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Mondié (2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Comments on the approach based on functional kernels approximation . . 31
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Stability tests for neutral-type delay systems: Piecewise linear
approximation of the functional argument approach 33

4.1 A piecewise linear approximation scheme . . . . . . . . . . . . . . . . . . . 33

iv



CONTENTS v

4.2 Estimate of the functional approximation error using a piecewise linear
approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.3 Stability criterion based on a piecewise linear approximation . . . . . . . . 39
4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Stability test for neutral-type delay systems: Legendre polynomial
approximation of the functional argument 41
5.1 Preliminaries on Legendre polynomials . . . . . . . . . . . . . . . . . . . . 41
5.2 A Legendre polynomial approximation scheme . . . . . . . . . . . . . . . . 42
5.3 Estimate of the functional approximation error using the Legendre

polynomial approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.4 Stability criterion based on the Legendre polynomials approximation . . . 47
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Stability test for neutral-type delay systems: A discretized Lyapunov
functional method 49
6.1 Functional kernels approximation: functional v0(φ) . . . . . . . . . . . . . 49
6.2 Estimate of the functional approximation error ΥN . . . . . . . . . . . . . 52
6.3 Stability criterion based on a discretized functional approach . . . . . . . . 54
6.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Recursive computation of integrals 56
7.1 Recursive computation of the integrals in piecewise linear approach . . . . 56
7.2 Recursive computation of the integrals in Legendre polynomials approach . 59

8 Illustrative examples 68

9 Conclusions and Future Work 74
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

A Auxiliary results 78

Bibliography 79
.



Notation

N Natural numbers set.

R Real numbers set.

Rn Space of n-dimensional vector space with entries in R.

Rn×n Space of n× n matrices with entries in R.

ℜ(s) Real part of an imaginary number s.

i Imaginary unit, i2 = −1.

Cl
(
[−h, 0],Rn

)
Space of Rn-valued l times continuously differentiable functions on [−h, 0],

∀l ∈ N

C2
[a,b] Space of twice continuously differentiable n× n matrices defined on [a, b].

PC1
(
[−h, 0],Rn

)
Space of Rn-valued piecewise continuously differentiable on [−h, 0].

In Identity matrix of dimension n× n.

On Zero matrix of dimension n× n.

0n Zero vector in Rn.

AT Transpose of matrix A.

A > 0 Symmetric positive definite matrix A.

A ≥ 0 Symmetric non-negative definite matrix A.

λmin(A) Minimum eigenvalue of the matrix A.

λmax(A) Maximum eigenvalue of the matrix A.

{Aij}ri,j=1 Square block matrix with i-th row block and j-th column block matrix Aij ∈
Rn×n.

He(M) Means M +MT .

k = a, b Means that k is an integer between a and b, included.

⌈r⌉ Ceil function, which maps r to the least integer greater or equal to r.

∥ · ∥ Euclidean norm for vectors and matrices.
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NOTATION vii

∥φ ∥h Supremum norm of the function φ, defined as ∥φ∥h = supθ∈[−h,0]∥φ(θ)∥.

A⊗B The Kronecker product given by:

A⊗B
def
=


b11A b21A · · · bn1A
b12A b22A · · · bn2A
...

...
. . .

...
b1nA b2nA · · · bnnA

 , B = {bij}ni,j=1.



Resumen

Los sistemas lineales con retardo de tipo neutral permiten modelar procesos que dependen
no solo de la derivada del estado actual sino también por derivadas pasadas del estado.
Estos sistemas también pueden representar aquellos descritos por ecuaciones diferenciales
parciales hiperbólicas, que pueden ser transformadas en esta clase. El efecto del retardo
en las derivadas de estados pasados eleva la complejidad del análisis de estabilidad de esta
clase de sistemas, debido a los comportamientos dinámicos intrincados resultantes. La
teoria de Lyapunov-Krasovskii ha sido una herramienta esencial para abordar el problema
de estabilidad, aśı como también para tratar temas de robustez y śıntesis de control, entre
otras. Por lo tanto, la presentación de criterios de estabilidad para esta clase de sistemas
es un problema de interés.

En este trabajo de tesis, se presentan criterios de estabilidad, es decir, condiciones
de estabilidad necesarias y suficientes, para sistemas lineales de retardo de tipo neutral.
Este trabajo combina las funcionales de Lyapunov con derivada en el tiempo prescrita,
las cuales son expresadas en términos de la matriz de Lyapunov de retardo, con una
aproximación ya sea del argumento funcional o de los núcleos funcionales. Como resultado,
la funcional de Lyapunov se aproxima a través de una forma cuadrática cuya matriz de
bloques internos involucra la matriz de Lyapunov de retardo evaluada en puntos discretos
o integrales de la matriz de Lyapunov de retardo y su primera y segunda derivada,
dependiendo del enfoque de aproximación. La caracteŕıstica principal de estos criterios es
que se verifican empleando un número moderado de operaciones, lo cual se logra estimando
el error de aproximación funcional sobre un conjunto especial de funciones. Algunos
ejemplos se presentan y se discuten para validar y comparar los resultados obtenidos.
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Abstract

Neutral type time delay systems allow modeling processes that depend not only on the
derivative of the current state but also on the past derivatives of the state. These systems
can also represent those described by hyperbolic partial differential equations, which
can be transformed into this class. The intricate dynamics behaviors of systems with
delays in past state derivatives increase the complexity of the stability analysis. The
Lyapunov-Krasovskii framework has been an essential tool for addressing this stability
problem, as well as for dealing with issues of robustness and control synthesis, among
others. Thus, the presentation of stability criteria for this class of systems is a problem
of interest.

In this thesis work, we present stability criteria, namely necessary and sufficient
stability conditions, for neutral type linear time-delay systems. We combine the Lyapunov
functionals with a negative prescribed time derivative expressed in terms of the delay
Lyapunov matrix with an approximation of either the functional argument or the
functional kernels. As a result, the Lyapunov functional is approximated via a quadratic
form whose inner block matrix involves the delay Lyapunov matrix evaluated at discrete
points or integrals of the delay Lyapunov matrix and its first and second derivatives,
depending on the approximation approach. The main feature of these criteria is that
they are verified in a moderate number of operations, which is achieved by estimating the
functional approximation error on a special set of functions. Some examples are presented
and discussed to validate and compare the obtained results.
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Chapter 1

Introduction

To illustrate the background and difficulty motivating this thesis work, we present
general comments on delay systems, particularly neutral type systems, to expose their
relevance of the stability analysis. We also comprehensively summarize some complex
properties needed to deal with this class of delay systems. Finally, we comment on the
stability analysis techniques for time delay systems and some recent stability results for
neutral-type systems.

General comments on delay systems

Time delay systems are dynamic systems characterized by a delay between the cause
and its effect within the system feedback or control loops. This delay indicates the
time required for information, signals, or material to cross the system or actions to
manifest observable effects. These delays may stem from various factors, including
interconnected systems (Bajodek, 2022), communication delays (Peet, 2021), processing
times, or inherent physical properties. The presence of delays significantly impacts the
stability, performance, and behavior of these systems.

In the classes of time delay systems, neutral differential-difference equations, which
are considered as a generalization of those of retarded type (Hale & Lunel, 1993), are
characterized by the presence of the derivative of the state at time t but also on past
derivatives of the state. Some examples are:

• Drilling in the perforation process for oil and gas (Saldivar & Mondié, 2013; Saldivar,
Mondié, Loiseau, & Rasvan, 2013):

ż(t)−αż(t−2h) = −ψz(t)−αψz(t−2h)− 1

β
T (z(t))+

1

β
αT (z(t−2h))+πΩ(t−h)+w.

Here, z(t) is the angular velocity at the bottom of the extremity of the drill string,
π, α and ψ are suitable constants depending on the inertia, shear modulus, and the
geometrical moment of inertia, T (·) is a torque function, and Ω(t) is the angular
velocity coming from the rotor;

• Lossless transmission lines (Brayton, 1968):

d

dt

(
u(t)− K̂u(t− h)

)
= α̂− 1

z
u(t)− K̂

z
u(t− h)− g(u(t)) + K̂g(u(t− h)),

1



2

where u(t) is the voltage at the end of the transmission line, g(·) is a nonlinear
function, constants α̂, z and K̂ are given in terms of the system parameters.

• Vibrating masses attached to an elastic bar (Rubanik, 1969):

ẍ(t)− γ1ÿ(t− h) = ϵf1(x(t), ẋ(t), y(t), ẏ(t))− ω2
1x(t),

ÿ(t)− γ2ẍ(t− h) = ϵf2(x(t), ẋ(t), y(t), ẏ(t))− ω2
2x(t).

As shown in Brayton (1968), and Saldivar and Mondié (2013), physical
phenomena modeled by hyperbolic partial differential equations also reduce, after some
transformations, to this class of systems. This has motivated the study of several problems
for this class of time delay systems, such as stability (Niculescu, 2001), robustness
(Alexandrova, 2018), computation of the H2 norm (Jarlebring, Vanbiervliet, & Michiels,
2011), estimation of the critical parameters (G. Ochoa, Kharitonov, & Mondié, 2013),
and controller design (Palmor, 1980; Yamanaka & Shimemura, 1987), among others.

The delayed state derivative leads to unique and complex dynamic behaviors, which
differ considerably from those of retarded systems. To illustrate and clarify some of them,
let us consider the scalar neutral type system

d

dt
(x(t)− dx(t− h)) = ax(t) + bx(t− h), t ⩾ 0,

x(θ) = φ(θ), θ ∈ [−h, 0],
(1.1)

with real constant coefficients, constant delay h > 0 and the initial function φ ∈
PC1

(
[−h, 0],Rn

)
, whose characteristic equation is given by:

H(s) = s(1− de−sh)− a− be−sh = 0, (1.2)

equivalently, for s ̸= 0,

H(s) = sesh
(
1− a

s

)
− s

(
d+

b

s

)
= 0 (1.3)

Next, we detail some system properties:

• System solution: Consider system (1.1) in its integral form

x(t) = dx(t− h) + (φ(0)− dφ(−h)) +
∫ t

0

ax(s) + bx(s− h)ds, t ⩾ 0. (1.4)

Notice that if θ1 ∈ [−h, 0] is a discontinuity point1 of φ, then, at t1 = θ1 + h, the
solution (1.4) of system (1.1) has a jump whose size is

lim
t→t1+0

x(t)− lim
t→t1−0

x(t) = ∆x(t1) = d∆φ(θ1),

where ∆x(t1) = x(t1 + 0) − x(t1 − 0) and ∆φ(θ1) = φ(θ1 + 0) − φ(θ1 − 0). Since
solution (1.4) is defined for t ⩾ 0, it suffers a jump discontinuity at all points

1At this point, the function may have a sudden jump, break, or gap in its value.

Cinvestav Department of Automatic Control
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Figure 1.1: Solution of system (1.1) for h = 1, d = 1 and a = b = 0.

tk = θ1 + kh, k ∈ N. In addition, it follows from the previous analysis that:

lim
t→t1+0

d

dt
(x(t)− dx(t− h))− lim

t→t1−0

d

dt
(x(t)− dx(t− h)) = a∆x(t1) + b∆φ(θ1).

Thus, the discontinuity of the solutions implies the discontinuity of the left-hand
side of system (1.1), concluding that, for piecewise continuously differentiable initial
conditions, the solutions only satisfy the system almost everywhere. An example
showing this property is depicted in Figure 1.1 for the solution of system (1.1)
with parameters h = 1, d = 1 and a = b = 0 and initial function

φ(θ) =

{
0, θ ∈ [−1,−0.5),

1, θ ∈ [−0.5, 0].

This behavior contrasts with retarded type systems, which are well-known to smooth
the solution for discontinuous initial functions.

• Difference equation: Observe that a
s
and b

s
approach zero as |s| → ∞ in (1.3).

Since H(s) possesses roots with arbitrarily large moduli, we can conclude that the
roots of (1.3) tend to be the roots of the difference equation 1 − de−sh = 0 at
infinity, indicating that the stability of the difference equation 1 − de−sh = 0 needs
to be studied. Notice that the roots of the characteristic equation to the difference
equation 1− de−sh = 0 are given by:

s =


ln d

h
+

2kπi

h
, k = 0,±1,±2, . . . , if d > 0,

ln |d|
h

+
(2k + 1)πi

h
, k = 0,±1,±2, . . . , if d < 0.

This means, in particular, that the roots appear in the right-half plane when |d| > 1,
in the left-hand plane when |d| < 1, and on the imaginary axis when |d| = 1.

• Eigenvalues in a vertical strip: It follows from (1.3) that if ℜ(s) → ∞, then the
left-hand side of (1.3) approaches 1 and not 0, thus equality (1.3) does not hold. In
the contrary case, when ℜ(s) → −∞, then equality (1.3) approaches to d = 0. It

Cinvestav Department of Automatic Control
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Figure 1.2: Spectrum of system (1.1) for h = 1, d = 1.5 and a = b = −2.

appears that if d ̸= 0, then β < ℜ(s) < α for some α and β. The previous analysis
and the fact that the roots of (1.3) tend to the roots of the difference equation at
infinity reveal that a chain of eigenvalues may converge to a vertical strip in the
complex plane. For the system parameters h = 1, d = 1.5 and a = b = −2, the
system spectrum is presented in Figure 1.2, showing that the characteristic roots
(markers ·) indeed lie in a strip bounded by vertical blue lines. Notice that in the
case of retarded type systems, roots at infinity go deep in the left-hand plane.

It is worth mentioning that these and a few other properties are discussed in the
monograph of Hale and Lunel (1993) in greater detail.

Stability analysis of delay systems

Roughly speaking, stability in time delay systems refers to the ability of a dynamical
system to converge to an equilibrium under small perturbations or changes in the initial
state in the presence of delays. Thus, understanding the stability of time delay systems is
essential in designing robust controllers, optimizing system performance, and mitigating
the risk of failures resulting from potential instability.

In light of the above properties in the previous section and the concept of stability,
addressing the case of neutral type systems complicates the stability analysis compared
significantly with the retarded type case. Nevertheless, stability analysis can be tackled
through the same approaches as in the retarded case: frequency domain and time
domain analyses. The first one, frequency domain analysis, is based on finding stability
regions by using the characteristic equation of the time-delay system and verifying the
system stability with the help of the root tendency. It includes the D-subdivision
methods and their variations (Gu, Niculescu, & Chen, 2005; Michiels & Niculescu, 2007;
Vyhĺıdal & Źıtek, 2003), and the CTCR (cluster treatment of the characteristic roots)
paradigm (Sipahi & Olgac, 2006). For instance, Figure 1.3 depicts the stability/instability
boundaries for system (1.1) with h = 1 and d = −0.3 using the D-subdivision method.
This approach is well-suited for linear time-invariant systems as it provides valuable
insights into system performance metrics (Fridman, 2014). However, notice that it is

Cinvestav Department of Automatic Control
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Figure 1.3: D-subdivision in the space of parameters (a, b) of system (1.1) for h = 1, d =
−0.3.

restricted to the study of two, or at most three, parameters, and it becomes complex when
the system dimension or the number of parameters increases. Moreover, it is restricted
to the analysis of unknown but constant uncertainties.

The second approach for studying the stability of neutral time delay systems relies on
the Lyapunov – Krasovskii and the Lyapunov-Razumikhin frameworks (Fridman, 2014),
which allow a wide range of applications beyond stability analysis. A significant advantage
of Lyapunov-type methods over the frequency domain approach is that it handles
linear and non-linear systems without linearization, input-to-state analysis, time-varying
uncertainties, multiple delays, estimates of the domain of attraction, estimates of
solutions, among others, offering direct insights on behavior and stability (Fridman,
2014; Gu, Kharitonov, & Chen, 2003; Hale & Lunel, 1993). On the one hand, the
Lyapunov-Krasovskii framework involves the construction of functionals that incorporate
the entire history of the system state over the delay interval (Kharitonov, 2013). This
approach provides a comprehensive assessment of the system stability by more explicitly
capturing the effects of time delays. On the other hand, the Lyapunov-Razumikhin
framework simplifies the stability analysis by using a Lyapunov function for the delay-free
system and then applying Razumikhin conditions to account for the delay (Kolmanovskii
& Myshkis, 1999). The Razumikhin condition states that if the Lyapunov function
evaluated at the current time is greater than a scaled version of its value at the delayed
time, and the derivative of the Lyapunov function is negative, then the system is stable.
This method is generally more straightforward to implement as it avoids the construction
of complex functionals, but since the delay is not directly integrated into the function
(Gu et al., 2003), it can be conservative and may not fully capture the effects of delays
as precisely as the Lyapunov-Krasovskii approach.

Despite the advantages of the time-domain approach, it may require substantial
computational resources (Peet, Papachristodoulou, & Lall, 2009) and the challenging
construction of Lyapunov functionals. However, we use the Lyapunov-Krasovskii
approach in this thesis work because of its versatility, the power of analysis of
systems with complex delay structures, and less conservative results compared to the
Lyapunov-Razumikhin approach. It is worth mentioning that N.N. Krasovskii introduced

Cinvestav Department of Automatic Control
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the stability theorems for time delay systems, which are collected in Temple (1965).
The construction of Lyapunov-Krasovskii functionals, which are positive definite and

whose time derivatives along the solutions of the time-delay system satisfy a negativity
condition, leads to an outstanding number of LMI-based sufficient stability conditions.
Initial schemes of these functionals were proposed in Kolmanovskii and Myshkis (1999)
and also discussed in Niculescu (2001); Seuret, Gouaisbaut, and Baudouin (2016),
conducting to the following two basic ideas:

1. To construct quadratic Lyapunov candidate functionals such as

• delay-independent Lyapunov-Krasovskii functionals:

v(φ) = φT (0)Ω1φ(0) +

0∫
−h

φT (s)Ω2φ(s)ds,

and,

• delay-dependent Lyapunov-Krasovskii functionals:

v(φ) = φT (0)Ω1φ(0) +

0∫
−h

φT (s)Ω2φ(s)ds+ h

0∫
−h

0∫
s1

φ̇T (s2)Ω3φ̇(s2)ds2ds1,

where the functional argument φ is the initial condition of the system and
the functional kernels Ω1, Ω2 and Ω3 are symmetric matrices, achieving
delay-independent and delay-dependent sufficient stability conditions, respectively
(see Fridman (2014) for different classes of time delay systems).

2. To construct complete Lyapunov-Krasovskii functionals

v(φ) = φT (0)Ω̂1φ(0) + 2φT (0)

0∫
−h

Ω̂2(s)φ(s)ds+

0∫
−h

0∫
−h

φT (s1)Ω̂3(s1, s2)φ(s2)ds2ds1.

(1.5)

Here, the functional kernel Ω̂1 is a constant symmetric matrix, and functional kernels
Ω̂2(s) and Ω̂3(s1, s2) = Ω̂T

3 (s2, s1) are continuous matrices. This functional was
introduced in Repin (1965) and proved to give necessary and sufficient stability
conditions in Infante and Castelan (1978) and Huang (1989) for the retarded case
and Castelan and Infante (1979) for the neutral case. Unfortunately, the verification
of the positive definiteness of the Lyapunov-Krasovskii functionals for all functional
argument φ is impossible for practical problems (Niculescu, 2001).

For the reduction of conservatism of sufficient conditions, we find in the literature
two main strategies. The first one is based on an appropriate conjunction of the
above Lyapunov-Krasovskii functionals and functional argument or functional kernels
approximation. In particular, the Legendre polynomials addressed in Seuret and
Gouaisbaut (2015) for the functional argument φ, and the sum of the square Peet (2018);
Peet and Bliman (2011) and a discretized Lyapunov functional method in Gu (1997) for
the functional kernels arrived at an asymptotic non-conservative set of matrix inequalities.
The second strategy relies on the descriptor model transformation and the descriptor
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type Lyapunov-Krasovskii functionals, resulting in less conservative conditions, even for
uncertain systems (Fridman, 2014).

The so-called complete type functionals with a negative definite prescribed derivative
are a major progress in the Lyapunov-Krasovskii framework, which give necessary
conditions. For linear neutral time-delay systems, they are constructed in the monograph
by Kharitonov (Kharitonov, 2013), thus reducing the stability analysis to verify the
functional positive definiteness uniquely. They are characterized by:

• functional kernels in terms of the delay Lyapunov matrix, whose concept for neutral
type systems first appeared implicitly in Castelan and Infante (1979) and then
developed in Rodriguez, Kharitonov, Dion, and Dugard (2004) and Kharitonov
(2005); it is determined by three properties: dynamic, symmetry, and algebraic,
and it is unique, if and only if the Lyapunov condition is satisfied (Kharitonov,
2010);

• the construction of these functionals is motivated by the converse Lyapunov
approach for the delay-free case, where the system ẋ = Ax is exponentially stable if
and only if there exists a quadratic positive definite Lyapunov function V (x) = xTPx

that satisfies the prescribed time derivative along the solutions dV (x)
dt

= −xTWx for
a positive definite matrix W . The latter is equivalent to verifying the following
stability criterion: the delay-free system is exponentially stable if and only if the
Lyapunov matrix P = P T , solution of the algebraic equation ATP + PA = −W , is
positive definite. Here, the Lyapunov matrix P encapsulates the system information
as the delay Lyapunov matrix does for time delay systems.

The above antecedents raise the following two questions:

• is it possible to obtain a stability criterion exclusively in terms of the delay Lyapunov
matrix analogous to the one for the delay-free case?

• as time delay systems are infinite-dimensional ones, must the stability criterion also
be infinite-dimensional?

These two questions have been addressed in recent research where the authors pursue
a stability criterion stemming from functionals with prescribed derivatives verified in a
finite number of operations. These criteria have been mainly addressed via a functional
argument approximation (Alexandrova, 2023; Bajodek, Gouaisbaut, & Seuret, 2023;
Egorov, 2016; Gomez, Egorov, & Mondié, 2019) and a functional kernels approximation
(Alexandrova & Belov, 2024; Belov & Alexandrova, 2022). Considering a functional
argument approximation, a stability criterion expressed in terms of discrete evaluations
of the delay Lyapunov matrix was presented for retarded (Egorov, 2016; Gomez, Egorov,
& Mondié, 2019) and neutral (Gomez et al., 2021) type systems. The necessity of this
criterion follows from substituting a special function depending on the system fundamental
matrix in the functional argument. To prove the sufficiency of the result, the positivity of
the functional must be verified for all functional arguments φ, which is an intractable task
in practice. Here, one has to resort to new instability results and to arguments establishing
that arbitrary functional arguments φ can be approximated by the above-mentioned class
of initial functions depending on fundamental matrices. The approximation order for
which sufficiency is achieved turns out to be very large. To address this issue, for the
retarded case, some authors introduced other function approximation classes, such as
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8 Chapter 1

piecewise linear (Alexandrova, 2023), and Legendre polynomials (Bajodek et al., 2023).
These proposals substantially reduced the approximation at the cost of time-consuming
integral computations and the loss of the nice matrix form for the criterion.

Considering a functional kernel approximation, for the retarded type case, the
discretization method of Gu (1997); Gu et al. (2003) was applied to the functionals
with prescribed derivative (Alexandrova & Belov, 2024; Belov & Alexandrova, 2022),
combining the ele gant structure of the delay Lyapunov matrix-based stability conditions
of Gomez, Egorov, and Mondié (2019) with approximation orders comparable to those in
Alexandrova (2023); Bajodek et al. (2023). It is worth mentioning that the discretized
Lyapunov functional method was extended to neutral type systems in Han, Yu, and Gu
(2004) and Han (2005), arriving at LMI-based stability conditions. For retarded type
systems, some earlier combinations of the discretized Lyapunov functional method and
the delay Lyapunov matrix approach are available in Mondié and Kharitonov (2004);
B. M. Ochoa and Mondié (2006, 2007) and Gu (2013).

1.1 Problem Statement

For neutral type time delay systems, the only Lyapunov matrix-based stability test
available in the literature, based on the functional argument approximation via the system
fundamental matrix, is the one presented by Gomez et al. (2021). A major drawback of
this test is that it leads to large, however finite, approximation orders. As a result,
the sufficiency of this stability criterion can only be verified in some cases due to the
computational burden.

The obtained improvement concerning approximation orders for sufficiency in the
retarded type case allows formulating the following questions:

• is it possible to achieve a stability criterion that can be tested in a moderate number
of mathematical operations for neutral type systems similar to the one obtained for
the retarded type case by overcoming the complex properties of this class of delay
systems?

• knowing that a reduction of the approximation orders was obtained at the cost
of a stability test in terms of integrals of the delay Lyapunov matrix for retarded
type systems, where a recursive method was implemented, is a recursive method
feasible for the computation of integrals of the delay Lyapunov matrix for neutral
type systems taking into account that, for neutral type systems, functionals with
prescribed derivative depend on derivatives of the delay Lyapunov matrix or the
derivative of the functional argument?

• furthermore, in view of the results for retarded systems, is it possible to find for
neutral time delay systems a criterion that merges the elegant form in terms of the
delay Lyapunov matrix and a test in a tractable number of operations?

Motivated by the substantially reduced approximation orders provided by the stability
tests of Bajodek et al. (2023), Alexandrova (2023), and Alexandrova and Belov (2024) for
retarded type systems, the aim of this thesis work is to answer these questions by extending
the above works to the case of neutral type systems. Overcoming the complexity of
neutral type system properties in each approach and developing computationally verifiable
stability tests are our most challenging tasks.
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1.2 Thesis Objectives

The main purpose of this work is to provide stability tests, necessary and sufficient stability
conditions, for neutral type time-delay systems in a tractable number of operations.

More precisely, our specific objectives are:

• To approximate Lyapunov functionals with prescribed derivative through either a
functional argument approximation or a functional kernel approximation to arrive
at a discretized functional expressed explicitly as a quadratic form.

• To determine and estimate the functional approximation error on a special class
of functions, delivering an expression for the functional approximation error by
calculating appropriately the approximation order.

• To provide necessary and sufficient stability conditions for neutral type time delay
systems, verified in a tractable number of mathematical operations.

• To present a recursive method to deal with computational issues involved in the
approximation scheme of the tests.

1.3 Methodology

Our work is developed in the Lyapunov-Krasovskii framework using functionals with
prescribed derivative expressed in terms of the delay Lyapunov matrix. Fundamental
concepts and results in the approximation theory, particularly considering piecewise linear
and Legendre polynomial approximation, as well as an explicit bound for the functional
approximation error approximating the functional argument on a special set of functions,
are also crucial to reach sufficiency. In the case of functional argument approximation,
the necessity follows from the fact that the exponential stability of the system implies
the non-negativity of the functional for any functional argument. On the contrary, for
functional kernels approximation, the necessity of the approximated functional is validated
by showing its connection with the presented necessary stability conditions in terms of
discrete evaluations of the delay Lyapunov matrix in recent research.

1.4 Structure of the manuscript

This manuscript is organized as follows:

Chapter 2 starts with a review of the theoretical preliminaries on neutral type
time delay systems. It is followed by a review of concepts and results on the
Lyapunov-Krasovskii functionals and the delay Lyapunov matrix. Thereafter, we revisit
the discretized Lyapunov functional method presented in Gu (1997). Based on that
method, we introduce a sufficient stability condition for neutral type systems. Finally, a
recent stability criterion expressed in terms of the delay Lyapunov matrix is also reminded.

Chapter 3 presents a general outline of proofs based on either functional argument or
functional kernels approximation. The stability criterion of Gomez et al. (2021) is verified
following this outline.
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10 Chapter 1

In Chapter 4, a stability test in a moderate2 number of operations based on a piecewise
linear approximation for the functional argument is presented. The result follows from
the general outline of proofs based on approximations developed in Chapter 2 and an
instability result on a special set of functions.

Chapter 5 is devoted to approximating the functional argument via Legendre
polynomials relying on their convergence rate properties. As a result, a stability test
with tractable orders of approximation is given. Following the general outline of proofs
of Chapter 2, we exploit the super-geometric convergence property of the Legendre
polynomial to provide an estimate for the functional argument error.

In Chapter 6, the discretized Lyapunov functional method introduced in Chapter 2
is extended to Lyapunov functionals with prescribed derivative for neutral type systems.
The inner block matrix of the resulting approximated functional is proved to be related
to the elegant stability conditions presented in (Gomez et al., 2021). Thus, stability
conditions of the same form as those of Gomez et al. (2021) are obtained but with a
tractable number of operations.

In Chapter 7, the computation of the integral of the delay Lyapunov matrix and its
derivatives are solved by using a recursive method based on the properties of the delay
Lyapunov matrix.

In Chapter 8, some illustrative examples are presented and discussed. The first
example validates the moderate approximation orders provided by the stability criterion
based on piecewise linear approximations, which are compared with the large orders of
the sole stability criterion available in the literature Gomez et al. (2021). The stability
criterion based on Legendre polynomials approximation is tested and compared in the
second example with our main result in Chapter 4 and the result in Gomez et al.
(2021), delivering similar or tighter approximations orders than those using piecewise
linear approximations. It also corroborates the advantage of using a better basis of
approximation. Ultimately, the third and fourth examples validate the obtained result
using a discretized Lyapunov functional method, which outperforms those of the previous
chapters. Finally, Chapter 9 is devoted to concluding remarks and future research
directions.

The specific contributions of this thesis work are outlined below:

1. Theorem 4: a stability criterion based on a piecewise linear approximation for the
functional argument in a moderate number of mathematical operations.

2. Theorem 5: a stability criterion based on the Legendre polynomial approximation
for the functional argument in a reduced number of mathematical operations.

3. Theorem 6: a stability criterion based on a discretized Lyapunov functional method
on the functional kernels in a low number of mathematical operations, while it keeps
the elegant form of the criterion in terms of the delay Lyapunov matrix of Gomez
et al. (2021).

4. A recursive method for the computation of integrals of the delay Lyapunov matrix
required for testing Theorem 4 and 5.

2In the sequel, moderate means substantially reduced size with respect to previous results.
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1.5 Publications

The main results of our work on the analysis of time-delay systems are currently published
and submitted to international conferences and journals:

Journal papers related to this thesis work:

• Portilla, G., Alexandrova, I. V., & Mondié, S. (2024). Stability tests for neutral-type
delay systems: A delay Lyapunov matrix and piecewise linear approximation of
the functional argument approach. International Journal of Robust and Nonlinear
Control, 34(9), 5664-5685.

• Portilla, G., Bajodek, M., & Mondié, S. Necessary and sufficient condition for
neutral-type delay systems: Polynomial approximations, Submitted to International
Journal of Control.

• Portilla, G., Alexandrova, I. V., & Mondié, S. An Elegant Lyapunov Stability Test
for Neutral Type Delay Systems: a Discretized Functional Approach. Submitted to
IEEE Transactions on Automatic Control.

Other journal papers:

• Portilla, G., Seuret, A., & Mondié, S. Robust data-driven control for linear
discrete-time systems with unknown delay. Submitted to International Journal of
Control.

• Portilla, G., Albea, C., & Seuret, A. Predictive control design for switched affine
systems subject to an input delay in the switching signal. Submitted to IEEE
Control Systems Letters.

International Conference papers:

• Portilla, G., Alexandrova, I. V., & Mondié, S. (2023). Stability test for neutral
type delay systems: a piecewise linear approximation scheme. IFAC-PapersOnLine,
56(2), 186-191.

• Portilla, G., Castaño, A., Bajodek, M., & Mondié, S. (2024, June). Stability
test for some classes of linear time-delay systems: A Legendre polynomial
approximation-based approach. In 2024 European Control Conference (ECC) (pp.
1045-1050). IEEE.

National Conference papers:

• Castaño, A., Santos-Estudillo, O., Portilla, G. & Mondié, S. (2022). Necessary and
sufficient stability conditions for time-delay systems: a comparison. Memorias del
Congreso Nacional de Control Automático, pp. 50-55.

• Portilla, G., Castaño, A. & Mondié, S. (2023). Necessary and Sufficient Stability
Conditions: Traffic Systems. Memorias del Congreso Nacional de Control
Automático, pp. 278-283.
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Chapter 2

Theoretical preliminaries

In this chapter, we present theoretical preliminaries concerning neutral type time delay
systems. We recall the concept of the delay Lyapunov matrix, its properties, and the
semi-analytic method for its computation. The Lyapunov functionals with prescribed
derivatives, which are given in terms of the delay Lyapunov matrix, are also introduced.
Furthermore, we remind some stability results in the Lyapunov-Krasovskii framework
for neutral type systems. The discretized Lyapunov functional method of Gu (1997) is
introduced, as well as the sufficient stability conditions achieved through this approach.
Finally, a stability criterion in terms of the delay Lyapunov matrix for neutral type systems
is reminded.

2.1 Basic concepts on neutral type time delay

systems

Consider a neutral type time delay system of the form

d

dt

(
x(t)−Dx(t− h)

)
= A0x(t) + A1x(t− h), a.e., t ⩾ 0, (2.1)

with initial function
x(θ) = φ(θ), φ ∈ PC1

(
[−h, 0],Rn

)
,

where h ⩾ 0, and A0, A1, D ∈ Rn×n. Considering φ ∈ PC1
(
[−h, 0],Rn

)
, the solution

x(t) = x(t, φ) is a piecewise continuous function such that x(θ) = φ(θ), θ ∈ [−h, 0], which
satisfies system (2.1) almost everywhere (a.e.) for t ⩾ 0. The difference x(t)−Dx(t−h) is
assumed continuous and differentiable for t ⩾ 0, except for possibly a countable number
of points. The restriction of the solution to the interval [t− h, t], t ⩾ 0, is denoted by

xt : θ 7→ x(t+ θ), θ ∈ [−h, 0].

Definition 1 (Hale & Lunel, 1993) The fundamental matrix Y (t) of system (2.1) satisfies
the equation

d

dt

(
Y (t)−DY (t− h)

)
= A0Y (t) + A1Y (t− h), a.e., t ⩾ 0, (2.2)

12
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with the initial condition Y (t) = In for t = 0 and Y (t) = On for t < 0.

Remark 1 It is worth mentioning that

Y (t) = eA0t, t ∈ [0, h),

which allows computing the Lipschitz constant L of the system fundamental matrix Y (t)
on t ∈ (0, h), i.e., it is such that ∥Y ′(t)∥ = ∥A0e

A0t∥ ⩽ L, t ∈ (0, h).

Definition 2 System (2.1) is said to be exponentially stable if there exist γ ⩾ 1 and σ > 0
such that for any initial function φ ∈ PC1

(
[−h, 0],Rn

)
,

∥x(t, φ)∥ ⩽ γe−σt∥φ∥h, t ⩾ 0.

We also introduce the following assumption on matrix D, which is a necessary
condition for the exponential stability of system (2.1).

Assumption 1 The matrix D is Schur stable, i.e., with all eigenvalues inside the open
unit circle.

Lemma 1 (Kharitonov, Mondie, & Collado, 2005) If the matrix D is Schur stable then
there exist ρ ∈ (0, 1) and d ⩾ 1 such that

∥Dk∥ ⩽ dρk, k = 0, 1, . . .

Assumption 2 System (2.1) satisfies the Lyapunov condition (Kharitonov, 2013), i.e.,
there exists ε > 0 such that |s1 + s2| > ε for any s1, s2 ∈ Λ, where

Λ =
{
s ∈ C

∣∣∣ det(sI − se−shD − A0 − e−shA1

)
= 0
}
.

2.2 Delay Lyapunov matrix

Here, we remind the definition of the delay Lyapunov matrix for neutral type time delay
systems.

Definition 3 (Kharitonov, 2013) Given a symmetric matrix W ∈ Rn×n, a continuous
matrix function U : [−h, h] → Rn×n is called delay Lyapunov matrix if it satisfies the
following properties:

1. dynamic property

U ′(s)− U ′(s− h)D = U(s)A0 + U(s− h)A1, s ∈ (0, h), (2.3)

2. symmetry property
UT (s) = U(−s), s ∈ [−h, h], (2.4)

3. algebraic property
∆U ′(0)−DT∆U ′(0)D = −W, (2.5)

where ∆U ′(0) = lim
s→+0

dU(s)
ds

− lim
s→−0

dU(s)
ds

.
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Observe that, for negative values of the argument, the dynamic property of the delay
Lyapunov matrix also satisfies

U ′(s)−DTU ′(s+ h) = −AT
0U(s)− AT

1U(s+ h), s ∈ (−h, 0). (2.6)

The existence and uniqueness of the delay Lyapunov matrix, proved in Theorem 6.6
and Theorem 6.8 in Kharitonov (2013), are merged in the following lemma:

Lemma 2 The following statements are equivalent:

(a) System (2.1) admits a unique Lyapunov matrix associated with any given symmetric
matrix W ;

(b) System (2.1) satisfies the Lyapunov condition;

(c) det
(
M+N eLh

)
̸= 0, where

M =

(
In2 On2

In ⊗ A0 − AT
1 ⊗D In ⊗ A1 − AT

0 ⊗D

)
,

N =

(
On2 −In2

AT
1 ⊗ In −DT ⊗ A0 AT

0 ⊗ In −DT ⊗ A1

)
,

L =

(
In2 −In ⊗D

−DT ⊗ In In2

)−1(
In ⊗ A0 In ⊗ A1

−AT
1 ⊗ In −AT

0 ⊗ In

)
.

Notice that Lemma 2 explains the sense of Assumption 2 and shows how to verify
it. Now, under Assumption 2, the delay Lyapunov matrix may be computed by solving
a delay-free boundary value problem resulting from properties (2.3), (2.4) and (2.5). Its
vectorized form (see Appendix A for this property), given in Kharitonov (2013), is:

U(s) =
(
In2 On2

)
eLs
(
M+N eLh

)−1
(

0n2

−W

)
, s ∈ [0, h], (2.7)

with U(s) = vec(U(s)), W = vec(W ). For negative arguments, U(s), s ∈ [−h, 0), is
obtained via the symmetry property (2.4).

Remark 2 U ∈ C2
[0,h] and U ∈ C2

[−h,0] considering the corresponding one-sided derivatives

at 0 and ±h. Its derivatives can be computed directly by differentiating expression (2.7).

2.3 Lyapunov–Krasovskii functional

For a given positive definite matrix W, we introduce the delay Lyapunov matrix-based
functional v0(φ), φ ∈ PC1

(
[−h, 0],Rn

)
, whose time derivative along the solutions of

system (2.1) is equal to:

dv0(xt)

dt
= −xT (t)Wx(t), t ⩾ 0. (2.8)

As shown in Kharitonov (2013), its expression is:

v0(φ) = φT (0)Pφ(0) + 2φT (0)

0∫
−h

Q(s)γ(s)ds+

0∫
−h

0∫
−h

γT (s1)R(s1, s2)γ(s2)ds2ds1, (2.9)
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where
P = U(0)−DTU(h)− U(−h)D +DTU(0)D,

Q(s) = UT (h+ s)−DTU(−s),
R(s1, s2) = U(s1 − s2),

γ(s) = Dφ′(s) + A1φ(s).

An alternative representation of the functional, which involves the first and second
derivatives of U instead of the derivative of φ, is also available in Kharitonov (2013),
as follows:

v0(φ) = (φ(0)−Dφ(−h))TU(0)(φ(0)−Dφ(−h)) +
4∑

j=2

Ij, (2.10)

where,

I2 = 2(φ(0)−Dφ(−h))T
∫ 0

−h

Φ(h+ θ)φ(θ)dθ, I3 =

∫ 0

−h

∫ 0

−h

φT (θ1)Ψ(θ1 − θ2)φ(θ2)dθ2dθ1,

I4 = −
∫ 0

−h

∫ 0

−h

φT (θ1)D
TU ′′(θ1 − θ2)Dφ(θ2)dθ2dθ1.

Here,

Φ(s) = UT (s)A1 − U ′T (s)D, Ψ(s) = AT
1U(s)A1 −DTU ′(s)A1 +AT

1U
′(s)D, s ∈ (0, h),

and Ψ(−s) = ΨT (s). Due to the fact that U ′(s) admits a jump at zero as evidenced by
(2.5), the term I4 should be calculated as:

I4=−
0∫

−h

θ1−0∫
−h

φT (θ1)D
TU ′′(θ1−θ2)Dφ(θ2)dθ2dθ1−

0∫
−h

0∫
θ1+0

φT (θ1)D
TU ′′(θ1−θ2)Dφ(θ2)dθ2dθ1

−
0∫

−h

φT (θ)DT∆U ′(0)Dφ(θ)dθ.

Next, a fifth term was added to functional v0(φ) in Egorov and Mondié (2014) and
Gomez, Egorov, and Mondié (2017a):

v1(φ) = v0(φ) +

∫ 0

−h

φT (θ)Wφ(θ)dθ, (2.11)

yielding the functional whose time derivative along the solutions of system (2.1) is

dv1(xt)

dt
= −xT (t− h)Wx(t− h), t ⩾ 0.

The main advantage of functional v1(φ) with respect to v0(φ) is that it allows obtaining
a quadratic lower bound on the set of functions PC1

(
[−h, 0],Rn

)
. We remind here

that, in contrast, functional v0(φ) (2.10) does not admit such bound (Kharitonov, 2013,
Example 2.1, p. 58) and satisfies only a local cubic one (Huang, 1989) even for a class of
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retarded type systems.

Remark 3 It is worth mentioning that the main results of this manuscript are based
on the approximation of either argument or kernels of Lyapunov functional, considering
successively each summand of Lyapunov functional. Despite both functionals allow
concluding on the system stability, the additional term in functional v1(φ) leads to a
stability test based on verifying the positive definiteness of a matrix. On the contrary,
functional v0(φ) arrives at stability tests based on verifying the non-negative definiteness of
a matrix. However, a matrix with eigenvalues located close to zero may lead to inaccurate
results.

2.4 Stability theorems in the Lyapunov-Krasovskii

framework

Next, we remind the fundamental stability result for neutral type time-delay systems in
the Lyapunov-Krasovskii framework.

Theorem 1 (Lyapunov–Krasovskii Theorem)(Hale & Lunel, 1993; Kharitonov, 2013).
Suppose that D is Schur stable. If there exist constants α1 > 0, α2 > 0, α3 > 0 and a
differentiable along the solution of system (2.1) functional v(φ), such that

α1∥φ(0)−Dφ(−h)∥2 ⩽ v(φ) ⩽ α2∥φ∥2h, (2.12)

dv(xt)

dt
⩽ −α3∥φ(0)−Dφ(−h)∥2, (2.13)

then system (2.1) is exponentially stable.

As Theorem 1 requires a quadratic lower bound for the candidate functional, which is
not satisfied for functional v0 on the set of an arbitrary functional argument, the special
compact set of functions satisfying a Razumikhin-type condition

S =
{
φ ∈ Cl

(
[−h, 0],Rn

)∥φ∥h = ∥φ(0)∥ = 1, ∥φ(k)∥h ⩽ Kk, ∀k ∈ N
}
, (2.14)

where K =
d

1− ρ
(∥A0∥ + ∥A1∥) with d and ρ defined in Lemma 1, was introduced

in Alexandrova and Zhabko (2019), proving that the verification of the positivity of
functional v0 can be checked on this set of functions. In addition, it also allowed presenting
the following instability result:

Lemma 3 (Alexandrova & Zhabko, 2019) If system (2.1) is unstable, then there exists a
function φ ∈ S such that

v0(φ) < −a0
def
= −λmin(W )

4α
.

Here, α is such that ℜ(s) ⩽ α for any eigenvalue s with ℜ(s) > 0.

Remark 4 The meaning of the constant K in S, first appeared in this form for neutral
type systems in Gomez, Egorov, and Mondié (2018), is that any s ∈ Λ with ℜ(s) > 0
satisfies |s| ⩽ K Alexandrova and Zhabko (2019). As outlined in Remark 4 in Alexandrova
(2023), it can be replaced by any upper bound for the modulus of an “unstable” eigenvalue.
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The value α in Lemma 3 can be computed either as α = K following Remark 4, which
provides an overly conservative bound, or based on the following lemma inspired by the
ideas of Gomez, Egorov, and Mondié (2019); Tissir and Hmamed (1996).

Lemma 4 Any eigenvalue s ∈ Λ with ℜ(s) > 0 satisfies ℜ(s) < α, where α > 0 is such
that there exist matrices X̄ > 0 and Ȳ > 0, solution of the LMI:

Ωα(X̄, Ȳ ) =

(
−ÂT

0 X̄−X̄Â0−Ȳ ÂT
0 X̄D̂ − X̄Â1

D̂T X̄Â0 − ÂT
1 X̄ D̂T X̄Â1+Â

T
1 X̄D̂+Ȳ

)
> 0 (2.15)

with
Â0 = A0 − αI, Â1 = e−αh(A1 + αD), D̂ = e−αhD.

Moreover, the LMI (2.15) is feasible for a sufficiently large α.

Proof : Following the ideas of Gomez, Egorov, and Mondié (2019); Tissir and Hmamed
(1996), we apply the change of variable z = s − α for some α > 0, which shifts the
spectrum to the left, to the characteristic equation of system (2.1). Then, s ∈ Λ if and

only if z ∈ Λ̂, where

Λ̂ =
{
z ∈ C

∣∣∣ det(zI − ze−zhD̂ − Â0 − e−zhÂ1

)
= 0
}
.

Let us prove that ℜ(z) < 0 for any z ∈ Λ̂. To do this, first notice that Schur stability of

D implies that of D̂ when α > 0. Denote a solution of system (2.1) with matrices Â0, Â1,

D̂ by x̂(t). Next, introduce the functional

v(φ) = [φ(0)− D̂φ(−h)]T X̄[φ(0)− D̂φ(−h)] +
0∫

−h

φT (θ)Ȳ φ(θ)dθ.

Condition (2.15) yields negative-definiteness of its derivative along the solutions x̂(t) :

dv(x̂t)

dt
= −

(
x̂T (t) x̂T (t− h)

)
Ωα(X, Y )

(
x̂(t)

x̂(t− h)

)
.

Hence, ℜ(z) < 0, and consequently, ℜ(s) < α. Based on the ideas of Kudryakov and
Alexandrova (2023), we now prove the feasibility of LMI (2.15) for a sufficiently large α.
Choose Ȳ > 0 and define an increasing sequence {αn}+∞

n=1, αn → +∞, αn > ∥A0∥ ⩾
|λmax(A0)|. Since for any n the matrix Â0 = A0 − αnI is Hurwitz, there exists the
corresponding X̄n > 0, solution to the Lyapunov matrix equation

(A0 − αnIn)
T X̄n + X̄n(A0 − αnIn) = −2Ȳ .

It is not difficult to see that

2αnX̄n = AT
0 X̄n + X̄nA0 + 2Ȳ ,

αn∥X̄n∥ ⩽ ∥A0∥∥X̄n∥+ ∥Ȳ ∥,

∥X̄n∥ ⩽
∥Ȳ ∥

αn − ∥A0∥
−−−−→
n→+∞

0,

∥Â1∥ ⩽ e−αnh∥A1∥+ αne
−αnh∥D∥ −−−−→

n→+∞
0,
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∥ÂT
0 X̄nD̂∥ ⩽ (2∥A0∥∥X̄n∥+ ∥Ȳ ∥)∥D̂∥ −−−−→

n→+∞
0,

since ∥D̂∥ = e−αnh∥D∥ −−−−→
n→+∞

0. Hence,

Ωαn(X̄n, Ȳ ) −−−−→
n→+∞

(
Ȳ O
O Ȳ

)
> 0,

that is, it is positive definite for a sufficiently large n. □

Remark 5 In practice, a minimum value of α delivering a solution to LMI (2.15) is
computed by a binary search procedure on (0, K]. It is worth noting that α is computable
for any, not necessarily unstable, system.

2.5 Discretized Lyapunov functional method

Next, we remind the discretized functional approach of Han (2005); Han et al. (2004)
for neutral type systems to explore the functional kernels approximation approach to
obtain a stability criterion. It is worth mentioning that this approach was initially
presented to retarded type systems in Gu (1997); Gu et al. (2003). To do so, consider the
Lyapunov-Krasovskii functional

v(φ) = (φ(0)−Dφ(−h))TR(φ(0)−Dφ(−h)) + 2(φ(0)−Dφ(−h))T
0∫

−h

X (s)φ(s)ds

+

0∫
−h

0∫
−h

φT (s1)Y(s1, s2)φ(s2)ds2ds1 +

0∫
−h

φT (s)Z(s)φ(s)ds,

(2.16)
where

R = RT ∈ Rn×n,

and, for all s, s1, s2 ∈ [−h, 0],

X (s) ∈ Rn×n,

Y(s1, s2) = YT (s2, s1) ∈ Rn×n,

Z(s) = ZT (s) ∈ Rn×n,

and X , Y , and Z are continuous functional kernels. Its time derivative along the
solutions of system (2.1) is

d

dt
v(xt) = 2(x(t)−Dx(t− h))TR(A0x(t) + A1x(t− h))

+ 2(A0x(t) + A1x(t− h))T
t∫

t−h

X (s− t)x(s)ds+ 2(x(t)−Dx(t− h))TX (0)x(t)
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− 2(x(t)−Dx(t− h))TX (−h)x(t− h)− 2(x(t)−Dx(t− h))T
t∫

t−h

dX (u)

du

∣∣∣∣∣
u=s−t

x(s)ds

+ 2xT (t)

t∫
t−h

Y(0, s− t)x(s)ds− 2xT (t− h)

t∫
t−h

Y(−h, s− t)x(s)ds

−
t∫

t−h

t∫
t−h

xT (s1)

[
∂Y(u1, u2)

∂u1

∣∣∣∣∣u1=s1−t
u2=s2−t

+
∂Y(u1, u2)

∂u2

∣∣∣∣∣u1=s1−t
u2=s2−t

]
x(s2)ds2ds1

+ xT (t)Z(0)x(t)− xT (t− h)Z(−h)x(t− h)−
t∫

t−h

xT (s)
dZ(u)

du

∣∣∣∣∣
u=s−t

x(s)ds.

Now, let us discretize the interval [−h, 0] by equidistant points θi = −iτ, i = 0, N
and τ = h/N , and choose X , Y , and Z to be continuous piecewise linear functions. The
expressions for the piecewise linear functions are given by

XN(s+ θi) = Xi +
(
Xi−1 −Xi

)s
τ
,

ZN(s+ θi) = Zi +
(
Zi−1 −Zi

)s
τ
, s ∈ [0, τ ],

YN(s1 + θi, s2 + θj) =
(
1− s2

τ

)
Yij +

s1
τ
Yi−1,j−1 +

s2 − s1
τ

Yi,j−1, 0 ⩽ s1 ⩽ s2 ⩽ τ,

YN(s1 + θi, s2 + θj) =
(
1− s1

τ

)
Yij +

s2
τ
Yi−1,j−1 +

s1 − s2
τ

Yi−1,j, 0 ⩽ s2 ⩽ s1 ⩽ τ,

(2.17)
i, j = 1, N, where

Xi = X (θi), Zi = Z(θi), Yij = Y(θi, θj).

Dividing the integration in (2.16) into segments [θi, θi−1] and substituting their kernels
X (s) and Y(s1, s2) by (2.17), functional (2.16) can be rewritten as follows

v(N)(φ) = (φ(0)−Dφ(−h))TR(φ(0)−Dφ(−h))

+ 2(φ(0)−Dφ(−h))T
N∑
i=1

τ∫
0

XN(s+ θi)φ(s+ θi)ds

+
N∑
i=1

N∑
j=1

τ∫
0

τ∫
0

φT (s1 + θi)YN(s1 + θi, s2 + θj)φ(s2 + θj)ds2ds1

+
N∑
i=1

τ∫
0

φT (s+ θi)ZN(s+ θi)φ(s+ θi)ds.

(2.18)

Applying the integration by parts to the second summand in (2.18), we obtain

τ∫
0

XN(s+ θi)φ(s+ θi)ds = Xi−1

τ∫
0

φ(ξ + θi)dξ −
τ∫

0

s∫
0

dXN(s+ θi)

ds
φ(ξ + θi)dξds
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= Xi−1

τ∫
0

φ(ξ + θi)dξ −
τ∫

0

s∫
0

1

τ

(
Xi−1 −Xi

)
φ(ξ + θi)dξds

= Xi−1

τ∫
0

1

τ

 s∫
0

φ(ξ + θi)dξ +

τ∫
s

φ(ξ + θi)dξ

 ds−
τ∫

0

s∫
0

1

τ

(
Xi−1 −Xi

)
φ(ξ + θi)dξds

=
1

τ

τ∫
0

[
Xi−1

 τ∫
s

φ(ξ + θi)dξ

+ Xi

 s∫
0

φ(ξ + θi)dξ

]ds.
Similarly, we apply the integration by part to the third summand in (2.18) with respect

to s2, yielding

τ∫
0

τ∫
0

φT (s1 + θi)YN(s1 + θi, s2 + θj)φ(s2 + θj)ds2ds1

=

τ∫
0

φT (s1 + θi)

[
YN(s1 + θi, θj−1)

τ∫
0

φ(ξ + θj)dξ

−
τ∫

0

s2∫
0

∂YN(s1 + θi, s2 + θj)

∂s2
φ(ξ + θj)dξds2

]
ds1

=

τ∫
0

φT (s1 + θi)

[(
s1
τ
Yi−1,j−1 +

(
1− s1

τ

)
Yi,j−1

) τ∫
0

φ(ξ + θj)dξ

−
s1∫
0

s2∫
0

1

τ
(Yi−1,j−1 − Yi−1,j)φ(ξ + θj)dξds2−

τ∫
s1

s2∫
0

1

τ
(Yi,j−1 − Yi,j)φ(ξ + θj)dξds2

]
ds1.

Further, the integration by parts with respect to s1 of the previous expression allows
arriving at

τ∫
0

τ∫
0

φT (s1 + θi)YN(s1 + θi, s2 + θj)φ(s2 + θj)ds2ds1

=

τ∫
0

φT (ξ+θi)dξ

[
Yi−1,j−1

τ∫
0

φ(ξ+θj)dξ −
1

τ

τ∫
0

s∫
0

(Yi−1,j−1 − Yi−1,j)φ(ξ+θj)dξds

]

−
τ∫

0

s∫
0

φT (ξ+θi)dξ

[
1

τ
(Yi−1,j−1−Yi,j−1)

τ∫
0

φ(ξ+θj)dξ −
1

τ
(Yi−1,j−1−Yi−1,j)

s∫
0

φ(ξ+θj)dξ

+
1

τ
(Yi,j−1 − Yi,j)

s∫
0

φ(ξ + θj)dξ

]
ds

Taking into account that, for θ ∈ [−h, 0],
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τ∫
0

φ(γ + θ)dγ =
1

τ

τ∫
0

τ∫
0

φ(γ + θ)dγds =
1

τ

τ∫
0

 s∫
0

φ(γ + θ)dγ +

τ∫
s

φ(γ + θ)dγ

 ds,

equivalently,

1

τ

τ∫
0

τ∫
s

φ(γ + θ)dγds =

τ∫
0

φ(γ + θ)dγ − 1

τ

τ∫
0

s∫
0

φ(γ + θ)dγds,

the previous integral reduces to

τ∫
0

τ∫
0

φT (s1 + θi)YN(s1 + θi, s2 + θj)φ(s2 + θj)ds2ds1

=

τ∫
0

φT (ξ+θi)dξ

[
Yi−1,j−1

τ∫
0

φ(ξ+θj)dξ −
τ∫

0

s∫
0

1

τ
(Yi−1,j−1 − Yi−1,j)φ(ξ+θj)dξds

]

−
τ∫

0

s∫
0

φT (ξ+θi)dξ

[
1

τ
(Yi−1,j−1−Yi,j−1)

τ∫
0

φ(ξ+θj)dξ −
1

τ
(Yi−1,j−1−Yi−1,j)

s∫
0

φ(ξ+θj)dξ

+
1

τ
(Yi,j−1 − Yi,j)

s∫
0

φ(ξ + θj)dξ

]
ds

=
1

τ

τ∫
0

[ τ∫
s

φT (ξ + θi)dξ

Yi−1,j−1

 τ∫
s

φ(ξ + θj)dξ


+

 τ∫
s

φT (ξ+θi)dξ

Yi−1,j

 s∫
0

φ(ξ+θj)dξ

+

 s∫
0

φT (ξ+θi)dξ

Yi,j−1

 τ∫
s

φ(ξ+θj)dξ


+

 s∫
0

φT (ξ + θi)dξ

Yi,j

 s∫
0

φ(ξ + θj)dξ

]ds.
Using the Jensen inequality, it was proven in Gu et al. (2003) that the last summand

in functional (2.18) satisfies the following inequality

N∑
i=1

τ∫
0

φT (s+ θi)ZN(s+ θi)φ(s+ θi)ds ⩾

τ∫
0

[ τ∫
s

φT (ξ+θ1)dξ

Z0

 τ∫
s

φ(ξ+θ1)dξ

+

 s∫
0

φT (ξ+θN)dξ

ZN

 s∫
0

φ(ξ+θN)dξ


+

N−1∑
i=1

 τ∫
s

φT (ξ + θi+1)dξ +

s∫
0

φT (ξ + θi)dξ

Zi

 τ∫
s

φ(ξ + θi+1)dξ +

s∫
0

φ(ξ + θi)dξ

 .

Combining the integration by parts of all summands, it is possible to get the following
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lower bound for the discretized functional:

v(N)(φ) ⩾
1

τ

τ∫
0

(
(φ(0)−Dφ(−h))T ΨT (s)

)( R X̃N

X̃ T
N ỸN + τ Z̃N

)(
φ(0)−Dφ(−h)

Ψ(s)

)
ds,

(2.19)
where

X̃N =
(
X0,X1, · · · ,XN

)
, ỸN =

{
Yij

}N

i,j=0
, Z̃N = diag

(
Z0,Z1, · · · ,ZN

)
,

Ψ(s) =
(
ψT
0 (s), ψ

T
1 (s), . . . , ψ

T
N(s)

)T
,

ψ0(s) =

0∫
θ1+s

φ(ξ)dξ, ψN(s) =

θN+s∫
θN

φ(ξ)dξ,

ψi(s) =

θi+s∫
θi+1+s

φ(ξ)dξ, i = 1, N − 1.

The discretized time derivative of functional (2.16), which is addressed in Han (2005)
for neutral type systems, admits an upper bound as follows

d

dt
v(N)(xt) ⩽ −ζT (xt)ΘN(R,X ,Y ,Z)ζ(xt), t ⩾ 0,

where ζ(xt) is a vector in terms of integrals of the system state and ΘN is a constant matrix
whose explicit expressions are omitted for their irrelevancy in the following developments.

Based on the previous discretized Lyapunov functional method, where a piecewise
linear approximation for the functional kernels is considered, LMI-based sufficient stability
conditions were derived in Han (2005). This result is recalled in the following theorem.

Theorem 2 (Han, 2005) If there exists matrices R = RT , Xi, Zi = ZT
i and Yij = YT

ji,

i, j = 0, N , such that(
R X̃N

X̃ T
N ỸN + τ Z̃N

)
> 0, ΘN(R,X ,Y ,Z) > 0, (2.20)

then system (2.1) is exponentially stable.

2.6 Stability test in terms of the delay Lyapunov

matrix

Here, a stability test in terms of discretized evaluations of the delay Lyapunov matrix
is reminded. This result is based on functional v1(φ) and a functional argument
approximation considering the system fundamental matrix. The sufficiency conditions
are achieved thanks to an instability result regarding the special set of functions S. It is
worth highlighting that this is the sole Lyapunov matrix-based stability criterion available
in the literature to check the stability of neutral type systems. Some details of this result
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are presented in more detail in the next chapter.
The necessary conditions of the above-mentioned stability test were first presented

in Gomez, Egorov, and Mondié (2017b) for neutral type systems. Next, we remind this
result, whose elegant structure is given in terms of the delay Lyapunov matrix.

Lemma 5 (Gomez et al., 2017b) If system (2.1) is exponentially stable, then matrices
K0 = U(0) > 0, and

KN =
{
U((j − i)τ)

}N

i,j=0
> 0 ∀N ∈ N,

where τ = h/N.

The following instability result played a significant role in obtaining the sufficient part
of the stability test:

Lemma 6 (Gomez et al., 2021) If system (2.1) is unstable, then there exists a function
φ ∈ S such that

v1(φ) ⩽ −a1
def
= −λmin(W )e−2αh

4α
cos2(b),

where b ∈
(
0,
π

2

)
is a solution of the equation

sin4(b)((αh)2 + b2) = (αh)2.

Here, α is such that ℜ(s) ⩽ α for any eigenvalue s with ℜ(s) > 0.

Now, let us introduce the following constants:

β = (1 + ∥D∥)2∥U(0)∥+ 2h(1 + ∥D∥)F̂1 + h2F̂2 + h∥∆U ′(0)∥,

F̂1 = sup
θ∈(0,h)

∥Φ(θ)∥, F̂2 = sup
θ∈(0,h)

∥Ψ(s)−DTU ′′(s)D∥,

where Φ and Ψ are given in (2.10).
Next, we remind a Lyapunov matrix-based stability test for neutral type systems via

functional v1(φ) and the system fundamental matrix Y (t).

Theorem 3 (Gomez et al., 2021) Assume that matrix D is Schur stable. System (2.1)
is exponentially stable if and only if the Lyapunov condition holds and

KN̂ =
{
U((j − i)τ)

}N̂

i,j=0
> 0,

where
N̂ =

⌈
eLhh(K + L)

(
β⋆ +

√
β⋆ (β⋆ + 1)

)
− Lh

⌉
with τ = h/N̂ , β⋆ = β

a1
. Here, a1 and L are determined by Lemma 6 and Remark 1,

respectively.

2.7 Conclusions

This chapter provides some basic concepts on neutral type systems and the explicit
expression of functional v0(φ) expressed in terms of the delay Lyapunov matrix U(s).
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Furthermore, a discretized Lyapunov functional method, essential to achieve the main
result of Chapter 6, is reminded. This chapter also mentions some stability/instability
conditions for neutral type systems.
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Chapter 3

General outline of proofs based on
approximations

In recent research, considering the Lyapunov functionals with prescribed derivative
introduced in Section 2.3, the functional argument approximations (Alexandrova, 2023;
Bajodek et al., 2023; Gomez, Egorov, & Mondié, 2019) (retarded type systems), (Gomez
et al., 2021) (neutral type systems), and functional kernel approximations (Alexandrova
& Belov, 2024; Belov & Alexandrova, 2022; Gu, 1997)(retarded type systems), (Han,
2005; Han et al., 2004)(neutral type systems), have been essential in achieving necessary
and sufficient stability conditions in a moderate number of operations for time delay
systems. A quadratic form, characterized by an inner block matrix, is derived in both
cases. It is worth mentioning that the above contributions, based on functional argument
approximations or functional kernel approximations, are obtained under common steps
such as obtaining an approximated function, estimating the functional approximation
error, and computing an approximation order for sufficiency. Next, those common steps
are formulated as a general outline of proofs based on approximations, which we shall use
in the main results in the next chapters.

To do so, let us express the Lyapunov functional v0(φ) as the sum of two terms, namely

v0(φ) = vapprox0 (φ) + ΥN , φ ∈ S. (3.1)

The first one corresponds to the functional v0(φ) evaluated at the approximation of the
functional argument or the functional kernels, resulting in an approximated functional.
The second one is related to the functional approximation error.

3.1 General outline of the proofs based on functional

approximations

Here, the general outline of the proofs is summed up in five steps. In the sequel, a
functional argument approximation is considered for each step. As these steps can be
applied to the case of functional kernel approximations, some comments are separately
given in Section 3.4, indicating slight variations.

Step 1. The functional argument φ is presented in the form

φ(θ) = φN(θ) + φ̃N(θ), θ ∈ [−h, 0], (3.2)
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where φN(θ) denote the approximation of φ, given by any class of approximation
(piecewise linear approximations, polynomial approximations, among others), and
φ̃N(θ) stands for the corresponding approximation error.

Step 2. Here, φN is substituted into the functional v0(φN). It leads to an quadratic
expression

vapprox0 (φ) = v0(φN) = ξTNPNξN , (3.3)

where PN is a symmetric inner block matrix and ξN is a vector whose entries
are determined by the type of approximation. The entries of matrix PN might
depend on the delay Lyapunov matrix, its derivatives, and its integrals. As a rule
vapprox0 (φ) = v0(φN).

Step 3. The error φ̃N(θ) defined in (3.2) is bounded on the set S in such a way that

∥φ̃N∥h = ∥φ− φN∥h ⩽ εN , ∀φ ∈ S,

and that εN → 0 as N → ∞. Here, the set S is defined by (2.14).

Step 4. The approximation error on the functional argument φ is conveyed to functional
v0(φ), leading to the following expression for the functional approximation error

ΥN = v0(φ)− vapprox0 (φ), φ ∈ S. (3.4)

The value ΥN quantifies the error between vapprox0 (φ) and v0(φ) on the set of
functions φ ∈ S. Thus, this step aims to obtain an upper bound of the functional
approximation error in terms of the approximation order N with the help of Step 3
as follows:

|ΥN | = |v0(φ)− vapprox0 (φ)| ⩽ δN , ∀φ ∈ S. (3.5)

Here, δN is determined by the class of approximation under consideration and its
approximation error of φ, in particular, εN defined by Step 3.

Step 5. The stability criterion for neutral type systems is then derived by calculating
the approximation order N⋆ such that

|ΥN⋆| ⩽ δN⋆ ⩽ a0, φ ∈ S,

with a0 determined in Lemma 3, and verifying the non-negative definiteness of PN⋆ .

On the one hand, for a better understanding of this step, notice that if system
(2.1) is unstable, then it follows from Lemma 3 that there exists a function φ ∈ S
such that v0(φ) < −a0. On the other hand, non-negative definiteness of PN⋆ implies
v0(φN⋆) = ξTN⋆PN⋆ξN⋆ ⩾ 0 for any φ ∈ S. Clearly, if N⋆ is chosen in such a way that
δN⋆ ⩽ a0, equation (3.5) immediately leads us to a contradiction, as it is illustrated
by Figure 3.1.

Figure 3.1: Tolerance to conclude the system stability

−a0 0

v0(φN⋆)v0(φ)
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Remark 6 It is worth mentioning that the steps of the general outline of the proofs
can be used with functional v1(φ) instead of v0(φ). Unlike functional v0(φ), we need to
approximate an additional term in Step 3. Also, the expression of the bilinear functional
is extended to functional v1(φ); hence, the bounding of the additional term can be carried
out as in Step 4.

3.2 Functional approximation error estimate

Here, we proceed to compute and estimate the functional approximation error

ΥN = v0(φ)− vapprox0 (φ),

on the set of functions φ ∈ S in order to transfer the convergence properties of the class
of approximation to the error ΥN . To do so, considering that if the Lyapunov condition
holds, then U(s) is bounded, define the values

M1 = sup
θ∈(0,h)

∥Φ(θ)∥, M2 = sup
θ∈(0,h)

∥Ψ̃(s)∥, M3 = |λmax(D
T∆U ′(0)D)|, (3.6)

with Ψ̃(s) = Ψ(s)−DTU ′′(s)D and Φ(θ) and Ψ(s) defined in (2.10).
Here, we use the way of bounding through the bilinear functional introduced in Gomez

et al. (2021) to determine an explicit expression for the functional approximation error
ΥN :

z(φ1, φ2) = (φ1(0)−Dφ1(−h))TU(0)(φ2(0)−Dφ2(−h))

+ (φ1(0)−Dφ1(−h))T
0∫

−h

Φ(h+ s)φ2(s)ds+ (φ2(0)−Dφ2(−h))T
0∫

−h

Φ(h+ s)φ1(s)ds

+

0∫
−h

0∫
−h

φT
1 (s1)Ψ̃(s1 − s2)φ2(s2)ds2ds1, φ1, φ2 ∈ PC1

(
[−h, 0],Rn

)
.

Notice that v0(φ) = z(φ, φ) and z(φ1, φ2) = z(φ2, φ1) for any φ1, φ2. Then, considering
a function φ ∈ S and φN = φ− φ̃N , we get

v0(φN) = z(φ− φ̃N , φ− φ̃N) = v0(φ)− 2z(φ, φ̃N) + v0(φ̃N).

Observe that the term ΥN can be presented as

ΥN = v0(φ)− v0(φN) = 2z(φ, φ̃N)− v0(φ̃N) = z(φ, φ̃N) + z(φN , φ̃N). (3.7)

Based on the previous expression, we present the following lemma, which provides a
suitable estimate for the functional approximation error ΥN on the special set of functions
S.

Lemma 7 Let φ ∈ S. If its approximation φN is such that φN(0) = φ(0), φN(−h) =
φ(−h) then

1. |ΥN | ⩽ 2κ
0∫

−h

∥φ̃N(θ)∥dθ + (M2h+M3)
0∫

−h

∥φ̃N(θ)∥2dθ,
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2. if, in addition, ∥φN∥h ⩽ 1 then |ΥN | ⩽ 2κ
0∫

−h

∥φ̃N(θ)∥dθ.

Here, κ = (1 + ∥D∥)M1 +M2h+M3.

Proof : To prove the first statement, we first compute z(ψ, φ̃N) for an arbitrary ψ
and in particular, z(φ̃N , φ̃N) as follows

z(ψ, φ̃N) = (ψ(0)−Dψ(−h))TU(0)(φ̃N(0)−Dφ̃N(−h))

+ (ψ(0)−Dψ(−h))T
0∫

−h

Φ(h+s)φ̃N(s)ds+ (φ̃N(0)−Dφ̃N(−h))T
0∫

−h

Φ(h+s)ψ(s)ds

+

0∫
−h

0∫
−h

ψT (s1)Ψ̃(s1 − s2)φ̃N(s2)ds2ds1,

z(φ̃N , φ̃N) = (φ̃N(0)−Dφ̃N(−h))TU(0)(φ̃N(0)−Dφ̃N(−h))

+ 2(φ̃N(0)−Dφ̃N(−h))T
0∫

−h

Φ(h+s)φ̃N(s)ds+

0∫
−h

0∫
−h

φ̃T
N(s1)Ψ̃(s1 − s2)φ̃N(s2)ds2ds1.

Under conditions of the lemma, observe that φ̃N(−h) = φ(−h) − φN(−h) = 0 and
φ̃N(0) = φ(0)− φN(0) = 0, then the previous equations reduce to

z(ψ, φ̃N)=(ψ(0)−Dψ(−h))T
0∫

−h

Φ(h+ s)φ̃N(s)ds+

0∫
−h

0∫
−h

ψT (s1)Ψ̃(s1 − s2)φ̃N(s2)ds2ds1,

(3.8)

z(φ̃N , φ̃N)=

0∫
−h

0∫
−h

φ̃T
N(s1)Ψ̃(s1 − s2)φ̃N(s2)ds2ds1. (3.9)

Now, noticing that v0(φ̃N) = z(φ̃N , φ̃N) and considering equations (3.7), (3.8) and (3.9),
the functional approximation error is bounded as

|ΥN | = |2z(φ, φ̃N)− v0(φ̃N)| ⩽ 2∥φ(0)−Dφ(−h)∥M1

0∫
−h

∥φ̃N(s)∥ds

+ 2

∣∣∣∣∣
0∫

−h

0∫
−h

φT (s1)Ψ̃(s1 − s2)φ̃N(s2)ds2ds1

∣∣∣∣∣+
∣∣∣∣∣

0∫
−h

0∫
−h

φ̃T
N(s1)Ψ̃(s1 − s2)φ̃N(s2)ds2ds1

∣∣∣∣∣.
(3.10)

Next, we bound the absolute value of the first double integral in (3.10), taking into account
the jump of U ′ at zero,∣∣∣∣∣
∫ 0

−h

∫ θ1−0

−h

φT (θ1)Ψ̃(θ1 − θ2)φ̃N(θ2)dθ2dθ1 +

∫ 0

−h

∫ 0

θ1+0

φT (θ1)Ψ̃(θ1 − θ2)φ̃N(θ2)dθ2dθ1

−
∫ 0

−h

φT (θ)DT∆U ′(0)Dφ̃N(θ)dθ

∣∣∣∣∣ ⩽ (M2h+M3)

∫ 0

−h

∥φ̃N(θ)∥dθ.
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Dealing similarly with the second double integral in the in (3.10), we have∣∣∣∣∣
∫ 0

−h

∫ θ1−0

−h

φ̃T
N(θ1)Ψ̃(θ1 − θ2)φ̃N(θ2)dθ2dθ1 +

∫ 0

−h

∫ 0

θ1+0

φ̃T
N(θ1)Ψ̃(θ1 − θ2)φN(θ2)dθ2dθ1

−
∫ 0

−h

φ̃T
N(θ)D

T∆U ′(0)DφN(θ)dθ

∣∣∣∣∣ ⩽ (M2h+M3)

∫ 0

−h

∥φ̃N(θ)∥2dθ.

Gathering the above inequalities, we prove that the functional approximation error for
φ ∈ S admits the estimate

|ΥN | ⩽ 2κ
0∫

−h

∥φ̃N(s)∥ds+ (M2h+M3)

∫ 0

−h

∥φ̃N(s)∥2ds,

with κ = (1 + ∥D∥)M1 +M2h+M3.
To prove the second statement, we consider the functional approximation error in the

form
ΥN = v0(φ)− v0(φN) = z(φ, φ̃N) + z(φN , φ̃N)

Taking into account equation (3.8), the functional approximation error ΥN then admits
the following expression

ΥN = (φ(0)−Dφ(−h))T
0∫

−h

Φ(h+ θ)φ̃N(s)ds+

0∫
−h

0∫
−h

φT (s1)Ψ̃(s1 − s2)φ̃N(s2)ds2ds1

+(φN(0)−DφN(−h))T
0∫

−h

Φ(h+ θ)φ̃N(s)ds+

0∫
−h

0∫
−h

φT
N(s1)Ψ̃(s1 − s2)φ̃N(s2)ds2ds1,

Observe that if ∥φN∥h ⩽ 1 then an upper bound of |ΥN | is given by

|ΥN | ⩽ 2((1 + ∥D∥)M1 +M2h+M3)

0∫
−h

∥φ̃N(s)∥ds,

concluding the proof. □

Remark 7 Notice that if there exists εN in Step 3 such that εN → 0 as N → ∞, then
ΥN → 0 as N → ∞, which implies that the functional approximation approaches the
value of the exact functional v0(φ) when N tends to infinity.

3.3 Illustration of the outline using the approach of

Gomez et al. (2021)

To validate the previous general outline of proofs based on approximations, we briefly
address the steps described in Section 3.1 to obtain the stability criterion of Theorem 3
of Gomez et al. (2021).
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Figure 3.2: Function ψN in a scalar example.

Let us consider the function

ψN(θ) =
N∑
j=0

Y (jτ + θ)γj, θ ∈ [−h, 0],

where Y (s) is the system fundamental matrix, τ = h
N

and γj ∈ Rn, j = 0, N , are constant
arbitrary vectors. An example of this class of function is depicted in Figure 3.2 for the
scalar case y(t) = e−0.5t, t ∈ [0, h], with h = 4, N = 4, γ0 = 0.83, γ1 = 0.14, γ2 =
−0.04, γ3 = 0.11 and γ4 = 0.46.

Following Step 1 of the general outline of proofs, a functional argument approximation
φN = ψN is considered, leading to the functional argument representation

φ(θ) = ψN(θ) + φ̃N(θ), θ ∈ [−h, 0],

Taking into account functional v1(φ), address Step 2 by substituting φN = ψN into
the functional argument, resulting in a quadratic form structure with the help of some
properties concerning the delay Lyapunov matrix and the system fundamental matrix.
The approximated functional is given by the following expression

vapprox1 (φ) = v1(ψN) = γTKNγ (3.11)

where γ = (γT0 · · · γTN)T and

KN =
{
U((j − i)τ)

}N

i,j=0
.

Now, focus on the approximation error φ̃N in order to validate Step 3. An estimate of φ̃N

considering the function φN = ψN is provided by the next lemma.

Lemma 8 (Gomez et al., 2021) For every φ ∈ S

∥φ̃N∥h ⩽ εN =
(K + L)eLh

N/h+ L
,

where K is the constant defined in the set S and L is determined in Remark 1.
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According to Step 4 of the outline of proofs, an estimate for the functional approximation
error ΥN defined in (3.7) must be computed. In Gomez et al. (2021), an estimate of |ΥN |
is supplied for φ ∈ S, which is given by the following expression

|ΥN | ⩽ 2β∥φ̃N∥h + β∥φ̃N∥2h ⩽ δN = 2βεN + βε2N , φ ∈ S, (3.12)

β = (1 + ∥D∥)2∥U(0)∥+ 2h(1 + ∥D∥)M1 + h2M2 + h∥∆U ′(0)∥,

with M1 and M2 defined in (3.6). Notice that if we choose γj so that ψN(θj) = φ(θj),
then Lemma 7 can be applied, yielding a less conservative bound than (3.12). However,
we keep the estimate (3.12) of the functional approximation error because it leads to
Theorem 3 introduced in Section 2.6.

Having in mind Step 5 of the outline of proofs, the value a1 in Lemma 6 and δN in
(3.12) allow us to compute an approximation order N̂ such that δN̂ = a1 and φ ∈ S. The
approximation order N̂ for sufficiency is then given by

N̂ =
⌈
eLhh(K + L)

(
β⋆ +

√
β⋆ (β⋆ + 1)

)
− Lh

⌉
,

delivering, under the assumption that matrix D is Schur stable, the stability criterion

KN̂ =
{
U((j − i)τ)

}N̂

i,j=0
.

3.4 Comments on the approach based on functional

kernels approximation

In this section, we state a slight variation of the approach for the functional kernels
approximation case.

• Considering Step 1, we regard the following representation for the functional kernels:

Q(θ) = QN(θ) + Q̃N(θ), θ ∈ [−h, 0],
R(θ1, θ2) = RN(θ1, θ2) + R̃N(θ1, θ2), θ1 ∈ [−h, 0], θ2 ∈ [−h, 0]

where QN and RN denote the approximation of order N of Q and R, respectively,
and Q̃N and R̃N stand for their corresponding approximation errors.

• In Step 2, we similarly substitute QN and RN into the functional v0(φ) in the form

of (2.9) to obtain an approximated functional vapprox0 (φ) = v
(N)
0 (φ):

v
(N)
0 (φ) = φT (0)Pφ(0)+2φT (0)

0∫
−h

QN(s)γ(s)ds+

0∫
−h

0∫
−h

γT (s1)R
N(s1, s2)γ(s2)ds2ds1,

(3.13)
which is characterized by a quadratic form. In particular, notice that the discretized
Lyapunov functional method of Section 2.5 allows us to achieve a quadratic form
determined by an inner block matrix in terms of discrete evaluations of the kernels.

• Unlike the functional argument approximation case, Step 3 concerns the error
estimation of Q̃N and R̃N instead of φ̃N . Thus, we must compute an estimate
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in such a way that
∥Q̃N∥h = ∥Q−QN∥h ⩽ ζN ,

∥R̃N∥h = ∥R−RN∥h ⩽ ηN ,

and that ζN → 0 as N → ∞ and ηN → 0 as N → ∞.

• Considering functional v0(φ) in the form of (2.9) and a function φ ∈ S, the
functional approximation error in Step 4 is tackled in the following lemma:

Lemma 9 Given φ ∈ S, the functional approximation error admits the following
bound:

∣∣ΥN

∣∣ = ∣∣∣v0(φ)− v
(N)
0 (φ)

∣∣∣ ⩽ δN = 2µ

0∫
−h

∥∥∥Q̃N(s)
∥∥∥ ds+ µ2

0∫
−h

0∫
−h

∥R̃N(s1, s2)∥ds2ds1.

Here, µ = ∥D∥K + ∥A1∥.

Proof : Considering functional v0(φ) in the form of (2.9) and the expression (3.4)
for the functional approximation error, we get

ΥN = v0(φ)− vapprox0 (φ) = v0(φ)− v
(N)
0 (φ)

= 2φT (0)

0∫
−h

(Q(s)−QN(s))γ(s)ds+

0∫
−h

0∫
−h

γT (s1)(R(s1, s2)−RN(s1, s2))γ(s2)ds2ds1.

Finally, bounding each summand of the previous expression and taking into account
that φ ∈ S, we arrive at the following upper bound for the approximation error

|ΥN | ⩽ 2(∥D∥K+∥A1∥)
0∫

−h

∥∥∥Q̃N(s)
∥∥∥ ds+(∥D∥K+∥A1∥)2

0∫
−h

0∫
−h

∥R̃N(s1, s2)∥ds2ds1.

□

• Finally, Step 5 is addressed in the same manner. However, we calculate the
approximation order N⋆ such that

|ΥN⋆ | ⩽ δN⋆ ⩽ a0, φ ∈ S,

with |ΥN | determined in Lemma 9.

3.5 Conclusions

This chapter presents a general outline of proofs based on approximations deployed in
five steps for either functional argument or functional kernel approximation. It also gives
an overview of the approximation machinery for the latter chapters to obtain our main
results. The presented outline of proofs is verified for Theorem 3 introduced in Section 2.6.
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Chapter 4

Stability tests for neutral-type delay
systems: Piecewise linear
approximation of the functional
argument approach

The obtention of stability conditions for neutral type systems using piecewise linear
approximations were first attempted in Alexandrova and Zhabko (2019). This class of
approximation on a special set of functional arguments was used as a discretization scheme
to develop constructive sufficient stability conditions for scalar neutral type systems.
Nevertheless, this approach allowed obtaining a stability criterion for the retarded type
case in Alexandrova (2023), notably reducing the approximation order for sufficiency in
comparison with those provided by the stability criterion based on discretized values
of the delay Lyapunov matrix in Gomez, Egorov, and Mondié (2019). In this chapter,
motivated by Alexandrova and Zhabko (2019) and Alexandrova (2023), we use the general
outline of proofs described in Chapter 3 with a piecewise linear approximation of the
functional argument to find necessary and sufficient stability conditions via a finite number
of operations for multivariable neutral type systems.

This chapter is organized as follows. In Section 4.1, an approximated functional is
obtained by substituting a piecewise linear approximation into the functional argument.
In Section 4.2, starting from the representation (3.1) of Chapter 3, the functional
approximation error is given by noticing that if φ ∈ S then the piecewise linear
approximation belongs to the set S. In Section 4.3, the main result of this chapter
is presented. There, the necessity part follows from the fact that if system (2.1) is
exponentially stable, then we are able to find a non-negative lower bound and, in
particular, for the approximated functional argument. The sufficiency condition is proved
with the help of the instability result Lemma 3 introduced in Section 2.4. We prove that,
if the system is unstable, the approximated functional remains negative for a sufficiently
large approximation order, and this order is tractable compared to the one in Gomez et
al. (2021). Finally, we conclude with some remarks in Section 4.4.

4.1 A piecewise linear approximation scheme

In this section, for the case of piecewise linear approximation of the functional argument,
we focus on Step 1 and 2 of the general outline of Chapter 3, in other words, introduce the
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piecewise linear approximation lN and calculate the approximated functional vapprox0 (φ) =
v0(φN). We show that functional v(φN) can be expressed as a quadratic form.

Let us discretize the interval [−h, 0] at points θj = −jτ, j = 0, N , τ = h/N , and
consider the piecewise linear approximation of the function φ:

lN(s+ θj) = φ(θj)
(
1 +

s

τ

)
− φ(θj+1)

s

τ
, s ∈ [−τ, 0], j = 0, N − 1. (4.1)

The functional argument φ can be presented as

φ(s) = φN(s) + φ̃N(s), s ∈ [−h, 0], (4.2)

where, φN(s) = lN(s). Let us introduce the following vector:

φ̂ =


φ(0)
φ(θ1)
...

φ(θN)

 ,

and denote its constituents by φ̂j = φ(θj), j = 0, N . A sketch of the approximation
scheme is depicted in Figure 4.1 for a given scalar function. The scalar function φ and its
piecewise linear approximation lN are depicted in red and blue lines, respectively.
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Figure 4.1: Function lN in a scalar example.

Next, we evaluate the approximated functional vapprox0 (φ) = v0(φN). We start
evaluating each summand successively. The first one is equal to

I1(φN) = (φ(0)−Dφ(−h))TU(0)(φ(0)−Dφ(−h)) = (φ̂0 −Dφ̂N)
TU(0)(φ̂0 −Dφ̂N).

The summand I2(φ) is rewritten as follows:

I2(φ) = 2(φ(0)−Dφ(−h))T
0∫

−h

Φ(h+ θ)φ(θ)dθ
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=2(φ(0)−Dφ(−h))T
N∑
k=1

−(N−k)τ∫
−(N−k+1)τ

Φ(h+ θ)φ(θ)dθ

=2(φ(0)−Dφ(−h))T
N∑
k=1

0∫
−τ

Φ(s+ kτ)φ(s+ θN−k)ds,

with the change of variable s = θ + (N − k)τ . Substituting the piecewise linear
approximation (4.1) instead of φ(s+θN−k) into the previous expression, the approximation
of I2(φ) is given by:

I2(φN) =2(φ(0)−Dφ(−h))T
N∑
k=1

0∫
−τ

Φ(s+ kτ)
(
φ(θN−k)

(
1 +

s

τ

)
− φ(θN−k+1)

s

τ

)
ds

=2(φ̂0 −Dφ̂N)
T

N∑
k=1

(Mkφ̂N−k +Nkφ̂N−k+1) ,

where

Mk =

∫ 0

−τ

Φ(s+ kτ)
(
1 +

s

τ

)
ds, Nk =

∫ 0

−τ

Φ(s+ kτ)
(
−s
τ

)
ds.

Similarly, consider the third and fourth summands of the functional:

I3(φ) + I4(φ) =

∫ 0

−h

∫ 0

−h

φT (ξ1)Ψ̃(ξ1 − ξ2)φ(ξ2)dξ2dξ1

=
N∑
k=1

N∑
j=1

−(N−k)τ∫
−(N−k+1)τ

−(N−j)τ∫
−(N−j+1)τ

φT (ξ1)Ψ̃(ξ1 − ξ2)φ(ξ2)dξ2dξ1

=
N∑
k=1

N∑
j=1

0∫
−τ

0∫
−τ

φT (s1 + θN−k)Ψ̃(s1 − s2 + (k − j)τ)φ(s2 + θN−j)ds2ds1,

where Ψ̃(s) = Ψ(s)−DTU ′′(s)D. Substituting approximation (4.1) instead of φ(s1+θN−k)
and φ(s2 + θN−j), we get

I3(φN) + I4(φN) =
N∑
k=1

N∑
j=1

0∫
−τ

0∫
−τ

(
φ(θN−k)

(
1 +

s1
τ

)
− φ(θN−k+1)

s1
τ

)T
× Ψ̃(s1 − s2 + (k − j)τ)

(
φ(θN−j)

(
1 +

s2
τ

)
− φ(θN−j+1)

s2
τ

)
ds2ds1

=
N∑
k=1

N∑
j=1

(
φ̂T
N−kPk−jφ̂N−j+φ̂

T
N−kQk−jφ̂N−j+1+φ̂

T
N−k+1QT

j−kφ̂N−j+φ̂
T
N−k+1Pk−jφ̂N−j+1

)
.

Here,

Pl =

0∫
−τ

0∫
−τ

Ψ̃(s1 − s2 + lτ)
s1s2
τ2

ds2ds1 =

0∫
−τ

0∫
−τ

Ψ̃(s1 − s2 + lτ)
(
1 +

s1
τ

)(
1 +

s2
τ

)
ds2ds1,
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Ql =

0∫
−τ

0∫
−τ

Ψ̃(s1 − s2 + lτ)
(
1 +

s1
τ

)(
−s2
τ

)
ds2ds1,

for l = −(N − 1), N − 1. It is useful to note that Pl = PT
−l for any l. When l = 0, we

stress out that while calculating the integrals involving U ′′(s) one has to take into account
that the first derivative of the Lyapunov matrix is discontinuous at zero. Hence, those
integrals should be interpreted in the same way as in formula (2.11), namely,

P0 =

0∫
−τ

0∫
−τ

Ψ(s1 − s2)
s1s2
τ 2

ds2ds1 −
0∫

−τ

s1
τ 2

 s1−0∫
−τ

s2D
TU ′′(s1 − s2)Dds2

+

0∫
s1+0

s2D
TU ′′(s1 − s2)Dds2

 ds1 −
τ

3
DT∆U ′(0)D,

Q0 =

0∫
−τ

0∫
−τ

Ψ(s1 − s2)
(
1+

s1
τ

)(
−s2
τ

)
ds2ds1 +

0∫
−τ

(
1+

s1
τ

) s1−0∫
−τ

s2
τ
DTU ′′(s1 − s2)Dds2

+

0∫
s1+0

s2
τ
DTU ′′(s1 − s2)Dds2

 ds1 −
τ

6
DT∆U ′(0)D.

(4.3)

Here, the integrals appeared due to the jump of U ′ at zero are explicitly calculated:∫ 0

−τ

s2

τ 2
ds = 2

∫ 0

−τ

(
1 +

s

τ

)(
−s
τ

)
ds =

τ

3
. (4.4)

Adding the four summands leads to the approximation of the functional as a quadratic
form,

vapprox0 (φ) = v0(φN)
def
= φ̂TΛN φ̂. (4.5)

Here, the blocks of ΛN = {Λij}Ni,j=0 are given by:

Λ00 = U(0) +MN +MT
N + P0, ΛNN = DTU(0)D −DTN1 −N T

1 D + P0,

Λ0N = N1 − (U(0) +MT
N)D +QN−1, Λk,k+l = Ωl + ΩT

−l, l = 0, N − k − 1,

Λ0k = MN−k +NN−k+1 + Ωk, ΛkN = ΩN−k − (MT
N−k +N T

N−k+1)D, k = 1, N − 1,

where Ωj = Pj +Qj−1, j = −(N − 2), N − 1, and Λjk = ΛkjT for other indices.

In order to delve into the quadratic form of vapprox0 (φ), we express the matrix ΛN as
the sum of the following parts:

ΛN =
3∑

j=1

Λ(j),
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where,

Λ(1)=


U(0)+MN+MT

N MN−1+NN · · · M1+N2 N1−U(0)D−MT
ND

∗ On · · · On ∗
...

...
. . .

...
...

∗ −DT (MN−1+NN ) · · · −DT (M1+N2) DTU(0)D−DTN1−N T
1 D

 ,

Λ(2) =



P0 P1 P2 · · · PN−1 On

∗ 2P0 P1 · · · PN−2 PN−1
...

...
. . .

. . .
...

...
∗ ∗ ∗ 2P0 P1 P2

∗ ∗ ∗ ∗ 2P0 P1

∗ ∗ ∗ · · · ∗ P0


,

Λ(3) =



On Q0 Q1 · · · QN−2 QN−1

∗ Q−1 +QT
−1 Q0 +QT

−2 · · · QN−3 +QT
1−N QN−2

∗ ∗ Q−1 +QT
−1 · · · QN−4 +QT

2−N QN−3
...

...
. . .

...
...

∗ ∗ ∗ · · · Q−1 +QT
−1 Q0

∗ ∗ ∗ · · · ∗ On


.

Notice that all matrices here are of dimension n(N + 1) × n(N + 1), and each matrix is
symmetric.

Remark 8 Compared to retarded-type systems, the integral terms Mk, Nk, Pl, Ql involved in
the matrix ΛN depend not only on the Lyapunov matrix itself as in the retarded-type case, but
also on its first and second derivatives and the monomials s1, s2 and combinations of them.
In practice, the computation of those terms turns out to be more complex, even if a recursive
method is implemented, as the one presented in Chapter 7.

4.2 Estimate of the functional approximation error

using a piecewise linear approximation

Here, following Step 3 and 4 of the general outline of Chapter 3, we provide an estimate of
the functional argument error and the functional approximation error. The last one is partially
addressed in Lemma 7, which is given in terms of the approximation error φ̃N . In this way,
it only remains to provide an expression for φ̃N . To do so, we introduce the following lemma,
which was presented in recent work. It allows us to get an estimate for the error φ̃N of the
piecewise linear approximation of φ defined in (4.1).

Lemma 10 (Alexandrova, 2023) The piecewise linear approximation error admits a bound

∥φ̃N (s+ θj)∥ ⩽
1

2
K2(−s)(s+ τ), s ∈ [−τ, 0],

for all j = 0, N − 1 and any function φ ∈ S.

Proof : Using the Taylor formula with the remainder in the integral form (see Appendix A),
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we get for s ∈ [−τ, 0] :

φ(s+ θj) = φ(θj) + sφ′(θj) +

0∫
s

(t− s)φ′′(t+ θj)dt,

φ(θj+1) = φ(θj)− τφ′(θj) +

0∫
−τ

(t+ τ)φ′′(t+ θj)dt.

Substituting this in the expression for φ̃N (s+ θj) obtained from (4.1) we arrive at

∥φ̃N (s+ θj)∥ =

∥∥∥∥∥∥
0∫

s

(t− s)φ′′(t+ θj)dt +
s

τ

0∫
−τ

(t+ τ)φ′′(t+ θj)dt

∥∥∥∥∥∥
=

∥∥∥∥∥∥
(
1 +

s

τ

) 0∫
s

tφ′′(t+ θj)dt + s

s∫
−τ

(
1 +

t

τ

)
φ′′(t+ θj)dt

∥∥∥∥∥∥ .
Since φ ∈ S, we have

∥φ̃N (s+ θj)∥ ⩽ K2

(1 + s

τ

) 0∫
s

(−t)dt + (−s)
s∫

−τ

(
1 +

t

τ

)
dt

 = K2 (−s)(s+ τ)

2
, s ∈ [−τ, 0].

□
Following Alexandrova (2023), we notice that if φ ∈ S then ∥φ(θ)∥ ⩽ ∥φ̂0∥ = 1, ∥φN (θ)∥ ⩽
∥φ̂0∥ = 1, θ ∈ [−h, 0], and

0∫
−h

∥φ̃N (θ)∥dθ =
N∑
k=1

0∫
−τ

∥φ̃N (s+ θN−k)∥ds ⩽
1

2
K2N

0∫
−τ

(−s) (s+ τ) ds =
1

12
K2 h

3

N2
, (4.6)

By construction of the piecewise linear approximation, we also have that φ̃N (−h) = φ(−h) −
φN (−h) = 0 and φ̃N (0) = φ(0)−φN (0) = 0. Then, It follows from the statement 2 of Lemma 7
and inequality (4.6) that the functional approximation error admits the following estimate:

|ΥN | ⩽ 2κ
0∫

−h

∥φ̃N (θ)∥dθ ⩽ κ
1

6
K2 h

3

N2
,

equivalently,

|ΥN | ⩽ c0
N2

= δN , c0 =
1

6
K2h3κ, (4.7)

where κ = (1 + ∥D∥)M1 +M2h +M3, and constants M1, M2 and M3 are defined in Step 4 of
the general outline of Chapter 3.

Remark 9 Notice that, for any ε > 0, if

N ⩾

√
c0
ε
,

then |ΥN | ⩽ ε.
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4.3 Stability criterion based on a piecewise linear

approximation

In this section, we present our main result reflecting a comprehensive treatment of a necessary
and sufficient stability test in a moderate number of operations, which may be given based
on the general outline of Chapter 3, particularly in Sections 4.1 and 4.2 for a piecewise linear
approximation. As discussed in Step 5 of the general outline, the stability criterion is derived by
calculating an approximation order N such that the estimate of the functional approximation
error δN = a0. We emphasize that the criterion expressed in terms of the non-negative
semi-definiteness of matrix ΛN is mathematically tractable, i.e., it requires the verification of
just one condition evaluated at a fixed, explicitly giving a value of N.

Theorem 4 System (2.1) is exponentially stable, if and only if the Lyapunov condition holds
and the matrix

ΛN0 ≥ 0,

where N0 =

⌈√
c0
a0

⌉
, with c0 and a0 determined in (4.7) and Lemma 3, respectively.

Proof : Necessity. It follows from the fact that

v0(φ) =

∫ +∞

0
xT (t, φ)Wx(t, φ)dt ⩾ 0

for any φ ∈ PC1
(
[−h, 0],Rn

)
by construction of the functional, if system (2.1) is exponentially

stable. In particular, for φN = lN ∈ PC1
(
[−h, 0],Rn

)
we have

v0(φN ) = φ̂TΛN φ̂ ⩾ 0,

for any φ̂ and N which implies ΛN ≥ 0.
Sufficiency. We remind that the functional approximation error can be expressed as:

ΥN = v0(φ)− vapprox0 (φ) = v0(φ)− φ̂TΛN φ̂, φ ∈ S.

Formulae (4.5) and (4.7) imply that for any N and any φ ∈ S,

φ̂TΛN φ̂ = v0(φ)−ΥN ⩽ v0(φ) + δN . (4.8)

By contradiction, assume that system (2.1) is unstable. By Lemma 3, there exists φ̃ ∈ S such
that v0(φ̃) < −a0. Moreover, the choice of N0 implies δN0 = c0/N

2
0 ⩽ a0. Hence, taking (4.8)

with N = N0 and φ = φ̃ we get

φ̂TΛN0φ̂ ⩽ v0(φ̃) + δN0 < −a0 + a0 = 0,

which contradicts ΛN0 ≥ 0. □

4.4 Conclusions

Thanks to the piecewise linear approximation, which better approximates arbitrary functional
arguments than fundamental matrices combinations, and thanks to the instability result on the
set S, which allows bounding the approximation error, the obtained stability criterion relies on
verifying the non-negativity of a matrix with substantially reduced approximation orders.
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Notice, however, that this criterion requires the computation of integrals of the delay
Lyapunov matrix and its first and second derivative, which imply a substantial computational
burden. A recursive method that overcomes this issue is introduced in Chapter 7.
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Chapter 5

Stability test for neutral-type delay
systems: Legendre polynomial
approximation of the functional
argument

As evidenced in the previous chapter, a better approximation of the functional argument
provides tractable approximation orders for evaluating the system stability. It is well-known that
piecewise linear approximation is not the best; however, it is also shown that this approximation
allows a considerable reduction of the approximation order. Thus, a natural idea is to explore
the approximation theory for better approximations. In the approximation theory, orthogonal
polynomials used as a base of approximation are notable for their fast convergence towards
a given function. In particular, the Legendre polynomials are considered in this chapter to
approximate the functional argument. They are chosen because of their rapid convergence
for smooth arguments, orthogonality with respect to the Lebesgue measure, and second-order
recurrence satisfied by the coefficients (Wang & Xiang, 2012). Moreover, it is worth highlighting
that, for retarded type systems, this approach allowed obtaining similar or tighter approximation
orders in Bajodek et al. (2023) than those using piecewise linear approximations in Alexandrova
(2023). Thus, this chapter aims to approximate the functional argument via the Legendre
polynomial approximation in order to achieve a stability criterion for neutral type systems. The
result is obtained following the general outline of proofs of Chapter 3.

This chapter is organized as follows. Section 5.1 introduces some preliminaries on
Legendre polynomials, such as definition and properties. In Section 5.2, a Legendre
polynomial approximation scheme is presented, relying on substituting the Legendre polynomial
approximation instead of φ into the functional. This scheme derives a quadratic form, whose
inner block matrix is characterized by integrals of the delay Lyapunov matrix multiplied by the
Legendre polynomials. The approximation error of the functional argument and the functional
approximation error are estimated and bounded in Section 5.3. The main result of this chapter,
a stability criterion in a tractable number of operations, is proven in Section 5.4. Finally, some
conclusions are given in Section 5.5.

5.1 Preliminaries on Legendre polynomials

In this section, we briefly remind the definition and some properties of the Legendre polynomials.

The Legendre polynomials pk on the segment [−h, 0] are defined as
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pk(s) = (−1)k
k∑

i=0

(−1)i
(
k
i

)(
k + i
i

)(
s+ h

h

)i

, ∀k ∈ N,

where

(
k
i

)
stands for the binomial coefficient. Notice that the first polynomials are equal to

p0(s) = 1, p1(s) =
2s

h
+ 1, p2(s) =

6s

h
+

6s2

h2
+ 1.

The set of Legendre polynomials {pk}k∈N satisfy the following properties (Gautschi, 2006;
Gottlieb & Orszag, 1977):

1. Orthogonality: ∀i, j ∈ N,

0∫
−h

pi(s)pj(s)ds =


0, i ̸= j,

h

2i+ 1
, i = j.

2. Boundary conditions:

∀k ∈ N, pk(0) = 1, pk(−h) = (−1)k.

3. Differentiation: The following rule is satisfied

∀k ⩾ 2, p′k(s)− p′k−2(s) =
2(2k − 1)

h
pk−1(s).

The first derivative of the Legendre polynomials satisfies

p′k(s) =

k−1∑
i=0

(2i+ 1)

h
(1− (−1)k+i)pi(s), k ⩾ 1.

5.2 A Legendre polynomial approximation scheme

This section introduces a Legendre polynomial approximation for the functional argument φ
of functional (2.10). It relies on the general outline of proofs described in Chapter 3, whose
approximation leads to a quadratic form determined by the Legendre polynomials and the delay
Lyapunov matrix.

It follows from Step 1 in the general outline of Chapter 3 that any function φ ∈
PC1

(
[−h, 0],Rn

)
can be written as

φ(s) = φN (s) + φ̃N (s), s ∈ [−h, 0],

where φN is the functional argument approximation and φ̃N is its approximation error. A sketch
of the approximation scheme using Legendre polynomials is depicted in Figure 5.1 for a given
scalar function and low orders of approximations.
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Figure 5.1: Function φ approximated by Legendre polynomials in a scalar example.

Let us consider a N -order Legendre polynomial approximation of this function, given by

φN (θ) =


φ(−h), θ = −h

pT
N (θ)ΦN , θ ∈ (−h, 0), N ∈ N,

φ(0), θ = 0.

(5.1)

Here,

ΦN =

 0∫
−h

pN (s)pT
N (s)ds

−1 0∫
−h

pN (s)φ(s)ds ∈ RNn,

pN (θ) = [p0(θ)In p1(θ)In · · · pN−1(θ)In]
T , θ ∈ [−h, 0],

where {pk}k∈0,N−1 is the set of Legendre polynomials of order lower than N and, vector

ΦN ∈ RnN collects the projection coefficients associated to the Legendre polynomials, which
is guaranteed thanks to the orthogonal property of the Legendre polynomials. Following Step
2 of the general outline, we substitute the Legendre polynomial approximation (5.1) instead
of φ into the functional (2.10), resulting in the approximated functional v0(φN ), which is the
Legendre approximation of functional (2.10). Observe that I2 reduces to

I2(φN ) = 2(φ(0)−Dφ(−h))T
∫ 0

−h
Φ(h+ s)pT

N (s)ΦNds = 2(φ(0)−Dφ(−h))TJ1NΦN , (5.2)

where

J1N =

∫ 0

−h
Φ(h+ s)pT

N (s)ds.

Evaluating the summand I3 and I4 of functional (2.10), we get

I3(φN ) + I4(φN ) =

∫ 0

−h

∫ 0

−h
ΦT
NpN (s1)Ψ(s1 − s2)p

T
N (s2)ΦNds2ds1

−
∫ 0

−h

∫ s1

−h
ΦT
NpN (s1)D

TU ′′(s1 − s2)DpT
N (s2)ΦNds2ds1

−
∫ 0

−h

∫ 0

s1

ΦT
NpN (s1)D

TU ′′(s1 − s2)DpT
N (s2)ΦNds2ds1

−
∫ 0

−h
ΦT
NpN (s)DT∆U ′(0)DpT

N (s)ΦNds

= ΦT
N (J2N − J3N − J4N )ΦN .

(5.3)

Cinvestav Department of Automatic Control



44 Chapter 5

Here,

J2N =

∫ 0

−h

∫ 0

−h
pN (s1)Ψ(s1 − s2)p

T
N (s2)ds2ds1,

J3N =

∫ 0

−h

(∫ s1−0

−h
pN (s1)D

TU ′′(s1 − s2)DpT
N (s2)ds2 +

∫ 0

s1+0
pN (s1)D

TU ′′(s1 − s2)DpT
N (s2)ds2

)
ds1,

J4N =

∫ 0

−h
pN (s)DT∆U ′(0)DpT

N (s)ds.

Note that, for any Θ(s) = ΘT (−s), s > 0, we have

0∫
−h

0∫
s1

pi(s1)pj(s2)Θ(s1 − s2)ds2ds1 =

0∫
−h

s1∫
−h

pi(s2)pj(s1)Θ
T (s1 − s2)ds2ds1.

Hence, J2N can be rewritten as

J2N = He

 0∫
−h

s1∫
−h

pN (s1)Ψ(s1 − s2)p
T
N (s2)ds2ds1

,
In view of (5.2) and (5.3), we rewrite the approximation of the functional corresponding to the
Legendre polynomial approximation (2.10) as:

vapprox0 (φ) = v0(φN )
def
= ΞTΠNΞ, (5.4)

where

ΠN =

[
U(0) J1N

⋆ J2N − J3N − J4N

]
, Ξ = [(φ(0)−Dφ(−h))T ΦT

N ]T .

Remark 10 Unlike the integral terms Mk, Nk, Pl, Ql involved in the matrix ΛN in Chapter 4,
where these integrals are expressed in terms of monomials of degree equal to one, the integral
terms J1N , J2N , J3N and J4N are now given in terms of monomials sk, k ∈ 0, N − 1,
whose maximum degree is determined by the approximation order of the Legendre polynomial
approximation. The recursive method of integral computations in Section 7 also allows computing
the integrals J1N , J2N , J3N and J4N .

5.3 Estimate of the functional approximation error

using the Legendre polynomial approximation

Considering Step 3 and 4 of the general outline of proofs of Chapter 3, this section aims
to provide an upper bound estimation for the approximation error φ̃N and the functional
approximation error ΥN .

As formulated in Step 3, we require the error quantification of the approximation error φ̃N

on the set S in terms of the approximation order. Next, a crucial lemma on the Legendre
convergence rate error is presented, which is slightly modified to the one in (Bajodek, 2022,
Lemma 2.1).

Lemma 11 The Legendre polynomial approximation error admits a bound

∥φ̃N∥h ⩽
7µN

N !
, µ = max

(
1, 2hK3

)
,
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for any function φ ∈ S.

Proof : For N = 1, 2, we have roughly

∥φ̃1∥h =

∥∥∥∥φ(θ)− 1
h

∫ 0

−h
φ(s)ds

∥∥∥∥
h

⩽ 2∥φ∥h = 2,

∥φ̃2∥h =

∥∥∥∥φ(θ)− 1
h

∫ 0

−h
φ(s)ds− 2θ+h

h
3
h

∫ 0

−h

2s+h
h φ(s)ds

∥∥∥∥
h

⩽ 3.5∥φ∥h = 3.5.

(5.5)

According to Wang and Xiang (2012) and Bajodek (2022, Lemma 2.1), for any N ⩾ 3 and
2 ⩽ k ⩽ N − 1, an upper bound of the Legendre approximation error is given by

∥φ̃N∥h ⩽
(hK)k+1

2k(k − 1)(N − 3
2) . . . (N − k + 1

2)
, (5.6)

with k and K defined in the set S. Taking k = N − 1 and multiplying and dividing by N !, we
have that

∥φ̃N∥h ⩽
2(hK2 )N

N !

N(N − 1)(N − 2) . . . 2

(N − 2)(N − 3
2) . . . (

3
2)

=
2(hK2 )N

N !

N(N − 1)(N − 2)

(N − 2)(N − 3
2)(N − 5

2)

N−3∏
j=2

j

j − 1
2

⩽
2(hK2 )N

N !

N(N − 1)

(N − 3
2)(N − 5

2)

N−3∏
j=2

4

3
=

2(hK2 )N

N !

N(N − 1)

(N − 3
2)(N − 5

2)

(
4

3

)N−4

⩽
2(hK2 )N

N !

N

(N − 5
2)

(
4

3

)N−3

⩽
12(hK2 )N

N !

(
4

3

)N−3

=
81
16(

2hK
3 )N

N !
.

(5.7)

Finally, considering the maximum between (5.5) and (5.7), we arrive at

∥φ̃N∥h ⩽
7µN

N !
.

□

Now, we focus on bounding the functional approximation error. It follows from the functional
argument approximation (5.1) and statement 1 of Lemma 7 that the functional approximation
error ΥN is bounded as

|ΥN | ⩽ 2κ
0∫

−h

∥φ̃N (θ)∥dθ + (M2h+M3)

0∫
−h

∥φ̃N (θ)∥2dθ,

where κ = (1+ ∥D∥)M1+M2h+M3. Using Lemma 11, the functional approximation error ΥN

using the Legendre polynomial approximation admits the following upper bound:

|ΥN | ⩽ δN = 2c1∥φ̃N∥h + c2∥φ̃N∥2h

⩽ 2c1
7µN

N !
+ c2

(
7µN

N !

)2

,
(5.8)

c1 = hκ, c2 = h(hM2 +M3),

with µ defined in Lemma 11.
The following lemma plays a key role in achieving our stability criterion for neutral type

systems based on Legendre approximation. It relates the approximation order N with a given
upper bound of the approximation error φ̃N .
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Lemma 12 Consider φ ∈ S. The Legendre approximation error φ̃N satisfies the following
inequality

∥φ̃N∥h ⩽ ε, (5.9)

∀N ⩾ µ exp

[
1 +W

(
− 1

exp(1)µ
ln

(
exp(1)ε

7

))]
, µ = max

(
1, 2hK3

)
,

where W(z) is the Lambert function given by W : z → y, z ∈ R+, y ∈ R+, which is uniquely
defined by the relation yey = z. Here, ε > 0 is assumed small enough so that the function W is
well defined.

Proof : It follows from Lemma 11 that the approximation error of φ considering Legendre
approximations is given by

∥φ̃N∥h ⩽
7µN

N !
.

Applying the logarithm to the previous inequality, we have

ln(∥φ̃N∥h) ⩽ ln(7) +N ln (µ)−
N∑
j=1

ln(j) = ln(7) +N ln (µ)−
N∑
j=2

ln(j). (5.10)

Since the ln(·) function is monotonically increasing, we obtain

ln(j) ⩾

j∫
j−1

ln(s)ds, j = 2, N.

Thus, we are able to bound inequality (5.10) as follows

ln(∥φ̃N∥h) ⩽ ln(7) +N ln (µ)−
N∫
1

ln(s)ds = ln(7) +N ln (µ)−N(ln(N)− 1) + (ln(1)− 1)

= ln

(
7

exp(1)

)
−N ln

(
N

exp(1)µ

)
,

equivalently,
1

exp(1)µ
ln

(
exp(1)∥φ̃N∥h

7

)
⩽ − N

exp(1)µ
ln

(
N

exp(1)µ

)
.

Now, if N is chosen in such a way that

− N

exp(1)µ
ln

(
N

exp(1)µ

)
⩽

1

exp(1)µ
ln

(
exp(1)ε

7

)
,

then this implies that ∥φ̃N∥h ⩽ ε. Denoting y = ln
(

N
exp(1)µ

)
, the previous relation can be

written as

−yey ⩽
1

exp(1)µ
ln

(
exp(1)ε

7

)
,

which is solved by using the Lambert function given by

y = ln

(
N

exp(1)µ

)
⩾ W

(
− 1

exp(1)µ
ln

(
exp(1)ε

7

))
.

Here, we assume that ε is small enough so that the argument of W is positive. Hence, if

Cinvestav Department of Automatic Control



Stability test for neutral-type delay systems: Legendre polynomial approximation of the
functional argument 47

N ⩾ µ exp

[
1 +W

(
− 1

exp(1)µ
ln

(
exp(1)ε

7

))]
,

then ∥φ̃N∥h ⩽ ε. □

Remark 11 Notice that Lemma 12 is particularly satisfied with ε ⩽ 7
exp(1) , ensuring that the

argument of function W is non-negative definite. Also, observe that if N ⩾ µ exp(1), then
∥φ̃h∥ ⩽ ε = 7

exp(1) .

5.4 Stability criterion based on the Legendre

polynomials approximation

Summarizing, we have proved that the substitution of the Legendre polynomial approximation
of φ into functional (2.10) leads to a quadratic form (5.4) characterized by a constant block
matrix and that the functional approximation error ΥN admits the upper bound (5.8).

Next, the approximated functional (5.4) and the instability result in Lemma 3 allow us to
present the main result of this chapter, a stability criterion for neutral type systems based on
the Legendre polynomials approximation. This criterion relies on verifying the non-negativity
of matrix ΠN for a given tractable value of N .

Theorem 5 System (2.1) is exponentially stable, if and only if the Lyapunov condition holds
and the matrix

ΠN1 ≥ 0,

where,

N1 =

⌈
µ exp

[
1 +W

(
− 1

exp(1)µ
ln

(
exp(1)µ̂

7

))]⌉
,

E(a0) = −c1
c2

+

√√√√(c1
c2

)2

+
a0
c2
, µ̂ = min

(
E(a0),

7

exp(1)

)
.

(5.11)

with c1, c2 and µ defined in Lemma 12 and a0 determined in Lemma 3.

Proof : Necessity. Since system (2.1) is exponentially stable, it is also stable, thus by the
construction of the functional, we have

v0(φ) =

∫ +∞

0
xT (t, φ)Wx(t, φ)dt ⩾ 0,

for any φ ∈ PC1
(
[−h, 0],Rn

)
. In particular, for the Legendre polynomial approximation φN :

[−h, 0] → Rn given by (5.1), it follows from (5.4) that:

v0(φN ) = Ξ⊤ΠNΞ ⩾ 0,

for any vector Ξ and any approximation order N , which implies that ΠN ≥ 0.

Sufficiency. By contradiction, assume that system (2.1) is unstable but that ΠN1 is
non-negative definite. Moreover, recall that v0(φ) can be expressed as:

v0(φ) = v0(φN1) + ΥN1 .
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By Lemma 3, there exists φ̃ ∈ S such that v0(φ̃) < −a0, which implies that

v0(φ̃N1) = v0(φ̃)−ΥN1 < −a0 + |ΥN1 |.

Now, consider the equation
0 = a0 − 2c1∥φ̃N∥h − c2∥φ̃N∥2h.

It is straightforward to see that its unique positive root is given by:

∥φ̃N∥h = E(a0) = −c1
c2

+

√√√√(c1
c2

)2

+
a0
c2
.

Then, if we take N = N1 and consider µ̂ = min
(
E(a0), 7

exp(1)

)
so that the Lambert function

W is well-defined, it implies that ∥φ̃N1∥h ⩽ µ̂ and consequently, |ΥN1 | ⩽ a0. Hence,

v0(φ̃N1) < −a0 + a0 = 0,

which contradicts ΠN1 ≥ 0. □

5.5 Conclusions

This chapter is dedicated to approximating the functional argument using Legendre polynomials
projections, extending the ideas introduced in Bajodek et al. (2023) for retarded type systems.
A stability criterion for neutral-type linear is formulated. This result benefits from the
super-geometric convergence property of Legendre polynomials approximation, which allows the
reduction of the numerical complexity of the criterion. It is due to the presence of logarithms
in the computation of the approximation order for sufficiency.

For Legendre approximation of the functional argument, the numerical computation of
integrals J1N , J2N , J3N and J4N is more demanding than for the piecewise case. Notice
that matrix ΛN in the piecewise linear approximation approach incorporates integrals of the
delay Lyapunov matrix multiplied by monomials up to the third degree, contrary to the case
of ΠN in the Legendre polynomial approach, where the involved integrals depend on the delay
Lyapunov matrix multiplied by Legendre polynomials of N -order. A recursive approach for this
case is presented in Chapter 7.
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Chapter 6

Stability test for neutral-type delay
systems: A discretized Lyapunov
functional method

In this chapter, the functional kernels approximation scheme of Gu (1997) recalled in Section 2.5
is applied to functional with prescribed derivative for neutral type systems. An interesting
feature of this approach is that it achieves sufficient stability conditions depending on discrete
values of the functional kernels (see Theorem 2). It is worth noticing that, for Lyapunov
functionals with prescribed derivative, the functional kernels take the form of the delay Lyapunov
matrix that can be computed through the semi-analytic method (2.7). Then, the computation
of discretized values of the delay Lyapunov matrix is possible. This suggests that a similar
criterion to Theorem 3, given in terms of the delay Lyapunov matrix, is feasible without the
need for integrals of the delay Lyapunov matrix as in Theorem 4 and Theorem 5.

The above observations are indeed developed in Belov and Alexandrova (2022) and
Alexandrova and Belov (2024) for retarded type systems in the Lyapunov functional with
prescribed derivative framework. As a result, the obtained stability criterion combines the
elegant structure of the delay Lyapunov matrix-based stability conditions of Lemma 5 with
approximation orders comparable to those in Alexandrova (2023); Bajodek et al. (2023). In
this chapter, we extend the result of Alexandrova and Belov (2024) to the case of neutral type
systems.

This chapter is organized as follows. In Section 6.1, functional (2.9) is discretized considering
a piecewise linear approximation of its kernels. We also present a key lemma, relating the
quadratic form of the discretized functional to the necessary conditions of Theorem 3. The
quantification of the functional approximation error over the special set S of bounded functions
is developed in Section 6.2. The main result of this chapter, a stability criterion expressed
through the positive definiteness of a block matrix based on discrete evaluations of the delay
Lyapunov matrix, is addressed in Section 6.3. Finally, we conclude with some remarks and
conclusions in Section 6.4.

6.1 Functional kernels approximation: functional

v0(φ)

Here, the discretized Lyapunov functional method proposed in Gu (1997) and reminded for the
neutral case in Section 2.5 is applied to functional (2.9), which has a structure similar to the
retarded case structure and admits a quadratic lower bound on a special set of functions as
proved for the retarded case in Medvedeva and Zhabko (2015). It is worth emphasizing that
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neither the discretization of the functional derivative nor an additional positive term like those
of the complete type functional (Kharitonov & Zhabko, 2003) is required in this approach.

To this aim, discretize the interval [−h, 0] by equidistant points θi = −iτ, i = 0, N , where
τ = h/N, and introduce

Qi = Q(θi) = UT ((N − i)τ)−DTU(iτ),

Rij = R(θi, θj) = U((j − i)τ), i, j = 0, N.

Following Step 1 of the general outline of Chapter 3, we consider a representation for the
functional kernels as follows:

Q(θ) = QN (θ) + Q̃N (θ), θ ∈ [−h, 0],
R(θ1, θ2) = RN (θ1, θ2) + R̃N (θ1, θ2), θ1 ∈ [−h, 0], θ2 ∈ [−h, 0]

where QN (s) and RN (s1, s2) denote the approximation of order N of Q(s) and R(s1, s2),
respectively, and Q̃N and R̃N stand for their corresponding approximation errors. As shown in
Section 2.5, the method relies on approximating the functional kernels Q(s) and R(s1, s2) by
piecewise linear matrix functions QN and RN given by the following formulae:

QN (s+ θi) = Qi +
(
Qi−1 −Qi

) s
τ
, s ∈ [0, τ ],

RN (s1 + θi, s2 + θj) = Rij + (Ri,j−1 −Rij)
s2 − s1
τ

, 0 ⩽ s1 ⩽ s2 ⩽ τ,

RN (s1 + θi, s2 + θj) = Rij + (Ri−1,j −Rij)
s1 − s2
τ

, 0 ⩽ s2 ⩽ s1 ⩽ τ,

(6.1)

i, j = 1, N. Here, the expressions are simplified thanks to Rij = Ri−1,j−1 in comparison with
more general expressions in (2.17). Considering Step 2 of the general outline of Chapter 3, we
replace the kernels in functional (2.9) by their piecewise linear approximations, arriving at:

v
(N)
0 (φ) =φT (0)Pφ(0) + 2φT (0)

0∫
−h

QN (s)γ(s)ds+

0∫
−h

0∫
−h

γT (s1)R
N (s1, s2)γ(s2)ds2ds1, (6.2)

where γ(s) = Dφ′(s) + A1φ(s). Furthermore, following the same steps as in Section 2.5, we
conclude that for any φ ∈ C1, the approximated functional (6.2) admits a representation (Gu,
1997; Han, 2005)

vapprox0 (φ) = v
(N)
0 (φ) =

1

τ

τ∫
0

(
φT (0) ΨT (s)

)
AN

(
φ(0)
Ψ(s)

)
ds. (6.3)

Here,

AN =

(
P QN

QT
N KN

)
,

QN =
(
Q0, Q1, · · · , QN

)
=
(
UT (Nτ)−DTU(0), · · · , UT (τ)−DTU((N − 1)τ), U(0)−DTU(Nτ)

)
,

KN =
{
Rij

}N

i,j=0
=
{
U((j − i)τ)

}N

i,j=0
,

Ψ(s) =
(
ψT
0 (s), ψ

T
1 (s), . . . , ψ

T
N (s)

)T
,
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ψ0(s) =

0∫
θ1+s

γ(ξ)dξ, ψN (s) =

θN+s∫
θN

γ(ξ)dξ, ψi(s) =

θi+s∫
θi+1+s

γ(ξ)dξ, i = 1, N − 1.

Remark 12 We would like to highlight that the quadratic form (6.3) represents an exact
equality, as opposed to the lower bound obtained in (2.19), which arose from majorizations.
This precise form is derived from the exact functional (2.9). An important implication of this is
that there is no need to discretize the functional derivative (2.8).

Noticing that matrix KN in Lemma 5 is a block of matrix AN , the next lemma aims to
prove the direct connection between matrix AN and matrix KN . The result is achieved using
the Schur complement.

Lemma 13 Given N ∈N, KN > 0 implies AN ≥ 0.

Proof : Let us decompose matrices KN and AN as follows:

KN =

(
KN−1 BN

BT
N U(0)

)
,

AN =

(
P QN

QT
N KN

)
=

 P Q̃N CN
Q̃T

N KN−1 BN

CT
N BT

N U(0)

 ,

where

KN−1 =
{
U((j − i)τ)

}N−1

i,j=0
, BN =

(
UT (Nτ), · · · , UT (τ)

)T
,

Q̃N =
(
Q0, · · · , QN−1

)
=
(
UT (Nτ)−DTU(0), · · · , UT (τ)−DTU((N − 1)τ)

)
,

CN = U(0)−DTU(Nτ).

First, KN > 0 implies U(0) > 0 and, by the Schur complement,

T = KN−1 − BNU
−1(0)BT

N > 0.

Here, T =
{
Tij
}N−1

i,j=0
with

Tij = U((j − i)τ)− U((N − i)τ)U−1(0)UT ((N − j)τ).

Now, consider the matrix AN and construct the Schur complement P of the block U(0) > 0 in
(6.4):

P =

(
P Q̃N

Q̃T
N KN−1

)
−
(
CN
BN

)
U−1(0)

(
CT
N BT

N

)
=

(
DTT D −DTT
−T D T

)
,

D =
(
DT On · · · On

)T
.

Next, the Schur complement of block T > 0 of matrix P is

DTT D −DTT T −1T D = OnN .

This implies P ≥ 0 and consequently, AN ≥ 0. □

Remark 13 It follows from Lemmas 5 and 13 that if system (2.1) is exponentially stable, then
KN > 0 and consequently, the discretized functional (6.3) is nonnegative for any N ∈ N.

Cinvestav Department of Automatic Control



52 Chapter 6

6.2 Estimate of the functional approximation error

ΥN

In this instance, a quadratic form for functional (2.9) is obtained via piecewise linear
approximation for its kernels functional. Now, let us turn our attention to seeking an estimate
for the functional approximation error

ΥN = v0(φ)− v
(N)
0 (φ), φ ∈ S.

The developments rely on the following technical lemma related to Step 3 of the general
outline, which estimates the error between a twice-differentiable matrix function and its linear
approximation on the basis of Taylor formula with integral remainder:

Lemma 14 (Alexandrova & Belov, 2024) Given a matrix function G ∈ C2
[0,τ ] and the

corresponding linear matrix function

Glin(s) = G(0) +
(
G(τ)−G(0)

) s
τ
,

the following bound holds true:

∥G(s)−Glin(s)∥ ⩽ G′′
max

s(τ − s)

2
, s ∈ [0, τ ],

G′′
max = max

s∈[0,τ ]
∥G′′(s)∥.

Following Step 4 of the general outline of Chapter 3, it stems from Lemma 9 that the
functional approximation error admits the following estimate:

|ΥN | ⩽ 2∥φ∥h∥γ∥h

0∫
−h

∥∥Q(ξ)−QN (ξ)
∥∥dξ + ∥γ∥2h

0∫
−h

0∫
−h

∥R(ξ1, ξ2)−RN (ξ1, ξ2)∥dξ2dξ1. (6.4)

Now, let us bound the first integral in (6.4):

I2 =

0∫
−h

∥∥Q(ξ)−QN (ξ)
∥∥dξ = N∑

j=1

θj−1∫
θj

∥∥Q(ξ)−QN (ξ)
∥∥dξ

=
N∑
j=1

∫ τ

0

∥∥Q(s+ θj)−QN (s+ θj)
∥∥ds.

Note that s + (N − j)τ ∈ [0, h], jτ − s ∈ [0, h] for any j = 1, N and s ∈ [0, τ ]. Therefore,
according to Remark 2 in Chapter 2,

Q(s+ θj) = UT (s+ (N − j)τ)−DTU(−s+ jτ) ∈ C2
[0,τ ],

considering the corresponding one-sided derivatives of U at 0 and h. Hence, it is possible to
apply Lemma 14 with G(s) = Q(s+ θj) and

G
′′
max ⩽ M̃1

def
= max

s∈[0,h]
∥U ′′T (h− s)−DTU

′′
(s)∥
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for any j. Finally,

I2 ⩽ M̃1

N∑
j=1

∫ τ

0

s(τ − s)

2
ds =

M̃1h
3

12N2
.

Let us now move to the second integral in (6.4):

I3 =

0∫
−h

0∫
−h

∥R(ξ1, ξ2)−RN (ξ1, ξ2)∥dξ2dξ1

=
N∑
i=1

N∑
j=1

τ∫
0

τ∫
0

∥R(s1 + θi, s2 + θj)−RN (s1 + θi, s2 + θj)∥ds2ds1.

To bound this expression, introduce first matrix functions Gk(s) = U(s + kτ), and the
corresponding linear functions

Glin
k (s) = U(kτ) +

(
U((k + 1)τ)− U(kτ)

) s
τ
, s ∈ [0, τ ],

for k = −N,N − 1. Notice that, by the symmetry property (2.4),

R(s1 + θi, s2 + θj) = U(s1 − s2 + (j − i)τ) =

{
Gj−i(s1 − s2), 0 ⩽ s2 ⩽ s1 ⩽ τ

GT
i−j(s2 − s1), 0 ⩽ s1 ⩽ s2 ⩽ τ.

Similarly, substituting expressions for Rij , Ri−1,j , Ri,j−1 in (2.17), we get

RN (s1 + θi, s2 + θj) =

{
Glin

j−i(s1 − s2), 0 ⩽ s2 ⩽ s1 ⩽ τ

[Glin
i−j(s2 − s1)]

T , 0 ⩽ s1 ⩽ s2 ⩽ τ.

This directly implies

I3 ⩽
N∑
i=1

N∑
j=1

τ∫
0

s1∫
0

∥Gj−i(s1 − s2)−Glin
j−i(s1 − s2)∥ds2ds1

+

N∑
i=1

N∑
j=1

τ∫
0

τ∫
s1

∥GT
i−j(s2 − s1)− [Glin

i−j(s2 − s1)]
T ∥ds2ds1

= 2
N∑
i=1

N∑
j=1

τ∫
0

s1∫
0

∥Gj−i(s)−Glin
j−i(s)∥dsds1.

Let us pay attention to the fact that Gk ∈ C2
[0,τ ] for any fixed k from −N to N−1 (Rodriguez

et al., 2004), considering the corresponding right and left derivatives at the end-points. Indeed,
the only discontinuity points of the second derivative of U on [−h, h] are 0 and ±h, and they
can only be the end-points of [kτ, (k + 1)τ ] for any k. Hence, Lemma 14 can be applied:

I3 ⩽ 2

N∑
i=1

N∑
j=1

τ∫
0

s1∫
0

M2s(τ − s)

2
dsds1 =

M̃2h
4

12N2

with
M̃2

def
= max

s∈[0,h]
∥U ′′(s)∥ = max

s∈[−h,0]
∥U ′′(s)∥.
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The last equality is due to the symmetry property (2.4). Collecting the bounds for I2 and I3,
we finally arrive at

|ΥN | ⩽ h3

12N2

(
2M̃1∥φ∥h∥γ∥h + hM̃2∥γ∥2h

)
. (6.5)

The following lemma completes the developments of this section.

Lemma 15 Given φ ∈ S, the functional approximation error admits the following bound for
any N ∈ N : ∣∣ΥN

∣∣ = ∣∣∣v0(φ)− v
(N)
0 (φ)

∣∣∣ ⩽ δN =
c

N2
. (6.6)

Here,

c =
h3

12
µ
(
2M̃1 + hM̃2µ

)
, µ = ∥D∥K + ∥A1∥,

M̃1 =max
s∈[0,h]

∥U ′′
(h− s)−U ′′T (s)D∥, M̃2 = max

s∈[0,h]
∥U ′′(s)∥

considering the right-hand-side and left-hand-side derivatives of the delay Lyapunov matrix at 0
and h, respectively.

Proof : The result follows directly from bound (6.5) having in mind that φ ∈ S implies that
∥φ∥h = 1 and ∥γ∥h ⩽ µ. □

6.3 Stability criterion based on a discretized

functional approach

This section presents our main result, a finite delay Lyapunov matrix-based stability criterion
for neutral type systems. It follows from Step 5 of the general outline of Chapter 3 that the error
tolerance δN equal to the value a0 defined in Lemma 3 allows computing the approximation order
such that the non-negativity of the approximated functional can be verified. This approximation
order and the connection between matrix AN in (6.3) and the matrix KN of Lemma 5 allow
delivering the same stability criterion of Theorem 3 with reduced approximation orders for
sufficiency.

Theorem 6 System (2.1) is exponentially stable, if and only if the Lyapunov condition holds,
D is a Schur stable matrix, and

KN2 =
{
U((j − i)τ)

}N2

i,j=0
> 0,

where N2 =

⌈√
c

a0

⌉
, with a0 and c determined in Lemma 3 and 15, respectively.

Proof : Necessity. The exponential stability of system (2.1) implies the Lyapunov condition
(Kharitonov, 2013), the Schur stability of D, and, by Lemma 5, KN > 0 for any N , in particular,
N = N2.

Sufficiency. By contradiction, assume that system (2.1) is unstable but KN2 > 0. On the
one hand, by definition of ΥN ,

v
(N2)
0 (φ) = v0(φ)−ΥN2 .

By Lemma 3, there exists φ̃ ∈ S ⊂ C1 such that v0(φ̃) < −a0, thus Lemma 15 implies that

v
(N2)
0 (φ̃) = v0(φ̃)−ΥN2 < −a0 +

c

(N2)2
.
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Observe that the value N2 =
⌈√

c
a0

⌉
is precisely selected so that the last expression is

non-positive, that is, v
(N2)
0 (φ̃) < 0.

On the other hand, by Lemma 13, KN2 > 0 implies that AN2 ≥ 0. Consequently,

expression (6.3) gives v
(N2)
0 (φ) ⩾ 0 for any φ ∈ C1, which leads us to a contradiction. □

Remark 14 Although the stability criterion of Theorem 6 has exactly the same matrix structure
as in Theorem 3, the parameter N2 is calculated by a completely different approach which yields
a considerable reduction of the matrix dimension. In contrast to Theorem 4 and Theorem 5,
where the dimension is reduced at the cost of complicating the matrix structure, we managed to
keep a nice matrix structure of Theorem 3 which is made possible thanks to Lemma 13.

6.4 Conclusions

This chapter delivers a stability criterion for neutral type time delay systems based on verifying
the positive definiteness of a matrix in a tractable number of operations. It is shown that
the discretization of Lyapunov functionals with prescribed derivative through the discretized
Lyapunov functional method in Section 2.5 and ideas of Alexandrova and Belov (2024) arrives
at the same elegant criterion form of Theorem 3 with a significantly reduced matrix dimension.
The use of functional (2.9) is the key factor for achieving the dimension reduction. Notice that
this last approach completely avoids the computations of integrals of the delay Lyapunov matrix
and its derivatives.
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Chapter 7

Recursive computation of integrals

This section is devoted to the development of effective tools for the computation of the integrals
involved in the determination of matrices ΛN and ΠN defined in (4.5) and (5.4), respectively,
which are required to carry out the stability test presented in the previous section. The numerical
burden linked to the computation of integrals is heavy and can be highly detrimental to the
proper testing of the condition. Fortunately, if the matrix

L =

(
In2 −In ⊗D

−DT ⊗ In In2

)−1(
In ⊗A0 In ⊗A1

−AT
1 ⊗ In −AT

0 ⊗ In

)
,

involved in (2.7) for the computation of the Lyapunov matrix is non-singular, it is possible to
develop a recursive numerical scheme that makes this task much more efficient. To do so, the
dynamic property (2.3) is discretized and integrated, resulting in a recursivity. A semi-analytic
procedure similar to the one employed in the construction of the Lyapunov matrix is then
developed.

Next, the involved integrals in ΛN and ΠN are addressed separately to clarify the slight
difference in each recursive method.

7.1 Recursive computation of the integrals in

piecewise linear approach

Observe that the blocks of matrix ΛN defined in (4.5) are determined by the following integrals:

Jl =

∫ 0

−τ
U(s+ lτ)ds, Fl =

∫ 0

−τ
(s+ τ)U(s+ lτ)ds, F̄l =

∫ 0

−τ
(−s)U(s+ lτ)ds, l = 0, N,

Y
(1)
k =

∫ 0

−τ

∫ 0

−τ
s1U(s1 − s2 + kτ)ds2ds1, Y

(2)
k =

∫ 0

−τ

∫ 0

−τ
s2U(s1 − s2 + kτ)ds2ds1,

Zk =

∫ 0

−τ

∫ 0

−τ
s1s2U(s1 − s2 + kτ)ds2ds1 =

∫ 0

−τ

∫ 0

−τ
(s1 + τ)(s2 + τ)U(s1 − s2 + kτ)ds2ds1,

k = 0, N − 1, and similar integrals involving the first and second derivatives of the Lyapunov

matrix. Notice that Y
(1)
k = Y

(2)T
−k , and it is easy to verify equality of two representations of Zk

with the change of variables s1 + τ = −s′2, s2 + τ = −s′1.
Let us define the vectors

ul = vec(U(lτ)), al = vec(Jl), fl = vec(Fl),

f̄l = vec(F̄l), y
(j)
k = vec(Y

(j)
k ), j = 1, 2, zk = vec(Zk),
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and operation ⋆ which means vectorization of a transposed matrix, i.e. u⋆l = vec(UT (lτ)),
a⋆l = vec(JT

l ), etc.

The following propositions address the computation of the integrals.

Proposition 1 If det(L) ̸= 0 and the Lyapunov condition in Lemma 2 holds then

i) ak, fk and f̄k satisfy(
ak

a⋆N−k+1

)
= L−1

(
uk − uk−1

u⋆N−k − u⋆N−k+1

)
,(

fk
f̄⋆N−k+1

)
= L−1

(
τuk − ak

τu⋆N−k − a⋆N−k+1

)
, k = 1, N,

ii) y
(1)
k , y

(2)
k , and zk satisfy(

y
(1)
k

y
(2)⋆
N−k

)
= L−1

(
f̄k − f̄k+1

f⋆N−k+1 − f⋆N−k.

)
,

(
zk
z⋆N−k

)
= L−1

(
τ f̄k+1 + y

(1)
k

τf⋆N−k + y
(2)⋆
N−k

)
, k = 1, N − 1.

Proof : i) To compute ak, k = 1, N , notice that integrating the dynamic property (2.3) with
τ = s+ kτ, s ∈ [−τ, 0], yields∫ 0

−τ
U ′(s+ kτ)ds−

∫ 0

−τ
U ′(s+ (k−N)τ)dsD =

∫ 0

−τ
U(s+ kτ)dsA0 +

∫ 0

−τ
U(s+ (k−N)τ)dsA1

for k = 1, N. Hence,

JkA0 + JT
N−k+1A1 = U(kτ)−U((k− 1)τ)−UT ((N − k)τ)D+UT ((N − k+ 1)τ)D, k = 1, N.

Notice that this equation can be transformed to

−AT
1 Jk−AT

0 J
T
N−k+1 = UT ((N−k)τ)−UT ((N−k+1)τ)−DTU(kτ)+DTU((k−1)τ), k = 1, N.

By combining the last two equations and using vectorization, we get(
In ⊗A0 In ⊗A1

−AT
1 ⊗ In −AT

0 ⊗ In

)(
ak

a⋆N−k+1

)
=

(
In2 −In ⊗D

−DT ⊗ In In2

)(
uk − uk−1

u⋆N−k − u⋆N−k+1

)
, k = 1, N,

as required. To tackle the computation of fk and gk we first multiply the same dynamic property
by (s+ τ). Then, integrating, we obtain

τU(kτ)− Jk − τUT ((N − k)τ)D + JT
N−k+1D = FkA0 + F̄ T

N−k+1A1. (7.1)

Similarly, changing k by N − k + 1 in the dynamic property, and multiplying by (−s), implies

τUT ((N − k)τ)− JT
N−k+1 − τDTU(kτ) +DTJk = −AT

0 F̄
T
N−k+1 −AT

1 Fk. (7.2)

Now, vectorizing the system (7.1)–(7.2), gives the desired expression for (fTk , f̄
⋆T
N−k+1)

T , since
det(L) ̸= 0.

ii) Let us prove the second equation. To this end, write the dynamic property for τ =
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s1 − s2 + kτ ⩾ 0, s1, s2 ∈ [−τ, 0], k = 1, N − 1, in the form

s1s2
∂U(s1 − s2 + kτ)

∂s2
− s1s2

∂U(s1 − s2 + (k −N)τ)

∂s2
D

= −s1s2U(s1 − s2 + kτ)A0 − s1s2U(s1 − s2 + (k −N)τ)A1. (7.3)

Integrating it successively with respect to s2 and s1, we get

τF̄k+1 + Y
(1)
k − τF T

N−kD − Y
(2)T
N−kD = ZkA0 + ZT

N−kA1.

Similarly, multiplying by (s1 + τ)(s2 + τ) instead of s1s2 in (7.3), replacing k with N − k and
then integrating we arrive at the equation

τF T
N−k + Y

(2)T
N−k − τDT F̄k+1 −DTY

(1)
k =−AT

1 Zk −AT
0 Z

T
N−k.

Combining the two equations for Zk and ZT
N−k and using vectorization, we get the result. The

proof of the first equation is carried out following similar steps. □

For the next proposition, we introduce the auxiliary terms

X l =

∫ 0

−τ
(s+ τ)lU(s+ τ)ds, X̄ l =

∫ 0

−τ
slU(s+Nτ)ds,

where l = 2, 3, and denote xl = vec(X l) and x̄l = vec(X̄ l).

Proposition 2 If the Lyapunov condition in Lemma 2 is satisfied, then

i) it holds that J0 = JT
1 , F̄0 = F T

1 and F0 = F̄ T
1 ,

ii) furthermore, Y
(1)
0 and Z0 may be found as

Y
(1)
0 = −τ

2

2

(
J0 + JT

0

)
+ τF̄ T

0 +
1

2

(
X2T −X2

)
,

Z0 =
τ3

3

(
J0 + JT

0

)
− τ2

2

(
F̄0 + F̄ T

0

)
+

1

6

(
X3 +X3T

)
,

and Y
(2)
0 = Y

(1)T
0 . If det(L) ̸= 0 then the terms X2 and X3 can be computed by devectorization

of (
x2

x̄2⋆

)
= L−1

(
τ2u1 − 2f̄⋆0

τ2u⋆N−1 − 2f̄⋆N

)
,(

x3

−x̄3⋆
)

= L−1

(
τ3u1 − 3x2

τ3u⋆N−1 − 3x̄2⋆

)
.

Proof : Relations in i) are obtained directly using the symmetry property of the Lyapunov

matrix. Furthermore, changing the variable s2 to τ = s1 − s2 in Y
(1)
0 we get the following

representation

Y
(1)
0 =

1

2

∫ 0

−τ

∫ s1+τ

s1

U(τ)dτd(s21).

Integrating by parts and observing that

X2 =

∫ 0

−τ
s2U(s+ τ)ds− 2τF̄1 + τ2J1,
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it is straightforward to get the desired result. The formula for Z0 may be found in Alexandrova
(2023), notice that the proof does not depend on the type of system thus it holds in particular
for a neutral type system of the form (2.1). The vectorized relations for X2 and X3 are obtained
in the same vein as in the proof of Proposition 1. □

Remark 15 The following relation is useful to reduce the computational burden:

Y
(1)
k + Y

(2)
k = −τ(Fk + F̄k+1), k = 0, N − 1.

Indeed, comparing two representations of Zk it is easy to see that

Y
(1)
k + Y

(2)
k = −τ

∫ 0

−τ

∫ 0

−τ
U(s1 − s2)ds2ds1 = −τ

∫ 0

−τ

∫ s1+τ

s1

U(τ)dτds1.

One proceeds integrating by parts. It is also easy to see that Fl + F̄l = τJl for any l.

Now, the matrix terms Jl, Fl, F̄l, l = 0, N, and Y
(j)
k , Zk, k = 0, N − 1 are obtained by

devectorization of al, fl, f̄l, y
(j)
k , and zk, respectively. The computation of ΛN involves similar

integral terms based on the first and the second derivatives of the Lyapunov matrix as well.
However, they reduce to already calculated terms by using integration by parts. For example,∫ 0

−τ

∫ 0

−τ
s1s2U

′(s1 − s2 + kτ)ds2ds1 = τF̄k+1 + Y
(1)
k ,∫ 0

−τ

∫ 0

−τ
s1s2U

′′(s1 − s2 + lτ)ds2ds1 = −τ2U(lτ) + Fl+1 + F̄l, k = 0, N − 1, l = 1, N − 1,∫ 0

−τ

(∫ s1−0

−τ
s2U

′′(s1 − s2)ds2 +

∫ 0

s1+0
s2U

′′(s1 − s2)ds2

)
s1ds1 = −τ2U(0) + F̄0 + F̄ T

0 − τ3

3
∆U ′(0),

and so on.

7.2 Recursive computation of the integrals in

Legendre polynomials approach

Next, we present a recursive method for computing the integrals involved in determining matrix
PN defined in (5.4), which are given in terms of the following integrals for k, l = 0, N − 1:

Gk =

0∫
−h

pk(s)U(h+ s)ds, Ḡk =

0∫
−h

pk(s)U(−s)ds,

Hkl =

0∫
−h

s1∫
−h

pk(s1)pl(s2)U(s1 − s2)ds2ds1, H̄kl =

0∫
−h

s1∫
−h

pk(s1)pl(s2)U(h− s1 + s2)ds2ds1,

and similar integrals involving the first and second derivatives of the Lyapunov matrix.
To do so, let us consider the notation of the previous subsection for N = 1, that is

J1 =

∫ 0

−h
U(s+ h)ds, F̄0 =

∫ 0

−h
(−s)U(s)ds, F̄1 =

∫ 0

−h
(−s)U(s+ h)ds,

X l =

∫ 0

−h
(s+ h)lU(s+ h)ds, X̄ l =

∫ 0

−h
slU(s+ h)ds, l = 2, 3,
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and define the vectors

u0 = vec(U(0)), u1 = vec(U(h)), a1 = vec(J1), f̄0 = vec(F̄0), f̄1 = vec(F̄1),

gk = vec(Gk), ḡk = vec(Ḡk), hkl = vec(Hkl), h̄kl = vec(H̄kl)

and operation ⋆ which means vectorization of a transposed matrix, i.e. u⋆1 = vec(UT (h)),
g⋆k = vec(GT

k ), etc. Next, we introduce two propositions allowing the recursive computation of
the above integral.

Proposition 3 If det(L) ̸= 0 and the Lyapunov condition in Lemma 2 holds then

i) gk and ḡk satisfy (
gk
ḡ⋆k

)
=

(
gk−2

ḡ⋆k−2

)
− 2(2k − 1)

h
L−1

(
gk−1

ḡ⋆k−1

)
, k ⩾ 2. (7.4)

ii) hjk and h̄jk satisfy(
Hjk

H̄jk

)
= (−1)j+k

(
Hkj

H̄kj

)
, ∀k < j, (7.5)(

hjk
h̄⋆jk

)
=L−1

(
− h

2j+1(δj,k−δj,k−2)u0 +
2(2k−1)

h hj,k−1

− h
2j+1(δj,k−δj,k−2)u

⋆
1 +

2(2k−1)
h h̄⋆j,k−1

)
+

(
hj,k−2

h̄⋆j,k−2

)
, ∀k⩾max(2, j).

(7.6)

Here, δjk denotes the Kronecker delta such that δjk =

{
1, if j = k,

0, otherwise.

Proof : i) To compute Gk, Ḡk, ∀k ⩾ 2, the dynamic property (2.3) is multiplied by the
difference of Legendre polynomials pk(s)− pk−2(s) and then integrated, yielding

0∫
−h

U ′(h+ s)(pk(s)− pk−2(s))ds−
0∫

−h

U ′(s)(pk(s)− pk−2(s))dsD

=

0∫
−h

U(h+ s)(pk(s)− pk−2(s))dsA0 +

0∫
−h

U(s)(pk(s)− pk−2(s))dsA1.

Applying integration by parts and taking into account the derivation property of the Legendre
polynomials in Section 5.1, we get

U(h)(pk(0)− pk−2(0))− U(0)(pk(−h)− pk−2(−h))−
2(2k − 1)

h

0∫
−h

U(h+ s)pk−1(s)ds

− U(0)(pk(0)− pk−2(0))D + UT (h)(pk(−h)− pk−2(−h))D +
2(2k − 1)

h

0∫
−h

U(s)pk−1(s)dsD

=

0∫
−h

U(h+ s)(pk(s)− pk−2(s))dsA0 +

0∫
−h

U(s)(pk(s)− pk−2(s))dsA1.
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Knowing that pk(−h) = pk−2(−h) = (−1)k and pk(0) = pk−2(0) = 1, it leads to

(Gk −Gk−2)A0 + (ḠT
k − ḠT

k−2)A1 = −2(2k − 1)

h
(Gk−1 − ḠT

k−1D). (7.7)

Now, multiply by pk(s)− pk−2(s) and integrate from −h to 0 the dynamic property for negative
values of the argument (2.6):

0∫
−h

U ′(s)(pk(s)− pk−2(s))ds−DT

0∫
−h

U ′(s+ h)(pk(s)− pk−2(s))ds

= −AT
0

0∫
−h

U(s)(pk(s)− pk−2(s))ds−AT
1

0∫
−h

U(s+ h)(pk(s)− pk−2(s))ds.

Similarly, applying integration by parts and knowing that pk(−h) = pk−2(−h) = (−1)k and
pk(0) = pk−2(0) = 1, we arrive at

− 2(2k − 1)

h

0∫
−h

U(s)pk−1(s)ds+
2(2k − 1)

h
DT

0∫
−h

U(s+ h)pk−1(s)ds

= −AT
0

0∫
−h

U(s)(pk(s)− pk−2(s))ds−AT
1

0∫
−h

U(s+ h)(pk(s)− pk−2(s))ds,

consequently,

−AT
0 (Ḡ

T
k − ḠT

k−2)−AT
1 (Gk −Gk−2) = −2(2k − 1)

h
(ḠT

k−1 −DTGk−1). (7.8)

Finally, the algebraic equations (7.7) and (7.8) are rewritten in vectorized form as follows(
In ⊗A0 In ⊗A1

−AT
1 ⊗ In −AT

0 ⊗ In

)[(
gk
ḡ⋆k

)
−
(
gk−2

ḡ⋆k−2

)]
= −2(2k − 1)

h

(
In2 −In ⊗D

−DT ⊗ In In2

)(
gk−1

ḡ⋆k−1

)
,

or,

L
[(
gk
ḡ⋆k

)
−
(
gk−2

ḡ⋆k−2

)]
= −2(2k − 1)

h

(
gk−1

ḡ⋆k−1

)
.

Since det(L) ̸= 0, we arrive at a unique solution of this system given by (7.4).

ii) Firstly, using the symmetry of the Legendre polynomials pk(−s − h) = (−1)kpk(s), s ∈
[−h, 0] and the changes of variable s′1 = −s1 − h and s′2 = −s2 − h, we have

Hjk =

0∫
−h

s1∫
−h

pj(s1)pk(s2)U(s1 − s2)ds2ds1 =

0∫
−h

0∫
s′1

pj(−s′1 − h)pk(−s′2 − h)U(s′2 − s′1)ds
′
2ds

′
1

=

0∫
−h

s′2∫
−h

(−1)j+kpj(s
′
1)pk(s

′
2)U(s′2 − s′1)ds

′
1ds

′
2.

Making the change of variable s′′1 = s′2 and s′′2 = s′1, we finally arrive at the following expression
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Hjk =

0∫
−h

s′′1∫
−h

(−1)j+kpj(s
′′
2)pk(s

′′
1)U(s′′1 − s′′2)ds

′′
2ds

′′
1 = (−1)j+kHkj .

To compute Hjk, ∀k ⩾ max(2, j), we repeat the steps used in the proof of (7.4). In this
case, the dynamic property (2.3) for s1 − s2 > 0 gives

−∂U(s1 − s2)

∂s2
+
∂U(s1 − s2 − h)

∂s2
D = U(s1 − s2)A0 + U(s1 − s2 − h)A1.

Now, multiply the discretized dynamic property (2.3) by pj(s1)(pk(s2)− pk−2(s2)):

− pj(s1)(pk(s2)− pk−2(s2))
∂U(s1 − s2)

∂s2
+ pj(s1)(pk(s2)− pk−2(s2))

∂U(s1 − s2 − h)

∂s2
D

= pj(s1)(pk(s2)− pk−2(s2))U(s1 − s2)A0 + pj(s1)(pk(s2)− pk−2(s2))U(s1 − s2 − h)A1.

Then, we integrate with respect to s2 the previous expression, from −h up to s1 in such a way
that the difference s1 − s2 > 0. It implies that

−
s1∫

−h

pj(s1)(pk(s2)−pk−2(s2))
∂U(s1 − s2)

∂s2
ds2+

s1∫
−h

pj(s1)(pk(s2)−pk−2(s2))
∂U(s1 − s2 − h)

∂s2
ds2D

=

s1∫
−h

pj(s1)(pk(s2)−pk−2(s2))U(s1−s2)ds2A0+

s1∫
−h

pj(s1)(pk(s2)−pk−2(s2))U(s1−s2−h)ds2A1.

(7.9)

Compute the integrals in the above expression:

s1∫
−h

pj(s1)(pk(s2)− pk−2(s2))
∂U(s1 − s2)

∂s2
ds2

= pj(s1)

(pk(s1)− pk−2(s1))U(0)− 2(2k − 1)

h

s1∫
−h

pk−1(s2)U(s1 − s2)ds2

 ,

s1∫
−h

pj(s1)(pk(s2)− pk−2(s2))
∂U(s1 − s2 − h)

∂s2
ds2

= pj(s1)

(pk(s1)− pk−2(s1))U(−h)− 2(2k − 1)

h

s1∫
−h

pk−1(s2)U(s1 − s2 − h)ds2

 .

Thus, system (7.9) reduces to

−pj(s1)

(pk(s1)− pk−2(s1))U(0)− 2(2k − 1)

h

s1∫
−h

pk−1(s2)U(s1 − s2)ds2



+pj(s1)

(pk(s1)− pk−2(s1))U(−h)− 2(2k − 1)

h

s1∫
−h

pk−1(s2)U(s1 − s2 − h)ds2

D
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=

s1∫
−h

pj(s1)(pk(s2)−pk−2(s2))U(s1−s2)ds2A0+

s1∫
−h

pj(s1)(pk(s2)−pk−2(s2))U(s1−s2−h)ds2A1.

Further, integrate with respect to s1

0∫
−h

−pj(s1)

(pk(s1)− pk−2(s1))U(0)− 2(2k − 1)

h

s1∫
−h

pk−1(s2)U(s1 − s2)ds2

 ds1

+

0∫
−h

pj(s1)

(pk(s1)− pk−2(s1))U(−h)− 2(2k − 1)

h

s1∫
−h

pk−1(s2)U(s1 − s2 − h)ds2

 ds1D

=

0∫
−h

s1∫
−h

pj(s1)(pk(s2)− pk−2(s2))U(s1 − s2)ds2ds1A0

+

0∫
−h

s1∫
−h

pj(s1)(pk(s2)− pk−2(s2))U(s1 − s2 − h)ds2ds1A1.

Reminding the orthogonality property of the Legendre polynomials, we obtain

− h

2j + 1
(δj,k−δj,k−2)U(0)+

2(2k − 1)

h
Hj,k−1+

h

2j + 1
(δj,k−δj,k−2)U(−h)D−2(2k − 1)

h
H̄T

j,k−1D

= (Hj,k −Hj,k−2)A0 +
(
H̄T

j,k − H̄T
j,k−2

)
A1.

Using similar steps for the dynamic property (2.6), we arrive at the two following algebraic
equations

− h

2j + 1
(δj,k−δj,k−2)U(0)+

2(2k − 1)

h
Hj,k−1+

h

2j + 1
(δj,k−δj,k−2)U

T (h)D−2(2k − 1)

h
H̄j,k−1D

= (Hj,k −Hj,k−2)A0 +
(
H̄T

j,k − H̄T
j,k−2

)
A1

− h

2j + 1
(δj,k−δj,k−2)U

T (h)+
2(2k − 1)

h
H̄T

j,k−1+
h

2j + 1
(δj,k−δj,k−2)D

TU(0)−2(2k − 1)

h
DTHj,k−1

= −AT
0

(
H̄T

j,k − H̄T
j,k−2

)
−AT

1 (Hj,k −Hj,k−2)

By vectorization, the following system of linear algebraic equations is obtained(
In⊗A0 In⊗A1

−AT
1 ⊗In −AT

0 ⊗In

)(
hjk
h̄⋆jk

)
=

(
In2 −In⊗D

−DT⊗In In2

)
×

(
− h

2j+1(δj,k−δj,k−2)u0 +
2(2k−1)

h hj,k−1

− h
2j+1(δj,k−δj,k−2)u

⋆
1 +

2(2k−1)
h h̄⋆j,k−1

)
+

(
In ⊗A0 In ⊗A1

−AT
1 ⊗ In −AT

0 ⊗ In

)(
hj,k−2

h̄⋆j,k−2

)
,

equivalently,

L
(
hjk
h̄⋆jk

)
=

(
− h

2j+1(δj,k−δj,k−2)u0 +
2(2k−1)

h hj,k−1

− h
2j+1(δj,k−δj,k−2)u

⋆
1 +

2(2k−1)
h h̄⋆j,k−1

)
+ L

(
hj,k−2

h̄⋆j,k−2

)
.

When det(L) ̸= 0, we conclude that the unique solution of the previous system of algebraic
equations is given by (7.6). □
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Proposition 4 If the Lyapunov condition in Lemma 2 is satisfied, then

i) it holds that (
g0
ḡ⋆0

)
= L−1

(
u1 − u0
u⋆0 − u⋆1

)
,(

g1
ḡ⋆1

)
= L−1

[(
u1 + u0
u⋆0 + u⋆1

)
− 2

h

(
g0
ḡ0

)]
,

ii) furthermore, H00, H̄00, H01, H̄01, H11 and H̄11 may be found as

H00 = F̄1, H̄00 = F̄ T
0 , H10 = F̄1 −

1

h
X̄2, H̄10 = F̄ T

0 − 1

h
X2,

H11 = −F̄1 +
2

3h2
X̄3 +

2

h
X̄2, H̄11 = −F̄ T

0 − 2

3h2
X3 +

2

h
X2.

Proof : i) Considering condition i) of Proposition 2 with N = 1, τ = h, notice that the
vectorized form of matrices G0, Ḡ0, G1 and Ḡ1 are given by the following expressions:(

g0
ḡ⋆0

)
=

(
a1
a⋆1

)
= L−1

(
u1 − u0
u⋆0 − u⋆1

)
,

(
g1
ḡ⋆1

)
= L−1

[
2

h

(
hu1 − a1
hu⋆0 − a⋆1

)
−
(
u1 − u0
u⋆0 − u⋆1

)]
= L−1

[(
u1 + u0
u⋆0 + u⋆1

)
− 2

h

(
g0
ḡ⋆0

)]
.

ii) Observe that

H00 =

0∫
−h

s1∫
−h

U(s1 − s2)ds2ds1 =

0∫
−h

s1+h∫
0

U(s)dsds1,

with the change of variable s = s1 − s2. Using integration by parts, then we obtain

H00 = s1

s1+h∫
0

U(s)ds

∣∣∣∣∣
0

−h

−
0∫

−h

s1U(s1 + h)ds1 = F̄1.

Similarly, H̄00, H10 and H̄10 are computed by using integration by parts as follows:

H̄T
00 =

0∫
−h

s1∫
−h

U(s1 − s2 − h)ds2ds1 =

0∫
−h

s1∫
−h

U(s)dsds1 = s1

s1∫
−h

U(s)ds

∣∣∣∣∣
0

−h

−
0∫

−h

s1U(s1)ds1 = F̄0,

H10 =

0∫
−h

s1∫
−h

(
2s1
h

+ 1

)
U(s1 − s2)ds2ds1 = H00 +

2

h

0∫
−h

s1∫
−h

s1U(s1 − s2)ds2ds1

= H00 +
2

h

0∫
−h

s1+h∫
0

U(s)dsd

(
s21
2

)
= H00 −

2

h

0∫
−h

s21
2
U(s1 + h)ds1 = F̄1 −

1

h
X̄2,

H̄T
10 =

0∫
−h

s1∫
−h

(
2s1
h

+ 1

)
U(s1 − s2 − h)ds2ds1 = H̄T

00 +
2

h

0∫
−h

s1∫
−h

s1U(s1 − s2 − h)ds2ds1
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= H̄T
00 +

2

h

0∫
−h

s1∫
−h

U(s)dsd

(
s21
2

)
= H̄T

00 −
2

h

0∫
−h

s21
2
U(s1)ds1

= H̄T
00 −

1

h

0∫
−h

(s+ h)2UT (s+ h)ds = F̄0 −
1

h
X2T .

Now, we calculate H11 and H̄11, which admit the following expressions:

H11 =

0∫
−h

s1∫
−h

(
2s1
h

+ 1

)(
2s2
h

+ 1

)
U(s1 − s2)ds2ds1 = H00 −

1

h
X̄2 +

4

h2
Σ1 +

2

h
Σ2,

H̄T
11 =

0∫
−h

s1∫
−h

(
2s1
h

+ 1

)(
2s2
h

+ 1

)
U(s1 − s2 − h)ds2ds1 = H̄T

00 −
1

h
X2T +

4

h2
Σ3 +

2

h
Σ4,

where,

Σ1 =

0∫
−h

s1∫
−h

s1s2U(s1 − s2)ds2ds1, Σ2 =

0∫
−h

s1∫
−h

s2U(s1 − s2)ds2ds1,

Σ3 =

0∫
−h

s1∫
−h

s1s2U(s1 − s2 − h)ds2ds1, Σ4 =

0∫
−h

s1∫
−h

s2U(s1 − s2 − h)ds2ds1.

Let us calculate Σi , i = 1, 4, using integration by parts:

Σ1 =

0∫
−h

s1∫
−h

s1s2U(s1 − s2)ds2ds1 =

0∫
−h

0∫
−h−s1

s1(s1 + s)UT (s)dsds1

=

0∫
−h

0∫
ξ1

(−h− ξ1)(−h− ξ1 + s)UT (s)dsdξ1 =

0∫
−h

0∫
ξ1

UT (s)dsd

(
(h+ ξ1)

3

3

)

−
0∫

−h

0∫
ξ1

sUT (s)dsd

(
(h+ ξ1)

2

2

)
=

1

3

0∫
−h

(h+ ξ1)
3UT (ξ1)dξ1 −

1

2

0∫
−h

(h+ ξ1)
2ξ1U

T (ξ1)dξ1

=
1

3

0∫
−h

(−s)3U(s+ h)ds− 1

2

0∫
−h

(−s)2(−s− h)U(s+ h)ds

= −1

3

0∫
−h

s3U(s+ h)ds+
1

2

0∫
−h

s2(s+ h)U(s+ h)ds =
1

6
X̄3 +

h

2
X̄2,

Σ2 =

0∫
−h

s1∫
−h

s2U(s1 − s2)ds2ds1 =

0∫
−h

0∫
−h−s1

(s1 + s)UT (s)dsds1

=

0∫
−h

0∫
ξ1

(−h− ξ1 + s)UT (s)dsdξ1 = −
0∫

−h

0∫
ξ1

UT (s)dsd

(
(h+ ξ1)

2

2

)
+

0∫
−h

0∫
ξ1

sUT (s)dsdξ
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= −1

2

0∫
−h

(h+ ξ1)
2UT (ξ1)dξ1 + h

0∫
−h

sUT (s)ds+

0∫
−h

ξ21U
T (ξ1)dξ1 = −1

2

0∫
−h

(−s)2UT (−s− h)ds

+ h

0∫
−h

(−s− h)UT (−s− h)ds+

0∫
−h

(s+ h)2UT (−s− h)ds = −1

2

0∫
−h

s2U(s+ h)ds

− h

0∫
−h

(s+ h)U(s+ h)ds+

0∫
−h

(s+ h)2U(s+ h)ds =
1

2
X̄2 − hF̄1,

Σ3 =

0∫
−h

s1∫
−h

s1s2U(s1 − s2 − h)ds2ds1 =

0∫
−h

s1∫
−h

s1(s1 − s− h)U(s)dsds1

=

0∫
−h

−h−ξ1∫
−h

(−h− ξ1)(−h− ξ1 − s− h)U(s)dsdξ1 =

0∫
−h

−h−ξ1∫
−h

U(s)dsd

(
(h+ ξ1)

3

3

)

+

0∫
−h

−h−ξ1∫
−h

(s+ h)U(s)dsd

(
(h+ ξ1)

2

2

)
=

1

3

0∫
−h

(h+ ξ1)
3UT (h+ ξ1)dξ1

+
1

2

0∫
−h

(−h− ξ1 + h)(h+ ξ1)
2UT (h+ ξ1)dξ1 = −1

6
X3T +

h

2
X2T

Σ4 =

0∫
−h

s1∫
−h

s2U(s1 − s2 − h)ds2ds1 =

0∫
−h

s1∫
−h

(s1 − s− h)U(s)dsds1

=

0∫
−h

−h−ξ1∫
−h

(−h− ξ1 − s− h)U(s)dsdξ1 = −
0∫

−h

−h−ξ1∫
−h

U(s)dsd

(
(h+ ξ1)

2

2

)
−

0∫
−h

−h−ξ1∫
−h

(s+ h)U(s)dsdξ1

= −1

2

0∫
−h

(h+ ξ1)
2UT (h+ ξ1)dξ1 − h

0∫
−h

(s+ h)U(s)ds+

0∫
−h

(s+ h)2U(s)ds

= −1

2
X2T + hF̄0 +X2T − 2hF̄0 =

1

2
X2T − hF̄0.

Finally, we obtain the desired expression for H11 and H̄11, which are given by

H11 = H00 −
1

h
X̄2 +

4

h2

(
1

6
X̄3 +

h

2
X̄2

)
+

2

h

(
1

2
X̄2 − hF̄1

)
= −F̄1 +

2

3h2
X̄3 +

2

h
X̄2,

H̄T
11 = H̄T

00 −
1

h
X2T +

4

h2

(
−1

6
X3T +

h

2
X2T

)
+

2

h

(
1

2
X2T − hF̄0

)
= −F̄0 −

2

3h2
X3T +

2

h
X2T .

□

The matrix terms Gk, Ḡk, Hjk and H̄jk are finally obtained by devectorization of gk, ḡk, hjk
and h̄jk, respectively. With the help of Proposition 3 and 4, we can give explicit expressions for
the integral of matrix PN involving the delay Lyapunov matrix and its derivatives. For example,∫ 0

−h

∫ s1

−h
pk(s1)pl(s2)U

′(s1−s2)ds2ds1 = −δklU(0)+(−1)lGk+
l−1∑
i=0

(
(2i+ 1)

h
(1− (−1)l+i)

)
Hik,
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∫ 0

−h

∫ s1−0

−h
pk(s1)pl(s2)U

′′(s1 − s2)ds2ds1

= −δklU ′(+0) + (−1)l

(
U(h)− (−1)kU(0)−

k−1∑
i=0

(2i+ 1)

h
(1− (−1)k+i)Gi

)

+
l−1∑
i=0

(
(2i+ 1)

h
(1− (−1)l+i)

)−δkiU(0) + (−1)iGk +
i−1∑
j=0

(
(2j + 1)

h
(1− (−1)i+j)

)
Hjk

 ,

k = 0, N − 1, l = 1, N − 1, and so on.

Remark 16 It is worth mentioning that if the condition det(L) ̸= 0 does not hold, then the
previous propositions are not still true. As an alternative to this problem, the above integrals
may be either computed using a numerical method or calculating an auxiliary exponential matrix
of higher dimension as in Aliseyko (2019).

Numerical algorithm: The general procedure for computing matrices ΛN and ΠN is
presented, when det(L) ̸= 0. It is summarised by the following steps:

1. Compute the delay Lyapunov matrix U(τ), τ ∈ [0, h], associated with a positive definite
matrix W . It is solved by using the semi-analytic method (2.7) introduced in Chapter 2.

2. Set an arbitrary integer number N . For matrix ΛN , also compute τ = h/N .

3. Compute either integrals Jl, Fl, F̄l, Y
(1)
k , Y

(2)
k and Zk by using Proposition 1 and 2, or

integrals Gk, Ḡk, Hkl and H̄kl by using Proposition 3 and 4.

4. Represent eitherMk, Nk, Pl andQl, or J1N , J2N , J3N and J4N , in terms of the integrals
of step 3.

5. Construct the corresponding matrix ΛN or ΠN as required.
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Chapter 8

Illustrative examples

In this section, we validate the stability criterion presented in Theorem 6. We also compare it
with results based on other functional argument approximations: system fundamental matrix
(Theorem 3), piecewise linear functions (Theorem 4) and Legendre polynomials (Theorem 5). In
each example, the delay Lyapunov matrix is computed by (2.7) in Chapter 2 with W = In, the
elapsed time is measured in seconds (s), and the matrix dimension of Theorem 3, Theorem 4,
Theorem 5 and Theorem 6 is computed as n(N̂ + 1), n(N0 + 1), n(N1 + 1) and n(N2 + 1),
respectively. In the figures of Example 1, 2 and 3, the space of parameters is presented. The
stability/instability candidate boundaries, obtained by the D-subdivision technique (Neimark,
1949), are depicted by a solid line. The isolated dots represent points in the space of parameters
where the outcome of the necessary conditions in the stability criterion is affirmative. The
non-negativity of ΛN and ΠN and the positivity of KN is verified by using the function “cholcov”
in Matlab. The implementation is done on a desktop computer with an Intel Core i7-8700, 3.20
GHz, 6 cores, and 32 GB RAM.

Example 1: Consider a scalar neutral type equation

d

dt
(x(t)− dx(t− h)) = ax(t) + bx(t− h).

For the parameter values h = 1 and d = −0.3, the stability boundaries are depicted by a
solid line in Figure 8.1. The constants a0 and a1 defined in Lemma 3 and Lemma 5, respectively,
are computed with α = K with the constant K defined in the set S. The isolated dots represent
points in the space of parameters where the non-negativity test of ΛN holds. The involved
integrals of ΛN are computed by using the recursive method in Chapter 7. In this example, the
stability criterion of Theorem 4 is also tested and compared with the one of Theorem 3.

In order to show the effectiveness of the necessary conditions of Theorem 4, the
non-negativity of Λ1 and Λ3 is verified. The line a = b is omitted since det(L) = b2−a2

1−d2
= 0.

Figure 8.1 exhibits that the exact stability region is visually achieved already for small values
of N.

In Table 8.1, for a = 1, b = −2, d = −0.3, and different values of h, we compare the
matrix dimension provided by Theorem 3 and Theorem 4. The symbol (—) indicates that the
numerical burden of the test surpasses the computer RAM. We remind that the stability in
Theorem 3 is tested via discretization of the delay Lyapunov matrix. The matrix dimension
of Theorem 3 and Theorem 4 is computed as nr̂ and n(N0 + 1), respectively. Notice that the
sufficiency matrix dimension of Theorem 4 is substantially smaller than that of Theorem 3. It
also evidences the impact of using piecewise linear approximations for the functional argument,
where a better and faster convergence toward any function φ is obtained instead of using the
system fundamental matrix.
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(a) Test Λ1 ≥ 0
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(b) Test Λ3 ≥ 0

Figure 8.1: Necessary conditions of Theorem 4, Example 1

Table 8.1: Matrix dimension given by Theorem 3 and Theorem 4 with a = 1, b = −2, d =
−0.3, and different values of h, Example 1

h Theorem 3 Outcome Theorem 4 Outcome
0.3 13981 — 4 Stable
0.5 1029069 — 8 Stable
0.73 2.9× 109 — 97 Stable
0.74 2.7× 109 — 87 Unstable
1 6.3× 109 — 23 Unstable
2 4.8× 1019 — 42 Unstable

Example 2: Consider system (2.1) and define the matrices

D =

(
0 0
0 0.25

)
, A0 =

(
0 0
0 0

)
, A1 =

(
−1 0.2
p 0

)
,

where p ∈ R and h > 0 are free parameters. Here, the constants a0 and a1 defined in Lemma 3
and Lemma 5, respectively, are computed with α = K. For the space of parameter (p, h), the
stability boundaries are depicted by a solid line in Figure 8.2. In this example, the necessary
conditions of Theorem 5 are verified to Π1 and Π3. The isolated dots represent points where the
non-negativity of the criterion holds. Notice that the necessary conditions of Theorem 5 reveal
the exact stability region for small values of N similar to the necessary conditions of Theorem 4
(piecewise linear approximations).

Next, considering the vicinity of the point (p, h) = (−1.2, 2.395) at the stability/instability
boundary in Figure 8.2, the stability of system (2.1) is tested with the stability criteria
presented in Theorem 3 (system fundamental matrix approximation), Theorem 4 (piecewise
linear approximation) and Theorem 5 (Legendre polynomial approximation), for p = −1.2 and
different values of h.

Table 8.2 shows that Theorem 5 based on Legendre polynomials approximation also provides
a matrix dimension substantially reduced compared with those provided by Theorem 3. In
comparison with Theorem 4, which is based on piecewise linear approximations, the matrix
dimension of Theorem 5 is notably smaller when approaching the stability boundary of the
delay h. It is due to the tendency towards infinity of the delay Lyapunov matrix at the
stability/instability boundary. However, the value N2 attenuates these large values thanks to
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(a) Test Π1 ≥ 0
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(b) Test Π3 ≥ 0

Figure 8.2: Necessary conditions of Theorem 5, Example 2

Table 8.2: Matrix dimension given by Theorem 3, Theorem 4 and Theorem 5 with p =
−1.2, Example 2

h Theorem 3 Outcome Theorem 4 Outcome Theorem 5 Outcome
1.5 10.8× 107 — 58 Stable 12 Stable
2 6× 109 — 150 Stable 15 Stable

2.39 19× 1011 — 1240 Stable 19 Stable
2.4 3× 1012 — 1576 Unstable 19 Unstable
3 4× 1012 — 444 Unstable 20 Unstable
3.5 2.2× 1013 — 344 Unstable 22 Unstable

the involved logarithm in its computation as evidenced in the proof of Lemma 12.

Example 3: The σ-stability analysis of the proportional-integral control of a passive linear
system leads to studying a quasipolynomial of neutral type (Castaños, Estrada, Mondié, &
Ramı́rez, 2018). Its time domain representation is of the form (2.1), with matrices D =(
0 0
0 −α2

α1

)
,

A0 =
1

α1

(
0 α1

−σ2α1 + σβ1 − γ1 −β1 + 2σα1

)
,

A1 =
1

α1

(
0 0

−σ2α2 + σβ2 − γ2 −β2 + 2σα2

)
,

where
α1 = d+ kp, γ1 = bkid+ aki,

α2 = (d− kp)e
σh, γ2 = (bkid− aki)e

σh,

β1 = (bkp + a)d+ bd2 + akp + ki,

β2 = ((bkp + a)d− bd2 − akp − ki)e
σh.

In this example, we assess the effect of using α computed as in Lemma 4 instead of α = K.
Then, we proceed with the comparison with other stability tests presented in the previous
chapters.

For the parameters, a = 0.4, b = 50, h = 0.2, d = 0.8, σ = 0.3, the stability boundaries
are depicted by a solid line in Figure 8.3. The stability of the difference operator imposes in
the D-subdivision map the additional condition |kp| < 26.67. In Figure 8.3, the positivity of K1
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(a) Test K1 > 0 (b) Test K3 > 0

Figure 8.3: Necessary conditions of Theorem 6, Example 3

and K3 of the necessity conditions of Theorem 6 is tested for the space of parameter (kp, ki).
The isolated points indicate that the positivity of KN holds. It is worth mentioning that each
of these conditions achieves visually the whole stability region for N = 3.

In Table 8.3, for the stable pair (kp, ki) = (1, 1) and unstable pair (kp, ki) = (1,−1), we
compare the matrix dimension of the stability test in Theorem 6 when α = K and when α is
computed using Lemma 4. In this case, a binary search on the interval (0,K] with a precision
10−6 is carried out. Clearly, a better estimate of α in the instability result in Lemma 3, reduces
substantially the dimension of the stability criterion.

Table 8.3: Matrix dimension given by Theorem 6 with different α, Example 3

(kp, ki) α = K Theorem 6 α as in Lem. 4 Theorem 6
(1, 1) 72.74 68 0.2893 8
(1,−1) 88.03 110 1.2103 16

Next, we compare the matrix dimension and computational time of the stability test of
Theorem 4 with other proposals in the previous chapters. For a fair comparison, we use the
improved bound α of Lemma 4 instead of α = K in all cases. The results are presented in
Table 8.4 and Table 8.5 for (kp, ki) = (1, 1) and (kp, ki) = (1,−1), respectively. The symbol (—)
indicates that the numerical burden of the test surpasses the computer RAM.

Table 8.4: Matrix dimension and elapsed time given by Theorem 3, Theorem 4, Theorem 5
and Theorem 6 with (kp, ki) = (1, 1), Example 3

Stability criterion Matrix dim. Outcome Elapsed time (s)
Theorem 3 5157685 — —
Theorem 4 10 Stable 0.551 s
Theorem 5 33 Stable 20.56 s
Theorem 6 8 Stable 0.1154 s

Table 8.4 and Table 8.5 show that the matrix dimension for sufficiency in Theorem 3, even
with our improved bound for α, exceeds the RAM capacity. It appears that Theorem 4, and
Theorem 5 provide tractable matrix dimensions. It is worth noticing that, among functional
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Table 8.5: Matrix dimension and elapsed time given by Theorem 3, Theorem 4, Theorem 5
and Theorem 6 with (kp, ki) = (1,−1), Example 3

Stability criterion Matrix dim. Outcome Elapsed time (s)
Theorem 3 42647927 — —
Theorem 4 24 Unstable 0.683 s
Theorem 5 38 Unstable 35.41 s
Theorem 6 16 Unstable 0.1241 s

argument approximation approaches, the piecewise linear one (Theorem 4) gives a matrix
dimension close to Theorem 6. This is due to a similar convergence rate for the error
quantification of the functional argument or functional kernel, which is determined by the factor
N−2.

Theorem 6 has notable advantages over the other criteria. First, it substantially reduces
the matrix dimension for sufficiency. Second, its computational burden outperforms Theorem 4
and Theorem 5. The reason is that the numerical test only depends on the computation of the
Lyapunov matrix and its evaluation at discrete values, followed by a positivity test. On the
contrary, the conditions of Theorem 4 and Theorem 5 are semi-definite positivity tests that also
require the computation of time-consuming integrals depending on the Lyapunov matrix and its
derivatives.

Example 4: The Proportional-Derivative control u(s) = kp + kds of the system described by
the transfer functions

H(s) =
15s2 + 3s− 20

125s3 + 70s2 + 10s+ 8
e−hs,

introduced in Méndez (2011), is described by system (2.1) with h > 0 and matrices

D =

0 0 0
0 0 0
0 0 − 15

125kd

 , A0 =

 0 1 0
0 0 1

− 8
125 − 10

125 − 70
125

 ,

and

A1 =

 0 0 0
0 0 0

20
125kp − 1

125(3kp − 20kd) − 8
125(15kp + 3kd)

 ,

where parameters kp and kd are the proportional and derivative gains, respectively.

In Tables 8.6 and 8.7, for the stable pair (kp, kd) = (0.25, 0.25) and different values of the
delay h, the matrix dimension and elapsed calculation time of the test of Theorem 6 are compared
to those obtained in Theorem 3, Theorem 4 and Theorem 5. In all cases, the less conservative
estimates of α of Lemma 4 are employed. It is worthy of mention that the matrix dimension of
Theorem 5 notably outperforms the one of Theorem 6 when the delay is very close to the stability
boundary. This is due to the fact that the Lyapunov matrix and its second derivative increase
when the Lyapunov condition is violated, which directly affects the dimension, see Lemma 15.
In the case of Theorem 5, these expressions are attenuated through logarithms, resulting in less
sensitive matrix dimensions. It confirms the presented results in Example 2 and 3.

Table 8.6 and Table 8.7 indeed corroborate the previous example, demonstrating a significant
reduction in the matrix dimension and computational burden of the stability test of Theorem 6
compared to the other approaches, except for parameter values extremely close to stability
boundaries. The poor quality of the approximation by fundamental matrices explains why the
computer’s memory capacity is exceeded when verifying the conditions of Theorem 3. A larger
computational elapsed time of testing the conditions of Theorem 5 and Theorem 4 is due to
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the evaluation of integrals of the delay Lyapunov matrix and its derivatives implemented by
recursive methods.

Table 8.6: Matrix dimension given by Theorem 3, Theorem 4, Theorem 5 and Theorem 6
with (kp, kd) = (0.25, 0.25), Example 4

h α Theorem 3 Theorem 4 Theorem 5 Theorem 6
1.5 0.13 1× 105 33 9 9
2.5 0.12 1× 106 54 12 12
3.5 0.11 12× 106 84 15 18
4.96 0.10 6× 109 756 22 246
4.97 0.10 6× 1010 2478 24 807
5.5 0.10 6× 108 162 21 42
6.5 0.09 27× 108 171 24 36
7.5 0.09 15× 109 195 27 39

Table 8.7: Elapsed time given by Theorem 3, Theorem 4, Theorem 5 and Theorem 6 with
(kp, kd) = (0.25, 0.25), Example 4

h α Theorem 3 Theorem 4 Theorem 5 Theorem 6
1.5 0.13 — 0.61 s 9.84 s 0.15 s
2.5 0.12 — 0.61 s 10.07 s 0.13 s
3.5 0.11 — 0.61 s 12.65 s 0.13 s
4.96 0.10 — 1.32 s 15.47 s 0.18 s
4.97 0.10 — 7.4 s 22.01 s 0.38 s
5.5 0.10 — 0.64 s 18.68 s 0.15 s
6.5 0.09 — 0.64 s 21.32 s 0.13 s
7.5 0.09 — 0.66 s 23.71 s 0.14 s
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis presents three tractable stability tests for neutral linear time delay systems. They
are based on approximating either the functional argument or the functional kernels in the
framework of Lyapunov-Krasovskii functionals with prescribed derivative. The results are made
possible by the instability results on the set of bounded functions S, which allows determining
both an instability constant and a bound on the approximation error. Our results are necessary
and sufficient, unlike results presented in the literature based on quadratic functionals of
prescribed form stated as LMI-type sufficient stability conditions (for example, see Theorem 2).
Furthermore, they are verified in a moderate number of mathematical operations compared with
the large dimensions provided by the stability criterion of Theorem 3 (Gomez et al., 2021).

In order to clarify and remind the construction and verification of our main results, we
present a flowchart of each stability criterion given by Theorem 4, Theorem 5 and Theorem 6
in Figure 9.1, 9.2 and 9.3, respectively. These flowcharts briefly allow illustrating the algorithm
to implement our stability criteria. In addition, Table 9.1 compares our main results and
Theorem 3 considering two main aspects: approximation order and simplicity of the criterion.
This comparison is carried out with the help of the outcomes obtained from the examples in
previous chapters.

From a control design perspective, the use of the delay Lyapunov matrix and the proposed
stability criteria is an ongoing challenge. The existing approaches, available for the retarded
case only, employ the delay Lyapunov matrix framework in predictor-based feedback design for
systems with both input and state delays (Juárez, Mondié, & Kharitonov, 2020), as well as in
optimizing the pseudo-spectral abscissa and the H2-norm (Gomez & Michiels, 2019) along with
the quadratic cost function (Gomez, Michiels, & Mondié, 2019). Moreover, in predictor-based
feedback design, the delay Lyapunov matrix of the target system defines a Lyapunov functional

Simple Complex

High
approximation

order
Theorem 3 —

Low approximation
order

Theorem 6
Theorem 4,
Theorem 5

Table 9.1: Simplicity of the criterion vs. Approximation order
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Figure 9.1: Flowchart of the construction and verification of the stability criteria of
Theorem 4

START

Compute the integer number N0 and τ = h/N0.

Compute the delay Lyapunov matrix U(s), s ∈ [0, h], at the equidistant points
s = kτ, k = 0, N0, associated with a positive definite matrix W . It is solved
by using the semi-analytic method (2.7) introduced in Chapter 2.

Compute integrals Jl, Fl, F̄l, Y
(1)
k , Y

(2)
k and Zk by using Proposition 1 and

2.

Represent Mk, Nk, Pl and Ql in terms of the integrals of STEP 3

Construct matrix ΛN0
.

Check the non-negativityΛN0
.

STOP

that can be used for robustness analysis (Juárez et al., 2020), ISS analysis, etc. Thus, our
stability criteria allow the extension of these approaches to the neutral type case, among other
uses.

For the case of functional argument approximation, we explore the use of piecewise linear
and Legendre polynomial functions as the bases for approximation, yielding efficient criteria
involving the verification of the non-negativity of a matrix in both cases. Next, we give some
conclusions based on these results:

• Table 9.1 shows that the Legendre and piecewise linear approximation of φ give tractable
approximation orders than those using the system fundamental matrix (Theorem 3), but
at the cost of losing the simplicity, particularly the elegant form of discrete values of the
delay Lyapunov matrix of Theorem 3.

• Regarding Legendre and piecewise approximations, the obtained orders of approximation
are similar in spite of the super-geometric property of Legendre, except in the vicinity
of critical delays. The main reason is that the approximation orders using Legendre
polynomials depend on logarithms, which attenuate the increased values of the norm of
the delay Lyapunov matrix at the stability/instability boundaries.

• Notice that the implementation of the criterion of Legendre polynomials is more
time-consuming than the one of the criterion of the piecewise linear approximations due
to the computations of integrals of the delay Lyapunov matrix multiplied by N -order
Legendre polynomials, compared to the third-order monomials required in piecewise linear
approximation of φ as shown in the recursive method presented in Chapter 7.

The functional kernels approximation criterion, characterized by the positivity of the matrix,
stands out among the presented results:
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76 Chapter 9

Figure 9.2: Flowchart of the construction and verification of the stability criteria of
Theorem 5

START

Compute the integer number N1 and compute τ = h/N1.

Compute the delay Lyapunov matrix U(0) and U(h), associated with a
positive definite matrix W . It is solved by using the semi-analytic method
(2.7) introduced in Chapter 2.

Compute integrals Gk, Ḡk, Hkl and H̄kl by using Proposition 3 and 4

Represent J1N1 , J2N1 , J3N1 and J4N1 , in terms of the integrals of STEP 3

Construct matrix ΠN1
.

Check the non-negativity of ΠN1
.

STOP

Figure 9.3: Flowchart of the construction and verification of the stability criteria of
Theorem 6

START

Compute the integer number N2 and compute τ = h/N2.

Compute the delay Lyapunov matrix U(s), s ∈ [0, h], at the equidistant points
s = kτ, k = 0, N2, associated with a positive definite matrix W . It is solved
by using the semi-analytic method (2.7) introduced in Chapter 2.

Construct matrix KN2
.

Check the positivity of KN2
.

STOP

• It has the elegant form in terms of discrete evaluations of an array of Lyapunov matrices
as the criterion of Theorem 3.

• Compared with the functional argument approximation, the approximation order of this
criterion outperforms the previous methods with substantially reduced time execution.
Unfortunately, when approaching the stability/instability boundaries of the delay, this
approach also shows large orders of approximation compared to those using Legendre
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polynomials, which is a good choice for these special issues.

• Finally, Table 9.1 indicates that the stability criterion of Theorem 6 is more appropriate
since it trades off between approximation orders and the simplicity of the criterion.

9.2 Future Work

This thesis work so far has implemented approximations for the functional argument or
functional kernels to obtain stability tests in a moderate number of computations for neutral
type systems. As a result, a stability criterion given in terms of discrete evaluations of the delay
Lyapunov matrix gave the best outcomes. Based on the results, the following is considered as
future work:

• Improve the bound for the instability result of Lemma 3, as the bound computed
introduces a conservatism in the assessment of the stability conditions presented in this
work.

• From a control design perspective, use the delay Lyapunov matrix and the proposed
stability criteria for predictor-based feedback design for neutral type systems with both
input and state delays, as well as in optimizing the pseudo-spectral abscissa and the
H2-norm along with the quadratic cost function.

• Extend the stability criterion of Theorem 6 to the multiple commensurate or
incommensurate delays (incommensurate even for retarded type systems) delay case for
neutral type systems.

• Extend the discretized Lyapunov method of Section 6.1 to the case of distributed delay
systems. There, the system complexity is increased due to the presence of the integral
of a distributed kernel multiplied by past states, whose discretization may be carried out
only for special cases of the distributed kernel.
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Appendix A

Auxiliary results

In this appendix, we remind the Schur complement, the theorem of Taylor and the concept of
the Kronecker product, which are used to achieve the results presented in this thesis work.

Lemma 16 (Schur Complement) Let

X =

(
A B
BT C

)
.

The following statements are true:
(a). Let A > 0. Then, X ⩾ 0, if and only if

C −BTA−1B ⩾ 0.

(b). Matrix X > 0, if and only if C > 0 and

A−BC−1BT > 0.

Theorem 7 (Theorem of Taylor) Let k ⩾ 1 be an integer and let the function f : R → R be k
times differentiable at the point a ∈ R. Then,

f(x) = f(a) + f ′(a)(x− a) +

x∫
a

f (k+1)(t)

k!
(x− t)kdt.

The Kronecker product: Using the non-standard definition introduced in Kharitonov
(2013), the Kronecker product is defined by

A⊗B =


b11A b21A · · · bn1A
b12A b22A · · · bn2A
...

...
. . .

...
b1nA b2nA · · · bnnA

 .

The next property holds:
vec(AQB) = (A⊗B)vec(Q),

where Q ∈ Rn×n and vec(Q) stands for the vectorization of matrix Q, which is obtained from
Q by stacking up its columns.
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