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Abstract

Minimal free resolutions (m.f.r.) are fundamental because many algebraic in-
variants can be derived from them. Even though m.f.r. of a �nitely generated
module over a polynomial ring are �nite, their computation is complicated.
Although much of the work done has resulted in algorithms like cellular res-
olutions, and despite recent advances, �nding a m.f.r. remains di�cult.

In this work, we develop the molecular cover (m.c.) algorithm, a technique
for computing m.f.r. of forest edge ideals. This new algorithm allows us to
cover a tree with stars using a particular procedure. Then, we relate these
covers to its Betti numbers and, ultimately, compute minimal multi-graded
free resolutions of their edge ideals, at least in some families.

In chapters 1 and 2, we introduce preliminary homological and combina-
torial concepts.

These basic tools allow us to develop the m.c. algorithm in subsequent
chapters. Then, we will discuss the versions of Hochster's formula.

In Chapter 3, we develop more advanced techniques that are the basis of
the m.c. algorithm, which we will use in Chapter 4. This immediately allows
us to prove some results using only combinatorial means.

In Chapter 4, we will �rst present a criterion for proving that a given
chain complex is actually a resolution. Then, we'll formally introduce the
concept of a molecular cover of a forest, along with the algorithm to compute
them. Then, using combinatorial means and this algorithm, we will compute
candidates of m.f.r. of some families of edge ideals.

In the Appendix, we attach a list of molecular trees and one with molec-
ular trees with at most 18 vertices that remain molecular after removing all
their leaves.
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Resumen

Las resoluciones libres minimales (r.l.m.) son fundamentales porque muchos
invariantes se pueden derivar de ellas. A pesar de que las r.l.m. de un
módulo �nitamente generado sobre un anillo de polinomios son �nitas, sus
cálculos son complicados. Aunque mucho del trabajo realizado ha resultado
en algoritmos como resoluciones celulares, y a pesar del progreso reciente,
encontrar una r.l.m. sigue siendo complicado.

En este trabajo desarrollamos el algoritmo de cubiertas moleculares (c.m.),
para calcular r.l.m. de ideales de aristas de bosques. Este nuevo algoritmo
nos permite cubrir un árbol con estrellas usando un procedimiento particu-
lar. Entonces relacionamos estas cubiertas con sus números de Betti con el
objetivo último de calcular r.l.m. multigraduadas de sus ideales de aristas,
al menos en algunas familias.

En los capítulos 1 y 2 calculamos conceptos preliminares homológicos y
combinatorios.

Estas herramientas básicas nos permiten desarrollar el algoritmo de las
c.m. en los capítulos siguientes. Entonces hablaremos de las versiones de la
fórmula de Hochster.

En el capítulo 3 desarrollamos técnicas más avanzadas que son la base
del algoritmo de la c.m. que usaremos en el capítulo 4. Esto inmediatamente
nos permite demostrar algunos resultados vía medios combinatorios.

En el capítulo 4 primero presentaremos un criterio para demostrar que un
complejo de cadenas dado es de hecho una resolución. Entonces introducire-
mos formalmente el concepto de una cubierta molecular de un bosque, junto
con el algoritmo para calcularlas. Entonces, usando medios combinatorios
y este algoritmo, calcularemos candidatos a r.l.m. de algunas familias de
ideales de aristas.

En el apéndice, añadimos una lista de árboles moleculares, y de árboles
moleculares que permanecen moleculares al remover las hojas.
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Introduction

The minimal free resolution of a �nitely generated module over a polyno-
mial ring S = k[x], with variables x = {x1, . . . , xn} and k a �eld, have been
extensively studied. Nowadays, there is software to compute minimal free
resolutions. However, it extensively uses iterative algorithms based on the
Gröbner basis, which makes the computations very expensive, as the com-
plexity to compute a Gröbner basis can be doubly exponential, as shown in
[?]. Therefore, there is interest in �nding other ways to compute minimal
free resolutions or Betti numbers without having to compute them, skipping
the iterative process. Some of this work can be seen in [?].

Some general methods have been developed to compute non-minimal free
resolutions or complexes of a module, like the Taylor Resolution or the Scarf
Complex. These resolutions and complexes can give us part of the informa-
tion we'd get from a minimal free resolution, but not all. Some work has also
been done on computing minimal free resolutions on families of ideals based
on cellular complexes, but these computations are still highly complex.

Several techniques have been developed to compute Betti numbers, mak-
ing this a manageable problem in a lot of cases. Some work that is related
to ours can be found in [?], [?], and [?].

However, an explicit description of the di�erentials in the resolution is
not often given, as this turns out to be a more di�cult problem.

In this work, we develop some combinatorial tools that allow us to make
computations of the di�erentials of minimal multigraded free resolutions of
families of ideals, especially edge ideals of trees. Some work has been done
to compute free resolutions of trees or their Betti numbers, as in [?] and [?].
The main concept developed in this work is called a molecular cover.
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Objectives

The Objectives of this work are:

� To construct an algorithm that calculates the Betti numbers of the edge
ideal of a given tree.

� To give a characterization on the family of all trees by using such al-
gorithm.

� To use such characterization to calculate minimal free resolutions of
the edge ideals of some families of trees.
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Chapter 1

Preliminaries

1.1 Chain Complexes

Let R be a commutative ring.

De�nition 1.1.1. For a (possibly �nite) sequence (C, ϕ) of R−modules Ci

and homomorphisms ϕi:

C : · · · ϕ−1← C−1
ϕ0← C0

ϕ1← C1
ϕ2← · · ·

we say that C is a chain complex if ϕi ◦ ϕi−1 = 0 for all i. If, in fact,
kerϕi = imϕi+1 for some i, then C is said to be exact at the homological
degree i. If it is exact at all the homological degrees, then we say it is an
exact sequence. An exact sequence

0→ L→M → N → 0

is said to be a short exact sequence. In this case, this is equivalent to the
fact that L → M is a monomorphism, M → N is an epimorphism and
ker(M → N) = im(L → M). Sequences 0 → L → M → 0 and 0 → L → 0
are also called short exact sequences.

We will use the notations C•, (C, ϕ), or simply C for a chain complex,
depending on the need to di�erentiate two of them or state the maps ϕi.

4
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1.2 Simplicial Homology and Cohomology

Here, we will cover a topological invariant for simplicial complexes: Their
homology. Some of the results here can be generalized, adding some small
technical hypotheses.

De�nition 1.2.1. An n−simplex is just a topological space homeomorphic
to

∆n = {(t0, . . . , tn) ∈ Rn+1
≥0 :

n∑
i=0

ti = 1}.

We de�ne a face σ ⊆ ∆n by taking a subset Aσ ⊆ {0, . . . , n} and de�ning

σ = {(t0, . . . , tn) ∈ ∆n | (∀i ∈ Aσ), ti = 0}.

We then say that σ is a n − |Aσ|−face of ∆n. In this case, it is also clear
that σ is a n− |Aσ|−simplex for |Aσ| ≤ n+ 1.

We de�ne ∆−1 = ∅.
De�nition 1.2.2 (Simplicial Complex). A simplicial complex ∆ is a topo-
logical space, with a family of simplices S ⊆ {σ ⊆ ∆} such that

∆ =
⋃
S

and also for every σ, τ ∈ S we have that σ ∩ τ is a face of both σ and τ . We
say that ρ is a face of ∆ if it is a face of some simplex of ∆.

Remark. By the previous de�nition, we have that every simplex σ ∈ S is
determined by its 0−faces, i.e., vertices. Otherwise, if there were σ ̸= τ
both with the same vertices, this would mean σ ∩ τ is a face of σ (resp. τ),
having all its vertices, which can only be σ (since it would correspond to the
face of the simplex ∆n corresponding to the set A = ∅, which is ∆n), thus
σ = τ ∩ σ = τ .

De�nition 1.2.3. For a n−simplex σ, we de�ne its dimension by dimσ = n.
For a simplicial complex ∆ we de�ne its dimension by dim∆ = max{dimσ :
σ ∈ S}.
De�nition 1.2.4. For a simplicial complex ∆, we can de�ne its face poset
F (∆) as the set of all its faces ordered by inclusion. It has a graded structure,
by taking

F (∆) = ∆−1 ⊔ · · · ⊔∆dim∆.

where ∆i = {σ ∈ F (∆) : dim σ = i}.
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Remark. A simplicial complex ∆ remains unchanged if we replace S with
F (∆). So we can add an extra condition for S: That every τ ⊆ σ is also in
S for any σ ∈ S. This means that a all the faces of a simplicial complex are
determined by its maximal faces, its facets. This also gives us a recipe for
the next de�nition.

De�nition 1.2.5 (Abstract Simplicial Complex). An abstract simplicial
complex ∆ on the vertex set V = ∆0 is a collection of subsets of V such
that if σ ∈ ∆ and τ ⊆ σ then τ ∈ ∆. The i−faces of ∆ are the elements of
∆ with i + 1 elements. This way, we de�ne the dimension of both the faces
of ∆ and ∆ as above. We de�ne ∆i as the set of all the i−faces of ∆.

Remark. For a simplicial complex ∆, the face poset F (∆) is an abstract
simplicial complex on the vertex set ∆0. Conversely, if ∆ ̸= ∅ is instead an
abstract simplicial complex, we get a simplicial complex T (∆) by replacing
all i−faces of ∆ by i−simplices, in a way they intersect according to their
intersections in ∆.

This way, the empty space ∅ corresponds to the irrelevant (abstract)
simplicial complex {∅}. The empty abstract simplicial complex ∅ does not
correspond to a non-abstract simplicial complex.

Given an i−face σ = {vj0 , . . . , vji} ∈ ∆ such that jl ≤ jm for l ≤ m, we
shall denote it as σ = [vj0 , . . . , vji ].

De�nition 1.2.6 (Skeleton). Let ∆ be a simplicial complex. The simplicial
complex given by all the faces of dimension ≤ i ∈ N of ∆ is called the
i−skeleton of ∆.

De�nition 1.2.7 (Euler Characteristic). For a simplicial complex ∆, de�ne
the Euler characteristic of χ(∆) as χ(∆) = ρ− ι− 1 where ρ is the number
of faces of even dimension and ι is the number of faces of odd dimension
(counting the empty −1−face).

De�nition 1.2.8 (Chain complex of a simplicial complex and its homology).
For an abstract simplicial complex ∆ on a vertex set V (it is analogous for a
simplicial complex using its face poset) and a commutative ring with unity
R, we de�ne, for every −1 ≤ i ≤ dim∆, Ci(∆;R) = R∆i formally, i.e. the
free R−module generated by ∆i, or more explicitly, the R−module of all the
formal sums of the form

∑
σ∈∆i

ασσ. We also de�ne boundary maps

∂i : Ci(∆;R)→ Ci−1(∆;R)
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by

∂i([vj0 , . . . , vji ]) =
i∑

l=0

(−1)l([vj0 , . . . , v̂jl , . . . , vji ])

where v̂jl means that component is removed. If we have some matrix

(aσσ′)σ∈∆i,σ′∈∆i−1

representing ∂, this means that

∂(σ) =
∑

σ′∈∆i−1,σ′⊆σ

aσσ′σ′.

Since σ−σ′ consists in a single vertex k, we will de�ne sgn(k, σ) as aσσ′ . This
also means that for σ = [vj0 , . . . , vji ] and k = vjl ∈ σ we have sgn(k, σ) =
(−1)l. We de�ne the simplicial homology(i) of ∆ with coe�cients in R as
Hi(∆;R) = ker ∂i/im∂i+1. The elements of Zi(∆;R) = ker ∂i are called
cycles, and the elements of Bi(∆;R) = im∂i+1 are called boundaries.

When there is no risk of ambiguity, we will omit R in the notation, so
C•(∆;R) will be C•(∆) and every module is an R−module.

Example 1.2.1. A simplicial complex (abstract or not) can be represented
by a drawing. For example, consider the abstract simplicial complex ∆ de-
�ned on the vertex set ∆0 = {1, . . . , 6} determined by the facets

{1, 2, 4}, {1, 3, 5}, {2, 3, 6}.

This simplicial complex has the drawing:

1

2 3

4 5

6

(i)This is the de�nition of the reduced homology, usually denoted by H̃. Every homology

calculation in this work will be reduced.
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Computing its homology is not hard, but the calculations are a bit cumber-
some. We have to compute the chain modules:

C2(∆;R) = R[1, 2, 4]⊕R[1, 3, 5]⊕R[2, 3, 6],
C1(∆;R) = R[1, 2]⊕R[1, 3]⊕R[2, 3]⊕R[1, 4]⊕R[2, 4]⊕R[1, 5]⊕R[3, 5]

⊕R[2, 6]⊕R[3, 6],

C0(∆;R) =
6⊕

i=1

R[i],

C−1(∆;R) = R∅.

The boundary maps are also given by the following matrices (with respect
to the given bases and considering the vectors of Ci as columns):

∂2 =



1 0 0
0 1 0
0 0 1
−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1


, ∂1 =


−1 −1 0 −1 0 −1 0 0 0
1 0 −1 0 −1 0 0 −1 0
0 1 1 0 0 0 −1 0 −1
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1



and ∂0 = 1 where 1 is the 1× 6 vector with 1s as its entries. Now, we have
to compute the kernel and image of the three maps. We will then have that
H2(∆;R) ∼= ker ∂2, H1(∆;R) ∼= ker ∂1/im∂2 and H0(∆;R) ∼= ker ∂0/im∂1. To
solve the system

∂2

xy
z

 =

00
0


we observe that, in particular, by computing the products with the �rst three
rows, that x = y = z = 0, so H2(∆;R) ∼= ker ∂2 = 0. To compute im∂2 we
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see that for x, y, z ∈ R,

1 0 0
0 1 0
0 0 1
−1 0 0
1 0 0
0 −1 0
0 1 0
0 0 −1
0 0 1



xy
z

 =



x
y
z
−x
x
−y
y
−z
z


= x



1
0
0
−1
1
0
0
0
0


+ y



0
1
0
0
0
−1
1
0
0


+ z



0
0
1
0
0
0
0
−1
1


so im∂2 is generated by those three vectors, which are clearly a basis for it.

Now we solve the system
−1 −1 0 −1 0 −1 0 0 0
1 0 −1 0 −1 0 0 −1 0
0 1 1 0 0 0 −1 0 −1
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1




x1
x2
...
x8
x9

 =


0
0
0
0
0
0


which in particular, implies that x8 = −x9, x6 = −x7 and x4 = −x5. We also
get the relations

x2 + x3 − x7 − x9 = x1 − x3 − x5 − x8 = −(x1 + x2 + x4 + x6) = 0

which translate into

x2 + x3 + x6 − x9 = x1 − x3 + x4 + x9 = x1 + x2 + x4 + x6 = 0,

which are associated to the kernel of the 3× 6 matrix1 1 0 1 1 0
0 1 1 0 1 −1
1 0 −1 1 0 1


which can be reduced further by (carefully made) elementary row operations:1 1 0 1 1 0
0 1 1 0 1 −1
1 0 −1 1 0 1

 ∼
1 1 0 1 1 0
0 1 1 0 1 −1
0 −1 −1 0 −1 1


∼

1 1 0 1 1 0
0 1 1 0 1 −1
0 0 0 0 0 0

 ∼
1 0 −1 1 0 1
0 1 1 0 1 −1
0 0 0 0 0 0
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So x1 = x3 − x4 − x9, x2 = −x3 − x6 + x9. Therefore, any vector u in the
kernel must have the form

u =



x3 − x4 − x9
−x3 − x6 + x9

x3
x4
−x4
x6
−x6
−x9
x9


= x3



1
−1
1
0
0
0
0
0
0


+ x4



−1
0
0
1
−1
0
0
0
0


+ x6



0
−1
0
0
0
1
−1
0
0


+ x9



−1
1
0
0
0
0
0
−1
1


.

These four vectors, u1, u2, u3, u4 are a basis, so this submodule of R9 is iso-
morphic to R4. We also see that u2, u3 and u4 + u1 are in im∂2, which
means that u2 + im∂2 = u3 + im∂2 = 0 and u1 + im∂2 = −u4 + im∂2. So
H1(∆;R) is generated by u1 + im∂2. Since no multiple of u1 is in im∂2, we
get H1(∆;R) ∼= R.

Lastly, ker ∂0 : R
6 → R consists on all the vectors

v =


x1
x2
x3
x4
x5
x6


such that x1 + x2 + x3 + x4 + x5 + x6 = 0, which means that

v =


x1
x2
x3
x4
x5

−x1 − x2 − x3 − x4 − x5



= x1


1
0
0
0
0
−1

+ x2


0
1
0
0
0
−1

+ x3


0
0
1
0
0
−1

+ x4


0
0
0
1
0
−1

+ x5


0
0
0
0
1
−1

 ,
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so ker ∂0 is generated by those �ve vectors v1, v2, v3, v4, v5. The image of ∂1
is just the submodule of all vectors v of the form

v =


−1 −1 0 −1 0 −1 0 0 0
1 0 −1 0 −1 0 0 −1 0
0 1 1 0 0 0 −1 0 −1
0 0 0 1 1 0 0 0 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1





x1
x2
x3
x4
x5
x6
x7
x8
x9



=


−x1 − x2 − x4 − x6
x1 − x3 − x5 − x8
x2 + x3 − x7 − x9

x4 + x5
x6 + x7
x8 + x9


Each of the vi's is in there, it can be checked by making the following matrix
products for each vector, so that we can see that H0(∆;R) = 0:

∂1



0
−1
0
0
0
0
0
0
−1


=


1
0
0
0
0
−1

 , ∂1



0
0
0
0
0
0
0
−1
0


=


0
1
0
0
0
−1

 , ∂1



0
0
0
0
0
0
0
0
−1


=


0
0
1
0
0
−1

 , ∂1



0
0
0
1
0
−1
1
0
−1


=


0
0
0
1
0
−1





CHAPTER 1. PRELIMINARIES 12

and lastly

∂1



0
0
0
0
0
0
1
0
−1


=


0
0
0
0
1
−1

 .

The calculations above are very cumbersome, even when R is a �eld (in
which case they're still simpli�ed a lot because of theorems like rank-nullity
and other properties of the dimension of �nite dimensional vector spaces).
But there are other tools to help us make these calculations in an easier way;
two of them are the long exact sequence of homology and the Mayer-Vietoris
sequence.

Proposition 1.2.2. The sequence

C•(∆;R) : 0← C−1(∆;R)
∂0← C0(∆;R)

∂1← · · ·

is indeed a chain complex.

Proof. it is very straightforward. Let σ = [v0, . . . , vn] ∈ Cn(∆). Then

∂n(σ) =
n∑

i=0

(−1)i(σ − vi)

and

∂n−1∂n(σ) =
∑
j<i

(−1)j(−1)i(σ − vi − vj) +
∑
j>i

(−1)j−1(−1)i(σ − vi − vj)

=
∑
j<i

(−1)j(−1)i(σ − vi − vj) +
∑
j<i

(−1)i−1(−1)j(σ − vi − vj)

=
∑
j<i

(−1)j(−1)i(σ − vi − vj)−
∑
j<i

(−1)i(−1)j(σ − vi − vj)

= 0

■
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This can be generalized a bit.

De�nition 1.2.9 (Homology of chain complex). For a chain complex

C : · · · ∂i−1← Ci−1
∂i← Ci

∂i+1← Ci+1
∂i+2← · · ·

we de�ne the homology of C, denoted Hi(C) as ker ∂i/im∂i+1. When the
chain complex comes from a simplicial complex, we will denote Hi(∆;R),
if we take C−1(∆;R) = 0 or Hi(∆;R) if we consider C−1(∆;R) = R. In
the second case, the notation C will be replaced by C̃, and H will be called
reduced homology. The elements of the set Zi(C) = ker ∂i will be called
cycles and the elements of the set Bi(C) = im∂i+1 will be called boundaries.

De�nition 1.2.10. A homomorphism ϕ : C → D of two chain complexes
(C, ∂), (D, δ) is just a sequence of maps ϕ = (ϕi : Ci → Di)i such that the
following diagram commutes (i.e. the rectangle in the diagram commutes for
every i):

· · · Ci−1 Ci · · ·

· · · Di−1 Di · · ·

∂i−1 ∂i ∂i+1

δi−1 δi δi+1

ϕi−1 ϕi

De�nition 1.2.11. A chain complex (resp. exact sequence) of chain com-
plexes is just a sequence (Ai, ϕi)i∈Z:

· · · ϕi−1← Ai−1
ϕi← Ai

ϕi+1← Ai+1
ϕi+2← · · ·

such that for every i ∈ Z, Ai is a chain complex, ϕi is a homomorphism of
chain complexes and the sequence:

· · · ϕi−1,j← Ai−1,j
ϕi,j← Ai,j

ϕi+1,j← Ai+1,j
ϕi+2,j← · · ·

is a chain complex (resp. exact) for every j. In particular,

0→ A→ B → C → 0

is a short exact sequence of chain complexes if

0→ Aj → Bj → Cj → 0

is a short exact sequence of modules for every j.
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Theorem 1.2.3 (Long exact sequence of homology). If there is a short exact
sequence of chain complexes:

0→ A
α→ B

β→ C → 0

for chain complexes (A, γ), (B, δ), (C, ϵ)then there is a long exact sequence:

· · ·
β∗
i+1→ Hi+1(C)

∂i+1→ Hi(A)
α∗
i→ Hi(B)

β∗
i→ Hi(C)

∂i→ Hi−1(A)
α∗
i−1→ · · ·

where the homomorphisms α∗
i , β

∗
i , ∂i are to be de�ned in the proof.

Proof. We have the following commutative mesh with exact rows:

0 Ai Bi Ci 0

0 Ai−1 Bi−1 Ci−1 0

0 Ai+1 Bi+1 Ci+1 0

...
...

...

...
...

...

αi+1 βi+1

αi−1 βi−1

αi βi

γi+1

γi

δi+1

δi

ϵi+1

ϵi

First, we want to de�ne the maps α∗, β∗, ∂ of the sequence. To de�ne α∗
i

consider αi : Ai → Bi. Since α is a chain complex homomorphism then
αi : Ai → Bi maps ker γi into ker δi and imγi+1 into imδi+1. So �rst we can
take α′

i = αi|ker γi : ker γi → ker δi. Thus, there is a unique map α∗
i : Hi(A)→

Hi(B) such that the following diagram commutes:

ker γi ker δi

Hi(A) Hi(B)

α′
i

α∗
i

πAi
πBi
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where πAi
, πBi

are the canonical maps. So that is how α∗ and β∗ are de�ned.
About how ∂ is de�ned, we will focus on the following part of the mesh:

Bi Ci 0

0 Ai−1 Bi−1 Ci−1 0
αi−1 βi−1

βi

δi ϵi

So, take [z] ∈ Hi(C) for z ∈ ker ϵi (a cycle) so that ϵi(z) = 0. Since βi is
surjective, then there exists some b ∈ Bi such that z = βi(b). But since
ϵiβi = βi−1δi, then δi(b) ∈ ker βi−1 = imαi−1. So there is a ∈ Ai−1 such
that αi−1(a) = δi(b). But also αi−2γi−1 = δi−1αi−1, so since δi−1αi−1(a) =
δi−1δi(b) = 0, we get αi−2γi−1(a) = 0, and since αi−1 is injective this means
γi−1(a) = 0 so a ∈ ker γi−1 and [a] ∈ Hi−1(A). So just de�ne ∂i([z]) = [a]. So
we have just gone backward through the mesh

Bi Ci

Ai−1 Bi−1

αi−1

βi

δi

zb

δi(b)a

just to �nd a. This choice of a might a priori be dependent on the choice
of the representative z of [z] and on the choice of b, so we must prove these
choices do not a�ect the homology class of a, by showing that ∂i is a well
de�ned map.

To do that, suppose [z] = [z′] so that z − z′ ∈ imϵi+1, and we will do the
process of �nding a, a′ for both of the representatives z, z′. Take b, b′ ∈ B such
that βi(b) = z, βi(b

′) = z′, so βi(b− b′) = z − z′. Also, since z − z′ ∈ imϵi+1,
take c such that ϵi+1(c) = z−z′. Since βi+1 is surjective there exists b

′′ ∈ Bi+1

such that βi+1(b
′′) = c, so, since the diagram
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Bi+1 Ci+1

Bi Ci
βi

βi+1

δi+1 ϵi+1

commutes, we have ϵi+1βi+1(b
′′) = βiδi+1(b

′′) = z − z′. Thus

βi(b− b′ − δi+1(b
′′)) = 0.

This means that there is a′′ ∈ Ai such that αi(a
′′) = b− b′ − δi+1(b

′′). Now,

δi(b− b′ − δi+1(b
′′)) = δi(b)− δi(b′) = δiδi+1(b

′′) = δ(b)− δ(b′).

If we take a, a′ such that αi−1(a) = δi(b), αi−1(a
′) = δi(b

′), then

αi−1(a− a′) = δi(b)− δi(b′) = δi(b− b′ − δi+1(b
′′)) = δiαi(a

′′).

So, since the diagram

Ai Bi

Ai−1 Bi−1αi−1

αi

γi δi

commutes, we have

αi−1γi(a
′′) = δiαi(a

′′) = αi−1(a− a′),

so since αi−1 is a monomorphism, we get get γi(a
′′) = a − a′. So a − a′ is a

boundary (lies in the image of γi) and [a− a′] = [a]− [a′] = 0, thus [a] = [a′],
therefore ∂i([z]) = ∂i([w]), so ∂i is indeed a well de�ned function.

To check it is a homomorphism, note that if you take cycles z, w ∈ Ci,
and b, b′ such that βi(b) = z, βi(b

′) = w, and then a, a′ such that αi−1(a) =
δi(b), αi−1(a

′) = δi(b
′) then αi−1(a + a′) = δi(b + b′) and βi(b + b′) = z + w.

So ∂([z + w]) = [a+ a′] = [a] + [a′] = ∂([z]) + ∂([w]).
Now, we only have to prove that the new sequence is exact. Start with a

cycle a such that α∗
i ([a]) = 0 so that αi(a) is a boundary in Bi. So βiαi(a) is a
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boundary in Ci, therefore [βiαi(a)] = β∗
i α

∗
i ([a]) = 0. Conversely suppose that

[b] is such that β∗
i ([b]) = 0, so that c = βi(b) is a boundary in Ci. So there

is some c′ ∈ Ci+1 such that ϵi+1(c
′) = c. Also since βi+1 is surjective there is

b′′ ∈ Bi+1 such that βi+1(b
′′) = c′. Set b′ = δi+1(b

′′). Then βi(b
′) = βi(b) = c.

Thus βi(b− b′) = 0, so there is some a ∈ Ai such that αi(a) = b− b′. But b is
a cycle and b′ is a boundary, so since the diagram above commutes, we have

αi−1γi(a) = δiαi(a) = δi(b− b′) = 0,

but since αi−1 is injective, this means that γi(a) = 0, and a is a cycle. So
α∗
i ([a]) = [b− b′] = [b], therefore ker β∗

i = imα∗
i .

Now, we need to prove that ker ∂i = imβ∗
i . Take a cycle z of Ci such

that ∂i([z]) = 0. This means that, for b ∈ Bi such that βi(b) = z we have
0 = δi(b), so b is a cycle in Bi and βi(b) = z, which means that β∗

i ([b]) = [z].
Conversely if we take a cycle b then ∂i(β

∗
i ([b])) = 0 since δi(b) = 0 and αi−1

is injective.
Lastly, to prove that kerα∗

i = im∂i+1, suppose �rst that we take a cycle
a such that α∗

i ([a]) = 0. Then αi(a) is a boundary in Bi and there is b ∈
Bi+1 such that δi+1(b) = αi(a). Let z = βi+1(b). Then z is a cycle in
Ci+1 since ϵi+1(z) = βi(αi(a)) = 0. Also, by the construction of ∂ we have
∂i+1([z]) = [a]. Conversely, if we take cycles z ∈ Ci+1 and a ∈ Ai+1 such that
∂i+1([z]) = [a] then αi(a) is a boundary, thus α∗

i ∂i+1([z]) = 0. Therefore, the
sequence is exact, which is the desired result. ■

We can learn two important things from this long and convoluted, but
easy proof. First, we will talk about relative homology.

De�nition 1.2.12 (Relative homology). For a simplicial complex ∆ and a
subcomplex A ⊆ ∆ (A subspace of∆ which is a simplicial complex with all its
simplices being faces of ∆), de�ne Ci(∆, A) = Ci(∆)/Ci(A) and Hi(∆, A) =
Hi(C(∆, A)).

This states implicitly that Ci(∆, A) is a chain complex. We must wonder
how are the boundary maps de�ned, but this is not a problem:

δi : Ci(∆, A)→ Ci−1(∆, A)

is the only map making the following diagram commute
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Ci(∆)Ci−1(∆)

Ci(∆, A)Ci−1(∆, A)

∂i

δi

πiπi−1

This map is well de�ned since ∂i sends Ci(A) into Ci−1(A). This can easily be
made explicit: A basis for Ci(∆, A) is given by all the faces σ = [v0, . . . , vi] ∈
∆i − Ai, so

δi(σ) =
i∑

j=0

uσ,j(−1)j(σ − {vj}).

where uσ,j = 1 if and only if σ − {vj} /∈ A, otherwise uσ,j = 0. This can be
written as follows:

δi(σ) =
∑
v∈σ

σ−{v}/∈A

sgn(v, σ)(σ − {v}).

Proposition 1.2.4. There is a long exact sequence:

· · ·
β∗
i+1→ Hi+1(∆, A)

∂i+1→ Hi(A)
α∗
i→ Hi(∆)

β∗
i→ Hi(∆, A)

∂i→ Hi−1(A)
α∗
i−1→ · · ·

Proof. There is a short exact sequence

0→ C(A)
α→ C(∆)

β→ C(∆, A)→ 0,

where α is induced by the direct image of the inclusion A ↪→ ∆ on its
faces (So it becomes the inclusion C(A) ↪→ C(∆)), and β is the canonical
projection. ■

Proposition 1.2.5 (Mayer-Vietoris sequence). For a simplicial complex X,
and A,B subcomplexes such that X = A∪B, there is a long exact sequence:

· · · ∂i+1→ Hi(A ∩B)
α∗
i→ Hi(A)⊕Hi(B)

β∗
i→ Hi(X)

∂i→ Hi−1(A ∩B)
α∗
i−1→ · · ·

Proof. There is a natural short exact sequence:

0→ C(A ∩B)
α→ C(A)⊕ C(B)

β→ C(X)→ 0,

for α = (ιA,−ιB), β = ι′A+ι
′
B where ιA, ιB, ι

′
A, ι

′
B are induced by the inclusions

given by the following diagram:
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A ∩B

AB

X

ιIιJ

ι′Iι′J

■

For the Mayer-Vietoris sequence, it is really easy to make the homomor-
phism ∂ : Hi(X)→ Hi(A ∩B) explicit. Take a cycle

z =
∑
σ∈Ai

rσσ +
∑

σ∈Bi−Ai

rσσ ∈ Zi(X).

Since it is a cycle, its boundary is 0, and if we take

x =
∑
σ∈Ai

rσσ ∈ Ci(A), y =
∑

σ∈Bi−Ai

rσσ ∈ Ci(B),

we get
∂(x) = −∂(y),

so ∂(x) ∈ Ci−1(A ∩ B). So, just de�ne ∂([z]) = [∂(x)], since α(∂(x)) =
(∂(x),−∂(x)) = (∂(x), ∂(y)). (ii)

Proposition 1.2.6 (Euler Characteristic). For a simplicial complex of di-
mension n,

χ(∆) =
n∑

i=0

rankHi(∆,Z).

By the fundamental theorem for �nitely generated abelian groups, every
abelian group Q can be decomposed as

Q = Zn ⊕ T,
(ii)Here we are abusing the notation by letting lots of ∂s have the same name, making

it tacit that when we say ∂([z]) we are talking about ∂i : Hi(X) → Hi(A ∩ B), where
the i is determined by the location of [z], and when we say ∂(x) we are talking about

∂i : Ci(A)→ Ci−1(A) where A, i are determined by the location of x.
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where T is a torsion subgroup. As used in the previous proposition, the rank
of the abelian group Q will be de�ned as n. Similarly, for a free R−module
Rn over a ring R, its rank will be n. A similar de�nition can be given more
generally over principal ideal domains.

Proof of 1.2.6. Consider a chain complex (C, ϕ) denote Hi(C) by Hi and by
Zi, Bi the cycles and boundaries of C respectively.

Then, for each i, we have an exact sequence

0→ Bi → Zi → Hi → 0,

and one
0→ Zi → Ci → Bi−1 → 0.

Then it is easy to check that

rankZi = rankBi + rankHi

and
rankCi = rankZi + rankBi−1.

So, rankCi = rankBi + rankHi + rankBi−1, which means that∑
i

(−1)irankCi =
∑
i

(−1)i(rankBi + rankBi−1) +
∑
i

(−1)irankHi.

Since
∑

i(−1)i(rankBi + rankBi−1) = 0, we get∑
i

(−1)irankCi =
∑
i

(−1)irankHi.

Applying it to the chain complex C = C(∆;Z), and since rankCi = |∆i| and
(−1)i = 1 if and only if i is even and −1 otherwise, we have the result. ■

De�nition 1.2.13 (Chain homotopy). We say a map α : C → D are chain-
null-homotopic if there is a sequence of maps hi : Ci → Di+1 such that given
the following diagram:

· · · Ci−1 Ci Ci+1 · · ·

· · · Di−1 Di Di+1 · · ·

∂i+2∂i−1 ∂i ∂i+1

δi+2δi−1 δi δi+1

hihi−1αi−1 αi αi+1
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we have hi−1∂i + δi+1hi = αi for every i. We say two maps α, β : C → D
are chain-homotopic if α− β is chain-null-homotopic. The map h is called a
chain homotopy, and we say α ≃ β or α ≃h β when the map h is relevant.

Proposition 1.2.7. If a map α : C → D is chain-null-homotopic, then the
induced homomorphisms in homology are 0.

Proof. As in the proof of the long exact sequence of homology, α maps cycles
into cycles and boundaries into boundaries so it induces maps α∗

i : Hi(C)→
Hi(D) by α∗

i ([z]) = [αi(z)] for z ∈ Zi(C). Since α is chain-null-homotopic
we have

αi(z) = hi−1∂i(z) + δi+1hi(z) = δi+1(hi(z))

which is clearly a boundary of D so its homology class is 0. Therefore α∗
i = 0

for every i. ■

Corollary 1.2.8. If α, β : C → D are chain-homotopic, then they induce
the same homomorphisms in homology.

De�nition 1.2.14. Given two chain complexes C,D, then we say they are
chain-homotopically equivalent if there are maps α : C → D and β : D → C
such that βα ≃ 1C and αβ ≃ 1D.

Proposition 1.2.9. If two chain complexes C,D are chain-homotopically
equivalent then they have the same homology.

Proof. Since there are maps α : C → D and β : D → C such that βα ≃ 1C
and αβ ≃ 1D then (βα)∗i = β∗

i α
∗
i : Hi(C) → Hi(C) and (αβ)∗i = α∗

iβ
∗
i :

Hi(D) → Hi(D) are identity maps, therefore α∗
i , β

∗
i are isomorphisms for

every i. ■

We will use these results to provide convoluted proof of an elementary
fact: that a simplex has trivial homology. This can be proven using the
fact that a simplex is contractible and that homology remains invariant un-
der deformations. We haven't introduced deformations, but we can use the
argument behind their validity to make it work here.

Example 1.2.10. Let ∆ be the full simplex on V = {1, . . . , n}, i.e. ∆ =
℘(V ). We will show that the complexes C(∆) and C(1) are homotopically
equivalent. The candidate map c : C(1) → C(∆) is just the induced map
1 7→ k for a �xed k ∈ V . This one induces an inclusion C0(1)→ C0(∆), the
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identity map C−1(1) → C−1(∆) and the zero map everywhere else. For its
homotopical inverse, we will take the map induced by sending every x ∈ V
into 1. This map induces the C−1(1)← C−1(∆), a kind of projection C0(1)←
C0(∆) and the zero map everywhere else. By a composition of these two maps
and a di�erence with the identity, we have a new map f : C(∆) → C(∆),
which �ts into the following diagram:

· · ·C0(∆) C1(∆)C−1(∆)

C−1(∆)

0

0 · · ·C0(∆) C1(∆)

∂0 ∂1

∂1∂0

∂2

∂2

f1f0f−1

There, f0 is just the map induced by v 7→ v − 1 (This di�erence is formal)
for every v ∈ V , f−1 = 0 and fi = 1Ci(∆) for i > 0. We want to prove that f
is chain-null-homotopic. A chain-null-homotopy h is given by

hi(σ) = σ ∪ {1}

if 1 /∈ σ and 0 if 1 ∈ σ, for i ≥ 0 and σ ∈ ∆i. For i = −1 just de�ne h−1 = 0.
Now we prove that, for every i,

∂i+1hi + hi−1∂i = fi.

First, suppose that i = −1. Then since h−1(∅) = 0 we get that ∂0h−1 = 0 =
f−1. For i = 0, and a vertex v ∈ V we have h0(v) = [1, v] and ∂1h0(v) =
v− 1 = f0(v). Since h−1 = 0, then the result holds. Now, for i > 0, consider
σ ∈ ∆i. If 1 ∈ σ then hi(σ) = 0, so that ∂i+1hi(σ) = 0. Furthermore, ∂i(σ)
is a linear combination of faces σ′ such that exactly one of them does not
contain 1. The coe�cient in such σ′ is (−1)0 = 1, so hi−1(∂i(σ)) = hi−1(σ

′) =
σ′ ∪ {1} = σ. If, otherwise, 1 /∈ σ = {v0, · · · , vi}, then not a single such face
σ′ contains 1, so

hi−1(∂i(σ)) =
i∑

l=0

(−1)l((σ − {vl}) ∪ {1}).
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Also hi(σ) = σ ∪ {1} and

∂i+1(hi(σ)) = (−1)0σ +
i+1∑
l=1

(−1)l((σ ∪ {1})− {vl−1})

= σ +
i+1∑
l=1

(−1)l((σ − {vl−1}) ∪ {1})

= σ +
i∑

l=0

(−1)l+1((σ − {vl}) ∪ {1})

= σ −
i∑

l=0

(−1)l((σ − {vl}) ∪ {1})

= σ − hi−1(∂i(σ)).

Therefore, as expected, we have

∂i+1hi + hi−1∂i = fi,

for every i. The composition g : C(1) → C(1) in the remaining order is
just the identity map, so there is nothing to prove here. This means the
chain complex of a n−simplex is chain-homotopically-equivalent to the chain
complex of a 0−simplex, which has trivial homology. we are thus done.

De�nition 1.2.15. We say a simplicial complex ∆ is connected if and only if
for any two vertices x, y, there is a x− y−path, i.e. a path in the 1−skeleton
of ∆ connecting x and y.

This means that ∆ is connected if and only if its 1−skeleton is connected.

Proposition 1.2.11. If ∆ is a connected simplicial complex over the vertex
set V = {v1, · · · vn} then H0(∆) = 0.

Proof. We need to prove that ker ∂0 = im∂1. We already have that im∂1 ⊆
ker ∂0. So let

s =
n∑

i=1

αivi ∈ ker ∂0

so that
n∑

i=1

αi = 0
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Fix a vertex v ∈ V and take a v − vi−path τi = {e1i, . . . , erii} for each i.
Consider τi as the 1−chain

τi =

ri∑
j=1

eji

so that by a telescopic property, ∂1(τi) = vi − v. Let

t =
n∑

i=1

αiτi.

Then

∂1(t) =
n∑

i=1

αivi −
n∑

i=1

αiv =
n∑

i=1

αivi = s

since
n∑

i=1

αiv = v
n∑

i=1

αi = 0.

Therefore, ker ∂0 = im∂1 and H0(∆) = 0. ■

With all this, we can compute lots of homologies!

Proposition 1.2.12. Let X = A ⊔ B for simplicial complexes A,B. Then,
for all i ≥ 1,

Hi(X) ∼= Hi(A)⊕Hi(B).

For i = 0 we have Hi(X) ∼= Hi(A)⊕Hi(B)⊕R.

Proof. In the Mayer-Vietoris sequence for X = A ∪ B, we have A ∩ B = ∅,
so for i ≥ 0, Hi(A ∩B) = 0. But H−1(A ∩ B) = R. Therefore, the sequence
divides into the short exact sequences:

0→ Hi(A)⊕Hi(B)→ Hi(X)→ 0

for each i ≥ 1 and

0→ H0(A)⊕H0(B)→ H0(X)→ R→ 0.

But a short exact sequence of this kind always splits: since H0(X) → R is
surjective, �nding a section is just �nding a preimage of 1 ∈ R. Therefore
H0(X) ∼= H0(A)⊕ h0(B)⊕R. ■
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Proposition 1.2.13. Let X = A ∨ B, for simplicial complexes A,B. This
is, A∩B consists of a single vertex. Then Hi(X) ∼= Hi(A)⊕Hi(B) for all i.

Proof. In the Mayer-Vietoris sequence for A∪B = X, Hi(A∩B) = 0 for all
i. ■

The space A ∨B is called the wedge sum of A,B.
For a simplicial complex ∆ and its associated chain complex C•(∆;R) we

can de�ne its dual complex C•; its homology will be called the cohomology
of ∆ with coe�cients in R.

De�nition 1.2.16. For a simplicial complex ∆ de�ne C•(∆;R) as

C•(∆;R)∗ = Hom(C•(∆;R), R).

The homology ker ∂∗i+1/im∂
∗
i of C•(∆;R) will be called the cohomology of

∆ with coe�cients in R and denoted by H i(∆;R). The elements of the
set Zi(∆;R) = ker ∂∗i+1 will be called cocycles, and the elements of the set
Bi(∆, R) = im∂i will be called coboundaries.

The boundary maps of the cochain complex C•, called coboundary maps
can easily be made explicit: If we take ϕ ∈ Cj(∆;R) then, for

τ = [v0, · · · , vn+1] ∈ Cj+1(∆;R)

we have

∂∗j+1(ϕ)(τ) = ϕ ◦ ∂j+1(τ) =

j+1∑
i=0

(−1)iϕ(τ − {vi}).

In particular, for the basis ∆j of Cj(∆;R) and σ ∈ ∆j if we take the
maps fσ : Cj(∆;R) → R (These maps form a basis for Cj(∆)) determined
by

fσ(σ
′) = δσσ′

where δ is the Kronecker delta, then this means that

∂∗j+1(fσ)(τ) =

j+1∑
i=0

(−1)ifσ(τ − {vi})

so that
∂∗j+1(fσ) =

∑
v ̸∈σ

σ∪v∈∆

sgn(v, σ ∪ {v})fσ∪{v}
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since fσ(τ − {v}) ̸= 0 if and only if τ − {v} = σ, i.e. when τ = σ ∪ {v}, in
which case fσ(τ − {v}) = 1; and since vi is the i−th element of τ .

We will state the following particular version of the Universal Coe�cient
Theorem for Cohomology. It can be proven by using linear algebra, but it
follows from the general version when the base ring is a �eld (so that Tor
modules are 0).

Theorem 1.2.14 (Universal Coe�cient Theorem for Cohomology). Let k
be a �eld and ∆ a simplicial complex. Then there exists an isomorphism:

h : H i(∆; k)→ Homk(Hi(∆; k), k).

1.3 Duality

Here, we will talk about some dual objects of simplicial complexes that inherit
the properties of the original objects. The homology of the dual of a simplicial
complex will be, up to some permutation of the indexes, the same as the
homology of the original complex.

De�nition 1.3.1. Let ∆ be the simplex with vertex set {1, . . . , n}. Then
we can de�ne a duality map ι : ∆ → ∆ given by σ 7→ σc for every σ ∈ ∆.
This map is just set complementation and is, of course, an involution, i.e.
ι2 = 1∆.

So we can de�ne the Alexander dual of a simplicial complex:

De�nition 1.3.2. For a simplicial complex X with vertex set {1, . . . , n} we
de�ne the Alexander dual X∨ of X as:

X∨ = {ι(σ) : σ /∈ X} = {σ : ι(σ) /∈ X}.

Since the set of all the non-faces of X has a dual property to the one of
the simplicial complexes (Every set containing a non-face is a non-face) and
complementation reverses inclusions this makes clear that X∨ is a simplicial
complex. We also have the next fact:

Proposition 1.3.1. For a simplicial complex X we have X∨∨ = X.

Proof. A face σ is in X∨∨ if and only if ι(σ) /∈ X∨, which happens if and
only if ι2(σ) = σ ∈ X. ■
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We, then, have the following four related structures:

X

X∨

ν(X)

ι(X)

∨

ν

ι

ν

∨

where ν(X) is the simplicial cocomplex (A fancy name for an upper set under
the inclusion relation) given by ι(X∨); the set of all the nonfaces of X.

The following proof of the Simplicial Alexander duality theorem is due
to Anders Björner and Martin Tancer in [?]. For every face σ of a simplicial
complex X with vertex set V = {1, . . . , n}, de�ne

p(σ) =
∏
i∈σ

(−1)i−1.

Lemma 1.3.2 (Lemma 2.1,[?]). Let k ∈ σ ⊂ {1, . . . , n}. Then

sgn(k, σ)p(σ − {k}) = sgn(k, ι(σ) ∪ {k})p(σ).

Proof. We have that sgn(k, σ) = (−1)j where k is the j−th element of σ, i.e.

sgn(k, σ) =
∏
i∈σ
i<k

(−1).

Also
sgn(k, ι(σ) ∪ {k}) =

∏
i/∈σ
i<k

(−1)

and
p(σ) =

∏
i∈σ

(−1)i−1.

Therefore, we have

p(σ)p(σ − {k}) = (−1)k−1
∏

i∈σ−{k}

(−1)i−1
∏

i∈σ−{k}

(−1)i−1 = (−1)k−1
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and

sgn(k, ι(σ) ∪ {k})sgn(k, σ) =
∏
i/∈σ
i<k

(−1)
∏
i∈σ
i<k

(−1) =
∏
i<k

(−1) = (−1)k−1.

Therefore
p(σ)p(σ − {k}) = sgn(k, ι(σ) ∪ {k})sgn(k, σ)

Since all the factors in the expressions above are in {−1, 1}, they are involu-
tive in R, therefore multiplying at both sides by p(σ)sgn(k, σ) we have

sgn(k, σ)p(σ − {k}) = sgn(k, ι(σ) ∪ {k})p(σ)

which is the desired result. ■

Theorem 1.3.3 (Alexander Duality). Let X be a simplicial complex over
the vertex set V = {1, . . . , n}. Then

Hi(X) ∼= Hn−i−3(X∨).

Proof. First, if we take the simplex ∆ on V , by the long exact sequence of
homology, we have an exact sequence

· · · → Hi+1(∆)→ Hi+1(∆, X)→ Hi(X)→ Hi(∆)→ Hi(∆, X)→ · · · ,

but since a simplex has no homology, this sequence breaks into short se-
quences of the form

0→ Hi+1(∆, X)→ Hi(X)→ 0

for every i, which means the maps

Hi+1(∆, X)→ Hi(X)

are isomorphisms.
Now, we must establish an isomorphism

Hi+1(∆, X)→ Hn−i−3(X∨).

We will do that by establishing an appropriate chain complex isomorphism
between the complexes C•(∆, X) and C•(X∨). De�ne ϕi : Ci(∆, X) →
Cn−i−2(X∨) by

ϕi(σ) = p(σ)fι(σ)
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for σ ∈ ∆i − Xi. This is a well de�ned map, since if σ ∈ ∆i − Xi then
ι(σ) ∈ X∨

n−i−2, thus fι(σ) ∈ Cn−i−2(X∨). This also sends the standard basis
of Ci(∆, X) into the (up to signs) standard basis of Cn−i−2(X∨), so it is an
isomorphism at each dimension. The only thing left to prove is that it is a
chain complex isomorphism so that it makes the following diagram commute
for each i:

Ci(∆, X)Ci−1(∆, X)

Cn−i−2(∆, X)Cn−i−1(∆, X)

δi

ϕiϕi−1

∂∗n−i−1

But this is straightforward, for σ ∈ ∆i −Xi:

ϕi−1δi(σ) = ϕj−1

 ∑
v∈σ

σ−{v}/∈X

sgn(k, σ)(σ − {v})


=

∑
v∈σ

σ−{v}/∈X

sgn(k, σ)p(σ − {v})fι(σ−{v})

=
∑
v∈σ

σ−{v}/∈X

p(σ)sgn(k, ι(σ) ∪ {v})fι(σ−{v})

=
∑
v∈σ

σ−{v}/∈X

p(σ)sgn(k, ι(σ) ∪ {v})fι(σ)∪{v}

= ∂∗n−i−1(p(σ)fι(σ))

= ∂∗n−i−1ϕi(σ)

which is the desired result. Therefore, since the chain complexes above are
isomorphic, they have the same homology. Therefore, for each i,

Hi(X) ∼= Hi+1(∆, X) ∼= Hn−i−3(X∨).

■

Corollary 1.3.4 (Alexander Duality). Let X be a simplicial complex over
the vertex set V = {1, . . . , n} and k a �eld. Then

dimkHi(X; k) = dimkHn−i−3(X
∨; k).
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Proof. It follows from the universal coe�cient theorem and the fact that
X and X∨ have a �nite number of faces of each dimension: Since in each
(topological) dimension, the cohomology is the dual of the homology, and
the homology is a �nite dimensional k−vector space, they have the same
dimension. ■

1.4 Hypergraphs and Their Ideals

The ideals described here will be the ones we will be mostly working on.
There is a lot of theory about these ideals given in [?] or [?], but most of it
won't be needed for our work here.

De�nition 1.4.1. A hypergraph G is a pair (V,E) where V = V (G) is a set
(called vertex set) and E = E(G) is a set of nonempty subsets of V (called
edge set).

Note that when every e ∈ E satis�es |e| = 2, then G is a graph. When
for any e ∈ E and f ⊆ e we have f ∈ E, then G is a simplicial complex.

De�nition 1.4.2. Let k be a �eld and G be a hypergraph on a vertex set
V = {v1, . . . , vn}. For a set of indeterminates (Which may as well be V )
{x1, . . . , xn} de�ne x(vi) = xi for all i. The ideal

I = IG =

(∏
v∈e

x(v) | e ∈ E

)
⊆ k[x1, . . . , xn]

is called the edge ideal of G.

If G is a hypergraph with vertex set {1, . . . , n} this can be rewritten as

IG =

(∏
i∈e

xi | e ∈ E

)
.

Furthermore, if G is a graph, this can be rewritten further as

IG = (xixj | {i, j} ∈ E).

For a graph, we will use the notation vw for the edge {v, w}. A subgraph
H of a graph G is a graph such that V (H) ⊆ V (G) and E(H) ⊆ E(G). We
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say that H is an induced subgraph if E(H) = {e ∈ E(G) | e ⊆ V (H)}; this
de�nition can be generalized to de�ne induced subhypergraph or induced
simplicial subcomplex.

We say a cycle C in a graph G is a subgraph such that if V (C) =
{v1, . . . , vr} then E(C) = {v1v2, v2v3, . . . , vr−1vr, v1vr}. We also de�ne the
cycle and path Cn, Pn: Cn is the graph with n vertices, which is an induced
cycle in itself, and Pn is the graph resulting from Cn after removing an edge.
A path in a graph G is said to be a subgraph isomorphic to Pn for some n. A
graph G is said to be connected if between any two vertices of G, there is a
path containing both. A graph without cycles is called a forest. A connected
graph without cycles is called a tree.



Chapter 2

Hochster's Formula

Here, we will talk about Hochster's formula. This formula shows that the
Betti numbers of a monomial ideal can be computed by computing the ho-
mology of a family of simplicial complexes instead. Although its proof is very
convoluted, it is fair enough because it allows us to avoid giving even more
convoluted proofs of many other results. It is fundamental for this work.

2.1 Minimal Free Resolutions

Here we will talk about the fundamentals of homological algebra needed to
understand Hochster's formula. Surprisingly, once we do that, we won't
need many of the results given here. Hochster's formula and Mayer-Vietoris
sequences are enough to prove many things in a more arithmetical and com-
binatorial way.

A chain complex

M• : 0←M0
ϕ1←M1

ϕ2←M2 ← · · ·

of R−modules is said to be a free resolution of an R−module M if M is
exact everywhere except in the homological degree 0, and M ∼= cokerϕ1 =
M0/imϕ1. Analogously,M is a free resolution if the sequence

M′
• : 0←M

ϕ0←M0
ϕ1←M1

ϕ2←M2 ← · · ·

is exact everywhere, where ϕ0 is the projection (since M ∼= cokerϕ1). We
will name bothM andM′ asM and use one or the other according to the
context.

32
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The following proposition can be generalized to projective resolutions,
but since we will be working over a polynomial ring, we will have enough
with free ones.

Proposition 2.1.1. Any two free resolutions (M, ϕ), (N , ψ) of a R−module
M are chain-homotopically equivalent.

Our �rst ingredient for computing the Betti numbers of an ideal is a
minimal free resolution of it.

De�nition 2.1.1 (Minimal free resolution). Let R = k[x1, . . . , xn] be the
polynomial ring in n variables,

m = (x1, . . . , xn),

M a R−module, andM = (Mi, ϕi) a free resolution of M . We say thatM
is minimal if imϕi ⊆ mMi−1 for all i ≥ 1. The same de�nition will do when
(R,m) is instead a local ring.

Remark. Equivalently, M is minimal if and only if M⊗R k is a complex
with null morphisms, where k = R/m.

Lemma 2.1.2. Let M be a R−module and m as before. Then, there is an
isomorphism

ψ :M ⊗R k →M/mM.

Proof. Consider the exact sequence:

0→ m→ R→ k → 0,

where the two nonzero morphisms are, from left to right, the inclusion and
canonical projection. By the exactness of the tensor product, the induced
sequence:

m⊗R M → R⊗R M → k ⊗R M → 0

is exact. Furthermore, R ⊗M ∼= M by the isomorphism m 7→ 1 ⊗ m. By
this isomorphism, the submodule mM is given by m⊗R M , therefore

M/mM ∼= R⊗R M/m(R⊗R M) ∼= k ⊗R M.

■
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Proof of the Remark. By the lemma, for every i,

Mi/mMi
∼= k ⊗R Mi

by the map m+mMi 7→ 1⊗m, with inverse r⊗m 7→ rm for r ∈ R. So,M is
minimal if for every i, ϕi⊗ 1 = 0 if and only if, for every i,m, ϕi(m)⊗ 1 = 0,
if and only if for every i,m, ϕi(m)+mMi−1 = 0, if and only if for every i,m,
ϕi(m) ∈ mMi−1, if and only if for every i, imϕi ⊆ mMi−1. ■

This means that if all the free modules of the free resolution are �nitely
generated (as in Hilbert's Syzygy Theorem), any matrix representing some
ϕi has all its entries in M .

The following about free resolutions can generalized to projective resolu-
tions over any commutative ring with unity.

Now, suppose that everything is Nn−graded, so that a free graded module
M of �nite rank has a direct sum decomposition

M = R(−a1)⊕ · · · ⊕R(−ar)

for some ai ∈ Nn, with grading given byR(−ai)s ∼= Rs−ai
for s ∈ Nn such that

s− ai ∈ Nn. Also, a graded free resolutionM will be a free resolution given
by free graded modules with boundary maps of degree 0, i.e. ϕ(Ms) = ϕ(M)s
for a boundary map ϕ ofM and a module M in the resolution.

De�nition 2.1.2. A monomial matrix is a matrixM ∈Mn×n(k) with labels
ap, aq in its pth column and qth row, and entries λqp such that λqp = 0 unless
ap − aq ∈ Nn.

The previously stated condition is equivalent to xap

xaq being a well-de�ned
polynomial or xaq | xap .

Remark. The R−homomorphism⊕
p

R(−ap)→
⊕
q

R(−aq)

determined by the monomial matrix (λqp)q,p is just given by matricial product
with the matrix (λqpx

ap−aq)q,p.

De�nition 2.1.3. A monomial matrix is minimal if λqp = 0 for ap = aq.
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Remark. Given a free resolution ofM given by minimal monomial matrices,
then the free resolution is, in fact, minimal because all the entries of the ma-
trices are in m. Conversely, if a minimal free resolution has a representation
of its morphisms by monomial matrices, they must be minimal because all
of its entries must lie in m.

In a free graded module
⊕

pR(−ap), each ap may appear more than once,
in such case, we can instead use the notation⊕

a∈Nn

R(−a)βa .

In a minimal free resolution (Mi, ϕi) of a module M , with

Mi =
⊕
a∈Nn

R(−a)βi,a

each βi,a is called the ith Betti number of M in degree a.
We can also de�ne the Betti numbers by computing the derived functors

TorR(−, k) of −⊗R k.
(i) If we do so, it'll follow that the Betti numbers can,

in theory, be computed without having a minimal free resolution, so that we
can be content with any free resolution.

Remark. In the graded case, we have an isomorphism⊕
a∈Nn

R(−a)βa ⊗ k ∼=
⊕
a∈Nn

k(−a)βa .

Lemma 2.1.3. The i-th Betti number of an Nn−graded moduleM in degree
a equals the vector space dimension dimk Tor

R
i (k,M)a.

Proof. Take a minimal free resolution

M : 0← · · · ←
⊕
a∈Nn

R(−a)βi,a ←
⊕
a∈Nn

R(−a)βi+1,a ← · · · ← 0.

When tensoring with k, we get the complex

M⊗ k : 0← · · · ←
⊕
a∈Nn

k(−a)βi,a ←
⊕
a∈Nn

k(−a)βi+1,a ← · · · ← 0,

(i)The functors Tor are computed by taking any projective resolution, in particular, free

ones, tensoring with k and computing homology.
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with all maps zero. Thus,

Hi(M⊗ k) ∼=
⊕
a∈Nn

k(−a)βi,a

and
βi,a = dimk Tor

R
i (k,M)a.

■

2.2 Hochster's Formula

Here, every ideal is supposed to be monomial, i.e., generated by monomials.

De�nition 2.2.1 (Koszul Complex). Consider the simplex ∆n−1 consisting
on all the subsets of {x1, . . . , xn}. In every matrix (aij)i,j of the exact se-
quence C̃•(∆

n, R), consider it as a monomial matrix, with labels in rows and

columns given by χσ for faces σ generating the free summands of R(
n
i) in

homological degree i + 1. Then, renumber the homological degrees so that
the empty face ∅ is in homological degree 0. The resulting complex K• is
called the Koszul complex.

This is just done by taking the reduced chain complex of∆n and adjusting
the morphisms so that they become graded.

Proposition 2.2.1. The Koszul complex is a minimal free resolution of k.

Proof. Since the boundary maps of the Koszul complex are given by consid-
ering the matrices of the boundary maps of C̃•(∆

n, R) as monomial matrices,
then every one of the maps in the Koszul complex are monomial. Also, since
every entry of every one of these matrices is zero unless the face associated
with the row is strictly contained in the face associated with the column, the
maps of the Koszul complex are, in fact, minimal.

To prove the Koszul complex is a resolution, we must prove it is exact
everywhere except in homological degree 0. So, restricting the Koszul com-
plex to some degree d ∈ Nn, we get a subcomplex of k−vector spaces, which
we want to prove is (isomorphic to) the reduced complex C̃(∆dimd, k) where
dimd is just the number of variables of d minus one. For degree d = 0,
we get the complex 0 → k → 0, which is not exact. Otherwise, since a
summand of each homological degree of the Koszul complex is ̸= 0 in degree
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d if and only if it is has the form R(−d′) = Rxd′
for d′ ≤ d, we get the

complex 0← k ← ks ← k(
s
2) ← · · · ← k(

s
s−2) ← ks ← k ← 0, where, in each

homological degree i, k(
s
i) is considered as the direct sum⊕

d′≤d,dimd′=i−1

kxd

and s = dimd+ 1. And given that,

∂(xded′) =
∑

d′′≤d′,dimd′′=i−2

αd′d′′xded′′

where αd′d′′ is the d′d′′ entry of the matrix of the map ∂ in C̃(∆dimd, k). This
means that when we restrict to degree d in K•, the resulting map is just the
boundary map of the reduced chain complex of ∆dimd with coe�cients in k,
which is what we expected.

Then, since every non-irrelevant simplex is contractible, this complex has
null homology for d ̸= 0, from which it follows thatK• also has null homology
except in the homology degree 0, on which the homology is k. It follows that
K• is a free resolution of k. ■

De�nition 2.2.2 (Upper Koszul Complex). For a monomial ideal I and a
degree b ∈ Nn, de�ne

Kb(I) = {τ ∈ {0, 1}n : xb−τ ∈ I}

to be the (upper) Koszul simplicial complex of I in degree b.

If b is the degree associated with the least common multiple of all the
generators of I, then Kb(I) will be denoted by K(I). If I is the edge ideal
of a hypergraph G then K1(I) will be denoted by K(G), where 1 is the
characteristic vector of V (G).

De�nition 2.2.3 (Lower Koszul complex). Let b ∈ Nn and I a monomial
ideal of the polynomial ring R in n variables. De�ne the lower Koszul complex
of I as

Kb(I) = {τ ∈ {0, 1}n | τ ≤ b,xb−1+τ /∈ I}

where 1 = Suppb.
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it is easy to prove that Kb(I) = (Kb(I))∨, so we can denote Kb(I) as
K∨(I) or K∨(G) in the respective cases.

We will now state Hochster's formula.

Theorem 2.2.2 (Hochster's Formula). If βi,b(I) is the i-th Betti number of
a monomial ideal I in degree b ∈ Nn, then

βi,b(I) =


dimkHi−1(K

b(I); k),

dimkH
n−i−2(Kb(I); k),

dimkH
i−1(Kb(I); k),

dimkHn−i−2(Kb(I); k).

The �rst and second formulas are the well known versions of Hochster's
formula, and the third and fourth follow from the Universal Coe�cient The-
orem.

We can also see that when I is the edge ideal of a graph, K(G) andK∨(G)
are the complexes of non-edge covers and independent sets of G, respectively.
So, in particular, we have the following:

Corollary 2.2.3 (Hochster's Formula). If G is a graph, I = IG is the edge
ideal of G, K = K(G) is the simplicial complex of non-vertex covers of G
and K∨ is the complex of independence of G,

βi,1(I) =


dimkHi−1(K; k),

dimkH
n−i−2(K∨; k),

dimkH
i−1(K; k),

dimkHn−i−2(K
∨; k).

From now on, when we talk about the homology of a simplicial complex
X, it will be the homology over k, unless stated otherwise.

2.3 Properties of Kb(I).

The operator Kb has some nice properties with respect to the order structure
of the monomial ideals of R. it is known that the monomial ideals of R form
a lattice, ordered by inclusion, with + and ∩ being the lattice operations. It
will be proven that Kb preserves this structure.

Here I = (m1, . . . ,mr), J = (m′
1, . . . ,m

′
s) are monomial ideals of R.
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Proposition 2.3.1. Kb(I + J) = Kb(I) ∪Kb(J).

Proof. We have

Kb(I + J) = {τ ∈ {0, 1}n : xb−τ ∈ I + J}
= {τ ∈ {0, 1}n : (∃i ∈ [r]);mi | xb−τ o (∃j ∈ [s]);m′

j | xb−τ}
= {τ ∈ {0, 1}n : (∃i ∈ [r]);mi | xb−τ}
∪ {τ ∈ {0, 1}n : (∃j ∈ [s]);m′

j | xb−τ}
= Kb(I) ∪Kb(J).

■

Proposition 2.3.2. Kb(I ∩ J) = Kb(I) ∩Kb(J).

Proof. Using the previous proposition and the fact that

Kb(mi) ∩Kb(m′
j) = {τ ∈ {0, 1}n : mi | xb−τ} ∩ {τ ∈ {0, 1}n : m′

j | xb−τ}
= {τ ∈ {0, 1}n : mi | xb−τ y m′

j | xb−τ}
= {τ ∈ {0, 1}n : lcm(mi,m

′
j) | xb−τ}

= Kb(lcm(mi,m
′
j)),

we have

Kb(I) ∩Kb(J) =

⋃
i∈[r]

Kb(mi)

 ∩
⋃

i∈[r]

Kb(mi)


=

⋃
(i,j)∈[r]×[s]

Kb(mi) ∩Kb(m′
j)

=
⋃

(i,j)∈[r]×[s]

Kb(lcm(mi,m
′
j))

= Kb((lcm(mi,m
′
j) : (i, j) ∈ [r]× [s]))

= Kb(I ∩ J).

■

There are also the following:

Proposition 2.3.3. Let G be a hypergraph with E(G) = {e1, . . . , er}. Then
K(G) is the simplicial complex generated by the complements of the edges.
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Proof. For each edge e, let be be the characteristic vector of e and ce the
characteristic vector of ec. Then 1− ce = be. Therefore x1−ce ∈ IG.

Now, if τ ∈ K(G), then x1−τ ∈ I, which means e ⊆ e1−τ for some
e ∈ E(G), where e1−τ is the subset of V (G) associated to the vector 1 − τ .
That means eτ = ec1−τ does not contain any vertex in e, which means that
eτ ⊆ ec. ■

This means that to compute K(G), we only need to compute the com-
plements of the edges of G.



Chapter 3

Using Hochster's Formula

Recursively

Hochster's formula allows us to compute Betti numbers of ideals. For exam-
ple, consider the edge ideal IG of the graph

1

2

3

4

5

i.e. the ideal IG = (x1x2, x1x3, x2x3, x3x5, x3x4, x4x5). We will �rst compute
K(G) = K1(IG). The facets of K(G) will be

145, 245, 345, 123, 124, 125.

The resulting complex is as follows.

1 2

4

5

3

41
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Considering K(G) as a CW−complex, and using the proposition 0.17 from
[?], we get, by computing Xi = Xi−1/Ai−1 sequentially, �rst for X0 = K1(G)
and A0 = x1x2x3, then A1 = x4x5, and then A2 = x123x45 (The strip resulting
from contracting x1x2x3 and then x4x5 to points x123, x45). So, X3 ≃ K1(IG)
but X3

∼= S2/{a,−a} for some point a ∈ S2. This is a sphere with two points
identi�ed, and using the long exact sequence for homology, we get H2(X3) ∼=
H2(S

2) ∼= k and H1(X3) ∼= H0(S
0) = k (where S0 is the 0−dimensional

sphere, a two-point space). Being a bit more careful, we can check that
K1(IG) has the homotopy lower neighbor of S2 ∨ S1, which gives the same
result.

Of course, these tools used are strongly topological. We are interested
in �nding tools to compute Betti numbers that do not rely so much on the
topology of Kb but on the algebra and combinatorics behind it. The Mayer-
Vietoris sequences that arise here are the �rst examples of such a tool.

3.1 Mayer-Vietoris Sequences

Since Kb preserves intersections and transforms + into ∪, it would be a
shame not to make use of this to build Mayer-Vietoris sequences. See [?] for
a lot of work on this. We have the inclusions:

Kb(I ∩ J)

Kb(I)Kb(J)

Kb(I + J)

ιIιJ

ι′Iι′J

so, if b ∈ Nn is such that xb ∈ Kb(I∩J), then there is a long exact sequence:

Hi(K
b
I∩J) Hi(K

b
I )⊕Hi(K

b
J ) Hi(K

b
I+J)· · · ∂ α∗ β∗

Hi−1(K
b
I∩J) Hi−1(K

b
I )⊕Hi−1(K

b
J ) Hi−1(K

b
I+J) · · ·

∂

α∗ β∗ ∂
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where Kb
∗ = Kb(∗), α = (ιI ,−ιJ), β = ι′I + ι′J and the maps α∗, β∗ are

the induced maps. In particular, if we take I ′ = (m1, . . . ,mr−1) and I ′′ =
(lcm(m1,mr), . . . , lcm(mr−1,mr)), then for b such that xb ∈ I ′′ there is a
long exact sequence:

Hi(K
b
I′′) Hi(K

b
I′)⊕Hi(K

b
mr

) Hi(K
b
I )· · · ∂

Hi−1(K
b
I′′) Hi−1(K

b
I′)⊕Hi−1(K

b
mr

) Hi−1(K
b
I ) · · ·

∂

∂

so if we can compute Hi(K
b(I ′′)), Hi(K

b(I ′)), Hi(K
b(mr)) then we will have

a lot of information of Hi(K
b(I)). In particular, maybe we will have in

this information the numbers dimkHi(K
b(I)), from which we'd be able to

compute the Betti numbers of I recursively. This is a reason this will be
called a recursive Mayer-Vietoris sequence of I (A sequence gotten from
decomposing the ideal into the sum of a principal ideal and of another ideal).
These sequences are used extensively in [?]. By an application of a recursive
Mayer-Vietoris sequence, we have the following result:

Proposition 3.1.1. Let I = (m1, . . . ,mr) and m = lcm(m1, . . . ,mr) = xa.
Then Hi(K

b(I)) = 0 for all i and a < b.

Proof. By induction on r. For such b, we can take the Mayer-Vietoris se-
quence:

Hi(K
b
I′′) Hi(K

b
I′)⊕Hi(K

b
mr

) Hi(K
b
I )· · · ∂

Hi−1(K
b
I′′) Hi−1(K

b
I′)⊕Hi−1(K

b
mr

) Hi−1(K
b
I ) · · ·

∂

∂

By induction hypothesis, and the base case in which Kb(mr) will be a sim-
plex, Hi(K

b(I ′)), Hi(K
b(mr)), Hi−1(K

b(I ′′)) are all 0, so Hi(K
b(I)) is 0.

The proof will only be complete if we prove the base case, where I is princi-
pal.

If I = (xa) is principal then I is a free R−module, so the minimal free
resolution of I is just 0→ Rxa → 0, so the only Betti number is β0,a = 1 =
dimkH−1(K

a(xa)). Therefore, for b > a, Hi(K
b(xa)) = 0. ■
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Using recursive Mayer-Vietoris sequences is a natural way to do induc-
tion proofs on the number of generating monomials since both the ideals I ′′

and I ′ have fewer generating monomials than I. However, the underlying
decomposition of I is not unique, and it is not always the most useful we can
use. An example of this is in order.

Example 3.1.2. Remember the ideal

I = (x1x2, x1x3, x2x3, x3x4, x3x5, x4x5).

We wanted to compute Hi(K
1(I)). Also remember that K1(B) has a topo-

logical representation as:

x1 x2

x4

x5

x3

Another method to compute its homology is to use (by a topological reason-
ing) a Mayer-Vietoris sequence for X = K1(I) = A ∪B where

A ∼= ∂∆3 ∼= S2 = {x1x2x4, x1x2x5, x1x4x5, x2x4x5}

and
B ≃ {x3} = {x1x2x3, x3x4x5}.

Also note that A ∩ B ≃ {x1, x4} = {x1x2, x4x5}, in the Mayer-Vietoris
sequence, we have the same sequences we got before

0→ H1(X)→ H0(A ∩B)→ 0

and
0→ H2(A)→ H2(X)→ 0

which mean that H2(X) ∼= H2(∂∆
3) ∼= k and H1(X) ∼= H0(A∩B) ∼= k. The

rest of the (reduced) homologies of X are zero. But we can do this without
using so many homotopical equivalence arguments.
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First, note that K1(x1x2) = {x3x4x5} and K1(x4x5) = {x1x2x3}, so
K1(x1x2, x4x5) = B. Also, we know that

Hi(K
1(x1x2, x4x5)) = 0

for every i since lcm(x1x2, x4x5) = x1x2x4x5 ̸= x1x2x3x4x5. Also

K1(x1x3, x2x3, x3x4, x3x5) = A,

and
A ∩B = K1(x1x2x3, x3x4x5),

so H0(A ∩B) = k and 0 elsewhere. Now, A = K1(x1, x2, x4, x5) ∩K1(x3).
So we can now refer to the Mayer-Vietoris sequence of the ideal m. In

this sequence, everything is 0 except h3(K
1(m)) ∼= k since a minimal free

resolution of m is just the Koszul complex snipping the �rst R. So

H2(A) ∼= H3(K
1(m)) ∼= k.

While this decomposition works, there are some more general decompo-
sitions of I which we are interested in. The following lemma can be proven
by other means, but we will use Mayer-Vietoris sequences to prove it.

Lemma 3.1.3. Let I = (m1, . . . ,mr) ⊆ k[x1, . . . , xn] be a monomial ideal
and I ′ = (m1, . . . ,mr) ⊆ k[x1, . . . , xn, y]. Then, for a degree b ∈ {0, 1}n+1

such that y | xb we have βi,b(I
′) = 0 for all i. Additionally, for b ∈ {0, 1}n+1

such that y ∤ xb, βi,b(I
′) = βi,b′(I), where b′ = (bi)

n
i=1.

Proof. We will start with the last part. We know that

βi,b(I
′) = dimkHi−1(K

b(I ′))

and
βi,b′(I) = dimkHi−1(K

b′
(I)).

But for b such that y ∤ xb and τ ∈ {0, 1}n+1, we have xb−τ ∈ I ′ if and
only if xb′−τ ′ ∈ I. Thus, the inclusion τ ′ 7→ τ induces an isomorphism
Kb(I ′) ∼= Kb′

(I) of simplicial complexes (They are just the same except for
a last coordinate in each face which is 0). For b such that y | xb we will
prove βi,b(I

′) = 0 by induction on r. If xb /∈ I, then there is nothing to
prove. So we suppose xb ∈ I.
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By an induction argument, suppose r = 1, then sincem1 | xb butm1 ̸= xb

we have that Kb(I ′) is a nontrivial simplex and therefore has trivial reduced
homology. Now suppose r > 1 and that for every ideal I ′′ generated by less
than r monomials in the variables x1, . . . , xn and b such that y | xb, we have
βi,b(I

′′) = 0.
If I ′ is such that there is only one generating monomial, say, mr such

that mr | xb then Kb(I) = Kb(mr) which is already known to have trivial
reduced homology. So we can suppose there are at least two monomials
mr,mr−1 such that mr,mr−1 | xb. So, for I ′′ = (m1, . . . ,mr−1) and I ′′′ =
(m1mr, . . . ,mr−1mr) there is a Mayer-Vietoris sequence

· · · → Hi(K
b(I ′′′))→ Hi(K

b(I ′′))⊕Hi(K
b(mr))

→ Hi(K
b(I ′))→ Hi−1(K

b(I ′′′))→ · · ·

By the induction hypothesis, all the homologies in the exact sequence, except
for Hi(K

b)(I ′) are zero, so by exactness Hi(K
b)(I ′) is also zero for every i.

We are, thus, done. ■

From this, it follows that if we have the edge ideal IG of a graph G, then
for a squarefree degree b ̸= 1 and every i, Hi(K

b(IG)) ∼= Hi(K
1′
(IG′)) where

G′ is the subgraph induced by the vertices which characteristic vector is b
and 1′ is the vector �lled with 1s in {0, 1}|G′| and IG′ ⊆ k[V (G′)]. It also
follows that this number does not depend on the number of the variables (as
long as there are as many as ones in b).

Proposition 3.1.4. Let I = (m1, . . . ,mr) be a monomial ideal of the ring
k[x1, . . . , xn, y], and suppose that for all the monomials mi such that y | mi,
there is some variable xj ∈ Supp(m1, . . . ,mr) such that xj ∤ mi, and that
I ′ = (mi : y | mi) ̸= I. Then, for I ′′ = (mi : y ∤ mi), I

′′′ = I ′ ∩ I ′′, and any
b ∈ Nn+1 such that xb ∈ I ′′′ there is an isomorphism:

Hi(K
b(I))→ Hi−1(K

b(I ′′′)).

For b such that xb ∈ I ′ − I ′′ there is an isomorphism

Hi(K
b(I ′))→ Hi(K

b(I)).

For b such that xb ∈ I ′′ − I ′ there is an isomorphism

Hi(K
b(I ′′))→ Hi(K

b(I)).
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Proof. For b such that xb /∈ I ′′′ we have Kb(I) = Kb(mi : mi | xb). If
xb ∈ I ′ − I ′′ this means that the monomials mi such that mi | xb are in the
generating set of I ′, so

Kb(mi : mi | xb) = Kb(I ′).

If, otherwise xb ∈ I ′′ − I ′ then similarly Kb(mi : mi | xb) = Kb(I ′′). So,
suppose that xb ∈ I ′′′. This means that, in particular, xb is divisible by two
generating monomials mi,mi′ of I, such that y | mi, y ∤ mi′ , which means
that y | xb. Also there is some other variable xj such that xj | xb and
xj /∈ SuppI ′. Therefore for all i, Hi(K

b(I ′)) ∼= Hi(K
b(I ′′)) ∼= 0 and in the

Mayer-Vietoris sequence associated with this decomposition we will �nd the
desired isomorphism. ■

The conditions for the proposition 3.1.4 seem to be harsh, but are not
so much. This Mayer-Vietoris sequence will be called an incomplete star

Mayer-Vietoris sequence. This is because when we have an edge ideal of a
graph, the condition is equivalent to the graph having a vertex that is not
adjacent to every other vertex of G.

3.2 Stars, Complete Bipartite Graphs, Cones

Here, we will study some families of ideals for which the Betti numbers can be
computed rather easily. The �rst one of them is the family of the edge ideals
of the complete bipartite graphs . Let G = (V,E) = Kn,m be the complete
bipartite graph with bipartition H = {1, . . . , n}, K = {1, . . . ,m} and

I = IG ⊆ k[x1, . . . , xn, y1, . . . , ym]

its edge ideal. For a �xed vertex, which we can, by a permutation of A,B
or y1, . . . , ym declare to be ym, we can say I = Im + I ′m where Im = (e ∈ E :
ym ∈ e) and I ′m = (e ∈ E : ym /∈ e). Given this, for m = 1, we can compute
the Betti numbers of I in a harder than usual way.

Proposition 3.2.1. Let G = Kn,1 be a star with vertex set {1, . . . , n, 0},
centered in 0, i.e. 0 is adjacent to all the vertices 1, . . . , n which are not
adjacent to each other. If b ∈ {0, 1}n+1 is such that xb ∈ IG, we have

βi,b(IG) = dimkHi−1(K
b(IG)) = dimkHi(K

b(m)) = βi+1,b(m),

for m = (x1, . . . , xn, y1).
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Proof. Take y = y0, the variable associated with the vertex 0, and I = IG.
Since xb ∈ I then we can assume by a permutation σ ∈ Sn that xny | xb. So,
since I = (x1, . . . , xn) ∩ (y), we have, for I ′ = (x1, . . . , xn), a Mayer-Vietoris
sequence:

· · · → Hi(K
b(I))→ Hi(K

b(I ′))⊕Hi(K
b(y))

→ Hi(K
b(m))→ Hi−1(K

b(I))→ · · ·

Because of the lemma 3.1.3 we have that Hi(K
b(I ′)), Hi(K

b(y)) are both 0
for all i, thereforeHi(K

b(m)) ∼= Hi−1(K
b(I)) for all i. The result follows. ■

From the previous proposition, we can compute the Betti numbers of the
star Kn,1. We know that the Koszul complex K• is a minimal free resolution
of k = R/m, so when we remove the R corresponding to the empty face from
it, it becomes a minimal free resolution K ′

• of m. Suppose that b is squarefree
(otherwise its Betti number would be 0) and take r = |b|. Then xb appears
exactly once as a generator in homological degree r− 1 and does not appear
elsewhere in K ′

•. So

βi,b(IG) = βi+1,b(m) =

{
1 if i = r − 2
0 otherwise.

The easier way is �guring out that Kb(I) is the simplicial sphere on the
vertices 1, . . . , n.

it is no surprise if we can then compute the Betti numbers of the ideal IG
of the complete bipartite graph G = Kn,m in a similar way.

Proposition 3.2.2. Let G = Kn,m and I = IG ⊆ k[x1, . . . , xn, y1, . . . , ym].
Then, for b such that xb ∈ I,

βb,i(I) = dimkHi−1(K
b(I)) =

{
1 if i = nb +mb − 2
0 otherwise.

where nb = |{xi : xi | xb}|,mb = |{yj : yj | xb}|.

Proof. For b < 1 we have Kb(I) = Kb(IKnb,mb
) so we only have to prove the

result for b = 1. If m or n equals 1, then we are done: our graph is a star.
So suppose that m,n > 1. Since no vertex is adjacent to every other vertex,
the incomplete star Mayer-Vietoris sequence with respect to the vertex ym
gives an isomorphism:

Hi(K(I)) ∼= Hi−1(K(I1))
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for
I1 = (xiyjym : 1 ≤ i ≤ n, 1 ≤ j ≤ m) = IG−yn ∩ IΣm ,

where Σm is the star centered on m. Since not every generating monomial is
divisible by ym−1, we can repeat the process. So, this way we �nd a decreasing
sequence Is, s ∈ N of ideals such that I0 = I, In+m−2 = (x1 . . . xny1 . . . ym),
and

Hi(K(Is)) ∼= Hi−1(K(Is+1)).

Therefore, Hn+m−3(K(I)) ∼= H−1(K(In+m−2)) = k. ■

For these cases, Alexander's duality is especially powerful. The Lower
Koszul Complex K1(IG) is just the disjoint union of two simplexes, one cor-
responding to the stable set of the variables x, and the other corresponding to
the stable set of the variables y. Its reduced homology is clearly 0 everywhere
besides at dimension 0, on which we haveH0(K1(IG)) = k. This is exactly the
same result. One can go even further. For a graph G which is the join of two
graphs H,K (The graph resulting from taking the disjoint union of H and K,
and adding all the possibleH−K−edges), the Lower Koszul ComplexK1(IG)
is the disjoint union K1′(IH)⊔K1′′(IK), where 1

′ = χ(V (H)),1′′ = χ(V (K)).
Thus, for every dimension but 0, the homology of K1(G) is the direct sum of
the homologies of K1′(H) and K1′′(K). In dimension 0, it is the direct sum
of K1′(H), K1′′(K) and k.

Now, we are interested in generalizing some of the ideas in the proof
above. One of them is, given a monomial ideal

I = (m1, . . . ,mr) ⊆ k[x1, . . . , xn, y]

such that for all i ∈ {1, . . . , r}, y ∤ mi, computing the Betti numbers of

I ′ = (m1, . . . ,mr, y).

Using a recursive Mayer-Vietoris sequence, this is equivalent to computing
the Betti numbers of I ′′ = (m1y, . . . ,mry). Ideals like I

′′ appear often when
using incomplete star Mayer-Vietoris sequences, so it would be useful if we
could compute these Betti numbers in terms of the Betti numbers of I. These
ideals appear in the sequence of ideals in the proof above, for example.

Other ideas are to compute the Betti numbers of the cone of a graph, i.e.,
a graph with a vertex adjacent to every other one, and to compute the Betti
numbers of the graph resulting from duplicating a vertex of a given graph.
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Proposition 3.2.3. Let I = (m1, . . . ,mr) be an ideal of k[x1, . . . , xn, y] not
using the variable y. Then, for I ′ = I+(y) and b ∈ Nn+1 such that y | xb ∈ I
we have

βi+1,b(I
′) = βi,b′(I).

Proof. For any other b, we have

Kb(I ′) = Kb(I) ∪Kb(y).

We can characterize Kb(y) as the simplex of all the faces τ ≤ b such that
y ∤ xτ . Also since I does not use the variable y, we see that

Kb(I) ={τ = (t1, . . . , tn, q) ∈ {0, 1}n+1 : xb−τ ∈ I}
={τ = (t1, . . . , tn, 0) ∈ {0, 1}n+1 : xb−τ ∈ I}
∪ {τ = (t1, . . . , tn, 1) ∈ {0, 1}n+1 : xb−τ ∈ I}

so Kb(I) is just the simplicial complex of all the subfaces of the faces of

T1 = {τ = (t0, . . . , tn, 1) ∈ {0, 1}n+1 : xb−τ ∈ I}.

This means that

Kb(I) ∩Kb(y) = {τ = (t1, . . . , tn, q) ∈ Kb(I) : q = 0}
= K(b′,0)(I)

where b′ ∈ Nn is such that b = (b′, 1). Therefore, by a recursive Mayer-
Vietoris sequence,

Hi(K
b(I ′)) ∼= Hi−1(K

b(I ∩ (y))) ∼= Hi−1(K
(b′,0)(I))

as desired. ■

We can also compute all the remaining Betti numbers of the ideal in the
previous proposition:

For b such that y ∤ xb we have Kb(I ′) = Kb(I) so βi,b(I
′) = βi,b(I).

Also if xb /∈ I we have Kb(I ′) = Kb(y) so βi(K
b(I ′)) = δi0 where δij is the

Kronecker delta.
We can also compute the Betti numbers of the cone of a graph:
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Proposition 3.2.4. Let G be a graph with vertex set {x1, . . . , xn}, and
κ = C(G, y) the cone of G with y being the new vertex. Then

βn−1,1(Iκ) = βn−2,1′(IG) + 1,

where 1 = (1′, 0). Furthermore βi,1(Iκ) = βi,1′(IG) for every i ̸= n− 1.

Proof. Here we take the Mayer-Vietoris sequence relative to the complete

star Σ(y) of y. We know that Hi(K
1(IΣ(y))) ∼= k if and only if i = n − 2.

Also Hi(K
1(IG)) = 0 for every i since G does not use the variable y and

Hn−2(K
1(I ′)) = 0 where I ′ = IG ∩ IΣ(y). So, we've got the following short

exact sequence:

0→ Hn−2(K
1(IΣ(y)))→ Hn−2(Iκ)→ Hn−3(K

1(I ′))→ 0

and isomorphisms Hi(K
1(I))→ Hi−1(I

′) for every i ̸= n− 2. Therefore

dimHn−2(K
1(Iκ)) = dimHn−2(K

1(IΣ(y))) + dimHn−3(K
1(I ′))

= 1 + dimHn−3(K
1(I ′)).

The trick lies, then, in disclosing the identity of K1(I ′). Since I ′ ̸= 1 then
1 /∈ K1(I ′). Also K1(IΣ(y)) is the n−2−skeleton of the simplex with vertices
x1, . . . , xn: The set of all the faces with n − 1 vertices. So, with the same
reasoning as the one in the proposition 3.2.3, the only thing we are doing
when intersecting is removing the faces of K1(IG) containing y. As in the
analysis of the proposition 3.2.3, we end up with K(1′,0)(I). So, by replacing
it in the equation above and replacing it all with Betti, we get

βn−1,1(Iκ) = 1 + βn−2,1′(IG),

which is what we wanted to prove. ■

Of course, we are also able to compute the remaining Betti numbers of
κ, given. For y | xb we have the Betti numbers of the cone of an induced
subgraph of G, from which we can apply the previous proposition, and for
y ∤ xb we have the same Betti numbers as G. This, in particular, gives us
another way to compute all the Betti numbers of any complete graph because
it is the consecutive application of the cone operator to an edge.

The following proposition is clearly related to proposition 3.2.3; it is a
sort of generalization of it, and it can be generalized further, but for the sake
of simplicity, we will state it as follows.
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Proposition 3.2.5. Let I = (m1, . . . ,mr−1) be a monomial ideal of R =
k[x1, . . . , xn] and suppose mr = xaxb, a ̸= b ∈ {1, . . . , n} such that

Supp(mr) ∩ Supp(m1, . . . ,mr−1) = ∅(i)

Let I ′ = I + (mr). Then

βi+1,b(I
′) = βi,b′(I),

where b′
i = (1− δia)(1− δib)bi, i.e. b

′ is the result of letting the entries of b
corresponding to xa, xb be zero.

Proof. By a permutation of the variables, suppose mr = xn−1xn. As before,
if b is such that xb is not divisible by mr we have βi,b(I

′) = βi,b(I). If x
b is

divisible only by mr then βi,b(I) = βi,b(mr). So, suppose xb is divisible by
both mr and some other mi. Then

Kb(I) ={τ ∈ {0, 1}n : xb−τ ∈ I}
={τ = (t1, . . . , tn−2, 0, 0) ∈ {0, 1}n : xb−τ ∈ I}
∪ {τ = (t1, . . . , tn−2, tn−1, tn) ∈ {0, 1}n : xb−τ ∈ I, (tn−1, tn) ̸= 0}.

Also Kb(mr) is the simplex on the vertex set x1, . . . , xn−2. Therefore

Kb(I ∩ (mr)) = {τ = (t1, . . . , tn−2, 0, 0) ∈ {0, 1}n : xb−τ ∈ I} = Kb′
(I).

We get the result by using the isomorphism arising from the recursive Mayer-
Vietoris sequence of I ′ with respect to mr. ■

3.3 Forests, Paths, and Cycles

With the results of the previous section, we are able to compute the Betti
numbers of a few more families of ideals. For example, edge ideals of forests .
This has already been done in [?], but the approach used there is di�er-
ent, and the results are given to compute their graded Betti numbers. In
counterpart, our result gets a simpler formula and algorithm to compute the
multigraded Betti numbers. It also uses less terminology, so it has a simpler
proof.

(i)If I = IG, this means that G is disconnected being the edge mr = xaxb one of the

connected components.
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Lemma 3.3.1. Let T = (V,E) with V = {v1, . . . , vn} be a forest without
isolated vertices. Suppose vn is a leaf of T with vn−1vn ∈ E. Then

Hi(K(T )) ∼= Hi−dT (vn−1)(K(T −NT [vn−1])).

Proof. Let IT ⊆ k[x1, . . . , xn] the edge ideal of T , with the variable xi asso-
ciated to vi for each i. Let's assume by rearranging the vertices of V that vn
is a leaf, and that vnvn−1 ∈ E(T ), so that IT = (m1, . . . ,mu, xnxn−1). Then,
since vn is only adjacent to vn−1, there is an isomorphism

Hi(K(T ))→ Hi−1(K(I ′))

where I ′ = IT−vn ∩ (xnxn−1).
We can split E(T − vn) in two sets E1, E2, where E1 consists in all the

edges in T − vn incident to vn−1 or its neighbors, and E2 consists in the
remaining edges. By a permutation of the mi, suppose that there is some
k ∈ {0, . . . , u} such that E2 = {m1, . . . ,mk} and E1 = {mk+1, . . . ,mu}. We
can deal with the edges in E1 as follows:

IE1 = (lcm(mi, xn−1xn) : xn−1 | mi)

since every other edge in E1 has the form vrvs where vs is adjacent to
vn−1, so lcm(xrxs, xn−1xn) = xrxsxn−1xn which is divisible by xsxn−1xn =
lcm(xsxn−1, xn−1xn). We can then reorder the edges in E1 in such a way
that there is some l ∈ {k + 1, u} such that xn−1 | mi for k + 1 ≤ i ≤ l and
xn−1 ∤ mi for l < i ≤ u. So, with this,

I ′ = (m1xn−1xn, . . . ,mkxn−1xn,mk+1xn, . . . ,mlxn)

After this, we can go back and see that

Hi(K(T )) ∼= Hi(K(I ′T )),

where I ′T = (m1, . . . ,mk, xmk+1
, . . . , xml

, xn−1xn) for xmi
= mi

xn−1
. Now, since

no generating monomial of I ′T besides xn−1xn is divisible by xn−1 or xn, we
can use the proposition 3.2.5:

Hi(K
1(I ′T ))

∼= Hi−1(K(I ′′)),

where I ′′ = (m1, . . . ,mk, xmk+1
, . . . , xml

). Now, there is no generating mono-
mial of I ′′ such that there is some variable in {xmk+1

, . . . , xml
} dividing it,
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because E2 consists in the edges of T not adjacent to xn−1 or any of its
neighbors (The variables xmk+1

, . . . , xml
are the neighbors of xn−1). So, for

all i ∈ {1, . . . , k}, mi is not divisible by any of the variables xmk+1
, . . . , xml

.
Then, by an iterative application of the proposition 3.2.3, we have

Hi−1(K(I ′′)) ∼= Hi−dT (vn−1)(K(Ĩ))

where Ĩ = (m1, . . . ,mk). But Ĩ is the edge ideal of a subforest T ′ of T ,
with fewer vertices than T . The identity of the subforest T ′ is clear: Its
edges are just the edges not incident to vn−1 or any of its neighbors, i.e. it is
T −NT [vn−1]. The result follows. ■

This lemma can be roughly stated as The full Betti number of T is the

same as the full Betti number of the forest resulting from removing a star

of T centered in the neighbor of a leaf of T , in a dimension reduced by its

degree. By grouping all these stars together, we are constructing what we'll
later call a molecular cover of T .

Example 3.3.2. Let T be the following graph:

1

2

3

4

5

6

7
8

Then by the previous lemma Hi(K(T )) ∼= Hi−4(K(T ′)), where T ′ is as fol-
lows:

6

7 8

An isolated vertex means the ideal IT ′ does not use the variable associated
to 6, which means Hi(K

1′
(IT ′)) = 0 for all i. Therefore Hi(K

1(IT )) is also 0
for all i.

The following example has nonzero homology:



CHAPTER 3. USING HOCHSTER'S FORMULA RECURSIVELY 55

Example 3.3.3. Let T be the following graph:

1

2

3

4

5

6

7
8

9

With the same process as before, Hi(K(T )) ∼= Hi−4(K(T ′)) where T ′ is the
following graph:

6

7
8

9

Then, using the proposition 3.2.5, we get that Hi(K(T )) ∼= Hi−5(K
1(T ′′))

where T ′′ is just an edge, so Hi(K(T ′′)) ∼= kδi,−1 , i.e. it has nonzero homology
only at dimension −1, and that homology is k. Therefore K(T ) has nonzero
homology only at dimension 4.



Chapter 4

Some Potential Resolutions

In the previous chapters, we developed some tools to compute Betti numbers
of some families of edge ideals. In this one we will compute free resolutions
of some subfamilies.

4.1 Unbalancing Diamonds

Let I be a monomial ideal of R = k[x1, . . . , xn] such that for any b ∈ Nn and
i ∈ N, βi,b(I) ∈ {0, 1} and βi,b(I) = 1 for at most one i. Any monomial

ideal in this section will satisfy these properties.

Consider a chain of multigraded morphisms:

M : 0← R/I ← R← σ1← F1
σ2← F2 ← · · · ← Fp

where

1. p = pd(R/I).

2. Fi =
⊕

b∈Nn R(−b)βi,b .

3. The morphisms σi are all minimal multigraded of degree 0.

Any chain of morphisms in this section will satisfy these prop-

erties.

In particular, M can be a minimal multigraded free resolution of R/I.
We can give a representation of this chain of morphisms as a graded poset
B = B(M) with tags in the edges, that we will call the decorated poset of

56
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M. In caseM is a minimal free resolution, we will say B is a minimal poset
of I.

In particular

B = V (B(M)) = {b ∈ Nn : (∃i ∈ N)βi,b(I) ̸= 0}

with
Bi = {b ∈ Nn : βi,b(I) ̸= 0}

and for a map

σi :
⊕
b∈Bi

R(−b)→
⊕

c∈Bi−1

R(−c)

with matrix representation

(σc,b)c∈Bi−1,b∈BI
,

we can add the edges (c,b) and tag them with the monomial σc,b, or to make
it simpler, with the coe�cient of that monomial.

Since the multidegrees of I have squarefree coordinates, we can just de-
scribe each multidegree by the location of the nonzero coordinates, as in the
following example:

Example 4.1.1. Here T is the path with 5 vertices.

1 2 3 4 5

12345

123 234 345 1245

12 23 34 45

∅

1 1 1 −1

1−1 −1 1
−1 1 1

−1

1 1 1 1

IfM is a minimal multigraded free resolution, all the coe�cients on these
maps are either −1, 0 or 1 (it holds for any graph such that the resolutions
do not depend on the characteristic of the base �eld).
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De�nition 4.1.1 (Lower and Upper Neighborhoods). For each i and each
vertex b of Bi, we de�ne the upper and lower neighborhods of b as:

N↑(b) = {a ∈ Bi+1 : b ≤ a}

and
N↓(b) = {a ∈ Bi−1 : a ≤ b ∈ E(B)}.

All the families of graphs we have studied up until this point satisfy the
following property.

De�nition 4.1.2 (Diamond Property). Let B be a decorated poset. If, for
any vertices c,b ∈ B,

|N↑(b) ∩N↓(b)| ∈ {0, 2}

we say that B satis�es the diamond property .

Proposition 4.1.2. Let I be a monomial ideal and B a decorated poset
corresponding to a chain of morphisms M. If B(M) satis�es the diamond
property, then for any chain of morphisms N , B(N ) also satis�es the dia-
mond property.

Proof. The diamond property only depends on the Betti numbers of I, and
all the chains of morphisms of this section have the same Betti numbers. ■

De�nition 4.1.3. Let I be a monomial ideal, we will say I satis�es the
diamond condition if some (therefore all) decorated poset of I satis�es the
diamond condition.

If M satis�es the diamond property, as in the example 4.1.1, we can
consider all the diamonds:

a

b1 b2

c

α1 α2

α3 α4
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The tags of these diamonds can tell us if M is a chain complex. The
condition that will determine that will be called unbalanced .

De�nition 4.1.4. A diamond

a

b1 b2

c

α1 α2

α3 α4

is said to be unbalanced if α1α2 = −α3α4.

Proposition 4.1.3 (Proposition 12, [?]). A chain of morphisms satisfying
the diamond property is a chain complex if and only if all its diamonds are
unbalanced.

4.2 The Criterion

While the previous section allows us to give candidates to minimal multi-
graded free resolutions for a su�ciently nice monomial ideal, this section
allows us to prove they are actually resolutions. The main purpose of this
section is to give and explain a criterion to check when a multigraded free
complex of a R-module is exact. The criterion includes two results. Before
that, we will present the concept of irredundancy .

De�nition 4.2.1. A set of vectors Γ = {γ1, . . . , γs} in an R-module is called
irredundant whenever

γi ̸∈ ⟨γ1, . . . , γ̂i, . . . , γs⟩ for all 1 ≤ i ≤ s.

The irredundancy is what is considered one of the equivalent de�nitions
of linear independence in linear algebra. That said, in module theory, these
de�nitions are not equivalent.

Lemma 4.2.1. Let N be a multigraded �nitely generated R-module. If Γ
is a minimal generating set of N and Λ is an irredundant subset of N with
|Γc| = |Λc| for all c ∈ Nn and where Λc = {u ∈ Λ : deg(u) = c} and
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Γc = {u ∈ Γ : deg(u) = c}, then there exists an automorphism φ of N such
that

φ(Λc) = Γc

and whose restriction on Λc is a k-linear map for all c ∈ Nn. Moreover,
if M is a matrix representation of φ where Λ and Γ are ordered by their
multidegrees in a non-decreasing way, then it is an upper triangular block
matrix.

Theorem 4.2.2 (Theorem 2, [?]). If M is a �nitely generated positively
multigraded R-module,

F• : 0←M
d0←− F0

d1←− F1 ← . . .
dp←− Fp ← 0

is a multigraded minimal free resolution of M and

C• : 0←M
δ0←− C0

δ1←− C1 ← . . .
δp←− Cp ← 0

is a multigraded free complex of M such that

Fi =
⊕

a∈Ai⊂Nn

R(−a) = Ci

as free multigraded R-modules and the column sets, C(Di) of the matrix
representations Di of the di�erentials δi are irredundant for all 0 ⩽ i ⩽ p,
then C• is isomorphic to F•.

4.3 Molecular Covers of Forests

Given a tree T , or more generally a forest, let L(T ) be its set of leaves. A
star is a tree S with at least one edge and at most one non-leaf vertex. If
it has a non-leaf vertex, then this vertex is called its center. Otherwise, any
vertex can be its center when all its vertices are leaves. Note that a tree has
only leaves if and only if it consists of only one edge.

If L is the set of leaves of a star S and w is its center, then S will be
denoted by SL

w, except when w and L are irrelevant. In particular, when S

consists of only one edge uv, S will be denoted by either S
{u,v}
u or S

{u,v}
v .
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De�nition 4.3.1. A sequence of stars S = (SL1
w1
, . . . , SLk

wk
) is a molecular

cover of a forest F whenever the stars in S are induced subgraphs of F
covering its vertices, and

Li ∩ L(F − (∪i−1
j=1S

Lj
wj
)) ̸= ∅ for all 1 ≤ i ≤ k.

We say that F has a molecular cover if there is a family of stars that is a
molecular cover of F . If a forest F has a molecular cover, then F is called a
molecular forest .

Theorem 4.3.1. Let T be a forest. If S is a molecular cover of T , r = |S|
and K = K(T ),

Hi(K) ∼=
{
k if i = n− r − 2
0 otherwise.

Otherwise Hi(K) = 0 for all i.

This means that r is uniquely de�ned no matter the choice of S. In
other words, every molecular cover of T has the same number of elements.
Henceforth, when we state we start a cover of T , we mean we choose the star
of the neighbor of a leaf in T ; the �rst element of some molecular cover of T .

Proof. First, assume T is not molecular. Then, if we repeatedly use the
lemma 3.3.1 until reaching a forest with no edges, this forest will still have
some vertices (Otherwise, the neighborhoods calculated in each step will
make a molecular cover). The homology of the complex associated with a
nonempty forest with no edges is 0 everywhere.

Now assume T does have a molecular cover. If T is a star, then we already
know that the formula holds. Now let's assume T is not a star and let S be
a molecular cover of T such that S = Sw is the �rst star in it. Then

Hi(K(T )) = Hi−dT (w)(K(T − Sw)).

Assume that the formula holds for T − Sw, that is,

Hi(K(T − Sw)) ∼=
{
k if i = (n− dT (w)− 1)− (r − 1)− 2
0 otherwise.

∼=
{
k if i = n− dT (w)− r − 2
0 otherwise.
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Then

Hi(K(T )) ∼= Hi−dT (w)(K(T − Sw))

∼=
{
k if i = n− dT (w)− r − 2 + dT (w)
0 otherwise.

∼=
{
k if i = n− r − 2
0 otherwise.

■

To formalize this, we will de�ne the molecular cover number of a forest,
and then give an algorithm to compute it (as well as a molecular cover).

De�nition 4.3.2 (Molecular Cover Number). Let S be a molecular cover of
a forest T . We will de�ne the molecular cover number of T as r = |S|. If T
is a forest that does not have a molecular cover, its molecular cover number
will be de�ned as 0.

Proposition 4.3.2. If T is a forest with molecular cover number r, then
pd(T ) = |V (T )| − r.

Proof. It follows from the fact that β|V (T )|−r,|V (T )| ̸= 0 and βi,|V (T )| = 0 for all
i ̸= |V (T )| − r. ■

Corollary 4.3.3. The nonzero Betti numbers of the edge ideal of a forest are
in the multidegrees corresponding to the subforests with molecular covers.

The following variation of the algorithm can compute the molecular cover
number of T :
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1 input: A forest T
2 output: The molecular cover number of T .
3 set r = 0;
4 while E(T ) ̸= ∅ do

5 r ← r + 1;
6 choose v ∈ L(T );
7 choose w ∈ NT (v);
8 set Sw = T [NT [w]];
9 T ← T − Sw;

10 end

11 if V (T ) = 0 then
12 return r
13 else

14 return 0
15 end

And the following one can compute a molecular cover.

1 input: A forest T
2 output: A molecular cover of T .
3 set S = ∅;
4 while E(T ) ̸= ∅ do

5 choose v ∈ L(T );
6 choose w ∈ NT (v);
7 set Sw = T [NT [w]];
8 T ← T − Sw;
9 S← S ∪ {Sw};

10 end

11 return S.

The algorithms work due to Theorem 4.3.1, from which it also follows
that a forest T has a molecular cover if and only if T has a molecular cover
starting from any leaf in each step of the algorithm. Since a molecular cover
is created recursively, it also means that every choice of stars in the algorithm
gives us a new molecular cover.

De�nition 4.3.3. Let T be a forest with a molecular cover such that pd(R/IP ) =
i. The lower neighborhood of T is de�ned as the induced subforests of T with
a molecular cover such that their projective dimension is i− 1.

We have some implications on paths.
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Corollary 4.3.4 (Paths). Let P be a path with n vertices.

� The projective dimension of the edge ideal IP is pdS(R/IP ) = 2k +
i where n = 3k + i for i ∈ {−1, 0, 1}. For example, for n = 8,
pdS(R/IP ) = 5.

� The subforests of a path with a molecular cover are the disjoint unions
of subpaths such that none of them have a number of vertices congruent
with 1 modulo 3. Thus, the multigraded component associated with
a path with 3k or 3k − 1 vertices appears in homological degree 2k or
2k − 1 respectively. Similarly, the multigraded component associated
with a disjoint union of paths P1, . . . , Ps with projective dimensions
p1, . . . , ps appears in homological degree

k =
n∑

i=1

pi.

� For a given subforest T in homological degree i that has a molecular
cover(i), its lower neighbors are calculated as follows.

1. Take all the subforests resulting from removing a vertex from any
connected component with 3k vertices such that the two resulting
components have a number of vertices multiple of 3 and congruent
with 2 modulo 3 each.

2. Take all the subforests resulting from removing two vertices from
any connected component with 3k′+2 vertices in such a way that
every connected component has a number of vertices multiple of
3, and the subforests resulting from removing one vertex such
that every component has a number of vertices congruent with 2
modulo 3.

Corollary 4.3.5. Let P be a path with projective dimension i and a molec-
ular cover.

� If |P | ≡ 0 (mod 3), and V (P ) = {v1, . . . , v3k}, its lower neighbors are
computed by removing a single vertex vi with i ≡ 0 (mod 3) or i ≡ 1
mod 3.

(i)This means that βi,c ̸= 0 where c is the characteristic vector of the vertices of T
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� If |P | ≡ 2 (mod 3) and V (P ) = {v1, . . . , v3k+2} its lower neighbors
are computed by removing a single vertex vi with i ≡ 0 (mod 3) or
by removing two vertices vi, vj with i < j and i ≡ 1 (mod 3), j ≡ 2
(mod 3).

4.4 The lower Neighbors of a Forest

To compute the lower neighbors of a path, we had to consider the case of
removing a single vertex and then the case of removing two vertices. Now,
for any forest T and U ⊆ V (T ), T − U is a lower neighbor if and only if
T − U has a molecular cover with r − |U |+ 1 stars, where T has one with r
stars. Now, we will consider the following results.

Proposition 4.4.1. Let T be a tree with a molecular cover with r stars and
u ∈ V (T ). Then T − u has a molecular cover with r stars if and only if u
does not belong to any star with two vertices in any molecular cover of T
and u is a leaf of a star with three or more vertices in a molecular cover of
T .

Proof. Let S be a molecular cover of T . If S ∈ S is a star with two vertices
and u ∈ S, then T − S has a molecular cover, so T − u does not have a
molecular cover. Now, suppose u ∈ S ′ where S ′ has at least 3 vertices. If u
is not a leaf in S ′, then there is a molecular cover of T − S ′, which means
that T − u does not have a molecular cover. Therefore, for T − u to have
a molecular cover, it needs to be a leaf of S ′. Now, if u is a leaf of S ′, then
(S− {S ′}) ∪ (S ′ − u) is a cover for T − u. ■

Lemma 4.4.2. Let T be a tree with a molecular cover with r stars, with a
subpath P , such that every star S of T centered on the neighbor of a leaf
intersects P . Suppose u and v are the leaves of P . Then T − {u, v} has
a molecular cover with r − 1 stars if and only if T = P and |V (P )| ≡ 2
(mod 3).

Proof. If T has two leaves, then T = P is a path. T has a molecular cover
if and only if |V (T )| ≡ 1, 2 (mod 3), and T − {u, v} has a molecular cover
with one less star if and only if |V (T )| ≡ 2 (mod 3). So we are done here.

Now we assume T is a tree with at least two leaves, that T − {u, v} has
a molecular cover with r− 1 stars. Suppose there is a star S centered on the
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neighbor of a leaf di�erent than u or v that intersects P . We will show this
is impossible.

First suppose S is such that u ∈ V (S)∩V (P ), and suppose that |V (S)∩
V (P )| > 1. Then u is the neighbor of a leaf of T not in P , T−u has an isolated
vertex and T −{u, v} does not have a molecular cover; a contradiction. Now
suppose that |V (S) ∩ V (P )| = {u}. Then u is not a leaf of T , which means
that |S| ≥ 3. Now, T−S has a molecular cover with r−1 stars, and T−u has a
molecular cover with r stars. There are two possibilities. First one, v is a leaf
of T , and second one, there is another star S ′ such that V (S ′)∩V (P ) = {v}.
In case there is such S ′, then T − {u, v} has a molecular cover with r stars.
In case v is a leaf, consider a molecular cover of T , say, S, such that the star
containing v, S ′, is chosen last, and S is chosen �rst. Let w be the neighbor
of v. We have two cases.

1. |S ′| = 2.

2. |S ′| ≥ 3.

In case 1, S restricts to a molecular cover of T −u by removing u from S, and
by removing S ′, it becomes a cover for T −{u, v, w}. This means T −{u, v}
does not have a molecular cover. In case 2, S restricts to a molecular cover
of T − {u, v} by removing u from S and v from S ′. In this case, T − {u, v}
has a molecular cover with r stars. Therefore, S cannot intersect P on u or
v.

Now, assume S meets P elsewhere, and consider a molecular cover S such
that the stars containing u and v are chosen last. In a similar way as before,
if both stars contain three or more vertices, then T − {u, v} has a molecular
cover with r stars, and otherwise, T −{u, v} does not have a molecular cover.

Therefore, P = T and |V (P )| ≡ 2 (mod 3). The converse was done
above. ■

Theorem 4.4.3. Let T be a forest with a molecular cover with r stars. Let
u, v ∈ V (T ) and P be the path connecting them.

1. If T − {u, v} has a molecular cover with r − 1 stars then T − P has a
molecular cover.

2. T −{u, v} has a molecular cover with r− 1 stars if and only if there is
a molecular cover S of T which can be described as

S = T ⊔U,
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where T is a molecular cover of T − P , U is a molecular cover of P ,
and |P | ≡ 2 (mod 3) and the stars in T are chosen before(ii) the stars
in U.

Proof. We will prove (2) and then (1) will follow. First, suppose that there
is a molecular cover S of T which can be described as

S = T ⊔U

where T is a molecular cover of T − P , U is a molecular cover of P , |P | ≡ 2
(mod 3) and the stars in T are chosen before the stars in U. To cover
T − {u, v} we replace U by any molecular cover U′ of P − {u, v} and set
S′ = T ⊔U′, which is a molecular cover of T − {u, v}.

Now, we will prove the converse by induction on the number k of leaves
not in P . If k = 0, then T = P and the result follows. Suppose now that
k > 0 and that for every forest T ′ that has a molecular cover with r(T ′) stars
such that T ′ − {u′, v′} has a molecular cover with r(T ′) − 1 stars there is
such a molecular cover, given that it has less than k leaves not in the path
between u′ and v′. Let T be a forest that has a molecular cover with r starts,
with vertices u, v ∈ V (T ) such that there are k leaves not in the path P
between u and v, and suppose T − {u, v} has a molecular cover with r − 1
stars. Let w be the neighbor of one such leaves. Then the star S centered in
w does not meet P . Let T ′ = T − S. Then T ′ has a molecular cover with
r− 1 stars and has at most k − 1 leaves not in P . Since T ′ − {u, v} also has
a molecular cover with r − 2 stars then by induction hypothesis there is a
molecular cover S′ of T ′ which can be described as

S′ = T′ ⊔U,

where T′ is a molecular cover of T ′−P , U is a molecular cover of P , |P | ≡ 2
(mod 3) and the stars in T′ are chosen before the stars in U. Now, we build
the cover S for T by setting T = T′ ∪ {S} and S = T ⊔U, and since S is
chosen �rst, the stars in T are chosen before the stars in U.

Furthermore, both P and P −{u, v} itself have molecular covers with the
respective number of stars, so |P | ≡ 2 (mod 3). So we are done. ■

In the case of paths, a lower neighbor of a subforest with a molecular
cover di�ers from it by at most two vertices.

In the general situation that's not the case.

(ii)This means that if S = (S1, . . . , Sr) then i < j whenever Si ∈ T and Sj ∈ U.
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Example 4.4.4. Consider the tree T resulting from a subdivision of each
of the edges of a star S with n leaves. Then T itself has n leaves, and has
a molecular cover with n stars. Moreover, if L is the set of all its leaves,
T − L ∼= S has a molecular cover with 1 = n− n+ 1 star.

The previous example shows an in�nite family of trees with molecular
covers with lower neighbors that can di�er in an arbitrarily large number of
vertices. We can generalize it further.

Let T be a graph resulting from subdividing each of the edges of a star
with n leaves multiple times. Let l be a leaf of T , let P be the path from l
to the center q of T and let x be the remainder of |V (P )| when divided by
3. We have the following possibilities.

1. x = 0. In this case, we take a molecular cover of T starting with l
until we get to q. This cover restricts to a cover of P . Thus, T has a
molecular cover if each of the components of T − P (which are paths)
has a molecular cover. This means that each component C must have a
number of vertices xC ≡ 0, 2 (mod 3). This means that the path from
each leaf l′ to q must have a number of vertices xl′ ≡ 0, 1 (mod 3).
Therefore, these trees can be represented by the following set of vectors
in Z3

3:

T n
0 =

{
n∑

i=2

riei : ri ∈ {0, 1}

}
/Sn.

In the particular case of n = 3, we get

T 3
0 = {000, 001, 011}.

2. x = 2. In this case, we get something similar: We take a molecular cover
of T starting with l until we get to q. This cover does not restrict to a
cover of P : The last star intersecting P is the entire star Sq centered in
q. This means that the path from each leaf l′ to q must have a number
of vertices xl′ ≡ 1, 2 (mod 3). In this case, we get

T n
2 =

{
2e1 +

n∑
i=2

riei : ri ∈ {1, 2}

}
/Sn.

In the case of n = 3, we get

T 3
2 = {211, 221, 222}.
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3. x = 1. This case can only contain, if possible, the 1 vector, besides
the cases mentioned before. In this case, we can't fully cover P and
are stopped one vertex away from q. Then T has a molecular cover if
and only if T − (P − q) has one. T − (P − q) is a tree resulting from
subdividing each edge of a star with n − 1 leaves multiple times, so
by recursion, we end up with a path with ≡ 1 (mod 3) vertices, which
does not have a molecular cover.

Therefore, the only possible trees of this type with molecular covers are
the ones in T n

0 and in T n
2 .

Theorem 4.4.5. Let T be a forest with a molecular cover with r stars. Let
U ∈ V (T ) and P be the smallest subtree containing U .

1. If T − U has a molecular cover with r − |U | + 1 stars then T − P has
a molecular cover.

2. T − U has a molecular cover with r − |U |+ 1 stars if and only if there
is a molecular cover S of T which can be described as

S = T ⊔U,

where T is a molecular cover of T − P , U is a molecular cover of P ,
and P − U has a molecular cover with |U| − |U |+ 1 stars.

Proof. We use similar arguments to those used in the case of two vertices.
First, suppose that there is a molecular cover S of T which can be described
as

S = T ⊔U

where T is a molecular cover of T − P , U is a molecular cover of P and
P − U has a molecular cover U′ with |U| − |U | + 1 stars. Then T ⊔ U′ is a
molecular cover of T − U with |S| − |U|+ |U| − |U |+ 1 = r − |U |+ 1 stars.
So, we are done in this case.

Now, we will prove the converse by induction on the number k of stars not
meeting P . If k = 0 then T = P . Otherwise, if w is a leaf not in P , and S is a
star starting a molecular cover, then P−P ∩S is disconnected. Furthermore,
every component of P −P ∩S contains vertices of U ; otherwise, P wouldn't
be the smallest subtree containing U . Let U ′ be the set of vertices of U in a
component of P − P ∩ S. Then P − U ′ has a molecular cover and therefore
P − U cannot have a molecular cover with r − |U |+ 1 stars since U ′ ⊊ U .
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Suppose now that k > 0 and that for every forest T ′ that has a molecular
cover with r(T ′) stars such that T ′ − U ′ has a molecular cover with r(T ′)−
|U ′|+1 stars for U ′ ⊆ V (T ′)there is such a molecular cover, given that it has
less than k stars not meeting the smallest subtree containing U .

Let T be a forest with a molecular cover with r stars and vertices U ⊆
V (T ) such that there are k stars not meeting the smallest subtree P con-
taining U , and suppose T − U has a molecular cover with r − |U |+ 1 stars.
Start a cover with a star S not meeting P . Let T ′ = T − S. Then T ′ has a
molecular cover with r−1 stars with at most k−1 stars that do not meet P .
Since T ′−U also has a molecular cover with r− |U | stars then by induction
hypothesis there is a molecular cover S′ of T ′ which can be described as

S′ = T′ ⊔U,

where T′ is a molecular cover of T ′ − P , U is a molecular cover of P , and
P − U has a molecular cover with |U| − |U | + 1 stars. Now, we build the
cover S for T by setting T = T′∪{S} and S = T⊔U. we are then done. ■

Proposition 4.4.6. Let T be a tree with a molecular cover with r stars,
U ⊆ V (T ) such that T −U has a molecular cover with r− |U |+ 1 stars and
assume there is no proper subtree of T containing U . Then U = L(T ).

Proof. First, L(T ) ⊆ U ; otherwise there would be l ∈ L(T ) such that l /∈ U ,
which means U ⊆ V (T − l). To prove the converse, assume otherwise that
there is u ∈ U such that deg u > 1. Then T − u is disconnected, with all the
components of T − u containing elements of U . Assume T has a molecular
cover S and S ∈ S such that |S| = 2 and u ∈ S Let v ∈ S − {u}, and let
C be the component of T − u such that v ∈ C. Let U ′ = U ∩ C. Then we
state that (T −U ′)−u has a molecular cover. Indeed, start with a molecular
cover of T − U , which induces a molecular cover C of C − U ′. Now, take
S′ = {S ∈ S : V (S) ⊆ (V (T ) − V (C)) − {u}}. Then C ∪ S′ is a molecular
cover of T −U ′. Now assume there is not such a cover and instead that there
is a cover S and S ∈ S with |S| > 2 and S = Su. Let C1, . . . , Cs be the
connected components of T − u and Ui = U ∩Ci for each i. Then for each i,
Ci − Ui has a molecular cover Ci, which creates a molecular cover

C =
s⋃

i=1

Ci.



CHAPTER 4. SOME POTENTIAL RESOLUTIONS 71

Consider Ci as a subgraph of Di = T [V (Ci)∪V (S)]. Then Di has a molecular
cover, say, with ri stars. In this way,

r = 1 +
s∑

i=1

(ri − 1).

Also, for each i, |Ci| ≥ ri − |Ui|+ 1. Therefore

|C| ≥
s∑

i=1

(ri − |Ui|+ 1) =
s∑

i=1

(ri − 1)−
s∑

i=1

|Ui|+ 2s = r − |U |+ 2s− 1.

If s ≥ 2, which is the case here,

|C| ≥ r − |U |+ 3,

which contradicts the hypothesis. ■

There are more complex "minimal" trees whose lower neighbors di�er in
multiple vertices.

De�nition 4.4.1. Let T be a forest and L its sets of leaves. For u, v ∈ V (T )
that are connected, denote d(u, v) as the number of vertices in the path
connecting u, v. We say T is of type 0 if and only if

1. For all u, v ∈ L, d(u, v) ≡ 2 (mod 3),

2. For all u and v vertices of degree ≥ 3, d(u, v) ≡ 1 (mod 3),

3. For all u ∈ L and deg(v) ≥ 3, d(u, v) ≡ 0 (mod 3).

We say T is of type 2 if and only if

1. For all u, v ∈ L, d(u, v) ≡ 2 (mod 3),

2. For all u and v vertices of degree ≥ 3, d(u, v) ≡ 1 (mod 3),

3. For all u ∈ L and deg(v) ≥ 3, d(u, v) ≡ 2 (mod 3).

Theorem 4.4.7. Let T be a tree with a set of leaves L and |L| = l. Assume:

1. For all u, v ∈ L, d(u, v) ≡ 2 (mod 3),

2. For all u and v vertices of degree ≥ 3, d(u, v) ≡ 1 (mod 3),
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3. For all u ∈ L and deg(v) ≥ 3, d(u, v) ≡ 0 (mod 3).

Then

1. Then both T and T − L have molecular covers.

2. If T has a molecular cover with r stars, then T − L has a molecular
cover with r − |L|+ 1 stars.

Theorem 4.4.8. Let T be a tree with set of leaves L such that

1. Both T and T − L have molecular covers.

2. If T have molecular covers with r stars, then T − L have molecular
covers with r − |L|+ 1 stars.

Then

1. If u, v ∈ L then d(u, v) ≡ 2 (mod 3).

2. If u and v are vertices of degree ≥ 3 then d(u, v) ≡ 1 (mod 3).

3. If u ∈ L and deg(v) ≥ 3 then d(u, v) ≡ 0 (mod 3).

Alternatively, the Theorem 4.4.7 and Theorem 4.4.8 can be stated as

For a tree T with set of leaves L, T − L is its lower neighbor if and only if

T is of type 0.

The following lemmas will be crucial to prove theorem 4.4.7

Lemma 4.4.9. Let T be a tree and L its set of leaves. Let e be an edge of
T . Let T ′ be the tree resulting from subdividing e three times and L′ its set
of leaves. Then T has a molecular cover with r stars if and only if T ′ has one
with s = r+1 stars and T −L has a molecular cover r− |L|+1 stars if and
only if T ′ − L′ has a molecular cover with s− |L|+ 1 stars.

Proof. Assume e = uv, and let P = uw1w2w3v be the path in T ′ resulting
from subdividing e three times.

First, assume that T has a molecular cover. Let S be such a cover. Then
we have two possibilities.

1. For all S ∈ S, e /∈ E(S).
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2. For exactly one S ∈ S, e ∈ E(S).

In case 1, T ′ − S has two leaves, w1, w3 and w1, w2, w3 induce a star Sw2 in
T ′ centered in w2. In this case, S ∪ {Sw2} is a molecular cover for T ′ with
r + 1 stars.

In case 2, assume u is the center of the star S with e ∈ E(S). De�ne S ′

as the star of T ′ resulting by replacing v by w1, and Sw3 the star induced by
the vertices w2, w3 and v. Then (S − {S}) ∪ {Sw3 , S

′} is a molecular cover
for T ′ with r + 1 stars.

Conversely, assume that T ′ has a molecular cover and let S′ be such a
cover. Then we have two possibilities.

1. There are three stars in S′ having vertices of P .

2. There are two stars in S′ having vertices of P .

In case 1, w1, w2, w3 induce a star S ∈ S′ and S′−{S} is a molecular cover of
T . In case 2, let S1, S2 ∈ S′ be the stars having vertices of P . Assume S1 has
only two vertices of P and S2 has three vertices of P . Furthermore, assume
that V (S2) = {w2, w3, v} and V (S1) = {u,w1} ∪ U where U ∩ V (P ) = ∅.
Let S be the star of T induced by U, u and v. Then (S′ − {S1, S2}) ∪ {S} is
a molecular cover of T with |S′| − 1 stars.

We proved that T has a molecular cover with r stars if and only if T ′

has a molecular cover with r − 1 stars. Since T ′ − L is still the result of
subdividing an edge of T − L three times, the result follows. ■

Lemma 4.4.10. Let T be a tree and L its set of leaves. Let v ∈ V (T ) be a
vertex of degree ≥ 4. Let T ′ be a tree with a path v1w1w2v2 such that

V (T ) = (V (T ′)− V (P )) ∪ {v}

and

E(T ) = E(T ′ − P ) ∪ {wv : if there exists u ∈ P such that wu ∈ E(T ′)}.

Then T has a molecular cover with r stars if and only if T ′ has a molecular
cover with s = r+ 1 stars and T ′ −L has a molecular cover with s− |L|+ 1
stars if and only if T − L has one with r − |L|+ 1 stars.

Proof. Let S be a molecular cover of T with r stars. Then we have two
possibilities.



CHAPTER 4. SOME POTENTIAL RESOLUTIONS 74

1. v ∈ L(S) for one S ∈ S.

2. S = Sv for one S ∈ S.

In case 1, assume the vertices of S are all adjacent to v1 in T ′ (They must
either be all adjacent to v1 or all to v2 because they must all be on the same
component of T − v). Take S ′ as the star of T ′ resulting by replacing v by
v1 and let Sw2 be the star centered on w2, with vertices w1, w2, v2. Then
(S− {S}) ∪ {S ′, Sw2} is a molecular cover of T ′ with r + 1 stars.

In case 2, take U1 = (V (S)∩NT ′(v1))∪{v} and U2 = (V (S)∩NT ′(v2))∪
{v}. Let S1 be the star of T ′ resulting from removing all the vertices of U2

from S and adding w1, and let S2 be the star of T
′ resulting from removing

all the vertices of U1 from S and adding w2. Then (S− {S}) ∪ {S1, S2} is a
molecular cover of T ′ with r + 1 stars.

Conversely, let S′ be a molecular cover of T with s stars. We have two
possibilities, up to a relabeling of v1, v2.

1. v1 ∈ L(S) for one S ∈ S′.

2. S = Sv1 for one S ∈ S′.

In the �rst case, if S ′ is the star resulting from replacing v1 by v in S and S2

is the star of S containing v2, then (S′−{S, S2})∪ {S ′} is a molecular cover
of T with s− 1 stars.

In the second case v2 is also the center of a star in S, and V (Sv1)∪V (Sv2)−
{w1, w2} induce a star S in T , making (S − {Sv1 , Sv2}) ∪ {S} a molecular
cover of T with s− 1 stars.

Since T ′−L is still the result of "subdividing" a vertex of T −L and then
subdividing the resulting edge twice, the result follows. ■

The lemmas above are important. It means that for us to prove the
conjecture, we only need to prove it for the case where the minimal distances
being considered are exactly 1, 2 or 3 instead of congruent with 1, 2 or 0
(mod 3), respectively. In the case of the theorem 4.4.7, we only need to
prove it for the tree resulting from subdividing each edge of a star exactly
once. But we already did that! So we have the following:

Theorem 4.4.11. Let T be a tree of type 0. Then T has a molecular cover.
Furthermore, T − L has a molecular cover with r − |L|+ 1 stars.

Proof. Follows from the Example 4.4.4, and Lemmas 4.4.9 and 4.4.10. ■
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The following will allow us to prove the theorem:

De�nition 4.4.2. Let T be a tree and v, w ∈ V (T ) we say that v, w are
almost adjacent in T if every other vertex of the only path connecting v and
w has degree 2.

De�nition 4.4.3. Let T be a tree. The reduced tree of T , R(T ) is de�ned
by setting

V (R(T )) = {v ∈ V (T ) : deg(v) ≥ 3}

and
E(R(T )) = {vw : v, w are almost adjacent in T}.

Lemma 4.4.12. Let T be a tree that has a molecular cover. Let v ∈ V (T )
be a leaf of R(T ). Since deg(v) ≥ 3, then there are at least two leaves l1, l2
of T that are almost adjacent to v. Assume that

d(l1, v) = d(l2, v) = 3.

Let P be the path connecting l1 and v. Then the following statements are
equivalent:

� T has a molecular cover with r stars and T − L(T ) has a molecular
cover with r − |L(T )|+ 1 stars.

� T ′ = T − (P − v) has a molecular cover with s = r − 1 stars and
T ′ − L(T ′) has a molecular cover with s− |L(T ′)|+ 1 stars.

Furthermore T is of type 0 if and only if T ′ is.

Proof. Let w1, w2 be the neighbors of l1, l2 respectively. Let S be a molecular
cover of T such that the star S with vertices v, w2, l2 is in S. Then the star S ′

with exactly two vertices l1, w1 is in S. The set S′ = S− {S ′} is a molecular
cover of T ′ with s = r − 1 stars. Conversely, if we take a molecular cover S′

of T ′ with s stars so that S ∈ S′, then S′ ∪ {S ′} is a molecular cover of T by
r = s + 1 stars. Now assume further that T − L(T ) has a molecular cover
with r−|L(T )|+1 stars, and let S be such a cover so that the star S centered
in v and containing both w1 and w2 is in S. Then (S− {S})∪ {S −w1} is a
molecular cover for T ′−L(T ) with r−|L(T )|+1 stars. But |L(T ′)| = |L(T )|−1
and s = r− 1 so the cover has s+1− |L(T ′)| − 1+ 1 = s− |L(T ′)|+1 stars.
Conversely, if T ′−L(T ′) has a molecular cover with s−|L(T ′)|+1 stars and
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S′ is such a cover so that the star S ′ centered in v and containing w2 is in S′,
then (S′−{S ′})∪ {S} is a molecular cover for T −L(T ) with r− |L(T )|+1
stars, where S is the star induced by S ′ and w1. Now, assume that T is of type
0. If v has degree ≥ 3 in T ′ we are done, otherwise let w be the neighbor of v
in R(T ). Then d(v, w) ≡ 1 (mod 3), and d(w, l2) = d(v, w)+d(v, l2)− 1 ≡ 0
(mod 3). Therefore, T ′ is of type 0. Conversely, if T ′ is of class 0 and v has
degree ≥ 3 in T ′ we are done, otherwise d(v, l2) = d(w, l2)− d(v, w) + 1 ≡ 0
(mod 3). ■

Theorem 4.4.13. For a tree T that has a molecular cover, with its set of
leaves L, T − L is its lower neighbor if and only if T is of type 0.

Proof. That for a tree T of type 0, T − L is its lower neighbor is Theo-
rem 4.4.11. To prove the converse, assume T has a molecular cover with r
stars, T − L has a molecular cover with r − |L|+ 1 stars, and that T is not
of type 0. Furthermore, assume that T has the minimum number of vertices
of degree ≥ 3 possible. Let v be a leaf of R(T ). Then there are at least two
leaves of T almost adjacent to v, say, l1, l2. Let d1 = d(v, l1) and d2 = d(v, l2).
First, d1, d2 ≥ 2 (otherwise l1, l2 do not exist), so assume d1, d2 ∈ {2, 3, 4}
(if d1 > 4 or d2 > 4 then the same argument used for the correspondent of
its class of congruence in the set {2, 3, 4}). Let P be the path connecting
l1, v, l2. We have six cases:

1. d1 = d2 = 2:

T ′
v

l1

l2

In this case, in every molecular cover of T , v is the center of the one
containing it (otherwise, l1, l2, or both wouldn't be covered). This
means that T − l1 is a lower neighbor of T ; therefore, T − L is not a
lower neighbor of T .

2. d1 = 2, d2 = 3:

T ′
v

l1
l2
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In this case, T does not have a molecular cover. By starting a cover
from the leaf l2, we isolate l1.

3. d1 = 2, d2 = 4:

T ′
v

l1 l2

In this case, there is a molecular cover in which l1 belongs to a star
with two elements, l1 and v. That means that there is a cover of T
that can be separated in a cover of the path P between l1 and l2 and a
cover of T − P , and P has 5 vertices. This means that T − {l1, l2} is a
lower neighbor of T , therefore T − L is not a lower neighbor of T .

4. d1 = 3, d2 = 4:

T ′
v

l1

l2

In this case, l2 must belong to a star with two vertices in some molecular
cover of T . But that means in such a cover, v is the center of a star
in the cover, which isolates l1, making T unable to have a molecular
cover.

5. d1 = 4, d2 = 4:

T ′
v

l1

l2

Let n = |V (T )|, and T ′′ = T − (P − v). Start a cover of T by choosing
l1 and l2 as leaves. This induces a molecular cover of T ′′ with r − 2
stars. So, pd(T ′′) = (n− 6)− (r − 2) = n− r − 4. Let Q = T − L and
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Q′ = Q− P . By hypothesis, Q has a molecular cover with r − |L|+ 1
stars. Start a cover of Q by choosing the former neighbors of l1 and
l2 as leaves. Then Q′ has a molecular cover with r − |L| − 1 stars.
Therefore pd(Q′) = (n − |L| − 5) − (r − |L| − 1) = n − r − 4 = T′′,
which is impossible, because Q′ = T ′′ − |L| − v.

6. d1 = d2 = 3:

T ′
v

l1

l2

In this case, we repeatedly apply Lemma 4.4.12 until v has degree 2,
then get a contradiction.

■

Proposition 4.4.14. Let T be a tree that has a molecular cover with r stars
and U,W ⊆ V (T ) such that T − U and T −W have a molecular cover with
r − |U | + 1 stars. Then U ̸⊆ W and W ̸⊆ U . Therefore, the set of all such
Us is an antichain.

4.5 The Scalar Function on Paths

With the results of the previous section, we have the following.

De�nition 4.5.1. Let P be a subforest of a path that can be covered by stars,
with n vertices v1, . . . , vn and projective dimension i. Let S = S(P ) be the
set of all its lower neighbors. For each T ∈ S de�ne jT = min(j : vj ∈ P −T )
and lT = min(l : vl ∈ P −{lT}−T ). We order S lexicographically as follows:

For T, U ∈ S, T < U whenever one of the following holds:

1. jT < jU ,

2. jT = jU and lT < lU .

We also weakly order S as T ≺ U whenever jT < jU . We de�ne ι : S →
{0, . . . , |S| − 1} to be the enumeration of ≺.
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Proposition 4.5.1. The relation ≤ de�nes a total order on S and the rela-
tion ⪯ de�nes a partial order on S.

De�nition 4.5.2. Let P be a subforest of a path with a molecular cover,
and S = S(P ). Then for T ∈ S we de�ne the scalar function:

σ(P, T ) = (−1)ι(T )

where ι : S → N is the enumeration of ≺.

This de�nition has a few particularities when P is a path.

Proposition 4.5.2. Let P be a subforest of a path with a molecular cover.
The following hold:

1. If T ∈ S,

σ(P, T ) =

{
1 jT ≡ 1 (mod 3)
−1 jT ≡ 0 (mod 3)

.

2. If P is a path and |P | ≡ 2 (mod 3) and T ∈ S, then

σ(P, T ) =

{
1 |P − T | = 2
−1 |P − T | = 1

,

3. If T = S ⊔ Q where Q is a path with a molecular cover and R is a
subforest of Q also with a molecular cover, then

σ(T,R) =

{
σ(Q,R) |S| ≡ 0 (mod 3)
−σ(Q,R) |S| ≡ 2 (mod 3)

,

4. If T = S ⊔ Q where S is a path with a molecular cover and R is a
subforest of P with a molecular cover, then

σ(T,R) = σ(S,R).

De�nition 4.5.3. For a forest T , the set B(T ) of all the subforests of T with
molecular covers, with the subset relation, will be called the undecorated poset

of T .

De�nition 4.5.4. For a forest T , we de�ne the following digraph B(P ) =
(V,E):
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1. V is the set of all the subforests of P with molecular covers.

2. E consists of all the pairs (T,Q) where T ∈ S(Q).

This digraph will be called the undecorated digraph of P .

Now we just turn B(T ) into a decorated poset B(T ) by assigning σ to it.

Proposition 4.5.3. Let P be a path with n vertices and consider a diamond
D in B(P ):

B

M1 M2

T

Then D is unbalanced in B(P ), that is, one of the following equivalent prop-
erties holds:

1. σ(T,M1)σ(T,M2) ̸= σ(M1, B)σ(M2, B).

2. σ(T,M1) = σ(T,M2) if and only if σ(M1, B) ̸= σ(M2, B) and σ(T,M1) ̸=
σ(T,M2) if and only if σ(M1, B) = σ(M2, B).

Proof. First, suppose T is a path. We have that |T −M1|, |T −M2| ∈ {1, 2}
so we can consider four cases:

i) |T −M1| = |T −M2| = 1

ii) |T −M1| = |T −M2| = 2

iii) |T −M1| = 1, |T −M2| = 2

iv) |T −M1| = 2, |T −M2| = 1

Also, suppose thatM1 ≤M2. Then, in each case, we prove that the products
of the signs at the top and at the bottom di�er.

i) We have some cases:
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� First, assume that

jTM1
≡ jTM2

≡ 0 (mod 3).

Then by proposition 4.5.2, (1),

σ(T,M1) = σ(T,M2) = −1.

Now, M1 = P1 ⊔ Q1 and M2 = P2 ⊔ Q2 where |P1| ≡ |P2| ≡ 2
(mod 3). Then, since

jQ1

B ≡ jP2
B ≡ 0 (mod 3),

it follows by proposition 4.5.2 (1), (3), and (4) that

σ(M1, B) = −1 and σ(M2, B) = 1.

� Now, we assume that

jTM1
≡ jTM2

≡ 1 (mod 3).

Then, by proposition 4.5.2, (1),

σ(T,M1) = σ(T,M2) = 1.

Now, M1 = P1 ⊔ Q1 and M2 = P2 ⊔ Q2 where |P1| ≡ |P2| ≡ 0
(mod 3). In this case, though,

jQ1

B ≡ 0 (mod 3) while jP2
B ≡ 1 (mod 3),

so it follows from proposition 4.5.2 (1), (3) and (4) that

σ(M1, B) = −1 and σ(M2, B) = 1.

� Then, we assume that

jTM1
≡ 0 (mod 3), jTM2

≡ 1 (mod 3).

Then, by proposition 4.5.2, (1),

σ(T,M1) = −1, σ(T,M2) = 1.

Now,M1 = P1⊔Q1 andM2 = P2⊔Q2 where |P1| ≡ 2 (mod 3), |P2| ≡
0 (mod 3). In this case,

jQ1

B ≡ 1 (mod 3) and jP2
B ≡ 0 (mod 3)

which means, by proposition 4.5.2 (1), (3) and (4), that σ(M1, B) =
σ(M2, B) = −1.
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� Last, we assume that

jTM1
≡ 1 (mod 3), jTM2

≡ 0 (mod 3).

Then, by proposition 4.5.2, (1),

σ(T,M1) = 1, σ(T,M2) = −1.

Now,M1 = P1⊔Q1 andM2 = P2⊔Q2 where |P1| ≡ 0 (mod 3), |P2| ≡
2 (mod 3). In this case,

|M1 −B| = |M2 −B| = 2.

Otherwise B would have a subpath, between vjTM1
and vjTM2

with

jTM2
− jTM1

− 1 ≡ 0− 1− 1 ≡ 1 (mod 3)

vertices, which would make B unable to have a molecular cover.
Therefore, since |M1 − B| = |M2 − B| = 2 and |P1| ≡ 0 (mod 3),
it follows that

σ(M1, B) = σ(M2, B) = 1.

So, in this case, the diamond is unbalanced.

ii) In this case, �rst, we have that

σ(T,M1) = σ(T,M2) = 1.

Now, |T | ≡ 2 (mod 3) and |M1 − B| = |M2 − B| = 1, which means
that

|(T −M1) ∩ (T −M2)| = 1.

We also have that

jTM1
≡ jTM2

≡ 1 (mod 3), lTM1
≡ lTM2

≡ 2 (mod 3).

Last, all the components of M1 and M2 have a number of vertices ≡ 0
(mod 3). We have two subcases:
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� First, assume that
jTM1

= jTM2
.

In this case, let Q1 be the component of M1 containing vlTM2
and

P2 the component of M2 containing vlTM1
. Then

jQ1

B ≡ 0 (mod 3) and jP2
B ≡ 1 (mod 3).

Since there are no components ofM1,M2 with a number of vertices
≡ 2 (mod 3), because of proposition 4.5.2 (1) and (4), we have
that

σ(M2, B) = σ(P2, B) = 1 and σ(M1, B) = σ(Q1, B) = −1.

� Now assume that
lTM1

= lTM2
.

In this case, let Q1 be the component of M1 containing vjTM2
and

P2 the component of M2 containing vjTM1
. Then

jQ1

B ≡ 0 (mod 3) and jP2
B ≡ 1 (mod 3).

Since there are no components ofM1,M2 with a number of vertices
≡ 2 (mod 3), because of proposition 4.5.2 (1) and (4), we have
that

σ(M2, B) = σ(P2, B) = 1 and σ(M1, B) = σ(Q1, B) = −1.

Therefore, this diamond is unbalanced.

iii) As in case ii), |T | ≡ 2 (mod 3) and

σ(T,M1) = −1, σ(T,M2) = 1.

Also |M1 − B| = 2, |M2 − B| = 1. Let P2 be the component of M2

containing v
j
M2
B
. Then jP2

B ≡ 0 (mod 3) so

σ(M2, B) = −1.

Now, M1 = P1 ⊔Q1 where |P1| ≡ 2 (mod 3), so

σ(M1, B) = −σ(Q1, B) = −1.

Therefore, this diamond is unbalanced.
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iv) As in cases ii) and iii), |T | ≡ 2 (mod 3) and

σ(T,M1) = 1, σ(T,M2) = −1.

Also |M1 − B| = 1, |M2 − B| = 2. Let Q1 be the component of M1

containing v
j
M1
B
. Then jQ1

B ≡ 1 (mod 3) so

σ(M1, B) = 1.

Now, M2 = P2 ⊔Q2 and j
M2
B ≡ 0 (mod 3) so

σ(M2, B) = σ(P2, B) = −1.

Therefore, this diamond is unbalanced.

■

De�nition 4.5.5. Let P be the path with vertex set {1, . . . , n} and edge
ideal I. For each i ∈ {1, . . . , pd(P )} set

Bi = {T ∈ B(P ) : pd(T ) = i}.

For each such k, let

Fi =


R/I if i = −1
R if i = 0⊕

Q∈Bi
S(−xQ) if 1 ≤ i ≤ pd(P )

,

where −xQ =
∏

a∈V (Q) x
a. Now de�ne di : Fi → Fi−1 by its matrix represen-

tation:
(di)P,Q = σ(P,Q)xP−Q.

This gives us a complete candidate for a free resolution of a path P .

4.6 The Scalar Function of a Triple Subdivision

Let T be a forest and e = v1w1 ∈ E(T ) an edge containing a leaf w. Let Σ(T )
be the tree resulting from subdividing e three times. Formally, V (Σ(T )) =
V (T ) ∪ {t, v2, w2} and E(Σ(T )) = E(T ) ∪ {wt, tv2, v2w2}. If P is the path
given by tv2, v2w2 we will denote Σ(T ) = T + P .

There are two kinds of lower neighbors for Σ(T ).
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1. The ones emerging from a lower neighbor of T . In particular, for each
lower neighbor C of T containing e, there is a lower neighbor of Σ(T )
given by C +P . For each lower neighbor of T resulting from removing
w1 (as well as possibly other vertices of T ), there is an extra lower
neighbor of Σ(T ) resulting from removing w2 instead. And for each
lower neighbor of T resulting from removing v1 and w1 there are two
extra lower neighbors of Σ(T ) resulting from removing v1 and w2 or v2
and w2 instead.

2. The lower neighbor resulting from removing the vertex t.

We will de�ne the following scalar function.

De�nition 4.6.1. Let T be a molecular forest, and assume we have a scalar
σ(F,C) for each lower neighbor C of a molecular subforest F of T . For each
lower neighbor C ′ of Σ(T ) we de�ne σ(Σ(T ), C ′) as follows:

� If C ′ comes from a lower neighbor C of T , σ(Σ(T ), C ′) = σ(T,C).

� IF C ′ results from removing t, σ(Σ(T ), C ′) = (−1)n−r where r is the
molecular cover number of Σ(T ).

By using this, we can compute the scalar function for any other case. All
the elements in the poset of Σ(T ) either have the forms described above or
the form Q ⊔ f where f is an edge and Q is in the poset of T . Then, we
de�ne the sign

σ(Q ⊔ f,Q) = (−1)|Q⊔f |−r(Q⊔f)−1

and for a lower neighbor R of Q,

σ(Q ⊔ f,R ⊔ f) = σ(Q,R).

4.7 A Subdivision of a Star

Let T = S
(3,...,3)
n be the graph resulting from subdividing each edge of a star

once.
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R1

R2

R3

Each branch, the path between each leaf li and the center 0, can be denoted
by Ri. The operations to compute the lower neighbors of T can be classi�ed
as follows:

1. Ri(T ): Remove the vertices in the branch Ri at distance 1 and 2 of the
center.

2. C(T ): remove the center 0.

3. L(T ): remove all the leaves of T .

Furthermore:

� The tree resulting from the operation Ri is S
(3,...,3)
n−1 . To compute the

lower neighbors of this one, you can apply the same operations.

� The forest resulting from the operation Ci is a disjoint union of edges.
For this one, the only possible operation is Ri.

� The tree resulting from the operation L is Sn. For this one, the only
possible operation is Ri.

We can furthermore say thatRiC(T ) = CRi(T ), RiL(T ) = LRi(T ), RiRj(T ) =
RjRi(T ) but LC and CL are not valid operations. Therefore, all the dia-
monds in the Poset of T can be described as the following three:

RiC(Q) = CRi(Q)

Ri(Q) C(Q)

Q
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RiRj(Q) = RjRi(Q)

Ri(Q) Rj(Q)

Q

RiL(Q) = LRi(Q)

Ri(Q) L(Q)

Q

for a molecular subforest Q of T .
We will de�ne the scalar function as follows:

� σ(Q,Ri(Q)) = (−1)i

� σ(Q,C(Q)) = (−1)k

� σ(Q,L(Q)) = (−1)k where k is the number of branches in Q.
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Future Work and Discussion

As can be seen, despite the fact we have been able to calculate candidates to
minimal free resolutions of edge ideals, to prove they are actually resolutions
is a di�erent problem. The idea for a path to get to that is to prove the
columns of the matrices are actually irredundant, and then, with the diamond
property, that would prove they are resolutions, as seen in [?].

Next, the algorithms developed should be able to be generalized to other
families of graphs. The �st hint is in the complete bipartite graphs: Their
Betti numbers follow the same pattern as in trees.

The molecular cover number of a forest is a combinatorial invariant, so
there can be some combinatorial results on that. The type 0 forests are also
related to the concept of degeneracy in graph theory; see [?] for instance.

The upper Koszul Complex has some applications in logic and topology,
as seen in [?]. There could be some applications to those topics.
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Appendix

6.1 Molecular Trees

Here we attach a list with all the molecular trees with at most ten vertices
and one with all the molecular trees with at most 18 vertices that remain
molecular after removing all their leaves.

Table 6.1: List of all nonisomorphic trees of type 0 with
more than two vertices and less than 18 along with a
molecular cover and their projective dimension.

# n G S pd

1 2 1

2 3 2

3 4 3

4 5 3

90
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5 4

6 6 4

7 4

8 5

9 7 5

10 5

11 5

12 4

13 6
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14 8 5

15 6

16 5

17 6

18 5

19 6

20 6

21 5
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22 7

23 9 6

24 6

25 6

26 6

27 7

28 6

29 6
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30 6

31 7

32 6

33 7

34 7

35 7

36 6
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37 6

38 5

39 8

40 10 7

41 7

42 7

43 7

44 7
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45 7

46 6

47 7

48 7

49 8

50 7

51 7
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52 7

53 8

54 7

55 6

56 7

57 6

58 7



CHAPTER 6. APPENDIX 98

59 7

60 8

61 7

62 7

63 6

64 8

65 8
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66 8

67 7

68 7

69 7

70 6

71 9

6.2 Type 0 Trees
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Table 6.2: List of all nonisomorphic trees of type 0 with
more than two vertices and less than 19 along with a
molecular cover and their projective dimension.

# n G S pd
1 5 3

2 7 4

3 8 5

4 9 5

5 10 6

6 11 7

7 6

8 12 7

9 7
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10 13 8

11 8

12 7

13 14 9

14 8

15 8

16 15 9

17 9
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18 9

19 9

20 8

21 16 10

22 10

23 10

24 9
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25 9

26 9

27 17 11

28 10

29 10

30 10

31 10

32 10
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33 10

34 9

35 18 11

36 11

37 11

38 11

39 11
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40 11

41 11

42 11

43 10

44 10

45 10
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