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Abstract

Light propagation in an intense electromagnetic field background is examined from
the perspective of three different nonlinear electrodynamics (NLED) theories, Euler-
Heisenberg, Born-Infeld, and ModMax. The effective metric approach is used to deter-
mine the light phase velocity.

For the case of Euler-Heisenberg (EH), using a Lorentz boost, it is considered the
situation when the background is in movement, modeling then a magnetized flowing
medium. We determine how this motion affects the speed of propagation of the elec-
tromagnetic wave. Since this theory exhibits birefringence there are two possible phase
velocities that depend on the magnetic background and the direction and velocity of
the boost.

In a background of purely magnetic or electric Born-Infeld (BI) fields we examine
light propagation from the point of view of an accelerated observer, situated in a Rindler
frame. The phase velocity as measured by the Rindler observer increases, in some cases
even exceeding the one in vacuum; however, the BI background field tends to decrease
it. We consider light propagating parallel or transversal to the acceleration direction of
the Rindler frame. Moreover, we determine the redshift of light pulses sent from one
Rindler observer to another.

Euler-Heisenberg and ModMax are nonlinear theories that present birefringence, i.e.
the phase velocity depends on the intensity of the external electromagnetic field as well
as on the polarization of the wave.

Regarding ModMax NLED theory, the static spherically symmetric solution of the
ModMax NLED coupled to the Einstein equations represents a black hole and we
analyze light propagation in its vicinity; we determine light trajectories, deflection,
redshifts, as well as the shadow of the black hole. The results are compared with the
corresponding effects in the neighborhood of the Reissner-Nordstrom black hole, which
is the static spherically symmetric solution to the Einstein-Maxwell equations.

For completeness, we compare the diminishing in the phase velocities as measured
by a still observer, another one in uniform motion by means of a Lorentz boost, and
also an accelerated observer (in the Rindler frame) for the three NLEDs: EH, BI, and
ModMax. Moreover, we consider the black hole solutions for each NLED coupled to
the Einstein gravity and we compare the shadow radii of the corresponding black holes
with the observed shadow of the black hole in the center of our galaxy, Sagittarius A∗.



Resumen

Se examina la propagación de la luz en presencia de un campo electromagnético intenso
mediante tres teoŕıas de electrodinámica no lineal: Euler-Heisenberg, Born-Infeld y
ModMax y se compara con la electrodinámica de Maxwell. Usamos el concepto de
métrica efectiva para determinar la velocidad de fase de la luz.

Para el caso de Euler-Heisenberg (EH), se modela la situación de un medio magne-
tizado en movimiento mediante una transformación de Lorentz. Determinamos cómo
esta transformación afecta la velocidad de propagación de la onda electromagnética,
resultando que las velocidades de fase dependen tanto del campo magnético de fondo
como de la dirección de la velocidad de la transformación de Lorentz.

Por otra parte, se considera la propagación de la luz en presencia de un campo de
Born-Infeld (BI) puramente magnético o puramente eléctrico y se analiza la situación
desde el punto de vista de un observador acelerado haciendo uso del marco de Rindler,
resultando que el campo de BI y el marco acelerado tienen efectos opuestos sobre la
velocidad de propagación de la luz: el campo de BI tiende a disminuir la velocidad de
fase, mientras que en el marco acelerado se observa un incremento, en algunos casos
incluso excediendo la velocidad de la luz en vaćıo. Consideramos ambos, propagación
de la luz paralela o tranversal a la dirección de la aceleración del marco de Rindler;
también se calcula el corrimiento al rojo de pulsos de luz enviados desde un observador
de Rindler a otro.

Las teoŕıas de Euler-Heisenberg y ModMax son las que presentan birrefringencia,
es decir, la velocidad de fase de la onda electromagnética que se propaga depende de la
intensidad del campo electromagnético externo y de la polarización de la onda.

En cuanto a la teoŕıa de ModMax, estudiamos la solución estática y esféricamente
simétrica de la teoŕıa de ModMax acoplada con las ecuaciones de Einstein, es decir,
el agujero negro de ModMax. Analizamos la propagación de la luz en la vecindad del
agujero negro de ModMax y determinamos las trayectorias, deflección, corrimiento al
rojo y la sombra del agujero negro. Estos resultados son comparados con los efectos
correspondientes al agujero negro de Reissner-Nordstrom, el cual es la solución estática
y esféricamente simétrica de las ecuaciones de Einstein-Maxwell.

Por completez, comparamos la disminución en las velocidades de fase para los casos
en que el observador está en reposo, en movimiento uniforme, mediante una transfor-
mación de Lorentz, aśı como el caso de un observador acelerado, visto desde el marco
de Rindler, para las tres electrodinámicas no lineales estudiadas: EH, BI y ModMax.
Además se consideran las soluciones estática y esféricamente simétrica de agujeros ne-
gros cuando se acopla cada electrodinámica a la gravitación de Einstein y se confrontan
los radios de las sombras resultantes con el radio de la sombra observado para el agujero
negro en el centro de nuestra galaxia, Sagitario A∗.
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Chapter 1

Introduction

Light propagation in the presence of an electromagnetic field, in vacuum or in a medium,
has been discussed throughout the history of humanity, at least since Euclid in the IV
century BC. There are questions that even today have not yet been answered, mostly
due to technical advances not being sufficiently precise. In the next section, we give a
historical review of the evolution of light propagation studies and how it is affected in
the presence of an electromagnetic field.

1.1 Historical review

Euclid’s “Optica” is considered the first treaty about light and its properties described
through geometry [1]–[3]. However, at that time and for many years, the propagation of
light was considered to be instantaneous or with an infinite velocity. Around the same
time (350 BC) the concept of vacuum was also discussed by Aristotle’s “Physics”, who
denied the possibility of vacuum, known at the time as void [4]. Although in other
parts of the world, other scholars like Al-Farabi also rejected the existence of vacuum,
some other physicists supported the existence of a void [5], [6].

These lines of thinking were carried through the years and while at the beginning of
1600 propagation of light was still considered to be instantaneous, it had been verified
that the velocity of light changed according to the medium of propagation [1]. In 1676,
M. Roemer observed Jupiter’s satellite, Io, and confirmed that light required time to
travel a certain distance [1], [7]; this, jointly with the observation of stellar aberration
(celestial objects that appear to be in a different position towards the direction of
motion of the observer) helped to reach a consensus on the finiteness of the velocity of
light. The concept of vacuum also evolved; in 1640 E. Torricelli was able to measure
the weight of the air and successfully produced a vacuum while in Germany (1650) the
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CHAPTER 1. INTRODUCTION

vacuum pump was invented and it allowed R. Boyle to investigate the properties of
vacuum [8].

Some observed phenomena raised more questions about vacuum: reflection, refrac-
tion, and diffraction. Around 1621, W. Snell described the relationship between angles
of incidence and refraction, and the laws of refraction are named after him. Around
1662, P. Fermat explained refraction using the principle of minimum time (Fermat’s
principle).

In the meantime, physicists were also debating about two interpretations of light.
In Newton’s “Optics” (1704), he applied the particle interpretation of light to explain
reflection; however, regarding diffraction and refraction he had some wrong assumptions
related to the corpuscular interpretation of light [9]. In contrast, in 1690 C. Huygens
proposed the idea of wavefronts produced by light sources (Huygens-Fresnel principle)
and with it explained reflection and refraction. The wave interpretation was also ac-
cepted by L. Euler, who, in 1746, argued that by assuming light as a wave an easier
explanation for diffraction can be obtained. Moreover, T. Young, in 1799, experimented
on light and he formulated the principle of interference [10]. Later, A. Fresnel’s wave
theory became more accepted in 1815, since it explained the phenomena of diffraction,
polarization, and birefringence [10]. Even so, it was believed that these waves moved
through a medium called aether, although Fresnel’s explanation did not employ this
concept at all.

Meanwhile, it was considered that light could not be affected by magnetism until
1845, when M. Faraday observed that linear polarization of light rotates when light
propagates in the presence of a magnetic field, and the degree of rotation depends
on the strength of the magnet; this is a magneto-optical effect known as the Faraday
rotation. Following Faraday’s work, J. C. Maxwell interpreted electric and magnetic
phenomena and, although his investigation was particularly abstract at the time, it
did not rely on the concept of aether [10]. However the scientific community was
reluctant to abandon the aether idea, and it was still considered that electromagnetic
processes happened in this aether, which could be characterized by certain properties
depending on the position. With this in mind, some experiments intended to measure
these properties [10]–[15]. However, the efforts were in vain; in 1887 A. A. Michelson
and E. Morley published their null result to measure the aether drift; this is now
considered the first step to the birth of A. Einstein’s theory of Special Relativity (SR).
Considerable resistance faced SR to be trusted because it was difficult to perform direct
experiments due to the high velocities required to observe SR effects. At the moment,
even Michelson and Morley’s interferometer and the observation of stellar aberration
were not convincing enough.

In 1907 H. Minkowski formulated Einstein’s SR theory in terms of tensors in a 4-
dimensional geometry. Einstein’s studies on the 4-dimensional geometry and tensors led
him to become familiar with the works of B. Riemann, G. Ricci-Curbastro, and T. Levi-
Civita; curvature ideas eventually resulted in the formulation of the General Theory
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1.1. HISTORICAL REVIEW

of Relativity (GR) in 1915 [10]. However, GR was a theory that needed experimental
support unreachable for the technological landscapes at that time. To distinguish be-
tween Special Relativity and Newton’s theory, high velocities were needed; while for GR
evidence, intense gravitational fields were required. In the solar system, our greatest
source of a gravitational field is the sun, therefore astronomers looked for GR proofs.
It was found that GR explained Mercury’s perihelion and then the problem of the solar
redshift, but it was decades later, with technological advances, that more precise tests
of GR were achieved.

Returning to the study of light affected by electromagnetic fields, Einstein under-
stood that if a magnetic field would affect light propagation, the dependence on the
magnetic field must be squared, B2, because the direction of the field should not affect
the decrease in the velocity of light. Moreover, a magnetic field affects the velocity
of light through the refraction index, but Maxwell’s theory is a linear theory that ful-
fills the superposition principle and it cannot describe self-field interactions. It was
quantum electrodynamics (QED) formulated by R. Feynman, J. Schwinger, and S.
Tomonaga that unblocked the problem. In particular, Schwinger in 1950 analyzed the
polarization of vacuum that occurred in the presence of an electromagnetic field and
concluded that nonlinear properties of the electromagnetic field could give a reliable
description of the phenomenon; this is, electromagnetic fields affect the properties of
the quantum vacuum and a nonlinear theory could describe it [16].

With nonlinearity in mind over the years nonlinear theories of electrodynamics have
emerged. We focus on three in particular, Euler-Heisenberg, Born-Infeld, and the mod-
ified Maxwell, ModMax.

In 1934 M. Born and L. Infeld developed a nonlinear electrodynamics (NLED) theory
[17] that is a nonlinear correction to Maxwell electrodynamics from a classical perspec-
tive. The aim was to contribute to the discussion on the nature of the electromagnetic
mass of charged particles; at that time the opinion was divided as to whether the mass
of a charged particle is a manifestation of the electromagnetic field or if the field and
particle are two separate entities. A second aim was to solve the singularity of the field
and energy of a point charge at its position, proposing the existence of a maximum
attainable electromagnetic field, as a resemblance of the maximum attainable velocity
in SR.

Later in 1936, H. Euler and W. Heisenberg derived a nonlinear electrodynamics
theory from QED principles [18]. After P. Dirac’s works on the positron (1933) and the
Born QED, Heisenberg became interested in the quantum fluctuations of QED vacuum
and realized that those fluctuations lead to the scattering of light by light; since the self-
interaction of fields is not sustained by Maxwell’s theory due to the linear superposition
principle, the theories that explain the phenomena had to be nonlinear in the fields.
H. Euler and B. Kockel were, at the time, students of Heisenberg and were put to the
task of studying light-light scattering. In 1935, Euler and Kockel published the results
for the light-light scattering amplitude in the low-frequency limit [19], [20]. This paper
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CHAPTER 1. INTRODUCTION

established the idea that vacuum could be interpreted as a medium.
However, by calculating the light-light scattering interaction cross-section, they con-

cluded that the effect was small, and then, measuring this deviation from Maxwell ED
was difficult. In 1936, Euler and Heisenberg extended those results by applying the con-
cept of a critical field strength Ecr, also called the Schwinger critical field Ec ∼ 1018V/m.

After the Euler-Heisenberg paper was published, V. Weisskopf stated the physical
significance of the new nonlinear theory

”The electromagnetic properties of the vacuum can be represented by a
field-dependent electric and magnetic polarizability of empty space, which
leads, for example, to refraction of light in electric fields or scattering of
light by light.”[20], [21]

By treating the vacuum as a medium, EH effective action predicts rates of nonlinear
light interaction processes considering vacuum polarization to one loop and is valid for
electromagnetic fields that change slowly compared to the inverse of the electron mass.

More recently in 2020, it was derived from the Modified Maxwell nonlinear theory.
This theory fulfills the same symmetries as Maxwell’s theory, which are: conformal
invariance and electric-magnetic duality invariance.

1.2 Measuring nonlinear effects

Regarding the experimental evidence of electromagnetic nonlinear effects, for exam-
ple, vacuum birefringence or photon-photon scattering, we mention some experiments
concerning the measurement of the variation of light velocity.

Two types of experiments exist to measure the variation of light velocity when it is
in the presence of an intense electromagnetic field. The first type is the interferometers
but the limits obtained are 14th orders of magnitude higher than the ones predicted by
QED [22]. The second type of experiment focuses on measuring vacuum polarization
effects [23].

Some of the experiments to prove vacuum birefringence are the BFRT Collaboration
[24], PVLAS Collaboration[25]–[27] and the BMV group [28]. The BFRT Collabora-
tion experiment used a superconducting magnet which provided a magnetic field of 3.5T
[24]. PVLAS experiment consists of a Fabry-Perot optical cavity and a superconducting
magnet providing a 2.3T magnetic field, and a more recent version of this experiment
was based on two 2.5T permanent magnets [27]. The BMV experiment uses pulsed
magnetic fields, that allow it to reach the highest magnetic field in terrestrial laborato-
ries of 6.5T [28]. Nonetheless, these experiments do not reach the predictions of QED in
measuring vacuum birefringence and the BMV recognizes that the improvement needed
is of three orders of magnitude [28].
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1.2. MEASURING NONLINEAR EFFECTS

QED vacuum nonlinearities have also been detected using waveguides [29]. Vacuum
pair production, known as the Sauter-Schwinger effect [16], was predicted in the EH
1936 paper, however, the necessary electric field strengths, corresponding to a critical
laser intensity of about Icr = 4.3 × 1029W cm−2 [30] have not yet been reached exper-
imentally. New scenarios have been proposed to establish limits for the detection of
vacuum birefringence [31].

The other phenomena that could be useful to measure or set bounds on NLED is
the analysis of photon-photon scattering or photon splitting. Light-by-light interactions
can be studied using heavy-ion collisions; the electromagnetic (EM) field strengths
produced, for example by a Pb nucleus, are up to 1025 V m−1. These intense EM fields
can be treated as a beam of quasi-real photons, and light-by-light scattering has been
measured in Pb + Pb collisions at the Large Hadron Collider (LHC) [32], [33]. Other
experimental evidence includes the measurement of photon splitting in strong magnetic
fields [34], [35]. A larger study in experiments using intense laser and energetic particle
beams focusing in QED is presented in [36] and a more recent review of photon-photon
scattering at LHC can be consulted in [37].

To reach QED predictions there is needed a stronger magnetic field source, that
from now is only achievable in astrophysical objects. Strong magnetic fields are also
of interest in astrophysics; as neutron stars can possess magnetic fields in the range of
106 − 109 Tesla, processes such as photon splitting and pair conversion are expected to
occur in their vicinity [38], [39].

On the other hand, it is well known that an electromagnetic wave traveling through
intense EM fields reduces its phase velocity due to vacuum polarization. This subject
has been addressed since the 1970s in the literature [40], [41], as well as recently; see for
instance [42], [43] for the EH theory, and [44] for wave propagation in a BI background.
In [45], the use of a Michelson-Morley interferometer is proposed for measuring the
changes in the phase velocity due to NLED theories, specifically the Born-Infeld theory.
They concluded that for a BI parameter of the order b ≈ 1020 V m−1, the intensity
of the background fields in question will not be attained experimentally in the near
future. Instead, using realistic intensities of background fields (B ≈ 1T), interferometric
experiments could place bounds on the BI parameter b to an order of 1014 − 1015 V
m−1. In [46] it is explored the change in the refraction index due to the NLED, the
proposed experiment aims to measure the refraction of a laser pulse when it crosses a
transverse vacuum index gradient, produced by an intense pump pulse using a Sagnac
interferometer.

In [22] a general framework for experiments that intend to test QED predictions is
presented, and it would make it possible to test different NLED theories.
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CHAPTER 1. INTRODUCTION

1.3 Motivation to investigate NLED

Nonlinear electromagnetic effects can be taken into account in a phenomenological
way by classical theories. Vacuum in the presence of strong magnetic and/or electric
fields behaves in some aspects like a material medium; however, the description will
be, in general, more complex than for simple polarizable media due to the nonlinear
dependence of the Lagrangian on the fields and many of these effects are subtle even for
magnetar field strengths, of the order of 109 − 1011 Tesla. If the index of refraction has
an imaginary part then the effect of dichroism is present and it refers to the absorption
of photons in vacuum depending on photon polarization [47].

Furthermore, each possible light trajectory is a null geodesic of an effective metric,
and there are two possible effective metrics. Therefore this is an effect of the non-
linearity in the Lagrangian that results in birefringence in vacuum [48], meaning that
electromagnetic waves with different polarizations have different velocities.

In a material medium, like anisotropic crystals, the notion of birefringence becomes
evident as there are two rays of light propagating in the crystal with different phase
velocities [49]. It turns out that this effect can also be associated with nonlinear elec-
trodynamics, in this case, two dispersion relations lead to two different light cones for
the wave vectors. Furthermore, from the QED predictions, the dispersion process of
real photons from virtual photons causes a change in the polarization that depends
on the phase velocity of the interacting photons, in this way birefringence in vacuum
arises. Experimental observations are possible with intense laser beams [50]. The ef-
fects of nonlinear vacuum electrodynamics on the polarization plane of light have been
explored in [51]. The constraints imposed to have a well-posed initial value problem in
nonlinear electromagnetic theories coupled to gravity were explored in [52].

Moreover, at strengths approaching the critical electromagnetic fields, self-field in-
teractions induce modifications in light trajectories that can be modeled as light prop-
agating through a curved spacetime. Deviations from the trajectories in vacuum are
described in NLED by the null trajectories of an effective metric (also known as the
optical metric) that is derived from the analysis of the propagation of electromagnetic
field discontinuities [53]–[55].

NLED can describe phenomena such as a change in the phase velocity of light in
vacuum, due to the strong external background fields, and photon-photon scattering.
In this thesis, we focus on the above-mentioned NLED theories, EH, BI, and ModMax,
and analyze the modifications in the propagation of light in the presence of intense EM
fields. For the BI NLED, we also consider an accelerated observer and compare the
redshift description of two light pulses, using NLED and Maxwell electrodynamics.

Another application of the NLED theories is to consider charged black holes, and
study light trajectories in their vicinity. This is, there are BH solutions to the coupled
Einstein-NLED equations. Light trajectories are the null geodesics of an optical metric
in the BH background. Then we compare these behaviors with the ones for the Einstein-
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1.4. OVERVIEW

Maxwell solution, the Reissner-Nordstrom BH.

1.4 Overview

In Chapter 2 we set the basics of the nonlinear theories and review the concept of
dispersive media and birefringence. Then, we introduce the tools for the analysis of
light propagation in nonlinear electrodynamics; we determine the effective optical metric
methodology and with the dispersion relations, we set up the formalism to determine
the phase velocity of light in the presence of very intense electromagnetic fields.

Chapter 3 is devoted to the study of light propagation in an Euler-Heisenberg back-
ground. In Sections 3.1-3.3 are presented the field equations derived from the Euler-
Kockel Lagrangian; then using the effective metric approach we determine the two
effective metrics, whose null geodesics are the light trajectories, determining then the
corresponding phase velocities, the polarizations, and the dispersion relations; this is
done for both a uniform magnetic and a uniform electric background. In section 3.4,
by performing a Lorentz boost, we model a moving medium and determine the ef-
fects in the phase velocities of the moving medium. These results are published in
”Euler-Heisenberg waves propagating in a magnetic background”, E. Guzman-Herrera,
N. Breton, Eur. Phys. J. C 81, 115 (2021).

In Chapter 4 we analyze light propagation in a background governed by a BI NLED
for an accelerated observer. In section 4.1 we present the effective optical metric,
whose null geodesics are the light trajectories, as well as the phase velocity for a BI
electromagnetic background. In Section 4.2 are introduced the Rindler spacetime and
the coordinate transformation that connects the Minkowski metric with the accelerated
frame. In Section 4.3 the phase velocity of light propagating through a purely magnetic
BI background from the point of view of the accelerated observer (uniform gravitational
field) is derived. In Section 4.4 the phase velocity of light propagating in a purely electric
BI background from the point of view of the Rindler observer is determined. In both
cases, we consider light that propagates parallel and perpendicular to the accelerated
frame. Section 4.5 is devoted to determining the redshift of the propagating light, and
how the presence of the BI electromagnetic field affects the frequency shift. These
results are published in “Light Propagating in a Born-Infeld background as seen by
an accelerated observer”, E. Guzman-Herrera, N. Breton, Annalen Der Physik, 534,
2200043 (2022).

In Chapter 5 we address light behavior in the vicinity of a ModMax black hole. In
section 5.1 it is introduced the ModMax NLED Lagrangian. In section 5.2 we set up
the basics of the static spherically symmetric ModMax-Einstein BH as the background
metric. In section 5.2.1, using the effective metric we analyze the birefringence in the
dyonic ModMax BH. In section 5.2.2 we compare the light orbits of the two effective
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metrics of the ModMax BH with the massless trajectories in the Reissner Nordstrom
(RN) BH. The deflection angles and the gravitational lensing are calculated in section
5.2.3. In section 5.2.5 the redshifts produced by the two effective metrics are determined,
first considering an emitter moving in a circular orbit and then a static emitter. In
section 5.2.7 the shadow of the ModMax BH is calculated and we set the bounds on the
values of the nonlinear parameter γ consistent with the observations of the shadow of
the BH at the center of our galaxy, Sagittarius A∗. We compare the effects mentioned
above in the ModMax BH vicinity with the corresponding ones of the RN BH, its
linear counterpart. The content of this chapter is published in “Light propagation in
the vicinity of the ModMax black hole”, E. Guzman-Herrera, N. Breton, Journal of
Cosmology and Astroparticle Physics, JCAP, 01, 041 (2024).

In Chapter 6 we compare the phase velocities for light pulses in the presence of EH,
BI, and ModMax fields, following the methods of the previous chapters an observer in
uniform motion and accelerated are considered. In Section 6.2 we consider the NLEDs
coupled to Einstein BH solutions and compare the radii of the shadow of the EH, BI,
and ModMax BHs with the one of the RN BH.

We use the Mathematica package “EDCRGTCcode” for the calculations with ten-
sors. We use natural units, ℏ = 1, G = 1, c = 1, and for the EH and BI chapters we
use the signature (+,−,−,−) of the metric. For the ModMax chapter, dealing with
the black hole case, we use the signature of the metric (−,+,+,+).

We use indistinct light ray, light pulse, light wave and also photons, however, we
focus on classical trajectories the more accurate concept would be light ray.
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Chapter 2

Basics of Nonlinear

Electrodynamics

At a macroscopic level and even at an atomic level, the linear superposition of electro-
magnetic fields is confirmed experimentally with a precision of less than 1%. Nonethe-
less, at a subatomic level, there are deviations from the linear superposition and the
Maxwell electromagnetic theory presents singularities due to the proximity between
charged particles and the high intensity of their fields.

In the presence of intense electromagnetic fields (EM), quantum electrodynamics
(QED) predicts that vacuum has properties of a material medium as a consequence
of self-field interactions. Nonlinear electromagnetic (NLEM) theories describe self-field
effects, for example, light-light interaction or pair production in vacuum excited by an
electric field. These effects become significant when the electromagnetic field strengths
approach the critical fields Ecr ≈ m2

ec
3/(eℏ) ≈ 1018 Volt/m or Bcr ≈ 109 Tesla; Bcr

represents the field at which the cyclotron energy equals mec
2, where me is the mass

of the electron, and it defines the field scale at which the external field on quantum
processes becomes significant, it is also known as Schwinger critical field and is used to
estimate where the nonlinear QED scale begins [20].

The NLEM interactions can be described in a classical way by means of an effective
Lagrangian that depends nonlinearly on the two Lorentz and gauge invariants, F and
G, of the Faraday tensor Fµλ = ∂µAλ − ∂λAµ,

F = F µλFµλ = 2(B2 − E2), G = F ∗µλFµλ = −4B⃗ · E⃗, (2.0.1)

where F ∗µλ = 1
2
ϵµλαβFαβ Maxwell’s electrodynamics cannot describe nonlinear inter-

actions between two electromagnetic waves, for example, the interaction light-by-light,
these phenomena are well known in QED, and considering a classical nonlinear electro-

9



CHAPTER 2. BASICS OF NONLINEAR ELECTRODYNAMICS

dynamics (NLED) it is possible to describe them [56]. Several NLED proposals exist to
describe such nonlinear effects, but two of them stand out: the Euler–Heisenberg (EH)
and the Born-Infeld (BI) theories.

The EH theory was derived from QED principles by W. Heisenberg and H. Euler
in 1936 [18]. EH theory has been studied from the perspective of QED in [56]–[58], it
considers vacuum polarization to one loop and is valid for electromagnetic fields that
change slowly compared to the inverse of the electron mass. By treating the vacuum as
a medium, EH effective action predicts rates of nonlinear light interaction processes.

M. Born and L. Infeld, in 1934, developed another relevant NLED theory. Born and
Infeld [17] presented a theory with nonlinear corrections to Maxwell electrodynamics
from a classical perspective. To solve the singularity of the field and energy of a point
charge at its position, they propose the existence of a maximum attainable electromag-
netic field, given by the BI parameter b, with a magnitude b = e/r20 = 1020 V m−1,
where r0 is the classical electron radius. The interpretation of this absolute field is also
that the classical self-energy of the electron is equal to its mass-energy at rest [22]. This
classical theory effectively models vacuum polarization as a material medium, in this
sense resembling EH theory.

From the perspective of QED, the modifications of BI theory result in a change in
the signal of photon-photon scattering, this is the reason why it has been proposed that
experiments that measure the QED process could bound the value of the maximum
field b of the BI theory [36]. Another interesting feature is that it presents neither
birefringence nor shock waves. The absence of birefringence leads to the idea that
vacuum birefringence experiments could set bounds on the BI parameter b [36], [59],
[60].

It is well known that the BI NLED is not conformally invariant while the EH NLED
is neither conformal invariant nor dual invariant. The question arose if any NLED fulfills
the same symmetries as Maxwell’s, this is, conformal invariance and electric-magnetic
duality invariance. The answer is yes.

In [61] was derived a NLED theory endowed with the two symmetries; it is char-
acterized by a dimensionless parameter γ and it reduces to Maxwell theory if γ = 0.
This theory, known as Modified Maxwell (ModMax) NLED, has stimulated research in
several aspects, from classical solutions [62], [63] to supersymmetric analysis [64]–[71].

2.1 Effective Optical Metric

It is well known that intense EM fields, where the Maxwell theory is no longer valid,
can resemble a curved spacetime, in the sense that light trajectories are not straight
lines but undergo deflection. Deviations from the straight trajectories in vacuum are
described in NLED by the null trajectories of an effective or optical metric.

10



2.1. EFFECTIVE OPTICAL METRIC

The concept of effective metric in nonlinear electrodynamics has its origin in the
works by G. Boillat [72], Bialynicki-Birula [41], Plebański [54] and more recently by
Novello [53]. In this thesis, we take the approach developed by Plebański and later on by
Novello and collaborators. It is derived using the Hadamard theory of the propagation
of discontinuities or perturbations of the EM field [54], [53], [55]; i. e. it is assumed that
the EM fields of the propagating wave are much smaller than the background fields.
The effective optical metric approach is equivalent to the soft photon approximation.
Splitting the total electromagnetic field into a background field Fµν and a propagating
photon fµν , and keeping the linear approximation with respect to fµν in the equations
of motion, leads to an eigenvalue equation for the propagating modes [42], [73].

Considering a null vector kµ = (ω, k⃗) that is normal to the characteristic surfaces
or wavefronts the effective metric gµνeff must be the metric in which the wave vector is
null, kµkµ = 0,

g
(i)µν
eff kµkν = 0, i = 1, 2, (2.1.1)

the (i) superscript corresponds to the two metrics that can arise in NLED when birefrin-
gence occurs. The equations of the propagation of the field discontinuities in nonlinear
electrodynamics characterized by a Lagrangian L(F,G) are derived by analyzing the
propagation of linear waves associated with the discontinuity of the field fαβ, in the
limit of geometrical optics [55]. From the pair of coupled equations

ζk2 =
4

LF

F λνF µ
λkνkµ(LFF ζ + LFGζ

∗)− G

LF

k2(LFGζ + LGGζ
∗) (2.1.2)

ζ∗k2 =
4

LF

F λνF µ
λkνkµ(LFGζ+LGGζ

∗)− G

LF

k2(LFF ζ+LFGζ
∗)+2

F

LF

k2(LFGζ+LGGζ
∗),

(2.1.3)
where, ζ = Fαβfαβ , ζ∗ = F ∗αβfαβ y k2 = gµνkµkν . Eqs. 2.1.2 and 2.1.3 were also
presented in [53]. Considering k2 ̸= 0 i.e. in the background spacetime, kµ is not null,
the relation between ζ and ζ∗ is obtained as Ω1ζ

∗2 + Ω2ζζ
∗ + Ω3ζ

2 = 0 with

Ω1 = −LFG + 2
F

LF

LFGLGG − G

LF

L2
FG +

G

LF

L2
GG

Ω2 = LGG − LFF + 2
F

LF

LFFLGG + 2
F

LF

L2
FG − 2

G

LF

LFFLFG + 2
G

LF

LFGLGG

Ω3 = LFG + 2
F

LF

LFFLFG − G

LF

L2
FF +

G

LF

L2
FG,

and

Ω(a) =
−Ω2 ±

√
Ω2

2 − 4Ω1Ω3

2Ω1

, a = ∓ (2.1.4)
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CHAPTER 2. BASICS OF NONLINEAR ELECTRODYNAMICS

this leads to two possible paths of propagation which indicates the possibility of bire-
fringence as we can relate the each paths to a given polarization mode, then

k2
(a) = 4

LFF + Ω(a)LFG

LF +G
(
LFG + Ω(a)LGG

)F λµF ν
λ kµkν . (2.1.5)

NLED can be modeled as a material medium characterized by indices of birefrin-
gence or refractive indices [55], [61], λa, given in terms of the NLED Lagrangian and
its derivatives by,

λa = −4
LFF + Ω(a)LFG

LF +G(LFG + Ω(a)LGG)
, (2.1.6)

where LX = dL
dX

, X = F,G, and Ω(a) in Eq. (2.1.4), depends on the derivatives of the
Lagrangian with respect to the invariants [55]. The expression for the effective metric
can be identified from the dispersion relation, Eq. (2.1.1),

{gµν + λat
µν} kµkν = gµνeff(a)kµkν = 0, (2.1.7)

where tµν = F µλFλ
ν and gµν is the background metric that can be the Minkowski

metric or a general curved spacetime, for instance, a black hole or a cosmological space-
time. And the effective metrics for general nonlinear electrodynamics with Lagrangian
L(F,G) are given by,

gµνeff(a) = gµν − 4
LFF + Ω(a)LFG

LF +G(LFG + Ω(a)LGG)
tµν . (2.1.8)

If the Lagrangian is such that LFG = 0, from Eqs. 2.1.2 and 2.1.3 the effective
metrics become

gµνeff(1) = (LF − 2LGGF ) gµν − 4LGGt
µν , (2.1.9)

gµνeff(2) = LFg
µν − 4LFF t

µν , (2.1.10)

Additionally when we turn off either the electric or the magnetic field, i.e., E⃗ = 0
or B⃗ = 0, then G = 4E⃗ · B⃗ = 0, and the effective metrics become

gµνeff(1) = LFg
µν , (2.1.11)

gµνeff(2) = LFg
µν − 4LFF t

µν , (2.1.12)

where we note that the effective metric geff(1) is conformal to the background metric;
in this case, one of the optical paths is the null geodesic of the background metric and
the other one is the null geodesic of the effective metric geff(2).
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2.2. LIGHT PROPAGATION IN THE EFFECTIVE METRIC

In the Maxwell case L = −F/4, LF = −1/4, LFF = 0 and LG = 0, then both

effective metrics become conformal to the background metric, g
(1)µν
eff = g

(2)µν
eff = gµν , and

the null geodesics coincide with the light trajectories in the background spacetime.
See [49] for a study on the Fresnel equation in nonlinear electrodynamics and [74]

for a classification of the effective metrics.

2.2 Light propagation in the effective metric

The phase velocity of light can be calculated from the dispersion relation. Let us
consider a null vector kµ = {ω, k⃗}. If ki is the light propagation direction, from the
dispersion relation, Eq. (2.1.1),

gtteff(a)ω
2 + 2giteff(a)ωki + gijeff(a)kikj = 0, (2.2.1)

where i, j subscripts (or superscripts) denote the spatial coordinates and t denotes the

time coordinate. Defining the normalized wave vector k̃i = ki/|⃗k|, then Eq. (2.2.1) can
be written as

gtteff(a)
ω2

|⃗k|2
+ 2giteff(a)

ω

|⃗k|
k̃i + gijeff(a)k̃ik̃j = 0. (2.2.2)

Then the light’s phase velocity, v = ω/|⃗k|, for propagation in the direction k̃i, v
i is

given by

(
vi
)
a
=

ω

|⃗k|
k̃i =

giteff(a)k̃i

gtteff(a)
±

√√√√(giteff(a)k̃i

gtteff(a)

)2

−
gijeff(a)k̃ik̃j

gtteff(a)
, a = 1, 2 (2.2.3)

in the case that the effective metric is diagonal, i.e. gti = 0 and gij = 0, i ̸= j, Eq.

(2.2.3) simplifies to (vi)a = ±
√

−
gij
eff(a)

k̃ik̃j

gtt
eff(a)

.

The two possible effective metrics gµνeff(a), a = 1, 2, render two dispersion relations
that correspond to two modes of polarization, this is known as the birefringence effect
[53]. Note that these velocities differ from the phase velocities of a massless test particle
that follows the null geodesics of the background metric gµν ; they are given by analogous
expressions making gµνeff(a) 7→ gµν , then

vimassless = ±

√
−gij k̃ik̃j

gtt
. (2.2.4)
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Chapter 3

Light propagation in

Euler-Heisenberg theory

Taking into account vacuum polarization to one loop, by treating the vacuum as a
medium and restricting to electromagnetic fields that change slowly compared to the
inverse electron mass, the Euler-Heisenberg (EH) effective action predicts nonlinear
light interaction processes. The EH Lagrangian LEH(F,G) depends in nonlinear way
on the two Lorentz and gauge invariants of the Faraday tensor Fµλ, F = F µλFµλ =

2(B2 − E2) and G = F ∗µλFµλ = −4B⃗ · E⃗, with the dual field F ∗µλ = 1
2
ϵµλαβFαβ,

LEH(F,G) = −F

4
− 1

8π2

∫ ∞

0

e−m2s

[
(es)2

Re[cosh(es
√
2(F + iG))]

Im[cosh(es
√

2(F + iG))]
− 2

3
(es)2F − 1

]
ds

s3
.

(3.0.1)

From this Lagrangian new nonlinear interactions can be derived, that do not occur
in the tree-level Maxwell action; among them are light-light interaction and pair pro-
duction in vacuum excited by an external electromagnetic field. It has been thoroughly
investigated, and higher loop contributions in strong fields have been calculated as well,
see for instance [75], [76].

The Lagrangian (3.0.1) can be expanded as an asymptotic series [77], [40] whose
first terms of the order α2, are

LEK(F,G) = −F

4
+

µ

4

(
F 2 +

7

4
G2

)
, (3.0.2)

where µ is the parameter of the EH theory that in terms of the fine structure constant,
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3.1. THE EULER-HEISENBERG PROPAGATING WAVE

α (c = 1, h = 1), is

µ =
2α2

45m4
e

; (3.0.3)

that in terms of the critical fields, is of the order µ ∼ α/B2
cr. Actually (3.0.2) is

the Euler-Kockel (EK) Lagrangian, also known as the weak field limit of the EH La-
grangian. H. Euler and B. Kockel, two of Heisenberg’s students, investigated QED
vacuum polarizations in the constant background limit, obtaining the leading nonlinear
correction in powers of the field strengths, presenting the Lagrangian (3.0.2) in 1935
[19]. To describe the propagation of photons in an external field in QED only this first
correction is needed, i.e. the terms of the order α2, α2(F 2 + 7G2/4)/(90m4

e). The use
of the first terms in this expansion is justified if the dimensionless expansion parameter
4παℏ3|F |2/(m4

ec
5) is much smaller than unity [41]. This is indeed the case even for

strong magnetic fields, for instance, the magnetic fields in neutron stars that may be as
large as 1012 Gauss [78], where processes like photon splitting and pair conversion are
expected to occur in the vicinity of neutron stars [38].

The phase velocity of an electromagnetic wave traveling through intense EM fields
will be altered due to vacuum polarization. It is also well known the emergence of a
longitudinal field component, as well as the decrease of the phase velocity [77], [79], [41].
Another effect that arises in strong electromagnetic backgrounds is the birefringence
[80]. To detect nonlinear electromagnetic effects it is crucial to determine the velocity
of propagation of the electromagnetic wave in the intense EM background, and this
chapter aims to determine the phase velocities that correspond to the birefringence as
well as the electric field longitudinal component in terms of the magnetic background
derived from the Euler-Kockel Lagrangian. Although these effects have been the subject
of many studies, we approach them in terms of the effective metrics derived in nonlinear
electrodynamics for curved spaces.

3.1 The Euler-Heisenberg propagating wave

In this section, we study the propagation of light in a background of intense electric
and magnetic uniform fields. We start by presenting the electromagnetic field equations
derived from the EK Lagrangian (3.0.2), that are,

Fλµ;ν + Fνλ;µ + Fµν;λ = 0; ∂ν
[√

−g (LFF
µν + LGF

∗µν)
]
= 0, (3.1.1)

where LX denotes the derivative of L with respect to the invariant X, dL/dX.
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CHAPTER 3. LIGHT PROPAGATION IN EULER-HEISENBERG THEORY

Figure 3.1: Plane wave electromagnetic fields with the electric component γEw(ξ) arising in the ẑ

direction, due to the nonlinear interaction. The uniform magnetic field background B⃗ is shown making

a θ angle with the z-axis. The magnitudes of the fields are not on scale. The subscript w refer to the

electromagnetic wave with potential aµ.

Due to the interaction between the wave and the background, it is known that the
parallel mode of the propagating wave fails to be orthogonal to the wave vector k⃗ [80],
because a longitudinal wave component arises in the presence of strong magnetic fields.

We shall consider an electromagnetic (EM) wave propagating through a uniform
magnetic background. The wave fields are a function of ξ = (z − vt), where v is the
phase velocity of the propagation in the ẑ direction; the electric and magnetic fields of
the propagating wave in terms of the electromagnetic potential aµ are proposed as

aµ(ξ) = (0, a(ξ), 0,−γa(ξ)/v). (3.1.2)

We consider the arising electric component to be γa(ξ), and the constant γ is to be
determined by solving the nonlinear electrodynamics (NLED) field Eqs. (3.1.1). The

propagating vector k⃗ is along the z-direction, kµ = (ω, 0, 0, k), the wave electric field is
along the −x-direction, and the wave magnetic field is along the y-direction. For the
uniform background Aµ

Aµ(ξ) = (0, 0, Bxz −Bzx,Byx). (3.1.3)

In Fig. 3.1 shows the plane wave propagating in the magnetic background; for
convenience, we locate the magnetic background in the plane XZ, B⃗ = B sin θx̂ +
B cos θẑ = Bxx̂+Bz ẑ, and By = 0.

The photon polarization tensor in a homogeneous electromagnetic background in
the context of QED has been addressed in [81], and in [44] was studied the case of a
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3.2. EFFECTIVE METRIC AND PHASE VELOCITIES OF LIGHT RAYS

Born-Infeld wave in a magnetic background. In the next subsection, we determine the
phase velocities vi, i = 1, 2, and γ in the effective metric approach. for the EH magnetic
background.

3.2 Effective metric and phase velocities of light

rays

In the case of the EK Lagrangian, LFG = 0, and the effective metrics are given by
Eqs. (2.1.9) and (2.1.10). With the considerations for the electromagnetic field, the
nonvanishing electromagnetic tensor components of the magnetic background are F xy =
−Bz, F xz = By = 0, F yz = −Bx, and F = 2B2, the corresponding phase velocities
vi derived from the two effective metrics (2.1.9) and (2.1.10), through Eq. (2.2.3) are,
to the first order in µ

(v1)
2 = 1− 14µB2

x

1 + 10µB2
, (3.2.1)

(v2)
2 = 1− 8µB2

x

1− 4µB2
. (3.2.2)

The effective metric approach turns out to be equivalent to a soft photon approx-
imation. Splitting the total electromagnetic field into the background field B⃗ and the
propagating photon fµν ,

fµν = ∂µaν − ∂νaµ = (ϵµkν − ϵνkµ)e
−ikx, (3.2.3)

with the vector potential aµ(k), the polarization ϵµ = aµ/
√
aαaα, the wave vector k

µ =
(ω, 0, 0, k), and being the phase kx = kαxα = −kξ. Keeping the linear approximation
with respect to fµν in the equations of motion leads to an eigenvalue equation for the
propagating modes [73], [42]

Aµνϵν = 0 (3.2.4)

where Aµν is given by

Aµν = c1F
µαF νβkαkβ + c2F

∗µαF ∗νβkαkβ + c3(δ
µνκ2 − kµkν), (3.2.5)

c1 =
1

2
LFF , c2 =

1

2
LGG, c3 =

1

2
LF , (3.2.6)

where κ = kαkα = ω2 − k2, kµ = (ω, 0, 0, k). Eq. (3.2.4) is the light cone condition
and its solutions are the dynamically allowed polarization modes. Moreover, adopting
the temporal gauge ϵ0 = 0, then Eq. (3.2.4) splits into

A0iϵ0 = 0, Aijϵj = 0. (3.2.7)
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CHAPTER 3. LIGHT PROPAGATION IN EULER-HEISENBERG THEORY

For the case under study, the nonvanishing electromagnetic tensor components of
the magnetic background are F xy = −Bz, F xz = By = 0, F yz = −Bx, and their
dual F ∗tx = −Bx, F ∗ty = −By = 0, F ∗tz = −Bz and F = 2B2. Explicitly Eqs.
(3.2.7) become

c2BzBxϵ1 + (c2B
2
z − c3)ϵ3 = 0, (3.2.8)

[c2ω
2B2

x − c3(ω
2 − k2)]ϵ1 + c2ω

2BzBxϵ3 = 0, (3.2.9)

[c1k
2B2

x − c3(ω
2 − k2)]ϵ2 = 0, (3.2.10)

The Eq. A0iϵ0 = 0 turns out to be the same as Eq. (3.2.8). Note that in Eqs.
(3.2.8) and (3.2.9) are coupled ϵ1 and ϵ3; these Eqs. define the parallel polarization
tensor as ϵ∥ = [0, a(ξ)/ka, 0,−γa(ξ)/(ωa)] or ϵ∥ = [0, 1, 0,−γ/v] and determine the
arising electric component γ and a first dispersion relation as

γ =
14µBxBz

1− 4µB2 + 14µB2
z

v1, (3.2.11)(ω
k

)2
(1)

= (v1)
2 = 1− 14µB2

x

1 + 10µB2
. (3.2.12)

The angle δ between the polarization ϵ∥ and the propagating vector k⃗, is

δ = arccot
(γ
v

)
=

14µBxBz

1− 4µB2 + 14µB2
z

. (3.2.13)

While Eq. (3.2.10) does not impose any condition on ϵ2 ̸= 0, then we can set the
transversal polarization mode as ϵ⊥ = (0, 0, 1, 0), and the second dispersion relation is(ω

k

)2
(2)

= (v2)
2 = 1− 8µB2

x

1− 4µB2
, (3.2.14)

where B2 = B2
x + B2

z . Transversal and parallel are defined with respect to the plane

spanned by the magnetic field B and the wave number k⃗, that is the plane XZ. Phase
velocities are in agreement with the ones derived from the effective metrics given by
(2.1.9) and (2.1.10).

As a consequence of the nonlinear interaction wave-background there is a retarding
term in vi that depends on the background field; specifically the retarding term arises
due to the magnetic component that is perpendicular to the propagating direction,
Bx = B⊥, in such a way that if B⊥ = 0, then the velocity is the one in vacuum.

The phase velocities vi, i = 1, 2 of the propagation through the magnetic back-
ground, Eqs. (3.2.12), (3.2.14), are illustrated as a function of the dimensionless µB2

in Fig. 3.2. The truncation we have used to describe the propagation of photons in
an external field is indeed valid for strong magnetic fields that may be as large as 1012
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3.2. EFFECTIVE METRIC AND PHASE VELOCITIES OF LIGHT RAYS

Gauss ( 10−1 Tesla), compared to the critic field Bcr ∼ 109 Tesla, gives us a range of
validity of our variable µB2 ∼ α(B/Bcr)

2, and considering that B/Bcr ∼ 1/100, the
range of validity is µB2 ∈ [0, 10−6). In agreement with this range, the slowing down
of the wave is in the hundreds of thousandths. As shown in Fig. 3.2 it would be very
difficult to distinguish in an experiment if birefringence occurs.

0.00000 2×10-6 4×10-6 6×10-6 8×10-6 0.00001

0.99995

0.99997

0.99999

1

0.00000 2×10-6 4×10-6 6×10-6 8×10-6 0.00001

0.99997

0.99999

1

Figure 3.2: The phase velocities v1, v2 are shown as a function of the (dimensionless) magnetic

background µB2, for four values of (Bx/B)2. As µB2 increases v1,2 diminish. If µB2 = 0 the velocity

is the one in vacuum, vi = c = 1. Note that the slowing effect increases as the transversal magnetic

component Bx does. The velocity is lower for values (Bx

B )2 < 0.5.

If v2 Eq. (3.2.14) is a real number, a lower bound arises for the magnetic field
B, µB2 ≤ 1/4, that in terms of the critical magnetic field Bcr is µB2 ≈ α(B/Bcr)

2,
since (B/Bcr) ≪ 1 that value is never reached in this approximation. If µ = 0, that
means the absence of vacuum polarization, then the light velocity in vacuum, v = c, is
recovered. In Fig. 3.3 it is illustrated the factor γ of the rising wave electric component
in the propagating direction.

0 2.×10-6 6.×10-6 0.00001

0

0.00002

0.00004

Figure 3.3: It is plotted γ, the arising wave electric component in the propagating direction, as a

function of µB2 for different values of B2
z/B

2.
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3.3 The electric uniform background

In an analogous way to the previous subsection, we now consider an electric background.
The propagation of an EM wave through an intense uniform electric field is of interest
[77] since there is the prediction of vacuum electron-positron production that has not
yet been measured, however, it might be feasible in the near future, due to the high
power reached lately by lasers [82], [83].

In this case, the nonvanishing electromagnetic tensor components for the electric
background are F tx = −Ex, F ty = −Ey, F tz = −Ez, and their dual F ∗xy =
Ez, F ∗xz = −Ey = 0, F ∗yz = Ex, and F = −2E2 = −2(E2

x + E2
z ). The result-

ing equations from (3.2.7) have the form of Eqs. (3.2.8), (3.2.9),(3.2.10) interchanging
c1 ↔ c2 and Bi ↔ Ei. Solving them we get the following γ-component and the phase
velocities

γ =
8µExEz

1 + 4µE2 + 8µE2
z

v1, (3.3.1)(ω
k

)2
(1)

= (v1)
2 = 1− 14µE2

x

1 + 4µE2
, (3.3.2)(ω

k

)2
(2)

= (v2)
2 = 1− 8µE2

x

1 + 12µE2
. (3.3.3)

Phase velocities v1 and v2 can be derived as well from Eqs. (2.2.3). v1 and v2 are
shown in Fig. 3.4; the plots are very similar and in the scale considered there is not
much qualitative difference. Analogous observations for the magnetic background apply
to the electric case.
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1

Figure 3.4: The phase velocities vi versus µE
2 are displayed. Velocities approach the ones in vacuum

as µE2 7→ 0. For the electric uniform background, v2 reaches lower values than v2.
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3.4. PHASE VELOCITY IN A FLOWING MAGNETIC BACKGROUND.

3.4 The phase velocity of the electromagnetic wave

in a flowing magnetic background

Another interesting situation is when the background is not still but moving with
constant velocity; it can be considered as a plasma model, for instance. Any effective
metric can be considered as a moving medium, as we show in what follows, as long
as the effective metric is nondiagonal. For the case we have studied this means that
the metric component gefftz be nonvanishing. This we achieve by performing a Lorentz
transformation on the NLED effective metric.

3.4.1 The effective metric as a Painlevé-Lemaitre-Gullstrand

metric

Let us consider a completely general effective metric (nondiagonal); to determine the
phase velocity of the EM wave β = v/c, we calculate the null geodesics of the effective
metric by making zero the line element, ds2 = geffµνdx

µdxν = 0,

ds2

dτ 2
= geffµν

dxµ

dτ

dxν

dτ
= geffµν ẋ

µẋν = 0. (3.4.1)

Considering Cartesian coordinates (t, x, y, z) and a light trajectory for fixed x and
y, (ẋ = 0 = ẏ), we obtain from Eq. (3.4.1) a quadratic equation for the phase velocity
along the z-direction, β = dz/dt = ż/ṫ; then solving for β = v/c we obtain the phase
velocity in terms of the metric components of the effective metric,

β =
dz

dt
= −gefftz

geffzz
±
√
(gefftz )

2 − gefftt g
eff
zz

geffzz
. (3.4.2)

This expression is in agreement with Eq. (2.2.3). The interpretation of the effective
metric as a propagating medium can be seen clearly by writing the effective metric
geffµν in the form of the Painlevé-Lemaitre-Gullstrand (PLG) metric, that in Cartesian

coordinates (t̃, x̃, ỹ, z̃) for x̃ =const ỹ = const, is given by

ds2 = −(c̃2 − V 2)dt̃2 − 2V dz̃dt̃+ dz̃2, (3.4.3)

where V (t̃, z̃) represents the velocity of the propagating medium and c̃(t̃, z̃) the velocity
of the perturbation propagating through such a medium [84]. Taking advantage of the
constant curvature (scalar curvature is zero R = 0) of the effective metric, by making
a scale transformation on the (t, z) coordinates we can write the effective metric Eq.
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CHAPTER 3. LIGHT PROPAGATION IN EULER-HEISENBERG THEORY

(3.4.1) in the PLG form (3.4.3). By re-scaling as

t 7→
√
V 2 − β2

√
gtt

t̃, z 7→ 1
√
gzz

z̃, (3.4.4)

the effective metric in the (t̃, z̃) coordinates acquires the form,

ds̃2 = −
(
β2 − V 2

)
dt̃2 + 2gefftz

√
V 2 − β2

gefftt g
eff
zz

dz̃dt̃+ dz̃2, (3.4.5)

comparing with (3.4.3), we identify the velocity of the perturbation as c̃ = β and we
determine the velocity of the medium V as

V = ± −gefftz β√
(gefftz )

2 − gefftt g
eff
zz

. (3.4.6)

Note that if gefftz = 0 then V = 0, i.e. the medium is static. By performing a Lorentz
boost of velocity βL in the z−direction Λz, on the effective metric, ΛzgeffΛ

T
z = g′eff , we

obtain a nondiagonal metric, that we denote with a prime g′effµν . The effect of the Lorentz
transformation is of mixing the components of the effective metric, in such a way that if
the effective metric is diagonal, the transformed one has nondiagonal components, i.e.
g′efftz does not vanish. The original effective metric (previous to Lorentz transformation)
is recovered when βL = 0. Note as well that the velocity of the medium V is not the
same as the one of the Lorentz transformation βL. The relationship between V and βL

is given implicitly in Eq. (3.4.6), with geffµν 7→ g′effµν .

3.4.2 The magnetic background Lorentz boosted

In this subsection, we show how the phase velocity is affected when a Lorentz boost is
performed on the magnetic background.

Making a Lorentz transformation along the z-direction changes the magnetic back-
ground and an electric component field arises: such that now the nonvanishing electro-
magnetic tensor components of the magnetic background are F ty = −γLβLBx, F xy =
−Bz, F xz = By = 0, F yz = −γLBx, and F = 2B2.

Calculating the phase velocities using the effective metrics in Eqs. (2.1.9) and
(2.1.10), through Eq. (2.2.3) are

vLTz
1 =

−14µγ2
LB

2
xβL ±

√
(1+ 10µB2)(1+ 10µB2 − 14µB2

x)

1+ 10µB2 + 14µγ2
Lβ

2
LB

2
x

, (3.4.7)

vLTz
2 =

−8µγ2
LB

2
xβL ±

√
(1− 4µB2)(1− 4µB2 + 8µB2

x)

1− 4µB2 + 8µβ2
Lγ

2
LB

2
x

(3.4.8)
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3.4. PHASE VELOCITY IN A FLOWING MAGNETIC BACKGROUND.

where we are denoting βL as the velocity of the Lorentz transformation along z
and γ2

L = (1 − β2
L)

−2. Although the factor γL > 1 enhances the retarding term, the
denominator increases as well, in such a way that the effect of retarding does not
increase much with the Lorentz transformation along the z-direction.

Let us now perform a Lorentz boost in the direction perpendicular to the propa-
gation of the wave. By transforming the background with a Lorentz boost in the x-
direction, the magnetic background results as F ty = γLβLBz, F xy = −γLBz, F xz =
By = 0, F yz = −Bx,; in such a way that the phase velocities using the effective
metrics in Eqs. (2.1.9) and (2.1.10), through Eqs. (2.2.3) are

vLTx
1 =

14µγLβLBxBz ±
√

(1 + 10µB2)(1− 4µB2
x +B2

z (−4 + 14γ2
L)µ)

1 + 10µB2 + 14µγ2
Lβ

2
LB

2
z

, (3.4.9)

vLTx
2 =

8µγLβLBxBz ±
√

(1− 4µB2)(1− 8µB2
xγ

2
L + 4B2(−3 + 2γ2

L)µ)

1− 4µB2 + 8µB2
zβ

2
Lγ

2
L

, (3.4.10)

where we are denoting βL as the velocity of the Lorentz transformation along x-direction
and γ2

L = (1− β2
L)

−2.

In Fig. 3.5 are illustrated the velocities for metric 1 in three cases, v1 corresponding
to the metric Eq. (2.1.9) and then the ones with the Lorentz boost along the z and x
directions considering the phase velocities up to O(µ2B4)

vLTz
1 = 1− 14µB2

x

(
1− 1− 3βL

2(1− βL)

)
+O(µ2B4) (3.4.11)

vLTx
1 = 1− 7B2

xµ

(
1− βLγL

Bz

Bx

(
2− βLBzγL

Bx

))
+O(µ2B4) (3.4.12)

The direction of the Lorentz velocity is important: when βL is in the same direction
as the propagation, the braking of the wave is more effective than if βL is perpendic-
ular to the propagation. In the former case, the wave slows down with a magnetic
background less intense than for a still medium.

23



CHAPTER 3. LIGHT PROPAGATION IN EULER-HEISENBERG THEORY
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Figure 3.5: The phase velocities for metric 1 are shown in three cases: v1 for the metric Eq. (2.1.9)

(black) and then the corresponding to the Lorentz boost along the z (grey) and x (blue) directions.

The slowing down is enhanced if the boost is along the propagation direction.

The modeling of a moving medium deserves further study, specifically the precise
relationship between the medium effects and the velocity of the Lorentz transformation.
For the case of the electric background we guess has a similar behavior to the magnetic
one when Lorentz boosted.

3.5 Conclusions

In this chapter, we have analyzed the slowing down of an electromagnetic wave under
the effect of very intense electromagnetic Euler-Heisenberg field background, in the
context of the Euler-Kockel Lagrangian, that effectively takes into account the vacuum
polarization phenomenon. We used the effective metric approach and showed that it
is equivalent to the soft photon approximation. We find there is birefringence in both
backgrounds, electric and magnetic, and the phase velocities of the propagation depend
on its polarization.

The results contained in this chapter have been published in the paper
E. Guzman-Herrera, N. Breton,

“Euler–Heisenberg waves propagating in a magnetic background”
European Physics Journal C 81, 115 (2021).
DOI 10.1140/epjc/s10052-020-08783-1
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Chapter 4

Light propagation in a Born-Infeld

environment

Born and Infeld (1934) [17] presented a theory with nonlinear corrections to Maxwell
electrodynamics from a classical perspective. The BI Lagrangian is given by

LBI(F,G) = b2

{
1−

√
1 +

F

2b2
− G2

16b4

}
, (4.0.1)

where b isthe maximum attainable electromagnétic field. The linear electromagnetic
Maxwell theory is recovered in the limit that b 7→ ∞, then LMaxwell(F ) = −F/4.

We examine the propagation of an electromagnetic wave in the BI-NLED back-
ground as seen by an accelerated observer. This setup is of interest because according
to the Einstein Equivalence Principle, uniformly accelerated frame is equivalent to a
gravitational field, and we are always under the influence of such a gravitational en-
vironment. A light ray moving in such an accelerated frame will modify its velocity
and pulses will be redshifted similarly to the gravitational redshift. We determine the
phase velocity of light showing the interplay of the magnetic (or electric) background
and the acceleration of the frame. In the limit of zero acceleration, we recover the wave
propagating in the BI background, and in the absence of the BI field, we recover the
Rindler propagation and the corresponding frequency shifts.
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CHAPTER 4. LIGHT PROPAGATION IN A BORN-INFELD ENVIRONMENT

4.1 Effective optical metric and phase velocity of

light in a Born-Infeld background

Recalling the equation for the effective optical metrics 2.1.8, using the BI Lagrangian,
the two metrics in Eqs. (2.1.9)-(2.1.10) become conformal g

(1)µν
eff = Ξ2g

(2)µν
eff , with the

conformal factor Ξ2 being a function of the coordinates, reflecting the nonexistence of
birefringence in the BI nonlinear theory. Moreover, a conformal factor does not alter
null geodesics, therefore, in what follows we shall omit the superscript (i), i = 1, 2;
then in the BI case, the effective optical metric is given by

gµνeff =

(
b2 +

F

2

)
ηµν + F µ

λF
λν , (4.1.1)

where the EM invariant F = 2(B2 −E2). Since our goal is to study the propagation of
light as seen by an accelerated observer, for completeness, we introduce the accelerated
frame or Rindler spacetime and some of its relevant features in the next section, it is
worth remarking that Rindler frame is noninertial, i. e. it is not subject to special
relativity rules.

4.2 The accelerated frame or the Rindler space-

time.

We are interested in the characteristics of BI electromagnetic fields as seen by observers
in a uniform gravitational field. According to the Einstein Equivalence Principle (EEP),
a gravitational field can be (locally) modeled by an accelerated frame. An example of
a “fake” gravity or accelerated frame is the Rindler space, which we briefly address in
this section.

Let us consider an accelerated observer with constant acceleration a =
√
aµaµ in

ẑ direction and proper time τ . The Minkowski coordinates (t, z) are related to the
accelerated observer by

t =
1

a
Sh(aτ); z =

1

a
Ch(aτ), (4.2.1)

where we denote cosh(x) = Ch(x) and sinh(x) = Sh(x). The line element in Minkowski
coordinates is related to the Rindler space in coordinates (T, Z, x, y), by [85]:

ds2 = dt2 − dx2 − dy2 − dz2 = (1 + aZ)2dT 2 − dZ2 − dx2 − dy2. (4.2.2)
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4.2. THE ACCELERATED FRAME OR THE RINDLER SPACETIME.

From this expression, we see that the coordinate transformation does not cover the
entire Minkowski spacetime. At Z = −1

a
the metric becomes degenerate, and therefore

the range of the coordinates must be Z ∈ (−1
a
,∞), T ∈ (−∞,∞). These coordinates

cover only a part of the Minkowski spacetime, denoted as Region I in Figure 4.1, with
the different regions separated by event horizons located at z = ±t.

Eqs. (4.2.1) represent a hyperbolic curve in Minkowski spacetime, with the semi-
major axis at 1/a,

z2 − t2 =
1

a2
. (4.2.3)

The trajectory of the accelerated observer in the Minkowski space is a hyperbola as
shown in Figure 4.1. It starts at z → ∞, then slows down as it approaches the origin,
returns at a finite distance from the origin, and speeds up as it approaches z → ∞
[86]. Light rays are shown traveling along 45o null lines. The observer in quadrant I
can “send signals” towards the upper quadrant II, as represented by the cone A, but
cannot receive signals from the upper quadrant II. The observer in the Rindler frame
cannot access any signal beyond the horizon, located at z = ±t, but can receive signals
from the inferior quadrant IV, as illustrated with the light cone D; however, A cannot
send signals towards D or C [85], [87].

Figure 4.1: The dashed diagonal lines represent the null planes at z = ±t (horizons). An accelerated

observer in Region I follows the hyperbola. They can receive information from regions I and IV and

can send signals to regions I and II. Region III is space-like with respect to the whole Region I, and in

particular to the worldline of the observer.

To determine what the accelerated observer sees, we need to carry out a coordinate
transformation from the Minkowski frame, which can also be called the Lab frame, to
the accelerated frame. In the accelerated frame we will describe the phenomena from
the point of view of a privileged observer at Z = 0 with proper time τ = T , but
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CHAPTER 4. LIGHT PROPAGATION IN A BORN-INFELD ENVIRONMENT

the general transformation from Minkowski to a Rindler observer located at Zi with
acceleration ai is given by [88], [89],

ti = (
1

ai
+ Zi)Sh(aiTi); zi = (

1

ai
+ Zi)Ch(aiTi). (4.2.4)

Note that taking Z = 0 and T = τ results in Eqs. (4.2.1). Other Rindler observers
(other hyperbolas) have different accelerations ai, and different zi ( Lab coordinates).
In the Rindler frame, they have different Zi, but they all have the same velocity at the
points that their world lines intersect a line of simultaneity, as shown in Figure 4.2. The
proper position of each observer is Zi = 0 and {t = Sh(aiT )/ai,Ch(aiT )/ai}, resulting
in each observer having a different proper acceleration in the Lab frame. Then referring
to the Rindler space as a “Uniformly accelerated reference frame” does not imply that
all the observers have the same acceleration; in the Lab frame, these observers do not
form a rigid lattice, as they do in the Rindler frame.

To define simultaneity, we consider that for each uniformly accelerated frame, there
is a momentarily co-moving inertial frame so that, along the line of simultaneity, both
frames have the 4-velocity parallel to each other, and they measure each other at rest,
then it is said that they form a rigid lattice of observers and all of them agree on
simultaneity, [88]. In Rindler spacetime, the lines that define the simultaneity are
T = n, where n is an arbitrary constant (shown in Figure 4.2), and correspond to
t = zTh(an) in Minkowski spacetime.

Let τA be the proper time of the principal observer, which dictates what is measured
by the other observer’s clocks. When τA = 0 all the observers coincide with the z axis:
T = 0, t = 0. Let us distinguish the proper time τ and the coordinate time T . The
Rindler line element is given by

ds2 = gTTdT
2 + gijdx

idxj, i, j = {X, Y, Z} (4.2.5)

The differential proper time dτ and the spatial line element,dl2 = gijdx
idxj, are

such that dl2 = −dτ 2 |dT=0 and the velocity of a Rindler observer is

v2 =
−gijdx

idxj

dT 2
, (4.2.6)

where v2 is non-negative since we are taking the Minkowski metric, this is, ηµν =
diag(+1,−1,−1,−1).

For the null trajectories, dτ 2 = 0,

dτ 2 = gTTdT
2 + gijdx

idxj = 0, (4.2.7)

and the phase velocity of a light ray traveling in the z-direction in the Rindler frame is

vph =
dZ

dT
=

√
−gTT

gZZ

= (1 + aZ). (4.2.8)
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Figure 4.2: The worldlines of two observers A and B in the Minkowski spacetime are shown as the

gray and black thick lines in the figure to the left. The dotted lines represent the lines of simultaneity

in the Rindler frame. To the left are illustrated the observers in the Minkowski spacetime (z, t), and

to the right are the trajectories in the Rindler frame (Z, T ). We are considering A as the principal

observer, whose trajectory is a vertical straight line (fixed Z); the dot at {Z = − 1
a , T = 0} is the Lab

frame; the observer B is represented by the black thick line; the gray dashed curve corresponds to a

third Rindler observer, located between Z = 0 and Z = 1/aA.

If we interpret dτ/dT as the rate of flow of time [88] in the Rindler space, then the
speed of light equals the rate of flow of time. The velocity now depends on the position
of the observer; it is zero at the horizon Z = − 1

a
and when Z = 0 the velocity is the one

in vacuum, c = 1. The position Z = 0 corresponds to the ”principal observer”. From
Eq. (4.2.8) we see that an observer at Z > 0 measures a light velocity greater than
c = 1. This result is explained using the global line of simultaneity that is rotating in the
Lab frame, like a radar. When it intersects the worldlines it moves faster for an observer
at higher z (Lab frame) than for an observer closer to the origin. The interpretation is
that time flows faster for higher z because the proper time of the observers at greater
z is aging faster than for observers closer to the origin. Light therefore covers more
distance per unit of time as z increases. However, each accelerated observer measures a
local speed of light being c = 1, therefore any of them could be chosen as the ”master”
or ”principal” observer.

We can visualize the trajectory of light in Rindler spacetime integrating (4.2.8).

Z =
1

a
[−1 + (1 + aZ0) exp a (T − T0)] . (4.2.9)

Then, the measurement of light velocity must be done locally, i.e. at Z = 0, the position
of the ”master” observer.
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In the following two sections, 4.3 and 4.4, we address the propagation of light in
purely magnetic and purely electric BI backgrounds, respectively, as seen in the Rindler
frame.

4.3 Light propagating through a Born-Infeld mag-

netic background in the Rindler space.

In this section, we determine the phase velocity of light rays propagating in a purely
magnetic BI background as seen by an accelerated observer. According to the Einstein
Equivalence Principle (EEP), an accelerated frame is equivalent to a uniform gravi-
tational field; therefore, our treatment describes the propagation of light under the
influence of a very intense BI electric or magnetic background, as seen by an observer
in a uniform gravitational field.

Light trajectories through an intense magnetic field are the null geodesics of the
effective optical metric gµνeff , Eq. (4.1.1). We begin with the effective optical metric
corresponding to a BI uniform magnetic field B and then transform it into the Rindler
accelerated frame.

Considering that the nonvanishing electromagnetic tensor components of the mag-
netic background are F xy = −Bz, F xz = By, F yz = −Bx, and F = 2B2, the
effective metric gµνeff is given by

gµνeff =


b2 +B2 0 0 0

0 −b2 −B2
x −BxBy −BxBz

0 −BxBy −b2 −B2
y −ByBz

0 −BxBz −ByBz −b2 −B2
z

 . (4.3.1)

We will consider the uniform magnetic background, with no loss of generality, in the
XZ plane as B⃗ = Bxx̂+Bz ẑ = B sin θx̂+B cos θẑ. From Eq. (2.2.3), the phase velocity
vph of light propagating through a BI magnetic background, along the ẑ-direction, with
wave frequency ω and wave number kz = k, is

v2ph = 1− B2
x

b2 +B2
, (4.3.2)

where B2 = B2
x + B2

z . Then the effect of the BI magnetic background is slowing down
the phase velocity unless the magnetic component transversal to the propagating light
is zero, in which case the phase velocity is the one in vacuum. This case was studied
in [44].

To determine the phase velocity measured by a Rindler observer, the effective optical
metric Eq. (4.3.1) is transformed to the Rindler frame. The transformation matrix to
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transform to a Rindler frame with acceleration a⃗ = aẑ is given by

Rµ
α =

∂xµ

∂Xα
=


(1 + aZ)Ch(aT ) 0 0 Sh(aT )

0 1 0 0
0 0 1 0

(1 + aZ)Sh(aT ) 0 0 Ch(aT )

 . (4.3.3)

The transformed effective optical metric, obtained from gµνeff,R = Rµ
αg

αβ
eff R

ν
β, is

gµνeff,R =



b2+B2
z+B2

⊥Ch2(aT )

(aZ+1)2
BxBzSh(aT )

aZ+1
ByBzSh(aT )

aZ+1 − (B2
⊥Sh(2aT )

2(1+aZ)

BxBzSh(aT )
aZ+1 −

(
b2 +B2

x

)
−BxBy −BxBzCh(aT )

ByBzSh(aT )
aZ+1 −BxBy −

(
b2 +B2

y

)
−ByBzCh(aT )

− (B2
⊥Sh(2aT )

2(1+aZ) −BxBzCh(aT ) −ByBzCh(aT ) B2
⊥Sh

2(aT )− b2 −B2
z

 ,

(4.3.4)

where the superscript ”R” denotes the effective optical metric gµνeff in the Rindler frame and

B2
⊥ = B2

x+B
2
y . In the case of a = 0, the effective optical metric Eq. (4.3.1) is recovered. As a

consequence of the transformation to the magnetic background, electric components arise in a

similar way to when a Lorentz boost is performed. The nonvanishing electromagnetic tensor

components are now F tx
R =

BySh(aT )
1+aZ , F ty

R = −BxSh(aT )
1+aZ , F xz

R = ByCh(aT ), F
yz
R = −BxCh(aT ),

F xy
R = −Bz. The invariants are preserved, so F = 2B2, G = 0.

The corresponding covariant effective optical metric is

geff,Rµν =


(aZ + 1)

[
b2 −B2

⊥Sh
2(aT )

]
BxBzSh(aT ) ByBzSh(aT ) −1

2B
2
⊥Sh(2aT )

BxBzSh(aT ) − b2+B2
y+B2

z

aZ+1
BxBy

aZ+1
BxBzCh(aT )

aZ+1

ByBzSh(aT )
BxBy

aZ+1 − b2+B2
x+B2

z
aZ+1

ByBzCh(aT )
aZ+1

−1
2B

2
⊥Sh(2aT )

BxBzCh(aT )
aZ+1

ByBzCh(aT )
aZ+1 −B2

⊥Ch2(aT )+b2

aZ+1

 .

(4.3.5)

For an EM wave in the i−direction with wave number κµR = (ωR, k
i
R), the phase velocity

is given by Eq. (2.2.3), and the acceleration of the Rindler frame is a⃗ = aẑ. We consider

successively three different propagating directions of the wave: +ẑ, −ẑ and +x̂; the setting is

shown in Figure 4.3. We analyze the corresponding phase velocities in the next subsections.
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Figure 4.3: Scheme showing the relative directions: the proper acceleration of the Rindler frame is

a⃗ = aẑ; the wavy lines indicate two propagating waves, one (thick) traveling in the ẑ-direction and

another (dotted) in the x̂-direction. The magnetic field makes an angle θ with the acceleration of the

Rindler frame.

4.3.1 Magnetic Born-Infeld background. Light propagating in

the ±ẑ direction

For a wave traveling in the ±ẑ direction: κµ = (ω, 0, 0,∓k) the phase velocity, from Eq.

(2.2.3), is given by

vR±ẑ
ph

1 + aZ
=
ω

k
=

∓B2
xSh(aT )Ch(aT ) +

√
(b2 +B2) (b2 +B2

z )(
b2 +B2 +B2

xSh
2(aT )

) , (4.3.6)

where the ∓ sign corresponds to the waves propagating in +ẑ and in −ẑ directions, respec-

tively, and B2 = B2
x +B2

z . From this expression we can see that vRph depends on aT and aZ,

i.e., the effect of increasing time is equivalent to increasing the acceleration of the frame, re-

calling that the Rindler observer will remain at a fixed Z. In addition, the acceleration affects

the phase velocity only if there is a magnetic component that is transversal to the acceleration

(in this case Bx). In the limit, a 7→ 0, the expression for velocity in a BI magnetic field, Eq.

(4.3.2), is recovered. Note that the only difference between the wave propagating along +ẑ

and −ẑ is the sign in the first term in Eq. (4.3.6), which indicates that the Rindler frame

distinguishes the travel direction of light. Moreover, it implies that the phase velocity for the
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wave along −ẑ will be greater than for the one traveling in the opposite direction.

Expanding vRph, Eq. (4.3.6), in powers of B2/b2 and keeping terms of order O(1/b2), i.e.,

neglecting terms of order O(1/b4) and higher, we arrive at

vR±ẑ
ph

1 + aZ
= 1− B2

x

2b2
{1 + 2Sh(aT ) [Sh(aT )± Ch(aT )]}+O(1/b4). (4.3.7)

This approximation is still valid for very strong fields. If we consider, for instance, that

B2/b2 ≈ 10−2, then the BI field B can be of the order 1010Tesla, that is ten times the

critical Schwinger field Bcr ≈ 109 Tesla. In the limit, a 7→ 0, the expression for the pure

BI magnetic field Eq. (4.3.2) is recovered, up to terms in O(1/b2). Notice that even if

B 7→ b, the phase velocity reaches a minimum of half the velocity of light in vacuum. The

linear limit (vanishing BI field) is obtained with b 7→ ∞ and then (vRph)
2 = (1 + aZ)2 is

recovered. In Eq. (4.3.7), the term that depends on aT increases monotonically for the wave

traveling in +ẑ as Sh(aT ) [Sh(aT ) + Ch(aT )], while for the wave traveling in −ẑ, the term,

Sh(aT ) [Sh(aT )− Ch(aT )], decreases monotonically up to −1/2. The effect of the accelerating

frame in one case (+ẑ) is of slowing down the wave and in the other (−ẑ) is of increasing the

phase velocity. In the latter case, the Rindler effect is opposite to the BI effect. Therefore,

for a Rindler observer accelerated in +ẑ direction the phase velocity of the wave propagating

in the +ẑ direction is smaller than that of the wave along −ẑ. Intuitively, this corresponds

to traveling in the same direction of the wave in the first case, and in the opposite direction

in the second case. This effect is superposed with the BI slowing down of the wave and the

result is illustrated in Figures 4.4 and 4.5. As the intensity of the background field increases

the light velocity diminishes, and by turning off the BI background field the light velocity in

vacuum is recovered. Contrary to what happens for the wave propagating in +ẑ direction, for

the wave propagating in −ẑ direction the pace of slowing down decreases as aT increases. In

the limit of long times or large acceleration, aT 7→ ∞, the BI effect of slowing down is lost,

and the Rindler phase velocity (vRph)
2 = (1 + aZ)2 is recovered.
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Figure 4.4: The plots for the squared phase velocity of a light ray propagating in z direction through

a BI magnetic background as seen by an observer with acceleration a in the ẑ direction. The plots are

for different values of aT ; as aT increases, the velocity slows down more rapidly. The intensities of the

perpendicular magnetic components vary as shown and B2 = B2
x +B2

z .
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Figure 4.5: Phase velocities for a wave moving in the −ẑ direction for different values of aT ; vph is

smaller as the magnetic field increases. As aT increases, the velocity slows down at a slower pace. The

intensities of the perpendicular magnetic components vary as shown and B2 = B2
x +B2

z .

4.3.2 Magnetic Born-Infeld background. Light propagating in

the +x̂ direction

For a wave moving in the x̂ direction with wave number κRµ = (ωR,−kR, 0, 0), the magnetic

background component along x̂, Bx, is parallel to the propagating ray and perpendicular to

the Rindler acceleration, while Bz is perpendicular to the light direction. The phase velocity,
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4.3. LIGHT IN A BI MAGNETIC BACKGROUND IN RINDLER SPACE

from Eq. (2.2.3), is given by

vRx̂
ph

(1 + aZ)
=
BxBzSh(aT ) +

√
(b2 +B2)

(
b2 +B2

xCh
2(aT )

)
b2 +B2 +B2

xSh
2(aT )

. (4.3.8)

In this case, the effect of turning off the Bx component eliminates the terms depending on

aT , since only the transversal (to the acceleration frame) magnetic field affects the velocity

of propagation. Making a = 0 we obtain

vRx̂
ph =

√
1− B2

z

b2 +B2
, (4.3.9)

that corresponds to the pure BI effect of slowing down vph. Expanding v
Rx̂
ph in powers of B2/b2

and keeping terms of order O(1/b2), i.e., neglecting terms of order O(1/b4) and higher, we

arrive at
vRx̂
ph

(1 + aZ)
= 1− 1

2b2
[Bz −BxSh(aT )]

2 +O(1/b4). (4.3.10)

In the linear limit, b 7→ ∞, we recover the Rindler velocity, (vRx̂
ph )

2 = (1 + aZ)2. In this case,

the acceleration of the frame gives an effect opposite to the BI slowing down but only in a

certain range of (aT ). The minimum value of (4.3.10) occurs for

aT = ArcSinh
Bz

Bx
. (4.3.11)

For aT larger than the one of the minimum, aT > ArcSh(Bz
Bx

), vRx̂
ph decreases such that

in the limit of large aT , vRx̂
ph approaches zero. Making zero the component parallel to the

acceleration, (Bz = 0), the phase velocity becomes

vRx̂
ph

(1 + aZ)
= 1− B2

x

2b2
Sh2(aT ); (4.3.12)

while if the magnetic component that is perpendicular to the acceleration vanishes (Bx = 0),

vRx̂
ph

(1 + aZ)
= 1− B2

z

2b2
. (4.3.13)

Then if we aimed to diminish the phase velocity by the maximum amount, the most effective

way would be to turn off the component along the Rindler acceleration, Bz = 0, since Sh(aT) ≥

0, ∀aT. Figure 4.6 shows the phase velocity of the wave traveling in x̂ direction for different

values of aT .
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Figure 4.6: Phase velocities for the wave moving in the x̂ direction, for different values of aT . In

the plot to the left, for aT = 0.5, as Bx increases the phase velocity tends to the velocity of light in

vacuum. To the right, for aT = 1, even for large field components, (Bx/B)2 = 0.9 the phase velocity

does not approach the one in vacuum.

In Figure 4.7 we compare the phase velocities for the three different directions of light

rays. For all three directions of the light ray, vRph decreases as B increases for a fixed (aT ). The

smallest velocity occurs for the wave moving in the +ẑ direction. Figure 4.8 shows the phase

0.00 0.05 0.10 0.15 0.20

0.85

0.90

0.95

1.00

Figure 4.7: The phase velocities for the three directions of propagation of the light wave in the

Rindler frame are shown. The Rindler acceleration is aẑ. For all three directions vRph decreases as B/b

increases and aT = 0.3. The smallest velocity is for the wave moving in the +ẑ direction. In this plot,

the parallel and the transversal magnetic field components have the same intensity Bx = Bz = B/
√
2.

velocities of the light rays propagating along the three considered directions as a function of
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aT , for fixed (B/b)2 = 0.2. The parallel and transversal magnetic field components have the

same intensities Bx = Bz = B/
√
2.

The increasing or decreasing phase velocity depends on the values of aT . For smaller

values of aT , the velocity is smaller for the wave moving along +ẑ and closer to c = 1 for the

waves traveling in the −ẑ and +x̂ directions. For values of aT > 2, vRph is smaller for the wave

moving along +x̂ and approaches c = 1 for the waves traveling in the ±ẑ directions. As aT

increases the BI effect of slowing down the phase velocity is canceled for the waves traveling in

the ±ẑ directions. Recall that these are the velocities as measured by the accelerated observer.

This observer moves with respect to the light ray, first towards it, then reaching it and moving

away. This does not violate any relativity principle since the Rindler frame is not inertial. The

trajectories of light rays in ±ẑ directions are shown in Figure 4.9. From the previous analysis,
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Figure 4.8: The squared modulus of phase velocities as a function of aT , in Eq. (4.3.10) are shown,

for a fixed magnetic background, (B/b)2 = 0.2. The magnetic field components are Bz = Bx = B/
√
2.

The black thick line represents the phase velocity of the light ray in the presence of the BI magnetic

background when aT = 0, this is, the phase velocity (vRph)
2 = 1 − B2

x/2b
2. For the waves moving in

the +ẑ and +x̂ directions, vRph decreases up to a minimum and then increases reaching the velocity

in vacuum. This corresponds to the Rindler observer’s view, which initially is behind the light ray,

reaches it, and then moves away from it. Since the accelerated frame is no longer inertial, there is no

conflict with surpassing the light velocity in vacuum. Light in the −ẑ direction reaches c = 1 increasing

monotonically.

we can summarize the behavior of the phase velocity of a light ray propagating through the BI
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magnetic field as seen by an observer with acceleration a⃗ = aẑ: the phase velocity depends on

aT such that the effect of increasing the acceleration is the same as that of time elapsing. For

waves moving in the +ẑ and +x̂ directions, vRph decreases to a minimum and then increases

to reach the velocity in vacuum, while for light in the −ẑ direction it reaches c = 1 departing

from the Rindler vRph and increasing monotonically. The change in direction of light can be

understood by thinking of the relative motion of the accelerated observer, which is initially

behind the light ray, then reaches it when the accelerated observer measures vRph = 0 and

finally moves away from the light ray (the accelerated observer sees that the light ray changes

direction). If the magnetic field is in the same direction as the Rindler acceleration, then

there is no effect on the phase velocity. For a fixed BI magnetic field, the smallest velocity is

reached faster for the wave moving in the +ẑ direction. Figures 4.7 and 4.8 illustrate these

behaviors. The question of whether the values of the BI field are reachable in experiments

-1 1 2 3 4 5

-2

2

4

6

Figure 4.9: The trajectories in the Rindler space followed by the ±z waves are shown. The dashed

lines represent the trajectories for the waves when there is no BI effect, and the thick lines are the

trajectories of the waves in the presence of a magnetic background with Bx = Bz = B/
√
2 and

(B/b)2 = 0.2.

is discussed in [45]. It is not clear whether it would be possible to build such an accelerated

frame, or if it would be possible to maintain the acceleration for long enough to observe the

predicted changes in the phase velocities.
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4.4 Light propagating through a Born-Infeld elec-

tric background in the Rindler space.

The propagation of an EM wave through an intense uniform electric field is of interest since

the production of vacuum electron-positron pairs is predicted in [77]. This has not yet been

measured, however, it may be feasible in the near future, due to the high power reached

recently by lasers [82], [83]. Considering that the nonvanishing electromagnetic tensor com-

ponents of a purely uniform electric background are F xt = Ex, F
yt = Ey, F

zt = Ez, and the

electromagnetic invariants G = 0 and F = −2E2 (B = 0), the expression for the effective

optical metric from Eq. (4.1.1) is

gµνeff =


b2 0 0 0

0 −b2 + E2
y + E2

z −ExEy −ExEz

0 −ExEy −b2 + E2
x + E2

z −EyEz

0 −ExEz −EyEz −b2 + E2
⊥

 . (4.4.1)

From Eq. (2.2.3) the phase velocity of light propagating in ẑ direction through a uniform BI

electric is determined as

v2ph = 1−
E2

⊥
b2

(4.4.2)

with E2
⊥ = E2

x + E2
y , being the electric field component perpendicular to the acceleration

direction ẑ. Note that in the absence of the perpendicular component, the phase velocity

is that in vacuum. This expression was also derived in [44]. According to Eq. (4.4.2) in

principle, the wave could reach zero velocity; however, taking the average in polarization and

the electric field components, the minimum accessible phase velocity is < vph >= 1/3 [49].

Transforming the effective metric for the electric BI background to the Rindler frame with

(4.3.3), we obtain

gµνeff,R =



E2
⊥Sh2(aT )+b2

(aZ+1)2
ExEzSh(aT )

aZ+1
EyEzSh(aT )

aZ+1 −E2
⊥Sh(aT )Ch(aT )

aZ+1

ExEzSh(aT )
aZ+1 −b2 + E2

y + E2
z −ExEy −ExEzCh(aT )

EyEzSh(aT )
aZ+1 −ExEy −b2 + E2

x + E2
z −EyEzCh(aT )

−E2
⊥Sh(aT )Ch(aT )

aZ+1 −ExEzCh(aT ) −EyEzCh(aT ) E2
⊥Ch

2(aT )− b2

 .

(4.4.3)
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As previously, we consider that the frame acceleration is a⃗ = aẑ and that, with no loss of

generality, the uniform BI field is located in the XZ plane, E⃗ = Exx̂ + Ez ẑ. The phase

velocity of the wave moving in the ±ẑ and +x̂ directions is then obtained from Eq. (2.2.3)

and analyzed in the next two subsections.

4.4.1 Electric Born-Infeld background. Light propagating in

the ±ẑ direction

For the wave moving in the ±ẑ direction, and considering the position of the principal observer

at Z = 0, the phase velocity resulting from Eq. (2.2.3) is given by

vR±ẑ
ph =

∓E2
xSh(aT )Ch(aT ) +

√
b2 (b2 − E2

x)

b2 + E2
xSh

2(aT )
, (4.4.4)

The term under the square root sign is used to recover the phase velocity in the absence

of acceleration. The difference in the phase velocity between the wave propagating in +ẑ

direction and the one along −ẑ is then only the sign in the first term. The consequence of

this difference is that the magnitude of the phase velocity for the wave in the +ẑ direction

is smaller than the one traveling in the opposite direction. There are several features shared

with the magnetic case: vRph depends on aT and aZ, i.e., the effect of increasing time T or

spatial coordinate Z is equivalent to increasing the acceleration of the frame. In addition, the

acceleration affects the phase velocity only if there is an electric component that is transversal

to the acceleration (in this case Ex); i.e., the acceleration of the frame is affected only by the

electric component that is transversal to a⃗ = aẑ. Expanding vRph in powers of E2/b2 and

keeping terms of order O(1/b2), i.e., neglecting terms of order O(1/b4) and higher, we arrive

at

vR±ẑ
ph = 1− E2

x

2b2
{1 + 2Sh(aT ) [Sh(aT )± Ch(aT )]} . (4.4.5)

Comparing the previous equation with the corresponding equation for the magnetic BI back-

ground, Eq. (4.3.7), we notice that the expression is the same apart from changing the

magnetic to the electric component, Bx 7→ Ex. This means that the application of a magnetic

uniform background produces the same effect as the application of an electric background, as
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long as the transversal magnetic and electric components have the same magnitude. Conse-

quently, the limiting cases are very similar to the ones for the magnetic background: in the

limit a 7→ 0, the expression for the pure BI electric field Eq. (4.4.2) is recovered. The linear

limit (no BI field) is obtained with b 7→ ∞ and then v2RT = 1 is recovered (Z = 0). In the

limit of long times or large acceleration (aT 7→ ∞) the BI effect of slowing down the phase

velocity is lost, and the Rindler phase velocity v2RT = (1 + aZ)2 is recovered. In this case, we

omit the figures for vRph for the wave propagating along ±ẑ to avoid redundancy.

4.4.2 Electric Born-Infeld background. Light propagating in

the +x̂ direction

For the wave moving in the +x̂ direction, the phase velocity is

vRx̂
ph =

ExEzSh(aT ) +
√
b2
(
E2

xSh
2(aT ) + b2 − E2

z

)
E2

xSh
2(aT ) + b2

. (4.4.6)

Recall that Ex is perpendicular with respect to the acceleration of the Rindler frame, a⃗ =

+aẑ. In this case, both components of the BI electric field, parallel and perpendicular to the

acceleration, play a role. In the case that Ex = 0 there is no effect of the acceleration of the

frame, and the wave slows down due to the pure BI effect,

vRx̂
ph =

√
1− E2

z

b2
≈ 1− E2

z

2b2
. (4.4.7)

Note that even if Ez = b, the light velocity does not vanish but there is a lower bound of

vRx̂
phmin = 1/2. Expanding vRx̂

ph in powers of E2/b2 and keeping terms of order O(1/b2), i.e.,

neglecting terms of order O(1/b4) and higher, we arrive at

vRx̂
ph = 1− 1

2b2
[Ez − ExSh(aT )]

2 . (4.4.8)

Note that this is the same expression as Eq. (4.3.10) with Bi → Ei. Then, as in the

±ẑ directions, the limiting cases are very similar to those for the magnetic background at

orders B2/b2, or E2/b2. Since the behaviours are the same than in the magnetic case, we

omit the figures for the wave propagating along x̂ and the comparison between the considered

directions.
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For the light propagating along +ẑ direction, vRph diminishes monotonically in an interval

of (aT ) until it reaches a minimum that is arbitrarily close to zero. For (aT ) larger than a

certain aTc given by

aTc =
1

2
ArcSh

(
2

√
b2 − E2

x

E4
x

)
, (4.4.9)

vRph changes its propagation direction and increases up to the light velocity in vacuum. For

the wave in the +x̂ direction, the behavior is qualitatively similar to that for the wave along

+ẑ. As aT increases, the wave slows down monotonically until reaching a minimum that is

arbitrarily close to zero, then increases till reaching vRph = 1; the slowing down is maximized

for Ez = 0. For the wave moving in the −ẑ direction, as aT increases the phase velocity

reaches its value in vacuum. Recall that these velocities are measured by the accelerated

observer, and the relative directions change as aT increases. Initially, the observer chases

the light ray, and as it approaches the wave, the velocity of the wave seems to decrease and

eventually reaches zero (the moment the observer reaches the wave). The relative direction

then changes and subsequently, the observer moves away from the wave, and the velocity of

the wave starts to increase. The plot shows the modulus squared of the phase velocity. Since

the accelerated frame is no longer inertial, no Lorentz invariance is expected.

If the electric field component that is perpendicular to the acceleration vanishes, then

there is no effect neither of the acceleration nor the BI field on the phase velocity, and its

value is the one in vacuum.

4.4.3 The phase velocities for strong fields

The series expansion of the phase velocities up to terms of order B2/b2 or E2/b2 gives the same

behavior for BI magnetic and electric backgrounds. However, it is worth (briefly) discussing

the behavior of the phase velocities considering the exact expressions, Eqs. (4.4.4) and (4.4.6).

For strong fields, i.e., when the fields approach the maximum attainable electromagnetic field,

differences arise and the electric and the magnetic backgrounds can be distinguished.

Figure 4.10 plots the exact expressions for the phase velocities, Eqs. (4.4.4) and (4.4.6),

for waves moving in the ±ẑ and x̂ directions.
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In (a), for waves moving in the ±ẑ direction, the lowest phase velocity is reached by the

wave in an electric background. The wave moving in the ẑ direction reaches lower values in

both background fields. The behavior of the wave moving in the x̂ direction is similar to the

one in −ẑ but it reaches slightly higher values in both background fields.

Note in Figure 4.10 that for the range B2

b2
< 0.2 or E2

b2
< 0.2 it is not possible to distinguish

between the magnetic and electric background.
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Figure 4.10: The exact expressions, Eqs. (4.4.4) and (4.4.6), are shown for fixed aT . The black

curve is for a BI magnetic background and the gray curve corresponds to a BI electric background.

The upper plots correspond to waves moving in the ±ẑ directions, and the bottom to movement in

the x̂ direction. We consider that the components of the background fields have the same intensities,

Bx = Bz, and Ex = Ez.
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For completeness, in Figure 4.11 we compare the behavior of the phase velocities as a

function of aT for fixed electric and magnetic BI background. Comparing (a) and (b), note

that the behavior is similar for both background fields. For waves moving in the ±ẑ directions,

as aT is higher the phase velocity tends to the velocity of light in vacuum. The phase velocity

tends to zero as aT increases for the wave moving in x̂ direction.
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Figure 4.11: The exact expressions, Eqs. (4.4.4) and (4.4.6), are shown as a function of aT , for a

fixed BI background. The components of the background fields are of the same magnitude, Bx = Bz,

Ex = Ez, and B2/b2 = 0.2, E2/b2 = 0.2; the behavior of the phase velocity is similar in both

backgrounds.
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4.5 The redshift of light pulses propagating through

a Born-Infeld background in the Rindler frame

Gravitational redshift is the increment of the wavelength of electromagnetic radiation due to

the presence of a gravitational field. According to the Einstein Equivalence Principle (EEP),

an accelerated frame is equivalent to a gravitational field, and it is therefore expected that

light pulses sent from one accelerated object to another will modify their frequency, resembling

what happens in the presence of a gravitational field. This is indeed what happens, see [88],

[90], [91], [92].

In this section, we determine how the redshift due to the acceleration of the frame is

affected by the addition of a BI magnetic background.

The redshift, denoted as zR, can be written in terms of the intervals in the proper time

of emission ∆τe and reception ∆τr of two light rays with wavelength λ and frequency f as:

zR + 1 =
λr
λe

=
fe
fr

=
∆τr
∆τe

> 1 (4.5.1)

where the subscripts e and r refer to the emitter and receiver, respectively. Therefore, to

determine the redshift in the Rindler frame we first need to calculate the proper time intervals

elapsed between sending the first signal and the second one, ∆τe and the interval elapsed

between the reception of the two pulses, ∆τr, as measured by the receiver. These intervals

will be different if a redshift occurs. In Figure 4.12 are illustrated the time intervals for

two accelerated objects A and B. Figure 4.13 shows the intervals in the world lines of the

accelerated objects in the presence of a BI magnetic background.

When A sends a light pulse, the light trajectory goes from the event of emission A1 to

the reception B1. When B receives the signal, its velocity with respect to the Lab frame is

higher than the velocity of A at the moment of emission. An analogous situation exists for

the second signal, in such a way that the proper time intervals of reception and emission,

respectively, are given by,

∆τr = τB2 − τB1, ∆τe = τA2 − τA1. (4.5.2)
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Figure 4.12: This diagram shows, in the Lab frame coordinates (z, t), the world lines (hyperbolas)

of two accelerated objects, A and B, the (dotted) lines of simultaneity of the two light rays emitted

from A to B, and the trajectories of the two light pulses (in gray). The proper time intervals are seen

to be different, ∆τr = τB2 − τB1 > ∆τe = τA2 − τA1.

The (z, t) coordinates in the Lab frame in terms of the proper time τi and the acceleration

ai of each accelerated object are

zi =
1

ai
Ch(aiτi), ti =

1

ai
Sh(aiτi), i = A,B. (4.5.3)

As each accelerated object is considered the principal observer, their proper positions are

Zi = 0.

To determine the redshift we restrict ourselves to a wave moving in the (+ẑ) direction

in a magnetic BI background located in the plane XZ, with the Rindler acceleration being

a⃗ = aẑ. The light trajectory, in Minkowski coordinates (t, z), is calculated by integrating the

phase velocity in Eq. (4.3.2), vph = β = dz
dt =

√
1− B2

x
b2+B2 :

z − z0 =

√
1− B2

x

b2 +B2
(t− t0) = β(t− t0), (4.5.4)

where the phase velocity is denoted by β. When β → 1 (zero BI field) the trajectory is that

of light in vacuum; this case is examined in [88].
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Figure 4.13: The difference between the light rays in vacuum (dashed gray) and the presence of a

magnetic BI background (continuous gray) is shown. The difference between the intervals is larger in

the presence of the BI field, which means a larger redshift than that due only to the acceleration of

the Rindler frame.

Considering that the first light pulse is emitted by A at the initial coordinates z0 = z1 and

t0 = t1, the trajectory of the light pulse is z − z1 = β(t − t1), which in Rindler coordinates,

Eqs. (4.5.3), becomes

z − 1

aA
Ch(aAτA1) = β[t− 1

aA
Sh(aAτA1)]. (4.5.5)

This light ray intersects the world line of B at (z3, t3) when the proper time of B is τB1. Since

t3 = Sh(aBτB1)/aB, then knowing t3 we can determine τB1. Solving for t3 implies solving

the system of equations consisting of the hyperbola equation for B and the light trajectory

equation, i.e. solving the system

z23 =
1

a2B
+ t23 (4.5.6)

z3 − z1 = β(t3 − t1). (4.5.7)

From these equations is obtained a quadratic equation for t3 with solution

aAaBt3 =
1

(β2 − 1)

[
βaBχ1 ±

√
a2Bχ

2
1 + a2A(β

2 − 1)

]
, (4.5.8)
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where χi = aA(βti − zi). In terms of the Rindler coordinates for the emitter A, this is

χi = aA(βti − zi) = [βSh(aAτA1)− Ch(aAτA1)] . (4.5.9)

Using t3 in Rindler coordinates, t3 = Sh(aBτB1)/aB, we obtain

Sh(aBτB1) =
1

aA(β2 − 1)

(
βaBχ1 ±

√
a2Bχ

2
1 + a2A(β

2 − 1)

)
,→

aBτB1 = ArcSh

[
1

aA(β2 − 1)

(
βaBχ1 ±

√
a2Bχ

2
1 + a2A(β

2 − 1)

)]
= ArcSh(g). (4.5.10)

Following the same procedure for the second light ray, we obtain

Sh(aBτB2) =
1

aA(β2 − 1)

(
βaBχ2 ±

√
a2Bχ

2
2 + a2A(β

2 − 1)

)
,→

aBτB2 = ArcSh

[
1

aA(β2 − 1)

(
βaBχ1 ±

√
a2Bχ

2
1 + a2A(β

2 − 1)

)]
= ArcSh(f), (4.5.11)

where we have defined f and g as the argument of ArcSh in the right-hand sides of the

previous equations. After determining ∆τr = τB2 − τB1 and ∆τe = τA1 − τA2 from the

previous expressions, we can measure the redshift of the two light pulses propagating through

a BI magnetic background in the Rindler frame using Eq. (4.5.1).

From (4.5.11) and (4.5.10) the proper time interval of the reception of the pulses is

aB(τB2 − τB1) = ArcShf −ArcShg = log

√
f2 + 1 + f√
g2 + 1 + g

. (4.5.12)

Expanding the result for ”small” intensities of the field, i.e., neglecting terms of order (B/b)4

and higher,

τB2 − τB1 ≈
aA
aB

(τA2 − τA1) +

((
a2A − a2B

) (
e2aAτA2 − e2aAτA1

))
4a2B

B2
x

b2
. (4.5.13)

In this equation, the first term corresponds to the redshift due to the acceleration of the ob-

jects, while the second term is the contribution due to the presence of the BI electromagnetic

background, which depends on the magnetic BI component that is transversal to the accel-

eration of the Rindler frame. We can obtain a simpler expression approximating for small
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proper times; in this case, we approximate the exponentials as ex ≈ 1 + x, neglecting terms

(aAτA)
2 and higher:

τB2 − τB1 ≈
aA
aB

(τA2 − τA1)

(
1 +

a2A − a2B
2a2B

B2
x

b2

)
, (4.5.14)

∆τB ≈ aA
aB

∆τA

(
1 +

a2A − a2B
2a2B

B2
x

b2

)
. (4.5.15)

To obtain (4.5.15) in terms of the frequency we note that if A sends a pulse with a proper

frequency fA, A will measure the number of waves per unit of their proper time, while B

receives and measures a proper frequency fB. Since the number of light pulses is the same,

fA∆τA = fB∆τB, (4.5.16)

then
fA
fB

=
∆τB
∆τA

≈ aA
aB

(
1 +

a2A − a2B
2a2B

B2
x

b2

)
. (4.5.17)

Since the proper accelerations are aA/aB > 1, and the BI term is always positive, then for

the frequencies fA/fB > 1, and in terms of the redshift parameter zR = fA
fB

− 1

zR =
aA
aB

(
1 +

a2A − a2B
2a2B

B2
x

b2

)
− 1. (4.5.18)

Analyzing the redshift expression, we see that there is a loss of energy by the light pulse.

This loss is composed of two terms: the first part is used in overcoming the gravitational field

(Rindler acceleration), as expected, and the second part is due to the effect of the BI field, i.e.,

the pulse has to spend additional energy while traveling through the magnetic background,

resulting in a larger redshift. Figure 4.14 shows two examples.

Another way of writing the redshift is in terms of the position of the accelerated objects.

Considering the coordinate transformation to (T̄ , Z̄) coordinates

Z̄ = Z +
1

a
, T̄ = T, X̄ = X, Ȳ = Y ; (4.5.19)

the transformation implies that t

z

 = Z̄

 ShaT̄

ChaT̄

→
Z̄ =

√
z2 − t2

T̄ = 1
aArcTh(

t
z );

(4.5.20)

49



CHAPTER 4. LIGHT PROPAGATION IN A BORN-INFELD ENVIRONMENT

0.00 0.02 0.04 0.06 0.08 0.10

0.4

0.6

0.8

1.0

Figure 4.14: The redshift in Eq. (4.5.18) is plotted with respect to the intensity of the BI magnetic

background, for two different proper acceleration differences between the emitter (A) and the receiver

(B). As the difference becomes smaller, the resulting redshift is also smaller. The dashed lines represent

the pure Rindler effect, i.e., the one corresponding to a vanishing BI magnetic background, while the

continuous lines account for the total redshift. The difference between the two lines (continuous

minus dashed) corresponds to the BI redshift. In the plot the magnetic components are of the same

magnitude, Bx = Bz.

while the Rindler metric takes the form ds2 = a2Z̄2dT̄ 2 − dZ̄2 − dX̄2 − dȲ 2. In these

coordinates, the event horizon is at Z̄ = 0.

To calculate the redshift, we write the proper coordinates of the emitter (A) and the

receiver (B) as:

A : {τ̄A, Z̄A =
1

aA
}, B : {τ̄B, Z̄B =

1

aB
} (4.5.21)

Note that now the proper position of the accelerated objects is at Z̄i = 1/ai. The Minkowski

coordinates corresponding to the positions of emission and reception of the light pulses are

Eqs. (4.5.3). We can then determine the redshift analogously and Eq. ( 4.5.18) can be written

in terms of (T̄ , Z̄) as

zR =
Z̄B

Z̄A

(
1 +

Z̄B

Z̄A

B2
x

2b2

)
− 1. (4.5.22)

Figure 4.15 shows the redshift as a function of the receiver position for a fixed emitter at
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different field intensities.
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Figure 4.15: The redshift in Eq. (4.5.22) is plotted with respect to the proper coordinates of the

receiver ZB , for different values of the intensity of the BI field. The redshift increases as the intensity

of the field increases. In this plot Za = 0.1. The redshift is larger for greater distances between the

receiver and the emitter.

4.6 Conclusions

We study an electromagnetic wave propagating through an intense uniform BI background and

determine the phase velocities using the effective optical metric as measured by an accelerated

observer.

Our treatment is valid for strong fields; if we consider, for instance, that B2/b2 ≈ 10−2,

where b is the maximum attainable electromagnetic field, then the BI field is of the order

of 1019V m−1 that is ten times the critical Schwinger field or Bcr ≈ 109 Tesla. The phase

velocities depend on the product of the acceleration of the frame times the time coordinate,

(aT ), such that the effect of increasing the acceleration is the same as that of time elapsing. If

the magnetic field component transversal to the acceleration vanishes, then there is no effect

on the phase velocity of either the acceleration or the BI field, and its value is that in vacuum.
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Since the accelerated frame is no longer inertial, no special relativity velocity invariance

is expected.

Then it was examined a wave propagating through an intense electric field background,

turning out that the effect of the BI electric field (decreasing the phase velocity) is qualitatively

very similar to the one of the BI magnetic background. For strong fields, when B approaches

the maximum attainable BI field b, the most effective for slowing down the phase velocity is

the electric background, for all propagating directions of the light rays.

We analyzed the redshift of a light pulse sent from one Rindler observer and received

by another one when the light pulses travel through the BI magnetic background. In the

approximation of small fields and small intervals of time, we found an expression for the

redshift and distinguished two contributions, one due to the acceleration of the frame and the

other produced by the presence of the BI magnetic background, resulting in a larger total

redshift.

In summary, we have analyzed the phase velocity of light propagating under the effect of

a very intense magnetic or electric BI field as measured by an accelerated (Rindler) observer.

According to the Einstein Equivalence principle (EEP), the situation is equivalent to the

measurements by an observer under the influence of a uniform gravitational field.

E. Guzman-Herrera, N. Breton,

“Light Propagating in a Born–Infeld Background as Seen by an Accelerated Observer”

Annalen Der Physik, 534, 2200043 (2022).

DOI 10.1002/andp.202200043
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Chapter 5

Light propagation in the vicinity of

a ModMax black hole

Recently in [61] was proposed a NLED theory that shares the two symmetries of Maxwell’s

equations: the four-dimensional conformal symmetry and the electric-magnetic duality. It

is known as Modified Maxwell (ModMax) NLED and is characterized by a dimensionless

parameter γ that in the limit γ = 0 reduces to Maxwell theory. ModMax theory has stimulated

research in several aspects, from classical solutions [62], [63] to super symmetric analysis [64]–

[71].

Coupling the ModMax NLED with Einstein gravity, for a static and spherically symmetric

(SSS) metric, black hole (BH) solutions were found [93]. In the present chapter, we focus on

light propagation in the neighborhood of a ModMax BH, determining light trajectories as the

null geodesics of the effective metric.

5.1 ModMax Nonlinear electrodynamics.

The ModMax NLED possesses both Maxwell’s symmetries, conformal invariance and SO(2)

duality-rotation invariance. The ModMax NLED Lagrangian was derived in [94] using the

Bessel-Hagen criterion for conformal invariance, and the Gaillard–Zumino one for invariance
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under duality transformations. In [61] the symmetries of the theory are deduced by means of

the Hamiltonian formalism and it is demonstrated that there are only two theories that share

the same symmetries than Maxwell’s, the Bialynicki-Birula (BB) and the ModMax. Consider-

ing that the Hamiltonian depends on two parameters, one with dimensions of energy density

(T ) and the other being the dimensionless parameter γ, the BB theory is the generalization

for strong fields (T → 0) and cannot be written in Lagrangian form [61]. The ModMax theory

is the generalization for weak fields (T → ∞) and Maxwell’s theory is recovered when the

nonlinear parameter γ vanishes.

The ModMax Lagrangian is given by

LModMax = −F
4
cosh γ +

sinh γ

4

√
F 2 +G2, (5.1.1)

where F and G are the electromagnetic Lorentz invariants; the Maxwell Lagrangian [95],

LM = −F
4 , corresponds to the vanishing of the nonlinear parameter γ = 0 (specifics of the

ModMax theory can be found in [94], [96], [97]). The birefringence indices λa in Eq. (2.1.6),

for the ModMax Lagrangian, Eq. (5.1.1), are

λ1 =
LFF + LGG

LF + 2 (GLFG − FLGG)
, λ2 = 0, (5.1.2)

or in terms of γ and the electromagnetic invariants F and G,

λ1 =
4 tanh γ√

F 2 +G2 + F tanh γ
, λ2 = 0. (5.1.3)

The effective metric gµνeff(1) from Eq. (2.1.8) is given by

gµνeff(1) = gµν +
4 tanh γ√

F 2 +G2 + F tanh γ
tµν . (5.1.4)

As a consequence of the conformal invariance one of the birefringence index vanishes,

λ2 = 0, then the corresponding effective metric coincides with the background metric,

gµνeff(2) = gµν , (5.1.5)

this means that one of the polarization modes follows the null geodesics of the background

metric, with the dispersion relation given by ω2 = |⃗k|2. It is important to highlight that this
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result does not imply the absence of birefringence as in the case of the BI theory. The two

paths followed by photons are established by gµνeff(1) and, coincidentally, by the background

metric gµν .

The existence of two effective metrics corresponds to the birefringence effect, i.e. there

are two possible paths that light rays can follow, depending on their polarization. In case

γ = 0 we recover one single effective metric for the propagation of electromagnetic waves

gµνeff(1) = gµν = gµνeff(2).

Let us consider a vanishing electric field and a uniform magnetic field B⃗ in Minkowski

spacetime gµν = ηµν , then the dispersion relation amounts to

ω2 = k2(cos2 ϕ+ e−2γ sin2 ϕ), (5.1.6)

where ϕ is the angle between the propagation direction k⃗ and the magnetic field, B⃗. There

is no birefringence when ϕ = 0 because in this case, the background preserves the rotational

symmetry in the plane defined by k⃗ [61]. This equation also indicates that superluminal

velocities are reached for negative values of the nonlinear parameter γ; therefore to avoid

superluminal velocities we should restrict to γ ≥ 0.

In case the effective metric is diagonal, the two-phase velocities, from Eq. (2.2.3), are

(v1)
2 =

(
ω

|⃗k|

)2

(1)

= −g
ij + λ1t

ij

gtt + λ1ttt
k̃ik̃j , (5.1.7)

(v2)
2 =

(
ω

|⃗k|

)2

(2)

= −g
ij

gtt
k̃ik̃j . (5.1.8)

In the next section, we present the ModMax NLED BH and analyze several aspects of

light propagation in its vicinity.

5.2 ModMax black hole

In [93] was derived the static spherically symmetric (SSS) solution to the Einstein equations

coupled to ModMax NLED; it is characterized by the BH mass, BH charge, and the nonlinear
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parameter γ; its line element is given by

ds2 = gµνdx
µdxν = −f(r)dt2 + 1

f(r)
dr2 + r2dΩ, f(r) = 1− 2M

r
+
e−γQ2

r2
, (5.2.1)

where dΩ = dθ2 + sin2 θdϕ2; the charge can be electric Q = Qe, magnetic Q = Qm, or both

(Dyonic case) Q =
√
Q2

e +Q2
m, [93]. This metric represents a charged BH with horizons

defined by the roots of f(r) = 0,

r+ =M +
√
M2 − e−γQ2, r− =M −

√
M2 − e−γQ2. (5.2.2)

There exists an event horizon r+ if the condition 0 ≤ Q2e−γ ≤ M2 is fulfilled. We shall

consider gµν in Eq. (5.2.1) as the background metric. Recalling the metric function for the

Reissner-Nordstrom (RN) BH, the SSS of the Einstein-Maxwell equations,

fRN (r) = 1− 2M

r
+
Q2

r2
, (5.2.3)

note that the ModMax metric function f(r) resembles the RN one with a screened charge,

Q2 → e−γQ2 In the RN BH the charge is restricted to Q2 ≤M2, while the ModMax BH can

bear a larger charge, Q2 ≤ eγM2, due to the charge screening.

Since the nonvanishing components of the electromagnetic tensor are Frt = Qe/r
2 and

Fϕθ = Qm sin θ, the tensor tµν in Eq. (5.1.4) is given by

tµν = FµλFλ
ν = diag

[
− F 2

tr

f(r)
, f(r)F 2

tr,−
F 2
ϕθ

r6
,−

F 2
ϕθ

r6

]
. (5.2.4)

In Fig. 5.1 we compare the metric functions f(r) of the Schwarszchild, the RN, and the

ModMax BHs. The radius of the ModMax BH event horizon is larger than the RN one and

smaller than Schwarszchild’s. The ModMax BH is singular at r = 0, i.e. its curvature scalars

diverge at r = 0.

In the next subsections, we analyze light trajectories in the vicinity of the ModMax BH,

by calculating the null geodesics of the effective metrics.
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Figure 5.1: The metric functions f(r) of Schwarszchild, RN and ModMax BHs are shown. The

radii of the event horizons are the intersections of the corresponding metric functions with the r−axis:

the radius of the event horizon for the ModMax BH is larger than the RN one and smaller than

Schwarszchild’s. In this plot, we fixed the BH parameters as Q = 0.8, γ = 0.5, M = 1.

5.2.1 Phase velocities in the vicinity of ModMax Black hole

Our aim in this subsection is to determine the phase velocities of light propagating near the

ModMax BH. Without loss of generality, we consider equatorial trajectories of light, θ = π/2.

Then considering the tensor tµν in Eq. (5.2.4), the effective metrics, Eqs. (5.1.4) and (5.1.5),

are given by

gµνeff(1) =
Q2

e−γQ2
e + eγQ2

m

diag

[
−eγf(r)−1, eγf(r),

e−γ

r2
,
e−γ

r2

]
, (5.2.5)

gµνeff(2) = gµν = diag

[
−f(r)−1, f(r),

1

r2
,
1

r2

]
, (5.2.6)

where f(r) = 1 − 2M
r + e−γQ2

r2
, Q2 = Q2

e + Q2
m; and we have used the birefringence indices,

that for the ModMax BH, are,

λ1 =
2eγr4 sinh γ

e2γF 2
ϕθ + r4F 2

rt

=
2r4 sinh γ

e−γQ2
e + eγQ2

m

, λ2 = 0. (5.2.7)

Note that both metrics are diagonal, then the expression of the phase velocity simplifies.

Considering the propagation along radial and ϕ-angular directions, with a wave vector given

57



CHAPTER 5. LIGHT PROPAGATION IN THE VICINITY OF A MODMAX BH

by k̃µ = (ω, 1, 0, 1), using Eq. (2.2.3)

(
vrϕ
)
a
= ±

√√√√−
grreff(a)k̃

2
r + gϕϕeff(a)k̃

2
ϕ

gtteff(a)
, a = 1, 2 (5.2.8)

Then, for the two values of λ1,2 in Eq. (5.1.3) the corresponding phase velocities are

vrϕ1 =

√
f(r)

(
f(r) +

e−2γ

r2

)
, (5.2.9)

vrϕ2 =

√
f(r)

(
f(r) +

1

r2

)
. (5.2.10)

For light propagating in a purely radial direction, (ϕ and θ fixed), the two-phase velocities

turn out to be equal, then there is no birefringence. From Eq. (5.1.7),

vr1,2 = f(r). (5.2.11)

The light phase velocity in the neighborhood of the ModMax BH is always less than the

one corresponding to RN BH, vrRN > vr1,2. If vr = 0 the orbits are circular and, if θ = π/2,

the light ray stays in the equatorial plane, however, these are unstable circular orbits (UCO).

If the wave vector has angular components kθ or kϕ, then there is birefringence, vi1 ̸= vi2,

θ-direction, i = θ:

vθ1 =
e−γ

r

√
f(r), vθ2 =

1

r

√
f(r), (5.2.12)

ϕ-direction, i = ϕ:

vϕ1 =
e−γ

r sin θ

√
f(r), vϕ2 =

1

r sin θ

√
f(r). (5.2.13)

In Figure 5.2 we compare the phase velocities in equatorial orbits. The phase velocities

depend on the BH charge Q through the metric function f(r) and the occurrence of birefrin-

gence is independent of whether the BH is electrically or magnetically charged. The effect of

the nonlinear parameter γ is to reduce the phase velocities.
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Figure 5.2: The radial and ϕ-angular phase velocities corresponding to the two effective metrics are

shown. Measured by a distant observer, starting from infinity with velocity c = 1, as light approaches

the horizon its phase velocity tends to zero. There is no birefringence in the radial direction; if the

wave vector has angular components then there is birefringence. The gray curve is the phase velocity

in the radial direction. The black dotted and dashed curves correspond to the phase velocity in

purely ϕ-direction vϕ2, vϕ1 with vr = 0. The gray dashed curve corresponds to the phase velocity vrϕ

considering that the light propagates along radial and ϕ-angular directions. The phase velocities in

the neighborhood of the RN BH (black solid curve for the radial direction, angular directions are not

shown) are always greater than the ones for the ModMax BH. We fixed the BH parameters as Q = 0.5,

γ = 0.2, M = 1.

5.2.2 Light trajectories, null Geodesics, and orbits around the

ModMax Black hole.

We consider the Hamiltonian formalism and the conserved quantities for a test particle to

obtain the equations of motion of a photon in the external field of a BH. In a SSS spacetime,

due to the existence of two Killing vectors, a test particle has two conserved quantities, its
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energy, and its angular momentum.

E = gtt
dt

dτ
, L = gϕϕ

dϕ

dτ
. (5.2.14)

where τ is the affine parameter along a geodesic. Without loss of generality, we consider

equatorial orbits, θ = π/2. Then from the mass invariance, gµν ẋµẋν = δ, and making a

distinction between the background metric and the effective metric,(
dr

dτ

)2

+
1

g
eff(a)
rr

(
g
eff(a)
ϕϕ

(
L

gϕϕ

)2

+ g
eff(a)
tt

(
E

gtt

)2

− δ

)
= 0, (5.2.15)

where δ = 1, 0,−1 for space-like, null, or time-like geodesics, respectively; denoting ṙ = dr/dτ

and the impact parameter b = L/E, the previous equation is

ṙ2 +
L2

g
eff(a)
rr

geff(a)ϕϕ

r4
+
g
eff(a)
tt

f2(r)

1

b2
− δ

L2

 = 0, (5.2.16)

and a = 1, 2 denote the two effective metrics. Considering ṙ2 + V
(a)
eff = 0, we identify the

effective potential as

V
(a)
eff =

L2

g
eff(a)
rr

geff(a)ϕϕ

r4
+
g
eff(a)
tt

f2(r)

1

b2a
− δ

 . (5.2.17)

The radius of the circular orbits rc corresponds to an extreme of the effective potential,

V
(a)
eff = 0,

dV
(a)
eff

dr
= 0, (5.2.18)

and since we are focusing on light ray propagation, that corresponds to the null geodesics of

the effective metric, we only study the case δ = 0. We obtain the radius of the circular orbits

rc as

rc =
3M

2

(
1±

√
1− 8e−γQ2

9M2

)
. (5.2.19)

There are two impact parameters, bac , corresponding to the two effective metrics, given by

(
b2c
)
a
=

− r4cg
eff(a)
tt

f2(rc)g
eff(a)
ϕϕ


rc

, a = 1, 2 (5.2.20)

or explicitly,

b2c1 =
e−2γr2c
f(rc)

, b2c2 =
r2c
f(rc)

. (5.2.21)
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From Eq. (5.2.16) and ϕ̇ = L/gϕϕ we can write the equation for the light trajectories in the

r − ϕ plane, ϕa(r), (
dr

dϕ

)2

a

=

(
ṙ

ϕ̇

)2

a

= − 1

g
eff(a)
rr

(
g
eff(a)
ϕϕ + g

eff(a)
tt

r4

f2(r)

1

b2c

)
(5.2.22)

and using the value of the critical impact parameters bca, Eq. (5.2.20)(
dr

dϕ

)2

a

= −
g
eff(a)
ϕϕ

g
eff(a)
rr

1− g
eff(a)
tt

g
eff(a)
ϕϕ

geff(a)ϕϕ

g
eff(a)
tt


rc

r4

r4c

f2(rc)

f2(r)

 , (5.2.23)

where f(r) is given in Eq. (5.2.1). Following a standard procedure to integrate the previous

equation [98], the r coordinate is transformed as r = 1/u. In our case there are two possible

trajectories of the photon ϕa(r), a = 1, 2; for ϕ1(r) we have(
du

dϕ1

)2

= e2γ(u− uc)
2
[
2u
(
M − e−γQ2uc

)
+ uc

(
M − e−γQ2uc

)
− e−γQ2u2

]
, (5.2.24)

where uc = 1/rc. Then it has to be integrated

eγdϕ1 = ±
∫

dξ√
−e−γQ2 + c1ξ + c2ξ2

(5.2.25)

where

ξ =
1

u− uc
, c1 = 2(M − 2e−γQ2uc), c2 = uc

(
3M − e−γQ2uc

)
, (5.2.26)

and uc corresponding to rc in Eq. (5.2.19) is

uc =
3M

4e−γQ2

(
1−

√
1− 8e−γQ2

9M2

)
. (5.2.27)

The solutions for ϕ1(r) depend on the sign of c2,

(ϕ1)± = ∓e−γ

(
1

√
c2

ln
(
c1 + 2c2ξ + 2

√
c2
√
−e−γQ2 + c1ξ + xξ2

))
, c2 > 0(5.2.28)

(ϕ1)± = ∓e−γ

(
− 1
√
c2

arcsin

(
2c2ξ + c1√

4e−γQ2c2 + c21

))
, c2 < 0 (5.2.29)

where the ± sign corresponds to the angle measured counterclockwise or clockwise, respec-

tively and ξ = rrc
rc−r ; we consider the positive solution because the constriction c2 > 0 agrees

with the value of uc in Eq. (5.2.27).
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We can clear out r(ϕ) from Eq. (5.2.28),

r1(ϕ1) =

((
c1 − Exp(±eγ

√
c2ϕ)

)2
+ 4c2e

−γQ2
)
rc((

c1 − Exp(±eγ
√
c2ϕ)

)2
+ 4c2e−γQ2

)
+ 4c2rcExp(±eγ

√
c2ϕ)

, c2 > 0 (5.2.30)

Following an analogous procedure, we determine the second photon trajectory, ϕ2(r), corre-

sponding to the second effective metric, as

ϕ2(r) = ∓
(

1√
c
ln
(
c1 + 2c2ξ + 2

√
c2
√
−e−γQ2 + c1ξ + c2ξ2

))
, c2 > 0 (5.2.31)

ϕ2(r) = ∓

(
− 1
√
c2

arcsin

(
2c2ξ + c1√

4e−γQ2c2 + c21

))
, c2 < 0 (5.2.32)

and the trajectory r2 as a function of ϕ2 is

r2(ϕ2) =

((
c1 − Exp(±√

c2ϕ)
)2

+ 4c2e
−γQ2

)
rc(

c1 − Exp(±√
c2ϕ)

)2
+ 4c2

(
e−γQ2 + rcExp(± sin θ

√
c2ϕ)

) . (5.2.33)

The expression for the latter trajectory, r2(ϕ2), is identical to the one in the vicinity of an

RN BH, but for a reduced charge, Q 7→ Qe−γ/2; this orbit is as well the one corresponding

to the massless test particles. In Fig. 5.3 we show radial orbits for the ModMax, RN, and

Schwarzschild BHs. The trajectory corresponding to the metric g
eff(2)
µν , that coincides with

the background metric lies between the Schwarzschild and RN trajectories, this is because

the only difference with RN BH is the charge screening. In contrast, the null geodesics

of g
eff(1)
µν , have larger radius, then the traveled distance before crossing the horizon is also

larger. As γ increases the screening of the charge increases and the orbit approaches the one

in Schwarzschild BH, this is, the unstable circular orbit of radius 3M characteristic of the

Schwarzschild BH photosphere.
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Figure 5.3: Photon trajectories in the vicinity of the Schwarzschild (dotted), RN (dashed), and

ModMax (solid) BHs are shown. The gray circumference indicates the ModMax event horizon; the

trajectories inside the event horizon are not considered in our study. The trajectory of the effective

metric that coincides with the background ModMax metric lies between the Schwarzschild and the RN

ones. In this plot are fixed M = 1, Q = 0.8, γ = 0.5.

5.2.3 Lensing and deflection angle

Gravitational lensing is a relativistic phenomenon consisting of the deflection of light rays

in the vicinity of a massive object; it can be used to survey massive dark objects both in

weak and strong gravitational fields. Many aspects of this effect produced by BH have been

reported in the literature: the exact lens equation for the Einstein-Euler-Heisenberg static

black hole [99], the RN BH and RN-de Sitter BH lensing [100], [101], the lensing in the

strong field limit [102]–[104] and the gravitational lensing of massive particles in RN BH

[105]. Recently the study of the lensing and the shadow of the ModMax BH was presented

in [70], where the massless particle trajectories are determined from the background metric;

such that their results correspond to ours for the effective metric that coincides with the BH

metric, g
eff(2)
µν = gµν . Therefore the deflection of light calculated from the effective metric

g
eff(1)
µν complement the results in [70]. Moreover, in the weak field limit, we present a more

precise expression for the deflection angle including terms of higher order in Q. The results
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in [70] for the weak deflection angle and the Einstein ring of the ModMax BH are compared

with the data obtained from Sagittarius A∗(Sgr A∗) and M87*, then they can be a reference

for ours as well.

The expression for the deflection angle α produced by the presence of a BH acting like a

lens in the light trajectory, given in terms of the distance of closest approach, denoted by r0,

is

α(r0) = I(r0) + φO − φS (5.2.34)

where the angles φO−φS are illustrated in Fig. 5.4 and I(r0) is calculated from the orbit Eq.

(5.2.23) considering that the observer and the source are in the same plane of a flat space-time

region and that the source of light is located at infinity, I(r0) = 2∆ϕ = 2 [ϕ(r 7→ ∞)− ϕ(r0)],

[106], and I(r0) is given by

Ia(r0) = 2

∫ ∞

r0

(
dϕa
dr

)
dr, a = 1, 2. (5.2.35)

where
(
dϕ
dr

)
can be derived from Eq. (5.2.23).

Figure 5.4: The diagram shows the light deflection angle α, the position of the source and of the

observer, S and O, respectively. b is the impact parameter and r0 the distance of closest approach.

The gray circle indicates the position of the BH acting as a lens.

If the trajectory were a straight line as in Minkowski spacetime, there would be no deflec-

tion and φO−φS = −π, but the presence of the BH bends light’s trajectory and φO−φS ̸= −π
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and to determine the difference we need to calculate the limit r0 → ∞ in Eq. (5.2.35), making

Ir0 = 0. For the effective metrics in consideration, we obtain two deflection angles, α1, α2,

that are given by

α1(r0) = I1(r0) = e−γ


∫ ∞

r0

2

r
√

r2

r20
f(r0)− f(r)

dr − π

 = e−γα2. (5.2.36)

To integrate Ir0 = 0 we transform to the variable z, z = 1− r0
r obtaining

I1(r0) = e−γ

∫ 1

0
2

(
f(r0)− (1− z)2

(
1− 2M

r0
(1− z) +

Q2(1− z)2

r20

))−1/2

dz. (5.2.37)

In Fig. 5.5 are shown the deflection angles produced by effective metric g
eff(1)
µν of the

ModMax BH, varying the nonlinear parameter γ and the BH charge; the integration was

numerical.
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Figure 5.5: The deflection angles α1 corresponding to g
eff(1)
µν as a function of the distance of closest

approach, r0, for different values of the ModMax nonlinear parameter γ and the BH charge Q are

shown. α2 is larger than α1, α2 = eγα1. The case γ = 0 corresponds to RN BH and Q = 0

corresponds to Schwarzschild’s deflection angle. We are taking M = 1.

For fixed Q and r0, increasing γ diminishes the deflection angle α and the effect is the

same, for fixed γ and r0, increasing the BH charge. The expression for I2(r0) has the same

form as for RN but with a charge screened by a factor e−γ . In Fig. 5.6 we compare the

deflection angle αi, i = 1, 2 of the two effective metrics with the RN one. When r0 → rc, the
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deflection angle reaches values greater than 2π, in this case, the light ray turns around several

times before either escaping the photosphere region or falling into the BH [100].
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Figure 5.6: The deflection angles α1 and α2 for the two effective metrics and the corresponding to

the RN-BH are shown. The relative magnitudes of the deflection angles for r0 > 3M is α1 < αRN < α2

and α1 = e−γα2. We are taking M = 1.

5.2.4 The weak field limit of the deflection angle

The weak field limit deals with small deflection angles that can be determined through the

Gaussian curvature and using the Gauss-Bonnet theorem with the optical metric method

(details can be consulted in [107], [108]).

The Gauss-Bonnet theorem connects the differential geometry of a surface with its topol-

ogy, and the expression for a slight variation of the deflection angle δα is given by

δα = −
∫ ∫

D
KdS, (5.2.38)

where K is the Gaussian curvature and dS =
√
−gdrdϕ, with g being the determinant of the

surface metric; the range of integration is r : b
sinϕ < r < ∞ and ϕ : 0 < ϕ < π, with b being

the impact parameter. The Gaussian curvature is K = R/2, being R the Ricci scalar, and for

the ModMax BH it is

K =
2M

r3
− 3M2 + 3e−γQ2

r4
+

6e−γMQ2

r5
− 2e−2γQ4

r6
. (5.2.39)
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The determinants of the effective metrics, det(gµνeff(a)) = ga, are

g1 = −
e−γ

(
Q2

e +Q2
m

)3
[eγQ2

e + e−γQ2
m]3

r2, g2 = −
(
Q2

e +Q2
m

)
6

[2 cosh(2γ)Q2
eQ

2
m +Q4

e +Q4
m]3

r2. (5.2.40)

Such that if we consider only electric charge Q = Qe (Qm = 0), the determinants are

g1 = −e−4γr2, g2 = −r2, (5.2.41)

and the deflection angles αGB
1 and αGB

2 are given by

αGB
2 =

(
4M

b
− 3πe−γQ2

e

4b2
− 3πM2

4b2
+

8e−γMQ2
e

3b3
− 3πe−2γQ4

e

16b4

)
= e2γαGB

1 , (5.2.42)

the deflection angle αGB
2 only differs from the RN deflection in the screening of the charge.

For the deflection angle αGB
2 in [70] were considered only the first two terms in Eq. (5.2.42).

The effect introduced in the deflection angle by the third and fourth terms is illustrated in

Fig. 5.7. Note that in [70] the deflection angle is overestimated.
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Figure 5.7: We compare the deflection angle αGB
2 of Eq. (5.2.42) to different orders of O(MQ2

b ). The

dotted line corresponds to the deflection angle considering the first two terms of Eq. (5.2.42), this is

the deflection angle presented in [70]. The deflection angles taking the third and fourth terms in Eq.

(5.2.42) are the dashed and solid lines, respectively. We are taking M = 1.

In Fig. 5.8 we compare the numerical result for the deflection angle (dashed) with the

weak deflection angles of the ModMax BH calculated according to the Gauss-Bonnet theorem

for different orders of O(MQ2

b ) (solid curves). The dotted line is the deflection angle calculated
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in [70] for the massless test particles. The deflection angles for the effective metric geff(1) are

the black curves while the ones for the metric geff(2) are the gray curves. The lower value

for the deflection angle is reached by considering all the terms in Eq. (5.2.42) for the metric

geff(1), and the higher value corresponds to the numerical result for the effective metric geff(2).
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Figure 5.8: The plot compares the numerical result for α1 and α2 (dashed lines) with the Gauss-

Bonnet calculation of the deflection angle in Eq. (5.2.42), αGB
1 and αGB

2 (solid lines), and the deflection

angle presented in [70] (dotted lines). Note that as b → ∞ the deflection angles approach the same

limit. We are taking M = 1.

5.2.5 Redshift

The gravitational redshift z is a decrease in the frequency and photon energy of a light pulse,

between the emission and the reception, when the pulse propagates through a gravitational

field [109]–[111]; the redshift z is given by

1 + z =
ωe

ωo
, (5.2.43)

where ω is the frequency and the subscripts e and o refer to the emitter and observer of

the light pulse. In general, the frequency of a photon measured by an observer with proper

4-velocity Uµ is given by

ωi = − (kµU
µ)i , (5.2.44)

where “i” refers to “e” the emitter or “o” the observer, and kµ = {ω, k⃗} is the wave vector.
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We shall determine the redshift z of a light pulse emitted from a particle moving in a

circular orbit around the ModMax BH [112]. It is important to distinguish the trajectory

of the emitter particle, which are timelike geodesics of the background metric gµν ; while the

photon trajectories are the null geodesics of the effective or optical metric g
eff(a)
µν .

Considering equatorial circular orbits, for the emitter particle, the 4-velocity Uµ is of the

form Uµ = (U t, U r = 0, Uθ = 0, Uϕ), in this case, the redshift is given by

1 + z =
ωe

ωo
=

(
ktU

t + kϕU
ϕ
)
e

(ktU t + kϕUϕ)o
. (5.2.45)

From an analysis analogous to the one in Sec. 5.2.2, now for the background geometry gµν ,

we can determine the emitter particle velocity in an equatorial circular orbit; its energy, Em,

and angular momentum, Lm,, are conserved quantities, U t = −Em
gtt

and Uϕ = Lm
gϕϕ

, where the

subscript m differentiate the emitter particle quantities from the photon ones. To determine

Em and Lm in terms of the BH parameters we use the circular orbit conditions (5.2.18), where

the effective potential is given in Eq. (5.2.17) making geffµν 7→ gµν , with δ = −1,

Veff,m = f(r)

(
1

r2
− 1

f(r)

E2
m

L2
m

+ 1

)
, (5.2.46)

obtaining for Em and Lm,

E2
m =

f2(r)

h(r)
, L2

m =

(
Mr − e−γQ2

)
h(r)

, (5.2.47)

where we defined h(r) = 1−3M/r+2e−γQ2/r2. Writing the angular velocities of the emitter

particle as Ωi = Uϕ
i /U

t
i ,

Ω2
i =

Mri − e−γQ2

r4i
, i = e, o, (5.2.48)

and the frequency ωi of a photon given by

ωi = −U t
i (kt + kϕΩ)i . (5.2.49)

The photons move along null geodesics of the effective metric gµνeff(a)kµkν = 0, where

kt = E/f(r) and kϕ = L/r2; then in terms of the impact parameter, b = L/E, [113], the

expression for the photon frequency is

ωi = −

√
1

h(ri)

geff(a)tt

f(r)
+ b

g
eff(a)
ϕϕ

r4

√
Mr − e−γQ2


i

, (5.2.50)
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and considering the critical impact parameter in Eq. (5.2.20)

ωi = −

√
1

h(ri)

g
eff(a)
tt

f(r)
±

√√√√−geff(a)tt

f(r)

g
eff(a)
ϕϕ

r2

√
Mr − e−γQ2

f(r)r2


i

, (5.2.51)

where the ± sign refers to a receding or an approaching emitter particle, respectively. Such

that the blueshift (+) /redshift (−) for the effective metrics geff(a), a = 1, 2, are given by

(z1)± =

(
h(ro)

h(re)

)1/2(−e−γ ±A(re)

−e−γ ±A(ro)

)
− 1, (5.2.52)

where we denote

A2(r) = (Mr − e−γQ2)/(f(r)r2) (5.2.53)

(z2)± =

(
h(ro)

h(re)

)1/2(−e−γ ± eγA(re)

−e−γ ± eγA(ro)

)
− 1. (5.2.54)

Considering an observer at infinity, ro → ∞, then A(ro) = 0, h(ro) = 1, and the redshifts

are

(z1)± = −

√
1

h(re)
[−1± eγA(re)]− 1 (5.2.55)

(z2)± = −

√
1

h(re)

[
−1± e2γA(ro)

]
− 1 (5.2.56)

In Fig. 5.9 are plotted the redshifts as a function of the emitter position, re, as measured

by an observer at ro in the vicinity of the BH and an observer at infinity. Note the difference

in the z-range. In terms of the frequency, for a given position of the emitter re, the frequency

measured by an observer in the vicinity of the BH is larger than the frequency measured by

the observer located at infinity.

In Fig. 5.10 is illustrated the effect on the redshift, Eq. (5.2.52), of varying the charge and

NLED parameter of the ModMax BH, for the effective metric (gµνeff(1)), and for an observer

located in the vicinity of the BH. For a fixed γ the increase of the BH charge diminishes the

redshift (increases the frequency); and with a fixed BH charge Q, increasing γ increases the

redshift (diminishes the frequency).
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Figure 5.9: The redshifts of a pulse emitted from a particle moving in a circular orbit around the

Schwarzschild, RN, and ModMax BHs as a function of the emitter position re measured by an observer

in the vicinity of the BH (ro = 10) are illustrated to the left. The case where the observer is located

at infinity (ro 7→ ∞) is illustrated to the right. For a given value of re, the redshift for an observer

in the vicinity of the BH is smaller than the one measured by the observer at infinity; in terms of the

observed frequency ωo, the one measured by the observer in the vicinity is higher than the frequency

measured by the observer located at infinity. In this plot γ = 0.3, Q = 0.8, M = 1.
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Figure 5.10: We plot the redshifts produced by (gµνeff(1)) as a function of the emitter position re, Eq.

(5.2.52); to the left for different values of the BH charge with a fixed γ = 0.5; Q = 0 corresponds to

Schwarzschild BH. And to the right for different values of the nonlinear parameter γ with fixed charge

Q = 0.8; γ = 0 corresponds to RN BH. We are taking M = 1.

In the case that both the emitter and observer are static and the observer’s position tends
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to infinity, ro → ∞, then Uϕ = 0, and from UµUµ = −1 we obtain

U t =

√
− 1

gtt
; (5.2.57)

then the frequency ωi of a light pulse is

ωi = −
(
ktU

t
)
i
=

(
−g

eff(a)
tt

f(r)

√
− 1

gtt

)
i

; (5.2.58)

while for the observer at infinity ro → ∞, ωo = 1, and the redshift is

1 + z = −g
eff(a)
tt

f(r)

√
1

f(r)
. (5.2.59)

The redshifts corresponding to the two effective metrics are given by

z1 =
e−γ

(
e−γQ2

e + eγQ2
m

)
Q2

e +Q2
m

√
1

f(r)
− 1, (5.2.60)

z2 =

√
1

f(r)
− 1; (5.2.61)

z2 corresponds to the redshift of a massless particle in a RN BH with a screened charge

Q2 7→ e−γQ2.

In Fig. 5.11 are compared the redshifts for the ModMax, the RN, and the Schwarzschild

BHs as a function of the emitter position, for a static observer (ro 7→ ∞); the frequency of

the light pulse moving in the effective metric g
eff(1)
µν is larger than the one of the light pulse

moving in g
eff(2)
µν or in the RN BH and Schwarzschild BH metric. The relative magnitudes

of the redshift, z1 < zRN < z2 < zSchw, tell us that the ModMax BH creates a weaker

gravitational field (for the photons) than RN BH since the photon in the vicinity of the

ModMax BH suffers a smaller loss of energy to climb the gravitational potential than the RN

one.

In Fig. 5.12, we compare the redshifts of a light pulse moving in the effective metrics

g
eff(a)
µν , a = 1, 2, emitted from a particle orbiting the BH, for different positions of the observer.

The larger frequency (smaller z) would be measured by the observer at infinity when the

emitter is static and the pulse of light moves according to the effective metric g
eff(1)
µν .
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Figure 5.11: The redshifts of a light pulse emitted from a static particle at re in the vicinity of

Schwarzschild, RN, and ModMax BHs, measured by an observer located at infinity (ro 7→ ∞). The

frequency corresponding to the effective metric g
eff(1)
µν is higher than the one for the effective metric

g
eff(2)
µν , since z1 < zRN < z2 < zSchw. In this plot are fixed γ = 0.3, Q = 0.8, M = 1.
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Figure 5.12: We plot the redshift of a light pulse in three situations: (1) the emitter is a particle

moving in a circular orbit around the ModMax BH, and the observer is in the vicinity of the BH

orbiting as well (solid curves), Uϕ
e ̸= 0 and Uϕ

o ̸= 0. (2) the emitter is orbiting around the ModMax

BH and the observer is located at infinity (dotted), i.e. Uϕ
e ̸= 0 and Uϕ

o = 0. (3) Both, emitter and

observer, are static at infinity (dashed curves) Uϕ
e = 0 and Uϕ

o = 0. BH parameters are fixed: γ = 0.3,

Q = 0.8, M = 1.
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5.2.6 The kinematic redshift

The kinematic redshift is relevant in relation to astrophysical observations, for instance in

measurements of galaxies redshift [112]. It is given by the difference between the redshift in

Eq. (5.2.45) and the redshift of a photon emitted from b = 0, using Eq. (5.2.50)

zk =
ωe

ωo
−
(
ωe

ωo

)
b=0

= b
U t
e

U t
o

Ωo − Ωe

(1− bΩo)
. (5.2.62)

Considering the two effective metrics, the kinematic redshifts zki are given by

zk1 = eγ

√
h(ro)

h(re)

(
A(re)−A(ro)

∓1 + eγA(ro)

)
, (5.2.63)

zk2 = eγ

√
h(ro)

h(re)

(
A(re)−A(ro)

∓e−γ + eγA(ro)

)
. (5.2.64)

recalling Eq. (5.2.53). In the case that the observer is located at infinity with respect to

the center of the BH, ro → ∞, the kinematic redshifts are

zk1 = ∓eγ
√
A2(re)

h(re)
, (5.2.65)

and

zk2 = ∓e2γ
√
A2(re)

h(re)
. (5.2.66)

The kinematic redshift is illustrated in Fig. 5.13 for the Schwarzschild, RN, and ModMax

BHs, as observed near the BH and at infinity; the relation between the redshifts of the two

ModMax BH effective metrics is zk2 = eγzk1. Note that there is a difference in the range

between the kinematic redshift and the redshift in Fig. 5.9; the kinematic redshift reaches

smaller values for a given position of the emitter.
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Figure 5.13: The kinematic redshifts zk for Schwarzschild, RN, and ModMax BHs are illustrated as

a function of the emitter position; to the left for an observer in the vicinity of the BH and to the right

for an observer at infinity. For a given re the redshift measured by an observer at infinity is larger

(smaller frequency) than the one for the observer in the vicinity of the BH. We are taking M = 1.

5.2.7 Shadow

Since 1998 [114] it has been suggested that supermassive black holes lie at the center of nearly

every galaxy and indeed very recently the proof of the existence of such a black hole in the

center of our galaxy has been reported.

The Event Horizon Telescope (EHT) is a large telescope array consisting of a global net-

work of radio telescopes. The EHT project combines data from several very-long-baseline

interferometry (VLBI) stations around Earth, which form a combined array with an angular

resolution sufficient to observe objects the size of a supermassive black hole’s event horizon.

The project’s observational targets include the two black holes with the largest angular di-

ameter as observed from Earth: the black hole at the center of the elliptical galaxy Messier

87 (M87*), and Sagittarius A* (Sgr A*) at the center of the Milky Way [115].

Sgr. A* has been studied at several wavelengths: radio, millimeter, infrared, and X-ray.

It has been discovered that the emission (at different wavelengths ) originates near the BH’s

innermost stable circular orbit. The images of Sgr A* show a spiral polarization pattern that

is stable, linearly polarized, and azimuthally symmetric [116].
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The images obtained by the EHT collaboration verified that, for distant observers, the

spherical accretion flows around a BH would appear as ”rings of light” around a ”shadow”

[117]. In the vicinity of a BH, there is the possibility of unstable circular orbits of massless

particles and photons; any perturbation will cause either the particle to fall into the BH or

to escape to infinity. Photons that escape to infinity produce a shadow cast perceived by an

external observer as a dark circular region.

The shadow of a BH is observable when the source of photons is sufficiently bright and is

present close to the horizon to experience strong gravitational lensing, moreover, the source

of photons, at the wavelength chosen for the observation, needs to be optically thin such

that the shadow is not hidden by material generating radiation. These conditions are fulfilled

by Sgr A*, then, the EHT collaboration determines the angular diameter of the BH shadow

dsh = 48.7±7.0µas, and also a deviation parameter δ, which quantifies the fractional difference

between the inferred shadow diameter and its expected value for a Schwarschild BH: δ =

−0.08+0.09
−0.09. For comparison, a spinning BH has −0.08 ≤ δ ≤ 0.

In [70] is presented the shadow produced by massless particles calculated considering the

null geodesics of the background metric gµν of the ModMax BH, and it is analyzed the effect

of the nonlinear parameter γ on the shadow measured by an observer co-moving with the cos-

mological expansion. As we have shown, there are two possible photon paths, corresponding

to the null geodesics of the two effective or optical metrics. One of the trajectories corresponds

to the null geodesics of the background metric, which we have denoted by g
eff(2)
µν = gµν , and

is the one studied in [70].

The second possible trajectory, the null geodesics of g
eff(1)
µν generate a second shadow and

a second absorption cross section (ACS), that we present in the following.

To calculate the radius of the shadow for a distant observer in a SSS spacetime, we can

use the optical approximation where the critical impact parameter corresponds to the radius

of the shadow rsh = bc, [118], [119], then from Eq. (5.2.21),

rsh1 =

√
e−2γr2c
f(rc)

, rsh2 =

√
r2c
f(rc)

;

recall that rc is the radius of the photosphere, i.e. the radius of the unstable circular orbits
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(UCO) of the photon, that for a NLED BH has to be calculated from the effective metric.

To compare the ModMax BH shadow with the observed angular radius of Sgr A∗ we follow

the methodology used in [119] considering the uncertainty allowed by the EHT observations,

with δ as the fractional deviation between the shadow radius rsh and the shadow radius of

a Schwarzschild BH δ = rsh/(3M
√
3) − 1. Assuming Gaussianity, the values for δ following

1σ and 2σ confidence intervals are −0.125 ≳ δ ≳ 0.005 for (1σ) and −0.19 ≳ δ ≳ 0.07 for

(2σ). In Fig. 5.14 is shown the shadow radius generated by the two effective metrics and

the corresponding to the RN BH as a function of the BH charge Q, contrasted by the EHT

for Sgr A∗. As the charge increases the radius of the shadow diminishes and the restrictions

imposed by the 1σ allow us to set bounds in the BH charge or γ. For geff(1) we are considering

different values of γ, and note that as γ increases the shadow radius is no longer in the 1σ

region. Consistency with the observations of the shadow of Sgr A∗ for RN BH restricts the

BH charge to Q ≤ 0.8M ; for the ModMax BH, this constraint becomes Qe−γ/2 ≤ 0.8M , or

γ ≥ −2 ln(0.8M/Q). For instance, if we set the value of γ = 0.12 as a lower bound of γ, the

radius of the shadow is no longer in the 1σ region for values of the charge Q ≥ 0.2991. For

lower values of γ, a greater range of Q is allowed, i.e. the constraints for γ depend on the

values of Q.

77



CHAPTER 5. LIGHT PROPAGATION IN THE VICINITY OF A MODMAX BH

0.0 0.2 0.4 0.6 0.8 1.0

3

4

5

6

7

Figure 5.14: The shadow radius by the two effective metrics of the MM BH as a function of the BH

charge. For geff(1) (dashed and dotted) we fixed γ = 0.05 and γ = 0.12; while for geff(2), γ = 0.12. The

shadow radius for the RN BH (blue line) is the reference to define the effects due to the electromagnetic

nonlinearity. The dark gray and light gray bands correspond to the 1σ and 2σ, respectively, for the

Sgr A∗ BH; the line at rsh = 3
√
3 ≈ 5.19 corresponds to the Schwarzschild’s shadow. We are taking

M = 1.

5.2.8 The shadow for an observer at infinity

Alternatively, the shadow can be determined by considering a light ray from the observer to

the UCO at an angle ψsh with respect to the radial direction. The expression for the deviation

angle associated with the shadow is [45]

sin2(ψsh)a = −(b2ca)

geff(a)ϕϕ

g
eff(a)
tt

f2(ro)

r4o


ro

. (5.2.67)

In terms of the two impact parameters we obtain

sin2(ψsh)1 = e2γb2c1
f(ro)

r2o
, sin2(ψsh)2 = b2c2

f(ro)

r2o
. (5.2.68)

The radius of the BH shadow is approximated in terms of the observer’s position and the

angle ψsh as [99], [120], [121]

rsh = ro tanψsh ≈ ro sinψsh. (5.2.69)
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Then using Eq. (5.2.21) we can calculate the radius of the shadow, assuming that the observer

is located at infinity ro 7→ ∞. Despite the existence of two values for the impact parameter,

corresponding to the two effective metrics, in this approximation, the static observer at infinity

will detect only one shadow of the ModMax BH; the reason is that there is a cancellation of

the screening factor, using the relation e2γb2c1 = b2c2 in Eqs. (5.2.68) and the approximation

in Eq. ( 5.2.69) implies that sin2(ψsh)1 = sin2(ψsh)2.

In Fig. 5.15 are illustrated the radii of the BH shadows for Schwarzschild, RN, and the

ModMax BHs, considering that the position of the observer is at infinity, ro → ∞. Notice

that the shadow radius of the ModMax BH is larger than the RN one and smaller than

Schwarzschild’s, rRN
sh < rMM

sh < rSchwsh , i.e. the radius of the shadow for the effective metric

geff(2) is located between the radius of the shadow for RN BH and the one for the Schwarszchild

BH in agreement with the results in [70].

Figure 5.15: The radii of the BH shadows for Schwarzschild, RN, and the ModMax BHs are illus-

trated considering that the position of the observer is at infinity, ro → ∞; the relative sizes of the

shadow radii are rRN
sh < rMM

sh < rSchw
sh . The gray circumference is the photosphere rc of the ModMax

BH. In this plot Q = 0.8 and γ = 0.5, M = 1 and polar coordinates are x = rsh cos(ζ), y = rsh sin(ζ).

In Fig. 5.16 is shown the shadow radius for the ModMax BH, for different values of γ,

as well as the RN’s, as a function of the charge Q, contrasted to the constraints by the EHT
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for Sgr A∗. As the charge increases the radius of the shadow decreases. In the RN BH case

constraints on the value of the charge can be deduced. In the case of the ModMax BH there

is the additional parameter γ and the radius of the shadow depends on both (γ,Q). The

screening of e−γ allows larger values for the charge; such that for the range 0 < γ < 3.6 the

ModMax BH shadow remains in the (1σ) interval.

For γ = 3.6 the shadow radius is rsh = 5.19521 with a BH charge of Q = 0.2; while

rsh = 5.18096 with a BH charge Q = 0.8; both tend to the shadow radius for the Schwarszchild

BH, rsh,SHW = 5.19615 within the uncertainty established by the (1σ) interval.
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Figure 5.16: The shadow radius of the ModMax BH (black lines) as a function of the BH charge, for

different values of γ, is compared to the shadow radius of the RN BH (black line). The dark gray and

light gray bands correspond to the 1σ and 2σ, respectively, for the Sgr A∗ BH. We are taking M = 1

5.2.9 Absorption cross section

On the plane of a distant observer, the boundary of the BH shadow marks the apparent image

of the photon region that separates capture orbits from scattering orbits. The absorption

cross-section (ACS) originates in the photons moving in UCO that are captured by the BH;

in the limit of geometrical optics [122] the ACS is given by σa = πb2c , with bc being the impact
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parameter of the UCO. For the ModMax BH, due to the existence of two impact parameters

corresponding to the two effective metrics Eqs. (5.1.4) and (5.1.5), there are two ACS,

σa = πb2ca, a = 1, 2. (5.2.70)

that are shown in Fig. 5.17. The relation between the two ModMax BH ACS is σ2 = e2γσ1 and

the relative magnitude compared with Schwarzschild and RN ACS is σSchw > σ2 > σRN > σ1,

in agreement with the shadow sizes.

-50 0 50

-50

0

50

Figure 5.17: We plot the absorption cross sections (ACS) of the Shwarzschild, RN, and the two

effective metrics of the ModMax BH. The ACS for the effective metric geff(1) is the black circle (the

smallest), and for the effective metric geff(2) is the gray one. The ACS for the effective metric geff(2) is

larger than the RN one. The larger ACS corresponds to the Schwarszchild BH. This plot is in polar

coordinates, with x = rsh cos(ζ), y = rsh sin(ζ). The chargeless BH is favored by observations. We are

taking M = 1.
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5.3 Conclusions

Coupling the ModMax nonlinear electrodynamics with the Einstein equations, static spher-

ically symmetric solutions with horizons have been found in [93], characterized by the pa-

rameters of mass, electric and/or magnetic charges, and the ModMax parameter γ. It turns

out that the ModMax BH metric has the form of the RN metric with a charge screened

by the factor e−γ/2. To study light propagation in the vicinity of the ModMax BH as the

background metric, we determine the two effective metrics. One of the consequences of the

NLED conformal invariance is that one of the effective metrics turns out to be the background

metric, g
eff(2)
µν = gµν , therefore the studied effects (phase velocities, light trajectories, light ray

deflection, redshift of light coming from the BH, shadow) are qualitatively the same as the

ones for massless particles for a RN BH, but with a smaller charge, due to the screening

produced by the nonlinear parameter γ, in the form of Q2 7→ e−γQ2. While the effects due

to the second effective metric g
eff(1)
µν are more interesting and cannot be deduced from the

background metric.

We emphasize that while the massless particle effects of the ModMax BH background met-

ric (equivalently to g
eff(2)
µν ) can be described as a transition from the RN to the Schwarzschild

BH, and approaching Schwarzschild as γ increases, the results provided by the second effective

metric (g
eff(1)
µν in our work) for the photon behavior cannot be deduced from the geometric or

background metric of the electromagnetic nonlinear charged BH.

The results presented in this chapter are published in [123]

E. Guzman-Herrera, N. Breton,

“Light propagation in the vicinity of the ModMax black hole”

Journal of Cosmology and Astroparticle Physics, JCAP 01, 041 (2024) ,

DOI 10.1088/1475-7516/2024/01/041

82



Chapter 6

Comparative of the three nonlinear

electrodynamics

Along this thesis, we have determined the phase velocities of light moving in three different

NLEDs; although the parameter of each NLE is different we would like to know which NLED

is the most effective in slowing down light velocity in a magnetic or electric background,

for instance. Or regarding NLED coupled to gravity, we can compare the shadows of the

respective black hole solutions, test their shadows, and determine the ranges of their respective

parameters (µ for EH, b for BI, and γ for ModMax), for which these shadows are in agreement

with the observational evidence of Sagittarius A∗.

Therefore in this chapter, we focus on the comparison between different NLEDs. First,

we compare the phase velocities of propagating light in a magnetic or electric background in

a Minkowski spacetime, for three different observers, one of them static, another in uniform

motion, and a third one in accelerated motion.

Then, the shadows produced by the static spherically symmetric black hole solutions of the

different NLEDs coupled to gravity are compared with the observed Sagittarius A∗ shadow.
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6.1 Phase velocities

In this section we examine the phase velocities corresponding to the three NLEDs, considering

the Minkowski spacetime as the background metric with a purely magnetic field B⃗ = Bxx̂+

Bz ẑ as the background. We calculate the phase velocities for the case of a static observer, i.e.

no coordinate transformation is applied to the effective metrics. Then, the phase velocities

when applying a Lorentz boost and finally as measured in an accelerated frame.

6.1.1 Static observer

We recall the phase velocities corresponding to the three NLEDs addressed. To make the

comparison we consider a magnetic background field B in Minkowski spacetime and light

propagating along the z direction.

For the EH NLED, recalling Eqs. (3.2.12) and (3.2.14)

v2EH1 = 1− 14µB2
x

10B2µ+ 1
, v2EH2 = 1− 8µB2

x

1− 4B2µ
(6.1.1)

where µ is related to the fine structure constant α = 1/137.

For the BI NLED, there is no birefringence, and the phase velocity is Eq. (4.3.2)

v2BI = 1− B2
x

b2 +B2
(6.1.2)

with b being the maximum attainable electric or magnetic field.

For the ModMax NLED, there is birefringence and one of the light trajectories is the one

in vaccum, with phase velocity v2 = c2 = 1. While the other one is

v2MM = 1− 2Bx2 tanh(γ)

B2[tanh(γ) + 1]
(6.1.3)

We plot the phase velocities as a function of the corresponding adimensional parameters:

µB2 for EH; B2/b2 for BI; and the ModMax NLE the phase velocity depends on Bx/B, such

that the diminishing in ModMax case is constant. In Fig. 6.1 we observe the differences in

the diminishing of the phase velocity for the three NLED theories.

The phase velocities when considering an electric background field in a Minkowski space-

time are analogously analyzed.
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Figure 6.1: The phase velocities in the z−direction for three NLEDs are plotted. The gray lines

corresponds to the phase velocity of a wave in the presence of an EH magnetic field. The black dotted

line corresponds to the phase velocity of a wave in the presence of a BI background field. The black

solid and dashed lines vMM = 0.990895 corresponds to the value for the light velocity in vacuum in

ModMax NLED. To the right, it is zooming the differences between EH and BI, which are qualitatively

similar. We are considering the values of Bx2/B2 = 0.1.

The two possible phase velocities for the EH NLED are given by

v2EH1,E = 1− 14E2
xµ

4E2µ+ 1
, v2EH2,E = 1− 8E2

xµ

12E2µ+ 1
(6.1.4)

For the BI NLED, since there is no birefringence,

v2BI,E = 1− E2
x

b2
(6.1.5)

While phase velocity in a ModMax NLED,

v2MM,E = 1− 2E2
x tanh(γ)

E2(tanh(γ) + 1)
(6.1.6)

The behavior at the order µE2, E
2

b2
∼ 10−2 is the same as the one for the magnetic background

field. Moreover, the phase velocities for the wave in the presence of ModMax magnetic and

electric fields in Eqs. (6.1.3) and (6.1.6) have the same dependence on the magnitude of the

fields, a consequence of the dual invariance required by ModMax theory.
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6.1.2 Observer in uniform motion

To determine phase velocities measured by an observer in uniform motion we perform a

Lorentz boost. Previously this situation was only considered for the EH NLED. The phase

velocities for the BI and ModMax NLEDs are calculated to complete the comparison.

For EH NLED recall Eqs. (3.4.7) and (3.4.8) for the phase velocities,

vL,EH1 =

(
β2L − 1

)√
(10B2µ+ 1) (10B2µ− 14B2

xµ+ 1)− 14βLB
2
xµ

β2L (−10B2µ+ 14B2
xµ− 1) + 10B2µ+ 1

(6.1.7)

vL,EH2 =

(
β2L − 1

)√
(4B2µ− 1) (4B2µ+ 8B2

xµ− 1)− 8βLB
2
xµ

β2L (4B2µ+ 8B2
xµ− 1)− 4B2µ+ 1

(6.1.8)

For the BI theory, where there is no birefringence,

vL,BI =

(
β2L − 1

)√
(b2 +B2) (b2 +B2 −B2

x) + βLB
2
x(

1− β2L
)
(−b2 −B2)− β2LB

2
x

(6.1.9)

There is birefringence for the ModMax theory, but, the phase velocity due to one of the

effective metrics is light velocity in vacuum c, and is invariant under Lorentz transformations.

The second effective metric gives the phase velocity

vL,MM =

(
β2L − 1

)√
B2(tanh(γ) + 1) ((B2 − 2B2

x) tanh(γ) +B2) + 2βLB
2
x tanh(γ)

B2
(
β2L − 1

)
+ tanh(γ)

(
B2
(
β2L − 1

)
− 2β2LB

2
x

) (6.1.10)

In Fig. 6.2 we plot the phase velocities Lorentz-transformed considering orders of O(µB2) for

EH, O(B2/b2) for BI and first order in γ for ModMax

vL,EH1 = 1− 14B2
xµ

(
1− 1− 3βL

2(1− βL)

)
+O(µ2) (6.1.11)

vL,EH2 = 1− 8B2
xµ

(
1− 1− 3βL

2(1− βL)

)
+O(µ2) (6.1.12)

vL,BI = 1− B2
x

b2

(
1− βL + 3

2(βL + 1)

)
+O(1/b4) (6.1.13)

vL,MM = 1− γB2
x

B2

(
1− 2βL

1− βL

)
+O(γ2) (6.1.14)

While the behavior of the curves is qualitatively similar to the situation in the absence of

motion of the frame the diminishing in the value of the phase velocities increases. In Chapter

3, the analogy between an effective optical metric and the effect of a material medium was
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Figure 6.2: The phase velocities in the z-direction under a Lorentz transformation along z are plotted

for the EH, BI, and ModMax NLEDs as follows: Gray lines with an EH background; black dotted lines

for a BI background field and the black solid and dashed lines are the phase velocity of light through

an intense ModMax background. We are considering the values of B2
x/B

2 = 0.5, and βL = 0.7.

introduced; in this context, we can interpret the Lorentz transformation as the movement

of the medium. The velocity of the medium, Eq. (3.4.6), is now a function of the Lorentz

parameter βL = v/c and the velocity of the propagating wave vL. The analog medium

velocities for the three NLEDs are listed and plotted in Fig. 6.3. For the NLED background,

if the medium moves opposite to the propagating wave, it reaches very low values in the

ranges µB2, B2/b2 ∼ 10−2, respectively for EH and BI NLEDs, the medium velocity is close

to zero. For the ModMax background, when the medium moves opposite to the propagating

wave the diminishing in the velocity is more evident, as is appreciated in Figure 6.3.

VEH1 =
14βLB

2
xµ(

1− β2L
)√

(1− 4B2µ) (−4B2µ+ 14B2
xµ+ 1)

vL,EH1 (6.1.15)

VEH2 =
8βLB

2
xγ

2
Lµ√

(1− 12B2µ) (−12B2µ+ 8B2
xµ+ 1)

vL,EH2 (6.1.16)

VBI = − βLB
2
xγL√

b2 (b2 +B2
x)
vL,BI (6.1.17)

VMM = − 2βLB
2
xe

γ sinh(γ)

B2
(
1− β2L

)√B2
x(e

2γ−1)
B2 + 1

vL,MM (6.1.18)
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Figure 6.3: The medium velocities are plotted for the EH, BI, and ModMax NLEDs. Gray lines

correspond to an EH background, the black dotted line to a BI background, and the black solid

and dashed lines to the ModMax background. In the case of ModMax and BI, we note that the

medium velocity moves in the opposite direction to the propagating wave (z). We are taking values

of: B2
x/B

2 = 0.5, γ = 0.1 and γ = 0.3 and βL = 0.7

6.1.3 The accelerated frame

In Chapter 4 we determined the phase velocity of light rays propagating in a purely magnetic

BI background as seen by an accelerated observer. Then, in this section, we calculate the

case where the light rays propagate in purely magnetic EH and ModMax backgrounds. The

phase velocities measured by an accelerated observer are listed below

va,EH1

1 + aZ
==

−7B2
xµ sinh(2aT ) +

√
(10B2µ+ 1) (10B2µ− 14B2

xµ+ 1)

14B2
xµ sinh

2(aT ) + 10B2µ+ 1
(6.1.19)

va,EH2

1 + aZ
=

4B2
xµ sinh(2aT )−

√
(4B2µ− 1) (4B2µ+ 8B2

xµ− 1)

−8B2
xµ sinh

2(aT ) + 4B2µ− 1
(6.1.20)

va,BI

1 + aZ
=

−B2
x sinh(2aT ) + 2

√
(b2 +B2) (b2 +B2 −B2

x)

2B2
x sinh

2(aT ) + 2b2 + 2B2
(6.1.21)

va,MM

1 + aZ
=

−B2
x sinh(γ) sinh(2aT ) +

√
B4e2γ −B2B2

x (e
2γ − 1)

2B2
x sinh(γ) sinh

2(aT ) +B2eγ
(6.1.22)

In Fig. 6.4 we plot the phase velocities for the accelerated observer considering orders of

O(µB2) for EH, O(B2/b2) for BI and O(µ for ModMax

va,EH1

1 + aZ
= 1− 7B2

xµ (1 + 2 sinh(aT )(sinh(aT ) + cosh(aT ))) +O(µ2) (6.1.23)
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va,EH2

1 + aZ
= 1− 4B2

xµ (1 + 2 sinh(aT )(sinh(aT ) + cosh(aT ))) +O(µ2) (6.1.24)

va,BI

1 + aZ
= 1− B2

x

2b2
(1 + 2 sinh(aT )(sinh(aT ) + cosh(aT ))) +O(1/b4) (6.1.25)

va,MM

1 + aZ
= 1− B2

xγ

B2
(1 + 2 sinh(aT )(sinh(aT ) + cosh(aT ))) +O(γ2) (6.1.26)
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Figure 6.4: The phase velocities as measured by an accelerated observer are plotted for the EH,

BI, and ModMax NLEDs. Gray lines correspond to an EH background. As the field increases, we

note that the most effective NLED in diminishing the velocity is EH. The propagating wave in the BI

background is the one that barely diminishes.

6.2 Black Holes

In Chapter 5 we considered the black hole solution of the ModMax NLED coupled to Einstein

gravity. For the BI and ModMax NLEDs, there are as well static and spherically symmetric

solutions that also admit a black hole interpretation. Therefore we address the BHs corre-

sponding to the three NLEDs and compare the metric functions and the resulting radii of their

shadows as seen by an observer at infinity and compare them with the observed Sagittarius

A∗ shadow.
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CHAPTER 6. COMPARATIVE OF THE NONLINEAR ELECTRODYNAMICS

6.2.1 Metric functions

In this section, we consider the corresponding BH metrics as the background metrics. It is

interesting to compare the metric functions for the BHs of the three NLEDs in consideration

with one of the Reissner-Nordstrom, the static spherically symmetric solution of the coupled

Einstein-Maxwell equations. For the static spherically symmetric line element

ds2 = −f(r)dt2 + dr2

f(r)
+ r2dΩ, (6.2.1)

The corresponding metric functions f(r) for Schwarzschild, Reissner-Nordstrom (RN),

Euler-Heisenberg (EH), Born-Infeld (BI), and ModMax (MM), are, respectively,

fSchw.(r) = 1− 2M

r
(6.2.2)

fRN (r) = 1− 2M

r
+
Q2

r2
(6.2.3)

fEH(r) = 1− 2M

r
+
Q2

r2
− µQ4

20r6
(6.2.4)

fBI(r) = 1− 2M

r
+

2

3
b2r2

(
1−

√
Q2

b2r4
+ 1

)
+

2Q2

3r

√
b

Q
F

[
ArcCos

(
br2

Q − 1

br2

Q + 1

)
,
1√
2

]
(6.2.5)

fMM (r) = 1− 2M

r
+
e−γQ2

r2
(6.2.6)

In Fig. 6.5 we plot the metric functions for the Schwarschild, RN, EH, BI and ModMax

black holes, when we consider a BH charge of Qe = 0.9, for b > 0.7, f(r) is similar to the one

for RN, while if b < 0.7, the metric function f(r) is similar to Schwarzschild as established in

[124].

6.2.2 The shadow of the black holes

In Chapter 5 we calculated the radius of the shadow of the ModMax BH, now we complete

the study with the shadows of the EH and BI black holes and compare it to the RN BH;

we consider an observer at infinity. Following Eq. (5.2.68) we obtain the deviation angle

associated with the shadow. The critical impact parameters are calculated using Eq. (5.2.20)
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Figure 6.5: The metric functions f(r) for the black holes considered are shown. The radii of the

event horizons are the intersections of the corresponding metric functions with the r−axis.

and are listed below

b2c,EH1 =
r2c

fEH(rc)

1− 10µQ2

r4c

1 + 4µQ2

r4c

bc,EH2 =
r2c

fEH(rc)

1 + 4µQ2

r4c

1 + 12µQ2

r4c

(6.2.7)

bc,BI =
r2c −

Q2

b2r2c

fBI(rc)
(6.2.8)

bc,MM1 =
e−2γr2c
fMM (rc)

bc,MM2 =
r2c

fMM (rc)
(6.2.9)

The NLED theories that present birefringence have two values for the critical impact

parameter, corresponding to the two effective metrics. Using Eq. (5.2.69) we obtain the

radius of the BH shadow

r2sh,EH1 = r2c
fEH(ro)

fEH(rc)

r4c − 10Q2µ

r4c + 4Q2µ

r4o + 4Q2µ

r4o − 10Q2µ
(6.2.10)

r2sh,EH2 = r2c
fEH(ro)

fEH(rc)

r4c + 4Q2µ

r4c + 12Q2µ

r4o + 12Q2µ

r4o + 4Q2µ
(6.2.11)

r2sh,BI =
fBI(ro)

fBI(rc)

r4o
r2c

Q2 − b2r4c
Q2 − b2r2o

(6.2.12)

r2sh,MM = rc2
fMM (ro)

fMM (rc)
(6.2.13)
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As was established in Chapter 5, although there are two critical impact parameters for

the ModMax BH, an observer located at infinity observes only one shadow, meanwhile, for

the EH BH, there are two shadows.

In Fig. 6.6, assuming that the observer is located at infinity ro → ∞, we plot the radii of

the BH shadows for Schwarzschild, RN, BI, EH, and ModMax BHs, considering the position

of the observer at infinity. The radius of the shadow of the Schwarzschild BH is the larger one,

for a value of the EH nonlinear parameter µ = 0.1, rSH > rMM > rRN > rEH2 > rEH1 > rBI

and µ = 0.5 rSH > rMM > rRN > rBI > rEH2 > rEH1. As µ increases, the radius of the

shadow becomes smaller.
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Figure 6.6: The radii of the BH shadows for Schwarzschild, RN, EH, BI, and ModMax BHs are

illustrated considering an observer at infinity, ro → ∞; the relative sizes of the shadow radii are

rSH > rMM > rRN > rBI > rEH2 > rEH1. In this plot Q = 0.8 and the nonlinear parameters

µ = 0.5, b = 0.7, γ = 0.5 and polar coordinates are x = rsh cos(ζ), y = rsh sin(ζ). We are taking

M = 1.

As in Fig. 5.16 we show in Fig. 6.7 the shadow radius for the BHs in consideration as a

function of the charge Q, contrasted to the constraints by the EHT for Sgr A∗. As the charge

increases the radius of the shadow decreases.

We note that the radius of the shadow for BI and the second solution of EH behave

similarly for values of the nonlinear parameters b = 0.7, µ = 0.5. For the values of the

nonlinear parameters b = 0.7, µ = 0.5, γ = 0.5, the ModMax BH is the one that allows a
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6.2. BLACK HOLES

bigger value of the charge Q while the radius of the shadow is in the 1σ region of the plot.
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Figure 6.7: The shadow radii of the BHs in consideration as a function of the BH charge are

compared. The dotted black line indicates the radius of the Schwarzschild BH which does not depend

on the charge, the dotted line is the RN BH, the blue lines are the two shadows obtained for the EH

BH, the gray line is the BI BH shadow and the black line indicates the ModMax BH one. The dark

gray and light gray bands correspond to the 1σ and 2σ, respectively, for the Sgr A∗ BH. We are taking

M = 1.

In Fig. 6.8 we compare the radius of the shadow of the BI BH for different values of the

nonlinear parameter b. As the value of b increases, the radius of the shadow tends to the one

of the RN BH, as expected, since in the limit b → ∞ Maxwell electrodynamics is recovered.

Lower values of b restrict the values of the charge Q of the BH; for example, for a value of

b = 0.1 the maximum attainable charge for the radius of the shadow to be in the region 1σ is

Q = 0.37.
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Figure 6.8: The shadow radius of the BI BH as a function of the BH charge is compared to RN BH.

The dotted black line indicates the radius of the Schwarzschild BH, and the dotted line is the RN BH.

The gray lines are the radius of the BI BH for different values of the nonlinear parameter b. The dark

gray and light ray bands correspond to the 1σ and 2σ, respectively, for the Sgr A∗ BH. We are taking

M = 1.

In Fig. 6.9 we compare the radii of the shadow of the two solutions for the EH BH for

different values of the nonlinear parameter µ. As the value of µ increases, the allowed values

of the charge are more restricted, but the second solution (right plot) allows higher values

of Q for the same values of µ. For instance, with µ = 5, the limit value of the charge is

Q = 0.43 for the first solution and Q = 0.53 for the second solution. Decreasing the values of

µ we obtain similar limit values for the charge, for µ = 0.3, the limiting value of the charge is

Q = 0.73 for the first solution and Q = 0.76 for the second solution.

It is important to highlight that Figures 6.8 and 6.9 show that BI and EH nonlinear

theories do not allow higher values of the charge according to the corresponding nonlinear

parameters, then, if one looks for the existence of a charged black hole, neither BI or EH

NLEDs are the theories that would help to achieve that, at least in the range of supermassive

black holes.
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Figure 6.9: The shadow radius of the EH BH as a function of the BH charge Q is compared to RN

BH. The dotted black line indicates the radius of the Schwarzschild BH, and the dotted line is the

RN BH. The value lines are the radius of the EH BH for different values of the nonlinear parameter

µ. The left-hand plot corresponds to the first solution for the radius of EH BH and the right-hand

plot corresponds to the second solution for the radius of EH BH. The dark gray and light ray bands

correspond to the 1σ and 2σ, respectively, for the Sgr A∗ BH. We are taking M = 1.
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Chapter 7

Conclusions

In studying light propagation in nonlinear electrodynamics (NLED), we considered three

NLED theories: Born-Infeld (BI), Euler-Heisenberg (EH), and the more recent, modified

Maxwell (ModMax). These theories model the effects produced in vacuum of intense elec-

tromagnetic fields; the effect of these intense fields in light propagation is the slowing down

of the phase velocity. Another effect that arises due to the high intensities of the fields is

birefringence in vacuum. For the NLED theories in consideration, only the BI theory does

not present birefringence; and in the case of the ModMax theory, since it preserves conformal

symmetry, one of the light trajectories coincides with the null geodesics of the background

geometric metric, i.e. one of the two resulting optical effective metrics is the background

metric. In Chapters 4, for BI, and 3, for EH, we considered uniform electric and/or magnetic

fields in the Minkowski space as the background metric. While in Chapter 5, for the ModMax,

we addressed a black hole background and compare the NLED effects with the ones for the

linear solution of the Einstein-Maxwell equations, the Reissner-Nordstrom metric. In Chapter

6, we contrasted the slowing down of the phase velocities of the three NLED theories with

the Minkowski metric as the background metric. We note that the diminishing in the phase

velocity of the ModMax theory does not depend on the magnitude of the background fields

as is the case of the two other NLEDs under study. The NLED theory that diminishes the

phase velocity the most is the EH theory. It is important to note that when the fields satisfy
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B2/b2 ≈ 10−2 and µB2 ≈ 10−2 the diminishing in the velocities for BI and EH is similar;

it is presented in Figure 6.1. Finally, in 6.2 we consider each of the three NLED coupled to

Einstein equations and study the static spherically symmetric solution that in each case is a

NLED charged black hole (previously known); then the radius of the shadow for each of the

three NLED BHs is compared with the ones for RN and Schwarzschild BHs.

In this thesis, it was exploited the interpretation of the intense electromagnetic fields

background as a medium; for the EH theory, we also modeled the case of a flowing medium,

using a Lorentz boost on the effective metric and by writing the effective metric as a Paillevé-

Lemaitre-Gullstrand (PLG) metric, it was identified the velocity of the propagating medium

and the velocity of light through such a medium. It results that the effect of slowing down the

wave is more efficient for a boost that is parallel to the propagating light. Moreover, when we

compare the diminishing of the phase velocity in a Lorentz boosted frame, we conclude that

the NLED most effective for diminishing the phase velocity is EH.

In Chapter 3 we analyzed the slowing down of an electromagnetic wave propagating

through a very intense electromagnetic EH field background.

We presented the phase velocities of an electromagnetic wave propagating through an

intense uniform magnetic or electric background according to the truncated Euler-Heisenberg

Lagrangian; due to the wave-background interaction one electric longitudinal component,

γEw, arises affecting the polarization. The constant γ depends on three parameters: the

velocity of the propagation, the magnetic background and the EH parameter γ(β,B, µ); if the

magnetic field is such that there is no component perpendicular or parallel to the propagating

direction, B⊥ = 0 or B∥ = 0, this effect does not occur and γ = 0.

Using the NLED effective metric approach [53], [54], [73], we derived birefringence and

the two possible phase velocities of the propagating wave are presented. For intense magnetic

background fields, but such that B/Bcr ≪ 1 the velocities of the propagation slow down,

diminishing to the order of hundred thousandths as B grows, this is illustrated in Fig. 3.2.

The birefringence in the case of an electric uniform background is calculated as well.

By performing a Lorentz boost on the effective metric we model the situation of a flowing

medium. By rescaling properly the coordinates of the effective metric it acquires the form
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of a PLG metric, where the velocity of the propagating medium and the velocity of the

perturbation through such a medium are identified. We present as an example the case of

Lorentz boosts parallel and perpendicular to the propagating direction. The effect of slowing

down the wave is more efficient for a boost that is parallel to the wave propagation.

In Chapter 4 we have considered an electromagnetic wave in the optical limit, i.e. a

light ray, propagating through an intense uniform Born-Infeld (BI) background, and have

determined the phase velocities measured by an accelerated observer. For the accelerated

frame we have considered a Rindler spacetime. This situation also models an environment

with a uniform gravitational field, according to the Einstein Equivalence Principle. The

phase velocities are determined from the effective optical metric, which is equivalent to a

curved spacetime produced by the presence of the intense BI magnetic or electric field.

Using the NLED effective optical metric approach [53], [54] and then applying a Rindler

transformation, we obtain the phase velocity of the propagating wave from the null geodesics

of the transformed effective optical metric. Our treatment is valid for very strong fields; if we

consider, for instance, that B2/b2 ≈ 10−2, then the BI field is of the order of 1011 Tesla that

is ten times the critical Schwinger field or Bcr ≈ 109 Tesla. We first considered a uniform BI

magnetic background and then a purely electric background, and three different directions of

the propagating wave, with the setting shown in Figure 4.3.

For the BI magnetic background, the phase velocity of the propagating light slows sig-

nificantly for a wave moving in the same direction as the Rindler acceleration, diminishing

as B grows; conversely, the phase velocity increases for a wave moving in the directions that

are opposite and transversal to the Rindler acceleration, which we have considered as being

aẑ. The phase velocities depend on (aT ) such that the effect of increasing the acceleration is

the same as that of time elapsing. If the magnetic field component that is transversal to the

acceleration vanishes, then neither the acceleration nor the BI field have effect on the phase

velocity.

For fixed values of the BI magnetic field, the phase velocity of waves moving in the +ẑ and

+x̂ directions decrease to zero and then increase again as aT increases, while the phase velocity

of waves propagating in the −z direction approaches the one in vacuum as aT increases. In
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Figures 4.7 and 4.8, these behaviors are shown for the phase velocity squared. Recall that

these are the velocities as measured by the accelerated observer, and the relative directions

change as aT increases. Initially, the observer chases the light ray, and as it approaches the

wave, the wave’s velocity seems to decrease. Eventually, it is zero (the moment the observer

reaches the wave), and then the relative direction changes as the observer moves away from

the wave, then the wave’s velocity starts to increase. Since the accelerated frame is no longer

inertial, no special relativity light velocity invariance is expected.

We also addressed the situation of a propagating wave through an intense electric back-

ground field. The effect of the BI electric field (decreasing the phase velocity) is qualitatively

very similar to the one of the BI magnetic background, and, in the approximation taken up

to B2/b2 terms, the expressions for the phase velocities are the same apart from changing

Bi 7→ Ei. For Ez = 0 the decrease in velocity is maximized. The wave traveling in −ẑ is not

affected by the BI field and as aT increases the phase velocity reaches the one in vacuum. If

the electric field component that is perpendicular to the acceleration vanishes, then there is

no effect neither from the acceleration nor the BI field on the phase velocity, and its value is

that in vacuum.

For strong fields, when B approaches the maximum attainable BI field b, the behavior

of the phase velocities is quantitatively different depending on whether the background is

electric or magnetic. The most effective for slowing down the phase velocity is the electric

background, for all traveling directions of the light rays.

Finally, we analyzed the redshift of a light pulse sent from one accelerated object and

received by another one when the light pulses travels through the BI magnetic background.

From the trajectory of the pulse and the hyperbola worldline of the emitter and receiver, we

determined the proper time intervals elapsing between the emission of the two pulses and then

the proper time interval of the reception. Using these intervals we calculated the redshift. In

the approximation of weak fields (still very intense) and small intervals of time the expression

for the redshift shows two different contributions, one due to the acceleration of the frame

and the other one produced by the presence of the BI magnetic background, resulting in a

larger total redshift.
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In Chapter 5 we study light propagation in the vicinity of the ModMax BH as the back-

ground metric and determine the two effective metrics. One of the effective metrics is the

background metric as a consequence of the conformal invariance. We focus then on the second

effective metric, g
eff(1)
µν in our notation, which presents effects that cannot be deduced from

the background metric.

The phase velocities of the two possible light trajectories in the vicinity of the ModMax

BH are always slower than in the neighborhood of the Reissner-Nordstrom BH due to the

screening of the charge. We note that while the light pulse moves in the radial direction there

is no birefringence, only when the velocity has angular components birefringence appears.

Regarding light trajectories in the vicinity of the ModMax BH, there are two possible

unstable circular orbits (UCO); the UCO that coincides with one of the corresponding back-

ground metrics, elapses between the ones corresponding to the RN and Schwarzschild BHs.

The second UCO has a radius larger than the previously mentioned and therefore the distance

to reach the horizon is larger.

The deflection angles were determined numerically in the regime of strong deflection and

then analytically in the weak field limit using the Gauss-Bonnet theorem. From the numerical

approach, for g
eff(1)
µν we found a smaller deflection angle by a factor of e−γ additional to the

screening of the charge. The effect of NLED on the effective metric g
eff(2)
µν is only the screening

of the BH charge. In the weak field limit, we verified that for an observer located at infinity,

the light deflection angle is the same for the two effective metrics. The results for the weak

deflection angle are in agreement with the ones presented in [70]. Moreover, we present a

more accurate expression that includes three additional terms, resulting in a smaller deflection

angle, showing that in [70] the deflection is overestimated.

The redshift measured by an observer in the vicinity of the BH and by another one located

at infinity was determined, obtaining that the frequency measured by the former is larger than

the frequency measured by the latter. Due to the existence of two effective metrics, there are

two possible redshifts. In general the redshift produced by g
eff(1)
µν is smaller than the one for

the RN BH, while the one for the metric g
eff(2)
µν is larger than the one for RN and smaller than

the one of Schwarzschild BH.
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The kinematic redshift, zk is also presented, which is smaller than the previously described

redshifts z.

The radii of the shadow for the effective metrics were analyzed. Our analysis for the

effective metric g
eff(1)
µν extended the one in [70], taking into account the second possible photon

trajectory. We set constraints of acceptable pairs of BH charge and nonlinear parameter (Q, γ)

that fall in the 1σ interval of the observations of the shadow of Sagittarius A∗. For RN BH the

maximum acceptable BH charge is Q = 0.8; while for the ModMax BH, due to the screening,

with γ = 2, higher charges of Q ≈ 1.1 are allowed. For γ > 3.6 the ModMax BH shadow is

indistinguishable from the Schwarzschild’s shadow.

We emphasized that while the massless particle effects of the ModMax BH background

metric (equivalently to g
eff(2)
µν ) can be described as a transition from the RN BH to the

Schwarzschild BH, and approaching Schwarzschild as γ increases, the results provided by

the second effective metric (g
eff(1)
µν in our work) for the photon behavior cannot be deduced

from the geometric or background metric of the NLED BH. In Chapter 6 we compare the

modifications of the phase velocities correspondent to the three nonlinear electrodynamics for

the cases when no coordinate transformation is applied to the effective metrics, when applying

a Lorentz boost, and as measured by an accelerated observer.

The plots that serve the comparison are done in terms of adimensional parameters µB2

for EH and B2/b2 for BI. Still, it is important to keep in mind that the critical fields of both

nonlinear theories have a difference of two orders of magnitude between them, being the BI

theory the one with the larger critical field. Moreover, we determine that the Euler-Heisenberg

theory is the most effective in slowing down the phase velocity as the background magnetic

field increases, for all the coordinate transformations considered. We note that the ModMax

theory modifies the phase velocities by establishing a new limit for it, the phase velocity is

constant for a given magnetic background field and the diminishing in the value is due to

the nonlinear parameter γ, as this parameter increases, the new limit for the phase velocity

diminishes. When analyzing the modification of the phase velocities for a Lorentz boost, we

note that this case is the most effective in diminishing the phase velocities. At the orders of

magnitude considered, there is no difference in considering a magnetic or electric background.
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We also analyze the case of the NLEDs coupled to gravity and compare the shadows of the

black hole solutions, we can determine ranges for the nonlinear parameters µ for EH, b for BI,

and γ for ModMax, for their shadows to be in agreement with the evidence of Sagittarius A∗.

If one is looking for a charged BH, the most effective theory to do it is ModMax, as established

in Chapter 5, this theory coupled with Einstein equations results in a metric function similar

to the one for RN but with a screening charge, which allows larger values of the charge to

agree with the observations for Sgr. A∗. Meanwhile, by modifying the BI and EH nonlinear

parameters, we are not able to reach higher values of charge.

To compare of the effects of the EH and BI NLEDs, we expand the BI Lagrangian up to

1/b4 order and a term arises that depends on the two invariants squared,

LBI = −F
4
+

1

32b2
(
F 2 +G2

)
, (7.0.1)

LEH = −F
4
+
µ

4

(
F 2 +

7

4
G2

)
. (7.0.2)

In spite of the similarity, the question arises that birefringence does not happen in BI

theory. In the absence of an experiment or observation that determines one or the other as

the correct theory, we can give a possible explanation in the difference of ranges in which both

theories apply, i.e. BI theory applies for fields of the order of b = 1020V/m while EH was de-

rived for the intensities of Schwinger fields, Ecr = 1018V/m. BI considers the nonlinear effects

produced by photon splitting, while EH considers vacuum polarization. Another difference is

the symmetries that both theories fulfill; the BI theory fulfills the duality invariance while the

EH theory does not, this symmetry breaking might have its origin in the smaller intensities

of the fields that it describes. Experiments like vacuum polarization or photon splitting could

shed some light on whether one of the theories is more precise to use.
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Chapter 8

Perspectives

• Since the effects of NLED can be modeled by curved geometries that resemble the

behavior of linear electromagnetic fields in a material medium, the studied effects are

of interest not only in the context of very intense electromagnetic fields. Wave prop-

agation in material media is still a current and important theme of research, mainly

because materials exhibiting new optical properties have been produced at an accel-

erated rate in material science laboratories. Thus, the theoretical description of new

effects that can be produced in such materials could greatly impact the near-future

conception of optical processes and technological devices (see for instance, ref. [125] for

a review of magnetoelectric materials, and also refs. [126]–[132] for achievements and

devices regarding metamaterials). One of the fundamental steps in this direction is the

correlation between the optical effects and the corresponding optical coefficients in the

expansion of the polarization and magnetization of the medium in powers of the electric

and magnetic fields. After determining these correlations, the dispersion relation for

the electromagnetic waves in the material leads to the formulation of analog models,

opening a quite interesting window to investigate (in optical laboratories) phenomena

predicted to occur in the context of other physical interactions (the most famous one is

the well known Hawking radiation, whose optical analog has been measured in lab [133],

[134] ). We should also mention the great opportunity that the realm of metamaterials
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offers to research in optics since it has expanded the phenomena that can be described

(see ref. [135] for an extensive review of the subject). The demand for improved tech-

nological devices shows the importance of the study of the electromagnetic properties of

matter under the influence of other electromagnetic fields [136]. Even analog models of

gravity have contributed to the study of metamaterials due to the equivalence of light

propagation through an optical material and the one in curved spacetimes. Advances

in a general formalism to describe them can be consulted in[137].

Using the concept of effective geometry, the tensors that describe the properties of a

given material (the susceptibility tensors) can be related to a geometry where wave

propagation occurs along the same trajectories as the ones in the specific optical mate-

rial. The background spacetime can be flat or curved. The effective geometry introduces

extra contributions to the background metric adding information about the properties

of the material medium. For a historical review of the use of effective geometry in

optical materials see ref. [138], [139]. Research in this field takes advantage of the fact

that, mathematically, electromagnetic fields propagating through some material media

can be treated as propagating through an effective geometry. There are several tools

to deal with the analogy; one of them is the so-called Transformation Optics [140] that

considers that a curved path in a certain geometry is equivalent to a straight line in

another geometry, and focuses on finding the right coordinates to transform the first

geometry into the second one. For this reason, it turns out convenient to use the for-

malism of Maxwell’s equations in arbitrary coordinates, and General Relativity comes

in hand, in the sense of dealing with curved spacetimes. This method is useful if there

is a coordinate transformation to apply to a background metric. But if instead there

is a nonlinear Lagrangian for the physical system, the method established in ref. [55]

can be used to derive an effective metric for light propagation in such a medium. The

effective geometry can be used to relate the optical properties of the medium to the

properties of the background metric, as in ref. [141] or in [140].

• Recently has been revisited the idea of NLED in the early universe where quantum

corrections should be taken into account; in this context, Maxwell’s electrodynamics
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should be complemented with nonlinear electromagnetic effects. At those epochs, the

nonlinear electromagnetic fields are strongly coupled to gravity, and induce a non-

vanishing trace anomaly term (non-vanishing of the energy-momentum tensor trace)

which is zero for a theory containing only massless fields, and nonzero for a theory

containing massive field (or in a theory of gravity-NLED fields). The trace anomaly

term which can be viewed as a quantum correction to the Einstein-Hilbert action and

breaks the scale invariance in the NLED coupled to gravity theory, can generate negative

pressures and hence drive the universe to accelerate. [142].

• There is also the subject of Emergent Cosmology models that use NLED to represent

an Emergent universe. In [143] is considered inflationary expansion after Einstein’s

steady-state and cosmological parameters from observational PLANCK data exhibit

some coincidences during inflation, in this situation NLED fields can also be considered

as one of the causes of the accelerated expansion (inflation).

• In ref. [141] the consequences of birefringence of a light pulse in a curved background

and the changes in the predictions of General Relativity are examined. In ref. [144],

it is proposed a general ray tracing method for gradient-index media using Fermat’s

ray invariants. It is developed as an algorithm for any gradient-index distribution

that possesses symmetry in a given curvilinear orthogonal coordinate system. The

physical principles and calculations allow for further generalization of Snell’s law to

other variational principles or even to applications such as ray tracing in gradient-index

media describing gravitational-like behavior to the human crystalline lens. In ref. [39]

they report optical polarization measurements of an isolated neutron star, which is

evidence for vacuum birefringence. In ref. [145] they obtain a metric relation that

serves as a constitutive relation for electromagnetic fields in a material medium with

superconductor properties. Our study of light propagating in NLED backgrounds can

be enlarged in any of these directions.
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Fluidum,” Annalen der Physik, vol. 200, no. 3, pp. 507–512, 1865. doi: 10.

1002/andp.18652000313. [Online]. Available: https://doi.org/10.1002/

andp.18652000313.

[12] A. Roiti, “1st der elektrische Strom ein Aetherstrom?” Annalen der Physik,

vol. 226, no. 9, pp. 164–171, 1873. doi: 10.1002/andp.18732260912. [Online].

Available: https://doi.org/10.1002/andp.18732260912.

[13] A. Roiti, “Se la corrente elettrica sia una corrente di etere,” Il Nuovo Cimento

(1869-1876), vol. 9, no. 1, pp. 148–153, 1873.

[14] E. Lecher, “Einige elektrische Versuche mit negativem Resultate,” Repertorium

der Physik, vol. 20, pp. 151–153, 1884.

[15] O. J. Lodge, “VI. Experiments on the absence of mechanical connexion between

ether and matter,” Philosophical Transactions of the Royal Society of London.

Series A, Containing Papers of a Mathematical or Physical Character, vol. 1,

no. 189, pp. 149–166, 1897. doi: 10.1098/rsta.1897.0006. [Online]. Available:

https://doi.org/10.1098/rsta.1897.0006.

108

https://doi.org/10.1098/rstl.1677.0024
https://doi.org/10.1098/rstl.1677.0024
https://doi.org/10.1098/rstl.1677.0024
https://doi.org/10.1098/rstl.1677.0024
https://doi.org/10.1068/p270637
https://doi.org/10.1068/p270637
https://doi.org/10.1068/p270637
https://doi.org/10.1002/andp.18652000313
https://doi.org/10.1002/andp.18652000313
https://doi.org/10.1002/andp.18652000313
https://doi.org/10.1002/andp.18652000313
https://doi.org/10.1002/andp.18732260912
https://doi.org/10.1002/andp.18732260912
https://doi.org/10.1098/rsta.1897.0006
https://doi.org/10.1098/rsta.1897.0006


BIBLIOGRAPHY

[16] J. Schwinger, “On gauge invariance and vacuum polarization,” Physical Review,

vol. 82, no. 5, p. 664, 1951. doi: 10.1103/PhysRev.82.664. [Online]. Available:

https://doi.org/10.1103/PhysRev.82.664.

[17] M. Born and L. Infeld, “Foundations of the new field theory,” Proceedings of the

Royal Society of London. Series A, Containing Papers of a Mathematical and

Physical Character, vol. 144, no. 852, pp. 425–451, 1934. doi: 10.1098/rspa.

1934.0059. [Online]. Available: https://doi.org/10.1098/rspa.1934.0059.

[18] E. Heisenberg and H. Euler, “Folgerungen aus der Diracshen Theorie des Positrons,”

Zeitschrift fur Physik, vol. 98, pp. 714–732, 1936. doi: 10.1007/BF01343663.

[Online]. Available: https://doi.org/10.1007/BF01343663.

[19] H. Euler and B. Kockel, “The scattering of light by light in Dirac’s theory,”

Naturwissenschaften, vol. 23, no. 15, pp. 246–247, 1935. doi: 10.1007/BF01493898.

[Online]. Available: https://doi.org/10.1007/BF01493898.

[20] G. V. Dunne, “The Heisenberg-Euler effective action: 75 Years on,” International

Journal of Modern Physics: Conference Series, vol. 14, pp. 42–56, 2012. doi:

10.1142/S2010194512007222. [Online]. Available: https://doi.org/10.

1142/S2010194512007222.

[21] V. Weisskopf, “The electrodynamics of the vacuum based on the quantum theory

of the electron,” Kong. Dan. Vid. Sel. Mat. Fys. Med., vol. 14N6, no. 6, pp. 1–

39, 1936. doi: 10.1017/CBO9780511608223.018. [Online]. Available: https:

//doi.org/10.1017/CBO9780511608223.018.
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nuities in general relativistic nonlinear electrodynamics,” Journal of Mathemat-

ical Physics, vol. 22, no. 12, pp. 2835–2848, Dec. 1981, issn: 0022-2488. doi:

10.1063/1.524874. [Online]. Available: https://doi.org/10.1063/1.524874.

[55] V. De Lorenci, R. Klippert, M. Novello, and J. Salim, “Light propagation in non-

linear electrodynamics,” Physics Letters B, vol. 482, no. 1, pp. 134–140, 2000,

issn: 0370-2693. doi: 10.1016/S0370-2693(00)00522-0. [Online]. Available:

https://doi.org/10.1016/S0370-2693(00)00522-0.

[56] S. I. Tzenov, K. M. Spohr, and K. A. Tanaka, “Dispersion properties, nonlin-

ear waves and birefringence in classical nonlinear electrodynamics,” Journal of

Physics Communications, vol. 4, no. 2, p. 025 006, 2020. doi: 10.1088/2399-

6528/ab72c7. [Online]. Available: https://doi.org/10.1088/2399-6528/

ab72c7.

[57] G. V. Dunne and Z. Harris, “Higher-loop Euler-Heisenberg transseries struc-

ture,” Physical Review D, vol. 103, no. 6, p. 065 015, 2021. doi: 10.1103/

PhysRevD.103.065015. [Online]. Available: https://doi.org/10.1103/

PhysRevD.103.065015.

[58] P. V. Sasorov, F. Pegoraro, T. Z. Esirkepov, and S. V. Bulanov, “Generation

of high order harmonics in Heisenberg–Euler electrodynamics,” New Journal of

Physics, vol. 23, no. 10, p. 105 003, 2021. doi: 10.1088/1367-2630/ac28cb.

[Online]. Available: https://doi.org/10.1088/1367-2630/ac28cb.

[59] A. Rebhan and G. Turk, “Polarization effects in light-by-light scattering: Euler–

Heisenberg versus Born–Infeld,” International Journal of Modern Physics A,

115

https://doi.org/10.1103/PhysRevD.61.045001
https://doi.org/10.1103/PhysRevD.61.045001
https://doi.org/10.1063/1.524874
https://doi.org/10.1063/1.524874
https://doi.org/10.1016/S0370-2693(00)00522-0
https://doi.org/10.1016/S0370-2693(00)00522-0
https://doi.org/10.1088/2399-6528/ab72c7
https://doi.org/10.1088/2399-6528/ab72c7
https://doi.org/10.1088/2399-6528/ab72c7
https://doi.org/10.1088/2399-6528/ab72c7
https://doi.org/10.1103/PhysRevD.103.065015
https://doi.org/10.1103/PhysRevD.103.065015
https://doi.org/10.1103/PhysRevD.103.065015
https://doi.org/10.1103/PhysRevD.103.065015
https://doi.org/10.1088/1367-2630/ac28cb
https://doi.org/10.1088/1367-2630/ac28cb


BIBLIOGRAPHY

vol. 32, no. 10, p. 1 750 053, 2017. doi: 10.1142/S0217751X17500531. [Online].

Available: https://doi.org/10.1142/S0217751X17500531.
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[120] D. Amaro and A. Maćıas, “Geodesic structure of the Euler-Heisenberg static

black hole,” Physical Review D, vol. 102, no. 10, p. 104 054, 2020. doi: 10.

1103/PhysRevD.102.104054. [Online]. Available: https://doi.org/10.1103/

PhysRevD.102.104054.

[121] V. Perlick, O. Y. Tsupko, and G. S. Bisnovatyi-Kogan, “Black hole shadow

in an expanding universe with a cosmological constant,” Physical Review D,

vol. 97, no. 10, p. 104 062, 2018. doi: 10.1103/PhysRevD.97.104062. [Online].

Available: https://doi.org/10.1103/PhysRevD.97.104062.

[122] L. C. B. Crispino, A. Higuchi, and E. S. Oliveira, “Electromagnetic absorption

cross-section of Reissner-Nordström black holes revisited,” Physical review d,

vol. 80, no. 10, p. 104 026, 2009. doi: 10.1103/PhysRevD.80.104026. [Online].

Available: https://doi.org/10.1103/PhysRevD.80.104026.

[123] E. Guzman-Herrera and N. Breton, “Light propagation in the vicinity of the

ModMax black hole,” Journal of Cosmology and Astroparticle Physics, vol. 2024,

no. 01, p. 041, 2024. doi: 10.1088/1475-7516/2024/01/041. [Online]. Avail-

able: https://doi.org/10.1088/1475-7516/2024/01/041.

[124] N. Bretón, “Geodesic structure of the Born–Infeld black hole,” Classical and

Quantum Gravity, vol. 19, no. 4, p. 601, 2002. doi: 10.1088/0264-9381/19/4/

301. [Online]. Available: https://doi.org/10.1088/0264-9381/19/4/301.

125

https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1016/j.physrep.2021.10.004
https://doi.org/10.1088/1361-6382/acd97b
https://doi.org/10.1088/1361-6382/acd97b
https://doi.org/1088/1361-6382/acd97b
https://doi.org/10.1103/PhysRevD.102.104054
https://doi.org/10.1103/PhysRevD.102.104054
https://doi.org/10.1103/PhysRevD.102.104054
https://doi.org/10.1103/PhysRevD.102.104054
https://doi.org/10.1103/PhysRevD.97.104062
https://doi.org/10.1103/PhysRevD.97.104062
https://doi.org/10.1103/PhysRevD.80.104026
https://doi.org/10.1103/PhysRevD.80.104026
https://doi.org/10.1088/1475-7516/2024/01/041
https://doi.org/10.1088/1475-7516/2024/01/041
https://doi.org/10.1088/0264-9381/19/4/301
https://doi.org/10.1088/0264-9381/19/4/301
https://doi.org/10.1088/0264-9381/19/4/301


BIBLIOGRAPHY

[125] X. Liang, H. Chen, and N. X. Sun, “Magnetoelectric materials and devices,” APL

Materials, vol. 9, no. 4, 2021. doi: 10.1063/5.0044532. [Online]. Available:

https://doi.org/10.1063/5.0044532.

[126] L. Herrera Diez, R. Kruk, K. Leistner, and J. Sort, “Magnetoelectric materials,

phenomena, and devices,” APL materials, vol. 9, no. 5, 2021. doi: 10.1063/5.

0053631. [Online]. Available: https://doi.org/10.1063/5.0053631.

[127] W. Eerenstein, N. Mathur, and J. F. Scott, “Multiferroic and magnetoelec-

tric materials,” nature, vol. 442, no. 7104, pp. 759–765, 2006. doi: 10.1038/

nature05023. [Online]. Available: https://doi.org/10.1038/nature05023.

[128] S. Toyoda, N. Abe, and T. Arima, “Nonreciprocal refraction of light in a mag-

netoelectric material,” Physical Review Letters, vol. 123, no. 7, p. 077 401, 2019.

doi: 10.1103/PhysRevLett.123.077401. [Online]. Available: https://doi.

org/10.1103/PhysRevLett.123.077401.
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