
Centro de investigación y en estudios
avanzados del Instituto Politécnico

Nacional

UNIDAD ZACATENCO
DEPARTAMENTO DE MATEMATICAS

Clusters en dibujos rectilíneos óptimos de
la gráfica completa: descubriendo

posibles patrones recursivos

T E S I S

Que presenta
Juan Pablo Serrano Pérez

Para obtener el grado de
Maestro en ciencias
en la especialidad de

Matemáticas

Director de la tesis: Dr. Ruy Fabila-Monroy

Ciudad de México. Mayo, 2024

ii

Center of research and advanced studies of
the national politechnic institute

CAMPUS ZACATENCO
DEPARTMENT OF MATHEMATICS

Clusters in Optimal Rectilinear Drawings
of the Complete Graph: Insights into

Potential Recursive Patterns

T H E S I S

Presented by
Juan Pablo Serrano Pérez

To obtain the degree of
Master of science

on the speciality of
mathematics

Thesis director: Dr. Ruy Fabila-Monroy

Mexico City. May, 2024

ii

A mis padres, Rocío y Raúl

Agradecimientos

El presente trabajo no es fruto de una sola persona, es el reflejo de las virtudes que un grupo de
personas han concedido para su realización. Este espacio es para agradecerles.

A mi mamá, Rocío Pérez, quien ha otorgado parte de su vida a formar la mía. Porque su
amor y cariño llenaron en cuerpo y alma las raíces de mis sentimientos y convicciones.

A mi papá, Raúl Serrano, quien entregó su tiempo y esfuerzo a construir mi vida. Por ser el
hombre por el cual me guiaré en mente y espíritu.

A mi hermano, Ariel Serrano, por acompañarme en cada camino en el que estoy. Porque su
palabra y obra son un faro de luz cuando me hace falta.

A mi profesor, Ruy Fabila, por ser el eje central en mis estudios de maestría. Porque su
humildad en la enseñanza me dejó conocimientos que siempre llevaré en obra y pensamiento.

Finalmente, agradezco al Centro de Investigación y de Estudios Avanzados y al Consejo
Nacional de Humanidades Ciencias y Tecnología por sustentar y permitirme realizar mis estudios
de posgrado. Esta tesis fue elaborada como parte del proyecto Ciencia de Frontera "Funciones y
estructuras en gráficas y digráficas” (39570).

Deseo que este trabajo honrre el suyo

Juan Pablo

iii

iv

Contents

1 Introduction 5
1.1 The fundamentals of Graph Theory . 6
1.2 Graph drawings . 7
1.3 Notions of Combinatorial Geometry . 10
1.4 Order types . 11

2 The crossing number 13
2.1 Crossing number complexity . 16
2.2 On the drawings with small crossing number . 19

2.2.1 Heuristics . 19

3 Clustering optimal drawings 23
3.1 k-means clustering . 23
3.2 Order type clustering . 24
3.3 Implementation . 25

3.3.1 Algorithms . 27
3.3.2 The code . 31

3.4 Results . 33
3.4.1 A kind of recursion . 34

v

vi CONTENTS

List of Figures

1.1 Best known drawing of K50 . 6
1.2 A graph. 7
1.3 Drawing of K3,3. 7
1.4 Configuration of 3 points in R2. 11
1.5 Configurations with the same order type. 12
1.6 δ(p, q) = 0 and δ(p, s) > δ(p, r) + δ(r, s). 12

2.1 Zarankiewicz’s draw of K8,7. 15
2.2 Optimal drawings of the complete graph for n = 5, 6. 16
2.3 Diagram reduction for NP-completness proof. 17
2.4 Embedding of G onto the unit square. 18
2.5 Best known drawing of K50 . 21
2.6 Best known drawing drawing of K75 . 21
2.7 Best known drawing drawing of K100 . 22
2.8 Best known drawing drawing of K1000 . 22

3.1 Way to count the contribution of x to δ(p,q). 26
3.2 Point 1 of Theorem 3.3.2 . 28
3.3 4 clustering of K50 . 35
3.4 4 clustering of K75 . 35
3.5 4 clustering of K100 . 36
3.6 4 clustering of K1000 . 36
3.7 6 clustering of K50 . 37
3.8 6 clustering of K75 . 37
3.9 6 clustering of K100 . 38
3.10 6 clustering of K1000 . 38
3.11 4 clustering: cluster 1 of K50 . 39
3.12 4 clustering: cluster 2 of K50 . 39
3.13 4 clustering: cluster 3 of K50 . 39
3.14 Expansion of clusters 1, 2 and 3 of optimal drawing of K50 39
3.15 6 clustering: cluster 1 of K200 . 40
3.16 6 clustering: cluster 2 of K200 . 40
3.17 6 clustering: cluster 3 of K200 . 40
3.18 6 clustering: cluster 5 of K200 . 40
3.19 Expansion of clusters 1, 2, 3 and 5 of optimal drawing of K200 40
3.20 4 clustering: cluster 2 of K500 . 41
3.21 4 clustering: cluster 3 of K500 . 41

vii

viii LIST OF FIGURES

3.22 4 clustering: cluster 4 of K500 . 41
3.23 Expansion of clusters 1, 2 and 4 of optimal drawing of K500 41
3.24 6 clustering: cluster 1 of K500 . 42
3.25 6 clustering: cluster 1 of K1000 . 42
3.26 Comparison of the clusters 1 between K500 and K1000 42
3.27 6 clustering: cluster 2 of K500 . 42
3.28 6 clustering: cluster 5 of K1000 . 42
3.29 Comparison of the clusters 2 and 5 between K500 and K1000 42
3.30 6 clustering: cluster 3 of K500 . 42
3.31 6 clustering: cluster 3 of K1000 . 42
3.32 Comparison of the clusters 3 between K500 and K1000 42
3.33 6 clustering: cluster 4 of K500 . 43
3.34 6 clustering: cluster 4 of K1000 . 43
3.35 Comparison of the clusters 4 between K500 and K1000 43
3.36 6 clustering: cluster 5 of K500 . 43
3.37 6 clustering: cluster 2 of K1000 . 43
3.38 Comparison of the clusters 5 and 2 between K500 and K1000 43
3.39 6 clustering: cluster 6 of K500 . 43
3.40 6 clustering: cluster 6 of K1000 . 43
3.41 Comparison of the clusters 6 between K500 and K1000 43

List of Tables

3.1 4 clusters statistics . 33
3.2 6 clusters statistics . 34

ix

x LIST OF TABLES

List of Algorithms

1 SORT-POINTS . 28
2 DELTA . 29
3 BINARY-POLAR-SEARCH . 30
4 CENTROID . 30
5 CLUSTERING-ORDER-TYPE . 32

xi

xii LIST OF ALGORITHMS

Resumen

El matemático húngaro Paul Turán, planteó el problema del número de cruces en una gráfica
bipartita completa, que consiste en encontrar una representación en el plano que minimice los
cruces entre las aristas. A pesar de su aparente simplicidad, este problema sigue sin resolverse.
Numerosos estudios se han realizado en el área demostrando que es un problema NP-completo e
incluso considerando la variante del número de cruce rectilíneo donde las aristas son dibujadas
como segmentos rectos.

El presente trabajo está dedicado a aplicar un algoritmo de agrupamiento a dibujos que son
casi óptimos de la gráfica completa Kn para diferentes valores de n. Los dibujos utilizados son el
resultado de las investigaciones más recientes del área. Los dibujos empleados provienen de las
investigaciones más recientes en el área. El algoritmo permite redescubrir subpatrones presentes
en estos dibujos óptimos.

1

2 LIST OF ALGORITHMS

Abstract

The Hungarian mathematician Paul Turán proposed the problem of determining the number
of crossings in a complete bipartite graph, which involves finding a planar representation that
minimizes edge crossings. Despite its apparent simplicity, this problem remains unsolved. Nu-
merous studies have been done and it has been shown to be an NP-complete problem, even
when considering the rectilinear crossing number variant, where edges are drawn as straight line
segments.

This work focuses on applying a clustering algorithm to nearly optimal drawings of the
complete graph Kn for different values of n. The drawings used are the result of the most recent
research in the field. The algorithm enables the rediscovery of sub-patterns present in these
optimal drawings.

3

4 LIST OF ALGORITHMS

Chapter 1

Introduction

Even though scientific research often involves deep mental exercises, artificial intelligence has not
only become integrated into industrial applications but has also made a significant impact on
scientific exploration. For instance, it has been utilized in the study of structure-based modeling
for protein drug discovery. In the field of informatics, artificial intelligence has been instrumental
in developing Auto Machine Learning, which aims to generate algorithms in artifitial intelligence.
Xu Jongjun et al. illustrate in [Xu+21] how artificial intelligence has been adopted not only in
the pharmaceutical industry but also in various other scientific domains. We firmly believe that
mathematical research will be no exception.

The primary objective of this work is to apply an unsupervised learning algorithm1 to cluster
rectilinear drawings of the complete graph achieving a small crossing number. The crossing
number problem involves finding a layout of the complete graph such that the number of crossings
between edges is minimized. Frank Harary and Anthony Hill conjectured a general formula for
the rectilinear crossing number of Kn [HH63], but it remains unproven. We conclude Chapter 2
providing a replication of the NP-hardness proof by Michael Garey and David Johnson given
in [GJ83].

A rectilinear drawing of a graph depicts the graph in the plane using straight line segments.
The rectilinear crossing number of a graph is the minimum number of pairs of edges that cross
in a rectilinear drawing of the graph. Unlike the crossing number, which refers to the minimum
number of intersections in a graph drawing, there is currently no conjectured formula for the
rectilinear crossing number of Kn. We utilize a clustering algorithm to potentially enhance
our comprehension of the best rectilinear drawings that have been discovered [Aic+20]. An
illustration of these patterns is exemplified in Figure 1.1.

Specifically, we employ a k-means algorithm, which identifies optimal k centers of a point
set using a "minimum distance rule". This aspect is pivotal to our research as it determines
the similarity between point sets. Given that the crossing number problem is fundamentally a
geometric-combinatorial problem, we introduce in 1.4.3 a distance metric for a set of points in the
plane. This metric draws inspiration from the field of combinatorial geometry, which explores
geometric properties of sets with a finite number of points2. Based on the aforementioned
discussion, this work is structured as follows: we begin with preliminaries covering graph theory
and combinatorial geometry. This material sets the stage for Chapter 2, where we delve into
the crossing number problem and discuss the advancements made since its inception. Finally,

1Machine learning may be divided in three principal subjects: supervised learning, unsupervised and reinforce-
ment learning.

2In a broader context, this can encompass finite collections of various geometric entities.

5

6 CHAPTER 1. INTRODUCTION

Figure 1.1: Best known drawing of K50

in the last chapter, we focus on the k-means algorithm and its implementation, presenting the
algorithms and providing general observations in the Results section.

1.1 The fundamentals of Graph Theory

Graphs are mathematical structures used to represent pairwise relations between objects of any
kind. In this study, our focus lies on combinatorial and emergent problems within the realm
of graph theory development. We will begin by introducing fundamental, yet formally defined
concepts in graph theory.

A (simple) graph G is an ordered pair (V,E) of sets: V and E. The elements of the set E, are
subsets containing two elements of V . There is no restriction on the cardinality of V but in this
work, we will exclusively deal with finite sets V . The set V is referred to as the set of vertices,
and E the set of edges of the graph G. Therefore, an element v ∈ V is known as a vertex of G;
and an element e ∈ E will be termed as an edge of the graph G. Figure 1.2 illustrates a typical
representation of a graph. In this depiction, two vertices, denoted as x and y are identified.
These vertices establish the edge {x, y} ∈

(
V
2

)
, which can also be written simply as xy. In cases

where the vertices are self-evident, the edge may be referenced using a lowercase letter. The
vertices x and y are termed the endpoints of the edge xy ∈ E. When two vertices share an edge,
such as xy, they are considered adjacent or neighbors; otherwise, they are deemed independent.
Similarly, an edge e is considered incident to a vertex x if x is one endpoint of e. In a graph
G = (V,E), each vertex v ∈ V , is assigned an integer value representing the number of edges
incident to v. This number, denoted usually by d(v), is termed as the degree of the vertex v. In
Figure 1.2, for example, the vertex x has degree 2. The order of the graph G is the number |V |
representing the total number of vertices.

The complete graph in n vertices is a graph in which every two vertices are adjacent. The
complete graph in n vertices is denoted by Kn.

1.2. GRAPH DRAWINGS 7

x y

Figure 1.2: A graph.

Figure 1.3: Drawing of K3,3.

A subgraph of a graph G = (V,E), is a subgraph G′ = (V ′, E′) such that V ′ ⊂ V and E′ ⊂ E.
Thus, every finite graph can be considered a subgraph of a well-known graph: the complete graph.
A fundamental combinatorial property of finite graphs is the order of magnitude of the number
of edges. Initially, we observe that the complete graph with n vertices, Kn, has exactly

(
n
2

)
edges. Consequently, for a graph with n vertices, then the number of edges is O(n2). A path in
a graph G is a subgraph P with its edge set {v0v1, v1v2 . . . , vm−1vm} and every vertex is visited
exactly once. In this context, it is stated that the vertices v0 and vm are connected by P . A
cycle in a graph G is a subgraph C with its edge set {v0v1, v1v2 . . . , vm−1v0} and every vertex
is visited exactly once. A connected graph is one in which every pair of vertices are joined by a
path. In the case where a graph is not connected, it can be decomposed into maximal connected
subgraphs. Consequently, the graph becomes the disjoint union of these maximal connected
subgraphs, known as the connected components of the graph. Figure 1.2 illustrates a graph with
two connected components. Given a graph, where the set of vertices V can be partitioned into
two independent sets, is denoted as bipartite graph. The bipartite graph with set of vertices
V = A ⊔ B where |A| = m, |B| = n and every vertex of A is adjacent to every vertex of B
is denoted as Km,n and is known as the complete bipartite graph on n and m vertices. See
Figure 1.3 for an illustration. Lastly, a multigraph is defined as an ordered pair (V,E) consisting
of a set V , representing the vertices, and a multiset E containing unordered pairs of vertices,
known as multi-edges. In multigraphs, loop edges are allowed.

1.2 Graph drawings

In the following section, we present basic but fundamental results related to the focus of this
work: the number of crossings that appear in a graph drawing.

When considering a graph, it is natural to envision it as a network of vertices connected by
lines, as depicted in Figure 1.2. However, this perception aligns more with a topological point
of view. For practical purposes, it is more convenient to define a graph in combinatorial terms,
as we have done previously. To accommodate the network conception of a graph, we introduce
the terms drawing or embedding of a graph. Just as T. Tucker [GT01] suggests, a drawing of a

8 CHAPTER 1. INTRODUCTION

graph is simply the process of placing a dot in the plane for every vertex and drawing lines to
represent edges between the corresponding endpoints of the edge. The endpoints of the edge are
in correspondence with the endpoints of the line representing the edge in the plane. A drawing
is a correspondence between the set of vertices V and R2 and another correspondence between
E and continuous curves in the plane:

V → R2

and
E → {continuous curves}.

Multiple drawings can be created to represent the same graph, and it is not a requirement that
edges avoid crossing within their interiors. However, when a graph can be drawn without interior
crossings between edges, it is referred to as a planar graph.

Lemma 1.2.1 (Euler’s formula). Every planar connected graph with n vertices, m edges and
f−1 bounded regions delimited by edges, in addition to the outer, infinite, and unbounded region,
satisfies the equation

n−m+ f = 2.

Euler’s formula 1.2.1 reveals an initial non-combinatorial property of (planar) graphs, stem-
ming from the topological characteristics of graphs.

Proof. Let G be a planar graph with n vertices, m edges and f regions. We prove Lemma 1.2.1
by induction on the number of edges m. If m = 0 then G consists of a single vertex since it is
connected, defining a single region, and the formula follows.

Now, suppose the formula holds for every connected graph with m−1 edges. We first consider
the case where G has no cycles. In this scenario, as G is connected, it contains n− 1 edges and
the formula holds since G defines only a single region (the unbounded one). If G contains a cycle
C, The cycle C divides the plane into two regions according to the Jordan curve theorem [Die17,
Theorem 4.1.1 (Jordan Curve Theorem for Polygons) on p.91]. Consequently, by removing a
single edge, these two regions will merge, decreasing the number of regions f by one while
maintaining the number of vertices. We can apply the induction hypothesis, yielding

n− (m− 1) + (f − 1) = 2

which is nothing else than
n−m+ f = 2.

From Euler’s formula, we can observe that there exists a threshold for the existence of planar
graphs, as the formula n −m + f = 2 represents a topological property of the plane. In other
words, there must be a specific point where it becomes impossible to embed a graph in the plane
without crossings. This concept is formalized in the following result.

Proposition 1.2.2. The number of edges in a connected planar graph with n vertices is at most
3n− 6. In other words, every connected planar graph has a linear number of edges.

Proof. Let G a planar graph with n vertices, m edges, and f regions. Let’s count the number
of edges connected in the boundary of faces. A bounded face is formed by at least three edges,
and an edge belongs to the boundary of its two faces. Thus, we have

m ≥ 3

2
f.

1.2. GRAPH DRAWINGS 9

By Euler’s formula we know that n−m+ f = 2, and so, 2 ≤ n−m/3. Therefore

m ≤ 3n− 6.

The last two criteria allow us to explore the "first" non planar graphs.

Proposition 1.2.3. There is no way to draw K3,3 in the plane without crossings.

Proof. Suppose K3,3 can be embedded in the plane without crossings. Then Euler’s formula
tells us that n − m + f = 2 where n = 2 × 3 = 6 and m = 32 = 9, and so, f = 5. Since
K3,3 is a bipartite graph, it does not contain cycles of length three3 because in such a case, two
independent vertices would have to be adjacent, which is not possible. Therefore, every bounded
face is bounded by at least four edges. As counting faces implies counting each edge twice, we
must have f ≤ 2m/4 = 9/2 which contradicts f = 5.

Proposition 1.2.4. There is no way to draw K5 in the plane without crossings.

Proof. According to Proposition 1.2.2, a planar graph cannot have more than 3n− 6 edges, and
this limit does not hold for K5 which has 5 vertices and

(
5
2

)
= 10 edges.

The converse of Proposition 1.2.2 generally does not hold true. There exist graphs with the
appropriate number m of edges that cannot be drawn in the plane without crossings. However,
it is possible to determine in linear time whether a graph is planar or not with the algorithm
of John Hopcroft and Robert Tarjan [HT74]. As we stated before, K3,3 and K5 seem to be
the "starting" graphs where crossings begin. In the first half of the 20th century, Kazimierz
Kuratowski proved in [Kur30] necessary and sufficient conditions for a graph to be planar, such
that certain specific "deformations" of neither K3,3 nor K5 can be subgraphs of a planar graph.
We describe a simplified version of Kuratowski’s theorem using graph subdivisions. A first
approach for Kuratowski’s theorem is as follows: since both K5 and K3,3 are non-planar graphs,
adding edges to either of them will result in non-planar graphs. The precise meaning of "adding
edges" is now explaining.

Definition 1.2.1 (Edge subdivision). A subdivision of an edge is the operation where the edge
is replaced by a path of length 2.

Definition 1.2.2. A graph G is considered a subdivision of a graph H if G is obtained by a
finite number of edge-subdivision operations.

With this understanding of edge subdivisions, we can now state Kuratowski’s theorem.

Theorem 1.2.5 (Kuratowski). A graph is planar if and only if it does not contain any subdivision
of either K5 or K3,3.

The full development of planar graphs, including the presentation and proof of Kuratowski’s
theorem, can be found in [Die17, Chapter 4 (Planar Graphs)].

3Actually a bipartite graph cannot contain odd cycles.

10 CHAPTER 1. INTRODUCTION

1.3 Notions of Combinatorial Geometry

As the last section illustrates, it is quite natural to visualize graphs as dots connected by curves
in the plane. Moreover, Euler’s formula (Lemma 1.2.1) demonstrates how topological properties
emerge in graph theory results. Therefore, studying the geometric properties of a finite number
of geometric objects and their relations can lead to insights in graph theory. This area of
study is known as Combinatorial Geometry. In the following sections, we will introduce basic
notions of Combinatorial Geometry. The primary objective is to define a combinatorial premetric
on a finite set S of points in R2, which forms the foundational basis for the purpose of this
work: an algorithmic approach to the crossing number problem. Following the exposition of
Jiri Matoušek [Mat13], we delve into the realm of Combinatorial Geometry, starting with a
fundamental concept.

Definition 1.3.1. A set C ⊂ Rd is convex if for every pair of points, x, y ∈ C, the point
tx+ (1− t)y belongs to C for every t ∈ [0, 1].

The convex hull of a set X ⊂ Rd is the minimum convex set containing X. In Combinatorial
Geometry, an important concept is the notion of an affine map, which plays a crucial role in
understanding geometric transformations. An affine map from Rk → Rd is a map of the form
x 7→ Ax+c where A is an d×k matrix and c ∈ Rd is a constant vector. Essentially, an affine map
represents the composition of a linear transformation followed by a translation. Geometrically,
it can be visualized as a transformation that preserves parallel lines but not necessarily distances
and angles. The image under affine maps are referred to as k−flats or affine subspaces. An affine
subspace of dimension d− 1 is specifically known as an hyperplane.

Definition 1.3.2. An arrangement H of a finite set of hyperplanes in Rd is a partition of Rd

into relatively open convex sets, bounded by these hyperplanes. These sets are referred to as faces
of the arrangement H and their dimensions ranges from 0 (vertices) to d− 1 (cells).

In the study of finite sets of points in Rd, it becomes evident that topological notions alone
are insufficient to capture their combinatorial properties. While any two finite sets in Rd may
appear identical from a topological perspective (both being compact sets), their combinatorial
properties can vastly differ. For instance, a set of three points can form a triangle or lie on a
common line, illustrating that topological conceptions do not fully capture combinatorial aspects.
The concept of general position for a finite set (or configuration) of points in Rd addresses this
issue. General position implies that no "unlikely coincidences" occur within the configuration of
points. In other words, when considering a configuration of points, the occurrence of coincidences
is highly improbable. Just as Jiri Matoušek [Mat13] states:

"The precise meaning of general position is not fully standard; It may depend on the
particular context."

Definition 1.3.3 (General position). A finite set of points in Rd is said to be in general position
if any choice of k ≤ d+ 1 of them does not lie in a common (k − 2)-flat.

Indeed, general position can be interpreted as avoiding "unlikely coincidences" because (k−2)-
flats are sets of measure 0 in Rd. Therefore, in a probabilistic sense, the probability of randomly
and independently choosing k points, with random distribution lying in a common (k − 2)-flat
is 0. See Figure 1.4b for an example illustrating points in general position, and Figure 1.4a for
an example demonstrating points not in general position.

1.4. ORDER TYPES 11

(a) Non general position. (b) General position.

Figure 1.4: Configuration of 3 points in R2.

1.4 Order types
In this section, our focus shifts to defining a suitable equivalence relation for configurations
of points in Rd in general position. Although this work primarily concerns planar point sets,
we introduce a general definition of order types as presented in Matoušek [Mat13, Section 9.3
(Order type)]. Given that there are infinitely many ways to arrange a set of n points in the
plane, a natural question arises: when are two configurations combinatorially the same? In
other words, how can we group configurations of points into equivalence classes such that each
class represents a specific combinatorial configuration? To initiate this exploration, we turn to
a natural generalization of the notion of ’order’ in the ordinary real line R. Recall that the real
line is partitioned by the set of positive or negative numbers, along with the number 0, thereby
associating each number with its sign. This concept can be extended to higher dimensions.

Definition 1.4.1. [Orientation]

1. Let p1, . . . , pd be d vectors in Rd. Consider Ω to be the matrix whose i−th column is pi.
The orientation of p1, . . . , pd is defined as the sign of |Ω|.

2. The orientation of d + 1 vectors p1, . . . , pd, pd+1 in Rd is the orientation of the d vectors
p2 − p1, . . . pd − p1, pd+1 − p1.

Now we can define what the order type of a configuration is.

Definition 1.4.2 (Order type). The order type of a configuration C of points in Rd in general
position is determined by the orientations of every choice of d+1 points from C . This assignment
of orientations characterizes the relative arrangement of points in the configuration. Naturally,
this concept is meaningful only when the cardinality of C is at least d+ 1, ensuring that enough
points are available to establish orientations.

Two configurations have the same order type if there exists a bijective correspondence between
them such that the orientation is preserved. This means that the relative orientation of any
chosen d + 1 points in one configuration matches that of the corresponding d + 1 points in the
other configuration. See Figure 1.5 for an illustration.

In what follows, we shift our focus to points on the plane. The orientation o of three points
(a, b), (c, d), (e, f) in the plane can be computed using a small number of sums and multiplications:

o = (c− a)(f − b)− (e− a)(d− b). (1.1)

If o is positive, we say that the three points define a turn to the left ; if it is negative, they define
a turn to the right. We shall omit the case o = 0 since, in most cases, we assume general position
for a configuration C .

Equation 1.1 provides a convenient method for computing the orientation of three points in
the plane, with a computational complexity of O(1). Furthermore, working with programming
languages that allow arbitrary integer representations helps avoid numerical errors. Jacob Good-
man and Richard Pollack, as detailed in their seminal work [GP83], pioneered the concept of

12 CHAPTER 1. INTRODUCTION

p1
p2

p3

p4

p5

q1
q2

q3

q4

q5

Figure 1.5: Configurations with the same order type.

p

q

r

s

Figure 1.6: δ(p, q) = 0 and δ(p, s) > δ(p, r) + δ(r, s).

order types as a foundational framework for implementing a "geometric sorting" process within
Rd. In their groundbreaking contribution, they devised a geometric sorting algorithm with a
time complexity of O(nd log n).

We conclude the introduction by defining our combinatorial δ-premetric.

Definition 1.4.3 (δ-premetric). Let C be a configuration of points in R2 in general position.
Given two points p and q in C , we define δ(p, q) as the number of pairs of points r and s in
C \ {p, q} such that the line passing through r and s intersects the straight line passing through
p and q.

We refer to δ as a "premetric" because it does not satisfy all the properties of a metric or
pseudo-metric. Figure 1.6 illustrates this with the four vertices of a quadrilateral, where neither
the identity of indiscernibles nor the triangle inequality are satisfied.

Chapter 2

The crossing number

The crossing number of a graph is defined as the minimum number of crossings between edges
occurring in a drawing of the graph in the plane. This problem, known as the crossing number
problem, seeks to determine this minimum number.

The Hungarian mathematician Pál Turán encountered a specific instance of this problem
during wartime. In 1944, while working at a brick factory transporting bricks on rails to storage
yards, Turán faced difficulties when the crossing of two rails caused the bricks to fall out of the
truck, requiring them to be reloaded. Hence, minimizing the number of crossings became crucial
for minimizing time lost. Turán proposed this problem in a letter [Tur77] to the Journal of Graph
Theory, where it became known as "Turán’s brick factory problem".

In defining the crossing number of a graph, it is stipulated that two edges cross at most once,
and crossings at the endpoints of edges are disregarded. The crossing number of a graph G is
denoted by cr(G). In a drawing of a graph, the edges are homeomorphic images of the unit
interval [0, 1], including the endpoints of the edge. A rectilinear drawing of G is a drawing in
which the edges are drawn as straight line segments and its vertices are in general position. The
rectilinear crossing number of G is the minimum number of crossings in every rectilinear drawing
of G in the plane. The rectilinear crossing number of a simple graph G is denoted by cr(G). It
is worth noting that cr(G) ≤ cr(G), as rectilinear drawings are a subset of all possible drawings.
While the exact determination of the crossing number remains an open problem, Theorem 2.0.1
provides insight into the order of magnitude of the crossing number of a graph.

Theorem 2.0.1 (Crossing number lemma). The crossing number of a simple graph with n
vertices and m edges is Ω

(
m3/n2

)
.

Proof. We follow the proof given in [Mat13]
Let G = (V,E) be a simple graph with n := |V | vertices and m := |E| edges. A first lower

bound for cr(G) is m− 3n since if G had a drawing with fewer than m− 3n edges, after deleting
a single edge of each crossing, we would obtain a planar graph with more than 3n edges, which
is impossible for planar graphs. Let r be the crossing number of a draw of G.

Consider choosing a random subset V ′ of V , in which, with probability p, we independently
select a vertex v ∈ V and include it in V ′. The expectation of |V ′| is then

E(|V ′|) = np.

Now, let G′ be the subgraph induced by V ′, and let E′ be its set of edges. For an edge e ∈ E to
appear in G′ we must choose both endpoints of e. Therefore, the expectation of E′ is

E(|E′|) = mp2.

13

14 CHAPTER 2. THE CROSSING NUMBER

If r′ is the crossing number of the induced drawing of G′, then

E(r′) = rp4

since for a crossing to appear in the drawing of G, four vertices of V must have been choosen.
From the first lower bound, it follows that

rp4 = E(r′) ≥ mp2 − 3np.

By choosing p = 4n/m, we have

r ≥ 1

64
· m

3

n2
.

Note that for p to be a probability it is required that p ≤ 1, so we assume that m ≥ 4n.
Otherwise, the claimed bound would be negative.

Once the war was over, Kazimierz Zarankiewicz [Zar55] proposed a solution for the Turán’s
brick factory problem. The solution by K. Zarankiewicz is resumed by the formula

cr(Km,n) =
⌊m
2

⌋
·
⌊
m− 1

2

⌋
·
⌊n
2

⌋
·
⌊
n− 1

2

⌋
. (2.1)

The construction of K. Zarankiewicz for the drawing achieving (2.1) is quite straightforward.
Let A,B be the partitions of Km,n with |A| = m and |B| = n. If m = 2k, the points of A are
placed along the x−axis with the following first coordinates:

−k,−(k − 1), . . . ,−2,−1, 1, 2, . . . , k − 1, k.

If m = 2k + 1, they are placed as follows:

−k,−(k − 1), . . . ,−2,−1, 1, 2, . . . , k − 1, k, k + 1.

Similarly, the points of B are placed along the y−axis. Then, every point of A is connected with
every point of B, achieving 2.1.

The Figure 2.1 illustrates an example of Zarankiewicz’s construction for m = 8 and n = 7.
The work of K. Zarankiewicz [Zar55] demonstrates that 2.1 holds when n = 3. However, an
error in Zarankiewicz’s demonstration in [Zar55] of equation 2.1 was discovered by Richard
Guy [Guy68]. Equation (2.1) is now recognized as Zarankiewicz’s conjecture and is believed
to be optimal. Given that every graph is a subgraph of a complete graph, it is reasonable to
initially attempt to compute cr(Kn). Various constructions of drawings of Kn are known to yield
a small number of crossings. One such construction is provided by Frank Harary and Anthony
Hill in [HH63] for n = 8, which results in a cylindrical drawing of Kn. Additionally, Jaroslav
Blazek and Milan Koman [BK64] devised a construction for each n that achieves the following
upper bound:

cr(Kn) ≤
1

4
·
⌊n
2

⌋
·
⌊
n− 1

2

⌋
·
⌊
n− 2

2

⌋
·
⌊
n− 3

2

⌋
(2.2)

Frank Harary and Anthony Hill [HH63] approached the task of determining cr(Kn) as a novel
problem. They also proposed the conjecture that cr(Kn) exactly matches the right-hand side of
inequality 2.2, which is expressed in the following conjecture:

15

Figure 2.1: Zarankiewicz’s draw of K8,7.

Conjecture 2.0.2 (Harary and Hill). The exact value of the crossing number of the complete
graph with n vertices, Kn, is given by

1

4
·
⌊n
2

⌋
·
⌊
n− 1

2

⌋
·
⌊
n− 2

2

⌋
·
⌊
n− 3

2

⌋
(2.3)

Tracing the developments in the crossing number problem, Richard Guy [Guy72] demon-
strated that cr(K5) = 1 as an immediate consequence of Proposition 1.2.4, illustrated by a
drawing of K5 with a single crossing as depicted in Figure 2.2a.

In a clever manner, R. Guy [Guy72] presented a lower bound for cr(Km) involving cr(Kn) as
follows:

The complete graph Km contains
(
m
n

)
subgraphs Kn. Each crossing occurs due to the selection

of four vertices, and therefore, it appears in
(
m−4
n−4

)
such subgraphs Kn. Hence,

cr(Km) ≥
(
m
n

)
· cr(Kn)(
m−4
n−4

) . (2.4)

Let us consider the case where m = n+ 1.
When n is an odd number, the crossing number conjecture (2.3) simplifies to the formula:

1

4

(
n− 1

2

)2

·
(
n− 3

2

)2

. (2.5)

If we assume the conjecture 2.0.2 true when n is an odd number; and by applying the factor
(n+ 1)/(n− 3) corresponding to the binomial coefficients in 2.4, expression 2.5 leads to

cr(Kn+1) ≥
1

64
· (n+ 1)(n− 1)2(n− 3) >

1

64
n(n− 2)2(n− 4)

which matches with 2.3 for n even. Therefore, if the Harary-Hill conjecture is true for n odd,
then it is true for n+ 1.

16 CHAPTER 2. THE CROSSING NUMBER

(a) Optimal drawing of K5. (b) Optimal drawing of K6.

Figure 2.2: Optimal drawings of the complete graph for n = 5, 6.

Thus, the Harary-Hill conjecture is true for n = 6 vertices since it is true for n = 5. Figure 2.2b
shows an optimal drawing for six vertices with three crossings.

Given that
(
m
n

)
·
(
n
4

)
=

(
m−4
n−4

)
·
(
m
4

)
, inequality 2.4 demonstrates that the ratio cr(Kn)/

(
n
4

)
forms an increasing sequence bounded by 1. This is because each crossing results from the
selection of 4 vertices, a condition satisfied by cr(Kn).

Therefore, the limit

lim
n→∞

cr(Kn)(
n
4

) (2.6)

exists and is known as the rectilinear crossing number constant and will be denoted as q∗.
Richard Guy, in his work [Guy72], determined the crossing numbers cr(Kn) for n ranging

from 6 to 10 by introducing the concept of a vertex’s "responsibility," defined as the total
number of crossings on all arcs incident with that vertex. Using this concept, he derived optimal
drawings of K7 from the optimal drawing of K6 (see Figure 2.2b), demonstrating that there is
only one optimal drawing of K7 up to isomorphism. Applying this strategy, he obtained three
non-isomorphic optimal drawings of K8. However, R. Guy soon realized that his method was
inadequate for larger values of n. Additionally, he proved that cr(Kn) = cr(Kn) for n ≤ 7 and
n = 9. Nevertheless, this pattern did not hold for K8. None of the convex hulls of the three
optimal drawings of K8 were triangles, as stated in Theorem 2.0.3. Thus, cr(K8) > 18, indicating
that K8 is a graph for which cr(K8) ̸= cr(K8).

Theorem 2.0.3. The convex hull of an optimal and rectilinear drawing of Kn is a triangle.

Proof of Theorem 2.0.3 is complicated yet it has been elucidated by Oswin Aichholzer et al.
in [Aic+07].

2.1 Crossing number complexity
In this section, we consider the decision problem related to the crossing number of a simple graph
G: given an integer k, is cr(G) ≤ k? We refer to this problem as CROSSING NUMBER (CN).
The related problem (concerned with this work) would be to consider the decision problem: given
an integer k, is cr(G) ≤ k?. This is the RECTILINEAR CROSSING NUMBER (RCN).

Firstly, in order to establish that CN belongs to the class of NP problems, we must be able
to describe a certificate (a drawing of the graph) of the problem in polynomial size. This can
be achieved using a concept known as rotational systems. Given a graph G drawn in the plane,
a rotational system is a list π = (πv)v∈V , where πv describes the cyclic ordering of the edges
incident with the vertex v. However, this approach does not apply to RCN, as a rectilinear
drawing of G would require an exponential number of bits to describe [GPS89].

2.1. CROSSING NUMBER COMPLEXITY 17

OP − LIN −ARR

BIP − CN

CN

Figure 2.3: Diagram reduction for NP-completness proof.

We proceed with the NP-hardness proof of Michael Garey and David Johnson [GJ83] for the
crossing number decision problem. The proof is facilitated by two reductions from two decision
problems, as illustrated in diagram 2.3. The reduction problems are:

1. OPTIMAL LINEAR ARRANGEMENT (OP-LIN-ARR): Given a graph G = (V,E)
and an integer k, is there a one-to-one function f : V → {1, 2, . . . , |V |} such that∑

(u,v)∈E

|f(u)− f(v)| ≤ k?

2. BIPARTITE CROSSING NUMBER (BIP-CN): Given a connected bipartite multi-
graph G = (V1, V2, E) and an integer k, can G be embedded in a unit square so that all
vertices of V1 are on the northern boundary, all vertices in V2 are on the southern boundary,
all edges are within the square and there are at most k crossings?

OP-LIN-ARR has been proved to be NP-hard [Coh+06], hence, Lemma 2.1.1 demonstrates
that BIP-CN is NP-hard.

Lemma 2.1.1. OP-LIN-ARR reduces in polynomial time to BIP-CN.

Proof. Let {G = (V,E), k} be an instance of OP-LIN-ARR. Suppose that G is connected and
let V = {v1, . . . , vn}. We construct an instance {G′, k′} for BIP-CN in the following manner.
Create a duplicate vertex v′i for each vi ∈ V , and join each vi with the corresponding v′i. Also,
connect the vertex vi with the vertex v′j if i < j and (vi, vj) is an edge of G. Set

k′ := |E|2(k − |E|) + (|E|2 − 1).

It is clear that G′ is bipartite with bipartitions V and V ′ = {v′i | vi ∈ V } and is connected
provided that G is connected. The construction of G′ is in polynomial time. Let us proceed
to proof that {G, k} is satisfied if and only if {G′, k′} is satisfied. Suppose {G′, k′} is satisfied
by a one-to-one function f . Place the vertices vi ∈ V the top edge of the unite square [0, 1]2

and uniformly spaced. That is, place vi at (f(vi)/n, 1). Place the vertex v′i in a similar fashion
at the bottom edge. See Figure 2.4. Each edge (vi, v

′
j) will contribute (|f(vi)− f(vj)| − 1) |E|2

crossings. Thus, the number of crossings will be at most∑
(u,v)∈E

(|f(vi)− f(vj)| − 1) |E|2 ≤ (k − |E|)|E|2 < k′.

Now assume that G′ can be embedded into the unit square [0, 1]2. From left to right, this em-
bedding defines two one-to-one functions f, f ′ : V → {1, 2, . . . , |V |} determined by the orderings

18 CHAPTER 2. THE CROSSING NUMBER

Figure 2.4: Embedding of G onto the unit square.

of V and V ′ respectively. We claim that f = f ′. If f(vi) < f ′(vi) for some vertex vi, by the pi-
genhole principle, there exists at least one vertex vj such that f(vj) > f(vi) and f ′(vi) > f ′(vj).
Therefore, there is at least one crossing of (vi, v′i) with (vj , v

′
j). The same argument works for all

|E|2 edges (vi, v
′
i). Hence, at least |E|4 crossings occur in the embedding which contradicts the

hypothesis. So, the embedding resambles Figure 2.4. Thus, every edge (vi, v
′
j) contributes with

no less than (|f(vi)− f(vj)| − 1) · |E|2 crossings. Therefore∑
(vi,vj)∈E

(|f(vi)− f(vj)| − 1) · |E|2 ≤ k′ < |E|2(k − |E|).

Lemma 2.1.2. BIP-CN reduces in polynomial time to CN

Proof. The authors [GJ83] present a proof for another version of CN, specifically focusing on the
crossing number of multigraphs. As part of their proof, they introduce a method involving the
addition of a vertex of degree two at the midpoint of each multiedge.

Let G = (V1, V2, E) represent an instance of BIP-CN. We construct a multigraph G′ =
(V ′, E ∪ E1 ∪ E2 ∪ E3) as follows.

V ′ = V1 ∪ V2 ∪ {u,w}.
E1 = {3k + 1 copies of the edge (u, u′) | u′ ∈ V1}.
E2 = {3k + 1 copies of the edge (w,w′) | w′ ∈ V2}.
E3 = {3k + 1 copies of the edge (u,w)}.

(2.7)

If G can be embedded into the unit square with no more than k crossings, the desired drawing
of G′ can be achieved by placing u and w at the points (1/2, 2) and (1/2,−1) respectively, and
joining the edges of E3 outside the unit square. This will result in no more than k crossings.

Now, suppose that a drawing of G′ exists with fewer than k crossings. The objective is to
transform this drawing into one that resembles the structure defined by 2.7. We can assume that
each pair of edges crosses at most once. We can always draw edges in a proper manner to avoid
multiple crossings. Thus, each set of 3k + 1 multiedges defines 3k bounded regions. The edges
in E1 create a series of bounded regions and one region that is unbounded. If w is inside one of
the bounded regions, transform the edges that define the bounded area to remove w from the
bounded region. Consequently, every vertex of V2 is in the interior of the unbounded region as
well. This is because every vertex w′ is incident to w, 3k + 1 times, and so, if w′ belongs to a
bounded area, it will contribute at least 3k + 1 crossings. Let us consider two observations:

2.2. ON THE DRAWINGS WITH SMALL CROSSING NUMBER 19

1. There are 3k bounded areas defined by the 3k+1 copies of the edge (u′, u). In the middle
k regions, there cannot be a vertex u′′ ∈ V1.

Indeed, since G is connected, if u′′ were in one of the middle k regions, it would have an edge
connecting it to a vertex in V2, and this edge would necessarily have at least k + 1 crossings.

2. There cannot be an edge crossing any of the k middle regions because doing so would result
in an increase in the number of crossings by more than k. This is because, based on the
first observation, the endpoints of such an edge must lie in the first or last k regions.

We achieve the desired embedding with the exception of the original edges in E and the
3k+1 edges between u and w. There are 3k bounded regions delimited by the 3k+1 multiedges
between u and w. We will prove that all vertices of V1 and V2, besides all the edges of E, lie
in the same bounded region. Let R0 denote the unbounded region of the multiedges between u
and w, and let Rj , j = 1, . . . , 3k, denote the other 3k bounded regions. For each j ∈ {1, . . . , 3k},
if a is a vertex contained in the region Rj , then there is no vertex b in any of the regions
Rj+k+1 mod 3k+1, . . . , Rj+2k mod 3k+1. This is because if such a vertex b existed, there would
be a path joining a with b (since G′ is connected), and this path would cross at least k + 1
edges of those (u,w). Similarly, there cannot be edges going through any of the k regions
Rj , Rj+k+1 mod 3k+1, . . . , Rj+2k mod 3k+1. Therefore, every edge (u,w) can be moved in a single
empty area without increasing the number of crossings. This transformation of the 3k+1 edges
(u, v) leaves all of V1, V2 and E into a single ubounded area. Finally all G can be sent into a
single bounded region.

Corollary 2.1.3. CN is NP-hard.

We conclude this section with M. Garey and D. Johnson’s [GJ83] quote .

"Future research into crossing numbers will be justified in focusing on inexact methods
that only estimate crossing numbers, and the quest for exact values of cr(G) will have
to be restricted to promising special cases."

2.2 On the drawings with small crossing number
The rectilinear crossing number constant, denoted by q∗ (see 2.6), quantifies the rectilinear
crossing number of the complete graph Kn as a factor of

(
n
4

)
. It provides valuable insight into

identifying drawings with minimal crossing numbers. Several approaches aimed at reducing
upper bounds on the crossing number emerged in the years following the initial publications on
the topic. However, the rectilinear crossing number cr(Kn) was approached as a new problem
by F. Harary and A. Hill [HH63]. The hope that cr(Kn) and cr(Kn) coincide was shattered
by R. Guy, who proved that this does not hold for n = 8. Subsequently, efforts were made to
derive improved upper bounds for cr(Kn). H. Jensen [Jen71] presented a general construction
achieving q∗ < 0.3888, while around the same time, D. Singer [Sin71] claimed q∗ < 0.38462.
Since then, further improvements have been achieved. Bernardo Abrego and Silvia Fernández-
Merchant presented a construction with a smaller crossing number, establishing an upper bound
of q∗ < 0.380559 [ÁF07].

2.2.1 Heuristics
In the following, we outline some heuristics presented in [Aic+20] that have been employed to
enhance the rectilinear crossing number. Recently, Fabila and López in [FL14] introduced an

20 CHAPTER 2. THE CROSSING NUMBER

O(n2) time algorithm to compute cr(S), where S is a set of n points in the plane in general
position. This algorithm has led to significant improvements in the best-known crossing number
records for n ≤ 100. The heuristic presented by Fabila and López is as follows.

1. Take randomly a point p ∈ S.

2. Select randomly a point q "near" p.

3. If cr(S \ {p} ∪ q) improves cr(S), update S := S \ {p} ∪ q.

4. Go to step 1.

To select the point q to replace p, they generate two natural numbers (t, r) with an exponential
distribution with a pre-specified mean and round it to the nearest integer. Then, q is set as
p + (t, r). If no improvement is found, the mean in the exponential distribution is halved.
The selection of q can be enhanced in the following way: consider A , the line arrangement
spanned by the lines passing through two points of S \ {p}. Compute the cell C of A that
contains p and produce a sequence of consecutive cells C,C2, . . . , Cm. Then, pick a point qi
from each Ci as a possible replacement candidate for p. The advantage of this approach is that
cr(S \ {p} ∪ qi) can be computed more quickly because the points qi belong to adjacent cells.
Hidalgo implemented an O(n2 log n) time algorithm in his Master’s thesis [Hid15] to compute
C. The following heuristic builds upon the observation that drawings of Km with few crossings
frequently include drawings of Kn with similarly few crossings for n < m. By refining the
drawings of Km using the aforementioned heuristics, it becomes possible to derive drawings of
Kn with reduced crossings. One significant advantage of this strategy is that it allows exploration
across the

(
m
n

)
subsets of n points within a set of m points, potentially leading to improvements in

crossing numbers across this spectrum. In [DF17], Duque and Fabila demonstrate that computing
the set {cr(S \{p}) | p ∈ S} can be achieved in O(n2) time. Similarly, they show that computing
the set {cr(S ∪ {q}) | q ∈ S} can also be done in O(n2) running time. Leveraging these results,
the process of removing the point p to minimize cr(S \ {p}) can be executed in polynomial time,
along with finding an optimal drawing of Km−1.

To conclude this chapter, we showcase the predominant pattern observed in optimal drawings
resulting from the application of the aforementioned heuristics. Refer to Figures 2.5, 2.6, 2.7, and
2.8. This recurring pattern serves as the primary motivation for considering machine learning
techniques, aiming to explore and gain a deeper understanding of these patterns. As established
by Theorem 2.0.3, if a drawing of a graph is optimal, it is necessary that its convex hull defines
a triangle. The heuristics presented earlier yield the following best-known rectilinear drawings
of Kn. Noticeably, all the best-known rectilinear drawings of Kn consist of three "arms".

2.2. ON THE DRAWINGS WITH SMALL CROSSING NUMBER 21

Figure 2.5: Best known drawing of K50

Figure 2.6: Best known drawing drawing of K75

22 CHAPTER 2. THE CROSSING NUMBER

Figure 2.7: Best known drawing drawing of K100

Figure 2.8: Best known drawing drawing of K1000

Chapter 3

Clustering optimal drawings

Cluster analysis is the process of categorizing a dataset into groups, or clusters, based on the de-
gree of similarity among its elements. The notion of "similarity" is context-dependent and varies
depending on the problem under consideration. Consequently, there is no universally agreed-upon
definition of clustering, and different clustering algorithms are tailored to suit specific research
domains. However, a widely accepted and intuitive concept is outlined in [DY15]:

1. The instances must be as similar as possible.

2. Different clusters must contain elements as different as possible.

3. The measure taken into account to perform the cluster analysis must have a practical
meaning on the particular problem that is being studied.

The third point outlined above is known as "dissimilarity," denoted by δ, and forms the
central concept of cluster analysis as it encapsulates the relationships within the dataset. Xu
Dongkuan and Tian Yingjie provide a comprehensive overview of both traditional and modern
clustering algorithms in their chapter on clustering [DY15].

3.1 k-means clustering

Our discussion largely aligns with the treatment provided by Thomas H. Cormen et al. in their
work on clustering, as presented in [Cor+22]. The initial step involves formally defining what
constitutes a cluster.

Definition 3.1.1 (k−means clustering). A k-clustering of a finite set S ⊂ Rd is defined as a
sequence of k subsets S1, . . . , Sk satisfying the condition:

S = S1 ⊔ S2 ⊔ · · · ⊔ Sk

where ⊔ denotes disjoint union.

A k-clustering is constructed using a sequence of centroids (or centers) c1, . . . ,ck such that
cℓ ∈ Sℓ and every point of Sℓ is closer (via δ) to the centroid cℓ than to any other center ci.
This means:

x ∈ Sℓ if and only if δ(x,cℓ) = min
1≤i≤k

δ(x,ci) (3.1)

23

24 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

A tie may comes up but it will be broken arbitrarily. In essence, the algorithm iteratively
updates centroids, gradually improving their positions until a convergence criterion is met. This
emphasis on clustering leads to the k-means problem: given a finite set S and an integer k, the
goal is to find a sequence of k centers c1, . . . ,ck that minimizes the following expression:∑

x∈S

min
1≤i≤k

δ(x,ci). (3.2)

Initially, the centers c1, . . . ,ck are permitted to be any points in the space and need not
necessarily belong to S. However, in our approach, we will stipulate that the centers must
belong to S in order to compute our combinatorial premetric. The utilization of centers not
belonging to the underlying set is predominantly considered in Euclidean clustering, where the
distance is typically measured using the Euclidean distance metric. When the centers are fixed,
one can construct the cluster Sℓ using the points that satisfy

δ(x, cℓ) = min
1≤i≤k

δ(x,ci)

and hence, equation (3.2) can be expressed as

k∑
ℓ=1

∑
x∈Sℓ

δ(x,cℓ).

Thus, to compute centroids in the subset Sℓ, our criterion will be the point cℓ ∈ Sℓ that minimizes∑
x∈Sℓ

δ(x,cℓ). (3.3)

The k-means problem gives rise to a natural decision problem: Given R > 0 and S ⊂ Rd, is
there a set of k centers c1, . . . ,ck such that∑

x∈S

min
1≤i≤k

δ(x,ci) ≤ R?

When δ is taken as the square of the Euclidean distance, Meena Mahajan et al. in [MNV12]
prove the NP-hardness of the k-means problem, making it NP-complete. Their proof focuses
on a reduction from PLANAR-3SAT. Within this research, we opt for a traditional clustering
algorithm: Lloyd’s algorithm.

3.2 Order type clustering
We present a randomized version of Lloyd’s algorithm as described in [Cor+22]. As mentioned
earlier, Lloyd’s procedure is iterative.

Input. A set S of vectors in R2 and the number k of desired clusters.
Output. A sequence of clusters S1, . . . , Sk along with their corresponding k centers c1, . . . ,ck.
Procedure

1. (Initialize centers) Choose k different centers c1, . . . ,ck at random and independently
from S.

2. (Points Assignment) For each point x ∈ S, compute the nearest center cℓ and assign x

to cluster Sℓ. This step creates the clusters based on the nearest center.

3.3. IMPLEMENTATION 25

3. If the assignment of elements to their clusters remains unchanged in Step 2, the algorithm
terminates and returns the clusters S1, . . . , Sk along with their respective centers c1, . . . ,ck.

4. (Compute centers) After assignment, compute the center of Sℓ and then return to step
2.

By the convergence criteria, Lloyd’s procedure always terminates, as each iteration (except
for the last one) decreases the value of

µ :=

k∑
ℓ=1

∑
x∈Sℓ

δ(x,cℓ).

and there are only O(kn) choices of k clusters. Therefore, there comes a point where µ will no
longer decrease, prompting the algorithm to terminate. Lloyd’s algorithm exemplifies a common
approach in machine learning techniques:

First, define a sequence of parameters τ and associate it with some hypothesis Hτ . Second,
consider a value µ(E, τ) that measures how poorly the hypothesis Hτ fits to some training data
E. Finally, apply an optimization procedure to find τ∗ that minimizes (locally) µ(E, τ). In the
k-means problem (in the plane), our parameters consist of the selection of k centers. Thus, τ is a
vector of dimension 2k, Hτ represents the hypothesis that x is grouped with the cluster having
its nearest center, and µ(E, τ) is represented by our value µ (refer to Equation 3.6).

In this work, we consider a variant of Lloyd’s algorithm where the Euclidean distance is
replaced by our combinatorial δ-premetric defined in Definition 1.4.3. Roughly speaking, when
applying Lloyd’s algorithm, the expectation is to find groups where points within the same group
are more similar to each other than to points in different groups. If similarity is measured in a
combinatorial manner, clusters with combinatorially similar points could be obtained. This is
referred to as order type clustering. As mentioned, Lloyd’s algorithm is guaranteed to terminate
after a finite number of iterations since there are only up to kn possible cluster configurations.
However, an algorithm with exponential running time is not practical. Therefore, in practice
and throughout this investigation, we will terminate the procedure after a certain number of
iterations. Since Lloyd’s algorithm finds only locally optimal clustering, a near-optimal solution
will suffice for our purposes. It is worth noting that a brute force computation of δ yields with
an O(n4) running time algorithm; however, we will improve upon this later.

3.3 Implementation
To start, our input consists of a set S of points in the plane in general position and a desired
number k of clusters. We begin by computing our δ-premetric. A brute-force approach involves
exploring every pair of points {u,v} and determining if the line passing through u and v will cross
the line segment defined by each pair of points {p,q}. This procedure has a time complexity of
O(n4) to compute all distances. However, let us analyze the δ-distance between the points p and
q. First, we illustrate in Theorem 3.3.1 how to extract those points r that form one pair (r,x)
contributing to the δ-distance for a fixed point x ∈ S. We recall that the symmetric point of a
point y with respect to a point x is the antipodal point of the circle with center x and radius
∥ y − x ∥. Actually, the symmetric point of y with respect to x can be computed as

2x− y.

Theorem 3.3.1. Let S be a finite set of points in general position in R2, and consider the points
p,q,x ∈ S. Let ℓpx and ℓqx be the lines passing through p and x, and q and x respectively.

26 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

x

p

q

c

b

a

y

e

f

Figure 3.1: Way to count the contribution of x to δ(p,q).

Consider the cell A that contains the segment of line with endpoints p and q, and let B be
the symmetric points of A with respect to x. Then, the point x contributes

|S ∩ A |+ |S ∩ B| (3.4)

to δ(p,q).

Figure 3.1 provides a visual representation of Theorem 3.3.1.

Proof. At each point y ∈ A , the line ℓyx is guaranteed to intersect the line segment defined
by points p and q. Let y ∈ A . For our purposes, let us assume that the convex hull of the
points p,q,x,y forms a quadrilateral with vertices p,q,x,y. In this case, one diagonal of
the quadrilateral coincides with the line segment between p and q, while the other diagonal
corresponds to the line segment defined by ℓyx. These two diagonals intersect at one point. If
the convex hull is not a quadrilateral but a triangle, then replacing y with any point on ℓyx will
form the quadrilateral, ensuring the existence of the crossing. Since a point z ∈ B corresponds
to its symmetric point y in A and they both lie on the common line ℓzx, a crossing is guaranteed.
Therefore, for a point r ∈ (S ∩ A) ∪ (S ∩ B), the pair (r,x) contributes to δ(p,q).

Theorem 3.3.1 outlines a procedure for computing δ(p,q). We need to identify the points
within regions A and B. To accomplish this, our primary tool will be polar sorting. Polar
sorting involves sorting a set of points in the plane based on their angles relative to a given point
as the center. We recall that sorting can be performed in O(n log n) time complexity.

Theorem 3.3.2. Let S be a finite set of points in general position in R2. Let p and q denote
two arbitrary points in S.

3.3. IMPLEMENTATION 27

For each point x ∈ S, define the set

Sx := S ∪ {symmetric points of S \ {x} with respect to x}.

Consider the polar sorting array X of Sx with x as the center. Let τ denote the orientation
of the three points x,p,q (in that order). Finally, let i and j represent the indices where p and
q are located in X, respectively. Consider αx to be one of the following values.

1. If τ represents a left turn and i < j, then αx equals the number of points between p and
q in the array X.

2. If τ is a left and i > j, α equals to the number of points after p and before q in the array
X.

3. If τ is a right and j < i, α equals to the number of points between q and p in the array
X.

4. If τ is a right and j > i, α equals to the number of points after q and before p in the array
X.

Iterating step 1 to 4 over all points x ∈ S, then

δ(p,q) =
∑
x∈S

⌊αx

2

⌋
. (3.5)

Proof. Let S,p,q,x,X and Sx, be as defined in the theorem. We first note that points 3 and
4 are symmetric to points 1 and 2 because a right turn τ in the sequence x,p,q corresponds to
a left turn in the sequence x,q,p. Therefore, we only need to demonstrate the relationship for
points 1 and 2. Hence, τ represents a left turn (counterclockwise). Let i, j be the indexes where
p and q are placed in X respectively. Firstly, consider the case where i < j. This situation
resembles Figure 3.2. In Figure 3.2, the red points represent the symmetric points with respect
to x. When sorting, points with angles greater than p will appear after index i in the array
X , and points with angles smaller than q will appear before index j in X . Consequently, the
points of S within the defined region A (as described in Theorem 3.3.1) are accounted for. The
process of taking symmetric points involves flipping the angle by 180°. Therefore, points from
B ∩ S (the region B defined in Theorem 3.3.1) will appear in the region A between indices i
and j, as stated earlier. Thus, we have counted all the points that contribute to δ(p,q) with
respect to x.

Point 3 can be considered the "symmetric" of point 1, and therefore, it follows the same
proof. Hence, we can accept that point 3 is true as well. Let’s prove point 2. Since point 4 is the
"symmetric" counterpart of point 2, the theorem will be proved after demonstrating point 2.

If j < i, then every point occurring after p and before q belongs to B ∩ S, and those
belonging to A ∩S are accounted for by their symmetric points in B. However, we are counting
twice because when we repeat the last process with another point, for example, with point a as
the center, we will once again count the pair (a,x). Thus, we must take ⌊αx/2⌋.

3.3.1 Algorithms
Theorem 3.3.2 presents an algorithm that can be implemented in any programming language.
However, to execute this algorithm, we require a subroutine to compute the sorted array X . For

28 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

q

p

x

a

a

b

b

Figure 3.2: Point 1 of Theorem 3.3.2

this purpose, we will assume the existence of a procedure SORT-AROUND-BY that operates
in O(n log n) time complexity to sort the points based on their angles around a given center point
x. Procedure 1 takes as input the set of n points S and returns n lists of points, each sorted
(with the symmetric points included) with respect to a specific point x as the center. In lines 3
and 4, empty sets are initialized to store the sorted points in Ax, and B stores the symmetric
points with respect to x.

Algorithm 1: SORT-POINTS
Data: S
Result: List of ordered lists

1 Initialize A = ∅;
2 for x ∈ S do
3 Initialize Ax = ∅;
4 Initialize B = ∅;
5 for p ∈ S \ {x} do
6 B = B ∪ {2x−p};
7 Ax = Ax ∪ B;
8 Ax =SORT-AROUND-BY(Ax);
9 A = A ∪ Ax;

10 return A ;

An asymptotic analysis on the running time of Algorithm 1 is as follows. The running time of
line 8 depends on the input of SORT-AROUND-BY. In this case, Ax is a set of 2n−1 = O(n)
points. Therefore, line 8 is O(n log n). The For loop from line 5 to 6 has a time complexity of
O(n) since the calculation of 2x−p is performed in O(n). Any other line within the For loop
from line 2 to line 9 will not have a time complexity greater than O(n log n). Thus, for each point

3.3. IMPLEMENTATION 29

x in S, the For loop will have a time complexity of O(n log n). Overall, the SORT-POINTS
algorithm has a time complexity of O(n2 log n). Using the SORT-POINTS procedure, we can
compute δ(p,q) for points p and q. The input of Algorithm DELTA (Algorithm 2) includes
the set of points S, two points p and q1, and A , which refers to the returned set of SORT-
POINTS. We assume that the calculation of A has been done as part of the preprocessing
when computing δ(p,q). The return value of Algorithm DELTA is the value of δ(p,q).

Algorithm 2: DELTA
Data: (S,p,q,A)
Result: δ(p,q)

1 Initialize δ = 0.;
2 for x ∈ S \ {p,q} do
3 Set M = Ax;
4 Find the indexes i, j corresponding to p and q in Ax respectively;
5 Compute the turn τ of the points (x,p,q) (in that order);
6 if τ is a turn to the left then
7 if i < j then
8 δ = δ + (j − i− 1);

9 else
10 δ = δ + (j − 1) + (n− i);

11 if τ is a turn to the right then
12 if i > j then
13 δ = δ + (i− j − 1);

14 else
15 δ = δ + (i− 1) + (n− j);

16 return ⌈δ/2⌉;

As mentioned previously, δ takes A as input to avoid multiple calculations of the same value
A and to allow access to it in constant time. At line 3 of Algorithm 2, we assume that Ax can
be accessed in O(1) time. This can be achieved in various programming languages. For instance,
in Python, which is the programming language we used, A may be represented by a dictionary
with x as the key, allowing constant time access to the value associated with the key x. For
line 4, several methods to find elements in an array are known. The most common method runs
in linear time with respect to the size of the array. However, we can take advantage of the fact
that A x is sorted. Therefore, we can find i and j in O(log n) time, as presented in Algorithm 3.
The remaining part of the For loop runs in O(1) time. It is important to note that the value
of (j − i− 1), for example, in line 8, corresponds to the number of elements between i and j in
A x. Thus, each iteration of the For loop takes O(log n) time. Finally, Algorithm 2 computes
δ(p,q) in O(n log n). Therefore, to compute all δ(p,q) will be O(n3 log n). This is much better
than O(n4) time with the force brute approach. To perform a binary search to find an element
p in a sorted array A , our decision on whether to move to the left or to the right will be based
on our geometric primitive: the orientation.

Algorithm 3 takes as input a sorted array A of length n containing a point p that we want
to find. The output is the index where p is located in A . We denote by A [k] the element of A
at position k. We omit the time analysis since it follows the classic binary search algorithm.

1We may assume that the given points belong to S. Otherwise, we return a distance of 0.

30 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

Algorithm 3: BINARY-POLAR-SEARCH
Data: (A,p)
Result: The index where p is placed

1 Set n = |A |;
2 Set L = 0; // L for left
3 Set R = n− 1; // R for right
4

5 while L ≤ R do
6 Set M =

⌊
L+R
2

⌋
; // M for middle

7 if A [M] = p then
8 return M ;

9 else
10 Compute the turn τ of the points (A[0],p,A[M]) (in that order);
11 if τ is a turn to the right then
12 R = M − 1; // p is placed before the middle

13 else
14 L = M + 1; // p is placed after the middle

Recall that Lloyd’s procedure assigns points of S to their nearest center and then recomputes
the center of Sℓ, repeating this process until there is no improvement in the value.

µ :=

k∑
ℓ=1

∑
x∈Sℓ

δ(x,cℓ). (3.6)

How to select centers in order to improve µ?

Algorithm 4: CENTROID
Data: (Sℓ)
Result: Centroid of S based on δ

1 Set A =SORT-POINTS(Sℓ); // Order the points with respect to the cluster
2 Set minDist = ∞;
3 Set c =NULL; // To store the centers at the variable c.
4 for x ∈ Sℓ do
5 Set distX = 0;
6 for p ∈ Sℓ do
7 Set d =DELTA(Sℓ,p,x,A);
8 distX = distX + d;

9 if distX < minDist then
10 minDist = distX;
11 c = x; // We assign x as the new center and store it to c.

12 return c

3.3. IMPLEMENTATION 31

Naturally, if we minimize the expression∑
x∈Sℓ

δ(x,cℓ) (3.7)

we aim to achieve a small value of µ. Therefore, the centroid rule to compute centroids in a
cluster Sℓ will be the point c that minimizes∑

x∈Sℓ

δ(x,c).

In a classic clustering algorithm where Euclidean distance is used, the centroid acts as the
center of mass of the cluster Sℓ, and it is equivalent to the arithmetic mean. However, the
disadvantage of using this point as our centroid is that it may not belong to Sℓ, which poses
a computational issue because our δ-premetric is defined on the global set S. In light of this,
we consider equation (3.7) as a combinatorial way to compute centroids2. Algorithm 4, CEN-
TROID, takes as input the cluster Sℓ and returns the centroid c computed based on equation
(3.7). Line 1 has a time complexity of O(m logm), where m is the size of the cluster Sℓ. If
we assume that m = Ω(n) (which is a reasonable assumption if the number of clusters is small
compared to n), then line 1 has a time complexity of O(n log n). The For loop from lines 4 to
10 has a time complexity of O(n3 log n) due to the time taken by DELTA and the two nested
loops. Thus, CENTROID takes O(n3 log n) time to compute the centroid c. We finally are
able to present our CLUSTER-ORDER-TYPE Algorithm.

Let us analyze Algorithm 5 CLUSTERING-ORDER-TYPE. At line 2, we assume the
existence of a method called RANDOM to randomly select k different points from S. This
assumption is reasonable since most programming languages provide libraries for pseudo-random
number generation. The While loop at line 4 continues until the condition C = UC at line
19 is satisfied. This condition indicates that no improvement in the centroid has been found,
prompting the procedure to terminate. Otherwise, we update C with the new centers computed
at line 17. The calculation of centroids is perhaps the most time-consuming step, as the For
loop at line 16 has a time complexity of O(kn3 log n), assuming that centroids may have a size
of Ω(n). Finally, the For loop where the assignment of points to clusters is performed takes a
time of O(kn2 log n) because a calculation of DELTA is done k times in the For loop of line 9.
The last analysis applies for each iteration f . Therefore, CLUSTERING-ORDER-TYPE is
an O(fkn3 log n) running time algorithm.

In practice (and in our implementation), we can limit the number of iterations to some
threshold. In our program, we allow f to iterate no more than 10 times. We observe that in
most cases, the procedure stops after around 7 iterations. At the beginning of this section, we
assumed the existence of a method SORT-AROUND-BY to sort by angle in O(n log n). In
fact, an algorithm has been implemented in a Python library created by Ruy Fabila and Carlos
Hidalgo [FH15]. This library, PyDCG (Python’s Discrete and Combinatorial Geometry Library),
is a collection of implementations of algorithms for Discrete and Combinatorial Geometry.

3.3.2 The code
The code is openly available in GitHub https://github.com/yeipi-mora/type-order-clustering

The main code is present in the clusterordtype.py file. The Algorithms 3, 4, 5, 2 and 1 are
implemented in this file. More methods are implemented to compute and store the statistics
related with the clusters. The dictionaries used to compare crossings were given by Dr. Ruy
Fabila-Monroy.

2This approach may also be applicable for general metrics.

https://github.com/yeipi-mora/type-order-clustering
https://github.com/yeipi-mora/type-order-clustering/blob/main/clusterordtype.py

32 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

Algorithm 5: CLUSTERING-ORDER-TYPE
Data: (S, k)
Result: k clusters of S

1 Set A =SORT-POINTS(S); // We sort S.
2 Set C =RANDOM(S, k); // Random election of k points of S.
3 Set f = 1; // Iterating variable. Will also provide the number of

iteration of the procedure.
4 while TRUE do
5 Set CL = {CL1, CL2, . . . , CLk}; // CL for store our k clusters in this

iteration.
6 for p ∈ S do
7 Set D = ∞; // Variable to store distances
8 i =NULL; // i for the index of the nearest nenter
9 for c ∈ C do

10 Set δ =DELTA(S,p,c,A);
11 if δ < D then
12 D = δ;
13 i =index of c;

14 CLi = CLi ∪ {p}; // We assign p to cluster i.

15 Set UC = ∅; // UC for Updated Centers.
16 for j = 1, . . . , k do
17 UC = UC ∪ {CENTROID(CLj)}; // We compute new centroids.

18 f = f + 1;
19 if C = UC then
20 return CL

21 else
22 C = UC; // We update the centers for next iteration.

3.4. RESULTS 33

3.4 Results

In this section, we present the results obtained from Algorithm 5, CLUSTERING-ORDER-
TYPE. Figures 2.5, 2.6, 2.7, and 2.8 reveal a common pattern characterized by three arms
joined to a central core. This observation leads us to conjecture that an optimal drawing of
Kn is formed by these four clusters of points: three arms and one central core. We anticipate
that each cluster optimizes the drawing for the number of points it contains. Therefore, our
initial approach involves clustering optimal drawings and organizing them into four clusters.
Figures 3.3, 3.4, 3.5, and 3.6 depict how optimal drawings are partitioned into four colors,
with each color representing a separate cluster. Contrary to our initial intuition, clustering
optimal drawings does not seem to result in the splitting of points into three arms and a central
core. Instead, it appears that some clusters may encompass a portion of the central core. This
observation is particularly evident in the clustering of K1000 (Figure 3.5), where two of the four
clusters incorporate part of the central core. Similarly, in the clustering of K75 (Figure 3.4), the
second cluster encloses the central core, albeit extending slightly beyond its boundaries. Yet, in
each of the clustering drawings, we observe that at least one arm is delineated as its own cluster.

Now, let us refrain from examining clusters solely based on intuition and instead focus on the
statistics they produce. We will use the notation CLi to represent the ratio between the number
of points in cluster i and the total number of points. That is, if we are clustering Kn, then

CLi =
Number of points in cluster i

n
.

Besides, CRi represents the ratio of the crossing number that results from our set of points
and the optimal crossing number that has been found. If cr∗(Kmi

) is our small rectilinear crossing
number that has been found so far, where mi is the number of points in cluster i, then

CRi =
Rectilinear crossings in cluster i

cr∗(Km)
.

The value CLi provides us with the measure of cluster i relative to the total number of
points. As we have conjectured, the clusters might divide the set of points into clusters of n/k
points. Therefore, we should expect clusters with CLi of approximately 25%. In Table 3.1, we
summarize the statistics for n ∈ {50, 75, 100, 200, 500, 1000}. We highlight in blue those values
where CLi is approximately 25%, corresponding to n/4, and in red those clusters where the
number of crossings is almost optimal, at least 80%. We observe that cluster 3 in K50 achieves
both n/4 number of points and a rectilinear crossing of approximately 96%, and the same is true
for cluster 1 in K75. These "good" clusters correspond to the "arms" in Figures 3.3 and 3.4.

Table 3.1: 4 clusters statistics

50 75 100 200 500 1000
CL1 0.34 0.253 0.23 0.145 0.188 0.115
CR1 0.875 0.874 0.673 0.941 0.717 0.889
CL2 0.26 0.267 0.34 0.2 0.143 0.218
CR2 0.688 0.61 0.873 0.653 0.73 0.674
CL3 0.28 0.28 0.14 0.165 0.646 0.333
CR3 0.964 0.733 0.973 0.849 0.585 0.881
CL4 0.12 0.2 0.29 0.49 0.12 0.334
CR4 0.333 0.826 0.849 0.639 0.55 0.885

34 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

Despite obtaining several "good" clusters in the 4-cluster approach, we performed the clus-
tering algorithm for k = 6 clusters. See Figures 3.7, 3.8, 3.9, and 3.10 to view the graphics of the
clusters. Table 3.2 presents the statistics CLi and CRi for the same values n ∈ {50, 75, 100, 1000}.
There are more clusters that satisfy being close to n/k points and have more than 80% of a small
crossing number. For instance, clusters 1, 3, and 5 in K1000 may be optimal in their number
of points and conform to our intuition of arms in optimal drawings. See Figure 3.10. When
clustering optimal drawings into 6 clusters, it becomes much more evident that our notion of a
central core is not truly a central core, but rather decomposes into three "shoulders" connecting
to the arms.

Table 3.2: 6 clusters statistics

50 75 100 200 500 1000
CL1 0.2 0.29 0.2 0.14 0.146 0.144
CR1 0.456 0.846 0.554 0.923 0.941 0.949
CL2 0.18 0.07 0.12 0.21 0.192 0.192
CR2 0.529 0.529 0.75 0.644 0.613 0.62
CL3 0.18 0.12 0.133 0.115 0.19 0.142
CR3 0.947 0.781 0.925 0.888 0.616 0.94
CL4 0.08 0.23 0.227 0.195 0.19 0.195
CR4 1 0.629 0.66 0.592 0.61 0.615
CL5 0.08 0.13 0.2 0.195 0.142 0.141
CR5 1 0.592 0.558 0.598 0.942 0.898
CL6 0.28 0.16 0.12 0.145 0.14 0.19
CR6 0.964 0.846 0.75 0.934 0.934 0.622

3.4.1 A kind of recursion

As we stated, our goal is to understand how optimal drawings are constructed. From the statis-
tics, we can glimpse that there are sections of the optimal drawings that are close to being
optimal. However, since the coordinates of the points in optimal drawings are of a large scale,
any graphical representation will omit details within the clusters that could provide more insight
into how optimal drawings are built. To address this issue, we will perform a zoom into each
cluster to obtain a better visualization of each one. Let w be the average vector of cluster i.
That is, if we denote by x1, . . . ,xr the vectors belonging to cluster i, then

w =
1

r

r∑
j=1

xj .

Then, we expand the points x1, . . . ,xr in a perpendicular direction v of w by a factor of α.
Expanding means applying the linear transformation:

T (x) = w + α(x−w).

This transformation expands each point x away from the cluster center w by a factor of α.
Because affine transformations, and therefore linear transformations, do not modify the order
type, T simply expands our set of points {x1, . . . ,xr} by a factor of α. In other words, the
set T ({x1, . . . ,xr}) will have the same crossing number. Figure 3.14 shows the result after
applying T to clusters 1, 2, and 3 of the optimal drawing of K50 following a 4-clustering. All

3.4. RESULTS 35

Figure 3.3: 4 clustering of K50

Figure 3.4: 4 clustering of K75

36 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

Figure 3.5: 4 clustering of K100

Figure 3.6: 4 clustering of K1000

3.4. RESULTS 37

Figure 3.7: 6 clustering of K50

Figure 3.8: 6 clustering of K75

38 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

Figure 3.9: 6 clustering of K100

Figure 3.10: 6 clustering of K1000

3.4. RESULTS 39

Figure 3.11: 4 clustering: cluster 1 of K50 Figure 3.12: 4 clustering: cluster 2 of K50

Figure 3.13: 4 clustering: cluster 3 of K50

Figure 3.14: Expansion of clusters 1, 2 and 3 of optimal drawing of K50

three clusters satisfy Theorem 2.0.3, as the convex hull of each is a triangle. We also observe
a similar pattern to the original optimal drawing of K50: arms with shoulders connected by a
central core. Additionally, from Table 3.1, clusters 1 and 3 are both close to optimal in terms of
the crossing number, and cluster 3 also contains almost n/4 points.

We showcase some expansions to certain clusters of optimal drawings of Kn in Figures 3.14,
3.19, and 3.23. Figure 3.16 is remarkably similar to the original optimal drawing, even though
the crossing number of Cluster 2 is approximately 65% of the optimal crossing number. See
Table 3.2. Similarly, this occurs with the expansions in K500 with a 4-cluster approach, as
presented in Figure 3.23; the statistics of all clusters are far from being close to the optimal.

We can observe several clusters that preserve the same kind of pattern, which might indicate
a recursive construction of optimal drawings with few crossings. Moreover, the recursion seems
to be independent of the number of clusters performed, i.e., independent of k. Although the
recursion is not present in every cluster, we can conclude by presenting a comparison between
the performed clusters of K500 and K1000 in Figures 3.26 through 3.41.

40 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

Figure 3.15: 6 clustering: cluster 1 of K200 Figure 3.16: 6 clustering: cluster 2 of K200

Figure 3.17: 6 clustering: cluster 3 of K200 Figure 3.18: 6 clustering: cluster 5 of K200

Figure 3.19: Expansion of clusters 1, 2, 3 and 5 of optimal drawing of K200

3.4. RESULTS 41

Figure 3.20: 4 clustering: cluster 2 of K500 Figure 3.21: 4 clustering: cluster 3 of K500

Figure 3.22: 4 clustering: cluster 4 of K500

Figure 3.23: Expansion of clusters 1, 2 and 4 of optimal drawing of K500

42 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

Figure 3.24: 6 clustering: cluster 1 of K500 Figure 3.25: 6 clustering: cluster 1 of K1000

Figure 3.26: Comparison of the clusters 1 between K500 and K1000

Figure 3.27: 6 clustering: cluster 2 of K500
Figure 3.28: 6 clustering: cluster 5 of K1000

Figure 3.29: Comparison of the clusters 2 and 5 between K500 and K1000

Figure 3.30: 6 clustering: cluster 3 of K500
Figure 3.31: 6 clustering: cluster 3 of K1000

Figure 3.32: Comparison of the clusters 3 between K500 and K1000

3.4. RESULTS 43

Figure 3.33: 6 clustering: cluster 4 of K500 Figure 3.34: 6 clustering: cluster 4 of K1000

Figure 3.35: Comparison of the clusters 4 between K500 and K1000

Figure 3.36: 6 clustering: cluster 5 of K500 Figure 3.37: 6 clustering: cluster 2 of K1000

Figure 3.38: Comparison of the clusters 5 and 2 between K500 and K1000

Figure 3.39: 6 clustering: cluster 6 of K500
Figure 3.40: 6 clustering: cluster 6 of K1000

Figure 3.41: Comparison of the clusters 6 between K500 and K1000

44 CHAPTER 3. CLUSTERING OPTIMAL DRAWINGS

Bibliography

[Kur30] Casimir Kuratowski. “Sur le problème des courbes gauches en Topologie”. In: Funda-
menta Mathematicae 15 (1930), pp. 271–283. url: https://api.semanticscholar.
org/CorpusID:117944571.

[Zar55] Casimir Zarankiewicz. “On a problem of P. Turan concerning graphs”. In: Fundamenta
Mathematicae 41 (1955), pp. 137–145. url: https://api.semanticscholar.org/
CorpusID:118616841.

[HH63] Frank Harary and Anthony Hill. “On the Number of Crossings in a Complete Graph”.
In: Proceedings of the Edinburgh Mathematical Society 13 (1963), pp. 333–338.

[BK64] Jaroslav Blazek and Milan Koman. “A minimal problem concerning complete plane
graphs”. In: Theory of graphs and its applications, Czech. Acad. of Sci (1964), pp. 113–
117.

[Guy68] R.K. Guy. The Decline and Fall of Zarankiewicz’s Theorem. Research paper - Uni-
versity of Calgary, Department of Mathematics. University of Calgary, Department
of Mathematics, 1968.

[Jen71] H.F Jensen. “An upper bound for the rectilinear crossing number of the complete
graph”. In: Journal of Combinatorial Theory, Series B 10.3 (1971), pp. 212–216.
issn: 0095-8956. doi: https://doi.org/10.1016/0095-8956(71)90045-1. url:
https://www.sciencedirect.com/science/article/pii/0095895671900451.

[Sin71] David Singer. The rectilinear crossing number of certain graphs. 1971.

[Guy72] Richard K. Guy. “Crossing numbers of graphs”. In: (1972). Ed. by Y. Alavi, D. R.
Lick, and A. T. White, pp. 111–124.

[HT74] John Hopcroft and Robert Tarjan. “Efficient Planarity Testing”. In: J. ACM 21.4
(Oct. 1974), pp. 549–568. issn: 0004-5411. url: https : / / doi . org / 10 . 1145 /
321850.321852.

[Tur77] Paul Turán. “A note of welcome”. In: J. Graph Theory 1 (1977), pp. 7–9. url: https:
//api.semanticscholar.org/CorpusID:41065502.

[GJ83] M. R. Garey and David S. Johnson. “Crossing Number is NP-Complete”. In: Siam
Journal on Algebraic and Discrete Methods 4 (1983), pp. 312–316.

[GP83] Jacob E. Goodman and Richard Pollack. “Multidimensional Sorting”. In: SIAM Jour-
nal on Computing 12.3 (1983), pp. 484–507. doi: 10.1137/0212032. url: https:
//doi.org/10.1137/0212032.

[GPS89] Jacob E. Goodman, Richard Pollack, and Bernd Sturmfels. “Coordinate representa-
tion of order types requires exponential storage”. In: (1989).

45

https://api.semanticscholar.org/CorpusID:117944571
https://api.semanticscholar.org/CorpusID:117944571
https://api.semanticscholar.org/CorpusID:118616841
https://api.semanticscholar.org/CorpusID:118616841
https://doi.org/https://doi.org/10.1016/0095-8956(71)90045-1
https://www.sciencedirect.com/science/article/pii/0095895671900451
https://doi.org/10.1145/321850.321852
https://doi.org/10.1145/321850.321852
https://api.semanticscholar.org/CorpusID:41065502
https://api.semanticscholar.org/CorpusID:41065502
https://doi.org/10.1137/0212032
https://doi.org/10.1137/0212032
https://doi.org/10.1137/0212032

46 BIBLIOGRAPHY

[GT01] J.L. Gross and T.W. Tucker. Topological Graph Theory. Dover books on mathematics.
Dover Publications, 2001. isbn: 9780486417417.

[Coh+06] Johanne Cohen et al. “Optimal Linear Arrangement of Interval Graphs”. In: Mathe-
matical Foundations of Computer Science 2006. Ed. by Rastislav Královič and Paweł
Urzyczyn. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006.

[ÁF07] Bernardo M. Ábrego and Silvia Fernández-Merchant. “Geometric drawings of Kn
with few crossings”. In: Journal of Combinatorial Theory, Series A 114.2 (2007),
pp. 373–379. issn: 0097-3165. doi: https://doi.org/10.1016/j.jcta.2006.05.
003. url: https://www.sciencedirect.com/science/article/pii/S009731650600077X.

[Aic+07] Oswin Aichholzer et al. “New Lower Bounds for the Number of (≤ k)-Edges and the
Rectilinear Crossing Number of Kn”. In: Discrete & Computational Geometry 38.1
(July 2007), pp. 1–14. issn: 1432-0444. doi: 10.1007/s00454-007-1325-8. url:
https://doi.org/10.1007/s00454-007-1325-8.

[MNV12] Meena Mahajan, Prajakta Nimbhorkar, and Kasturi Varadarajan. “The planar k-
means problem is NP-hard”. In: Theoretical Computer Science 442 (2012). Special
Issue on the Workshop on Algorithms and Computation (WALCOM 2009), pp. 13–
21. issn: 0304-3975. doi: https://doi.org/10.1016/j.tcs.2010.05.034. url:
https://www.sciencedirect.com/science/article/pii/S0304397510003269.

[Mat13] J. Matousek. Lectures on Discrete Geometry. Graduate Texts in Mathematics. Springer
New York, 2013. isbn: 9781461300397.

[FL14] Ruy Fabila-Monroy and Jorge López. Computational search of small point sets with
small rectilinear crossing number. 2014. arXiv: 1403.1288 [math.CO].

[DY15] Xu Dongkuan and Tian Yingjie. “A comprehensive survey of clustering algorithms”.
In: Annals of Data Science 2 (2015), pp. 165–193. doi: https://doi.org/10.1007/
s40745-015-0040-1.

[FH15] Ruy Fabila-Monroy and Carlos Hidalgo. PyDCG. http://rfabila.github.io/
PyDCG/. 2015.

[Hid15] Carlos Hidalgo-Toscano. “Un algoritmo para recorrer las celdas de un arreglo de
rectas.” MA thesis. Departamento de Matemáticas, Cinvestav, 2015.

[Die17] R. Diestel. Graph Theory: 5th edition. Springer Graduate Texts in Mathematics.
Springer-Verlag, © Reinhard Diestel, 2017. isbn: 9783961340057.

[DF17] Frank Duque and Ruy Fabila-Monroy. Updating the Number of Crossings in Recti-
linear Drawings of the Complete Graph. 2017. arXiv: 1609.00867 [cs.CG].

[Aic+20] Oswin Aichholzer et al. An Ongoing Project to Improve the Rectilinear and the Pseu-
dolinear Crossing Constants. 2020. arXiv: 1907.07796 [math.CO].

[Xu+21] Yongjun Xu et al. “Artificial intelligence: A powerful paradigm for scientific research”.
In: The Innovation 2.4 (2021), p. 100179. issn: 2666-6758. doi: https://doi.org/
10.1016/j.xinn.2021.100179.

[Cor+22] T.H. Cormen et al. Introduction to Algorithms, fourth edition. MIT Press, 2022. isbn:
9780262367509.

https://doi.org/https://doi.org/10.1016/j.jcta.2006.05.003
https://doi.org/https://doi.org/10.1016/j.jcta.2006.05.003
https://www.sciencedirect.com/science/article/pii/S009731650600077X
https://doi.org/10.1007/s00454-007-1325-8
https://doi.org/10.1007/s00454-007-1325-8
https://doi.org/https://doi.org/10.1016/j.tcs.2010.05.034
https://www.sciencedirect.com/science/article/pii/S0304397510003269
https://arxiv.org/abs/1403.1288
https://doi.org/https://doi.org/10.1007/s40745-015-0040-1
https://doi.org/https://doi.org/10.1007/s40745-015-0040-1
http://rfabila.github.io/PyDCG/
http://rfabila.github.io/PyDCG/
https://arxiv.org/abs/1609.00867
https://arxiv.org/abs/1907.07796
https://doi.org/https://doi.org/10.1016/j.xinn.2021.100179
https://doi.org/https://doi.org/10.1016/j.xinn.2021.100179

	Introduction
	The fundamentals of Graph Theory
	Graph drawings
	Notions of Combinatorial Geometry
	Order types

	The crossing number
	Crossing number complexity
	On the drawings with small crossing number
	Heuristics

	Clustering optimal drawings
	k-means clustering
	Order type clustering
	Implementation
	Algorithms
	The code

	Results
	A kind of recursion

