiflow X of N there exist a transition

U such that ti 6 (X) and t, € Tc, then the number of elemental T-invariants required to build an elemental

T-cover fulfilling the visit ratio is always the same.

Proof. If for every elemental T-semiflow X of N there exist a transition i¿ such that í¿ € (X) and t¿ e Tc, then

the number n of elemental T-semiflows required to build the T-cover is given by

k

n = Yj>t
i=l

where *•*< represents the valué in the visit ratio associated to transition t„

48 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

k represents the number of transitions in the cluster, and

n represents the number of elemental T-semiflows required to build the T-cover, since an elemental T-semiflow

cannot contain two or more transitions belonging to the same cluster. ■

Example 4.4 Figure 4-5 shows a state machine with two clusters Cli = {pi,¿i,¿2} and Cl2 = {p2,¿3,¿4,¿s}

such that every elemental T-semiflow has a transition í¿ belonging to Tci and Tc2 ■ 1}for every conflict, the firing

proportion is equal for every transition then the visit ratio is Vr = [3,3,2,2,2,2,2,2]. Now, since the support

of every elemental T-semiflow of the net has a transition belonging to Tci, henee the number of elemental T-

semiflows require to build a T-cover fulfilling the visit ratio *¡sn = *¡*i+i**2 = 3 + 3 = 6. Furthermore, the support

of every elemental T-semiflow of the net also has a transition belonging to Tci, henee the number of elemental

T-semiflows require to build a T-cover fulfilling the visit ratio is also n = 1*3+ V4 + 115 =2 + 2 + 2 = 6

Figure 4.5: A state machine where there exist a transition in the support of every elemental T-semiflow belonging
to a specific cluster.

Note that in the general case of a state machine, the number of elemental T-semiflow required to build an

elemental T-cover fulfilling the visit ratio cannot be computed; since there could be different T-semiflows whose

supports have no transition belonging to the same cluster.

Example 4.5 Tci = {ti,t2}, Tc2 = {¿3)1 Tc3 = {¿4, ¿6}, and TC4 = {¿5} are the sets of transitions associated

to the clusters Cl\, Cl2, CI3, and CU respectively ofthe state machine shown in Figure 4.6. (Ti) = {¿1,43} and

(T2) = {í5, í6} are the supports of two elemental T-semiflows. The transitions in the supports of such elemental

T-semiflows do not belong to the common cluster. Therefore, the number of elemental T-semiflows required to

build a T-cover fulfilling the visit ratio cannot be computed with the previous result.

If there exist two clusters Ch and Cl2 such that the support of every elemental T-semiflow containing transitions

of Ch and do not contain transitions of Cl2, or vice versa, and if the support of every elemental T-semiflow of

the net has a transition belonging to Ch or Cl2; then the number of elemental T-semiflow required to build a

T-cover fulfilling the visit ratio can be computed extending the previous result. This conclusión can be extended

4.2. SYNCHRONISED STATE MACHINES ANALYSIS 49

Figure 4.6: A State Machine where the number of elemental T-semiflows in the T-cover fulfilling the visit ratio

cannot be computed easily.

for more than two clusters, but in the general case this information is not known or difficult to obtain, therefore

it becomes unpractical.

Theorem 4.2 For every state machine, every elemental T-cover fulfilling the visit ratio has the same cycle

time.

Proof. Since there are no synchronizations, there will be only transitions' times additions. For commutability

properties of the addition, the cycle time is the same for any T-cover fulfilling the visit ratio since the cycle

time is equal to the weighted addition of transitions' times. Where the visit ratio states the weight, and the

execution of the T-cover must be done applying the rule "to execute t-invariants and to fire transitions as soon

as they become enabled" . m

From theorem 4.2, the cycle time C of a state machine fulfilling the visit ratio vr is defined by the following

equation:

C = vT D (4.1)

Where D is the delay vector associated to the DTTPN.

Definition 4.2 Let T = {T¡,T2, ...Tn} be a T-cover fulfilling the visit ratio, and let c¿ be the cycle time of a

T-semiflow Ti £ T The average T-invariants cycle time £ of the set T is defined by the following equation

i
n

where n is the cardmality of T .

Proposition 4.1 Let £ be the average T-invariants cycle time of an elemental T-cover. For a state machine,

the average T-invariants cycle time £ is the same for every T-cover fulfilling the visit ratio.

50 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

Proof. The average cycle time £ of a set of T-semiflows is given by

i
n

n¿—'
t=i

where

n : is the number of T-semiflows, and

Ci : is the cycle time of the ¿-th T-semiflow.
n

For a state machine, from theorem 4.1 n is constant, and from theorem 4.2 5^c¿ is constant for any T-cover

¿=i

fulfilling the visit ratio. Consequently, £ is the same for any T-cover. Furthermore, since the visit ratio is

a nonnegative linear combination of elemental T-semiflows, then the average cycle time of the elemental T-

semiflows belonging to a T-cover fulfilling the visit ratio is

,
1-A C vTD

£■= ->c¿ =
— =

n-2—'
n n

i=l

Example 4.6 Let D = [2, 6, 4, 1, 0] be the time vector and let Vr = [1, 1,1,1, 2] the visit ratio associated to the

state machine shown in Figure 4-4- There exist two elemental T-covers fulfilling the visit ratio providing the

same cycle time:,

C = vr-D = [1,1, 1, 1, 2] • [2, 6, 4, 1, 0] = 13

Ci = {TuT4} C-=13,

C2 = {T2,T3} C2 = 13.

Where:

Ti = [1,0, 1,0,1] c1=6,

T2 = [1,0,0,1,1] c2
= 3,

T3 = [0,1,1,0,1] c3
= 10,

T4 = [0,1,0,1,1] c4
= 7,

Knowing the optimal cycle time of the net (13 time units) and the number of T-semiflows required to buüd the

T-cover (2 T-semiflows), the average t-invariants cycle time £ is 7.5 time units.

Proposition 4.2 The minimization ofthe cycle time ofthe slowest T-semiflow in a T-cover of a state machine

is equivalent to minimize the standard deviation of the cycle time of the T-semiflows m such T-cover.

Proof. The average cycle time £ of a set of T-semiflows is given by

i 2

é—E^n¿—1
1=1

where

n : is the number of T-semiflows, and

d : is the cycle time of the ¿-th T-semiflow.

For a state machine of the synchronised state machines Petri net, n is constant (see theorem 4.1), __C¡i is
t=i

constant for any T-cover (see theorem 4.2), and £ is constant (see proposition 4.1).

4.2. SYNCHRONISED STATE MACHINES ANALYSIS 51

Let Cj be the cycle time of the slowest T-semiflow Tj, and Aj = Cj
— £ be the difference between Cj and £.

Now, £ is defined as

Cj=S + Aj

£ = -¿Ci + £ + AJ
n***—*'
1=1

«**-

then

£ +AJ=£-±¿CIn-**-**'
i=i

If the cycle time of the slowest T-semiflow Tj is forced to be equal to £ then the time Aj is distributed in the

faster T-semiflows, increasing their cycle time, and forcing them to be slower.

/ \

£ = •; &<* +*

If this procedure is done for every T-semiflow Tj whose cycle time Cj is greater than £, then every T-semiflow Tk

whose cycle time Ck is smaller than £ will increase its cycle time until been equal to £. Consequently, the cycle

time of every T-semiflow will be equal to £, and the cycle time variance of the T-semiflows will be minimal. ■

4.2.2 T-cover of State Machines

The visit ratio vr¡n of the n-th state machine Nn belonging to a synchronised state machines Petri net AT is a

mapping from the visit ratio vr of the synchronised state machines Petri net to the space state of the n-th state

machine:

Vr,n
= Ut\n„

Since the visit ratio vT is a positive linear combination of elemental T-semiflows, the visit ratio of the n-th

state machine tv.n can contain an elemental T-semiflows of such state machine more than once. Henee, in order

not to compute the same elemental T-semiflows of the state machine more than once, the visit ratio used to

compute the T-cover of the state machine is the vector resulting from dividing the visit ratio i*rn between the

greatest common divisor of its entries. After the T-cover is found, each elemental T-semiflow of the T-cover is

multiplied by such greatest common divisor.

Remark. It is said that a T-semiflow whose cycle time ct fits into £ is such that £ > c* and £
—

c^ is minimal.

From example 4.6, £ = 7.5, and there exist four T-semiflows Ti, T2,T¡, and T4 whose cycle times are 6, 3, 10,

and 7 respectively, therefore the T-semiflow whose cycle time better fits into £ is T4. m

From proposition 4.2 is proposed an algorithm for finding out a T-cover whose T-semiflows have a minimal

variance

52 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

Algorithm 4.1 Building the best T-cover of a state machine belonging to a synchronised state machines Petri

nets fulfilling the visit ratio.

1. From theorem 4.1, obtain the number n of elemental T-semiflows required to build a T-cover fulfilling the

visit ratio.

2. Compute the cycle time C of the state machine using the equation 4.1.

3. Compute the average T-invariants cycle time £ of the T-cover as follows

4. Define nr as the number of remaining T-semiflows to complete the T-cover,

Cr as the sum of the cycle time of the remaining T-semiflows to complete the T-cover,

£r as the average cycle time of the remaining T-semiflows to complete the T-cover,

VTr as a vector representing the valúes of the visit ratio for the remaining T-semiflows to complete the

T-cover.

5. Compute a T-semiflow % such that c{ fits into £r and (Ti) C (VTT)

6. In order to compénsate A
•

= £
-

c¿ (the difference between the average cycle time and the cycle time of

the last computed T-semiflow). Redefine new valúes for CT, nT, and £r as follows

Gr <— Cr —

Ci

nr ♦— nT
— 1

, Cr

nr

V„ <*- VTT- %

7. Ifn = 0

(a) then the algorithm finishes

(b) else Go to step 5.

With the exception of the step 5 the algorithm is polynomial.

Theorem 4.3 Let N be a state machine. The problem of finding out a T-semiflow T, ofN such that its cvcle

time c, fits into a constant £ is NP-Complete.

Proof. Since the máximum weight that a transition can have in an elemental T-semiflow is l,then an elemental

T-semiflow is a proper subset of the set of transitions T.

Being a proper subset, a T-semiflow % is a combination of transitions holding the equation 2.4 (N ■ T = 01

If a T-semiflow % is a combination of transitions holding the equation 2.4, and the addition of the transit' '

time must fit into a constant £, then this problem can be interpreted as the bin packing problem, where the f

4.2. SYNCHRONISED STATE MACHINES ANALYSIS 53

represents the capacity of the container and transitions U represent the pieces to be stored into the container.

The bin packing problem has been proved to be NP-Complete. ■

From proposition 4.2, the optimal T-cover must be built finding out T-invariants whose execution time fit into

the average t-invariants cycle time £. From theorem 4.3, solving this problem cannot be achieved in polynomial

time. In spite of the NP-Completeness of finding out such T-semiflow, an heuristic is proposed based on artificial

intelligence (Algorithm A*) and linear programming (simplex method): the algorithm A* has been modified to

better suit the purpose and its evaluation function is the simplex method.

The proposed algorithm generates all the possible prefixes of the optimal sequence of transitions, it computes

the cycle time of the fastest elemental T-semiflow whose support contains the alphabet of such sequences, it

eliminates prefixes that do not lead to desired solution, it eliminates circuits when there exist better solutions

in the prefixes, and it explores the prefixes which better suit the objective.

Algorithm 4.2 Finding an elemental T-semiflow whose cycle time fits into a constant £.

Phase 1: Initializing the variables and seeding the seeds of all possible feasible sequences.

l.U_ = l

Define Ua as the unit delay. Note that every timed transition is a Ud múltiple.

2. For every transition U, créate a set *7¿
= {tj \ tj 6 pj

• A pj 6 ¿i»}

The set ni contains transitions tj such that tj is a concatenable transition for a sequence whose last

transition is tj.

3. E = * = {}

Créate two empty sets E and <P . Where E contains prefixes of sequences o*j such that o*¿ is not a circuit,

and í" contains sequences i¡,j such that tpj is a circuit.

4. Vii e T, ai
= t i | oí e £

For every transition t„ créate a sequence cr,
= t¿ e E. This step seeds the prefixes of all possible sequences

in the net.

Phase 2: Eliminating sequences such that their fastest elemental T-semiflow was previously found.

5. For every sequence <r¡ e *

(a) For every sequence ok € E

i. If 1-7(1 = \-k] and Prefix(at, |or*|
-

1) = Prefix(ok, \ak\
-

1) then E = E \ {ok}

54 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

Phase 3: Computing the cycle time of the fastest T-semiflow of the explored sequences and circuits

6. For every sequence a, € SU*, using the simplex method, to associate a nonnegative number r¿ repre

senting the time of the fastest T-semiflow Xi such that Vti\ti e (T< =*■ t¿ e (Xi).

Phase 4: Eliminating sequences that do not deal with the objective and finding out a solution.

7. For every sequence a¿ € £

(a) If n > £, then E = E \ {a^.

If the cycle time t¿ of the of the fastest T-semiflow Xi such that Vt¿ |í¿ 6 o*¡ => í ■

€ (Xi) is greater

than £, then the sequence <*r¿ is erased from E since such prefix cannot be the prefix of the optimal

sequence.

(b) If Ti < £ and £
—

r
■

< Ud, then <7j is the optimal sequence and the algorithm finishes

If the cycle time r¿ is smaller than £ and the difference between £ and r¿ is smaller than unit delay

Ud, then the fastest T-semiflow Xi such that V¿i|¿¿ e ai -***>* ¿¿ £ (X¡) is the T-semiflow which better

fist into £, and the algorithm finishes.

Phase 5: Eliminating the circuits when there exist better solutions and finding out a solution.

8. Assign to Tg the greatest valué of Tj of the sequences o*i | cr, e £ U *.

The valué of rg defines the cycle time of the prefix or sequence which better fits into £.

9. For every a, € *, if r ¿ < tg then * = W \ 0*j.

If there exist a circuit cr¿ whose r¿ better fits than the one of other circuit aj ,
then the circuit aj is erased

from í1 since there exist a better circuit <r¡.

10. Assign to t_ the greatest valué of r¿ of the sequences a¡ \ a, e E.

The valué of r_ defines time of the slowest cycle time of the prefix or sequences in E.

Phase 6: Exploring the sequences which better suit the objective.

11. For the sequences a, e E which r, = te

This step selects the prefix <7- 6 E whose associated valué t- is the greatest,

(a) Vi A(ai) nijüjí {}, where tk is the last transition in the sequence o--,

i. then for every tj £r)k, E = E U {<t¿¿j}

ii. else * = *U {a,}

(b) E = E\{<7,}

4.2. SYNCHRONISED STATE MACHINES ANALYSIS 55

12. If |E| = O then

(a) Assign to t* the greatest valué of Tj of the sequences a, | cr- e *.

The valué of r* defines time of the slowest cycle time of the sequences in *.

(b) For every sequence o\ £$

i. If t, = t* then ai is the T-semiflow Xi such that V¿í|¿í e tr, =► ¿- 6 (Xi) is the better T-semiflow

and the algorithm finishes

13. Go to step 5

Example 4.7 A gross description ofthe previous algorithm is depicted using the state machine shown in figure

4.7. Where the delay vector is D = [0,8,7,5,9,6,7,3,4,2] and £ = 17

First, the algorithm explores all the prefixes of the possible optimal sequence and computes the cycle time of the

fastest T-semiflows which include the prefix in its support, figure 4-8 shows this step.

Once all the prefixes are evaluated with the simplex method and no result is the optimal one, then, the heuristic

explores the prefixes which better suit with the objective. Since the objective is 17 then the nodes to explore are

t2 and ts .

The second exploration is shown in figure 4-9. In this exploration, the prefix ¿2, ¿6 is the first prefix found which

belongs to a T-semiflow whose fastest cycle time is 17. Therefore, the T-semiflow computed va the evaluation

of such prefix is the desired one and the algorithm finishes.

Figure 4.7: Abstract model of a DEDS.

The use of the algorithms 4.2 and 4.1 search a T-cover whose slowest T-semiflow is as fast as possible, but

it does not find out the optimal T-cover where the standard deviation of the cycle time of the T-semiflows is

minimal. In order to improve results, the procedure can be repeated replacing the valué of the unit delay in

step 1 in algorithm 4.2 by the standard deviation of the cycle time of the T-semiflows in the previous found

T-cover.

56 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

,=13

-.=16

,=15

4=13

= 16

= 13

= 14

t-,=14

= 15

= 13

Figure 4.8: First exploration.

t.
— 13 ^t,-19

<•<
—Mt6=16

t, =15 ^t,-17

t,=13 ^•t.-17
t ^ -». t — i <?ts
\

•"•
I9 lo

t„=13 ^t.o-16

t7=14

ts =14

t,=15

ttt.-13

Figure 4.9: Second exploration.

4.3. APPLICATION TO THE SALES COMPANY 57

Below is proposed and heuristic to improve the results of the algorithms 4.2 and 4.1.

Algorithm 4.3

1* Ud = £, Up = oo, U2p = oo

Assign to the unit delay Ud the valué of the average cycle time of the T-semiflows. Define Up and U2p as

the previous and the second previous unit delay; since at the beginning there is no previous unit delay,

infinity is assigned to the valué of Up and U2p.

2. Apply the algorithms 4.2 and 4.1.

3. £/jp «-- Up

Up^Ud

Ud «— the valué of the standard deviation of the cycle time of the T-semiflows in the previous found

T-cover.

4. if í/p < Ud or U2p = Ud

(a) then, the second previous found T-cover is better found and the algorithm finishes.

(b) else go to step 2.

4.3 Application to the Sales Company

Since the company policy establish that for every conflict the number of firing proportion must be equal, then

the computed visit ratio is vr = [t\ti, ¿1,2, ¿1,3, ¿1,4, ¿1,5. ¿1,6, ¿1,7, ¿1,8, ¿1,9. ¿1,10. ¿1,11. ¿1,12, ¿2,1, ¿2,2, ¿2,3. ¿2,4*

¿2,5, ¿2,6, ¿2,7, ¿2,8, ¿2,9 ¿2,10, ¿2,11, ¿2,12, ¿13] = [2, 2, 2, 2, 2, 2, 4, 1, 1, 4, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6].

Figure 4.10 shows graphically the visit ratio.

The model of the company is a synchronised state machines Petri net, and its two synchronised state machines

are shown in figures 3.4 and 3.5 respectively.

The analysis will be achieved partially. First, for the state machine shown in figure 3.4, and later for the other

shown in figure 3.5.

First State Machine

The visit ratio for the first state machine is vTi
= [¿1,1, ¿1,2, ¿1,3, ¿1,4, ¿1,5, ¿i,6> ¿1,7- ¿1,81 ¿1,9, ¿1,10- ¿1,11- ¿i,i2>

¿13] = [2, 2, 2, 2, 2, 2, 4, 1, 1, 4, 1, 1, 6].

Applying the heuristic 4.3 for the first state, the following T-cover was found:

58 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

Figure 4.10: Visit ratio of the sales company model.

Cr (Tn)

56.5 6 9.41 {¿1,3, ¿1,5, ¿1,7, ¿1,10, ¿13} 9

47.5 5 9.5 {¿1,1- ¿1,6, ¿1,8, ¿1,12, ¿13} 9.5

38 4 9.5 {¿1,3, ¿1,5, ¿1,7, ¿1,10, ¿13} 9

29 3 9.66 {¿1,2, ¿1,6, ¿1,9, ¿1,11, ¿13} 7.5

21.5 2 10.75 {¿1,1, ¿1,4, ¿1,7, ¿1,10, ¿13} 10.5

11 1 11 {¿1,2, ¿1,4, ¿1,7, ¿1,10, ¿13} 11

Second State Machine

The visit ratio for the second state machine is vT2
= [¿2,1, ¿2,2, ¿2,3, ¿2,4, ¿2,5, ¿2,6, ¿2,7, ¿2,8, ¿2,9, ¿2,10, ¿2,11, ¿2,12,

¿13] = [2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 6]. Since the visit ratio is a linear combination of elemental T-semiflows,

then it will be divided by the greatest common divisor (2) in order not to find an elemental T-semiflow more

than once. Therefore, the visit ratio which will be used to compute the elemental T-cover is vr2 = [1, 1, 1, 1,

1, 1, 1,1,1,1, 1, 1,3].

Applying the heuristic 4.3 for the second state, the following T-cover was found:

Cr nr £r (Tn) Ci

31 3 10.3 {¿2,3, ¿2,6, ¿2,9, ¿2,12, ¿13} 8

23 2 11.5 {¿2,2, ¿2,5, ¿2,8, ¿2,11, ¿13} 10.5

12.5 1 12.5 {¿2,1, ¿2,4, ¿2,7, ¿2,10, ¿13} 12-5

Since the greatest common divisor of the visit ratio for the second state machine is 2 and the number of T-

semiflows in the T-cover is 3, then the 6 T-semiflows of the global T-cover are now partially covered on the

second state machine.

4.4. APPLICATION TO THE MANUFACTURING COMPANY 59

7.5 8 8 0.5 0 0.5

9 8 9 0 1 1

9 10.5 10.5 1.5 0 1.5

9.5 10.5 10.5 1 0 1

10.5 12.5 12.5 2 0 2

11 12.5 12.5 1.5 0 1.5

Building the global T-cover

Since the partial T-covers of the first amd second state machines is done, then the support of the T-semiflows

of the global T-cover is the unión of the supports of one T-semiflow of the first state machine and other T-

semiflow of the second state machine. In order to avoid delays, the synchronization of the elemental T-semiflows

of the partial T-covers is achieved by synchronising the slowest remaining T-semiflow of each partial T-cover.

Therefore, the global T-cover is represented by the following T-semiflows:

Tn (Tn) c^i c-,2 Ci Delayí Delay2 Delay

Tl {¿1,2, ¿1,6. ¿1,9, ¿1,11, ¿2,3, ¿2,6, ¿2,9, ¿2,12, ¿13}
li {¿1,3, ¿1,5, ¿1,7, ¿1,10, ¿2,3, ¿2,6, ¿2,9, ¿2,12, ¿13}
T3 {¿1,3, ¿1,5, ¿1,7, ¿1,10, ¿2,2, ¿2,5, ¿2,8, ¿2,11, ¿13}
T* {¿1,1, ¿1,6, ¿1,8, ¿1,12, ¿2,2, ¿2,5, ¿2,8, ¿2,11, ¿13}
%, {¿1,1, ¿1,4, ¿1,7, ¿1,10, ¿2,1, ¿2,4, ¿2,7, ¿2,10, ¿13}
7~6 {¿1,2, ¿1,4, ¿1,7, ¿1,10, ¿2,1, ¿2,4, ¿2,7, ¿2,10, ¿13}

Since there exist a synchronization in the abstract model, the cycle time cannot be computed as a weighted

addition of the transition's delay. Since no T-invariant can be executed in parallel, the cycle time of the global

T-cover is equal to the addition of the cycle time of the T-semiflows.

Global cycle time = 63 time units

Total delay= 7.5 time units

The optimal schedule is such that it minimizes the delays in the system. The optimal cycle time can be reached

by executing T-semiflow as soon as they become enabled.

4.4 Application to the Manufacturing Company

The cycle time performance can be measured easier on the abstract model since there exist less nodes and

computations can be achieved faster.

Since the company policy establish that for every conflict the number of firing proportion must be equal, then

the computed visit ratio is vr = [ta, ts, Í6, ¿7, ¿8, ¿6, ¿c, ¿d, ¿16, ¿17, ¿18, ¿19, ¿20, ¿27, ¿28, ¿29, ¿/, ¿s, th, ¿35, ¿36]

= [12, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4]. Figure 4.11 shows graphically the visit ratio.

The abstract model belongs to the synchronised state machines Petri nets class, and its two synchronised state

machines are shown in figures 4.12 and 4.13 respectively.

The analysis will be achieved partially. First, for the state machine shown in figure 4.12, and after for the other

shown in figure 4.13.

First State Machine

The visit ratio for the first state machine is vr\ = [ta, t¿, í6, ¿7, ¿8, ¿6, ¿c, ¿d, ¿16, ¿17, ¿18, ¿19, ¿20] = [12, 3, 3,

3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]. Since the visit ratio is a linear combination of elemental T-semiflows, then it will

60 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

Figure 4.11: The visit ratio.

be divided by the greatest common divisor (3) in order not to find an elemental T-semiflow more than once.

Therefore, the visit ratio which will be used to compute the elemental T-cover is vri = [4, 1, 1, 1, 1, 1, 1, 1, 1,

1, 1, 1, 1, !]•

Applying the heuristic 4.3 for the first state, the following T-cover was found:

Cr nr £r (%.) ct

184 4 46 {¿a, ¿5, ¿c, ¿17, ¿is} 44

140 3 *■£> {¿a, ¿6, ¿6, ¿20} 44

96 2 48 {¿a,¿8,¿e} 39

57 1 57 {¿a, ¿7, ¿d, ¿16, ¿19} 57

Since the greatest common divisor of the visit ratio for the first state machine is 3 and the number of T-semiflows

in the T-cover is 4, then the 12 T-semiflows of the global T-cover are now partially covered on the first state

machine.

Second State Machine

The visit ratio for the second state machine is vr2 = \ta, t2-j, t2g, t2g, tj, tg, th, Í35, í36] = [12, 4, 4, 4, 4, 4,

4, 4, 4], Since the visit ratio is a linear combination of elemental T-semiflows, then it will be divided by the

greatest common divisor (4) in order not to find an elemental T-semiflow more than once. Therefore, the visit

ratio which will be used to compute the elemental T-cover is t*r2
= [3, 1, 1, 1, 1, 1, 1, 1, 1].

Applying the heuristic 4.3 for the second state, the following T-cover was found:

4.4. APPLICATION TO THE MANUFACTURING COMPANY 61

Figure 4.12: First synchronized state machine on the abstract model.

Figure 4.13: Second synchronized state machine on the abstract model.

Cr nr £r (T„) cí

71 3 f {¿a, ¿27, ¿/, ¿36} 23

48 2 24 {¿0, ¿28, ¿s, ¿35} 22

26 1 26 {¿a,¿29,¿h} 26

Since the greatest common divisor of the visit ratio for the second state machine is 4 and the number of T-

semiflows in the T-cover is 3, then the 12 T-semiflows of the global T-cover are now partially covered on the

second state machine.

Building the global T-cover

Since the partial T-covers of the first and second state machines is done, then the support of the T-semiflows

of the global T-cover is the unión of the supports of one T-semiflow of the first state machine and other T-

semiflow of the second state machine. In order to avoid delays, the synchronization of the elemental T-semiflows

of the partial T-covers is achieved by synchronising the slowest remaining T-semiflow of each partial T-cover.

Therefore, the global T-cover is represented by the following T-semiflows:

62 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

49 23 49 0 26 17

49 23 49 0 26 17

49 23 49 0 26 17

45 23 45 0 22 22

45 23 45 0 22 21

45 23 45 0 22 21

41 23 41 0 18 21

41 23 41 0 18 21

41 24 41 0 17 18

57 24 57 0 33 31

57 24 57 0 33 31

57 24 57 0 33 31

Tn (Tn) Cí,i Ci¡2 Ci Delayí Delay2 Delay

T¡ {¿-*.,¿8>¿e, ¿27,¿/,¿36}
T2 {¿o,¿8,*e, ¿27,¿/,¿36}
T3 {¿a,¿8,¿e, ¿27, ¿/,¿36}
T4 {¿o, ¿5, ¿c, ¿17, ¿18, ¿27,¿/,¿36}
% {¿o, ¿5, ¿c, ¿17, ¿18, ¿28, ¿a, ¿35}
Te {¿a, ¿5, ¿c, ¿17, ¿18, ¿28,¿j,¿35}
T-r {¿a,¿6,¿(>,¿20, ¿28,¿j,¿35}
Ts {¿o, ¿6, ¿6, ¿20, ¿28, ¿9, ¿35}
Tg {¿o, ¿6, ¿6, ¿20, ¿29, th}
Tío {¿a, ¿7, td, tie, ¿19, ¿29, ¿/l}
Tn {¿a, ¿7, ¿d, ¿16, ¿19, ¿29, ¿ft}
T12 {¿o, ¿7, td, tie, ¿19, ¿29, ¿h}

Since there exists a synchronization transition in the abstract model, the cycle time can not be computed as a

weighted addition of the transition's delay. Since no T-invariant can be executed in parallel, the cycle time of

the global T-cover is equal to the addition of the cycle time of the T-semiflows.

Global cycle time = 576 time units

Total delay= 296 time units

The optimal schedule is such that it minimizes the delays in the system. The optimal cycle time can be reached

by executing T-semiflow as soon as they become enabled.

4.5 Conclusions

The use of the mathematical formalism of the Petri nets allows to use and combine many different schedule

techniques and heuristics; providing new scheduling methods. Petri nets facilítate a comprehensive graphical

environment and reduce the complexity of the analysis of scheduling algorithms.

The problem of finding out an optimal schedule for a system whose model is represented by a free choice Petri

net resides in finding out a T-cover whose T-invariant have P-semiflows with the same cycle time (in order to

avoid looseness). If the complexity of a system represented by a free choice Petri net with an unique P-cover

and múltiple T-covers is NP-Complete, then the complexity of a Petri net that do not have a unique T-cover

neither a unique P-cover become more complex. Therefore, the problem of finding out an optimal schedule of a

system whose model is represented by a free choice Petri net with múltiple P-covers and múltiple T-covers can

be interpreted as a minimax problem.

In some cases, the T-invariants analysis leads to the fact that the minimum cycle time of a free choice Petri

net can be computed by the weighted addition of the T-invariants cycle times. The previous conclusión cannot

be generalized for any free choice Petri net. If the optimal cycle time is computed as the weighted addition of

the T-invariants execution times whose linear combination is the visit ratio vr, then in each time instant r a

unique T-invariant T, is being executed. The converse conclusión is not true, if a unique t-invariant is Tx been

executed in each time instant t, then the optimal cycle time is not necessarily reached.

4.5. CONCLUSIONS 63

Even in the case where there is no T-invariant working in parallel, decisions depends on máximum operations,

causing a different cycle time for each T-cover. Therefore, even when the cycle time of a Petri net can be

represented by a weighted addition of the T-invariants execution times, it cannot be known if the cycle time of

a T-cover is the optimal cycle time since the cycle time of a T-invariant is equal to the cycle time of its slowest

P-semiflow.

The understanding of the functionality of a complex system is so much easier as its description is analysed in

a more structured and progressive manner. Therefore, in many complex applications, concurrent systems are

described synchronizing the descriptions of different subsystems. The main advantage of models description

is the complete freedom to analyse systems, considering a complex system as a composition of independent

subsystems, where each subsystem can be modelled separately. Description methods facilítate or avoid the

analysis of the complex model since the analysis is made over the subsystems.

In the general case, the proposed heuristic does not finds out the optimal T-cover, even when it does in most

of the cases.

64 CHAPTER 4. SCHEDULING OF DEDS MODELED WITH SYNCHRONISED STATE MACHINES

Chapter 5

CONCLUSIONS

5.1 Introduction

The scheduling problem is an optimisation problem for discrete event systems. To solve this problem, there

exist different methods and tools. The two methods used in this work to deal with the scheduling problem are

operations research and artificial intelligence.

Operations research methods can solve some specific scheduling problems by the system representation as a set

of linear equation. In the practice is difficult to apply these methods on discrete event systems, either for the

combinatory quantity of states or for the restriction to entire valúes of the system parameters.

Artificial intelligence based methods represent systems describing its behaviour and the inner relationships.

These methods find out a good solution in a reasonable amount of time, considering that the solution fulfils the

stated constraints. In most of the cases it is not possible to prove if the solution is the optimal one.

Independently of the used method, the difficulties to solve a scheduling problem depend on the accuracy of the

model used for the analysis and on the reliability of the input data required. Therefore, Petri nets are chosen a

as modelling tool since they capture DEDS features through a strong mathematical support allowing analysing

properties and characterizing systems from a formal model.

The use of the mathematical formalism of the Petri nets provides the flexibility of using and combining different

methods; providing new and better heuristics for specific applications. Petri nets facilítate a comprehensive

graphical environment and reduce the algorithms complexity for scheduling analysis. This takes advantage of

having a unique model; simplifying the analysing of systems properties, and simplifying the computation of the

optimal schedule.

The scheduling problem for an arbitrary free choice Petri net is an NP-complete problem, but this subclass

include more subclasses such that their schedule is not an NP-complete problem. Therefore, the study of the

scheduling complexity on free choice Petri nets yields to develop heuristics and algorithms for specific subclasses

of free choice Petri nets such as synchronised state machines.

The problem of finding out an optimal schedule for a system whose model is represented by a free choice Petri

net resides in finding out a T-cover whose T-invariants have P-semiflows with the same cycle time (in order to

65

66 CHAPTER 5. CONCLUSIONS

avoid looseness) . If the complexity of a system represented by a free choice Petri net with an unique P-cover

and múltiple T-covers is NP-Complete, then the complexity of a Petri net that do not have a unique T-cover

neither a unique P-cover become more complex. Therefore, the problem of finding out an optimal schedule of a

system whose model is represented by a free choice Petri net with múltiple P-covers and múltiple T-covers can

be interpreted as a minimax problem.

In some cases, the T-invariants analysis leads to the fact that the minimum cycle time of a free choice Petri

net can be computed by the weighted addition of the T-invariants cycle times. The previous conclusión cannot

be generalized for any free choice Petri net. If the optimal cycle time is computed as the weighted addition of

the T-invariants execution times whose linear combination is the visit ratio vr, then in each time instant r a

unique T-invariant % is being executed. The converse conclusión is not true, if a unique T-invariant % is been

executed in each time instant t, then the optimal cycle time is not necessarily reached, since the topology.

Even in the case where there is no T-invariant working in parallel, decisions depends on máximum operations,

causing a different cycle time for each T-cover. Therefore, even when the cycle time of a Petri net can be

represented by a weighted addition of the T-invariants execution times, it cannot be known if the cycle time of

a T-cover is the optimal cycle time since the cycle time of a T-invariant is equal to the cycle time of its slowest

P-semiflow.

5.2 Advantages

The understanding of the functionality of a complex system is so much easier as its description is analysed in

a more structured and progressive manner. Therefore, in many complex applications, concurrent systems are

described synchronizing the descriptions of different subsystems. The main advantage of models description

is the complete freedom to analyse systems, considering a complex system as a composition of independent

subsystems, where each subsystem can be modelled separately. Description methods facilítate or avoid the

analysis of the complex model since the analysis is made over the subsystems.

The heuristic proposed here in is applied to the subclass named synchronised state machines; this subclass

of free choice Petri net is capable to model a large quantity of DEDS. This heuristic can be easily extended

to complex systems whose subsystems are modelled not only by state machines. These complex systems may

include subsystems modelled by different subclasses: marked graphs, state machines or other subsystems whose

optimal schedule can by computed through polynomial algorithms.

The use of the A* artificial intelligence technique where the evaluation function is the simplex method allow to

optimise more than one factor, increasing the heuristic optimisation power.

Previous results stated that optimizing an isolated subsystem can not yield to the optimization of the global

system, since there exists a relationship between parallel subsystems. The results exposed here in prove that it

is possible to obtain a global optimization by optimizing isolated subsystems through a statistic perspective.

5.3. FUTURE WORK 67

5.3 Future Work

Scheduling in free choice Petri nets is a wide space of study. Due to the NP-completeness of the scheduling in

free choice Petri nets, there exist no results for systems modelled by Petri nets capable to execute more than

two elemental T-semiflows at the same time.

Parallelism in scheduling is a very difficult problem. The scheduling analysis made for systems modelled by free

choice Petri nets have been developed for systems that do not have T-semiflows working in parallel, excluding

free choice B* and C* Petri nets.

There exists shortage in results of parallel scheduling explaining the reasons, or trying to find heuristics or

subclasses of Petri nets with parallel branches or subsystems whose schedule can be computed in a reasonable

amount of time.

However, the analysis for Petri nets where there exist T-semiflows working in parallel becomes more complex

due to the relationship between such T-semiflows working in parallel. Therefore, the parallel scheduling problem

becomes a very difficult problem (in most of the cases combinatorial).

68

CHAPTER 5. CONCLUSIONS

Bibliography

[ABC84] M. Ajmone Marsan, G. Balbo, G. Conté, A class of of generalized stochastic Petri nets for performance

analysis ofmultiprocessor systems, ACM Transactions on Computer Systems, 2(1), 93-122, May 1984.

[Cam90] J. Campos. Performance Bounds for Synchronized Queueing Networks. Tesis Doctoral, Univesidad de

Zaragoza, Marfa de Luna 3 E-50015 Zaragoza, España, 1990.

[Car84] J. Carlier, Ph. Chretienne, and C. Girault. Modelling scheduling with timed Petri nets. En G. Rozen-

berg, H. Genrich, y G. Roucairol, edithors, Advances in Petri Nets 1984, volume 188 of Lecture Notes

in Computer Sciences, pages 62-82. Springer-Verlag, Berlín, Germany, 1988.

[Car88] J. Carlier, and Ph. Chretienne. Timed Petri net schedules. En G. Rozenberg, edithor, Advances in

Petri Nets 1988, volume 340 of Lecture Notes in Computer Sciences, pages 62-84. Springer-Verlag,

Berlin, Germany, 1984.

[CR83] J. Coolahan and J. Roussopoulos, Timing requirements for time-driven systems using augmented Petri

nets, IEEE Transactions on Software Engineering, SE-9(5), 1983

[D&E95] Jorg Desel k. Javier Esparza, Free Choice Petri Nets, Cambridge University Press, 1995.

[Ram74] C. Ramchandani, Analysis of asynchronousconcurrent systems by Petri nets, Project MAC, TR-120,

M.I.T., Cambridge, MA, 1974.

[GJ79] M. Garey and D. Johnson. Computer and Intractability: A guide to the Theory of NP-Completeness.

W.H. Freeman and Company, USA, 1979.

[Mag84] J. Magott. Performance Evaluation of Conncurrent Systems using Petri nets. Information Processing

Letters, (18):7-13, January 1984.

[Mag87] J. Magott. New np-complete problems in performace evaluation of concurrent systems using Petri

nets. IEEE Transactions on Software Engineering, SE-13(5):578-581. May 1987.

69

70 BIBLIOGRAPHY

[MF76] P. Merlin and D. Farber, Recoverability of communication protocols -

Implication of a theoretical

study, IEEE Transactions on Communication, 1036-1043, Sept. 1976.

[Mol81] M. Molloy, On the integration of delay and throughput measures in distributed processing models,

Ph.D. Thesis, UCLA, Los Angeles, CA, 1981.

[Mur89] T. Murata, Petri nets: Properties, analysis and applications, Proceedings of the IEEE, 77(4):541-580,

1989.

[Nat80] S. Natkin, Les reseaux de Petri stochastiques et leur application a I'evaluation des systemes informa-

tiques, These de Docteur Ingegneur, Cnam, Paris, France, 1980.

[Jen81] K. Jensen, Colored Petri nets and the invariant method, Theoretical Computer Science, 14,317-336,

1981.

[Ram93] A. Ramírez. Scheduling en Redes de Petri. Tesis Doctoral, Universidad de Zaragoza, España. 1993.

[Ram93a] A. Ramírez. Optimal and suboptimal scheduling ind DEDS using Petri nets. In Proceedings of the

1993 IEEE International conference on Systems, Man and Cybernetics, pages 289-294, Letouquet,

France, October 1993.

[Ram93b] A. Ramírez, J. Campos, y M. Silva. On optimal scheduling in DEDS. In Proceeding of the 1993 IEEE

International Conference on Robotics and Automation, pages 405-409, Chicago, USA, August 1993.

[RH80] C. Ramamoorthy and G. Ho, Performace evaluation of asynchronous concurrent systems usong Petri

nets, IEEE Transaction on Software Engineering, SE-6(5),440-449, 1980.

[Sil85] Las Redes de Petri: en la Automática y en la Informática. AC, Madrid, España, 1985.

[TV84] P.S. Thiagarajan and K. Voss. A fresh look at the free choice Petri nets. Information and Control,

61(2):85-113, May 1984.

[Wan98] Wang, Jiacun, 1998: Timed Petri Nets Theory and Application

[ZD88] Zhu and Dentón 1988

Appendix A

MATHEMATICAL PRELIMINARIES

Standard definitions on set, numbers, sequences, vectors and matrices are used. The purpose of this section is

to fix some additional notations.

Notation A.1 Sets, number, relations

Let X and Y be sets.

X CY ifX is a subset of Y, including the case X = Y.

X C Y denotes that X is a proper subset ofY, i.e., X CY and X **¿ Y.

X \ Y denotes the set of elements ofX that do not belong to Y

\X\ denotes the cardinality ofX.

Notation A.2 N denotes the set of natural numbers including 0.

R denotes the set of real numbers including 0.

R+ denotes the set of positive real numbers including 0.

Q denotes the set of rational numbers.

Sequences play a particularly important role in DEDS. Finite sequences are mostly considered, which are

isomorphic to strings over an alphabet, but also infinite ones. The concatenation of two sequences is defined

only if the first sequence is finite.

Notation A.3 Sequences

Let A be a set. A finite sequence on A is a mapping {l,...,n} —*■ A, including the mapping e : 0 —> A,

called the empty sequence. A finite sequence a : {1, ...,n} is represented by the string ai a2 an of elements

of A, where a, = a(i) for 1 < i < n. The length of a is denoted by \a\, and the length of t isO.

A finite sequence is a mapping a : {1,2,3...}
—» A. Where a is written as a = ai a2 a3. and a- = a(i) for

1<¿.

If a = ai a2 an and r = bi b2 bm are finite sequences then the concatenation of a and r, denoted by

<tt, is the sequence a*. a2 a„ 6i b2 bm of length n + m.

71

72 APPENDIX A. MATHEMATICAL PRELIMINARIES

If a = ai a2 an is a finite sequence and r = bj b2 63. is an infinite sequences then the concatenation of

a and r is the infinite sequence ai a2 an 61 b2 63.

A sequence r is a prefix of a sequence a if either r = a or r a' = a for some sequence o*'. Define Prefix(a,n)

as a function that maps to the prefix of the sequence a from the first element of a until the n-th element of a.

The alphabet of a sequence a is the set A(a) = { a e A \ a = a(i) for some i }, i.e., the set of elements that

appear in the sequence a.

Notation A.4 Vectors, matrices

Given a finite set A = {a¡, ...,ak}, every mapping X from A to Q can be represented by the vector (X(a-J,

, X(ak)). The mapping X and the vector (X(ai), , X(ak)) are not distinguished.

X ■Y denotes the dot product of two vectors. Similarly, ifNisa matrix andX is a vector, X
■N andN ■X denote

the left and right produets ofX and N respectively. Different symbols for row and column vector are not used.

In the expression N
■X

,
the vectorX is a column vector, even though it is written as X = (X(a{), . . .

, X(ak)).

X > Y (X > Y) if X(a) > Y(a) (X(a) > Y(a)) for every element a of A. The mapping which maps ev

ery element to 0 is called the nuil vector and is denoted by 0. A matrix containing only zero entries is also

denoted by 0.

Appendix B

PETRI NETS PROPERTIES

As a mathematical tool, Petri nets exhibit a set of properties. These properties allow to the system designer to

identify the presence or absence of specific properties that are translated into system's properties. Two types

of properties can be distinguished, behavioural and structural properties. The behavioural properties are those

which depend on the initial state or marking of a Petri net. The structural properties, in the other hand, do

not depend on the initial marking of a Petri net, they depend on the topology or net structure.

B.l Behavioural Properties

Behavioural or dynamic properties of systems depend on the initial marking. The changing of the initial

marking may easily change some properties. Some of the most important behavioural properties are reachability,

boundedness, and liveness.

B.l.l Reachability

An important issue in designing DEDS's is if a system can reach a specific state.

Definition B.l A marking Mi is said to be reachable from an initial marking Mo if there exist a transition

firing sequence leading from M0 to Mi. The reachability set R(N, M0) is the set of all markings reachable from

the initial marking. The set of all possible firing sequences from Mo is denoted by L(N, Mq). A marking Mi is

said to be immediately reachable from Mo if firing an enabled transitions in Mq results in Mi.

B.l.2 Boundedness and Safeness

In a Petri net, places are often used to represent information storage áreas in communication and computer

systems, product and tool storage áreas in manufacturing systems, etc. It is important be able to determine

whether proposed control strategies prevent from the overflows of these storage áreas. The Petri net property

which helps to identify the existence of overflows in the modelled systems is the concept of boundedness.

Definition B.2 Boundedness

A place p, of a Petri net TV, is said to be k-bounded if and only if the number of tokens in p is always less

or equal to k (k is a nonnegative integer number) for every reachable marking M | M 6 R(N, Mo).

73

74 APPENDLX B. PETRI NETS PROPERTIES

Definition B.3 Safeness

A place p is said to be safe if and only if p is 1 -bounded.

Definition B.4 A Petri net N = (P,T, Pre, Post) with an initial marking Mq is k-bounded if, each place in

P is k-bounded

Notice that every bounded system has a finite set of reachable markings.

Example B.l The Petri net shown in Figure 2.3 is 1-bounded (safe).

B.l.3 Liveness

The concept of liveness is closely related to the deadlock situation, which has been situated extensively in the

context of computer operating systems. Different levéis of liveness are introduced.

Definition B.5 A transition t in a Petri net N = (P,T, Pre, Post) with an initial marking Mq is said to be:

1. £0-live (or dead) if there is no firing sequence a | a G L(N, Mo) which enables ¿.

2. Ll-live (potentially firable) if ¿ can be fired at least once in some firing sequence a \ a e L(N, Mo).

3. L2-live if ¿ can be fired at least k times in some firing sequence a \ a e L(N, Mo) given any positive integer

k.

4. L3-live if t can be fired infinitely often in some firing sequence in a | a £ L(N, Mo).

5. L4-live (or live) if t is Ll-live (potentially firable) for every reachable marking M \ M e R(N, Mq).

Definition B.6 A Petri net N = (P,T, Pre, Post) is said to be Lk-live, for an initial marking Mo, if every

transition in the net is at least Lk-live, where k = 0, 1, 2, 3, 4.

Definition B.7 A Petri net N = (P,T, Pre, Post) is said to be partially live if for every reachable marking

there exists at least a firable transition and other transition that is not firable.

Example B.2 The Petri net shown in Figure B.l is strictly Ll-live since each transition can be fired exactly

once in order of ¿2,¿4,¿5,¿i and Í3. The transitions ¿i,¿2,¿3 and í4 in Figure B.2 are LQ-live (dead), Ll-live,

L2-live, LZ-live, respectively.

If (N, M0) is a live system, then it is also said that Mo is a live marking of N. Notice that a non-Uve transition

is not necessary dead, but then there exists a firing sequence that makes it dead.

The liveness property encapsulates the concept of a system which will be able to run continuously, the importance

of this property resides on its capability to characterise system deadlocks. In fact, if a Petri Net is live, then

the system does not deadlock; due to all transitions can be fired. The opposite proposition is not true; because

there exist non-live nets such that are deadlock free.

B.l. BEHAVIOURAL PROPERTIES 75

Figure B.l: A nonlive Petri net. But is strictly Ll-live [Mur89]

Figure B.2: TVansitions ¿i,¿2,¿3 and í4 are dead (LO-live), Ll-live, L2-live, L3-live, respectively [Mur89].

Definition B.8 Deadlock-freedom

A Petri net is deadlock-free if and only if there exist at least an enabled transition for every reachable marking

M | MeR(N,M0).

Observe that liveness is stronger than deadlock-freedom. Then, all live systems are deadlock-free.

B.l.4 Home Markings and Cyclicity

A home marking is set of markings where every marking is a reachable marking. A concurrent interactive

system performs in some initial behaviour, when it settles in a ultímate cyclic mode of operation, it is said that

the system reaches a home marking.

Definition B.9 Home Marking

Let (N,Mq) be a system. A marking M of a net N is a home marking of (N,Mq) if it is reachable from

every marking ofM \ M € R(N,Mq).

It is said that (TV, Mo) has a home marking if some reachable marking is a home marking.

The identification of home markings is an interesting issue in system analysis. A good system performance

depends directly of the home marking selection.

Definition B.10 Cyclicity

A Petri net (N,M0) is cyclic for a initial marking M0 if and only ifVM\MeR(N,M0):MQe R(N, M).

76 APPENDIX B. PETRI NETS PROPERTIES

Cyclicity is related with the fact that a model allows firing sequences leading to the initial marking from any

initial marking.

B.2 Structural Properties

Structural properties of systems depend on the initial marking for safeness situations. Two of the most important

structural properties are structural boundedness, and structural liveness.

B.2.1 Structural Liveness

Definition B.II A transition t is structurally live if and only if there exist an initial marking Mq making il

live.

Definition B.12 A Petri net TV = (P,T, Pre, Post) is structurally live if and only if each transition of T is

structurally live.

Definition B.13 A Petri net N = (P, T, Pre, Post) is well-formed if and only there exist a marking Mq of TV

such that (TV, Mo) is a live and bounded system.

Observe that every well-formed Petri net is structurally live. Well-formed nets are strongly connected and have

at least one transition and one place

B.2. 2 Structural Boundedness

Definition B.14 A place p is structurally bounded if and only iffor any finite initial marking Mo there exist a

entire number k such that p will never contain more than k tokens for any reachable markingM | M € .R(TV, Mo).

Definition B.15 A Petri net TV = (P,T, Pre, Post) is structurally bounded if and only if each place is struc

turally bounded.

Observe that structural boundedness is stronger than boundedness (behavioural property) due to structural

boundedness holds for any initial marking. Then, every structural bounded system is bounded (behavioural

property). The opposite proposition is not true; because there exist bounded nets such that are not structurally

bounded.

Example B.3 The Petri net shown in Figure B.3 is structurally bounded since each place will never contain

more token than the sum of all tokens at the initial marking.

Example B.4 Figure B.4 shows that structural boundedness is not a necessary condition for boundedness. The

Petri net of the Figure with an initial marking M0 = (0, 3, 0) is bounded, but changing the initial marking to

M0 = (0, 4, 0) ¿¿ becomes not bounded. The firing sequence ¿3¿i¿5¿l¿5¿5¿5¿5 leads to a new marking M = (1, 4, 0).

// this sequence is repeated infinitely often, then the place pi becomes unbounded

B.2. STRUCTURAL PROPERTIES 77

V
h—
¿

Figure B.3: A structurally bounded and structurally cyclic Petri net.

Figure B.4: A bounded and live marked Petri net.

B.2.3 Conservativeness

Tokens in a Petri net may represent resources. The number of tokens in a real system is typically fixed, then

the number of tokens in a Petri net model of this system should remain unchanged when the marking changes.

When Petri nets are used to represent resource allocation systems, conservation is an important property.

Definition B.16 Strict Conservativeness

A Petri net TV = (P, T, Pre, Post) with an initial marking Mo is said to be strictly conservative if VM | M e

R(N,Mo) : J2 M(pt) = constant

Strict conservation is a strong relationship. It indicates that there exists exactly the same number of tokens in

every reachable marking of a Petri net. However, in real systems resources are frequently combined together so

that certain task can be executed. Then they are separated after the task is completed. In order to overeóme

this problem, weights may be associated with places allowing for the weighted addition of tokens in a net to be

constant. This results in a broader definition of conservation:

Definition B.l 7 Conservativeness

A Petri net TV = (P, T, Pre, Post) with an initial marking Mq is said to be conservative if there exists a vector

w = (wi,w2, ...,wn) where n is the number of places, and u*- > 0 for each place Pi G P, such that VM | M e
71

R(N,Mo) ■ 53 u>iM(pi) = constant

¿=i

78 APPENDIX B. PETRI NETS PROPERTIES

Example B.5 Figure B.5 shows the Petri net of a simple manufacturing system: a machine processes two

types of pieces, namely, type A and type B. In this Petri net model, P3 represents that the machine is available,

Pl and ps represent that pieces of type A and B are available, respectively. p2 and p4 represent that pieces of

type A and B are under processing, respectively. This Petri net is not strict conservative, because there are three

tokens in the initial marking, but in the marking followed by firing either í* ort3 (the machine starts processing

piece of type A or piece of type B), there are only two tokens (since the resources of machine and piece are

combined into one). However, it is conservative with respect to w = (1, 2, 1, 2, 1)

Figure B.5: A manufacturing system's Petri net model which is not conservative.

Appendix C

SYSTEM'S ANALYSIS

C.l Introduction

The analysis of the modelled systems leads to important behaviour characteristics. Liveness, boundedness and

cyclicity analysis through Petri nets can be achieved by different analysis methods. These methods are classified

into different groups:

1. Analysis by enumeration

2. Analysis by transformation

3. Structural analysis

4. Analysis by simulation.

Methods belonging to the first four groups are denominated static methods, while simulation method is de-

nominated a dynamic method. Analysis by enumeration essentially involves the enumeration of all reachable

markings, and the use of this method is not suggested for timed Petri nets analysis because of the state explosión.

C.2 Transformation Methods

The interest on transformation methods is made over rules which preserve a set of properties n. Analysis by

transformation is based on the following idea: given a marked Petri net (TV, M0) with a set of properties n to

be analysed, (TV, M0) is then transformed into another Petri net (TV', M¿) such that:

1. (TV', M0) satisfies the set of properties U if and only if (TV, M0) also satisfies it.

2. It is easier to verify the set of properties n on (TV', M¿) than on (TV, Mq).

Transformation methods are essentially graphic methods, they build a sequence of Petri nets preserving
the stud

ied properties. The objective ofthe Petri net transformation is to make the analysis easier on (TV1+1, M¿+1) than

on the previous Petri nets (TV', M¿) in the sequence. TYansformation methods exhibit two group of techniques:

79

80 APPENDIX C. SYSTEM'S ANALYSIS

1. Synthesis techniques, and

2. Analysis techniques.

The ñame synthesis techniques is reserved for the set of rules which transforms a source Petri net into a target

Petri net with fewer nodes. The set of rules which increase the number of nodes of the target Petri net is called

analysis techniques.

A transformation rule <¡> is a binary relation on the class of all free-choice Petri nets. Given (TV, TV') G 0, the

Petri net TV is called the source Petri net and TV' is called the target Petri net. (TV, TV') e 0 is read "the rule </>

can transform TV into TV'
"

A rule rp is applicable to a Petri net TV if there exist another Petri net TV' such that (TV, TV') e </>. A set 3> of

rules is called a kit. A Petri net TV can be transformed into TV' by the kit $ if the successive application of rules

</> | <j> £ í> can transform TV into TV'

C.2.1 Synthesis techniques

Synthesis techniques allow eliminating or substituting places and/or transitions in such a manner that the

properties to be analysed are not affected by the reduction. The use of these group of techniques is restricted

by the existence of irreducible nets for some given reduction rules.

The classical synthesis process searches a total minimization of the description in an automatic form, but this

total minimization impedes to minimize future realizations. Henee, optimization already does not search the

minimal description; it searches just a simplification on the description capable to allow future minimizations.

Synthesis techniques are centred on two fundamental ideas:

1. To reduce, "not to minimize", the number of places and/or transitions of the initial description.

2. To preserve "the physical meaning" of the initial description, attaining only local simplifications.

Synthesis techniques for Petri nets are classified into two well differentiated groups:

1. Structural Simplifications. These simplifications are independent ofthe associated Petri net interpretation,

considering only the structure and the initial marking.

The objective of this structural reduction is the elimination of structural redundancy (false parallel eve-

lutions).

2. Simplifications holding the Associated Interpretation. These simplifications are made on and holding the

semantic of the specification. These simplifications are not related with the Petri net structure. One of

the most used techniques belonging to this group is: transitions fusión.

C.2. TRANSFORMATIONMETHODS 81

Transitions Fusión

Defined as Fusion(tm,tn)[tk}, transitions fusión technique fusions two transitions ¿m, ¿n into a single one

transition tk.

Conditions on N:

1- ¿m» = {?,}

2- «p,
= {¿m},

3. p.» = {¿„}

4. «¿n = {?,}

Construction of N':

5. P' = P \ {p,}

6. r = T\{¿m,¿n}u{¿fc}

7. Pre' = Pre \ (p„ t„) U (.¿m, tk)

8. Post7 = Post \ (tm,Pi) U (¿fc,¿„«)

This transformation rule is a transitive function, therefore is can be generalized for a path of places and

transition as shown in Figure C.l. If this transformation is made over a DTTPN then it is redefined as

Fusion(tm,tn)[tk, dk] where dk is represents the delay of transition tk and it is computed as follows:

n

dk = }dj
»=i

OO 0+*0 ■=■> CHK)
p, t, p„ t„ p„„ p, K p„ ,

Figure C.l: Example of transitions fusión rule.

Macrotransitions

Macrotransition are subsystem exhibiting marked graphs properties, and can be represented by a unique tran

sition with a firing delay.

Definition C.l Let the Petri net N = (P,T, Pre, Post) represent the model of a system. A subnet TV' =

(P',T', Pre', Post') where P'
_ P, T' C T, Pre' C Pre, and Post' C Post, is a macrotransition if and only if

• »p and p« 6 V , Vp € P' ,

• 3¿i e T such that .(¡CP\ p> and < / 0,

82 APPENDIX C. SYSTEM'S ANALYSIS

- 3í0 e V such that T0m CT\ T and Ta» -jé 0,

• If x e P' U T' then there exist a path from ¿¿ that leads to x, and other path from x that leads to t0, and

• Vp€P': |»p| = |p»| = 1.

Note that a macrotransitions are non cyclic. Therefore, the analysis of a macrotransition can be achieved by

inserting a place px such that px e ¿„», and p* £ »¿¿.

Since macrotransitions exhibit marked graph properties, the firing delay and optimal schedule of a macrotran

sition can be computed as it is done for marked graphs.

The firing delay of a macrotransition is computed as the cycle time of the marked graph resulting from inserting

the place px to the macrotransition.

The optimal schedule is to execute transitions t e T' as soon as they become enabled.

Macroconflict

Macroconflicts are subsystem exhibiting state machines properties, and can be represented by a conflict whose

transitions represent the elemental T-invariants required to build an elemental T-cover on the subsystem. Ele

mental T-invariants and elemental T-cover are introduced in the next section

Definition C.2 Let the Petri net TV = (P,T, Pre, Post) represent the model of a system. A subnet TV' =

(P', T', Pre', Post') where P' C P, V C T, Pre' C Pre, and Post' C Post, is a macroconflict if and only if

• mt and t« 6 P', Vi 6 V ,

• 3pi 6 P' such that »p¿ C T \ V and »pi f 0,

• 3p0 € P' such that p0» C T \ V and p0« / 0,

• If x € P' U T' then there exist a path from pi that leads to x, and other path from x that leads to pOI and

• Vi 6f: | *¿| = |í.| = 1.

Note that a macroconflicts are non cyclic. Therefore, the analysis of a macroconflict can be achieved by inserting

a transition tx such that tx e p0», and tx 6 «p¿.

Since macroconflicts exhibit state machines properties, transitions in a macroconflict represent the elemental

T-invariants required to build an elemental T-cover on the subsystem. Since inserting the transition tx into the

macroconflict, the macroconflict becomes cyclic and its optimal schedule can be computed through T-invariants

as it is done for state machines.

The firing delay of a transition belonging to a macroconflict is equal to the execution time of the elemental

T-invariant that such transition represents.

The optimal schedule of a macroconflict is to fire the transition of the conflict as soon as they become enabled.

C.2. TRANSFORMATION METHODS 83

C.2.2 Analysis techniques

Increase techniques are suitable just for a reduced set of cases since it transforms a net into another with more

nodes, and the objective of the transformation (to make the analysis easier) seems not to be accomplished.

Therefore, increase techniques are most used to consequently better apply a reduction technique. One of the

most used techniques belonging to this group is the meiosis technique.

Meiosis

Defined as Meiosis(p„ tj), meiosis technique clones a place pt and a transitions tj as follows.

Conditions on N:

1. »P,
= {tg,th},

2. Pi» = {tj}

3. mt, = {Pi},

4- tj» = {pk}

Construction of N':

5. p' = p u {P;}

6. T = TU {t'}}

7. Pre' = Pre\j(p'i,t'j)

8. Post' = (Post \ (¿9,Pi)) U (¿9,P;) U (t'j,pk)

This transformation rule is also a transitive function, therefore is can be generalized for a path of places and

transition. Figure C.2 shows an example of this rule. If this transformation is made over a DTTPN then define

the delay d'} of transition t'j as follows:

d'j = dj

H

o
'• p °

H3+0 KXHO
i-, p. i p. ■„ p i, Pi

Figure C.2: Example of a meiosis transformation.

84 APPENDIX C. SYSTEM'S ANALYSIS

C.3 Description Methods

Description methods are also considered as transformation method. Description methods are divided into two

clasess Bottom-Up Methods and Top-Down Methods.

C.3.1 Bottom-Up Methods

In bottom-up methods, the strategy consists on elaborating complex models starting from simple models corre

sponding to the resulting parts of a decomposition of the complete system, in order to later bind them forming

a model corresponding to the complete system. Every subsystem is modelled for sepárate, either ignoring the

interactions with the other subsystems. The model is built relatively quick and its analysis is easier.

The different subsystems models can have common places or transitions representing common resources or

activities, they constitute the interaction among the subsystems. Once, subsystems models have been defined,

the combination of the models is achieved by fusing the common parts (places, transition, or paths).

Transitions Merging

On each step, two subnets are bind in such a manner that two transitions, one of each subnet, they become a

single transition. The procedure is described at once:

Definition C.3 A merging function M(TV1,¿i,TV2,t_)) is a function that synchronises two nets (Ni and N2) by

merging two transitions (ti G Ti and tj 6 T2), one of each subnet, into a single one (tk £ Ti U T2), generating

a more complex net (N
—

TVi U N2).

Let TV- = (Pi , Tj , Preí , Pos¿i) and TV2 = (P2,T2, Pre2, Post2) be two submodels to be bind through the merging

of ¿j £ Ti and tj e T2 into a single transition tk tf Ti U T2. The resulting net TV = (P, T, Pre, Post) is built as

follow:

P = Pj U P2

T = (Ti\U) U (T2\t3) U {tk}

Pre = {Prei\(mti,ti)} U {Pre2\(mtj,tj)} U {(.¿¿ U mt3,tk)}

Post = {Posti\(ti,Um)} U {Post2\(tj,tj»)} U {(tk,U • Vtjm)}

Example C.l Figure C.3 a) shows the model of a warehouse where h represents the input of raw material, pi

represents the store, and t2 represents the output of raw material. Figure C.3 b) shows the model of a container

producer machine where Í3 represents the input of the raw material to the machine, t4 represents the injection of

the preform and the lid, í5 represents the blowing of the preform, and te represents the output of the container

pieces from the machine These models are combined by the merging of transitions t2 and Í3 in order to obtain

a more complex model. Figure C-4 shows the obtained model.

C.3. DESCRIPTION METHODS 85

Pi

-O"

P:

a)

t,

■0-

Pa t5 ph

—©—
t _ p.

Pt

b)

Figure C.3: Two simple models.

Figure C.4: A complex model built from two simple models.

86 APPENDIX C. SYSTEM'S ANALYSIS

C.3.2 Top-Down Methods

In the top-down methods, there exists a global visión ofthe system from the beginning ofthe model construction.

The strategy consists on defining initially, a model of high level of abstraction without caring the details.

Afterwards, it is achieved a step-wise refinement, in other words, places and transitions expansión in order to

give more detail to the model. The refinement is made until the level of detail of the model satisfies the system

specifications.

These methods impose conditions in the expansión of places or transitions with the purpose that at each step

the properties of the original net are preserved.

C.4 Structural Analysis

C.4.1 Invariants Method

This group of analysis methods differ from the two previous (enumeration and transformation) in the sense that

it is not an exhaustive method. The analysis is concentrated on the net structure, resumed on the incidence

matrix, using linear algebra tools.

Conservativeness and cyclicity are two structural properties easy to analyse through invariants method, they

are related with some dynamical-structural properties as structural boundedness and structural liveness respec

tively. The analysis process is reduced to solve a set of linear equations, obtained from the incidence matrix

of a given Petri net model. Solutions of these linear equations (restricted to non negative integers) lead to

a classification of the Petri net: conservative and repetitive components. This classification allows studying

properties independently of the initial marking.

An invariant of a dynamic system is an assertion that holds for every reachable state. For DEDS's modelled

by Petri nets, it is possible to compute certain vectors of rational numbers (directly from the structure) which

induce invariants. Below are shown two techniques of invariants analysis based on the determination of valid

relationships independent of the net evolution.

Place Invariants

Given an arbitrary Petri net, it is difficult to characterize all the vectors Y such that Y ■ M remains constant

for every reachable marking M. However, it is easy to derive a sufficient condition from the marking equation.

Consider the Petri net of Figure C.5. It is easy to see that for every reachable marking M the equation

M(p2) + M(p3) = 1 holds, i.e., it is an invariant of the system. This equation can be rewritten as

[011
M(pi)

M(p2)

M(p3)

= 1 or just [0 1 1] M = 1

C.4. STRUCTURAL ANALYSIS 87

Figure C.5: The vector Y = (0, 1, 1) is an P-semiflow.

Definition C.4 A P-semiflow Y of a net TV is a nonnegative rational-valued solution Y of the equation

r*N = 0 (C.l)

Definition C.5 A P-semiflow Y is called semi-positive if and only ifY^O and Y / 0. A P-semiflow Y is

called positive if and only ifY>0, i.e. Y(p) > 0 for every place p. The support of a P-semiflow Y, denoted by

(Y) ,
is the set of places satisfying Y(p) > 0. TVoíe that (Y) cannot be the empty set because Y -¡¿ 0.

The non-zero entries in a P-semiflow represent weights associated to the corresponding places so that the

weighted addition of tokens in these places is constant for every reachable marking.

By definition, a set of P-semiflows of a net constitutes a vector space over the field of rational numbers. The

set {(1,0, 1) , (0, 1, 1)} is a basis of the space vector of P-semiflows of the Petri net in Figure 2.7.

P-semiflows allow analysing liveness and boundedness in Petri nets. Esparza [D&E95] exposes these two prop

erties and their relationship with P-semiflows. Let (TV, Mo) be a system

• If (TV, Mo) is a live system, then every semi-positive P-semiflow Y of TV satisfies Y ■ Mq > 0.

• If TV has a positive P-semiflow Y, then (TV, Mo) is bounded.

Definition C.6 Let TV = (P,T, Pre, Post) be a Petri net, a P-invariant of TV is a sub Petri net TV =

(P,T, Pre, Post) generated by a P-semiflow Y where:

1* P = (Y)

2. f = Tn{»(Y)}n{(Y)»}

3. Pre = Pre n(Pxf)

4. Post = Post n(fxP)

Transition Invariants

T-semiflows of a Petri net TV are vectors X satisfying N X = 0. It seems natural to study if T-semiflows also

have interesting properties. It will be shown that T-semiflows are related to the occurrence of sequences which

reproduce a marking (cyclicity property), i.e., those that lead from a marking to itself.

88 APPEJVDÍX C. SYSTEM'S ANALYSIS

Definition C.7 A T-semiflow X of a Petri net N is a nonnegative rational-valued solution of the equation

N • X = 0 (C.2)

The set of T-semiflows of a Petri net constitutes again a vector space over the field of rational numbers.

Example C.2 The dimensión of the T-semiflow space vector of the Petri net of Figure C.6, is 2: the set

{(1,0, 1) , (0, 1, 1)} is a basis of space of T-semiflows.

)

Figure C.6: The vector (1,0, 1) is a T-invariant

Proposition C.l Fundamental Property of T-semiflows

Let a be a finite sequence of transitions of a Petri net TV which is enabled in a marking M . Then the Parikh

vector ~o is a T-semiflow if and only ifM —> M (i.e., if and only ifthe occurrence of a reproduced the marking

M).

Proof. (=*>) Since a is enabled at M, then M —» Mi for some marking M¡. By the Marking Equation

Mi = M + N • ~o . Since ~a is a T-semiflow then N ■ ~a = 0. Therefore, Mi = M.

(<=) If M
—> M then, by the Marking Equation, N

■ ~a = 0. Therefore, "a is a T-semiflow. ■

The definition of semi-positive T-semiflow, positive T-semiflow and support are defined as for P-invariants.

Definition C.8 Let TV = (P,T, Pre, Post) be a Petri net, X be a T-semiflow of TV, M be a marking such that

M 6 R(N,Mq), a be a firable sequence such that a = ¿i, ¿2, ••-, tn and ~~a — X. The firing of the sequence a is

an execution ofX if and only ifM
■—*■

M, and a is a sequence with at least one transition.

For a given T-semiflow X there might be more that one firable sequence a that executes X. The firable sequence

a representing the execution of X depends on the marking.

Example C.3 For the Petri net in Figure C.6 there exist a T-semiflow X = (1, 0, 1) . For this T-semiflow there

exist two firable sequences ai
= ¿i,¿3 and a2

= ¿3,¿i. // the place pi is marked, then ai shall be the sequence

a representing the execution of X . If the place p2 is marked, then a2 shall be the sequence a representing the

execution of X . Note that a\ = a2
= X.

Definition C.9 Let X be a T-semiflow of a Petri net TV, and let a be a firable sequence representing one of

those possible executions of X. The T-semiflow X is said to be enabled if and only if a is enabled.

Definition CÍO Let N = (P.T. Pre, Post) be a Petri net. a T-invariant of N is a. sub Petri net TV =

(P.T, Pre, Post) generated by a T-semiflow X where:

C.4. STRUCTURAL ANALYSIS 89

1* P = Pn{m(X)}n{(X)m}

2. f = (X)

3. Pre ■= Pre fl (P x T)

4. Pos¿ = Posí n (f x P)

The definition of invariants is based on the incidence matrix N of a Petri net. For invariant analysis, usually, the

Petri net requires to be 'puré'. The analysis by invariants considers the Petri net as a whole, and allows studying

global properties of the net. Esparza [D&E95] exposes some Petri nets properties and their relationship with

T-semiflows: Let (TV, Mo) be a system

• Every well-formed Petri net has a positive T-semiflow.

• Every connected Petri net with a positive P-semiflow and a positive T-semiflow is strongly connected.

Minimal Semiflows and Covers

Definition C.ll A semi-positive semiflow Yi is minimal if no other semi-positive semiflow Yj satisfies (Yj) C

Observe that by this definition each nonzero múltiple of a minimal semiflow is again minimal, because the

minimalism of an invariant depends solely on its support.

Theorem C.l Every semi-positive semiflow is a linear combination of minimal semiflows.

Proof. Let Y : X —> Q be a semi-positive semiflows. The proof is done by induction on | (Y) \ .

Base. | (y) | = 1. Then Y is minimal because every semi-positive semiflows has at least one non-zero entry.

Step. | (y) | > 1. If y is minimal, then it is done. So assume that Y is not minimal. Then, there exist a minimal

semiflows Y¡ such that (Y¡) C (Y). Let x be an element of (Yi) ,
and Yj = Y — Yi be a minimal semiflow such

that x tf (Yj).

By the choice of x, Yj(x) = 0 and Yj > 0. Moreover, (Yj) C (Y) . Since (Yi) is a proper subset of (Y) , (Yj) *¿ 0.

Therefore y is a linear combination of T-semiflows, because Y = Yí + Yj.

In the case that Yj is not a minimal T-semiflow. The induction hypothesis can be applied to Y}, conclude

that Yj is linear combination of minimal semiflows, and consequently Y is also linear combination of minimal

semiflows. ■

Theorem C.2 7/ a Petri net has a positive semiflow, then every semiflow is a linear combination of minimal

semiflows.

Proof. Let TV be a Petri net having a positive semiflow Y, and let Y, be an arbitrary semiflow of TV. There

exist an integer k such that kY -h y is a semi-positive semiflow. By the previous theorem, both Y and kY + Y,

are sums of minimal semiflows. Since y = (kY + Yi)
- kY, the semiflow Y, is a linear combination of minimal

semiflows. ■

Note that Y¡ is neither positive ñor semi-positive semiflow, since some of its entries are negative.

90 APPENDIX C. SYSTEM'S ANALYSIS

Definition C.12 A semi-positive semiflow Yi is canonical ifthe greatest common divisor of its non-zero entries

is the unit.

According with the previous definition:

• y = (12, 20, 0, 0, 4) is not a canonical semiflow due to gcd(yi, Y2, Y5) = 4.

• y = (2, 0, 3, 0, 4) is a canonical semiflow due to gcd(Yi, y*, Y5) = 1.

Definition C.l3 A semi-positive semiflow Yi is called elemental if it is minimal and canonical.

The number of elemental semiflows of a net does not depend of the rank of the incidence matrix [SU85], since

this number of T-semiflow can be less, equal or greater than the dimensión of any of the infinite basis of the

kernel. Moreover, a Petri net (even a simple one) might have several elemental semiflows.

Figure C.7: A Petri net with different elemental T-covers.

Definition C.14 Let C = {Yi, Y2, ..., Yq} be a set of semi-positive elemental semiflows and define X as

X = 2_] °¡iYi, where Y¡ G C and cti e Z+

C is said to be a cover ifX is a positive vector.

Proposition C.2 The following algorithm computes in a polynomial number of steps if a set C of semi-positive

semiflows is a cover or not.

Algorithm C.l Algorithm to verify if a set C of semi-positive elemental semiflows is a cover or not.

1. Build a matrix C, where each column of C represents a different semiflow of those contained in C.

2. Multiply the matrix C by a vector of dimensión \C\, whose entries are all l's.

3. If the resulting vector is a semi-positive vector, then C is not a cover.

4. If the resulting vector is a positive vector, then C is a cover.

Proof. Step 1 can be achieved in n steps, where n is the cardinality of C.

Step 2 is a matrix multiplicaron; there exist polynomial algorithms for this purpose that can be achieved with

at most m • n2 steps, where m is the number of entries of the semiflows.

Steps 3 and 4 also can be achieved in at most n steps.

Therefore, the algorithm is executed in at most (m
• n2) + 3n steps ■

C.4. STRUCTURAL ANALYSIS 91

Definition C.15 A cover C is said to be an elemental cover if X = ^cxíYí becomes a positive semiflow only

when q< > 0 for every Yi e C.

Proposition C.3 The following algorithm computes in a polynomial number of steps if the set of semiflows C

is an elemental cover or not.

Algorithm C.2 Algorithm to verify if a set C of elemental semiflows is an elemental cover or not.

1. Prove if C is a cover.

2. If C is not a cover, then the algorithm finishes

3. If C is a cover, then compute a vector X by the following linear programming problem:

n

miny^X(¿)
i=l

C X>1

X>0

Where C is the matrix representing the set of T-semiflows C.

4. If the resulting vector X is a semi-positive vector, then C is a non elemental cover.

5. If the resulting vector X is a positive vector, then C is an elemental cover.

Proof. Step 1 can be achieved in polynomial time by proposition C.2.

Step 2 is just a decisión on the on the outcome of step 1.

Step 3 is linear programming problem, and every linear programming problem can be solved in polynomial time.

Steps 4 and 5 are again decisions on the on the outcome of step 3. Therefore, the algorithm is executed in a

polynomial number of steps. ■

Note that a Petri net might have more than one elemental cover; it depends of the structure of such Petri net.

Example C.4 From the Petri net of Figure C.7 the following elemental T-covers can be found

Co = {

c3 = <

1
"

0

0 1

1 0

0 1

1 0

0
_

1

"

•

1
"

0

0 1

0 1

1 0

1 0

0 1

c4 = <

1 0

0 1

1 0

0 1

0 1

1

1
"

•
_

0
'

0

0 1

0 1

1 0

0 1

1 0

Centro de Investigación y de Estudios Avanzados

del IPN

Unidad Guadalajara

Cinvestav

El Jurado designado por la Unidad Guadalajara del Centro de Investigación y de

Estudios Avanzados del Instituto Politécnico Nacional, aprobó la tesis: SCHEDULING DE

SISTEMAS DE EVENTOS DISCRETOS MODELADOS POR MÁQUINAS DE ESTADOS

SINCRONIZADAS del(a) C. José Luis CÓRDOVA BARBA el día 24 de Enero de 2003

¿¿¿-¿Z^tf¿X*
DR. OFEUa'bEGOVICH DR. LÜT5~ ERNESTO LÓPEZ

MENDOZA MELLADO

INVESTIGADOR CINVESTAV INVESTIGADOR

3A CINVESTAV 3A

CINVESTAV GDL CINVESTAV GDL

GUADALAJARA GUADALAJARA

DR. LUIS ISIDRO AGUIRRE

SALAS

DR. ANTONIO RAMÍREZ PROFESOR

TREVIÑO DEPARTAMENTO DE

INVESTIGADOR CINVESTAV INGENIERÍAS

2A CENTRO UNIVERSITARIO

CINVESTAV GDL DE LA COSTA SUR DE LA

GUADALAJARA UNIVERSIDAD DE

GUADALAJARA

GUADALAJARA

