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Resumen

El objetivo de esta tesis es el de estudiar las estructuras aritméticas de gráficas. En particular
nos centraremos en enumerar las estructuras aritméticas del camino P𝑛 y el ciclo C𝑛 con 𝑛
vértices. Para esto, primero desarrollaremos algunas propiedades generales de cierta clase
de matrices no negativas y nos adentraremos en la combinatoria de Catalán.

La tesis está organizada de la siguiente manera: En el Capítulo 1, cubriremos los pre-
liminares de álgebra lineal y combinatoria que necesitaremos en el resto de la tesis. En el
Capitulo 2, exploraremos algunas propiedades de las matrices no negativas, donde destaca
el clásico Teorema de Perron-Frobenius, del cual daremos una demostración autocontenida.
El Teorema de Perron-Frobenius se usará para demostrar varios resultados en el estudio de
𝑀-matrices, las cuales, como observaremos tienen una profunda relación con las estructuras
aritméticas de gráficas.

Finalmente, en el Capítulo 3, estudiaremos las estructuras aritméticas tanto del camino
como del ciclo. A cada estructura aritmética le asociaremos cierto objeto combinatorio pre-
sentado en los capítulos anteriores, lo cual nos permitirá enumerar las estructuras aritméticas
en el camino, cuyo número resulta ser los famosos números de Catalán. Y en el caso del
ciclo con 𝑛 vértices, su número de estructuras aritméticas es el coeficiente binomial

(2𝑛−1
𝑛−1

)
.

vii



viii Resumen



Abstract

The goal of this thesis is to study the arithmetical structures of graphs. In particular, we
will focus on enumerating the arithmetical structures of the path P𝑛 and the cycle C𝑛 with
𝑛 vertices. To do this, we will first develop some general properties of a particular class of
non-negative matrices, and we will go into Catalan combinatorics.

The thesis is organized as follows: In Chapter 1, we will cover the preliminaries of linear
algebra and combinatorics that we will need in the rest of the thesis. In Chapter 2, we will
explore some properties of non-negative matrices, including the classic Perron-Frobenius
Theorem, for which we will give a self-contained proof. The Perron-Frobenius Theorem will
be used to prove several results in the study of 𝑀-matrices, which, as we will observe, have
a deep relationship with the arithmetical structures of graphs.

Finally, in Chapter 3, we will study the arithmetical structures of the path and the cycle.
We will associate each arithmetic structure with lattice paths, which will be presented in the
preliminaries. This will allow us to enumerate the arithmetic structures in the path whose
numbers turn out to be the famous Catalan numbers. And, in the case of the cycle with 𝑛
vertices, its number of arithmetic structures is the binomial coefficient

(2𝑛−1
𝑛−1

)
.
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Chapter 1

Introduction

The concept of an arithmetical graph was introduced in 1989 by Dino Lorenzini. It came
from Arithmetic Geometry, more precisely appearing in the study of algebraic curves that
degenerate into different components and how they intersect.

One way to codify how two curves intersect with each other is by using a matrix 𝐿 whose
entries are the number of intersections between the curves. More precisely, let 𝐶 be a curve
that degenerates in 𝑛 components 𝐶1, . . . , 𝐶𝑛, and let 𝐿 be the matrix defined by setting its
off-diagonal entries equal to

𝐿𝑖, 𝑗 = −|𝐶𝑖 ∩ 𝐶 𝑗 | for all 1 ≤ 𝑖 ≠ 𝑗 < 𝑛

and the number of self-intersections on the diagonal. When this matrix has a nontrivial
kernel, we have, in essence, what we call an arithmetical structure or arithmetical graph when
𝐿 is associated with a graph.

This serves as a historical motivation for the study of arithmetical structures, but for the
purposes of our work, we will not be inclined to study this angle. Instead, we will start with
the following definition.

Definition 1.0.1. An arithmetical graph is a triplet (𝐺, d, r), composed by a finite connected
graph 𝐺, and positive integer vectors d and r, with r primitive, such that

(diag(d) − 𝐴𝐺)r = 0.

Here, primitive is understood as having all entries in the vector be setwise coprime; that
is, the largest positive integer that divides all entries of r is 1.
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2 Introduction

We should note that this condition is essential, as it will guarantee the uniqueness of the
pair (d, r); that is, there is only one r associated with each d.

The pair (d, r) in definition 1.0.1 is said to be an arithmetical structure, and its components
d, r can be referred to as an arithmetical 𝑑-structure and arithmetical 𝑟-structure respectively.
The matrix diag(d) − 𝐴𝐺 is what we will calle the pseudo-Laplacian of 𝐺 and we denote it
by 𝐿 (𝐺, d). Further along, we will show that this indeed gives us a unique pair of vectors, as
the kernel of the pseudo-Laplacian will have rank 1.

Once we have formally defined an arithmetical graph, we proceed to question ourselves
about its most basic and essential properties and which of them are of most interest to us.

It is important to recall that any arithmetical structure will give us a solution to the
Diophantine equation

det(𝐴 − diag(𝑥1, . . . , 𝑥𝑛)) = 0.

Our interest will be centered around the path P𝑛 and the cycle C𝑛. We will be especially
interested in counting the number of arithmetical structures on these two families of graphs.



Chapter 2

Preliminaries

For the purposes of this work, it will be useful to review some concepts and results in graph
theory, linear algebra, and combinatorics.

First, we will start with a review of basic concepts in graph theory; then, we will introduce
some results in linear algebra, which will prove vital once we begin our study of nonnega-
tive matrices, especially their eigenvalues. Finally, we will review Catalan combinatorics,
particularly their relation to Lattice paths.

2.1 Graph theory
In this section, we will first briefly review basic concepts in graph theory and some essential
results regarding the study of critical groups in arithmetical structures, which will be needed
for the following chapters.

Definition 2.1.1. A graph 𝐺 is a pair (𝑉, 𝐸), where 𝑉 is a set and 𝐸 is a set of non-ordered
pairs in 𝑉 .

The elements in 𝑉 are called the vertices of 𝐺, and the elements of 𝐸 are called its edges,
and we consider that {𝑎, 𝑏} = {𝑏, 𝑎} for any 𝑎, 𝑏 ∈ 𝑉 . Usually, we will denote by 𝑉 and 𝐸
the vertex and edge set of a graph 𝐺, respectively.

We say the graph 𝐺 is finite whenever the set 𝑉 is finite. A loop is an edge that goes from
a vertex to itself, that is, an edge of the form {𝑣, 𝑣} for some 𝑣 ∈ 𝑉 .

There are two alterations that we can make to our definition of a graph to obtain different
types of it. First, we can consider edges as ordered pairs of vertices, in which case we would

3



4 Preliminaries

call 𝐺 a directed graph, or digraph for short. We can also allow 𝐸 to be a multiset, so there
may be multiple edges between vertices; in this case, we say that 𝐺 is a multigraph.

If a graph is not a multigraph and does not have loops, it is called simple. In this work,
we will consider all of our graphs simple unless specified otherwise.

Definition 2.1.2. If 𝐺 = (𝑉, 𝐸) and 𝐺′ = (𝑉 ′, 𝐸′) are graphs with 𝑉 ′ ⊂ 𝑉 and 𝐸′ ⊂ 𝐸 , then
we say that 𝐺′ is a subgraph of 𝐺, denoted by 𝐺′ ⊂ 𝐺.

Besides, if 𝐺′ ⊂ 𝐺 and 𝑉 ′ = 𝑉 , we say that 𝐺′ is a spanning subgraph of 𝐺.

Example 2.1.3. Some common examples of graphs are:

1. The null graph with its vertex and edge set equal to ∅.

2. The complete graph 𝐾𝑛 on 𝑛 vertices defined by

𝑉 (𝐾𝑛) = {𝑣1, . . . , 𝑣𝑛} and 𝐸 (𝐾𝑛) = {{𝑣𝑖, 𝑣 𝑗 } : 1 ≤ 𝑖 ≠ 𝑗 ≤ 𝑛}.

3. The path with 𝑛 vertices P𝑛 is the graph on the 𝑛 vertices {𝑣1, . . . , 𝑣𝑛} and the 𝑛 − 1
edges

𝐸 (P𝑛) = {{𝑣𝑖, 𝑣𝑖+1} : 1 ≤ 𝑖 ≤ 𝑛 − 1}.

4. The cycle with 𝑛 vertices C𝑛 is the graph obtained by adding the edge {𝑣1, 𝑣𝑛} to P𝑛.

These last two graphs will be of importance to us in later chapters. We say that a graph
𝐺 has a cycle whenever there is some C𝑛 ⊂ 𝐺 for some 𝑛. We call a graph acyclic or a forest
whenever it has no cycles.

A graph 𝐺 is connected whenever, for each pair of vertices 𝑢, 𝑣 of 𝐺, there is a path that
starts at 𝑢 = 𝑣1 and ends at 𝑣 = 𝑣𝑛. A connected forest is called a tree. Spanning trees will
play an important part in the study of arithmetical structures of a graph.

We will denote the edge {𝑢, 𝑣} by 𝑢𝑣 to simplify the notation. A vertex 𝑢 is adjacent to
a vertex 𝑣 whenever 𝑢𝑣 ∈ 𝐸 . This relation can be codified in what we call the adjacency
matrix.

Definition 2.1.4. The adjacency matrix of a graph 𝐺 is the matrix 𝐴𝐺 whose rows and
columns are indexed by the vertices of 𝐺, and its entries are given by

(𝐴𝐺)𝑢,𝑣 =
{

1 if 𝑢𝑣 ∈ 𝐸,
0 in other case.
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Note that the adjacency matrix of a graph is symmetric because 𝑢𝑣 ∈ 𝐸 if and only if
𝑣𝑢 ∈ 𝐸 .

Example 2.1.5. We describe the adjacency matrix of the complete graph and the path.

1. The adjacency matrix of the complete graph in 𝑛 vertices is the 𝑛 × 𝑛 matrix with all
entries equal to 1 except the diagonal, which are equal to 0.

©­­­­«
0 1 . . . 1 1
1 0 . . . 1 1
...
...
. . .

...
...

1 1 . . . 1 0

ª®®®®¬
2. The adjacency matrix of the path in 𝑛 vertices P𝑛 is the tridiagonal matrix with diagonal

entries equal to 0 and entries equal to 1 on the secondary diagonals adjacent to the
main diagonal. ©­­­­­­­­«

0 1 0 . . . 0 0
1 0 1 . . . 0 0
0 1 0 . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . 0 1
0 0 0 . . . 1 0

ª®®®®®®®®¬
We call an edge 𝑒 = 𝑢𝑣 incident to the vertices 𝑢 and 𝑣. The degree of a vertex 𝑣 of graph

𝐺, denoted by deg𝐺 (𝑣), is the number of edges incident to it. The degree vector of 𝐺 is the
vector deg𝐺 whose entries are indexed by the vertices of 𝐺, and the entry indexed by 𝑣 is the
degree of 𝑣 in 𝐺.

Example 2.1.6. 1. The degree vector of the complete graph K𝑛 is

(𝑛 − 1, 𝑛 − 1, . . . , 𝑛 − 1, 𝑛 − 1).

2. The degree vector of the path P𝑛 is

(1, 2, . . . , 2, 1).

3. The degree vetor of the cycle C𝑛 is

(2, 2, . . . , 2, 2).
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With these definitions, we can give our first result on arithmetical structures.

Theorem 2.1.7. For a connected graph 𝐺, the pair

d := deg(𝐺) and r := 1 = (1, . . . , 1),

define an arithmetical structure on 𝐺, which will be called the Laplacian arithmetical struc-
ture of 𝐺.

2.2 Linear algebra
In the following chapter, we study the nonnegative matrices; we will be particularly interested
in the behavior of their spectrum. Thus, it will be useful to review some results in linear
algebra.

We introduce some notation that will be useful for the rest of this section. Given 𝑛 ∈ N,
let [𝑛] be denote the set {1, 2, . . . , 𝑛}. Now, given 𝐼, 𝐽 ⊆ [𝑛], let 𝑀 [𝐼, 𝐽] be the submatrix of
𝑀 conformed of the rows indexed by 𝐼 and columns indexed by 𝐽. When 𝐼 = 𝐽, the submatrix
𝑁 = 𝑀 [𝐼, 𝐽] of 𝑀 it is called a principal submatrix of 𝑀 . Moreover, if 𝐼 = 𝐽 = {1, 2, . . . , 𝑠}
for some 1 ≤ 𝑠 ≤ 𝑛, then 𝑁 it is called a leading principal submatrix of 𝑀 .

The determinant of a principal submatrix is called a principal minor, and a leading
principal minor is the determinant of a leading principal submatrix.

Similarly, 𝑀 [𝐼𝑐, 𝐽𝑐] is the submatrix of 𝑀 obtained by erasing the rows and columns of
𝑀 indexed by 𝐼 and 𝐽, respectively. In this section, the space of square 𝑛 × 𝑛 matrices over a
field F will be denoted by F𝑛×𝑛.

Theorem 2.2.1 (Gershgorin’s circle theorem). If 𝑀 is a square complex matrix of size n
and 𝜆 is one of its eigenvalues, then

𝜆 ∈
𝑛⋃
𝑖=1

𝐷 (𝑀𝑖𝑖, 𝑡𝑖),

where 𝑡𝑖 =
∑
𝑗≠𝑖 |𝑀𝑖 𝑗 | and 𝐷 (𝑐, 𝑡) is the disk with center at 𝑐 and radius 𝑡.

Proof. Let 𝑥 be an eigenvector of the eigenvalue 𝜆 and 1 ≤ 𝑖 ≤ 𝑛 such that |𝑥𝑖 | ≥ |𝑥 𝑗 | for all
𝑗 . Since 𝑀𝑥 = 𝜆𝑥, then

∑𝑛
𝑗=1 𝑀𝑖 𝑗𝑥 𝑗 = 𝜆𝑥𝑖, thas is,

∑
𝑗≠𝑖 𝑀𝑖 𝑗𝑥 𝑗 = (𝜆 − 𝑀𝑖𝑖)𝑥𝑖.

Thus
|𝜆 − 𝑀𝑖,𝑖 | =

����∑ 𝑗≠𝑖 𝑀𝑖, 𝑗𝑥 𝑗

𝑥𝑖

���� ≤ ∑︁
𝑗≠𝑖

|𝑀𝑖, 𝑗 |
|𝑥 𝑗 |
|𝑥𝑖 |

≤
∑︁
𝑗≠𝑖

|𝑀𝑖, 𝑗 | = 𝑡𝑖

and therefore 𝜆 ∈ 𝐷 (𝑀𝑖,𝑖, 𝑟𝑖). □
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In the following part of this section, we will be working with matrices called positive
definite or positive semi-definite. This last class of matrices will also contain the pseudo-
Laplacian matrix of an arithmetical structure.

We start by defining them.

Definition 2.2.2. A real symmetric matrix 𝑀 is called positive definite whenever the number

𝑧𝑇𝑀𝑧

is positive for each 𝑧 ∈ R𝑛 \0. Besides, 𝑀 is called positive semi-definite whenever 𝑧𝑇𝑀𝑧 ≥ 0
for all 𝑧 ∈ R𝑛 \ 0. Here 𝑧𝑇 denotes the transpose of 𝑧.

In the complex case, a matrix is called positive definite whenever

𝑧𝐻𝑀𝑧 is a positive real number for any 𝑧 ∈ C𝑛 \ 0,

where 𝑧𝐻 = 𝑧𝐻 denotes the conjugate transpose of 𝑧. We define a positive semi-definite
matrix similarly in the complex case.

Note that 𝑧𝐻𝑀𝑧 being a real number for all 𝑧 ∈ C𝑛 implies that 𝑀 is equal to its conjugate
transpose. More precisely, if 𝑧𝐻𝑀𝑧 is always a real number, then

𝑧𝐻𝑀𝑧 = (𝑧𝐻𝑀𝑧)𝐻 = 𝑧𝐻𝑀𝐻𝑧 for all 𝑧 ∈ C𝑛 \ 0

and therefore 𝑀 = 𝑀𝐻 , so 𝑀 is Hermitian whenever it is positive definite or semi-definite.
For the rest of this section, 𝑀 will be a Hermitian matrix of size 𝑛, which also implies
symmetry in the real case.

Then, an important theorem for this section is the Spectral theorem for Hermitian matrices,
so it will be useful to recall it. Given a square matrix 𝐴, the spectrum of 𝐴, denoted by Λ𝐴,
is the vector with its eigenvalues.

Theorem 2.2.3 (Spectral theorem for Hermitian matrices). If 𝐴 is a Hermitian matrix in
C𝑛×𝑛, then

1. all of its eigenvalues are real,

2. eigenvectors corresponding to different eigenvalues are orthonormal,

3. there exist an orthogonal basis of C𝑛 consisting of eigenvectors of 𝐴.

Moreover, there exists an unitary matrix 𝑄 such that 𝑄−1𝐴𝑄 = diag(Λ𝐴).
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Taking 𝑧 to be the vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) formed by a set of variables, the product

𝑥𝑇𝑀𝑥 =
∑︁

1≤𝑖≤𝑛
𝑀𝑖𝑖𝑥

2
𝑖 +

∑︁
1≤𝑖< 𝑗≤𝑛

2𝑀𝑖 𝑗𝑥𝑖𝑥 𝑗 ,

is the quadratic form associated with 𝑀 .
We note that that if 𝑄 is invertible, then for all 𝑤 ∈ C𝑛 \ 0 there exists 𝑧 ∈ C𝑛 \ 0 such

that 𝑤 = 𝑄𝑧. That is, 𝑄 defines a bĳection in C𝑛.

Lemma 2.2.4. If 𝑃 is an invertible matrix and 𝑀 is a Hermitian matrix, then 𝑀 is positive
definite if and only if 𝑃𝐻𝑀𝑃 is positive definite.

Proof. It follows from the relation 𝑧𝐻 (𝑃𝐻𝑀𝑃)𝑧 = (𝑃𝑧)𝐻𝑀 (𝑃𝑧) and the fact that for all
𝑤 ∈ C𝑛 there exists some 𝑧 ∈ C𝑛 such that 𝑃𝑧 = 𝑤, by the invertibility of 𝑃. □

If 𝑀 is a Hermitian matrix, then by the Spectral theorem for Hermitian matrices 2.2.3,
its eigenvalues are real, and there exists a unitary matrix 𝑄 such that 𝑀 = 𝑄𝐻diag(Λ𝑀)𝑄
where Λ𝑀 = (𝜆1, . . . , 𝜆𝑛) is the vector whose entries are the eigenvalues of 𝑀 . Moreover,
without loss of generality, we can assume 𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛.

Theorem 2.2.5. A matrix 𝑀 is positive (semi-)definite if and only if its eigenvalues are
(nonnegative) positive.

Proof. We shall only prove the positive definite case, as the arguments for the semi-definite
case are similar. (⇒) Let 𝜆 be an eigenvalue of 𝑀 with eigenvector 𝑥. That is, 𝑀𝑥 = 𝜆𝑥

with 𝑥 ∈ C𝑛 \ 0. Multiplying both sides of 𝑀𝑥 = 𝜆𝑥 by 𝑥𝐻 we get

𝜆𝑥𝐻𝑥 = 𝑥𝐻𝜆𝑥 = 𝑥𝐻𝑀𝑥.

Since 𝑥𝐻𝑥 = | |𝑥 | |2, the square of its euclidean norm, is positive and 𝑥𝐻𝑀𝑥 is positive for all
𝑥 ∈ C𝑛 \ 0, it follows that 𝜆 is positive.

(⇐) Using that 𝑀 is Hermitian, by the Spectral theorem for Hermitian matrices 2.2.3,
there exists a unitary matrix 𝑄 such that 𝑀 = 𝑄𝐻diag(Λ)𝑄.

Then

𝑥𝐻𝑀𝑥 = 𝑥𝐻𝑄𝐻diag(Λ)𝑄𝑥 = (𝑄𝑥)𝐻diag(Λ) (𝑄𝑥) = 𝑦𝐻diag(Λ)𝑦 =
𝑛∑︁
𝑖=1

𝜆𝑖 |𝑦𝑖 |2

is positive. Finally, the result follows from Lemma 2.2.4. □
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Theorem 2.2.6. A square matrix 𝑀 of size 𝑛 is positive definite if and only if all its leading
principal minors are positive.

Proof. (⇒) Let 𝐼 ⊆ [𝑛] and 𝑀𝐼 = 𝑀 [𝐼, 𝐼] (the submatrix obtained by erasing from 𝑀 the
rows and columns not indexed by 𝐼). Let 𝑥 ∈ C𝑛 \ 0 with 𝑥𝑖 = 0 for all 𝑖 ∉ 𝐼 and 𝑦 ∈ C𝐼 \ 0 be
the vector obtained from 𝑥 by erasing the entries not indexed by 𝐼. As 𝑥𝐻𝑀𝑥 = 𝑦𝐻𝑀𝐼 𝑦 for
all 𝑥 ∈ C𝑛 \ 0 with 𝑥𝑖 = 0 for all 𝑖 ∉ 𝐼, then is clear that any principal submatrix of 𝑀 is also
positive definite.

As 𝑀𝐼 is positive definite, by Theorem 2.2.5, all of its eigenvalues are positive. The
determinant of a matrix is the product of its eigenvalues, thus it follows that the determinant
is also positive.

(⇐) We now assume that every leading principal minor of 𝑀 is positive. We proceed
by induction on the size of the matrix 𝑛. The result is clear for 𝑛 = 1. Now, we will assume
it is valid for all matrices of size less than or equal to 𝑛 − 1. Let 𝑁 be the matrix obtained
from 𝑀 by erasing its last row and column. As the leading principal submatrices of 𝑁 are
also the leading principal submatrices of 𝑀 , their determinants are also positive according
to our hypothesis. By our induction hypotesis 𝑁 is positive definite so its eigenvalues
Λ𝑁 = (𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛−1) are positive. Let Λ𝑀 = (𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑛) be the spectrum
of 𝑀 . By the Cauchy interlacing Theorem 2.2.9 on 𝑀 and 𝑁 (which will be proven in the
next section), we get

𝜇1 ≤ 𝜆1 ≤ 𝜇2 ≤ 𝜆2 ≤ · · · 𝜆𝑛−1 ≤ 𝜇𝑛.

As 𝜆1 > 0, then 𝜇𝑖 > 0 for all 2 ≤ 𝑖 ≤ 𝑛 and it only remais to prove that 𝜇1 > 0.
As 𝑀 is also a leading principal submatrix, by hypothesis, its determinant is positive.

Finally, since the determinant of 𝑀 is the product of its eigenvalues, 𝜇1 must also be
positive. □

Note that by Lemma 2.2.4, and because permutation matrices are invertible, the previous
Theorem 2.2.6 implies that any principal minor must also be positive.

Theorem 2.2.7. A matrix 𝑀 is positive semi-definite if and only if its principal minors are
nonnegative.

Proof. (⇒) Using similar arguments to those used in the proof of 2.2.6, we obtain that
any principal submatrix 𝑀𝐼 is positive semi-definite. Now, by Theorem 2.2.5, all of its
eigenvalues are nonnegative, and so its determinant is nonnegative.
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(⇐) Let 𝐾 be a principal matrix of 𝑀 of size 𝑠 and 𝐾𝑡 = 𝐾 + 𝑡 𝐼𝑠 with 𝑡 ∈ R+. A known
formula for the characteristic polynomial of a matrix 𝐴 of size 𝑠 is

det(𝑡 𝐼 − 𝐴) =
𝑠∑︁
𝑗=0

(−1) 𝑗𝜎𝑗 (𝐾)𝑡𝑠− 𝑗 , (2.1)

where 𝜎𝑗 (𝐾) is the sum over the principal minors of size 𝑗 of 𝐴, and 𝜎0 = 1 (the proof of
this formula can be consulted in [12], p.52). Then, by substituting 𝐴 = −𝐾 in the formula,
we get

det(𝐾𝑡) =
𝑠∑︁
𝑗=0
𝜎𝑗 (𝐾)𝑡𝑠− 𝑗 .

Since the principal minors of 𝐾 are principal minors of 𝑀 and these are nonnegative, then

det(𝐾𝑡) =
𝑠∑︁
𝑗=0
𝜎𝑗 (𝐾)𝑡𝑠− 𝑗 ≥ 𝑡𝑠 > 0 for all 𝑡 ∈ R+.

That is, all the principal minors 𝑀𝑡 = 𝑀 + 𝑡 𝐼𝑛 are positive. By Theorem 2.2.6, 𝑀𝑡 is positive
definite for all 𝑡 ∈ R+. Finally, because 𝑀 = lim𝑡→0+ 𝑀𝑡 and 𝑧𝐻𝑀𝑧 = lim𝑡→0+ 𝑧

𝐻𝑀𝑡𝑧 ≥ 0 for
all 𝑧 ∈ C𝑘 \ 0, then 𝑀 is positive semi-definite. □

2.2.1 Min-max theorem and Cauchy’s interlacing theorem.
Given a Hermitian matrix 𝑀 , the Rayleigh–Ritz quotient 𝑅𝑀 : C𝑛 \ 0 → R is given by

𝑅𝑀 (𝑥) = 𝑥𝐻𝑀𝑥

𝑥𝐻𝑥
.

Theorem 2.2.8 (Min-max theorem). If 𝑀 is a Hermitian matrix with spectrum Λ𝑀 = (𝜆1 ≤
𝜆2 ≤ · · · ≤ 𝜆𝑛), then

𝜆𝑘 = min
𝑈

{max
𝑥

{𝑅𝑀 (𝑥) : 𝑥 ∈ 𝑈 \ 0} : dim(𝑈) = 𝑘}

= max
𝑈

{min
𝑥
{𝑅𝑀 (𝑥) : 𝑥 ∈ 𝑈 \ 0} : dim(𝑈) = 𝑛 − 𝑘 + 1}.

Proof. By the Spectral theorem for Hermitian matrices 2.2.3, there is an orthonormal basis
of eigenvectors of 𝑀 .
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Let Q = {𝑞1, . . . , 𝑞𝑛} be the set of orthonormal eigenvectors of 𝑀 ,𝑊 the subspace of C𝑛
generated by {𝑞𝑘 , . . . , 𝑞𝑛}, and𝑈 a subspace of C𝑛 of dimension 𝑘 .

As the dimensions of𝑈 and𝑊 are 𝑘 and 𝑛− 𝑘 + 1, respectively, there is some 𝑢 ∈ 𝑊 ∩𝑈,
𝑢 ≠ 0, so that 𝑢 =

∑𝑛
𝑖=𝑘 𝑐𝑖𝑞𝑖 ∈ 𝑈. Then

𝑅𝑀 (𝑢) = 𝑢𝑇𝑀𝑢

𝑢𝑇𝑢
=

∑𝑛
𝑖=𝑘 𝜆𝑖 |𝑐𝑖 |2∑𝑛
𝑖=𝑘 |𝑐𝑖 |2

≥
∑𝑛
𝑖=𝑘 𝜆𝑘 |𝑐𝑖 |2∑𝑛
𝑖=𝑘 |𝑐𝑖 |2

= 𝜆𝑘

and so max
𝑥

{𝑅𝑀 (𝑥) : 𝑥 ∈ 𝑈 \0} ≥ 𝜆𝑘 . As this is valid for any subspace𝑈 of C𝑛 of dimension
𝑘 , then

𝜆𝑘 ≤ min
𝑈

{max
𝑥

{𝑅𝑀 (𝑥) : 𝑥 ∈ 𝑈 \ 0} : dim(𝑈) = 𝑘}.

On the other hand, if 𝑉 is the subspace C𝑛 generated by {𝑞1, . . . , 𝑞𝑘 }, then

𝑅𝑀 (𝑣) = 𝑣𝑇𝑀𝑣

𝑣𝑇𝑣
=

∑𝑘
𝑖=𝑖 𝜆𝑖 |𝑐𝑖 |2∑𝑘
𝑖=1 |𝑐𝑖 |2

≤ 𝜆𝑘 for all 𝑣 =
𝑘∑︁
𝑖=1

𝑐𝑖𝑞𝑖 ∈ 𝑉 \ 0.

Thus 𝜆𝑘 ≥ max
𝑥

{𝑅𝑀 (𝑥) : 𝑥 ∈ 𝑉 \ 0} and

min
𝑈

{max
𝑥

{𝑅𝑀 (𝑥) : 𝑥 ∈ 𝑈 \ 0} : dim(𝑈) = 𝑘} ≤ max
𝑥

{𝑅𝑀 (𝑥) : 𝑥 ∈ 𝑉 \ 0} ≤ 𝜆𝑘 ,

from which the result follows.
The second identity follow from similar arguments in the matrix −𝑀 noting that its

spectrum is equal to Λ−𝑀 = (−𝜆𝑛 ≤ −𝜆𝑛−1 ≤ · · · ≤ −𝜆1). □

Theorem 2.2.9 (Cauchy interlacing theorem or Poincare separation theorem). Let 𝑀 be
a Hermitian matrix and 𝑁 the submatrix of 𝑀 obtained by erasing its last row and column.
If Λ𝑀 = (𝜇1 ≤ 𝜇2 ≤ · · · ≤ 𝜇𝑛) and Λ𝑁 = (𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛−1) are the spectrum of 𝑀
and 𝑁 respectively, then

𝜇1 ≤ 𝜆1 ≤ 𝜇2 ≤ 𝜆2 ≤ · · · 𝜆𝑛−1 ≤ 𝜇𝑛.

Proof. By the Spectral theorem for Hermitian matrices 2.2.3, there is an orthonormal basis
of C𝑛 composed by eigenvectors of 𝑀 , and another orthonormal basis of C𝑛−1 composed by
eigenvectors of 𝑁 , as it is also Hermitian.

First we prove that 𝜇𝑘 ≤ 𝜆𝑘 for all 1 ≤ 𝑘 ≤ 𝑛 − 1. Let 𝑘 ∈ {1, · · · , 𝑛 − 1}, and
Q = {𝑞1, . . . , 𝑞𝑛} be a set of orthonormal eigenvectors of 𝑀 in C𝑛, P = {𝑝1, . . . , 𝑝𝑛−1} a set
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of orthonormal eigenvectors of 𝑁 in C𝑛−1,𝑈 the 𝑛− 𝑘 +1-dimensional subspace C𝑛 generated
by {𝑞𝑘 , . . . , 𝑞𝑛} and𝑊 the 𝑘-dimensional subspace of C𝑛−1 generated by {𝑝1, . . . , 𝑝𝑘 }.

If 𝑢 ∈ 𝑈, then 𝑢 =
∑𝑛
𝑖=𝑘 𝑐𝑖𝑞𝑖 and

𝑅𝑀 (𝑢) = 𝑢𝐻𝑀𝑢

𝑢𝐻𝑢
=

∑𝑛
𝑖=𝑘 𝜇𝑖 |𝑐𝑖 |2∑𝑛
𝑖=𝑘 |𝑐𝑖 |2

≥
∑𝑛
𝑖=𝑘 𝜇𝑘 |𝑐𝑖 |2∑𝑛
𝑖=𝑘 |𝑐𝑖 |2

= 𝜇𝑘

therefore 𝜇𝑘 = min{𝑅𝑀 (𝑢) : 𝑢 ∈ 𝑈 \ 0}.
Similarly, if 𝑤 ∈ 𝑊 , then 𝑤 =

∑𝑘
𝑖=1 𝑑𝑖𝑝𝑖 and

𝑅𝑁 (𝑤) =
𝑤𝐻𝑁𝑤

𝑤𝐻𝑤
=

∑𝑘
𝑖=1 𝜆𝑖 |𝑑𝑖 |2∑𝑘
𝑖=1 |𝑑𝑖 |2

≤
∑𝑘
𝑖=1 𝜆𝑘 |𝑑𝑖 |2∑𝑘
𝑖=1 |𝑑𝑖 |2

= 𝜆𝑘

and so, 𝜆𝑘 = max{𝑅𝑁 (𝑤) : 𝑤 ∈ 𝑊 \ 0}.
On the other hand, let 𝑊′ be the set of vectors obtained by adding a 0 at the end of

each vector in 𝑊 . As dim(𝑈) = 𝑛 − 𝑘 + 1 and dim(𝑊) = 𝑘 = dim(𝑊′), then there exists
0 ≠ 𝑣 ∈ 𝑈 ∩𝑊′. In particular, the last entry of 𝑣 is equal to zero. Then, it is clear that

𝑅𝑀 (𝑣) = 𝑣𝐻𝑀𝑣

𝑣𝐻𝑣
=
𝑣′𝐻𝑁𝑣′

𝑣′𝐻𝑣′
= 𝑅𝑁 (𝑣′),

where 𝑣′ is the vector obtained by 𝑣 from removing its last entry. As 𝑣 ∈ 𝑈 and 𝑣′ ∈ 𝑊 , then

𝜇𝑘 = min{𝑅𝑀 (𝑢) : 𝑢 ∈ 𝑈 \ 0} ≤ 𝑣𝐻𝑀𝑣

𝑣𝐻𝑣
=
𝑣′𝐻𝑁𝑣′

𝑣′𝐻𝑣′
≤ max{𝑅𝑁 (𝑤) : 𝑤 ∈ 𝑊 \ 0} = 𝜆𝑘 .

We show that 𝜆𝑘 ≤ 𝜇𝑘+1 for all 1 ≤ 𝑘 ≤ 𝑛 − 1. Following the notation and similar
arguments to those used for the previous inequality, let𝑈 be the subspace of C𝑛 generated by
{𝑞1, . . . , 𝑞𝑘+1} and𝑊 the subspace of C𝑛−1 generated by {𝑝𝑘 , . . . , 𝑝𝑛−1}. Then

𝜆𝑘 = min{𝑅𝑁 (𝑤) : 𝑤 ∈ 𝑊 \ 0} ≤ 𝑣𝐻𝑀𝑣

𝑣𝐻𝑣
=
𝑣′𝐻𝑁𝑣′

𝑣′𝐻𝑣′
≤ max{𝑅𝑀 (𝑢) : 𝑢 ∈ 𝑈 \ 0} = 𝜇𝑘+1

for some 𝑣 ∈ 𝑈 ∩𝑊′. □

2.2.2 Continuity of the spectrum of a matrix
In this subsection, we talk about the continuity of the spectrum and spectral radius of a matrix.
For that, we will use the following norm on the vector space C𝑛×𝑛:

| |𝐴| |∞ = max |𝑎𝑖 𝑗 |.
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We begin by recalling the continuity of the zeroes of a polynomial; the proof of this result
can be consulted, for example, in [11].

Theorem 2.2.10. If 𝑎1(𝑡), . . . , 𝑎𝑛 (𝑡) are continuous complex valued functions defined in an
interval 𝐼 ⊆ R, then the zeroes 𝛼1(𝑡), . . . , 𝛼𝑛 (𝑡) of the polynomial

𝑧𝑛 − 𝑧𝑛−1𝑎1(𝑡) + · · · + (−1)𝑛𝑎𝑛 (𝑡)

on 𝑧, are continuous functions on 𝑡.

Let {𝑎𝑖 𝑗 (𝑡)}1≤𝑖, 𝑗≤𝑛 be continuous functions on an interval 𝐼 ⊂ R and

𝐴(𝑡) : 𝐼 −→ C𝑛×𝑛,

a function from the interval 𝐼 to the matrices inC𝑛×𝑛. Moreover, letΛ𝐴 (𝑡) = (𝜆1(𝑡), . . . , 𝜆𝑛 (𝑡))
be the functions on 𝐼 toC𝑛 given by the ordered eigenvalues of 𝐴(𝑡). Also, let 𝜌 : C𝑛×𝑛 −→ R
given by

𝜌(𝐴(𝑡)) = max( |Λ𝐴 (𝑡) |),
be the spectral radius function of the matrix 𝐴(𝑡), where |Λ𝐴 (𝑡) | is the set composed by
|𝜆1(𝑡) |, . . . , |𝜆𝑛 (𝑡) |.

The following result establishes the continuity of the spectrum and spectral radius of 𝐴(𝑡)
as a function of 𝑡.

Theorem 2.2.11. If 𝐴(𝑡) is a continuous function defined in an interval 𝐼 ⊆ R into the space
C𝑛×𝑛, then the spectrum Λ𝐴 (𝑡) = (𝜆1(𝑡), . . . , 𝜆𝑛 (𝑡)) and spectral radious 𝜌(𝐴(𝑡)) of 𝐴(𝑡) are
continuous functions on 𝑡.

Proof. Using the Laplace expansion of det(𝑧𝐼 − 𝐴(𝑡)), the coefficients of the characteristic
polynomials will be continuous functions of the 𝑎𝑖 𝑗 (𝑡). By applying Theorem 2.2.10, we
obtain the result.

Finally, since the maximum of the set of continuous functions |𝜆1(𝑡) |, . . . , |𝜆𝑛 (𝑡) | is a
continuous function, we get that 𝜌(𝐴(𝑡)) is continuous. □

2.3 Catalan combinatorics
In the fourth chapter, we will use a connection between the number of lattice paths and the
number of arithmetical structures on paths and cycles. Therefore, it is helpful to learn how
to count them. For this, we need to study Catalan numbers and their combinatorics.

Before introducing Catalan’s triangle, let’s recall the well-known Pascal’s triangle.
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1

1 1

1 2 1

1 3 3 1

1 4 6 4 1
...

In which we put one’s in both sides of the triangle, and every entry in a row is the resulting
sum of the two numbers above it.

2.3.1 Catalan numbers
The Catalan’s triangle is very similar to Pascal’s triangle: , it looks like this

1

1 1

1 2 2

1 3 5 5

1 4 9 14 14
...

To understand how to construct it, it is easier if we revisualize it in the following way:

1

1 1

1 2 2

1 3 5 5

1 4 9 14 14
...

Figure 2.1: Catalan’s triangle
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Here, we can see that we start with a column of numbers one, and every number at the
right of this column is the sum of the number directly to their left and the one directly above
it. Note that when no number is directly above, we may treat it as if there is a 0.

An interesting observation is that the sum of numbers at each row will be equal to the
number at the end of the next row. The number at the end of the 𝑛-th row is called the 𝑛-th
Catalan number and will be represented as 𝐶𝑛.

We shall show that a general formula for the 𝑛-th Catalan number is 𝐶𝑛 = 1
𝑛+1

(2𝑛
𝑛

)
.

2.3.2 Lattice paths

Definition 2.3.1 (Lattice path). A lattice path is a finite sequence of pairs 𝑣𝑘 = (𝑎𝑘 , 𝑏𝑘 ) in
Z2, such that

1. 𝑣0 = (0, 0),

2. 𝑎𝑘 , 𝑏𝑘 ≥ 0, and

3. if 𝑣𝑘 = (𝑎𝑘 , 𝑏𝑘 ), then either 𝑣𝑘+1 = (𝑎𝑘 + 1, 𝑏𝑘 ) or 𝑣𝑘+1 = (𝑎𝑘 , 𝑏𝑘 + 1).

Last condition is equivalent to saying that either 𝑣𝑘+1 = 𝑣𝑘 + (1, 0) or 𝑣𝑘+1 = 𝑣𝑘 + (0, 1).
In the first case, we say that our path took a horizontal step, and in the second case, we say
that our path took a vertical step. Then, a path (𝑣1, . . . , 𝑣𝑛) can also be represented as a string
of 𝐻 and 𝑉’s, where we put an 𝐻 or 𝑉 in position 𝑖 depending if our path took a horizontal
or vertical step at the point 𝑣𝑖. A lattice path (𝑣1, . . . , 𝑣𝑛) is said to have length 𝑛. We recall
that a string over a non empty set Σ is a finite sequence of elements

𝑎1𝑎2 . . . 𝑎𝑛,

where 𝑎1, . . . , 𝑎𝑛 ∈ Σ. An integer string will be a string over Z.
We can visualize the number of lattice paths that end at the point (𝑘, 𝑙) while not going

above the diagonal 𝑥 = 𝑦 in the following figure.
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1 2 3 4 5

14952

5 14 28

4214

42

111111

Figure 2.2: Number of lattice paths below the diagonal to each point.

In this figure, the number next to each point (𝑘, 𝑙) equals the number of different lattice
paths that reach this point while not going above the diagonal. In this case, we consider the
empty path the unique lattice path that begins and finishes in (0, 0).

Here, we can see some similarities with the Catalan triangle, mainly that it follows a
similar set of rules to its own:

1. There is a row of numbers one at the bottom because there is only one lattice path to
any of the points (𝑎, 0).

2. The number of paths to a point (𝑎, 𝑏) is equal to the sum of the number of paths to the
points (𝑎 − 1, 𝑏) and (𝑎, 𝑏 − 1), this is the sum of the numbers directly below and to
the left.

By rotating 90 degrees clockwise the Figure 2.2, one can see that we are left with the
visualization of Catalan’s triangle given in Figure 2.1.

The following result counts the number of lattice paths that end at the point (𝑚, 𝑛) that
does not cross above the diagonal 𝑥 = 𝑦.

Theorem 2.3.2. If 𝑚 > 𝑛 are non-negative integers, then the number of lattice paths that
end in (𝑚, 𝑛) that does not cross above the diagonal is equal to

𝑚 − 𝑛 + 1
𝑚 + 1

(
𝑚 + 𝑛
𝑛

)
.
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Proof. We may asssume that 𝑚 > 𝑛, as there are the same number of paths to (𝑛, 𝑛) as to
(𝑛, 𝑛 − 1). It is a known result that the number of paths from (0, 0) to the point (𝑚, 𝑛) is(𝑚+𝑛
𝑛

)
. Then, we could count the number of this path that stays below the diagonal 𝑥 = 𝑦.

It is not difficult to check that there are no paths that do not touch or cross the diagonal
when 𝑚 < 𝑛, so we may assume that 𝑚 > 𝑛. We also observe that the first step of the path
will be to the right, as the paths do not touch the diagonal. This is 𝑣1 = (1, 0), so it is the
same as the number of paths from (1, 0) to (𝑚, 𝑛) that don’t touch or cross the diagonal.

Figure 2.3: A path to (6, 5) that crosses the diagonal at (3, 3), and the resulting path after
reflecting the points before it.

For any path that touches the diagonal, let 𝑣𝑎 be the first point at which the path does so.
If we reflect all the points before it around the diagonal 𝑥 = 𝑦, we will obtain a path from
(0, 1) to (𝑚, 𝑛). An example of this procedure is shown in Figure 2.3. We note that any path
from (0, 1) to (𝑚, 𝑛) will touch the diagonal at some point because 𝑚 > 𝑛. The number of
these paths is

(𝑚+𝑛−1
𝑚

)
.

As the reflection is a bĳection, we may conclude that the number of paths from (1, 0) to
(𝑚, 𝑛) that touch the diagonal is

(𝑚+𝑛−1
𝑚

)
. So the number of paths from (1, 0) to (𝑚, 𝑛) that

do not touch the diagonal is(
𝑚 + 𝑛 − 1
𝑚 − 1

)
−
(
𝑚 + 𝑛 − 1

𝑚

)
=
𝑚 − 𝑛
𝑚 + 𝑛

(
𝑚 + 𝑛
𝑚

)
.

So far, we have only counted paths that stay strictly below the diagonal 𝑥 = 𝑦. In our theorem,
we allow paths to touch the diagonal but not go above it.
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To count this type of paths, we note that by taking any path that stays strictly below the
diagonal 𝑥 = 𝑦, from (1, 0) to (𝑚 + 1, 𝑛), with 𝑚 > 𝑛, and translating it one step to the left,
we get a path from (0, 0) to (𝑚, 𝑛) that may touch the diagonal, but won’t go above it.

Putting these values in our previous formula, the number of paths from (0, 0) to (𝑚, 𝑛)
that may touch the diagonal is

𝑚 − 𝑛 + 1
𝑚 + 𝑛 + 1

(
𝑚 + 𝑛 + 1
𝑚 + 1

)
=
𝑚 − 𝑛 + 1
𝑚 + 1

(
𝑚 + 𝑛
𝑚

)
.

□

Remark 2.3.3. The numbers
𝑚 − 𝑛 + 1
𝑚 + 1

(
𝑚 + 𝑛
𝑚

)
,

are called Ballot numbers and they are represented by 𝐵(𝑚, 𝑛), and they count the numbers
of paths from (0, 0) to (𝑚, 𝑛) that do not cross above the diagonal.

Thus, the number of paths from (0, 0) to (𝑛, 𝑛) is equal to

𝑛 − 𝑛 + 1
𝑛 + 1

(
𝑛 + 𝑛
𝑛

)
=

1
𝑛 + 1

(
2𝑛
𝑛

)
= 𝐶𝑛.

We also get the following result for lattice paths, which stay strictly below the diagonal.

Corollary 2.3.4. The number of lattice paths from (0, 0) to (𝑚, 𝑛) for 𝑛 < 𝑚 that stay strictly
below the diagonal 𝑥 = 𝑦 is equal to

𝐵(𝑚 − 1, 𝑛).

Moreover, the number of lattice paths from (0, 0) to (𝑚, 𝑚) that stay strictly below the
diagonal 𝑥 = 𝑦 until the end is equal to 𝐶𝑚−1.

In particular, we have another identity for the Ballot numbers: any path from (0, 0) to
(𝑛, 𝑘) (with 𝑘 < 𝑛) can be subdivided in a path from (0, 0) to (𝑖, 𝑖), where (𝑖, 𝑖) is the last
point before (𝑛, 𝑘) in which the path touches the diagonal and the subsequent path (which
won’t touch the diagonal). This gives us

𝐵(𝑛, 𝑘) =
𝑘∑︁
𝑖=0

𝐵(𝑖, 𝑖)𝐵(𝑛 − 𝑖 − 1, 𝑘 − 𝑖). (2.2)



2.3 Catalan combinatorics 19

A similar reasoning gives us the following identity for Catalan numbers.

𝐶𝑛 =

𝑛−1∑︁
𝑖=0

𝐶𝑖𝐶𝑛−𝑖−1 =

𝑛∑︁
𝑖=1

𝐶𝑖−1𝐶𝑛−𝑖 . (2.3)

This identity is crucial because it implies that any integer sequence 𝑎𝑛 satisfying 𝑎0 =

1, 𝑎𝑛 =
∑𝑛
𝑖=1 𝑎𝑖−1𝑎𝑛−𝑖 will, in fact, be the Catalan numbers.

2.3.3 Other appearances of Catalan numbers
Catalan numbers appear in many combinatorial problems; see, for instance [16] for 214
different kinds of objects which are counted using Catalan numbers. In this section, we will
focus on some that we will find useful in the following chapters.

We begin by introducing the so-called Up-down walks.

Up-down walks

Definition 2.3.5 (Up-down walk). An up-down path is a finite sequence of pairs 𝑣𝑘 = (𝑎𝑘 , 𝑏𝑘 )
in Z2, such that

1. 𝑎0, 𝑏0 = 0, and

2. if 𝑣𝑘 = (𝑎𝑘 , 𝑏𝑘 ), then 𝑣𝑘+1 = (𝑎𝑘 + 1, 𝑏𝑘 + 1) or 𝑣𝑘+1 = (𝑎𝑘 + 1, 𝑏𝑘 − 1).

The last condition implies that 𝑣𝑘+1 = 𝑣𝑘 + (1, 1) or 𝑣𝑘+1 = 𝑣𝑘 + (1,−1). In the first
case, we say that it took one step upwards, and in the second, we say that it took one step
downwards to position 𝑘 + 1.

We may associate any up-down walk to a string of 𝑈’s and 𝐷’s, representing at each
position a step upwards and downwards, respectively.

Theorem 2.3.6. The number of nonnegative up-down walks, that is, up-down walks that do
not go below the 𝑥-axis, that end on (2𝑛, 0), is equal to the Catalan number 𝐶𝑛.

Proof. At any position 𝑖, there will be at least as many steps upwards as steps downwards,
otherwise the walk would’t be positive. We also note that the walk ends at (2𝑛, 0), then there
must be 𝑛 steps upwards and 𝑛 steps downwards.

We will use a bĳection between these walks and paths that don’t cross above the diagonal
𝑥 = 𝑦. For a positive walk, create the following path:
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• For every upward step in our walk, do a horizontal step in the path in the same position.

• for every downward step, do a vertical step in our path in the same position.

Based on our observations above, this association will result in a path from (0, 0) to (𝑛, 𝑛).
For example, the positive walk𝑈𝑈𝐷𝑈𝐷𝐷𝑈𝐷 (see Figure 2.4)

Figure 2.4: The positive walk𝑈𝑈𝐷𝑈𝐷𝐷𝑈𝐷

has associate the path 𝐻𝐻𝑉𝐻𝑉𝑉𝐻𝑉 (see Figure 2.5).

Figure 2.5: The path 𝐻𝐻𝑉𝐻𝑉𝑉𝐻𝑉

As every path to (𝑛, 𝑛) will have at most as many vertical steps as it does horizontal steps
at each position 𝑖, the previous procedure can be used to get a nonnegative walk to (2𝑛, 0). It
is not difficult to check that this is a bĳection, and, therefore, we get the result. □

Another combinatorial interpretation of the Catalan number is the triangulations of the
𝑛-gon, which will be particularly useful when we count the arithmetical structures of the path
with 𝑛 vertices.

Triangulations of a 𝑛-gon

The following discussion will be useful once we count arithmetical structures on the path.
A triangulation of a 𝑛-gon is a collection of 𝑛 − 3 diagonals of the 𝑛-gon, which do not

cross in their interiors. This set of diagonals will partition the polygon into 𝑛 − 2 triangles.

Theorem 2.3.7. The number of triangulations of a 𝑛 + 2-gon, with vertices 𝑢0, . . . , 𝑢𝑛+1
equals the Catalan number 𝐶𝑛.
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Proof. We proceed by mathematical induction on 𝑛. For 𝑛 = 1, there is only 𝐶1 = 1
triangulation of the triangle or 3-gon.

Suppose that for any 𝑘 ≤ 𝑛, the number of triangulations of a 𝑘 + 2-gon equals 𝐶𝑘 . Then,
for the 𝑛+ 3-gon, the edge 𝑢𝑛+1𝑢𝑛+2 must be the side of a triangle. Thus, if 𝑢 𝑗 , 𝑗 ≠ 𝑛+ 1, 𝑛+ 2
is the other vertex of this triangle, by removing this triangle 𝑢𝑛+1𝑢𝑛+2𝑢 𝑗 , and gluing the ends
of the remaining paths by adding an edge, we obtain an 𝑗 + 2-gon and a 𝑛 − 𝑗 + 3-gon. Then,
as the choice of the third vertex is free, the total number of triangulations is

𝑛∑︁
𝑗=0
𝐶 𝑗𝐶𝑛+1− 𝑗 = 𝐶𝑛+1.

and we get the result. □

Moreover, we can obtain the following result, highlighting the connection between Ballot
numbers and Catalan numbers.

Theorem 2.3.8. The number of triangulations of a 𝑛 + 3-gon, with vertices {𝑣1, . . . , 𝑣𝑛+3},
such that 𝑛 − 𝑘 + 1 triangles are incident to a distinguished vertex 𝑖 is equal to the Ballot
number B(n,k).

Proof. First, we make the observation that, by symmetry, it is enough to prove the case where
the distinguished vertex is the first.

We proceed by induction. When 𝑛 = 1, it is straightforward to check that the Ballot
numbers coincide with the number of triangulations with 1 and 2 triangles incident to the
first vertex. Now, suppose then that the result is valid for all 𝑚 ≤ 𝑛.

For the cases where all 𝑛 + 2 triangles of the triangulation are incident to 𝑣1, the result is
true because there is only one such triangulation. Then, we can suppose that there is at least
one triangle not incident to 𝑣1.

For a triangulation of 𝑛 + 4-gon with (𝑛 + 1) − 𝑘 + 1 triangles incident to 𝑣1, note that
𝑣1𝑣2 is the edge of a triangle incident to 𝑣1.

Then, if 𝑣𝑖 is the other vertex of this triangle, all of the triangles that are not incident to
𝑣1 have vertices in the set 𝑣2, . . . , 𝑣𝑖.

Then, any triangulation of the 𝑛 + 4-gon with 𝑛 + 1 − 𝑘 + 1 vertices incident to 𝑣1 can be
decomposed in a triangulation of the 𝑛− 𝑖 +6-gon with vertices 𝑣𝑖, . . . , 𝑣𝑛+4, 𝑣1 with 𝑛− 𝑘 +1
vertices incident to 𝑣1, a triangle 𝑣1𝑣2𝑣𝑖 and a triangulation of the 𝑖 − 1-gon with vertices
𝑣2, . . . , 𝑣𝑖. Noting that different choices of 𝑣𝑖 give strictly different triangulations of these two
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polygons and using our induction hypothesis and the identity 2.2, we get the total number of
𝑘+3∑︁
𝑖=3

𝐶𝑖−3𝐵(𝑛 − 𝑖 + 3, 𝑘 − 𝑖 + 3) =
𝑘∑︁
𝑖=0

𝐶𝑖𝐵(𝑛 − 𝑖, 𝑘 − 𝑖) = 𝐵(𝑛 + 1, 𝑘),

triangulations of the 𝑛 + 4-gon with 𝑛 + 1 − 𝑘 + 1-triangles incident to 𝑣1. □

Binary trees

The next appearance of Catalan’s numbers that we will explore is related to the number of
binary trees. We start by reviewing some concepts related to trees in graph theory.

First, we recall that a directed graph is a graph where the edge set is composed of ordered
pairs of vertices. This means that an edge 𝑢𝑣 will not be equal to 𝑣𝑢. In the case of a directed
graph, for an edge 𝑢𝑣, we will say that 𝑢 is the parent of 𝑣 or that 𝑣 is the child of 𝑢. We
define the descendants of a vertex 𝑢 recursively as any child of it or a descendant of a child
of it.

We will say that a vertex 𝑣 is a root of a tree if there is a path from 𝑣 to any other vertex
𝑢 in the tree. A rooted tree is a tree in which we specify a root vertex 𝑣. Finally, an ordered
tree is a directed tree in which an order is specified for the set of children of each vertex.

Now, we are ready to define the concept of a binary tree.

Definition 2.3.9 (Binary tree). A binary tree is an rooted, ordered tree in which no vertex
has more than two children, who will be labeled (ordered) as "left child" and "right child".

Some examples of binary trees are the following.

Figure 2.6: Binary trees on 5 and 7 vertices.

As we see in the example, we draw binary trees by putting the root vertex at the top. Now,
we proceed to count the number of this type of graphs.

Theorem 2.3.10. The number of binary trees with 𝑛 vertices is equal to the Catalan number
𝐶𝑛.
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Proof. Let 𝐵𝑛 denote the number of binary trees in 𝑛 vertices. By taking out the root vertex,
we are left with two binary trees having as root vertex the left and right child of the original
root vertex. Each of these will have at most 𝑛 − 1 vertices, and the sum of their vertices will
be 𝑛 − 1.

From this, it follows that by taking any two binary trees that fulfill this condition, one can
obtain any binary tree on 𝑛 vertices by adding a root vertex that has the root vertices of these
two binary trees as its children. Then 𝐵𝑛 is equal to

𝐵𝑛 =

𝑛−1∑︁
𝑖=0

𝐵𝑖𝐵𝑛−𝑖−1.

Since 𝐵0 = 1 and 𝐵𝑛 follows the Catalan recurrence 2.3, then 𝐵𝑛 = 𝐶𝑛. □

A leaf in a tree is a vertex of degree 1. It is a well-known result of generating functions
that the number of binary trees on 𝑛 vertices with 𝑘 leafs equals to(

𝑛 − 1
2𝑘 − 2

)
2𝑛+1−2𝑘𝐶𝑘−1. (2.4)

This formula will be useful for our next appearance of Catalan numbers.

Admissible sequences.

Our next appearance will be related to what we will call admissible sequences; these sequences
will be of great importance, as they follow a similar behavior to arithmetical structures on
the path and cycle.

Definition 2.3.11. Let 𝑎1, . . . , 𝑎𝑛 be a sequence of integers with 𝑎𝑖 > 1, and set 𝑎0 = 𝑎𝑛+1 = 1.
We say that 𝑎1, . . . , 𝑎𝑛 is an admissible sequence if 𝑎𝑖 |𝑎𝑖−1 + 𝑎𝑖+1 for 𝑖 = 1, . . . , 𝑛

Here, 𝑛 is the length of the sequence. We simplify our notation by denoting the sequence
𝑎1, . . . , 𝑎𝑛 with the integer string

𝑎1𝑎2 . . . 𝑎𝑛.

Theorem 2.3.12. The number of admissible sequences of length 𝑛 equals 𝐶𝑛.

First, we will discuss some useful properties of admissible sequences.
If 𝑎1, . . . , 𝑎𝑛 is an admissible sequence of length 𝑛, then

1. (𝑎𝑖, 𝑎𝑖+1) = 1, where (𝑎, 𝑏) denotes the GCD of 𝑎 and 𝑏.
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2. 𝑎1 . . . 𝑎𝑖 (𝑎𝑖 + 𝑎𝑖+1)𝑎𝑖+1 . . . 𝑎𝑛 is an admissible sequence of length 𝑛 + 1.

3. 𝑎1 . . . 𝑎𝑖−1𝑎𝑖+1 . . . 𝑎𝑛 is an admissible sequence of length 𝑛 − 1 whenever there exists
some 𝑖 such that 𝑎𝑖 = 𝑎𝑖−1 + 𝑎𝑖+1. Moreover, some 𝑖 of that type always exists, and such
𝑎𝑖 is called a local maximum.

We shall only prove the last claim.
Let 𝑎𝑖 = max{𝑎1, . . . , 𝑎𝑛}, then 𝑎𝑖 > 𝑎𝑖−1 and 𝑎𝑖 > 𝑎𝑖+1, also by the divisibility condition,

𝑎𝑖−1 + 𝑎𝑖+1 = 𝑑𝑎𝑖 for some 𝑑. Then

2𝑎𝑖 > 𝑎𝑖+1 + 𝑎𝑖−1 = 𝑑𝑎𝑖 .

From this, we conclude that 𝑑 = 1. Notice that this also implies that any local maximum,
that is, an 𝑎𝑖 such that 𝑎𝑖 > 𝑎𝑖−1 and 𝑎𝑖 > 𝑎𝑖+1, must necessarily have 𝑎𝑖 = 𝑎𝑖−1 + 𝑎𝑖+1. In this
case, we say that 𝑎𝑖 is a local maximum.

We define the in-order listing of vertices in a binary tree recursively; the left descendants
of a vertex 𝑣 are listed before it, and the right descendants are listed after it.

As an example of this listing, in the following binary tree, the vertices would appear in
this listing in the order of their label.

6

10

8

7 9

3

2 5

1 4

Figure 2.7: In-order listing of the vertices.

We will prove Theorem 2.3.12 by defining a bĳection between binary trees with 𝑛 vertices
and admissible sequences of length 𝑛.

For this, for a binary tree 𝐵, label the vertices as follows: label the root vertex with a 2
and its children with a 3. Recursively label the vertices as follows: let 𝑣 be a vertex with 𝑢 as
its father and that they are labeled with 𝑏 and 𝑎 respectively, then label the children of 𝑣 as it
is shown in the following figure:
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𝑎

𝑏

2𝑏 − 𝑎 𝑎 + 𝑏

𝑎

𝑏

2𝑏 − 𝑎𝑎 + 𝑏

Thus, the label of the children of 𝑣 depends on whether they were left or right children of
𝑢. Using Figure 2.7, we would obtain the following labeling:

2

3

5

7 8

3

4 5

5 8

Using the in-order listing, the labels of the vertices would appear in the order 5438527583,
which is an admissible sequence. This example shows how we will construct the bĳection.

Before we start the proof, we observe the following diagram, which will tell us how to
label a sequence of left or right children coming from some vertex.

𝑎

𝑏

𝑎 + 𝑏

2𝑎 + 𝑏

(𝑞 − 1)𝑎 + 𝑏

𝑞𝑎 + 𝑏

2𝑎 + 𝑏

𝑎 + 𝑏

𝑎

𝑏

(𝑞 − 1)𝑎 + 𝑏

𝑞𝑎 + 𝑏

Figure 2.8

This figure will be useful to illustrate what happens in the bĳection.

Proof. Define a function

𝑇 : Binary trees with 𝑛 vertices → admissible sequences of length 𝑛
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by labeling the vertices as shown above and listing them in the in-order listing.
We show that this map is well defined and a bĳection. First, we show that it indeed gives

us an admissible sequence. We proceed by induction. For 𝑛 ≤ 2, it is clear; one can check
individually that this process will give us all admissible sequences of length 2. Suppose that
that the result is valid for all 𝑘 ≤ 𝑛. Let 𝐵 be a binary tree on 𝑛 + 1 vertices labeled as
described above. Let 𝑎𝑖 be the label of a leaf 𝑣.

2

3
4

5

𝑚 − 1
𝑚

3
4

5

𝑚 − 1
𝑚

Figure 2.9: Labeling of a sequence of sequences of left and right children from the root
vertex.

If 𝑖 = 1 or 𝑖 = 𝑛 + 1, then by being a leaf, and in consequence of the in-order listing,
there must be a path composed exclusively of left or right children starting from the root
vertex to 𝑣, as shown in figure 2.9. From this, we have that 𝑎1 = 𝑎2 + 1 = 𝑎2 + 𝑎0 or
𝑎𝑛+1 = 𝑎𝑛 + 1 = 𝑎𝑛 + 𝑎𝑛+2.

Suppose then that 1 < 𝑖 < 𝑛 + 1, let 𝑢 be the in-order predecessor of 𝑣, with label 𝑎𝑖−1,
and 𝑤 it successor, with label 𝑎𝑖+1. Then we have one of the situations in figure 2.10

𝑤

𝑢

𝑣

𝑢

𝑤

𝑣

Figure 2.10
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Then, with help of figure 2.8, one can see that 𝑎𝑖 = 𝑎𝑖+1 + 𝑎𝑖−1 in either case. Deleting
this leaf from the tree, we obtain a binary tree in 𝑛 vertices with the same in-order listing,
which is mapped to the sequence 𝑎1 . . . 𝑎𝑖−1𝑎𝑖+1 . . . 𝑎𝑛+1 which is admissible by our induction
hypothesis.

The first of our properties in admissible sequences tells us that the original sequence
𝑎1 . . . 𝑎𝑖−1𝑎𝑖𝑎𝑖+1 . . . 𝑎𝑛+1 is, in fact, admissible. With this, we have proven that the map is
well defined and injective.

Now, we prove the surjectivity by induction. Clearly, For 𝑛 ≤ 2, one can find a binary
tree on 𝑛 vertices that gives us any admissible sequence of this length. This can be illustrated
with the following binary tree on 3 vertices.

2

3 3

Figure 2.11

Here, in Figure 2.11, we can find all admissible sequences of length less than 2, which
are 2, 23 and 32.

Suppose, then, that the result is valid for all admissible sequences of length 𝑘 ≤ 𝑛.
Let 𝑎1 . . . 𝑎𝑖 . . . 𝑎𝑛+1 be an admissible sequence of length 𝑛 + 1 such that 𝑎𝑖 = 𝑎𝑖−1 + 𝑎𝑖+1
(existence of such 𝑖 is guaranteed by the second part of property 3). Then the sequence
𝑎1 . . . 𝑎𝑖−1𝑎𝑖+1 . . . 𝑎𝑛+1 is an admissible sequence and, as such, is associated with a binary
tree on 𝑛 vertices 𝐵.

If 𝑖 = 1 or 𝑖 = 𝑛 + 1, then the vertex with this label will have at most one right or left
child, respectively. In the first case, we add a vertex with the label 𝑎1 as a left child, and in
the second case, we add a vertex with the label 𝑎𝑛+1 as a right child. In either case, we will
be left with a new binary tree such that the labels in the in-order listing will be 𝑎1 . . . 𝑎𝑛+1.

Suppose then that 1 < 𝑖 < 𝑛 + 1. Using figure 2.10, one can see that we can add a vertex
with label 𝑎𝑖 as a leaf to the tree 𝐵 in such a way that the labels of the vertices in the in-order
listing will appear as 𝑎1 . . . 𝑎𝑖−1𝑎𝑖𝑎𝑖+1 . . . 𝑎𝑛+1. This concludes the proof of the theorem. □

An important observation is that an element of an admissible sequence will be a local
maximum if and only if it appears as a leaf in the binary tree associated with the sequence.
This, combined with the identity 2.4, gives us the following.
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Corollary 2.3.13. The number of admissible sequences of length 𝑛 with 𝑘 local maxima is
equal to (

𝑛 − 1
2𝑘 − 2

)
2𝑛+1−2𝑘𝐶𝑘−1.

This result will be helpful when we count the number of arithmetical structures on the
path.



Chapter 3

Non-negative matrices

The adjacency matrix of a graph will play an essential role in the study of its arithmetical
structures. This matrix is closely related to the set of what is called non-negative matrices.
For this reason, it will be helpful for us to know some of its most important properties, the
first of which is the Perron-Frobenius theorem.

Moreover, the Pseudo-Laplacian is another type of matrix called 𝑀-matrix. So, it will
also be useful for us to explore some results of this type of matrices.

Studying this set of matrices will play an important role in answering the question of how
many arithmetical structures have a graph.

3.1 Irreducible matrices
A square matrix 𝐴 over a field F is called reducible whenever there exists a permutation
matrix 𝑃 such that

𝑃−1𝐴𝑃 =

(
𝐸 𝐹

0 𝐺

)
,

where 𝐸, 𝐹, 𝐺 are square matrices of positive dimension. We say that a matrix is irreducible
when it is not reducible.

Given 𝐴 ∈ C𝑛×𝑚, let |𝐴| ∈ R𝑛×𝑚 be the matrix whose entries are given by |𝐴|𝑖 𝑗 = |𝐴𝑖 𝑗 |.
Besides, given 𝐴, 𝐵 ∈ R𝑛×𝑚,

𝐴 > 𝐵,

means that 𝐴𝑖 𝑗 > 𝐵𝑖 𝑗 for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. In a similar way, 𝐴 ≥ 𝐵 means that
𝐴𝑖 𝑗 ≥ 𝐵𝑖 𝑗 for all 1 ≤ 𝑖 ≤ 𝑛 and 1 ≤ 𝑗 ≤ 𝑚. A matrix 𝐴 is called positive whenever 𝐴 > 0

29
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and nonnegative whenever 𝐴 ≥ 0. We shall use the same notation for vectors in R𝑛. That
is, for 𝑥 = (𝑥1, . . . , 𝑥𝑛) and 𝑦 = (𝑦1, . . . , 𝑦𝑛), we shall say that 𝑥 > 𝑦 whenever 𝑥𝑖 > 𝑦𝑖 (and
𝑥 ≥ 𝑦 whenever 𝑥𝑖 ≥ 𝑦𝑖 for all 1 ≤ 𝑖 ≤ 𝑛).

The inequality
𝐴 ≩ 𝐵,

for vectors or matrices 𝐴 and 𝐵 means that 𝐴 ≥ 𝐵, but 𝐴 ≠ 𝐵.

Proposition 3.1.1. A matrix 𝐴 is positive if and only if 𝐴𝑥 > 0 for all 𝑥 ≩ 0.

Proof. Let 𝑥 ≩ 0 and 𝐴 positive, that is, 𝐴 > 0. Since 𝑥 ≩ 0, then there exists 𝑖 such that
𝑥𝑖 > 0. Thus

(𝐴𝑥) 𝑗 = 𝐴 𝑗1𝑥1 + . . . + 𝐴 𝑗𝑖𝑥𝑖 + . . . + 𝐴 𝑗𝑛𝑥𝑛 ≥ 𝐴 𝑗𝑖𝑥𝑖 > 0 for all 𝑗

and therefore 𝐴𝑥 > 0.
In the opposite direction, we choose the vector 𝑒𝑖 = (0, . . . , 1, . . . , 0) with 1 in the i-th

position and 0 otherwise, multiplying it by 𝐴 we get

(𝐴𝑒𝑖) 𝑗 = 𝐴 𝑗𝑖 > 0.

Thus, it follows that all entries of 𝐴 are positive. □

Lemma 3.1.2. If 𝐴 is a nonnegative irreducible matrix of size 𝑛, then

(𝐴 + 𝐼)𝑛−1 > 0.

Proof. Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) ≩ 0 be a vector. If 𝑥𝑖 > 0, then ((𝐴 + 𝐼)𝑥)𝑖 = (𝐴𝑥)𝑖 + 𝑥𝑖 > 0.
This tells us that by multiplying the matrix 𝐴 + 𝐼 by some vector, the resulting vector will
have at least the same positive entries as the original vector. We proceed by showing that the
resulting vector will have more positive entries unless the original vector is positive.

Suppose that the positive entries of (𝐴 + 𝐼)𝑥 are the same as in the vector 𝑥. That is,
((𝐴 + 𝐼)𝑥)𝑖 > 0 if and only if 𝑥𝑖 > 0. Then, there is a permutation matrix 𝑃 such that

𝑃𝑥 =

(
𝑣

0

)
, where 𝑣 is a positive vector. As we are assuming that the positive entries of

(𝐴 + 𝐼)𝑥 are equal to the positive entries of 𝑥, then 𝑃(𝐴 + 𝐼)𝑥 =

(
𝑢

0

)
, where 𝑢 is a positive

vector of the same size as 𝑣. Since 𝑃𝑇 = 𝑃−1, we have that

𝑃(𝐴 + 𝐼)𝑃𝑇
(
𝑣

0

)
= 𝑃(𝐴 + 𝐼)𝑃𝑇𝑃𝑥 = 𝑃(𝐴 + 𝐼)𝑥 =

(
𝑢

0

)
.
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Writing the matrix 𝐴 + 𝐼 in the block form 𝑃(𝐴 + 𝐼)𝑃𝑇 =

(
𝐴11 + 𝐼 𝐴12
𝐴21 𝐴22 + 𝐼

)
, with 𝐴11

of the same size as 𝑣. We get
(
𝐴11 + 𝐼 𝐴12
𝐴21 𝐴22 + 𝐼

) (
𝑣

0

)
=

(
𝑢

0

)
. Hence, the only possibility is

that 𝐴21 = 0, implying that 𝐴 is reducible, which is a contradiction. So (𝐴 + 𝐼)𝑥 has at least
one more positive entry than the original vector. Applying this result recursively, we obtain
that (𝐴 + 𝐼)𝑛−1𝑥 must be positive. □

3.2 The Perron-Frobenius Theorem
In this section, we will provide self-contained proof of the Perron-Frobenius Theorem, which
will be crucial in studying𝑀-matrices. This theorem is concerned with studying the spectrum
of irreducible positive matrices.

We recall that the spectral radius of a matrix 𝑁 ∈ C𝑛×𝑛, denoted by 𝜌(𝑁), is the maximum
of the magnitude of its eigenvalues. That is,

𝜌(𝑁) = max{|𝜆 | : 𝜆 is an eigenvalue of 𝑁}.

Theorem 3.2.1 (Perron-Frobenius). If 𝐴 ≥ 0 is irreducible, then

1. the spectral radious 𝜌(𝐴) is an eigenvalue of 𝐴,

2. the spectral radious 𝜌(𝐴) is a simple eigenvalue,

3. the spectral radious 𝜌(𝐴) has a positive eigenvector,

4. the eigenvalues of 𝐴 of magnitude 𝜌(𝐴) have both algebraic and geometric multiplicity
equal to one. Moreover, if there are ℎ of them, then they are the solutions to the equation
𝜆ℎ = 𝜌(𝐴)ℎ.

5. the spectrum of 𝐴 as a multiset is mapped to itself by the rotation by 2𝜋
ℎ

of the complex
plane,

6. if ℎ > 1, then there exists a permutation matrix 𝜋 such that

𝜋−1𝐴𝜋 =

©­­­­­­«

0 𝐵1 0 . . . 0
0 0 𝐵2 . . . 0
...

...
...

. . .
...

0 0 0 . . . 𝐵ℎ−1
𝐵ℎ 0 0 . . . 0

ª®®®®®®¬
,
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where all blocks on the diagonal are square.

Proof. Consider the following function on the orthant R𝑛+ = {𝑥 ∈ R𝑛 : 𝑥 ≥ 0, 𝑥 ≠ 0}:

𝑟 (𝑥) = 𝑚𝑖𝑛
𝑗=1,...,𝑛

𝑥 𝑗≠0

(𝐴𝑥) 𝑗
𝑥 𝑗

.

Then 𝑟 (𝑥)𝑥 ≤ 𝐴𝑥. Indeed, for 𝑥 𝑗 ≠ 0, (𝐴𝑥) 𝑗 =
(𝐴𝑥) 𝑗
𝑥 𝑗
𝑥 𝑗 ≥ 𝑟 (𝑥)𝑥 𝑗 , from which the inequality

follows. Even more,
𝑟 (𝑥) = max{𝜌 : 𝜌𝑥 ≤ 𝐴𝑥}, (3.1)

and 𝑟 (𝑥) is a continuous function on all 𝑥 > 0; nevertheless, it can be discontinuous at the
boundary because some entries of 𝑥 can be 0 at the boundary of R𝑛+.

We proceed to prove the existence of a vector 𝑧 ∈ R𝑛+ such that

𝑟 (𝑧) = sup{𝑟 (𝑥) : 𝑥 ∈ R𝑛+}. (3.2)

For this purpose, we shall consider the following set:

𝑌 = {(𝐴 + 𝐼)𝑛−1𝑥 : | |𝑥 | | = 1}. (3.3)

This set fulfills all of the conditions required in the Bolzano-Weierstrass Theorem; it is
compact, and the function 𝑟 is continuous on it as (𝐴+ 𝐼)𝑛−1𝑥 > 0 by Proposition 3.1.2. Thus
there exists 𝑧 ∈ 𝑌 such that

𝑟 (𝑧) = sup{𝑟 (𝑥) : 𝑥 ∈ 𝑌 }. (3.4)

To prove that this 𝑧 is indeed the vector that we want, we observe that the function 𝑟 satisfies
𝑟 (𝛼𝑥) = 𝑟 (𝑥) for any scalar 𝛼 > 0.

Indeed, from the definition, we get

𝑟 (𝛼𝑥) = 𝑚𝑖𝑛
𝑗=1,...,𝑛
𝛼𝑥 𝑗≠0

𝛼(𝐴𝑥) 𝑗
𝛼𝑥 𝑗

= 𝑚𝑖𝑛
𝑗=1,...,𝑛

𝑥 𝑗≠0

(𝐴𝑥) 𝑗
𝑥 𝑗

= 𝑟 (𝑥).

This tells us that for 𝑥 ∈ R𝑛+, with 𝑥 ≠ 0, 𝑟 (𝑥) = 𝑟 ( 𝑥
| |𝑥 | | ).

Now, we shall prove that 𝑟 (𝑧) as defined in equation 3.4 is the maximum over R𝑛+. We do
this by showing that 𝑟 (𝑥) ≤ 𝑟 (𝑦) whenever 𝑦 = (𝐴 + 𝐼)𝑛−1𝑥. Let 𝑦 = (𝐴 + 𝐼)𝑛−1𝑥 for some 𝑥,
and 𝜌 be any real number such that 𝜌𝑥 ≤ 𝐴𝑥. Multiplying by (𝐴 + 𝐼)𝑛−1 on both sides of the
inequality, we get 𝜌𝑦 ≤ 𝐴𝑦 so 𝜌 ≤ 𝑟 (𝑦). By 3.1, this implies that 𝑟 (𝑥) ≤ 𝑟 (𝑦).
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From this, we get the following:

sup{𝑟 (𝑥) : 𝑥 ∈ R𝑛+} = sup{𝑟 (𝑥) : | |𝑥 | | = 1} ≤ sup{𝑟 (𝑦) : 𝑦 ∈ 𝑌 } = max{𝑟 (𝑦) : 𝑦 ∈ 𝑌 } = 𝑟 (𝑧).

We will prove that 𝑧 is the desired vector; that is, it is an eigenvector of 𝐴 and has
eigenvalue 𝜌(𝐴).

Let 𝑟′ = 𝑟 (𝑧), then, for any 𝑢 ∈ R𝑛+ that satisfies 𝑟 (𝑢) = 𝑟′, set 𝑦 = (𝐴 + 𝐼)𝑛−1𝑢. If we had
the inequality in 𝑟′𝑢 ≤ 𝐴𝑢, multiplying by (𝐴 + 𝐼)𝑛−1 we obtain (𝐴 + 𝐼)𝑛−1(𝐴𝑢 − 𝑟′𝑢) > 0 by
the Lemma 3.1.2. This implies that 𝐴𝑦 > 𝑟′𝑦, which in turn implies the existence of some
𝜀 > 0 such that 𝐴𝑦 > (𝑟′ + 𝜀)𝑦, which contradicts the maximality of 𝑟′. Then, 𝐴𝑢 = 𝑟′𝑢,
which means that 𝑢 is an eigenvector of 𝐴 with eigenvalue 𝑟′.

As 𝐴 > 0, if 𝑥 > 0, 𝐴𝑥 > 0 and so 𝑟 (𝑥) > 0. It follows that 𝑟′ > 0 and any eigenvector 𝑢
with eigenvalue 𝑟′ must be positive.

Finally, we will show that 𝑟′ = 𝜌(𝐴). For this, we only need to show that 𝑟′ ≥ ||𝜆 | | for
all 𝜆 eigenvalue of 𝐴. Let 𝜆 be an eigenvalue of 𝐴 with eigenvector 𝑦. From the equality
𝐴𝑦 = 𝜆𝑦, we get

|𝐴𝑦 | 𝑗 = |𝜆𝑦 𝑗 | = |𝜆 | |𝑦 𝑗 | = ( |𝜆 | |𝑦 |) 𝑗 ,
|𝐴𝑦 | 𝑗 = |𝐴 𝑗1𝑦1+. . .+𝐴 𝑗𝑛𝑦𝑛 | ≤ 𝐴 𝑗1 |𝑦1 |+. . .+𝐴 𝑗𝑛 |𝑦𝑛 | = (𝐴|𝑦 |) 𝑗 (by the triangle inequality).

Combining these expressions, we get

|𝜆 | |𝑦 | ≤ 𝐴|𝑦 |, (3.5)

which in turn implies that |𝜆 | ≤ 𝑟 (𝑦) ≤ 𝑟′. So 𝑟′ = 𝜌(𝐴)
Before continuing with the proof of the Perron-Froebenius Theorem, we need the follow-

ing lemmas.

Lemma 3.2.2. Let 𝐴 ≥ 0 be an irreducible matrix and 𝐵 with |𝐵 | ≤ 𝐴. If 𝛽 is an eigenvalue
of 𝐵, then |𝛽 | ≤ 𝜌(𝐴). Moreover, 𝛽 = 𝜌(𝐴)𝑒𝑖𝜃 for some 𝜃 if and only if |𝐵 | = 𝐴 and

𝐵 = 𝑒𝑖𝜃𝐷𝐴𝐷−1,

where 𝐷 is a diagonal complex matrix with |𝐷 | = 𝐼.

Proof. Let 𝑦 be an eigenvector of 𝐵 with eigenvalue 𝛽, then using the inequality 3.5 and the
fact that |𝐵 | < 𝐴 we get the inequality

|𝛽 | |𝑦 | ≤ |𝐵 | |𝑦 | ≤ 𝐴|𝑦 |.

So |𝛽 | ≤ 𝑟 (𝑦) ≤ 𝜌(𝐴).
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If |𝛽 | = 𝜌(𝐴), then 𝛽 = 𝜌(𝐴)𝑒𝑖𝜙. Moreover, if |𝑦 | is a vector with eigenvalue 𝜌(𝐴), then
|𝛽 | |𝑦 | = 𝐴|𝑦 |. Using the previous inequality we get that |𝐵 | |𝑦 | = 𝐴|𝑦 |, as 𝐴 ≥ |𝐵 | it must
happen that |𝐵 | = 𝐴.

We can write 𝑦 = (𝑒𝑖𝜙1 |𝑦1 |, . . . , 𝑒𝑖𝜙𝑛 |𝑦𝑛 |).
Define 𝐷 as the diagonal matrix diag{𝑒𝑖𝜙1 , . . . , 𝑒𝑖𝜙𝑛}, then it is clear that |𝐷 | = 𝐼 and

𝐷 |𝑦 | = 𝑦. It follows that

𝐵𝑦 = 𝐵𝐷 |𝑦 | = 𝜌(𝐴)𝑒𝑖𝜙𝐷 |𝑦 | = 𝜌(𝐴)𝑒𝑖𝜙𝑦.

=⇒𝑒−𝑖𝜙𝐷−1𝐵𝐷 = 𝜌(𝐴) |𝑦 |.
If 𝐶 = 𝑒−𝑖𝜙𝐷−1𝐵𝐷, then 𝐶 |𝑦 | = |𝐵 | |𝑦 | = |𝐴| |𝑦 |. It is clear that |𝐶 | = |𝐵 | = 𝐴, from

which |𝐶 | |𝑦 | = 𝐶 |𝑦 |, as |𝑦 | > 0, it follows that 𝐶 = |𝐶 | = 𝐴, from which the desired result
follows. The other direction of the theorem is clear. □

The next lemma follows directly from Jacobi’s formula

𝑑

𝑑𝑡
det(𝐴(𝑡)) = tr

(
adj(𝐴(𝑡)) 𝑑𝐴(𝑡)

𝑑𝑡

)
in matrix calculus.

Lemma 3.2.3. If 𝐴 is a square matrix, then

(det(𝑡 𝐼 − 𝐴))′ =
𝑛∑︁
𝑖=1

det(𝑡 𝐼 − 𝐴𝑖),

where 𝐴𝑖 are the principal submatrices obtained by removing the 𝑖-th row and column.

Finally, we will make use of the following lemma.

Lemma 3.2.4. If 𝐴 ≥ 0 is an irreducible 𝑛 × 𝑛 matrix and 𝐵 is a square principal submatrix
of 𝐴, then 𝜌(𝐵) < 𝜌(𝐴).

Proof. As 𝐵 is a square principal submatrix of 𝐴, there is a permutation matrix 𝑃 such that

𝑃−1𝐴𝑃 =

(
𝐵 𝐴12
𝐴21 𝐴22

)
.

Applying Lemma 3.2.2 to 𝐶 =

(
𝐵 0
0 0

)
and we get that |𝐶 | ≤ 𝐴 and |𝐶 | ≠ 𝐴. So for

any 𝛽 eigenvalue of 𝐶, 𝛽 ≠ 𝜌(𝐴)𝑒𝑖𝜙 for all 𝜙 ∈ [0, 2𝜋], combining this with the fact that
|𝛽 | ≤ 𝜌(𝐴), we get that 𝜌(𝐵) = 𝜌(𝐶) < 𝜌(𝐴). □
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Now, we will prove that 𝜌(𝐴) is a simple eigenvalue of 𝐴. Let 𝜙(𝑡) = det(𝑡 𝐼 − 𝐴) be the
characteristic polynomial of 𝐴, then by Lemma 3.2.3

𝜙′(𝑡) =
𝑛∑︁
𝑖=1

det(𝑡 𝐼 − 𝐴𝑖).

We know that 𝜌(𝐴) is a zero of multiplicity bigger than 1 if and only if it is a zero of the
derivative of the characteristic polynomial. By Lemma 3.2.4, 𝜌(𝐴𝑖) < 𝜌(𝐴) = 𝑟′. Thus
𝜌(𝐴) is not an weigenvalue of any 𝐴𝑖, which means that det(𝑟′𝐼 − 𝐴𝑖) ≠ 0 for all 𝑖.

We are left to prove that det(𝜌(𝐴)𝐼 − 𝐴𝑖) > 0 for all 𝑖. If det(𝜌(𝐴)𝐼 − 𝐴𝑖) < 0, then
for a large enough value of 𝑡, det(𝑡 𝐼 − 𝐴𝑖) > 0 by the intermediate value theorem, which
would imply the existence of some 𝑎 between 𝜌(𝐴) and 𝑡 such that det(𝑎𝐼 − 𝐴𝑖) = 0. This is
impossible because it would imply that

𝜌(𝐴) < 𝑎 ≤ 𝜌(𝐴𝑖) < 𝜌(𝐴).

Thus det(𝜌(𝐴)𝐼 − 𝐴) > 0 for all 𝑖 and 𝜙′(𝜌(𝐴)) > 0. This means that 𝜌(𝐴) is a zero of
algebraic multiplicity 1, and as we have shown the existence of an eigenvector, it also has
geometric multiplicity 1.

Now, we will proceed to prove (4). Suppose 𝜆1, . . . , 𝜆ℎ−1 are all of the other eigenvalues
with |𝜆𝑖 | = 𝜌(𝐴), that is, 𝜆𝑖 = 𝑒𝑖𝜃𝑖 𝜌(𝐴), ordered in such way that 0 < 𝜃1 < 𝜃2 < · · · < 𝜃ℎ−1.
We note that 𝜆 𝑗 is a simple eigenvector of 𝐴, as it is a multiple of 𝜌(𝐴).

Applying Lemma 3.2.2 with 𝐵 = 𝐴 and 𝛽 = 𝜆𝑖 = 𝜌(𝐴)𝑒𝑖𝜃𝑖 . The equality holds and so
there exists a diagonal matrix 𝐷𝑖 with |𝐷𝑖 | = 𝐼 for all 𝑖 such that

𝐴 = 𝑒𝑖𝜃𝑖𝐷𝑖𝐴𝐷
−1
𝑖 .

Let 𝑦 𝑗 = 𝐷 𝑗 𝑧, 𝑗 = 1, . . . , ℎ − 1, where 𝑧 is a positive eigenvector of 𝜌(𝐴). Then

𝐴𝑦 𝑗 = 𝑒
𝑖𝜃 𝑗𝐷 𝑗 𝐴𝐷

−1
𝑗 𝐷 𝑗 𝑧 = 𝑒

𝑖𝜃 𝑗𝐷 𝑗 𝐴𝑧 = 𝑒
𝑖𝜃 𝑗𝐷 𝑗 𝜌(𝐴)𝑧 = 𝜌(𝐴)𝑒𝑖𝜃 𝑗𝐷 𝑗 𝑧 = 𝜆 𝑗 𝑦 𝑗 .

Thus, 𝑦 𝑗 is an eigenvector of 𝜆 𝑗 . This implies that 𝑦 𝑗 and, by the way it was defined, 𝐷 𝑗 are
defined uniquely up to scalar multiplication.

Choose 𝐷𝑖 so its first entry is equal to 1. It follows that

𝐴𝐷 𝑗𝐷𝑘 𝑧 = 𝑒
𝑖𝜃 𝑗𝐷 𝑗 𝐴𝐷

−1
𝑗 𝐷 𝑗𝐷𝑘 𝑧 = 𝑒

𝑖𝜃 𝑗 𝐴𝑦𝑘 = 𝜌(𝐴)𝑒𝑖(𝜃 𝑗+𝜃𝑘)𝐷 𝑗 𝑦𝑘 = 𝜌(𝐴)𝑒𝑖(𝜃 𝑗+𝜃𝑘)𝐷 𝑗𝐷𝑘 𝑧

𝐴𝐷 𝑗𝐷
−1
𝑘 𝑧 = 𝑒

−𝑖𝜃𝑘𝐷−1
𝑘 𝐴𝐷𝑘𝐷 𝑗𝐷

−1
𝑘 𝑧 = 𝑒

−𝑖𝜃𝑘𝐷−1
𝐾 𝐴𝑦 𝑗 = 𝜌(𝐴)𝑒𝑖(𝜃 𝑗−𝜃𝑘)𝐷−1

𝑘 𝑦 𝑗 = 𝐷 𝑗𝐷
−1
𝑘 𝑧
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Then 𝜌(𝐴)𝑒𝑖(𝜃𝑖±𝜃𝑘) is an eigenvalue with eigenvector 𝐷 𝑗𝐷
±1
𝑘
𝑧, as our list of eigenvalues with

magnitude 𝜌(𝐴) is exhaustive, we must have that for every 𝑖, 𝑘 , there is some 𝑗 such that
𝜃𝑖 ± 𝜃𝑘 = 𝜃 𝑗 mod 2𝜋. We prove that the 𝜃𝑖 make up a cyclic group of order ℎ, generated by
𝜃1.

We have that 𝜃2 − 𝜃1 > 0, and it is equal to some 𝜃𝑘 that must lie between 0 and 𝜃2,
this can only be 𝜃1, and with that, we have shown that 𝜃2 = 2𝜃1. Then, we can suppose that
𝜃𝑛 = 𝑛𝜃1, for 𝑛 + 1 ≤ ℎ − 1, 0 < 𝜃𝑛+1 − 𝜃1 is some 𝜃𝑘 between 0 and 𝜃𝑛+1. But 𝜃𝑘 = 𝑘𝜃1 by
hypothesis so the only choice possible is 𝑘 = 𝑛, that is, 𝜃𝑛+1 = 𝜃𝑛 + 𝜃1 = (𝑛 + 1)𝜃1.

Thus, the 𝜃𝑖 make up a cyclic group of order ℎ by taking them modulo 2𝜋, which means
that 𝑒𝑖𝜃𝑖 is a root of unity for all 𝑖, and 𝜃1 = 2𝜋/ℎ. We note that there is an isomorphism
between 𝐷𝑖 and 𝑒𝑖𝜃𝑖 , from which it follows that 𝐷ℎ

𝑖
= 𝐼 for all 𝑖.

(5) it follows from the fact that 𝑒𝑖2𝜋/ℎ = 𝐷−1
1 𝐴𝐷1, and the spectrum is conserved under

similarity.
For (6), let 𝐷 = 𝐷1, as 𝐷ℎ = 𝐼, the entries of 𝐷 are roots of unity, and so, there exists

some permutation matrix 𝑃 such that

𝑃𝐷𝑃−1 =

©­­­­«
𝐼0𝑒

𝑖𝛿0 0 . . . 0
0 𝐼1𝑒

𝑖𝛿1 . . . 0
...

...
...

0 0 . . . 𝐼𝑠−1𝑒
𝑖𝛿𝑠−1

ª®®®®¬
.

Where 𝛿 𝑗 = (2𝜋/ℎ)𝑛 𝑗 with 0 = 𝑛0 < 𝑛1 < · · · < 𝑛𝑠−1 < ℎ.

Consider the same permutation for 𝐴

𝑃𝐴𝑃−1 =

©­­­­«
𝐴11 𝐴12 . . . 𝐴1𝑠
𝐴21 𝐴22 . . . 𝐴2𝑠
...

...
...

𝐴𝑠1 𝐴𝑠2 . . . 𝐴𝑠𝑠

ª®®®®¬
.

With 𝐴 𝑗 𝑗 of the same size as 𝐼 𝑗−1. With this, we write 𝐴 = 𝑒𝑖2𝜋/ℎ𝐷𝐴𝐷−1 and so
𝑃𝐴𝑃−1 = 𝑒𝑖2𝜋/ℎ (𝑃𝐷𝑃−1) (𝑃𝐴𝑃−1) (𝑃𝐷−1𝑃−1), which looks like

©­­­­«
𝐴11 𝐴12 . . . 𝐴1𝑠
𝐴21 𝐴22 . . . 𝐴2𝑠
...

...
...

𝐴𝑠1 𝐴𝑠2 . . . 𝐴𝑠𝑠

ª®®®®¬
= 𝑒𝑖2𝜋/ℎ

©­­­­«
𝐴11 𝑒𝑖(𝛿0−𝛿1)𝐴12 . . . 𝑒𝑖(𝛿0−𝛿𝑠−1)𝐴1𝑠

𝑒𝑖(𝛿1−𝛿0)𝐴21 𝐴22 . . . 𝑒𝑖(𝛿1−𝛿𝑠−1)𝐴2𝑠
...

...
...

𝑒𝑖(𝛿𝑠−1−𝛿0)𝐴𝑠1 𝑒𝑖(𝛿𝑠−1)−𝛿1𝐴𝑠2 . . . 𝐴𝑠𝑠

ª®®®®¬
.
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From this, we obtain the linear system of 𝑠2 equations

𝐴𝑝𝑞 = 𝑒
𝑖2𝜋/ℎ𝑒𝑖(𝛿𝑝−1−𝛿𝑞−1)𝐴𝑝𝑞 = 𝑒

𝑖2𝜋(𝑛𝑝−1−𝑛𝑞−1+1)/ℎ𝐴𝑝𝑞 .

So 𝐴𝑝𝑞 ≠ 0 if and only if 𝑛𝑞 = 𝑛𝑝 + 1 mod ℎ. By the irreducibility of 𝐴, for all 𝑝, there
is some 𝑞 such that 𝐴𝑝𝑞 ≠ 0.

We show that 𝑠 = ℎ. By the previous observation, there is some 𝑛𝑞 such that 𝑛𝑞 = 𝑛𝑠−1 +1
mod ℎ, which implies that 𝑛𝑠−1 − 𝑛𝑞 = 𝑚ℎ − 1 for some 𝑚. But 0 < 𝑛𝑠−1 − 𝑛𝑞 < ℎ, which
implies 𝑚 = 1 and so 𝑛𝑠−1 − 𝑛𝑞 = ℎ − 1, which is only possible when 𝑠 = ℎ and 𝑛𝑠−1 = ℎ − 1.
This in turn implies that 𝑛𝑖 = 𝑖 and 𝐴𝑝𝑞 ≠ 0 only if 𝑞 = 𝑝 + 1 mod ℎ. Then

𝑃𝐴𝑃−1 =

©­­­­­­«

0 𝐴12 0 . . . 0
0 0 𝐴23 . . . 0
...

...
...

. . .
...

0 0 0 . . . 𝐴ℎ−1ℎ
𝐴ℎ1 0 0 . . . 0

ª®®®®®®¬
.

This concludes our proof of the Perron-Frobenius theorem. □

We mention some immediate consequences from the Perron Frobenius Theorem 3.2.1.
First, we note that any positive matrix is irreducible, as for a positive matrix 𝐴, 𝑃𝐴𝑃−1 is
positive, for any permutation matrix 𝑃.

Then, for any nonnegative matrix 𝑀 ∈ R𝑛×𝑛, if 𝑁 = (1𝑖 𝑗 ) is the 𝑛×𝑛matrix with all of its
entries equal to 1, then 𝑀 + 𝑡𝑁 is a positive matrix for all 𝑡 > 0. By continuity of eigenvalues
2.2.11, and applying the Perron-Frobenius Theorem to 𝑀 + 𝑡𝑁 , we also get that 𝑀 has 𝜌(𝑀)
as one of its eigenvalues. This is the Perron-Frobenius Theorem for nonnegative matrices.

Theorem 3.2.5 (Perron-Frobenius for nonnegative matrices). If 𝑀 ≥ 0, then 𝜌(𝑀) is an
egenvalue of 𝑀 with nonnegative eigenvector.

3.3 𝑀-matrices
We conclude our study of nonnegative matrices by studying a closely related set of matrices,
the so-called 𝑀-matrices.

As we have mentioned, the study of 𝑀-matrices is vital because the pseudo-Laplacian of
an arithmetical structure is a 𝑀-matrix. In particular, it will be helpful when discussing the
finiteness of path and cycle arithmetic structures.
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First, a square matrix 𝑀 is called a 𝑍-matrix whenever its entries satisfy that 𝑀𝑖 𝑗 ≤ 0 for
all 𝑖 ≠ 𝑗 .

Definition 3.3.1. A 𝑍-matrix 𝑀 is a 𝑀-matrix whenever there is a nonnegative matrix 𝑁
such that

𝑀 = 𝑟 𝐼𝑛 − 𝑁
for some 𝑟 ≥ 𝜌(𝑁), where 𝜌(𝑁) is the maximum of all the absolute values of eigenvalues of
𝑁 .

Note that in the previous definition, by the Perron-Frobenius Theorem for nonnegative
matrices 3.2.5, an 𝑀-matrix is nonsingular if and only if 𝑟 > 𝜌(𝑁). Indeed, because 𝑁 is
nonnegative, 𝜌(𝑁) is an eigenvalue of 𝑁 . Then, if 𝑟 = 𝜌(𝑁), then det(𝑟 𝐼 − 𝑁) = 0. On the
other hand, if 𝑟 > 𝜌(𝑁), then det(𝑟 𝐼 − 𝑁) > 0.

It is not difficult to check that the spectrum of 𝑁 and 𝑟 𝐼 − 𝑁 are directly related. More
precisely, if 𝜆 is an eigenvalue of 𝑁 with eigenvector 𝑣, then

𝑁𝑣 = 𝜆𝑣 ↔ (𝑟 𝐼 − 𝑁)𝑣 = (𝑟 − 𝜆)𝑣.

Let 𝑝𝐴 (𝑡) = det(𝑡 𝐼 − 𝐴) be the characteristic polynomial of a matrix 𝐴. Since 𝑝−𝑁 (𝑡) =

(−1)𝑛𝑝𝑁 (−𝑡) and 𝑝𝑟 𝐼−𝑁 (𝑡) = (−1)𝑛𝑝𝑁 (𝑟 − 𝑡), one can conclude that Λ𝑟 𝐼𝑛−𝑁 = (𝑟 − 𝜆𝑛 ≤
𝑟 − 𝜆𝑛−1 ≤ · · · ≤ 𝑟 − 𝜆1) whenever Λ𝑁 = (𝜆1 ≤ 𝜆2 ≤ · · · ≤ 𝜆𝑛).

Remark 3.3.2. A matrix 𝑁 of size 𝑛 has spectral radius zero if and only if all of its eigenvalues
are zero. This only happens if and only if the characteristic polynomial is 𝑡𝑛, which implies
that 𝑁 is nilpotent.

Corollary 3.3.3. If 𝑀 is an 𝑀-matrix, then its real eigenvalues are nonnegative. Moreover,
if it is nonsingular, then its eigenvalues are positive.

Proof. Let 𝐴 = 𝑟 𝐼 − 𝑁 be an 𝑀-matrix. If 𝜆 is an eigenvalue of 𝐴 with eigenvector 𝑣, then

𝜆𝑣 = 𝐴𝑣 = (𝑟 𝐼 − 𝑁)𝑣.

Thus (𝑟 − 𝜆)𝑣 = 𝑁𝑣, that is, 𝑟 − 𝜆 is an eigenvalue of 𝑁 . Since 𝑟 ≥ 𝜌(𝑁) we get that 𝜆 ≥ 0.
Besides, if it is nonsingular then 𝑟 > 𝜌(𝑁), then it is clear that 𝜆 > 0. □

As we shall see, many times, it will be easier to show a result for non-singular𝑀−matrices,
so it will be useful to show a result that relates non-singular and singular 𝑀-matrices. In
particular, the following result will tell us that any 𝑀-matrix can be seen as a ’limit’ of
non-singular 𝑀-matrices.
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Theorem 3.3.4. A 𝑍-matrix 𝐴 is an 𝑀-matrix if and only if 𝐴+𝜀𝐼 is a nonsingular 𝑀-matrix
for all 𝜀 > 0.

Proof. (⇐) Let 𝐴 + 𝜀𝐼 be an non singular 𝑀-matrix for all 𝜀 > 0. Since 𝐴 is a 𝑍-matrix,
𝐴 = 𝑟 𝐼 − 𝑁 for some 𝑁 ≤ 0, and by hypothesis, (𝑟 + 𝜀) − 𝑁 is a non singular 𝑀-matrix, so
𝑟 + 𝜀 > 𝜌(𝑁) for all 𝜀 > 0. Then 𝑟 ≥ 𝜌(𝑁), which implies that 𝐴 is an 𝑀-matrix.

(⇒) If 𝐴 is a 𝑀-matrix, then 𝐴 = 𝑟 𝐼 − 𝑁 for 𝑟 ≥ 𝜌(𝑁), So 𝐴 + 𝜀𝐼 = (𝑟 + 𝜀)𝐼 − 𝑁 , with
𝑟 + 𝜀 > 𝜌(𝑁), therefore 𝐴 + 𝜀𝐼 is a non-singular 𝑀-matrix. □

The following lemma will be useful for the rest of this section.

Lemma 3.3.5. A nonnegative matrix 𝑇 ∈ R𝑛×𝑛 is convergent, that is, 𝜌(𝑇) < 1 if and only if
(𝐼 − 𝑇)−1 exists and

(𝐼 − 𝑇)−1 =

∞∑︁
𝑘=0

𝑇 𝑘 ≥ 0.

Proof. (⇒) If 𝑇 is convergent, then the identity

(𝐼 − 𝑇) (𝑇 𝑘−1 + · · · + 𝐼) = 𝐼 − 𝑇 𝑘

gives us one implication of the theorem by letting 𝑛 tend to infinity, as we get that (𝐼 −
𝑇) (∑∞

𝑘=0 𝑇
𝑘 ) = 𝐼.

(⇐) If 𝑇 = 0, then the result is clear. On the other hand, as a consequence of the Perron-
Frobenius Theorem for nonnegative matrices 3.2.5, if 𝑇 ≠ 0, there exists some 𝑥 ≥ 0, 𝑥 ≠ 0
such that 𝑇𝑥 = 𝜌(𝑇)𝑥. Then, by hypothesis (𝐼 − 𝑇)−1 exists, so 𝜌(𝑇) ≠ 1. Then

(𝐼 − 𝑇)𝑥 = (1 − 𝜌(𝑇))𝑥.

This, in turn, implies that
(𝐼 − 𝑇)−1𝑥 =

1
1 − 𝜌(𝑇) 𝑥.

As 𝐼 − 𝑇 is nonnegative and 𝑥 ≩ 0, it must happen that 1 − 𝜌(𝑇) > 0. That is 𝜌(𝑇) < 1. □

Theorem 3.3.6. If 𝑀 is a 𝑀-matrix, then

• its diagonal entries are nonnegative,

• if 𝑀 is nonsingular, then its diagonal entries are positive,

• its principal minors are nonnegative,



40 Non-negative matrices

• if 𝑀 is nonsingular, then its principal minors are positive.

Proof. We will show the results for nonsingular𝑀-matrices. Let𝑀 = 𝑟 𝐼−𝑁 , with 𝑟 > 𝜌(𝑁).
Then 𝜌( 1

𝑟
𝑁) < 1. By the previous Lemma 3.3.5

𝑀−1 =
1
𝑟
(𝐼 − 1

𝑟
𝑁)−1 ≥ 0.

If 𝑀−1 = (𝑚′
𝑖 𝑗
), then 𝑚′

𝑖 𝑗
≥ 0 and

1 = 𝑚𝑖1𝑚
′
1𝑖 + · · · + 𝑚𝑖𝑖𝑚′

𝑖𝑖 + · · · + 𝑚𝑖𝑛𝑚′
𝑛𝑖

for all 𝑖 because 𝑀𝑀−1 = 𝐼. As 𝑚𝑖 𝑗 ≤ 0 for 𝑖 ≠ 𝑗 , 𝑚𝑖 𝑗𝑚′
𝑗𝑖
≤ 0, therefore 𝑚𝑖𝑖 > 0 for the

previous equation to happen.
Let 𝑥 = 𝑀−1𝑒 ≥ 0, with 𝑒 = (1, . . . , 1). If 𝐷 = diag(𝑥), then 𝑀𝐷𝑒 = 𝐴𝑥 = 𝑒 implies

that the sum of the rows of 𝑀𝐷 are positive. This implies that 𝑀𝐷 is strictly diagonally
dominant, as the off-diagonal entries are nonpositive.

Suppose that some 𝑥𝑖 = 0. This would imply that

1 = 𝑚𝑖1𝑥1 + · · · + 𝑚𝑖𝑖−1𝑥𝑖−1 + 𝑚𝑖𝑖+1𝑥𝑖+1 + · · · + 𝑚𝑖𝑛𝑥𝑛.

All of the numbers on the right side of this equation are nonpositive. This is impossible, and
therefore 𝑥 > 0.

As diag(𝑥) > 0, the entries of 𝑀𝐷 are of the same sign as 𝑀 and the sign of the principal
minors is conserved.

Because 𝑀𝐷 is strictly diagonally dominant, any principal submatrix will also be strictly
diagonally dominant. By the Gershgorin circle Theorem 2.2.1, any eigenvalue will have
positive real part.

Then, as the complex eigenvalues come in conjugate pairs, for a principal submatrix 𝑀′

det(𝑀′) =
∏

𝜆∈Λ(𝑀 ′)
𝜆 = (

∏
Im(𝜆)=0

𝜆) (
∏

Im(𝜆≠0)
𝜆𝜆) = (

∏
Im(𝜆)=0

𝜆) (
∏

Im(𝜆≠0)
|𝜆 |2).

So, the determinant is positive, and the principal minors of 𝑀 are positive. Finally, for the
singular case, we may use Theorem 3.3.4 for an𝑀-matrix𝑀 , the matrix𝑀+𝜀𝐼 is nonsingular
for all 𝜀 > 0. Letting 𝜀 → 0, we get the desired results for singular 𝑀-matrices. □

The following theorems will show us the necessary and sufficient conditions for a 𝑍-matrix
to be a 𝑀-matrix.
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Theorem 3.3.7. [2, Theorem 6.4.6 (𝐴1), page 149] A 𝑍-matrix 𝑀 is an 𝑀-matrix if and
only if all of its principal minors are nonnegative.

Proof. A 𝑀-matrix having nonnegative principal minors is shown in Theorem 3.3.6.
Then, we only need to show that if the principal minors are nonnegative, then 𝑀 is an

𝑀-matrix. By formula 2.1, matrices with nonnegative principal minors will have nonnegative
real eigenvalues.

Suppose that 𝑀 is not an 𝑀-matrix, then 𝑀 = 𝑟 𝐼 − 𝐵 with 𝐵 ≥ 0 and 𝑟 < 𝜌(𝐵). By
Perron-Frobenius, there would be an eigenvector 𝑥 ≥ 0 with eigenvalue 𝜌(𝐵), so 𝑀𝑥 =

(𝑟 𝐼 − 𝐵)𝑥 = (𝑟 − 𝜌(𝐵))𝑥. This would imply that 𝑟 − 𝜌(𝐵) < 0 is an eigenvalue of 𝑀 , which
is a contradiction. □

Theorem 3.3.8. [2, Theorem 6.4.16, page 156] If 𝑀 is an irreducible singular 𝑀-matrix,
then any proper principal submatrix of 𝑀 is a nonsingular 𝑀-matrix.

Proof. As 𝑀 = 𝑟 𝐼 − 𝐵, is irreducbible, 𝐵 is irreducible. So, if 𝐵′ is a proper principal
submatrix of 𝐵, by Lemma 3.2.4 𝜌(𝐵′) < 𝜌(𝐵). Then 𝑟 𝐼−𝐵′ is a non singular 𝑀-matrix. □

Almost non-singular 𝑀-matrices

There is a subset of singular𝑀-matrices that will be pretty important to us, as our arithmetical
structures will give rise to singular 𝑀-matrices that will have rank 𝑛 − 1, as we shall see.
In particular, they will be part of a subset of singular 𝑀-matrices that are known as almost
non-singular 𝑀-matrices.

Definition 3.3.9. A real matrix 𝐴 = (𝑎𝑖, 𝑗 ) is an almost non-singular 𝑀-matrix whenever it
is a 𝑍-matrix with positive proper principal minors and nonnegative determinant.

In a sense, the following theorem shows us that almost non-singular 𝑀-matrices come
very close to being non-singular. Recall that we use the notation 𝑀 [𝐼, 𝐼] to refer to the
submatrix of 𝑀 ∈ F𝑛×𝑛 obtained by erasing rows and columns not indexed by 𝐼 ⊂ {1, . . . , 𝑛}.
Lemma 3.3.10. Given 1 ≤ 𝑠 ≤ 𝑛, let 𝐸𝑠 = (𝑒𝑖 𝑗 ) be the matrix with 𝑒𝑖 𝑗 equal to 1 if 𝑖 and 𝑗 are
equal to 𝑠 and 0 otherwise. If 𝑀 is an almost non-singular 𝑀-matrix, then 𝑀′ = 𝑀 + 𝑑 · 𝐸𝑠
is a non singular 𝑀-matrix for all 𝑑 > 0.

Proof. It is enough to show that all principal minors of 𝑀′ are positive. Let ∅ ≠ 𝐼 ⊆ [𝑛]. If
𝑠 ∉ 𝐼, then𝑀′[𝐼; 𝐼] = 𝑀 [𝐼; 𝐼] > 0. The last inequality follows, as𝑀 is an almost nonsingular
𝑀-matrix and 𝐼 ≠ [𝑛]. On the other hand, if 𝑠 ∈ 𝐼, then

det(𝑀′[𝐼, 𝐼]) = det(𝑀 [𝐼, 𝐼]) + 𝑑 · det(𝑀 [𝐼 \ 𝑠, 𝐼 \ 𝑠])
(𝐼\𝑠≠[𝑛], 𝑑>0)

> det(𝑀 [𝐼, 𝐼]) ≥ 0.
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□

Using Lemma 3.3.10, we get the following equivalencies for a 𝑀-matrix to be almost
nonsingular.

Theorem 3.3.11. If 𝑀 is a real 𝑍-matrix, then the following conditions are equivalent:

• 𝑀 is an almost non-singular 𝑀-matrix.

• 𝑀 + 𝐷 is a non-singular 𝑀-matrix for any diagonal matrix 𝐷 ≩ 0.

• det(𝑀) ≥ 0 and det(𝑀+𝐷) > det(𝑀+𝐷′) > 0 for any diagonal matrices𝐷 ≩ 𝐷′ ≩ 0.

Proof. (1)⇒ (2) Since any diagonal matrix 𝐷 is equal to
∑𝑛
𝑖=1 𝑑𝑖 · 𝐸𝑖 for some 𝑑𝑖 ∈ R+, then

the result follows by using Lemma 3.3.10 several times.
(2)⇒ (3) We first prove that det(𝑀) ≥ 0. If we take 𝐷𝑚 = (1/𝑚)𝐼𝑛 (𝑚 ∈ N+), then

det(𝑀 + 𝐷𝑚) > 0 and so lim𝑚→∞ det(𝑀 + 𝐷𝑚) ≥ 0. Since lim𝑚→∞ 𝐷𝑚 = 0 and the
determinant is a continuous function with respect to the Hilbert–Schmidt norm, det(𝑀) ≥ 0.

Now, let 𝐷 ≩ 𝐷′ ≩ 0 be diagonal matrices. By hypothesis, 𝑀 + 𝐷′ is a non-singular
𝑀-matrix and, in particular, an almost non-singular 𝑀-matrix. By Lemma 3.3.10 we get that
𝑀 + 𝐷′ + 𝐸𝑠 is an almost non-singular 𝑀-matrix for any 1 ≤ 𝑠 ≤ 𝑛 and det(𝑀 + 𝐷′ + 𝐸𝑠) >
det(𝑀 + 𝐷′). Similarly, it is not difficult to prove that det(𝑀 + 𝐷′ + 𝐹) > det(𝑀 + 𝐷′) for
any diagonal matrix 𝐹 > 0. Now, clearly, the result follows by taking 𝐹 = 𝐷 − 𝐷′.

On the other hand, let 𝐹 = 𝐷 − 𝐷′ ≩ 0, let 𝑓𝑖𝑖 be the first non-zero diagonal entry of 𝐹,
let 𝐶′ = 𝑀 + 𝐷′, and let 𝐶 = 𝐶′ + 𝐹. Then, since 𝐶′ is a non-singular 𝑀-matrix and 𝑓𝑖𝑖 > 0,
det(𝐶) = det(𝐶′) + 𝑓𝑖𝑖 · det(𝐶

[
[𝑛] \ 𝑖, [𝑛] \ 𝑖

]
) > det(𝐶′).

(3)⇒(1) Let 𝑓 : R𝑛 → R be given by 𝑓 (𝑥1, . . . , 𝑥𝑛) = det(𝑀 + diag(𝑥1, . . . , 𝑥𝑛)). By
hypothesis 𝑓 is a nonnegative and strictly increasing function on (R+ ∪ {0})𝑛. Also, it is not
difficult to see that

𝑓 (𝑥1, . . . , 𝑥𝑛) =
∑︁
𝐼⊆[𝑛]

det(𝑀 [𝐼; 𝐼])𝑥𝐼𝑐 ,

where 𝑥𝐽 =
∏

𝑗∈𝐽 𝑥 𝑗 for all 𝐽 ⊆ [𝑛].
First, we prove that 𝑀 is an 𝑀-matrix. By Theorem 3.3.7, we only need to prove that

det(𝑀 [𝐼; 𝐼]) ≥ 0 for each 𝐼 ⊆ [𝑛]. Let 𝐼 ⊆ [𝑛]. If 𝐼 = [𝑛], then 𝑀 [𝐼; 𝐼] = 𝑀 and
thus det(𝑀 [𝐼; 𝐼]) = 𝑓 (0, . . . , 0) ≥ 0. If 𝐼 = [𝑛] \ 𝑗 for some 𝑗 ∈ [𝑛], then 𝑀 [𝐼; 𝐼] =

𝜕 𝑓 /𝜕𝑥 𝑗 (0, . . . , 0) > 0 since 𝜕 𝑓 /𝜕𝑥 𝑗 is positive on (R+ ∪ {0})𝑛.
If 𝐽 ⊊ [𝑛] \ 𝑗 for some 𝑗 ∈ [𝑛], then let 𝑎𝑖 = 𝑥 for 𝑖 ∉ 𝐽 and 𝑎𝑖 = 0 for 𝑖 ∈ 𝐽. Thus, if

det(𝑀 [𝐽; 𝐽]) < 0, then the leading coefficient of 𝜕 𝑓 /𝜕𝑥(𝑎1, . . . , 𝑎𝑛) will be det(𝑀 [𝐽; 𝐽]),
which is a contradiction since 𝜕 𝑓 /𝜕𝑥𝑖 is positive on (R+ ∪ {0})𝑛. Thus, det(𝑀 [𝐽; 𝐽]) ≥ 0.
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Since we already proved that det(𝑀) ≥ 0 and that det(𝑀 [𝐽; 𝐽]) > 0 if 𝐽 ⊆ [𝑛] with
|𝐽 | = 𝑛 − 1, then, in order to prove (1), we need to show that det(𝑀 [𝐽; 𝐽]) > 0 for each
𝐽 ⊆ [𝑛] with |𝐽 | < 𝑛−1. Let 𝐽 ⊆ [𝑛] with |𝐽 | < 𝑛−1. Since |𝐽 | < 𝑛−1, there exists 𝑗 ∈ [𝑛]
such that 𝐽 ⊊ [𝑛] \ 𝑗 . Let 𝐼 = [𝑛] \ 𝑗 . Since 𝑀 is an 𝑀-matrix, it follows that 𝑀 [𝐼; 𝐼]
is also an 𝑀-matrix. But det(𝑀 [𝐼; 𝐼]) > 0 since |𝐼 | = 𝑛 − 1. This means that 𝑀 [𝐼; 𝐼] is
a non-singular 𝑀-matrix. By [2, Theorem 6.2.3], all the principal minors of 𝑀 [𝐼; 𝐼] are
positive. In particular, det(𝑀 [𝐽; 𝐽]) > 0. □

3.3.1 Finiteness of 𝑀-matrices of fixed determinant
Given 𝛼 ≥ 0 and a nonnegative integer 𝑛 × 𝑛 matrix 𝑀 with all the diagonal entries equal to
zero, let

A≥𝛼 (𝑀) = {d ∈ N𝑛+ | 𝐴 = diag(d) − 𝑀 is an 𝑀-matrix and det(𝐴) ≥ 𝛼}.

Also, let A𝛼 (𝑀) = {d ∈ A≥𝛼 (𝑀) | det(diag(d) − 𝑀) = 𝛼}. The last set is closely related
to the arithmetical structures on a graph; see Chapter 4. More precisely, when 𝑀 is equal to
the adjacency matrix of a graph and 𝛼 = 0. However, to recover the main properties of the
arithmetical structures on a graph, we must add some extra conditions to obtain the correct
definition.

By Dickson’s Lemma, A≥𝛼 (𝑀) has a finite number of minimal elements with respect to
the partial order ≤ in N𝑛. Let

Minimal(A≥𝛼 (𝑀)) = {d ∈ A≥𝛼 (𝑀) | if d′ ≤ d for some d′ ∈ A≥𝛼 (𝑀), then d′ = d}

be the set of minimal elements of A≥𝛼 (𝑀). Moreover, if 𝑀 is an almost non-singular
𝑀-matrix, then by Theorem 3.3.11 we have that

A≥𝛼 (𝑀) = Minimal(A≥𝛼 (𝑀)) + (N+ ∪ {0})𝑛.

That is, A≥𝛼 (𝑀) is an infinite monoid. However, as the following theorem shows, the set
A𝛼 (𝑀) is finite when 𝑀 is a nonnegative integer matrix and 𝛼 > 0.

Theorem 3.3.12. If 𝑀 is a nonnegative integer matrix, then A𝛼 (𝑀) is finite for any 𝛼 > 0.

Proof. We claim that A𝛼 (𝑀) ⊆ Minimal(A≥𝛼 (𝑀)). We prove this by contradiction. Let
d ∈ A𝛼 (𝑀) and assume that d ∉ Minimal(A≥𝛼 (𝑀)). This means that there exists an



44 Non-negative matrices

e ∈ A≥𝛼 (𝑀) such that e ⪇ d. Since det(diag(e) − 𝑀) ≥ 𝛼 > 0, diag(e) − 𝑀 is a non-
singular 𝑀-matrix. By Theorem 3.3.11, det(diag(d) − 𝑀) > det(diag(e) − 𝑀) ≥ 𝛼, which
is a contradiction since det(diag(d) − 𝑀) = 𝛼.

Finally, since A≥𝛼 (𝑀) ⊆ N𝑛+, by Dickson’s Lemma Minimal(A≥𝛼 (𝑀)) is finite and thus
A𝛼 (𝑀) is also finite. □

The inclusionA𝛼 (𝑀) ⊆ Minimal(A≥𝛼 (𝑀)) is in general not an equality, as the following
example shows.

Example 3.3.13. If

𝑀 =
©­«

0 1 1
1 0 1
0 1 0

ª®¬ ,
then A6(𝑀) = {(3, 2, 2)𝑡 , (2, 2, 3)𝑡} and minA≥6(𝑀) = {(3, 2, 2)𝑡 , (2, 3, 2)𝑡 , (2, 2, 3)𝑡}.

The particular case of A𝛼 (𝑀) when 𝛼 is equal to zero is more challenging to deal with.
For instance, if 𝑀 is reducible, then A0(𝑀) can be infinite, as the following example shows.

Example 3.3.14. Let

𝑀 =

©­­­«
0 0 1 0
1 0 1 1
1 0 0 0
1 1 1 0

ª®®®¬ ,
which is reducible because

©­­­«
0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

ª®®®¬
©­­­«

0 0 1 0
1 0 1 1
1 0 0 0
1 1 1 0

ª®®®¬
©­­­«

0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0

ª®®®¬
𝑡

=

©­­­«
0 1 1 1
1 0 1 1
0 0 0 1
0 0 1 0

ª®®®¬ .
On the other hand, it is not difficult to check that

{
(1, 𝑥, 1, 𝑦)𝑡 | 𝑥, 𝑦 ∈ N+

}
⊊ A0(𝑀) and

therefore infinite.



Chapter 4

Arithmetical structures of graphs

In this chapter, we start working with arithmetical structures. First, we will show some results
that are true for connected graphs in general, and once we have them, we will proceed to do
a more detailed analysis of arithmetical structures of the path P𝑛 and the cycle C𝑛 with 𝑛
vertices. Finally, we will count the number of arithmetical structures on these two.

First, we recall that an arithmetical structure on a connected graph 𝐺 is a pair of positive
integer vectors (d, r), with r primitive such that

(diag(d) − 𝐴𝐺)r = 0,

where 𝐴𝐺 is the adjacency matrix of𝐺. Also, we recall that the matrix diag(d) − 𝐴𝐺 is called
the pseudo-Laplacian.

We will start by showing that the proper principal minors of a pseudo-Laplacian matrix
of an arithmetical structure of a connected graph are positive.

Theorem 4.0.1. If (d, r) is an arithmetical structure on a connected graph 𝐺, the proper
principal minors of its pseudo-Laplacian will be positive.

Proof. We begin by showing that the principal minors of 𝐿 (𝐺, d) are non-negative. Since
r > 0, the sign of the determinant of any submatrix of 𝐾 = 𝐿 (𝐺, d)diag(r) will be the same
as of the corresponding submatrix of 𝐿 (𝐺, d). Let 𝐾′ = 𝐾 [𝐼, 𝐼] for some 𝐼 ⊊ [𝑛]. If 𝜆 is an
eigenvalue of of 𝐾′, then by Gershgorin’s circle theorem

𝜆 ∈
⋃
𝑖∈𝐼
𝐷 (𝐾′

𝑖𝑖, 𝑡𝑖),

45
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where 𝐷 (𝐾′
𝑖𝑖
, 𝑡𝑖) is the disk centered at 𝐾′

𝑖𝑖
with radius 𝑡, and 𝑡𝑖 =

∑
𝑗∈𝐼\𝑖 |𝐾′

𝑖 𝑗
|. Since 𝐾1 = 0,

for 1 = (1, . . . , 1), and 𝐾𝑖 𝑗 ≤ 0 for all 𝑖 ≠ 𝑗 , it follows that

𝑡𝑖 =
∑︁
𝑗∈𝐼\𝑖

−𝐾𝑖 𝑗 = 𝐾𝑖𝑖 +
∑︁
𝑗∉𝐼

𝐾𝑖 𝑗 ≤ 𝐾𝑖𝑖 .

So 𝑡𝑖 ≤ 𝐾𝑖𝑖, therefore the eigenvalues of 𝐾′ are nonnegative. Since the determinant of 𝐾′ is
equal to the product of its eigenvalues, our desired result follows.

Now, we show that the minors are indeed positive. We proceed by contradiction, that is,
suppose that det(𝐾′) = 0. This would imply that there exists some 𝑡 ∈ Z𝑛 \ 0, such that

𝐾′𝑡 = 0.

Let 𝑖 be such that 𝑡𝑖 is maximized. Then, we can rescale our vector so that 𝑡𝑖 = 1 and 𝑡 𝑗 ≤ 1
for all 𝑗 ≠ 𝑖 ∈ 𝐼. Then

−𝐾𝑖𝑖 =
∑︁
𝑗∈𝐼\𝑖

𝐾𝑖 𝑗 𝑡 𝑗 .

On the other hand, 𝐾1 = 0 so that 𝐾𝑖𝑖 = −∑
𝑗≠𝑖 𝐾𝑖 𝑗 and∑︁

𝑗∉𝐼

𝐾𝑖 𝑗 =
∑︁
𝑗∈𝐼\𝑖

(1 − 𝑡 𝑗 )𝐾𝑖 𝑗 .

The left hand of this equation is nonnegative, and the right hand is non-positive, so they
must be equal to 0. Then 𝐾𝑖 𝑗 = 0 for all 𝑗 ∉ 𝐼, and 𝐾𝑖 𝑗 = 0 for all 𝑗 ∈ 𝐼 \ 𝑖 such that 𝑡 𝑗 ≠ 1.

Thus, if 𝐽 = { 𝑗 ∈ 𝐼 |𝑡 𝑗 = 1}, then 𝐾𝑖 𝑗 = 0 for all 𝑖 ∈ 𝐽 and 𝑗 ∉ 𝐽. Since 𝑖 ∈ 𝐽 ≠ ∅ and
𝐽 ⊂ 𝐼 ≠ [𝑛], the vertices in 𝐽 are separate from those in its complement 𝐽𝑐 ≠ ∅, which would
contradict the fact that 𝐺 is connected. □

Using this, it is not difficult to prove that the pseudo-Laplacian of an arithmetical structure
(d, r) on a connected graph 𝐺 has rank 𝑛 − 1.

Corollary 4.0.2. If (d, r) is an arithmetical structure on a connected graph 𝐺, then its
pseudo-Laplacian

𝐿 (𝐺, d) = diag(d) − 𝐴𝐺 ,
has rank 𝑛 − 1.

Proof. It follows from the fact that any principal submatrix of size 𝑛 − 1 has positive deter-
minant and, therefore, is nonsingular. □
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Moreover, we also have that 𝐿 (𝐺, d) is positive semidefinite as it is a symmetric matrix.

Corollary 4.0.3. If (d, r) is an arithmetical structure on a connected graph 𝐺, then its
pseudo-Laplacian is positive semidefinite.

As the pseudo-Laplacian is a 𝑍-matrix, it also follows that the pseudo-Laplacian of an
arithmetical structure is an 𝑀-matrix. Moreover, it is an almost non-singular 𝑀-matrix.

We will use the notation Arith(𝐺) to denote the set of all arithmetical structures (d, r) in
the graph 𝐺.

For our next important concept in arithmetical structures, we have to define the cokernel
of a pseudo-Laplacian.

Definition 4.0.4 (Cokernel). Let 𝐺 be a connected graph and (d, r) be an arithmetical
structure on 𝐺. Seeing the pseudo-Laplacian 𝐿 (𝐺, d) as an homomorphism

𝐿 (𝐺, d) : Z𝑛 −→ Z𝑛.

Then, we define the cokernel of 𝐿 (𝐺, d) to be the the quotient group

Z𝑛⧸Im(𝐿 (𝐺, d)),

and we use the notation cok(𝐿 (𝐺, d)).

Corollary 4.0.2 tells us that the image of 𝐿 (𝐺, d) in Definition 4.0.4 above has dimension
𝑛 − 1. This implies that

cok(𝐿 (𝐺, d)) � Z ⊕ 𝐾.
Where 𝐾 is a finite abelian group, that is, 𝐾 is the torsion part of cok(𝐿 (𝐺, d)). This leads
us to the following definition.

Definition 4.0.5. The critical group associated with an arithmetical structure (d, r) on a
graph 𝐺 is the torsion part of the cokernel of the pseudo-Laplacian

𝐿 (𝐺, 𝑑) = diag(d) − 𝐴𝐺 .

The following is a significant result that comes from the study of Chip firing games; it is
proof that can be consulted in [9, Corrolary 3, page 119 ].

Theorem 4.0.6. For a connected graph 𝐺, the order of the critical group of the Laplacian
arithmetical structure is equal to the number of spanning trees in 𝐺.
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4.1 Arithmetical structures on the path
In this subsection, we will study the arithmetical structures on the path.

Lemma 4.1.1. If r = (𝑟1, . . . , 𝑟𝑛) is an arithmetical 𝑟-structure on the path with 𝑛 ≥ 2
vertices P𝑛, then

𝑟1 = 𝑟𝑛 = 1.

Moreover, if 𝑟𝑖 = 1 for some 1 < 𝑗 < 𝑛, then r′ = (𝑟1, . . . , 𝑟𝑖) and r′′ = (𝑟𝑖, . . . , 𝑟𝑛) are
arithmetical 𝑟-structures on the paths P𝑖 and P𝑛−𝑖+1.

Proof. Let (d, r) be an arithmetical structure on the path P𝑛. Then its pseudo-Laplacian
satisfies

𝐿 (P𝑛, d)r =

©­­­­«
𝑑1 −1 0 . . . 0 0
−1 𝑑2 −1 . . . 0 0
...

...
... . . .

...
...

0 0 0 . . . −1 𝑑𝑛

ª®®®®¬
©­­­­«
𝑟1
𝑟2
...

𝑟𝑛

ª®®®®¬
=

©­­­­«
0
0
...

0

ª®®®®¬
.

Thus, we get the following set of equations

𝑟1𝑑1 = 𝑟2,

𝑟𝑖𝑑𝑖 = 𝑟𝑖−1 + 𝑟𝑖+1 for 1 < 𝑖 < 𝑛, (4.1)
𝑟𝑛𝑑𝑛 = 𝑟𝑛−1.

From these equations, we get the following sequence of implications

𝑟1 |𝑟2=⇒𝑟1 |𝑟3=⇒· · ·=⇒𝑟1 |𝑟𝑛.

By hypothesis, r is a primitive vector, that is, gcd(r) = 1, so 𝑟1 = 1. Using a similar argument,
just going backward from 𝑟𝑛 to 𝑟1, one gets

𝑟𝑛 |𝑟𝑛−1=⇒𝑟𝑛 |𝑟𝑛−1=⇒· · ·=⇒𝑟𝑛 |𝑟1

and therefore, also 𝑟𝑛 = 1.
Now, suppose that 𝑟𝑖 = 1 for some 1 < 𝑖 < 𝑛. We define the vectors d′, r′ ∈ Z𝑖 as follows,

𝑑′𝑗 =

{
𝑟𝑖−1 if 𝑗 = 𝑖,
𝑑 𝑗 if 𝑗 < 𝐼,

and 𝑟′𝑗 = 𝑟 𝑗 for all 𝑗 ≤ 𝑖.
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Then, we shall verify that these vectors satisfy the set of equations 4.1 in order to see that
they indeed define an arithmetical structure on P𝑖. Remembering that by the previous part
and by hypothesis 𝑟𝑖 = 1 = 𝑟1, we have that

𝑑′1𝑟
′
1 = 𝑑1𝑟1 = 𝑟′2,

𝑟′𝑗𝑑
′
𝑗 = 𝑟 𝑗𝑑 𝑗 = 𝑟 𝑗−1 + 𝑟 𝑗+1 = 𝑟′𝑗−1 + 𝑟 𝑗+1 for 1 < 𝑗 < 𝑖,

𝑟′𝑖𝑑
′
𝑖 = 𝑟𝑖𝑟𝑖−1 = 𝑟𝑖−1 = 𝑟′𝑖−1 for 𝑖 > 1.

So the equations 4.1 are satisfied. Defining another pair d′′, r′′ ∈ Z𝑛−𝑖+1 similarly, we obtain
the other arithmetical structure. □

As a consequence of Lemma 4.1.1, equivalent conditions for an integer vector r to be an
𝑟-strucutre on the path P𝑛 are that

𝑟1 = 𝑟𝑛 = 1 and 𝑟𝑖 | (𝑟𝑖−1 + 𝑟𝑖+1) for 1 < 𝑖 < 𝑛. (4.2)

Given an arithmetical 𝑟-structure r, let

r(1) = |{𝑖 : 𝑟𝑖 = 1}|,

be the number of entries of r that are equal to one.
We are now ready to count the arithmetical structures of the path.

Theorem 4.1.2. The number of arithmetical structures on the path P𝑛 with with r(1) = 2
is the Catalan number 𝐶𝑛−2. Moreover, the number of arithmetical structures on P𝑛 is the
Catalan number 𝐶𝑛−1.

Proof. As seen in Theorem 2.3.12, an interpretation of the Catalan number 𝐶𝑛−2 is integer
strings of length 𝑛 of the form 1𝑎1𝑎2 . . . 𝑎𝑛−21 such that 𝑎𝑖 > 1 and 𝑎𝑖 | (𝑎𝑖−1 + 𝑎𝑖+1) for all 𝑖.
Thus, these strings coincide with the set of arithmetical 𝑟-structures in 𝑃𝑛 with r(1) = 2, and
therefore we get the first claim.

Now, we will prove the second claim by induction. For 𝑛 = 2, 𝐶1 = 1 and there is only
arithmetical structure on the path P2, the Laplacian arithmetical structure, and therefore our
first case follows.

Assume, then, that the result is true for any 𝑘 < 𝑛. Then, by Lemma 4.1.1 we may
decompose any 𝑟-structure (𝑟) = (𝑟1, . . . , 𝑟𝑛) on P𝑛 into two 𝑟-structures r′ = (𝑟1, . . . , 𝑟 𝑗 )
and r′′ = (𝑟 𝑗 , . . . , 𝑟𝑛) on P 𝑗 and P𝑛− 𝑗+1 respectively, where 𝑗 is the smallest index greater
than 1 such that 𝑟𝑖 = 1. We note that r′ will always have r′(1) = 2, by definition of 𝑗 .
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Then, combining the first statement of our theorem and our induction hypothesis, the
number of 𝑟-structures on P𝑛 such that 𝑗 is the minimum index greater than 1 such that 𝑟𝑖 = 1
is 𝐶 𝑗−2𝐶𝑛− 𝑗 .

Then then total number of 𝑟-structures on P𝑛 is equal to the sum over all 𝑗 ′s
𝑛∑︁
𝑗=2
𝐶 𝑗−2𝐶𝑛− 𝑗 =

𝑛−2∑︁
𝑖=0

𝐶 𝑗𝐶𝑛− 𝑗−2.

The result follows from the standard Catalan recurrence 2.3

𝐶𝑛−1 =

𝑛−2∑︁
𝑗=0
𝐶 𝑗𝐶𝑛− 𝑗−2.

□

The following result gives us information about the arithmetical 𝑑-structures of a con-
nected graph.
Lemma 4.1.3. Let 𝐺 be a connected graph with at least three vertices, 𝐴 = (𝑎𝑖 𝑗 ) be its
adjacency matrix, and 𝑣1𝑣2 ∈ 𝐸 (𝐺). If d is an arithmetical d-structure on 𝐺 with 𝑑1 = 1,
then 𝑑2 > 1.

Proof. Let r = (𝑟1, . . . , 𝑟𝑛) be the corresponding 𝑟-structure. Since the pseudo-Laplacian
satisfies 𝐿 (𝐺, d)r = 0,

𝑑1𝑟1 =

𝑛∑︁
𝑖=1

𝑎1𝑖𝑟𝑖 and 𝑑2𝑟2 =

𝑛∑︁
𝑖=1,𝑖≠2

𝑎2𝑖𝑟𝑖 .

Since 𝐺 is connected, then either 𝑣1 or 𝑣2 must be neighbors of another vertex. Without loss
of generality, we may assume that 𝑣2 and 𝑣3 are neighbors, so 𝑎23 > 0. If 𝑑1 = 𝑑2 = 1, then

𝑟1𝑟2 = 𝑑1𝑟1𝑑2𝑟2 = (
𝑛∑︁
𝑖=1

𝑎1𝑖𝑟𝑖) (
𝑛∑︁
𝑖=1

𝑎2𝑖𝑟𝑖)

= 𝑎2
12𝑟1𝑟2 + 𝑎12𝑎23𝑟2𝑟3 +

∑︁
(𝑖, 𝑗)≠(1,2),(2,3)

𝑎1𝑖𝑎2 𝑗𝑟𝑖𝑟 𝑗

and therefore

(𝑎2
12 − 1)𝑟1𝑟2 + 𝑎12𝑎23𝑟2𝑟3 +

∑︁
(𝑖, 𝑗)≠(1,2),(2,3)

𝑎1𝑖𝑎2 𝑗𝑟𝑖𝑟 𝑗 = 0.

Which is impossible, as 𝑎2
12 − 1, 𝑎1𝑖𝑎2 𝑗 ≥ 0 and 𝑎23𝑟2𝑟3 > 0. □



4.1 Arithmetical structures on the path 51

The following propositions will tell us the procedures for constructing arithmetical struc-
tures from one another.

Proposition 4.1.4. Let 𝑛 ≥ 2 and (𝑑′, 𝑟′) ∈ Arith(𝑃𝑛). Given 2 ≤ 𝑖 ≤ 𝑛, define integer
vectors d and r of length 𝑛 + 1 as follows

𝑑 𝑗 =



𝑑′
𝑗

if 𝑗 < 𝑖 − 1,
𝑑′
𝑖−1 + 1 if 𝑗 = 𝑖 − 1,

1 if 𝑗 = 𝑖,
𝑑′
𝑖
+ 1 if 𝑗 = 𝑖 + 1,

𝑑′
𝑗−1 if 𝑗 > 𝑖 + 1,

and 𝑟 𝑗 =


𝑟′
𝑗

if 𝑗 < 𝑖,
𝑟′
𝑖−1 + 𝑟

′
𝑖

if 𝑗 = 𝑖,
𝑟′
𝑗−1 if 𝑗 > 𝑖,

for 1 ≤ 𝑗 ≤ 𝑛 + 1. Then (d, r) is an arithmetical structure on the path P𝑛+1. Moreover,
the cokernel of the resulting arithmetical structure will be isomorphic to the cokernel of the
original arithmetic structure.

Proof. We directly verify that (d, r) is an arithmetical structure on the path P𝑛+1. That is,
we show that

(diag(d) − 𝐴P𝑛+1)r = 0.

If 𝑗 < 𝑖 − 1 or 𝑗 > 𝑖 + 1, then the entries of the new vectors are the same as the original, so
the equations follow. That is

𝑟 𝑗𝑑 𝑗 − 𝑟 𝑗+1 − 𝑟 𝑗−1 = 𝑟′𝑗𝑑
′
𝑗 − 𝑟′𝑗+1 − 𝑟

′
𝑗−1 = 0.

If 𝑗 = 𝑖 − 1, then

𝑟𝑖−1𝑑𝑖−1 − 𝑟𝑖 − 𝑟𝑖−2 = 𝑟′𝑖−1(𝑑
′
𝑖−1 + 1) − 𝑟′𝑖−1 − 𝑟

′
𝑖 − 𝑟′𝑖−2 = 𝑟′𝑖−1𝑑

′
𝑖−1 − 𝑟

′
𝑖−2 − 𝑟

′
𝑖 = 0.

If 𝑗 = 𝑖 + 1, then we obtain an equation similar to the previous case. In a similar way, if 𝑗 = 𝑖,
then

𝑟𝑖𝑑𝑖 − 𝑟𝑖−1 − 𝑟𝑖+1 = (𝑟′𝑖−1 + 𝑟
′
𝑖 ) − 𝑟′𝑖−1 − 𝑟

′
𝑖 = 0.

Now, we proceed to the second part of the proposition. If 𝐿 (P𝑛, d′) = 𝑀′ and 𝐿 (P𝑛+1, d) =
𝑀 , by letting 𝑄 be the vector of size 𝑛 + 1 with 𝑄𝑖+1 = 𝑄𝑖−1 = 1 and zeroes otherwise. Then,
it can be shown that the matrices(

𝑀′ +𝑄𝑡𝑄 −𝑄𝑡
−𝑄 1

) (
𝑀′ 0
0 1

)
.
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Are Z-equivalent, and finally, that
(
𝑀′ +𝑄𝑡𝑄 −𝑄𝑡

−𝑄 1

)
is Z-equivalent to 𝑀 . Thus, the

cokernels of 𝑀′ and 𝑀 are isomorphic. □

Proposition 4.1.5. Let 𝑛 ≥ 3 and (d, r) ∈ Arith(𝑃𝑛) such that 𝑑𝑖 = 1 for some 1 < 𝑖 < 𝑛.
Define integer vectors d′ and r′ of length 𝑛 as follows

𝑑′𝑗 =


𝑑 𝑗 if 𝑗 < 𝑖 − 1,
𝑑𝑖−1 − 1 if 𝑗 = 𝑖 − 1,
𝑑𝑖+1 − 1 if 𝑗 = 𝑖,
𝑑 𝑗+1 if 𝑛 − 1 ≥ 𝑗 > 𝐼,

and 𝑟′𝑗 =

{
𝑟 𝑗 if 𝑗 < 𝑖,
𝑟 𝑗+1 if 𝑗 ≥ 𝑖.

Then, (d′, r′) is an arithmetical structure on P𝑛−1. Moreover, the cokernel of the resulting
arithmetical structure will be isomorphic to the cokernel of the original arithmetic structure.

Proof. Firstly, we observe that the operation makes sense, as 𝑑𝑖−1 > 1 and 𝑑𝑖+1 > 1 by
Lemma 4.1.3, so we indeed obtain a positive integer vector.

We directly verify that (d′, r′) is an arithmetical structure on the path P𝑛. That is, we
show that

(diag(d′) − 𝐴P𝑛+1)r′ = 0.

If 𝑗 < 𝑖 or 𝑛 − 1 ≥ 𝑗 > 𝑖, then, once again, the entries of the new vectors are the same as
the original, so the equations follow. That is, 𝑟′

𝑗
𝑑′
𝑗
− 𝑟′

𝑗+1 − 𝑟
′
𝑗−1 = 𝑟 𝑗𝑑 𝑗 − 𝑟 𝑗+1 − 𝑟 𝑗−1 = 0. If

𝑗 = 𝑖 − 1, then

𝑟′𝑖−1𝑑
′
𝑖−1 − 𝑟

′
𝑖 − 𝑟𝑖−2 = 𝑟𝑖−1(𝑑𝑖−1 − 1) − 𝑟𝑖+1 − 𝑟𝑖−2 = 𝑟𝑖−1(𝑑𝑖−1 − 1) − (𝑟𝑖 − 𝑟𝑖−1) − 𝑟𝑖−2

= 𝑟𝑖−1𝑑𝑖−1 − 𝑟𝑖−2 − 𝑟𝑖 = 0

because 𝑑𝑖 = 1, 𝑟𝑖 = 𝑟𝑖−1 + 𝑟𝑖+1 and 𝑟𝑖+1 = 𝑟𝑖 − 𝑟𝑖−1. If 𝑗 = 𝑖, then

𝑟′𝑖𝑑
′
𝑖 − 𝑟′𝑖−1 − 𝑟

′
𝑖+1 = 𝑟𝑖+1(𝑑𝑖 − 1) − 𝑟𝑖−1 − 𝑟𝑖+1 = 𝑟𝑖+1(𝑑𝑖 − 1) − (𝑟𝑖 − 𝑟𝑖+1) − 𝑟𝑖+2

= 𝑟𝑖+1𝑑𝑖+1 − 𝑟𝑖 − 𝑟𝑖+2 = 0

because 𝑟𝑖−1 = 𝑟𝑖 − 𝑟𝑖+1.
The second part of the proposition follows from the second part of Proposition 4.1.4, as

the original structure on P𝑛 is the subdivision of (d′, r′). □

The resulting arithmetical structures in Propositions 4.1.4 and 4.1.5 are called the subdi-
visions and smoothing of the original arithmetical structure.
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Theorem 4.1.6. The only arithmetical structure (d, r) on P𝑛 with 𝑑𝑖 ≥ 2 for all 1 < 𝑖 < 𝑛 is
the Laplacian arithmetical structure.

Proof. If (d′, r′) is an arithmetical structure with d′ ≠ d = (1, 2 . . . , 2, 1), then it can not
happen that d′ > d, 𝐿 (P𝑛, 𝑑) is an 𝑀-matrix, and by Theorem 3.3.10, d′ ⪈ d would imply
that det(𝐿 (P𝑛), d′) > 0, in contradiction to the fact that it is an arithmetical structure. So for
some 1 < 𝑖 < 𝑛, 𝑑′

𝑖
= 1. □

Theorem 4.1.7. If (d, r) ∈ Arith(P𝑛) is an arithmetical structure on the path, then the
associated critical group K of the arithmetical structure (d, r) on P𝑛 is trivial. Moreover,

r(1) = 3𝑛 − 2 −
𝑛∑︁
𝑖=1

𝑑𝑖 .

Proof. We proceed by induction on 𝑛. Our base case is 𝑛 = 2. Here the only arithmetical
structure on P2 is the Laplacian arithmetical structure d = r = (1, 1). Then, the critical group
can be calculated directly. It is the torsion part of the cokernel

Z2
⧸
𝐼𝑚

(
1 −1
−1 1

)
.

Applying reductions by rows and columns, we get

Z2
⧸
𝐼𝑚

(
1 −1
−1 1

)
� Z

2
⧸
𝐼𝑚

(
1 0
0 0

)
� Z

2
⧸Z � Z.

Clearly, the second statement of the theorem follows.
Now, suppose the result is true for all 2 ≤ 𝑘 ≤ 𝑛. If (d, r) is the Laplacian arithmetical

structure, then it is clear that

3(𝑛 + 1) − 2 −
𝑛+1∑︁
𝑖=1

𝑑𝑖 = 3𝑛 + 1 − 2(𝑛 − 1) − 2 = 𝑛 = r(1).

By Theorem 4.0.6, the critical subgroup’s order is equal to the number of spanning trees of
the path P𝑛+1, which is equal to one.

If (d, r) is different from the Laplacian arithmetical structure, then 𝑑𝑖 = 1 for some
1 < 𝑖 < 𝑛 by Theorem 4.1.6, and by Proposition 4.1.4 it can be obtained by subdividing an
arithmetical structure (d′, r′) in P𝑛.
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We also have that 𝑟𝑖 = 𝑟𝑖𝑑𝑖 = 𝑟𝑖−1 + 𝑟𝑖+1 ≥ 2, so 𝑟𝑖 ≠ 1, and this implies that r(1) = r′(1).
So, by induction hypothesis

r′(1) = 3𝑛 − 2 −
𝑛∑︁
𝑗=1

𝑑′𝑗

= 3𝑛 − 2 − (
𝑖−1∑︁
𝑗=1

𝑑 𝑗 +
𝑛+1∑︁
𝑗=𝑖+1

𝑑 𝑗 − 2) + 𝑑𝑖 − 𝑑𝑖

= 3𝑛 + 1 −
𝑛+1∑︁
𝑗=1

𝑑 𝑗

= 3(𝑛 + 1) − 2 −
𝑛+1∑︁
𝑗=1

𝑑 𝑗 .

Combined with the fact that r(1) = r′(1), this gives us the second part of the result.
Moreover, the cokernels of L(P𝑛, d′) and L(P𝑛+1, d) will be isomorphic by the second

part of Proposition 4.1.4. Thus, the resulting critical subgroups will also be isomorphic and,
according to the induction hypothesis, trivial. □

Remark 4.1.8. During the proof of Theorem 4.1.7 we also showed that subdividing an
arithmetical 𝑟-structure r will result in an arithmetical structure r′ such that r(1) = r′(1).

Using Propositions 4.1.4 and 4.1.5, we will describe the process to obtain arithmetical
structures on P𝑛 from the Laplacian arithmetical structure on P𝑚, when 𝑚 < 𝑛 by applying
the subdivision operation on the paths P𝑚,P𝑚+1, . . . ,P𝑚+(𝑛−𝑚) = P𝑛, on selected 𝑛 − 𝑚
vertices.

If 2 ≤ 𝑚 ≤ 𝑛, then let 𝑏 be an interger vector of length 𝑛−𝑚 such that 1 ≤ 𝑏𝑖 ≤ 𝑚 + 𝑖− 2.
Then, define (d0, r0) as the Laplacian arithmetical structure in P𝑚. Then, for 𝑖 ≥ 1 define
(di, ri) to be the arithmetical structure on P𝑚+𝑖 obtained from the arithmetical structure
(di−1, ri−1) by subdividing the edge 𝑏𝑖 in P𝑚+𝑖−1. We will denote the arithmetical structure
on the path P𝑛 obtained at the end of this procedure by A𝑛 (𝑏) := (d𝑛−𝑚, r𝑛−𝑚).

We proceed to show an example of this procedure.

Example 4.1.9. Let 𝑛 = 5, 𝑚 = 2. Then, we must construct an integer vector 𝑏 satisfying
1 ≤ 𝑏𝑖 ≤ 2 + 𝑖 − 2 = 𝑖. The vector 𝑏 = (1, 2, 3) suffices.

Then, we define d0 = r0 = (1, 1), the Laplacian arithmetical structure on P2. By applying
the procedure, we get:
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• d1 = (2, 1, 2), r1 = (1, 2, 1)

• d2 = (2, 2, 1, 3), r2 = (1, 2, 3, 1)

• d3 = (2, 2, 2, 1, 4), r3 = (1, 2, 3, 5, 1)

From which we obtain the arithmetical structure d = (1, 3, 2, 1, 3), r = (1, 2, 3, 5, 1) on P5.
We can represent our process in the following sequence:

(1, 1)
(1, 1) → (2, 1, 2)

(1, 2, 1) → (2, 2, 1, 3)
(1, 2, 3, 1) → (2, 2, 2, 1, 4)

(1, 2, 3, 5, 1) ,

where the upper part are the entries 𝑑′
𝑖
𝑠 and the bottom part are the entries 𝑟′

𝑖
𝑠

Remark 4.1.10. A problem with our method of generating arithmetical structures when it
comes to counting them is that it allows for two different integer vectors, 𝑏 and 𝑏′, to give the
same resulting arithmetical structures.

For example, if 𝑚 = 2, 𝑛 = 5, then both 𝑏 = (1, 2, 1) and 𝑏′ = (1, 1, 3) give us the
following sequence of arithmetical structures:

𝑏 :
(1, 1)
(1, 1) → (2, 1, 2)

(1, 2, 1) → (3, 1, 2, 2)
(1, 3, 2, 1) → (3, 1, 3, 1, 3)

(1, 3, 2, 3, 1)

𝑏′ :
(1, 1)
(1, 1) → (2, 1, 2)

(1, 2, 1) → (2, 2, 1, 3)
(1, 2, 3, 1) → (3, 1, 3, 1, 3)

(1, 3, 2, 3, 1) .

For our purpose of counting arithmetical structures, we must find a way to associate an
arithmetical strucure to exactly one vector.

The following lemma will allow us to associate an unique vector to an arithmetical
structure, even more, this vectors will have a certain structure that will allow us to count them
with what we know.

Lemma 4.1.11. Let 𝑛 ≥ 𝑚 ≥ 2 and 𝑏 = (𝑏1, . . . , 𝑏𝑛−𝑚) be an integer vector such that
1 ≤ 𝑏𝑖 ≤ 𝑚 + 𝑖 − 2, and such that 𝑏𝑖 > 𝑏𝑖+1 for some 1 ≤ 𝑖 ≤ 𝑛 − 𝑚. Define the vector 𝑏′ as
follows:

𝑏 𝑗 =


𝑏𝑖+1 if 𝑗 = 𝑖,
𝑏𝑖 + 1 if 𝑗 = 𝑖 + 1,
𝑏 𝑗 otherwise.

Then the arithmetical structures A𝑛 (𝑏) and A𝑛 (𝑏′) arising from 𝑏 and 𝑏′ will be equal.
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Proof. We shall show what happens in our process once we reach the 𝑖-th step. Let d =

(𝑑1, . . . , 𝑑𝑚+𝑖−1), r = (𝑟1, . . . , 𝑟𝑚+𝑖−1) be the arithmetical structure obtained at the (𝑖 − 1)-th
step in our procedure.

Since our vector 𝑏′ only differs from 𝑏 in the 𝑖 and 𝑖 + 1 index, the arithmetical structures
attained from both will only differ in the 𝑖 and 𝑖 + 1-th steps. We show this in the diagram

𝑏 :(. . . , 𝑑𝑏𝑖+1−1, 𝑑𝑏𝑖+1,𝑑𝑏𝑖+1+1 , . . . , 𝑑𝑏𝑖−1 , 𝑑𝑏𝑖 , 𝑑𝑏𝑖+1 , . . .)
→ (. . . , 𝑑𝑏𝑖+1−1, 𝑑𝑏𝑖+1 , 𝑑𝑏𝑖+1+1, . . . , 𝑑𝑏𝑖−1 + 1, 1, 𝑑𝑏𝑖 + 1, 𝑑𝑏𝑖+1, . . .)
→ (. . . , 𝑑𝑏𝑖+1−1 + 1, 1, 𝑑𝑏𝑖+1 + 1, 𝑑𝑏𝑖+1+1, . . . , 𝑑𝑏𝑖−1 + 1, 1, 𝑑𝑏𝑖 + 1, 𝑑𝑏𝑖+1, . . .)

𝑏′ :(. . . , 𝑑𝑏𝑖+1−1, 𝑑𝑏𝑖+1,𝑑𝑏𝑖+1+1 , . . . , 𝑑𝑏𝑖−1 , 𝑑𝑏𝑖 , 𝑑𝑏𝑖+1 , . . .)
→ (. . . , 𝑑𝑏𝑖+1−1 + 1, 1, 𝑑𝑏𝑖+1 + 1, 𝑑𝑏𝑖+1+1, . . . , 𝑑𝑏𝑖−1 , 𝑑𝑏𝑖 , 𝑑𝑏𝑖+1, . . .)
→ (. . . , 𝑑𝑏𝑖+1−1 + 1, 1, 𝑑𝑏𝑖+1 + 1, 𝑑𝑏𝑖+1+1, . . . , 𝑑𝑏𝑖−1 + 1, 1, 𝑑𝑏𝑖 + 1, 𝑑𝑏𝑖+1, . . .)

From this, it is clear that the resulting arithmetical structures at the end of the procedure will
be equal. We notice that in 𝑏′, the fact that we subdivided the edge 𝑏𝑖+1 < 𝑏𝑖 makes it so
that the edge 𝑏𝑖 in P𝑚+𝑖+1 becomes the edge 𝑏𝑖 + 1 in the standard enumeration of edges in
P𝑚+𝑖+1. □

Repeatedly applying this lemma to a vector 𝑏 satisfying our conditions, we can obtain a
vector 𝑏′ with 𝑏′

𝑖
≤ 𝑏′

𝑖+1 for all 𝑖, that will give us the same arithmetical structure as 𝑏. This
will lead us to the following result.

Lemma 4.1.12. Every arithmetical structure on P𝑛 is equal to A𝑛 (𝑏) for a unique vector
𝑏 = (𝑏1, . . . , 𝑏𝑛−𝑚) satisfying 1 ≤ 𝑏𝑖 ≤ 𝑖 + 𝑚 − 2 and 𝑏𝑖 ≤ 𝑏𝑖+1 for all 𝑖.

Proof. Applying Proposition 4.1.5 repeatedly, we will get to a Laplacian arithmetical structure
on P𝑚 for some 𝑚 ≤ 𝑛. The order in which we subdivide the edges of this resulting
arithmetical structure will give us our vector 𝑏. From this, any arithmetical structure will be
equal to A𝑛 (𝑏) for some 𝑏.

Finally, if 𝑏 ≠ 𝑏′, then our subdivision process will yield different arithmetical structures,
and we get the result. □

Remark 4.1.13. By Remark 4.1.8, we note that in Lemma 4.1.12 the resulting arithmetical
structure will have r(1) = 𝑚.

With this, we proceed to count the number of arithmetical structures on the path P𝑛. By
Lemma 4.1.12, we know this will be the same as counting the number of integer sequences
𝑏 = (𝑏1, . . . , 𝑛 − 𝑚) with 2 ≤ 𝑚 ≤ 𝑛 such that 1 ≤ 𝑏𝑖 ≤ 𝑚 + 𝑖 − 2 and 𝑏𝑖 ≤ 𝑏𝑖+1.
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Adding 𝑚 − 2 entries equal to 1 to this vector, we get a vector of the form

(1, . . . , 1, 𝑏𝑚−1, . . . , 𝑏𝑛−2),

such that 1 ≤ 𝑏𝑖 ≤ 𝑖 and 𝑏𝑖 ≤ 𝑏𝑖+1. Sequences of this type are called ballot sequences.
We recall that the ballot number 𝐵(𝑛, 𝑚) counts the number of lattice paths from (0, 0)

to (𝑛, 𝑚) that does not cross above the diagonal 𝑥 = 𝑦.
Any path from (1, 1) to (𝑛 − 1, 𝑛 − 1) that does not cross above the diagonal 𝑥 = 𝑦 will

give rise to a sequence of this type by associating to 𝑏𝑖 the 𝑦-coordinate of the path at 𝑥 = 𝑖.
Note that 𝑏𝑖 ≤ 𝑖 because the path does not cross the diagonal 𝑥 = 𝑦. Note that this association
would give us a 𝑏𝑛−1 = 𝑛− 1, so we can omit it to be left with a ballot sequence 𝑏1, . . . , 𝑏𝑛−2.

If we require our path to start with 𝑚 − 2 horizontal steps, then we are left with a path that
can be divided into a path from (1, 1) to (𝑚−1, 1) and a path from (𝑚−1, 1) to (𝑛−1, 𝑛−1).
Reversing the order of the tail, that is, starting doing the step taken at the end of the original
path and changing each vertical step to a horizontal one, and likewise, for horizontal steps,
we get a path from (1, 1) to (𝑛 − 1, 𝑛 − 1) that ends in 𝑚 − 2 vertical steps. These paths are
clearly in bĳection to paths from (0, 0) to (𝑛 − 2, 𝑛 − 𝑘). An example of this is shown in the
following figure.

Figure 4.1: The path HHHVHVVHVV is converted into the path HHVHHVHVVV

Thus, the number of these paths is 𝐵(𝑛 − 2, 𝑛 − 𝑚). This discussion, along with Re-
mark 4.1.13 lead us to the next main result of this section.

Theorem 4.1.14. Let 𝑛 ≥ 2 and 1 ≤ 𝑘 ≤ 𝑛, and let 𝐴(𝑛, 𝑘) be the number of arithmetical
structures (d, r) on P𝑛 such that r(1) = 𝑘 . Then

𝐴(𝑛, 𝑘) = 𝐵(𝑛 − 2, 𝑛 − 𝑘).

We could have also proven this result by mathematical induction on r(1) = 𝑘 , with 𝑛
fixed and 𝑘 ≤ 𝑛. For 𝑘 = 1, we know that r(1) ≥ 2, so the number of arithmetic structures
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on P𝑛 with r(1) = 1 is 0 = 𝐵(𝑛 − 1, 𝑛 − 2). In Theorem 4.1.2 we saw that the number of
arithmetical structures on P𝑛 with r(1) = 2 is the Catalan number 𝐶𝑛−2 = 𝐵(𝑛 − 2, 𝑛 − 2).

Assume the result is true for all 2 ≤ 𝑗 ≤ 𝑘 . Then, if r is an arithmetical structure with
r(1) = 𝑘 + 1, then let 𝑚 be the first entry after the first of r such that 𝑟𝑖 = 1. Then by Lemma
4.1.1, r′ = (𝑟1, . . . , 𝑟𝑚) and r′′ = (𝑟𝑚, . . . , 𝑟𝑛) will be arithmetical 𝑟-structures on P𝑚 and
P𝑛−𝑚+1 respectively, with r′(1) = 2, r′′(1) = 𝑘 . Every pair 𝑟′, 𝑟′′ of this kind will define an
arithmetical 𝑟-structure r on P𝑛, with r(1) = 𝑘 + 1.

With this reasoning, the number of arithmetical 𝑟- structures on P𝑛 with r(1) = 𝑘 + 1 is

𝐴(𝑛, 𝑘 + 1) =
𝑛−𝑘+1∑︁
𝑚=2

𝐴(𝑚, 2)𝐴(𝑛 − 𝑚 + 1, 𝑘) (4.3)

=

𝑛−𝑘+1∑︁
𝑚=2

𝐵(𝑚 − 2, 𝑚 − 2)𝐵(𝑛 − 𝑚 − 1, 𝑛 − 𝑚 − 𝑘 + 1) (4.4)

= 𝐵(𝑛 − 2, 𝑛 − 𝑘 − 1) (4.5)

Which follows from the identity 2.2. This also proves Theorem 4.1.14.
We obtain the following corollary.

Corollary 4.1.15. For 𝑛 ≥ 2 and any 𝑘 , we have

|{(d, r) ∈ Arith(P𝑛) :
𝑛∑︁
𝑗=1

𝑑 𝑗 = 𝑘}| = 𝐵(𝑛 − 2, 𝑘 − 2𝑛 + 2).

In particular, there are no arithmetical structures with
∑𝑛
𝑗=1 𝑑 𝑗 = 𝑘 unless 2𝑛−2 ≤ 𝑘 ≤ 3𝑛−4.

Proof. By Theorem 4.1.7, if (d, r) is an arithmetical structure, then r(1) = 3𝑛− 2−∑𝑛
𝑗=1 𝑑 𝑗 .

Thus, if
∑𝑛
𝑗=1 𝑑 𝑗 = 𝑘 , r(1) = 3𝑛 − 2 − 𝑘 .

Then, by Theorem 4.1.14,

|{(d, r) ∈ Arith(P𝑛) :
𝑛∑︁
𝑗=1

𝑑 𝑗 = 𝑘}| = 𝐴(𝑛, 3𝑛 − 2 − 𝑘) = 𝐵(𝑛 − 2, 𝑛 − 3𝑛 + 2 + 𝑘)

= 𝐵(𝑛 − 2, 𝑘 − 2𝑛 + 2).

□
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In what follows, it will be useful to adopt a new way to generate arithmetical structures.
For a (𝑛 + 1)-gon, label its vertices as 0, . . . , 𝑛 in clockwise order.

Given a triangulation 𝑇 of the (𝑛+1)-gon, let 𝐷 (𝑇) = (𝐷0, . . . , 𝐷𝑛) be the integer vector
such that 𝐷𝑖 is the number of triangles adjacent to the vertex 𝑖.

Example 4.1.16. For the following triangulation of the heptagon, we have𝐷 (𝑇) = (2, 1, 4, 1, 3, 1, 3).
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Figure 4.2

We notice that (1, 4, 1, 3, 1, 3) defines an arithmetical 𝑑-structure on P6. This motivates
the following result.

Theorem 4.1.17. If𝑇 is a triangulation of the 𝑛+1-gon, then (𝐷1, . . . , 𝐷𝑛) is an arithmetical
𝑑-structure on P𝑛.

Proof. Thinking 𝐷 as a map from the set of triangulations of the 𝑛 + 1-gon to the set of
arithmetical 𝑑-structures on P𝑛.

We prove the theorem by induction on 𝑛. For the base case 𝑛 = 2, the only triangulation
of the 3-gon (triangle) is trivial and it is given by 𝐷 (𝑇) = (1, 1, 1), and the only arithmetical
𝑑-structure on the path P2 is (1, 1).

For 𝑛 ≥ 3, we can obtain any triangulation of an 𝑛 + 1-gon by gluing a triangle to the
exterior of a triangulation of an 𝑛-gon. Let 𝑇 ′ be the triangulation of the 𝑛-gon, 𝐷 (𝑇 ′) =

(𝑑′0, 𝑑
′
1, . . . , 𝑑

′
𝑛−1), 𝑇 the triangulation obtained, 𝐷 (𝑇) = (𝑑0, 𝑑1, . . . , 𝑑𝑛).

If the triangle was glued on the edge between vertices 𝑖, 𝑖 + 1, then the entries of 𝐷 (𝑇)
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are defined by

𝑑 𝑗 =



𝑑′
𝑗

if 𝑗 < 𝐼,
𝑑′
𝑖−1 + 1 if 𝑗 = 𝑖 − 1,

1 if 𝑗 = 𝑖,
𝑑′
𝑖
+ 1 if 𝑗 = 𝑖 + 1,

𝑑′
𝑗−1 if 𝑗 < 𝑖 + 1.

This agrees with our process of subdividing an edge as described in Proposition 4.1.4,
by induction hypothesis 𝐷 (𝑇 ′) was an arithmetic 𝑑-structure, and so, 𝐷 (𝑇) is an arithmetic
𝑑-structure.

By our previous discussion of the subdivision process, the map 𝐷 is surjective. Two
triangulations associated with the same arithmetic structure will be the same. Therefore, 𝐷
is bĳective. □

Example 4.1.18. We shall use the previous example to illustrate this procedure.
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Figure 4.3

For the first polygon 𝐷 (𝑇 ′) = (2, 1, 3, 2, 1, 3). By gluing the triangle to obtain the
triangulation of the 7-gon, we obtain 𝐷 (𝑇) = (2, 1, 4, 1, 3, 1, 3).

This allows us to prove the following theorem.
Theorem 4.1.19. For each 1 ≤ 𝑖 ≤ 𝑛 and 0 ≤ 𝑘 ≤ 𝑛 − 2, the number of arithmetical
𝑑-structures (𝑑1, . . . , 𝑑𝑛) on P𝑛 with 𝑑𝑖 = 𝑛 − 𝑘 − 1 is equal to 𝐵(𝑛 − 2, 𝑘).
Proof. Define 𝑑0 = 3𝑛 − 3−∑𝑛

𝑗=1 𝑑 𝑗 , and then, by Corollary 4.1.15, the result extends to the
case 𝑖 = 0, as 𝑑0 = r(1) − 1.

For the rest of the cases, from Theorem 2.3.8, the number of triangulations of a 𝑛 + 1-gon
with 𝑑𝑖 = 𝑛− 𝑘 −1 is 𝐵(𝑛−2, 𝑘). This, combined with the above results, gives us our desired
conclusion. □
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Let d(1) defined similarly to r(1).

Proposition 4.1.20. If 𝑛 is a positive integer, then the number of arithmetical structures
(d, r) on P𝑛+2 with r(1) = 2 and d(1) = 𝑘 is equal to(

𝑛 − 1
2𝑘 − 2

)
2𝑛+1−2𝑘𝐶𝑘−1.

Proof. From Corollary 2.3.13, we know that the number of admissible sequences, sequences
𝑎0, . . . , 𝑎𝑛+1 such that: 𝑎0 = 𝑎𝑛+1 = 1 and 𝑎𝑖 | (𝑎𝑖−1 + 𝑎𝑖+1) for 1 ≤ 𝑖 ≤ 𝑛, and which attain 𝑘
local maxima (that is, 𝑎𝑖 = 𝑎𝑖−1 + 𝑎𝑖+1), is(

𝑛 − 1
2𝑘 − 2

)
2𝑛+1−2𝑘𝐶𝑘−1.

We shall show then that these sequences are in correspondence to arithmetical structures in
P𝑛+2 that fulfill the conditions of the theorem.

Let d = (𝑑1, . . . , 𝑑𝑛+2), r = (𝑟1, . . . , 𝑟𝑛+2) be arithmetical structures onP𝑛+2. As r(1) = 2,
then 𝑟2 . . . 𝑟𝑛 is an admissible sequence satisfying 4.1. Then, for 1 < 𝑖 < 𝑛+2, 𝑟𝑖 = 𝑟𝑖−1 + 𝑟𝑖+1
if and only if 𝑑𝑖 = 1, that is, if the sequence 𝑟 𝑗 attains a maxima at 𝑖. If 𝑑1 = 1 or 𝑑𝑛+2 = 1,
then 1 = 𝑟1 = 𝑟2 or 𝑟𝑛+1 = 𝑟𝑛+2 = 1 respectively. This can not happen as r(1) = 2.

Thus, the arithmetical structures satisfying the theorem conditions are in correspondence
to admissible sequences with 𝑘 local maxima, and we get the result. □

4.2 Arithmetical structures on the cycle
In this section, we will conduct a similar analysis of arithmetical structures on the cycle C𝑛
as we did with the path P𝑛.

The cycle C2 on two vertices is the multigraph with vertex set {1, 2} and edge set
{(1, 2), (2, 1)}. We begin by describing the complete set of arithmetical structures on C2.

Theorem 4.2.1. The 2-cycleC2 has only three arithmetical structures, namely (1, 4), (2, 2), (4, 1).

Proof. The adjacency matrix of the 2-cycle is equal to(
0 2
2 0

)
.
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So for 𝐿 (C2, diag(𝑥1, 𝑥2)) to have non trivial kernel we must have

𝑥1𝑥2 − 4 = 0.

The solutions of this equation over the positive integers are (1, 4), (4, 1), (2, 2). These are all
the arithmetical 𝑑-structures.

Solving for the possible 𝑟-structures, we obtain the following arithmetical structures for
C2

(1, 4)
(1, 2) ,

(2, 2)
(1, 1) , and

(4, 1)
(2, 1) .

□

As with the path, the condition

(diag(d) − 𝐴C𝑛
)r = 0,

will produce a similar set of conditions for an integer vector r to be an 𝑟-strucure in C𝑛.

Proposition 4.2.2. If r is an arithmetical 𝑟-structure on the cycle C𝑛, then, by taking the
indices modulo 𝑛, we have

𝑟𝑖 | (𝑟𝑖−1 + 𝑟𝑖+1) for all 1 ≤ 𝑖 ≤ 𝑛.

Proof. For 𝑛 > 2, the adjacency matrix for the 𝑛-cycle is equal to

©­­­­­­«

0 1 0 0 . . . 0 1
1 0 1 0 . . . 0 0
0 1 0 1 . . . 0 0
...
...
...
...

...
...

1 0 0 0 . . . 1 0

ª®®®®®®¬
.

If (d, r) ∈ Arith(C𝑛), then 𝐿 (𝐴C𝑛
, d)r = 0. This implies the following system of equations

𝑑1𝑟1 − 𝑟2 − 𝑟𝑛 = 0,
𝑑2𝑟3 − 𝑟1 − 𝑟3 = 0,

...

𝑑𝑛𝑟𝑛 − 𝑟1 − 𝑟𝑛−1 = 0.

(4.6)

This system of equations directly implies the result. □



4.2 Arithmetical structures on the cycle 63

For an arithmetical structure (d, r) ∈ Arith(C𝑛), we adopt the convention 𝑑0 = 𝑑𝑛. The
next result proves that the subdivision operation on an arithmetical structure of the cycle C𝑛
is again an arithmetical structure of the cycle C𝑛+1.

Theorem 4.2.3. If (d′, r′) ∈ Arith(C𝑛) and 1 ≤ 𝑖 ≤ 𝑛 + 1, then the vectors d, r whose entries
are given by

𝑑 𝑗 =



𝑑′
𝑗

if 𝑗 < 𝑖 − 1,
𝑑′
𝑖−1 + 1 if 𝑗 = 𝑖 − 1,

1 if 𝑗 = 𝑖,
𝑑′
𝑖
+ 1 if 𝑗 = 𝑖 + 1,

𝑑′
𝑗−1 if 𝑗 > 𝑖 + 1,

and 𝑟 𝑗 =


𝑟′
𝑗

if 𝑗 < 𝑖,
𝑟′
𝑗−1 + 𝑟

′
𝑗

if 𝑗 = 𝑖,
𝑟′
𝑗−1 if 𝑗 > 𝑖,

form an arithmetical structure on C𝑛+1. Moreover, the cokernels of 𝐿 (C𝑛, d′) and 𝐿 (C𝑛+1, d)
are isomorphic.

Proof. We shall show that the system of equations 4.6 is satisfied by the newly defined
vectors.

For 𝑗 < 𝑖 − 1 and 𝑗 > 𝑖 + 1 the equation is clearly fulfilled, as we will get the same
equations as in the original vectors. So, we shall only check the equations in which the
vectors d, r differ from d′, r′.

For 𝑗 = 𝑖 − 1, we have

𝑟 𝑗𝑑 𝑗 =𝑟
′
𝑗 (𝑑′𝑗 + 1)

=𝑟′𝑗𝑑
′
𝑗 + 𝑟′𝑗 = 𝑟′𝑗−1 + 𝑟

′
𝑗+1 + 𝑟

′
𝑗

=𝑟 𝑗−1 + 𝑟 𝑗+1.

For 𝑗 = 𝑖, we have that 𝑟 𝑗𝑑 𝑗 = (𝑟′
𝑗−1 + 𝑟

′
𝑗
) (1) = 𝑟 𝑗−1 + 𝑟 𝑗+1. Finally, for 𝑗 = 𝑖 + 1, we have

𝑟 𝑗𝑑 𝑗 =𝑟
′
𝑗−1(𝑑

′
𝑗−1 + 1) = 𝑟′𝑗−1𝑑

′
𝑗−1 + 𝑟

′
𝑗−1

=𝑟′𝑗−2 + 𝑟
′
𝑗 + 𝑟′𝑗−1 = 𝑟′𝑗−2 + 𝑟

′
𝑗−1 + 𝑟

′
𝑗

=𝑟 𝑗−1 + 𝑟 𝑗+1.

By a similar reasoning to Proposition 4.1.4, one shows the pseudo-Laplacian matrices are
Z-equivalent, so the cokernels are isomorphic. □
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The next result proves something similar for the smoothing operation, which is the inverse
of the subdivision operation.

Theorem 4.2.4. Let 𝑛 ≥ 3 and (𝑑, 𝑟) ∈ Arith(C𝑛+1) such that 𝑑𝑖−1 > 𝑑𝑖 = 1 < 𝑑𝑖+1 for some
1 ≤ 𝑖 ≤ 𝑛. Define integer vectors d′ and r′ of length 𝑛 as follows

𝑑′𝑗 =


𝑑 𝑗 if 𝑗 < 𝑖 − 1,
𝑑𝑖−1 − 1 if 𝑗 = 𝑖 − 1,
𝑑𝑖+1 − 1 if 𝑗 = 𝑖,
𝑑 𝑗+1 if 𝑛 − 1 > 𝑗 > 𝐼,

and 𝑟′𝑗 =

{
𝑟 𝑗 if 𝑗 < 𝑖,
𝑟 𝑗+1 if 𝑗 ≥ 𝑖.

Then (d′, r′) is an arithmetical structure on C𝑛−1. Moreover, the cokernels of 𝐿 (C𝑛−1, d′) and
𝐿 (C𝑛+1, d) are isomorphic.

Proof. We will use similar arguments to those given in the previous proposition. More
precisely, for 𝑗 < 𝑖 − 1 and 𝑛 − 1 > 𝑗 > 𝑖, the Equations 4.6 follow, as the vectors have the
same entries as the original pair. Then, we only need to check for the entries in which they
will differ.

For 𝑗 = 𝑖 − 1, as 𝑑𝑖 = 1, 𝑟𝑖 = 𝑟𝑖−1 + 𝑟𝑖+1

𝑟′𝑖−1𝑑
′
𝑖−1 = 𝑟𝑖−1(𝑑𝑖−1 − 1),

= 𝑟𝑖−2 + 𝑟𝑖 − 𝑟𝑖−1 = 𝑟𝑖−2 + 𝑟𝑖−1 + 𝑟𝑖+1 − 𝑟𝑖−1,

= 𝑟𝑖−2 + 𝑟𝑖+1 = 𝑟𝑖−2 + 𝑟𝑖 .

And for 𝑗 = 𝑖,

𝑟′𝑖𝑑𝑖 = 𝑟𝑖+1(𝑑𝑖+1 − 1) = 𝑟𝑖 + 𝑟𝑖+2 − 𝑟𝑖+1,

= 𝑟𝑖−1 + 𝑟𝑖+1 + 𝑟𝑖+2 − 𝑟𝑖+1 = 𝑟𝑖−1 + 𝑟𝑖+2,

= 𝑟′𝑖−1 + 𝑟
′
𝑖+1

By a similar reasoning to Proposition 4.1.3. one shows the pseudo-Laplacian matrices
are Z-equivalent, so the cokernels are isomorphic. □

One can see that in the process of subdividing an arithmetical structure, we have r′(1) =
r(1).

Proposition 4.2.5. There is only one arithmetical structure on C𝑛 such that 𝑑𝑖 ≥ 2 for all 𝑖,
namely d = (2, . . . , 2) := 2, r = (1, . . . , 1) := 1.
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Proof. The result follows similarly to Theorem 4.1.6. □

Corollary 4.2.6. If r is an arithmetical 𝑟-structure on C𝑛, then r(1) > 0.
Proof. We prove the result by induction on 𝑛. By Theorem 4.2.1, the result is clear for 𝑛 = 2.

Suppose, then, that the result is true for all 2 ≤ 𝑘 ≤ 𝑛. For 𝑛 + 1, if d = 2, r = 1 and the
result is clear.

If (d, r) ≠ (2, 1), then by Proposition 4.2.5, we have 𝑑𝑖 = 1 for some 𝑖. By Lemma 4.1.3,
we have 𝑑𝑖−1 > 𝑑𝑖 < 𝑑𝑖+1, this implies that the arithmetical structure (d, r) can be obtained
by subdividing an arithmetical structure on C𝑛 (the subdivision of its smoothing).

Since r′(1) = r(1), the result follows by our inductive hypothesis. □

Theorem 4.2.7. If (d, r) ∈ Arith(C𝑛) is an arithmetical structure of the cycle C𝑛, then

r(1) = 3𝑛 −
𝑛∑︁
𝑗=1

𝑑 𝑗

and 𝐾 (C𝑛, d, r) = Zr(1) .
Proof. We proceed by induction on 𝑛. First, for 𝑛 = 2, one can directly calculate by checking
the structures on Theorem 4.2.1.

For 𝑛 ≥ 3. If (d, r) = (2, 1) is the Laplacian arithmetical structure, then 3𝑛 −∑𝑛
𝑗=1 𝑑 𝑗 =

3𝑛 − 2𝑛 = 𝑛, and 𝐾 (C𝑛, 2, 1) = Z𝑛, this result can be consulted on [9], p.121.
If d ≠ 2, then (d, r) is obtained by subdividing an edge on an arithmetical structure (d′, r′)

in C𝑛−1. Then
𝑛∑︁
𝑗=1

𝑑 𝑗 = (
𝑛−1∑︁
𝑗=1

𝑑′𝑗 ) + 3 = 3(𝑛 − 1) − r′(1) + 3 = 3𝑛 − r′(1) = 3𝑛 − r(1).

From which the first part follows. Because the cokernels of 𝐿 (C𝑛, d) and 𝐿 (C𝑛−1, d′) are
isomorphic, the critical groups are isomorphic. As r(1) = r′(1), the las part of the theorem
follows. □

Before we start counting the number of arithmetical structures on C𝑛, we introduce the
set

𝑀𝑆𝑒𝑡𝑖 (𝑛) = {𝑆 is a multiset of [𝑛] of cardinality 𝑖},
and we define similarly the set 𝑀𝑆𝑒𝑡≤𝑖 (𝑛). A known result is that

|𝑀𝑆𝑒𝑡𝑘 (𝑛) |
def
=

((
𝑛

𝑘

))
=

(
𝑛 + 𝑘 − 1

𝑘

)
.

We now start counting the number of arithmetical structures onC𝑛 with the following theorem.
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Theorem 4.2.8. If 1 ≤ 𝑘 ≤ 𝑛, then

|{(d, r) ∈ Arith(C𝑛) : 𝑘 = r(1)}| =
((

𝑛

𝑛 − 𝑘

))
=

(
2𝑛 − 𝑘 − 1
𝑛 − 𝑘

)
.

Moreover, the total number of arithmetical structures on C𝑛 is

𝑛∑︁
𝑘=1

((
𝑛

𝑛 − 𝑘

))
=

((
𝑛 + 1
𝑛 − 1

))
=

(
2𝑛 − 1
𝑛 − 1

)
.

Before beginning with the proof, we introduce two actions of Z𝑛, the first one over
Arith(C𝑛) and the second one over 𝑀𝑆𝑒𝑡𝑙 (𝑛). More precisely, given 𝑐 ∈ Z𝑛, let

𝜌𝑐 (𝑟1, . . . , 𝑟𝑛) = (𝑟1+𝑐, . . . , 𝑟𝑛, 𝑟1, . . . , 𝑟𝑐),

the action that rotates the positions on the vector r = (𝑟1, . . . , 𝑟𝑛) and

𝜙𝑐 ( [𝑎1, . . . , 𝑎𝑙]) = [𝑏1, . . . , 𝑏𝑙],

where 𝑏𝑖 = (𝑎𝑖 + 𝑐) mod 𝑛 for 1 ≤ 𝑖 ≤ 𝑙. That is, this action rotates the values of [𝑎1, . . . , 𝑎𝑙]
by taking it modulo 𝑛.

Example 4.2.9. The 𝜌-orbit of the arithmetical 𝑟-structure r = (2, 3, 4, 1, 3) in C5 is given
by

{(2, 3, 4, 1, 3), (3, 4, 1, 3, 2), (4, 1, 3, 2, 3), (1, 3, 2, 3, 4), (3, 2, 3, 4, 1)}.
The 𝜙-orbit of the multiset 𝑚 = [2, 2, 3, 5] in 𝑀𝑆𝑒𝑡4(5) is given by

{[2, 2, 3, 5], [3, 3, 4, 1], [4, 4, 5, 2], [5, 5, 1, 3], [1, 1, 2, 4]}.

With this, we are ready to prove Theorem 4.2.8.

Proof. We will give an explicit bĳection

Ω : 𝑀𝑆𝑒𝑡≤𝑛−1(𝑛) → Arith(C𝑛).

Even though the output of this function is an arithmetical structure (d, r), for our convenience,
we will only refer to the r-structure; that is, we will treat it as if Ω(𝑆) = r. This makes sense,
as the vector d is uniquely defined by r.

The function Ω will have the following properties:
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• The number of ones of Ω(𝑆) is equal to r(1) = 𝑛 − |𝑆 | for all 𝑆.

• It is equivariant respect to the actions 𝜙 and 𝜌, that is, Ω(𝜙𝑐 (𝑆)) = 𝜌𝑐 (Ω(𝑆)).

• Given a nonempty multiset 𝑆, let 𝑆 = 𝜙𝑐 (𝑆) be the element of the 𝜙-orbit of 𝑆 that is
first in reverse-lex order. Then Ω(𝑆) = r̃ is first in reverse-lex order in its 𝜌-orbit. In
particular, 𝑟𝑛 = 1.

First, Ω(∅) is defined as 1. Now, given a nonempty multiset 𝑆, let 𝑆 = [𝑠1, . . . , 𝑠𝑙] with
𝑠𝑖 ≤ 𝑠𝑖+1 be the first element in the 𝜙-orbit of 𝑆 in reverse lex order. Then, as 𝑙 = |𝑆 | < 𝑛,
some element in the 𝜙-orbit of 𝑆 includes no instance of 𝑛, in particular, 𝑠𝑙 < 𝑛. Also, 𝑠1 = 1;
otherwise, we could subtract 1 from every entry and obtain another element in the orbit that
precedes it.

We describe an algorithm to generate arithmetic 𝑟-structures starting from the Laplacian
arithmetical structure on C1.

Algorithm A. Let 𝑆 be a multiset [𝑠1, . . . , 𝑠𝑙] as before.

1. Set 𝑟0 = 1 and 𝑛0 = 1 on C1.

2. For 1 ≤ 𝑖 ≤ 𝑙 we construct an 𝑟-structure on C𝑛𝑖 by following the steps
𝑎) If 𝑛𝑖−1 < 𝑠𝑖 add vertices with respective 𝑟 𝑗 = 1 until there are 𝑠𝑖 vertices, then

add the vertex with respective 𝑟𝑠𝑖 = 2 and set 𝑛𝑖 = 𝑠𝑖 + 1.
𝑏) If 𝑛𝑖−1 = 𝑠𝑖, add a vertex with respective 𝑟𝑠𝑖 = 𝑟𝑠𝑖−1 + 1 and set 𝑛𝑖 = 𝑠𝑖 + 1.
𝑐) If 𝑛𝑖 > 𝑠𝑖 insert a vertex in position 𝑠𝑖, so that it will shift all vertex with their

respective labels forward one position. Once this is done, set the entry at position 𝑠𝑖
equal to 𝑟𝑠𝑖 + 𝑟𝑠𝑖−1. Then set 𝑛𝑖 = 𝑛𝑖−1 + 1.

3. If 𝑛𝑙 < 𝑛 add 𝑛 − 𝑛𝑙 vertices with respective 𝑟𝑖 = 1.

4. The resulting arithmetical 𝑟-structure is r̃ = (𝑟1, . . . , 𝑟𝑛) = Ω(𝑆) (recall that 𝑟0 = 𝑟𝑛).
Set r = 𝜌−𝑐 (r̃) = Ω(𝑆).

We show that at every step of this process, we obtain an arithmetical 𝑟-structure.

• We know that 𝑠1 = 1, so at the first iteration we obtain (1, 2) ∈ Arith(C2).

• If the algorithm proceeds to step 2a, we obtain an arithmetical 𝑟-structure with 𝑟0 = 1.
Furthermore, the added tail of 1′s ending with a 2 preserves the divisibility properties
required so that the resulting vector is an arithmetical 𝑟-structure.
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• If it proceeds to step 2b, then 𝑟𝑛𝑖−1 = 𝑟𝑛𝑖−1−1 + 1 = 𝑟𝑛𝑖−1−1 + 𝑟0, so the divisibility
properties are once again met.

• If it proceeds to step 2c, it is clear that the divisibility properties are once again met.

• If it proceeds to step 3, the tail of 1’s keeps the divisibility properties required to be an
𝑟-strucure.

• By applying a rotation to the values of an arithmetical 𝑟-structure on the cycle, we once
again obtain an arithmetical 𝑟-structure.

Example 4.2.10. Let 𝑛 = 7, 𝑘 = 3, and 𝑆 = [1, 3, 3, 4]. It is clear that 𝑆 is the first element
of its 𝜙-orbit.

Applying our algorithm, we obtain the following sequence of arithmetical 𝑟-structures:
First, we set 𝑛0 = 𝑟0 = 1.

1. For 𝑖 = 1, 𝑛0 = 1 = 𝑠1, so we proceed to step 2b, we add an entry 𝑟1 = 𝑟0 + 1 = 2, we
set 𝑛1 = 𝑠1 + 1 = 2 and the resulting arithmetical 𝑟-structure at this step is (1, 2).

2. For 𝑖 = 2, 𝑛1 = 2 < 3 = 𝑠2, so we proceed to step 2a, we add an entry 𝑟2 = 1, and a
final vertex 𝑟3 = 2, then we set 𝑛2 = 𝑠2 + 1 = 4. The resulting arithmetical 𝑟-structure
after this step is (1, 2, 1, 2).

3. For 𝑖 = 3, 𝑛2 = 4 > 3 = 𝑠3, so we proceed to step 2c, we add an entry in position 3
equal to 2 + 1 = 3, then we set 𝑛3 = 𝑛2 + 1 = 5. The resulting arithmetical 𝑟-structure
after this step is (1, 2, 1, 3, 2).

4. For 𝑖 = 4, 𝑛3 = 5 > 4 = 𝑠4, so we proceed to step 2c, we add an entry in position 4
equal to 2 + 3, then we set 𝑛4 = 𝑛3 + 1 = 6. The resulting arithmetical 𝑟-structure after
this step is (1, 2, 1, 3, 5, 2).

As 𝑛4 = 6 < 7,we do step 3 and we add an entry 𝑟6 = 1 and the resulting arithmetical
𝑟-structure is then (1, 2, 1, 3, 5, 2, 1).

Now, we shall show that the function Ω satisfies our desired properties. First, every
iteration of step 2 of our algorithm adds exactly one vertex with 𝑟𝑖 > 1, this step is repeated
|𝑆 | times. This is also the only step in which we add entries different from 1. The number of
1’s is unaffected by the rotation in step 4, so the number of 1’s in the resulting vector is equal
to Ω(𝑆) (1) = 𝑛 − |𝑆 |. This proves the first property.
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For the second property, set 𝑇 = 𝜙𝑡 (𝑆) for 𝑡 ∈ Z𝑛. Let 𝑐 be such that 𝑆 = 𝜙𝑐 (𝑆) is the first
element in reverse lex order as required. Then, 𝑆 = 𝜙𝑐 (𝑆) = 𝜙𝑐 (𝜙−𝑡 (𝑇)) = 𝜙𝑐−𝑡 (𝑇). Then
Ω(𝑇) = 𝜌𝑡−𝑐 (r̃) = 𝜌𝑡 (𝜌−𝑐 (r̃)) = 𝜌𝑡 (Ω(𝑆)), as desired.

For the third property, suppose that 𝑆 = [𝑠1, . . . , 𝑠𝑛] is such that they are the first element
of its orbit in reverse lex order, the resulting r̃ has 𝑟 𝑗 = 1 for 𝑠𝑙 < 𝑗 ≤ 𝑛 with 𝑟𝑠𝑙 > 1. For r̃ to
contain a longer sequence of entries equal to 1 than this one, it would require that for some
𝑖, that the gap 𝑠𝑖+1 − 𝑠𝑖 − 1 to be greater than the gap 𝑛 − 𝑠𝑙 . Then, by adding 𝑛 − 𝑠𝑖+1 + 1
to every entry of 𝑆 (taken modulo 𝑛), we would obtain a new multiset with maximal entry
𝑛− 𝑠𝑖+1 + 𝑠𝑖 + 1 < 𝑠𝑙 . This would contradict the fact that 𝑆 was the first element in reverse lex
order.

We have proven the properties of Ω, now we prove that it is indeed a bĳection.
It will be useful to consider Ω as the union of the maps:

Ω𝑙 : 𝑀𝑆𝑒𝑡𝑙 (𝑛) −→ {arithmetical 𝑟-structures on C𝑛 with r(1) = 𝑛 − 𝑙}.

We show that every Ω𝑙 is a bĳection by induction on 𝑙. For 𝑙 = 0, then 𝑆 = ∅ and the only
arithmetical structure with r(1) = 𝑛 − 0 = 𝑛 is the Laplacian arithmetical structure, so the
result is clear. For 𝑙 = 1 if 𝑆 ∈ 𝑀𝑆𝑒𝑡1(𝑛), then 𝑆 = [𝑎] and its firs element in its 𝜙 orbit is
𝑆 = 𝜙𝑛−𝑎+1(𝑆) = [1]. Step 2 of the algorithm is executed once and we obtain the arithmetical
𝑟-strucure r̃ = (2, 1, . . . , 1) and r = 𝜌𝑛−𝑎+1(r̃), is the vector with 𝑟𝑛−𝑎+1 = 2 and every other
entry equal to 1. It is not difficult to check that Ω1 is a bĳection.

Suppose 𝑙 ≥ 2. At every iteration of our algorithm the vector r̃ has a local maximum at
position 𝑠𝑖, in the sense that 𝑟𝑠𝑖−1 < 𝑟𝑠𝑖 and, either 𝑟𝑠𝑖+1 < 𝑟𝑠𝑖 or 𝑟𝑠𝑖+1 does not exist. Also,at
this iteration claim that if 𝑚 > 𝑠𝑖, then 𝑟𝑚 is not a local maximum. This is clear whenever
steps 2a and 2b of our algorithm occur. If step 2c is applied multiple times, then at each step,
we are adding an entry that is greater than the one to its right, and each of these insertions
occurs to the right of previous insertions, so 𝑟𝑚 cannot be a local maximum.

We proceed to show an algorithm that will recover 𝑆 from r. Let r̃ be the first element
in the 𝜌-orbit of r in reverse lex order. Label the vertices of the cycle graph C𝑛 with r̃ and
proceed with the following algorithm.

Algorithm B Let r̃ be as above.

1. Let 𝑆 be the empty multiset.

2. Let 𝑗 be the greatest integer so that 𝑟 𝑗 is a local maximum and add 𝑗 to 𝑆.

3. Delete entry 𝑗 form r̃, this will give us an arithmetical structure on C𝑛−1 (by the
smoothing operation).
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4. Repeat the previous steps until we are left with the arithmetical 𝑟-structure 1 on C𝑛−𝑙 .
The multiset 𝑆 will now be a multiset with 𝑙 = 𝑛 − r(1) elements. And will be first in
reverse lex order in its 𝜙-orbit.

Once the algorithm is completed, we have recovered 𝑆, and we set 𝑆 = 𝜙−𝑐 (𝑆).
Steps 2 and 3 of the algorithm will be executed exactly 𝑙 times, as they remove one entry

greater than 1 in every iteration.
With this, we have concluded the proof of our theorem. □

We can do another less constructive proof of this theorem by exploring ways in which
arithmetical 𝑟-structures on the cycle give rise to arithmetical 𝑟-structures for paths.

Lemma 4.2.11. Let 𝑛 ≥ 2.

a) Suppose that r = (𝑟1, . . . , 𝑟𝑛) is an arithmetical 𝑟-structure on C𝑛 such that 𝑟 𝑗 = 1 for
some 𝑗 , then r′ = (𝑟 𝑗 , . . . , 𝑟𝑛, 𝑟1, . . . , 𝑟 𝑗 ) is an arithmetical structure on P𝑛+1.

b) Suppose that r = (𝑟1, . . . , 𝑟𝑛) in an arithmetical r-structure in C𝑛 such that 𝑟𝛼 = 𝑟𝛽 = 1
for some 1 ≤ 𝛼 < 𝛽 then r′ = (𝑟𝛼, 𝑟𝛼+1, . . . , 𝑟𝛽) and r′′ = (𝑟𝛽, 𝑟𝛽+1, . . . , 𝑟𝑛, 𝑟1, . . . , 𝑟𝛼)
are arithmetical structures on P𝛽−𝛼+1 and P𝑛−(𝛽−𝛼)+1, respectively.

Proof. In both cases, it is not difficult to check that

𝑟1 = 𝑟𝑛 = 1 and 𝑟𝑖 | (𝑟𝑖−1 + 𝑟𝑖+1) for all 1 < 𝑖 < 𝑛.

That is, satisfy conditions (4.2) for an integer vector to be an 𝑟-structure on the path P𝑛. □

Second proof of Theorem 4.2.8. We will proceed by induction on 𝑘 . For the base case 𝑘 = 1,
one can see by Lemma 4.2.11 that for each 𝑗 ∈ [𝑛] there is a bĳection between arithmetical
𝑟-structures on the cycle C𝑛 with exactly one entry equal to 1 in position 𝑗 , and arithmetical
structures on the path P𝑛+1 with r(1) = 2 given by

(𝑟1, 𝑟2, . . . , 𝑟 𝑗−1, 1, 𝑟 𝑗+1, . . . , 𝑟𝑛) −→ (1, 𝑟 𝑗+1, . . . , 𝑟𝑛, 𝑟1, . . . , 1).

Then, by Theorem 4.1.14 we conclude that

|{r ∈ Arith(C𝑛) : r(1) = 1}| = 𝑛 · |{r ∈ Arith(P𝑛+1) : r(1) = 2}|

= 𝑛 · 𝐴(𝑛 + 1, 2) =
(
2𝑛 − 2
𝑛 − 2

)
=

((
𝑛

𝑛 − 1

))
.
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Then, we assume that 𝑘 > 1.
The number of lattice paths (without restriction) from (0, 0) to (𝑛 − 1, 𝑛 − 𝑘) is

(2𝑛−𝑘−1
𝑛−𝑘

)
.

Each of these paths can be decomposed into a path from (0, 0) to (𝑧, 𝑧) and a path from (𝑧, 𝑧)
to (𝑛 − 1, 𝑛 − 𝑘), where 𝑧 is the greatest number where the path crosses the line 𝑥 = 𝑦. Then,
the second path will start by doing an east step from (𝑧, 𝑧) to (𝑧 + 1, 𝑧).

There are (
2𝑧
𝑧

)
= (𝑧 + 1)𝐶𝑧,

choices for the first path. And, for the second path, there is a bĳection from choices of this
kind of path and paths from (0, 0) to (𝑛− 𝑧 − 2, 𝑛− 𝑘 − 𝑧) that do not go above the line 𝑥 = 𝑦,
of which there are 𝐵(𝑛 − 𝑧 − 2, 𝑛 − 𝑘 − 𝑧) = 𝐴(𝑛 − 𝑧, 𝑘) paths of this kind.

This gives us the expression(
2𝑛 − 𝑘 − 1
𝑛 − 𝑘

)
=

𝑛−𝑘∑︁
𝑧=0

(𝑧 + 1)𝐶𝑧𝐴(𝑛 − 𝑧, 𝑘).

We shall show that the right-hand expression counts the number of arithmetical 𝑟-structures
on C𝑛 with r(1) = 𝑘 . Label the vertices of C𝑛 as 𝑣0, . . . , 𝑣𝑛−1. Let r = (𝑟0, . . . , 𝑟𝑛−1) be an
arithmetical 𝑟-structure with r(1) = 𝑘 and

𝛼 = min{𝑖 : 𝑟𝑖 = 1}, 𝛽 = max{𝑖 : 𝑟𝑖 = 1}.

Then 0 ≤ 𝛼 ≤ 𝛽 ≤ 𝑛 − 1.
By Lemma 4.2.11, the vector r′ = (𝑟𝛼, . . . , 𝑟𝛽) is an arithmetical 𝑟-structure on the path

P𝛽−𝛼+1 with r′(1) = 𝑘 . We note that 𝛽 − 𝛼 + 1 ≥ 𝑘 . By Theorem 4.1.14, the number of
possibilities for these arithmetical structures equals 𝐴(𝛽 − 𝛼 + 1, 𝑘).

Again, by Lemma (4.2.11), the vector

r′′ = (𝑟𝛽, . . . , 𝑟𝑛−1, 𝑟0, . . . , 𝑟𝛼)

is an arithmetical 𝑟-structure onP𝑛−(𝛽−𝛼)+1 with r′′(1) = 2. And there is 𝐴(𝑛−(𝛽−𝛼)+1, 2) =
𝐶𝑛−(𝛽−𝛼)−1 of this arithmetical structures. Let 𝑧 = 𝑛− (𝛽−𝛼) −1 ≤ 𝑛− 𝑘: Each choice of 𝛽, 𝛼
satisfying the inequality 𝛽 − 𝛼 + 1 ≥ 𝑘 gives a total of 𝐶𝑧 · 𝐴(𝑛 − 𝑧, 𝑘) posible arrithemtical
𝑟-structures.

Each value of 𝑧 arises from one of the 𝑧 + 1 pairs (0, 𝑛 − 𝑧 − 1), (1, 𝑛 − 𝑧), . . . , (𝑧 − 1, 𝑛).
Putting all this together, we get

𝑛−𝑘∑︁
𝑧=0

(𝑧 + 1)𝐶𝑧 · 𝐴(𝑛 − 𝑧, 𝑘) =
(
2𝑛 − 𝑘 − 1
𝑛 − 𝑘

)
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arithmetical structures. □



Bibliography

[1] M. Aigner and V. Schulze. Sum-difference sequences and catalan numbers. Monatshefte
für Mathematik, 127(2):89–99, Feb 1999.

[2] A. Berman and R. J. Plemmons. Nonnegative matrices in the mathematical sciences,
volume 9 of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 1994. Revised reprint of the 1979 original.

[3] N. Biggs. Algebraic Graph Theory. Cambridge Mathematical Library. Cambridge
University Press, 2 edition, 1974.

[4] N. Biggs. Algebraic potential theory on graphs. Bull. London Math. Soc., 29(6):641–
682, 1997.

[5] B. Braun, H. Corrales, S. Corry, L. D. G. Puente, D. Glass, N. Kaplan, J. L. Martin,
G. Musiker, and C. E. Valencia. Counting arithmetical structures on paths and cycles.
Discrete Mathematics, 341(10):2949–2963, 2018.

[6] H. Corrales and C. E. Valencia. On the critical ideals of graphs. Linear Algebra Appl.,
439(12):3870–3892, 2013.

[7] H. Corrales and C. E. Valencia. Arithmetical structures on graphs. Linear Algebra and
its Applications, 536:120–151, 2018.

[8] H. Corrales and C. E. Valencia. Arithmetical structures on graphs with connectivity
one. Journal of Algebra and Its Applications, 17(8):1850147, 2018.

[9] D. Glass and N. Kaplan. Chip-Firing Games and Critical Groups, pages 107–152.
Springer International Publishing, Cham, 2020.

73



74 BIBLIOGRAPHY

[10] C. Godsil and G. Royle. Algebraic graph theory, volume 207 of Graduate Texts in
Mathematics. Springer-Verlag, New York, 2001.

[11] G. Harris and C. Martin. Shorter notes: The roots of a polynomial vary continuously
as a function of the coefficients. Proceedings of the American Mathematical Society,
100(2):390–392, 1987.

[12] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.

[13] D. J. Lorenzini. Arithmetical graphs. Mathematische Annalen, 285(3):481 – 501, 1989.
Cited by: 80.

[14] R. J. Plemmons. 𝑀-matrix characterizations. I. Nonsingular 𝑀-matrices. Linear
Algebra Appl., 18(2):175–188, 1977.

[15] N. Sloane. The On-Line Encyclopedia of Integer Sequences, 2017. published electron-
ically at http://oeis.org.

[16] R. P. Stanley. Catalan numbers. Cambridge University Press, 2015.

[17] J. van Lint. Combinatorial theory seminar Eindhoven University of Technology. Lecture
notes in mathematics. Springer, Germany, 1974.

[18] R. S. Varga. Geršgorin and his circles, volume 36 of Springer Series in Computational
Mathematics. Springer-Verlag, Berlin, 2004.



Index

admissible sequence, 23
arithmetical, 1

graph, 1
structure, 2
𝑑, 2
𝑟, 2

Ballot number, 18
Ballot sequence, 57

Catalan
number, 15
triangle, 14

cokernel, 47
cycle, 4

edge, 3
incident, 5

forrest, 4

graph, 3
acyclic, 4
complete, 4
connected, 4
directed, 4
finite, 3
multigraph, 4

null, 4
simple, 4
subgraph, 4

spanning, 4

Lattice paths, 15
leaf, 23
local maximum, 24
loop, 3

Matrix
adjacency, 4
irreducible, 29
M-matrix, 38

almost non-singular, 41
nonnegative, 30
positive, 30

definite, 7
semi-definite, 7

reducible, 29
Z-matrix, 37

path, 4
psuedo-Laplacian, 2

Rayleigh-Ritz quotient, 10

smoothing, 52
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Spectral radius, 31
String, 15

Integer, 15
subdivision, 52
submatrix

principal, 6
leading, 6
minor, 6

Theorem
Cauchy interlacing theorem, 11
Gershgorin’s circle theorem, 6
Min-max theorem, 10
Sepctral theorem for Hermitian

matrices, 7
tree, 4

binary, 22
ordered, 22
rooted, 22

vertex, 3
adjacent, 4
child, 22
degree, 5

vector, 5
descendants, 22
parent, 22
root, 22
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