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De hecho, me gustaŕıa expresar mi agradecimiento a todo el personal del Depar-
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compañero de cub́ıculo Saúl Valdéz, quien siempre me dio su agradable compañ́ıa
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Resumen

En este trabajo estudiamos principalmente a los espacios Poli-Bergman con peso
definidos sobre el disco unitario, los cuales son subespacios del espacio L2 con peso
definido sobre este mismo dominio. Para nosotros en particular es de importancia la
teoŕıa del formalismo extendido del espacio de Fock aplicada a este caso, aśı como
la generalización de los resultados probados por el Dr. Nikolai Vasilevski en el caso
estándar al caso con peso.

Utilizando propiedades de los elementos de una base ortonormal para el espacio
L2 con peso, el cual consiste de polinomios ortogonales, denominados polinomios
del disco o polinomios de Jacobi trasladados, se expresan varios operadores, in-
cluyendo isometŕıas puras, de forma independiente de dicha base, completando aśı
la descripción del espacio de Fock extendido descrito por los operadores de escalera
definidos en dicho espacio.

v



vi



Abstract

In this work we deal mainly with the Poly-Bergman weighted spaces defined on the
unit disk, subspaces of the weighted L2 space over the same domain, and their ele-
ments. Particularly, we take interest in the extended Fock space formalism theory
applied to this case and mean to generalize Dr. Nikolai Vasilevski’s results from the
standard to the weighted case.

Using properties of the elements of an orthonormal basis for the weighted L2

space, comprised of orthogonal polynomials referred to as disk polynomials or shifted
Jacobi polynomials, we express a variety of operators, including pure isometries, in
a basis-independent manner, hence completing a description to the extended Fock
space described by the ladder operators defined on the space.
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Introduction

Within the branch of Functional Analysis arises the theory of Hilbert spaces. One such
structure that is of much importance is the notion of function spaces: a vector space
of certain functions that satisfy a number of conditions. There are many examples one
can choose from this class of spaces, and they have varying structures and properties,
but we will restrict ourselves to the study of what is known as Bergman spaces.

Bergman spaces are function spaces that have as elements complex-valued func-
tions of one complex variable that are defined on some region of the complex plane,
and are holomorphic on it. On top of this, the functions satisfy some condition re-
garding a measure space defined over this same domain (e.g. square-integrability
with respect to the Lebesgue measure). Here we clarify that the theory of Bergman
spaces is quite vast, and we’ll only look into very specific subclass of these spaces.
However, we will deal with a slight generalization of this fact by not considering only
holomorphic functions, but poly-analytic ones. These are referred to as Poly-Bergman
spaces.

Motivated by the applications that manifest in these types of complex function
spaces, like in physics (specifically in quantum mechanics), we aim to provide a deeper
understanding of certain Poly-Bergman spaces by providing characterization for dif-
ferent objects in these spaces, that are described by the theory of the extended Fock
space formalism, which is a supplementary structure defined for Hilbert spaces in
terms of operators that act on it.

Then, to begin this work, we will proceed as follows: First, establish some back-
ground for the theories that appear in the research. Second, state the objects and
problems that we aim to study. Third, define our goals and scope while adressing our
limitations. And to conclude, give a structural outline of the document including a
succint description of the contents of each chapter.

Having said this, we elucidate what may have become a question already: what
is a poly-analytic function? And immediately after that: why are they a topic of
research? Well, to elaborate on these questions, we run a quick summary on these
mathematical objects.

Poly-analytic functions are complex-valued functions that try to generalize the
notion of analytic, or holomorphic, functions. This is done simply by attaching non-
holomorphic terms in the form of complex conjugations (implemented formally by
the Wirtinger differential operators). In due time the corresponding definitions and
properties of these functions will be stated accurately, but a broad analogy that can
be made is this: analytic functions may be expressed as power series of the variable z;
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poly-analytic functions can be expressed as series where the terms have some powers
of both variables z and z .

They were introduced in 1908 by the russian mathematician G. V. Kolossov in
his work ”Sur les probléms d’élasticité a deux dimensions”. This topic was heavily
researched by other russian mathematicians, led by Mark Benevich Balk. In recent
years this theory became relevant within operator theory, and advances were made
in applications to the theory of Hilbert spaces in mathematics, and in the theory of
quantum mechanics in physics.

Some of the main applications of the theory are seen in the fields of signal analysis,
wavelet theory and, as has been mentioned many times already, quantum mechanics.
In the words of some other authors, the main appeal of working with poly-analytic
functions, is that they are kind of a middle ground between the theory of holomor-
phic functions of a single variable, and the one with several complex variables. That
is, they provide a wider workspace than the theory of one complex variable, but are
marginally less complicated to deal with than the theory of several complex variables.

Next, we explain what we mean by the extended Fock space described by a Hilbert
space and a pair of operators defined on it, another key theory for our interests.

This notion is inspired by what Berezin and Shubin establish as the Fock space
formalism in their book ”The Schrödinger Equation”. In it, they speak of a way to
classify certain Hilbert spaces that admit a pair of mutually adjoint operators that
behave in a very specific manner. These operators take after the ladder operators that
are defined in the theory of quantum mechanics when analyzing quantum systems.

The result that Berezin and Shubin present is that any two Hilbert spaces that
have these operators, i.e. that are compatible with this structure, must be isomorphic.
However, the conditions that this equivalence warrants are much too strict.

Thus, in a recent article by the name of ”Extended Fock Space Formalism and
Polyanalytic Functions”, [9], Dr. Vasilevski explored a slight generalization of this
notion that he called the extended Fock space formalism. Essentially, he relaxes some
of the conditions of the original Fock space formalism and attempts a similar task of
characterization of Hilbert spaces. As we need some aspects of this theory, we briefly
describe it further below in the document, but refer to the original piece for the more
precise formulations and results.

So, knowing a little about the main objects of study, we now turn to explaining
what the research problem of this thesis is.

First, consider the following: Dr. Vasilevski’s generalization to the theory of
the Fock space formalism allowed for the case of the L2 space defined on the whole
complex plane using the Gaussian measure to be compatible (it is not apt for the
structure of the classical Fock space formalism). Very intuitive operators (in terms
of the Wirtinger differential operators) act as ladder operators in this space and the
classical Poly-Fock spaces are described as a by-product of this approach.

In contrast to this, when trying to apply the theory of extended Fock spaces to
the weighted L2 space on the disk, the results are not what one might expect from
the previous example.

This is because no ”intuitive” or ”obvious” combination of operators can be de-
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fined as ladder operators in this case and fit with the theory of extended Fock spaces.
In fact, in the same article of ”Extended Fock Space Formalism and Polyanalytic
Functions” Dr. Vasilevski tries to fit a few pairs of operators to no avail.

However, as it will be shown later, due to a result by Dr. Vasilevski, it is known
that those operators must exist. That is, the weighted L2 space on the disk does admit
two ”nice” enough ladder operators as the theory describes. Furthermore, they can
be computed, but only through their action upon a specific orthonormal basis for the
space.

This differs a lot from the case of the L2 space on the plane, since it does not
have this restriction attached to it. So a reasonable question one might pose is the
following: can these operators be described in a basis-independent manner? In an
article from 2022 named ”Yet Another Approach to Poly-Bergman Spaces”, [11], Dr.
Vasilevski answers affirmatively in the unweighted case. Then, what happens in the
weighted space?

The aim of this dissertation is this: answer this question for the weigthed case
and generalize Dr. Vasilevski’s results from the article ”Yet Another Approach to
Poly-Bergman Spaces”, [11].

We will mimic Dr. Vasilevski’s scheme and proceed using operators that will
be referred to as unilateral shifts. They have a very particular effect on the disk
polynomials, and using their properties, we will be able to define suitable operators
that have that same action on the elements of the basis for the space. To connect
everything, we verify that these shifts are actually a special type of operators called
pure isometries, and that they allow us to compute the correct ladder operators that
we were looking for. This way, we will be able to remove the dependance of the basis.

As one can surmise from this brief explanation of our course of action, we do
interface with some more niche concepts of the theory of Hilbert spaces, and engage
rather deeply with the theory of the extended Fock space formalism. Our main tool
in the whole work is the sequence of disk polynomials, so we operate with them time
and time again. Here we make use of Dr. Alfred Wünsche’s treatment of this poly-
nomials from his article ”Generalized Zernike or Disk Polynomials”, [12].

Some positives from our research is that the expressions we find are actually a
bit more general than our original goal, so perhaps they can be used for other pur-
poses as well. Also, we see that our results do in fact generalize Dr. Vasilevski’s
(when considering the weight equal to zero). However, it would be disingenuous to
say that there are no drawbacks in our developments. One of them is that, even if
from a theoretical point of view we successfully exhibit these representations for our
operators, in terms of computability we gain very little. This is because some of the
tools used in the construction are difficult to deal with, numerically speaking, such as
the continuous functional calculus. More of these advantages and disadvantages are
discussed at the end of the work.

Lastly, we summarize the contents of the four chapter this text is divided into.
Chapter 1 has the definitions and notation for the more general concepts that are

shared through the upcoming sections. It also includes a few auxiliary results that

CINVESTAV Departamento de Matemáticas
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are necessary to prove several results.
Chapter 2 includes the definition of a sequence of polynomials referred to as the

disk polynomials. A handful of properties of these functions is proved and it is shown
that they constitute an orthonormal basis for the weighted L2 space on the disk.
After this, the Poly-Bergman subspaces are formally defined and orthonormal basis
for these spaces are also detailed.

Chapter 3 has, as it was mentioned before, a detailed description of one of the
attempts that Dr. Vasilevski made to find the ladder operators for the weighted L2

space on the disk, so a pair of operators are defined over it, and several of their
properties are proved. In the end, it is explained why they are not compatible with
the structure that we’re looking for.

The last chapter, Chapter 4, includes another approach to finding these operators.
First, we define a pair of isometries over the weighted L2 space on the disk. We prove
some of their properties and show that these are in fact pure isometries. All of this
done with the help of the disk polynomials and their condition as an orthogonal basis.
Then, we exhibit a basis-independent form for these pure isometries, and using the
theory of the extended Fock spaces, we reconstruct the corresponding ladder operators
and also express it in a basis-independent manner.

CINVESTAV Departamento de Matemáticas



Chapter 1

Preliminaries

This first chapter is written with the intent to introduce some of the concepts that
will be used in the text. We divide it in subsections, since these notions are not all
related to one another; in this way its best compared to a list of useful mathematical
objects or facts.

The first few subsections detail some of the more general ideas and concepts that
are more or less standard in the theory. Here we establish the notation for these
objects and state any conventions or remarks about them. On the latter part of this
section, we simply state some other ancillary objects that are required further in the
analysis.

To begin, we first mention that, as the title of the work implies, the main object of
study in this thesis is poly-analytic functions on the disk. We will get to the definition
of what exactly a poly-analytic function is very shortly, but we would like to mention
that throughout the text, we will deal mainly with complex functions of one complex
variable. In particular, the functions will always be complex valued; and their domain
will mainly be the open unit disk in the complex plane, D, unless specified otherwise.

1.1 Poly-analytic Functions

We begin by defining a class of functions among the continuously differentiable func-
tions of some order defined on the disk.

Definition 1.1.1. Let n ∈ N. A function f : D → C that belongs to Cn(D) is called
n-poly-analytic or poly-analytic of order n if it satisfies the following equation:

∂n

∂ z n
f = 0,

where ∂n

∂ z n is the n-th order Wirtinger differential operator ∂
∂ z

= 1
2
( ∂
∂x

+ i ∂
∂y
).

We denote by On(D) the set of all n-poly-analyic functions on D. Granted the
linearity of the Wirtinger operator, we get that this is in fact a linear space.

5



6 Chapter 1

Notice that, in the previous definition, if n = 1, we are describing precisely the
class of holomorphic functions on D.

Essential to having a deeper understanding of these types of functions, we state
and prove a characterization of the condition of being a poly-analytic function of some
order, due to Balk, contained in his book ”Poly-analytic Functions”, [1].

This proposition reveals then, that being a poly-analytic function boils down to
being a sum of powers of z paired with some holomorphic functions.

Proposition 1.1.2. Let n ∈ N and f : D → C. Then, f is poly-analytic of order n
if and only if there exists φ0, φ1, ..., φn−1 : D → C analytic functions on D such that
the following equality holds:

f(z) =
n−1∑︂
j=0

φj(z) z
j , ∀z ∈ D.

Proof. The sufficiency of this proposition follows directly from the properties of the
Wirtinger derivative with respect to z , so we concern ourselves with the necessity
only.

We show this condition by inducting on the order of the poly-analytic function.
In particular, for n = 1 the result does hold. Then, let us suppose the proposition

is true for a natural number n and verify it for the case n+ 1.

Let f ∈ Cn(D). Suppose that f is poly-analytic of order n+ 1.
Then, by definition, f must satisfy the following equality:

∂n+1f

∂ z n+1
= 0.

Define g = ∂
∂ z
f . Clearly g is a poly-analytic function of order n.

By the induction hypothesis, there exist φ0, φ1, ..., φn−1 : D → C analytic functions
on D such that the following equality holds:

g(z) =
n−1∑︂
j=0

φj(z) z
j , ∀z ∈ D.

Next we define the following:

ψj(z) =
φj−1

j
, ∀j ∈ {1, . . . , n}.

And let ψ0(z) = f(z)−
∑︁n

j=1 ψj(z) z
j.

By definition, the functions ψj are analytic for j ̸= 0. But, we see that:

∂

∂ z
ψ0(z) =

∂

∂ z

(︃
f(z)−

n∑︂
j=1

ψj(z) z
j

)︃
= g(z)−

n−1∑︂
j=0

φj(z) z
j = 0.

CINVESTAV Departamento de Matemáticas



Preliminaries 7

So we get that all of them are analytic, and the following equality holds:

f(z) =
n∑︂

j=0

ψj(z) z
j.

1.2 Pure isometries

Before proceeding to the next subsection, we define a special type of isometry in
Hilbert spaces. To talk about what a pure isometry is, first we introduce another
concept:

Definition 1.2.1. Let H be a Hilbert space. Let V : H → H be an isometry. We
say that a subspace L of H is wandering for V if it satisfies the following condition:

V p(L) ⊥ V q(L) , ∀p, q ∈ N, p ̸= q.

Given a Hilbert space and an isometry defined on it, any wandering space for
the isometry in question then defines a countable sequence of mutually orthogonal
subspaces: the iterated images of the wandering space.

With such a sequence, one may define their orthogonal sum, which will turn out
to be a subspace of the original space. Well, a pure isometry is an isometry with a
wandering subspace such that this orthogonal sum coincides with the whole space.
Or, more precisely:

Definition 1.2.2. Let H be a Hilbert space. Let V : H → H be an isometry. We say
that V is a pure isometry if there exists L, a wandering subspace for V that satisfies:

H =
⨁︂
k∈Z+

V k(L)

This concept is defined in more specialized theory of Hilbert spaces. Pure isome-
tries are also referred to as unilateral shifts, such as in Nagy’s book ”Harmonic Anal-
ysis of Operators on Hilbert Space”, [6].

1.3 Extended Fock Space Formalism

In this section, we will present a very basic and outright laconic overview of the
theory of the ”Extended Fock Space Formalism.” This was explored in Vasilevski’s
article ”Extended Fock Space Formalism and Polyanalytic Functions”, [9], published
in 2022. In this paper, Dr. Vasilevski tries to generalize the concept of the ”Fock
Space Formalism”, that Berezin introduces in his book ”The Schrödinger Equation”.
This is an auxiliary structure that manages to characterize a certain class of Hilbert
spaces through operators defined in it.

CINVESTAV Departamento de Matemáticas



8 Chapter 1

Thus we present the more general and thorough version that Dr. Vasilevski de-
fines in his research, since we will use some results from this theory later on.

We start with the following definition:

Definition 1.3.1. Let H be a separable Hilbert space, and a : Da → H, b : Db → H,
operators defined on their natural domains, respectively (dense in H), that satisfy:

1. There exists a subspace D ⊂ Da ∩ Db dense in H and invariant under both a
and b on which they satisfy:

[a, b] = I.

2. The subspace L[1] := ker a|D is non-trivial with dimL[1] > 1.

3. The set D0, formed by linear combinations of elements from the subspaces
L[n] := bn−1L[1], n ∈ N, is dense in H.

Any Hilbert space with such operators is called the extended Fock space defined
by H, a and b.

We quickly describe some of the main properties and notation used for the study
of this type of structure.

Proposition 1.3.2. For all n ∈ N, dimL[n] = dimL[n+1].

This implies that all subspaces L[n] are of the same dimension.

Lemma 1.3.3. Let n ∈ Z+. The operators a and b restricted to L[n+1] and L[n],
respectively act as isomorphisms between the following spaces:

a|L[n+1]
: L[n+1] → L[n]

and,
b|L[n]

: L[n] → L[n+1].

This lemma justifies why these operators are sometimes referred to as lowering
and raising operators.

Proposition 1.3.4. Let n, k ∈ Z+, with n ̸= k. Then the intersection of the closed
subspaces L[n] and L[k] is trivial.

Corollary 1.3.5. Any finite number of spaces L[n] are linearly independent.

When we speak of ”linearly independent” subspaces, we mean in the following
sense:

Let V be a linear space. Consider W1, . . . ,Wn, a finite amount of subspaces of V .
We say they are linearly independent if they satisfy the next condition:

∀c1, . . . , cn ∈ C, w1 ∈ W1, . . . , wn ∈ Wn : c1w1+· · ·+cnwn = 0 =⇒ c1 = · · · = cn = 0.

CINVESTAV Departamento de Matemáticas
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Theorem 1.3.6. Let n ∈ N. An element h ∈ D0 satisfies the equation an(h) = 0 if
and only if h admits the following representation:

h =
n−1∑︂
j=0

bjhj , with hj ∈ ker a|D0 , ∀j ∈ {0, 1, . . . , n− 1}.

This theorem implies that in D0, the condition an(h) = 0 is equivalent to h
belonging to L[1] + · · ·+ L[n].

For each n ∈ N, the direct sum L[1] + · · ·+ L[n] may not be closed, even if all the
spaces L[j] are closed themselves, it depends on the minimal angle between them.

Then, for all n ∈ N, we define:

Ln := clos (L[1] + · · ·+ L[n]),

considering L1 = L[1].
Notice that the sequence {Ln}n∈N of subspaces is increasing (w.r.t. set inclusion).
This gives:

H = clos

(︃ ⋃︂
n∈N

Ln

)︃
.

Having said this, let us introduce the following spaces:

L(n) := Ln ⊖ Ln−1 = Ln ∩ L⊥
n−1 , ∀n ∈ N.

With these subspaces, we get the following representation:

H =
⨁︂
n∈N

L(n).

Before we proceed to the next subsection, we would like to show an example of
an extended Fock space.

In this case, we consider H = L2(C, λ), where λ denotes the normalized Gaussian
measure defined on the complex plane:

dλ(z) =
1

π
e−|z|2dµ(z).

Here, we define the operators a and b as follows:

a :=
∂

∂ z

and

b := − ∂

∂z
+ z I.

These operators will satisfy the conditions given in definition 1.3.1, and in partic-
ular, the subspaces L(n) turn out to be the true Poly-Fock spaces, i.e.:

L(n) = F(n)(C) , ∀n ∈ N.
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1.3.1 Special Case for Formally Mutual Adjoints

Now we pay closer attention to the special case when the operators a and b are
formally mutually adjoint.

After giving a summary of what this condition entails, we will cite the theorem
we will be using in the latter part of the work. It will be paramount to the analysis
given further below.

For this section, we use a† to refer to the operator b.

First, this proposition:

Proposition 1.3.7. Let m,n ∈ N, with m ̸= n. Then the subspaces L[m] and L[n] are
orthogonal to each other.

The mutual orthogonality of the subspaces L[n] implies then that:

Ln = clos (L[1] + · · ·+ L[n]) = L[1] ⊕ · · · ⊕ L[n]

and L[n] = L(n).

Proposition 1.3.8. The operator V defined on each L(n) acting as:

V |L(n)
=

1√
n
a† : L(n) → L(n+1)

for all n ∈ N, may be extended by continuity to a pure isometry on H.
Its adjoint V ∗ is defined by its action on the subspaces L(n) as follows:

V ∗|L(n)
=

{︄
1√
n−1

a|L(n)
: L(n) → L(n−1) n > 1,

a|L(1)
n = 1.

They satisfy (ImV )⊥ = kerV ∗ = L(1).

Corollary 1.3.9. The operators a and a† admit an extension to the common domain:

Dext =

{︄
h =

∑︂
n∈N

hn ∈ H

⃓⃓⃓⃓
hn ∈ L(n) ,

∑︂
n∈N

n∥hn∥2 <∞

}︄
,

on which they act as:

a :
∑︂
n∈N

hn ↦→
∑︂
n∈N

√
nV ∗(hn)

and,

a† :
∑︂
n∈N

hn ↦→
∑︂
n∈N

√
nV (hn)

and are mutually adjoint.

Considering the domain Dext, we can state a stronger formulation for Theorem
1.2.6.
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Lemma 1.3.10. Let n ∈ N. Then the following equality holds:

ker an = {h ∈ H | an(h) = 0} =

{︄
h ∈ H

⃓⃓⃓⃓
h =

n∑︂
j=1

(a†)j−1gj , gj ∈ ker a

}︄
= Ln.

This leads us into the main result of this section.

Theorem 1.3.11. Let H be a separable infinite dimensional Hilbert space. Then the
following are equivalent:

1) There is a pure isometry V in H.

2) The Hilbert space H admits the orthogonal sum decomposition

H =
⨁︂
n∈N

H(n)

where all H(n) have the same dimension (be it finite or infinite).

3) There are two formally adjoint lowering and raising operators a and a† that act
invariantly on a common domain dense in H, such that the following commu-
tation relation holds

[a, a†] = I,

the set L(1) = ker a is a closed subspace of H, and the set of finite linear com-
binations of elements from all spaces L(n) := (a†)n−1L(1) is dense in H.

Moreover, the subspaces H(n) in 2 are related to the operators V, a and a† as
follows:

H(1) = kerV ∗ = ker a

and

H(n) = V n−1(kerV ∗) = (a†)n−1(ker a)

for all n ∈ N, n > 1.

Essentially, this theorem establishes the equivalence between the concepts of a
pure isometry, an orthogonal sum decomposition of the space, and the admittance of
an extended Fock space structure with two mutually adjoint operators.

In fact, we will be interested in the extended Fock space structure in the L2

weighted space on the disk, and the definition of both pure isometries and the ladder
operators a and a† in it, as well as their relation with the Poly-Bergman spaces.

1.4 Weighted measure on the Disk

Now we turn to elucidate the measure space we will be working on.
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Definition 1.4.1. Let α > −1. We define the weight function (with parameter α)
wα : D → R as follows:

wα(z) :=
(α + 1)

π
(1− |z|2)α , ∀z ∈ D.

With this function, we define the new probability measure µα over D in terms of
the normalized Lebesgue measure µ defined on the disk:

dµα(z) := wα(z)dµ(z).

With this established, we get the measure space (D, lD, µα) (with lD referring to
the σ-algebra of Lebesgue measurable sets in D), which will become our main interest
from this point on.

Then, we consider the semi-normed space of square-integrable functions in D w.r.t.
the measure µα:

L2(D, µα) :=

{︄
f ∈ CD

⃓⃓⃓⃓
⃓
∫︂
D
|f(z)|2dµα(z) <∞

}︄

equipped with the semi-norm ∥ · ∥2,α : L2(D, µα) → R defined as:

∥f∥2,α :=

(︃∫︂
D
|f(z)|2dµα(z)

)︃1/2

.

Since we deal directly with functions themselves, strictly speaking we make use of
this semi-normed space. Nevertheless, we do make use of the more robust quotient
space which we introduce now:

Definition 1.4.2. Consider the measure space (D, lD, µα). We define the space of
square integrable functions as the following set:

L2(D, µα) := L2(D, µα)/N2,

where we take the quotient by the subspace of elements of semi-norm zero:

N2 :=
{︁
f ∈ L2(D, µα) | ∥f∥2,α = 0

}︁
.

Claim 1.4.3. The space L2(D, µα) is a Hilbert space, with the inner product ⟨·, ·⟩α :
L2(D, µα)× L2(D, µα) → R, given by:

⟨f, g⟩α =

∫︂
D
f(z) g(z) dµα(z) =

∫︂
D
f(z) g(z)wα(z)dµ(z) , ∀f, g ∈ L2(D, µα).

Now, from here on after, we will use the symbol L2(D, µα) to refer to either of
these spaces interchangeably, and make no distinction for the equivalence classes, in
order to lessen the burden of notation.
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1.5 Functions of compact support in D
As an auxiliary concept, we define a certain sub-collection of C(C).

Definition 1.5.1. Let f ∈ C(C). We define the support of f as the following set:

supp(f) := clos{z ∈ C | f(z) ̸= 0}.

In particular, if this set is bounded, the set itself becomes compact in C, and we
refer to f as being of compact support.

Definition 1.5.2. We define the set of functions with support contained in D as:

Cs(D) := {f ∈ C(C) | supp(f) ⊂ D}

It is clear that all functions in Cs(D) are of compact support.

We also have the following fact:

Claim 1.5.3. Cs(D) is a linear space.

All we need of this class of functions is the next theorem:

Theorem 1.5.4. The collection Cs(D) is dense in L2(D, µ).

This is a classical result from general measure theory on Euclidean spaces. We
refer to Stronberg and Hewitt’s ”Real and Abstract Analysis”, [5], book for a quick
reference.

1.6 Unbounded Operators on Hilbert Spaces

For the latter chapters, we will need some theory about unbounded operators defined
on Hilbert spaces, since we will define and handle such operators.

First, we define the spectrum of a densely defined operator.

Definition 1.6.1. Let H be a Hilbert space. Let T be a densely defined operator on
H.

A complex number λ is said to be an element of the resolvent set of T if the
densely defined operator T − λI is bijective and the inverse operator (T − λI)−1 is a
bounded operator.

This is how one defines the resolvent set for the operator T , denoted by ρ(T ).
Then one can define the spectrum set for the operator T , σ(T ), in terms of the

resolvent set as follows:
σ(T ) := C \ ρ(T )

Having defined this, now we talk about some properties about self-adjoint or
Hermitian operators.

Proposition 1.6.2. Let H be a Hilbert space. Let T be a densely defined operator
on H. Then, the following conditions are equivalent:
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1. There exists a sequence {λn}n∈N of real numbers such that:

lim
n→∞

|λn| = ∞,

and an orthonormal basis for H, {en}n∈N that satisfies:

T (en) = λnen ,∀n ∈ N.

2. The operator T has a purely discrete spectrum.

This result tells us that the fact that a self-adjoint operator is diagonal with re-
spect to a certain orthonormal basis for the space is both necessary and sufficient for
the operator to have a purely discrete spectrum.

Next, we describe what the functional calculus for self-adjoint operators is.
This is a result that guarantees that given a self-adjoint operator T defined on a

Hilbert space H, any Borel function f : R → C defines an operator on H denoted by
f(T ).

The correspondence f ↦→ f(T ) is called the functional calculus for the operator T .
We state some of the properties of the functional calculus that are relevant to us

in the following theorem.

Theorem 1.6.3. Let H be a Hilbert space. Let T be a self-adjoint operator defined
on H. Let f : R → C be a Borel function. Then the following are true:

1. ( f )(T ) = (f(T ))∗. In particular, if f is real-valued, the operator f(A) is self-
adjoint.

2. If f ̸= 0 in R, then the operator f(T ) is invertible and (f(T ))−1 = (1/f)(T ).

This is all part of the theory of unbounded operators defined on Hilbert spaces,
and both proofs of the facts stated in this section, and much more detailed descrip-
tions of the concepts touched here can be found, for example, in Schmüdgen’s book
”Unbounded Self-adjoint Operators on Hilbert Space”, [7].

1.7 Subspaces of Hilbert Spaces

Finally, we state a criterion for the closed-ness of the direct sum of two sub-spaces of
a Hilbert space.

For the result it is necessary to introduce the concept of minimal angle between
closed subspaces of a Hilbert space.

Definition 1.7.1. Let H be a Hilbert space. Let H1, H2 be two closed subspaces of
H. First we define the cosine of the minimal angle between H1 and H2 in terms of
the inner product of H as:

cosφ(m)(H1, H2) := sup
{︁
|⟨x, y⟩|

⃓⃓
x ∈ H1, y ∈ H2, and ∥x∥ = ∥y∥ = 1

}︁
.

This way, the minimal angle between H1 and H2 is defined by:

φ(m)(H1, H2) := arccos(cosφ(m)(H1, H2)).
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As mentioned, we can determine if a couple of closed subspaces are closed or not
depending on the minimal angle between them.

Theorem 1.7.2. Let H be a Hilbert space. Let H1, H2 be two closed subspaces of H
such that H1 ∩H2 = {0}. The direct sum of the subspaces H1 and H2 is closed if and
only if φ(m)(H1, H2) > 0.

A proof of this fact is available in [3, Lemma 1].

CINVESTAV Departamento de Matemáticas
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Chapter 2

Weighted L2 space and
Poly-Bergman spaces

In this chapter we will focus in the following: establishing an orthonormal basis for the
weighted L2 space on the disk, and describing the weighted Poly-Bergman subspaces.

The first one is made possible by studying the collection of functions that will
comprise our orthonormal basis, and is done in great detail. After that we define all
relevant subspaces and explore some of their properties.

2.1 Construction of an Orthonormal Basis in the

Weighted Measure L2 Space

In order to construct an orthogonal basis for the Hilbert spaces relevant in our study,
we must introduce the disk polynomials : a special family of polynomials that has very
particular properties.

They are defined through the Jacobi polynomials, so we begin describing some of
their characteristics first.

2.1.1 Jacobi polynomials

These are classical orthogonal polynomials. They can be defined in several ways, but
here we give the following definition:

Definition 2.1.1. Let n ∈ N and α, β ∈ R. The corresponding Jacobi polynomial
may be defined through the Rodrigues formula as:

P (α,β)
n (x) :=

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn

(︃
(1− x)n+α(1 + x)n+β

)︃
, x ∈ (−1, 1).

Another expression for the Jacobi polynomials:

P (α,β)
n (x) =

n∑︂
k=0

(︃
n+ α

n− k

)︃(︃
n+ β

k

)︃(︃
x− 1

2

)︃k(︃
x+ 1

2

)︃n−k

, x ∈ (−1, 1)

Next we list the most relevant properties of the Jacobi polynomials as a theorem.
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Theorem 2.1.2. Let n ∈ N and α, β ∈ R. The following properties hold

a) P
(α,β)
n (−x) = (−1)nP

(β,α)
n (x).

b) If α, β > −1 the following expression holds:

P (α,β)
n (x) =

Γ(α + n+ 1)

n! Γ(α + β + n+ 1)

n∑︂
k=0

(︃
n

k

)︃
Γ(α + β + n+ k + 1)

Γ(α + k + 1)

(︃
x− 1

2

)︃k

.

c) The polynomials obey the following orthogonality relation:∫︂ 1

−1

(1−x)α(1+x)βP (α,β)
l (x)P (α,β)

n (x)dx =
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1)
δn,l.

d) The polynomials are solutions to the following second order differential equation:

(1−x2) ∂
2

∂x2
y+(β−α−(α+β+2)x)

∂

∂x
y+n(n+α+β+1)y = 0 , x ∈ (−1, 1).

The previous results are available in [8, Chapter IV].

2.1.2 Shifted Jacobi Polynomials

We now detail a change of variables to couple with the Jacobi polynomials to trans-
form them into the shifted Jacobi polynomials.

Definition 2.1.3. We define a C1-class isomorphism ϕ : (0, 1) → (−1, 1) as:

ϕ(t) = 2t− 1 , ∀t ∈ (0, 1).

Let n ∈ N and α, β ∈ R. We define the shifted Jacobi polynomial obtained from
P

(α,β)
n as

Q(α,β)
n := P (α,β)

n ◦ ϕ (2.1)

2.1.3 Disk Polynomials

After that preamble, we define the disk polynomials and describe some of their prop-
erties. We consider a constant α > −1 that will be used from here on out. This also
determines the weighted measure on D.

Definition 2.1.4. Let m,n ∈ Z+. We define the corresponding disk polynomial :

Pα
m,n(z, z ) =

n! Γ(α + 1)

Γ(n+ α + 1)
zm−nQ(α,m−n)

n (z z ), ∀z ∈ D.

Here Q
(α,m−n)
n represents the corresponding shifted Jacobi polynomial, as was

defined above, in equation 2.1.
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Properties of the disk polynomials

We state and prove several propositions pertaining these polynomials.

Proposition 2.1.5. Let m,n ∈ Z+. Then, it holds for any z = reiθ ∈ D:

Pα
m,n(z, z) = ei(m−n)θPα

m,n(r, r).

Proof. We simply evaluate the polynomials in z = reiθ.

Pα
m,n(z, z) =

Γ(α + 1)Γ(n+ 1)

Γ(n+ α + 1)
zm−nQ(α,m−n)

n (z z )

=
Γ(α + 1)Γ(n+ 1)

Γ(n+ α + 1)
zm−nP (α,m−n)

n (2zz − 1)

=
Γ(α + 1)Γ(n+ 1)

Γ(n+ α + 1)
(reiθ)m−nP (α,m−n)

n (2(reiθ)(reθ)− 1)

= ei(m−n)θΓ(α + 1)Γ(n+ 1)

Γ(n+ α + 1)
rm−nP (α,m−n)

n (2r2 − 1)

= ei(m−n)θPα
m,n(r, r).

Now we cite a result from Wünsche’s article [12, Equations 2.4, 2.5], in which he
states two exact expressions for the disk polynomials. They will be very useful for
the next results.

Claim 2.1.6. Let m,n ∈ Z+. Then we have the following explicit representations
for Pα

m,n(z, z):

Pα
m,n(z, z) =

m!n!Γ(α + 1)

Γ(m+ α + 1)Γ(n+ α + 1)

min{m,n}∑︂
j=0

(−1)jΓ(m+ n+ α− j + 1)

j!(m− j)(n− j)
zm−jzn−j

=

min{m,n}∑︂
k=0

(−1)km!n!Γ(α + 1)(1− z z )k

k!(m− k)!(n− k)!Γ(k + α + 1)
zm−k z n−k.

Proposition 2.1.7. Let m,n ∈ Z+. For any r ∈ R such that |r| < 1, it holds that:

Pα
m,n(r, r) = Pα

n,m(r, r) and is a real number.

Proof. Since r = r, the expression in Claim 2.1.6 becomes symmetric with respect to
m and n. This yields the desired equation.

Proposition 2.1.8. Let m,n ∈ Z+. Then it holds for any z ∈ D:

Pα
m,n(z, z) = Pα

n,m(z, z).
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Proof. First we write z in polar coordinates and use the two previous propositions:

Pα
m,n(z, z) = Pα

m,n(re
iθ, re−iθ) = ei(m−n)θPα

m,n(r, r)

= ei(n−m)θPα
m,n(r, r) = ei(n−m)θPα

n,m(r, r) = Pα
n,m(z, z)

Lemma 2.1.9. Let m,n, l ∈ Z+, with m − n > −1. Then it holds the following
equality:∫︂ 1

0

r(1−r2)αPα
l+m−n,l(r, r)P

α
m,n(r, r)dr =

m!l!Γ(α + 1)2

2(n+m+ α + 1)Γ(m+ α + 1)Γ(l + α + 1)
δn,l.

Proof. We start from the orthogonality relation of the Jacobi polynomials (Theorem
2.1.2 c).∫︂ 1

−1

(1−x)α(1+x)βP (α,β)
l (x)P (α,β)

n (x)dx =
2α+β+1

2n+ α + β + 1

Γ(n+ α + 1)Γ(n+ β + 1)

n!Γ(n+ α + β + 1)
δn,l.

Then, apply the change of variables x = 2r2 − 1 and substitute β = m − n to
obtain the following equation:∫︂ 1

0

r(1− r2)αr2(m−n)P
(α,m−n)
l (2r2 − 1)P (α,m−n)

n (2r2 − 1)dr = Γ(n+ α + 1)l!

2(n+m+ α + 1)n!Γ(m+ α + 1)
δn,l. (2.2)

Next, consider the two following equalities:

P
(α,m−n)
l (2r2 − 1) =

Γ(l + α + 1)

l!Γ(α + 1)
rn−mPα

l+m−n,l(r, r).

P (α,m−n)
n (2r2 − 1) =

Γ(n+ α + 1)

n!Γ(α + 1)
rn−mPα

m,n(r, r).

Now putting these into equation 2.2 we get the desired relation:∫︂ 1

0

r(1−r2)αPα
l+m−n,l(r, r)P

α
m,n(r, r)dr =

m!l!Γ(α + 1)2

2(n+m+ α + 1)Γ(m+ α + 1)Γ(l + α + 1)
δn,l.

To end this section, we include some recurrence relations regarding the indices of
the disk polynomials.

Theorem 2.1.10. The disk polynomials obey the following relations:

For all m,n ∈ Z+, with n ≥ 1

(m+ n+ 1 + α)zPα
m,n(z, z ) = (m+ 1 + α)Pα

m+1,n(z, z ) + nPα
m,n−1(z, z )

and with m ≥ 1,

(m+ n+ α + 1) z Pα
m,n(z, z ) = (n+ 1 + α)Pα

m,n+1(z, z ) +mPα
m−1,n(z, z )
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With respect to the Wirtinger operator, they satisfy:

(m+ n+ 1+ α)(1− z z )
∂

∂z
Pα
m,n(z, z ) = m(n+ 1+ α)

(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

and,

(m+ n+1+α)(1− z z )
∂

∂ z
Pα
m,n(z, z ) = n(m+1+α)

(︁
Pα
m,n−1(z, z )−Pα

m+1,n(z, z )
)︁

for all m,n ∈ Z+, considering m ≥ 1 and n ≥ 1, respectively.

Proof. We proceed as follows: we show the first and third recurrence relations, and
the other follow simply by conjugating the former ones.

For the first one, we take m,n ∈ Z+, with n ≥ 1.
We use the following explicit representation for the disk polynomials from Claim

2.1.6:

Pα
m,n(z, z ) =

m!n!Γ(α + 1)

Γ(m+ α + 1)Γ(n+ α + 1)

min{m,n}∑︂
j=0

(−1)jΓ(m+ n+ α− j + 1)

j!(m− j)(n− j)
zm−jzn−j (2.3)

For this proof only, we will assign some special notation for the ”constants” in
order to simplify the expressions.

Then, we define:

Aα
m,n :=

m!n!Γ(α + 1)

Γ(m+ α + 1)Γ(n+ α + 1)
,

for all m,n ∈ Z+.
And also,

dαm,n(j) :=
(−1)jΓ(m+ n+ α− j + 1)

j!(m− j)!(n− j)!
,

for all m,n, j ∈ Z+, with j ≤ min{m,n}.
So equation 2.3 becomes:

Pα
m,n = Aα

m,n

min{m,n}∑︂
j=0

dαm,n(j)z
m−jzn−j (2.4)

We start by assuming that n ≤ m. Equivalently, we have that n < m+ 1.
This means that min{m,n} = n, min{m+ 1, n} = n, min{m,n− 1} = n− 1.
Then, consider the following expressions:

(m+ 1 + α)Pα
m+1,n(z, z ) = (m+ 1 + α)Aα

m+1,n

n∑︂
j=0

dαm+1,n(j)z
m+1−jzn−j (2.5)

= (m+ 1)Aα
m,n

n∑︂
j=0

dαm+1,n(j)z
m+1−jzn−j. (2.6)
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And:

nPα
m,n−1(z, z ) = nAα

m,n−1

n−1∑︂
j=0

dαm,n−1(j)z
m−jzn−1−j (2.7)

= (n+ α)Aα
m,n

n−1∑︂
j=0

dαm,n−1(j)z
m−jzn−1−j. (2.8)

In both expressions, the constants at the beginning already coincide, save for the
terms in brackets, so they can be factored. With this, we work on the remaining
terms.

For the first polynomial, Pα
m+1,n(z, z ), using equation 2.6, we separate some of

the constants and get:

(m+ 1)
n∑︂

j=0

dαm+1,n(j)z
m+1−j z n−j = (m+ 1)

n∑︂
j=0

dαm,n(j)z
m+1−j z n−j · m+ n+ α− j + 1

m− j + 1

Then, we separate the zeroth term and further reduce the expression:

(m+ 1) dαm,n(0)z
m+1 z n · m+ n+ α + 1

m+ 1
+

n∑︂
j=1

dαm,n(j)z
m+1−j z n−j · (m+ 1)

(︃
m+ n+ α− j + 1

m− j + 1

)︃
(2.9)

= (m+ n+ α + 1) dαm,n(0)z
m+1 z n +

n∑︂
j=1

dαm,n(j)z
m+1−j z n−j · (m+ 1)

(︃
1 +

n+ α

m− j + 1

)︃
(2.10)

= (m+ n+ α + 1) dαm,n(0)z
m+1 z n +

n∑︂
j=1

dαm,n(j)z
m+1−j z n−j ·

(︃
m+ 1 +

(m+ 1)(n+ α)

m− j + 1

)︃
. (2.11)

For the second polynomial, Pα
m,n−1, using the term from equation 2.8, we shift the

index by 1, so that it starts at 1 and ends at n:

(n+ α)
n∑︂

j=1

dαm,n−1(j − 1)zm+1−j z n−j.

Then, we make some adjustments to the coefficients as well:

n∑︂
j=1

dαm,n(j)z
m+1−j z n−j ·

(︃
− j(n+ α)

m− j + 1

)︃
. (2.12)
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Now we sum the expressions from equations 2.11 and 2.12:

n∑︂
j=1

dαm,n(j)z
m+1−j z n−j ·

(︃
m+ 1 +

(m+ 1)(n+ α)

m− j + 1
− j(n+ α)

m− j + 1

)︃
+ (m+ n+ α + 1) dαm,n(0)z

m+1 z n

= (m+ n+ α + 1)
n∑︂

j=1

dαm,n(j)z
m+1−j z n−j + (m+ n+ α + 1) dαm,n(0)z

m+1 z n

= (m+ n+ α + 1)
n∑︂

j=0

dαm,n(j)z
m+1−j z n−j

= (m+ n+ α + 1) z
n∑︂

j=0

dαm,n(j)z
m−j z n−j.

Notice that the sum on the last expression coincides, without the constant Aα
m,n,

to the one corresponding to the polynomial Pα
m,n.

Thus, returning to the original expression, using equations 2.5 and 2.7:

(m+ 1 + α)Pα
m+1,n(z, z ) + nPα

m,n−1(z, z )

= (m+ n+ α + 1) z Aα
m,n

n∑︂
j=0

dαm,n(j)z
m−j z n−j

= (m+ n+ α + 1) z Pα
m,n.

Which proves the equality in this case.

Now, suppose that n > m. Equivalently, n ≥ m+ 1.
In this case, we have that min{m,n} = m, min{m+1, n} = m+1, min{m,n−1} =

m. We use the explicit description for the disk polynomials and notation as in the
last case. We proceed in a similar fashion, rearraging the two terms from the right
hand side.

That is:

(m+ 1 + α)Pα
m+1,n(z, z ) = (m+ 1 + α)Aα

m+1,n

m+1∑︂
j=0

dαm+1,n(j)z
m+1−jzn−j (2.13)

= (m+ 1)Aα
m,n

m+1∑︂
j=0

dαm+1,n(j)z
m+1−jzn−j. (2.14)

And:

nPα
m,n−1(z, z ) = nAα

m,n−1

m∑︂
j=0

dαm,n−1(j)z
m−jzn−1−j (2.15)

= (n+ α)Aα
m,n

m∑︂
j=0

dαm,n−1(j)z
m−jzn−1−j. (2.16)
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Then, like before, we work on the terms at the end without the constant Aα
m,n.

For the first polynomial, using equation 2.14, we reduce some of the coefficients,
and separate both the zeroth and m+ 1-th term:

(m+ 1)
m+1∑︂
j=0

dαm+1,n(j)z
m+1−j z n−j = (m+ 1)

m∑︂
j=1

dαm+1,n(j)z
m+1−j z n−j

+ (m+ 1) dαm+1,n(0)z
m+1 z n−j + (m+ 1) dαm+1,n(m+ 1) z n−m−1

=
m∑︂
j=1

dαm,n(j)z
m+1−j z n−j ·

(︃
m+ 1 +

(m+ 1)(n+ α)

m− j + 1

)︃
+ (m+ n+ α + 1)dαm,n(0)z

m+1 z n − (n−m)dαm,n(m) z n−m−1. (2.17)

For the second polynomial, using the expression from equation 2.16, we first shift
the index so that it begins in 1 and ends in m + 1, and then separate the m + 1-th
term:

(n+ α)
m∑︂
j=0

dαm,n−1(j)z
m−j z n−1−j

= (n+ α)
m+1∑︂
j=1

dαm,n−1(j − 1)zm+1−j z n−j

= (n+ α)
m∑︂
j=1

dαm,n−1(j − 1)zm+1−j z n−j + (n+ α)dαm,n−1(m) z n−1−m

=
m+1∑︂
j=1

dαm,n(j)z
m+1−j z n−j ·

(︃
− j(n+ α)

m− j + 1

)︃
+ (n+ α)dαm,n−1(m) z n−1−m

=
m∑︂
j=1

dαm,n(j)z
m+1−j z n−j ·

(︃
− j(n+ α)

m− j + 1

)︃
+ (n−m)dαm,n(m) z n−1−m.

(2.18)

Then, we sum the expressions from equations 2.17 and 2.18:

m∑︂
j=1

dαm,n(j)z
m+1−j z n−j ·

(︃
m+ 1 +

(m+ 1)(n+ α)

m− j + 1
− j(n+ α)

m− j + 1

)︃
+ (m+ n+ α + 1)dαm,n(0)z

m+1 z n − (n−m)dαm,n(m) z n−m−1

+ (n−m)dαm,n(m) z n−m−1

= (m+ n+ α + 1)
m∑︂
j=1

dαm,n(j)z
m+1−j z n−j + (m+ n+ α + 1)dαm,n(0)z

m+1 z n

= (m+ n+ α + 1)
m∑︂
j=0

dαm,n(j)z
m+1−j z n−j. (2.19)
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And, just as before, the sum coincides with the desired polynomial without the
constant Aα

m,n. So, using the expression from equation 2.19, and combining it with
equations 2.13 and 2.15:

(m+ 1 + α)Pα
m+1,n(z, z ) + nPα

m,n−1(z, z )

= (m+ n+ α + 1) z Aα
m,n

m∑︂
j=0

dαm,n(j)z
m+1−j z n−j

= (m+ n+ α + 1) z Pα
m,n(z, z ).

That is, the equality holds in this case as well.

Since the equality is satisfied in both cases, we have our desired recursion formula.
Now, as it was mentioned, we can derive the second relation by conjugating this

first one. Watch:
We have the statement for the first recurrence relation, but we flip the sub-indices

m and n:

(m+ n+ α + 1) z Pα
n,m(z, z ) = (n+ 1 + α)Pα

n+1,m(z, z ) +mPα
n,m−1(z, z ).

So we conjugate it all, and reduce the expression:

(m+ n+ α + 1) z Pα
n,m(z, z ) = (n+ 1 + α)Pα

n+1,m(z, z ) +mPα
n,m−1(z, z ) .

(m+ n+ α + 1) z Pα
m,n(z, z ) = (n+ 1 + α)Pα

m,n+1(z, z ) +mPα
m−1,n(z, z ).

And there we have it.

We prove the third recurring relation.
To do this, we will use the other explicit representation for the disk polynomials

from Claim 2.1.6:

Pα
m,n(z, z ) =

min{m,n}∑︂
k=0

(−1)km!n!Γ(α + 1)(1− z z )k

k!(m− k)!(n− k)!Γ(k + α + 1)
zm−k z n−k. (2.20)

Much like the previous case, we define notation for the coefficients of the polyno-
mials just for this proof.

Let:

eαm,n(k) :=
(−1)km!n!Γ(α + 1)

k!(m− k)!(n− k)!Γ(k + α + 1)
,

for all m,n, k ∈ Z+ with k ≤ min{m,n}.
Then, equation 2.20 becomes:

Pα
m,n(z, z ) =

min{m,n}∑︂
k=0

eαm,n(k)(1− z z )kzm−k z n−k. (2.21)

First we suppose that n < m. Or, equivalently, n ≤ m − 1. In this case,
min{m,n} = n, min{m− 1, n} = n, and min{m,n+ 1} = n+ 1.
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We begin manipulating the left hand side of the recurrence relation:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z )) = (m+ n+ α + 1)
∂

∂z
(Pα

m,n(z, z ))

− (m+ n+ α + 1) z z
∂

∂z
(Pα

m,n(z, z ))

= (m+ n+ α + 1)
∂

∂z
(Pα

m,n(z, z ))− z
∂

∂z

(︂
(m+ n+ α + 1) z Pα

m,n(z, z )
)︂

(2.22)

= (m+ n+ α + 1)
∂

∂z
(Pα

m,n(z, z ))− z
∂

∂z

(︂
(n+ 1 + α)Pα

m,n+1(z, z ) +mPα
m−1,n(z, z )

)︂
= (m+ n+ α + 1)

∂

∂z
(Pα

m,n(z, z ))− z (n+ 1 + α)
∂

∂z
(Pα

m,n+1(z, z ))

−mz
∂

∂z
(Pα

m−1,n(z, z )) (2.23)

Notice that one of the recurrence relations we just proved was used in the equality
2.22.

Then, we compute the three derivatives that appear in equation 2.23:

∂

∂z
(Pα

m,n(z, z )) =
∂

∂z

(︃ n∑︂
k=0

eαm,n(k)(1− z z )kzm−k z n−k

)︃
=

n∑︂
k=0

eαm,n(k)
∂

∂z

(︁
(1− z z )kzm−k z n−k

)︁
=

n∑︂
k=0

eαm,n(k) z
n−k · ∂

∂z

(︁
(1− z z )kzm−k

)︁
=

n∑︂
k=0

eαm,n(k) z
n−k ·

(︁
(m− k)(1− z z )kzm−1−k − k(1− z z )k−1 z zm−k

)︁
=

n∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

−
n∑︂

k=1

keαm,n(k)(1− z z )k−1zm−k z n+1−k

=
n∑︂

k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

+
n−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k. (2.24)
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∂

∂z
(Pα

m,n+1(z, z )) =
∂

∂z

(︃ n+1∑︂
k=0

eαm,n+1(k)(1− z z )kzm−k z n+1−k

)︃

=
n+1∑︂
k=0

eαm,n+1(k)
∂

∂z

(︁
(1− z z )kzm−k z n+1−k

)︁
=

n+1∑︂
k=0

eαm,n+1(k) z
n+1−k · ∂

∂z

(︁
(1− z z )kzm−k

)︁
=

n+1∑︂
k=0

eαm,n+1(k) z
n+1−k ·

(︁
(m− k)(1− z z )kzm−1−k − k(1− z z )k−1 z zm−k

)︁
=

n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−1−k z n+1−k

−
n+1∑︂
k=1

keαm,n+1(k)(1− z z )k−1zm−k z n+2−k

=
n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−1−k z n+1−k

+
n∑︂

k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−1−k z n+1−k. (2.25)
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And finally:

∂

∂z
(Pα

m−1,n(z, z )) =
∂

∂z

(︃ n∑︂
k=0

eαm−1,n(k)(1− z z )kzm−1−k z n−k

)︃
=

n∑︂
k=0

eαm−1,n(k)
∂

∂z

(︁
(1− z z )kzm−1−k z n−k

)︁
=

n∑︂
k=0

eαm−1,n(k) z
n−k · ∂

∂z

(︁
(1− z z )kzm−1−k

)︁
=

n∑︂
k=0

eαm−1,n(k) z
n−k ·

(︁
(m− 1− k)(1− z z )kzm−2−k − k(1− z z )k−1 z zm−1−k

)︁
=

n∑︂
k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−2−k z n−k

−
n∑︂

k=1

keαm−1,n(k)(1− z z )k−1zm−1−k z n+1−k

=
n∑︂

k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−2−k z n−k

+
n−1∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−2−k z n−k. (2.26)

With this, we substitute the expressions 2.24, 2.25 and 2.26 back into equation
2.23:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z ))

= (m+ n+ α + 1)
n∑︂

k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

+ (m+ n+ α + 1)
n−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k

− (n+ 1 + α)
n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
n∑︂

k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

−m

n∑︂
k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−1−k z n−k

−m
n−1∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−1−k z n−k. (2.27)

We will verify that all these terms reconstruct the right hand side of the desired
recurrence relation.
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To try and make this proof somewhat understandable, we will take the following
approach: we will highlight a term in equation 2.27, make some kind of modification
to it, be it separating terms or adding multiple expressions, etc, and substitute it
back again and rearrange the expression.

So, we begin:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z ))

=

[︄
(m+ n+ α + 1)

n∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

]︄

+ (m+ n+ α + 1)
n−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k

− (n+ 1 + α)
n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
n∑︂

k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

−m
n∑︂

k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−1−k z n−k

−m
n−1∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−1−k z n−k. (2.28)

We expand as follows:

(m+ n+ α + 1)
n∑︂

k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

= m
n∑︂

k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

+ (n+ α + 1)
n∑︂

k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

= m

n∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

+m(n+ α + 1)
n∑︂

k=0

eαm−1,n(k)(1− z z )kzm−1−k z n−k

= m
n∑︂

k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k +m(n+ α + 1)Pα
m−1,n. (2.29)
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We substitute back in equation 2.28, and highlight the next term to be modified:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)Pα
m−1,n

+m
n∑︂

k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

+ (m+ n+ α + 1)
n−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k

− (n+ 1 + α)
n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
n∑︂

k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

[︄
−m

n∑︂
k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−1−k z n−k

−m
n−1∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−1−k z n−k.

]︄
(2.30)

We first separate the n-th term from the first sum and then add these two expres-
sions together:

−m

n∑︂
k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−1−k z n−k

−m
n−1∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−1−k z n−k

= m(n+ 1−m)eαm−1,n(n)(1− z z )nzm−1−n

−m
n−1∑︂
k=0

(1− z z )kzm−1−k z n−k
(︁
(k + 1)eαm−1,n(k + 1)− (m− 1− k)eαm−1,n(k)

)︁
= m(n+ 1−m)eαm−1,n(n)(1− z z )nzm−1−n

+m
n−1∑︂
k=0

(1− z z )kzm−1−k z n−k
(︁
(k + 1)eαm−1,n(k + 1)− (m− 1− k)eαm−1,n(k)

)︁
.

(2.31)
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We substitute back and highlight the next terms:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)Pα
m−1,n

+

[︄
m

n∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

]︄

+ (m+ n+ α + 1)
n−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k

− (n+ 1 + α)
n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

−

[︄
(n+ 1 + α)

n∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

]︄

+m

n−1∑︂
k=0

(1− z z )kzm−1−k z n−k
(︁
(k + 1)eαm−1,n(k + 1)− (m− 1− k)eαm−1,n(k)

)︁
+m(n+ 1−m)eαm−1,n(n)(1− z z )nzm−1−n. (2.32)

For the terms highlighted we separate the n-term in both cases and add them.

m(m− n)eαm,n(n)(1− z z )nzm−1−n + (n+ 1 + α)(n+ 1)eαm,n+1(n+ 1)(1− z z )nzm−n z

= m
(−1)nm!n!Γ(α + 1)

n!(m− 1− n)!Γ(n+ α + 1)
(1− z z )nzm−1−n

− (n+ α + 1)
(−1)nm!(n+ 1)!Γ(α + 1)

n!(m− 1− n)!Γ(n+ α + 2)
(1− z z )nzm−n z

= m
(−1)nm!n!Γ(α + 1)

n!(m− 1− n)!Γ(n+ α + 1)
(1− z z )nzm−1−n

− (n+ 1)
(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )nzm−n z

=
(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )nzm−1−n

(︁
m− (n+ 1) z

)︁
=

(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )nzm−1−n

(︁
(n+ 1)(1− z z ) + (m+ n− 1)

)︁
= (n+ 1)

(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )n+1zm−1−n

+ (m− n− 1)
(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )nzm−1−n

= (n+ 1)
(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )n+1zm−1−n

+m(m− n− 1)eαm−1,n(n)(1− z z )nzm−1−n. (2.33)

And again, we substitute back and highlight the next terms. We put the additional
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terms at the end.

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)Pα
m−1,n

+

[︄
m

n−1∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

]︄

+

[︄
(m+ n+ α + 1)

n−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k

]︄

− (n+ 1 + α)
n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
n−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

+

[︄
m

n−1∑︂
k=0

(1− z z )kzm−1−k z n−k
(︁
(k + 1)eαm−1,n(k + 1)− (m− 1− k)eαm−1,n(k)

)︁]︄
+m(n+ 1−m)eαm−1,n(n)(1− z z )nzm−1−n

+m(m− n− 1)eαm−1,n(n)(1− z z )nzm−1−n

+ (n+ 1)
(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )n+1zm−1−n. (2.34)

Notice that some terms cancel out.

The next highlighted terms will be all added together. Taking into account that
they are all sums from 0 to n − 1 and within this sum, they share the powers of
1− z z , z, and z , so we focus on adding the other terms:

m(m− k)eαm,n(k)− (m+ n+ α + 1)(k + 1)eαm,n(k + 1) +m(k + 1)eαm−1,n(k + 1)−m(m− 1− k)eαm−1,n(k)

= m(m− k)
(−1)km!n!Γ(α + 1)

k!(m− k)!(n− k)!Γ(k + α + 1)

− (m+ n+ α + 1)(k + 1)
(−1)k+1m!n!Γ(α + 1)

(k + 1)!(m− 1− k)!(n− 1− k)!Γ(k + α + 2)

+m(k + 1)
(−1)k+1(m− 1)!n!Γ(α + 1)

(k + 1)!(m− 2− k)!(n− 1− k)!Γ(k + α + 2)

−m(m− 1− k)
(−1)k(m− 1)!n!Γ(α + 1)

k!(m− 1− k)!(n− k)!Γ(k + α + 1)

=
(−1)km!n!Γ(α + 1)

k!(m− 1− k)!(n− k)!Γ(k + α + 2)

(︂
m(k + α + 1)

+ (m+ n+ α + 1)(n− k)− (m− 1− k)(n− k)− (m− 1− k)(k + α + 1)
)︂

= (n+ 1 + α)(n+ 1)
(−1)km!n!Γ(α + 1)

k!(m− 1− k)!(n− k)!Γ(k + α + 2)

= −(n+ 1 + α)(k + 1)eαm,n+1(k + 1). (2.35)
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So we substitute back and highlight the next term. Again, we put the new terms
at the end:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)Pα
m−1,n

−

[︄
(n+ 1 + α)

n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

]︄

+ (n+ 1 + α)
n−1∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

+ (n+ 1)
(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )n+1zm−1−n

− (n+ 1 + α)
n−1∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )kzm−1−k z n−k. (2.36)

This next term we only separate as follows:

(n+ 1 + α)
n+1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

= m(n+ 1 + α)
n+1∑︂
k=0

eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
n+1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k

= m(n+ 1 + α)Pαm,n+ 1(z, z )

− (n+ 1 + α)
n+1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k. (2.37)

This time we add the new terms in place:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
n+1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k

+

[︄
(n+ 1 + α)

n−1∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

]︄

+ (n+ 1)
(−1)nm!Γ(α + 1)

(m− 1− n)!Γ(n+ α + 1)
(1− z z )n+1zm−1−n

−

[︄
(n+ 1 + α)

n−1∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )kzm−1−k z n−k.

]︄
(2.38)
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We add the new highlighted terms:

(n+ 1 + α)
n−1∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )kzm−1−k z n−k
(︁
z z − 1

)︁
− (n+ 1 + α)

n−1∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )k+1zm−1−k z n−k (2.39)

So we add the term back at the end:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
n+1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)(n+ 1)eαm,n+1(n+ 1)(1− z z )n+1zm−1−n

− (n+ 1 + α)
n−1∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )k+1zm−1−k z n−k. (2.40)

And we’re finally at the point we can just reduce the terms:

(m+ n+ α + 1) (1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
n+1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)(n+ 1)eαm,n+1(n+ 1)(1− z z )n+1zm−1−n

− (n+ 1 + α)
n−1∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )k+1zm−1−k z n−k

= m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
n+1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
n∑︂

k=0

(k + 1)eαm,n+1(k + 1)(1− z z )k+1zm−1−k z n−k

= m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
n∑︂

k=0

(k + 1)eαm,n+1(k + 1)(1− z z )k+1zm−1−k z n−k

− (n+ 1 + α)
n∑︂

k=0

(k + 1)eαm,n+1(k + 1)(1− z z )k+1zm−1−k z n−k

= m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁
.

Therefore, the equality holds true in this case.
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Now we detail the other case. The general idea of the proof is the exact same, so
we omit many of the computations of the terms, since they’re very similar to the first
case.

Then, we suppose m ≤ n. This allows us to get the degrees of the polynomials
that we need:

min{m,n} = m, min{m− 1, n} = m− 1, and min{m,n+ 1} = m.

We manipulate the terms just as before, so we part from equation 2.23:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = (m+ n+ α + 1)
∂

∂z
(Pα

m,n(z, z ))

− z(n+ 1 + α)
∂

∂z
(Pα

m,n+1(z, z ))−mz
∂

∂z
(Pα

m−1,n(z, z )). (2.41)

Once again we compute the derivatives from the last equation. The only thing
that changes is the degree of the polynomials that are used, so we take the expressions
from equations 2.24, 2.25, and 2.26:

∂

∂z
(Pα

m,n(z, z )) =
m−1∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

+
m−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k. (2.42)

∂

∂z
(Pα

m,n+1(z, z )) =
m−1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−1−k z n+1−k

+
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−1−k z n+1−k. (2.43)

∂

∂z
(Pα

m−1,n(z, z )) =
m−2∑︂
k=0

(m− 1− k)eαm−1,n(m)(1− z z )kzm−2−k z n−k

+
m−2∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−2−k z n−k. (2.44)
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We substitute the expressions 2.42, 2.43, and 2.44 back into equation 2.41:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) =

+ (m+ n+ α + 1)
m−1∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

+ (m+ n+ α + 1)
m−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k

− (n+ 1 + α)
m−1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

−m
m−2∑︂
k=0

(m− 1− k)eαm−1,n(m)(1− z z )kzm−1−k z n−k

−m
m−2∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−1−k z n−k. (2.45)

Then, we adopt the same approach as before, we highlight a set of terms to be
modified, and substitute it back in the equation from above. But, as we mentioned,
we omit many of the algebraic manipulations:

So, first off:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) =

+

[︄
(m+ n+ α + 1)

m−1∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

]︄

+ (m+ n+ α + 1)
m−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k

− (n+ 1 + α)
m−1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

−m

m−2∑︂
k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−1−k z n−k

−m
m−2∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−1−k z n−k. (2.46)
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We separate the constants as before:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)Pα
m−1,n(z, z )

+

[︄
m

m−1∑︂
k=0

(m− k)eαm,n(k)(1− z z )kzm−1−k z n−k

]︄

+

[︄
(m+ n+ α + 1)

m−1∑︂
k=0

−(k + 1)eαm,n(k + 1)(1− z z )kzm−1−k z n−k

]︄

− (n+ 1 + α)
m−1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

−m
m−2∑︂
k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−1−k z n−k

−m
m−2∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−1−k z n−k. (2.47)

We add the highlighted terms and put the sum at the end:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)Pα
m−1,n(z, z )

− (n+ 1 + α)
m−1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

−

[︄
m

m−2∑︂
k=0

(m− 1− k)eαm−1,n(k)(1− z z )kzm−1−k z n−k

]︄

−

[︄
m

m−2∑︂
k=0

−(k + 1)eαm−1,n(k + 1)(1− z z )kzm−1−k z n−k

]︄

+ (n+ 1 + α)
m−1∑︂
k=0

(m− k)(m+ n− k)

(k + α + 1)
eαm,n(k)(1− z z )kzm−1−k z n−k. (2.48)
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We do the same, add the highlighed terms and put the result at the end:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)Pα
m−1,n(z, z )

−

[︄
(n+ 1 + α)

m−1∑︂
k=0

(m− k)eαm,n+1(k)(1− z z )kzm−k z n+1−k

]︄

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

+ (n+ 1 + α)
m−1∑︂
k=0

(m− k)(m+ n− k)

(k + α + 1)
eαm,n(k)(1− z z )kzm−1−k z n−k

− (n+ 1 + α)
m−2∑︂
k=0

m(m− 1− k)

k + α + 1
eαm−1,n(k)(1− z z )kzm−1−k z n−k. (2.49)

We separate the term distributing the (m− k) part and complete the polynomial
Pα
m,n+1:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+m(n+ 1 + α)eαm,n+1(m)(1− z z )mzn+1−m

+ (n+ 1 + α)
m−1∑︂
k=0

keαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

+

[︄
(n+ 1 + α)

m−1∑︂
k=0

(m− k)(m+ n− k)

(k + α + 1)
eαm,n(k)(1− z z )kzm−1−k z n−k

]︄

− (n+ 1 + α)
m−2∑︂
k=0

m(m− 1− k)

k + α + 1
eαm−1,n(k)(1− z z )kzm−1−k z n−k. (2.50)
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We separate the m− 1-th term:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+

[︄
m(n+ 1 + α)eαm,n+1(m)(1− z z )mzn+1−m

]︄

+ (n+ 1 + α)
m−1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

+ (n+ 1 + α)
m−2∑︂
k=0

(m− k)(m+ n− k)

(k + α + 1)
eαm,n(k)(1− z z )kzm−1−k z n−k

+

[︄
(n+ 1 + α)(n+ 1)

(m− α)
eαm,n(m− 1)(1− z z )m−1 z n+1−m

]︄

− (n+ 1 + α)
m−2∑︂
k=0

m(m− 1− k)

k + α + 1
eαm−1,n(k)(1− z z )kzm−1−k z n−k. (2.51)

We add the two terms and put the result at the end:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
m−1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

+

[︄
(n+ 1 + α)

m−2∑︂
k=0

(m− k)(m+ n− k)

(k + α + 1)
eαm,n(k)(1− z z )kzm−1−k z n−k

]︄

−

[︄
(n+ 1 + α)

m−2∑︂
k=0

m(m− 1− k)

k + α + 1
eαm−1,n(k)(1− z z )kzm−1−k z n−k

]︄
−m(n+ 1 + α)eαm,n+1(m)(1− z z )m−1z z n+2−m. (2.52)
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We add these two terms and put the result where they were:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+

[︄
(n+ 1 + α)

m−1∑︂
k=1

keαm,n+1(k)(1− z z )kzm−k z n+1−k

]︄

− (n+ 1 + α)
m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

+ (n+ 1 + α)
m−2∑︂
k=0

(m− k)(n+ 1− k)eαm,n+1(k)(1− z z )kzm−1−k z n−k

−m(n+ 1 + α)eαm,n+1(m)(1− z z )m−1z z n+2−m. (2.53)

We shift this sum so it begins on 0 and m− 2:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
m−2∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )k+1zm−1−k z n−k

−

[︄
(n+ 1 + α)

m−1∑︂
k=0

−(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

]︄

+ (n+ 1 + α)
m−2∑︂
k=0

(m− k)(n+ 1− k)

k + α + 1
eαm,n+1(k)(1− z z )kzm−1−k z n−k

−m(n+ 1 + α)eαm,n+1(m)(1− z z )m−1z z n+2−m. (2.54)

We separate the m − 1-th term from the highlighted sum and put it at the end,
it will cancel out:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
m−2∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )k+1zm−1−k z n−k

+ (n+ 1 + α)
m−2∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )kzm−k z n+1−k

+ (n+ 1 + α)
m−2∑︂
k=0

(m− k)(n+ 1− k)

k + α + 1
eαm,n+1(k)(1− z z )kzm−1−k z n−k

−m(n+ 1 + α)eαm,n+1(m)(1− z z )m−1z z n+2−m

+m(n+ 1 + α)eαm,n+1(m)(1− z z )m−1z z n+2−m. (2.55)
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Yet again, we arrive at the stage where we can just simplify the expression:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

m,n(z, z )) = m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁

+ (n+ 1 + α)
m−2∑︂
k=0

(k + 1)eαm,n+1(k + 1)(1− z z )kzm−1−k z n−k

+ (n+ 1 + α)
m−2∑︂
k=0

(m− k)(n+ 1− k)

k + α + 1
eαm,n+1(k)(1− z z )kzm−1−k z n−k

= m(n+ α + 1)
(︁
Pα
m−1,n(z, z )− Pα

m,n+1(z, z )
)︁
. (2.56)

The last equality is obtained because the coefficients in the sums are equal but
have opposite signs.

And we get the desired recurrence relation once again.
As with the other recurrence relation, we quickly show that the other formula can

be obtained by conjugating the one we just showed.
So, we begin with the current recurrence relation, but flipping the sub-indices:

(m+n+α+1)(1− z z )
∂

∂z
(Pα

n,m(z, z )) = n(m+α+1)
(︁
Pα
n−1,m(z, z )−Pα

n,m+1(z, z )
)︁

So we conjugate both sides:

(m+ n+ α + 1)(1− z z )
∂

∂z
(Pα

n,m(z, z )) = n(m+ α + 1)
(︁
Pα
n−1,m(z, z )− Pα

n,m+1(z, z )
)︁

(m+n+α+1)(1−z z ) ∂
∂ z

(Pα
m,n(z, z )) = n(m+α+1)

(︁
Pα
m,n−1(z, z )−Pα

m+1,n(z, z )
)︁

It’s just that easy.

Remark 2.1.11. Actually, the recurrence relations that were proved in Theorem
2.1.10 can be generalized a bit to be valid for all non-negative integer indices if one
defines the polynomials with −1 as an index (be it the first or second one) as zero. Of
course, one would have to prove this, but it will not provide us with many benefits,
so we abstain from showing it.

2.2 Description of the Weighted Measure L2 Space

After the results that were laid out in the last section, we are now ready to exhibit
an orthonormal basis for the weighted L2 space on the disk.

2.2.1 Orthonormal basis for L2

To start off, we prove the orthogonality of the sequence of disk polynomials in
L2(D, µα).

We recall the orthogonality of the Fourier basis:
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Claim 2.2.1. Let m,n ∈ Z+. It holds the following relation:∫︂ 2π

0

ei(m−n)θdθ = 2πδm,n.

Lemma 2.2.2. The sequence {Pα
m,n}m,n∈Z+ is orthogonal in L2(D, µα). Furthermore,

they satisfy the following relation:

⟨Pα
k,l(z, z), P

α
m,n(z, z)⟩ =

πm!l!Γ(α + 1)2

(m+ n+ α + 1)Γ(m+ α + 1)Γ(l + α + 1)
δk,mδl,n.

Proof. We compute the corresponding inner product. Let k, l,m, n ∈ Z+.

⟨Pα
k,l(z, z), P

α
m,n(z, z)⟩ =

∫︂
D
Pα
k,l(z, z)P

α
m,n(z, z)dµα(z) =

∫︂
D
Pα
k,l(z, z)P

α
m,n(z, z)w(z)dxdy

=
α + 1

π

∫︂
D
Pα
k,l(z, z)P

α
m,n(z, z)(1− zz)αdxdy

=
α + 1

π

∫︂
D
Pα
k,l(z, z)P

α
n,m(z, z)(1− zz)αdxdy.

Next, apply a change of variables to polar coordinates.

⟨Pα
k,l(z, z), P

α
m,n(z, z)⟩ =

α + 1

π

∫︂ 1

0

∫︂ 2π

0

Pα
k,l(re

iθ, re−iθ)Pα
n,m(re

iθ, re−iθ)(1− r2)αrdθdr

=
α + 1

π

∫︂ 1

0

∫︂ 2π

0

ei(k−l)θPα
k,l(r, r)e

i(n−m)θPα
n,m(r, r)(1− r2)αrdθdr

=
α + 1

π

∫︂ 1

0

Pα
k,l(r, r)P

α
n,m(r, r)r(1− r2)α

∫︂ 2π

0

ei(k+n−(l+m))θdθ dr.

By Claim 2.2.1 we get:

⟨Pα
k,l(z, z), P

α
m,n(z, z)⟩ = 2(α + 1)δk+n,l+m

∫︂ 1

0

Pα
k,l(r, r)P

α
n,m(r, r)r(1− r2)α dr.

To further reduce the expression, we may consider the condition for the Delta to
be satisfied, since the expression would become zero otherwise; that is: k+m = l+n,
or equivalently, l = k +m− n.

Simultaneously, by Proposition 2.1.7, we may substitute Pα
n,m(r, r) for P

α
m,n(r, r).

So equation 2.2.1 becomes:

⟨Pα
k,l(z, z), P

α
m,n(z, z)⟩ = 2(α + 1)δk+n,l+m

∫︂ 1

0

Pα
l+m−n,l(r, r)P

α
m,n(r, r)r(1− r2)α dr.

Which, by Lemma 2.1.9, is in turn equal to:

⟨Pα
k,l(z, z), P

α
m,n(z, z)⟩ =

(α + 1)m!Γ(α + 1)l!Γ(α + 1)

(m+ n+ α + 1)Γ(m+ α + 1)Γ(l + α + 1)
δk+n,m+lδl,n.

Finally, the last product of deltas may be substituted by δk,mδl,n, which yields the
desired expression.
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These results prompt us to give the next definition.

Definition 2.2.3. We define a new sequence of polynomials normalizing the disk
polynomials. Let m,n ∈ N. We define the following function:

bαm,n(z) = cαm,n P
α
m,n(z, z ) , ∀z ∈ D.

where

cαm,n =
1

∥Pα
m,n∥2,α

=

√︄
(m+ n+ α + 1)Γ(m+ α + 1)Γ(n+ α + 1)

(α + 1)m!n! Γ(α + 1)2
.

By construction, we get as a result:

Proposition 2.2.4. The sequence {bαm,n}m,n∈Z+ is an orthonormal set in L2(D, µα).

Notice that the elements {bαm,n}m,n∈Z+ are multiples of the disk polynomials by
a real constant, so they satisfy most of their properties, like their relationship un-
der conjugation or the recurrence relations stated before. We will make use of these
properties for the newly defined polynomials without mention of this fact, when ap-
pliccable.

For instance, from the explicit representation of the disk polynomials (Claim
2.1.6), we get an explicit representation for the elements {bαm,n}m,n∈Z+ .

Proposition 2.2.5. For any m,n ∈ Z+, the following equality holds:

bαm,n(z) =

√︄
(m+ n+ α + 1)m!n!

(α + 1)Γ(m+ α + 1)Γ(n+ α + 1)

min{m,n}∑︂
j=0

(−1)jΓ(m+ n+ α− j + 1)

j!(m− j)!(n− j)!
zm−j z n−j , ∀z ∈ D.

Now we set out to prove that it is in fact an orthonormal basis for this space. To
do so we rely heavily on the fact that the linear span of the monomials is dense in D.
This next subsection details a proof of this fact.

2.2.2 Density of monomials in the weighted L2 space

First, we introduce some notation for the concepts to be worked on.

Definition 2.2.6. Let p, q ∈ N. We define the corresponding monomial in z and z
as the polynomial:

mp,q(z) = zp z q , ∀z ∈ D.

In general, the monomials are defined on the whole complex plane C, however, in
the arguments below

As an auxiliary facts we state an important theorem.

Theorem 2.2.7. The linear span of the sequence of monomials {mp,q}p,q∈Z+ is dense
in the normed space (C(D,C), ∥ · ∥∞).
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This is a direct result of the complex version of the Stone-Weierstrass Theorem,
since the linear span of monomials is an algebra that contains constants, separates
points and is closed with respect to complex conjugation.

And next we prove:

Theorem 2.2.8. The linear span of the sequence of monomials {mp,q}p,q∈Z+ is dense
in the normed space L2(D, µα).

Proof. In virtue of Theorem 2.2.7, it suffices to approximate functions in L2(D, µα)
by continuous functions on D, or more accurately, functions defined on the disk D
that admit a continuous extension to the circle D.

Let f ∈ L2(D, µα) and ε > 0.
Notice the following equivalence for any measurable function f : D → C,

f ∈ L2(D, µα) ⇐⇒ |f |2wα ∈ L1(D, µα) ⇐⇒ fw1/2
α ∈ L2(D, µ).

So fw
1/2
α ∈ L2(D, µ). Hence, by Theorem 1.5.4, there exists a function g ∈ Cs(D)

such that:

∥fw1/2
α − g∥2 < ε

(︃
π

α + 1

)︃1/2

.

Recall that, since g ∈ Cs(D), we have that supp(g) ⊂ D.
Now define another function h : C → C as:

h(z) =

{︄ (︁
gw

−1/2
α

)︁
(z) z ∈ D,

0 z /∈ D.

We get that h also belongs to Cs(D) (in fact, h shares the same support with g).
In particular, h is continuous (in all of C, but also) in D.

Then we compute:∫︂
D
|f − h|2dµα =

α + 1

π

∫︂
D
|f − h|2wαdµ

=
α + 1

π

∫︂
D
|f − h|2(w1/2

α )2dµ

=
α + 1

π

∫︂
D
|fw1/2

α − hw1/2
α |2dµ

=
α + 1

π

∫︂
D
|fw1/2

α − g|2dµ.

That is, ∥f − h∥2,α =
(︂

α+1
π

)︂1/2
∥fw1/2

α − g∥2. Ergo, the proposition holds.

This last theorem basically guarantees the totality of the sequence of disk poly-
nomials. We need only the following proposition to conclude.

Proposition 2.2.9. Let D be the linear space of complex polynomials in z and z .
Then:

D = span{mp,q}p,q∈Z+ = span{Pα
k,l}k,l∈Z+ .

CINVESTAV Departamento de Matemáticas
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Immediately:

Corollary 2.2.10. The sequence of normalized disk polynomials {bαk,l}k,l∈Z+ is an
orthornormal basis for L2(D, µα).

Proof. By proposition 2.2.4, we get the orthonormality of the sequence. And con-
sidering both Theorem 2.2.8 and Proposition 2.2.9, the total property of the set is
satisfied.

2.3 Poly-Bergman Spaces

After getting our basis for the weighted L2 measure space, we now move on to the
next object of study: the weighted Poly-Bergman Spaces.

Definition 2.3.1. Let n ∈ N. We define the n-Poly-Bergman weighted space, or
equivalently the Poly-Bergman weighted space of n-th order (with weight α) as:

Aα,2
n (D) := On(D) ∩ L2(D, µα) =

{︂
f : D → C

⃓⃓⃓
f ∈ On(D),

∫︂
D
|f |2dµα <∞

}︂
.

We introduce notation for the special case n = 1, which is the classical weighted
Bergman space of holomorphic functions:

Aα,2
1 (D) := Aα,2(D).

Since these spaces describe a monotone sequence of subspaces (w.r.t. set inclu-
sion), the following spaces are also introduced.

Definition 2.3.2. Let n ∈ N. We define the true n-Poly-Bergman weighted spaces
(with weight α) as:

Aα,2
(n)(D) = Aα,2

n (D)⊖Aα,2
n−1(D).

These spaces will become some of the main objects of study of the next chapter.
Since we won’t deal with Bergman-type spaces defined on any other domain, the no-
tation will be shortened by omitting the ”(D)” part when denoting either the regular
or pure Poly-Bergman spaces.

We state the following theorem of the description of the structure of the poly-
Bergman spaces.

Theorem 2.3.3. Let n ∈ N. Then, Aα,2
n (D) is a closed subset of L2(D, µα).

Thus, it becomes a Hilbert space, with inner product ⟨·, ·⟩A : Aα,2
n (D)×Aα,2

n (D) → C
inherited from L2(D, µα).

Furthermore, Aα,2
n (D) is a reproducing kernel Hilbert space.

This result can be found in [10].
Due to a result of Dr. Maximenko and their collaborators, published in their 2021

article ”Radial operators on the weighted Poly-Bergman spaces”, [2, Proposition 5.1,
Corollary 5.2], we can also describe a basis for both the regular and pure Poly-
Bergman spaces in terms of the basis for L2(D, µα).
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Theorem 2.3.4. Let n ∈ N. Then, the following conditions hold:

a) The sequence {bαk,l}l=n−1
k∈Z+,l=0 of normalized disk polynomials is an orthonormal

basis for Aα,2
n (D).

b) The sequence {bαk,n−1}k∈Z+ of disk polynomials is an orthonormal basis for Aα,2
(n)(D).

Remark 2.3.5. Let us mention another result that this theorem implies.
Given that the sequence {bk,l}k,l∈Z+ is a basis for the whole space L2(D, µα), and

how the basis for the true Poly-Bergman spaces Aα,2
(n)(D) are arranged, coupled with

the fact that these are pairwise orthogonal subspaces, we have the following decom-
position of the space as an orthogonal sum:

L2(D, µα) =
⨁︂
n∈N

Aα,2
(n)(D)

We will explain at the beginning of the next chapter what this decomposition
entails.
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Extended Fock Space Structure for
the Weighted L2 Space

After the preliminaries, and having defined our main objects of study, we’re now
ready for the next step: applying the theory of the extended Fock space formalism to
the weighted L2 space on the disk.

For this we make a very strong comparison to the example we used before, the
L2 space on the complex plane with Gaussian measure, in which the extended Fock
space was described by mutually adjoint operators, and the true Poly-Fock spaces
were recovered by them.

So, first off: does the weighted L2 space admit the extended Fock space structure?
The answer may not obvious, but a previous result by Dr. Vasilevski, namely Theorem
1.3.11, combined with Remark 2.3.5 tell us that yes, one can describe an extended
Fock space in the weighted L2 space.

Furthermore, we will actually verify in the section after this one that one can
define a pure isometry (two, in fact) on the space. With this, it is possible to recover
the operators a and a† in terms of this very isometry. However, as it will be shown,
such description won’t be very satisfactory. It will differ greatly from the simplicity
of the operators displayed in the Fock case.

This brings us to the matter at hand: is there another way to find a representation
for these operators? Do more ”natural” or ”simple” definitions for them not work in
accordance to the theory of the extended Fock space formalism? This first section
aims to at least partially answer these questions.

3.1 Towards a description using operators a and b

We present an argument made by Dr. Vasilevski in his article [9, Section 3.1], Here,
we begin backwards. We propose a pair of operators, describe their properties, and
see if they’re a good fit.

These operators are introduced in the following definition.

Definition 3.1.1. Let Da := {f ∈ L2(D, µα) | ∂f
∂ z

∈ L2(D, µα)}, and define the oper-
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ators a, b : Da → L2(D, µα) as:

a(f)(z) =
∂f

∂ z
(z) , ∀z ∈ D, f ∈ Da

and,
b(f)(z) = z f(z) , ∀z ∈ D, f ∈ Da.

Proposition 3.1.2. The set Da is dense in L2(D, µα), and on it the operators a and
b satisfy the following commutation relation:

[a, b] = I.

Proof. The density of the domain Da follows from the fact that the orthonormal basis
{bαm,n}m,n∈Z+ is contained in it.

Let f ∈ Da, z ∈ D.

[a, b](f)(z) = (ab− ba)(f)(z) = ab(f)(z)− ba(f)(z) =
∂

∂ z

(︁
z f(z)

)︁
− z

∂f

∂ z

= f(z) + z
∂f

∂ z
(z)− z

∂f

∂ z
(z) = f(z)

Definition 3.1.3. Let L[1] := ker a. For n ∈ N, n > 1, define L[n] := bn−1L[1] =
z n−1L[1].

Given the definition of L[1], we have that:

L[1] = ker a =

{︃
f ∈ L2(D, µα)

⃓⃓⃓⃓
a(f) =

∂f

∂ z
= 0

}︃
.

So this subspace coincides with A2,α, the weighted Bergman space.
This in turn gives for L[n]:

L[n] = z n−1L[1] = z n−1A2,α = A2,α
(n).

Proposition 3.1.4. Define the following set:

D0 = span

(︄ ⋃︂
n∈N

L[n]

)︄
.

Then D0 is dense in L2(D, µα). Also, the operators a and b act invariantly over
D0.

Proof. Once again, the density comes from the fact that D0 contains the orthonormal
basis {bαm,n}m,n∈Z+ .

Let f ∈ D0. Then we can write f as:

f(z) = g0(z) +
n∑︂

j=1

z mjgj(z) , ∀z ∈ D
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where g0, g1, . . . , gm ∈ A2,α, and m1, . . . ,mn ∈ N.
Then:

a(f)(z) =
∂f

∂ z
(z) =

n∑︂
j=1

∂

∂ z

(︁
z mjgj(z)

)︁
=

n∑︂
j=1

(mj) z
mj−1gj(z).

And:

b(f)(z) = z f(z) = z

(︃
g0(z) +

n∑︂
j=1

z mjgj(z)

)︃
= z g0(z) +

n∑︂
j=1

z mj+1gj(z).

Therefore, a(f), b(f) ∈ D0.

With this proposition, at this point, we have a bonafide extended Fock space
defined by L2(D, µα), a and b. We proceed with the next definitions as was shown
before.

In this case, even as the subspaces L[n] are all closed, their direct sums may not
(and is not, actually), so we introduce the following subsets as described before:

Definition 3.1.5. Let n ∈ N. We define the following set:

Ln = clos(L[1] + · · ·+ L[n])

considering L1 = clos(L[1]).
These are all closed subspaces.

Proposition 3.1.6. Let n ∈ N. Then Ln = A2,α
n .

Proof. Let n ∈ N.
If n = 1, we have that L1 = L[1] = A2,α, which is closed.
Then, suppose n ≥ 2. Consider an element f ∈ L[1] + · · · + L[n]. There exist

ϕ1, . . . , ϕn ∈ L[1] such that:

f(z) =
n−1∑︂
k=0

z kϕk+1(z) , ∀z ∈ D.

Having this expression, evaluating the n-th order Wirtinger derivative yields:

∂n

∂ z n

(︁
f(z)

)︁
=

∂n

∂ z n

(︄
n−1∑︂
k=0

z kϕk+1(z)

)︄

=
n−1∑︂
k=0

∂n

∂ z n
( z kϕk+1(z))

=
n−1∑︂
k=0

ϕk+1(z)
∂n

∂ z n
( z k) = 0

This guarantees that f belongs to On.
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Next, let k ∈ {1, . . . , n}.∫︂
D
| z k−1ϕk(z)|2dµα(z) ≤

∫︂
D
|ϕk(z)|2dµα(z) = ∥ϕk∥22,α.

Hence, all terms ϕ1(z), zϕ2(z), . . . , zn−1ϕn(z) belong to L2(D, µα). Therefore, f
does, too.

This gives: L[1] + · · ·+ L[n] ⊂ A2,α
n .

Which in turn implies: clos(L[1] + · · ·+ L[n]) ⊂ A2,α
n .

Now, consider an element f ∈ A2,α
n .

As it was stated before, the sequence {bαk,l}n−1
k∈Z+,l=0 constitutes an orthonormal

basis for this space.
Then, there exists a sequence {λk,l}n−1

k∈Z+,l=0 of complex numbers such that:

f =
∞∑︂
k=0

n−1∑︂
l=0

λk,lb
α
k,l.

In particular, we see that:

∞∑︂
k=0

n−1∑︂
l=0

λk,lb
α
k,l =

∞∑︂
k=0

(︁
λk,0b

α
k,0 + λk,1b

α
k,1 + · · ·+ λk,n−1b

α
k,n−1

)︁
= lim

m→∞

m∑︂
k=0

(︁
λk,0b

α
k,0 + · · ·+ λk,n−1b

α
k,n−1

)︁
Since every expression between parenthesis in the last expression belongs to the

sum L[1] + · · · + L[n], we get that in fact the original function f is an element of
clos(L[1] + · · ·+ L[n]).

This last proposition implies that the structure of the extended Fock space de-
scribed by L2(D, µα), a, and b does yield the Poly-Bergman subspaces, much like in
the Fock case.

However, this is as far as we go. We will not be able to replicate any more
conditions from the Fock case. First, because the operators we have are not mutually
adjoint. And second, the next proposition shows that the direct sums of the subspaces
L[n] is not closed.

But before getting to it, a lemma.

Lemma 3.1.7. Let n, k ∈ N. Then, the following holds:

∥zn z k∥2,α = ∥zn+k∥2,α =

√︄
Γ(α + 2)(k + n)!

Γ(k + n+ α + 2)

Proof. We compute it directly:

∥zn z k∥22,α = ∥zn+k∥22,α =

∫︂
D
|z|2(n+k)µα(z)

=
α + 1

π

∫︂
D
|z|2(n+k)(1− |z|2)αµ(z)
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Next, we use a change of variables to polar coordinates:

∥zn z k∥22,α =
α + 1

π

∫︂ 1

0

∫︂ 2π

0

r2(n+k)(1− r2)αrdθdr

=
α + 1

π

∫︂ 1

0

r2(n+k)(1− r2)αr(2π)dr

= (α + 1)

∫︂ 1

0

r2(n+k)(1− r2)α(2r)dr

Then, we use the change of variables u = r2.

∥zn z k∥22,α = (α + 1)

∫︂ 1

0

un+k(1− u)αdu

= (α + 1)B(n+ k + 1, α+ 1)

= (α + 1)
Γ(n+ k + 1)Γ(α + 1)

Γ(n+ k + α + 2)

=
(n+ k)!Γ(α + 2)

Γ(n+ k + α + 2)

Next, we cite the following limit:

Claim 3.1.8. Let a, x ∈ R with x > 0. Then the following holds:

lim
x→∞

Γ(x+ a)

Γ(x)xa
= lim

x→∞

Γ(x)xa

Γ(x+ a)
= 1.

This result can be found in [4, Formula 8.328.2].

Proposition 3.1.9. Let n ∈ N, n > 1. The direct sum of the following subspaces:

Ln−1 + L[n]

is not closed.

Proof. To prove this fact we compute the minimal angle between the closed subspaces
Ln−1 and L[n].

For any k ∈ N, let xk ∈ L[1] ⊂ Ln−1 and yk ∈ L[n], given by:

xk :=

√︄
Γ(k + α + 2)

k!Γ(α + 2)
zk

and,

yk :=

√︄
Γ(k + 2n+ α)

(k + 2n− 2)!Γ(α + 2)
z n−1zk+n−1.

In particular, by lemma 3.1.7, we have that ∥xk∥ = ∥yk∥ = 1, ∀k ∈ N.
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We compute:

lim
k→∞

|⟨xk, yk⟩| = lim
k→∞

√︄
Γ(k + α + 2)

k!Γ(α + 2)

Γ(k + 2n+ α)

(k + 2n− 2)!Γ(α + 2)
|⟨zk, z n−1zk+n−1⟩|

= lim
k→∞

√︄
Γ(k + α + 2)

k!Γ(α + 2)

Γ(k + 2n+ α)

(k + 2n− 2)!Γ(α + 2)

⃓⃓⃓⃓
⃓
∫︂
D
zk ( z n−1zk+n−1) dµα(z)

⃓⃓⃓⃓
⃓

= lim
k→∞

√︄
Γ(k + α + 2)

k!Γ(α + 2)

Γ(k + 2n+ α)

(k + 2n− 2)!Γ(α + 2)

⃓⃓⃓⃓
⃓
∫︂
D
|z2(n+k−1)|dµα(z)

⃓⃓⃓⃓
⃓

= lim
k→∞

√︄
Γ(k + α + 2)

k!Γ(α + 2)

Γ(k + 2n+ α)

(k + 2n− 2)!Γ(α + 2)
∥zk+n−1∥22,α

= lim
k→∞

√︄
Γ(k + α + 2)

k!Γ(α + 2)

Γ(k + 2n+ α)

(k + 2n− 2)!Γ(α + 2)

(k + n− 1)!Γ(α + 2)

Γ(k + n+ α + 1)

= lim
k→∞

√︃
Γ(k + α + 2)

k!

√︄
Γ(k + 2n+ α)

(k + 2n− 2)!

(k + n− 1)!

Γ(k + n+ α + 1)

To proceed, we rewrite every quotient from the expression above as follows:

The first one:

Γ(k + α + 2)

k!
=

Γ(k + α + 2)

Γ(k + 1)
=

Γ(k + 1 + (α + 1))

Γ(k + 1)(k + 1)α+1
(k + 1)α+1.

The second one:

Γ(k + 2n+ α)

(k + 2n− 2)!
=

Γ(k + α + 2)

Γ(k + 2n− 1)
=

Γ(k + 2n− 1 + (α + 1))

Γ(k + 1)(k + 2n− 1)α+1
(k + 2n− 1)α+1.

And, the third one:

(k + n− 1)!

Γ(k + n+ α + 1)
=

Γ(k + n)

Γ(k + n+ α + 1)
=

Γ(k + n)(k + n)α+1

Γ(k + n+ (α + 1))

1

(k + n)α+1
.

We substitute this, and get:

lim
k→∞

|⟨xk, yk⟩| = lim
k→∞

⌜⃓⃓⎷(︄Γ(k + 1 + (α + 1))

Γ(k + 1)(k + 1)α+1
(k + 1)α+1

)︄(︄
Γ(k + 2n− 1 + (α + 1))

Γ(k + 1)(k + 2n− 1)α+1
(k + 2n− 1)α+1

)︄
Γ(k + n)(k + n)α+1

Γ(k + n+ (α + 1))

1

(k + n)α+1

= lim
k→∞

√︄
Γ(k + 1 + (α + 1))

Γ(k + 1)(k + 1)α+1

Γ(k + 2n− 1 + (α + 1))

Γ(k + 1)(k + 2n− 1)α+1

Γ(k + n)(k + n)α+1

Γ(k + n+ (α + 1))

(︄√︁
(k + 1)(k + 2n− 1)

k + n

)︄α+1

.

In virtue of the limits stated before in Claim 3.1.8, this implies:

lim
k→∞

|⟨xk, yk⟩| = 1.

By the definition of the minimal angle between closed subspaces of a Hilbert space,
we get that ϕ(m)(Ln−1, L[n]) = 0. The result follows from Theorem 1.7.2.
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Extended Fock Space Structure for the Weighted L2 Space 53

3.2 Pure Isometries on the Weighted L2 Space

In these last sections, we try a different approach for applying the extended Fock
space formalism to the weighted L2 space.

We define a pure isometry acting on this space, initally defined through their
action upon basis elements. Then, we find a basis-independent expression for it and
recover a similar expression for the ladder operators that interest us.

We introduce the following operators, that are of course a natural generalization
to those presented by Dr. Vasilevski in his article [11, Section 4]. In this case, we
work with isometries defined for the L2(D, µα) space.

Definition 3.2.1. We define the unilateral shift isometries as follows. Let Vα, ˜︁Vα :
L2(D, µα) → L2(D, µα), defined on the basis elements of L2(D, µα):

Vα(b
α
k,l) = bαk,l+1 and ˜︁Vα(bαk,l) = bαk+1,l, ∀k, l ∈ Z+.

These operators act on a very specific manner on the basis elements. Perhaps now
it may not be quite clear what purpose they will serve, but the following results will
help in understanding what they do and why they’re defined like that.

In short, they raise the order of the Poly-Bergman spaces, so to speak. The last
corollary of this section will illustrate this fact very well.

To begin, we prove that these operators are in fact isometries.

Proposition 3.2.2. The operators Vα, ˜︁Vα : L2(D, µα) → L2(D, µα) are isometries.

Proof. We will show that these unilateral shifts preserve the norm.
Let f ∈ L2(D, µα). Since the disk polynomials are an orthonormal basis for this

space, we get that there exists a sequence {λk,l}k,l∈Z+ such that:

f =
∑︂

k,l∈Z+

λk,lb
α
k,l.

By Parseval’s Identity, the norm of this function satisfies:

∥f∥2α,2 =
∑︂

k,l∈Z+

|λk,l|2.

Then, if we apply the operator Vα to this function f :

Vα(f) = Vα

(︃ ∑︂
k,l∈Z+

λk,lb
α
k,l

)︃
=
∑︂

k,l∈Z+

λk,lVα(b
α
k,l) =

∑︂
k,l∈Z+

λk,lb
α
k,l+1

Now, if we define a new sequence of complex numbers {˜︁λk,l}k,l∈Z+ as follows:

˜︁λk,0 = 0,

˜︁λk,l = λk,l−1
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for all k, l ∈ Z+, with l > 0.
Then, we get that:

Vα(f) =
∑︂

k,l∈Z+

˜︁λk,lbαk,l.
So, this implies that:

∥Vα(f)∥2α,2 =
∑︂

k,l∈Z+

|˜︁λk,l|2.
But, given the way the new sequence of scalars was defined, we have:∑︂

k,l∈Z+

|˜︁λk,l|2 = ∑︂
k,l∈Z+

|λk,l|2.

Therefore, ∥Vα(f)∥α,2 = ∥f∥α,2, as we wanted. As f was arbitrary, the result holds
for all elements of L2(D, µα), so Vα preserves the norm.

The proof for ˜︁Vα is similar.

Proposition 3.2.3. The following characterization holds for the adjoint of these
operators, V ∗

α ,
˜︁V ∗
α : L2(D, µα) → L2(D, µα):

V ∗
α (b

α
k,l) = bαk,l−1 and ˜︁V ∗

α (b
α
k,l) = bαk−1,l, ∀k, l ∈ N

with V ∗
α (b

α
k,0) =

˜︁V ∗
α (b

α
0,l) = 0, for all k.l ∈ Z+.

Proof. We appeal to the uniqueness of the adjoint operator. So, we show that these
functions as defined above satisfy the defining property of the adjoint operator.

Furthermore, since the inner product is a sesquilinear continuous function, it suf-
fices to verify this property for the basis elements, since their span forms a dense
subset of L2(D, µα).

For Vα, let k, l,m, n ∈ Z+.
If n > 0:

⟨Vα(bαk,l), bαm,n⟩α = ⟨bαk,l+1, b
α
m,n⟩α

= δk,mδl+1,n = δk,mδl,n−1

= ⟨bαk,l, bαm,n−1⟩α = ⟨bαk,l, V ∗
α (b

α
m,n)⟩α.

If n = 0

⟨Vα(bαk,l), bαm,0⟩α = ⟨bαk,l+1, b
α
m,0⟩α

= δk,mδl+1,0 = 0

= ⟨bαk,l, 0⟩α = ⟨bαk,l, V ∗
α (b

α
m,0)⟩α.

So, in any case, we get that:

⟨Vα(bαk,l), bαm,n⟩α = ⟨bαk,l, V ∗
α (b

α
m,n)⟩α.

An almost identical argument shows the equality for ˜︁V ∗
α .
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Figure 3.1: Graph of the product Z2
+

and the action of the operators Vα, ˜︁Vα, V ∗
α , ˜︁V ∗

α .

Remark 3.2.4. Before proceeding further, it is illustrative to identify the disk poly-
nomials bαk,l with the ordered pair (k, l) from their sub-index to visualize how the

operators Vα, ˜︁Vα and their adjoints act in the space. This is shown in Figure 3.1
below.

We proceed to show the next lemma, which is needed to prove the theorem that
follows after it.

Lemma 3.2.5. Let n ∈ N. Then, the operator (V ∗
α )

n
⃓⃓
(Aα,2

n )⊥
: (Aα,2

n )⊥ → L2(D, µα)

is invertible and its inverse is (Vα)
n : L2(D, µα) → (Aα,2

n )⊥.

Proof. First, we elaborate upon the definition of the so-called inverse of the operator
we are dealing with.

Initially, we may define the operator (Vα)
n : L2(D, µα) → L2(D, µα), but we can

restrict its co-domain to its own image, which coincides with (Aα,2
n )⊥, since this set

has the sequence {bαk,l}k,l∈Z+,l≥n as a basis.

Now, we only check the compositions:

Let f ∈ L2(D, µα). Then, there exists a sequence of complex numbers {λk,l}k,l∈Z+

such that:

f =
∑︂

k,l∈Z+

λk,lb
α
k,l.
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Then, we have the following:

(V ∗
α )

n
⃓⃓
(Aα,2

n )⊥
(Vα)

n(f) = (V ∗
α )

n
⃓⃓
(Aα,2

n )⊥
(Vα)

n

(︃ ∑︂
k,l∈Z+

λk,lb
α
k,l

)︃
= (V ∗

α )
n
⃓⃓
(Aα,2

n )⊥

(︃ ∑︂
k,l∈Z+

λk,lb
α
k,l+n

)︃
= (V ∗

α )
n

(︃ ∑︂
k,l∈Z+

λk,lb
α
k,l+n

)︃
=
∑︂

k,l∈Z+

λk,lb
α
k,l = f = idL2(D,µα)(f).

We proceed similarly for the other composition. Let g ∈ (Aα,2
n )⊥. Then, we get a

sequence of complex numbers {γk,l}k,l∈Z+ such that:

g =
∑︂

k,l∈Z+

γk,lb
α
k,l+n.

Thus:

(Vα)
n(V ∗

α )
n
⃓⃓
(Aα,2

n )⊥
(g) = (Vα)

n(V ∗
α )

n
⃓⃓
(Aα,2

n )⊥

(︃ ∑︂
k,l∈Z+

γk,lb
α
k,l+n

)︃
= (Vα)

n(V ∗
α )

n

(︃ ∑︂
k,l∈Z+

γk,lb
α
k,l+n

)︃
= (Vα)

n

(︃ ∑︂
k,l∈Z+

γk,lb
α
k,l

)︃
=
∑︂

k,l∈Z+

γk,lb
α
k,l+n = g = id(Aα,2

n )⊥(g).

With these results, we can conclude that:

(V ∗
α )

n
⃓⃓
(Aα,2

n )⊥
(Vα)

n = idL2(D,µα)

and,

(Vα)
n(V ∗

α )
n
⃓⃓
(Aα,2

n )⊥
= id(Aα,2

n )⊥

i.e. the result holds.

Now we verify the following equalities:

Theorem 3.2.6. Let n ∈ N. We have:

1) Aα,2
n (D) = ker(V ∗

α )
n.

2) Aα,2
(n)(D) = V n−1

α (Aα,2(D)).
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Proof. To see the equalities we check the corresponding set inclusions.
For 1:
First, recall that the space Aα,2

n (D) has the sequence {bαk,l}l=n−1
k∈Z+,l=0 as basis.

Then, if we pick an element f ∈ Aα,2
n (D), we get a sequence {λk,l}l=n−1

k∈Z+,l=0 such
that:

f =
n−1∑︂
l=0

∑︂
k∈Z+

λk,lb
α
k,l.

Now we compute:

(V ∗
α )

n(f) = (V ∗
α )

n

(︃ n−1∑︂
l=0

∑︂
k∈Z+

λk,lb
α
k,l

)︃

=
n−1∑︂
l=0

∑︂
k∈Z+

λk,l(V
∗
α )

n(bαk,l) = 0.

Where the last equality is given by the fact that all the basis terms in the sum
have a second index lower than n, so the operator V ∗

α maps them to zero.
This implies that:

Aα,2
n (D) ⊂ ker(V ∗

α )
n. (3.1)

For the other inclusion, first remember that the space Aα,2
n (D) is a closed subspace

of L2(D, µα), so it satisfies that:

L2(D, µα) = Aα,2
n (D)⊕ (Aα,2

n (D))⊥.

So, if we take an element f ∈ ker(V ∗
α )

n, it may be decomposed as a sum f = g+h,
where g belongs to Aα,2

n (D) and h belongs to its orthogonal complement.

Since f ∈ ker(V ∗
α )

n, we have that (V ∗
α )

n(f) = 0.
In addition to this, (V ∗

α )
n(f) = (V ∗

α )
n(g + h) = (V ∗

α )
n(g) + (V ∗

α )
n(h).

By the inclusion 3.1, we get that (V ∗
α )

n(g) = 0.
This implies that (V ∗

α )
n(h) = 0, so h ∈ ker(V ∗

α )
n.

But by Lemma 3.2.5, the operator (V ∗
α )

n is invertible when restricted to (Aα,2
n (D))⊥,

and in particular, it is injective, so its kernel is trivial. Therefore, h = 0.
This in turn implies that f = g, and since g was already an element of Aα,2

n (D),
f is too.

Hence, we get the other inclusion:

ker(V ∗
α )

n ⊂ Aα,2
n (D).

That is,

ker(V ∗
α )

n = Aα,2
n (D).

For 2:
Recall that the sequence {bαk,n−1}k∈Z+ is an orthonormal basis for the spaceAα,2

(n)(D).
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So, if we take an element f ∈ Aα,2
(n)(D), we also get a sequence {λk}k∈Z+ of complex

numbers such that:
f =

∑︂
k∈Z+

λkb
α
k,n−1.

Now, let us define a new function g using the same sequence {λk}k∈Z+ as follows:

g =
∑︂
k∈Z+

λkb
α
k,0.

Then, this function g is an element of Aα,2(D) that satisfies:

(Vα)
n−1(g) = (Vα)

n−1

(︃ ∑︂
k∈Z+

λkb
α
k,0

)︃
=
∑︂
k∈Z+

λk(Vα)
n−1(bαk,0)

=
∑︂
k∈Z+

λkb
α
k,n−1 = f.

As such, f ∈ (Vα)
n(Aα,2).

This gives the inclusion:

Aα,2
(n)(D) ⊂ (Vα)

n(Aα,2).

Now, consider an element g ∈ (Vα)
n(Aα,2)

That means there exists a function h ∈ Aα,2(D) such that g = (Vα)
n(h).

Since h ∈ Aα,2(D), we get a sequence of complex numbers {λk}k∈Z+ such that:

h =
∑︂
k∈Z+

λkb
α
k,0.

Then, we get an expression for g:

g = (Vα)
n−1(h) = (Vα)

n−1

(︃ ∑︂
k∈Z+

λkb
α
k,0

)︃
=
∑︂
k∈Z+

λk(Vα)
n−1(bαk,0)

=
∑︂
k∈Z+

λkb
α
k,n−1.

That is, g ∈ Aα,2
(n)(D).

This gives the other inclusion:

(Vα)
n(Aα,2) ⊂ Aα,2

(n)(D).

Therefore,
(Vα)

n(Aα,2) = Aα,2
(n)(D).
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And as a consequence, we get a couple of results:

Corollary 3.2.7. Let n, k ∈ N. The functions below are isometric isomorphisms:

• V k
α : Aα,2

(n)(D) → Aα,2
(n+k)(D)

• (V ∗
α )

k : Aα,2
(n+k)(D) → Aα,2

(n)(D)

They are also inverse to one another.

Corollary 3.2.8. The isometry Vα is in fact a pure isometry.

Proof. Given the first equation proved in 3.2.6, we see that the weighted Bergman
space Aα,2(D) is actually a wandering subspace for the unilateral shift isometry Vα.

This, coupled with the fact that per Remark 2.3.5, the weighted L2 space can be
actually decomposed as the orthogonal sum of the true Poly-Bergman spaces, that is:

L(D, µα) =
⨁︂
n∈N

Aα,2
(n)(D) =

⨁︂
n∈Z+

V n
α (Aα,2(D))

implies that Vα is a pure isometry.

With this, according to the theorem 1.3.11, we have an alternative extended Fock
Space structure for L2(D, µα) to the one presented before, when proposing the oper-
ators a and b.

As that theorem specifies, from the existence of the pure isometry Vα in L2(D, µα),
we may recover the mutually adjoint operators a and a†. However, the action of Vα
is tied to the orthonormal basis of normalized disk polynomials. So, if we were to
reconstruct the operators in this manner, using the isometry as is, it would also
depend on this specific basis.

This is why, in the next section we aim to describe these isometries using differ-
ential operators, in order to obtain a basis-independent expression for their action.

Remark 3.2.9. Here we only make the quick comment regarding the fact that one
can state and prove similar propositions to Theorem 3.2.6 and Corollaries 3.2.7 and
3.2.8 but considering the spaces of anti-polyanalytic functions and in turn using the
other unilateral shift, ˜︁Vα.

Since we concern ourselves only with polyanalytic functions, any more in-depth
mention of this result would be out of place.

3.3 Operators on the Weighted L2 Space

We define a new class of functions in terms of the disk polynomials and a set of dif-
ferent operators that act upon them. We describe some of their properties and show
a few equalities regarding them.

Only for this section, we introduce a special subspace of the L2(D, µα)
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Definition 3.3.1. We define the space of anti-analytic functions in L2(D, µα) as:

˜︁Aα,2 = clos(span({bα0,l}l∈Z+))

Remark 3.3.2. We mention that this notion of ”anti-analytic” functions is in fact
the same as the more commonly used, where one defines them as complex functions
that are analytic when composed with the operation of complex conjugation. That
is, they are essentially power series of z . Of course, this also coincides with the class
of continually differentiable functions that belong to the kernel of the other Wirtinger
derivative ∂

∂z
, which is also a popular characterization of these types of functions.

We did not opt to make a more formal definition, or use any of these well-known
descriptions of these functions because, as it was stated before, we avoid dealing with
anything other than poly-analytic functions explicitly. And in particular, since the
set from the previous definition will only serve an ancillary role at most.

Definition 3.3.3. We introduce the disk function operator Φ : L2(D, µα) → L2(D, µ),
defined densely on D and describe their action upon their elements:

Φ(bαk,l(z)) = (1− |z|2)α/2 bαk,l(z) , ∀z ∈ D, k, l ∈ Z+

We refer to the images Φ(bαk,l) as the corresponding disk function associated to
bαk,l.

The disk function operator is a linear surjective isometry between the spaces
L2(D, µα) and L

2(D, µ). Their inverse is defined and satisfies:

Φ−1(Φ(bαk,l(z))) = bαk,l(z) , ∀z ∈ D, k, l ∈ Z+

That is, the inverse of any disk function, is its own associated disk polynomial.

Corollary 3.3.4. The sequence {Φ(bαk,l)}k,l∈Z+ of disk functions is an orthonormal
basis for the space L2(D, µ).

We denote the linear span of this basis of disk functions as Φ(D), where D rep-
resents the linear span of the disk polynomials. Then, this previous corollary implies
that this set is dense in L2(D, µ).

Now, in order to proceed, we need to define some operators. These are borrowed
from Dr. Wünsche’s article [12, Section 4].

Definition 3.3.5. Let Gα : Φ(D) → L2(D, µ) be densely defined on Φ(D) as:

Gα(f)(z) =

(︄
− 4

∂2

∂z∂ z
+2

(︃
z
∂

∂z
z
∂

∂ z
+
∂

∂z
z
∂

∂ z
z

)︃
− 1+

α2

1− |z|2

)︄
f(z) , ∀z ∈ D

Theorem 3.3.6. The operator Gα is Hermitian and satisfies the following eigenvalue
equation:

Gα(Φ(bαm,n))(z) = (2m+ α + 1)(2n+ α + 1)Φ(bαm,n)(z) , ∀z ∈ D,m, n ∈ Z+

for all m,n ∈ Z+.
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Proof. First we prove the equation above. Let m,n ∈ Z+.
We start from the differential equation of the Jacobi polynomials.(︃

(1− x2)
∂2

∂x2
+ (β − α− (α + β + 2)x)

∂

∂x
+ n(n+ α + β + 1)

)︃
y = 0.

We substitute β = m− n and get:(︃
(1− x2)

∂2

∂x2
+ (m− n−α− (α+m− n+2)x)

∂

∂x
+ n(α+m+1)

)︃
P (α,m−n)
n (x) = 0.

Using the change of variables x = 2r2−1 yields the following differential equation
in polar coordinates:(︃
(1−r2)

(︂ ∂2
∂r2

+
1

r

∂

∂r
+

1

r2
∂2

∂φ2

)︂
−2(1+α)r

∂

∂r
+4mn+2(1+α)(m+n)

)︃
bαm,n(re

iφ) = 0.

Then changing to the complex coordinates z and z , we get:(︃
2
(︂
(1− z z )

∂2

∂z∂ z
+

∂2

∂z∂ z
(1− z z )

)︂
− α

(︂
z
∂

∂z
+ z

∂

∂ z
+

∂

∂z
z +

∂

∂ z
z
)︂
+ 4mn+ 2(1 + α)(m+ n+ 1)

)︃
bαm,n(z) = 0.

We rearrange this last equation as follows:

2
(︂
(1− z z )

∂2

∂z∂ z
+

∂2

∂z∂ z
(1− z z )

)︂
bαm,n(z)

= α
(︂
z
∂

∂z
+ z

∂

∂ z
+

∂

∂z
z +

∂

∂ z
z
)︂
+ 4mn+ 2(1 + α)(m+ n+ 1)

)︃
bαm,n(z). (3.2)

Using the definition of the operator Gα, we get:

Gα(Φ(bαm,n))(z) =(︄
− 4

∂2

∂z∂ z
+ 2

(︃
z
∂

∂z
z
∂

∂ z
+

∂

∂z
z
∂

∂ z
z

)︃
− 1 +

α2

1− |z|2

)︄
Φ(bαm,n)(z). (3.3)

An arduous yet straight-forward computation shows that this is in fact equal to:

Gα(Φ(bαm,n))(z) = (1 + α)2Φ(bαm,n)(z)

+ 2(1− z z )α/2

(︄
−
(︂
(1− z z )

∂2

∂z∂ z
+

∂2

∂z∂ z
(1− z z )

)︂
− 1

+ α
(︂
z
∂

∂z
+ z

∂

∂ z

)︂)︄
Φ(bαm,n)(z). (3.4)

So we substitute the expression from equation 3.2 into our last expression:

Gα(Φ(bαm,n))(z) = (1 + α)2Φ(bαm,n)(z)

+ 2(1− z z )α/2

(︄
− α

2

(︂
z
∂

∂z
+ z

∂

∂ z
+

∂

∂z
z +

∂

∂ z
z
)︂

+ 2mn+ (1 + α)(m+ n+ 1)− 1 + α
(︂
z
∂

∂z
+ z

∂

∂ z

)︂)︄
Φ(bαm,n)(z). (3.5)
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Operating further, the terms in equation 3.5 can be reduced as follows:

Gα(Φ(bαm,n))(z) = (1 + α)2Φ(bαm,n)(z)

+
(︁
4mn+ 2(1 + α)(m+ n+ 1)− 2(α + 1)

)︁
Φ(bαm,n(z)

=
(︁
1 + 2α + α2 + 4mn+ 2(1 + α)(m+ n)

)︁
Φ(bαm,n(z)

= (2m+ α + 1)(2n+ α + 1)Φ(bαm,n(z). (3.6)

So we get the desired equality.

Now we prove the hermiticity of the operator. We denote with ⟨, ⟩ the standard
inner product in L2(D, µ) throughout the next argument.

We verify the Hermitic property only for the basis elements, since the sesqui-
linearity of the inner product guarantees that it holds true for the whole set Φ(D).

Then, let Φ(bαm,n),Φ(b
α
k,l).

⟨Gα(Φ(bαm,n)),Φ(b
α
k,l)⟩ = ⟨(2m+ α + 1)(2n+ α + 1)Φ(bαm,n),Φ(b

α
k,l)⟩

= (2m+ α + 1)(2n+ α + 1)⟨Φ(bαm,n),Φ(b
α
k,l)⟩

= (2m+ α + 1)(2n+ α + 1) δm,kδn,l

= (2k + α + 1)(2l + α + 1) δm,kδn,l

= (2k + α + 1)(2l + α + 1)⟨Φ(bαm,n),Φ(b
α
k,l)⟩

= ⟨Φ(bαm,n), (2k + α + 1)(2l + α + 1)Φ(bαk,l)⟩
= ⟨Φ(bαm,n), G

α(Φ(bαk,l))⟩

Definition 3.3.7. We define the operators L, ˜︁Gα : D → L2(D, µα) densely defined
on D as:

L(f)(z) =

(︃
z
∂

∂z
− z

∂

∂ z

)︃
f(z) , ∀z ∈ D

and,

˜︁Gα(f)(z) = Φ−1GαΦ(f)(z) , ∀z ∈ D

Proposition 3.3.8. The operators L and ˜︁Gα are Hermitian and satisfy the following
eigenvalue equations:

L(bαk,l) = (k − l) bαk,l

and

˜︁Gα(bαk,l) = (α + 2k + 1)(α + 2l + 1) bαk,l

for all k, l ∈ Z+.
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Proof. For any Hermitian operator, its conjugation with a surjective linear isometry
yields another Hermitian operator, so ˜︁Gα is Hermitian.

For L, a change of variables to polar coordinates yields another expression for the
operator:

L =
1

i

∂

∂θ
= −i ∂

∂θ

Now, we need to show that L satisfies the inner product equality:

⟨L(f), g⟩α = ⟨f, L(g)⟩α , ∀f, g ∈ D

We verify this fact for functions f, g ∈ D.
In order to use the alternative expression of the operator L, we will make a change

of variables to polar coordinates in the integrals of the inner product.

⟨L(f), g⟩α =

∫︂
D
L(f) g dµα =

∫︂
D
L(f) g wαdµ

=

∫︂ 1

0

∫︂ 2π

0

L(f)(reiθ) g (reiθ)wα(re
iθ)rdθdr

=

∫︂ 1

0

wα(re
iθ)r

∫︂ 2π

0

−i ∂
∂θ
f(reiθ) g (reiθ)dθdr. (3.7)

The term corresponding to the weight function exits the innermost integral since
it does not depend on the angular variable θ.

We will now focus in finding an equivalent representation for the innermost integral
using integration by parts.∫︂ 2π

0

−i ∂
∂θ
f(reiθ) g (reiθ)dθ = −i

∫︂ 2π

0

∂

∂θ
f(reiθ) g (reiθ)dθ

= −i
(︃
f g (reiθ)

⃓⃓θ=2π

θ=0
−
∫︂ 2π

0

f(reiθ)
∂

∂θ
g (reiθ)dθ

)︃
= i

∫︂ 2π

0

f(reiθ)
∂

∂θ
g (reiθ)dθ

=

∫︂ 2π

0

f(reiθ)

(︃
− i

∂

∂θ
g(reiθ)

)︃
dθ

Now we return, and substitute it in equation 3.7:

⟨L(f), g⟩α =

∫︂ 1

0

wα(re
iθ)r

∫︂ 2π

0

f(reiθ)

(︃
− i

∂

∂θ
g(reiθ)

)︃
dθdr

=

∫︂ 1

0

∫︂ 2π

0

f(reiθ)

(︃
− i

∂

∂θ
g(reiθ)

)︃
wα(re

iθ)rdθdr

=

∫︂ 1

0

∫︂ 2π

0

f(reiθ)L(g) (reiθ)wα(re
iθ)rdθdr

=

∫︂
D
f L (g)wαdµ =

∫︂
D
f L (g)dµα = ⟨f, L(g)⟩α
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We also use the polar coordinates expression of L to check the equation.

So, we express everything in polar coordinates:

L(bαk,l)(re
iθ) =

1

i

∂

∂θ
(bαk,l)(re

iθ)

=
1

i

∂

∂θ

(︁
ei(k−l)θ bαk,l(r)

)︁
=

1

i
bαk,l(r)

∂

∂θ

(︁
ei(k−l)θ

)︁
=

1

i
bαk,l(r)

(︁
i(k − l)

)︁
ei(k−l)θ

= (k − l) ei(k−l)θbαk,l(r)

= (k − l) bαk,l(re
iθ) = (k − l)bαk,l(re

iθ)

For the operator ˜︁Gα we have:

Gα(bαk,l) = ˜︁Gα(f)(z) = Φ−1Gα Φ(bαk,l)

= Φ−1(Gα(Φ(bαk,l)))

= Φ−1((2k + α + 1)(2l + α + 1)Φ(bαk,l))

= (2k + α + 1)(2l + α + 1)Φ−1(Φ(bαk,l))

= (2k + α + 1)(2l + α + 1) bαk,l

Definition 3.3.9. We define densely a new operator in terms of L and ˜︁Gα, Hα :
D → L2(D, µα) as:

Hα = L2 + ˜︁Gα

Right away we get that:

Lemma 3.3.10. The operator Hα satisfies the next equation:

Hα(bαk,l) = (α + k + l + 1)2bαk,l , ∀k, l ∈ Z+

That is, the disk polynomials are eigenfunctions for this operator with the corre-
sponding eigenvalues.

Proof. We only need a simple computation:

Hα(bαk,l) = L2(bαk,l) + ˜︁Gα(bαk,l) = (k − l)2bαk,l + (2k + α + 1)(2l + α + 1)bαk,l

= (k2 − 2kl + l2 + 4kl + 2kα+ 2k + 2lα + α2 + α + 2l + α + 1)bαk,l

= (α2 + k2 + l2 + 1 + 2kα+ 2lα + 2α + 2kl + 2k + 2l)bαk,l

= (α + k + l + 1)2bαk,l
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Proposition 3.3.11. The square and fourth root of the operator Hα, (Hα)1/2, (Hα)1/4 :
D → L2(D, µα) are well-defined, Hermitian operators, and satisfy the following eigen-
value equations:

(Hα)1/2(bαk,l) = (α + k + l + 1)bαk,l , ∀k, l ∈ Z+

(Hα)1/4(bαk,l) =
√
α + k + l + 1 bαk,l , ∀k, l ∈ Z+

Proof. Since all eigenvalues of the operator Hα are positive, all of its powers are
well-defined, and as powers of a Hermitian operator, they’re also Hermitian.

The equations are a direct result of the previous lemma.

Next we take these operators and combine them.

Definition 3.3.12. Let Lα
(1), L

α
(2) : D → L2(D, µα) be defined densely as:

Lα
(1)(f)(z) =

1

2

(︃
(Hα)1/2 + L− (α + 1)

)︃
f(z) ,∀z ∈ D

and,

Lα
(2)(f)(z) =

1

2

(︃
(Hα)1/2 − L− (α + 1)

)︃
f(z) ,∀z ∈ D.

Closely related to them, we define ˜︁Lα
(1),
˜︁Lα
(2) : L

2(D, µα) → L2(D, µα) densely on
D as:

˜︁Lα
(1)(f)(z) =

1

2

(︃
(Hα)1/2 + L+ α− 1

)︃
f(z) ,∀z ∈ D.

and,

˜︁Lα
(2)(f)(z) =

1

2

(︃
(Hα)1/2 − L+ α− 1

)︃
f(z) ,∀z ∈ D

These operators satisfy:

˜︁Lα
(1) = Lα

(1) + αI

and,

˜︁Lα
(2) = Lα

(2) + αI.

Proposition 3.3.13. The operators Lα
(1) and L

α
(2) are Hermitian and satisfy the fol-

lowing eigenvalue equations:

Lα
(1)(b

α
k,l) = kbαk,l

and,

Lα
(2)(b

α
k,l) = lbαk,l,
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for all k, l ∈ Z+.
Similarly, the operators ˜︁Lα

(1) and
˜︁Lα
(2) are also Hermitian and satisfy the equations:

˜︁Lα
(1)(b

α
k,l) = (k + α)bαk,l

and,

˜︁Lα
(2)(b

α
k,l) = (l + α)bαk,l.

Proof. As before, these operators are Hermitian as they are linear combination of
Hermitian operators.

For the equations, we compute:

Lα(1)(b
α
k,l) =

1

2

(︃
(Hα)1/2(bαk,l) + L(bαk,l)− (α + 1)bαk,l

)︃
=

1

2

(︃
(α + k + l + 1)bαk,l + (k − l)bαk,l − (α + 1)

)︃
=

1

2
(2k)bαk,l = kbαk,l

And:

Lα(2)(b
α
k,l) =

1

2

(︃
(Hα)1/2(bαk,l)− L(bαk,l)− (α + 1)bαk,l

)︃
=

1

2

(︃
(α + k + l + 1)bαk,l − (k − l)bαk,l − (α + 1)

)︃
=

1

2
(2l)bαk,l = lbαk,l

Proposition 3.3.14. The operators Lα
(1)

⃓⃓
( ˜︁Aα,2)⊥

, ˜︁Lα
(1)

⃓⃓
( ˜︁Aα,2)⊥

: ( ˜︁Aα,2)⊥ → ( ˜︁Aα,2)⊥ and

Lα
(2)

⃓⃓
(Aα,2)⊥

, ˜︁Lα
(2)

⃓⃓
(Aα,2)⊥

: (Aα,2)⊥ → (Aα,2)⊥ are diagonal with respect to their corre-

sponding domains. They have all their powers defined.

Proof. The first pair of operators are defined on the set ( ˜︁Aα,2)⊥, which is spanned
by the sequence {bαk,l}k,l∈Z+,k>0. On this set, all elements of the sequence satisfy an
eigenvalue equation as per Proposition 3.3.13.

Similarly for the second pair of operators, considering the set (Aα,2)⊥ spanned by
the sequence {bαk,l}k,l∈Z+,l>0.

As these diagonal operators have strictly positive eigenvalues, all their powers are
well defined. So, in particular, their inverses are, too.

Lemma 3.3.15. The operators Lα
(1) and L

α
(2) satisfy the following:

ker(Lα
(1)) = ˜︁Aα,2

ker(Lα
(2)) = Aα,2
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Proof. Notice the fact that ˜︁Aα,2 is spanned by the sequence {bα0,l}l∈Z+ , so by Propo-
sition 3.3.13, we get: ˜︁Aα,2 ⊂ ker(Lα

(1)). (3.8)

Now, since ˜︁Aα,2 is a closed subspace of L2(D, µα), a Hilbert space, it holds that:

L2(D, µα) = ˜︁Aα,2 ⊕ ( ˜︁Aα,2)⊥

That is, the space L2(D, µα) is a direct sum of ˜︁Aα,2 and its orthogonal complement.

So, if we take an element f ∈ ker(Lα
(1)), it may be decomposed as a sum f = g+h,

where g belongs to ˜︁Aα,2 and h to its orthogonal complement.

As f ∈ ker(Lα
(1)), L

α
(1)(f) = 0. This in turn implies that:

Lα
(1)(f) = Lα

(1)(g + h) = Lα
(1)(g) + Lα

(1)(h) = Lα
(1)(h) = 0

where the third equality holds because of the set inclusion 3.8.

As h ∈ ( ˜︁Aα,2)⊥, we may use the fact that this operator is invertible in this domain,
so we get that h = 0.

That is, f = g, and since g belonged to ˜︁Aα,2, f does too.

Granted that this element f ∈ ker(Lα
(1)), was arbitrary, we get that:

ker(Lα
(1)) ⊂ ˜︁Aα,2

thereby concluding that

ker(Lα
(1)) = ˜︁Aα,2

An almost identical argument shows the other equality, using the same represen-
tation of elements and the invertibility of the corresponding operator.

We define another set of operators.

Definition 3.3.16. Let Kα
(1+), K

α
(1−), K

α
(2+), K

α
(2−) : D → L2(D, µα) be defined densely

as:

Kα
(1+)(f)(z) :=

(︃
z(˜︁Lα

1 + 1)− (1− z z )
∂

∂ z

)︃
f(z) , ∀z ∈ D.

Kα
(1−)(f)(z) :=

(︃
z Lα

1 + (1− z z )
∂

∂z

)︃
f(z) , ∀z ∈ D.

Kα
(2+)(f)(z) :=

(︃
z (˜︁Lα

2 + 1)− (1− z z )
∂

∂z

)︃
f(z) , ∀z ∈ D.

Kα
(2−)(f)(z) :=

(︃
zLα

2 + (1− z z )
∂

∂ z

)︃
f(z) , ∀z ∈ D.
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Proposition 3.3.17. The operators Kα
(1+), K

α
(1−), K

α
(2+), K

α
(2−) satisfy the following

equations:

Kα
(1+)(P

α
k,l) = (k + 1 + α)Pα

k+1,l,

Kα
(1−)(P

α
k,l) = kP α

k−1,l,

Kα
(2+)(P

α
k,l) = (l + 1 + α)Pα

k,l+1,

Kα
(2−)(P

α
k,l) = lPα

k,l−1,

for all k, l ∈ Z+.

Proof. This time around we will be using the non-normalized disk polynomials. We
make use of the recurrence relations for the disk polynomials from Theorem 2.1.10:

Kα
(1+)(P

α
k,l)(z, z ) =

(︃
z(˜︁Lα

1 + 1)− (1− z z )
∂

∂ z

)︃
Pα
k,l(z, z )

= z(˜︁Lα
1 + 1)(Pα

k,l)(z, z )− (1− z z )
∂

∂ z
(Pα

k,l)(z, z )

= z(k + α + 1)(Pα
k,l)(z, z )− (1− z z )

∂

∂ z
(Pα

k,l)(z, z )

=
(︁
(k + α + 1)Pα

k+1,l(z, z ) + lPα
k,l−1(z, z )− lzP α

k,l(z, z )
)︁

+
(k + α + 1)l

k + l + α + 1
(Pα

k+1,l(z, z )− Pα
k,l−1(z, z ))

= (k + α + 1)Pα
k+1,l(z, z )

+
(︃
lPα

k,l−1(z, z )− lzPα
k,l(z, z ) +

(k + α + 1)l

k + l + α + 1
(Pα

k+1,l(z, z )− Pα
k,l−1(z, z ))

)︃
.

Next, we focus on the term in brackets, and verify that it is equal to zero:

lPα
k,l−1(z, z )− lzPα

k,l(z, z ) +
(k + α + 1)l

k + l + α + 1
(Pα

k+1,l(z, z )− Pα
k,l−1(z, z )) =

(k + α + 1)l

k + l + α + 1
Pα
k+1,l(z, z ) + lPα

k,l−1(z, z )

(︃
1− k + α + 1

k + l + α + 1

)︃
− lzP α

k,l(z, z ) =

lzP α
k,l(z, z )−

l2

k + l + α + 1
Pα
k,l(z, z ) +

l2

k + l + α + 1
Pα
k,l(z, z )− lzP α

k,l(z, z ) = 0.

So, as was stated:

Kα
(1+)(P

α
k,l(z, z )) = (k + 1 + α)Pα

k+1,l(z, z ) , ∀z ∈ D.
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For the second equality:

Kα
(1−)(P

α
k,l)(z, z ) =

(︃
z Lα

1 + (1− z z )
∂

∂z

)︃
Pα
k,l(z, z )

= z Lα
1 (P

α
k,l)(z, z ) + (1− z z )

∂

∂z
(Pα

k,l)(z, z )

= z k(Pα
k,l)(z, z ) + (1− z z )

∂

∂z
(Pα

k,l)(z, z )

=
(︁
(l + α + 1)Pα

k,l+1(z, z ) + kPα
k−1,l(z, z )− (l + α + 1) z Pα

k,l(z, z )
)︁

+
(l + α + 1)k

k + l + α + 1
(Pα

k−1,l(z, z )− Pα
k,l+1(z, z ))

= kbαk−1,l(z)

+
(︃
(l + α + 1)Pα

k,l+1(z, z )− (l + α + 1) z Pα
k,l(z, z ) +

(l + α + 1)k

k + l + α + 1
(Pα

k−1,l(z, z )− Pα
k,l+1(z, z ))

)︃
.

Just as before, we show that the term in brackets equals zero:

(l + α + 1)Pα
k,l+1(z, z )− (l + α + 1) z Pα

k,l(z, z ) +
(l + α + 1)k

k + l + α + 1
(Pα

k−1,l(z, z )− Pα
k,l+1(z, z )) =

(l + α + 1)k

k + l + α + 1
Pα
k−1,l(z, z ) + (l + α + 1)Pα

k,l+1(z, z )

(︃
1− k

k + l + α + 1

)︃
− (l + α + 1) z Pα

k,l(z, z ) =

(l + α + 1) z Pα
k,l(z, z )−

(l + α + 1)2

k + l + α + 1
Pα
k,l+1(z, z ) +

(l + α + 1)2

k + l + α + 1
Pα
k,l+1(z, z )− (l + α + 1) z Pα

k,l(z, z ) = 0.

And thus:

Kα
(1−)(P

α
k,l(z, z )) = kP α

k−1,l(z, z ) , ∀z ∈ D.

Proceeding almost identically, using the corresponding recurrence relations for the
disk polynomials yields the other two equations.

Then, finally, to shift from the non-normalized to the normalized disk polynomials,
we define another set of operators, closely related to the previous ones.

Definition 3.3.18. Let ˜︁Kα
(1+),

˜︁Kα
(1−),

˜︁Kα
(2+),

˜︁Kα
(2−) : D → L2(D, µα) be defined densely

as:

˜︁Kα
(1+)(f)(z) := Hα/4Kα

(1+)H
−α/4(f)(z) , ∀z ∈ D.

˜︁Kα
(1−)(f)(z) := Hα/4Kα

(1−)H
−α/4(f)(z) , ∀z ∈ D.

˜︁Kα
(2+)(f)(z) := Hα/4Kα

(2+)H
−α/4(f)(z) , ∀z ∈ D.

˜︁Kα
(2−)(f)(z) := Hα/4Kα

(2−)H
−α/4(f)(z) , ∀z ∈ D.

Proposition 3.3.19. The operators ˜︁Kα
(1+),

˜︁Kα
(1−),

˜︁Kα
(2+),

˜︁Kα
(2−) satisfy the following

equations: ˜︁Kα
(1+)(b

α
k,l) =

√︁
(k + 1)(k + 1 + α) bαk+1,l,
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˜︁Kα
(1−)(b

α
k,l) =

√︁
k(k + α) bαk−1,l,

˜︁Kα
(2+)(b

α
k,l) =

√︁
(l + 1)(l + 1 + α) bαk,l+1,

˜︁Kα
(2−)(b

α
k,l) =

√︁
l(l + α) bαk,l−1,

for all k, l ∈ Z+.

Proof. To prove these formulas we recall the expresion for the norm of the disk poly-
nomials from Definition 2.2.3:

∥Pα
k,l∥2,α =

√︄
(α + 1)k!l!Γ(α + 1)2

(k + l + α + 1)Γ(k + α + 1)Γ(l + α + 1)
.

Let k, l ∈ Z+. We verify the first equality:

˜︁Kα
(1+)(b

α
k,l) = Hα/4Kα

(1+)H
−α/4(bαk,l)

= Hα/4Kα
(1+)

(︃
1√

k + l + 1 + α
bαk,l

)︃
= Hα/4Kα

(1+)

(︃
1√

k + l + 1 + α

1

∥Pα
k,l∥2,α

Pα
k,l

)︃
= Hα/4

(︃
1√

k + l + 1 + α

1

∥Pα
k,l∥2,α

Kα
(1+)(P

α
k,l)

)︃
= Hα/4

(︃
1√

k + l + 1 + α

1

∥Pα
k,l∥2,α

(k + 1 + α)Pα
k+1,l

)︃
=

k + 1 + α√
k + l + 1 + α

∥Pα
k+1,l∥2,α

∥Pα
k,l∥2,α

Hα/4(bαk+1,l)

=

√︄
(k + 1)(k + 1 + α)

(k + l + 2 + α)

√
k + l + 2 + α bαk+1,l

=
√︁
(k + 1)(k + 1 + α) bαk+1,l.
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For the second one:

˜︁Kα
(1−)(b

α
k,l) = Hα/4Kα

(1−)H
−α/4(bαk,l)

= Hα/4Kα
(1−)

(︃
1√

k + l + 1 + α
bαk,l

)︃
= Hα/4Kα

(1−)

(︃
1√

k + l + 1 + α

1

∥Pα
k,l∥2,α

Pα
k,l

)︃
= Hα/4

(︃
1√

k + l + 1 + α

1

∥Pα
k,l∥2,α

Kα
(1−)(P

α
k,l)

)︃
= Hα/4

(︃
1√

k + l + 1 + α

1

∥Pα
k,l∥2,α

k Pα
k−1,l

)︃
=

k√
k + l + 1 + α

∥Pα
k−1,l∥2,α

∥Pα
k,l∥2,α

Hα/4(bαk−1,l)

=

√︄
k(k + α)

(k + l + α)

√
k + l + α bαk−1,l

=
√︁
k(k + α) bαk−1,l.

The other two equalities can be shown using very similar arguments.

Theorem 3.3.20. The following representations for the shift isometries hold

V = (Lα
(2))

−1/2 (˜︁Lα
(2))

−1/2 ˜︁Kα
(2+)

V ∗ =

{︄ ˜︁Kα
2− (˜︁Lα

(2))
−1/2 (Lα

(2))
−1/2 on (Aα,2

0 )⊥

0 on Aα,2
0

˜︁V = (Lα
(1))

−1/2 (˜︁Lα
(1))

−1/2 ˜︁Kα
(1+)

(˜︁V )∗ =

{︄ ˜︁Kα
1− (˜︁Lα

(1))
−1/2 (Lα

(1))
−1/2 on ( ˜︁Aα,2

0 )⊥

0 on ˜︁Aα,2
0

on their respective domains.

Proof. We only need to check the equality on their action upon the basis elements.
Thus, the density of the basis guarantees equality everywhere.

For the first isometry:

(Lα
(2))

−1/2 (˜︁Lα
(2))

−1/2 ˜︁Kα
(2+)(b

α
k,l) = (Lα

(2))
−1/2 (˜︁Lα

(2))
−1/2 (

√︁
(l + 1)(l + 1 + α) bαk,l+1)

= (Lα
(2))

−1/2(
√
l + 1 bαk,l+1)

= bαk,l+1 = Vα(b
α
k,l).
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And for the third:

(Lα
(1))

−1/2 (˜︁Lα
(1))

−1/2 ˜︁Kα
(1+)(b

α
k,l) = (Lα

(1))
−1/2 (˜︁Lα

(1))
−1/2 (

√︁
(k + 1)(k + 1 + α) bαk+1,l)

= (Lα
(1))

−1/2(
√
k + 1 bαk+1,l)

= bαk+1,l = ˜︁Vα(bαk,l).
For the others, we check the cases. Let bαk,l, with l > 0.

˜︁Kα
2−(
˜︁Lα
(2))

−1/2(Lα
(2))

−1/2(bαk,l) = ˜︁Kα
2−

(︃
1√︁

l(l + α)
bαk,l

)︃
= bαk,l−1. (3.9)

Recall that ker(V ∗
α ) = Aα,2(D).

This implies that V ∗
α only acts upon the elements of (Aα,2(D))⊥, where the equality

holds.
Similarly, for a basis element bαk,l, with k > 0:

˜︁Kα
1−(
˜︁Lα
(1))

−1/2(Lα
(1))

−1/2(bαk,l) = ˜︁Kα
1−

(︃
1√︁

k(k + α)
bαk,l

)︃
= bαk−1,l. (3.10)

Since, ker(˜︁V ∗
α ) = ˜︁Aα,2(D), just as before, we get the desired result.

Now, having found the basis-independent representations for the pure isometry
Vα, we can recover the mutually adjoint operators a and a†.

Following the abstract theory of the extended Fock space formalism, one can derive
such ladder operators from a pure isometry per Theorem 1.3.11.

This next definition applies this to our particular case.

Definition 3.3.21. Let a, a† : L2(D, dµα) → L2(D, dµα) be two operators densely
defined through their actions on the basis elements of L2(D, dµα) as follows:

a(bαp,q) =

{︄√
q bαp,q−1 if p ∈ Z+, q > 0

0 if p ∈ Z+, q = 0

and,

a†(bαp,q) =
√︁
q + 1 bαp,q+1 , ∀p, q ∈ Z+

Next we verify that these operators are indeed the lowering and raising operators
from Theorem 2.15.

Proposition 3.3.22. The operators a and a† satisfy on D the commutation relation:

[a, a†] = I

Proof. Granted the linearity of the operators a and a† we only need to verify this
equality for the basis elements.
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Let bαp,q be a normalized disk polynomial. If q > 0:

[a, a†](bαp,q) = (aa† − a†a)(bαp,q)

= a(
√︁
q + 1bαp,q)− a(

√
qbαp,q)

=
√︁
q + 1a(bαp,q)−

√
qa(bαp,q)

= (q + 1)bαp,q − qbαp,q = bαp,q.

If q = 0:

[a, a†](bαp,0) = (aa† − a†a)(bαp,0)

= a(bαp,1) = a(bαp,1)

= bαp,0.

In any case, the desired property holds.

In fact, as it was mentioned before, these operators may be extended to the
following common domain that is dense in L2(D, µα):

Dext :=

{︄
f =

∞∑︂
j=1

fjb
α
mj ,nj

∈ L2(D, µα)

⃓⃓⃓⃓ ∞∑︂
j=1

nj|fj|2 <∞

}︄

and acting as:

a(f) =
∞∑︂
j=1

√
njfjb

α
mj ,nj−1

(considering nj − 1 = 0 if nj = 0)

and,

a(f) =
∞∑︂
j=1

√︁
nj + 1fjb

α
mj ,nj+1

for all elements f ∈ Dext.

In this domain, we have that the operators a and a† are mutually adjoint, and the
linear combinations of elements of the spaces (a†)n−1 ker a is dense in L2(D, µα).

Finally, Theorem 3.3.23 gives a basis-independent representation for these opera-
tors.

Theorem 3.3.23. The following representations for a and a† hold

a =

{︄ ˜︁Kα
2− (˜︁Lα

(2))
−1/2 on (Aα,2)⊥ ∩ Dext

0 on Aα,2
0 ∩ Dext

a† = (˜︁Lα
(2))

−1/2 ˜︁Kα
(2+) , on Dext.
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Proof. As was done in Theorem 3.3.20, we verify these equalities only on the basis
elements.

For the operator a:
Let bαk,l be a basis element. If l > 0:

˜︁Kα
2− (˜︁Lα

(2))
−1/2(bαk,l) = ˜︁Kα

2−

(︂ 1√
l + α

bαk,l

)︂
=

1√
l + α

˜︁Kα
2−(b

α
k,l) =

√
l bαk,l−1.

If l = 0, then the basis element bαk,l belongs to (Aα,2)⊥, so the equality holds.

Similarly, for a†:
Let bαk,l be a basis element. Then:

(˜︁Lα
(2))

−1/2 ˜︁Kα
(2+)(b

α
k,l) = (˜︁Lα

(2))
1/2
(︁√︁

(l + 1)(l + 1 + α) bαk,l+1

)︁
=

√
l + 1 bαk,l+1.
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