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Abstract

This work studies the structure of real-valued harmonic functions and

quaternion-valued monogenic functions on the solid torus in Euclidean

space.

An explicit expression is obtained for the Dirichlet-to-Neumann map-

ping for the Laplace operator with respect to series expansions in toroidal

harmonics, thereby reducing the calculation of the operator to algebraic

manipulations on the coefficients. Using these expansions, a method for

computing the numerical solutions of the corresponding Neumann prob-

lem is presented, and numerical illustrations are provided [8].

The second significant contribution presented in this work is devoted

to the construction of a reverse-Appell basis of toroidal harmonic func-

tions. This is used to obtain the principal contribution, which is the con-

struction of bases in the real L2-Hilbert spaces of reduced quaternion and

quaternion-valued monogenic functions on toroidal domains.
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Resumen

Este trabajo estudia la estructura de las funciones armónicas real-valuadas

y las funciones monogénicas cuaternio-valuadas en el toro sólido en el

espacio euclidiano.

Se obtiene una expresión explı́cita del mapeo de Dirichlet-a-Neumann

para el operador de Laplace con respecto a expansiones en serie en armó-

nicos toroidales, ası́ reduciendo el cálculo del operador a manipulaciones

algebraicas en los coeficientes. Por medio de estas expansiones, se pre-

senta un método para calcular las soluciones numéricas del problema de

Neumann correspondiente y se proporcionan ilustraciones numéricas.

La segunda contribución significativa que se presenta en este trabajo

está dedicada a la construcción de una base de Appell inversa de funciones

armónicas toroidales. Esto se emplea para obtener la contribución prin-

cipal, que es la construcción de bases en los espacios de Hilbert L2 reales

consistentes de funciones monogénicas en dominios toroidales con valores

en los cuaterniones reducidas y cuaterniones en los cuaternios completos.
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Introduction

This thesis divides naturally into two parts. The first part, a study of

toroidal harmonics, has been included as a necessary prelude to the sec-

ond part, which deals with the main topic of toroidal monogenics.

Toroidal harmonics. Square-integrable harmonic functions defined on a torus

are represented in a natural way by expansions in basic functions known

as toroidal harmonics, in a manner analogous to power series expansions.

There have been numerous applications of toroidal harmonic functions in

solving elliptic boundary-valued problems of partial differential equations

in analysis and physics (e.g., in magnetostatic field problems [24], elec-

trical engineering and electromechanics [91], and electrostatics [85]). For

certain types of problems, such as boundary problems involving normal

derivatives, these series often require manipulation by termwise differen-

tiation, which produces a new series which is not immediately recogniz-

able in terms of the basic toroidal harmonics.
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INTRODUCTION

In the case of spherical harmonics, the derivative with respect to the

axial variable produces a constant multiple of another spherical harmonic.

This characteristic is called the “Appell property” after [7], and is used to

great advantage in the study of harmonic functions on the ball.

To facilitate a similar comparison of coefficients in the case of the torus,

it would be desirable for toroidal harmonics to satisfy an identity with re-

spect to a real derivative with a similar Appell property. We will show

that they do not, and in fact, the application of ∂/∂x0, ∂/∂x1, or ∂/∂x2

increases the index (or degree) of the toroidal harmonics. However, with

an appropriate change of basis, we can create a new collection of toroidal

harmonics that satisfy what we may call a “reverse Appell property” with

respect to ∂/∂x0. The proposed basis, which is easily handled from com-

putational and theoretical considerations, is fundamental to studying the

collection of monogenic functions on the torus in the second part of the

thesis.

Quaternionic function theory. Although methods of classical complex anal-

ysis have a wide range of applications, they are intrinsically restricted

to two-dimensional problems, which has led to an increasing need for

higher-dimensional counterparts of such methods.

2



INTRODUCTION

Two main ways exist to generalize the theory of functions of one com-

plex variable to higher dimensions. One is the function theory of several

complex variables, which is restricted to an even number of real variables.

The other can be realized using the Hamiltonian quaternion algebra (and

its generalization to Clifford numbers), which leads to quaternionic func-

tion theory. In both approaches, the starting point lies in considering null

solutions of particular underdetermined systems of first-order constant

coefficient partial differential equations in Euclidean spaces.

Quaternionic function theory has several advantages compared with

the theory of several complex variables. One advantage is that it does not

limit the dimension of the real vector space used as the domain. Another

advantage is that higher-order differential operators can be factored into

products of lower-order operators (for example, the Laplace operator can

be factorized by two first-order quaternionic differential operators like in

the plane case for complex variables). In this thesis, we are concerned with

the Euclidean space of dimension 3. For those reasons, our approach fits

into the framework of quaternionic analysis.

The main objects of study in the quaternionic analysis setting are the

classes of harmonic functions and solutions of the generalized (reduced)

3



INTRODUCTION

Cauchy-Riemann (or Fueter) equation ∂ f = (∂/∂x0 + ∑2
i=1 ei∂/∂xi) f = 0,

where e1 and e2 are two of the three basic quaternionic units, subject to the

Hamiltonian multiplication rules (this is described in detail in Subsection

4.4 below). The elements of the latter class are usually called monogenic

(or regular, holomorphic, or hyperholomorphic) functions. See [14, 35, 36,

39, 40, 42, 51, 52, 64, 74, 88] and references therein.

Although quaternionic analysis generalizes the most important fea-

tures of complex analysis, monogenic functions do not enjoy all proper-

ties of holomorphic functions of one complex variable. For instance, due

to the non-commutativity of the quaternion algebra, the product of two

monogenic functions is generally not monogenic; the same holds for the

composition. It is natural, therefore, that new techniques have been sought

for constructing monogenic functions.

In the literature, one technique which has been applied in different con-

texts is based on the factorization of the Laplacian using ∂ and its conju-

gate. In this way orthogonal sets have been constructed and studied span-

ning the Hilbert spaces of square-integrable monogenic functions in the

interior and exterior of the ball [13, 15, 16, 17], spheroidal domains (both

prolate and oblate) [66, 69, 72, 73, 74, 75, 77], as well as over finite and

4



INTRODUCTION

infinite cylinders [67, 71]. To the best of our knowledge, complete sets of

monogenic functions have not previously been built in the context of the

torus.

Each part of this thesis is comprised of three chapters. The outline of

the contents of each chapter is as follows:

In Chapter 1, we summarize the basic facts about the associated Legen-

dre functions of the first and second kinds, emphasizing those of half-an-

odd integer degree and argument greater than 1. For context, we also de-

scribe the spherical harmonics. We then give the classical definition of the

family Ωη0 of tori depending on one real parameter η0 and the toroidal har-

monics and their properties. Some results on Hilbert spaces and Fourier

series are collected at the end of the chapter. None of the material in this

chapter is new.

Chapter 2 is devoted to introducing a doubly-indexed reverse-Appell

basis of harmonic functions expressed in toroidal coordinates as indepen-

dent variables. This basis will be fundamental to the construction of bases

in the real L2-Hilbert spaces of reduced quaternion and quaternion-valued

monogenic functions on the torus in Chapters 5 and 6. For the construc-

tion of the reverse-Appell basis, new formulas for the partial derivatives

5



INTRODUCTION

of the classical toroidal harmonics are produced.

Chapter 3 introduces new techniques for studying the Dirichlet-to-Neumann

mapping and the Neumann problem for the Laplace operator on a torus.

We show that the Dirichlet-to-Neumann mapping is expressed with re-

spect to series expansions in toroidal harmonics and thereby reduced to

algebraic manipulations on the coefficients. Unlike the case for a sphere,

the Dirichlet-to-Neumann mapping for a torus turns out to be much more

complicated, and the numerical solutions of the corresponding Neumann

problem involve solving an infinite system of linear equations. We express

the well-known necessary and sufficient condition for the solvability of the

Neumann problem (compatibility condition), as well as the normalization

condition, in terms of the Fourier coefficients. The solution to the Neu-

mann problem involves a special twist: the free parameter in the unde-

termined linear system cannot be found algebraically, as far as we know.

Therefore we express it as a limit of easily calculated algebraic expressions.

The analysis is illustrated through numerical examples. We then combine

the results for interior and exterior domains to solve the Neumann prob-

lem for a toroidal shell.

Chapter 4 gives basic concepts and terminology concerning quater-

6



INTRODUCTION

nions, including its insertion as a particular case of a Clifford algebra. We

start by recalling the fundamental notions and results from quaternionic

function theory, which provides us with the basic tools for our analysis in

the following chapters. The remainder of this chapter is devoted to a spe-

cial class of quaternion-valued functions named monogenic. Furthermore,

properties of monogenic functions which hold in arbitrary domains in R3

are discussed. None of the material in this chapter is new.

In Chapter 5, we construct a complete independent set in the real linear

Hilbert space of A-valued monogenic functions on the torus. Underlying

our manipulations is a cohomology coefficient associated with an arbitrary

monogenic function. We calculate this coefficient for monogenic constants

(i.e., functions in Ker ∂ ∩ Ker ∂, where ∂ = ∂/∂x0 − ∑2
i=1 ei∂/∂xi). Unlike

the sphere or other simply-connected domains, non-exact monogenics ex-

ist on the torus, although the application of the operator ∂ cannot produce

them. A second difference comes from the already mentioned fact that

∂/∂x0 has a reverse-Appell property, which means that the application

of ∂ cannot produce those monogenics on Ωη0 whose scalar part contains

the 0-level toroidal harmonics. These two differences make the study of

monogenics on Ωη0 very different from domains, such as the ball, prolate

7



INTRODUCTION

and oblate spheroids, and cylinders.

In Chapter 6, we use the basis of A-valued monogenic functions on

the torus built in the previous chapter to construct a basis for the space of

H-valued monogenics in the torus.

At the end, some open problems for future research are stated.

The results of Chapter 3 were published in [8]. Further results of this

thesis have been submitted for publication [9].

8
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Chapter 1

Toroidal harmonic functions

The main object of study of this thesis is the space of quaternion-valued

monogenic functions on a torus, which will be introduced in Chapter 4.

Since the real components of monogenic functions are harmonic functions,

we will need as much information as possible about harmonic functions

on the torus. In this chapter, we will give the classical definition of the

family Ωη0 of tori depending on one real parameter η0 and the toroidal

harmonics in Section 1.3. As prerequisites, in Section 1.1, we summarize

the basic facts about the classical associated Legendre functions of the first

and second kinds with particular emphasis on those of half-an-odd in-

teger degree and argument greater than 1 and, for context, the spherical

harmonics in Section 1.2. Some results we will need on Hilbert spaces and

Fourier series are collected at the end of the chapter. None of the results in

13



CHAPTER 1. TOROIDAL HARMONIC FUNCTIONS

this chapter are original.

1.1 Legendre functions

In this section, we collect the results we will need concerning the associ-

ated Legendre functions of the first and second kinds. The primary refer-

ences are [11, 12, 46, 93].

1.1.1 Definition of the associated Legendre functions

The Legendre polynomials of integral degree n are given by Rodrigues’

formula

Pn(t) =
1

2nn!
dn

dtn (t
2 − 1)n, t ∈ R, n = 0, 1, . . . , (1.1)

and the Legendre functions of the second kind are

Qn(t) =
1
2

Pn(t) log
t + 1
t − 1

−
n−1

∑
k=0

Pn(t)Pn−k(t)
n − k

, |t| > 1. (1.2)

The functions Pn and Qn are the particular cases for m = 0 of the fol-

lowing definition.

Definition 1.1. Let n, m be nonnegative integers such that 0 ≤ m ≤ n.

The associated Legendre functions of the first and second kind (also known as

14



1.1. LEGENDRE FUNCTIONS

Ferrer’s functions), Pm
n (t) and Qm

n (t), are given respectively by

Pm
n (t) =

 (−1)m(1 − t2)m/2 dmPn(t)
dtm , t ∈ [−1, 1],

(t2 − 1)m/2 dmPn(t)
dtm , |t| > 1,

and

Qm
n (t) =

 (1 − t2)m/2 dmQn(t)
dtm , t ∈ [−1, 1],

(t2 − 1)m/2 dmQn(t)
dtm , |t| > 1.

The index n is called the degree, and m is the order of the associated

Legendre function. Pm
n and Qm

n are linearly independent solutions of the

ordinary differential equation known as the Legendre differential equation,

(1 − t2)
d2y
dt2 − 2t

dy
dt

+

(
n(n + 1)− m2

1 − t2

)
y = 0. (1.3)

We will mostly need the associated Legendre functions for which the

degree is half an odd integer. They are given as follows:

Definition 1.2. [46, pp. 437, 438]) Let n, m ∈ Z and n, m ≥ 0. Define

Pm
n− 1

2
(cosh η) =

(−1)m 1
2π

Γ(n + 1
2)

Γ(n − m + 1
2)

∫ 2π

0

cos mφ

(cosh η + sinh η cos φ)n+1/2 dφ, (1.4)

and

Qm
n− 1

2
(cosh η) = (−1)m2m Γ(n + m + 1

2)Γ(
1
2)

Γ(n + 1)
sinhm η e−(n+m+ 1

2 )η

× 2F1(
1
2
+ m, n + m +

1
2

; n + 1; e−2η), (1.5)

15



CHAPTER 1. TOROIDAL HARMONIC FUNCTIONS

where Γ denotes the (complete) gamma function defined by Γ(n) = (n −

1)! (see, e.g., [2, pp. 255–258]), and

2F1(a, b; c; z) =
∞

∑
n=0

(a)n(b)n

(c)n

zn

n!
(1.6)

with |z| < 1 is the Gaussian hypergeometric function and the Pochham-

mer symbol is (q)n = q(q + 1) · · · (q + n − 1) with (q)0 = 1 by convention.

We give these definitions explicitly because the values of Pm
n (t) and

Qm
n (t) vary from author to author, by a change of sign or, in some cases,

by a factor of the complex number i.

We need the following results related to the Legendre functions of the

second kind.

Proposition 1.3. For all n, m ∈ Z, n, m ≥ 0 and η ∈ R+ we have the following

inequality:

(−1)mQm
n−1/2(cosh η) > 0. (1.7)

Proof. It is shown in [46, p. 195] that

Qm
n−1/2(t) =

(−1)m

2n+1/2
Γ(n + m + 1/2)

Γ(n + 1/2)
(t2 − 1)m/2

∫ 1

−1

(1 − s2)n−1/2

(t − s)n+m+1/2 ds.

The inequality follows immediately from this, because all of the factors

except (−1)m are positive.

16



1.1. LEGENDRE FUNCTIONS

Proposition 1.4. Let η > 0 and let m be any integer. Then

lim
n→∞

Qm
n−1/2(cosh η)

Qm
n−3/2(cosh η)

= e−η, (1.8)

which does not depend on the value m.

Proof. In [46, p. 305] it is shown that for fixed η and m,

Qm
n (cosh η) ∼ (−1)m Γ(n + m + 1)

Γ(n + 1)
(π

n
)1/2 e−(n+1/2)η

(2 sinh η)1/2 (1.9)

as n → ∞, where the symbol ∼ means that the ratio of the two expressions

tends to 1. By dividing two of these expressions, we obtain the desired

limit.

1.1.2 Recursion formulas for Legendre functions

There are many formulas connecting three associated Legendre functions

whose indices differ by no more than 1. The best known of these formulas

hold when the functions are applied in the range |t| < 1 [11, 46, 93] in part

because of their close relationship to spherical harmonics (see Section 1.2

below). The Legendre functions of half-integer degree have a singularity

at t = 1, and can be continued analytically to find a recurrence formula for

t ∈ C − [−1, 1]. Since we will often need to use Qm
n−1/2(t) in the following

chapters, we give a list of the main formulas with emphasis on |t| > 1.

The notation is as follows. The formulas are valid for any value of n,

17



CHAPTER 1. TOROIDAL HARMONIC FUNCTIONS

which in later applications will be substituted for n − 1/2. The symbol

Lm
n (t) represents Pm

n (t) or Qm
n (t).

Proposition 1.5 ([11, 46]). Let n, m ∈ Z and t ∈ R. Then

Lm
−n(t) = Lm

n−1(t). (1.10)

(1 − t2)(Lm
n+1)

′(t) = (n + m + 1)Lm
n (t)− (n + 1)tLm

n+1(t), (1.11)

(n − m + 1)Lm
n+1(t) = (2n + 1)tLm

n (t)− (n + m)Lm
n−1(t). (1.12)

Proposition 1.6 ([11]). Let n ≥ 0, 0 ≤ m ≤ n, and let |t| > 1. Then

(t2 − 1)(Lm
n+1)

′(t) = (t2 − 1)1/2Lm+1
n+1 (t) + mtLm

n+1(t), (1.13)

(t2 − 1)1/2Lm
n+1(t) =

1
2n + 3

(Lm+1
n+2 (t)− Lm+1

n (t)), (1.14)

2mtLm
n+1(t)

= (t2 − 1)1/2
(
− Lm+1

n+1 (t) + (n + m + 1)(n − m + 2)Lm−1
n+1 (t)

)
, (1.15)

(n − m)tLm
n (t) = (t2 − 1)1/2Lm+1

n (t) + (n + m)Lm
n−1(t). (1.16)

The following recursive formulas are deduced similarly to the corre-

sponding ones for argument |t| < 1. Since we have not found them in the

literature, we include the proof for completeness.

18



1.1. LEGENDRE FUNCTIONS

Proposition 1.7. Let n ≥ 0, 0 ≤ m ≤ n, and let |t| > 1. Then

2mLm
n (t)

= (t2 − 1)1/2
(
− Lm+1

n−1 (t) + (n + m − 1)(n + m)Lm−1
n−1 (t)

)
, (1.17)

Lm
n+1(t) = t Lm

n (t) + (n + m) (t2 − 1)1/2 Lm−1
n (t). (1.18)

Lm+1
n−1 (t)− (n + m)(n + m − 1)Lm−1

n−1 (t)

= Lm+1
n+1 (t)− (n − m + 1)(n − m + 2)Lm−1

n+1 (t). (1.19)

Proof. The formulas follow by analytic continuation of the corresponding

recurrence formulas for t ∈ [−1, 1], using the following properties. Let

s = 1 − ϵ, t = 1 + ϵ. The function (1 − s2)1/2 continued in the upper half-

plane from s to t in a semicircle around 1 + 0i gives (t2 − 1)1/2 + O(ϵ). In

[46], it is shown that the continuation of Pm
n (s) gives iPm

n (t) + O(ϵ) while

the continuation of Qm
n (s) gives −iQm

n (t) + O(ϵ). The imaginary factors

±i combined with those of Definition 1.1 give the desired formulas for

t > 1.

Whipple’s transformation for Legendre functions, named after Francis

John Welsh Whipple, arises from a general expression concerning associ-

ated Legendre functions [92]. The Whipple formulas for Legendre func-

tions are as follows:

19



CHAPTER 1. TOROIDAL HARMONIC FUNCTIONS

Proposition 1.8 ([2]).

Pm
n− 1

2
(cosh η) =

(−1)n

Γ(n − m + 1
2)

√
2

π sinh η
Qn

m− 1
2
(coth η), (1.20)

Qm
n− 1

2
(cosh η) =

(−1)nπ

Γ(n − m + 1
2)

√
π

2 sinh η
Pn

m− 1
2
(coth η). (1.21)

The following result shows how the Legendre functions of the second

kind appear in the Fourier series of powers of a constant minus cos θ.

Proposition 1.9 ([26]). For all α ∈ C,

(cosh η − cos θ)−α

=
1

Γ(α)

√
2
π

e−iπ(α−1/2)

(sinh η)α−1/2

∞

∑
n=0

εn Qα−1/2
n−1/2(cosh η) cos(nθ)

with εn = 1 + δ0,n, where δi,j is the Kronecker delta function defined by δi,i = 1

and δi,j = 0 if i ̸= j.

A particular case is known as Heine’s formula due to Heinrich Eduard

Heine:

1√
cosh η − cos θ

=

√
2

π

∞

∑
n=0

εn Q0
n− 1

2
(cosh η) cos(nθ). (1.22)

20



1.2. SPHERICAL HARMONICS

1.2 Spherical harmonics

Solid spherical harmonics are homogeneous harmonic functions. There-

fore a spherical harmonic is determined in all of R3 by its degree of homo-

geneity and its values on the surface of the sphere S2. These restrictions

to S2 are known simply as spherical harmonics. Although we will not

present new research on spherical harmonics in this thesis, it is important

to summarize some basic facts which can be found in [6, 12, 84] because

they will serve for comparison with results on toroidal harmonics.

We consider the spherical coordinate system (r, θ, φ) in R3 \ {0}, de-

fined by

x0 = r cos θ, x1 = r sin θ cos φ, x2 = r sin θ sin φ, (1.23)

where r ∈ [0, ∞) is equal to |x|, θ ∈ [0, π] is the polar angle of x, and

φ ∈ [0, 2π) is the azimuthal angle.

The three-dimensional Laplacian is expressed in spherical coordinates

as follows,

∆ =
1
r2

∂

∂r

(
r2 ∂

∂r

)
+

1
r2 sin2 φ

∂2

∂θ2 +
1

r2 sin φ

∂

∂φ

(
sin φ

∂

∂φ

)
.

The procedure of separation of variables leads to the following solu-

tions.
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Definition 1.10. The spherical harmonics of degree n = 0, 1, . . . , and order

m = 0, 1, . . . , n, are defined by

Y±
n,m(θ, φ) = Pm

n (cos θ)Φ±
m(φ),

where

Φ+
m(φ) = cos(mφ), Φ−

m(φ) = sin(mφ). (1.24)

Further, the interior solid spherical harmonics are

rnY±
n,m(θ, φ), (1.25)

and the exterior solid spherical harmonics are

1
rn+1 Y±

n,m(θ, φ), r > 0. (1.26)

The interior (resp., exterior) solid spherical harmonics are harmonic

functions and are homogeneous polynomials (resp., functions) of degree

n (resp., −(n + 1)) in the variables x0, x1, x2.

The spherical harmonics are orthogonal in L2({x : |x| = 1}), i.e.,

∫ 2π

0

∫ π

0
Y±

n1,m1
(θ, φ)Y±

n2,m2
(θ, φ) sin θ dθ dφ

=
2π

(2n1 + 1)
(n1 + m1)!
(n1 − m1)!

δn1,n2 δm1,m2 ,

and in fact they form an orthogonal basis of L2({x : |x| = 1}).
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It is well-known that the internal solid spherical harmonics (1.25) form

an orthogonal basis of L2({x : |x| < 1}) and the external solid spherical

harmonics (1.26) form an orthogonal basis of L2({x : |x| > 1}).

Clearly, the partial derivatives of rnY±
n,m (resp., (1/rn+1)Y±

n,m) with re-

spect to x0, x1, x2 are also harmonic, and they are polynomials (resp., func-

tions) of degree n − 1 (resp., −(n + 2)). It further follows that they can be

expressed as linear combinations of interior (resp., exterior) solid spheri-

cal harmonics of degree n − 1 (resp., −(n + 2)). The expressions for the

partial derivatives with respect to x0 are particularly simple.

Proposition 1.11 ([68, 74, 75]).

∂

∂x0
rnY±

n,m = (n + m)rn−1Y±
n−1,m (1.27)

for m = 0, 1, . . . , n − 1, and

∂

∂x0

1
rn+1 Y±

n,m = −(n + 1 − m)
1

rn+2 Y±
n+1,m (1.28)

for m = 0, 1, . . . , n.

Equality (1.27) (resp., (1.28)) is known as an “Appell property” (resp.,

“reverse-Appell property”) for the interior (resp., exterior) solid spherical

harmonics with respect to ∂/∂x0, and will be discussed in Chapter 2.
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1.3 Toroidal harmonics

1.3.1 Elementary coordinates on torus

In geometry, a torus (plural tori, colloquially donut, or doughnut) is a

surface of revolution generated by revolving a circle in three-dimensional

space about an axis that is coplanar with the circle. The distance R0 from

the center of the tube to the axis of the torus is called the major radius.

The distance r, 0 ≤ r ≤ R0, is the radius of the tube and is called the

minor radius. θ, φ ∈ [0, 2π) are called the poloidal and toroidal angles,

respectively. The elementary toroidal coordinates (r, θ, φ) are then given by

x0 = r sin θ, x1 = (R0 + r cos θ) cos φ, x2 = (R0 + r cos θ) sin φ,
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1.3. TOROIDAL HARMONICS

where

r =
√
((x2

1 + x2
2)

1/2 − R0)2 + x2
0,

θ = tan−1
( x0

(x2
1 + x2

2)
1/2 − R2

0

)
,

φ = tan−1
(x2

x0

)
.

In these coordinates the Laplacian is

∆v =
∂2v
∂x2

0
+

∂2v
∂x2

1
+

∂2v
∂x2

2

=

(
cos θ

R + r cos θ
+

cos2 θ

r2 +
sin2 θ

r

)
∂v
∂r

+

(
− sin θ

r(R + r cos θ)

)
∂v
∂θ

−
(

sin φ cos φ(sin2 θ + r)
r(R + r cos θ)2

)
∂v
∂φ

+
∂2v
∂r2 +

1
r2

∂2v
∂θ2

+
1

(R + r cos θ)2
∂2v
∂φ2 +

(
2 sin θ cos θ cos2 φ

r

)
∂2v
∂r∂θ

whenever v ∈ C2.

While the elementary toroidal coordinates may appear natural and in-

tuitive, they have limitations. In the first place, they do not fill up R3 in a

natural way and depend on the auxiliary constant R0. These coordinates

are not commonly used to solve the Laplace equation because it does not

lend itself easily to separating the variables. We have only presented them

here to highlight the contrast with classical toroidal coordinates, the coor-

dinate system given in the following subsection.
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1.3.2 Toroidal coordinates

Our basic reference for properties of toroidal coordinates is [46]. See also

[56].

Definition 1.12. Let 0 ≤ η < ∞, −π ≤ θ < π, and −π ≤ φ < π. The

relationship between the toroidal coordinates (η, θ, φ) and the Cartesian

coordinates x = (x0, x1, x2) is given by

x0 =
sin θ

cosh η − cos θ
, x1 =

sinh η cos φ

cosh η − cos θ
, x2 =

sinh η sin φ

cosh η − cos θ
. (1.29)

The surface η = η0 is a two-dimensional torus with axial circle of ra-

dius coth η0 centered at the origin in the x1, x2-plane, having a circular

cross section of radius csch η0. The surface θ = θ0 is that part of the sphere

of radius csc θ0, with center at x0 = cot θ0, x1 = x2 = 0, which is above the

x1, x2-plane, and the rest of the same sphere below the x1, x2-plane, is the

surface θ = π − θ0. The limiting torus η = ∞ is a circle of radius 1. The
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1.3. TOROIDAL HARMONICS

toroidal coordinates are not defined in the small subsets

S1 = {x ∈ R3 : x0 = 0, x2
1 + x2

2 = 1},

R0 = {x ∈ R3 : x1 = x2 = 0}.

Definition 1.13. For any fixed η0 > 0, we define the interior and exterior

toroidal domains

Ωη0 = {x : η > η0} ∪ S1,

Ω∗
η0

= {x : η < η0} ∪ R0.

Proposition 1.14. The three coordinate tangent vectors to ∂Ωη0 = ∂Ω∗
η0

are

xη =
∂x
∂η

=
1

(cosh η0 − cos θ)2×(
− sinh η0 sin θ, cos φ(1 − cosh η0 cos θ), sin φ(1 − cosh η0 cos θ)

)
,

xθ =
∂x
∂θ

=
1

(cosh η0 − cos θ)2×(
cos θ cosh η0 − 1, − sin θ cos φ sinh η0, − sin θ sin φ sinh η0

)
,

xφ =
∂x
∂φ

=
1

cosh η0 − cos θ

(
0, − sin φ sinh η0, cos φ sinh η0

)
. (1.30)

Proposition 1.15. Toroidal coordinates are an orthogonal coordinate system; that

is, xη, xθ, xφ are orthogonal vectors at every point of R3 − (S1 ∪ R0).

Proof. The proof follows directly from Proposition 1.14.
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1.3.3 Definition of toroidal harmonics

The Laplacian in toroidal coordinates is given by [46]

∆u =
∂2u
∂x2

0
+

∂2u
∂x2

1
+

∂2u
∂x2

2

=
cosh η − cos θ

sinh η

(
sinh η

∂

∂θ

(
1

cosh η − cos θ

∂u
∂θ

)
+

∂

∂η

(
sinh η

cosh η − cos θ

∂u
∂η

)
+

1
sinh η(cosh η − cos θ)

∂2u
∂φ2

)
. (1.31)

Thus ∆u = 0 if and only if

sinh η
∂

∂θ

(
1

cosh η − cos θ

∂u
∂θ

)
+

∂

∂η

(
sinh η

cosh η − cos θ

∂u
∂η

)
+

1
sinh η(cosh η − cos θ)

∂2u
∂φ2 = 0. (1.32)

Equation (1.32) is not separable in this form. However, one can obtain a

separable equation by a change of variable:

u =
√

cosh η − cos θ v. (1.33)

The derivatives of this new function v satisfy

∂u
∂θ

=
1
2

sin θ√
cosh η − cos θ

v +
√

cosh η − cos θ
∂v
∂θ

,

∂u
∂η

=
1
2

sinh η√
cosh η − cos θ

v +
√

cosh η − cos θ
∂v
∂η

.
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Inserting these into equation (1.32) converts it into

sinh η
∂

∂θ

(
1

cosh η − cos θ

(
1
2

sin θ√
cosh η − cos θ

v +
√

cosh η − cos θ
∂v
∂θ

))
+

∂

∂η

(
sinh η

cosh η − cos θ

(
1
2

sinh θ√
cosh η − cos θ

v +
√

cosh η − cos θ
∂v
∂η

))
+

1
sinh η

√
cosh η − cos θ

∂2v
∂φ2 = 0.

After calculating the partial derivatives and making some cancellations,

one finds that u is harmonic when

∂

∂θ

(
1
2

sinh η sin θ

(cosh η − cos θ)3/2

)
v +

sinh η√
cosh η − cos θ

∂2v
∂θ2

+
∂

∂θ

(
1
2

sinh2 η

(cosh η − cos θ)3/2

)
v +

1√
cosh η − cos θ

∂

∂η
(sinh η

∂v
∂η

)

+
1

sinh η
√

cosh η − cos θ

∂2v
∂φ2 = 0.

Multiply this equation by sinh η(cosh η − cos θ)1/2:

sinh2 η
∂2v
∂θ2 + sinh η

∂

∂η
(sinh η

∂v
∂η

) +
∂2v
∂φ2 +

√
cosh η − cos θ×(

∂

∂θ
(

1
2

sinh2 η sin θ

(cosh η − cos θ)3/2 ) + sinh η
∂

∂η
(

1
2

sinh2 η

(cosh η − cos θ)3/2 )

)
v = 0.

We can make the simplification in the last term,

∂

∂θ

(
1
2

sinh2 η sin θ

(cosh η − cos θ)3/2

)
+ sinh η

∂

∂η

(
1
2

sinh2 η

(cosh η − cos θ)3/2

)
=

sinh2 η

4
√

cosh η − cos θ
,
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to find that the condition for u to be harmonic is that v satisfies

sinh2 η
∂2v
∂θ2 + sinh η

∂

∂η

(
sinh η

∂v
∂η

)
+

∂2v
∂φ2 +

(
sinh2 η

4

)
v = 0. (1.34)

Equation (1.34) is separable. Suppose that v can be expressed as a product

v = H(η)Θ(θ)Φ(φ). (1.35)

We substitute formula (1.35) into (1.34) and find

sinh2 η
1
Θ

d2Θ
dθ2 + sinh η

1
H

d
dη

(sinh η
dH
dη

) +
1
Φ

d2Φ
dφ2 +

sinh2 η

4
= 0,

which we can write as

sinh2 η
1
Θ

d2Θ
dθ2 + sinh η

1
H

d
dη

(sinh η
dH
dη

) +
sinh2 η

4
= − 1

Φ
d2Φ
dφ2 = m2,

where m must be a constant because a function of (η, θ) is equated to a

function of φ. Also, m has to be an integer because Φ(φ) is a periodic

function. Thus

Φ(φ) = c1 cos(mφ) + c2 sin(mφ). (1.36)

We will assume that m ≥ 0 because negative values of m will give no new

functions. Similarly, we see that n is constant in

1
sinh η

1
H

d
dη

(sinh η
dH
dη

) +
1
4
− m2

sinh2 η
=

−1
Θ

d2Θ
dθ2 = n2 (1.37)
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since it equates a function of η to a function of θ. We have

Θ(θ) = c3 cos(nθ) + c4 sin(nθ), (1.38)

where n is a positive integer. Finally, H(η) satisfies the differential equa-

tion

1
sinh η

d
dη

(sinh η
dH
dη

)− (
m2

sinh2 η
+ (n2 − 1

4
))H = 0.

By comparison with the Legendre equation (1.3), this equation is satisfied

when

H(η) = c5Pm
n− 1

2
(cosh η) + c6QPm

n− 1
2
(cosh η), (1.39)

where Pm
n− 1

2
or Qm

n− 1
2

are given in Definition 1.2.

The solution v of (1.35) is obtained by combining (1.36), (1.38), and

(1.39). According to (1.33), one only needs to multiply the solution by√
cosh η − cos θ to find solutions u for Laplace’s equation in toroidal coor-

dinates. In the following definition, recall that Φ±
n is defined in (1.24).

Definition 1.16. Let n and m be nonnegative integers. Let ν, µ = ±1 serve

as superscripts in (1.24). For x /∈ R0 ∪ S1, the interior toroidal harmonics Iν,µ
n,m

are defined as follows:

Iν,µ
n,m(x0, x1, x2) = (cosh η − cos θ)1/2Qm

n−1/2(cosh η)Φν
m(θ)Φ

µ
m(φ). (1.40)
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The exterior toroidal harmonics Eν,µ
n,m are defined as follows:

Eν,µ
n,m(x0, x1, x2) = (cosh η − cos θ)1/2Pm

n−1/2(cosh η)Φν
m(θ)Φ

µ
m(φ). (1.41)

The combinations of indexes (n, m, ν, µ) = (0, m,−1, µ) or (n, 0, ν,−1) will

never be considered because Φ−
0 = 0 identically.

For convenience, we will often write superscripts as “+” in place of 1

and “−” in place of −1.

1.3.4 Asymptotic values of toroidal harmonics

Definition 1.16 below is not applicable to points in R0 ∪ S1 because toroidal

coordinates are singular at η = 0 and η = ∞, and the solution of a differen-

tial equation at such points is meaningless. We must extend the definitions

of Iν,µ
n,m and Eν,µ

n,m to the full domains Ωη0 and Ω∗
η0

.

We will use the following asymptotic properties of the Legendre func-

tions:

Lemma 1.17. For fixed n and m, e(n+1/2)ηQm
n−1/2(cosh η) is bounded as η →

∞; Pm
n−1/2(cosh η) is bounded as η → 0.
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Proof. In [46, p. 436], it is shown that

Qm
n−1/2(cosh η) ∼

e−(n+1/2)η(1 − e−2η)mF(m + 1/2, n + m + 1/2; n + 1; e−2η)

as η → ∞. Since (1 − e−2η)m → 1 and the hypergeometric function tends

to F(m+ 1/2, n+m+ 1/2; n+ 1; 0), we have the desired asymptotic state-

ment about Qm
n−1/2. Similarly, from [46, p. 255 (110)]

Pm
n−1/2(t) =

π Γ(n + m + 1/2)
Γ(n + 1/2)

∫ π

0
(t +

√
t2 − 1 cos φ)n−1/2 Φ+

m(φ) dφ.

The Γ factors are constant, and the integral is bounded as t = cosh η →

1.

Proposition 1.18. The values of Iν,µ
n,m(x) are bounded for x near S1, and the

values of Eν,µ
n,m(x) are bounded for x near R0.

Proof. We look at the limiting values of supθ,φ |I
ν,µ
n,m(η, θ, φ)| for η → ∞,

and the limiting values of supθ,φ |E
ν,µ
n,m(η, θ, φ)| for η → 0. The factors

Φ±
m(θ)Φ±

n (φ) in Definition 1.16 are bounded by 1, so one only has to look

at

√
cosh η − cos θ Qm

n−1/2(cos θ),
√

cosh η − cos θ Pm
n−1/2(cos θ).
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As η → ∞ or η → 0,

√
cosh η − cos θ ∼ 1√

2
eη/2 or

√
cosh η − cos θ ∼

√
1 − cos θ,

respectively. The result now follows from Lemma 1.17.

A further remarkable result is the following:

Proposition 1.19. The interior toroidal harmonics extend to harmonic functions

on R3 \ R0. The exterior toroidal harmonics extend to harmonic functions on

R3 \ S1.

Proof. In [10, p. 202, Thm. 9.13] it is shown that any subset of Rn which is

a C1 image of a closed ball of dimension no greater than n − 2 is a remov-

able set for harmonic functions; that is, any bounded harmonic function in

the complement of such a set in a domain Ω is extendable to a harmonic

function in Ω. Since S1 as well as finite intervals in R0, are submanifolds of

dimension 1 in R3, this result applies to Iν,µ
n,m(x) and Eν,µ

n,m(x) by Proposition

1.18.

It may be verified by similar asymptotic expansions that the interior

toroidal harmonics (1.40) tend to infinity near the axis R0, while the exte-

rior toroidal harmonics (1.41) tend to infinity near the circle S1. We will

not need to use this fact explicitly.
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1.4 Contrast between interior harmonics in the
torus and the sphere

In Section 1.2, we gave a brief summary of basic interior harmonic func-

tions on the sphere. The following are some similarities and differences

between these function spaces and the torus.

Spherical Toroidal
Homogeneous
polynomials.

Not polynomials

Finite subbasis for
each degree

Doubly infinite family

In Chapter 2, we will find another important distinction:

Appell property Reverse Appell prop-
erty after change of
basis

The transition from the expansion in interior and exterior spherical har-

monics to that in interior toroidal harmonics (and vice-versa) is worked

out in [58]. One of these fundamental formulas relevant to the sequel is

the following.
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Proposition 1.20. Let k ≥ 0 and 0 ≤ m ≤ k. Then

|x|nY±
k,m(x)

= (−1)m
√

2
π


Pm

k (0)∑∞
n=0 εn

Γ(n−m+1/2)
Γ(n+m+1/2) cm

nk I+,±
n,m (x), n + m even,

−2Pm
k+1(0)∑∞

n=1
Γ(n−m+1/2)(n−m+1)
Γ(n+m+1/2)(n+m+1) sm

nk I−,±
n,m (x), n + m odd,

(1.42)

where cm
nk and sm

nk are rational numbers that satisfy certain recurrence relations.

Here εn has the same meaning as in Proposition 1.9.

1.5 Limits of harmonic functions

In this section, we introduce some basic results on harmonic functions and

their associated function theory. In all cases, we refer to real-valued func-

tions of three variables x0, x1, x2 unless specified otherwise. For detailed

information, we refer, for instance, to [10].

1.5.1 Basic properties

Harmonic functions are well-known to have a powerful connection with

complex function theory [10].

Proposition 1.21. Let fn be harmonic functions, and let fn → f uniformly on

every compact subset of the common domain Ω ⊆ R3. Then f is harmonic.

Proposition 1.22. Every harmonic function in Ω ⊆ R3 is real-analytic in Ω,
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that is, in a sufficiently small neighborhood of every point (x̃0, x̃1, x̃2) ∈ Ω it can

be expressed as a uniformly convergent power series

∞

∑
n=0

∑
i0+i1+i2=n

ai0,i1,i2(x0 − x̃0)
i0(x1 − x̃1)

i1(x2 − x̃2)
i2 .

The polynomial ∑i0+i1+i2=n ai0,i1,i2(x0 − x̃0)
i0(x1 − x̃1)

i1(x2 − x̃2)
i2 is ho-

mogeneous of degree n, and is called the homogeneous part of degree n of the

analytic function. If

f (x) =
∞

∑
n=0

pn(x),

where pn is a homogeneous polynomial of degree n, then the homoge-

neous part pn is uniquely determined by f .

Proposition 1.23. A uniformly convergent series on a compact set of analytic

functions may be differentiated term by term, that is,

∂

∂xi

∞

∑
n=0

fn =
∞

∑
n=0

∂

∂xi
fn

for i = 0, 1, 2.

As a consequence, the homogeneous part of any degree n of a harmonic func-

tion is harmonic.

In later chapters one needs to take the partial derivatives of uniformly
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convergent series (on compact subsets) of the form

∞

∑
n=0

∞

∑
m=0

∑
ν=±1

∑
µ=±1

aν,µ
n,m I ν,µ

n,m(x)

with aν,µ
n,m ∈ R.

1.5.2 Hilbert spaces

Now we state a few standard definitions relating to real Hilbert spaces

[45, 55]. Here Ω ⊆ R3 is an open set.

Definition 1.24. L2(Ω) = { f : Ω → R : f is measurable and ∥ f ∥2 < ∞}

with

∥ f ∥2 =

( ∫
Ω
| f (x)|2 dVx

)1/2

, (1.43)

where dV = dVx = dx0dx1dx2 is the volume element on R3. Two functions

in L2(Ω) are considered identical when their difference is zero outside of

a set of measure zero.

We may write L2(Ω, R) = L2(Ω) when we are also considering func-

tions taking nonreal values. The norm (1.43) is induced by the inner prod-

uct

⟨ f , g⟩2 =
∫

Ω
f (x) g(x) dVx. (1.44)

With this inner product, L2(Ω) is a real Hilbert space, that is, a complete

inner product space.
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Definition 1.25. The Sobolev space H1(Ω) consists of f ∈ L2(Ω) which have

derivatives in the generalized sense that are also in L2(Ω). The norm on

H1(Ω) is defined by

∥ f ∥1,2 =

(
(∥ f ∥2)

2 +
2

∑
i=0

(∥ ∂ f
∂xi

∥2)
2
)1/2

.

Definition 1.26. H1
0(Ω) is the closure of the subspace of H1(Ω) comprised

of infinitely differentiable functions with compact support in Ω. H1/2(∂Ω)

is the quotient space

H1/2(∂Ω) = H1(Ω)/H1
0(Ω)

endowed with the quotient norm.

One thinks of elements of H1
0(Ω) as those functions in H1(Ω) which

vanish on the boundary. In this sense, H1/2(∂Ω) can be thought of as the

collection of boundary values of functions in H1(Ω). The boundary value

of f ∈ H1(Ω) is called the trace and is denoted by tr f .

Proposition 1.27. The trace map tr : H1(Ω) → H1/2(∂Ω) is a bounded linear

function with respect to the corresponding Sobolev norms.

The larger space H−1/2(∂Ω) is defined in terms of Fourier transforms;

we refer to [45] for details.

39



CHAPTER 1. TOROIDAL HARMONIC FUNCTIONS

The following result states that the harmonic functions in L2(Ω) form

a closed subspace of L2(Ω).

Proposition 1.28 ([10]). Let fn be harmonic functions and let fn → f in L2(Ω).

Then fn → f uniformly on compact subsets of Ω, so f is also harmonic.

Now we look at the specific case of the torus Ωη0 . Using the weight

function

w(η, θ, φ) =
(cosh η − cos θ)2

sinh η
, (1.45)

one may define a weighted L2 inner product on real-valued functions in

the torus Ωη0 by

⟨ f , g⟩η0 =
∫

Ωη0

f g w dV. (1.46)

Proposition 1.29. (a) The interior toroidal harmonics {I ν,µ
n,m} form a complete

orthogonal system in Har(Ωη0) ∩ L2(Ωη0 , w). Their norms are

∥I ν,µ
n,m∥2

η0
= εnεm

∫ ∞

n0

(
Qm

n−1/2(cosh η)

)2

dη

where εn = 1 + δn,0 and δn,m is the Kronecker delta function.

(b) The restrictions on the boundary { I ν,µ
n,m
∣∣
∂Ωη0

} are complete in L2(∂Ωη0)

and L2(∂Ωη0 , w).

Proof. First we prove (b). It is well known that {Φν
n(θ)Φµ

m(φ)} is a com-
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plete set in L2([−π, π]2). Given a boundary function expressed as h(θ, φ)

in toroidal coordinates, we can write

h(θ, φ)√
cosh η0 − cos θ

= ∑
n

∑
m

aν,µ
n,mΦν

n(θ)Φµ
m(φ), (1.47)

convergent in L2(Ωη0), which gives

h(θ, φ) = ∑
n

∑
m

aν,µ
n,m

Qm
n−1/2(cosh η0)

I ν,µ
n,m(x0, x1, x2) (1.48)

showing the completeness on the boundary.

Now we consider (a). The orthogonality of the toroidal harmonics with

respect to the weight function w follow from the fact that this function

admits separating the three integrals:

∫ π

−π

∫ π

−π

∫ ∞

η0

(cosh η − cos θ)1/2Qm
n−1/2(cosh η)

)2 sinh η

(cosh η − cos θ)3

.
(cosh η − cos θ)2

sinh η
cos2(nθ) cos2(mφ) dη dθ dφ = 0.

Let h ∈ L2(∂Ωη0). We are interested in the harmonic extension of h

to the interior of Ωη0 . First suppose that h is of class C3(∂Ωη0). Then the

Fourier series (1.47) converges uniformly, i.e., the tails of sums for n, m ≥

N converge uniformly to zero as N → ∞. (See Proposition 1.31 below, and

recall that ∑n,m(m + n + 1)−3 < ∞.) Further, this argument shows that

the condition h ∈ C3(∂Ωη0) may be weakend to the assumption that the

Fourier series of the boundary values converges absolutely at every point
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of ∂Ωη0 . By the Maximum Principle, these tails converge uniformly to zero

in Ωη0 . Thus by (1.48) the partial sums

uN = ∑
n,m≤N

aν,µ
n,m

Qm
n−1/2(cosh η0)

I ν,µ
n,m(x0, x1, x2)

are harmonic functions which converge uniformly to u in Ωη0 as N →

∞. Therefore the toroidal harmonics I ν,µ
n,m are complete in the subspace

Har(Ωη0)∩C3(∂Ωη0) with respect to the norm ∥ · ∥∞, and hence also in the

weighted norm ∥ · ∥2,w. We omit the detailed proof that they are complete

in L2(Ω, w); see [11, 29, 34, 37, 45, 56, 58, 76, 87].

Because the weight function w is bounded above and below on Ωη0 , the

completeness holds for the unweighted Hilbert space as well (although

not the orthogonality):

Corollary 1.30. {I ν,µ
n,m} is a complete system in the unweighted space L2(Ωη0).

By Proposition 1.28, the L2 representation of a harmonic function in

terms of a series of toroidal harmonics I ν,µ
n,m converges uniformly on com-

pact subsets of Ωη0 .

We will also use the following fact about Fourier coefficients [37, Corol-

lary 3.3.10, Proposition 3.3.12] as per Proposition 1.29:
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1.5. LIMITS OF HARMONIC FUNCTIONS

Proposition 1.31. Let f = f (θ, φ) be represented as

f (θ, φ) = ∑
n,m,ν,µ

aν,µ
n,m I ν,µ

n,m(η0, θ, φ) (1.49)

with aν,µ
n,m ∈ R. If f (θ, φ) is of class Cr, then

|aν,µ
n,m| ≤

C
(m + n + 1)r (1.50)

for some constant C > 0. Conversely, if (1.50) holds and r ≥ 2, then f is of class

Cr−2.

The indices of summation in the expansion (1.49) are as in Definition

1.16.
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Chapter 2

Appell systems of harmonic
functions

In 1880, P. Appell [7] generalized the property of classical monomials which

states that the derivative of a basis function is a multiple of another basis

function (from the same system). He studied sequences {pn(t)}n∈N0 of

polynomials pn(t) of one real variable, such that p0(t) ̸= 0, which satisfy

two conditions: the degree of pn is exactly n, and

d
dt

pn(t) = n pn−1(t), n = 1, 2, . . . .

Such a sequence of functions is said to have the Appell property. The origi-

nal example is pn(t) = tn. The coefficient n is not important in the notion

of an Appell system, since one may replace pn(t) with cn pn(t) for suitable

constants cn and thus replace n by any other desired multiplier.

The classical Bernoulli, Hermite and Euler polynomials are well-known
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examples of Appell sequences. H. Malonek et al. generalized this idea for

monogenic polynomials [31, 32, 33] (see definitions in Chapter 4). They

defined a system of homogeneous monogenic polynomials, Pk(x) with

x ∈ Rd, of exact degree k having the property that

∂Pk(x) = k Pk−1(x), k = 1, 2, . . . ,

where here “∂” denotes the Clifford-Fueter operator appropriate to the

dimension d under consideration. These generalized Appell polynomials

were applied to the study of elementary functions [1, 19, 20, 32, 61, 62],

the computation of combinatorial identities [4, 21, 22], and the study of

generalized Joukowski transformations in Euclidean spaces of arbitrary

higher dimension [5, 28]. These generalized polynomials were used to

prove a higher-dimensional counterpart of Hadamard’s three-hyperballs

Theorem [3, 94].

As commented in Section 1.2, the classical spherical harmonics satisfy a

natural Appell property with respect to ∂/∂x0. (They do not satisfy such a

property with respect to the other variables.) Therefore it is natural to ask

whether the toroidal harmonics also satisfy an Appell property. We will

see in Section 2.2 that they do not, and in fact, the application of ∂/∂x0

increases the index (or degree) of the toroidal harmonics. However, with
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an appropriate change of basis, it is possible to create a collection of func-

tions which satisfy what we may call a “reverse Appell property.” This

basis will be fundamental for our study of the collection of monogenic

functions on the torus in Chapters 5 and 6.

2.1 Partial derivatives of toroidal harmonics

We begin by calculating the partial derivatives of the toroidal harmonics

I ν,µ
n,m defined by (1.40). The following results directly from (1.29) and the

Chain Rule.

Proposition 2.1.

∂x0

∂η
=

− sinh η sin θ

(cosh η − cos θ)1/2 ,

∂x0

∂θ
=

cos θ cosh η − 1
(cosh η − cos θ)1/2 ,

∂x0

∂φ
= 0, (2.1)

∂x1

∂η
=

(1 − cosh η cos θ) cos φ

(cosh η − cos θ)1/2 ,

∂x1

∂θ
= − sin θ sinh η cos φ

(cosh η − cos θ)1/2 ,

∂x1

∂φ
= −sin φ sinh η(cosh η − cos θ)

(cosh η − cos θ)1/2 , (2.2)

∂x2

∂η
=

(1 − cosh η cos θ) sin φ

(cosh η − cos θ)1/2 ,
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∂x2

∂θ
= − sin θ sinh η sin φ

(cosh η − cos θ)1/2 ,

∂x2

∂φ
=

cos φ sinh η(cosh η − cos θ)

(cosh η − cos θ)1/2 . (2.3)

These are the components of the Jacobian matrix of the change of coor-

dinates ∂(x0, x1, x2)/∂(η, θ, φ), and the Jacobian determinant is∣∣∣∣∂(x0, x1, x2)

∂(η, θ, φ)

∣∣∣∣ = sinh η

(cosh η − cos θ)3 . (2.4)

The inverse matrix is

∂(η, θ, φ)

∂(x0, x1, x2)
=

− sin θ sinh η − cos φ(cos θ cosh η − 1) − sin φ(cos θ cosh η − 1)
cosh η cos θ − 1 − sinh η sin θ cos φ − sin φ sin θ sinh η

0
− sin φ(cosh η − cos θ)

sinh η

cos φ(cosh η − cos θ)

sinh η


(2.5)

which gives us the partial derivatives of η, θ, φ with respect to x0, x1, x2.

2.2 Basis expression of derivatives of toroidal har-
monics

Since I ν,µ
n,m of Definition 1.16 is harmonic, all of its partial derivatives are

also harmonic. By Proposition 1.29, it must be expressible in terms of the

full collection of toroidal harmonics. The following calculations determine

the explicit expressions. The formulas for n = 0 or m = 0 are somewhat
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different from the general case. Together with the four combinations of the

signs (±,±), the number of cases to be considered is rather large.

Proposition 2.2. Let m = n = 0 in (1.40). Then we have the following:

∂

∂x0
I+,+
0,0 = −1

2
I−,+
1,0 ,

∂

∂x1
I+,+
0,0 = I+,+

0,1 − I+,+
1,1 ,

∂

∂x2
I+,+
0,0 = I+,−

0,1 − I+,−
1,1 .

Proof. Note that I+,+
0,0 =

√
cosh η − cos θ Q0

−1/2(cosh η). This contains the

Legendre function Q0
−1/2, with a negative index, which is defined by the

same formulas as all other Legendre functions of the second kind, and

satisfies the same general properties. First we consider ∂/∂x0. By (1.40)

and the Chain Rule, we have

∂

∂x0
I+,+
0,0 =

∂

∂x0

(
(cosh η − cos θ)1/2 Q0

− 1
2
(cosh η)

)
= − sin θ sinh η

(
sinh η

2(cosh η − cos θ)1/2 Q0
− 1

2
(cosh η)

+ sinh η (Q0
− 1

2
)′(cosh η)(cosh η − cos θ)1/2

)
+ (cosh η cos θ − 1)

(
sin θ

2(cosh η − cos θ)1/2 Q0
− 1

2
(cosh η)

)
.

After simplifying and using the fact that cosh2 η − sinh2 η = 1, this reduces
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to

− (cosh η − cos θ)1/2
(

1
2

sin θ cosh η Q0
− 1

2
(cosh η)

+ sin θ sinh2 η (Q0
− 1

2
)′(cosh η)

)
.

Next we apply the recursion formulas (1.13) and (1.16) respectively, to find

that ∂I+,+
0,0 /∂x0 is equal to

−1
2
(cosh η − cos θ)1/2 Q0

− 3
2
(cosh η) sin θ = −1

2
I−,+
1,0

as required.

Next, from the Chain Rule and (2.2), one obtains in a similar manner

that

∂

∂x1
I+,+
0,0 =

∂

∂x1

(
(cosh η − cos θ)1/2Q0

1
2
(cosh η)

)
= − cos φ(cosh η cos θ − 1)

(
sinh η

2(cosh η − cos θ)1/2 Q0
− 1

2
(cosh η)

+ sinh η (Q0
− 1

2
)′(cosh η − cos θ)1/2

)
− sinh η sin θ cos φ

(
sin θ

2(cosh η − cos θ)1/2 Q0
− 1

2
(cosh η)

)
.

Once again, we use trigonometric identities and simplify to reduce this to

−(cosh η − cos θ)1/2 cos φ

(
1
2

cos θ sinh η Q0
− 1

2
(cosh η)

+ cos θ sinh η cosh η (Q0
− 1

2
)′(cosh η)
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− sinh η (Q0
− 1

2
)′(cosh η)

)
.

Now apply the recursion formulas (1.13) with m = 0, n = −3/2, (1.15)

when m = 1, n = −3/2, and (1.17) with m = 1, n = 1/2, respectively, to

see that ∂I+,+
0,0 /∂x1 is equal to

−(cosh η − cos θ)1/2
(
− Q1

− 1
2
(cosh η) + cos θ Q1

1
2
(cosh η)

)
cos φ

which by (1.40), is equal to I+,+
0,1 − I+,+

1,1 . The calculation of ∂I+,+
0,0 /∂x2 is

similar and will be omitted.

Recall that the functions I+,−
0,0 and I−,±

0,0 do not exist because the formula

(1.40) produces 0 identically. We proceed to the remaining cases for m = 0.

Proposition 2.3. Let m = 0. For every n > 0 we have the following:

∂

∂x0
I+,+
n,0 = −2n + 1

4
I−,+
n+1,0 + n I−,+

n,0 − 2n − 1
4

I−,+
n−1,0, .

∂

∂x1
I+,+
n,0 = −1

2
I+,+
n+1,1 + I+,+

n,1 − 1
2

I+,+
n−1,1,

∂

∂x2
I+,+
n,0 = −1

2
I+,−
n+1,1 + I+,−

n,1 − 1
2

I+,−
n−1,1,

∂

∂x0
I−,+
n,0 =

2n + 1
4

I+,+
n+1,0 − n I+,+

n,0 +
2n − 1

4
I+,+
n−1,0,

∂

∂x1
I−,+
n,0 = −1

2
I−,+
n+1,1 + I−,+

n,1 − 1
2

I−,+
n−1,1,

∂

∂x2
I−,+
n,0 =

1
2

I−,−
n+1,1 − I−,−

n,1 +
1
2

I−,−
n−1,1.
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Proof. First we calculate for (ν, µ) = (+1,+1). From (1.40),

∂

∂x0
I+,+
n,0 =

∂

∂x0

(
(cosh η − cos θ)1/2Q0

n− 1
2
(cosh η) cos(nθ)

)
= − sin θ sinh η

(
sinh η

2(cosh η − cos θ)1/2 Q0
n− 1

2
(cosh η) cos(nθ)

+ sinh η (Q0
n− 1

2
)′(cosh η)(cosh η − cos θ)1/2 cos(nθ)

)
+ (cosh η cos θ − 1)

(
sin θ

2(cosh η − cos θ)1/2 Q0
n− 1

2
(cosh η) cos(nθ)

− n (cosh η − cos θ)1/2 Q0
n− 1

2
(cosh η) sin(nθ)

)
= (cosh η − cos θ)1/2

(
− 1

2
Q0

n− 1
2
(cosh η) cosh η cos(nθ) sin θ

− (cosh η cos θ − 1) Q0
n− 1

2
(cosh η) sin(nθ)

− sinh2 η (Q0
n− 1

2
)′(cosh η) cos(nθ) sin θ

)
.

Applying the recursion formula (1.11) and some trigonometric identities

simplifying, we obtain

(cosh η − cos θ)1/2
(
− n cosh η Q0

n− 1
2
(cosh η) cos(nθ) sin θ

− n (cosh η cos θ − 1) Q0
n− 1

2
(cosh η) sin(nθ)

+ (n − 1
2
) Q0

n− 3
2
(cosh η) cos(nθ) sin θ

)
.

Now use the recursion formula (1.12) with n − 1/2 in place of n and with

52



2.2. BASIS EXPRESSION OF DERIVATIVES

m = 0 to convert the expression into

(cosh η − cos θ)1/2
(
− 2n + 1

4
Q0

n+ 1
2
(cosh η) sin(nθ) + n Q0

n− 1
2
(cosh η) sin(nθ)

− 2n − 1
4

Q0
n− 3

2
(cosh η) sin(n − 1)θ

)
,

which is the desired value of ∂I+,+
n,0 /∂x0. The calculation for ∂I−,+

n,0 /∂x0 is

essentially the same.

Next,

∂

∂x1
I+,+
n,0 =− cos φ(cos θ cosh η − 1)

(
sinh η

2(cosh η − cos θ)1/2 Q0
n− 1

2
(cosh η) cos(nθ)

+ (cosh η − cos θ)1/2 sinh η (Q0
n− 1

2
)′(cosh η) cos(nθ)

)
− sinh η sin θ cos φ

(
sin θ

2(cosh η − cos θ)1/2 Q0
n− 1

2
(cosh η) cos(nθ)

− n (cosh η − cos θ)1/2Q0
n− 1

2
(cosh η) sin(nθ)

)
= cos φ(cosh η − cos θ)1/2

(
− 1

2
sinh η Q0

n− 1
2
(cosh η) cos(nθ)

− (cos θ cosh η − 1) sinh η (Q0
n− 1

2
)′(cosh η) cos(nθ)

+ n sinh η Q0
n− 1

2
(cosh η) sin θ sin(nθ)

)
.

By the recursion formulas (1.13) and (1.14), this is equal to

(cosh η − cos θ)1/2 cos φ

(
− 1

4n
Q1

n+ 1
2
(cosh η) cos θ cos(nθ)

+
1

4n
Q1

n− 3
2
(cosh η) cos θ cos(nθ)
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− cosh η Q1
n+ 1

2
(cosh η) cos θ cos(nθ) + Q1

n− 1
2
(cosh η) cos(nθ)

+
1
2

Q1
n+ 1

2
(cosh η) sin θ sin nθ − 1

2
Q1

n− 3
2
(cosh η) sin θ sin (nθ)

)
.

With the recursion formula (1.12) the trigonometric identity which reduces

products to sums, we obtain

(cosh η − cos θ)1/2 cos φ

(
− 1

2
Q1

n+ 1
2
(cosh η) cos(n + 1)θ

− 1
2

Q1
n− 3

2
(cosh η) cos(n − 1)θ + Q1

n− 1
2
(cosh η) cos(nθ)

)
,

which is the formula claimed for ∂I+,+
n,0 /∂x1. The calculation for ∂I+,−

n,0 /∂x1

is essentially the same.

Finally we calculate

∂

∂x2
I+,+
n,0 = − sin φ(cos θ cosh η − 1)

(
sinh η

2(cosh η − cos θ)1/2 Q0
n− 1

2
(cosh η) cos(nθ)

+ (cosh η − cos θ)1/2 sinh η (Q0
n− 1

2
)′(cosh η) cos(nθ)

)
− sin φ sin θ sinh η

(
sin θ

2(cosh− cos θ)1/2 (Q
0
n− 1

2
)′(cosh η) cos(nθ)

− n (cosh η − cos θ)1/2 Q0
n− 1

2
(cosh η) sin(nθ)

))
.

After simplification we have

(cosh η − cos θ)1/2 sin φ

(
− 1

2
Q0

n− 1
2
(cosh η) sinh η cos θ cos(nθ)

− (cos θ cosh η − 1) sinh η (Q0
n− 1

2
)′(cosh η) cos(nθ)
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+ n sinh η Qn− 1
2
(cosh η) sin θ sin(nθ)

)
.

Now use the recursion formulas (1.13) and (1.14) to obtain

(coshη − cos θ)1/2 sin φ

(
− 1

4 n
Q1

n+ 1
2
(cosh η) cos θ cos(nθ)

+
1

4 n
Q1

n− 3
2
(cosh η) cos θ cos(nθ)− cosh η Q1

n− 1
2
(cosh η) cos θ cos(nθ)

+ Q1
n− 1

2
(cosh η) cos(nθ) +

1
2

Q1
n+ 1

2
(cosh η) sin θ sin(n θ)

− 1
2

Q1
n− 3

2
(cosh η) sin θ sin(nθ)

)
.

Now use n − 1/2 for n, m = 1 in the recursion formula (1.12) and the

trigonometric identities for cos θ cos(nθ) and sin θ sin(nθ), to arrive at

(cosh η − cos θ)1/2 sin φ

(
− 1

2
Q1

n+ 1
2
(cosh η) cos(n + 1)θ

+
1

4 n
Q1

n− 3
2
(cosh η) cos(n − 1)θ

+ Q1
n− 1

2
(cosh η) cos(nθ)

)
,

which is the desired formula for ∂I+,+
0,0 /∂x1. The formula for ∂I+,+

0,0 /∂x2 is

obtained in the same way.

Proposition 2.4. Let n = 0. Then for every m > 0 we have the following:

∂

∂x0
I+,+
0,m = (m − 1

2
)I−,+

1,m ,

∂

∂x1
I+,+
0,m = −1

2
(m − 1

2
)(m − 3

2
) I+,+

1,m−1 −
1
2

I+,+
1,m+1
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+
1
2
(m +

1
2
)(−m +

1
2
) I+,+

0,m−1 +
1
2

I+,+
0,m+1,

∂

∂x2
I+,+
0,m =

1
2
(m − 1

2
)(m − 3

2
) I+,−

1,m−1 −
1
2

I+,−
1,m+1

− 1
2
(m +

1
2
)(−m +

1
2
) I+,−

0,m−1 +
1
2

I+,−
0,m+1,

∂

∂x0
I+,−
0,m = (m − 1

2
)I−,−

1,m ,

∂

∂x1
I+,−
0,m = −1

2
(m − 1

2
)(m − 3

2
) I+,−

1,m−1 −
1
2

I+,−
1,m+1

+
1
2
(m +

1
2
)(−m +

1
2
) I+,−

0,m−1 +
1
2

I+,−
0,m+1,

∂

∂x2
I+,−
0,m =

1
2
(m − 1

2
)(m − 3

2
) I+,−

1,m−1 −
1
2

I+,−
1,m+1

− 1
2
(m +

1
2
)(−m +

1
2
) I+,−

0,m−1 +
1
2

I+,−
0,m+1.

Proof. First we consider ∂I+,+
0,m /∂x0:

∂

∂x0
I+,+
0,m =

∂

∂ x0

(
(cosh η − cos θ)1/2 Qm

− 1
2
(cosh η) cos θ

)
=− sin θ sinh η

(
sinh η

2(cosh η − cos θ)1/2 Qm
− 1

2
(cosh η) cos mφ

+ (cosh η − cos θ)1/2(Qm
− 1

2
)′(cosh η) sinh η cos mφ

)
+ (cosh η cos θ − 1)

(
sin θ

2(cosh η − cos θ)1/2 Qm
− 1

2
(cosh η) cos mφ

)
.

Using cosh2 η − 1 = sinh2 η, this becomes

(cosh η − cos θ)1/2 cos mφ

(
− 1

2
cosh η Qm

− 1
2
(cosh η) sin θ
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− sinh2 η (Qm
− 1

2
)′(cosh η) sin θ

)
.

Now we can apply the recursion relation (1.13) with n = −3/2, giving

(m − 1/2) I−,+
1,m as required. The proof for ∂I+,−

0,m /∂x0 is similar.

In the following, we compute (∂/∂x1)I+,−
0,m rather than (∂/∂x1)I+,+

0,m to

illustrate slight differences between cos(mφ) and sin(mφ). We have

∂

∂ x1
I+,−
0,m =

∂

∂x1

(
(cosh η − cos θ)1/2 Qm

− 1
2
(cosh η) sin (mφ)

)
= − cos φ(cos θ cosh η − 1)

(
sinh η

2(cosh η − cos θ)1/2 Qm
− 1

2
(cosh η) sin (mφ)

+ (cosh η − cos θ)1/2 sinh η (Qm
− 1

2
)′(cosh η) sin (mφ)

)
− sinh η sin θ cos φ

(
sin θ

2(cosh η − cos θ)1/2 Qm
− 1

2
(cosh η) sin (mφ)

)
− sin φ(cosh η − cos θ)

sinh η

(
m (cosh η − cos θ)1/2 Qm

− 1
2
(cosh η) cos(mφ)

)
= (cosh η − cos θ)1/2

(
− 1

2
sinh η Qm

− 1
2
(cosh η) cos θ cos φ sin(mφ)

− (cos θ cosh η − 1)(Qm
− 1

2
)′(cosh η) sinh η cos φ sin(mφ)

− m
sinh η

(cosh η − cos θ)Qm
− 1

2
(cosh η) sin φ cos(mφ)

)
,

which by trigonometric identities is equal to

(cosh η − cos θ)1/2
(

cos θ cos(m − 1)φ

(
− 1

4
sinh η Qm

− 1
2
(cosh η)

− 1
2

cosh η sinh η (Qm
− 1

2
)′(cosh η)
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− 1
2

m
sinh η

Qm
− 1

2
(cosh η)

)
+ cos θ cos(m + 1)φ

(
− 1

4
sinh η Qm

− 1
2
(cosh η)

− 1
2

cosh η sinh η (Qm
− 1

2
)′(cosh η)

− 1
2

m
sinh η

Qm
− 1

2
(cosh η)

)
+ cos(m − 1)φ

(
1
2

sinh η (Qm
− 1

2
)′(cosh η)

+
m

2 sinh η
cosh η Qm

− 1
2
(cosh η)

)
+ cos(m + 1)φ

(
1
2

sinh η (Qm
− 1

2
)′(cosh η)

+
m

2 sinh η
cosh η Qm

− 1
2
(cosh η)

))
.

From this the recursion formulas (1.13), (1.17), (1.18), and (1.10) lead to the

desired formula. The calculation of ∂I+,+
0,m /∂x0 proceeds in the same way.

Finally,

∂

∂ x2
I+,+
0,m =

∂

∂ x2

(
(cosh η − cos θ)1/2Qm

− 1
2
(cosh η) cos mφ

)
= − sin φ(cos θ cosh η − 1)

(
sinh η

2(cosh η − cos θ)1/2 Qm
− 1

2
(cosh η) cos(mφ)

+ (cosh η − cos θ)1/2 sinh η (Qm
− 1

2
)′(cosh η) cos(mφ)

− sin φ sin θ sinh η

(
sin θ

2(cosh η − cos θ)1/2 Qm
− 1

2
(cosh η) cos(mφ)

− cos φ(cosh η − cos θ)

sinh η

(
m (cosh η − cos θ)1/2Qm

− 1
2
(cosh η) sin (mφ)

)
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= (cosh η − cos θ)1/2
(
− 1

2
sinh η Qm

− 1
2
(cosh η) cos θ sin φ cos(mφ)

− (cos θ cosh η − 1) sinh η (Qm
− 1

2
)′(cosh η) sin φ cos(mφ)

− m
sinh η

(cosh η − cos θ) Qm
− 1

2
(cosh η) cos φ sin(m φ)

)
,

which after trigonometric simplification becomes

(cosh η − cos θ)1/2
(

cos θ sin(m − 1)φ

(
1
4

sinh η Qm
− 1

2
(cosh η)

+
1
2

cosh η sinh η (Qm
− 1

2
)′(cosh η)

+
m

2 sinh η
Qm

− 1
2
(cosh η)

)
+ cos θ sin(m + 1)φ

(
− 1

4
sinh η Qm

− 1
2
(cosh η)

− 1
2

cosh η sinh η (Qm
− 1

2
)′(cosh η)

+
m

2 sinh η
Qm

− 1
2
(cosh η)

)
+ sin(m − 1)φ

(
− 1

2
sinh η (Qm

− 1
2
)′(cosh η)

− m
2 sinh η

Qm
− 1

2
(cosh η)

)
+ sin(m + 1)φ

(
1
2

sinh η (Qm
− 1

2
)′(cosh η)

− m
2 sinh η

Qm
− 1

2
(cosh η)

))
.

We obtain the result by the same recursion formulas we used to prove the

previous formula.
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It remains to calculate the derivatives of Iν,µ
n,m for general values of the

parameters. Due to the complexity of the formulas, we separate them into

a separate proposition for each ∂/∂xi.

Proposition 2.5. Let n, m > 0. Then for arbitrary ν, µ ∈ {−1,+1}, the deriva-

tives of Iν,µ
n,m with respect to x0 are as follows:

∂

∂x0
I+,+
n,m = −1

2
(n − m +

1
2
) I−,+

n+1,m + n I−,+
n,m − 1

2
(n + m − 1

2
)I−,+

n−1,m,

∂

∂x0
I+,−
n,m = −1

2
(n − m +

1
2
) I−,−

n+1,m + n I−,−
n,m − 1

2
(n + m − 1

2
)I−,−

n−1,m,

∂

∂x0
I−,+
n,m =

1
2
(n + m − 1

2
) I−,−

n+1,m + n I−,−
n,m − 1

2
(n + m − 1

2
)I−,−

n−1,m,

∂

∂x0
I−,−
n,m =

1
2
(n − m +

1
2
) I+,−

n+1,m − n I+,−
n,m +

1
2
(n + m − 1

2
)I+,−

n−1,m.

Proof. By the Chain Rule and (2.5), we have

∂

∂x0
I+,+
n,m =

∂I+,+
n,m

∂η

∂η

∂x0
+

∂I+,+
n,m

∂θ

∂θ

∂x0
+

∂I+,+
n,m

∂φ
· 0

= − sin θ sinh η

(
sinh η

2(cosh η − sin θ)1/2 Qm
n− 1

2
(cosh η) cos nθ cos mφ

+ sinh η (Qm
n− 1

2
)′(cosh η) cos nθ cos mφ(cosh η − sin θ)1/2

)
+ (cosh η cos θ − 1)

(
sin θ

2(cosh η − sin θ)1/2 Qm
n− 1

2
(cosh η) cos nθ cos mφ

− n (cosh η − sin θ)1/2 Qm
n− 1

2
(cosh η) sin nθ cos mφ

)
= (cosh η − sin θ)1/2 cos mφ

(
− 1

2
cosh η sin θ cos nθ Qm

n− 1
2
(cosh η)
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− sin θ sinh2 η (Qm
n− 1

2
)′(cosh η) cos nθ

− n (cosh η − sin θ)1/2 Qm
n− 1

2
(cosh η) sin nθ

)
.

The recursion formula (1.11) for n − 3/2 says this is equal to

(cosh η − cos θ)1/2 cos mφ

(
− n cosh η Qm

n− 1
2
(cosh η) cos nθ sin θ

+ (n + m − 1
2
)Qm

n− 3
2
(cosh η) cos nθ sin θ

− n cosh η Qm
n− 1

2
(cosh η) cos θ sin nθ

+ n Qm
n− 1

2
(cosh η) sin nθ

)
.

Now use the recursion formula (1.12) for n − 1/2 and the trigonometric

relations

cos nθ sin θ =
1
2
(

sin(n + 1)θ − sin(n − 1)θ
)

and

sin nθ cos θ =
1
2
(

sin(n + 1)θ + sin(n − 1)θ
)

to arrive at

(cosh η− cos θ)1/2 cos mφ

(
− 1

2
(n − m +

1
2
)Qm

n+ 1
2
(cosh η) sin(n + 1)θ

+ n Qm
n− 1

2
(cosh η) sin nθ − 1

2
(n + m − 1

2
)Qm

n− 3
2
(cosh η) sin(n − 1)θ

)
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which is clearly equal to

−1
2
(n − m +

1
2
) I−,+

n+1,m + n I−,+
n,m − 1

2
(n + m − 1

2
)I−,+

n−1,m

as required.

The same recursion formulas (1.11), (1.12) together with the identities

cos nθ cos θ =
1
2
(

cos(n − 1)θ + cos(n + 1)θ
)

sin nθ sin θ =
1
2
(

cos(n − 1)θ − cos(n + 1)θ
)

lead to the formula for ∂I−,−
n,m /∂x0. The remaining cases are similar.

Proposition 2.6. Let n, m > 0. Then for arbitrary ν, µ ∈ {−1,+1}, the deriva-

tives of Iν,µ
n,m with respect to x1 are as follows:

∂

∂x1
I+,+
n,m =− 1

4
(n + m − 1

2
)(n + m − 3

2
) I+,+

n−1,m−1 −
1
4

I+,+
n−1,m+1

+
1
2
(n + m − 1

2
)(n − m +

1
2
) I+,+

n,m−1 +
1
2

I+,+
n,m+1

− 1
4
(n − m +

1
2
)(n − m +

3
2
) I+,+

n+1,m−1 −
1
4

I+,+
n+1,m+1,

∂

∂x1
I+,−
n,m = − 1

4
(n + m − 1

2
)(n + m − 3

2
) I+,−

n−1,m−1 −
1
4

I+,−
n−1,m+1

+
1
2
(n + m − 1

2
)(n − m +

1
2
) I+,−

n,m−1 +
1
2

I+,−
n,m+1

− 1
4
(n − m +

1
2
)(n − m +

3
2
) I+,−

n+1,m−1 −
1
4

I+,−
n+1,m+1,

∂

∂x1
I−,+
n,m =− 1

4
(n + m − 1

2
)(n + m − 3

2
) I−,+

n−1,m−1 −
1
4

I−,+
n−1,m+1
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+
1
2
(n + m − 1

2
)(n − m +

1
2
) I−,+

n,m−1 +
1
2

I−,+
n,m+1

− 1
4
(n − m +

1
2
)(n − m +

3
2
) I−,+

n+1,m−1 −
1
4

I−,+
n+1,m+1,

∂

∂x1
I−,−
n,m =− 1

4
(n + m − 1

2
)(n + m − 3

2
) I−,−

n−1,m−1 −
1
4

I−,−
n−1,m+1

+
1
2
(n + m − 1

2
)(n − m +

1
2
) I−,−

n,m−1 +
1
2

I−,−
n,m+1

− 1
4
(n − m +

1
2
)(n − m +

3
2
) I−,−

n+1,m−1 −
1
4

I−,−
n+1,m+1.

Proof. For the first formula we calculate

∂

∂x1
I+,+
n,m =

∂

∂x1

(
(cosh η − cos θ)1/2 Qm

n− 1
2
(cosh η) cos nθ cos mφ

)
= − cos φ(cosh η cos θ − 1)

(
sinh η

2(cosh η − cos θ)1/2 Qm
n− 1

2
(cosh η) cos nθ cos mφ

+ sinh η (Qm
n− 1

2
)′(cosh η)(cosh η − cos θ)1/2 cos nθ cos mφ

)
− sinh η sin θ cos φ

(
sin θ

2(cosh η − cos θ)1/2 Qm
n− 1

2
(cosh η) cos nθ cos mφ

− n (cosh η − cos θ)1/2 Qm
n− 1

2
(cosh η) sin nθ cos mφ

)
+

m sin φ

sinh η
(cosh η − cos θ)3/2 Qm

n− 1
2
(cosh η) cos nθ sin mφ

= (cosh η − cos θ)1/2
(

cos θ cos nθ cos φ cos mφ
(
− 1

2
sinh η Qm

n− 1
2
(cosh η)

− cosh η sinh η (Qm
n− 1

2
)′(cosh η)

)
+ cos nθ cos φ cos mφ

(
sinh η (Qm

n− 1
2
)′(cosh η)

)
+ cos nθ sin φ sin mφ

(m cosh η

sinh η
Qm

n− 1
2
(cosh η)

)
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+ cos θ cos nθ sin φ sin mφ
(
− m

sinh η
Qm

n− 1
2
(cosh η)

)
+ sin θ sin nθ cos φ cos mφ

(
n sinh η Qm

n− 1
2
(cosh η)

))
.

After applying trigonometric relations this becomes

(cosh η − cos θ)1/2(A1 + A2 + A3 + A4 + A5 + A6), (2.6)

where

A1 =
1
4

(
− 1

2
sinh η Qm

n− 1
2
(cosh η)− cosh η sinh η (Qm

n− 1
2
)′(cosh η)

− m
sinh η

Qm
n− 1

2
(cosh η) + n sinh η Qm

n− 1
2
(cosh η)

)
cos(n − 1)θ cos(m − 1)φ,

A2 =
1
2

(
sinh η (Qm

n− 1
2
)′(cosh η)− m cosh η

sinh η
Qm

n− 1
2
(cosh η)

)
cos nθ cos(m − 1)φ,

A3 = −1
4

(
1
2

sinh η Qm
n− 1

2
(cosh η) + cosh η sinh η (Qm

n− 1
2
)′(cosh η)

+
m

sinh η
Qm

n− 1
2
(cosh η) + sinh η Qm

n− 1
2
(cosh η)

)
cos(n + 1)θ cos(m − 1)φ,

A4 =
1
4

(
− 1

2
sinh η Qm

n− 1
2
(cosh η − cosh η sinh η (Qm

n− 1
2
)′(cosh η))

+
m

sinh η
Qm

n− 1
2
(cosh η) + n sinh η Qm

n− 1
2
(cosh η)

))
cos(n − 1)θ cos(m + 1)φ,

A5 =
1
2

(
sinh η (Qm

n− 1
2
)′(cosh η)− m cosh η

sinh η
Qm

n− 1
2
(cosh η)

)
cos nθ cos(m + 1)φ,

A6 =
1
4

(
− 1

2
sinh η Qm

n− 1
2
(cosh η)− cosh η sinh η (Qm

n− 1
2
)′(cosh η)

+
m

sinh η
Qm

n− 1
2
(cosh η)− n sinh η Qm

n− 1
2
(cosh η)

)
cos(n + 1)θ cos(m + 1)φ.
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Now we simplify every term separately. Applying the recurrence rela-

tions (1.13) for n − 3/2, (1.14) for n − 3/2, (1.12) for n − 1/2, m + 1, and

(1.17) for n − 1/2, we find

A1 = Qm+1
n+ 1

2
(cosh η)(n − m − 1

2
)(

1
8n

− 1
8n

)

+ Qm+1
n− 3

2
(cosh η)

(
− 1

8n
(n − m − 1

2
)− 1

8n
(n + m +

1
2
) +

1
4

)
− Qm−1

n− 3
2
(cosh η)

1
4
(n + m − 3

2
)(n + m − 1

2
)

= Qm−1
n− 3

2
(cosh η)

1
4
(n + m − 3

2
)(n + m − 1

2
).

For A2 we can apply the recurrence relations (1.13) for n − 3/2 and (1.15)

for n − 3/2, giving

A2 =
1
2
(n + m − 1

2
)(n − m +

1
2
) Qm−1

n− 1
2
(cosh η).

Now apply to A3 relations (1.13), (1.14), and (1.15) for n − 3/2, together

with relations (1.12) and (1.16) for n − 1/2. Then apply relation (1.17) for

n − 1/2. The result is

A3 = (n − m +
1
2
)(n − m +

3
2
) Qm−1

n+ 1
2
(cosh η).

Similarly, by using the recursion formulas (1.12), (1.13), and (1.14), we find

A4 = −1
4

Qm+1
n− 3

2
(cosh η).
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Recursion relation (1.13) gives

A5 =
1
2

Qm+1
n− 1

2
(cosh η).

Finally, applying relations (1.13) and (1.14) gives

A6 = −1
4

Qm+1
n+ 1

2
(cosh η).

These equations together with (2.6) give the formula for I+,+
n,m . The formu-

las for the remaining three combinations of signs are derived in the same

way.

Proposition 2.7. Let n, m > 0. Then for arbitrary ν, µ ∈ {−1,+1}, the deriva-

tives of Iν,µ
n,m with respect to x2 are as follows:

∂

∂x2
I+,+
n,m =

1
4
(n + m − 1

2
)(n + m − 3

2
) I+,−

n−1,m−1 −
1
4

I+,−
n−1,m+1

− 1
2
(n + m − 1

2
)(n − m +

1
2
) I+,−

n,m−1 +
1
2

I+,−
n,m+1

+
1
4
(n − m +

1
2
)(n − m +

3
2
) I+,−

n+1,m−1 −
1
4

I+,−
n+1,m+1,

∂

∂x2
I+,−
n,m = −1

4
(n + m − 1

2
)(n + m − 3

2
) I+,+

n−1,m−1 +
1
4

I+,+
n−1,m+1

+
1
2
(n + m − 1

2
)(n − m +

1
2
) I+,+

n,m−1 −
1
2

I+,+
n,m+1

− 1
4
(n − m +

1
2
)(n − m +

3
2
) I+,+

n+1,m−1 +
1
4

I+,+
n+1,m+1,

∂

∂x2
I−,+
n,m =

1
4
(n + m − 1

2
)(n + m − 3

2
) I−,−

n−1,m−1 −
1
4

I−,−
n−1,m+1

− 1
2
(n + m − 1

2
)(n − m +

1
2
) I−,−

n,m−1 +
1
2

I−,−
n,m+1
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+
1
4
(n − m +

1
2
)(n − m +

3
2
) I−,−

n+1,m−1 −
1
4

I−,−
n+1,m+1,

∂

∂x2
I−,−
n,m = −1

4
(n + m − 1

2
)(n + m − 3

2
) I−,+

n−1,m−1 +
1
4

I−,+
n−1,m+1

+
1
2
(n + m − 1

2
)(n − m +

1
2
) I−,+

n,m−1 −
1
2

I−,+
n,m+1

− 1
4
(n − m +

1
2
)(n − m +

3
2
) I−,+

n+1,m−1 +
1
4

I−,+
n+1,m+1.

Proof.

∂

∂ x2
I+,+
n,m =

∂

∂ x2

(
(cosh η − cos θ)1/2Qm

n− 1
2
(cosh η) cos(nθ) cos(mφ)

)
= − sin φ(cosh η cos θ − 1)

(
sinh η

2(cosh η − cos θ)1/2 Qm
n− 1

2
(cosh η) cos(nθ) cos(mφ)

)
+ sinh η (Qm

n− 1
2
)′(cosh η)(cosh η − cos θ)1/2 cos(nθ) cos(mφ)

)
− sin φ sin θ sinh η

(
sin θ

2(cosh η − cos θ)1/2 Qm
n− 1

2
(cosh η) cos(nθ) cos(mφ)

)
− n (cosh η − cos θ)1/2Qm

n− 1
2
(cosh η) sin(nθ) cos(mφ)

)
− cos φ(cosh η − cos θ)

sinh η

(
m (cosh η − cos θ)1/2Qm

n− 1
2
(cosh η) cos(nθ) sin(mφ)

)
.

After some trigonometry and simplification this is found to equal

(cosh η − cos θ)1/2
(

cos(n − 1)θ sin(m − 1)φ

(
1
8

sinh η Qm
n− 1

2
(cosh η) +

1
4

sinh η cosh η (Qm
n− 1

2
)′(cosh η)

− n
4

sinh η Qm
n− 1

2
(cosh η) +

m
4 sinh η

Qm
n− 1

2
(cosh η)

)
+ cos(n − 1)θ sin(m + 1)φ

(
− 1

8
sinh η Qm

n− 1
2
(cosh η)− 1

4
sinh η cosh η (Qm

n− 1
2
)′(cosh η)
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+
n
4

sinh η Qm
n− 1

2
(cosh η) +

m
4 sinh η

Qm
n− 1

2
(cosh η)

)
+ cos(nθ) sin(m − 1)φ

(
− sinh η

2
(Qm

n− 1
2
)′(cosh η)− m cosh η

2 sinh η
Qm

n− 1
2
(cosh η)

)
+ cos(nθ) sin(m + 1)φ

(
sinh η

2
(Qm

n− 1
2
)′(cosh η)− m cosh η

2 sinh η
Qm

n− 1
2
(cosh η)

)
+ cos(n + 1)θ sin(m − 1)φ

(
sinh η

8
Qm

n− 1
2
(cosh η) +

1
4

cosh η sinh η (Qm
n− 1

2
)′(cosh η)

+
n
4

sinh η Qm
n− 1

2
(cosh η) +

m
4 sinh η

Qm
n− 1

2
(cosh η)

)
+ cos(n + 1)θ sin(m + 1)φ

(
− sinh η

8
Qm

n− 1
2
(cosh η) +

1
4

cosh η sinh η (Qm
n− 1

2
)′(cosh η)

− n
4

sinh η Qm
n− 1

2
(cosh η) +

m
4 sinh η

Qm
n− 1

2
(cosh η)

))
by applying the recursion formulas (1.12), (1.13), (1.14), (1.15), and (1.17)

this becomes

(cosh η − cos θ)1/2
(

1
4
(n + m − 1

2
)(n + m − 3

2
) Qm−1

n− 3
2
(cosh η) cos(n − 1)θ sin(m − 1)φ

− 1
4

Qm+1
n− 3

2
(cosh η) cos(n − 1)θ sin(m + 1)φ

−1
2
(n + m − 1

2
)(n − m +

1
2
) Qm−1

n− 1
2
(cosh η) cos(nθ) sin(m − 1)φ

+
1
2

Qm+1
n− 1

2
(cosh η) cos(nθ) sin(m + 1)φ

+
1
4
(n − m +

1
2
)(n − m +

3
2
)Qm−1

n+ 1
2
(cosh η) cos(n + 1)θ sin(m − 1)φ

− 1
4

Qm+1
n+ 1

2
(cosh η) cos(n + 1)θ sin(m + 1)φ

)
,

which is the formula stated for ∂I+,+
n,m /∂ x2. The proofs of the remaining
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cases are analogous.

One can see

∂
∂x0

Iν,µ
0,0

(ν, µ + 1)

−1
2 I−ν,µ

1,0

Iν,µ
n,0

(n > 0,
µ + 1)

− ν(2n−1)
4 I−ν,µ

n−1,0 + νnI−ν,µ
n,0 − ν(2n+1)

4 I−ν,µ
n+1,0

Iν,µ
0,m

(m > 0,
ν = +1)

(m − 1
2)I−ν,µ

1,m

Iν,µ
n,m

(n, m > 0)
− ν

2 (n + m − 1
2)I−ν,µ

n−1,m + νnI−ν,µ
n,m − ν

2 (n − m + 1
2)I−ν,µ

n+1,m

Table 2.1: Derivative of Iν,µ
n,m(x0, x1, x2) with respect to x0 .
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∂
∂x1

Iν,µ
0,0

(ν, µ + 1)

Iν,µ
0,1 − Iν,µ

1,1

Iν,µ
n,0

(n > 0,
µ = +1)

−1
2 Iν,µ

n−1,1 + Iν,µ
n,1 − 1

2 Iν,µ
n+1,1

Iν,µ
0,m

(m > 0,
ν = +1)

−1
2(m − 1

2)(m − 3
2)Iν,µ

1,m−1 −
1
2 Iν,µ

1,m+1
+ 1

2(m + 1
2)(

1
2 − m)Iν,µ

0,m−1 +
1
2 Iν,µ

0,m+1

Iν,µ
n,m

(n, m > 0)
−1

4(n + m − 1
2)(n + m − 3

2)Iν,µ
n−1,m−1 −

1
4 Iν,µ

n−1,m+1
+ 1

2(n + m − 1
2)(n − m + 1

2)Iν,µ
n,m−1 +

1
2 Iν,µ

n,m+1
− 1

4(n − m + 1
2)(n − m + 3

2)Iν,µ
n+1,m−1 −

1
4 Iν,µ

n+1,m+1

Table 2.2: Derivative of Iν,µ
n,m(x0, x1, x2) with respect to x1 .
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∂
∂x2

Iν,µ
0,0

(ν, µ =
+1)

Iν,−µ
0,1 − Iν,−µ

1,1

Iν,µ
n,0

(n > 0,
µ = +1)

− ν
2 Iν,−µ

n−1,1 + νIν,−µ
n,1 − ν

2 Iν,−µ
n+1,1

Iν,µ
0,m

(m > 0,
ν = +1)

µ
2 (m − 1

2)(m − 3
2)Iν,−µ

1,m−1 −
µ
2 Iν,−µ

1,m+1

+ µ
2 (m + 1

2)(m − 1
2)Iν,−µ

0,m−1 +
µ
2 Iν,−µ

0,m+1

Iν,µ
n,m

(n, m > 0)

µ
4 (n + m − 1

2)(n + m − 3
2)Iν,−µ

n−1,m−1 −
µ
4 Iν,−µ

n−1,m+1

− µ
2 (n + m − 1

2)(n − m + 1
2)Iν,−τ

n,m−1 +
µ
2 Inu,−µ

n,m+1

+ µ
4 (n − m + 1

2)(n − m + 3
2)Iν,−µ

n+1,m−1 −
µ
4 Iν,−µ

n+1,m+1

Table 2.3: Derivative of Iν,µ
n,m(x0, x1, x2) with respect to x2 .

2.3 Construction of reverse-Appell system of
toroidal harmonics

The results of Section 2.2 provide the partial derivatives of most of the

I ν,µ
n,m as a linear combination of two or more functions in the same family.

In particular, this implies that the toroidal harmonics are not an Appell
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system with respect to any of the three partial derivatives ∂/∂xi. More

interestingly, the derivatives of I ν,µ
n,m with respect to x0 involve harmonics

with indices n − 1, n, and n + 1.

In this section, we construct a new basis for the toroidal harmonics for

which ∂/∂x0 sends each element to a constant multiple of a single other

element. Since the index n is increased by 1, we call this a “reverse-Appell

system.” We are only interested in the partial derivatives with respect to

x0 in this regard because this is what we will need for studying monogenic

functions.

Definition 2.8. For every n ≥ 1 define

κn
k,m =


−1

2(n + m − 1
2), k = n − 1,

n, k = n,
−1

2(n − m + 1
2), k = n + 1,

with κn
k,m = 0 other than in the cases listed here. Further, for n = 0 define

κ0
0,m = m − 1

2
(m ≥ 1).

With this notation, Propositions 2.2–2.5 it may be expressed succinctly as

follows.

Proposition 2.9.

∂0 I ν,µ
n,m =

∞

∑
k=0

κn
k,m I−ν,µ

k,m =
n+1

∑
k=(n−1)+

κn
k,m I−ν,µ

k,m ,
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where we denote (t)+ = max(t, 0).

The coefficients κn
k,m permit us to define two infinite triangular matrices

(in
n,m) and (i∗ n

n,m):

Definition 2.10. Let i∗ n
n,m = 1 and then recursively for 0 ≤ k ≤ n − 1 let

i∗ n
k,m =

1
κn−1

n,m

n−1

∑
j=(k−1)+

κ
j
k,mi ∗ n−1

j,m .

Also, define in
n,m = 1 and then recursively for k = n − 1, n − 2, . . . , 0 let

in
k,m = −

n

∑
j=k+1

i∗ j
k,m in

j,m.

Definition 2.11. Let m and n be nonnegative integers, and let ν, µ = ±1

serve as superscripts in (1.24). We introduce a new doubly indexed collec-

tion {I∗ ν,µ
n,m } of reverse-Appell toroidal harmonic functions on Ωη0 as follows:

I∗ ν,µ
n,m =

n

∑
k=0

i∗ n
k,m I ν,µ

k,m. (2.7)

We obtain the following result:

Proposition 2.12. The collection {I∗ ν,µ
n,m } satisfies the following reverse Appell-

type property:

∂I∗ ν,µ
n,m

∂x0
= κn

n+1,m I∗−ν,µ
n+1,m (n ≥ 0). (2.8)
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Also, we have the inverse relation

I ν,µ
n,m =

n

∑
k=0

in
k,m I∗ ν,µ

k,m . (2.9)

Proof. First we note that

∂I∗ ν,µ
n,m

∂x0
=

∂

∂x0

n

∑
j=0

i∗ n
j,m Iν,µ

j,m

=
n

∑
j=0

i∗ n
j,m

j+1

∑
k=(j−1)+

κ
j
k,m I−ν,µ

k,m

=
n+1

∑
k=0

( n

∑
j=(k−1)+

κ
j
k,mi∗ n

j,m

)
I−ν,µ
k,m

=
n

∑
k=0

( n

∑
j=(k−1)+

κ
j
k,mi∗ n

j,m

)
I−ν,µ
k,m + κn

n+1,mi∗ n+1
n+1,m I−ν,µ

n+1,m.

(2.10)

Let λn,m = κn
n+1,m, so by definition

λn,m I∗−ν,µ
n+1,m = λn,m

n+1

∑
k=0

i∗ n+1
k,m I−ν,µ

k,m .

Since λn,mi∗ n+1
k,m = ∑n

j=(k−1)+ κ
j
k,mi∗n

j,m and i∗ n+1
n+1,m = 1 we have

∂I∗ ν,µ
n,m

∂x0
=

n

∑
k=0

λn,mi∗ n+1
k,m I−ν,µ

k,m + λn,m I−ν,µ
n+1,m

=λn,m

n+1

∑
k=0

i∗ n+1
k,m I−ν,µ

k,m

=λn,m I∗−ν,µ
n+1,m

=κn
n+1,m I∗−ν,µ

n+1,m ,

which is (2.8).

To verify (2.9), simply note that by Definition 2.11 the vector (I∗ ν,µ
n,m )n is the
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image of the vector (I ν,µ
k,m)k under the triangular matrix (i∗ j

k,m)k,j, which by

Definition 2.10 is the inverse of the matrix (in
j,m)j,n.
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Chapter 3

Neumann and
Dirichlet-to-Neumann problems
on the torus

In the previous chapter, we carried out a detailed calculation of the partial

derivatives of the toroidal harmonics. Our main purpose for doing so is

to use them in the construction of monogenic functions on Ωη0 , which we

will carry out in Chapters 5 and 6. However, the formulas for these deriva-

tives enable us to give some new results on toroidal harmonics themselves.

This chapter is devoted to these results and thus is a digression from the

main purpose of this thesis.

The explicit formulas for the partial derivatives of the toroidal harmon-

ics allow us to explore their normal derivatives. Normal derivatives are

the principal element in Neumann’s problems. The Dirichlet-to-Neumann
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map for the Laplacian, which we will describe in the first section, is im-

portant in many areas of basic analysis (elliptic boundary value problems

[29, 53, 63, 81], inverse problems [23, 49]), as well as physics (e.g., fluid

mechanics [27], electromagnetic theory [24], electrical impedance tomog-

raphy [48, 50, 89], electrical transmission [30]).

3.1 Expression of the Neumann problem in
toroidal coordinates

In this section, we define the basic concepts involved in the Dirichlet-to-

Neumann mapping and explicitly express the mapping for Ωη0 in terms of

the toroidal harmonics. We use this information to derive expressions for

the compatibility and normalization conditions in terms of Fourier coeffi-

cients and give a result of independent interest (Proposition 3.13), which

is a formula for the surface area of ∂Ωη0 in terms of Legendre functions of

the second kind.

3.1.1 Normal derivative on the torus

Let Ω ⊆ R3 be a domain with smooth boundary.

Definition 3.1. The normal derivative of a function u defined in a neighbor-
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hood V of a point x ∈ ∂Ω (or a half-neighborhood V ∩ Ω) is by definition

nor u(x) =
d
dt

u(x + t n)|t=0+ = (grad u(x)) · n, (3.1)

where n = n(x) is the inward pointing unit normal vector at x.

For the torus Ωη0 , the unit normal vector on ∂Ωη0 is represented in terms

of the toroidal coordinate function x(η, θ, φ) as

n = n(x) = (xθ × xφ)/|xθ × xφ|, (3.2)

where the values of xθ, xφ were calculated in (1.30). From this we have an

explicit representation

n =

(
− sinhη0 sinθ, − cosφ(coshη0 cosθ − 1), − sinφ(coshη0 cosθ − 1)

)
(coshη0 − cosθ)

.

(3.3)

As a consequence of Proposition 1.15, we can also express the unit nor-

mal vector as n = xη/|xη|, and since η increases as points move towards

the interior of Ωη0 , we see that (3.3) is in fact the inward pointing normal

vector on ∂Ωη0 .

In using the notation nor u, the fixed value of η0 will always be under-

stood.
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3.1.2 Background information on the Neumann problem

Here we summarize well-known facts about the Neumann problem for

reasonably general spatial domains. In the statements of the results, Ω

will be a bounded domain in R3 with smooth boundary ∂Ω. Later we will

return to Ωη0 .

Given a suitable f : ∂Ω → R, let u be the unique harmonic function in

Ω with boundary values f = u|∂Ω. One says that u is the solution to the

Dirichlet problem with boundary condition f (see [10]). Let h = nor u be the

normal derivative of u on ∂Ω.

Definition 3.2. The Dirichlet-to-Neumann mapping Λ is given by

Λ f = h. (3.4)

The Neumann problem corresponding to h is to find f such that (3.4) holds.

A common setting [55] for the Neumann problem is for f to be in

H1/2(∂Ω) (with u in H1(Ωη0)) and h in the boundary space H−1/2(∂Ωη0).

These spaces were described in Subsection 1.5.2 of Chapter 1. For v ∈

H1(Ωη0) we will informally write v|∂Ωη0
for the image of v under the trace

map tr[v].

The following result describes the existence of solutions to the Neumann
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problem in three important contexts. In any event, the formula (3.4) im-

plies that h satisfies the compatibility condition

∫
∂Ω

h dS = 0, (3.5)

which therefore is a necessary hypothesis in the following result.

Proposition 3.3 ([29, 34, 60]). (i) Suppose that h ∈ H−1/2(∂Ω) satisfies the

compatibility condition (3.5). Then there exists an f ∈ H1/2(∂Ω) such that

Λ f = h. This solution f is unique up to an additive constant.

(ii) If h ∈ L2(∂Ω), then f ∈ L2(∂Ω).

(iii) If h is continuous on ∂Ω, then f is also continuous.

The solution f can made unique by requiring the normalization condition

∫
∂Ωη0

f dS = c (3.6)

for a chosen constant c.

3.1.3 Dirichlet-to-Neumann mapping in toroidal coordi-
nates

We return to the particular case of Ωη0 . The coordinate expression of the

Dirichlet-to-Neumann mapping on Ωη0 will be based on the following the-

orem. We will abbreviate

qn,m = Qm
n− 1

2
(cosh η0), (3.7)
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so that by Definition 1.40, on the boundary we have

I ν,µ
n,m(η0, θ, φ) = qn,m

√
cosh η0 − cos θ Φν

n(θ)Φ
µ
m(φ). (3.8)

Theorem 3.4. The normal derivatives of the interior toroidal harmonics (1.40)

are given by the formula

nor I ν,µ
n,m =

((
(1 + 2n)qn,m cosh η0 −

(
2(n − m) + 1

)
qn+1,m

)
Φν

n−1(θ)

+

(
− 2
(

qn,m(2n cosh2 η0 + 1)−
(

2(n − m) + 1
)

cosh η0 qn+1,m

))
Φν

n(θ)

+

(
(1 + 2n)qn,m cosh η0 −

(
2(n − m) + 1

)
qn+1,m

)
Φν

n+1(θ)

)
×

(cosh η0 − cos θ)1/2

4 sinh η0
Φµ

m(φ).

Proof. Apply (3.1) to (1.40) and obtain a formula for nor I ν,µ
n,m. Now elim-

inate all occurrences of the derivative (Qm
n+1)

′ by means of the recurrence

formula (1.11). Finally, regroup the terms as multiples of the trigonometric

expressions of the form Φν
n.

Since every continuous function f : ∂Ωη0 → R is periodic in both θ and φ

in toroidal coordinates, and the function
√

cosh η0 − cos θ is also periodic,

we may express f in terms of a Fourier series as follows:

1√
cosh η0 − cos θ

f (θ, φ) = ∑
n,m,ν,µ

aν,µ
n,m Φν

n(θ)Φ
µ
m(φ) (3.9)
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with aν,µ
n,m ∈ R. This will be a convenient form because of the appearance

of the factor
√

cosh η0 − cos θ in (3.8).

Proposition 3.5. Let f ∈ H1/2(∂Ωη0). Suppose that f is given by (3.9). Let u

be the solution of the corresponding Dirichlet problem in Ωη0 , u|∂Ωη0
= f . Then

the Dirichlet-to-Neumann mapping of f is given by

h(θ, φ) = Λ f = nor u = ∑
n,m,ν,µ

aν,µ
n,m

qn,m
nor Iν,µ

n,m(η0, θ, φ). (3.10)

Proof. By (3.8), it is immediate that the solution of the Dirichlet problem

on Ωη0 for f given by (3.9) is given by

u = ∑
n,m,ν,µ

aν,µ
n,m

qn,m
I ν,µ

n,m, (3.11)

because this sum is harmonic and coincides with f (θ, φ) when η = η0.

Since the dominant factor in (1.9) is e(−n+1/2)η0 , the sum (3.11) converges

when (3.9) converges. Then by Theorem 3.4, it follows that h = Λ f is in

turn given by

h = ∑
n,m,ν,µ

aν,µ
n,m

qn,m
nor I ν,µ

n,m, (3.12)

assuming that f is sufficiently well-behaved to justify the exchange of

summation and differentiation. For example, since the trace operator and

the Dirichlet-to-Neumann mapping Λ : H1/2(∂Ωη0) → H−1/2(∂Ωη0) are
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continuous [83],

nor u = nor ∑
n,m,ν,µ

aν,µ
n,m

qn,m
I ν,µ

n,m = Λ
(
( ∑

n,m,ν,µ

aν,µ
n,m

qn,m
I ν,µ

n,m)
∣∣
∂Ωη0

)
= Λ

(
∑

n,m,ν,µ

aν,µ
n,m

qn,m
(I ν,µ

n,m
∣∣
∂Ωη0

)
)

= ∑
n,m,ν,µ

aν,µ
n,m

qn,m
Λ(I ν,µ

n,m
∣∣
∂Ωη0

) = ∑
n,m,ν,µ

aν,µ
n,m

qn,m
nor I ν,µ

n,m,

with the last sum converging in the dual space H−1/2(∂Ωη0) of

H1/2(∂Ωη0). It is also valid under the assumption that the sum in (3.11)

and the sums of the partial derivatives of the terms converge uniformly

on compact subsets of Ωη0 .

We will complement (3.7) with the further abbreviations

t0 = cosh η0, s0 = sinh η0. (3.13)

Definition 3.6. The toroidal Neumann constants, ρn,m = ρn,m(η0), σn,m =

σn,m(η0), and τn,m = τn,m(η0) associated to Ωη0 are defined as follows:

ρ1,m =
1

2s0

(
t0 + (2m − 1)

q1,m

q0,m

)
,

ρn,m =
1

4s0

(
(2n − 1)t0 + (2(m − n) + 1)

qn,m

qn−1,m

)
(n ≥ 2), (3.14)

σn,m =
−1
2s0

(
(2nt2

0 + 1) + (2(m − n)− 1)t0
qn+1,m

qn,m

)
(n ≥ 0),

τn,m =
1

4s0

(
(2n + 3)t0 + (2(m − n)− 3)

qn+2,m

qn+1,m

)
(n ≥ 0), (3.15)

for all m ≥ 0.
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Proposition 3.7. For fixed m and η0,

lim
n→∞

ρn,m

n
=

1
2

,

lim
n→∞

σn,m

n
= −t0,

lim
n→∞

τn,m

n
=

1
2

.

Proof. By Proposition 1.4, we calculate that

lim
n→∞

ρn,m

n
= lim

n→∞

1
4ns0

(
(2n − 1)t0 + (2(m − n) + 1)

qn,m

qn−1,m

)
=

1
2s0

(t0 − eη0) =
1
2

.

Further,

lim
n→∞

σn,m

n
= lim

n→∞

−1
2n s0

(
(2n t2

0 + 1) + (2(m − n)− 1)t0
qn+1,m

qn

)
=
−t0

2s0
(t0 − e−η0) = −t0.

Finally,

lim
n→∞

τn,m

n
= lim

n→∞

1
2 s0

(t0 − e−η0) =
1
2

.

Proposition 3.8. The values τn,m and ρn,m are never zero.

Proof. First we consider the statement for τn,m. In [46, p. 195] an alterna-

tive definition of Qm
n (t), consistent with Definitions 1.1 and 1.2, is given
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for all n, m ∈ C as follows:

Qm
n (t) =

(−1)m

2n+1
(n + m)!

n!
(t2 − 1)m/2

∫ 1

−1

(1 − s2)n

(t − s)n+m+1 ds. (3.16)

From this formula, it follows that

(−1)mQm
n (cosh η) > 0 (3.17)

for all n, m, η ∈ R+, and in particular when n is half an odd integer. Ac-

cording to Definition 3.6, we need to show that the value

16s0 qn+1,m τn,m = 4
(
(2n + 3)t0 qn+1,m +

(
2(n − m)− 3

)
qn+2,m

)
(3.18)

does not vanish. Recall the recursion formula (1.12) which we can write as

2(n + 1) t0 qn+1,m = (n − m +
3
2
)qn+2,m + (n + m +

1
2
)qn,m. (3.19)

Now add and subtract (2n + 3)(2(m+ n) + 1)qn+2,m and use the recursion

formula as (1.14)

2(n + 1) s0 qn+1,m−1 = qn,m − qn+2,m, (3.20)

Finally,

16 s0 qn+1,m τn,m = −2 s0 (2n + 3)(2n + 2m + 1)qn+1,m−1 +
8 (m + 2) n
(n + 1)

qn+2,m,

which by Proposition (1.3) for all n, m ≥ 0 is never zero. the proof for ρn,m

is similar, only we add and subtract (2n − 1)(n + m − 3
2)qn,m in the step
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after (3.19).

Proposition 3.9. The following expressions vanish identically:

σ0,0 q0,0 + 2 τ0,0 q1,0 = 0, (i)

ρ1,0 q0,0 + 2(σ1,0 q1,0 + τ1,0 q2,0) = 0, (ii)

while for n ≥ 2,

ρn,0 qn−1,0 + σn,0 qn,0 + τn,0 qn+1,0 = 0. (iii)

Proof. Via the recursion formula (3.19) as well as (1.16), written as

(n − m − 1
2
)t0qn,m = s0 qn,m+1 + (n + m − 1

2
) qn−1,m, (3.21)

direct computations show that

σ0,0 q0,0 + 2 τ0,0 q1,0 =
−1
2s0

(
q0,0 − t0q1,0

)
+

3
2s0

(
t0q1,0 − q2,0

)
=

3
8s0

(
q2,0 − q0,0

)
− 3

8s0

(
q2,0 − q0,0

)
= 0,

which is (i). Similarly, we find

ρ1,0 q0,0 + 2(σ1,0 q1,0 + τ1,0 q2,0)

=
1

4s0

(
t0 q0,0 − q1,0

)
+

1
s0

(
− (2t2

0 + 1) q1,0 +
11
2

t0 q2,0 −
5
2

q3,0
)

=− 1
2

q0,0 +
1
s0

(1
2

q1,0 +
1
2

s0 q0,1 −
1
2

q−1,0
)

= 0,
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which is (ii). Finally,

ρn,0 qn−1,0 + σn,0 qn,0 + τn,0 qn+1,0 =

(2n − 1)t0qn−1,0 + (−2n + 1 − 4nt2
0 − 2)qn,0

+ (6n + 5)t0qn+1,0 − (2n + 3)qn+2,0

= 0

which shows that (iii) is valid.

We have

Theorem 3.10. For a fixed η0, let f : ∂Ωη0 → R given by (3.9) and suppose that

the Fourier coefficients satisfy (1.50) where r ≥ 4. for some constant C. Define,

for µ = ±1 and all m ≥ 0,

b+,µ
0,m = σ0,m a+,µ

0,m + τ0,ma+,µ
1,m ,

b+,µ
n,m = ρn,m a+,µ

n−1,m + σn,m a+,µ
n,m + τn,m a+,µ

n+1,m (n ≥ 1),

b−,µ
1,m = σ1,m a−,µ

1,m + τ1,m a−,µ
2,m ,

b−,µ
n,m = ρn,m a−,µ

n−1,m + σn,m a−,µ
n,m + τn,m a−,µ

n+1,m (n ≥ 2). (3.22)

Then the Dirichlet-to-Neumann mapping h = Λ f is given by the formula

h(θ, φ) =
√

cosh η0 − cos θ ∑
n,m,ν,µ

bν,µ
n,m Φν

n(θ)Φ
µ
m(φ), (3.23)

which converges absolutely, and h is of class r − 3.
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Proof. From (3.8) it follows that

∣∣I ν,µ
n,m(η0, θ, φ)

∣∣ ≤ qn,m
√

t0 + 1,

so the expansion (3.9) converges absolutely. Similarly, one verifies from

Theorem 3.4 and (1.8) that

∣∣ nor I ν,µ
n,m
∣∣ ≤ C1(n + m + 1)

for some constant C1 (which depends on η0), and hence by (1.50)

∣∣aν,µ
n,m nor I ν,µ

n,m
∣∣ ≤ CC1

(n + m + 1)r−1 .

This is enough to guarantee that (3.12), a double series in θ and φ, also

converges absolutely. (Recall that the convergence exponents for double

series are different from simple series, in fact ∑ 1/(m + n + 1)2 = ∞.)

This in turn permits us to substitute the formula for nor I ν,µ
n,m into (3.12)

and then reindex Φν
n−1(θ) and Φν

n+1(θ) into Φν
n(θ) to obtain after some

straightforward calculations that

h(θ, φ) =
√

t0 − cos θ ∑
m,n,ν,µ

Φν
n(θ)Φ

µ
m(φ)

(
ρn,maν,µ

n−1,m

+ σn,maν,µ
n,m + τn,maν,µ

n+1,m
)
. (3.24)

This is statement (3.23). The Fourier coefficients bν,µ
n,m of h in (3.24) are of

order no greater than 1/(m + n + 1)r−1, so by Proposition (1.31) the series

89



CHAPTER 3. NEUMANN PROBLEM ON THE TORUS

(3.23) converges absolutely.

Lemma 3.11. (a) The compatibility condition (3.5) applied to a boundary func-

tion h of the form (3.23) is equivalent to

∞

∑
n=0

ε2
n qn,1 b+,+

n,0 = 0. (3.25)

(b) The normalization condition (3.6) applied to f of the form (3.9) is equivalent

to
∞

∑
n=0

ε2
n qn,1 a+,+

n,0 = − c
4π

√
2

, (3.26)

where εn has the same meaning as in Proposition 1.9.

Proof. (a) Since
∫ 2π

0 Φ−
n (θ) dθ = 0, while

∫ 2π

0
Φ+

0 (φ) dφ = 2π,∫ 2π

0
Φ+

m(φ) dφ = 0

for m ≥ 1, the surface integral of h is

∫∫
∂Ωη0

h(θ, φ) dS

=
∫ 2π

0

∫ 2π

0
h(θ, φ)

s0

(t0 − cos θ)2 dθdφ

= s0 ∑
m

∑
n

bν,µ
n,m

∫ 2π

0
(t0 − cos θ)−3/2Φν

n(θ) dθ
∫ 2π

0
Φµ

m(φ) dφ

= −4
√

2 π
∞

∑
n=0

ε2
nb+,+

n,0 Q1
n− 1

2
(cosh η0),
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with the last equality following from Proposition (1.9) with α = 3/2. The

proof of (b) follows the same lines as (a).

3.2 Solution of the Neumann problem on the
torus

To solve the Neumann problem on Ωη0 is effectively to solve the system

(3.22). In this section, we will show that an algebraic solution for the co-

efficients aν,µ
n,m will not always converge, and we will give a method for

finding the solution numerically.

3.2.1 Algebraic solutions for the Neumann coefficients

Definition 3.12. We will say that a collection of real numbers {aν,µ
n,m} is an

algebraic solution of the Neumann problem posed by {bν,µ
n,m} when all of the

equations (3.22) are satisfied.

An algebraic solution will give rise to a solution of the Neumann problem

if it defines a convergent series (3.9).

The upper triangular system (3.22) can be solved almost trivially by back-

substitution. It separates naturally into a separate system for each fixed

set of parameters (m, ν, µ), which are called the modes of the problem. For
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ν = +1, the solution is

a+,µ
1,m =

1
τ0,m

(b+,µ
0,m − σ0,m a+,µ

0,m ),

a+,µ
n+1,m =

1
τn,m

(b+,µ
n,m − ρn,m a+,µ

n−1,m − σn,m a+,µ
n,m );

while for ν = −1, the relations are

a−,µ
2,m =

1
τ1,m

(b−,µ
1,m − σ1,m a−,µ

1,m ),

a−,µ
n+1,m =

1
τn,m

(b−,µ
n,m − ρn,m a−,µ

n−1,m − σn,m a−,µ
n,m ).

Proposition 3.8 guarantees that these formulas are meaningful. Thus alge-

braic solutions always exist, and the values a+,µ
0,m or a−,µ

1,m , respectively, are

the only free parameters.

3.2.2 Convergent solutions for the toroidal Neumann
problem

In the proof of Proposition 3.5, we wrote down the formula for the har-

monic function (3.11) directly from the Dirichlet data. This says that the

Dirichlet problem is effectively trivial when data is expressed in terms of

the basis of toroidal harmonics. This is different for the Neumann prob-

lem, and we will find that some perhaps surprising particularities occur in

connection with the convergence properties of algebraic solutions.

The question is when will the algebraic solution be determined by choice
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of the initial coefficients a+,µ
0,m and a−,µ

1,m to provide a convergent series in

(3.9). That is to say, one wants to know when the function

f ν,µ
m =

∞

∑
n=0

aν,µ
n,m

qn,m
I ν,µ

n,m (3.27)

corresponding to the mode (m, ν, µ) will exist. The principal mode

(0,+1,+1) will be considered separately from the remaining modes.

3.2.3 Convergence of the algebraic solution for the princi-
pal mode

For the particular indices (m, ν, µ) = (0,+1,+1), the Neumann constants

satisfy some special relations which we will need. When b+,+
n,0 = 0 for all n

(i.e., when h vanishes identically), the corresponding equations (3.22) are

linear homogeneous, and Proposition 3.9 implies that

a+,+
n,0

qn,0
= 2

a+,+
0,0

q0,0
(n ≥ 1); (3.28)

i.e., a+,+
n,0 = εna+,+

0,0 for all n, where as usual εn = 1 + δn,0. On the other

hand, the formula of Proposition 1.9 with the exponent determined by

α = 1/2 gives

1 =

√
2

π

∞

∑
n=0

εn I+,+
n,0 . (3.29)
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Therefore the solution

f+,+
0 (θ, φ) =

a+,+
0,0

q0,0

∞

∑
n=0

εnqn,0 cos nθ
√

t0 − cos θ

is indeed equal to a constant function on ∂Ωη0 (as must be the case accord-

ing to Proposition 3.3) with value (π/
√

2)(a+,+
0,0 /q0,0). The solution of the

Dirichlet problem in Ωη0 is the same constant. Thus, given any a+,+
0,0 ∈ R,

the algebraic solution gives a convergent series ∑∞
n=0

a+,+
n,0
qn,0

I+,+
n,0 (η0, θ, φ).

These considerations also lead to the following result which is of indepen-

dent interest.

Proposition 3.13. The area of ∂Ωη0 is equal to

α(η0) = −8
∞

∑
n=0

ε3
nqn,0qn,1.

Proof. Take a+,+
0,0 = (

√
2/π)q0,0, which gives f +,+

0 = 1 identically. Then

apply (3.26) to evaluate α(η0) =
∫

∂Ωη0
f +,+

0 dS.

These considerations also give us a formula for normalizing any given

solution of the toroidal Neumann problem:

Proposition 3.14. Let f be a particular solution of Λ f = h and set c1 =∫
∂Ωη0

f dS. Let f̂ be obtained by replacing the coefficients a+,+
n,0 for f with

â+,+
n,0 = a+,+

n,0 + εn

√
2

π

qn,1

α(η0)
(c − c1).
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Then f̂ is the unique solution of the Neumann problem which satisfies the nor-

malization condition (3.26).

3.2.4 Determination of parameter for convergence for non-
principal modes

We assume now that (m, ν, µ) ̸= (0,+1,+1). The essence of the matter is

that according to Proposition 3.3, there is exactly one algebraic solution of

(3.22) for which (3.9) converges. Every value of a+,µ
0,m (or a−,µ

1,m ) defines an

algebraic solution. The determination of the corresponding unique value

aopt of a+,µ
0,m or a−,µ

1,m is not an algebraic question; in fact, is natural to believe

that aopt is not the solution of any algebraic or transcendental equation

associated with the Neumann data. In the following discussion, we will

assume that µ = +1 since the case µ = −1 is analogous, the only differ-

ence being the start of the indexing from n = 1 instead of n = 0.

To simplify the notation, we will write an = aν,µ
n,m. Let An(a) denote the

value of an in the solution of equations (3.22) determined by setting the

arbitrary parameter a0 = a+,µ
0,m (or a−,µ

1,m ) equal to a.

Proposition 3.15. The values An(a) are given by

An(a) = Cna + Dn (n ≥ 0), (3.30)
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where the coefficients Cn, Dn are defined recursively by

C0 = 1, D0 = 0,

C1 =
−σ0

τ0
, D1 =

b0

τ0
,

Cn+1 =
−1
τn

(ρnCn−1 + σnCn), Dn+1 =
−1
τn

(ρnDn−1 + σnDn − bn) (n ≥ 1).

(3.31)

In particular, A0(a) = a.

Proof. Since by definition A0(a) is the value of a0 determined by setting

a0 = a, we have A0(a) = a. This gives the values of C0, D0. The remaining

values follow by induction because of equations (3.15).

By construction, the collection {An(a)} is an algebraic solution of the sys-

tem (3.22), whatever the value of a may be. According to (3.9) and Theo-

rem 3.10, we want to find the unique value aopt ∈ R provided by Theorem

3.16 for which the series

∞

∑
n=0

An(aopt)Φν
n(θ)Φ

µ
m(φ) (3.32)

converges absolutely and thus gives f ν,µ
m (θ, φ). Since the summands of any

convergent series tend to zero, it is necessary that An(aopt) → 0 as n → ∞.

By (3.30), this says Cnaopt + Dn → 0.

Note that the Cn’s do not depend on the data {bn}. It is clear that two con-
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secutive terms Cn, Cn+1 can never vanish, because otherwise by Proposi-

tion 3.8 all of the preceding Cn would also vanish, contradicting C0 = 1.

Under the assumption that Cn > ϵ > 0 for infinitely many n, we have

−Dn

Cn
→ aopt (3.33)

as n → ∞ on that subsequence. We will look further into this question in

a moment.

We summarize our conclusions as follows.

Theorem 3.16. Let the coefficients {bν,µ
n,m} be such that the series (3.23) converges

absolutely, defining h : ∂Ωη0 → R. Assume that b+,+
n,0 satisfy (3.25), so h satisfies

the compatibility condition (3.5). Suppose further that the continuous solution

f : ∂Ωη0 → R of Λ f = h specified in Proposition 3.3 has a double Fourier series

which converges absolutely. Then (i) for every value of a+,+
0,0 ∈ R, the resulting

algebraic solution for the sequence {a+,+
n,0 } produces an absolutely convergent

series

∑
n

a+,+
n,0

qn,0
I+,+

n,0 (η0, θ, ϕ)

whose value is f +,+
0 plus a constant. Further, (ii) for (m, ν, µ) different from

(0,+1,+1), there exists a unique value of aν,µ
0,m (when ν = 1) or aν,µ

1,m (when
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ν = −1) for which the resulting algebraic solution gives a convergent series

∑
n

aν,µ
n,m

qn,m
I ν,µ

n,m(η0, θ, ϕ).

The sum of this series is the mode f ν,µ
m given by equation (3.27).

The contrast of the behavior of the principal mode in this theorem is strik-

ing since equations (3.22) show no apparent structural difference between

the principal and other modes. The algorithm is essentially as follows:

Algorithm 1. (Solution to the Neumann problem) Given the coefficients {bν,µ
n,m},

calculate the coefficients Cn, Dn, 0 ≤ n ≤ N, by (3.31) which give the approx-

imation aopt = aopt(m, ν, µ) = −DN/CN and then also {aν,µ
n,m} by (3.30) and

(3.33) .

3.3 Numerical results

3.3.1 Calculation of qn,m

From (1.9) it is clear that qn,m decreases exponentially as n → ∞. In fact,

for many values of η0 in the range we will be considering, |q100,0| is less

than 10−300 and thus effectively becomes zero when represented in stan-

dard IEEE double-precision format [47]. For many problems, values of

n as large as 100 would not be necessary, but if one wants to use a large

number of terms in a series solution, two ways out of this difficulty present
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themselves.

The first way is via asymptotic expansions. For large values of n we can

estimate qn,m to high accuracy by means of (1.9) and Stirling’s formula

for the Γ function. However, it turns out there is a gap between small

values of n where machine precision is applicable and the large values of

n for which Stirling’s estimate is sufficiently accurate. For example, for

η0 = 1.5 and m = 2, we find in machine precision that q131,2 vanishes,

while q130,2 suffers a relative error of 0.0006. The estimate based on (1.9)

gives a relative error of 0.003. The formula (1.9) is in fact the first term

of an asymptotic expansion for Qm
n given in [46], and can be made much

more accurate by multiplying it by the factor

1 − 1
8n

− m2

n
+

4m2 − 1
n

1
1 − e−2η0

. (3.34)

Note that by (3.15), we only need to know the ratios qn+1,m/qn,m. After

cancelling several factors, one derives an approximation which can be sub-

stituted into (3.15) to find, for example, that τ136,2 vanishes in machine pre-

cision, while the approximations of τn,2 already for n ≥ 20 have relative

error less than 0.00001. Similar statements hold for the coefficients ρn,m

and σn,m. The optimal cutoff value of n at which to switch from a direct

calculation to the asymptotic formula would depend on the values of m
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and η0 as well as a consideration of the acceptable error in the coefficients.

It is likely that other more convenient asymptotic expressions could be

developed but this would lead us rather far afield.

Multiple-precision arithmetic was used in Mathematica to verify the cor-

rectness of the above statements. Multiple precision is also a convenient

second alternative for calculating all of the Neumann constants when one

is planning to solve many Neumann problems on the same torus: once

the coefficients have been obtained and rounded to machine precision, the

computation will then easily move forward without further recourse to

higher precision arithmetic.

3.3.2 Numerical behavior of Cn

We observed that aopt is given by (3.33) unless it happens that Cn → 0.

(Recall that Cn does not depend on the Neumann data {bν,µ
n,m}.) For small

values of n, we have a priori little control over even the sign of the co-

efficients defined in (3.15). However, from (3.7), ρn,m/τn,m → 1 and

σn,m/τn,m → −2t0. Therefore if for a single large n we have

Cn ≈ eη0Cn−1,
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Table 3.1: Sample values of Cn for m = 1, (ν, µ) = (+,+). 200-digit preci-
sion was used to avoid underflow in the calculations.

η = 0.1 η = 0.3 η = 0.5 η = 1. η = 1.5 η = 2.
C0 1. 1. 1. 1. 1. 1.
C1 1.943 1.697 1.420 0.866 0.523 0.316
C2 1.852 1.418 1.098 0.720 0.599 0.557
C3 1.752 1.229 0.985 0.996 1.444 2.294
C4 1.654 1.120 1.016 1.761 4.302 11.303
C5 1.562 1.076 1.171 3.476 14.040 60.780
C6 1.48 1.085 1.458 7.286 48.463 345.631
C7 1.407 1.144 1.911 15.885 173.925 2043.827
C8 1.344 1.249 2.595 35.635 642.402 12440.253
C9 1.290 1.404 3.611 81.710 2425.889 77424.156
C10 1.246 1.616 5.120 190.646 9323.354 490447.458
C15 1.139 4.005 34.827 15650.902 9.298 × 106 5.953 × 109

C20 1.189 11.881 279.376 1.521 × 106 1.099 × 1010 8.571 × 1013

C30 1.722 132.742 22884.183 1.839 × 1010 1.969 × 1016 2.278 × 1022

C40 3.068 1751.093 2.221 × 106 2.641 × 1014 4.196 × 1022 7.201 × 1030

C50 6.053 25335.250 2.369 × 108 4.173 × 1018 9.835 × 1028 2.505 × 1039

then by (3.31) it would follow that

Cn+1 ≈ −Cn−1 + 2t0Cn = −e−η0Cn + 2t0Cn = eη0Cn;

i.e., the sequence {Cn} grows exponentially. Table 3.1 lists some calcu-

lated values of Cn corresponding to m = 1 and a range of values of η0.

Other values of m are shown in Table 3.2. Even though the initial values

can decrease, in all cases that we have examined it appears that Cn → ∞

exponentially as n → ∞, and we conjecture that this always holds. Then

Algorithm 1 is applicable.
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Table 3.2: Sample values of Cn for η = 0.4, (ν, µ) = (+,+).

m = 2 m = 3 m = 4 m = 5
C0 1. 1. 1. 1.
C1 1.333 2.112 2.711 3.119
C2 2.125 4.111 6.103 7.835
C3 5.013 10.308 16.235 22.035
C4 13.765 28.988 46.956 65.655
C10 16716.741 36306.992 61217.891 89729.231
C15 1.014 × 107 2.211 × 107 3.749 × 107 5.533 × 107

C20 7.279 × 109 1.590 × 1010 2.701 × 1010 3.996 times1010

C30 4.801 × 1015 1.050 × 1016 1.786 × 1016 2.648 × 1016

C40 3.764 × 1021 8.233 × 1021 1.402 × 1022 2.080 × 1022

C50 3.246 × 1027 7.102 × 1027 1.209 × 1028 1.795 × 1028

3.3.3 Examples of Dirichlet-to-Neumann and Neumann
problem calculations

We illustrate the solution of the Neumann problem with numerical exam-

ples. For the principal mode (m, ν, µ) = (0,+1,+1) there is not much to be

said. Every choice of a0 = a++
0,0 gives an algebraic solution which defines a

series which solves the Neumann problem. Proposition 3.14 may be used

for normalization. It may be worth noting that when bn = 0 for all n (i.e.,

the coefficients for a vanishing normal derivative in the mode under con-

sideration), since the sum is a constant, one can dispense with the series

altogether for this case. But if one does wish to follow the procedure, the

formulas (3.31) give Dn = 0 always, and by (3.30), we have An(a) = aCn.

Choosing a0 = 1 without any loss of generality and fixing η0, one obtains

102



3.3. NUMERICAL RESULTS

the values Cn by (3.31) and then the initial coefficients an by (3.30). This

calculation amounts simply to finding values of the associated Legendre

functions of the second kind via the classical recursion formulas, and the

only numerical error is that which accumulates due to roundoff.

The numerical examples were calculated in Mathematica on a household

laptop computer. As noted, all calculations were in machine precision ex-

cept for a few coefficients. The calculations took a fraction of a second

apart from the rendering of the graphics.

Example 3.17. To illustrate the calculation of the Dirichlet to Neumann

mapping, consider a+,+
n,m = an where an = (−1)(n−1)/2n−2 for n odd, and

an = 0 for n even, 0 ≤ n ≤ 50. Figure 3.1 shows the function f and the

image h = Λ f for a few values of m. While f is smooth, it does not satisfy

the regularity condition of Theorem 3.10, and h has jump discontinuities.

Except at the jumps, the values of h agree to within 10−14 to 10−15 with the

normal derivative of the f series obtained by numerical derivation.

As another example, let an = (−1)(n−1)/2n−1 for n odd instead. As Figure

3.2 shows, now f has a jump discontinuity while the series for the resulting

h does not converge, further illustrating the tendency of the Dirichlet to

Neumann mapping to reduce the degree of differentiability.
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Figure 3.1: Given function f (θ, φ) determined by an = (−1)(n−1)/2n−2 for
n odd (above) and calculated D-to-N mapping h(θ, φ) (below). η0 = 1.5.
All calculations carried out with machine precision.

Figure 3.2: Solution determined by an = (−1)(n−1)/2n−1 for n odd, m = 2,
η0 = 1.5. The profile of h for φ = 0 (right) results from an attempt to graph
a nonconvergent series.

Example 3.18. Let

u =

(
sinh η

cosh η − cos θ

)m
cos mφ. (3.35)
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It is readily checked that u is harmonic and

nor u = m
(

sinh η0

cosh η0 − cos θ

)m

((cosh η0 − cos θ) coth η0 + sinh η0) cos mφ.

(3.36)

(Clearly one also would obtain a harmonic function with sin mφ in place

of cos mφ in (3.35).) By Proposition 1.9, the coefficients in the series for u

are equal to

aν,µ
n,m = (−1)m

√
2/π

Γ(m + 1/2)
εnqn,m. (3.37)

We substitute these coefficients into (3.22) to obtain numerical values for

the bν,µ
n,m. Then we compare truncations of the series (3.24) with the true

values of h = nor u according to (3.36). Figure 3.3 displays the base-10

logarithm of the absolute error for different combinations of m and η0. As

is expected, the error is reduced when the number of terms in the series

increases. It is also seen that the error increases steadily when larger values

of m and η0 are used.

Example 3.19. We illustrate our algorithm for solving the Neumann prob-

lem using the same function u as in the previous example. The Fourier

coefficients bν,µ
n,m are obtained by numerical integration. Then the auxiliary

coefficients Cn, Dn are obtained recursively by (3.31), and then aopt is ap-

proximated by the last value of −Cn/Dn according to (3.33). One would
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expect that the values aν,µ
n,m = An(aopt) of (3.33) provide a convergent se-

ries, while for a ̸= aopt, {An(a)} would not. This is confirmed by Figure

3.4, which shows the values of An(a + ϵ) for small values of ϵ. The er-

ror in a particular series solution h of the Neumann problem compared to

(3.36) is shown in Figure 3.5. Maximum errors for combinations of η0, m

are shown in Table 3.3.

Figure 3.3: Base-10 logarithm indicating number of significant figures of approx-
imation of the Dirichlet-to-Neumann mapping given by equations (3.22) truncat-
ing the series (3.23) to 0 ≤ n ≤ N for varying values of N. Accuracy is lost as m
or η0 increases. For comparison purposes 100-digit precision was used to obtain
the Neumann constants. It was found that machine precision was sufficient for
η0 > 0.5, which is applicable for most “reasonably-shaped” toroidal domains.
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Figure 3.4: Rapid growth of the first 50 coefficients in nonconvergent algebraic
solutions generated by to aopt + ϵ, illustrated for η0 = 0.4 and m = 2, with aopt
approximated by −D50/C50. (The graphic is truncated: for ϵ = .1, the coefficients
reach approximately 107. Even at this scale, the coefficients for ϵ = 0 are virtually
indistinguishable from the horizontal axis.

3.3.4 Computational complexity

In order to calculate the Dirichlet-to-Neumann mapping or solve the Neu-

mann problem in the context of the Fourier representation, one needs the

coefficients {aν,µ
n,m} or {bν,µ

n,m}, respectively. Methods for calculating these

coefficients given the values of f or h on ∂Ωη0 are well known, depend-

ing on a choice of numerical integration procedure, can be found in many

standard software packages, and will not be discussed here. In this sense,

Algorithm 1 can be considered part of a larger computation.
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Figure 3.5: Error in solution for Neumann problem for η0 = 0.4, m = 2 and 50
terms, distributed over the range 0 ≤ θ ≤ 2π, with φ = 0.

The amount of calculation required for Algorithm 1 is simple to estimate.

For 0 ≤ m ≤ M and each choice of ν, µ, take N terms in the truncated

Fourier series and use the values CN, DN to determine aopt. Assume that

the Neumann constants ρn,m, σn,m, τn,m have been calculated previously.

This is also reasonable when one wishes to solve many Neumann prob-

lems on a single surface. Then by (3.31), approximately 4N multiplications

in machine-precision are needed to find aopt, and since we then have all of

the Cn, Dn for n < N, by (3.30) we need N more multiplications to find the

Taylor coefficients for each mode. The calculation time of the Neumann

constants is also of order O(NM), but one must take into account that ei-
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Table 3.3: Significant figures in the numerical solution of the Neumann problem
on the torus showing the increase in accuracy with the number of terms.

N m = 1 m = 2 m = 3 m = 4
15 4.7 3.6 2.8 1.0
20 6.7 5.5 4.5 3.7
25 8.4 7.2 6.3 5.4

ther multiple precision or a slightly more complicated asymptotic formula

may be necessary for a certain collection of coefficients of low index.

3.4 Exterior toroidal domain and toroidal shells

3.4.1 Exterior domain

The formula for the normal derivative of a harmonic function in the exte-

rior Ω∗
η0

of a torus and the solution of the corresponding Neumann prob-

lem are quite analogous to that of the interior domain Ωη0 , using the ex-

terior harmonics Eν,µ
n,m defined by (1.41). Since the solution of the Dirichlet

problem in Ω∗
η0

with boundary condition f given by (3.9) is

u = ∑
n,m,ν,µ

aν,µ
n,m

qn,m
Eν,µ

n,m(η, θ, φ), (3.38)

one finds that the normal derivative of f will be given by equations (3.22)

when qn,m is replaced in (3.15) with

pn,m = Pm
n−1/2(cosh η0). (3.39)
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The method we have described is then applicable with no essential

changes for solving the Dirichlet-to-Neumann problem in Ω∗
η0

. It is worth

noting that parallel to (1.8) we have [46, p. 305] that

lim
n→∞

pn−1,m

pn,m
= eη0 . (3.40)

3.4.2 Toroidal shell

Finally, we discuss how to combine our results in the interior and exterior

domains for solving the Neumann problem in a toroidal shell. Let ηint <

ηext. Common to an interior and an exterior domain are the points of the

toroidal shell

Ω = Ωηint,ηext = Ω∗
ηext

∩ Ωηint .

A general harmonic function u in Ωηext,ηint and continuous in the closure

can be expressed via an integral of its boundary values over ∂Ωηext,ηint us-

ing the Poisson kernel for the torus [45, Ch. 1]. This integral is the differ-

ence of the integrals over ∂Ωηext and ∂Ωηint , which give a decomposition

u = u0 + u1 with u0 ∈ Har Ωηint and u1 ∈ Har Ω∗
ηext

. Consequently, we

may express u as the sum of two series

u = ∑
n,m,ν,µ

cint ν,µ
n,m I ν,µ

n,m + ∑
n,m,ν,µ

cext ν,µ
n,m Eν,µ

n,m, (3.41)
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analogous to the Laurent series for holomorphic functions in an annular

domain in the complex plane, converging uniformly in proper closed sub-

domains. (Note, however, that the inner and outer harmonics together do

not form an orthogonal system in Ωηext,ηint .)

A boundary function f : ∂Ω → R is given collectively by its values for

η = ηint and η = ηext collectively, let us say by the two functions

fint(θ, φ) = f (ηint, θ, φ) = ∑ aint ν,µ
n,m I ν,µ

n,m[η1],

fext(θ, φ) = f (ηext, θ, φ) = ∑ aext ν,µ
n,m Eν,µ

n,m[η0]. (3.42)

For u to be the solution of the Dirichlet problem for f , we combine (3.41)

with (3.42) to find

qint
n,mcint ν,µ

n,m + pint
n,mcext ν,µ

n,m = aint ν,µ
n,m ,

qext
n,mcint ν,µ

n,m + pext
n,mcext ν,µ

n,m = aext ν,µ
n,m , (3.43)

where

qint
n,m = Qm

n−1/2(cosh ηint), qext
n,m = Qm

n−1/2(cosh ηext),

pint
n,m = Pm

n−1/2(cosh ηint), pext
n,m = Pm

n−1/2(cosh ηext).

This can be written in matrix notation as(
qint pint

qext pext

)(
cint

cext

)
=

(
aint

aext

)
.
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To solve this system, one needs to verify that it is nonsingular. Instead of

a direct verification as in Lemma 3.8, we simply note that if for even one

combination of (n, m, ν, µ), there were more than one solution, one could

easily construct a Dirichlet problem in the shell Ω with more than one

solution.

We see that nor I ν,µ
n,m|∂Ωint is obtained from the formula of Theorem 3.4 with

η0 replaced with ηint, while nor I ν,µ
n,m|∂Ωext is obtained by using ηext instead.

The boundary values nor Eν,µ
n,m|∂Ωint and nor Eν,µ

n,m|∂Ωext are then obtained by

replacing Qm
n−1/2 with Pm

n−1/2. Once we have the harmonic function u as

in (3.41), we have then

nor u
∣∣∣∣
∂Ωint

= ∑
n,m,ν,µ

cint ν,µ
n,m nor I ν,µ

n,m

∣∣∣∣
∂Ωint

+ ∑
n,m,ν,µ

cext ν,µ
n,m nor Eν,µ

n,m

∣∣∣∣
∂Ωint

,

nor u
∣∣∣∣
∂Ωext

= ∑
n,m,ν,µ

cint ν,µ
n,m nor I ν,µ

n,m

∣∣∣∣
∂Ωext

+ ∑
n,m,ν,µ

cext ν,µ
n,m nor Eν,µ

n,m

∣∣∣∣
∂Ωext

.

When the convergence of the series is absolute, one may apply the same

rearranging and reindexing as described in the proof of Theorem 3.4 to

obtain the coefficients in the Dirichlet-to-Neumann mapping h = Λ f ,

h(ηint, θ, φ) =
√

cosh η0 − cos θ ∑ bint ν,µ
n,m Φν

n(θ)Φ
µ
m(φ),

h(ηext, θ, φ) =
√

cosh η0 − cos θ ∑ bext ν,µ
n,m Φν

n(θ)Φ
µ
m(φ). (3.44)

As in the solution of the Neumann problem for the interior domain, the
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equations for a fixed value of (m, ν, µ) are independent of those for another

value of these indices. They can be solved recursively. The only difference

will be that one must solve a pair of equations at each step.
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Second Part: Toroidal Monogenics
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Chapter 4

Quaternionic analysis

In this chapter, we summarize the basic concepts and terminology con-

cerning quaternions and quaternionic operators that will be used in the

thesis. We begin by reviewing the algebraic properties of the Hamilto-

nian quaternions and their embedding in more general systems of Clifford

numbers. Then we give the definition of the generalized Cauchy-Riemann

operator as conceived by W. R. Hamilton and R. Fueter, which generalizes

the classical two-dimensional Cauchy-Riemann operator to quaternionic

analysis. The null solutions of this operator are called monogenic. It is

possible to factor the Laplace operator in terms of the generalized Cauchy-

Riemann operator and its quaternionic conjugate, similar to the complex

case. This factorization allows one to generate classes of monogenic func-

tions from classes of harmonic functions, a fact which we will apply in
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Chapter 5.

The main topic of this thesis is to investigate monogenic functions defined

on a torus. In this chapter, we describe properties of monogenic functions

which hold in arbitrary domains in R3. All of the material in this chapter

may be found in [14, 39, 40, 41, 42, 70, 74, 88].

4.1 The Hamiltonian quaternion algebra

The geometric properties induced on the plane by complex numbers

strongly motivated Hamilton to look for a higher dimensional general-

ization of the complex number system. Searching in vain for a three-

dimensional vector system with a proper multiplication operation, in 1843,

Hamilton discovered the quaternions, usually denoted by H. Although

quaternions form a four-dimensional associative algebra over the real

numbers, they are not commutative.

For the standard basis system of the Hamiltonian quaternion algebra, one

often uses the notation {1, i, j, k}. In this thesis, we prefer to use the nota-

tion {e0, e1, e2, e3} instead. The basis elements satisfy the following mul-

tiplication rules, where in some places we write 1 in place of e0:

e2
0 = e0 = 1; eie0 = e0ei = ei, i = 1, 2, 3,

118



4.1. THE HAMILTONIAN QUATERNION ALGEBRA

e2
1 = e2

2 = e2
3 = −1, eiej + ejei = −2 δij, (4.1)

with the Kronecker symbol δij and the relation

e1 e2 = e3.

Every element a of H is represented in the form

a =
3

∑
i=0

eiai,

where the ai are real numbers. We will write [a]i = ai. For the particular

case of [a]0 we denote by

Sc(a) = a0,

the scalar part of a, and by

Vec(a) =
3

∑
i=1

eiai

its vector part.

Consistently with (4.1), we define the product of two quaternions a =

∑3
i=0 eiai and b = ∑3

i=0 eibi as follows:

Definition 4.1.

ab = (a0b0 − a1b1 − a2b2 − a3b3) + e1(a1b0 + a0b1 + a2b3 − a3b2)

+ e2(a2b0 + a0b2 + a3b1 − a1b3) + e3(a3b0 + a0b3 + a1b2 − a2b1).
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The quaternionic conjugate of a quaternion a is

a = Sc(a)− Vec(a) = a0 −
3

∑
i=1

eiai.

It is immediate that

Sc(a) =
1
2
(a + a)

and

Vec(a) =
1
2
(a − a).

The (algebraic) norm of a quaternion a = ∑3
i=0 eiai is defined by

|a| = (aa)1/2 = (aa)1/2 =

(
3

∑
i=0

a2
i

)1/2

.

It follows that |ab| = |a||b| and that every nonzero quaternion a possesses

an inverse defined by a−1 := a/|a|2. This inverse satisfies aa−1 = a−1a =

1. Furthermore, |a|−1 = |a−1|.

The existence of inverse signifies that the quaternions form a noncommu-

tative division algebra, the skew-field H of quaternions. The quaternions

remain the most straightforward algebra after the real and complex num-

bers.
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4.2 Clifford algebras

Inspired by the work of Hamilton and combining ideas of geometric alge-

bra developed by H. Grassmann in 1878, W. K. Clifford [25] introduced the

notion of what is now known as the universal Clifford algebra, which in-

cludes generalizations of the scalar and vector products to higher dimen-

sions. A Clifford algebra is an associative but usually noncommutative

algebra over the real or the complex field. For more information on the

history of Clifford algebras, we refer to [57, 80].

4.2.1 Definition of Clifford algebra

We denote by Cℓ0,n (n ∈ N0) the (universal) real Clifford algebra con-

structed over the orthonormal basis {i0, i1, i2, . . . , in} of the Euclidean vec-

tor space Rn+1, where the elements of the basis satisfy the following mul-

tiplication rules:

ikil + ilik = −2δk,li0,

i0ik = iki0 = ik, (k, l = 1, 2, . . . , n),

where the element i0 is regarded as the usual unit, that is, i0 = 1.

A basis for Cℓ0,n is given by the elements

iA = ij1ij2 · · · ijk ,
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where A = {j1, j2, . . . , jk} ⊆ {1, 2, . . . , n} is such that 1 ≤ j1 < j2 < · · · <

jk ≤ n. For the empty set ∅, we put i∅ = i0 = 1. It then follows that the

dimension of Cℓ0,n is 2n.

Any Clifford number a ∈ Cℓ0,n may thus be written as

a = ∑
A⊆{1,...,n}

iAaA, aA ∈ R.

The addition and multiplication of elements of Cℓ0,n by real numbers are defined

componentwise. In this way, the multiplication between two elements of

Cℓ0,n turns out to be associative, anticommutative, and has distributive

properties.

As Cℓ0,n is isomorphic to R2n
, we may provide it with the R2n

-norm |a|,

and one can verify that for any a, b ∈ Cℓ0,n, |a b| ≤ 2n/2 |a| |b|, where

a = ∑A⊆{1,...,n} iAaA and b = ∑A⊆{1,...,n} iAbA.

The collection Cℓk
0,n of k-vectors in Cℓ0,n is the real linear subspace of Cℓ0,n,

defined as

Cℓk
0,n =

{
a ∈ Cℓ0,n : a = ∑

|A|=k
iAaA

}
,

where |A| denotes the cardinality of the set A. The elements of Cℓ2
0,n are

called bivectors, while the elements of Cℓn
0,n are called pseudoscalars.
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We define the even subalgebra by

Cℓ+0,n =
⊕

k even

Cℓk
0,n.

According to the fact that the set Cℓ+0,n contains the identity 1 and the prod-

uct of two elements of even order forms an element of even order, it is clear

that Cℓ+0,n is again an algebra, but not a Clifford algebra.

4.2.2 Quaternions seen as Clifford numbers

H can be interpreted as a Clifford algebra in two different ways. On the

one hand, H is isomorphic to the four-dimensional, even subalgebra Cℓ+0,3

of the universal Clifford algebra Cℓ0,3 of dimension 8 with the generators

i1i2, i3. The subalgebra is generated by

{1, −i1i2, −i1i3, i2i3}

The identification of this subalgebra with H is

e1 → −i1i2, e2 → −i1i3, e3 → i2i3.

In this context the basis elements e1, e2, and e3 have an interpretation as

bivectors in a Clifford algebra.

On the other hand, H can be also realized as the universal Clifford algebra

Cℓ0,2 = ⟨{1, i1, i2, i1i2}⟩
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with the identification

e1 → i1, e2 → i2, e3 → i1i2.

From a geometrical point of view, this identification is not particularly

interesting since e1, e2, and e3 have different meanings according to the

context: the basis elements e1 and e2 are vectors in the Clifford algebra,

while in contrast, e3 corresponds to a bivector.

The field of complex numbers can be identified with the Clifford algebra

Cℓ0,1.

We proceed to consider an important subset of H.

Definition 4.2. A quaternion is called a reduced quaternion when is an ele-

ment of the subset

A =

{
3

∑
i=0

eiai ∈ H : ai ∈ R, a3 = 0

}
. (4.2)

Thus a ∈ A ⇔ [a]3 = 0. Points (x0, x1, x2) ∈ R3 can be identified with re-

duced quaternions ∑2
i=0 eixi ∈ A. Since A is not closed under the quater-

nionic multiplication, it is clear that A is only a real vector subspace and

not a subalgebra of H.

There are other ways of embedding R3 in H, for example, using the sub-

space of pure quaternions, i.e., by considering (x1, x2, x3) ∈ R3.
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Lemma 4.3. (i) Every quaternion a ∈ H may be expressed in the form a =

b + ce3 where b, c ∈ A. (ii) If also a = b′ + c′e3 where b′, c′ ∈ A, then

[b]0 = [b′]0 and [c]0 = [c′]0.

Proof. Part (i) is trivial since we can write a = (a0 + a1e1 + a2e2) + (a3)e3.

For part (ii), by equating the scalar parts in the equation b − b′ = −(c −

c′)e3 with b − b′ ∈ A and c − c′ ∈ A, we have [b]0 − [b′]0 = 0, and by

equating the e3 parts we have [c]3 − [c′]3 = 0.

4.3 Operators on quaternionic Hilbert spaces

4.3.1 Linear spaces of H-valued functions

Consider functions defined on an open subset Ω of R3 and taking values

in the quaternions (possibly in the reduced quaternions). These functions

are mappings of the form

f : Ω → H

such that

f (x) =
3

∑
i=0

ei[ f (x)]i, x ∈ Ω,

where the coordinate-functions [ f ]i are real-valued functions in Ω. Prop-

erties such as continuity, differentiability or integrability are ascribed
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coordinate-wise. It is clear that [ f (x)]3 = 0 for all x ∈ Ω if and only if

f is an A-valued function.

Due to the noncommutativity of quaternions, it is necessary to distinguish

between two types of linear spaces over H, namely left-linear and right-

linear spaces.

Definition 4.4. A right-linear space over H is an additive abelian group L

in which there is defined operation of scalar multiplication by elements of

H, for which the following laws hold for all x, y ∈ L, a, b ∈ H:

(i) (x + y)a = xa + ya,

(ii) x(a + b) = xa + xb,

(iii) x(ab) = (xa)b.

All H-linear spaces mentioned in this thesis will be assumed to be right

spaces over H. We use the notation L(Ω, H) for right-linear spaces con-

sisting of H-valued functions, where L may denote a class of differentia-

bility as in Definition 4.5 below. The spaces L(Ω,A) of A-valued functions

will be R-linear but not right-linear in the sense of a H-linear space.

We denote the partial derivative of an H-valued function with respect to

the variable xi by ∂/∂xi, i ∈ {0, 1, 2}. This means that the partial derivative
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is applied to each R-valued component separately. The partial derivatives

of higher-order are denoted by

∂λ =
∂|λ|

∂xλ0
0 ∂xλ1

1 ∂xλ2
2

,

where λ = (λ0, λ1, λ2) is a multi-index of nonnegative integers and we

write |λ| = λ0 + λ1 + λ2.

We introduce the following quaternionic spaces, which will be of use in

further discussion:

Definition 4.5. We denote by

(i) C(Ω, H) the space of all H-valued functions that are continuous in

Ω;

(ii) Cm(Ω, H) the space of all H-valued functions f such that ∂λ f ∈

C(Ω, H) whenever |λ| ≤ m;

(iii) C∞(Ω, H) the space of all H-valued functions that belong to

Cm(Ω, H) for every m ∈ N.

4.3.2 Right-linear spaces of square integrable functions

Primary in our study is the following space.

Definition 4.6. The space L2(Ω, H) is defined to be the class of all
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Lebesgue measurable H-valued functions defined on Ω such that | f |2 ∈

L1(Ω) for all f ∈ L2(Ω, H); that is,

L2(Ω, H) =
{

f : Ω → H measurable :
∫

Ω
| f (x)|2 dV < ∞

}
.

If f ∈ L2(Ω, H), then f a is also in L2(Ω, H) for all a ∈ H. Since

| f + g|2 ≤ 2| f |2 + 2|g|2,

it follows that L2(Ω, H) is a right-linear space over H.

Bearing in mind that 2| f g| = 2| f ||g| ≤ | f |2 + |g|2, if
∫

Ω | f (x)|2 dV and∫
Ω |g(x)|2 dV are finite, then so is

∫
Ω f (x)g(x) dV. We are lead to the fol-

lowing definition:

Definition 4.7. The H-valued inner product on L2(Ω, H) is defined by

⟨ f , g⟩2 =
∫

Ω
f (x) g(x) dV (4.3)

for all f , g ∈ L2(Ω, H).

The H-valued inner product satisfies the following properties:

1. ⟨ f , f ⟩2 > 0, f ̸= 0;

2. ⟨ f , g⟩2 = ⟨g, f ⟩2;

3. ⟨ f + g, h⟩2 = ⟨ f , h⟩2 + ⟨g, h⟩2;
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4. ⟨ f a, g⟩2 = a⟨ f , g⟩2, ⟨ f , ga⟩2 = ⟨ f , g⟩2a.

Definition 4.8. The scalar inner product on the R-linear space L2(Ω,A) is

defined by

⟨ f , g⟩0 =
1
2
[⟨ f , g⟩2 + ⟨g, f ⟩2] = Sc

∫
Ω

f (x) g(x) dV. (4.4)

Note that ⟨ f , g⟩0 does not define an inner product in L2(Ω, H) seen as an

H-linear space because it is does not satisfy property (4) of Definition 4.7.

Definition 4.9. Two functions f , g ∈ L2(Ω, H) (resp., L2(Ω,A)) are called

orthogonal in the L2-sense if ⟨ f , g⟩2 = 0 (resp., ⟨ f , g⟩0 = 0).

Definition 4.10. Let Λ be an index set and { fi}i∈Λ a subset of L2(Ω, H)

(resp., L2(Ω,A)). { fi}i∈Λ is called an orthonormal set if ⟨ fi, f j⟩2 = δi,j (resp.,

⟨ fi, f j⟩0 = δi,j).

Definition 4.11. A set { fi}i∈Λ (not necessarily orthonormal) is called com-

plete in L2(Ω, H) (resp., L2(Ω,A)) if for every element f ∈ L2(Ω, H) (resp.,

f ∈ L2(Ω,A)), the assumption ⟨ f , fi⟩2 = 0 ∀ i ∈ Λ (resp. ⟨ f , fi⟩0 = 0

∀ i ∈ Λ) implies that f = 0.

Definition 4.12. For f ∈ L2(Ω, H), the L2-norm induced by the (right) quater-

nionic inner product (4.3) is defined by

∥ f ∥2 = (⟨ f , f ⟩2)
1/2 =

(∫
Ω
| f (x)|2 dV

)1/2

. (4.5)
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(The L2-norm induced by the quaternionic inner product (4.3) coincides

with the L2-norm of f seen as a vector-valued function.)

The space L2(Ω, H) furnished with the quaternionic inner product (4.3) is

called a (right) quaternionic Hilbert space, and the norm (4.5) turns L2(Ω, H)

into a Banach space, that is, the metric associated to the norm is complete.

The following theorems were proved by O. Teichmüller in [90].

Theorem 4.13. Every nonzero Hilbert space over H contains an orthonormal

basis.

Theorem 4.14. Let { fi}i∈Λ be an orthonormal set in L2(Ω, H) (resp.,

L2(Ω,A)). The following conditions are equivalent:

(i) { fi}i∈Λ is complete;

(ii) if f ∈ L2(Ω, H) (resp., f ∈ L2(Ω,A)), then f = ∑⟨ f , fi⟩2 fi (resp. f =

∑⟨ f , fi⟩0 fi);

(iii) if f ∈ L2(Ω, H) (resp., L2(Ω,A)), then ∥ f ∥2
2 = ∑ |⟨ f , fi⟩2|2 (resp. ∥ f ∥2

2 =

∑ |⟨ f , fi⟩0|2 (Parseval’s identity).

4.4 Monogenic functions

Monogenic functions are the central object of study in quaternionic analy-

sis. The concept of the monogenicity of a function is a higher dimensional
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counterpart of holomorphy in the complex plane.

4.4.1 Quaternionic Cauchy-Riemann operator

Definition 4.15. For real-differentiable functions f : Ω → H, the (reduced)

quaternionic generalized Cauchy-Riemann (or Fueter) operator acting from the

left is defined via the formula

∂ f =
2

∑
i=0

ei
∂ f
∂xi

. (4.6)

Note that ∂ f /∂xi is H-valued, so the fact that multiplication by ei is from

the left in (4.6) is important. The operator acting from the right is f ∂ =

∑2
i=0

∂ f
∂xi

ei.

The operator (4.6) is a three-dimensional extension of the classical Cauchy-

Riemann operator 2∂z = ∂
∂x + i ∂

∂y , z = x + iy ∈ C. On the other hand,

(4.6) is also a reduction of the operator studied by R. Fueter [35, 36] which

includes a fourth variable x3.

When we apply ∂ to a given function f of class C1, we obtain the gener-

alization of the areolar derivative in the sense of Pompeiu [79]. Similarly,

we define the conjugate quaternionic Cauchy-Riemann operator ∂ as

∂ f =
2

∑
i=0

ei
∂ f
∂xi

, (4.7)

which is a generalization of the complex operator 2∂z.
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It is well-known that for a complex functions f is holomorphic if and only

if ∂ f
∂z = 0. The extension of this concept to H-valued functions leads to the

following definition, where Ω ⊆ R3:

Definition 4.16. A function f : Ω → H of class C1 is called left (resp., right)

monogenic in Ω if it satisfies

∂ f = 0 in Ω (resp., f ∂ = 0 in Ω).

We write M(Ω, H) for the collection of all left-monogenic functions in Ω,

and M(Ω,A) for the subset of A-valued functions.

Proposition 4.17. M(Ω, H) is a right-linear space. M(Ω,A) is an R-linear

space.

Proof. Since ∂( f a) = (∂ f )a for all a ∈ H, clearly ∂( f a) = 0 ⇔ (∂ f )a = 0,

so f a is monogenic whenever f is monogenic.

In general, left (resp., right) monogenic functions are not right (resp., left)

monogenic. This is visible in the following example:

Example 4.18. The function f (x0, x1, x2) = e2x1 − e3x0 is left monogenic

but not right monogenic because of

∂ f = 0, f ∂ = −2e3.
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Monogenicity provides a reasonable generalization of complex analyticity

to quaternionic analysis since many classical theorems from complex anal-

ysis (such as the Cauchy integral theorem and Cauchy integral formula)

can be generalized to higher dimensions by this approach [41, 42]. Since

these results hold for general domains Ω, they hold in particular for the

torus Ωη0 . We will not need these results in this thesis. Therefore we will

not reproduce them here, with the following exception.

Proposition 4.19 ([41]). A uniform limit (on compact subsets) of monogenic

functions is monogenic.

In contrast to the complex case, the composition of monogenic functions

is not necessarily monogenic. In fact, the identity function x 7→ x, x ∈ R3,

is not monogenic.

4.4.2 A-valued monogenic functions and monogenic con-
stants

We restrict ourselves to A-valued functions for the rest of this chapter and

the next. They enjoy the following property which is not shared by H-

valued functions:

Proposition 4.20 ([65, 74]). Every monogenic A-valued function is two-sided

monogenic.
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This means that when f is either left- or right- monogenic it satisfies si-

multaneously the equations

∂ f = 0, f ∂ = 0,

either of which is equivalent to the system

∂[ f ]0
∂x0

− ∂[ f ]1
∂x1

− ∂[ f ]2
∂x2

= 0

∂[ f ]0
∂x1

+
∂[ f ]1
∂x0

= 0

∂[ f ]0
∂x2

+
∂[ f ]2
∂x0

= 0

∂[ f ]1
∂x2

− ∂[ f ]2
∂x1

= 0

(4.8)

or, in a more compact form: {
div f = 0,

curl f = 0.
(4.9)

This 3-tuple f is said to be a system of conjugate harmonic functions in the

sense of Stein-Weiß [86, 87] and system (4.9) is called the Riesz system [82].

Proposition 4.21. The generalized Cauchy-Riemann operator (4.6) and its con-

jugate (4.7) factor the 3-dimensional Laplace operator, that is,

∆3 f = ∂∂ f = ∂∂ f , (4.10)

whenever f ∈ C2.

This implies that every monogenic function is also a harmonic function.
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(In other words, every component function is harmonic.) This factor-

ization of the Laplace operator establishes a special relationship between

quaternionic analysis and harmonic analysis in that monogenic functions

refine the properties of harmonic functions.

The following is a fundamental fact in the construction of monogenic func-

tions.

Corollary 4.22. Let h be a real-valued harmonic function. Then ∂h is monogenic.

Definition 4.23. A monogenic function f is called exact when it is of the

form f = ∂h for a real-valued harmonic function h.

Definition 4.24. A function φ : Ω → A is a monogenic constant if φ ∈

M(Ω,A) and φ ∈ M(Ω,A). The collection of reduced-quaternion val-

ued monogenic constants in Ω will be denoted MC(Ω,A).

According to the previous definition we have the following:

Proposition 4.25 ([65]). Let φ = φ0 + e1φ1 + e2φ2 : Ω → A be a monogenic

constant. Then φ0 ∈ R is a constant, while φ1 and φ2 are functions of x1 and

x2, and φ1 − iφ2 is a holomorphic function of the complex variable x1 + ix2.

Further, if f ∈ M(Ω,A) and Sc f is a constant, then f ∈ MC(Ω,A). Therefore

MC(Ω,A) is isomorphic to the class of complex holomorphic functions in Ω.
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Proof. Suppose that φ ∈ MC(Ω,A). By adding and subtracting the equa-

tions ∂φ = 0, ∂φ = 0, we obtain ∂0φ = 0, (e1∂1 + e2∂2)φ = 0. The first

equation says that φ(x1, x2) does not depend on x0. The second equation

is equivalent to the system

∂[φ]1
∂x1

+
∂[φ]2
∂x2

= 0,

∂[φ]1
∂x2

− ∂[φ]2
∂x1

= 0,

which is satisfied by anti-holomorphic functions of x1 + ix2.

Now suppose that Sc f is constant where f ∈ M(Ω,A). Then

0 = ∂ f = ∂(e1 f1 + e2 f2) = ∂0(e1 f1 + e2 f2) + (e1∂1 + e2∂2)(e1 f1 + e2 f2).

The term ∂0(e1 f1 + e2 f2) is in the subspace e1R ⊕ e2R of H, while the

other term (e1∂1 + e2∂2)(e1 f1 + e2 f2) is in the complementary subspace

R ⊕ e3R. Therefore both terms are zero. This tells us that e1 f1 + e2 f2 is a

function of x1, x2, and then that this function is a holomorphic function of

x2 + ix1.

One of the reasons that monogenic constants are important is the follow-

ing.

Proposition 4.26 ([65]). Let f , g ∈ M(Ω,A) be such that ∂ f = ∂g in Ω. Then

f and g differ by a monogenic constant.
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Proof. Since the difference of two monogenic functions is monogenic, by

hypothesis both f − g and f − g are monogenic.
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Chapter 5

A-valued toroidal monogenic
functions

In Chapter 4, we surveyed some basic properties of monogenic functions

in general domains. Now we study the particular properties of the real

linear space of monogenic functions on the torus. In this chapter, we will

work exclusively with A-valued functions. We will construct a complete

independent set in the real Hilbert space

M(A) = M(Ωη0 ,A) ∩ L2(Ωη0 ,A), (5.1)

beginning with the monogenic constants MC(A) = MC(Ωη0 ,A) ∩

M(A). This will be used in Chapter 6 to construct a complete indepen-

dent set in M(H) = M(Ωη0 , H) ∩ L2(Ωη0 , H).

To clarify the subject matter, we note beforehand some of the major dif-

ferences between the spaces of monogenic functions on the torus and on
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the ball. The main difference is that one obtains a complete set of mono-

genic functions on the ball by applying ∂ to interior solid spherical har-

monics, as in Corollary 4.22 [18, 65]. More exactly, the 2n + 3 harmonics

rnY±
n+1,m(θ, φ) defined in Section 1.2 provide 2n + 3 monogenic functions,

which are a basis of the real-linear space of homogeneous monogenic poly-

nomials of degree n. For the torus, there exist non-exact monogenics, and

this process cannot produce them. A second difference comes from the

fact that ∂0 has a reverse-Appell property, which means that this process

does not produce those monogenics on Ωη0 , whose scalar part contains the

0-level toroidal harmonics I+,±
0,m . These two differences make the study of

monogenics on Ωη0 very different from domains that have been studied

previously.

5.1 Non-exactness of monogenic functions

In this section, we describe a tool for considering that the torus is not

simply-connected.

Definition 5.1. Let f = f0 + e1 f1 + e2 f2 ∈ C(Ω,A) with real-valued com-

ponents f0, f1, f2. The real differential 1-form associated to f is

ω f = f0 dx0 − f1 dx1 − f2 dx2.
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In the following proposition, we regard the differential dx =

(dx0, dx1, dx2), x ∈ R3, as a paravector,

dx = dx0 + e1(dx1) + e2(dx2).

The previous definition leads to the following results:

Proposition 5.2. Let h : Ω → R be harmonic, h ∈ L2(Ω). Let f = ∂h be the

corresponding exact monogenic function. Then dh = ω f = Sc( f dx).

Proof. By Definition 5.1,

dh = (∂0h) dx0 + (∂1h) dx1 + (∂2h) dx2

= f0 dx0 − f1 dx1 − f2 dx2

= Sc
(
( f0 + e1 f1 + e2 f2)(dx0 + e1dx1 + e2dx2)

)
.

= Sc( f dx).

Proposition 5.3. Consider an A-valued monogenic function f ∈ M(Ω,A).

Then ω f is a closed differential form.

Proof. We have

dω f = d( f0 dx0 − f1 dx1 − f2 dx2)

= d f0 ∧ dx0 − d f1 ∧ dx1 − d f2 ∧ dx2

= (∂0 f0 dx0 + ∂1 f0 dx1 + ∂2 f0 dx2) ∧ dx0
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− (∂0 f1 dx0 + ∂1 f1 dx1 + ∂2 f1 dx2) ∧ dx1

− (∂0 f2 dx0 + ∂1 f2 dx1 + ∂2 f2 dx2) ∧ dx2

= −(∂1 f0 + ∂0 f1)dx0 ∧ dx1 − (∂2 f0 + ∂0 f2)dx0 ∧ dx2

+ (∂2 f1 − ∂1 f2)dx1 ∧ dx2.

By (4.8), dω f = 0. Therefore ω f is a closed form.

Proposition 5.4. If f is monogenic and A-valued in a simply-connected domain

Ω ⊆ R3, the integral

∫ b

a
ω f

does not depend on the curve from a to b in that domain.

Proof. Since Ω is simply connected, the closed form ω f is exact, so we

have ω f = dg for some well-defined C1 function g in Ω, and g is uniquely

determined up to an additive real constant. Thus

∫ b

a
ω f = g(b)− g(a)

independently of the curve in Ω from a to b.

For simplicity, the following definition will be restricted to the torus do-

main. The only nontrivial topological aspect of Ωη0 is that the unit circle

S1 = {η = ∞} in the plane x0 = 0 is not contractible.
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Definition 5.5. Let f ∈ M(A) be a monogenic function in Ωη0 . We de-

fine the cohomology coefficient coh f of f by an integration along the central

curve S1, for which we orient S1 in the positive direction when seen from

the half-space x0 > 0:

coh f =
1

2π

∫
S1

ω f . (5.2)

Proposition 5.6. Let f ∈ M(A). Then f is exact if and only if coh f = 0.

Proof. By exactness, f = ∂h for some harmonic h. Then

coh f =
1

2π

∫
s1

ω f =
1

2π

∫
s1

dh = 0 (5.3)

since S1 is a closed curve.

Conversely, consider two curves γ1, γ2 joining the point (0, 1, 0) to x in

Ωη0 , and let γ denote the closed curve obtained by following γ1 by the

reverse of γ2. Then γ is freely homotopic in Ωη0 to S1 traced an integral

number n times. It follows from Proposition 5.4 that integrals of ω f over

homotopic curves coincide, so

∫
γ1

ω f =
∫

γ2

ω f + n
∫

S1
ω f =

∫
γ2

ω f

under the supposition that coh f = 0. It follows that the value

h(x) =
∫ x

(0,1,0)
ω f
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does not depend on the curve in Ωη0 joining (0, 1, 0) to x, and that ∂h = ω f ,

so ω f is exact.

We will not need to use the fact that coh f = 0 implies that f is exact. In

the following section, we will give an example of a monogenic function

that is not exact.

5.2 A-valued monogenic constants on the torus

Recall that MC(A) denotes the subspace of A-valued monogenic con-

stants on Ωη0 where η0 is fixed.

Definition 5.7. Let m ∈ Z. For x ∈ R3 define the scalar-valued functions

J+m (x) = Re(x1 + ix2)
m,

J−m (x) = Im(x1 + ix2)
m,

Ĵ(x) = − log |x1 + ix2|.

These functions are independent of x0. They are well-defined in Ωη0 (in

fact, in all of R3 − R0) since (x1, x2) ̸= (0, 0). Clearly ±J∓m is a harmonic

conjugate of J±m when considered as a function of the complex variable

x1 + ix2, since the function (x1 + ix2)
m is holomorphic for all m ∈ Z.

However, the function Ĵ(x) does not admit a harmonic conjugate since

arg(x1 + ix2) is not single-valued.
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Proposition 5.8. Let h : Ωη0 → R be harmonic, h ∈ L2(Ωη0), and suppose

∂h/∂x0 = 0. Then h(x1, x2) has a unique representation as

h = â Ĵ +
∞

∑
m=−∞

(a+m J+m + a−m J−m ) (5.4)

with real coefficients â, a±m.

Proof. This is a standard fact about complex variables. There is a har-

monic conjugate v of h in a neighborhood of x1 + ix2 = 1 + 0i, and con-

tinuation of v around S1 leads to a harmonic conjugate v − â which differs

from v by a constant. Since − arg(x2 + ix1) is a local harmonic conjugate

of Ĵ, the function v − (â/2π) arg(x2 + ix1) continues back to its original

value along S1, and must be the real part of a holomorphic function,

v − â
2π

x2

x1
= Re g,

where g is defined for all (x1, x2) ̸= (0, 0). The Laurent series

g(x1, x2) =
∞

∑
m=−∞

cm(x1 + ix2)
m

gives

v − â
2π

x2

x1
=

∞

∑
m=−∞

((Re cm)J+m − (Im cm)J−m ),

from which we find a+m = Re cm, a−m = − Im cm.

In the expansion (5.4) and all similar sums, J−0 is to be excluded since it is

145



CHAPTER 5. A-VALUED TOROIDAL MONOGENIC FUNCTIONS

identically zero.

Definition 5.9. We introduce the basic monogenic constants on Ωη0 ,

W±
m = e1 J±m ∓ e2 J∓m ,

for all integers m.

We have

Proposition 5.10. The basic monogenic constants are exact monogenic func-

tions; in fact,

W±
m =

−1
m + 1

∂J±m+1, m ̸= −1,

W+
−1 = ∂ Ĵ.

Proof. We refer to Definition 5.7. Let m ̸= −1. Then we can differentiate

(x1 + ix2)
m+1 in the customary way,

∂J±m+1 = ∂0 J±m+1 − e1∂1 J±m+1 − e2∂2 J±m+1

= 0 − e1(m + 1)J±m+1 ± e2(m + 1)J±m+1

= (−1)(m + 1)
(
e1 J±m+1 ∓ e2 J±m+1

)
= −(m + 1)W±

m

as claimed. For the second statement,

∂ Ĵ = ∂0 Ĵ − e1∂1 Ĵ − e2∂2 Ĵ
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= 0 − e1
−x1

x2
1 + x2

2
− e2

−x2

x2
1 + x2

2

= W+
−1.

The basic monogenic constant W−
−1 is the only one not mentioned in

Proposition 5.10. In fact, even though locally W−
−1 is equal to the A-valued

function −∂ arctan(x2/x1), it cannot obtained globally by applying ∂ to a

real-valued harmonic function, as the following result implies.

Proposition 5.11. All of the basic monogenic constants W±
m have vanishing co-

homology coefficient with the exception of

coh W−
−1 = 1,

so W−
−1 is not exact.

Proof. The vanishing cohomology follows from Proposition 5.6 together

with the exactness which is given by Proposition 5.10. Further, from Defi-

nition 5.9 with m = −1,

W−
−1 = e1 Im

1
x1 + ix2

+ e2 Re
1

x1 + ix2
,

so by Definition 5.1,

ωW−
−1

=
x2

x2
1 + x2

2
dx1 −

x1

x2
1 + x2

2
dx2

= d
(

tan
x2

x1

)
.
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From this and Definition 5.5 it follows that coh W−
−1 = 1 so W−

−1 is not

exact.

Being harmonic functions on the torus, by Proposition 1.29, the basic

monogenic constants can be expressed in terms of the basic toroidal har-

monics I±,±
n,m introduced in Section 1.3 of Chapter 1.

We will need the explicit expression.

Proposition 5.12. For all m ∈ Z, we have the following representation in terms

of the toroidal harmonics:

J±m =
∞

∑
n=0

jn,m I+,±
n,|m| (5.5)

where

jn,m =


εm(−1)m

√
2
π

1
Γ(m+ 1

2 )
, m ≥ 0,

±εm(−1)m
√

2
π

1
Γ(m+ 1

2 )

Γ(n+m+1/2)
Γ(n−m+1/2) , m < 0,

(5.6)

where εm has the same meaning as in Proposition 1.9.

Proof. By using the definition (1.29) of toroidal coordinates we have

(x1 + ix2)
m =

sinhm η

(cosh η − cos θ)m eimφ,

so

J±m =
sinhm η

(cosh η − cos θ)m Φ±
m(φ).
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Now expand (cosh η − cos θ)−m−1/2 in a Fourier series in θ by means of

Proposition 1.9 to see that

J±m = sinhm η
1

Γ(m + 1
2)

√
2
π

(−1)m

sinhm η
(cosh η − cos θ)1/2

×
∞

∑
n=0

εn cos(nθ) Qm
n− 1

2
(cosh η)Φ±

m(φ).

This is valid for all integers m. First suppose that m ≥ 0. Then one can

identify elements of (1.40) to obtain the desired formula for J±m . On the

other hand, if m < 0, we have

J±m = sinhm η
1

Γ(m + 1
2)

√
2
π

(−1)m

sinhm η
(cosh η − cos θ)1/2

×
∞

∑
n=0

εn cos(nθ)
Γ(n + m + 1/2)
Γ(n − m + 1/2)

Q−m
n− 1

2
(cosh η) (±Φ±

−m(φ)),

which permits identifying terms with I+,±
n,−m.

By Proposition 5.12, we can express the basic monogenic constants as

W±
m =

∞

∑
n=0

jn,m(e1 I+,±
n,m ∓ e2 I+,∓

n,m ) (5.7)

for all m ∈ Z, although the individual summands are not monogenic.

We have the further consequence of Proposition 5.8.

Corollary 5.13. Every monogenic constant φ ∈ M(A) has a unique represen-
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tation of the form

φ = a0 +
∞

∑
m=−∞

(a+mW+
m + a−mW−

m ),

where a0, a±m ∈ R are constants.

Proof. By Proposition 4.25, we can write φ = a0 + e1φ1 + e2φ2, where

φ1, φ2 are harmonic functions independent of x0. According to Proposition

5.8, we can write

φ1 = â Ĵ +
∞

∑
m=−∞

(a+m J+m + a−m J−m ).

Since φ1 admits −φ2 as a harmonic conjugate and each sum ∑m a+m J+m ,

∑m a−m J−m also has a harmonic conjugate, namely ±∑m a±m J∓m , necessarily

â Ĵ has a harmonic conjugate as well, thus â = 0. Therefore

φ2 = ∑
m
(a+m J−m − a−m J+m ).

This gives the desired representation. The uniquess follows from the fact

that the J±m form a basis in L2(Ωη0) sense.

Proposition 5.14. Let f0 : Ωη0 → R be harmonic, f0 ∈ L2(Ωη0). Then

there exists h : Ωη0 → R harmonic such that f0 = ∂0h if and only if f0 ∈

Span{I ν,µ
n,m : n ≥ 1}.

Proof. Recall that from Section 2.3 of Chapter 2 we always have I∗,ν,µ
0,m =
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I ν,µ
0,m. Supposing the condition, we may write

f0 = ∑
n≥1

∑
m,ν,µ

aν,µ
n,m I∗ ν,µ

n,m .

Then by the formula of Proposition 2.9, f0 = ∂0h where

h = ∑
n≥1

∑
m,ν,µ

aν,µ
n,m(1/κn−1

n,m )I∗−ν,µ
n−1,m.

Now suppose on the other hand that f0 = ∂0h. We can express h in toroidal

coordinates as h = ∑n≥0 ∑m,ν,µ bν,µ
n,m I∗ ν,µ

n,m and again apply Proposition 2.9

to see that f0 ∈ Span{I ν,µ
n,m : n ≥ 1}.

This statement may be surprising because an analogy with spherical har-

monics might lead one to expect the range n ≥ 0 instead of n ≥ 1. The

correct condition is a consequence of the fact that ∂0 increases the index n

rather than decreasing it.

5.3 Basis for A-valued monogenic functions

We now have almost enough material to construct a basis for M(A), the

principal result of this chapter. The first part of the construction, which is

analogous to the theory of spherical monogenics, is as follows.

Definition 5.15. The basic exact toroidal monogenic functions are defined as

Tν,µ
n,m = ∂I∗−ν,µ

n−1,m, n ≥ 1. (5.8)
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By Propositions 2.12 and 5.6, for n ≥ 1, Tν,µ
n,m ∈ M(A) and

Sc Tν,µ
n,m = κn−1

n,m I∗ ν,µ
n,m , coh Tν,µ

n,m = 0. (5.9)

We will define monogenics with index n = 0 later.

Proposition 5.16. Let h : Ωη0 → R be harmonic, h ∈ L2(Ωη0). Then

∂h ∈ Span{Tν,µ
n,m : n ≥ 1}.

As usual, all indices other than n are understood to vary among all admis-

sible combinations.

Proof. We have h = ∑n≥0 aν,µ
n,m I∗ ν,µ

n,m , converging in L2(Ωη0) (where the

notation does not mention the summation over the range of the indices

m, ν, µ, since they will always be the same). By Proposition 1.23 and (5.8),

∂h = ∑
n≥0

aν,µ
n,m∂I∗ ν,µ

n,m = ∑
n≥0

aν,µ
n,mT−ν,µ

n+1,m = ∑
n≥1

aν,µ
n−1,mT−ν,µ

n,m

which is in the required Span.

Proposition 5.14 tells us immediately that the harmonics I ν,µ
n,m and I∗ ν,µ

n,m are

scalar parts of monogenic functions when n ≥ 1. The verification of this

property for n = 0 will follow along different lines.

Definition 5.17. The Teodorescu operator for a bounded domain D ⊆ C in
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the complex plane is given by

TD f (w) =
−1
π

∫
D

f (z)
z − w

dx dy.

It satisfies ∂TD(z)/∂z = f (z). We take D to be the annulus with inner and

outer radii sinh η0/(cosh η0 ± 1), which corresponds to the slice of Ωη0 at

the plane x0 = 0.

Consider the following well-known construction [88] starting with a real-

valued function f0 in Ωη0 . Let w(z) = TD((∂0 f0)(0, x, y)) = w1(z) +

iw2(z), z = x + iy ∈ C, so

1
2
(∂w1

∂x
− ∂w2

∂y
)
= ∂0 f0,

1
2
(∂w2

∂x
+

∂w1

∂y
)
= 0.

Define

v⃗(x1, x2) = −e1
1
2

w1(x1 + ix2) + e2
1
2

w2(x1 + ix2), (5.10)

so (e1∂1 + e2∂2)⃗v = ∂0 f0.

Next, let

e1 f1(x) + e2 f2(x) = −
∫ x0

0
(e1∂1 + e2∂2) f0(t, x1, x2) dt − v⃗(x1, x2) (5.11)

which is well defined for x ∈ Ωη0 .

Finally, we have the following.
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Definition 5.18. The above procedure determines the operator

Ψ[ f0] = f0 + e1 f1 + e2 f2. (5.12)

Now we prove the following result:

Proposition 5.19. When f0 is harmonic, the function Ψ[ f0] given by (5.12) is a

monogenic function whose scalar part is f0.

Proof. By definition,

∂Ψ[ f0] = ∂0 f0 + ∂0(e1 f1 + e2 f2) + (e1∂1 + e2∂2) f0

+ (e1∂1 + e2∂2)(e1 f1 + e2 f2)

= ∂0 f0 −
(

∂0(e1∂1 + e2∂2)
∫ x0

0
f0(t, x1, x2)dt + ∂0v⃗(x1, x2)

)
+ (e1∂1 + e2∂2) f0 −

(
(e1∂1 + e2∂2)

2
∫ x0

0
f0(t, x⃗)dt

+ (e1∂1 + e2∂2)⃗v(x1, x2)

)
.

First we note that by exchange of order of differentiation,

∂0(e1∂1 + e2∂2)
∫ x0

0
f0(t, x1, x2)dt = (e1∂1 + e2∂2) f0(x).

Further, since f0 is harmonic, we have

(e1∂1 + e2∂2)
2
∫ x0

0
f0(t, x1, x2)dt = −(∂2

1 + ∂2
2)
∫ x0

0
f0(t, x1, x2)dt

=
∫ x0

0
∂2

0 f0(t, x1, x2)dt
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= (∂0 f0)(x0, x1, x2)− (∂0 f0)(0, x1, x2).

Substituting, we have ∂(Ψ[ f0]) = 0 as required.

By means of the operator Ψ, we complement the monogenic functions of

(5.8), which were defined for n ≥ 1, as follows.

Definition 5.20. The basic toroidal monogenics for index n = 0 are

T+,µ
0,m = Ψ[I+,µ

0,m ]− (coh Ψ[I+,µ
0,m ])W−

−1. (5.13)

(We recall that a function “ T−,µ
0,m ” is not to be defined because Φ−

0 ≡ 0.)

Proposition 5.21. For all m, µ, T+,µ
0,m ∈ M(A) and

Sc T+,µ
0,m = I+,µ

0,m = I∗,+,µ
0,m . (5.14)

Further,

coh T+,µ
0,m = 0. (5.15)

Proof. By Proposition 5.19, T+,µ
0,m is monogenic and Sc T+,µ

0,m is as stated. We

now show that T+,µ
0,m ∈ L2(Ωη0 ,A). Since I+,µ

0,m and ∂0 I+,µ
0,m are bounded in

Ωη0 , then w1, w2 as well as v⃗ given by (5.10) are also bounded. Continuing

the construction of Ψ we find that this is also bounded in Ωη0 because

∂1 I+,µ
0,m and ∂2 I+,µ

0,m in (5.11) are also bounded, and so Ψ is in L2(Ωη0 ,A).
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Lastly, by Proposition 5.11 and (5.13) (but not by Proposition 5.6), we see

that coh T+,µ
0,m = 0, which establishes the statement.

The next step requires the representation of the constant function 1+ e10+

e20 in terms of the basic toroidal monogenics. We have a representation of

the harmonic function x0 in terms of toroidal harmonics, which is given in

[58] and may be derived from Proposition 1.20 by taking k = 1 and m = 0:

x0 =
4
√

2
π

∞

∑
n=1

n I−,+
n,0 (η, θ, φ). (5.16)

Substituting (2.9) this can be written

x0 =
4
√

2
π

∞

∑
n=1

n
n

∑
k=0

in
k,0 I∗−,+

k,0

=
4
√

2
π

∞

∑
k=0

∞

∑
n=(k−1)+

n in
k,0 I∗−,+

k,0

=
∞

∑
k=0

sk I∗−,+
k,0 , (5.17)

where

sk =
4
√

2
π

∞

∑
n=(k−1)+

n in
k,0.

By (5.17) and Definition 5.15,

1 = ∂0x0 = ∂x0 = ∂
∞

∑
n=0

sn I∗−,+
n,0 =

∞

∑
n=0

snT+,+
n+1,0. (5.18)

The reason for carrying out this calculation is that it shows that the mono-
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genic function 1, which is a monogenic constant, is not independent of the

Tν,µ
n,m.

We are now ready to give the complete independent set of toroidal mono-

genic functions. In the following chapter, we will use a modified form of

this basis.

We have the following relationships among linear spans:

Span{J±m} ⊆ Span{I ν,µ
n,m} = Span{I∗ ν,µ

n,m },

the latter spans are equal to the subspace of all harmonic functions in

L2(Ωη0).

We are now ready to formulate the main result of this section.

Theorem 5.22. The following set is a basis for the Hilbert space M(A):

{Tν,µ
n,m}n≥0 ∪ {W±

m }∞
−∞.

Thus, every f ∈ M(A) can be written uniquely in the form

f = ∑
n≥0

aν,µ
n,m Tν,µ

n,m +
∞

∑
−∞

bµ
mWµ

m

with real coefficients aν,µ
n,m, bµ

m ∈ R.

Proof. First we verify that the proposed basis in fact generates M(A). We
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are working with the following subspaces of M(A),

EW = Span({W±
m }∞

−∞), ET = Span({Tν,µ
n,m}n≥0. (5.19)

Write f = f0 + f1e1 + f2e2. Our first step is to pull out the monogenic

constants. Decompose the harmonic function f0 ∈ Span({I ν,µ
n,m}) as

f0 = h0 + h1

with h0 ∈ Span{I+,µ
0,m } and h1 ∈ Span{I ν,µ

n,m : n ≥ 1}. (Recall that there are

no harmonics I−,µ
0,m .) By Proposition 5.14, take h so that ∂0h = h1. Let

φ = f − (Ψ[h0] + ∂h).

Then Sc φ = f0 − (h0 + h1) = 0, so φ ∈ MC(A) by Proposition 4.25. Since

h0 ∈ Span{I+,µ
0,m } = Span{I∗+,µ

0,m }, by (5.14) we can take g ∈ M(A) such

that

g ∈ Span({T+,µ
0,m }) ⊆ ET, Sc g = h0.

By (5.12), this implies that the function

ψ = Ψ[h0]− g

is also in MC(A). From the above we have

f = (g + ∂h) + (φ + ψ),
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where

g + ∂h ∈ ET, φ + ψ ∈ MC(A) = EW + Span(1).

By (5.18), Span(1) ⊆ ET, so MC(A) ⊆ EW + ET, which says that f ∈

EW + ET as required.

For the uniqueness, suppose that f = 0 in the series representation of the

statement of the theorem. Then since Sc W±
m = 0, by (5.9), we have

0 = Sc f = ∑
n≥0

aν,µ
n,m Sc Tν,µ

n,m

= ∑
m,ν,µ

aν,µ
0,m I ν,µ

0,m + ∑
n≥1

∑
m,ν,µ

aν,µ
n,mκn−1

n,m I ν,µ
n,m.

Since the I ν,µ
n,m are orthogonal in the weighted Hilbert space, we must have

aν,µ
n,m = 0 for all n, m, ν, µ. Therefore

∞

∑
−∞

bµ
mWµ

m = 0

by (corollary 5.13), we have bµ
m = 0 for all m, µ. Therefore the entire collec-

tion {Tν,µ
n,m} ∪ {Wµ

m} is linearly independent in the Hilbert sense.

We make no claim that the basis of Theorem 5.22 is orthogonal.
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Chapter 6

H-valued toroidal monogenic
functions

Our approach to the study of monogenic functions on the torus has fol-

lowed, in very general terms and insofar as possible, the progression of

the study of monogenic functions on the ball. We recall that the general

theory was developed by R. Fueter [35, 36] for monogenic functions in

H, including a basis for homogeneous monogenic polynomials of every

given degree in four variables. Later specific bases were constructed for

A-valued monogenic functions of three variables, at first only algebraic

bases [54], and then orthonormal bases [38]. Much later, an orthonormal

basis was constructed for H-valued monogenic functions of three vari-

ables in [13, 15, 18, 38, 69, 74, 77].

We will use the construction of a basis for M(A) = M(Ωη0 ,A) in the
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previous chapter as a stepping stone for the construction of a basis for

M(H) = M(Ωη0 , H), the space of H-valued monogenics in the torus.

The construction is in some ways analogous to [18, 75]. However, at

present, it appears that it would be a difficult project to use this approach

to obtain an orthonormal basis for these functions.

6.1 Auxiliary results

We begin with the following two auxiliary results which will help us to re-

late M(A) to M(H). A key concept is the subspace MC(A) of A-valued

monogenic functions.

Lemma 6.1. Let f , g ∈ M(A) be such that f + ge3 = 0 identically. Then

f , g ∈ MC(A).

Proof. By Lemma 4.3 it follows that f0 = g0 = 0. By Proposition 4.25, both

f and g are monogenic constants.

Lemma 6.2. (i) Let F ∈ M(H). Then there exist f , g ∈ M(A) such that

F = f + ge3.

(ii) If f + ge3 = f̃ + g̃e3 with f , g, f̃ , g̃ ∈ M(A), then f − f̃ , g− g̃ ∈ MC(A).

Proof. i) We note that construction of Lemma 4.3 is not applicable here,

because dropping the e3 part of an element of M(H) does not produce
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an element of M(A). Using the operator Ψ of (5.12), Section 5.3 of the

previous chapter, we construct by Proposition 5.19 monogenic functions

f̃ , g ∈ M(A) such that

Sc f̃ = F0, Sc g = F3.

Let φ = F − ( f̃ + ge3). Then

φ = (F0 − f̃0) + e1(F1 − f̃1 − g2) + e2(F2 − f̃2 + g1) + e3(F3 − g0).

Since f̃0 = F0 and g0 = F3, we have φ ∈ MC(A), which leaves us F =

f + ge3 where we define f = f̃ + φ.

(ii) The hypothesis gives ( f − f̃ ) + e3(g − g̃) = 0 ∈ MC(A), so f − f̃ , g −

g̃ ∈ MC(A) by Lemma 6.2.

It will be useful to note that when φ ∈ MC(A), we also have φ e3 ∈

MC(A). In particular, the basic monogenic constants introduced in Defi-

nition 5.9 satisfy

W±
m e3 = ∓W∓

m . (6.1)

6.2 New complete set for M(A)

A basis for M(A) as a vector space over R was given in Theorem 5.22. We

want to use Lemma 6.2 to combine a basis for M(A) with the elements of
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this same basis multiplied on the right by e3. Lemma 6.2 makes it clear that

the monogenic constants cause ambiguity in such a construction. Equation

(6.1) points out in particular that the basic monogenic constants W±
m would

provide a duplication under this operation. For this reason, instead of

the basis of Theorem 5.22, we will construct another basis in which the

elements Tν,µ
n,m will “have the monogenic constants within them removed.”

Proposition 6.3. The collection

({Tν,µ
n,m}n≥0 \ {T+,+

1,0 }) ∪ {1} ∪ {W±
m }∞

−∞ (6.2)

is a basis for M(A) over R.

As always, in this notation all admissible combinations of signs (m, ν, µ)

are intended.

Proof. First we verify that this set generates M(A). Let E ⊆ M(A) de-

note the closed span of (6.2). By (5.18),

T+,+
1,0 =

1
s0
(1 − ∑

n≥2
sn−1T+,+

n,0 ) ∈ E.

Therefore, in the notation of Theorem 5.22, ET ⊆ E, and since by definition

EW ⊆ E, we have E = M(A).
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Now we verify the independence. Suppose that

∑
(n,m,ν,µ) ̸=(1,0,+,+)

aν,µ
n,mTν,µ

n,m + b0 +
∞

∑
m=−∞

cµ
mWµ

m = 0.

The scalar part is

∑
m,ν,µ

aν,µ
0,m I ν,µ

0,m + ∑
n≥1

(n,m,ν,µ) ̸=(1,0,+,+)

aν,µ
n,mκn

n,m I ν,µ
n,m + b0 = 0. (6.3)

If b0 ̸= 0, then we would have

1 = − 1
b0

(
∑

m,ν,µ
aν,µ

0,m I ν,µ
0,m + ∑

n≥1
(n,m,ν,µ) ̸=(1,0,+,+)

aν,µ
n,mκn

n,m I ν,µ
n,m

)
.

This is a series of toroidal harmonics which does not include I+,+
1,0 , contra-

dicting the unique representation (3.29). Therefore b0 = 0.

Now (6.3) is reduced to

∑
(n,m,ν,µ) ̸=(1,0,+,+)

aν,µ
n,mTν,µ

n,m +
∞

∑
m=−∞

cµ
mWµ

m = 0,

and by the independence part of Theorem 5.22, we conclude that aν,µ
n,m = 0

and cµ
m = 0. Therefore the proposed basis has the uniqueness property as

claimed.

Finally we produce the basis for M(H).
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Theorem 6.4. The set

{Tν,µ
n,m}(n,m,ν,µ) ̸=(1,0,+,+) ∪ {1} ∪ {Wµ

m}∞
−∞ ∪ {Tν,µ

n,me3}(n,m,ν,µ) ̸=(1,0,+,+) ∪ {1e3}
(6.4)

is a basis for the Hilbert space M(H) over R.

Proof. Let us write

E′
T = Span({Tν,µ

n,m} \ {T+,+
1,0 }).

First we show that (6.4) generates M(H). Let F ∈ M(H). By Lemma 6.2

we can write F = f + ge3 for some f , g ∈ M(A). By Proposition 6.3, f , g ∈

E′
T +R+ EW. By (6.1), EWe3 = EW. Therefore ge3 ∈ E′

Te3 +Re3 + EW, and

it follows that

F ∈ E′
T + R + EW + E′

Te3 + Re3

as claimed.

It only remains to show that (6.4) is a unique representation. Suppose that

∑
(n,m,ν,µ) ̸=(1,0,+,+)

aν,µ
n,mTν,µ

n,m + b0 +
∞

∑
0

cµ
mWµ

m + ∑
(n,m,ν,µ) ̸=(1,0,+,+)

âν,µ
n,mTν,µ

n,me3 + b̂0 e3 = 0

with real coefficients, and the usual conventions concerning m, ν, µ.

Consider the following elements of M(A):

f = ∑
(n,m,ν,µ) ̸=(1,0,+,+)

aν,µ
n,mTν,µ

n,m + b0 +
∞

∑
0

cµ
mWµ

m,
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g = ∑
(n,m,ν,µ) ̸=(1,0,+,+)

âν,µ
n,mTν,µ

n,m + b̂0.

Since they satisfy f + ge3 = 0 by Lemma 6.1, f , g ∈ MC(A). Since b0 +

∑ cµ
mWµ

m ∈ MC(A), necessarily also

∑
(n,m,ν,µ) ̸=(1,0,+,+)

aν,µ
n,mTν,µ

n,m ∈ MC(A) = Span({1} ∪ {W±
m }).

By Proposition 6.3, {1} ∪ {W±
m } is independent of {Tν,µ

n,m}(n,m,ν,µ) ̸=(1,0,+,+),

so aν,µ
n,m = 0. Since g is a monogenic constant, âν,µ

n,m = 0.

From the foregoing,

b0 +
∞

∑
0

cµ
mWµ

m + b̂0e3 = 0

Since the scalar and e3 components vanish, b0 = b̂0 = 0. Then ∑∞
0 cµ

mWµ
m =

0, so by the unique representation of the Wµ
m, cµ

m = 0. This concludes the

proof of the uniqueness of the series representation, so (6.4) is indeed a

basis for M(H).
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Conclusions and ideas for further
study

In the first part of this thesis, a function theory related to toroidal harmon-

ics was developed in two separate contexts. The first context concerns the

construction of a reverse-Appell basis of harmonic functions expressed in

terms of toroidal coordinates as independent variables to derive bases in

the real L2-Hilbert spaces of reduced quaternion and quaternion-valued

monogenic functions on toroidal domains. In contrast to the classical tor-

oidal harmonics, the reverse-Appell system is not orthogonal, and it is

not known whether it is possible to construct an orthogonal system along

these lines. Further, the norms of the reverse-Appell harmonics have not

been calculated. The second context develops a technique for studying

the Dirichlet-to-Neumann mapping and solving the Neumann problem

for the Laplace operator on a torus. It would be interesting to see how this

technique applies in practical situations, such as electrostatics.
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In the second part of this thesis, bases for the spaces of A-valued and H-

valued monogenic functions are constructed on the torus. Again, the bases

are not orthogonal and it seems a challenging problem to orthogonalize

them. A further problem would be to find a basis for M(H) over H rather

than only over R.
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[28] C. CRUZ, M. I. FALCÃO AND H. MALONEK, (2011), “3D mappings

by generalized Joukowski transformations,” in: Computational Sci-

ence and Its Applications – ICCSA 2011, Lecture Notes in Computer

Science, Vol. 6784, Santander, 358–373.

[29] B. E. J. DAHLBERG AND C. E. KENIG, (1987), “Hardy spaces and

the Neumann problem in Lp for Laplace’s equation in Lipschitz do-

mains,” Ann. Math., 125, 437–465.

175



BIBLIOGRAPHY

[30] T. DEMEESTER AND D. DE ZUTTER, (2009), “Construction and ap-

plications of the Dirichlet-to-Neumann operator in transmission line

modeling,” Turk. J. Elec. & Comp. Sci., 17(3), 205–216.
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