

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS DEL INSTITUTO POLITÉCNICO NACIONAL

UNIDAD ZACATENCO

DEPARTAMENTO DE GENÉTICA Y BIOLOGÍA MOLECULAR

"Identificación de factores asociados al mRNA mutante de *ATXN7*, en un modelo de ataxia espinocerebelosa tipo 7 (SCA7)"

ΤΕSIS

Que presenta

M. en C. Rodolfo Daniel Ávila Avilés

Para obtener el grado de

DOCTOR EN CIENCIAS

En la especialidad de

GENÉTICA Y BIOLOGÍA MOLECULAR

Directores de Tesis:

Dr. José Manuel Hernández Hernández

Dr. Oscar Hernández Hernández

Ciudad de México

Noviembre 2024

Resumen

La ataxia espinocerebelosa tipo 7 (SCA7) es una enfermedad neurodegenerativa causada por la expansión de repeticiones CAG en el gen de la ataxina-7 (*ATXN7*), lo que resulta en la acumulación de agregados proteicos y disfunción celular. La ataxina-7, la proteína codificada por el gen *ATXN7*, juega un papel fundamental dentro de un complejo coactivador de remodelación de la cromatina y transcripcional. A pesar del papel bien establecido de la ataxina-7 mutante en la patogénesis de SCA7, otros posibles mecanismos fisiopatológicos permanecen sin explorar. La evidencia experimental emergente señala una posible participación de los mRNA que contienen expansiones de repeticiones CAG como entidades tóxicas, similar a observaciones en otras enfermedades de poliglutamínicas, donde los transcritos mutantes se agregan dentro del núcleo, secuestrando otros RNAs y proteínas.

En este trabajo, se caracteriza la formación de agregados de mRNA-*ATXN7* en la línea celular MIO-M1 SCA7, que de forma inducible expresa el mRNA-*ATXN7* con expansiones de 10 o 64 repetidos CAG (10R y 64R, respectivamente). Mediante una curva de inducción dosisdependiente, se determinó un incremento significativo en el número de agregados a lo largo del tiempo de inducción.

Para investigar los complejos moleculares asociados con el mRNA mutante de *ATXN7*, se utilizaron oligonucleótidos antisentido biotinilados dirigidos al mRNA de *ATXN7* sobreexpresado en el modelo glial MIO-M1 de SCA7. Tras la purificación del interactoma del mRNA-*ATXN7*-SCA7, el análisis LC/MS-MS identificó 155 proteínas asociadas diferencialmente. La validación subsecuente reveló que la ribonucleoproteína heterogénea nuclear hnRNPA2B1, con funciones reguladoras del procesamiento alternativo de transcritos y vinculada con mecanismos neurodegenerativos, se secuestra dentro de los agregados de mRNA-*ATXN7*-SCA7.

El presente estudio también elucidó cambios en el empalme alternativo del exón 10 de *SLC17A7*, que codifica el transportador vesicular de glutamato VGLUT1. La sobreexpresión de mRNA de *ATXN7* en el modelo glial de SCA7 condujo a una reducción en la inclusión del exón 10, resultando en una mayor proporción de *SLC17A7* de longitud completa. Las simulaciones de dinámica molecular y los cálculos de energía libre revelaron que la ausencia de la secuencia codificante de este exón induce una pérdida de afinidad entre la proteína y su sustrato, el glutamato.

Para determinar un posible aumento en la excitotoxicidad mediada por glutamato asociada a una mayor expresión de VGLUT1 funcional en el modelo glial de SCA7, se realizó una cuantificación de los niveles de glutamato extracelular e intracelular de cultivos de células

MIO-M1-Q10 y MIO-M1-Q64. Contrariamente a lo esperado, se encontraron niveles reducidos de glutamato intracelular y aumentados de glutamato extracelular.

Con el fin de elucidar un posible mecanismo que impidiera la liberación vesicular de glutamato, se llevó a cabo un análisis de secuenciación de RNA (RNA-seq) para investigar los cambios en la expresión génica global inducidos por la expresión del mRNA-*ATXN7*. Los datos de RNA-seq mostraron alteraciones significativas en la expresión de genes involucrados en la vía de liberación vesicular mediada por el complejo SNARE, donde uno de sus integrantes, SYT1, resultó tener una expresión reducida tanto a nivel de RNA como de proteína en el modelo glial de SCA7. Para validar que las alteraciones en el complejo SNARE fueran responsables de la reducción en la liberación de glutamato, se realizaron ensayos de sobreexpresión de SYT1, lo que permitió el restablecimiento de la liberación de glutamato.

Este estudio proporciona una nueva visión sobre los mecanismos patogénicos en SCA7, demostrando que el mRNA mutante de *ATXN7* no solo forma agregados tóxicos, sino que también secuestra proteínas esenciales como hnRNPA2B1, alterando el empalme alternativo de genes críticos como SLC17A7. Estos datos sugieren que la disfunción resultante en el transporte vesicular de glutamato, mediada por VGLUT1 y el complejo SNARE, contribuye a la alteración en los niveles de glutamato extracelular e intracelular, exacerbando los efectos excitotóxicos observados en SCA7.

Abstract

Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disease caused by the expansion of CAG repeats in the ataxin-7 (ATXN7) gene, resulting in the accumulation of protein aggregates and cellular dysfunction. Ataxin-7, the protein encoded by the ATXN7 gene, plays a fundamental role within a chromatin remodeling and transcriptional coactivator complex. Despite the well-established role of mutant ataxin-7 in the pathogenesis of SCA7, other potential pathophysiological mechanisms remain unexplored. Emerging experimental evidence suggests a possible involvement of expanded CAG repeat mRNAs as toxic entities, like observations in other polyglutamine diseases where mutant transcripts aggregate within the nucleus, sequestering other mRNAs and proteins.

In this study, the MIO-M1 SCA7 cell line, which inducibly expresses ATXN7 mRNA with expansions of 10R and 64R, was characterized. Using a dose-dependent induction curve, we evaluated the formation of ATXN7 mRNA aggregates, observing a significant increase in the number of aggregates over the induction period.

To investigate the molecular complexes associated with mutant ATXN7 mRNA, biotinylated antisense oligonucleotides targeting the overexpressed ATXN7 mRNA in a glial model of SCA7 were used. Following the purification of the ATXN7-SCA7 mRNA interactome, LC/MS-MS analysis identified 155 differentially associated proteins. Subsequent validation revealed that the alternative splicing protein hnRNPA2B1 is sequestered within the ATXN7-SCA7 mRNA aggregates. hnRNPA2B1 is implicated in alternative splicing and has been linked to various neurodegenerative mechanisms.

The present study also elucidated changes in alternative splicing, primarily affecting exon 10 of SLC17A7, which encodes the vesicular glutamate transporter VGLUT1. Overexpression of ATXN7 mRNA in the glial SCA7 model led to a reduction in exon 10 inclusion, resulting in a higher proportion of full-length SLC17A7. Molecular dynamics simulations and free energy calculations revealed that the absence of this exon's coding sequence induces a loss of affinity between the protein and its substrate, glutamate.

To determine a possible increase in glutamate-mediated excitotoxicity associated with higher expression of functional VGLUT1 in the glial SCA7 model, the extracellular and intracellular glutamate levels were quantified. Contrary to expectations, reduced intracellular glutamate and increased extracellular glutamate levels were found.

To elucidate a potential mechanism that might inhibit vesicular glutamate release, RNA sequencing (RNA-seq) analysis was conducted to investigate global gene expression changes induced by ATXN7 mRNA expression. RNA-seq data showed significant alterations

in the expression of genes involved in the vesicular release pathway mediated by the SNARE complex, where one of its components, SYT1, was found to have reduced expression at both RNA and protein levels in the glial SCA7 model. To validate that alterations in the SNARE complex were responsible for the reduced glutamate release, SYT1 was overexpressed, which restored glutamate release.

This study provides new insights into the pathogenic mechanisms in SCA7, demonstrating that mutant ATXN7 mRNA not only forms toxic aggregates but also sequesters essential proteins like hnRNPA2B1, altering the alternative splicing of critical genes such as SLC17A7. The resulting dysfunction in vesicular glutamate transport, mediated by VGLUT1 and the SNARE complex, contributes to the alternation in extracellular and intracellular glutamate levels, exacerbating the excitotoxic effects observed in SCA7.

Dedicatoria

A Dios A mi Familia A mi Esposa

Agradecimientos

Este proyecto de investigación fue posible gracias al financiamiento otorgado por el Consejo Nacional de Ciencia Tecnología (CONACYT) bajo los financiamientos V FORDECYT/PRONACES 140637 y CF-2019/2472263, la beca de estudios doctorales 778903 y a las instalaciones y equipamiento facilitados por el departamento de Genética y Biología Molecular y el Centro de Investigación sobre el Envejecimiento del Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN). Además, al tiempo de cómputo otorgado por el Cluster Híbrido de Supercómputo "Xiuhcoatl" de la Coordinación General de Servicios de Tecnologías de la Información y las Comunicaciones (CGSTIC) del Cinvestav-IPN, así como por la infraestructura de Supercomputo NLHPC (ECM-02).

Agradezco al Dr. José Manuel Hernández Hernández y al Dr. Oscar Hernández Hernández por haberme aceptado en su grupo de trabajo, por su apoyo incondicional para llevar a cabo el proyecto, por los consejos y la guía en el camino, y por aceptar y apoyar mis ideas y proyectos. Gracias por su ayuda, sus consejos, sus enseñanzas y su confianza.

También quisiera agradecer a mis asesores el Dr. Bulmaro Cisneros Vega, Dr. Efraín Garrido Guerrero, Dr. Ricardo Félix Grijalva y Jonathan Magaña Aguirre por su ayuda a lo largo de este camino, por sus consejos y observaciones y por alentarme a mejorar.

Agradezco el apoyo de la Dra. María Luisa Benítez Hess, Dra. Estela Guadalupe García González y Dra. Tzindilú Molina Muñoz por el apoyo técnico otorgado, y por su siempre pronta disponibilidad a ayudar.

Agradezco por último y no menos importante a mi Familia por su apoyo incondicional a lo largo de toda mi vida, por su amor, comprensión, ejemplo, esfuerzo y entrega.

Índice

Resumen	1
Abstract	3
Dedicatoria	5
Agradecimientos	6
Índice	7
Índice de Figuras	
1. Introducción	15
1.1 Ataxia espinocerebelosa de tipo 7 (SCA7)	15
1.2 Proteína ataxina-7 en el complejo SAGA	17
1.3 Proteína ataxina-7 y su función en SCA7	20
1.4 Ganancia de función del transcrito mutante de ATXN7 (mATXN7)	26
1.5 Retinopatía y patología cerebelar en SCA7	
1.6 MIO-M1-SCA7 como modelo celular para el estudio de SCA7	
2. Justificación	
3. Objetivos	
3.1 Objetivo General	
3.2 Objetivos Particulares	
4. Hipótesis	
5. Metodología	
5.1 Cultivo celular	
5.2 Diseño de secuencias objetivo de RNA	
5.3 Purificación de complejos de RNA mediante oligonucleótidos biotin	ilados 39
5.4 Preparación de la muestra para análisis proteómico	
5.5 Espectrometría de masas y análisis de datos	
5.6 Ensayo de inmunoprecipitación de RNA y análisis de RTqPCR	
5.7 Hibridación in situ fluorescente de RNA (RNA-FISH)	
5.8 FISH de RNA acoplado a inmunofluorescencia	
5.9 RT-PCR, RTq-PCR y evaluación de empalme alternativo	

	5.10 Análisis de Western Blot	43
	5.11 Inmunofluorescencia indirecta	44
	5.12 Predicción de estructura proteica	44
	5.13 Análisis de simulación de dinámica molecular	44
	5.14 Ensayo de cuantificación de glutamato	45
	5.15 Análisis de RNAseq	45
	5.16 Transfección transitoria	46
	5.17 Análisis estadístico	46
6.	Resultados	47
	6.1 Formación de agregados de RNA en células MIO-M1 SCA7	47
	6.2 Diseño de secuencias blanco en el mRNA-ATXN7 para su flanqueo y purificación	51
	6.3 Identificación del interactoma del mRNA-ATXN7-SCA7.	57
	6.4 hnRNPA2B1 está asociado a los agregados de mRNA-ATXN7-SCA7	62
	6.5 El secuestro de hnRNPA2B1 en los agregados de mRNA-ATXN7-SCA7 induce desregulación en el empalme alternativo de SLC17A7.	: la 66
	6.6 Efectos de la exclusión del exón 10 de SLC17A7 en la estructura de VGLUT1 y afinidad por el glutamato.	[,] la 67
	6.7 La desregulación del procesamiento alternativo SLC17A7/VGLUT1 altera el transpo vesicular de glutamato.	orte 74
	6.8 La reducción en la liberación de glutamato está asociada a la desregulación en complejos SNARE.	los 76
	6.9 La sobreexpresión de SYT1 recupera la liberación de glutamato en el modelo celu de SCA7	ılar 81
7.	Discusión de resultados	84
8.	Perspectivas	94
9.	Conclusiones	96
1(0. Referencias	97
11	1. Anexos 1	13
	11.1 Anexo 1. Tabla de primers y oligonucleótidos1	13
	11.2 Anexo 2. Proteínas identificadas para Oligo control en MIO-M1-Q10 1	13

11.3 Anexo 3. Proteínas identificadas para Oligo 1 y 2 en MIO-M1-Q10	121
11.4 Anexo 4. Proteínas identificadas para Oligo control en MIO-M1-Q64	123
11.5 Anexo 5. Proteínas identificadas para Oligo 1 y 2 en MIO-M1-Q64	132
11.6 Anexo 6. Interactoma de mRNA-ATXN7-SCA7	138
11.7 Anexo 7. Análisis de clustering del interactoma de mRNA-ATXN7-SCA7	142
11.8 Anexo 8. Numeros de acceso GO asociados a glutamato	151
11.9 Anexo 9. Números de acceso GO asociados a SNARE	160

Índice de Figuras

Figura 1. Dominios de la proteína Ataxina-7 en sus dos isoformas a y b	18
Figura 2. Complejo SAGA y su función epigenética	19
Figura 3. Eventos patogénicos mediados por Ataxina-7 mutante en SCA7	22
Figura 4. Mecanismos moleculares patológicos asociados a SCA7	25
Figura 5. Interacciones de tractos expandidos CAGs en mRNAs con proteínas como	
mediación de toxicidad	28
Figura 6. Degeneración de células de Purkinje y de células fotorreceptoras en el contexto	
de SCA7	32
Figura 7. Presencia de Foci nucleares de RNA en A) células MIO-M1-64Q, B) diferentes	
linajes celulares por transfección transitoria y C) linfocitos de pacientes con	
SCA7	35
Figura 8. Estrategia metodológica para evaluación de efecto de la dosis y tiempo de	
inducción	47
Figura 9. Evaluación del efecto de la A-B) dosis y C-F) tiempo de inducción con doxiciclina	
sobre la formación de agregados de mRNA-ATXN7	49
Figura 10. A) Gel de electroforesis de rtPCR de ATXN7. B) RNA-FISH de células MIO-	
M1-Q10 y MIO-M1-Q64 usando la sonda 6(CAG)TYE563 para marcar al mRNA-ATXN7	
y C) amplificación de MIO-M1-Q64 inducido	50
Figura 11. Estrategia metodológica para el diseño de oligos biotinilados anitisentido	51
Figura 12. Estructura secundaria de mRNA-atxn7 10R (izquierda) y mRNA-ATXN7 64R	
(derecha) coloreado por A) probabilidad de apareamiento y B) entropía	
posicional	53
Figura 13. Valor predictivo del valor S (entropía) para la fiabilidad de la estructura MFE	
por base para 16S rRNA	54

Figura 14. A) Grafica de accesibilidad a 8 y 16 nucleótidos del mRNA-ATXN7 64R,	
acercamiento a la región que flanquea el B) oligo 1 y C) oligo 2	56
Figura 15. Estrategia experimental para la determinación del interactoma proteico de	
mRNA-ATXN7-SCA7	57
Figura 16. Gel de electroforesis de poliacrilamida con extractos proteicos totales	
(izquierda) y nucleares (derecha)	57
Figura 17. Gel de electroforesis de poliacrilamida de proteínas purificadas a partir del	
bajado mRNA utilizando Oligo control u oligo 1 y 2 para células MIO-M1-Q10 y MIO-M1-	
Q64	58
Figura 18. Determinación del interactoma proteico de mRNA-ATXN7-SCA7 tras el	
ensayo proteómico LC-MS/MS	59
Figura 19. Red de interacción proteína-proteína del interactoma proteico de mRNA-	
ATXN7-SCA7	60
Figura 20. Subconjunto más poblado de la red de interacción proteína-proteína del	
interactoma proteico de mRNA-ATXN7-SCA7, y la ontología génica por B) proceso	
biológico y C) función molecular	61
Figura 21. Segundo subconjunto más poblado de la red de interacción proteína-proteína	
del interactoma proteico de mRNA-ATXN7-SCA7, y la ontología génica por B) proceso	
biológico y C) función molecular	62
Figura 22. Principales vías moleculares asociadas a neurodegeneración mediadas por	
hnRNPs	63
Figura 23. Estrategia experimental para la precipitación con oligos biotinilados del	
interactoma de mRNA-ATXN7-SCA7 seguida de un ensayo western blot anti-	
hnRNPA2B1	64
Figura 24. Estrategia metodológica para la inmunoprecipitación de RNA anti-hnRNPA2B1	
seguida de RTqPCR de ATXN7 (RIP-RTqPCR)	64

Figura 25. A) Precipitación con oligos biotinilados del interactoma de mRNA-ATXN7-SCA7 seguida de un ensayo western blot anti-hnRNPA2B1. B) Inmunoprecipitación de RNA anti-hnRNPA2B1 seguida de RTqPCR de ATXN7 (RIP-RTqPCR). C) RNA-FISH contra mRNA-ATXN7 acoplado a inmunofluorescencia contra hnRNPA2B1, y D) zoom en células MIO-M1-Q64..... 65 Figura 26. A) Representación del gen SLC17A7, las flechas indican la posición de los primers para la evaluación del empalme alternativo. Evaluación del empalme alternativo para la omisión del exón 10 de SLC17A7; B) gel de agarosa representativo y C) análisis de densitometría..... 67 Figura 27. A) Empalme de estructuras VGLUT1+EX10 (cian) y VGLUT1-EX10 (azul) obtenidas tras la predicción estructural realizada con C-I-Tasser. B) acercamiento al sitio de unión predicho de L-glutamato. C) Esquema estructural de VGLUT1. D) estructura de L-glutamato⁻..... 68 Figura 28. A) Desviación cuadrática media (RMSD) y radio de giro (Rg) para la proteína (VGLUT1+EX10 y VGLUT1-EX10), el ligando (L-glutamato-) o los complejos (VGLUT1+EX10/L-glutamato- y VGLUT1-EX10/L-glutamato-). B) Alineación de la estructura proteica del cluster más poblado de VGLUT1+EX10 y VGLUT1-EX10. Fluctuación cuadrática media (RMSF) de C) la proteína o D) L-glutamato-. E) Análisis de distancia entre L-glutamato- y los residuos de unión (HIS 120 y ARG 176)..... 70 Figura 29. Comparación estructural de estructuras de VGLUT1 obtenidas tras la predicción estructural con C-I-Tasser y del cluster mas poblado tras la dinámica de 200 72 ns; para A) VGLUT 1+EX10, C) VGLUT1-EX10 y B) gráficos de Ramachandra..... Figura 30. Determinación del sitio de unión de VGLUT1+EX10/L-glutamato- utilizando un análisis de interacciones no covalentes. A) Representación del sitio de unión, B) trama de interacciones no covalentes (NCI), C) gráficos de sign($\lambda 2$) ρ , y D) representación de interacciones 2D. Gráfico RDG vs sign($\lambda 2$)p e isosuperficies RDG..... 74

Figura 31. A) Inmunofluorescencia anti-VGLUT1 en células MIO-M1-Q10 y MIO-M1-Q64,	
y B) cuantificación relativa de fluorescencia. C) Western blot anti-VGLUT1	75
Figura 32. Cuantificación de glutamato de A) concentraciones extracelulares y B)	
intracelulares	76
Figura 33. A) Gráfico de volcán y B) mapa de calor de genes diferencialmente expresados	
entre las células MIO-M1-Q64 y MIO-M1-Q10	77
Figura 34. Análisis de ontología por proceso biológico de genes A) sobrexpresados o B)	
subexpresados MIO-M1-Q64 en comparación a MIO-M1-Q10	78
Figura 35. A) Mapa de calor TPM de genes asociados con el glutamato por ontología	
génica de las células MIO-M1-Q64 y MIO-M1-Q10. B) Mapa de calor TPM de genes	
asociados con SNARE por ontología génica de las células MIO-M1-Q64 y MIO-M1-Q10.	
C) Mapa de calor TPM de genes asociados con el glutamato y SNARE por ontología	
génica de las células MIO-M1-Q64 y MIO-M1-Q10. D) RTqPCR de la expresión de	
SNAP25 y SYT1 de las células MIO-M1-Q64 y MIO-M1-	
Q10	79
Figura 36. Inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q64, B) y C)	
cuantificación de fluorescencia relativa	80
cuantificación de fluorescencia relativa Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y	80
cuantificación de fluorescencia relativa Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. C) Western blot anti-SYT1 y D) co-inmunofluorescencia anti	80
cuantificación de fluorescencia relativa Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. C) Western blot anti-SYT1 y D) co-inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT	80 82
cuantificación de fluorescencia relativa Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. C) Western blot anti-SYT1 y D) co-inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT Figura 38. Cuantificación de glutamato de A) concentraciones extracelulares y B)	80 82
cuantificación de fluorescencia relativa Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. C) Western blot anti-SYT1 y D) co-inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT Figura 38. Cuantificación de glutamato de A) concentraciones extracelulares y B) intracelulares	80 82 83
cuantificación de fluorescencia relativa Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. C) Western blot anti-SYT1 y D) co-inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT Figura 38. Cuantificación de glutamato de A) concentraciones extracelulares y B) intracelulares Figura 39. Alteraciones en el procesamiento de mRNA tras el knockdown de hnRNPA2B1	80 82 83
cuantificación de fluorescencia relativa Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. C) Western blot anti-SYT1 y D) co-inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT Figura 38. Cuantificación de glutamato de A) concentraciones extracelulares y B) intracelulares Figura 39. Alteraciones en el procesamiento de mRNA tras el knockdown de hnRNPA2B1 o sobre expresión de la forma mutante nhRNPA2B1 D2900V	80 82 83 86
cuantificación de fluorescencia relativa Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. C) Western blot anti-SYT1 y D) co-inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT Figura 38. Cuantificación de glutamato de A) concentraciones extracelulares y B) intracelulares Figura 39. Alteraciones en el procesamiento de mRNA tras el knockdown de hnRNPA2B1 o sobre expresión de la forma mutante nhRNPA2B1 D2900V Figura 40. Red de interacciones proteína-proteína de los genes con alteraciones en su	80 82 83 86

Figura 41. Modelo de la participación de VGLUT1 en un contexto de A) homeostasis o B)	
SCA7	91
Figura 42. A) Modelo de alteraciones en el empalme alternativo de SLC17A7 dado por el	
secuestro de hnRNPA2B1 en agregados de mRNA-ATXN7-SCA7 y modelo de la	
participación de VGLUT1 en un contexto de B) homeostasis o C) SCA7	93

1. Introducción

1.1 Ataxia espinocerebelosa de tipo 7 (SCA7)

La ataxia espinocerebelosa tipo 7 (SCA7, por sus siglas en inglés) es una enfermedad neurodegenerativa autosómico dominante causada por la expansión del triplete repetido CAG en el exón 3 del gen de ataxina-7 (*ATXN7*), lo cual resulta en la formación de un tracto de poliglutaminas (polyQ) en la proteína ataxina-7 [1–3]. Esta condición se caracteriza clínicamente por una ataxia cerebelosa asociada con distrofia macular progresiva, disartria, espasticidad, oftalmoplejía y ceguera total [1–3]. La enfermedad afecta principalmente al cerebelo y la retina, pero también muchas otras estructuras del sistema nervioso central (SNC) [1].

La prevalencia de SCA7 es menor de 1 en 300,000. En varios estudios, se ha encontrado que SCA7 representa el 2% de todas las ataxias espinocerebelosas [4,5]. Esta enfermedad se presenta predominantemente en dos grupos étnicos: europeos del norte y africanos. Junto con la enfermedad similar a Huntington 2 (HDL2), SCA7 es una de las pocas enfermedades por expansión de repetidos que afecta a un gran número de personas de ascendencia africana. Por esta razón, una fracción significativa de individuos con SCA7 en Estados Unidos son de ascendencia africana. A nivel mundial, se han documentado casos de SCA7 en América del Norte, Europa, Eurasia, Australia, Sudáfrica y América del Sur [6]. En México, debido a un efecto fundador que se remonta al período colonial, se ha identificado una gran concentración de individuos con SCA7 en el estado de Veracruz [6].

Las manifestaciones clínicas de la SCA7 incluyen degeneración cerebelar y de la médula espinal, que son comunes en muchas enfermedades de expansión de trinucleótidos CAG. Sin embargo, lo que distingue a los pacientes con SCA7 es la presencia de distrofia de conos y bastones que se manifiesta inicialmente con la pérdida de la separación azul-amarillo y progresa hasta la ceguera [7]. Esta característica única de la SCA7, que afecta la visión de los pacientes, no se observa en otras enfermedades de expansión de trinucleótidos CAG, lo que plantea interrogantes sobre las diferencias en la patogénesis de la SCA7 en comparación con otras enfermedades similares [7].

Además de los síntomas asociados a la visión, se ha identificado la disfunción mitocondrial como un evento relevante en la progresión de la enfermedad [7]. También, la degeneración de las células de Purkinje, que son neuronas especializadas en el cerebelo es una característica común en las ataxias, incluida la SCA7 [7].

SCA7 tiene una serie de características en común con otras enfermedades con expansiones polyQ como la Enfermedad de Huntington (EH), la atrofia muscular bulbar espinal y SCA1-3, -6 y -17, como lo son: (i) la aparición de síntomas clínicos por encima de un número umbral

de repeticiones de CAG (\geq 36); (ii) una correlación entre el tamaño de la expansión, la severidad de los síntomas y la tasa de progresión de la enfermedad, en donde a mayor el número de repetidos, la progresión es más rápida [1]. La forma de inicio en la edad adulta se asocia con alelos entre 37 y 55 repeticiones, mientras que las expansiones más largas se asocian con un fenotipo de inicio más temprano y más grave [8].

En general, en SCA7, las expansiones más largas del triplete CAG están asociadas con un inicio más temprano y una mayor gravedad de la enfermedad [2,9,10]. La anticipación genética, donde los hijos de individuos afectados muestran síntomas más tempranos y severos, es causada por la inestabilidad de las repeticiones CAG durante la meiosis [2,11,12]. Este fenómeno es más pronunciado en hombres debido a la continua replicación durante la espermatogénesis [13,14]. La transmisión de estas expansiones puede aumentar en promedio 10 repeticiones por generación, con un incremento mayor cuando el alelo se hereda del padre [2].

Así, podemos clasificar a SCA7 por su rango de expansiones de repetidos CAG en el gen de *ATXN7* en:

- 1. 4-28 repeticiones: Normal.
- 28-33 repeticiones: Alelos normales mutables (posible expansión patológica en una generación) [15].
- 3. 34-36 repeticiones: Penetrancia reducida, síntomas más leves y tardíos [2,6,14].
- ≥37 repeticiones: Totalmente penetrantes, variabilidad en presentación y severidad [2,6,15].

A su vez, se pueden clasificar las expansiones en *ATXN7* con respecto al inicio de la aparición de los síntomas, en los casos de expansiones totalmente penetrantes:

- Inicio en adultos: contienen entre 37 a 50 repeticiones CAG; apareciendo síntomas alrededor de los 30 años [2,6,10,13]. Los síntomas iniciales son: Ataxia cerebelosa [9] y posteriormente degeneración retinal, problemas visuales, disartria, disfagia, pérdida auditiva, anomalías oculares, deterioro cognitivo y psicótico en algunos pacientes (10-20%)[6].
- Inicio en jóvenes y adolescentes: contienen más de 60 repeticiones CAG. Presentan síntomas antes de los 30 años [2,6,10,13]. Siendo los síntomas iniciales la pérdida visual profunda antes de los síntomas cerebelosos [6].
- 3. Inicio infantil: presentan más de 200 repeticiones CAG. Presentando síntomas al nacer o en los primeros meses de edad [6,16]. Siendo los principales síntomas las anomalías congénitas, fallos multiorgánicos, inclusiones intranucleares en varios tejidos [13,16], progresando hasta la muerte antes del primer año de vida [6,17].

1.2 Proteína ataxina-7 en el complejo SAGA

El gen de *ATXN7* se encuentra codificado en el cromosoma 3, brazo corto, entre las bandas 12 a la 21.1 (3p12-21.1) y codifica a la proteína ataxina-7 [18]. Los análisis de hibridación *in situ* e inmunohistológicos han mostrado que el gen *ATXN7* se expresa ampliamente en tejidos neuronales y no neuronales [19–22]. La proteína se encuentra en el citoplasma y los núcleos de las neuronas en diferentes proporciones, dependiendo de la región del cerebro. En un mismo tipo neuronal, como la célula de Purkinje, se observó que ataxina-7 puede estar exclusivamente en el citoplasma, en el núcleo, o en ambos compartimentos[23]. En la retina, ataxina-7 está presente en todas las neuronas, localizada en los núcleos y segmentos internos de los fotorreceptores, pero ausente en sus segmentos externos. La localización subcelular de ataxina-7 está altamente regulada, lo que sugiere diferentes funciones. Sin embargo, no hay una correlación aparente entre la localización celular o subcelular y la vulnerabilidad de las neuronas a degenerar en SCA7.

De acuerdo con la localización núcleo-citoplasmática, ataxina-7 contiene tres señales de localización nuclear (NLS) y una señal de exportación nuclear (NES) (Figura 1). La localización subcelular de ataxina-7 también podría estar controlada por el empalme alternativo de su pre-mRNA, lo que da lugar a la producción de dos isoformas diferentes, ataxina-7a y ataxina-7b (Figura 1). Ataxina-7b (945 aa) tiene un C-terminal más largo y se encuentra predominantemente en el citoplasma[24], mientras que ataxina-7a (892 aa) es predominantemente nuclear. Aún no está claro en qué medida cada isoforma contribuye a la patogénesis, ya que la mayoría de los estudios se han realizado con ataxina-7a.

El análisis de secuencias también mostró que ataxina-7 tiene dos dominios homólogos a la proteína de levadura Sgf73 [25–27]. Sgf73 es un componente del complejo multiproteico SAGA, implicado en la remodelación de la cromatina. Los estudios bioquímicos confirmaron que ataxina-7 en humanos también es un componente central de SAGA, inicialmente identificado como el complejo sin factores de transcripción asociados a TBP o el complejo SPT3-TAF9-GCN5 (STAGA) [25,28]. A pesar de la homología limitada entre Sgf73 y ATXN7, la proteína humana puede complementar la pérdida de Sgf73 en la levadura [29]. El análisis adicional de secuencias llevó a la identificación de tres parálogos: ATXN7L1, ATXN7L2 y ATXN7L3, que están consistentemente presentes en vertebrados [25,30]. Ataxina-7 y sus parálogos comparten los 2 dominios homólogos [25]. El dominio I es un motivo típico de dedo de zinc C2H2, mientras que el dominio II tiene un motivo atípico Cys-X9-10-Cys-X5-Cys-X2-His, ahora conocido como el dominio SCA7 (InterPro: IPR013243). Un tercer dominio (III) es común a todos los parálogos de ataxina-7, excepto ATXN7L3 y su ortólogo de levadura Sgf11. El motivo polyQ es único de ataxina-7 y sus ortólogos en vertebrados.

Figura 1. Dominios de la proteína ataxina-7 en sus dos isoformas a y b. Los dominios conservados se indican como cajas verdes: un motivo típico de zinc-finger (ZNF) C2H2, un motivo Cys-X9–10–Cys-X5–Cys-X2-His atípico conocido como dominio ATXN7 y un tercer dominio conservado. NLS señal de localización nuclear, NES señal de exportación nuclear, PTM sitio de modificación postraduccional para acetilación y SUMOilación. Modificado de [31]

El complejo SAGA está compuesto por cuatro módulos distintos que forman una arquitectura central responsable de la interacción con la maquinaria de transcripción y las modificaciones de la cromatina a través de las actividades de histona acetiltransferasa (HAT) y desubiquitinasa (DUB) (Figura 2). En el módulo HAT, la acetiltransferasa KAT2A/KAT2B acetila la lisina 9 de la histona H3 (H3K9ac) situada en los promotores de los genes, permitiendo la descompactación de la cromatina y la accesibilidad a los factores de transcripción. En el módulo DUB, la proteasa de ubiquitina USP22 elimina la monoubiquitina de la lisina 120 en la histona H2B (H2Bub) en los cuerpos de los genes para optimizar la iniciación y elongación transcripcional por la RNAPII. Así, el complejo SAGA actúa como un coactivador genuino para todos los genes transcritos por RNAPII [32].

ataxina-7/Sgf73 pertenece al módulo DUB y ancla DUB a SAGA [33]. El dominio I de ataxina-7/Sgf73 media las interacciones entre los otros tres componentes de DUB: la Ubp8, Sgf11 y Sus1 de levadura (ortólogos de USP22, ATXN7L3 y ENY2 en humanos, respectivamente) [34,35] (Fig. 2). La eliminación de Sgf73 en levadura interrumpe la integridad de DUB y, como consecuencia, el nivel de asociación al genoma de H2Bub aumenta [36]. En células de *Drosophila* y humanas, la inhibición de ataxina-7 también conduce a la disociación de DUB de SAGA y, a diferencia de la levadura, parece persistir una actividad DUB en ausencia de Ataxina-7, y el nivel de H2Bub disminuye [37]. Ataxina-7 también puede unirse a los nucleosomas a través de su dominio SCA7 [38]. Se cree que esta unión ajusta finamente la actividad de desubiquitinación de SAGA mediante la posición óptima de DUB en relación con su sustrato. Por lo tanto, ataxina-7/Sgf73 parece ser un andamiaje molecular funcional de SAGA que juega un papel en la regulación de los niveles de ubiquitina H2B.

Figura 2. Complejo SAGA y su función epigenética. SAGA está compuesto por cuatro módulos: el módulo SPT que forma la arquitectura central, el módulo TAF que interactúa con la maquinaria transcripcional, el módulo HAT que contiene la histona acetiltransferasa KAT2A/KAT2B, y el módulo DUB que contiene la enzima desubiquitinadora USP22, ATXN7, ATXN7L3 y ENY2. ATXN7 ancla el módulo DUB en el complejo central. SAGA desempeña un papel en la transcripción por RNAPII mediante la acetilación de la lisina 9 histona H3 en el promotor génico, la desubiquitinación de la lisina 120 histona H2B en el cuerpo del gen, y la interacción con la maquinaria transcripcional. Modificado de [31]

SAGA está involucrado en diversos procesos celulares, incluyendo el crecimiento y supervivencia celular, la integridad genómica y el cáncer. Se ha demostrado que la levadura que carece de los componentes DUB SGF73, SGF11 y UBP8 es excepcionalmente longeva [39]. Esta nueva función de DUB en el envejecimiento depende de la vía de las sirtuinas. Además, la inmunoprecipitación de cromatina seguida de secuenciación de alto rendimiento (ChIP-seq) reveló que Sgf73 se une a los promotores de genes que codifican proteínas ribosomales involucradas en la regulación del envejecimiento en la levadura [40]. Por lo tanto, ataxina-7 también podría desempeñar un papel similar en el envejecimiento, lo cual podría ser relevante para la patogénesis de SCA7.

En metazoos, las funciones de SAGA parecen ser críticas para diversos procesos de desarrollo neural [41]. Interesantemente, las subunidades del módulo DUB juegan un papel en el desarrollo adecuado del sistema visual en las moscas. Por ejemplo, las mutantes de *Drosophila* para Nonstop o Sgf11 (los ortólogos de USP22 y ATXN7L3, respectivamente) causan una pérdida de células gliales en el plexo de la lámina del lóbulo óptico, resultando en una proyección incorrecta de los axones de los fotorreceptores hacia la médula [42]. Las moscas con pérdida del ortólogo de ataxina-7 mueren en la prepupación, mientras que las supervivientes continúan con lesiones en estructuras neuronales y retinianas [15].

Consistentemente, la reducción dirigida por RNAi de la expresión de ataxina-7 dentro de la retina y la lámina conduce a una degeneración retiniana progresiva dependiente de la edad [15]. En contraste con la mosca, la inactivación de ataxina-7 en el pez cebra resulta principalmente en coloboma ocular [30], una malformación estructural responsable de la discapacidad visual en aproximadamente 1 de cada 5000 nacimientos vivos en humanos. La falta de ataxina-7 lleva a una señalización elevada de hedgehog en el cerebro anterior, lo que altera la expresión de los genes pax6 y pax2 y causa una alteración del patrón proximodistal de la vesícula óptica durante el desarrollo ocular temprano del pez cebra, y por lo tanto coloboma. El papel de ataxina-7 en la regulación de la señalización de hedgehog es consistente con trabajos previos que demuestran que la alteración del KAT2A (también llamado GCN5) en ratones, otro componente de SAGA, causa una alteración de la señalización de hedgehog y malformación cerebral [43]. Interesantemente, en etapas de desarrollo más avanzadas del pez cebra, la inactivación de ataxina-7 conduce a malformaciones del segmento externo de los fotorreceptores. La diferenciación de fotorreceptores inmaduros en maduros está bajo el control del factor de transcripción CRX, y termina con la formación y elongación de los segmentos externos, que contienen el pigmento fotográfico rodopsina y opsinas de cono. Los peces que carecen de ataxina-7 muestran una reducción en la expresión de los genes CRX y rodopsina [30,44]. Yanicosta et al. [44] demostraron que ataxina-7 en pez cebra también es necesario para la diferenciación completa de las neuronas de Purkinje del cerebelo, otro tipo neuronal altamente afectado en SCA7.

A pesar de la abundancia de ataxina-7 en el citoplasma, solo unos pocos estudios han investigado su función citoplasmática. Nakamura *et al.*, [45] demostraron que la sobreexpresión de ataxina-7 provoca su asociación con los microtúbulos y puede desempeñar un papel en su estabilización. Utilizando un sistema de doble híbrido en levadura, Kahle *et al.* [46] encontraron que ataxina-7 interactúa con varias proteínas citoplasmáticas, incluidas CEP70 y CEP72, que se localizan en los centrosomas y los microtúbulos ciliares. Ataxina-7 también se localiza en el centrosoma y los cilios en células de mamíferos. Recientemente, se demostró que KAT2A/KAT2B también están asociados a los centrosomas y acetilan varios objetivos citoplasmáticos [47].

1.3 Proteína ataxina-7 y su función en SCA7

La patogenia de SCA7 se ha explicado tradicionalmente a través de una ganancia de función por la proteína mutante, en la que el tracto polyQ adquiere una conformación de hoja β que provoca la formación de oligómeros y el plegamiento incorrecto de proteínas [48]. Las principales alteraciones moleculares inducidas por SCA7 a nivel proteico se muestran en la figura 3. Una de las principales consecuencias de la mutación de expansión de poliglutamina

(polyQ) es la acumulación intracelular de ataxina-7 mutante en los tejidos afectados por la enfermedad. Estudios en modelos de ratones con SCA7 mostraron la acumulación dependiente del tiempo de la proteína mutante en los núcleos neuronales [49,50]. La acumulación de ataxina-7 es más rápida en las neuronas afectadas por la enfermedad que en las neuronas no afectadas. Finalmente, esta acumulación de proteínas lleva a la formación de agregados de ataxina-7, observados como inclusiones nucleares (NIs) mediante ensayos de inmunohistoquímica. En cerebros *post mortem*, las NIs están ampliamente distribuidas en tejidos degenerados y no degenerados [51]. Sin embargo, en ratones con SCA7, las NIs se forman más rápidamente en tejidos vulnerables como la retina y el cerebelo, aunque su detección ocurre después del inicio de los defectos funcionales [49]. Se piensa que las formas oligoméricas o multiméricas pequeñas de la proteína mutante mal plegada, no visibles por inmunohistoquímica, son las especies más tóxicas. Estas especies son detectadas en etapas muy tempranas en ratones con SCA7 mediante métodos bioquímicos [49]. La expansión de polyQ parece estabilizar ataxina-7 mutante, lo que podría ocurrir debido a un recambio más lento, una mayor propensión a oligomerizarse de manera estable, o ambas cosas.

Un paso importante en la acumulación y toxicidad de ataxina-7 es la proteólisis. De hecho, un fragmento amino-terminal de aproximadamente 55 kDa que contiene la expansión de polyQ se detecta en muestras de proteínas de ratones con SCA7 y de pacientes con SCA7 [52], y parece ser el componente principal de las NIs en ratones con SCA7 [53]. Un fragmento similar puede ser liberado por el corte de caspasa-7 *in vitro* e *in vivo* y se ha demostrado que es más citotóxico que la ataxina-7 mutante de longitud completa [54]. Curiosamente, ratones transgénicos que expresan una forma de ataxina-7 mutante que contiene una mutación en el sitio de corte de caspasa-7 muestran una neurodegeneración reducida, mejor rendimiento visual y motor y una vida útil prolongada [55]. Estos resultados sugieren que el corte por caspasa-7 es un paso importante en la patogénesis [54]. Este fragmento contiene la expansión de polyQ y el dominio ZnF, pero no el dominio ATXN7. Con esta composición, el fragmento de ataxina-7 mutante puede alterar la función del complejo SAGA, ya sea reemplazando la proteína de longitud completa en el complejo o mediante la agregación y secuestro de componentes de SAGA.

Se ha sugerido que la acumulación del fragmento de ataxina-7 mutante está asociada con un aumento en la acetilación en la lisina-257 (K257) ubicada cerca del sitio de corte de caspasa-7 [56]. En ausencia de acetilación de lisina, el fragmento se degrada por autofagia. Estos resultados sugieren que la acetilación aberrante de K257 previene la eliminación del fragmento por autofagia, ralentizando así su recambio. Además, se ha demostrado que el mismo residuo K257 es un sitio específico para la SUMOilación [57]. La modificación por SUMO no solo disminuye la propensión de ataxina-7 mutante a agregarse, sino que también

21

incide en la forma y composición proteica de los agregados. Con SUMO, los agregados son homogéneos, redondos y fuertemente teñidos con anticuerpos anti-SUMO, mientras que, en ausencia de SUMO, los agregados son heterogéneos, tienen una forma estrellada y están asociados con chaperonas, proteasomas y caspasa-3 activada, sugiriendo que este tipo de agregados se relacionan con células que sufren citotoxicidad. Así, la proteólisis y las modificaciones postraduccionales están involucradas en la acumulación de ataxina-7.

En el cerebro de pacientes con SCA7, los agregados de ataxina-7 mutante a menudo se colocalizan con cuerpos nucleares formados por la proteína de leucemia promielocítica (PML) [58,59]. Un subconjunto de cuerpos PML formado por la isoforma PML IV, conocidos como clastosomas, contienen componentes del sistema de ubiquitina-proteasoma y chaperonas, y se ha sugerido que son un sitio para la degradación de proteínas en el núcleo. Curiosamente, los clastosomas positivos para PML IV reclutan activamente ataxina-7 mutante soluble, pero no la forma silvestre, para su degradación a través del proteasoma [60]. Además, el interferón beta, que induce la expresión de PML IV y la formación de clastosomas, mejora la eliminación de ataxina-7 mutante e incrementa la supervivencia de neuronas de Purkinje primarias de rata [60,61].

Figura 3. Eventos patogénicos mediados por ataxina-7 mutante en SCA7. Ataxina-7 mutante se acumula y es cortada por la caspasa-7, liberando fragmentos amino-terminales. La acetilación de Nterataxina-7 mutante en la K257 impide su degradación por autofagia en el citoplasma. En el núcleo, la

actividad proteasomal de los clastosomas, que normalmente degradan ataxina-7 mutante, se ve sobrepasada, lo que lleva a la acumulación de ataxina-7 mutante. La agregación de ataxina-7 mutante SUMOlizada lleva a la formación de agregados redondos, mientras que la mATXN7 no SUMOlizada forma agregados en forma de estrella, que secuestran la caspasa-3 activada, la subunidad del proteasoma 19S y HSP70. Los componentes de SAGA (GCN5, ATXN7L3 y USP22) también se secuestran en los agregados. Las alteraciones transcripcionales resultantes de la disfunción de SAGA y la perturbación de los reguladores de la transcripción, como CBP, p53 y RORalpha1, conducen a la disminución de la expresión de genes específicos de tipos celulares y de Pri-miR-124. El bajo nivel de miR-124 causa la acumulación de ARNm de ATXN7, lo que a su vez aumenta los niveles de ataxina-7 mutante. Modificado de [62]

En cuanto a la función de ataxina-7 como parte del complejo SAGA, diferentes estudios realizados en modelos celulares y murinos de SCA7 han identificado alteraciones transcripcionales como un evento patogénico temprano asociado con la disfunción neuronal [49,63–66]. El análisis del transcriptoma de la retina de ratones con SCA7 reveló una regulación negativa temprana y progresiva de la mayoría de los genes específicos de los fotorreceptores [65], mientras que el perfil de expresión del cerebelo de estos ratones mostró una regulación negativa de genes implicados en el mantenimiento y función de las dendritas neuronales y la vaina de mielina del sistema nervioso central [66].

La evidencia de que ataxina-7 mutante se incorpora adecuadamente en el complejo SAGA [25,28,29], ha motivado el estudio de las posibles alteraciones transcripcionales mediadas por cambios en los patrones de acetilación y desubiquitinación. Los resultados de estos estudios varían según el sistema modelo investigado. En levaduras y células renales HEK2937, el complejo SAGA que contiene ataxina-7 mutante carece de subunidades críticas y conduce a la reducción de la actividad de acetilación de GCN5 y la transcripción génica [28,29]. En concordancia con la disfunción de GCN5, se ha demostrado que los promotores de genes específicos de fotorreceptores tienen una hipoacetilación de la lisina 9 histona H3 [28]. En contraste con los estudios anteriores, Abou-Sleymane et al., demostraron que SAGA que contiene ataxina-7 mutante purificado de la retina de ratones con SCA7 estaba correctamente ensamblado y tenía actividades de acetilación normales [65]. En este estudio, se encontró que los promotores de genes específicos de fotorreceptores se encontraban hiperacetilados (H3K9Ac), pero la presencia de la RNAPolII en los promotores estaba fuertemente reducida, lo que explicaría el bajo nivel de transcritos de mRNA específicos de fotorreceptores [65]. La discrepancia entre estos estudios aún no está clara y podría depender del uso de dos modelos murinos de SCA7 diferentes o del análisis de diferentes etapas de la degeneración retinal. Curiosamente, la hiperacetilación de histonas en la retina del modelo de SCA7, R7E correlaciona con una descondensación masiva de la cromatina en los núcleos de fotorreceptores, los cuales se observaron agrandados en comparación con su contraparte

control [65]. Es posible que la alteración general de la organización de la cromatina explique los cambios significativos en la expresión de genes específicos de fotorreceptores. Además, la pérdida total de GCN5 en células de Purkinje conduce a una ataxia más leve que la ataxia de ratones con SCA7. Esto sugiere que GCN5 podría participar en cierto grado en la ataxia cerebelar de SCA7.

También se ha investigado la posible disfunción de la actividad de desubiquitinación (DUBm) de SAGA en modelos celulares y de ratones con SCA7. La monoubiquitinación de la histona H2B está globalmente aumentada en células cultivadas que expresan ataxina-7 mutante y en el cerebelo de ratones con SCA7, pero en estos últimos no se ha establecido una correlación con alteraciones transcripcionales [67–69]. Dos componentes de DUBm, ATXN7L3 y USP22, están secuestrados en agregados de ataxina-7 mutante, lo que podría llevar a una disfunción de DUBm y, por ende, a un aumento de H2Bub [68,69].

El aumento en la expresión de ataxina-7 mutante podría ser una consecuencia indirecta de la disfunción de SAGA que contiene ataxina-7 mutante [70]. De hecho, SAGA regula el microRNA miR-124, que a su vez controla la abundancia de transcritos de ataxina-7 y del RNA no codificante, Inc-SCA7[70]. El nivel de Inc-SCA7 también parece controlar el nivel de transcritos de *ATXN7* mediante un mecanismo aún no descrito. La disfunción de SAGA en SCA7 lleva a la reactivación post-transcripcional de transcritos de *ATXN7*, debido al nivel reducido de miR-124 y al nivel aumentado de Inc-SCA7. Dado que miR-124 se expresa en altos niveles en el cerebelo y la retina, y que los niveles de Inc-SCA7 y *ATXN7* están estrechamente correlacionados, se piensa que la interacción entre estos dos RNAs no codificantes en la regulación post-transcripcional de los transcritos de *ATXN7* explica la especificidad tisular de SCA7[70].

Además de la disfunción de SAGA, se proponen otros mecanismos que contribuyen con las modificaciones de la cromatina y las alteraciones transcripcionales en SCA7. Los agregados de ataxina-7 mutante secuestran CBP [50], una histona acetiltransferasa, y afectan la transcripción mediada por CBP y RORalpha1 en neuronas cultivadas [71]. Un estudio en células PC12 vinculó el defecto metabólico en SCA7 con alteraciones transcripcionales [72], mediante la observación de mitocondrias anormales en la retina de ratones con SCA7 [73]. Además, se reportó la reducción de la actividad de la cadena de transporte de electrones y acidosis metabólica en biopsias musculares de pacientes [74]. En células PC12 que expresan ataxina-7 mutante, p53 se secuestra en agregados y su actividad transcripcional se reduce, lo que lleva a la disgregación de TIGAR, AIF y NOX1 [72]. Estas alteraciones resultan en una capacidad respiratoria reducida, asociada con una mayor dependencia de la glucólisis para la producción de energía y una subsecuente reducción de ATP en células con SCA7. Por lo

tanto, se justifica la investigación de estas vías transcripcionales y metabólicas en ratones con SCA7, en particular porque la pérdida de AIF en ratones resulta principalmente en neurodegeneración de neuronas cerebelosas y retinianas.

Figura 4. Mecanismos moleculares patológicos asociados a SCA7. Modificado de [31]

En resumen, la patogénesis de SCA7 desencadena múltiples cascadas moleculares patogénicas que causan disfunciones celulares y llevan a la muerte celular (Figura 4). La proteína ataxina-7 mutante provoca la desregulación de la expresión génica al alterar la transcripción y la epigenética mediante diferentes mecanismos, incluyendo el secuestro de componentes de SAGA en inclusiones nucleares, la alteración de la integridad de SAGA y la interacción aberrante con componentes de SAGA o con factores de transcripción unidos a promotores, como CRX [31]. También, ataxina-7 mutante se pliega incorrectamente, se acumula en el núcleo y forma agregados que secuestran una gran cantidad de proteínas celulares, las cuales pueden perder sus funciones biológicas y contribuir a la patogénesis. Aunque ataxina-7 mutante puede ser degradada por la autofagia, estudios en células, ratones y cerebros de pacientes con SCA7 indican que la autofagia está alterada en la enfermedad [31]. Además, el ataxina-7 mutante también es degradado por clastosomas nucleares, lo que podría prevenir su acumulación durante varias décadas antes de la aparición de los

agregados. Con el tiempo, la actividad degradativa de los clastosomas puede verse superada por el proceso de agregación [31]. Las mitocondrias en SCA7 muestran agrandamiento morfológico y disfunción, y varias evidencias indican déficits metabólicos en SCA7. Los pacientes con SCA7 pierden neuronas en la retina, el cerebelo, el tronco encefálico y otras estructuras cerebrales. En ratones con SCA7, la pérdida neuronal ocurre a través de apoptosis y degeneración de células oscuras[31].

1.4 Ganancia de función del transcrito mutante de ATXN7 (mATXN7)

Si bien se ha determinado que la proteína ataxina-7 mutante es el factor causante de SCA7; diferentes evidencias sugieren que la presencia de repetidos expandidos CAG en el RNA mensajero mutante (*mRNA-ATXN7*) podrían ejercer efectos patógenos por la ganancia de función.

La toxicidad mediada por la expansión de repetidos CAG del RNA, es ejemplificado por un grupo de enfermedades de trinucleótidos repetidos, en donde las regiones de repetición expandidas están ubicadas en regiones UTR [75]. Por ejemplo, la distrofia miotónica de tipo 1 (DM1) es causada por la expansión de trinucleótidos CTGs; SCA8 es causado por una CTG expandida; y FXTAS (síndrome de X frágil) es causado por expansión de trinucleótidos CGGs. Del mismo modo, la expansión de la repetición de CAGs en el extremo 5'UTR está relacionada con el desarrollo de la enfermedad en SCA12. De manera análoga, en la enfermedad de Huntington se reportan expansiones de trinucleótidos CAG en el exón uno de huntingtina y en SCA3, expansiones en la región codificante del gen *ATXN3*. Estas observaciones sugieren que las especies de mRNA con repeticiones CAG expandidas, más allá del límite umbral, contribuyen significativamente con el desarrollo de la enfermedad, aún en ausencia de proteínas con tractos PolyQ [75].

Para entender los diferentes mecanismos de acción patogénicos de los mRNA en las enfermedades de repetidos CAG, es esencial examinar la estructura del mRNA con repeticiones CAG. Las estructuras secundarias de las expansiones de repetidos CAG y CXG (X puede ser G, A o U) son similares, todas presentan una formación de horquilla como característica común. La distrofia miotónica tipo 1 (DM1) es causada por una expansión de CUG y es la enfermedad mejor caracterizada en cuanto a la toxicidad del RNA. Ya que la repetición se encuentra en la región 3' UTR del gen de la proteína quinasa de distrofia miotónica (DMPK), un aumento de la función tóxica del RNA causa la enfermedad [75]. Las repeticiones de CUG en el mRNA forman horquillas que se estabilizan con el aumento de la longitud de la secuencia CUG [76]. De manera similar, un modelo estructural *in silico* de los mRNA que contienen repeticiones CAG predice la formación de una horquilla con un tallo que comprende la región de repetición CAG en el mRNA de huntingtina (HTT) [77]. La estructura

secundaria de la región de repetición CAG consiste en una base, una estructura de horquilla que forma el tallo y un lazo terminal. El tallo se forma por pares repetitivos G–C y C–G, seguido de un desajuste A–A [78]. Estudios de predicción *in silico* combinados con análisis químicos y enzimáticos confirmó la presencia de horquillas CAG *in vitro* [20]. El plegamiento del motivo de repetición CAG no se limita a una sola estructura, sino que varía entre varias horquillas deslizantes. Estas variantes difieren en la presencia o ausencia y la longitud de una cola monocatenaria compuesta por las repeticiones terminales 3'. Además, el tamaño del lazo puede variar entre 4 y 7 nucleótidos (nt), siendo el lazo de 4 nt termodinámicamente más estable [78]. El tamaño de este lazo depende del número total de repeticiones; aunque un número par de repeticiones CAG generalmente resulta en lazos de 4 nt, un número impar de repeticiones CAG lleva a la formación de lazos de 7 nt. A medida que la longitud y la estabilidad de la horquilla aumentan con la longitud de la repetición CAG, las horquillas formadas por repeticiones CAG mutantes son más estables que sus contrapartes de tipo salvaje. En la base de la horquilla, las regiones flanqueantes específicas pueden servir como una pinza G–C natural, estabilizando la estructura de la horquilla [79].

Las estructuras cristalinas de alta resolución también han resultado útiles para estudiar la estructura secundaria de la región de repetición CAG. Kiliszek *et al.* [80] utilizaron repeticiones de oligonucleótidos CAG para investigar la estructura utilizando resolución atómica. Se observó que las repeticiones CAG pueden formar estructuras tridimensionales α -helicoidales, que comparten algunas similitudes con las estructuras tridimensionales formadas por repeticiones CUG.

Los complejos RNA-proteína son importantes en diversos procesos celulares como la transcripción, el *splicing*, el transporte de mRNA y la degradación del mRNA, y son mediados por la configuración estructural del mRNA y de la proteína [75]. Por lo tanto, complejos aberrantes RNA-proteína pueden jugar un papel importante en el desarrollo de la enfermedad; por lo que existen diversos ejemplos de proteínas que pueden ser secuestradas por expandidos repetidos CAG en mRNAs y que representan un mecanismo patológico, en resumen, se muestran en la figura 5 y se abordan a continuación:

Figura 5. Interacciones de tractos expandidos CAGs en mRNAs con proteínas como mediación de toxicidad. Entre ellos el secuestro de la proteína MBNL1, lo que resulta en un empalme alternativo mal regulado, o el secuestro de otras proteínas como la nucleolina, lo que resulta en niveles reducidos de rRNA. En el citosol, hay una producción dependiente de dicer de ssCAG a partir de horquillas de repetición CAG, lo que tiene el potencial de silenciar los mRNAs que contienen repeticiones CTG. Además, se produce una desregulación traduccional de los mRNA de poliCAG, mediante el aumento en la traducción de mRNA de repetición CAG expandida a través del complejo de proteínas MID1. Modificado de [75].

Secuestro de la proteína MBNL1. La proteína MBNL1 es miembro de la familia Muscleblind (Mbl), que regula el empalme alternativo de mRNA específicos, y por tanto controla la expresión de isoformas de las proteínas resultantes [81]. El motivo de unión al RNA de estas proteínas está compuesto por cuatro dominios de dedos de zinc [82], con los que se unen a sus mRNA objetivo, como el de la troponina-T cardíaca (*TNNT2*) y el receptor de insulina (*IR*) [83]. Al unirse, MBNL1 puede actuar como activador o represor del empalme. Mientras induce la inclusión de exones en el pre-mRNA de *IR*, inhibe la inclusión de exones en el mRNA de *TNNT2*. MBNL1 se une a la estructura en tallo-bucle dentro del tracto polipirimidínico del intrón 4 de *TNNT2* durante el ensamblaje del espliceosoma, donde regula el salto del exón 5 a través de la competencia con el factor de empalme U2AF65 [84]. Además de estos mRNA específicos, las proteínas de la familia Mbl exhiben una alta afinidad de unión a RNA con repeticiones trinucleotídicas más allá de una longitud específica [82,85].

Esta capacidad de unión fue elucidada durante estudios que caracterizaban proteínas de unión a RNA de repeticiones CUG en el trastorno neuromuscular DM1 [86,87]. Estudios en mioblastos de DM1 y en neuronas mostraron que los mRNA de repeticiones CUG expandidas secuestran a MBNL1 en agregados nucleares [88,89]. Se han observado cambios aberrantes en los patrones de empalme de varios mRNA en DM1, posiblemente debido a un mecanismo de pérdida de función de la proteína MBNL1 por su secuestro en los agregados nucleares [90,91]. También se ha observado que los mRNA con repeticiones CAG expandidas secuestran a MBNL1 [85,92], lo que lleva a la desregulación del empalme alternativo de los mRNA objetivo [93]. El homólogo de *Drosophila*, la proteína Mbl, aumenta la toxicidad de las expansiones de RNA con repeticiones CAG en un modelo de *Drosophila* de SCA3 [94]. Por lo tanto, la unión y el secuestro de MBNL1 representa un mecanismo que contribuye a la toxicidad del RNA en los trastornos de expansión PolyQ.

Tsoi *et al.* [95,96] demostraron que los RNAs con repetidos CAG pueden unirse y secuestrar la proteína nucleolar, nucleolina. La nucleolina regula la transcripción de rRNA y su secuestro reduce los niveles de rRNA, dificultando la formación de ribosomas y resultando en la acumulación de proteínas ribosomales no ensambladas. Estas proteínas ribosomales, a su vez, se unen e inactivan al inhibidor de p53 MDM2, desencadenando una serie de eventos que conducen al incremento en los niveles de p53 y la apoptosis [97].

Los RNAs con repeticiones CAG pueden ser tóxicos también por el secuestro de diversos factores de transcripción. Se ha demostrado que los RNAs con repeticiones CAG expandidas no traducidas pueden alterar la transcripción de varios componentes de la vía de señalización Akt/Gsk3-b en *Drosophila* mediante un mecanismo aún desconocido [98].

La proteína PKR (cinasa de proteína dependiente de RNA de doble cadena) es una serina/treonina cinasa expresada de forma ubicua y es activada por diferentes mecanismos, incluyendo interferones, RNA de doble cadena, citoquinas, factores de crecimiento y estrés [99]. Inicialmente, se describió en la respuesta viral, donde el RNA de doble cadena viral desencadena la activación de PKR por autofosforilación. Esto lleva a la inhibición de la síntesis de proteínas y la transcripción de genes inflamatorios [99].

Los bucles formados por los RNA con repeticiones de tripletes expandidas pueden parecerse a las estructuras formadas por dsRNA, actuando, así como sustratos para Dicer (una proteína implicada en el procesamiento de microRNAs). Este fenómeno se reportó para el RNA de repeticiones CGG en el síndrome del X frágil [100]. Por encima de cierta longitud, todas las repeticiones CNG son cortadas por dicer, llevando a la formación de fragmentos que contienen repeticiones de 21 nt. Estos fragmentos pueden unirse a transcritos complementarios y reducir su expresión mediante un mecanismo similar a la interferencia de RNA. Por ejemplo, la generación de fragmentos de 21 nt de repeticiones CAG (o sCAGs) a partir de RNA de repeticiones CAG expandidas se observa en modelos celulares de Huntington. La generación de sCAG se correlaciona con el número de repeticiones CAG. Así, los sCAG pueden unirse a genes que contienen repeticiones CTG a través de la maquinaria de interferencia de RNA, lo que a su vez lleva a una expresión desregulada de genes que contienen repeticiones CTG [101].

Otra manera por la cual la expansión de repetidos CAG inducen una regulación anormal es mediante la síntesis de proteínas. Se ha determinado que en el mRNA de HTT (huntingtina) la expansión de repetidos CAG provoca la unión a un complejo proteico formado por MID1, la subunidad catalítica fosfatasa 2A (PP2Ac) y la cinasa s6 del 40s ribosomal (S6K) [102]. En este sentido MID1 es un regulador negativo de PP24 (mediante ubiquitinación) y controla la actividad cinasa de mTOR mediante S6K. Por su parte S6K activa a eIF4B (factor de iniciación de la traducción 4B) promoviendo el inicio de la traducción (Figura 5). El mRNA de HTT se une a este complejo de manera dependiente de la longitud del repetido CAG; el secuestro de estos factores ha sido observado en su colocalización en agregados nucleares, resultando en un aumento en la traducción del mutante HTT [102].

1.5 Retinopatía y patología cerebelar en SCA7.

En los modelos de SCA7, la retina se desarrolla normalmente antes de mostrar una progresiva reducción de la actividad electroretinográfica, adelgazamiento de la retina y represión de genes específicos de los fotorreceptores [49,53,63]. Inicialmente, estas alteraciones transcripcionales se atribuyeron a la disfunción de CRX (proteína homeobox de cono-bastón), un factor de transcripción clave de los genes de los fotorreceptores. Esto se debe a que se demostró que CRX requiere interacción con ataxina-7 y SAGA para su actividad de transactivación en los promotores de genes de fotorreceptores, y porque se observó que ataxina-7 mutante suprime la actividad de transactivación en la retina de SCA7 [63,103]. Posteriormente, el análisis de la retina de ratones SCA7266Q/5Q KI y R7E mostró que las alteraciones transcripcionales no se limitaban a los genes diana de CRX [49,65].

En particular, el perfil de expresión de la retina R7E reveló la desregulación de programas transcripcionales que controlan el mantenimiento de los fotorreceptores maduros, mostrando por un lado la disminución de los factores de transcripción específicos de los fotorreceptores *CRX, NRL* (proteína con cremallera de leucina de retina neural) y *Nr2E3* (Receptor Nuclear Subfamilia 2, Grupo E, Miembro 3) y de la mayoría de sus genes diana, y por otro lado la reactivación de *OPTX2, STAT3* y *HES5*, que normalmente inhiben la diferenciación de los precursores neuronales en fotorreceptores maduros durante el desarrollo [65]. De hecho, los fotorreceptores SCA7 pierden progresivamente sus segmentos externos y su polaridad

celular, regresando a una forma celular redondeada [73]. Así, la retinopatía SCA7 resulta principalmente de la regresión progresiva de los fotorreceptores maduros a un estado indefinido, mucho antes de la muerte celular (Figura 6).

Esta atípica pauta de degeneración lenta contrasta con la mayoría de los procesos degenerativos de fotorreceptores reportados en ratones, donde las alteraciones de la integridad del segmento externo conducen rápidamente a la muerte celular [104]. Aún queda por determinar el desencadenante inicial que lleva a la degeneración de los fotorreceptores en SCA7. Los fotorreceptores degenerativos en la retina SCA7 finalmente mueren mediante un mecanismo no apoptótico similar a la muerte neuronal oscura [73]. La degeneración oscura también ocurre en el cerebelo de ratones SCA7 y se ha reportado en varios modelos de trastornos polyQ. Curiosamente, se observó apoptosis en la retina de ratones R7E, pero solo ocurre por un breve período durante las primeras etapas de la enfermedad. Concomitantemente con la ola apoptótica, se observaron células furtivas que expresan marcadores de proliferación, las cuales posteriormente expresan genes específicos de fotorreceptores, sugiriendo que podrían producirse nuevos fotorreceptores para reemplazar a los muertos en las primeras etapas de la enfermedad [73].

De estas observaciones se desprende que los fotorreceptores R7E pasan por diferentes destinos celulares en respuesta a la toxicidad de ataxina-7 (por ejemplo, apoptosis, cambio de morfología, degeneración oscura, proliferación, etc.) [73]. Diferentes respuestas celulares pueden ser desencadenadas por diferentes especies tóxicas de ataxina-7 mutante, ya que la cantidad relativa de ataxina-7 de longitud completa, fragmentos proteolíticos, agregados solubles e insolubles varía considerablemente de las etapas tempranas a las tardías de la enfermedad y podría influir en la forma en que los fotorreceptores individuales responden a estos productos proteotóxicos [73]. El estrés proteotóxico general en la retina R7E induce una respuesta de estrés que involucra la vía de señalización JNK/c-Jun, que a su vez explica la represión de Nrl [105,106].

Figura 6. Degeneración de células de Purkinje y de células fotorreceptoras en el contexto de SCA7. ONL, capa nuclear externa; IS, segmento interno; OS, segmento externo; RPE, epitelio pigmentario de la retina; PC, célula de Purkinje; BG, glía de Bergmann; IO, oliva inferior; GC, célula granular; DCN, núcleos profundos del cerebelo; CF, fibra trepadora; PF, fibra paralela; GL, capa granular; ML, capa molecular; PCL, capa de células de Purkinje; WM, sustancia blanca. Modificado de [62]

Con respecto a la patología cerebelosa, los análisis del modelo de ratón PrP-SCA7-c92Q [52] muestran que desarrollan defectos motores y la degeneración oscura de las neuronas de Purkinje. La patología de las células de Purkinje ocurre a pesar de que el promotor MoPrP dirige la expresión de ATXN7 en todas las neuronas cerebelosas, excepto en las células de Purkinje, lo que sugiere un mecanismo no autónomo. En este modelo, las células gliales de Bergmann, que también expresan ataxina-7 mutante, muestran signos patológicos [107]. Dado que las células gliales de Bergmann regulan los niveles de glutamato en el entorno circundante de las células de Purkinje y que la degeneración oscura a menudo resulta de la excitotoxicidad, se generaron nuevos ratones transgénicos para expresar ataxina-7 mutante solo en las células gliales de Bergmann para evaluar si la patología también afectaría a las células de Purkinje. De hecho, los ratones Gfa2-SCA7-92Q también muestran degeneración de células de Purkinje y disfunciones motoras. Además, en este modelo, al igual que en los ratones PrP-SCA7-c92Q, las células gliales de Bergmann expresan bajos niveles del transportador de glutamato específico de la glía GLAST, y por lo tanto tienen una función de captación de glutamato reducida, lo que apoya la hipótesis de que la acumulación de glutamato lleva a la excitotoxicidad y a la degeneración oscura de las células de Purkinje [107].

Sin embargo, en comparación con los ratones PrP-SCA7-c92Q, los ratones Gfa2-SCA7-92Q desarrollan una ataxia de inicio tardío y más leve, lo que sugiere que otras neuronas disfuncionales pueden ser responsables de la degeneración de las células de Purkinje en los ratones PrP-SCA7-c92Q. Varios rasgos patológicos de PrP-SCA7-c92Q se replicaron en ratones SCA7266Q/5Q KI, incluyendo disminución de las funciones motoras, células de Purkinje reducidas y menor expresión de GLAST y GLT-1 (también llamado EAAT2 o SLC1A2), otro transportador de glutamato específico de la glía [108].

La contribución de diferentes tipos celulares y su interacción con la patología cerebelosa se ha abordado utilizando un nuevo conjunto de ratones diseñados en los que el cDNA de *mATXN7* estaba flanqueado por sitios loxP en el sitio de inicio de la traducción en el gen murino PrP contenido en un cromosoma artificial bacteriano (BAC PrP-floxed-SCA7-92Q) [109]. Cuando se cruzaron con ratones que expresaban la recombinasa Cre bajo el control de un promotor activo en las células gliales de Bergmann (Gfa2) o bajo el promotor específico de las neuronas de Purkinje y del núcleo olivar inferior (Pcp2), *mATXN7* se eliminó específicamente en estos tipos celulares. La eliminación de mATXN7 en las células. En contraste, la eliminación de mATXN7 de las neuronas de Purkinje y del núcleo olivar inferior mejora el rendimiento motor y la histopatología, así como previene la patología de las células gliales de Bergmann. Finalmente, la eliminación de mATXN7 en los tres tipos celulares es más efectiva para prevenir la patología.

De estas observaciones surgen dos conclusiones. Primero, la patología de las células gliales de Bergmann en SCA7 es en gran parte una degeneración no autónoma, sino mediada por las interacciones célula-célula. Segundo, es probable que la disfunción de las neuronas del núcleo olivar inferior sea responsable de la disfunción motora en SCA7, ya que se observó que la patología cerebelosa en ratones P7E, que expresan mATXN7 solo en las células de Purkinje, es menos severa que en los ratones PrP-SCA7-c92Q, que expresan mATXN7 en todas las neuronas cerebelosas, excepto en las células de Purkinje [62]. En conjunto, estos resultados resaltan aún más una compleja interacción célula-célula entre las células gliales de Bergmann, las neuronas de Purkinje y las del núcleo olivar inferior en el desarrollo de la disfunción cerebelosa en SCA7 (Figura 6).

1.6 MIO-M1-SCA7 como modelo celular para el estudio de SCA7

Evidencias recientes indican que la disfunción glial contribuye a la neuropatología asociada a la SCA7, que ocurre en la capa de células de Purkinje, los núcleos dentados y los núcleos olivares inferiores del cerebelo [8,51,110–112] como resultado de la interacción entre las células de Purkinje y las neuronas del núcleo olivar inferior con la glía de Bergmann. De

hecho, una disminución en el transportador de glutamato GLAST en la glía de Bergmann provoca una disminución en la captación de glutamato, lo que a su vez induce excitotoxicidad y muerte celular oscura [52,107]. En contraste con el avance del conocimiento sobre el papel de la glía de Bergmann en la SCA7, el efecto de la ataxina-7 mutante en la glía de Müller ha sido en gran medida ignorado. Aunque se ha documentado la gliosis y la activación progresiva de las células de Müller, el vínculo funcional entre las alteraciones gliales y la muerte de las células fotorreceptoras aún se entiende poco [49,113].

Para obtener una idea sobre los posibles efectos de la mutación SCA7 en las células de Müller de la retina, recientemente generamos un modelo de SCA7 basado en la línea celular humana de Müller MIO-M1 [114], que expresa ataxina-7 (células MIO-M1-Q10) o ataxina-7 con 64 tractos PolyQ (células MIO-M1-Q64) bajo el control del sistema Tet-On 3G. La línea celular MIO-M1 se ha utilizado para estudiar el papel de las células de Müller en condiciones normales y patológicas [115,116] debido a que mantienen características funcionales de las células de Müller, incluida la respuesta al glutamato, la expresión de marcadores celulares (CRALB, EGF-R y sintetasa de glutamato), y la presencia de características de células progenitoras [117,118].

En esta línea se ha logrado la detección de focos de RNA nucleares y citoplasmáticos en las células MIO-M1-Q64 (Figura 7). El número de focos de RNA de ataxina-7 por célula aumentó de manera dependiente tanto de la concentración de doxiciclina como del tiempo de exposición al inductor. Por lo tanto, es plausible hipotetizar que el número y tamaño de los focos de RNA aumentarán con el número de repeticiones CAG dentro del gen *ATXN7*, de manera similar a lo que ocurre en fibroblastos de HD y SCA3, donde el número de focos está positivamente correlacionado con la longitud de la repetición CAG [119]. Los focos de RNA se consideran una firma molecular de la toxicidad del RNA debido a la capacidad de los transcritos CAG mutantes de agregarse en fibroblastos, linfoblastos, células iPS y progenitores neuronales de enfermedades de PolyQ, incluyendo HD, SCA3 y DRLPA [119].

Figura 7. Presencia de Foci nucleares de RNA en A) células MIO-M1-64Q, B) diferentes linajes celulares por transfección transitoria. Recuperado de [114]
Dichos agregados de RNA colocalizan con agregados de la proteína MBNL1 y se encontraron defectos sutiles en el empalme alternativo en las células MIO-M1-64Q. A saber, desregulación en la inclusión del exón 7 de MBNL1 y la inclusión del exón 10 de MAPT[114]. La observación de que los focos nucleares colocalizan en cierta medida con los factores MBNL podría estar vinculada funcionalmente a los defectos sutiles en el empalme alternativo observados en los genes diana de empalme de MBNL1. Por lo que el modelo celular MIO-M1-SCA7 se muestra como un modelo viable para el análisis de los efectos patológicos de la expresión de *ATXN7* con expansión de repetidos trinucleótidos CAG en el contexto de degeneración y patología retiniana.

Si bien la mayoría de los estudios se han centrado en el papel de la región de repetidos CAG para inducir la agregación y el secuestro de proteínas con dominios de unión a tractos CXG, es posible suponer que otras proteínas con dominios de unión a regiones distintas al tracto CAG puedan ser secuestradas en los agregados de RNA. Esta sugerencia supondría mecanismos diferenciales de agregación y participación en la patología entre las distintas enfermedades por expansión de repetidos.

Para investigar los complejos moleculares asociados con el mRNA mutante de *ATXN7*, se utilizaron oligonucleótidos antisentido biotinilados dirigidos al mRNA de *ATXN7* sobreexpresado en el modelo glial de SCA7. Tras la purificación del interactoma del *mRNA-ATXN7*-SCA7, el análisis LC/MS-MS identificó 155 proteínas asociadas diferencialmente con respecto al *mRNA-ATXN7* control. La validación subsecuente reveló que la ribonucleoproteína heterogénea nuclear hnRNPA2B1 se secuestra dentro de los agregados de mRNA-*ATXN7*-SCA7. HNRNPA2B1 está implicada en el empalme alternativo y ha sido vinculada a diversos mecanismos neurodegenerativos.

Nuestro estudio también elucidó cambios en el empalme alternativo, afectando principalmente el exón 10 de *SLC17A7*, que codifica el transportador vesicular de glutamato VGLUT1. La sobreexpresión de mRNA de *ATXN7* en el modelo glial de SCA7 condujo a una reducción en la inclusión del exón 10, resultando en una mayor proporción de *SLC17A7* de longitud completa. Las simulaciones de dinámica molecular y los cálculos de energía libre revelaron que la ausencia de la secuencia codificante de este exón induce una pérdida de afinidad entre la proteína y su sustrato, el glutamato.

Para determinar un posible aumento en la excitotoxicidad mediada por glutamato asociada a una mayor expresión de VGLUT1 funcional en el modelo glial de SCA7, se realizó una cuantificación de los niveles de glutamato extracelular e intracelular. Contrariamente a lo esperado, se encontraron niveles reducidos de glutamato intracelular y aumentados de glutamato extracelular.

Con el fin de elucidar un posible mecanismo que impidiera la liberación vesicular de glutamato, se llevó a cabo un análisis de secuenciación de RNA (RNA-seq) para investigar los cambios en la expresión génica global inducidos por la expresión del mRNA-*ATXN7*. Los datos de RNA-seq mostraron alteraciones significativas en la expresión de genes involucrados en la vía de liberación vesicular mediada por el complejo SNARE, donde uno de sus integrantes, SYT1, resultó tener una expresión reducida tanto a nivel de RNA como de proteína en el modelo glial de SCA7. Para validar que las alteraciones en el complejo SNARE fueran responsables de la reducción en la liberación de glutamato, se realizó la sobreexpresión de SYT1, lo que permitió el restablecimiento de la liberación de glutamato.

Este estudio proporciona una nueva visión sobre los mecanismos patogénicos en SCA7, demostrando que el mRNA mutante de *ATXN7* no solo forma agregados tóxicos, sino que también secuestra proteínas esenciales como hnRNPA2B1, alterando el empalme alternativo de genes críticos como SLC17A7. Estos datos sugieren que la disfunción resultante en el transporte vesicular de glutamato, mediada por VGLUT1 y el complejo SNARE, contribuye a la alteración en los niveles de glutamato extracelular e intracelular, exacerbando los efectos excitotóxicos observados en SCA7.

Estos descubrimientos subrayan una relación compleja entre la formación de agregados de RNA, la regulación del empalme alternativo y la liberación de neurotransmisores, todos los cuales podrían desempeñar un papel significativo en la patogénesis de la ataxia espinocerebelosa tipo 7.

2. Justificación

La ataxia espinocerebelosa tipo 7 (SCA7) es un trastorno neurodegenerativo autosómico dominante. En nuestro país esta enfermedad tiene una prevalencia elevada en el centro del estado de Veracruz, lo que representa un problema de salud pública. Hasta la fecha, los tratamientos para SCA7 se limitan a controlar síntomas específicos, así mismo todavía no existe cura para SCA7.

Se ha determinado a ataxina-7 como el factor causante de SCA7; sin embargo, diferentes evidencias sugieren que la presencia de repetidos expandidos CAG en el RNA mensajero de *ATXN7* podrían ejercer efectos patógenos a través de mecanismos de ganancia de función.

En este sentido, es necesario entender los potenciales roles de los RNAs en el mantenimiento de la salud y en la contribución a la enfermedad, así como la determinación de las interacciones RNA-proteína. Por tanto, una mejor comprensión de los mecanismos y la identificación de nuevos objetivos moleculares es un paso crucial para proponer estrategias terapéuticas más eficaces.

3. Objetivos

3.1 Objetivo General

Analizar el interactoma del mRNA-mATXN7 en el modelo glial de SCA7 MIO-M1 64Q.

3.2 Objetivos Particulares

- Diseñar secuencias blanco al mRNA-ATXN7 sobrexpresado en un modelo celular de SCA7 para la síntesis de oligos biotinilados.
- 2. Purificar la fracción de proteínas y RNA asociados al mRNA-ATXN7 mediante inmunoprecipitación.
- 3. Identificar la fracción de proteína purificada mediante secuenciación proteómica basada en espectrometría de masas.
- Dilucidar un posible papel funcional de proteínas diferencialmente asociadas al mRNA-ATXN7

4. Hipótesis

La expansión de repetidos CAG en el mRNA-*ATXN7* induce su agregación y el secuestro de proteínas relevantes en el desarrollo de la patología asociada a SCA7.

5. Metodología

5.1 Cultivo celular

Las células gliales retinianas MIO-M1 que expresan mRNA-ATXN7 de manera inducible con 10 (control, MIO-M1-Q10) o 64 (mutante, MIO-M1-Q64) repeticiones CAG [114], se cultivaron en condiciones estándar a 37 °C en una atmósfera humidificada con 5% de CO₂. Las células MIO-M1-Q10 y MIO-M1-Q64 se mantuvieron en Medio Modificado de Eagle de Dulbecco suplementado con 10% de SFB, 100 U/mL penicilina, /100 µg/mL estreptomicina, 250 µg/mL G418, Y 0.16 µg/mL puromicina (Sigma-Aldrich; Merck KGaA, Darmstadt, Alemania). Para inducir la expresión de la ataxina-7 mutante, se trataron con 1 µg/mL de doxiciclina (Dox) durante seis días.

5.2 Diseño de secuencias objetivo de RNA

Para el diseño de secuencias objetivo de RNA, se obtuvo la estructura secundaria del mRNA-*ATXN7* con 10 o 64 repeticiones de CAG sobreexpresadas en células MIO-M1 usando el servidor RNAfold (http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi). Se utilizaron algoritmos de energía libre mínima (MFE) y función de partición y parámetros del modelo de Turner [120]. Considerando la predicción de la estructura secundaria del RNA, se predijo la accesibilidad del sitio objetivo utilizando el servidor RNAxs [121]; usando un umbral de accesibilidad de 8 nucleótidos de 0.01157, un umbral de 16 nucleótidos de 0.001002, energía de autoplegamiento de 0.9022, asimetría de secuencia de 0.5, asimetría de energía de 0.4655 y un extremo libre de 0.625. Se determinaron dos secuencias objetivo de RNA de 28 nucleótidos para dirigirse específicamente al mRNA-ATXN7 sobreexpresado considerando la secuencia Myc de la región 5' a la cual está fusionada el transgén de *ATXN7* (Oligo-1) y para una región de alta accesibilidad del sitio objetivo (Oligo-2) (Anexo 1).

5.3 Purificación de complejos de RNA mediante oligonucleótidos biotinilados

Para la purificación del interactoma de RNA de *ATXN7*, se cosecharon 1x10⁸ células MIO-M1-Q10 o MIO-M1-Q64 después de 6 d de inducción de la expresión de ataxina-7. Las células se fijaron con 3% de formaldehído durante 30 min y se detuvo la fijación con glicina a una concentración final de 0.125M. Las células se centrifugaron a 1500 rpm durante 5 min y se resuspendieron en 2 mL de tampón NI. Para el aislamiento de núcleos se añadieron 2 mL de tampón de lisis NI y la solución celular se homogeneizó usando un homogeneizador Dounce, homogenizando hasta el aislamiento de núcleos. Luego se añadieron 10 mL de tampón NI y los núcleos se centrifugaron a 3500 rpm durante 5 min a 4 °C. Los núcleos se resuspendieron en 1.5 mL de tampón de lisis y se sonificaron hasta la lisis usando 10% de amplitud con pulsos de 5 s encendido y 5 s apagado. Se añadieron 2x volúmenes de tampón de hibridación y 20 pM de biotina-oligo (Oligo-cntr para control o 10 pM oligo 1 y 10 pM oligo 2 para el aislamiento de mRNA-*ATXN7*) y se incubaron a 37°C durante 16 h. Luego se añadieron 50µL de

Dynabeads MyOne Streptavidin T1 y se incubaron durante 30 min a 37°C bajo agitación. Los complejos aislados se lavaron usando tampón de lavado y se resuspendieron en tampón Laemmli, realizando el desentrecruzamiento hirviendo a 95°C durante 30 min; finalmente se recuperó el sobrenadante usando un magneto.

5.4 Preparación de la muestra para análisis proteómico

Los interactomas proteicos purificados se cargaron en un gel de SDS-PAGE al 12% y se separaron aproximadamente 1 cm dentro del gel de resolución para concentrar las proteínas en una pequeña zona del gel y teñir con azul de Coomassie. Después de la electroforesis, los geles se digirieron "in-gel" según Barrera-Rojas et al. [122] con algunas modificaciones. Brevemente, las bandas de gel se cortaron en piezas de aproximadamente 1 mm, se destiñeron con ácido fórmico al 2.5%, 50% MeOH, se deshidrataron con acetonitrilo (ACN) y se eliminó el solvente restante en un concentrador SpeedVac. Luego, las proteínas en las bandas secas se redujeron con DTT 10 mM y se alguilaron con iodoacetamida (IAA) 50 mM en ABC 100 mM. Las bandas se lavaron con ABC 100 mM y se deshidrataron con ACN; posteriormente se hidrataron y se lavaron de nuevo con ABC 100 mM y se deshidrataron con ACN, eliminando el exceso de solvente con SpeedVac. Las proteínas en el gel se digirieron enzimáticamente durante la noche usando tripsina 20 ng/µL en ABC 50 mM a 37°C. Una vez pasado el tiempo, la reacción se detuvo con 40 µL de ácido fórmico al 5% durante 10 min a temperatura ambiente, y los péptidos se eluyeron del gel durante dos ciclos usando 40 µL de una solución de ácido fórmico al 5%, 50% ACN. Los péptidos se concentraron en SpeedVac y se desalinizaron usando columnas de centrifugación PierceTM C18, finalmente se concentraron y almacenaron a -20 °C hasta el análisis por LC-MS.

5.5 Espectrometría de masas y análisis de datos

El método de LC-MS se realizó según Rojas-Gutierrez *et al.* [123]. Brevemente, los péptidos digeridos se cargaron y separaron en una columna HSS T3 C18 utilizando un sistema UPLC ACQUITY M-Class, con fases móviles A (0.1% de ácido fórmico en H₂O) y B (0.1% de ácido fórmico en acetonitrilo) bajo un gradiente específico. Los datos de espectros se adquirieron utilizando un espectrómetro de masas Synapt G2-Si con ionización por electrospray y separación de movilidad iónica en modo HDMSE. Los archivos *.raw generados se deconvolucionaron y compararon con el *software* ProteinLynx Global SERVER v3.0.3 [124] usando una estrategia de *decoy* contra una base de datos *.fasta de *Homo sapiens*, concatenada con el mismo archivo *.fasta en sentido inverso [125]. Los parámetros del flujo de trabajo incluyeron tripsina como enzima de corte y una escisión perdida permitida; carbamidometilación (C) como modificación fija; y amidación (N-terminal), desamidación (N, Q), oxidación (M), fosforilación (S, T, Y) como modificaciones variables. Se aplicaron tolerancias automáticas para péptidos y fragmentos, coincidencias mínimas de 2 iones

fragmento por péptido, 5 iones fragmento mínimos por proteína, 1 coincidencia de péptido mínima por proteína y una tasa de descubrimiento falso (FDR) \leq 1%. Todas las proteínas reportadas en este trabajo tuvieron una fiabilidad \geq 95% (Protein AutoCurate Green) y todas las identificaciones falsas positivas se descartaron para análisis subsecuentes. Para determinar el interactoma de mRNA-*ATXN7*-SCA7, cada proteína identificada después de la precipitación con Oligo-cntr (Anexo 2 y 4) fue excluida de las proteínas recuperadas con la mezcla de Oligo 1 y 2, respectivamente (Anexo 3 y 5). Finalmente, las proteínas únicas identificadas en MIO-M1-Q10 fueron excluidas de las proteínas identificadas en las células MIO-M1-Q64 (Anexo 6).

5.6 Ensayo de inmunoprecipitación de RNA y análisis de RTqPCR

Para la inmunoprecipitación de RNA, se cultivaron 1x10⁶ células MIO-M1-Q10 o MIO-M1-Q64 después de 6 d de inducción de la expresión de ataxina-7. Las células se entrecruzaron con formaldehído al 1% durante 10 min a temperatura ambiente. El entrecruzamiento se detuvo agregando glicina a una concentración final de 125 mM e incubando durante 5 min. Las células se lavaron con PBS y se rasparon para su recuperación. Luego se centrifugaron a 1500 rpm durante 5 min a 4 °C y se resuspendieron en un tampón de lisis frío (50 mM Tris-HCl pH 8.1, 10 mM EDTA, 1% SDS, 200 u/ml RNAseout y 1X cóctel inhibidor de proteasas Halt sin EDTA). Las células se sonicaron hasta la lisis celular a una amplitud del 10% con pulsos de 5 s encendido y 5 s apagado. Después de la sonicación, los restos se eliminaron por centrifugación durante 10 min a 6000 rpm. Las muestras se diluyeron 10 veces con tampón de IP (16.7 mM Tris-HCl pH 8.1, 1.2 mM EDTA, 1.1% Triton X-100, 0.01% SDS, 167 mM NaCl, 200 u/ml RNAseout y 1X cóctel inhibidor de proteasas Halt sin EDTA). El sobrenadante se redujo para el fondo inespecífico preaclarando con 30 µL de perlas de agarosa Pierce Protein A/G plus (20423) durante 30 min a 4 °C. Las perlas de agarosa se bajaron por centrifugación (1000 rpm durante 3 min) y se recogió el sobrenadante. Se añadieron 2.5 µg de anticuerpo anti-hnRNPA2B1 (abcam ab259894) o control anti-IgG (proveedor 2729S) y se incubaron toda la noche con rotación. Los complejos inmunes se recogieron con perlas de agarosa Pierce Protein A/G plus (proveedor 20423) incubadas durante 1 h a 4 °C con rotación. Los complejos inmunes se lavaron secuencialmente incubando durante 5 min a 4 °C con los siguientes tampones: tampón A (20 mM Tris-HCl pH 8.1, 2 mM EDTA, 1% Triton X-100, 0.1% SDS, 150 mM NaCl, 200 u/ml RNAseout y 1X cóctel inhibidor de proteasas Halt sin EDTA), tampón B (20 mM Tris-HCl pH 8.1, 1% Triton X-100, 0.1% SDS, 500 mM NaCl, 200 u/ml RNAseout y 1X cóctel inhibidor de proteasas Halt sin EDTA), tampón C (10 mM Tris-HCl pH 8.1, 1 mM EDTA, 1% NP-40, 1% desoxicolato sódico, 0.25 M LiCl, 200 u/ml RNAseout y 1X cóctel inhibidor de proteasas Halt sin EDTA), y tampón TE (dos veces). Los complejos inmunes se resuspendieron en tampón de elución (1% SDS y 0.1 M NaHCO3), luego se incubaron con DNAse durante 1 h a temperatura ambiente y con proteinasa K durante 1 h a 56 °C. Se revirtió el entrecruzamiento incubando a 70 °C durante 4 h. La purificación de RNA se realizó mediante el método TRIZoI. El análisis de RT-qPCR se realizó utilizando el reactivo SYBRTM Green Universal Master Mix (Applied Biosystems) siguiendo las instrucciones del fabricante. Los parámetros de amplificación fueron un paso inicial de 10 min seguido de 40 ciclos de 95 °C durante 15 s, 60 °C durante 1 min. El enriquecimiento de *ATXN7* se calculó utilizando el método 2 Δ CT, normalizado con la amplificación de entrada respectiva.

5.7 Hibridación in situ fluorescente de RNA (RNA-FISH)

Las células MIO-M1-Q10 o MIO-M1-Q64 cultivadas en cubreobjetos se fijaron con paraformaldehído al 4% durante 10 min a temperatura ambiente y se permeabilizaron con acetona fría al 2% durante 5 min. La prehibridación se realizó en un tampón de formamida al 30%, 2X SSC durante 10 min a temperatura ambiente, seguida de una incubación adicional durante 2 h en una cámara húmeda a 37 °C con un tampón de hibridación [2X SSC, 40% formamida, 0.02% BSA, 2 mM de ribonucleósido de vanadilo (Sigma-Aldrich, St. Louis, MO, USA), 66 µg/mL de tRNA de levadura (Sigma-Aldrich, St. Louis, MO, USA), y 2 nM de sonda TYE563-conjugada LNA (CTG)₆]. Luego, las células se lavaron en tampón de prehibridación durante 30 min a 45 °C, se lavaron en 1X SSC a temperatura ambiente y finalmente en PBS. Los cubreobjetos se montaron en portaobjetos de microscopio con VectaShield que contenía DAPI (Vector Labs Inc., Burlingame, CA, USA), y las imágenes se capturaron utilizando un microscopio confocal de barrido láser (STELLARIS 5, Leica, Heidelberg, Alemania).

5.8 FISH de RNA acoplado a inmunofluorescencia

Tras el paso de lavado posterior a la hibridación del protocolo RNA-FISH, las células se incubaron en un 3% de BSA durante 15 min y luego durante la noche a 4 °C con anticuerpos primarios contra hnRNPA2B1 (abcam ab259894). Después de un lavado con PBS, las células se incubaron a temperatura ambiente durante 1 h con un anticuerpo secundario anti-IgG de conejo (H+L) altamente adsorbido, Alexa Fluor™ 488 (proveedor A-21206). Los cubreobjetos se montaron con Vectashield Antifade Mounting Medium con DAPI (Vector Labs., Burlingame, CA, USA) y se analizaron utilizando un microscopio confocal de barrido láser (STELLARIS 5, Leica, Heidelberg, Alemania).

5.9 RT-PCR, RTq-PCR y evaluación de empalme alternativo

El RNA total se aisló de cultivos celulares utilizando el kit ez-10 Spin column Total RNA Minipreps SuperKit (Bio Basic) según las instrucciones del fabricante. La calidad, integridad y cuantificación del RNA se evaluaron mediante electroforesis en gel; la pureza y cuantificación se determinaron en un espectrofotómetro NanoDrop 2000 (NanoDrop Technologies, Wilmington, DE, USA). La transcriptasa reversa M-MLV (Thermo Fisher Scientific, Waltham, MA, USA) se utilizó para sintetizar cDNA a partir de 1 µg de RNA total siguiendo las instrucciones del fabricante. Las reacciones de PCR se realizaron en un volumen total de 10 µL utilizando One PCR Ultra (BIO-HELIX). Los análisis de qPCR se realizaron utilizando el reactivo SYBR[™] Green Universal Master Mix (Applied Biosystems) bajo las instrucciones del fabricante; los parámetros de amplificación fueron un paso inicial de 10 min seguido de 40 ciclos de 95 °C durante 15 s, 60 °C durante 1 min. La expresión relativa se calculó utilizando el método 2ΔΔCT. Las secuencias de los oligonucleótidos utilizados para determinar la expresión de ATXN7, SNAP25, SYT1 y la proteína de unión a TATA (TBP), así como los patrones de empalme alternativo de SLC17A7, se proporcionan en la Tabla S1. El porcentaje de inclusión de exones (PSI) se calculó como (banda de inclusión de exón / (banda de inclusión de exón + banda de exclusión de exón)) × 100.

5.10 Análisis de Western Blot

Se prepararon lisados de células completas a partir de células en confluencia cultivadas en placas de cultivo de 60 mm. Brevemente, las células se enjuagaron con solución salina tamponada con fosfato fría (PBS: 137 mM NaCl, 2.7 mM KCl, 10.1 mM Na2HPO4, 1.8 mM KH2PO4) y luego se lisaron en hielo durante 20 min en un tampón de lisis de detergente triple (50 mM Tris-Cl pH 8.0, 150 mM NaCl, 0.1% dodecilsulfato sódico, 1.0% nonidet P-40, 0.5% desoxicolato sódico, y 1X cóctel inhibidor de proteasas Halt sin EDTA (ThermoFisher Scientific). Los extractos proteicos resultantes se clarificaron por centrifugación a 5000g durante 10 min a 4 °C y las concentraciones de proteínas se determinaron utilizando el ensayo de proteína DC de Bio-Rad (Bio-Rad, Hercules, CA, USA). Las muestras de proteínas (100 µg) se mezclaron con tampón Laemmli, se hirvieron durante 5 min y luego se cargaron en geles de poliacrilamida-SDS al 10% para la electroforesis. Las proteínas separadas se transfirieron a una membrana PVDF usando un aparato de transblot (Bio-Rad, Hercules, CA, USA), seguidas de un bloqueo con leche desnatada al 6% en TBS-T durante 1 h. Las membranas se incubaron durante la noche con anticuerpos primarios contra hnRNPA2B1 (Abcam ab259894), VGLUT1 (Thermo Fisher Sci. MA5-44957) o SYT1 (Thermo Fisher Sci. HL1654). Después de tres lavados con TBS-T (10 mM Tris-HCl pH 8.0, 150 mM NaCl, 0.05% (v/v) Tween-20), las membranas se incubaron con los anticuerpos secundarios correspondientes conjugados con peroxidasa de rábano picante (HRP) (Abcam, Cambridge, UK) y se visualizaron usando el sistema Western Lightning Plus-ECL (PerkinElmer, Waltham, MA, USA). La actina se utilizó como control de carga, detectada incubando las membranas con un anticuerpo anti-actina (Santa Cruz Biotech. sc-376421) después de despojar las membranas con 0.2 M NaOH. El análisis densitométrico de las bandas de proteínas se realizó con el software ImageJ.

5.11 Inmunofluorescencia indirecta

Las células sembradas en cubreobjetos de vidrio se lavaron con PBS, se fijaron con paraformaldehído al 4% durante 10 min, se permeabilizaron y bloquearon con Triton X-100 al 0.1%, SDS al 0.02% y BSA a 10 mg/ml en PBS durante 10 min a temperatura ambiente. Los anticuerpos primarios contra VGLUT1 (MA5-44957) o SYT1 (HL1654) se incubaron durante la noche a 4 °C. Después de los lavados, las células se incubaron con anticuerpos secundarios: anticuerpo secundario anti-IgG1 de ratón cruz-adsorbido, Alexa Fluor™ 546 (A-21123) o anticuerpo secundario anti-IgG de conejo (H+L) altamente adsorbido, Alexa Fluor™ 488 (A-21206). Después de los lavados con PBS, los cubreobjetos se montaron en portaobjetos de microscopio con medio antifade VectaShield que contenía diamino-2-fenilindol (DAPI) (Vector Labs Inc., Burlingame, CA, USA) y se examinaron utilizando un microscopio confocal de barrido láser (STELLARIS 5, Leica, Heidelberg, Alemania).

5.12 Predicción de estructura proteica

Para anticipar los efectos de la pérdida del exón 10 en la configuración de VGLUT1, se utilizó la herramienta C-I-Tasser [126], aprovechando la secuencia de la proteína obtenida de la base de datos UniProt (identificador: Q9P2U7), y para VGLUT1-EX10 se eliminaron los 36 aminoácidos codificados por el exón 10 de SLC17A7. C-I-Tasser utiliza un conjunto de cinco plantillas diversas (6v4da, 1pw4a, 6zgra, 6e9na y 6e8ja) para la predicción estructural en 3D de VGLUT1+EX10 y cinco plantillas (6v4da, 1pw4a, 6zgra, 6e9na y 6g9xa) para VGLUT1-EX10. La estructura 3D resultante produjo un C-score de -0.58 y un TM-score de 0.64 \pm 0.13, para VGLUT1-EX10 dentro del rango aceptable para la predicción estructural [126]. Luego se realizó una comparación específica del modelo 3D mediante análisis de trama de Ramachandra y cálculo de alineación de estructuras-RMSD, complementado con visualización utilizando el *software* VMD [127].

5.13 Análisis de simulación de dinámica molecular

Se realizaron simulaciones de dinámica molecular utilizando el software NAMD2.13 [128], siguiendo el tutorial de proteínas de membrana disponible en http://www.ks.uiuc.edu/Training/Tutorials/science/membrane/. Para las simulaciones de proteínas y lípidos, se aplicaron los campos de fuerza CHARMM22 y CHARMM27, respectivamente [129]. Para el efecto específico sobre la interacción con el glutamato, se localizó una molécula de L-glutamato (CID 5460299 de PubChem) en el sitio de unión reportado de VGLUT1 (HIS 120, ARG 176 y GLU 183) [130-132]. Los parámetros del campo de fuerza del L-glutamato se obtuvieron a través de SwissParam [133]. La solvatación se logró utilizando el modelo de agua TIP3 [134] y la neutralización se realizó con NaCl utilizando las herramientas de VMD [127]. Se construyó una membrana que comprende 1-palmitoil-2oleoil-sn-glicero-3-fosfocolina utilizando el programa VMD. Se eliminaron los lípidos que se superponían con los complejos VGLUT1/glutamato y el sistema se neutralizó con 0.15 M de NaCl, empleando herramientas de VMD. Se realizó una simulación de dinámica molecular de 200 ns para los complejos VGLUT1+EX10/glutamato y VGLUT1-EX10/glutamato. La simulación mantuvo una temperatura constante de 310 K utilizando dinámica de Langevin, con un paso de tiempo de 2 fs, y se implementó el algoritmo Shake para los átomos de hidrógeno. Las interacciones no enlazadas durante la simulación se gobernaron por los parámetros del campo de fuerza, incluyendo una distancia de corte de 12 Å, una distancia de lista de pares de 13 Å, una distancia de conmutación de 10 Å y un margen de 5.0 para prevenir colisiones atómicas. Además, se utilizó PME (Electrostática de Malla de Partículas) para abordar las interacciones electrostáticas en sistemas con condiciones de frontera periódicas. El análisis de la trayectoria se realizó utilizando el programa VMD, mientras que los análisis de RMSD, RMSF, Rg y clustering se realizaron utilizando el programa GROMACS 4.6 [135]. El análisis de clustering utilizó valores RMSD del complejo con un corte de 0.1 nm, facilitado por GROMACS 4.6. Además, se generaron diagramas 2D que ilustran las interacciones específicas de VGLUT1+EX10/glutamato utilizando el algoritmo LigPlot [136], también se utilizó para realizar un análisis de índice de interacciones no covalentes (NCI) asociado a densidades promoleculares (p pro), considerando todas las contribuciones atómicas, y se evaluó utilizando el software NCIPlot [137].

5.14 Ensayo de cuantificación de glutamato

Para el ensayo de cuantificación de glutamato extracelular se utilizaron 5 µL de medio de cultivo de MIO-M1-Q10 y MIO-M1-Q64 después de 6 días de inducción para la cuantificación de glutamato utilizando el kit de ensayo de glutamato (Abcam ab83389) siguiendo las instrucciones del fabricante. Para el ensayo de cuantificación de glutamato intracelular se cosecharon 80,000 células MIO-M1-Q10 y MIO-M1-Q64 después de 6 d de inducción y se utilizaron para la cuantificación de glutamato utilizando el mismo *kit* de ensayo de glutamato (ab83389) siguiendo las instrucciones del fabricante.

5.15 Análisis de RNAseq

El análisis de RNAseq se realizó sobre el RNA total aislado de células MIO-M1-Q10 y MIO-M1-Q64 después de 6 d de inducción. La calidad, integridad y cuantificación del RNA se evaluaron mediante electroforesis en gel; la pureza y cuantificación se determinaron en RNA nano 6000 (Agilent 2100). Las bibliotecas de secuenciación se prepararon con MGIEasy RNA library Prep y enriquecimiento de mRNA con el módulo de aislamiento magnético NEBNext Poly(A) mRNA, siguiendo las instrucciones del fabricante. Las bibliotecas de RNA-Seq se generaron a partir de dos réplicas biológicas independientes para MIO-M1-Q10 y MIO-M1-Q64 después de seis días de inducción. Las bibliotecas se secuenciaron en extremo sencillo en un MGISeg 2000 con una cobertura de al menos 16 millones de lecturas por muestra. Los datos de RNA-seq se cuantificaron calculando los conteos de lecturas a partir de archivos BAM utilizando featureCounts del paquete Rsubread v2.14.2 dentro de un entorno R 4.3.2. Posteriormente, la tabla de conteos de lectura se sometió a análisis utilizando edgeR v3.12.1 para generar medidas de TPM log2. Se calcularon los factores de normalización y se estimó la dispersión antes de identificar genes diferencialmente expresados (DEGs) entre células MIO-M1-Q10 y MIO-M1-Q64 utilizando un modelo glm con un umbral de tasa de descubrimiento falso (FDR) inferior a 1e-5. Se compiló una lista final de DEGs compartidos entre células MIO-M1-Q10 y MIO-M1-Q64 utilizando scripts propios, obteniendo un total de 278 genes regulados al alza y 360 genes regulados a la baja. Los gráficos de volcanes que muestran la expresión promedio se generaron utilizando R 4.3.2 basado en los valores de TPM log2 derivados de edgeR. Los gráficos de mapas de calor se generaron utilizando el servidor web ClustVis [138] basado en los valores de TPM log2 derivados de edgeR. Para el análisis específico de la expresión de genes asociados con el glutamato y asociados con SNARE, se utilizó un filtro GO de genes asociados (tablas complementarias) y se trazaron en mapas de calor utilizando el servidor web ClustVis [138] basado en los valores de TPM log2 derivados de edgeR.

5.16 Transfección transitoria

Las células MIO-M1-Q64 sembradas en cubreobjetos se transfectaron transitoriamente con el plásmido pCI pHluorin Syt1 (addgene 184502) utilizando lipofectamina 3000 (Invitrogen, Carlsbad, CA, USA) siguiendo las instrucciones del fabricante. A las 24 h post-transfección se sometieron al análisis correspondiente.

5.17 Análisis estadístico

La significancia estadística se determinó utilizando la prueba t de Student de dos colas al comparar dos grupos, y un análisis ANOVA de una vía al comparar más de dos grupos. Se utilizó Origin 8 para los cálculos. Los datos se presentan como media \pm error estándar de la media (\pm SEM), y se consideró significativo un valor de p < 0.05.

6. Resultados

6.1 Formación de agregados de RNA en células MIO-M1 SCA7

La línea celular MIO-M1 SCA7 es un modelo de glía de Müller que, de manera inducible, expresa mRNA-ATXN7 con 10 repeticiones CAG (MIO-M1-Q10) como control, o con 64 repeticiones CAG (MIO-M1-Q64) como un modelo celular de SCA7[114]. El modelo celular MIO-M1 SCA7 es un modelo inducible bajo el control del sistema Tet-On 3G. Considerando que la determinación del interactoma de mRNA-*ATXN7* depende de la expresión y agregación de este mRNA en su forma expandida, se realizó una curva de inducción de la expresión de mRNA-*ATXN7* de manera dosis y tiempo dependiente.

La curva de inducción dosis y tiempo dependiente fue seguida mediante RNA-FISH con la sonda (CAG)₆-TYE563, a fin de mostrar la formación de los agregados en las células MIO-M1-Q64 (Figura 8). Como se muestra en la figura 9 A-B existe un efecto dosis dependiente en relación con la concentración de doxiciclina utilizada para la inducción y la aparición de agregados de RNA (foci).

Consiguientemente se realizó la evaluación de la formación de agregados modificando el tiempo de inducción, para ello se consideraron los tiempos de: 4, 12 y 24 h, 3, 6, y 12 d. Como se refleja en la figura 9 C-F a un mayor tiempo de inducción el número de células con agregados visibles aumenta (Figura 9D), además se muestra la aparición de células con más de un agregado de mRNA-*ATXN7* (Fig. 9E) y la aparición tanto de agregados nucleares como citoplasmáticos (Figura 9F). Considerando los resultados mostrados se optó por realizar los experimentos subsiguientes con una inducción de doxiciclina a una concentración de 1 µg/ml durante 6 d.

Figura 9. Evaluación del efecto de la dosis (A-B) dosis y tiempo (C-F) de inducción con doxiciclina sobre la formación de agregados de mRNA-ATXN7. En las micrografías de fluorescencia se marca en rojo el RNA-FISH con la sonda (CAG)6-TYE563 y en azul DAPI.

A fin de comprobar la expresión del transgén de *ATXN7* con 10 o 64 repetidos se realizó una RT-qPCR de células MIO-M1-Q10 MIO-M1-Q64 inducidas con doxiciclina a 1 µg/ml durante 6 d. Como se puede ver en la figura 10-A la inducción de la expresión de mRNA-ATXN7 fue detectada mediante un amplicón de 700pb para la forma mRNA-ATXN7 10R y de 860pb para el mRNA-ATXN7 64R, ambos asociados a las respectivas lineas celulares, MIO-M1-Q10 y Q64. Posteriormente se realizó un RNA-FISH determinando que la agregación del mRNA-*ATXN7* solamente se da en las células MIO-M1-Q64 tras la inducción con doxiciclina, encontrándose ausente en las células MIO-M1-Q10 y las células MIO-M1-Q64 no inducidas (Fig. 10 B-C).

С

Figura 10. A) Gel de electroforesis de RT-PCR de ATXN7 exógena. B) RNA-FISH de células MIO-M1-Q10 MIO-M1-Q64 usando la sonda 6(CAG)TYE563 para marcar al mRNA-ATXN7 y C) amplificación de MIO-M1-Q64 inducido.

6.2 Diseño de secuencias blanco en el mRNA-ATXN7 para su flanqueo y purificación

Considerando que, en varias enfermedades de expansión de microsatélites, como SCA7, la formación de agregados nucleares es un evento clave en la toxicidad del mRNA mutante mediada por RNA; y que los complejos RNA-proteína juegan roles vitales en varios procesos celulares [75]; se empleó una estrategia experimental basada en la purificación del interactoma proteico diferencialmente asociado de mRNA-*ATXN7*-SCA7 con oligos biotinilados dirigidos al mRNA-*ATXN7* y un ensayo LC-MS/MS.

Figura 11. Estrategia metodológica para el diseño de oligos biotinilados anitisentido.

Considerando que la eficiencia del flanqueo y purificación del interactoma de mRNA-SCA7 depende directamente de la eficiencia de hibridación de los oligos biotinilados con el mRNA objetivo realizamos una predicción de estructura secundaria del mRNA-ATXN7 10R y 64R y se determinó su accesibilidad, así como las secuencias blanco más favorables para realizar el ensayo predicho (Figura 11).

Figura 12. Estructura secundaria de mRNA-atxn7 10R (izquierda) y mRNA-ATXN7 64R (derecha) coloreado por A) probabilidad de apareamiento y B) entropía posicional.

El análisis de predicción de estructura secundaria para el mRNA-SCA7 tanto de 10R como de 64R mostró exactamente la misma estructura secundaria predicha a excepción de la extensión de la estructura de tallo y burbuja conformada por la región de repetidos CAG (Figura 12 A).

A fin de determinar la fiabilidad en la estructura secundaria predicha se realizó un análisis de entropía posicional considerando las observaciones que muestran que a una mayor entropía posicional existe una menor fiabilidad de una predicción realizada por MFE (mínimo de energía libre) (Figura 13) [139]. En otras palabras, basándonos en el modelo termodinámico, a medida que hay menos incertidumbre sobre el comportamiento de emparejamiento de bases de una base, aumenta la correspondencia entre la estructura MFE y la estructura comparativa para esa base.

Figura 13. Valor predictivo del valor S (entropía) para la fiabilidad de la estructura MFE por base para 16S rRNA. Para todas las bases que tienen un valor S entre 0 y 0.025, 0.025 y 0.075, 0.075 y 0.125, etc., se cuenta la fracción de bases para las cuales la estructura MFE corresponde a la estructura comparativa[139]. (Figura recuperada de [139])

Siguiendo esta observación y el análisis de entropía posicional realizado, se observó que la estructura de tipo tallo y burbuja asociada a la región de repetidos CAG en mRNA-ATXN7 64R tiene niveles de entropía posicional superiores a toda la estructura, lo que supondría una menor fiabilidad a la estructura predicha (Figura 12 B). Sin embargo, esta estructura de tipo tallo y burbuja que adopta la región de repetidos CAG ha sido bien documentada por análisis experimentales, donde se muestra que, la estructura secundaria de la región de repetición

CAG consiste en una base, una estructura de horquilla que forma el tallo y un lazo terminal. El tallo se forma por pares repetitivos G–C y C–G, seguido de un desajuste A–A [78]. Además, el tamaño del lazo o burbuja puede variar entre 4 y 7 nucleótidos (nt), siendo el lazo de 4 nt termodinámicamente más estable y el representado en la predicción estructural [78].

Una vez determinada la estructura secundaria del mRNA-ATXN7 se realizó un análisis de accesibilidad a 8 y 16 nucleótidos utilizando el servidor RNAxs (Figura 14). Considerando la accesibilidad se diseñaron oligos complementarios a las secuencias contenidas entre los nucleótidos 40 al 68 que considera una región que flanquea la secuencia codificante a la bandera Myc y al cuerpo ATXN7 que permite reconocer de manera específica el mRNA-ATXN7 sobreexpresado en las células MIO-M1 con respecto del mRNA-ATXN7 endógeno (Figura 14 B); y un oligo dirigido a la secuencia entre los nucleótidos 742 al 769 donde la accesibilidad predicha tiene valores cercanos al 0.8 en una escala de 0 a 1 (Figura 14 C).

Figura 14. A) Gráfica de accesibilidad a 8 y 16 nucleótidos del mRNA-ATXN7 64R, acercamiento a la región que flanquea el B) oligo 1 y C) oligo 2.

6.3 Identificación del interactoma del mRNA-ATXN7-SCA7.

Una vez determinadas las secuencias blanco en el mRNA-ATXN7 se empleó una estrategia experimental basada en la purificación del interactoma proteico diferencialmente asociado de mRNA-ATXN7-SCA7 con oligos biotinilados y un ensayo LC-MS/MS (Figura 15).

Figura 15. Estrategia experimental para la determinación del interactoma proteico de mRNA-ATXN7-SCA7.

El análisis del interactoma de mRNA-ATXN7-SCA7 contempló el aislamiento de núcleos para su posterior lisis y la purificación de los complejos. En la figura 16 se muestran dos geles de electroforesis de acrilamida-bisacrilamida uno donde se corrió en condiciones desnaturalizantes el extracto proteico total y en su contraparte uno donde se corrió el extracto nuclear, los mismos muestran un patrón de bandeo diferencial que sugiere un proceso de asilamiento y purificación de núcleos correcto.

Figura 16. Gel de electroforesis de poliacrilamida con extractos proteicos totales (izquierda) y nucleares (derecha).

Previo al análisis proteómico realizado mediante LC-MS/MS las proteínas resultantes de la purificación con oligos biotinilados del interactoma mRNA-ATXN7 tanto de 10R como de 64R con sus respectivos controles e inputs se corrieron en un gel de acrilamida-bisacrilamida, mostrado en la figura 17. Este ensayo muestra un patrón diferencial entre cada purificado especifico y su control, así como diferencias en el patrón de bandeo entre el interactoma de mRNA-ATXN7 tanto de 10 como de 64 repetidos.

Posteriormente se realizó un análisis de las proteínas purificadas mediante LC-MS/MS a fin de determinar el interactoma de mRNA-ATXN7-SCA7. En el ensayo proteómico se identificaron 28 proteínas específicas (restando proteínas identificadas con el oligo control) asociadas el mRNA-ATXN7 10R purificadas de las células MIO-M1-Q10. Por su parte se identificaron 156 proteínas específicas asociadas al mRNA-ATXN7 64R purificadas a partir de células MIO-M1-Q64. El ensayo de proteómica reveló, por lo tanto, que el interactoma de mRNA-ATXN7-SCA7 en las células MIO-M1 está compuesto por 155 proteínas diferencialmente asociadas (Figura 18, Anexos 2-6).

Para analizar el interactoma de mRNA-ATXN7-SCA7 se realizó una red de interacción proteína-proteína utilizando el *software* STRING con un análisis de agrupamiento de Markov (Figura 19). La red de interacción proteína-proteína revela 49 subconjuntos diferentes, entre los cuales dos subconjuntos están representados por más de diez proteínas diferentes (Figura 19, Anexo 7).

Figura 19. Red de interacción proteína-proteína del interactoma proteico de mRNA-ATXN7-SCA7. El subconjunto más poblado está conformado por las proteínas AKR1A1, ALDOB, ANXA5, ENO3, G6PD, GAPDH, IDH1, MDH1, PGD, PRDX1, PRDX4, PRDX5, y TXN (Fig.20). Un análisis de ontología génica por proceso biológico reveló una asociación principalmente con el proceso de oxidación-reducción y una función molecular de actividad oxidorreductasa (Figura 20).

Biological Process GO

Figura 20. Subconjunto más poblado de la red de interacción proteína-proteína del interactoma proteico de mRNA-ATXN7-SCA7, y la ontología génica por B) proceso biológico y C) función molecular.

El segundo subconjunto más poblado está conformado por proteínas como: DDX5, hnRNPA2B1, hnRNPD, hnRNPK, hnRNPL, hnRNPM, hnRNPR, PCBP2, RBMX, y SYNCRIP (Figura 21). Ese grupo está asociado principalmente al proceso de metabolismo del mRNA, específicamente asociado al empalme del mRNA, con actividad de unión al mRNA (Figura 21).

B)

Biological Process GO

6.4 hnRNPA2B1 está asociado a los agregados de mRNA-ATXN7-SCA7.

El segundo subconjunto más poblado del interactoma de mRNA-ATXN7-SCA7 está principalmente enriquecido en ribonucleoproteínas heterogéneas nucleares (hnRNPs), las cuales juegan un papel crucial en la neurodegeneración, particularmente en enfermedades que implican expansiones anormales de poliglutamina (polyQ). Por ejemplo, se ha identificado que hnRNPQ es un supresor de la agregación de huntingtina con expansiones PolyQ patológicas, la cual está implicada en trastornos neurodegenerativos como la enfermedad de Huntington [140]. Además, se ha implicado a hnRNPA1 en la patogénesis de varias enfermedades neurodegenerativas, incluyendo la esclerosis múltiple, la atrofia

B)

muscular espinal, la enfermedad de Alzheimer y la enfermedad de Huntington. La desregulación de hnRNPA1 puede contribuir al desarrollo de estas enfermedades a través de mecanismos relacionados con el metabolismo alterado del RNA [141] (Figura 22).

Figura 22. Principales vías moleculares asociadas a neurodegeneración mediadas por hnRNPs. Bajo condiciones homeostáticas, la hnRNP A1 se localiza en el núcleo de los cuerpos celulares neuronales. En respuesta a (A) mutaciones genéticas, (B) neuroinflamación y mediadores proinflamatorios correspondientes, factores de estrés oxidativo, y (B, C) autoanticuerpos, los cuerpos celulares neuronales muestran una biología disfuncional de hnRNP, que incluye (D) deslocalización nucleocitoplasmática, (E) formación de gránulos de estrés y (F) metabolismo alterado del ARN [142]. (Figura recuperada de [142])

Asimismo, se ha demostrado que hnRNPA2B1 juega un papel en la patogénesis de enfermedades neurodegenerativas. Estudios han demostrado que hnRNPA2B1 está involucrado en la regulación del metabolismo del RNA y puede influir en la estabilidad de los mRNA objetivo. La desregulación de hnRNPA2B1 puede contribuir al desarrollo de enfermedades neurodegenerativas al alterar el metabolismo del RNA y conducir a la acumulación de proteínas tóxicas dentro de las neuronas [141].

Considerando el papel de las hnRNPs en las enfermedades neurodegenerativas, se probó la interacción de hnRNPA2B1 con los agregados de mRNA-ATXN7-SCA7. Para ello, se realizó una precipitación con oligos biotinilados del interactoma de mRNA-ATXN7-SCA7 seguida de un ensayo *western blot* anti-hnRNPA2B1 (Figura 23). Como se muestra en la figura 25A, la

presencia de hnRNPA2B1 se obtuvo de manera detectable solo cuando se utilizó un oligo específico para SCA7 en los extractos de MIO-M1-Q64.

Figura 23. Estrategia experimental para la precipitación con oligos biotinilados del interactoma de mRNA-ATXN7-SCA7 seguida de un ensayo western blot anti-hnRNPA2B1.

Además, se realizó una inmunoprecipitación de RNA seguida de RT-qPCR de ATXN7 (RIP-RTqPCR) utilizando un anticuerpo específico anti-hnRNPA2B1 (Figura 24). La RT-qPCR reveló el enriquecimiento específico de mRNA-ATXN7 cuando el RIP-RT-qPCR se realizó en células MIO-M1-Q64 (Figura 25B).

Figura 24. Estrategia metodológica para la inmunoprecipitación de RNA anti-hnRNPA2B1 seguida de RTqPCR de ATXN7 (RIP-RTqPCR).

Adicionalmente, se analizó la colocalización de hnRNPA2B1 con los agregados de mRNA-ATXN7-SCA7 mediante RNA-FISH acoplado a inmunofluorescencia usando una sonda contra el mRNA-ATXN7 y un anticuerpo anti-hnRNPA2B1. Los resultados de INMUNO/RNA-FISH demuestran la colocalización entre los agregados de mRNA-ATXN7-SCA7 con los agregados de hnRNPA2B1 en las células MIO-M1-Q64 (Figura 25C-D). En conjunto, estos resultados indican un secuestro específico de hnRNPA2B1 en los agregados de RNA de mRNA-ATXN7-SCA7.

Figura 25. A) Precipitación con oligos biotinilados del interactoma de mRNA-ATXN7-SCA7 seguida de un ensayo western blot anti-hnRNPA2B1. B) Inmunoprecipitación de RNA anti-hnRNPA2B1 seguida de RTqPCR de ATXN7 (RIP-RTqPCR). C) RNA-FISH contra mRNA-ATXN7 acoplado a inmunofluorescencia contra hnRNPA2B1, y D) zoom en células MIO-M1-Q64.

6.5 El secuestro de hnRNPA2B1 en los agregados de mRNA-*ATXN7*-SCA7 induce la desregulación en el empalme alternativo de *SLC17A7*.

El papel de hnRNPA2B1 es significativo en el contexto de las enfermedades neurodegenerativas. Estudios han demostrado que hnRNPA2B1 está involucrado en la regulación del metabolismo del RNA, influyendo en la estabilidad de los mRNA objetivo, y potencialmente contribuyendo a la patogénesis de enfermedades neurodegenerativas al alterar el procesamiento del RNA [143]. Considerando la sugerencia de que el secuestro de hnRNPA2B1 en los agregados de RNA de mRNA-ATXN7-SCA7 podría estar asociada con una reducción en la actividad de hnRNPA2B1 similar a su eliminación, se decidió abordar su efecto funcional. En un estudio realizado por Martínez, *et al.* [144], donde evalúan a hnRNPA2B1 en el contexto de la esclerosis lateral amiotrófica, determinaron mediante estudios de *knock down* y la sobreexpresión de hnRNPA2/B1 D290V (mutación asociada a esclerosis lateral amiotrófica) en fibroblastos y neuronas motoras diferenciadas de células madre pluripotentes inducidas (iPSC-MNs) cambios anormales en el procesamiento del mRNA. Así mismo mostraron que en la desregulación del empalme alternativo, específicamente, se alteran 137 eventos de casete alternativo al reducir la expresión de hnRNPA2/B1 [144].

De los 137 eventos de casete alternativo que se alteran con la pérdida de hnRNPA2/B1, la alteración del exón 10 por el proceso de omisión de exón en *SLC17A7* fue de gran interés. El gen *SLC17A7* codifica para la proteína Transportador Vesicular de Glutamato 1 (VGLUT1), que juega un papel crucial en el transporte de glutamato en el cerebro, particularmente en regiones ricas en neuronas. VGLUT1 es un transportador de fosfato inorgánico dependiente de protones que se localiza en las membranas de las vesículas sinápticas en las terminales presinápticas de las neuronas glutamatérgicas, y es esencial para el almacenamiento y liberación de glutamato en la sinapsis glutamatérgica [145].

VGLUT1 desempeña un papel crucial en la mediación de la liberación de glutamato a través de la exocitosis. Las glías expresan VGLUT1 y VGLUT2, transportando glutamato a pequeñas vesículas ubicadas cerca de las terminales neuronales presinápticas [146,147]. En las células de Müller de la glía, la expresión y función del transporte vesicular y la liberación de glutamato se ha demostrado mediante ensayos *in vivo* e *in vitro* [148]. El transporte de glutamato es de interés debido a la evidencia de que las alteraciones en el transporte y reciclaje de glutamato están relacionadas con la enfermedad de SCA7, contribuyendo a la neurodegeneración exocitótica [107].

El gen *SLC17A7* está conformado por 12 exones y 11 intrones; un análisis de secuencia revela la secuencia de consenso de unión de hnRNPA2B1 (UAGG) [144] al final del intrón 9 y el inicio del exón 10. Para evaluar la posible desregulación en la omisión de exones inducida por el secuestro de hnRNPA2B1 por el mRNA-ATXN7-SCA7, se realizó una evaluación del empalme alternativo mediante un ensayo de RT-PCR utilizando *primers* que flanquean el exón 10, dirigidos al exón 9 y al exón 11 (*forward* y *reverse*, respectivamente) (Figura 26 A). La evaluación del empalme alternativo revela una reducción de alrededor del 25 al 50% en la exclusión del exón 10 de *SLC17A7* cuando se induce la expresión de mRNA-ATXN7-SCA7 en células MIO-M1-Q64 (Figura 26 B-C). Esto significaría que la expresión del mRNA completo de *SLC17A7* es más representativa en las células MIO-M1-Q64 en comparación con las células MIO-M1-Q10.

Figura 26. A) Representación del gen SLC17A7, las flechas indican la posición de los primers para la evaluación del empalme alternativo. Evaluación del empalme alternativo para la omisión del exón 10 de SLC17A7; B) gel de agarosa representativo y C) análisis de densitometría.

6.6 Efectos de la exclusión del exón 10 de SLC17A7 en la estructura de VGLUT1 y la afinidad por el glutamato.

Considerando que la expresión del mRNA de longitud completa de *SLC17A7* es más representativa en las células MIO-M1-Q64 en comparación con las células MIO-M1-Q10, se probaron los efectos sobre la estructura y la afinidad de unión al glutamato de VGLUT1 completo (VGLUT1+EX10) y VGLUT1 sin el exón 10 (VGLUT1-EX10). Para ello, se realizó una predicción estructural para VGLUT1+EX10 y VGLUT1-EX10 utilizando el servidor C-I-Tasser. Considerando que el exón 10 codifica para aminoácidos ubicados entre el 385 y el 420 de los 560 aminoácidos de la proteína completa, la estructura predicha muestra la pérdida

de las alfa hélices 9 y 10 cuando se comparan VGLUT1+EX10 y VGLUT1-EX10 (Figura 27 A-C). El sitio de unión específico de L-glutamato- predicho para VGLUT1 incluye los residuos: HIS 120, ARG 176, y GLU 184, ubicados en las alfa hélices 2 y 4 (Figura 27 D). La pérdida del exón 10 no altera este dominio estructural en la predicción de la estructura de VGLUT1.

Figura 27. A) Empalme de estructuras VGLUT1+EX10 (cian) y VGLUT1-EX10 (azul) obtenidas tras la predicción estructural realizada con C-I-Tasser. B) acercamiento al sitio de unión predicho de L-glutamato. C) Esquema estructural de VGLUT1. D) estructura de L-glutamato.

Para determinar los cambios estructurales y funcionales entre VGLUT1+EX10 y VGLUT1-EX10, se realizó una simulación de dinámica molecular de 200 ns. Considerando que el sustrato específico de VGLUT1 era L-glutamato⁻ (Figura 27C), esa molécula se localizó cerca de los residuos de unión (HIS 120, ARG 176 y GLU 184) para el ensayo de simulación de dinámica molecular.

Figura 28. A) Desviación cuadrática media (RMSD) y radio de giro (Rg) para la proteína (VGLUT1+EX10 y VGLUT1-EX10), el ligando (L-glutamato-) o los complejos (VGLUT1+EX10/L-glutamato- y VGLUT1-EX10/L-glutamato-). B) Alineación de la estructura proteica del cluster más poblado de VGLUT1+EX10 y VGLUT1-EX10. Fluctuación cuadrática media (RMSF) de C) la proteína o D) L-glutamato-. E) Análisis de distancia entre L-glutamato- y los residuos de unión (HIS 120 y ARG 176).

Para analizar posibles cambios en la estabilidad y compactibilidad de la proteína, se realizó un análisis de la desviación cuadrática media (RMSD), el radio de giro (Rg), y la fluctuación cuadrática media (RMSF) de la simulación de dinámica molecular, considerando solo los átomos de carbono alfa de la proteína. Los valores de RMSD se utilizan típicamente para predecir cambios conformacionales en la proteína y asociarlos directamente con la estabilidad de la estructura proteica [149]. Además, el análisis de Rg proporciona información sobre la compactibilidad de la estructura proteica [149]. Considerando los valores de RMSD, Rg y RMSF, no se encontraron cambios visibles entre VGLUT1+EX10 y VGLUT1-EX10 (Figura 28 A, C). Por su parte, si el análisis se realiza en el ligando (L-glutamato) de la misma manera, no se observaron cambios visualmente detectables cuando se compararon ambas simulaciones de dinámica molecular (Figura 28 A, D). Sin embargo, cuando el análisis de dinámica se realiza considerando tanto la proteína como el ligando (complejo), se observan cambios críticos en el nanosegundo 30 de la simulación de dinámica molecular (Figura 28 C). Para comprender este cambio, se realizó un análisis de distancia entre L-glutamato- y los residuos de unión (HIS 120 y ARG 176). Este análisis reveló que en el nanosegundo 30 de la simulación, la distancia entre L-glutamato y VGLUT1-EX10 aumentó, indicando la pérdida de la interacción entre L-glutamato y VGLUT1-EX10 (Figura 28E).

Después de la simulación de dinámica molecular, se realizó un análisis de agrupamiento para determinar la estructura más estable que VGLUT1 adopta durante la simulación. VGLUT1+EX10 adopta una estructura más cerrada en el sitio de unión del L-glutamato en comparación con VGLUT1-EX10, además de la pérdida de las hélices alfa 9 y 10 (Figura 28 B). El clúster más poblado se comparó con la predicción estructural inicial de la proteína y revela una estructura de proteína más adecuada de acuerdo con los gráficos de Ramachandra (Figura 29 A-C), lo que sugiere un análisis estructural y dinámico adecuado de la proteína.

Figura 29. Comparación estructural de estructuras de VGLUT1 obtenidas tras la predicción estructural con C-I-Tasser y del cluster más poblado tras la dinámica de 200 ns; para A) VGLUT 1+EX10, C) VGLUT1-EX10 y B) gráficos de Ramachandra.

Para VGLUT1+EX10 se determinó el sitio de unión del L-glutamato utilizando un análisis de interacciones no covalentes mediante el *software* NCI plot. Eso sugiere la estabilización del L-glutamato por dos enlaces de hidrógeno con ARG 176 y uno con HIS 120, además de la interacción de tipo Van der Waals con ILE 87 (Figura 30). La interacción con ARG 176 y HIS 120 fue predicha previamente en comparación con otras proteínas transportadoras de solutos, especialmente con el transportador de glicerol 3-fosfato (GlpT) que comparte homología lejana con los miembros de la familia SLC17 [130,131]. Esta asociación confirma el análisis estructural y dinámico adecuado de las consecuencias de la pérdida del exón 10 en la estructura y función de VGLUT1 en el contexto de SCA7.

Figura 30. Determinación del sitio de unión de VGLUT1+EX10/L-glutamato- utilizando un análisis de interacciones no covalentes. A) Representación del sitio de unión, B) trama de interacciones no covalentes (NCI), C) gráficos de sign($\lambda 2$) ρ , y D) representación de interacciones 2D. Gráfico RDG vs sign($\lambda 2$) ρ e isosuperficies RDG. Se utilizó un código de color basado en sign($\lambda 2$) ρ : – 0.6 (azul) <0.0 (verde) <0.7.

6.7 La desregulación del procesamiento alternativo SLC17A7/VGLUT1 altera el transporte vesicular de glutamato.

La alteración del procesamiento alternativo de SLC17A7 en MIO-M1-Q64 después de la inducción de mRNA-ATXN7-SCA7 sugiere una actividad aumentada de VGLUT1+EX10. Esto sugeriría un incremento del transporte vesicular de glutamato. Para probar esto, se realizó un análisis de expresión y distribución de la proteína VGLUT1 en células MIO-M1-Q10 y MIO-M1-Q64. La inmunofluorescencia de VGLUT1 muestra la distribución típica de la proteína (Figura 31 A), pero sorprendentemente sugiere un aumento en la expresión de la proteína en las células MIO-M1-Q64 (Figura 31 B). Esta observación fue confirmada por análisis de *western blot* (Figura 31 C).

Figura 31. A) Inmunofluorescencia anti-VGLUT1 en células MIO-M1-Q10 y MIO-M1-Q64, y B) cuantificación relativa de fluorescencia. C) Western blot anti-VGLUT1.

Para analizar el efecto en el transporte de glutamato como consecuencia de la mayor inclusión del exón 10 de SLC17A7/VGLUT1 en células MIO-M1-Q64, se realizó un ensayo de cuantificación de glutamato intracelular y extracelular. Contrario a lo esperado, el glutamato extracelular aumentó en las células inducidas MIO-M1-Q10 en comparación con las células MIO-M1-Q64 (Figura 32 A). Asimismo, de acuerdo con la inmunofluorescencia y los análisis de western blot de VGLUT1, la concentración intracelular de glutamato aumentó en las células MIO-M1-Q64 en comparación con las MIO-M1-Q10 (Figura 32 B).

6.8 La reducción en la liberación de glutamato está asociada a la desregulación en los complejos SNARE.

Para entender los hallazgos contradictorios relacionados con la reducción en la liberación de glutamato y el incremento en la concentración intracelular de glutamato en las células MIO-M1-Q64, se realizó un análisis del transcriptoma de las células MIO-M1-Q10 MIO-M1-Q64 mediante un ensayo de RNAseq. El análisis del transcriptoma reveló una sobre-expresión de 278 genes y la reducción en los niveles de expresión de 360 genes, en las células MIO-M1-Q64 en comparación con las MIO-M1-Q10 (Figura 33).

Figura 33. A) Gráfico de volcán y B) mapa de calor de genes diferencialmente expresados entre las células MIO-M1-Q64 y MIO-M1-Q10.

Un análisis de ontología por proceso biológico reveló que los genes sobreexpresados en MIO-M1-Q64 tienen relación con procesos de migración celular, diferentes vías de señalización y comunicación célula a célula (Figura 34 A). Por su parte el análisis de ontología de los genes subexpresados, mostró una baja en procesos asociados con adhesión celular, remodelación de la matriz extracelular, regulación del desarrollo de proyecciones neurales y neurogénesis (Figura 34B).

Para clarificar cómo estos genes regulados al alza o a la baja pueden alterar el transporte o la liberación vesicular de glutamato, se trazaron los valores TPM (transcritos por millón de kilobases) de genes relacionados con glutamato (Figura 35 A) o a SNARE (Figura 35 A) mediante la anotación de ontología génica en un mapa de calor para su comparación. La interacción entre las proteínas SNARE y la liberación de glutamato es crucial para la neurotransmisión. Las proteínas SNARE neuronales, como Syntaxina, SNAP-25, VAMP y SYT1, forman el complejo central responsable de la fusión de las vesículas y la liberación de neurotransmisores [150]. Los transportadores vesiculares de glutamato (VGLUTs) desempeñan un papel clave en la carga de glutamato en las vesículas sinápticas para su liberación, trabajando en coordinación con el complejo SNARE [150].

Figura 35. A) Mapa de calor TPM de genes asociados con el glutamato por ontología génica de las células MIO-M1-Q64 y MIO-M1-Q10. B) Mapa de calor TPM de genes asociados con SNARE por ontología génica de las células MIO-M1-Q64 y MIO-M1-Q10. C) Mapa de calor TPM de genes asociados con el glutamato y SNARE por ontología génica de las células MIO-M1-Q64 y MIO-M1-Q10. D) RTqPCR de la expresión de SNAP25 y SYT1 de las células MIO-M1-Q64 y MIO-M1-Q10.

Para conocer los cambios entre las células MIO-M1-Q64 y MIO-M1-Q10 en los genes asociados con la liberación vesicular de glutamato, los valores TPM de los genes compartidos en glutamato y SNARE mediante la anotación de ontología génica se trazaron en un mapa de calor. De los 18 genes asociados con la liberación vesicular de glutamato, solo dos mostraron expresión diferencial; el análisis del transcriptoma sugirió una regulación al alza de SNAP-25 y una regulación a la baja de SYT1; ambos forman el núcleo del complejo SNARE (Figura 35 B). Esta regulación al alza de SNAP25 y la regulación a la baja de SYT1 fueron confirmadas por un ensayo de RTqPCR (Figura 35 C).

Figura 36. Inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q10 y MIO-M1-Q64, B) y C) cuantificación de fluorescencia relativa.

Con la finalidad de caracterizar la regulación a la baja de SYT1en células MIO-M1-Q64 realizamos una co-inmunofluorescencia anti VGLUT1 y anti SYT1. Los análisis de fluorescencia relativa reflejaron la ya reportada alza en los niveles proteicos de VGLUT1 en MIO-M1-Q64 y se confirmó la baja en los niveles proteicos de SYT1 en MIO-M1-Q64 (Fig.36). La desregulación en el complejo SNARE se ha asociado con la pérdida de liberación vesicular de glutamato en las células de Müller, a través de la regulación negativa *in vivo* del complejo SNARE [148]. Esto sugiere una asociación entre la regulación a la baja de SYT1 y los niveles más bajos de concentración extracelular de glutamato en las células MIO-M1-Q64.

6.9 La sobreexpresión de SYT1 recupera la liberación de glutamato en el modelo celular de SCA7.

Para demostrar la asociación entre la regulación a la baja de SYT1 y los niveles más bajos de concentración extracelular de glutamato en las células MIO-M1-Q64, realizamos la sobreexpresión de SYT1 mediante la transfección transitoria del plásmido pCI pHluorin Syt1 a células MIO-M1-Q64. El plásmido pCI pHluorin Syt1 codifica a la expresión de la proteína SYT1 de *R. norvegicus* (rSYT1) la cual es homologa en secuencia proteica a la proteína SYT1 humana (hSYT1). A fin de seguir la sobreexpresión de rSYT1 en células MIO-M1-Q64 (MIO-M1-Q64 OE-rSYT1) se realizó un RTqPCR específica para la amplificación de rSYT1 o hSYT1. Como se puede observar en la gráfica de la figura 37A-B la sobreexpresión de rSYT1 a nivel proteico fue confirmada. Posteriormente la sobreexpresión de rSYT1 a nivel proteico fue confirmada mediante una co-inmunofluorescencia anti VGLUT1 y anti SYT1; y mediante un ensayo de *western blot* anti SYT1 (Figura 37 C-D).

Figura 37. A) RTqPCR de h-SYT1 y B) r-SYT1 de células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. C) Western blot anti-SYT1 y D) co-inmunofluorescencia anti SYT1 y VGLUT1 en células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT.

Para demostrar la asociación entre la regulación a la baja de SYT1 y los niveles más bajos de concentración extracelular de glutamato en las células MIO-M1-Q64, se realizó un ensayo de cuantificación de glutamato intracelular y extracelular de las células MIO-M1-Q10, MIO-M1-Q64, y MIO-M1-Q64 OE-rSYT. De acuerdo con lo hipotetizado el glutamato extracelular aumentó en las células inducidas MIO-M1-Q64 OE-rSYT1 tras la sobreexpresión de rSYT1 (Figura 38 A). Conjuntamente la concentración intracelular de glutamato disminuyó en las células MIO-M1-Q64 OE-rSYT1 tras la sobreexpresión de rSYT1 (Figura 38 B).

Figura 38. Cuantificación de glutamato de A) concentraciones extracelulares y B) intracelulares.

Estos datos en su conjunto apoyan la hipótesis de toxicidad mediada por el RNA mutante *ATXN7*; a través de la inducción de cambios en el transporte vesicular de glutamato debidos a defectos de splicing alternativo en *SLC17A7*/VGLUT1. Todo ello como consecuencia de la unión y secuestro de hnRNPA2B1 por el RNA mutante de SCA7.

7. Discusión de resultados

La formación de agregados nucleares por RNAs que contienen repeticiones CAG es un proceso complejo que involucra múltiples mecanismos. Las secuencias de repeticiones CAG ricas en GC pueden formar interacciones de apareamiento de bases intermoleculares, lo que lleva a la aglomeración de estos RNAs en focos o agregados nucleares [[92]. Este proceso es facilitado por las secuencias flanqueantes que rodean las repeticiones CAG, las cuales pueden contribuir a la formación de estas interacciones multivalentes RNA-RNA y al reclutamiento de los RNA en gránulos nucleares [151].

Además, los RNA con repeticiones CAG pueden plegarse en estructuras de horquilla estables, lo que promueve su secuestro en focos nucleares[151,152]. La estabilidad de estos plegamientos en horquilla aumenta con la longitud de la secuencia de repeticiones CAG, permitiendo que tramos más largos formen horquillas más estables y, en consecuencia, focos nucleares más robustos [151]. Estos RNAs también pueden interactuar con proteínas específicas de unión al RNA, como MBNL1 y MID1, que facilitan su reclutamiento y retención dentro de los focos nucleares[82,91,102]. Estas proteínas pueden unirse a motivos específicos dentro de los RNA que contienen repeticiones CAG, como el motivo UAGG, y reclutar a otras proteínas a los focos nucleares, creando una red compleja de interacciones proteína-RNA. Esta red puede modular la estabilidad y movilidad de los RNA con repeticiones CAG, influyendo en su propensión a formar focos nucleares.

En el presente trabajo se demostró la presencia de agregados de mRNA-ATXN7-SCA7 en células MIO-M1-Q64, en este sentido corroborando las observaciones de la formación de agregados de RNA en el contexto de SCA7 que se han reportado en diferentes tipos celulares como fibroblastos y linfocitos derivados de pacientes, y en líneas celulares que sobre expresan una forma mutante de ATXN7 como SH-SYSY, C2C12, HeLa, N1E-115, entre otras [93,114,119].

Si bien la mayoría de los estudios se han centrado en el papel de la región de repetidos CAG para inducir la agregación y el secuestro de proteínas con dominios de unión a tractos CXG, es posible suponer que otras proteínas con dominios de unión a regiones distintas al tracto CAG puedan ser secuestradas en los agregados de RNA. Esta sugerencia supondría mecanismos diferenciales de agregación y participación en la patología entre las distintas enfermedades por expansión de repetidos. En este sentido la metodología propuesta en el

presente trabajo permitió el aislamiento y la determinación de proteínas diferencialmente asociadas al RNA en el contexto específico de SCA7.

Dentro de las proteínas que conforman el interactoma de mRNA-ATXN7-SCA7 se encuentra un grupo de ribonucleoproteínas heterogéneas nucleares (hnRNP). Las hnRNPs son una familia de proteínas de unión al RNA que desempeñan funciones cruciales en diversos procesos celulares, incluyendo la regulación de la expresión génica, el procesamiento y transporte del mRNA. Estas proteínas están implicadas en la regulación del metabolismo del RNA a múltiples niveles, desde la transcripción hasta la traducción, y son esenciales para mantener la homeostasis celular adecuada [140,141,144].

Estas proteínas participan en diversos aspectos del procesamiento del ARN, como el empalme alternativo, la poliadenilación y la regulación de la traducción. La desregulación de las hnRNPs se ha relacionado con varias enfermedades, incluyendo cáncer, trastornos neurológicos y enfermedades autoinmunes [153,154]. En particular, se ha observado la deslocalización y agregación de hnRNPs en varias enfermedades neurodegenerativas, como la esclerosis lateral amiotrófica (ELA), la demencia frontotemporal (DFT) y la enfermedad de Alzheimer [140,141,144,153].

El presente trabajo se ha centrado en la interacción del mRNA-ATXN7-SCA7 con hnRNPA2B1. La ribonucleoproteína nuclear heterogénea A2/B1 (hnRNPA2B1) es una proteína de unión al RNA que participa en varios procesos celulares, incluyendo la maduración, el tráfico y la traducción del mRNA [144]. Además, está vinculada a varios trastornos neurodegenerativos, como la esclerosis lateral amiotrófica y la demencia frontotemporal. En el contexto de la neurodegeneración, hnRNPA2B1 regula la poliadenilación alternativa y el empalme alternativo en el sistema nervioso, lo que puede provocar cambios en la expresión génica y contribuir potencialmente a la neurodegeneración [144,153]. También se ha encontrado que la proteína está involucrada en la regulación de microRNAs y RNA largos no codificantes, fundamentales para mantener la homeostasis celular adecuada [144].

Las mutaciones en el gen hnRNPA2B1 pueden alterar la función y la localización de la proteína, lo que puede interrumpir los procesos celulares normales y contribuir a la patogénesis de la enfermedad [144,153]. Los mecanismos por los cuales hnRNPA2B1 contribuye a la neurodegeneración son complejos y multifacéticos. Un mecanismo clave es su papel en la regulación de la poliadenilación alternativa y el empalme alternativo, que puede provocar cambios en la expresión génica y contribuir a la patogénesis de la enfermedad [144,153,154].

Martinez *et al.* [144] analizaron efectos en el procesamiento de mRNA tras el *knockdown* de hnRNPA2B1 determinando alteraciones en el empalme alternativo, modificaciones del sitio de poliadenilación y cambio en niveles de expresión de miRNAs (Figura 39). En este sentido se recuperaron los datos obtenidos mediante un chip de microarreglos donde determinaron cambios en el empalme alternativo tras el *knockdown* de hnRNPA2B1; esto se realizó considerando que el secuestro de nhRNPA2B1 en los agregados de mRNA-ATXN7-SCA7 podría inducir una deficiencia en su función asemejada con un proceso de *knockdown* como el reportado.

Así, se recuperaron más de 300 exones asociados a un procesamiento distinto, en específico, a un salto de exón tras el *knockdown* de hnRNPA2B1. En búsqueda de determinar algún candidato que pudiese mostrar el efecto del secuestro de hnRNPA2B1 en el contexto de SCA7 realizamos un mapa de interacción utilizando STRING (Figura 40). Este mapa de interacción no mostró agrupaciones significativas o asociaciones específicas que pudieran mostrar algún proceso alterado.

Figura 40. Red de interacciones proteína-proteína de los genes con alteraciones en su procesamiento (splicing alternativo) tras el knockdown de hnRNPA2B1.

De entre los mRNAs alterados en su procesamiento tras el *knockdown* de hnRNPA2B1 se encontró a SLC17A7. SLC17A7, también conocido como transportador vesicular de glutamato 1 (VGLUT1), es miembro de la familia de transportadores SLC17 y desempeña un papel crucial en la neurotransmisión glutamatérgica [130]. VGLUT1 se encarga de cargar glutamato en las vesículas sinápticas, permitiendo el almacenamiento y la liberación posterior de este neurotransmisor cuando se estimulan las neuronas [130]. VGLUT1 es una proteína transmembrana de múltiples pasos que utiliza el gradiente de protones y la conductancia de cloruro para acumular glutamato en las vesículas sinápticado residuos cruciales y cambios conformacionales inducidos por el sustrato que probablemente se conservan en VGLUT1, ofreciendo valiosos conocimientos sobre los mecanismos subyacentes al transporte de glutamato mediado por VGLUT1[130].

El interés sobre el transportador de glutamato VGLUT1 como blanco de alteraciones en su empalme alternativo mediado por el secuestro de hnRNPA2B1 en agregados de mRNA-ATXN7-SCA7 surgió debió a reportes que indican la participación de células gliales en procesos de excitotoxicidad mediada por glutamato. La excitotoxicidad desempeña un papel

significativo en la degeneración de las células de Purkinje SCA7. Este proceso ocurre cuando cantidades excesivas de glutamato se acumulan en la hendidura sináptica y se unen a los receptores de glutamato, provocando una sobreactivación de estos receptores y el daño o muerte neuronal subsecuente.

En los trastornos del sistema nervioso central (SNC), todos sus mecanismos patológicos están acompañados de inflamación. En respuesta a la inflamación, los astrocitos experimentan cambios moleculares, morfológicos y funcionales en un proceso conocido como "astrogliosis reactiva", donde los astrocitos reactivos pueden perder algunas de sus funciones cruciales en el SNC o adquirir muchas características perjudiciales que empeoran la condición del SNC [155]. Por lo tanto, la mayoría de las enfermedades del SNC están asociadas con la pérdida de la captación de glutamato astrocítico o la liberación excesiva de gliotransmisores que predisponen a la excitotoxicidad del glutamato [155].

La inhibición de los transportadores de captación de glutamato en los astrocitos y, posteriormente, la captación de glutamato deteriorada están implicadas en la patogénesis de muchas patologías del SNC, como en el caso de la lesión cerebral traumática, donde la expresión tanto de EAAT-1 como de EAAT-2 en los astrocitos se reduce marcadamente hasta 7 días después del trauma [156], y el mismo efecto sobre la expresión de los transportadores de glutamato ocurre en la infección del SNC con el virus de la inmunodeficiencia humana (VIH) [157,158]. Las enfermedades neurodegenerativas también están asociadas con la represión de la captación de glutamato [158].

Por otro lado, la excitotoxicidad neuronal causada por la liberación excesiva de glutamato mediada por Ca^{2+} de los astrocitos se ha informado en trastornos del SNC asociados con una liberación excesiva de mediadores inflamatorios, particularmente TNF- α y prostaglandina E [159]. Estos dos mediadores elevan el Ca^{2+} intracelular en los astrocitos, lo que aumenta la exocitosis de glutamato, como ocurre en la infección por VIH, accidente cerebrovascular, enfermedad de Alzheimer y esclerosis múltiple [160].

La excitotoxicidad del glutamato es el proceso mediante el cual ocurre la muerte neuronal, ya sea por apoptosis o necrosis, como resultado de una exposición excesiva o prolongada de las neuronas al glutamato extracelular [161]. Diferentes mecanismos interactúan sinérgicamente y, finalmente, conducen a la muerte neuronal [161]. Los principales mecanismos moleculares y celulares involucrados en este proceso son:

En primer lugar, el exceso de glutamato extracelular sobre estimula tres tipos principales de receptores ionotrópicos de glutamato en las neuronas, receptores NMDA, receptores AMPA y receptores de ácido kaínico, lo que induce una entrada intracelular excesiva de Ca²⁺ a través de canales iónicos. Además, la hiperactivación de los mGluRs en las neuronas induce una

elevación más lenta de [Ca²⁺]i al acoplarse a la proteína G y la generación de IP3, lo que desencadena la liberación de Ca²⁺ del RE. Los altos niveles intracelulares de Ca²⁺ representan una señal para la apoptosis. Además, el aumento del Ca²⁺ intracelular activa la calcineurina y/o la calpaína para inducir la apoptosis[162].

En segundo lugar, la entrada excesiva de Ca²⁺ mediada por la hiperestimulación de los receptores NMDA, desencadena un rápido flujo de Na⁺, Cl⁻ y agua hacia las neuronas, creando un desequilibrio osmótico que finalmente resulta en la ruptura de la membrana celular [162].

En tercer lugar, la excitotoxicidad del glutamato está frecuentemente asociada con el estrés oxidativo, con una alta producción intracelular de especies reactivas de oxígeno (ROS), comúnmente superóxido (O_2^-) y radicales hidroxilos (OH), que pueden asociarse con la regulación negativa de los mecanismos antioxidantes en enfermedades neurodegenerativas [162].

En SCA7, se cree que la excitotoxicidad contribuye a la degeneración de las células de Purkinje a través de mecanismos mediados por la glía de Bergman. La glía de Bergmann, responsable de mantener la homeostasis del microambiente cerebeloso, muestran una función de captación de glutamato deteriorada en SCA7, dada por una disminución en el reciclador de glutamato GLAST, lo que conduce a una acumulación de glutamato en la hendidura sináptica [107]. Este exceso de glutamato se une a los receptores de glutamato y causa excitotoxicidad.

Si bien la participación de glutamato con efectos de excitotoxicidad se ha demostrado en la relación glía de Bergman / células de Purkinje; esta misma relación puede trasladarse a la glía de Müller, considerando que además de la gliosis y la activación progresiva de las células de Müller (efecto asociado a SCA7), exista un vínculo mecanicista entre las alteraciones gliales y la muerte de las células fotorreceptoras [49,113] mediado por alteraciones en vías donde el glutamato se encuentre involucrado.

La expresión de VGLUT1 en las células gliales es un tema de investigación y debate en curso. Sin embargo, varios estudios han reportado la presencia de VGLUT1 en astrocitos[146,147,162], y su presencia y participación en glía de Müller ha sido también comprobada y explorada[163,164]. En especial Slezak *et al.* [148] revelaron los mecanismos involucrados en la liberación exocitótica de glutamato desde las células gliales de la retina mediante un modelo *in vivo* que incluye los siguientes procesos clave. Primero, la exocitosis dependiente de calcio, donde la entrada de iones de calcio en las células gliales desencadena la liberación de glutamato desde las vesículas a través de la activación de canales sensibles al calcio [148]. Segundo, la escisión de la proteína de membrana asociada a vesículas (VAMP), utilizando un modelo de ratón transgénico que expresa la cadena ligera de la neurotoxina botulínica serotipo B, la cual escinde VAMP1-3 e inhibe la liberación vesicular de glutamato [148]. Finalmente, la regulación del volumen glial también se ve afectada por la liberación exocitótica de glutamato, ya que la inhibición de este proceso deteriora la capacidad de las células gliales para mantener su volumen adecuado[148].

En este sentido, analizamos cambios en el empalme alternativo de *SLC17A7* (VGLUT1) mediados por el secuestro de hnRNPA2B1 en agregados de mRNA-ATXN7-SCA7. Los resultados arrojaron una mayor inclusión del exón 10 de SLC17A7 en MIO-M1-Q64 respecto a MIO-M1-Q10. Los efectos de este cambio en la inclusión del exón 10 sobre el mRNA de *SLC17A7* fueron evaluados sobre la proteína generada con la inclusión o la exclusión del exón. La evaluación de los cambios estructurales y funcionales den VGLUT1 +EX10 y -EX10 los evaluamos mediante una estrategia de simulación de dinámica molecular. Los análisis revelan que la distancia entre L-glutamato y VGLUT1-EX10 aumentó, indicando la pérdida de la interacción entre L-glutamato y VGLUT1-EX10, sugiriendo una falta de afinidad entre las dos moléculas, es decir mientras que VGLUT1+EX10 tiene la capacidad teórica de unirse y transportar L-glutamato, la exclusión del exón en VGLUT1-EX10 inhibe esta funcionalidad.

Los estudios de interacciones no covalentes entre VLGUT1+EX10 y L-glutamato sustentan nuestros análisis realizados, debido a que las interacciones con ARG 176 y HIS 120 han sido predichas previamente en comparación con otras proteínas transportadoras de solutos, especialmente con el transportador de glicerol 3-fosfato (GIpT) que comparte homología lejana con los miembros de la familia SLC17 [130,131].

Considerando la perdida de afinidad para L-glutamato dada por la exclusión del exón 10 en VGLUT1 sugerimos un modelo como el presentado en la figura 41. En estado de homesotasis (Figura 41 A) el glutamato recuperado por la glía mediante los transportadores de glutamato EAAT sería transformado en glutamina, y el glutamato intracelular no podría ser transportado vía vesicularmente por la falta de afinidad de VGLUT1-EX10 que se encuentra mayoritariamente expresada. Sin embargo, en el contexto patológico de SCA7 (Figura 41 B) el aumento en la expresión de VGLUT1+EX10 con afinidad a L-glutamato, permitiría que el glutamato sea transportado vía vesicular y liberado al exterior celular, donde participaría en un proceso de excitotoxicidad.

Figura 41. Modelo de la participación de VGLUT1 en un contexto de A) homeostasis o B) SCA7.

A fin de comprobar la hipótesis se realizó la medición del glutamato extracelular e intracelular, arrojando resultados discordantes a los esperados, donde se vio aumentada la concentración de glutamato en el medio de células MIO-M1-Q10 en comparación con MIO-M1 64 R. Una medición del glutamato intracelular reveló el aumento de concentración de glutamato intracelular en MIO-M1-Q64 en comparación con MIO-M1-Q10. Para entender la evidencia contradictoria de reducción en la liberación de glutamato e incremento en la concentración intracelular de glutamato en las células MIO-M1-Q64, se realizó un análisis del transcriptoma de las células MIO-M1-Q10 MIO-M1-Q64 mediante un ensayo de RNAseq.

El análisis se centró en genes involucrados en glutamato y en la liberación de vesículas mediante el complejo SNARE. La liberación de glutamato a través del complejo SNARE y VGLUT1 es un proceso estrechamente relacionado. El complejo SNARE es un conjunto de proteínas que desempeña un papel crucial en la fusión de las vesículas sinápticas con la membrana presináptica, permitiendo la liberación de neurotransmisores como el glutamato[150].

El complejo SNARE está compuesto por cuatro subunidades: VAMP (proteína asociada a la membrana de la vesícula), SNAP-25, SYT1 (sintaxina) y NSF (factor sensible a la N-etilmaleimida) [150,165]. Estas subunidades interactúan entre sí para formar un complejo que es esencial para la fusión de las vesículas sinápticas con la membrana presináptica.

VGLUT1 utiliza el gradiente de protones generado por la vacuolar H⁺-ATPasa para impulsar la captación de glutamato en las vesículas [165,166]. Una vez que las vesículas están llenas de glutamato, se liberan desde el terminal presináptico a través de la fusión mediada por el complejo SNARE con la membrana presináptica [165,166]. La interacción entre el complejo SNARE y VGLUT1 es crucial para la regulación adecuada de la liberación de glutamato de las vesículas sinápticas. El complejo SNARE proporciona el marco estructural para la fusión de las vesículas sinápticas con la membrana presináptica, mientras que VGLUT1 proporciona la maquinaria molecular para cargar el glutamato en las vesículas.

La desregulación en el complejo SNARE se ha asociado con la pérdida de liberación vesicular de glutamato en las células de Müller, a través de la regulación negativa in vivo del complejo SNARE [148]. En congruencia con lo esperado los análisis de RNAseq demostraron una expresión a la baja de SYT1, que es parte fundamental del complejo SNARE. SYT1 es esencial para la fusión de las vesículas sinápticas con la membrana presináptica [167] y funciona como un sensor de calcio que interactúa con el complejo SNARE y las membranas lipídicas para coordinar la liberación de neurotransmisores. Este proceso se destaca por varios puntos importantes: su estructura, siendo una proteína transmembranal con un dominio C2 que se vincula al complejo SNARE y a las membranas lipídicas; su función como sensor de calcio, desencadenando la fusión de las vesículas sinápticas con la membrana presináptica; sus interacciones, mediante el dominio C2 que se une a las proteínas SNARE y a las membranas lipídicas; su mecanismo, donde crea un estado preaplicado para la fusión y se reorienta al aumentar el calcio para desplazar el complejo SNARE y provocar la fusión. Además, su papel en la transmisión vesicular es crítico, regulando la fusión de vesículas para asegurar una liberación sincronizada de neurotransmisores en respuesta al flujo de calcio [167].

Nuestros resultados sugieren la asociación entre la regulación a la baja de SYT1 y los niveles más bajos de concentración extracelular de glutamato en las células MIO-M1-Q64. A fin de determinar esto sobreexpresamos a la proteína SYT1 en células MIO-M1-Q64 y al medir los niveles de liberación de glutamato (glutamato extracelular) estos revirtieron sus valores.

En este sentido, proponemos el modelo asociado con la patología SCA7 ilustrado figura 42, en donde la expresión del mRNA-ATXN7-SCA7 con la expansión de repetidos CAG induce su agregación y el secuestro de factores proteicos que pueden interactuar con él. Así hnRNPA2B1 es secuestrada en agregados de mRNA-ATXN7-SCA7 lo que induce cambios en el splicing de *SLC17A7* que son mediados por hnRNPA2B1. Esto induce un incremento en la inclusión del exón 10 que codificaría a la proteína transportadora de glutamato vesicular VGLUT1+EX10 y que tiene una afinidad conservada para el transporte de glutamato (Figura 42 A). Así el glutamato introducido por la glia mediante los transportadores EAATs será incluido en vesículas gracias a la mayor presencia de VGLUT1+EX10, sin embargo, la baja en la expresión de SYT1 que forma parte del complejo SNARE impediría la liberación de las vesículas cargadas de glutamato lo que induce un aumento en las concentraciones de glutamato intracelular (Figura 42 C).

Figura 42. A) Modelo de alteraciones en el empalme alternativo de SLC17A7 dado por el secuestro de hnRNPA2B1 en agregados de mRNA-ATXN7-SCA7 y modelo de la participación de VGLUT1 en un contexto de B) homeostasis o C) SCA7.

8. Perspectivas

Este estudio proporciona una nueva visión sobre los mecanismos patogénicos en SCA7, demostrando que el mRNA mutante de *ATXN7* no solo forma agregados tóxicos, sino que también secuestra proteínas esenciales como hnRNPA2B1, alterando el empalme alternativo de genes críticos como *SLC17A7*. La disfunción resultante en el transporte vesicular de glutamato, mediada por VGLUT1 y el complejo SNARE, contribuye a la alteración en los niveles de glutamato extracelular e intracelular, exacerbando los efectos excitotóxicos observados en SCA7. Sin embargo, aún quedan diversas preguntas por responder.

Durante el proceso de determinación del interactoma de mRNA-ATXN7-SCA7 se determinaron 155 proteínas, sin embargo, solamente una, hnRNPA2B1, ha sido explorada en este trabajo, por lo que las comprobaciones de la interacciones o secuestro de dichas proteínas en los agregados de RNA, así como el efecto funcional de su secuestro aún deben ser dilucidados.

Cabe destacar el subconjunto más poblado resultante del mapa de interacciones del interactoma de mRNA-ATXN7-SCA7 corresponde a proteínas implicadas en procesos de oxido-reducción, con funciones protectoras ante el estrés oxidativo, por lo que su secuestro en los agregados de RNA podría implicar una mayor vulnerabilidad ante especies reactivas de oxígeno y a procesos de estrés oxidativo, que ya han sido reportados en la patología SCA7 por lo que su dilucidación es importante a considerar.

Por su parte, el segundo subconjunto más poblado formado por hnRNPs tiene un vínculo directo a la neurodegeneración mediado por diversos estudios en donde su disfunción se asocia directamente a enfermedades neurodegenerativas como lo son Alzheimer, ALS y DFT. En este sentido la participación de las diferentes hnRNPs en la patología de SCA7 serían de interés para la determinación de los procesos patológicos asociados a la neurodegeneración.

En otro sentido, asociamos el control de hnRNPA2B1 en procesos de splicing alternativo, y en específico en el control de la inclusión o exclusión del exón 10 de SLC17A7, sin embargo, las confirmaciones directas de dicho control quedan aún por resolverse, estudios adicionales son necesarios, como mutaciones puntuales en el sitio de reconocimiento de hnRNPA2B1 en SLC17A7, la sobreexpresión de hnRNPA2B, o la eliminación del sitio de unión de hnRNPA2B1 en el mRNA-ATXN7-SCA7.

Además, el control que pudiera ejercer hnRNPA2B1 sobre el splicing alternativo de otros genes en el contexto especifico de nuestro modelo celular queda por dilucidar. Estudios de secuenciación de RNA a una mayor profundidad o el desarrollo de chips de microarreglos que permitan analizar cambios en splicing de transcriptoma son necesarios.

La alteración en la inclusión o exclusión del exón 10 en SLC17A7 que pueda tener sobre la estructura y función de VGLUT1 ha sido explorada de manera preliminar, sin embargo, aún es necesario confirmar la presencia de esta isoforma, confirmar su secuencia a nivel de RNA y a nivel de proteína y determinar mediante estudios estructurales experimentales los cambios sugeridos en su estructura, así como mediante estudios de afinidad su capacidad de unión y transporte de solutos como el glutamato.

Nuestros estudios muestran una alteración en la liberación de glutamato por vías vesiculares, dada la asociación directa de SYT1 que se encuentra expresado a la baja y su funcionalidad como sensor de calcio; es necesario considerar las alteraciones probables en el transporte y homeostasis del calcio y sus repercusiones en la patología SCA7.

Además, nuestro estudio se encuentra limitado a un tipo celular específico, glía de Müller, por lo que es necesario dilucidar si este efecto que hemos descrito se encuentra en otros tipos celulares asociados a SCA7 como células de Purkinje, glía de Bergman, células ovaladas y fotorreceptoras. Considerando la función de las células MIO-M1 como glía de Müller, es necesario dilucidar dichos mecanismos en co-cultivos con células excitables, para determinar su papel en la neurodegeneración. Es necesario del mismo modo dilucidar este mecanismo en modelos *in vivo* de la patología SCA7 y en especial aquellos asociados a retinopatía como lo son R7E, Prp SCA7-c92Q, SCA7^{266Q/5Q} y SCA7^{100Q/100Q}.

9. Conclusiones

Diferentes conclusiones pueden ser obtenidas del presente trabajo. En primer lugar, se ha confirmado la presencia de agregados de mRNA-ATXN7-SCA7 en células MIO-M1-Q64, lo que respalda hallazgos previos que sugieren la formación de agregados de RNA en diversos contextos celulares relacionados con la ataxia espinocerebelosa tipo 7 (SCA7). Esta observación fortalece la idea de que la formación de agregados de RNA puede ser un proceso clave en la patogénesis de esta enfermedad.

Además, se ha identificado la interacción entre mRNA-ATXN7-SCA7 y hnRNPA2B1, una ribonucleoproteína nuclear heterogénea que desempeña roles importantes en el procesamiento del RNA y está vinculada a trastornos neurodegenerativos. Esta interacción sugiere que el secuestro de hnRNPA2B1 en los agregados de RNA podría afectar diversos procesos celulares, incluido el empalme alternativo y la poliadenilación, lo que podría tener consecuencias significativas en la patología de SCA7.

Un hallazgo adicional es la alteración en el empalme alternativo de *SLC17A7* (VGLUT1) mediada por el secuestro de hnRNPA2B1 en los agregados de mRNA-ATXN7-SCA7. Esta alteración podría afectar la función de VGLUT1, un transportador de glutamato crucial en la neurotransmisión, lo que podría contribuir a la excitotoxicidad y la degeneración neuronal observada en SCA7.

Finalmente, se ha observado una disminución en la expresión de SYT1, una parte esencial del complejo SNARE implicado en la regulación de la liberación de glutamato. Esta disminución sugiere que los cambios en el empalme alternativo de SLC17A7 podrían estar asociados con una regulación alterada de la liberación de glutamato en células MIO-M1-Q64, lo que podría contribuir aún más a la excitotoxicidad y la degeneración neuronal en el contexto de SCA7.

Estos hallazgos apuntan a una interacción compleja entre la formación de agregados de RNA, la regulación del empalme alternativo y la liberación de neurotransmisores, que pueden contribuir de manera significativa a la patogénesis de la ataxia espinocerebelosa tipo 7. Estos resultados proporcionan una base sólida para futuras investigaciones sobre los mecanismos moleculares subyacentes a esta enfermedad neurodegenerativa y pueden tener implicaciones importantes para el desarrollo de enfoques terapéuticos dirigidos a estos procesos específicos.

10. Referencias

- [1] Lebre, A.-S. y Brice, A. (2003). Spinocerebellar ataxia 7 (SCA7). *Cytogenetic and Genome Research*. https://doi.org/10.1159/000072850.
- [2] David, G. (1998). Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). *Human Molecular Genetics*. https://doi.org/10.1093/hmg/7.2.165.
- [3] Velázquez-Pérez, L. *et al.* (2015). A comprehensive clinical and genetic study of a large Mexican population with spinocerebellar ataxia type 7. *neurogenetics*. https://doi.org/10.1007/s10048-014-0424-y.
- [4] Filla, A. *et al.* (2000). Relative Frequencies of CAG Expansions in Spinocerebellar Ataxia and Dentatorubropallidoluysian Atrophy in 116 Italian Families. *European Neurology*. https://doi.org/10.1159/000008189.
- [5] Storey, E. *et al.* (2000). Frequency of spinocerebellar ataxia types 1, 2, 3, 6, and 7 in Australian patients with spinocerebellar ataxia. *American Journal of Medical Genetics*. https://doi.org/10.1002/1096-8628(20001211)95:4<351::AID-AJMG10>3.0.CO;2-R.
- [6] La Spada, A.R. (1993). Spinocerebellar Ataxia Type 7.
- [7] Goswami, R. *et al.* (2022). The Molecular Basis of Spinocerebellar Ataxia Type 7.
 Frontiers in Neuroscience. https://doi.org/10.3389/fnins.2022.818757.
- [8] Michalik, A. *et al.* (2004). Spinocerebellar ataxia type 7 associated with pigmentary retinal dystrophy. *European Journal of Human Genetics*. https://doi.org/10.1038/sj.ejhg.5201108.
- [9] Martin, J.-J. *et al.* (1999). Spinocerebellar ataxia type 7 (SCA7) correlations between phenotype and genotype in one large Belgian family. *Journal of the Neurological Sciences.* https://doi.org/10.1016/S0022-510X(99)00176-8.
- [10] Johansson, J. (1998). Expanded CAG repeats in Swedish spinocerebellar ataxia type
 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. *Human Molecular Genetics.* https://doi.org/10.1093/hmg/7.2.171.
- [11] Usdin, K. et al. (2015). Repeat instability during DNA repair: Insights from model systems. Critical Reviews in Biochemistry and Molecular Biology. https://doi.org/10.3109/10409238.2014.999192.

- [12] López Castel, A. et al. (2010). Repeat instability as the basis for human diseases and as a potential target for therapy. Nature Reviews Molecular Cell Biology. https://doi.org/10.1038/nrm2854.
- [13] Trang, H. *et al.* (2015). Massive CAG Repeat Expansion and Somatic Instability in Maternally Transmitted Infantile Spinocerebellar Ataxia Type 7. *JAMA Neurology*. https://doi.org/10.1001/jamaneurol.2014.1902.
- [14] Benton, C.S. *et al.* (1998). Molecular and clinical studies in SCA-7 define a broad clinical spectrum and the infantile phenotype. *Neurology*. https://doi.org/10.1212/WNL.51.4.1081.
- [15] Mohan, R.D. et al. (2014). The expanding role for chromatin and transcription in polyglutamine disease. Current Opinion in Genetics & Development. https://doi.org/10.1016/j.gde.2014.06.008.
- [16] Ansorge, O. *et al.* (2004). Ataxin-7 aggregation and ubiquitination in infantile SCA7 with
 180 CAG repeats. *Annals of Neurology*. https://doi.org/10.1002/ana.20230.
- [17] van de Warrenburg, B.P.C. *et al.* (2001). Striking anticipation in spinocerebellar ataxia
 type 7: the infantile phenotype. *Journal of Neurology*.
 https://doi.org/10.1007/s004150170082.
- [18] David, G. *et al.* (1997). Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. *Nature Genetics*. https://doi.org/10.1038/ng0997-65.
- [19] Jonasson, J. et al. (2002). Expression of ataxin-7 in CNS and non-CNS tissue of normal and SCA7 individuals. Acta Neuropathologica. https://doi.org/10.1007/s00401-001-0514-4.
- [20] Mauger, C. et al. (1999). Identification and localization of ataxin-7 in brain and retina of a patient with cerebellar ataxia type II using anti-peptide antibody. *Molecular Brain Research*. https://doi.org/10.1016/S0169-328X(99)00256-9.
- [21] Cancel, G. (2000). Distribution of ataxin-7 in normal human brain and retina. *Brain*. https://doi.org/10.1093/brain/123.12.2519.
- [22] Lindenberg, K.S. *et al.* (2000). Expression Analysis of Ataxin-7 mRNA and Protein in Human Brain: Evidence for a Widespread Distribution and Focal Protein Accumulation. *Brain Pathology.* https://doi.org/10.1111/j.1750-3639.2000.tb00270.x.

- [23] Ström, A.-L. *et al.* (2002). Cloning and expression analysis of the murine homolog of the spinocerebellar ataxia type 7 (SCA7) gene. *Gene.* https://doi.org/10.1016/S0378-1119(02)00399-2.
- [24] Einum, D.D. et al. (2003). A Novel Central Nervous System–Enriched Spinocerebellar Ataxia Type 7 Gene Product. Archives of Neurology. https://doi.org/10.1001/archneur.60.1.97.
- [25] Helmlinger, D. et al. (2004). Ataxin-7 is a subunit of GCN5 histone acetyltransferasecontaining complexes. Human molecular genetics. https://doi.org/10.1093/hmg/ddh139.
- [26] Sanders, S.L. *et al.* (2002). Proteomics of the Eukaryotic Transcription Machinery: Identification of Proteins Associated with Components of Yeast TFIID by Multidimensional Mass Spectrometry. *Molecular and Cellular Biology*. https://doi.org/10.1128/MCB.22.13.4723-4738.2002.
- [27] Scheel, H. (2003). Elucidation of ataxin-3 and ataxin-7 function by integrative bioinformatics. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddg297.
- [28] Palhan, V.B. et al. (2005). Polyglutamine-expanded ataxin-7 inhibits STAGA histone acetyltransferase activity to produce retinal degeneration. *Proceedings of the National Academy of Sciences*. https://doi.org/10.1073/pnas.0503505102.
- [29] McMahon, S.J. et al. (2005). Polyglutamine-expanded spinocerebellar ataxia-7 protein disrupts normal SAGA and SLIK histone acetyltransferase activity. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0503493102.
- [30] Carrillo-Rosas, S. *et al.* (2019). Loss of zebrafish Ataxin-7, a SAGA subunit responsible for SCA7 retinopathy, causes ocular coloboma and malformation of photoreceptors. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddy401.
- [31] Niewiadomska-Cimicka, A. y Trottier, Y. (2019). Molecular Targets and Therapeutic Strategies in Spinocerebellar Ataxia Type 7. Neurotherapeutics. https://doi.org/10.1007/s13311-019-00778-5.
- [32] Bonnet, J. et al. (2014). The SAGA coactivator complex acts on the whole transcribed genome and is required for RNA polymerase II transcription. Genes & Development. https://doi.org/10.1101/gad.250225.114.

- [33] Lee, K.K. et al. (2009). Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. *Epigenetics & Chromatin*. https://doi.org/10.1186/1756-8935-2-2.
- [34] Samara, N.L. *et al.* (2010). Structural Insights into the Assembly and Function of the SAGA Deubiquitinating Module. *Science*. https://doi.org/10.1126/science.1190049.
- [35] Köhler, A. et al. (2010). Structural Basis for Assembly and Activation of the Heterotetrameric SAGA Histone H2B Deubiquitinase Module. Cell. https://doi.org/10.1016/j.cell.2010.04.026.
- [36] Köhler, A. *et al.* (2008). Yeast Ataxin-7 links histone deubiquitination with gene gating and mRNA export. *Nature Cell Biology*. https://doi.org/10.1038/ncb1733.
- [37] Mohan, R.D. et al. (2014). Loss of Drosophila Ataxin-7, a SAGA subunit, reduces H2B ubiquitination and leads to neural and retinal degeneration. Genes & Development. https://doi.org/10.1101/gad.225151.113.
- [38] Bonnet, J. et al. (2010). The structural plasticity of SCA7 domains defines their differential nucleosome-binding properties. EMBO reports. https://doi.org/10.1038/embor.2010.98.
- [39] McCormick, M.A. et al. (2014). The SAGA Histone Deubiquitinase Module Controls Yeast Replicative Lifespan via Sir2 Interaction. Cell Reports. https://doi.org/10.1016/j.celrep.2014.06.037.
- [40] Mason, A.G. et al. (2017). The replicative lifespan-extending deletion of SGF73 results in altered ribosomal gene expression in yeast. Aging Cell. https://doi.org/10.1111/acel.12611.
- [41] Wang, L. y YR Dent, S. (2014). Functions of SAGA in development and disease. *Epigenomics.* https://doi.org/10.2217/epi.14.22.
- [42] Weake, V.M. *et al.* (2008). SAGA-mediated H2B deubiquitination controls the development of neuronal connectivity in the Drosophila visual system. *The EMBO Journal*. https://doi.org/10.1038/sj.emboj.7601966.
- [43] Wilde, J.J. et al. (2017). Diencephalic Size Is Restricted by a Novel Interplay Between GCN5 Acetyltransferase Activity and Retinoic Acid Signaling. *The Journal of Neuroscience*. https://doi.org/10.1523/JNEUROSCI.2121-16.2017.

- [44] Yanicostas, C. et al. (2012). Requirement for Zebrafish Ataxin-7 in Differentiation of Photoreceptors and Cerebellar Neurons. PLoS ONE. https://doi.org/10.1371/journal.pone.0050705.
- [45] Nakamura, Y. *et al.* (2012). Ataxin-7 associates with microtubules and stabilizes the cytoskeletal network. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddr539.
- [46] Kahle, J.J. *et al.* (2011). Comparison of an expanded ataxia interactome with patient medical records reveals a relationship between macular degeneration and ataxia. *Human Molecular Genetics.* https://doi.org/10.1093/hmg/ddq496.
- [47] Fournier, M. et al. (2016). KAT2A/KAT2B-targeted acetylome reveals a role for PLK4 acetylation in preventing centrosome amplification. Nature Communications. https://doi.org/10.1038/ncomms13227.
- [48] Shao, J. y Diamond, M.I. (2007). Polyglutamine diseases: emerging concepts in pathogenesis and therapy. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddm213.
- [49] Yoo, S.-Y. et al. (2003). SCA7 Knockin Mice Model Human SCA7 and Reveal Gradual Accumulation of Mutant Ataxin-7 in Neurons and Abnormalities in Short-Term Plasticity. *Neuron.* https://doi.org/10.1016/S0896-6273(02)01190-X.
- [50] Yvert, G. (2001). SCA7 mouse models show selective stabilization of mutant ataxin-7 and similar cellular responses in different neuronal cell types. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/10.16.1679.
- [51] Rüb, U. et al. (2005). Spinocerebellar Ataxia Type 7 (SCA7): First Report of a Systematic Neuropathological Study of the Brain of a Patient with a Very Short Expanded CAG-Repeat. Brain Pathology. https://doi.org/10.1111/j.1750-3639.2005.tb00113.x.
- [52] Garden, G.A. *et al.* (2002). Polyglutamine-Expanded Ataxin-7 Promotes Non-Cell-Autonomous Purkinje Cell Degeneration and Displays Proteolytic Cleavage in Ataxic Transgenic Mice. *The Journal of Neuroscience*. https://doi.org/10.1523/JNEUROSCI.22-12-04897.2002.
- [53] Yvert, G. (2000). Expanded polyglutamines induce neurodegeneration and transneuronal alterations in cerebellum and retina of SCA7 transgenic mice. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/9.17.2491.

- [54] Young, J.E. et al. (2007). Proteolytic Cleavage of Ataxin-7 by Caspase-7 Modulates Cellular Toxicity and Transcriptional Dysregulation. *Journal of Biological Chemistry*. https://doi.org/10.1074/jbc.M705265200.
- [55] Guyenet, S.J. et al. (2015). Proteolytic cleavage of ataxin-7 promotes SCA7 retinal degeneration and neurological dysfunction. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddv121.
- [56] Mookerjee, S. et al. (2009). Posttranslational Modification of Ataxin-7 at Lysine 257 Prevents Autophagy-Mediated Turnover of an N-Terminal Caspase-7 Cleavage Fragment. The Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.4720-09.2009.
- [57] Janer, A. et al. (2010). SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddp478.
- [58] Takahashi, J. (2002). Two populations of neuronal intranuclear inclusions in SCA7 differ in size and promyelocytic leukaemia protein content. Brain. https://doi.org/10.1093/brain/awf154.
- [59] Takahashi, J. *et al.* (2003). PML nuclear bodies and neuronal intranuclear inclusion in polyglutamine diseases. *Neurobiology of Disease*. https://doi.org/10.1016/S0969-9961(03)00080-9.
- [60] Janer, A. et al. (2006). PML clastosomes prevent nuclear accumulation of mutant ataxin-7 and other polyglutamine proteins. The Journal of Cell Biology. https://doi.org/10.1083/jcb.200511045.
- [61] Chort, A. et al. (2013). Interferon beta induces clearance of mutant ataxin 7 and improves locomotion in SCA7 knock-in mice. Brain. https://doi.org/10.1093/brain/awt061.
- [62] Karam, A. y Trottier, Y. (2018). Molecular Mechanisms and Therapeutic Strategies in Spinocerebellar Ataxia Type 7, pp. 197–218.
- [63] La Spada, A.R. *et al.* (2001). Polyglutamine-Expanded Ataxin-7 Antagonizes CRX Function and Induces Cone-Rod Dystrophy in a Mouse Model of SCA7. *Neuron*. https://doi.org/10.1016/S0896-6273(01)00422-6.

- [64] Helmlinger, D. et al. (2006). Glutamine-Expanded Ataxin-7 Alters TFTC/STAGA Recruitment and Chromatin Structure Leading to Photoreceptor Dysfunction. PLoS Biology. https://doi.org/10.1371/journal.pbio.0040067.
- [65] Abou-Sleymane, G. et al. (2006). Polyglutamine expansion causes neurodegeneration by altering the neuronal differentiation program. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddi483.
- [66] Chou, A.-H. *et al.* (2010). Polyglutamine-expanded ataxin-7 causes cerebellar dysfunction by inducing transcriptional dysregulation. *Neurochemistry International*. https://doi.org/10.1016/j.neuint.2009.11.003.
- [67] McCullough, S.D. et al. (2012). Reelin is a target of polyglutamine expanded ataxin-7 in human spinocerebellar ataxia type 7 (SCA7) astrocytes. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1218331110.
- [68] Lan, X. et al. (2015). Poly(Q) Expansions in ATXN7 Affect Solubility but Not Activity of the SAGA Deubiquitinating Module. *Molecular and Cellular Biology*. https://doi.org/10.1128/MCB.01454-14.
- [69] Yang, H. et al. (2015). Aggregation of Polyglutamine-expanded Ataxin 7 Protein Specifically Sequesters Ubiquitin-specific Protease 22 and Deteriorates Its Deubiquitinating Function in the Spt-Ada-Gcn5-Acetyltransferase (SAGA) Complex. *Journal of Biological Chemistry*. https://doi.org/10.1074/jbc.M114.631663.
- [70] Tan, J.Y. et al. (2014). Cross-talking noncoding RNAs contribute to cell-specific neurodegeneration in SCA7. Nature Structural & Molecular Biology. https://doi.org/10.1038/nsmb.2902.
- [71] Ström, A.-L. *et al.* (2005). A role for both wild-type and expanded ataxin-7 in transcriptional regulation. *Neurobiology of Disease*. https://doi.org/10.1016/j.nbd.2005.04.018.
- [72] Ajayi, A. *et al.* (2012). Expanded ataxin-7 cause toxicity by inducing ROS production from NADPH oxidase complexes in a stable inducible Spinocerebellar ataxia type 7 (SCA7) model. *BMC Neuroscience*. https://doi.org/10.1186/1471-2202-13-86.
- [73] Yefimova, M.G. et al. (2010). Polyglutamine toxicity induces rod photoreceptor division, morphological transformation or death in Spinocerebellar ataxia 7 mouse retina. *Neurobiology of Disease*. https://doi.org/10.1016/j.nbd.2010.06.005.

- [74] Forsgren, L. et al. (1996). Muscle morphology and mitochondrial investigations of a family with autosomal dominant cerebellar ataxia and retinal degeneration mapped to chromosome 3p12-p21.1. Journal of the Neurological Sciences. https://doi.org/10.1016/S0022-510X(96)00187-6.
- [75] Nalavade, R. *et al.* (2013). Mechanisms of RNA-induced toxicity in CAG repeat disorders. *Cell Death & Disease*. https://doi.org/10.1038/cddis.2013.276.
- [76] Napierala, M. y Krzyzosiak, W.J. (1997). CUG Repeats Present in Myotonin Kinase RNA Form Metastable "Slippery" Hairpins. *Journal of Biological Chemistry*. https://doi.org/10.1074/jbc.272.49.31079.
- [77] Galvão, R. et al. (2001). Triplet repeats, RNA secondary structure and toxic gain-offunction models for pathogenesis. Brain Research Bulletin. https://doi.org/10.1016/S0361-9230(01)00651-7.
- [78] Sobczak, K. (2003). RNA structure of trinucleotide repeats associated with human neurological diseases. *Nucleic Acids Research*. https://doi.org/10.1093/nar/gkg766.
- [79] Sobczak, K. y Krzyzosiak, W.J. (2004). Imperfect CAG Repeats Form Diverse Structures in SCA1 Transcripts. *Journal of Biological Chemistry*. https://doi.org/10.1074/jbc.M405130200.
- [80] Kiliszek, A. *et al.* (2010). Atomic resolution structure of CAG RNA repeats: structural insights and implications for the trinucleotide repeat expansion diseases. *Nucleic Acids Research.* https://doi.org/10.1093/nar/gkq700.
- [81] Ho, T.H. et al. (2004). Muscleblind proteins regulate alternative splicing. The EMBO Journal. https://doi.org/10.1038/sj.emboj.7600300.
- [82] Kino, Y. (2004). Muscleblind protein, MBNL1/EXP, binds specifically to CHHG repeats. Human Molecular Genetics. https://doi.org/10.1093/hmg/ddh056.
- [83] Wang, E.T. *et al.* (2012). Transcriptome-wide Regulation of Pre-mRNA Splicing and mRNA Localization by Muscleblind Proteins. *Cell.* https://doi.org/10.1016/j.cell.2012.06.041.
- [84] Warf, M.B. et al. (2009). The protein factors MBNL1 and U2AF65 bind alternative RNA structures to regulate splicing. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0900342106.
- [85] Yuan, Y. *et al.* (2007). Muscleblind-like 1 interacts with RNA hairpins in splicing target and pathogenic RNAs. *Nucleic Acids Research*. https://doi.org/10.1093/nar/gkm601.

- [86] Miller, J.W. (2000). Recruitment of human muscleblind proteins to (CUG)n expansions associated with myotonic dystrophy. *The EMBO Journal*. https://doi.org/10.1093/emboj/19.17.4439.
- [87] Fardaei, M. (2001). In vivo co-localisation of MBNL protein with DMPK expanded-repeat transcripts. *Nucleic Acids Research*. https://doi.org/10.1093/nar/29.13.2766.
- [88] Mankodi, A. (2001). Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/10.19.2165.
- [89] Jiang, H. et al. (2004). Myotonic dystrophy type 1 is associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins and deregulated alternative splicing in neurons. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddh327.
- [90] Jog, S.P. et al. (2012). RNA Splicing Is Responsive to MBNL1 Dose. PLoS ONE. https://doi.org/10.1371/journal.pone.0048825.
- [91] Lin, X. *et al.* (2006). Failure of MBNL1-dependent post-natal splicing transitions in myotonic dystrophy. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddl132.
- [92] de Mezer, M. et al. (2011). Mutant CAG repeats of Huntingtin transcript fold into hairpins, form nuclear foci and are targets for RNA interference. Nucleic Acids Research. https://doi.org/10.1093/nar/gkq1323.
- [93] Mykowska, A. et al. (2011). CAG repeats mimic CUG repeats in the misregulation of alternative splicing. Nucleic Acids Research. https://doi.org/10.1093/nar/gkr608.
- [94] Li, L.-B. *et al.* (2008). RNA toxicity is a component of ataxin-3 degeneration in Drosophila. *Nature*. https://doi.org/10.1038/nature06909.
- [95] Tsoi, H. y Chan, H.Y.E. (2013). Expression of Expanded CAG Transcripts Triggers Nucleolar Stress in Huntington's Disease. The Cerebellum. https://doi.org/10.1007/s12311-012-0447-6.
- [96] Tsoi, H. et al. (2012). CAG expansion induces nucleolar stress in polyglutamine diseases. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.1204089109.
- [97] Zhang, Y. y Lu, H. (2009). Signaling to p53: Ribosomal Proteins Find Their Way. *Cancer Cell*. https://doi.org/10.1016/j.ccr.2009.09.024.

- [98] van Eyk, C.L. *et al.* (2011). Perturbation of the Akt/Gsk3-β signalling pathway is common to Drosophila expressing expanded untranslated CAG, CUG and AUUCU repeat RNAs. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddr177.
- [99] TIAN, B. et al. (2000). Expanded CUG repeat RNAs form hairpins that activate the double-stranded RNA-dependent protein kinase PKR. RNA. https://doi.org/10.1017/S1355838200991544.
- [100] Handa, V. (2003). The fragile X syndrome repeats form RNA hairpins that do not activate the interferon-inducible protein kinase, PKR, but are cut by Dicer. *Nucleic Acids Research*. https://doi.org/10.1093/nar/gkg818.
- [101] Bañez-Coronel, M. et al. (2012). A Pathogenic Mechanism in Huntington's Disease Involves Small CAG-Repeated RNAs with Neurotoxic Activity. PLoS Genetics. https://doi.org/10.1371/journal.pgen.1002481.
- [102] Krauß, S. et al. (2013). Translation of HTT mRNA with expanded CAG repeats is regulated by the MID1–PP2A protein complex. Nature Communications. https://doi.org/10.1038/ncomms2514.
- [103] Chen, S. (2003). Interference of Crx-dependent transcription by ataxin-7 involves interaction between the glutamine regions and requires the ataxin-7 carboxy-terminal region for nuclear localization. *Human Molecular Genetics*. https://doi.org/10.1093/hmg/ddh005.
- [104] Marc, R.E. y Jones, B.W. (2003). Retinal Remodeling in Inherited Photoreceptor Degenerations. *Molecular Neurobiology*. https://doi.org/10.1385/MN:28:2:139.
- [105] Merienne, K. et al. (2007). Preventing polyglutamine-induced activation of c-Jun delays neuronal dysfunction in a mouse model of SCA7 retinopathy. *Neurobiology of Disease*. https://doi.org/10.1016/j.nbd.2006.11.002.
- [106] Merienne, K. et al. (2003). Polyglutamine Expansion Induces a Protein-damaging Stress Connecting Heat Shock Protein 70 to the JNK Pathway. *Journal of Biological Chemistry*. https://doi.org/10.1074/jbc.M212049200.
- [107] Custer, S.K. *et al.* (2006). Bergmann glia expression of polyglutamine-expanded ataxin-7 produces neurodegeneration by impairing glutamate transport. *Nature Neuroscience*. https://doi.org/10.1038/nn1750.

- [108] Noma, S. *et al.* (2012). Overexpression of HGF attenuates the degeneration of Purkinje cells and Bergmann glia in a knockin mouse model of spinocerebellar ataxia type 7. *Neuroscience Research.* https://doi.org/10.1016/j.neures.2012.03.001.
- [109] Furrer, S.A. et al. (2011). Spinocerebellar Ataxia Type 7 Cerebellar Disease Requires the Coordinated Action of Mutant Ataxin-7 in Neurons and Glia, and Displays Non-Cell-Autonomous Bergmann Glia Degeneration. The Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.4000-11.2011.
- [110] Martin, J.-J. (2012). Spinocerebellar ataxia type 7, pp. 475–491.
- [111] Horton, L.C. *et al.* (2013). Spinocerebellar Ataxia Type 7: Clinical Course, Phenotype– Genotype Correlations, and Neuropathology. *The Cerebellum*. https://doi.org/10.1007/s12311-012-0412-4.
- [112] Benomar, A. et al. (1994). Autosomal-dominant cerebellar ataxia with retinal degeneration (ADCA type II) is genetically different from ADCA type I. Annals of Neurology. https://doi.org/10.1002/ana.410350411.
- [113] Lebon, C. et al. (2019). Cell Death Mechanisms in a Mouse Model of Retinal Degeneration in Spinocerebellar Ataxia 7. Neuroscience. https://doi.org/10.1016/j.neuroscience.2018.12.051.
- [114] Suárez-Sánchez, R. *et al.* (2022). RNA Foci Formation in a Retinal Glial Model for Spinocerebellar Ataxia Type 7. *Life*. https://doi.org/10.3390/life13010023.
- [115] Miller, W.P. et al. (2020). The stress response protein REDD1 promotes diabetesinduced oxidative stress in the retina by Keap1-independent Nrf2 degradation. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.RA120.013093.
- [116] López-Colomé, A.M. et al. (2016). Glutamate Receptor Stimulation Up-Regulates Glutamate Uptake in Human Müller Glia Cells. Neurochemical Research. https://doi.org/10.1007/s11064-016-1895-z.
- [117] Lawrence, J.M. et al. (2007). MIO-M1 Cells and Similar Müller Glial Cell Lines Derived from Adult Human Retina Exhibit Neural Stem Cell Characteristics. Stem Cells. https://doi.org/10.1634/stemcells.2006-0724.
- [118] Limb, G.A. *et al.* (2002). In vitro characterization of a spontaneously immortalized human Müller cell line (MIO-M1). *Investigative ophthalmology & visual science*.
- [119] Urbanek, M.O. *et al.* (2016). Nuclear speckles are detention centers for transcripts containing expanded CAG repeats. *Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.* https://doi.org/10.1016/j.bbadis.2016.05.015.
- [120] Dotu, I. *et al.* (2014). Energy Parameters and Novel Algorithms for an Extended Nearest Neighbor Energy Model of RNA. *PLoS ONE*. https://doi.org/10.1371/journal.pone.0085412.
- [121] Gruber, A.R. *et al.* (2008). The Vienna RNA Websuite. *Nucleic Acids Research*. https://doi.org/10.1093/nar/gkn188.
- [122] Barrera-Rojas, J. et al. (2023). An Initial Proteomic Analysis of Biogas-Related Metabolism of Euryarchaeota Consortia in Sediments from the Santiago River, México. *Microorganisms*. https://doi.org/10.3390/microorganisms11071640.
- [123] Rojas-Gutiérrez, O. et al. (2021). Giardia intestinalis coiled-coil cytolinker protein 259 interacts with actin and tubulin. Parasitology Research. https://doi.org/10.1007/s00436-021-07062-6.
- [124] Li, G. *et al.* (2009). Database searching and accounting of multiplexed precursor and product ion spectra from the data independent analysis of simple and complex peptide mixtures. *PROTEOMICS*. https://doi.org/10.1002/pmic.200800564.
- [125] Käll, L. et al. (2008). Assigning Significance to Peptides Identified by Tandem Mass Spectrometry Using Decoy Databases. Journal of Proteome Research. https://doi.org/10.1021/pr700600n.
- [126] Zheng, W. et al. (2021). Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods. https://doi.org/10.1016/j.crmeth.2021.100014.
- [127] Humphrey, W. et al. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics. https://doi.org/https://doi.org/10.1016/0263-7855(96)00018-5.
- [128] Phillips, J.C. *et al.* (2005). Scalable molecular dynamics with NAMD. *Journal of computational chemistry*. https://doi.org/10.1002/jcc.20289.
- [129] Vanommeslaeghe, K. y MacKerell, A.D. (2015). CHARMM additive and polarizable force fields for biophysics and computer-aided drug design. *Biochimica et Biophysica Acta (BBA) - General Subjects*. https://doi.org/10.1016/j.bbagen.2014.08.004.

- [130] Pietrancosta, N. *et al.* (2020). Molecular, Structural, Functional, and Pharmacological Sites for Vesicular Glutamate Transporter Regulation. *Molecular Neurobiology*. https://doi.org/10.1007/s12035-020-01912-7.
- [131] Almqvist, J. et al. (2007). Docking and homology modeling explain inhibition of the human vesicular glutamate transporters. Protein Science. https://doi.org/10.1110/ps.072944707.
- [132] Juge, N. et al. (2006). Vesicular Glutamate Transporter Contains Two Independent Transport Machineries. Journal of Biological Chemistry. https://doi.org/10.1074/jbc.M607670200.
- [133] Zoete, V. et al. (2011). SwissParam: A fast force field generation tool for small organic molecules. Journal of Computational Chemistry. https://doi.org/10.1002/jcc.21816.
- [134] Jorgensen, W.L. *et al.* (1983). Comparison of simple potential functions for simulating liquid water. *The Journal of Chemical Physics*. https://doi.org/10.1063/1.445869.
- [135] Abraham, M.J. et al. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. https://doi.org/10.1016/j.softx.2015.06.001.
- [136] Wallace, A.C. *et al.* (1995). LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions. *"Protein Engineering, Design and Selection"*. https://doi.org/10.1093/protein/8.2.127.
- [137] Contreras-García, J. et al. (2011). NCIPLOT: A Program for Plotting Noncovalent Interaction Regions. Journal of Chemical Theory and Computation. https://doi.org/10.1021/ct100641a.
- [138] Metsalu, T. y Vilo, J. (2015). ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. *Nucleic Acids Research*. https://doi.org/10.1093/nar/gkv468.
- [139] Huynen, M. et al. (1997). Assessing the reliability of RNA folding using statistical mechanics. Journal of Molecular Biology. https://doi.org/10.1006/jmbi.1997.0889.
- [140] Ryu, H.G. et al. (2019). HNRNP Q suppresses polyglutamine huntingtin aggregation by post-transcriptional regulation of vaccinia-related kinase 2. Journal of Neurochemistry. https://doi.org/10.1111/jnc.14638.

- [141] Clarke, J.P. et al. (2021). A Comprehensive Analysis of the Role of hnRNP A1 Function and Dysfunction in the Pathogenesis of Neurodegenerative Disease. Frontiers in Molecular Biosciences. https://doi.org/10.3389/fmolb.2021.659610.
- [142] Libner, C.D. et al. (2020). The Potential Contribution of Dysfunctional RNA-Binding Proteins to the Pathogenesis of Neurodegeneration in Multiple Sclerosis and Relevant Models. International Journal of Molecular Sciences. https://doi.org/10.3390/ijms21134571.
- [143] Liu, Y. y Shi, S. (2021). The roles of <scp>hnRNP A2</scp> / <scp>B1</scp> in <scp>RNA</scp> biology and disease. WIREs RNA. https://doi.org/10.1002/wrna.1612.
- [144] Martinez, F.J. et al. (2016). Protein-RNA Networks Regulated by Normal and ALS-Associated Mutant HNRNPA2B1 in the Nervous System. Neuron. https://doi.org/10.1016/j.neuron.2016.09.050.
- [145] Wojcik, S.M. et al. (2004). An essential role for vesicular glutamate transporter 1 (VGLUT1) in postnatal development and control of quantal size. Proceedings of the National Academy of Sciences. https://doi.org/10.1073/pnas.0401764101.
- [146] Montana, V. et al. (2004). Vesicular Glutamate Transporter-Dependent Glutamate Release from Astrocytes. The Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.3770-03.2004.
- [147] Bezzi, P. et al. (2004). Astrocytes contain a vesicular compartment that is competent for regulated exocytosis of glutamate. Nature Neuroscience. https://doi.org/10.1038/nn1246.
- [148] Slezak, M. et al. (2012). Relevance of Exocytotic Glutamate Release from Retinal Glia. Neuron. https://doi.org/10.1016/j.neuron.2012.03.027.
- [149] Ávila-Avilés, R.D. y Hernández-Hernández, J.M. (2023). Ligand- and structure-based identification of GPER-binding small molecules. *Molecular Simulation*. https://doi.org/10.1080/08927022.2023.2171074.
- [150] Araque, A. et al. (2000). SNARE Protein-Dependent Glutamate Release from Astrocytes. The Journal of Neuroscience. https://doi.org/10.1523/JNEUROSCI.20-02-00666.2000.

- [151] Hautke, A. et al. (2023). CAG-Repeat RNA Hairpin Folding and Recruitment to Nuclear Speckles with a Pivotal Role of ATP as a Cosolute. Journal of the American Chemical Society. https://doi.org/10.1021/jacs.2c13653.
- [152] Urbanek, A. et al. (2018). A General Strategy to Access Structural Information at Atomic Resolution in Polyglutamine Homorepeats. Angewandte Chemie International Edition. https://doi.org/10.1002/anie.201711530.
- [153] Geuens, T. *et al.* (2016). The hnRNP family: insights into their role in health and disease. *Human Genetics*. https://doi.org/10.1007/s00439-016-1683-5.
- [154] Han, S.P. *et al.* (2010). Functional diversity of the hnRNPs: past, present and perspectives. *Biochemical Journal*. https://doi.org/10.1042/BJ20100396.
- [155] Sofroniew, M. V. y Vinters, H. V. (2010). Astrocytes: biology and pathology. Acta Neuropathologica. https://doi.org/10.1007/s00401-009-0619-8.
- [156] Landeghem, F.K.H. Van *et al.* (2006). Decreased Expression of Glutamate Transporters in Astrocytes after Human Traumatic Brain Injury. *Journal of Neurotrauma*. https://doi.org/10.1089/neu.2006.23.1518.
- [157] Vesce, S. et al. (1997). HIV-1 gp120 glycoprotein affects the astrocyte control of extracellular glutamate by both inhibiting the uptake and stimulating the release of the amino acid. FEBS Letters. https://doi.org/10.1016/S0014-5793(97)00674-1.
- [158] Sheldon, A.L. y Robinson, M.B. (2007). The role of glutamate transporters in neurodegenerative diseases and potential opportunities for intervention. *Neurochemistry International*. https://doi.org/10.1016/j.neuint.2007.03.012.
- [159] Bezzi, P. *et al.* (2001). CXCR4-activated astrocyte glutamate release via TNFα: amplification by microglia triggers neurotoxicity. *Nature Neuroscience*. https://doi.org/10.1038/89490.
- [160] Hamilton, N.B. y Attwell, D. (2010). Do astrocytes really exocytose neurotransmitters? Nature Reviews Neuroscience. https://doi.org/10.1038/nrn2803.
- [161] Dong, X. et al. (2009). Molecular mechanisms of excitotoxicity and their relevance to pathogenesis of neurodegenerative diseases. Acta Pharmacologica Sinica. https://doi.org/10.1038/aps.2009.24.
- [162] Mahmoud, S. et al. (2019). Astrocytes Maintain Glutamate Homeostasis in the CNS by Controlling the Balance between Glutamate Uptake and Release. Cells. https://doi.org/10.3390/cells8020184.

- [163] Iandiev, I. *et al.* (2007). Localization of aquaporin-0 immunoreactivity in the rat retina. *Neuroscience Letters*. https://doi.org/10.1016/j.neulet.2007.08.036.
- [164] Linnertz, R. et al. (2011). Activation of voltage-gated Na+ and Ca2+ channels is required for glutamate release from retinal glial cells implicated in cell volume regulation. Neuroscience. https://doi.org/10.1016/j.neuroscience.2011.04.058.
- [165] Nakakubo, Y. et al. (2020). Vesicular Glutamate Transporter Expression Ensures High-Fidelity Synaptic Transmission at the Calyx of Held Synapses. Cell Reports. https://doi.org/10.1016/j.celrep.2020.108040.
- [166] Martineau, M. et al. (2017). VGLUT1 functions as a glutamate/proton exchanger with chloride channel activity in hippocampal glutamatergic synapses. Nature Communications. https://doi.org/10.1038/s41467-017-02367-6.
- [167] Park, Y. y Ryu, J. (2018). Models of synaptotagmin-1 to trigger Ca²⁺ -dependent vesicle fusion. *FEBS Letters*. https://doi.org/10.1002/1873-3468.13193.

11. Anexos

11.1 Anexo 1. Tabla de primers y oligonucleótidos

Primers	Secuencia
	Biotin-Oligo
Oligo-1	CCGCGGCCCGCUCCGACAUAGCUAGCGC
Oligo-2	AAGGAAAAUACUGAAGUGGGAGGAACGA
Oligo-Cntr	CAGACUAUGCGUCGACAAGCCAGGCAUU
	PCR primers
Myc-F	
Atxn7-R	
	Splicing alternativo PCR primers
SLC17A7_10_AS_F	GCCAGATCGCGGACTTCCT
SLC17A7_10_AS_R	ACCATGCCCGACAGTGTG
	qPCR primers
ATXN7-qPCR-F	ACAAAGGTTGCCAAAGTGCC
ATXN7-qPCR-R	CTGCAGGCTAGCTCAGGGAC
SYT1-F	AACAGCATGATGAGCCTCCG
SYT1-R	ATTTAACCCGGCGGAGTTGT
SNAP25-F	ACCAGTTGGCTGATGAGTCG
SNAP25-R	ACACGATCGAGTTGTTCTCCT
TBP-F	GCTGTTTAACTTCGCTTCCG
TBP-R	TCCTTGGGTTATCTTCACACG

11.2 Anexo 2. Proteínas identificadas para Oligo control en MIO-M1-Q10

protein. key	protein.Entry	protein.Acce ssion	protein.s core	protein.falsePositi veRate	protein.MatchedP roducts	protein.matchedP eptides	protein.AutoC urate
5379	TBA1B_HUMAN	P68363	41765.98	0	136	13	Green
37936	ROA1_HUMAN	P09651-3	41296.85	0	70	7	Green
3585	ATPA_HUMAN	P25705	40609.06	0	169	19	Green
87848	H3BR27_HUMAN	H3BR27	39742.41	0	52	6	Green
2702	HSP7C_HUMAN	P11142	30674.02	0	196	19	Green
21633	Q5JP53_HUMAN	Q5JP53	24847.72	0	185	18	Green
82552	G3V576_HUMAN	G3V576	23573.62	0	66	5	Green

6284	TBB3_HUMAN	Q13509	22077.45	0	135	16	Green
66042	A0A8V8TNZ0_H	A0A8V8TNZ	19264.89	0	47	9	Green
60369	A0A6Q8PFE4_H	A0A6Q8PFE	18962.06	0	125	13	Green
5271	1433E_HUMAN	4 P62258	18894.12	0	70	7	Green
39984	HNRPK_HUMAN	P61978-3	18496.43	0	81	6	Green
6381	TBB2A_HUMAN	Q13885	17676.34	0	122	13	Green
5307	H4_HUMAN	P62805	17197.51	0	139	7	Green
2459	VIME_HUMAN	P08670	16889.35	0	208	24	Green
2309	ATPB_HUMAN	P06576	16385.27	0	197	22	Green
75493	E9PCY7_HUMA	E9PCY7	16307.08	0	52	5	Green
5381	N TBB4B_HUMAN	P68371	16071.96	0	158	15	Green
3435	ROA2_HUMAN	P22626	15507.53	0	114	11	Green
70824	C9JPM4_HUMA	C9JPM4	15247.74	0	29	6	Green
2192	N TBB4A_HUMAN	P04350	15044.36	0	145	14	Green
2553	H2AZ_HUMAN	P0C0S5	14373.04	0	23	3	Green
5348	1433Z_HUMAN	P63104	14213.03	0	62	6	Green
46800	DDX17_HUMAN	Q92841-1	13628.94	0	78	12	Green
2857	K1C10_HUMAN	P13645	13154.6	0	178	13	Green
1911	LDHA_HUMAN	P00338	12407.49	0	52	8	Green
3646	1433T_HUMAN	P27348	11369.51	0	49	6	Green
2318	ENOA_HUMAN	P06733	11307.7	0	92	11	Green
5012	HNRH2_HUMAN	P55795	11200.8	0	30	6	Green
93232	J3QS39_HUMAN	J3QS39	11149.18	0	26	3	Green
2338	LDHB_HUMAN	P07195	10956.43	0	73	8	Green
83982	H0YA96_HUMAN	H0YA96	10928.48	0	37	5	Green
39608	HNRPM_HUMAN	P52272-2	10623.01	0	56	9	Green
2423	HS90B_HUMAN	P08238	10542.93	0	140	19	Green
3170	DDX5_HUMAN	P17844	10383.28	0	73	13	Green
91842	J3KPX7_HUMAN	J3KPX7	10251.74	0	68	11	Green
63302	A0A804HKV3_H	A0A804HKV	10128.96	0	49	7	Green
5849	PRDX1_HUMAN	Q06830	9250.14	0	63	9	Green
27767	A0A7I2V599_HU MAN	A0A7I2V599	9214.519	0	139	15	Green
5331	PPIA_HUMAN	P62937	9120.02	0	41	6	Green
2266	RLA0_HUMAN	P05388	8935.67	0	44	6	Green
5274	RS18_HUMAN	P62269	8752.95	0	21	4	Green
8952	H2A2B_HUMAN	Q8IUE6	8608.445	0	25	2	Green
36706	HNRPR_HUMAN	O43390-4	8476.719	0	66	10	Green
37795	NPM_HUMAN	P06748-2	8429.851	0	66	5	Green
76205	E9PK01_HUMAN	E9PK01	8412.779	0	38	5	Green
96688	M0R210_HUMAN	M0R210	8395.546	0	24	4	Green
4070	K22E_HUMAN	P35908	8331.544	0	127	15	Green
4792	ROA3_HUMAN	P51991	8127.629	0	52	6	Green
2386	HS90A_HUMAN	P07900	7930.318	0	121	14	Green
12656	SFXN1_HUMAN	Q9H9B4	7753.962	0	25	5	Green
2859	K2C5_HUMAN	P13647	7735.921	0	70	13	Green
37729	G3P_HUMAN	P04406-2	7589.636	0	64	9	Green

56584	A0A1W2PP35_H	A0A1W2PP	7368.382	0	50	5	Green
61401	A0A7I2V4Z0_HU	A0A7I2V4Z0	7111.345	0	52	12	Green
1178	H2B1K_HUMAN	O60814	6806.66	0	71	5	Green
2186	K2C1_HUMAN	P04264	6683.788	0	152	13	Green
57190	A0A286YFA2_H	A0A286YFA	6640.212	0	39	6	Green
12296	RAB1B_HUMAN	Q9H0U4	6595.266	0	16	3	Green
28145	A0A7P0TB36_H	A0A7P0TB3	6510.383	0	111	14	Green
4031	K1C9_HUMAN	P35527	6434.358	0	165	18	Green
3991	PHB1_HUMAN	P35232	6423.908	0	43	8	Green
4138	GRP75_HUMAN	P38646	6304.768	0	86	17	Green
2917	ENPL_HUMAN	P14625	6225.973	0	56	8	Green
32446	E9PPU1_HUMA	E9PPU1	6185.96	0	38	7	Green
31208	D6R9P3_HUMAN	D6R9P3	6061.591	0	40	7	Green
38990	GLYM_HUMAN	P34897-3	5884.503	0	48	10	Green
3499	COF1_HUMAN	P23528	5793.048	0	28	5	Green
4187	MDHM_HUMAN	P40926	5752.269	0	91	13	Green
2797	KCRB_HUMAN	P12277	5650.996	0	61	9	Green
97956	RL18_HUMAN	Q07020-2	5604.635	0	27	3	Green
3968	HS71L_HUMAN	P34931	5508.703	0	76	8	Green
5179	IF4A1_HUMAN	P60842	5384.593	0	65	13	Green
2597	HS71A_HUMAN	P0DMV8	5267.582	0	126	14	Green
3896	PRDX2_HUMAN	P32119	5261.392	0	39	4	Green
6374	DX39B_HUMAN	Q13838	5260.919	0	45	8	Green
67974	B4DY09_HUMAN	B4DY09	5118.786	0	53	7	Green
5376	EF1A1_HUMAN	P68104	5112.535	0	79	7	Green
97486	HNRPL_HUMAN	P14866-2	5016.152	0	36	8	Green
6896	ELAV1_HUMAN	Q15717	4626.673	0	52	7	Green
5362	RACK1_HUMAN	P63244	4588.016	0	49	9	Green
5776	SSBP_HUMAN	Q04837	4557.307	0	22	4	Green
4542	EFTU_HUMAN	P49411	4513.244	0	79	11	Green
1928	AATM_HUMAN	P00505	4434.468	0	48	7	Green
90077	H7C3I1_HUMAN	H7C3I1	4407.571	0	28	4	Green
42930	Q5VVC8_HUMA N	Q5VVC8	4323.481	0	19	2	Green
3381	VDAC1_HUMAN	P21796	4278.711	0	38	7	Green
97681	VDAC2_HUMAN	P45880-2	4242.952	0	46	6	Green
1332	CISY_HUMAN	O75390	4241.77	0	28	6	Green
27850	A0A7I2YQ88_HU MAN	A0A7I2YQ8 8	4225.306	0	35	11	Green
38923	HNRH3_HUMAN	P31942-3	4194.595	0	29	4	Green
27795	A0A7I2V5M5_HU MAN	A0A7I2V5M	4170.98	0	100	14	Green
1932	PGK1_HUMAN	P00558	4092.802	0	43	10	Green
2916	KPYM_HUMAN	P14618	3981.086	0	57	11	Green
1322	H2AY_HUMAN	O75367	3980.596	0	35	7	Green
38133	THIO_HUMAN	P10599-2	3904.865	0	10	1	Green
5260	RS7_HUMAN	P62081	3821.53	0	22	3	Green
69594	C9J9K3_HUMAN	C9J9K3	3798	0	26	3	Green

2379	PROF1_HUMAN	P07737	3792.772	0	33	6	Green
4656	SERPH_HUMAN	P50454	3789.827	0	17	4	Green
40417	SRSF1_HUMAN	Q07955-3	3783.744	0	25	5	Green
40457	RBBP4_HUMAN	Q09028-4	3761.283	0	35	5	Green
2780	K2C3_HUMAN	P12035	3741.195	0	28	9	Green
5223	RL27_HUMAN	P61353	3573.791	0	18	4	Green
42224	Q5JR95_HUMAN	Q5JR95	3558.78	0	34	6	Green
27831	A0A7I2V638_HU	A0A7I2V638	3556.547	0	6	1	Green
34970	H7C2W9_HUMA	H7C2W9	3504.327	0	10	1	Green
2822	XRCC6_HUMAN	P12956	3484.616	0	74	11	Green
932	ACTN4_HUMAN	O43707	3367.841	0	33	10	Green
10473	FUBP2_HUMAN	Q92945	3361.322	0	49	6	Green
2244	ADT2_HUMAN	P05141	3266.553	0	45	7	Green
2084	K2C6A_HUMAN	P02538	3251.974	0	44	10	Green
5285	SMD3_HUMAN	P62318	3159.911	0	29	4	Green
3540	EF1B_HUMAN	P24534	3150.94	0	17	2	Green
3785	PRDX3_HUMAN	P30048	3150.618	0	35	6	Green
3790	PEBP1_HUMAN	P30086	3136.594	0	20	3	Green
3787	RL12_HUMAN	P30050	3132.088	0	17	2	Green
27660	A0A7I2V412_HU	A0A7I2V412	3123.755	0	12	4	Green
94354	K7EMD9_HUMA	K7EMD9	3112.575	0	19	2	Green
37829	H10_HUMAN	P07305-2	3089.614	0	22	2	Green
34736	H3BUH7_HUMA	H3BUH7	3060.899	0	28	5	Green
14445	RUVB1_HUMAN	Q9Y265	3009.721	0	37	9	Green
68387	B8ZZ51_HUMAN	B8ZZ51	2920.159	0	9	2	Green
33604	G5E972_HUMAN	G5E972	2778.478	0	29	5	Green
28203	A0A7P0Z497_HU	A0A7P0Z49	2761.161	0	24	6	Green
71431	C9JXB8_HUMAN	C9JXB8	2727.756	0	18	3	Green
28215	A0A7P0Z4D6_H	A0A7P0Z4D	2680.1	0	33	6	Green
59814	A0A5F9ZHJ7_HU	6 A0A5F9ZHJ	2676.237	0	27	5	Green
4055	DEK_HUMAN	7 P35659	2619.042	0	33	7	Green
13493	IF2B1_HUMAN	Q9NZI8	2616.735	0	41	7	Green
4394	RS9_HUMAN	P46781	2594.356	0	34	8	Green
29745	A6NLN1_HUMAN	A6NLN1	2592.89	0	42	7	Green
1913	DHE3_HUMAN	P00367	2590.808	0	28	8	Green
99211	Q5T8U3_HUMAN	Q5T8U3	2549.399	0	22	5	Green
3614	RL13_HUMAN	P26373	2525.199	0	27	4	Green
67115	A8MUD9_HUMA	A8MUD9	2501.243	0	28	4	Green
5273	N RS23_HUMAN	P62266	2457.911	0	12	1	Green
2359	ANXA2_HUMAN	P07355	2431.293	0	24	5	Green
2083	K1C14_HUMAN	P02533	2414.234	0	57	11	Green
32711	F5H018_HUMAN	F5H018	2411.42	0	20	2	Green
6145	ROA0_HUMAN	Q13151	2409.959	0	19	3	Green
80235	F8W0G4_HUMA	F8W0G4	2352.526	0	12	2	Green
91701	N J3KMX5 HUMAN	J3KMX5	2347 296	0	18	3	Green
51701		501.107.0	2011.200	0	10	5	010011

3355	FLNA_HUMAN	P21333	2337.48	0	67	27	Green
2339	NFL_HUMAN	P07196	2332.469	0	13	4	Green
2470	K1C16_HUMAN	P08779	2292.774	0	33	8	Green
31965	E7EX53_HUMAN	E7EX53	2279.768	0	12	2	Green
11050	H2A1H_HUMAN	Q96KK5	2267.146	0	11	2	Green
40316	LGUL_HUMAN	Q04760-2	2260.291	0	21	4	Green
2538	PARP1_HUMAN	P09874	2252.502	0	97	15	Green
34105	H0YEN5_HUMA	H0YEN5	2250.739	0	23	5	Green
5856	C1QBP_HUMAN	Q07021	2189.172	0	18	3	Green
2528	RU2A_HUMAN	P09661	2180.916	0	12	3	Green
52958	A0A087X2D0_H	A0A087X2D	2107.196	0	18	2	Green
4694	RAB7A_HUMAN	P51149	2093.549	0	17	7	Green
86021	H0YJH9_HUMAN	H0YJH9	2091.393	0	9	3	Green
50872	RUVB2_HUMAN	Q9Y230-2	2084.22	0	34	7	Green
5318	RS28_HUMAN	P62857	2066.705	0	13	2	Green
2495	GSTP1_HUMAN	P09211	2019.533	0	23	5	Green
20628	PRDX5_HUMAN	P30044-2	1996.937	0	12	3	Green
69918	C9JD32_HUMAN	C9JD32	1934.969	0	11	2	Green
5316	RS25_HUMAN	P62851	1925.666	0	15	2	Green
28529	A0A8I5KNU9_HU MAN	A0A8I5KNU 9	1873.573	0	36	9	Green
16086	ACTBL_HUMAN	Q562R1	1868.184	0	21	4	Green
26478	A0A2R8Y8A0_H UMAN	A0A2R8Y8A 0	1847.709	0	8	2	Green
2982	NDKA_HUMAN	P15531	1809.64	0	26	6	Green
63761	A0A8I5KS71_HU MAN	A0A8I5KS71	1804.439	0	25	3	Green
3628	EF1G_HUMAN	P26641	1790.654	0	45	7	Green
41271	PDIA6_HUMAN	Q15084-3	1775.981	0	41	7	Green
2855	EF2_HUMAN	P13639	1756.274	0	89	17	Green
4247	LAP2A_HUMAN	P42166	1742.241	0	21	5	Green
4684	TCPQ_HUMAN	P50990	1736.233	0	36	9	Green
35499	J3QL05_HUMAN	J3QL05	1735.154	0	11	3	Green
32340	E9PM69_HUMA N	E9PM69	1724.051	0	20	5	Green
357	DDX3X_HUMAN	O00571	1687.068	0	48	10	Green
37890	ODPA_HUMAN	P08559-3	1654.029	0	20	3	Green
963	CPSF5_HUMAN	O43809	1610.699	0	27	5	Green
52127	A0A087WVV1_H UMAN	A0A087WV V1	1584.277	0	9	2	Green
24661	A0A087WX29_H UMAN	A0A087WX2 9	1563.999	0	13	2	Green
4436	ATPO_HUMAN	P48047	1563.797	0	21	5	Green
2726	ACADM_HUMAN	P11310	1561.316	0	21	7	Green
2308	CDK1_HUMAN	P06493	1465.973	0	28	7	Green
4150	FEN1_HUMAN	P39748	1426.732	0	19	5	Green
4638	IDH3A_HUMAN	P50213	1419.459	0	22	8	Green
2085	LMNA_HUMAN	P02545	1410.015	0	54	14	Green
14453	VDAC3_HUMAN	Q9Y277	1409.981	0	19	6	Green
79607	F8VRJ2_HUMAN	F8VRJ2	1388.541	0	9	2	Green
53887	A0A0D9SEM4_H UMAN	A0A0D9SE M4	1376.888	0	12	3	Green

2321	G6PI_HUMAN	P06744	1364.777	0	20	5	Green
61337	A0A7I2V4K9_HU MAN	A0A7I2V4K9	1351.948	0	32	8	Green
41512	SRSF7_HUMAN	Q16629-3	1349.077	0	16	3	Green
5340	TRA2B_HUMAN	P62995	1334.863	0	17	5	Green
103759	X6RJP6_HUMAN	X6RJP6	1306.703	0	13	3	Green
28642	A0A8I5KT03_HU	A0A8I5KT03	1303.73	0	22	6	Green
5687	RL6_HUMAN	Q02878	1285.221	0	19	3	Green
102282	STML2_HUMAN	Q9UJZ1-2	1266.718	0	21	5	Green
31721	E7EPB3_HUMAN	E7EPB3	1265.446	0	12	1	Green
3130	HSP76_HUMAN	P17066	1255.99	0	36	8	Green
32204	E9PJD9_HUMAN	E9PJD9	1245.298	0	15	3	Green
90154	H7C3T4_HUMAN	H7C3T4	1231.795	0	12	3	Green
80151	F8VZJ2_HUMAN	F8VZJ2	1228.675	0	19	4	Green
5300	RS4X_HUMAN	P62701	1227.064	0	18	3	Green
11509	HCD2_HUMAN	Q99714	1222.508	0	21	7	Green
37897	RU17_HUMAN	P08621-3	1201.668	0	8	2	Green
39768	ECHB_HUMAN	P55084-2	1192.294	0	19	4	Green
7530	HP1B3_HUMAN	Q5SSJ5	1134.962	0	15	4	Green
8534	K1C27_HUMAN	Q7Z3Y8	1133.424	0	15	3	Green
8536	K1C25_HUMAN	Q7Z3Z0	1131.498	0	17	6	Green
98835	Q5QPL9_HUMA	Q5QPL9	1118.267	0	11	4	Green
3467	SFPQ_HUMAN	P23246	1094.202	0	25	5	Green
3889	STIP1_HUMAN	P31948	1080.775	0	26	7	Green
14573	LSM2_HUMAN	Q9Y333	1076.729	0	7	3	Green
5317	RS26_HUMAN	P62854	1065.305	0	7	1	Green
3612	U2AF2_HUMAN	P26368-2	1063.115	0	20	4	Green
92709	J3QLE5_HUMAN	J3QLE5	1056.136	0	11	2	Green
4935	KAD2_HUMAN	P54819	1038.517	0	18	5	Green
81878	G3V1B3_HUMAN	G3V1B3	1034.963	0	12	2	Green
2408	ANXA6_HUMAN	P08133	1029.858	0	31	11	Green
6811	PCBP1_HUMAN	Q15365	1022.844	0	16	3	Green
29449	A2A3R5_HUMAN	A2A3R5	1014.646	0	27	4	Green
10305	H1X_HUMAN	Q92522	958.4258	0	17	2	Green
10616	FUBP1_HUMAN	Q96AE4	940.0112	0	29	8	Green
4540	TCPG_HUMAN	P49368	934.9376	0	27	7	Green
2710	ODPB_HUMAN	P11177	929.902	0	32	8	Green
65614	A0A8V8TM72_H UMAN	A0A8V8TM7 2	911.2206	0	9	3	Green
80046	F8VY02_HUMAN	F8VY02	896.7923	0	14	3	Green
20197	AIFM1_HUMAN	O95831-3	870.5654	0	24	7	Green
38618	UBA1_HUMAN	P22314-2	857.4579	0	34	6	Green
57622	A0A2R8Y6L3_H UMAN	A0A2R8Y6L 3	826.5534	0	11	3	Green
33384	G3V295_HUMAN	G3V295	817.5247	0	11	3	Green
40881	TRA2A_HUMAN	Q13595-2	813.8993	0	6	2	Green
4139	IF4A3_HUMAN	P38919	812.1366	0	24	8	Green
92740	J3QLI9_HUMAN	J3QL19	794.263	0	8	1	Green
3780	PRDX6_HUMAN	P30041	786.7307	0	32	7	Green

24567	A0A087WUL2_H	A0A087WU	786.4883	0	14	3	Green
12260	ADT4_HUMAN	Q9H0C2	766.5251	0	18	4	Green
5485	SARNP_HUMAN	P82979	766.1076	0	11	2	Green
5417	TCPB_HUMAN	P78371	755.6642	0	26	7	Green
39523	TCPD_HUMAN	P50991-2	744.7223	0	24	6	Green
496	PSA7_HUMAN	O14818	741.857	0	10	2	Green
2469	ANXA5_HUMAN	P08758	732.5023	0	17	7	Green
4245	ECI1_HUMAN	P42126	730.0524	0	10	2	Green
39050	FUS_HUMAN	P35637-2	729.9474	0	22	3	Green
39141	OST48_HUMAN	P39656-2	727.9664	0	12	3	Green
28114	A0A7P0TAQ1_H	A0A7P0TAQ	726.2481	0	28	7	Green
46600	PSPC1_HUMAN	Q8WXF1-2	700.2305	0	27	6	Green
97472	PLST_HUMAN	P13797-3	697.3399	0	16	4	Green
40688	PSMD2_HUMAN	Q13200-3	692.5656	0	19	6	Green
2749	TOP2A_HUMAN	P11388	688.3622	0	25	10	Green
39087	ATPG_HUMAN	P36542-2	684.0986	0	15	3	Green
21185	ILF3_HUMAN	Q12906-5	644.3055	0	29	7	Green
3307	PSB1_HUMAN	P20618	637.3719	0	7	1	Green
65358	A0A8V8TKR9_H	A0A8V8TKR	636.0215	0	28	8	Green
11537	ACON_HUMAN	9 Q99798	633.6071	0	33	8	Green
30831	C9JFR7_HUMAN	C9JFR7	618.4702	0	7	2	Green
2175	OAT_HUMAN	P04181	618.4654	0	25	7	Green
5278	RUXE_HUMAN	P62304	612.4797	0	18	3	Green
5925	SSRP1_HUMAN	Q08945	593.713	0	23	4	Green
27605	A0A7I2V385_HU	A0A7I2V385	584.056	0	8	1	Green
6073	TRAP1_HUMAN	Q12931	580.5031	0	33	11	Green
37642	NB5R3_HUMAN	P00387-2	577.7513	0	17	5	Green
72573	D6RCB3_HUMA	D6RCB3	577.2147	0	10	3	Green
289	EIF3F_HUMAN	O00303	558.2989	0	14	4	Green
2074	HBD_HUMAN	P02042	555.1153	0	9	3	Green
2163	ANXA1_HUMAN	P04083	547.2213	0	23	5	Green
5688	TOP2B_HUMAN	Q02880	538.1692	0	20	10	Green
27597	A0A7I2V351_HU	A0A7I2V351	527.4029	0	12	3	Green
4735	DHB4_HUMAN	P51659	516.6741	0	14	5	Green
4316	CRBB2_HUMAN	P43320	519.9548	0	12	3	Green
20	A0A3B3ISY9_HU	A0A3B3ISY	516.7466	0	7	2	Green
3755	TKT_HUMAN	9 P29401	506.599	0	33	9	Green
3055	CBR1_HUMAN	P16152	497.118	0	21	6	Green
83062	H0Y4X3_HUMAN	H0Y4X3	496.183	0	16	6	Green
30795	C9JDR0_HUMAN	C9JDR0	495.1918	0	6	1	Green
266	PSD11_HUMAN	O00231	489.8409	0	18	5	Green
1258	CPNE3_HUMAN	O75131	485.0157	0	12	3	Green
10619	LRC59_HUMAN	Q96AG4	485.0143	0	11	3	Green
8063	SYDM_HUMAN	Q6PI48	481.6443	0	23	10	Green
3969	HSP74_HUMAN	P34932	456.7953	0	9	4	Green
2742	FGFR1_HUMAN	P11362-4	452.2068	0	8	5	Green

6646 AA&G.SWUR.8.1 ADABG.SWUR. ADABG.SWUR.8.1	2860	PDIA4_HUMAN	P13667	450.3361	0	34	9	Green
38725 CDR2, HUMAN P24941-2 44.3973 0 7 4 Green 38474 HNRDL, HUMAN 014979-3 437.333 0 114 3 Green 4127 ETFB, HUMAN 074874 47.015 0 111 3 Green 1375 MDUS3, HUMAN 07589 406.657 0 111 3 Green 1375 MDUS3, HUMAN 07589 400.426 0 6 Green 40712 TFFB, HUMAN 013253-2 333.349 0 171 6 Green 3375 FSDE, HUMAN 00487 366.822 0 21 7 Green 3197 HFR, HUMAN 005912 366.22 0 111 3 Green 3191 HPGE, HUMAN 005912 364.283 0 111 3 Green 3191 HPGE, HUMAN 005912 354.283 0 11 3 Green 3192 LMBAN	65145	A0A8Q3WL83_H	A0A8Q3WL 83	448.1459	0	6	2	Green
39474 HNRDL HUMAN 014978-3 47.3339 0 14 3 Green 6667 MB1_HUMAN 014974 437.1159 0 11 3 Green 11357 NDUS3,HUMAN 075489 406.5517 0 111 3 Green 5759 MAXR8Y64_H AXXR8Y64 400.4926 0 8 3 Green 67737 PSDE_HUMAN 0308D7 399.7516 0 10 6 Green 6783 MXXR8Y64_H AXXR8Y64 300.422 366.32 0 21 7 Green 5703 MTC463_HUMAN 00647 366.62 0 21 7 Green 15670 SRS1_HUMAN 006519.2 356.267 0 11 3 Green 1927 HPRT_HUMAN P0042 354.7264 0 18 7 Green 1931 UMAN P5010 32.2141 0 8 3 Green	38725	CDK2_HUMAN	P24941-2	443.9753	0	7	4	Green
6667 MB1_HUMAN Q14974 437019 Q 11 Q Green 4177 ETRB_HUMAN P38117 414.4871 Q 111 Q Green 5755 MAX2831644,H AQA2831764,H AQA2831764,H AQA2831764,H AQA2831764,H AQA2831764,H AQA2831764,H AQA2831764,H AQA2831764,H Q Q Q Q G Green 3558 JJQSD7_HUMAN QAS247 383.349 Q Q Q G Green 35013 H7C463_HUMAN QAS247 Q Q G Green 35013 H7C463_HUMAN QAS247 Q Q G Green 3512 HPRLHUMAN P2082 344.724 Q G Green 3513 H7C48_HUMAN QA9842 346.853 Q Q G Green 3519 PURD_HUMAN QA9842 346.762 Q Q G G 15310 FURDAN QA9842 </td <td>36474</td> <td>HNRDL_HUMAN</td> <td>O14979-3</td> <td>437.3339</td> <td>0</td> <td>14</td> <td>3</td> <td>Green</td>	36474	HNRDL_HUMAN	O14979-3	437.3339	0	14	3	Green
4127 ETER_HUMAN P39117 414.4671 0 111 3 Green 13767 MDUS3_HUMAN O7589 405.9517 0 111 3 Green 77569 MADS/SPUGL,H ACASPYeI 400.426 0 8 3 Green 40712 TIFIB_HUMAN Q13253-2 383.349 0 117 6 Green 3013 H7C463_HUMAN Q0487 366.622 0 6 1 Green 3131 LMNB1_HUMAN Q0487 365.425 0 211 3 Green 3132 LMNB1_HUMAN P20700 354.339 0 23 6 Green 31312 LMNB1_HUMAN P20700 354.339 0 11 3 Green 31312 LMNB1_HUMAN P20101 33.2141 0 8 3 Green 31431 P50.10 33.2141 0 8 3 Green 21010 Green	6687	IMB1_HUMAN	Q14974	437.0159	0	12	4	Green
1497 NDUS3_HUMAN 075409 406.9517 0 11 3 Green 5759 MAXRY64_L A0A2R8Y64 400.4226 0 8 3 Green 35596 JAGSD7,HUMAN J3GSD7 389.7516 0 10 6 Green 47017 TFELFUMAN 000467 366.622 0 21 7 Green 3501 H7C483,HUMAN 000467 366.622 0 21 7 Green 3501 H7C483,HUMAN 000470 366.622 0 21 7 Green 3121 LIMAN N0042 364.728 0 111 3 Green 3181 PUF60,HUMAN P0042 364.762 0 18 7 Green 31910 PUF60,HUMAN P65010 323.214 0 7 4 Green 3211 RACL,HUMAN P6501 325.214 0 1 4 Green 3210 RCCL,	4127	ETFB_HUMAN	P38117	414.4871	0	11	3	Green
37550 A0A2R8Y64 H JOSD7, HUMAN JOSD7 389, 7516 0 10 6 Green 35566 JJOSD7, HUMAN QOSD7 389, 7516 0 10 6 Green 3507 FEJE, HUMAN QOSD7 389, 7516 0 17 6 Green 3507 FEJE, HUMAN QOSD7 389, 252 0 21 7 Green 3501 H7C463, HUMAN QOSD72 386, 2307 0 6 1 Green 3511 JUMAN DOSD492 384, 3333 0 23 8 Green 3512 HIPL HUMAN PO3042 346, 752 0 18 7 Green 31310 PUF60-HUMAN QOBVAZ 346, 752 0 18 7 Green 313210 RCG1_HUMAN P3050 312, 287 0 11 4 Green 32210 RCC1_HUMAN P16754 316, 1031 0 11 4 Green <t< td=""><td>1367</td><td>NDUS3_HUMAN</td><td>O75489</td><td>406.9517</td><td>0</td><td>11</td><td>3</td><td>Green</td></t<>	1367	NDUS3_HUMAN	O75489	406.9517	0	11	3	Green
JMAR Josop Jagspor Jagspor <thjagspor< th=""> <thjagspor< th=""> <thjagspo< td=""><td>57559</td><td>A0A2R8Y644_H</td><td>A0A2R8Y64</td><td>400.4926</td><td>0</td><td>8</td><td>3</td><td>Green</td></thjagspo<></thjagspor<></thjagspor<>	57559	A0A2R8Y644_H	A0A2R8Y64	400.4926	0	8	3	Green
40712 TIF1B_J-UMAN Q132B3-2 383.349 Q 17 (Gene) 337 PSDE_HUMAN Q00487 366.62 Q 8 1 Green 38013 H7C463_HUMAN H7C63_HUMAN QC6519-2 356.62 Q 1 Green 15737 JKNB1_HUMAN QC6519-2 356.425 Q 1 3 Green 1322 HPRT_HUMAN QC6519-2 354.833 Q 11 3 Green 13370 HPRT_HUMAN P2004 348.853 Q 11 3 Green 13810 DUF60_HUMAN Q3004 348.853 Q 18 Green Green 13810 DUF60_HUMAN Q30407 348.752 Q 18 Green Green 3212 HRTH_HUMAN P3059 312.291 Q 16 Green Green 3214 RC1_HUMAN Q1650 312.291 Q 16 Green Green 3214	35596	J3QSD7_HUMAN	4 J3QSD7	389.7516	0	10	6	Green
337 PSDE_HUMAN O00487 366.822 0 8 1 Green 35013 H7C463_HUMAN H7C463 382.4225 0 21 7 Green 15879 SRS11_HUMAN P00519-2 366.2957 0 6 11 3 Green 3112 LINIB1_HUMAN P00492 354.7264 0 11 3 Green 3788 ECHM_HUMAN P00492 348.853 0 118 3 Green 3710 PUFG0_HUMAN Q0UK11 348.9564 0 20 6 Green 3741 ADAGOPEWAL, M ADAUX115 348.9564 0 18 7 Green 3741 ADAGOPEWAL, M ADAUX115 348.952 0 11 4 Green 3741 RAGENEYLWAN P18754 316.1031 0 11 4 Green 38407 RALF_HUMAN P18754 316.1031 0 12 Green 38407	40712	TIF1B_HUMAN	Q13263-2	383.349	0	17	6	Green
38013 H7C483_HUMAN H7C463 362.4225 0 21 7 Green 18379 SRS11_HUMAN Q05519-2 356.2957 0 6 1 Green 3312 LINNB1_HUMAN PQ0700 354.8939 0 23 36 Green 1327 HPRT_HUMAN PQ0492 354.7264 0 11 3 Green 1381 PUF60_HUMAN Q9UHX1 346.9964 0 20 6 Green 2747 ADACQAPCWLH, ADACQAPCWLM, PS5010 323.2141 0 8 3 Green 2313 RCC1_HUMAN P1650.318.2891 0 11 4 Green 3421 RCC1_HUMAN P18754 316.1031 0 11 4 Green 3421 RCC1_HUMAN P3859 275.4575 0 23 12 Green 3437 SAHL_HUMAN P25262 258.059 0 11 4 Green 34497 SAHL_HUMAN </td <td>337</td> <td>PSDE_HUMAN</td> <td>O00487</td> <td>366.622</td> <td>0</td> <td>8</td> <td>1</td> <td>Green</td>	337	PSDE_HUMAN	O00487	366.622	0	8	1	Green
15879 SRS11_HUMAN Q05519-2 356.2957 0 6 11 Green 3312 LMMB1_HUMAN P20700 354.833 0 2.3 8 Green 1327 HPRT_HUMAN P00492 354.724 0 111 3 Green 3788 ECHM_HUMAN P00492 354.724 0 111 3 Green 3789 ECHM_HUMAN P3094 348.853 0 118 77 Green 27474 ADA608PGW4,H MA6028PG 346.7562 0 18 77 Green 3210 RCC1_HUMAN P18754 316.1031 0 1 4 Green 3210 RCC1_HUMAN P18754 316.1031 0 2 10 Green 3497 SAHH_HUMAN Q48V515 305.0711 0 2 Green 3497 SAHH_HUMAN P3933 273.4375 0 1 Green 3497 SAHH_HUMAN P43	35013	H7C463_HUMAN	H7C463	362.4225	0	21	7	Green
3312 LMNB1_HUMAN P20700 354.8393 00 23 188 Green 1927 HPRT_HUMAN P00492 354.7264 00 111 36 Green 3788 ECHM_HUMAN P30084 348.935 00 111 36 Green 13910 PUF60_HUMAN Q9UHX1 346.9964 00 200 66 Green 13910 PUF60_HUMAN Q9UHX1 346.9964 00 70 67een Green 7032 CPSF6_HUMAN O16630 318.291 00 71 46 Green 3210 RCC1_HUMAN O16630 318.291 00 11 44 Green 3210 RCC1_HUMAN O16501 305.071 0 92 0 6reen 3497 SAHLHUMAN P39393 273.475 200.903 11 44 Green 3493 MAR3_HUMAN O4697 260.903 11 6feen 6feen 4399	15879	SRS11_HUMAN	Q05519-2	356.2957	0	6	1	Green
1927 HPRT_HUMAN P00492 354.7264 0 11 3 Green 3788 ECHM_HUMAN P30084 348.853 0 111 3 Green 13310 PUE60_HUMAN G9UHX1 346.9564 0 200 6 Green 27474 A0A603PG (Augut) A46.7562 0 18 7 Green 3703 CPSER_HUMAN P18754 316.1031 0 1 4 Green 3210 RCC1_HUMAN P18754 316.1031 0 9 2 Green 32131 RCC1_HUMAN P18754 316.1031 0 9 2 Green 3214 RCC1_HUMAN P2826 295.8059 0 15 Green 3497 SAHH_HUMAN P28263 256.009 0 11 4 Green 3498 GMARB_HUMAN P38933 273.4375 0 1 6 Green 34980 MARAB_HUMAN P48243<	3312	LMNB1_HUMAN	P20700	354.8393	0	23	8	Green
3788 ECHM_HUMAN P3084 348.853 0 111 3 Green 13910 PUF60_HUMAN Q9UHX1 346.9964 0 200 66 Green 27474 A0A608PGW4_H ANAN A0A608PG 346.7562 0 118 7. Green 44951 IF5_HUMAN P55010 323.2141 0 8 3. Green 3210 RCC1_HUMAN P18754 316.031 0 111 4. Green 3210 RCC1_HUMAN P18754 316.031 0 111 4. Green 3497 SAHH_HUMAN P18754 305.0711 0 9.2 Green 3497 SAHH_HUMAN P3393 273.4375 0 2.3 122 Green 3498 MAT3_HUMAN P43243 250.4519 0 14 5 Green 44909 MAT3_HUMAN Q9BVC6 245.355 0 7.1 Green 11838 TM109_HUMAN	1927	HPRT_HUMAN	P00492	354.7264	0	11	3	Green
13910 PUF60_HUMAN Q9UHX1 346.9964 Q Q0 Green 27474 A0A60BF0W_H MARN MA A0A60BFG 346.7562 Q 118 7.7 Green 4951 IF5_HUMAN P55010 323.2141 Q B 3.3 Green 7032 CFSF6_HUMAN Q16630 318.2891 Q 11 4 Green 3210 RCC1_HUMAN Q16530 318.2891 Q 129 100 Green 29136 A0A8V8TL5_DHU A0A8V8TL5 297.5961 Q 29 100 Green 9607 PAIRB_HUMAN Q8NC51 305.0711 Q 32 12 Green 3497 SAHH_HUMAN Q8NC51 297.34375 Q 23 12 Green 4309 MATR_HUMAN Q14097 260.0903 Q 11 4 Green 44309 MATR_HUMAN Q48975 28.4519 Q 14 Green 4491	3788	ECHM_HUMAN	P30084	348.853	0	11	3	Green
27474 ADABCRPOWA_H (MAA ADABCROPS 346.7562 0 18 7 Green 4951 IFS_HUMAN P55010 323.2141 0 8 3 Green 7032 CPSF6_HUMAN Q16630 318.2891 0 7 4 Green 3210 RCC1_HUMAN P18754 316.1031 0 111 4 Green 2913 ADA8VBTLS0_HU ADA8VBTLS 297.5961 0 29 0 Green 39607 PAIRB_HUMAN QBNC51 305.0711 0 9 2 Green 3963 MARN QBNC51 305.0713 0 23 12 Green 3965 MARTALHUMAN P33932 273.4375 0 23 12 Green 4309 MATR3_HUMAN P43243 250.4519 0 14 5 Green 49616 QBNSSB_HUMAN Q49S58 237.3106 0 8 2 Green 11888<	13910	PUF60_HUMAN	Q9UHX1	346.9964	0	20	6	Green
4951 IF5_HUMAN P56010 323.2141 0 8 3 Green 7032 CPSF6_HUMAN Q16630 318.2891 0 7 4 Green 3210 RCC1_HUMAN P18754 316.1031 0 111 4 Green 2913 A0A8V8TL50_HU A0A8V8TL5 297.5961 0 29 0 Green 9607 PAIRB_HUMAN Q8NC51 305.0711 0 9 2 Green 3497 SAHH_HUMAN P23526 295.6059 0 15 5 Green 3955 MCM7_HUMAN P33933 273.4375 0 23 12 Green 4139 MAR3_HUMAN Q14697 260.4903 0 14 5 Green 41838 TM109_HUMAN Q14987 250.4519 0 14 5 Green 41846 Q9NSS8_HUMA Q9NS58 237.3106 0 21 6 Green 11888 TM109_HUMAN P48735 236.25 0 21 6 Green	27474	A0A6Q8PGW4_H UMAN	A0A6Q8PG W4	346.7562	0	18	7	Green
7032 CPSF6_HUMAN Q16630 318.2891 0 7 44 Green 3210 RCC1_HUMAN P18754 316.1031 0 111 44 Green 29136 A0A8VSTL50_HU A0A8VSTL5 297.5961 0 29 20 Green 9607 PAIRB_HUMAN Q8NC51 305.0711 0 9 2 Green 3497 SAHH_HUMAN P33932 273.4375 0 23 12 Green 3497 SAHH_HUMAN P33933 273.4375 0 23 12 Green 3409 MATR3_HUMAN Q14697 250.4519 0 14 5 Green 4309 MATA3_HUMAN Q48VC6 245.935 0 7 1 Green 1883 TM109_HUMAN Q48VC6 245.935 0 21 6 Green 1894 IDHP_HUMAN Q48VC7 226.8171 0 6 2 Green 11866	4951	IF5_HUMAN	P55010	323.2141	0	8	3	Green
3210 RCC1_HUMAN P18754 316.1031 0 11 44 Green 2913 A0A8VATL50_HU A0A8VATL5 297.5961 0 29 10 Green 3497 SAHH_HUMAN Q8NC51 305.0711 0 9 2 Green 3497 SAHH_HUMAN P23526 295.8059 0 15 5 Green 3955 MCM7_HUMAN P3393 273.4375 0 23 12 Green 6613 GANAB_HUMAN Q14697 260.0903 0 11 4 Green 4309 MATR3_HUMAN Q4897 260.4935 0 7 1 Green 11838 TM109_HUMAN Q98VC6 245.9355 0 7 1 Green 4499 IDHP_HUMAN Q9NS8 237.3106 0 8 2 Green 2989 BQYT5_HUMAN Q9U75 226.8171 0 6 2 Green 11465	7032	CPSF6_HUMAN	Q16630	318.2891	0	7	4	Green
29138 AnAAVSULSD_HU AnAVSVBLS 297,5961 0 29 10 Green 9607 PAIRB_HUMAN QBNCS1 305.0711 0 9 2 Green 3497 SAHH_HUMAN P23526 295.8059 0 115 5 Green 3955 MCM7_HUMAN P33933 273.4375 0 233 112 Green 4309 MATR3_HUMAN Q14697 260.0903 0 114 4 Green 4309 MATR3_HUMAN Q14597 260.0903 0 144 5 Green 11838 TM109_HUMAN Q49242 250.4519 0 7 1 Green 4491 IDHP_HUMAN Q9NS8 237.3106 0 8 2 Green 2989 BQYT5_HUMAN Q9NS2 236.25 0 211 6 Green 11856 SPASL_HUMAN Q9EVQ7 22.6732 0 8 5 Green 11865 <td>3210</td> <td>RCC1_HUMAN</td> <td>P18754</td> <td>316.1031</td> <td>0</td> <td>11</td> <td>4</td> <td>Green</td>	3210	RCC1_HUMAN	P18754	316.1031	0	11	4	Green
9607 PARB_HUMAN QBNC51 305.0711 0 9 2 Green 3497 SAHH_HUMAN P23526 295.8059 0 115 5 Green 3955 MCM7_HUMAN P33933 273.4375 0 233 112 Green 4309 MATR3_HUMAN Q14697 260.0903 0 111 4 Green 4309 MATR3_HUMAN Q14697 260.0903 0 144 5 Green 11838 TM109_HUMAN Q9BVC6 245.9355 0 77 1 Green 49616 Q9NS8_HUMA Q9NSS8 237.3106 0 8 2 Green 4499 IDHP_HUMAN P48735 236.25 0 211 6 Green 11856 SPA5L_HUMAN Q9EVQ7 226.6371 0 8 5 Green 11856 SPA5L_HUMAN Q9EVQ7 226.6372 0 10 3 Green 11856	29136	A0A8V8TL50_HU MAN	A0A8V8TL5 0	297.5961	0	29	10	Green
3497 SAHH_HUMAN P2326 295.8059 0 15 Green 3955 MCM7_HUMAN P33993 273.4375 0 23 12 Green 6613 GANAB_HUMAN Q14697 260.0903 0 111 4 Green 4309 MATR3_HUMAN P43243 250.4519 0 144 5 Green 11838 TM109_HUMAN Q9bVC6 245.9355 0 7 1 Green 49616 Q9NSS8_HUMA Q9NSS8 237.3106 0 8 2 Green 44991 IDHP_HUMAN P48735 236.25 0 21 6 Green 11856 SPA5L_HUMAN Q9BVQ7 226.6371 0 6 2 Green 11856 SPA5L_HUMAN Q9BVQ7 222.6732 0 8 5 Green 11856 SPA5L_HUMAN Q9BVQ7 226.732 0 14 6 Green 1181050_HUMAN Q9B	9607	PAIRB_HUMAN	Q8NC51	305.0711	0	9	2	Green
3955 MCM7_HUMAN P33993 273.4375 0 233 12 Green 6613 GANAB_HUMAN Q14697 260.0903 0 111 4 Green 4309 MATR3_HUMAN P43243 250.4519 0 144 5 Green 11838 TM109_HUMAN Q9BVC6 245.9355 0 7 1 Green 49616 Q9NSS8_HUMA Q9BVC6 245.9355 0 21 6 Green 44961 DPP_HUMAN P48735 236.25 0 21 6 Green 29989 B0QYT5_HUMA B0QYT5 226.8171 0 6 2 Green 11856 SPA5L_HUMAN Q9BVQ7 222.6732 0 8 5 Green 14465 DRG1_HUMAN Q9Y295 219.6491 0 10 3 Green 1514 IsLOS0_HUMAN 13LOS0 210.174 0 14 6 Green 2520	3497	SAHH_HUMAN	P23526	295.8059	0	15	5	Green
6613 GANAB_HUMAN Q14697 260.0903 0 11 44 Green 4309 MATR3_HUMAN P43243 250.4519 0 114 5 Green 11838 TM109_HUMAN Q9BVC6 245.9355 0 7 1 Green 49616 Q9NSS8_HUMA Q9NSS8 237.3106 0 8 2 Green 44961 DPH_PHUMAN P48735 236.25 0 21 6 Green 29989 B0QYT5_HUMA B0QYT5 226.8171 0 6 2 Green 11856 SPA5L_HUMAN Q9BVQ7 222.6732 0 8 5 Green 11856 DRG1_HUMAN Q9EVQ7 222.6732 0 10 3 Green 11856 DRG1_HUMAN Q9EVQ7 222.6732 0 10 3 Green 14465 DRG1_HUMAN Q9EVQ7 222.6732 0 11 Green 14465 DRG1_HUMA	3955	MCM7_HUMAN	P33993	273.4375	0	23	12	Green
4309 MATR3_HUMAN P43243 250.4519 0 114 5 Green 11838 TM109_HUMAN Q9BVC6 245.9355 0 7 1 Green 49616 Q9NSS8_HUMA Q9NSS8 237.3106 0 8 2 Green 4499 IDHP_HUMAN P48735 236.25 0 21 6 Green 2989 B0QYT5_HUMA B0QYT5 226.8171 0 6 2 Green 11856 SPASL_HUMAN Q9BVQ7 222.6732 0 8 5 Green 11856 SPASL_HUMAN Q9EVQ7 222.6732 0 8 5 Green 14465 DRG1_HUMAN Q9EVQ7 222.6732 0 10 3 Green 14465 DRG1_HUMAN Q9EVQ7 222.6732 0 14 6 Green 35114 I3L0S0_HUMAN B1AHB1 215.4736 0 14 6 Green 2152	6613	GANAB_HUMAN	Q14697	260.0903	0	11	4	Green
11838 TM109_HUMAN Q9BVC6 245.9355 0 7 1 Green 49616 Q9NSS8_HUMA Q9NSS8 237.3106 0 8 2 Green 4499 IDHP_HUMAN P48735 236.25 0 21 6 Green 29989 B0QYT5_HUMA B0QYT5 226.8171 0 6 2 Green 11856 SPA5L_HUMAN Q9BVQ7 222.6732 0 8 5 Green 11856 SPA5L_HUMAN Q9V295 219.6491 0 10 3 Green 11465 DRG1_HUMAN Q9Y295 219.6491 0 10 3 Green 14465 DRG1_HUMAN Q9Y295 219.6491 0 14 6 Green 18974 B1AHB1_HUMAN B1AHB1 215.4736 0 14 6 Green 2152 VTNC_HUMAN P04004 203.2338 0 7 1 Green 2320	4309	MATR3_HUMAN	P43243	250.4519	0	14	5	Green
49616 Q9NSS8_HUMA Q9NSS8 237.3106 0 8 2 Green 4499 IDHP_HUMAN P48735 236.25 0 21 6 Green 29989 B0QYT5_HUMA B0QYT5 226.8171 0 6 2 Green 11856 SPA5L_HUMAN Q9EVQ7 222.6732 0 8 5 Green 11856 SPA5L_HUMAN Q9EVQ7 222.6732 0 8 5 Green 11856 SPA5L_HUMAN Q9EVQ7 222.6732 0 8 5 Green 11856 SPA5L_HUMAN Q9EVQ7 222.6732 0 10 3 Green 11856 SPA5L_HUMAN Q9EVQ7 222.6732 0 10 Green 11857 DRG1_HUMAN Q9EVQ7 222.6732 0 14 6 Green 118974 B1AHB1_HUMAN Q9F295 219.6491 0 14 6 Green 2320 PYG_HUMA	11838	TM109_HUMAN	Q9BVC6	245.9355	0	7	1	Green
4499 IDHP_HUMAN P48735 236.25 0 21 6 Green 29989 B0QYT5_HUMA B0QYT5 226.8171 00 6 22 Green 11856 SPA5L_HUMAN Q9BVQ7 222.6732 00 8 5 Green 11856 SPA5L_HUMAN Q9V295 219.6491 00 10 3 Green 18974 B1AHB1_HUMA B1AHB1 215.4736 00 21 9 Green 35114 I3L0S0_HUMAN B1AB1 215.4736 0 14 6 Green 35114 I3L0S0_HUMAN B1AHB1 210.174 0 14 6 Green 3512 VTNC_HUMAN P04004 203.2338 00 7 1 Green 3882 PUR9_HUMAN P06737 201.0523 00 138 7 Green 3574 MCM3_HUMAN P25205 190.7555 0 25 11 Green 1324 <td>49616</td> <td>Q9NSS8_HUMA</td> <td>Q9NSS8</td> <td>237.3106</td> <td>0</td> <td>8</td> <td>2</td> <td>Green</td>	49616	Q9NSS8_HUMA	Q9NSS8	237.3106	0	8	2	Green
29989 B0QYT5_HUMA N B0QYT5 226.8171 0 6 2 Green 11856 SPA5L_HUMAN Q9BVQ7 222.6732 0 8 5 Green 11856 SPA5L_HUMAN Q9V295 219.6491 0 10 3 Green 1874 B1AHB1_HUMA B1AHB1 215.4736 0 21 9 Green 35114 I3L0S0_HUMAN B1AB1 215.4736 0 14 6 Green 35114 I3L0S0_HUMAN B1AB1 215.4736 0 14 6 Green 35114 I3L0S0_HUMAN B1AB1 215.4736 0 14 6 Green 2152 VTNC_HUMAN P0404 203.2338 0 7 1 Green 3200 PYGL_HUMAN P06737 201.0523 0 13 9 Green 3574 MCM3_HUMAN P2505 190.7555 0 25 11 Green 1324	4499	IDHP_HUMAN	P48735	236.25	0	21	6	Green
N N Q9BVQ7 222.6732 0 8 5 Green 11486 DRG1_HUMAN Q9Y295 219.6491 0 10 3 Green 18974 B1AHB1_HUMAN B1AHB1 215.4736 0 21 9 Green 35114 I3L0S0_HUMAN I3L0S0 210.174 0 14 6 Green 2152 VTNC_HUMAN P04004 203.2338 0 7 11 Green 2320 PYGL_HUMAN P06737 201.0523 0 18 7 Green 3882 PUR9_HUMAN P31939 199.2855 0 133 9 Green 3574 MCM3_HUMAN P2505 190.7555 0 25 11 Green 11234 FLNB_HUMAN Q96PK6 186.8555 0 19 5 Green 124 FLNC_HUMAN Q96PK6 186.6673 0 25 14 Green 1546 SYLC_H	29989	B0QYT5_HUMA	B0QYT5	226.8171	0	6	2	Green
14465 DRG1_HUMAN Q9Y295 219.6491 0 10 3 Green 18974 B1AHB1_HUMA B1AHB1 215.4736 0 211 9 Green 35114 I3L0S0_HUMAN I3L0S0 210.174 0 144 6 Green 2152 VTNC_HUMAN P04004 203.2338 0 7 1 Green 2320 PYGL_HUMAN P06737 201.0523 0 188 7 Green 3882 PUR9_HUMAN P31939 199.2855 0 133 9 Green 3574 MCM3_HUMAN P25205 190.7555 0 255 11 Green 1324 FLNB_HUMAN Q75369 189.1723 0 199 10 Green 11234 RBM14_HUMAN Q96PK6 186.8555 0 199 15 Green 2548 LKHA4_HUMAN Q96PK6 186.6673 0 25 14 Green 13646	11856	SPA5L_HUMAN	Q9BVQ7	222.6732	0	8	5	Green
18974 B1AHB1_HUMA B1AHB1 215.4736 0 21 9 Green 35114 I3L0S0_HUMAN I3L0S0 210.174 0 14 6 Green 2152 VTNC_HUMAN P04004 203.2338 0 7 1 Green 2320 PYGL_HUMAN P06737 201.0523 0 188 7 Green 3882 PUR9_HUMAN P31939 199.2855 0 13 9 Green 3574 MCM3_HUMAN P25205 190.7555 0 13 9 Green 1324 FLNB_HUMAN P25205 190.7555 0 19 10 Green 11234 RBM14_HUMAN Q96PK6 186.8555 0 19 5 Green 11234 RBM14_HUMAN Q96PK6 186.6673 0 18 6 Green 12548 LKHA4_HUMAN Q14315 179.0586 0 12 10 Green 13646	14465	DRG1_HUMAN	Q9Y295	219.6491	0	10	3	Green
N I3LOSO_HUMAN I3LOSO 210.174 O 14 G Green 2152 VTNC_HUMAN P04004 203.2338 O 7 1 Green 2320 PYGL_HUMAN P06737 201.0523 O 18 7 Green 3882 PUR9_HUMAN P31939 199.2855 O 133 9 Green 3574 MCM3_HUMAN P25205 190.7555 O 255 11 Green 1324 FLNB_HUMAN P25205 189.1723 O 19 10 Green 11234 RBM14_HUMAN Q96PK6 186.8555 O 19 5 Green 1245 LKHA4_HUMAN Q9960 186.6673 O 19 5 Green 13646 SYLC_HUMAN Q14315 179.0586 O 25 14 Green 13646 SYLC_HUMAN Q92J5 174.1669 O 15 4 Green 15146	18974	B1AHB1_HUMA	B1AHB1	215.4736	0	21	9	Green
2152 VTNC_HUMAN P04004 203.2338 0 7 1 Green 2320 PYGL_HUMAN P06737 201.0523 0 188 7 Green 3882 PUR9_HUMAN P31939 199.2855 00 113 9 Green 3574 MCM3_HUMAN P25205 190.7555 0 255 11 Green 1324 FLNB_HUMAN 075369 189.1723 0 199 190 6reen 11234 RBM14_HUMAN 096PK6 186.8555 0 199 15 Green 2548 LKHA4_HUMAN P09960 186.6673 0 255 14 Green 13646 SYLC_HUMAN Q14315 179.0586 0 12 10 Green 13646 SYLC_HUMAN Q9P2J5 174.1669 0 12 10 Green 15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green<	35114	N I3L0S0_HUMAN	I3L0S0	210.174	0	14	6	Green
2320 PYGL_HUMAN P06737 201.0523 0 18 7 Green 3882 PUR9_HUMAN P31939 199.2855 0 13 9 Green 3574 MCM3_HUMAN P25205 190.7555 0 25 11 Green 1324 FLNB_HUMAN P25205 190.7555 0 25 11 Green 1124 RBM14_HUMAN 075369 189.1723 0 199 10 Green 11234 RBM14_HUMAN 096PK6 186.8555 0 199 5 Green 2548 LKHA4_HUMAN P09960 186.6673 0 8 6 Green 1524 FLNC_HUMAN Q14315 179.0586 0 25 14 Green 13646 SYLC_HUMAN Q14315 179.0586 0 12 10 Green 15146 E7ETK5_HUMAN Q14315 172.3322 0 15 4 Green 44687 <td>2152</td> <td>VTNC_HUMAN</td> <td>P04004</td> <td>203.2338</td> <td>0</td> <td>7</td> <td>1</td> <td>Green</td>	2152	VTNC_HUMAN	P04004	203.2338	0	7	1	Green
3882 PUR9_HUMAN P31939 199.2855 0 13 9 Green 3574 MCM3_HUMAN P25205 190.7555 0 25 11 Green 1324 FLNB_HUMAN O75369 189.1723 0 19 10 Green 11234 RBM14_HUMAN O96PK6 186.8555 00 19 10 Green 11234 RBM14_HUMAN Q96PK6 186.6573 0 19 5 Green 2548 LKHA4_HUMAN P09960 186.6673 0 8 6 Green 1546 FLNC_HUMAN Q14315 179.0586 0 255 14 Green 13646 SYLC_HUMAN Q192J5 174.1669 0 12 10 Green 15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	2320	PYGL_HUMAN	P06737	201.0523	0	18	7	Green
3574 MCM3_HUMAN P25205 190.7555 0 25 11 Green 1324 FLNB_HUMAN O75369 189.1723 0 19 10 Green 11234 RBM14_HUMAN Q96PK6 186.8555 0 119 5 Green 2548 LKHA4_HUMAN P09960 186.6673 0 8 6 Green 6524 FLNC_HUMAN Q14315 179.0586 0 25 14 Green 13646 SYLC_HUMAN Q14315 179.0586 0 12 10 Green 13646 SYLC_HUMAN Q9P2J5 174.1669 0 12 10 Green 15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	3882	PUR9_HUMAN	P31939	199.2855	0	13	9	Green
1324 FLNB_HUMAN O75369 189.1723 0 19 10 Green 11234 RBM14_HUMAN Q96PK6 186.8555 0 19 5 Green 2548 LKHA4_HUMAN P09960 186.6673 0 8 6 Green 6524 FLNC_HUMAN Q14315 179.0586 0 25 14 Green 13646 SYLC_HUMAN Q9P2J5 174.1669 0 12 10 Green 15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	3574	MCM3_HUMAN	P25205	190.7555	0	25	11	Green
11234 RBM14_HUMAN Q96PK6 186.8555 0 19 5 Green 2548 LKHA4_HUMAN P09960 186.6673 0 8 6 Green 6524 FLNC_HUMAN Q14315 179.0586 0 255 14 Green 13646 SYLC_HUMAN Q9P2J5 174.1669 0 12 10 Green 15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	1324	FLNB_HUMAN	O75369	189.1723	0	19	10	Green
2548 LKHA4_HUMAN P09960 186.6673 0 8 6 Green 6524 FLNC_HUMAN Q14315 179.0586 0 25 14 Green 13646 SYLC_HUMAN Q9P2J5 174.1669 0 12 10 Green 15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	11234	RBM14_HUMAN	Q96PK6	186.8555	0	19	5	Green
6524 FLNC_HUMAN Q14315 179.0586 0 25 14 Green 13646 SYLC_HUMAN Q9P2J5 174.1669 0 12 10 Green 15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	2548	LKHA4_HUMAN	P09960	186.6673	0	8	6	Green
13646 SYLC_HUMAN Q9P2J5 174.1669 0 12 10 Green 15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	6524	FLNC_HUMAN	Q14315	179.0586	0	25	14	Green
15146 E7ETK5_HUMAN E7ETK5 172.3322 0 15 4 Green 44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	13646	SYLC_HUMAN	Q9P2J5	174.1669	0	12	10	Green
44687 CAND1_HUMAN Q86VP6-2 164.9949 0 23 8 Green	15146	E7ETK5_HUMAN	E7ETK5	172.3322	0	15	4	Green
	44687	CAND1_HUMAN	Q86VP6-2	164.9949	0	23	8	Green

5440	PRKDC_HUMAN	P78527	163.9883	0	44	23	Green
10950	FUBP3_HUMAN	Q96I24	159.0605	0	11	5	Green
21138	NSUN2_HUMAN	Q08J23-2	150.1441	0	8	6	Green
3408	PUR2_HUMAN	P22102	150.0583	0	17	6	Green
61795	A0A7I2YQX4_HU MAN	A0A7I2YQX 4	148.9961	0	2	2	Green
5857	CKAP4_HUMAN	Q07065	143.4804	0	16	6	Green
78645	F5H282_HUMAN	F5H282	143.127	0	7	2	Green
26968	A0A494C128_HU MAN	A0A494C12 8	133.903	0	10	6	Green
2525	DLDH_HUMAN	P09622	134.5943	0	9	2	Green
5897	DHX9_HUMAN	Q08211	125.5884	0	21	5	Green
15475	FUMH_HUMAN	P07954-2	115.3858	0.04	5	2	Green
3411	PUR6_HUMAN	P22234	114.12	0.04	9	4	Green
1130	CTND1_HUMAN	O60716	89.9373	0.04	7	5	Green
3639	CRBB3_HUMAN	P26998	102.481	0.04	5	5	Green
2824	XRCC5_HUMAN	P13010	101.5862	0.08	11	3	Green
86778	H0YN26_HUMAN	H0YN26	100.0162	0.08	3	2	Green
10957	SUCB2_HUMAN	Q96199	90.4967	0.08	14	7	Green
27663	A0A7I2V421_HU MAN	A0A7I2V421	88.9283	0.08	6	2	Green
14460	SYFA_HUMAN	Q9Y285	70.7747	0.08	6	6	Green
40988	EIF3A_HUMAN	Q14152-2	82.2429	0.08	11	7	Green
26897	A0A494C001_HU MAN	A0A494C00 1	79.7785	0.08	11	4	Green
4226	SYIC_HUMAN	P41252	76.7029	0.11	14	5	Green
27935	A0A7P0T861_HU MAN	A0A7P0T86 1	76.2545	0.11	7	3	Green
28956	A0A8Q3SIG1_H	A0A8Q3SIG	64.2943	0.11	22	14	Green
8362	UBP34_HUMAN	Q70CQ2	56.873	0.11	19	15	Green
6572	MCM6_HUMAN	Q14566	64.6301	0.11	15	7	Green
8541	MYH14_HUMAN	Q7Z406	54.2715	0.11	22	16	Green
11293	VPS35_HUMAN	Q96QK1	58.9009	0.11	9	6	Green
3658	RFA1_HUMAN	P27694	47.3473	0.22	7	4	Green
4040	MYH9_HUMAN	P35579	39.9929	0.25	23	15	Green
39067	MYH11_HUMAN	P35749-4	40.2483	0.32	14	9	Green
23166	TITIN_HUMAN	Q8WZ42-6	37.8225	0.35	52	30	Green
1380	SF3B1_HUMAN	O75533	30.3526	0.41	11	4	Green

11.3 Anexo 3. Proteínas identificadas para Oligo 1 y 2 en MIO-M1-Q10

nrotoin	protoin Entry	protoin Acco	n rotain a	protoin folos Desiti	natain Match ad Dr	protoin motobodD	protoin AutoC
protein.	protein.Entry	protein.Acce	protein.s	protein.laisePositi	protein.MatchedP1	protein.matchedP	protein.Autoc
key		ssion	core	veRate	oducts	eptides	urate
2215	H2A1B_HUMAN	P04908	35334.84	0	66	4	Green
2186	K2C1_HUMAN	P04264	26840.24	0	95	11	Green
11630	TBA1C_HUMAN	Q9BQE3	25756.05	0	81	9	Green
2467	K2C7_HUMAN	P08729	21708.39	0	16	2	Green
4070	K22E_HUMAN	P35908	11403.48	0	151	17	Green
5307	H4_HUMAN	P62805	11171.37	0	42	5	Green
82552	G3V576_HUMA N	G3V576	10551.11	0	39	5	Green
2857	K1C10_HUMAN	P13645	10487.25	0	208	15	Green

2859	K2C5_HUMAN	P13647	10117.91	0	69	11	Green
2084	K2C6A_HUMAN	P02538	8813.396	0	62	9	Green
75493	E9PCY7_HUMA	E9PCY7	8750.323	0	34	4	Green
2780	K2C3_HUMAN	P12035	8284.016	0	30	5	Green
78386	F5GZQ4_HUMA	F5GZQ4	8201.995	0	20	2	Green
38740	N ATPA_HUMAN	P25705-2	8041.171	0	36	5	Green
2331	H2B1J_HUMAN	P06899	7651.704	0	54	5	Green
4031	K1C9_HUMAN	P35527	7071.221	0	174	17	Green
1178	H2B1K_HUMAN	O60814	6896.337	0	53	5	Green
61350	A0A7I2V4N0_HU	A0A7I2V4N0	6709.824	0	25	2	Green
11303	H2A1A_HUMAN	Q96QV6	6494.721	0	22	3	Green
39984	HNRPK_HUMAN	P61978-3	6401.133	0	36	3	Green
2309	ATPB_HUMAN	P06576	6234.407	0	55	8	Green
27767	A0A7I2V599_HU	A0A7I2V599	6135.624	0	82	8	Green
38172	HSP7C_HUMAN	P11142-2	5899.411	0	56	7	Green
61239	A0A7I2V433_HU	A0A7I2V433	5632.274	0	34	3	Green
57719	A0A2R8Y793_H	A0A2R8Y79	5290.987	0	47	5	Green
94278	K7EM20_HUMA	K7EM20	4994.197	0	27	4	Green
2379	PROF1_HUMAN	P07737	4948.938	0	8	1	Green
1794	K2C75_HUMAN	O95678	4810.075	0	30	5	Green
93232	J3QS39_HUMA	J3QS39	4574.898	0	14	2	Green
94354	K7EMD9_HUMA	K7EMD9	4516.234	0	18	3	Green
39608	HNRPM_HUMA	P52272-2	3855.076	0	17	3	Green
2083	K1C14_HUMAN	P02533	3584.566	0	62	8	Green
69406	C9J7H8_HUMA N	C9J7H8	3496.183	0	18	3	Green
87848	H3BR27_HUMA N	H3BR27	3448.726	0	10	1	Green
79721	F8VTQ5_HUMA	F8VTQ5	3241.733	0	24	4	Green
21633	Q5JP53_HUMA	Q5JP53	3101.422	0	60	10	Green
4187	MDHM_HUMAN	P40926	3025.643	0	26	5	Green
2318	ENOA_HUMAN	P06733	2654.95	0	23	4	Green
60724	A0A6Q8PH31_H UMAN	A0A6Q8PH3 1	2653.021	0	23	4	Green
93829	K7EK45_HUMA	K7EK45	2594.518	0	28	2	Green
2797	KCRB_HUMAN	P12277	2382.915	0	27	6	Green
61509	A0A7I2V5J5_HU	A0A7I2V5J5	2367.979	0	12	2	Green
103619	X6R6Z1_HUMA	X6R6Z1	2356.406	0	10	2	Green
38926	N HNRH3_HUMAN	P31942-6	2299.866	0	9	1	Green
38864	PRDX3_HUMAN	P30048-2	2147.115	0	20	2	Green
2359	ANXA2_HUMAN	P07355	2038.411	0	15	3	Green
6284	TBB3_HUMAN	Q13509	1977.789	0	35	7	Green
28694	A0A8I5KVC9_H UMAN	A0A8I5KVC 9	1774.501	0	9	2	Green
3968	HS71L_HUMAN	P34931	1695.285	0	41	6	Green
2386	HS90A_HUMAN	P07900	1684.51	0	15	3	Green
6073	TRAP1_HUMAN	Q12931	1631.049	0	16	6	Green
79897	F8VW21_HUMA N	F8VW21	1589.944	0	20	3	Green

56584	A0A1W2PP35_H UMAN	A0A1W2PP 35	1578.909	0	16	3	Green
37729	G3P_HUMAN	P04406-2	1517.882	0	27	5	Green
28105	A0A7P0TAI0_HU MAN	A0A7P0TAI0	1364.104	0	13	3	Green
20435	KPYM_HUMAN	P14618-3	1351.418	0	18	3	Green
2597	HS71A_HUMAN	P0DMV8	920.0251	0	51	10	Green
83521	H0Y8K0_HUMA N	H0Y8K0	893.6566	0	16	3	Green
4542	EFTU_HUMAN	P49411	862.0769	0	20	3	Green
2459	VIME_HUMAN	P08670	823.2509	0	46	11	Green
2470	K1C16_HUMAN	P08779	804.7338	0	14	3	Green
14445	RUVB1_HUMAN	Q9Y265	803.9238	0	12	5	Green
11789	TBB6_HUMAN	Q9BUF5	772.1572	0	15	4	Green
38651	SFPQ_HUMAN	P23246-2	754.4698	0	13	2	Green
2538	PARP1_HUMAN	P09874	679.336	0	24	7	Green
41271	PDIA6_HUMAN	Q15084-3	535.7822	0	10	3	Green
86020	H0YJH7_HUMA N	H0YJH7	509.7532	0	10	2	Green
37649	AATM_HUMAN	P00505-2	483.3885	0	7	2	Green
27619	A0A7I2V3H3_HU MAN	A0A7I2V3H3	470.0087	0	21	3	Green
5776	SSBP_HUMAN	Q04837	406.2611	0	5	1	Green
4964	TERA_HUMAN	P55072	358.2654	0	15	5	Green
2855	EF2_HUMAN	P13639	312.4177	0	20	5	Green
6145	ROA0_HUMAN	Q13151	257.835	0	8	2	Green
2244	ADT2_HUMAN	P05141	239.709	0	15	5	Green
3236	NUCL_HUMAN	P19338	160.6893	0	16	3	Green
3628	EF1G_HUMAN	P26641	155.0971	0	7	1	Green
4685	TCPD_HUMAN	P50991	147.7207	0	10	3	Green
2822	XRCC6_HUMAN	P12956	112.7184	0	9	3	Green
30520	B9A067_HUMAN	B9A067	62.1782	0	5	3	Green
3003	DESP_HUMAN	P15924	50.2	0	31	10	Green

11.4 Anexo 4. Proteínas identificadas para Oligo control en MIO-M1-Q64

protein. key	protein.Entry	protein.Acce ssion	protein.s core	protein.falsePositi veRate	protein.MatchedP roducts	protein.matchedP eptides	protein.AutoC urate
2361	ANXA2_HUMAN	P07355	80815.42	0	199	18	Green
5378	TBA1B_HUMAN	P68363	67591.81	0	183	17	Green
44553	TBA1A_HUMAN	Q71U36-2	65923.8	0	156	15	Green
11614	TBA1C_HUMAN	Q9BQE3	62440.34	0	162	17	Green
144	AXA2L_HUMAN	A6NMY6	52712.11	0	153	13	Green
50326	TBA8_HUMAN	Q9NY65-2	28993.54	0	89	10	Green
1913	LDHA_HUMAN	P00338	28626.44	0	190	18	Green
2704	HSP7C_HUMAN	P11142	28106.11	0	184	22	Green
60707	A0A6Q8PFE4_H UMAN	A0A6Q8PFE 4	27777.48	0	298	25	Green
33596	G3V1A4_HUMA N	G3V1A4	27667.09	0	66	5	Green
2686	CH60_HUMAN	P10809	26253.86	0	152	19	Green
2461	VIME_HUMAN	P08670	26081.88	0	250	22	Green
5330	PPIA_HUMAN	P62937	26044.38	0	112	13	Green

7074	H2A2C_HUMAN	Q16777	23628.4	0	45	5	Green
34418	H0YFX9_HUMA	H0YFX9	23530.85	0	39	4	Green
2320	ENOA_HUMAN	P06733	23332.04	0	166	22	Green
2333	H2B1J_HUMAN	P06899	22309.93	0	101	6	Green
1183	H2B1K_HUMAN	O60814	21997.7	0	123	6	Green
2918	KPYM_HUMAN	P14618	20453.54	0	247	26	Green
23844	TBA4B_HUMAN	Q9H853	19818.83	0	25	6	Green
33328	F8VZ49_HUMAN	F8VZ49	19808.63	0	54	5	Green
937	ACTN4_HUMAN	O43707	19742.56	0	233	37	Green
4656	SERPH_HUMAN	P50454	18651.28	0	96	9	Green
2210	HSPB1_HUMAN	P04792	17428.92	0	53	6	Green
2814	ACTN1_HUMAN	P12814	16839.17	0	122	20	Green
2188	K2C1_HUMAN	P04264	16577.22	0	327	29	Green
93341	J3QS39_HUMAN	J3QS39	16186.6	0	21	2	Green
2381	PROF1_HUMAN	P07737	16090.2	0	116	10	Green
2425	HS90B_HUMAN	P08238	15542.25	0	244	28	Green
5306	H4_HUMAN	P62805	14739.62	0	120	10	Green
2388	HS90A_HUMAN	P07900	14691.5	0	235	26	Green
53765	A0A0A0MSI0_H	A0A0A0MSI	13845.49	0	82	9	Green
2859	K1C10_HUMAN	0 P13645	13823.89	0	377	29	Green
2087	LMNA_HUMAN	P02545	13524.75	0	280	30	Green
2340	LDHB_HUMAN	P07195	13507.3	0	120	11	Green
21661	Q5JP53_HUMAN	Q5JP53	13092.27	0	159	20	Green
41724	RAB35_HUMAN	Q15286-2	12771.15	0	19	2	Green
63077	A0A804HI95_HU	A0A804HI95	12741.76	0	76	19	Green
2195	G3P_HUMAN	P04406	12399.03	0	184	18	Green
2497	GSTP1_HUMAN	P09211	12263.58	0	56	6	Green
3892	S10AB_HUMAN	P31949	12071.12	0	29	3	Green
15410	LMNA_HUMAN	P02545-2	11911.97	0	227	28	Green
2861	K2C5_HUMAN	P13647	11568.89	0	142	18	Green
38692	ENOB_HUMAN	P13929-3	11366.04	0	69	8	Green
6281	TBB3_HUMAN	Q13509	10921.59	0	129	14	Green
3480	RS3_HUMAN	P23396	10104.21	0	66	11	Green
2469	K2C7_HUMAN	P08729	10055.92	0	37	8	Green
5150	TPIS_HUMAN	P60174	9936.891	0	75	10	Green
26280	A0A1X7SCE1_H	A0A1X7SCE	9925.572	0	17	7	Green
5301	ACTA_HUMAN	P62736	9920.338	0	96	11	Green
67482	A6NL76_HUMAN	A6NL76	9804.4	0	97	11	Green
2284	K2C8_HUMAN	P05787	9776.474	0	16	3	Green
3223	K2C4_HUMAN	P19013	9775.232	0	16	3	Green
2165	ANXA1_HUMAN	P04083	9601.174	0	115	13	Green
7908	K2C80_HUMAN	Q6KB66	9582.534	0	13	5	Green
38331	ENOG_HUMAN	P09104-2	9381.465	0	49	8	Green
4033	K1C9_HUMAN	P35527	9230.736	0	250	24	Green
5380	TBB4B_HUMAN	P68371	9191.723	0	128	17	Green
6378	TBB2A_HUMAN	Q13885	9096.982	0	120	15	Green

61560	A0A7I2V433_HU MAN	A0A7I2V433	8792.861	0	51	5	Green
27906	A0A7I2V4N0_HU	A0A7I2V4N0	8706.735	0	56	6	Green
44554	H2AV_HUMAN	Q71UI9-2	8236.834	0	23	4	Green
24675	A0A087WVQ9_H	A0A087WV	8092.045	0	130	15	Green
6071	TRAP1_HUMAN	Q9 Q12931	7918.684	0	37	6	Green
4072	K22E_HUMAN	P35908	7593.072	0	236	28	Green
2472	K1C16_HUMAN	P08779	7172.572	0	71	11	Green
2857	EF2_HUMAN	P13639	6942.826	0	223	22	Green
3190	ARF4_HUMAN	P18085	6848.153	0	26	8	Green
27995	A0A7I2V5M5_H	A0A7I2V5M	6773.005	0	118	12	Green
24490	X6RFL8_HUMA	X6RFL8	6745.095	0	18	4	Green
3296	RAB3A_HUMAN	P20336	6656.745	0	14	3	Green
3298	RAB4A_HUMAN	P20338	6586.948	0	16	4	Green
3898	PRDX2_HUMAN	P32119	6505.135	0	42	8	Green
2085	K1C14_HUMAN	P02533	6496.169	0	98	11	Green
18021	A0A0G2JLI4_HU	A0A0G2JLI4	6493.085	0	63	13	Green
3357	FLNA_HUMAN	P21333	6367.942	0	210	46	Green
66493	A0A8V8TNZ0_H	A0A8V8TNZ	6288.883	0	25	5	Green
3300	UMAN RAB6A_HUMAN	0 P20340	6257.955	0	14	3	Green
90306	H7C3T4_HUMA	H7C3T4	6223.34	0	39	6	Green
10421	N DDX17_HUMAN	Q92841	5803.657	0	61	16	Green
82912	G3V5X6_HUMA	G3V5X6	5800.078	0	26	4	Green
4807	N GDIR1_HUMAN	P52565	5514.514	0	29	5	Green
4130	RBMX_HUMAN	P38159	5471.759	0	26	6	Green
70083	C9J9K3_HUMAN	C9J9K3	5401.18	0	25	7	Green
3970	HS71L_HUMAN	P34931	5392.59	0	55	13	Green
3314	LMNB1_HUMAN	P20700	5387.199	0	106	13	Green
3222	K1C15_HUMAN	P19012	5093.509	0	33	4	Green
1327	H2AY_HUMAN	075367	5091.847	0	57	6	Green
56994	A0A1W2PP35_H	A0A1W2PP	4937.963	0	57	7	Green
3757	TKT_HUMAN	P29401	4900.708	0	143	17	Green
28362	A0A7P0TB36_H	A0A7P0TB3	4771.446	0	123	18	Green
5265	RS8_HUMAN	6 P62241	4730.9	0	47	6	Green
40399	HNRPK_HUMAN	P61978-3	4456.426	0	69	10	Green
75843	E9PCY7_HUMA	E9PCY7	4421.46	0	33	4	Green
38480	N HS71A_HUMAN	P0DMV8-2	4349.025	0	67	13	Green
1934	PGK1_HUMAN	P00558	4273.285	0	110	13	Green
61927	A0A7I2V649_HU	A0A7I2V649	4199.951	0	47	12	Green
2163	ALDOA_HUMAN	P04075	4104.633	0	64	11	Green
2323	G6PI_HUMAN	P06744	4070.698	0	71	10	Green
96765	MOR210_HUMA	M0R210	4042.215	0	25	3	Green
2311	N ATPB_HUMAN	P06576	4038.887	0	99	15	Green
4189	MDHM_HUMAN	P40926	3997.387	0	65	10	Green
28424	A0A7P0Z497_H UMAN	A0A7P0Z49 7	3944.926	0	42	7	Green

35172	H7BZ94_HUMA	H7BZ94	3811.848	0	45	10	Green
5761	K1C17_HUMAN	Q04695	3638.167	0	27	6	Green
2086	K2C6A_HUMAN	P02538	3559.51	0	106	16	Green
3182	TCPA_HUMAN	P17987	3543.713	0	53	16	Green
84199	H0YA96_HUMA	H0YA96	3471.299	0	32	6	Green
5347	N 1433Z_HUMAN	P63104	3452.822	0	37	7	Green
5270	1433E_HUMAN	P62258	3414.31	0	40	9	Green
28309	A0A7P0TAE1_H	A0A7P0TAE	3349.024	0	65	14	Green
5178	UMAN IF4A1_HUMAN	1 P60842	3334.586	0	65	11	Green
43361	Q5VVC8_HUMA	Q5VVC8	3300.008	0	21	2	Green
33876	N G5E972_HUMA	G5E972	3292.673	0	58	12	Green
2268	N RLA0_HUMAN	P05388	3220	0	35	8	Green
2860	K1C13_HUMAN	P13646	3176.218	0	36	8	Green
3587	ATPA_HUMAN	P25705	3085.157	0	41	11	Green
6507	IF4A2_HUMAN	Q14240	3008.127	0	55	11	Green
42932	Q5SWC8_HUMA	Q5SWC8	2755.34	0	39	5	Green
65687	N A0A8V8TKR9 H	A0A8V8TKR	2745.867	0	95	17	Green
97684	UMAN 1433B HUMAN	9 P31946-2	2737 909	0	24	5	Green
5012	HNRH2 HUMAN	P55795	2729 878	0	33	7	Green
5254		P61981	2687 954	0	29	7	Green
5476		P81605	2533 556	0	23	5	Green
5/16	TCPB HUMAN	P78371	2500.000	0	74	10	Green
5736		003252	2449 998	0	94	15	Green
4249		P42166	2438.018	0	69	13	Green
4404		P46940	2358 196	0	82	28	Green
30256	B4DUR8 HUMA	B4DUR8	2351 419	0	65	13	Green
98618	Ν	05H9A7	2277 791	0	16	4	Green
2247		DOZOOF	2211.131	0	10	-	Green
2347	PGK2_HUMAN	P07205	2247.014	0	33	5	Gleen
29424	N	AZA3K5	2228.936	0	20	3	Green
2841	RINI_HUMAN	P13489	2167.726	0	42	9	Green
20659	PRDX5_HUMAN	P30044-3	2177.789	0	27	6	Green
5361	RACK1_HUMAN	P63244	2139.553	0	22	7	Green
2799	KCRB_HUMAN	P12277	2133.003	0	40	8	Green
2824	XRCC6_HUMAN	P12956	2091.589	0	75	17	Green
97987	CAP1_HUMAN	Q01518-2	2061.1	0	41	10	Green
3998	RADI_HUMAN	P35241	2060.252	0	40	10	Green
4042	MYH9_HUMAN	P35579	2016.903	0	134	34	Green
29730	A6NLN1_HUMA N	A6NLN1	2000.042	0	37	7	Green
3782	PRDX6_HUMAN	P30041	1988.132	0	39	6	Green
28344	A0A7P0TAW3_H UMAN	A0A7P0TA W3	1978.187	0	76	17	Green
39332	PUR9_HUMAN	P31939-2	1971.941	0	43	12	Green
4490	TCPE_HUMAN	P48643	1917.432	0	56	10	Green
68490	B4DY09_HUMA N	B4DY09	1899.629	0	37	6	Green
88462	H3BT36_HUMA	H3BT36	1864.686	0	11	1	Green
97564	HNRPL_HUMAN	P14866-2	1851.999	0	44	13	Green

4811	HNRPF_HUMAN	P52597	1838.49	0	24	4	Green
40357	PSA6_HUMAN	P60900-2	1831.397	0	19	6	Green
3518	RIR1_HUMAN	P23921	1823.798	0	101	13	Green
2246	ADT2_HUMAN	P05141	1803.193	0	24	4	Green
2966	EZRI_HUMAN	P15311	1801.41	0	52	7	Green
5299	RS4X_HUMAN	P62701	1782.417	0	27	4	Green
11529	TCPH_HUMAN	Q99832	1771.671	0	64	11	Green
33390	F8W6P5_HUMA	F8W6P5	1755.162	0	8	1	Green
4542	EFTU_HUMAN	P49411	1726.021	0	52	11	Green
5222	RL27_HUMAN	P61353	1711.915	0	13	2	Green
8623	K2C1B_HUMAN	Q7Z794	1705.47	0	35	7	Green
238	DX39A_HUMAN	O00148	1674.08	0	32	8	Green
61718	A0A7I2V4Z0_HU	A0A7I2V4Z0	1656.585	0	46	10	Green
3685	PSB6_HUMAN	P28072	1632.948	0	12	3	Green
3793	PDIA3_HUMAN	P30101	1584.347	0	45	9	Green
35094	H3BV27_HUMA	H3BV27	1541.588	0	7	1	Green
12405	PABP3_HUMAN	Q9H361	1533.401	0	25	7	Green
88185	H3BRU6_HUMA	H3BRU6	1493.569	0	30	7	Green
6620	MVP_HUMAN	Q14764	1458.381	0	26	9	Green
43158	Q5T8U2_HUMA	Q5T8U2	1457.095	0	11	2	Green
103802	X6RJP6_HUMA	X6RJP6	1451.308	0	34	6	Green
31413	D6RCD7_HUMA	D6RCD7	1424.843	0	57	13	Green
31368	D6RBE9_HUMA	D6RBE9	1417.332	0	24	6	Green
6808	N PCBP1_HUMAN	Q15365	1398.084	0	42	10	Green
5360	IF5A1_HUMAN	P63241	1358.393	0	31	5	Green
41227	TCOF_HUMAN	Q13428-2	1357.285	0	32	9	Green
71881	C9JXB8_HUMA	C9JXB8	1352.156	0	27	5	Green
293	CLIC1_HUMAN	O00299	1294.885	0	19	3	Green
1329	FLNB_HUMAN	O75369	1291.315	0	83	27	Green
6183	TIF1B_HUMAN	Q13263	1284.229	0	37	9	Green
39936	TCPQ_HUMAN	P50990-3	1272.831	0	32	8	Green
2798	PIP_HUMAN	P12273	1262.898	0	23	5	Green
95623	K7ESL2_HUMA	K7ESL2	1235.998	0	5	1	Green
39138	APC_HUMAN	P25054-3	1215.377	0	44	25	Green
1930	AATM_HUMAN	P00505	1215.192	0	40	9	Green
9599	LEMD2_HUMAN	Q8NC56	1198.299	0	16	5	Green
94428	K7EMA7_HUMA	K7EMA7	1184.781	0	8	1	Green
67438	TBAL3_HUMAN	A6NHL2-2	1179.245	0	30	7	Green
812	HNRPR_HUMAN	O43390	1158.464	0	24	7	Green
16090	HS904_HUMAN	Q58FG1	1138.236	0	28	8	Green
31354	D6RB09_HUMA	D6RB09	1119.192	0	13	3	Green
3993	PHB1_HUMAN	P35232	1118.348	0	17	5	Green
36888	HNRDL_HUMAN	O14979-3	1114.893	0	22	4	Green
16561	LOXH1_HUMAN	Q8IVV2	1076.763	0	32	12	Green
4168	TCPZ_HUMAN	P40227	1061.885	0	80	13	Green

52108	A0A075B6Z2_H	A0A075B6Z	1040.47	0	8	1	Green
32378	E9PJD9_HUMA	E9PJD9	1025.174	0	19	3	Green
1607	N GLSK_HUMAN	O94925	1013.85	0	25	10	Green
5187	DEST_HUMAN	P60981	1008.776	0	19	5	Green
15058	FBLL1_HUMAN	A6NHQ2	1001.637	0	8	1	Green
22690	LMTD1_HUMAN	Q8N9Z9	996.4888	0	16	7	Green
4685	TCPD_HUMAN	P50991	989.6536	0	66	12	Green
36495	M0R0P1_HUMA	M0R0P1	985.6809	0	9	2	Green
35314	H7C2W9_HUMA	H7C2W9	975.0232	0	12	2	Green
4095	RL4_HUMAN	P36578	982.3328	0	41	8	Green
20531	VINC_HUMAN	P18206-2	970.7255	0	51	21	Green
42583	HERC4_HUMAN	Q5GLZ8-3	949.0417	0	10	8	Green
61656	A0A7I2V4K9_HU	A0A7I2V4K9	967.343	0	24	7	Green
5143	ARPC4_HUMAN	P59998	961.5617	0	12	4	Green
7045	FSCN1_HUMAN	Q16658	928.1682	0	40	8	Green
4396	RS9_HUMAN	P46781	949.5476	0	16	5	Green
5277	RUXE_HUMAN	P62304	944.7849	0	11	2	Green
4057	DEK_HUMAN	P35659	920.2234	0	27	5	Green
84166	H0YA55_HUMA	H0YA55	898.1023	0	27	5	Green
95632	N K7ESM3_HUMA	K7ESM3	876.454	0	12	3	Green
67656	A8MUD9_HUMA	A8MUD9	861.3422	0	19	4	Green
2366	CAN1_HUMAN	P07384	826.6732	0	11	6	Green
6599	SMC1A_HUMAN	Q14683	813.3788	0	18	9	Green
69322	C9J188_HUMAN	C9J188	807.8204	0	12	1	Green
25168	A0A0A6YYG9_H UMAN	A0A0A6YYG 9	803.1472	0	13	7	Green
5556	CLH1_HUMAN	Q00610	743.6533	0	109	32	Green
4648	GDIB_HUMAN	P50395	782.3487	0	27	7	Green
98658	Q5JP02_HUMAN	Q5JP02	763.2641	0	14	3	Green
3792	PEBP1_HUMAN	P30086	763.1631	0	17	3	Green
3421	UBA1_HUMAN	P22314	762.7049	0	66	19	Green
2214	RPN1_HUMAN	P04843	756.1686	0	34	10	Green
3091	H15_HUMAN	P16401	750.8654	0	25	3	Green
21294	PTC1_HUMAN	Q13635-3	749.163	0	15	7	Green
7470	TOIP1_HUMAN	Q5JTV8	742.2274	0	23	7	Green
5259	RS7_HUMAN	P62081	737.622	0	14	4	Green
97550	PLST_HUMAN	P13797-3	737.0408	0	43	14	Green
5923	SSRP1_HUMAN	Q08945	709.9797	0	42	11	Green
3630	EF1G_HUMAN	P26641	697.96	0	35	12	Green
65745	A0A8V8TL37_H UMAN	A0A8V8TL3 7	694.5101	0	10	4	Green
10030	IPO4_HUMAN	Q8TEX9	688.1129	0	18	7	Green
80322	F8VY02_HUMAN	F8VY02	687.0587	0	8	4	Green
48826	NPL_HUMAN	Q9BXD5-3	685.4305	0	16	9	Green
5272	RS23_HUMAN	P62266	678.7953	0	7	1	Green
6894	ELAV1_HUMAN	Q15717	662.2064	0	12	5	Green
73216	D6RDU5_HUMA N	D6RDU5	660.5419	0	16	9	Green

3499	SAHH_HUMAN	P23526	660.3024	0	13	2	Green
41687	PDIA6_HUMAN	Q15084-3	659.5102	0	20	5	Green
7257	TBB8_HUMAN	Q3ZCM7	653.8691	0	44	10	Green
6521	FLNC_HUMAN	Q14315	646.6332	0	65	27	Green
2943	PLAK_HUMAN	P14923	646.4466	0	45	11	Green
13585	RCC2_HUMAN	Q9P258	628.846	0	44	13	Green
55689	A0A0U1RQV3_H	A0A0U1RQ	627.8129	0	9	3	Green
39552	OST48_HUMAN	V3 P39656-3	623.9655	0	15	6	Green
103442	V9GYG2_HUMA	V9GYG2	617.2517	0	14	3	Green
1248	WDR1_HUMAN	O75083	609.7194	0	30	10	Green
7105	TRXR1_HUMAN	Q16881	609.4027	0	36	6	Green
10435	RAD50_HUMAN	Q92878	602.9921	0	16	10	Green
19231	E7ES33_HUMA	E7ES33	602.4736	0	15	5	Green
5855	CKAP4_HUMAN	Q07065	595.0252	0	63	13	Green
39401	GLYM_HUMAN	P34897-3	585.6577	0	20	6	Green
6973	AINX_HUMAN	Q16352	581.8993	0	19	7	Green
64014	A0A8I5KS71_HU MAN	A0A8I5KS71	578.1921	0	16	4	Green
3616	RL13_HUMAN	P26373	561.627	0	15	3	Green
1954	ASSY_HUMAN	P00966	561.0239	0	23	7	Green
95383	K7ERI7_HUMAN	K7ERI7	557.916	0	11	3	Green
61602	A0A7I2V4A2_HU	A0A7I2V4A2	557.7986	0	3	2	Green
35356	H7C469_HUMA	H7C469	555.6224	0	17	6	Green
14526	NOP58_HUMAN	Q9Y2X3	553.9641	0	15	4	Green
5660	DSG1_HUMAN	Q02413	551.2186	0	45	7	Green
30162	B4DEQ0_HUMA	B4DEQ0	549.5366	0	14	10	Green
3971	HSP74_HUMAN	P34932	537.0583	0	28	14	Green
14795	SERC_HUMAN	Q9Y617	535.4456	0	29	6	Green
28064	A0A7I2YQD6_H UMAN	A0A7I2YQD 6	523.3466	0	7	4	Green
3614	U2AF2_HUMAN	P26368-2	522.6443	0	25	7	Green
2782	K2C3_HUMAN	P12035	516.0314	0	16	8	Green
3665	CALR_HUMAN	P27797	514.8597	0	22	5	Green
5599	FABP5_HUMAN	Q01469	512.6351	0	9	2	Green
20577	NDKB_HUMAN	P22392-2	512.1954	0	9	4	Green
320	IF2B3_HUMAN	O00425	507.4062	0	17	5	Green
11194	SPB12_HUMAN	Q96P63	504.9311	0	26	6	Green
5974	CPSF1_HUMAN	Q10570	503.2769	0	29	13	Green
69669	C9J592_HUMAN	C9J592	477.9532	0	13	5	Green
14862	DNM3A_HUMAN	Q9Y6K1	452.1147	0	12	9	Green
6682	ZN638_HUMAN	Q14966	449.4858	0	18	10	Green
46977	LMO7_HUMAN	Q8WWI1-5	430.8449	0	24	10	Green
10341	ZN516_HUMAN	Q92618	454.3256	0	11	7	Green
35842	J3KTM9_HUMA N	J3KTM9	449.796	0	17	3	Green
24091	ARP10_HUMAN	Q9NZ32	447.0641	0	8	4	Green
1263	CPNE3_HUMAN	O75131	434.7018	0	19	5	Green
13132	KRT84_HUMAN	Q9NSB2	440.1638	0	21	9	Green

3846	GDIA_HUMAN	P31150	439.1248	0	16	6	Green
10293	H1X_HUMAN	Q92522	432.7468	0	10	2	Green
24856	A0A087X054_H	A0A087X05	425.8192	0	29	11	Green
16100	DDX6L_HUMAN	Q5H9U9	420.2516	0	21	14	Green
4131	BRCA1_HUMAN	P38398	415.8518	0	13	12	Green
9156	CPNE9_HUMAN	Q8IYJ1	413.6389	0	16	8	Green
30204	B4DJV2_HUMA	B4DJV2	389.084	0	12	3	Green
40084	ACLY_HUMAN	P53396-2	408.488	0	43	19	Green
2952	ALDR_HUMAN	P15121	405.7517	0	18	3	Green
486	TNPO2_HUMAN	014787-2	401.2734	0	23	7	Green
92828	J3QLE5_HUMAN	J3QLE5	398.3701	0	5	3	Green
47293	TNPO1_HUMAN	Q92973-3	391.5473	0	25	9	Green
10838	CPNE2_HUMAN	Q96FN4	390.1497	0	12	4	Green
2715	PYGB_HUMAN	P11216	387.361	0	17	9	Green
5686	TOP2B_HUMAN	Q02880	384.9749	0	33	17	Green
100945	PMFBP_HUMAN	Q8TBY8-4	373.2326	0	23	11	Green
3764	SPB3_HUMAN	P29508	361.1518	0	12	4	Green
4045	COPB2_HUMAN	P35606	357.8372	0	31	15	Green
16113	RRP12_HUMAN	Q5JTH9	357.3372	0	7	4	Green
9285	K2C78_HUMAN	Q8N1N4	345.2142	0	17	7	Green
40844	GOGA3_HUMAN	Q08378-2	342.2031	0	23	15	Green
98624	BCORL_HUMAN	Q5H9F3-4	341.312	0	19	8	Green
2540	PARP1_HUMAN	P09874	348.5117	0	32	8	Green
102283	IF172_HUMAN	Q9UG01-2	346.3972	0	29	14	Green
3189	ITB5_HUMAN	P18084	342.4131	0	6	3	Green
8409	SND1_HUMAN	Q7KZF4	346.1077	0	19	7	Green
4311	MATR3_HUMAN	P43243	344.9412	0	17	8	Green
26084	A0A1W2PPB6_H	A0A1W2PP	338.4889	0	8	4	Green
26860	A0A3B3IS80_HU	A0A3B3IS80	318.4047	0	9	3	Green
72562	D6RAA6_HUMA	D6RAA6	332.1581	0	10	4	Green
38748	NQO1_HUMAN	P15559-2	329.0863	0	15	4	Green
12735	TENS1_HUMAN	Q9HBL0	327.5639	0	27	13	Green
5273	RS18_HUMAN	P62269	326.0854	0	7	2	Green
45124	CAND1_HUMAN	Q86VP6-2	321.6639	0	35	11	Green
10461	FUBP2_HUMAN	Q92945	311.3896	0	19	7	Green
39065	SYWC_HUMAN	P23381-2	320.8268	0	13	7	Green
26607	A0A2R8Y8A0_H	A0A2R8Y8A	317.5058	0	9	1	Green
5547	CDKL1_HUMAN	Q00532	310.6141	0	8	4	Green
28777	A0A8I5KND9_H	A0A8I5KND	308.5997	0	24	8	Green
50865	MUTYH_HUMAN	Q9UIF7-4	306.6322	0	14	6	Green
28027	A0A7I2V5Z8_HU	A0A7I2V5Z8	305.1755	0	9	2	Green
7347	ACSM3_HUMAN	Q53FZ2	291.1394	0	13	7	Green
21166	NSUN2_HUMAN	Q08J23-2	304.5955	0	24	9	Green
37505	CAD16_HUMAN	O75309-3	302.0546	0	12	6	Green
43471	ZDH20_HUMAN	Q5W0Z9-2	293.0958	0	14	2	Green

8533	MYH14_HUMAN	Q7Z406	288.1054	0	28	16	Green
31063	C9JRH2_HUMA	C9JRH2	274.5173	0	20	4	Green
2826	XRCC5_HUMAN	P13010	273.2074	0	27	10	Green
5895	DHX9_HUMAN	Q08211	266.6567	0	45	16	Green
2750	TOP1_HUMAN	P11387	265.7568	0	16	4	Green
40093	CLH2_HUMAN	P53675-2	242.1116	0	34	17	Green
7244	K2C71_HUMAN	Q3SY84	262.9559	0	16	4	Green
40833	SRSF1_HUMAN	Q07955-3	255.9468	0	7	4	Green
35338	H7C3M2_HUMA	H7C3M2	255.7167	0	10	2	Green
6627	GOGB1_HUMAN	Q14789	246.2561	0	54	34	Green
50787	MLH3_HUMAN	Q9UHC1-2	253.7341	0	24	12	Green
6701	K2C72_HUMAN	Q14CN4	253.5961	0	16	6	Green
61592	A0A7I2V488_HU MAN	A0A7I2V488	253.5628	0	31	9	Green
40327	NAL11_HUMAN	P59045-2	252.4056	0	13	7	Green
4193	ECHA_HUMAN	P40939	252.2861	0	35	13	Green
79403	F5H6X6_HUMA	F5H6X6	251.8823	0.04	25	13	Green
13052	DUOX2_HUMAN	Q9NRD8	251.767	0.04	12	11	Green
38294	ASNS_HUMAN	P08243-3	249.8251	0.04	8	5	Green
14514	MAN1_HUMAN	Q9Y2U8	248.2821	0.04	30	9	Green
39460	FUS_HUMAN	P35637-2	244.6562	0.04	12	3	Green
35561	I3L3H2_HUMAN	I3L3H2	235.0917	0.08	13	4	Green
35355	H7C463_HUMA N	H7C463	231.0325	0.08	17	6	Green
3005	DESP_HUMAN	P15924	222.464	0.08	67	28	Green
61117	A0A6Q8PHC2_H	A0A6Q8PH	207.8547	0.08	6	4	Green
3888	CASPE_HUMAN	P31944	221.0239	0.08	11	4	Green
14199	STAP1_HUMAN	Q9ULZ2	219.2662	0.08	11	4	Green
6736	SYK_HUMAN	Q15046	200.4549	0.15	20	7	Green
15909	MYBPH_HUMAN	Q13203	199.0726	0.15	11	4	Green
4064	MYH11_HUMAN	P35749	198.0518	0.15	26	20	Green
68869	B7ZLE8_HUMAN	B7ZLE8	173.7376	0.15	37	13	Green
2401	TSP1_HUMAN	P07996	193.3738	0.15	45	10	Green
4548	DHE4_HUMAN	P49448	191.7054	0.15	13	4	Green
87161	H3BLU7_HUMA	H3BLU7	187.2292	0.15	13	2	Green
68672	B5MD38_HUMA	B5MD38	184.8909	0.15	8	6	Green
2385	SYEP_HUMAN	P07814	181.3292	0.15	18	10	Green
2862	PDIA4_HUMAN	P13667	176.525	0.21	27	9	Green
7565	ODAD2_HUMAN	Q5T2S8	175.0035	0.21	10	4	Green
37909	SVIL_HUMAN	O95425-4	160.7071	0.21	38	19	Green
13	A0A0U1RQF0_H	A0A0U1RQ F0	151.1105	0.26	77	27	Green
7756	WDR25_HUMAN	Q64LD2	141.9165	0.29	12	4	Green
29561	ANR62_HUMAN	A6NC57	138.0654	0.34	18	9	Green
39062	SFPQ_HUMAN	P23246-2	137.2196	0.34	12	3	Green
12339	SPTN4_HUMAN	Q9H254	125.1773	0.34	30	18	Green
6773	PLEC_HUMAN	Q15149	127.25	0.33	88	41	Green
4578	MCM2_HUMAN	P49736	123.0994	0.32	17	8	Green

16818	EXD1_HUMAN	Q8NHP7	119.4807	0.4	9	3	Green
42521	CC178_HUMAN	Q5BJE1-3	109.5526	0.57	28	10	Green
15486	ACSM4_HUMAN	P0C7M7	96.7938	0.68	9	7	Green
44495	TMTC3_HUMAN	Q6ZXV5-2	95.2302	0.68	19	7	Green
2551	ALDOC_HUMAN	P09972	66.7733	1.25	6	4	Green
10978	DYH8_HUMAN	Q96JB1	62.8296	1.77	77	37	Green
27071	A0A494C0F8_H UMAN	A0A494C0F 8	34.1629	2.12	7	4	Green
97525	PYGM_HUMAN	P11217-2	55.5575	2.23	11	8	Green

11.5 Anexo 5. Proteínas identificadas para Oligo 1 y 2 en MIO-M1-Q64

protein. key	protein.Entry	protein.Acce ssion	protein.s core	protein.falsePositi veRate	protein.MatchedP roducts	protein.matchedP eptides	protein.AutoC urate
5378	TBA1B_HUMAN	P68363	44709.61	0	149	18	Green
2361	ANXA2_HUMAN	P07355	44652.05	0	191	18	Green
11614	TBA1C_HUMAN	Q9BQE3	40498.54	0	123	17	Green
93341	J3QS39_HUMAN	J3QS39	36131.22	0	24	2	Green
75629	E7EVS6_HUMA	E7EVS6	33383.65	0	217	18	Green
34418	H0YFX9_HUMA	H0YFX9	28755.15	0	29	2	Green
2461	VIME_HUMAN	P08670	24012.78	0	245	24	Green
2918	KPYM_HUMAN	P14618	22883.69	0	233	28	Green
2188	K2C1_HUMAN	P04264	21212.18	0	391	30	Green
2704	HSP7C_HUMAN	P11142	20236.34	0	172	23	Green
2425	HS90B_HUMAN	P08238	19640.85	0	178	22	Green
67482	A6NL76_HUMAN	A6NL76	17824.59	0	79	9	Green
2617	TBA3C_HUMAN	P0DPH7	17077.95	0	103	13	Green
2861	K2C5_HUMAN	P13647	16944.57	0	144	18	Green
2320	ENOA_HUMAN	P06733	15389.99	0	132	15	Green
2859	K1C10_HUMAN	P13645	15194.39	0	456	38	Green
2388	HS90A_HUMAN	P07900	13728.72	0	122	17	Green
61640	A0A7I2V4G8_HU MAN	A0A7I2V4G 8	12858.64	0	32	3	Green
7908	K2C80_HUMAN	Q6KB66	12850.74	0	19	6	Green
2284	K2C8_HUMAN	P05787	12777.29	0	16	2	Green
21661	Q5JP53_HUMAN	Q5JP53	12603.57	0	128	16	Green
32030	E7EUT5_HUMA N	E7EUT5	12445.89	0	132	12	Green
5847	PRDX1_HUMAN	Q06830	11519.97	0	65	11	Green
937	ACTN4_HUMAN	O43707	10685.08	0	148	29	Green
5330	PPIA_HUMAN	P62937	10284.31	0	55	7	Green
6378	TBB2A_HUMAN	Q13885	10215.99	0	94	11	Green
2686	CH60_HUMAN	P10809	10089.08	0	114	20	Green
63666	A0A804HLF4_H UMAN	A0A804HLF 4	9633.255	0	79	18	Green
6281	TBB3_HUMAN	Q13509	9491.994	0	96	12	Green
33328	F8VZ49_HUMAN	F8VZ49	9004.077	0	34	5	Green
4656	SERPH_HUMAN	P50454	8851.734	0	47	7	Green
6071	TRAP1_HUMAN	Q12931	8525.857	0	33	7	Green
2087	LMNA_HUMAN	P02545	8495.514	0	234	25	Green

3437	ROA2_HUMAN	P22626	8474.632	0	58	8	Green
38691	ENOB_HUMAN	P13929-2	8012.239	0	55	8	Green
5886	ACTN3_HUMAN	Q08043	7982.526	0	43	13	Green
1913	LDHA_HUMAN	P00338	7865.144	0	105	15	Green
4033	K1C9_HUMAN	P35527	7738.421	0	255	23	Green
2165	ANXA1_HUMAN	P04083	7496.159	0	107	14	Green
2919	ENPL_HUMAN	P14625	7328.609	0	63	13	Green
5178	IF4A1_HUMAN	P60842	7191.955	0	59	12	Green
4046	ACTN2_HUMAN	P35609	6788.645	0	55	16	Green
4072	K22E_HUMAN	P35908	6477.472	0	318	31	Green
3970	HS71L_HUMAN	P34931	6401.681	0	31	3	Green
58378	A0A2R8YDI9_H	A0A2R8YDI	5259.711	0	8	1	Green
2472	UMAN K1C16 HUMAN	9 P08779	5223.055	0	67	13	Green
2085	K1C14 HUMAN	P02533	5112,961	0	128	17	Green
2697	BIP HUMAN	P11021	5097 005	0		15	Green
4494	K2C6C HUMAN	P48668	4992 967	0	97	16	Green
2086	K2C6A HUMAN	P02538	4002.007	0	08	17	Green
2000	K2C6B HUMAN	P0/250	4005 703	0	101	17	Green
5761		P 04239	4903.793	0		6	Green
2172		Q04095	4004.752	0	33	8	Green
3172	DDX5_HUMAN	P17844	4752.042	0	36	10	Green
5306	H4_HUMAN	P62805	4520.769	0	52	6	Green
3587	ATPA_HUMAN	P25705	4424.222	0	56	11	Green
2210	HSPB1_HUMAN	P04792	4388.908	0	41	6	Green
5476	DCD_HUMAN	P81605	4373.647	0	32	5	Green
2381	PROF1_HUMAN	P07737	4352.577	0	71	9	Green
2340	LDHB_HUMAN	P07195	4336.092	0	66	7	Green
3357	FLNA_HUMAN	P21333	4138.294	0	185	41	Green
5375	EF1A1_HUMAN	P68104	4130.672	0	97	11	Green
5150	TPIS_HUMAN	P60174	3968.998	0	34	7	Green
3898	PRDX2_HUMAN	P32119	3820.791	0	26	3	Green
97932	1433E_HUMAN	P62258-2	3814.623	0	25	5	Green
5347	1433Z_HUMAN	P63104	3756.691	0	28	6	Green
90831	H7C5W5_HUMA	H7C5W5	3636.85	0	29	4	Green
39263	EF1D_HUMAN	P29692-3	3599.978	0	19	6	Green
1183	H2B1K_HUMAN	O60814	3498.807	0	55	6	Green
5254	1433G_HUMAN	P61981	3413.082	0	22	4	Green
66493	A0A8V8TNZ0_H	A0A8V8TNZ	3399.549	0	21	6	Green
2311	ATPB_HUMAN	0 P06576	3371.352	0	95	16	Green
3480	RS3_HUMAN	P23396	3354.087	0	46	12	Green
3892	S10AB_HUMAN	P31949	3335.865	0	12	1	Green
3648	1433T_HUMAN	P27348	3316.167	0	23	3	Green
3501	COF1_HUMAN	P23528	3128.416	0	24	4	Green
82790	G3V576_HUMA	G3V576	3080.568	0	23	4	Green
2043	Ν ΡΙΑΚ ΗΙΜΔΝ	P14923	3057 871	0	02	11	Green
2343		P17066	3055 448	0	32	5	Green
5752		P61079	3003.440	0	50		Green
5252		1013/0	3003.933	0	55	9	Sieen

60610	A0A6Q8PEX7_H	A0A6Q8PEX	2993.235	0	26	6	Green
38480	HS71A_HUMAN	P0DMV8-2	2973.35	0	37	7	Green
1089	HNRPQ_HUMAN	O60506-4	2962.932	0	34	11	Green
30652	C9J386_HUMAN	C9J386	2954.287	0	9	1	Green
88029	H3BR27_HUMA	H3BR27	2903.944	0	11	4	Green
56994	A0A1W2PP35_H	A0A1W2PP	2819.508	0	59	9	Green
71287	C9JPM4_HUMA	C9JPM4	2784.572	0	11	4	Green
2665	THIO_HUMAN	P10599	2732.672	0	17	5	Green
4189	MDHM_HUMAN	P40926	2580.253	0	52	9	Green
27995	A0A7I2V5M5_H UMAN	A0A7I2V5M	2579.823	0	85	11	Green
6449	HNRPD_HUMAN	Q14103	2512.472	0	18	3	Green
3314	LMNB1_HUMAN	P20700	2408.175	0	72	16	Green
1934	PGK1_HUMAN	P00558	2155.949	0	56	10	Green
6973	AINX_HUMAN	Q16352	2015.927	0	17	7	Green
2341	NFL_HUMAN	P07196	1993.884	0	19	4	Green
19237	E7ESP9_HUMA	E7ESP9	1992.64	0	18	7	Green
2857	N EF2_HUMAN	P13639	1910.334	0	137	23	Green
8526	K1C27_HUMAN	Q7Z3Y8	1792.709	0	30	7	Green
3887	HNRH1_HUMAN	P31943	1783.114	0	30	7	Green
1796	K2C75_HUMAN	O95678	1751.155	0	30	10	Green
7737	K2C79_HUMAN	Q5XKE5	1750.598	0	23	6	Green
5607	K22O_HUMAN	Q01546	1685.519	0	14	3	Green
2468	K1C19_HUMAN	P08727	1682.538	0	36	7	Green
3757	TKT_HUMAN	P29401	1639.313	0	47	12	Green
97987	CAP1_HUMAN	Q01518-2	1628.603	0	15	3	Green
1327	H2AY_HUMAN	075367	1532.585	0	34	8	Green
65687	A0A8V8TKR9_H	A0A8V8TKR	1514.491	0	44	10	Green
92564	J3KTF8_HUMAN	J3KTF8	1509.885	0	18	2	Green
6153	CBX3_HUMAN	Q13185	1491.501	0	12	4	Green
2333	H2B1J_HUMAN	P06899	1451.951	0	46	6	Green
1103	PLOD3_HUMAN	O60568	1444.653	0	14	4	Green
2163	ALDOA_HUMAN	P04075	1442.341	0	34	6	Green
5736	LMNB2_HUMAN	Q03252	1425.421	0	73	13	Green
2548	UCHL1_HUMAN	P09936	1358.514	0	25	8	Green
2966	EZRI_HUMAN	P15311	1331.924	0	37	9	Green
2471	ANXA5_HUMAN	P08758	1264.157	0	15	4	Green
4542	EFTU_HUMAN	P49411	1249.246	0	26	3	Green
5222	RL27_HUMAN	P61353	1247.99	0	9	2	Green
5328	RL11_HUMAN	P62913	1196.769	0	16	4	Green
5416	TCPB_HUMAN	P78371	1172.242	0	50	15	Green
29987	B0QZK4_HUMA	B0QZK4	1152.244	0	22	4	Green
5660	N DSG1_HUMAN	Q02413	1152.236	0	77	11	Green
84242	H0YAF8_HUMA	H0YAF8	1114.592	0	16	4	Green
5233	N LYSC_HUMAN	P61626	1112.804	0	11	3	Green
4685	TCPD_HUMAN	P50991	1097.42	0	44	11	Green

6148	PRDX4_HUMAN	Q13162	1068.588	0	16	5	Green
3630	EF1G_HUMAN	P26641	1047.422	0	25	7	Green
238	DX39A_HUMAN	O00148	1021.093	0	19	4	Green
70083	C9J9K3_HUMAN	C9J9K3	1018.968	0	11	2	Green
2323	G6PI_HUMAN	P06744	1013.083	0	34	11	Green
6701	K2C72_HUMAN	Q14CN4	1006.014	0	18	5	Green
2268	RLA0_HUMAN	P05388	998.6758	0	13	5	Green
2937	HNRPL_HUMAN	P14866	975.4073	0	18	8	Green
27728	A0A7I2V2G2_HU	A0A7I2V2G	964.0611	0.11	37	9	Green
28424	MAN A0A7P0Z497_H LIMAN	2 A0A7P0Z49 7	938.6567	0.11	27	6	Green
97837	6PGD_HUMAN	P52209-2	909.7847	0.11	21	4	Green
4042	MYH9_HUMAN	P35579	896.8788	0.11	104	29	Green
30329	B5MCT8_HUMA N	B5MCT8	878.1904	0.11	13	4	Green
3182	TCPA_HUMAN	P17987	866.0564	0.11	25	6	Green
36888	HNRDL_HUMAN	O14979-3	859.527	0.11	17	3	Green
40023	HNRPM_HUMA	P52272-2	858.0383	0.11	23	8	Green
68992	B9A041_HUMAN	B9A041	848.249	0.11	8	2	Green
4684	TCPQ_HUMAN	P50990	827.0007	0.11	34	10	Green
11194	SPB12_HUMAN	Q96P63	813.165	0.11	26	4	Green
3192	RL7_HUMAN	P18124	798.73	0.11	19	5	Green
30268	B4DXW1_HUMA	B4DXW1	769.7457	0.1	19	6	Green
5265	RS8_HUMAN	P62241	767.081	0.1	15	5	Green
35356	H7C469_HUMA N	H7C469	751.9672	0.1	27	5	Green
39552	OST48_HUMAN	P39656-3	742.0566	0.1	15	4	Green
27888	A0A7I2V4H6_HU MAN	A0A7I2V4H6	739.0068	0.1	7	3	Green
39271	AL4A1_HUMAN	P30038-3	703.3095	0.1	13	3	Green
4141	IF4A3_HUMAN	P38919	690.0081	0.1	13	7	Green
9700	WDR19_HUMAN	Q8NEZ3	685.3342	0.1	16	11	Green
9285	K2C78_HUMAN	Q8N1N4	674.518	0.1	43	10	Green
70554	C9JEV0_HUMA N	C9JEV0	670.5919	0.1	17	5	Green
38064	AATM_HUMAN	P00505-2	652.7556	0.1	30	7	Green
4249	LAP2A_HUMAN	P42166	651.6575	0.1	32	9	Green
12459	TBB1_HUMAN	Q9H4B7	645.9714	0.1	26	6	Green
2798	PIP_HUMAN	P12273	639.7382	0.1	18	5	Green
2824	XRCC6_HUMAN	P12956	616.8561	0.09	39	10	Green
4404	IQGA1_HUMAN	P46940	605.8697	0.09	51	23	Green
26654	A0A2R8YDT5_H UMAN	A0A2R8YDT 5	593.9333	0.09	25	8	Green
19029	B7Z4L4_HUMAN	B7Z4L4	589.2756	0.09	25	7	Green
97650	RL13_HUMAN	P26373-2	586.0667	0.09	19	5	Green
3518	RIR1_HUMAN	P23921	583.6631	0.09	38	9	Green
2540	PARP1_HUMAN	P09874	573.68	0.09	44	14	Green
5923	SSRP1_HUMAN	Q08945	574.1071	0.09	21	6	Green
2792	ADT3_HUMAN	P12236	566.0408	0.09	20	6	Green
5299	RS4X_HUMAN	P62701	563.4926	0.09	15	5	Green
2246	ADT2_HUMAN	P05141	561.7399	0.09	18	6	Green

3005	DESP_HUMAN	P15924	544.6642	0.09	143	32	Green
20658	PRDX5_HUMAN	P30044-2	541.7881	0.09	14	5	Green
92318	J3KSD8_HUMA	J3KSD8	518.0571	0.09	14	4	Green
5855	CKAP4_HUMAN	Q07065	511.1891	0.09	27	8	Green
41687	PDIA6_HUMAN	Q15084-3	483.1779	0.09	16	4	Green
14152	TTC7A_HUMAN	Q9ULT0	479.821	0.09	19	8	Green
26861	A0A3B3IS84_HU	A0A3B3IS84	462.3094	0.09	34	14	Green
21086	IF4G1_HUMAN	Q04637-6	460.1867	0.09	19	9	Green
69669	C9J592_HUMAN	C9J592	458.7002	0.08	7	4	Green
4540	TCPG_HUMAN	P49368	444.4274	0.08	21	9	Green
35207	H7C0A3_HUMA	H7C0A3	438.5541	0.08	6	3	Green
35172	H7BZ94_HUMA	H7BZ94	436.433	0.08	20	8	Green
1557	UBP1_HUMAN	O94782	435.5334	0.08	10	6	Green
32486	E9PLL6_HUMAN	E9PLL6	435.1495	0.08	13	3	Green
25084	A0A0A0MSK5_H	A0A0A0MS	434.2188	0.08	13	5	Green
75236	E7ENZ3_HUMA	E7ENZ3	430.9011	0.08	14	8	Green
29210	A0A8Q3SIN6_H	A0A8Q3SIN	430.0526	0.08	12	6	Green
68490	B4DY09_HUMA	6 B4DY09	424.0345	0.08	20	5	Green
4885	N TTC3_HUMAN	P53804	395.5753	0.08	21	10	Green
31201	C9JZ20_HUMAN	C9JZ20	394.8844	0.08	11	3	Green
8409	SND1_HUMAN	Q7KZF4	378.3308	0.08	22	9	Green
2952	ALDR_HUMAN	P15121	374.0861	0.08	8	2	Green
15058	FBLL1_HUMAN	A6NHQ2	371.1579	0.08	7	1	Green
24591	A0A087WTJ9_H	A0A087WTJ 9	368.8684	0.08	7	6	Green
99206	Q5T621_HUMAN	Q5T621	359.3329	0.08	8	2	Green
4811	HNRPF_HUMAN	P52597	358.8766	0.08	21	5	Green
3988	CTNB1_HUMAN	P35222	343.4609	0.15	16	9	Green
80504	F8W0G4_HUMA N	F8W0G4	337.5861	0.15	4	1	Green
84298	H0YAP2_HUMA	H0YAP2	334.8962	0.15	9	5	Green
3995	SPB6_HUMAN	P35237	329.5187	0.15	14	5	Green
4367	RAGP1_HUMAN	P46060	318.6205	0.15	8	7	Green
6808	PCBP1_HUMAN	Q15365	325.9402	0.15	11	4	Green
1329	FLNB_HUMAN	O75369	318.7789	0.15	36	17	Green
21039	OCRL_HUMAN	Q01968-2	318.1992	0.15	10	5	Green
29549	CNOT1_HUMAN	A5YKK6-4	314.8657	0.15	23	9	Green
293	CLIC1_HUMAN	O00299	310.273	0.14	9	3	Green
1248	WDR1_HUMAN	O75083	303.7285	0.14	21	6	Green
2876	PLSL_HUMAN	P13796	286.3235	0.14	11	8	Green
3499	SAHH_HUMAN	P23526	292.0114	0.14	17	6	Green
61293	A0A7I2V2R3_HU MAN	A0A7I2V2R3	286.0712	0.14	9	2	Green
20531	VINC_HUMAN	P18206-2	282.7599	0.14	23	9	Green
24864	A0A087X0B7_H UMAN	A0A087X0B 7	267.2683	0.14	10	5	Green
6620	MVP_HUMAN	Q14764	273.1442	0.14	13	8	Green
29373	ARH37_HUMAN	A1IGU5	271.733	0.14	5	5	Green
3888	CASPE_HUMAN	P31944	271.6664	0.14	21	4	Green

7045	FSCN1_HUMAN	Q16658	271.5004	0.14	18	8	Green
2227	ALDOB_HUMAN	P05062	268.7863	0.14	14	6	Green
98413	Q3SXZ0_HUMA	Q3SXZ0	268.2118	0.14	8	3	Green
11701	ESYT1_HUMAN	Q9BSJ8	266.9583	0.14	17	8	Green
4414	CAPZB_HUMAN	P47756	259.8059	0.14	18	5	Green
41570	GRM7_HUMAN	Q14831-5	252.9222	0.14	12	5	Green
2791	ADT1_HUMAN	P12235	248.8622	0.14	14	8	Green
10461	FUBP2_HUMAN	Q92945	245.7276	0.13	13	6	Green
10606	LRC59_HUMAN	Q96AG4	243.6947	0.13	9	3	Green
44430	MROH5_HUMAN	Q6ZUA9	240.8822	0.13	25	12	Green
3782	PRDX6_HUMAN	P30041	237.4704	0.13	25	8	Green
7000	DPYL2_HUMAN	Q16555	237.1011	0.13	19	8	Green
5556	CLH1_HUMAN	Q00610	222.801	0.13	34	15	Green
6183	TIF1B_HUMAN	Q13263	232.9827	0.13	12	6	Green
961	SYNC_HUMAN	O43776	230.603	0.13	8	3	Green
5893	TGM3_HUMAN	Q08188	228.6086	0.13	36	11	Green
1435	S2512_HUMAN	O75746	227.3871	0.13	15	5	Green
11121	NALP4_HUMAN	Q96MN2	222.8548	0.13	11	5	Green
3145	UBF1_HUMAN	P17480	222.5276	0.13	15	7	Green
3891	STIP1_HUMAN	P31948	219.1752	0.13	16	6	Green
13971	S2513_HUMAN	Q9UJS0	204.0485	0.19	10	6	Green
41459	FLNC_HUMAN	Q14315-2	202.8669	0.19	39	16	Green
3863	CPSM_HUMAN	P31327	196.0595	0.19	8	7	Green
94376	K7EM30_HUMA	K7EM30	194.3151	0.19	6	2	Green
1468	IDHC_HUMAN	075874	193.924	0.19	9	6	Green
3309	PSB1_HUMAN	P20618	191.9776	0.19	10	5	Green
15200	TRI66_HUMAN	O15016	176.3628	0.24	17	10	Green
71115	C9JMN9_HUMA	C9JMN9	184.9104	0.24	15	6	Green
10848	PERP_HUMAN	Q96FX8	184.2154	0.24	8	1	Green
48457	TCPH_HUMAN	Q99832-2	183.8477	0.24	27	7	Green
13585	RCC2_HUMAN	Q9P258	180.4694	0.24	18	6	Green
20778	ATRX_HUMAN	P46100-4	179.9736	0.24	19	9	Green
41227	TCOF_HUMAN	Q13428-2	175.1601	0.24	27	8	Green
5439	PRKDC_HUMAN	P78527	163.5918	0.24	37	23	Green
10096	PDC6I_HUMAN	Q8WUM4	169.3825	0.24	15	10	Green
4875	CLH2_HUMAN	P53675	152.3503	0.24	32	18	Green
55027	A0A0G2JP90_H	A0A0G2JP9	160.2455	0.24	12	5	Green
8623	K2C1B_HUMAN	Q7Z794	160.8683	0.24	38	6	Green
63421	A0A804HK59_H	A0A804HK5	147.9318	0.23	25	13	Green
60090	A0A5F9ZGZ7_H	9 A0A5F9ZGZ	156.2347	0.23	8	2	Green
28329	UMAN A0A7P0TAQ1_H	7 A0A7P0TAQ	155.5701	0.23	17	9	Green
8530	UMAN PIWL4_HUMAN	1 Q7Z3Z4	143.6607	0.23	14	8	Green
14683	NGN3_HUMAN	Q9Y4Z2	152.0888	0.23	5	1	Green
39477	 MYH11_HUMAN	P35749-4	150.6011	0.23	24	13	Green
59757	A0A499FIY5 HU	A0A499FIY5	145.2993	0.22	4	2	Green
	MAN					_	

8533	MYH14_HUMAN	Q7Z406	135.2269	0.22	22	12	Green
25293	A0A0C4DGH5_H UMAN	A0A0C4DG H5	137.131	0.22	28	11	Green
6496	DPYL3_HUMAN	Q14195	142.7394	0.22	13	6	Green
98143	CUL3_HUMAN	Q13618-3	138.7102	0.22	22	7	Green
2385	SYEP_HUMAN	P07814	137.8562	0.22	33	17	Green
39029	UBA1_HUMAN	P22314-2	135.9689	0.22	10	4	Green
13868	GT2D1_HUMAN	Q9UHL9	117.8035	0.27	6	7	Green
13	A0A0U1RQF0_H UMAN	A0A0U1RQ F0	132.2054	0.27	35	12	Green
3091	H15_HUMAN	P16401	131.8716	0.27	9	3	Green
28361	A0A7P0TB30_H UMAN	A0A7P0TB3 0	126.5419	0.27	14	8	Green
67006	A0A8V8TQS9_H UMAN	A0A8V8TQS 9	127.1173	0.27	21	17	Green
38150	RPN2_HUMAN	P04844-2	120.6402	0.26	11	4	Green
32192	E9PD68_HUMA N	E9PD68	119.7094	0.31	12	6	Green
2081	CO3A1_HUMAN	P02461	119.4132	0.31	19	7	Green
86752	H0YM09_HUMA N	H0YM09	119.3671	0.31	6	2	Green
8650	GALT7_HUMAN	Q86SF2	115.5422	0.31	16	8	Green
41088	CACO2_HUMAN	Q13137-5	109.2769	0.35	9	5	Green
2826	XRCC5_HUMAN	P13010	112.4631	0.35	16	5	Green
11367	RSF1_HUMAN	Q96T23	110.7356	0.35	15	6	Green
2401	TSP1_HUMAN	P07996	111.7998	0.35	34	10	Green
1367	PSIP1_HUMAN	O75475	110.903	0.35	8	5	Green
40112	SYRC_HUMAN	P54136-2	98.6628	0.57	14	8	Green
11007	CC136_HUMAN	Q96JN2	81.3459	0.56	29	12	Green
13609	RRBP1_HUMAN	Q9P2E9	76.8773	0.62	23	10	Green
12339	SPTN4_HUMAN	Q9H254	68.9545	0.74	33	21	Green
6773	PLEC_HUMAN	Q15149	74.9339	0.79	96	45	Green
49888	DDX4_HUMAN	Q9NQ10-2	68.9523	0.9	9	5	Green
11567	TEP1_HUMAN	Q99973	56.2982	1.31	26	19	Green
822	IF4G3_HUMAN	O43432	49.3054	1.44	25	8	Green
7415	FILA2_HUMAN	Q5D862	46.173	1.75	19	7	Green

11.6 Anexo 6. Interactoma de mRNA-ATXN7-SCA7

protein.Entry	protein.Acces sion	protein.Description
E7EVS6_HUMAN	E7EVS6	Actin_ cytoplasmic 1 OS=Homo sapiens OX=9606 GN=ACTB PE=1 SV=9
TBA3C_HUMAN	P0DPH7	Tubulin alpha-3C chain OS=Homo sapiens OX=9606 GN=TUBA3C PE=1 SV=1
A0A7I2V4G8_HU MAN	A0A7I2V4G8	Nucleophosmin OS=Homo sapiens OX=9606 GN=NPM1 PE=1 SV=1
E7EUT5_HUMAN	E7EUT5	Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens OX=9606 GN=GAPDH PE=1 SV=1
PRDX1_HUMAN	Q06830	Peroxiredoxin-1 OS=Homo sapiens OX=9606 GN=PRDX1 PE=1 SV=1
A0A804HLF4_HU MAN	A0A804HLF4	Alpha-actinin-1 OS=Homo sapiens OX=9606 GN=ACTN1 PE=1 SV=1
ROA2_HUMAN	P22626	Heterogeneous nuclear ribonucleoproteins A2/B1 OS=Homo sapiens OX=9606 GN=hnRNPA2B1 PE=1 SV=2
ENOB_HUMAN	P13929-2	Isoform 2 of Beta-enolase OS=Homo sapiens OX=9606 GN=ENO3
ACTN3_HUMAN	Q08043	Alpha-actinin-3 OS=Homo sapiens OX=9606 GN=ACTN3 PE=1 SV=2
ENPL_HUMAN	P14625	Endoplasmin OS=Homo sapiens OX=9606 GN=HSP90B1 PE=1 SV=1
ACTN2_HUMAN	P35609	Alpha-actinin-2 OS=Homo sapiens OX=9606 GN=ACTN2 PE=1 SV=1

A0A2R8YDI9_HU	A0A2R8YDI9	Ras-related protein Rab-15 OS=Homo sapiens OX=9606 GN=RAB15 PE=1 SV=1
BIP_HUMAN	P11021	Endoplasmic reticulum chaperone BiP OS=Homo sapiens OX=9606 GN=HSPA5 PE=1 SV=2
K2C6C_HUMAN	P48668	Keratin_ type II cytoskeletal 6C OS=Homo sapiens OX=9606 GN=KRT6C PE=1 SV=3
K2C6B_HUMAN	P04259	Keratin_ type II cytoskeletal 6B OS=Homo sapiens OX=9606 GN=KRT6B PE=1 SV=5
DDX5_HUMAN	P17844	Probable ATP-dependent RNA helicase DDX5 OS=Homo sapiens OX=9606 GN=DDX5 PE=1 SV=1
EF1A1_HUMAN	P68104	Elongation factor 1-alpha 1 OS=Homo sapiens OX=9606 GN=EEF1A1 PE=1 SV=1
1433E_HUMAN	P62258-2	Isoform SV of 14-3-3 protein epsilon OS=Homo sapiens OX=9606 GN=YWHAE
H7C5W5_HUMAN	H7C5W5	Peripherin (Fragment) OS=Homo sapiens OX=9606 GN=PRPH PE=1 SV=1
EF1D_HUMAN	P29692-3	Isoform 3 of Elongation factor 1-delta OS=Homo sapiens OX=9606 GN=EEF1D
1433T_HUMAN	P27348	14-3-3 protein theta OS=Homo sapiens OX=9606 GN=YWHAQ PE=1 SV=1
COF1_HUMAN	P23528	Cofilin-1 OS=Homo sapiens OX=9606 GN=CFL1 PE=1 SV=3
G3V576_HUMAN	G3V576	Heterogeneous nuclear ribonucleoproteins C1/C2 OS=Homo sapiens OX=9606 GN=hnRNPC PE=1 SV=1
HSP76_HUMAN	P17066	Heat shock 70 kDa protein 6 OS=Homo sapiens OX=9606 GN=HSPA6 PE=1 SV=2
HNRPK_HUMAN	P61978	Heterogeneous nuclear ribonucleoprotein K OS=Homo sapiens OX=9606 GN=hnRNPK PE=1 SV=1
A0A6Q8PEX7_HU	A0A6Q8PEX	Heterogeneous nuclear ribonucleoprotein R (Fragment) OS=Homo sapiens OX=9606 GN=hnRNPR
HNRPQ_HUMAN	O60506-4	Isoform 4 of Heterogeneous nuclear ribonucleoprotein Q OS=Homo sapiens OX=9606 GN=SYNCRIP
C9J386_HUMAN	C9J386	Histone H2A OS=Homo sapiens OX=9606 GN=H2AZ2 PE=1 SV=1
H3BR27_HUMAN	H3BR27	RNA-binding motif protein_ X chromosome OS=Homo sapiens OX=9606 GN=RBMX PE=1 SV=1
C9JPM4_HUMAN	C9JPM4	ADP-ribosylation factor 4 (Fragment) OS=Homo sapiens OX=9606 GN=ARF4 PE=1 SV=1
THIO_HUMAN	P10599	Thioredoxin OS=Homo sapiens OX=9606 GN=TXN PE=1 SV=3
HNRPD_HUMAN	Q14103	Heterogeneous nuclear ribonucleoprotein D0 OS=Homo sapiens OX=9606 GN=hnRNPD PE=1 SV=1
NFL_HUMAN	P07196	Neurofilament light polypeptide OS=Homo sapiens OX=9606 GN=NEFL PE=1 SV=3
E7ESP9_HUMAN	E7ESP9	Neurofilament medium polypeptide OS=Homo sapiens OX=9606 GN=NEFM PE=1 SV=1
K1C27_HUMAN	Q7Z3Y8	Keratin_ type I cytoskeletal 27 OS=Homo sapiens OX=9606 GN=KRT27 PE=1 SV=2
HNRH1_HUMAN	P31943	Heterogeneous nuclear ribonucleoprotein H OS=Homo sapiens OX=9606 GN=hnRNPH1 PE=1 SV=4
K2C79_HUMAN	Q5XKE5	Keratin_ type II cytoskeletal 79 OS=Homo sapiens OX=9606 GN=KRT79 PE=1 SV=2
K22O_HUMAN	Q01546	Keratin_ type II cytoskeletal 2 oral OS=Homo sapiens OX=9606 GN=KRT76 PE=1 SV=2
K1C19_HUMAN	P08727	Keratin_ type I cytoskeletal 19 OS=Homo sapiens OX=9606 GN=KRT19 PE=1 SV=4
J3KTF8_HUMAN	J3KTF8	Rho GDP-dissociation inhibitor 1 (Fragment) OS=Homo sapiens OX=9606 GN=ARHGDIA PE=1 SV=8
CBX3_HUMAN	Q13185	Chromobox protein homolog 3 OS=Homo sapiens OX=9606 GN=CBX3 PE=1 SV=4
PLOD3_HUMAN	O60568	Multifunctional procollagen lysine hydroxylase and glycosyltransferase LH3 OS=Homo sapiens
UCHL1_HUMAN	P09936	Ubiquitin carboxyl-terminal hydrolase isozyme L1 OS=Homo sapiens OX=9606 GN=UCHL1 PE=1
ANXA5_HUMAN	P08758	Annexin A5 OS=Homo sapiens OX=9606 GN=ANXA5 PE=1 SV=2
RL11_HUMAN	P62913	60S ribosomal protein L11 OS=Homo sapiens OX=9606 GN=RPL11 PE=1 SV=2
B0QZK4_HUMAN	B0QZK4	Heterochromatin protein 1-binding protein 3 (Fragment) OS=Homo sapiens OX=9606 GN=HP1BP3
H0YAF8_HUMAN	H0YAF8	Receptor of-activated protein C kinase 1 (Fragment) OS=Homo sapiens OX=9606 GN=RACK1 PE=1 SV=1
LYSC_HUMAN	P61626	Lysozyme C OS=Homo sapiens OX=9606 GN=LYZ PE=1 SV=1
PRDX4_HUMAN	Q13162	Peroxiredoxin-4 OS=Homo sapiens OX=9606 GN=PRDX4 PE=1 SV=1
HNRPL_HUMAN	P14866	Heterogeneous nuclear ribonucleoprotein L OS=Homo sapiens OX=9606 GN=hnRNPL PE=1 SV=2
A0A7I2V2G2_HU MAN	A0A7I2V2G2	Stress-70 protein_ mitochondrial OS=Homo sapiens OX=9606 GN=HSPA9 PE=1 SV=1
6PGD_HUMAN	P52209-2	Isoform 2 of 6-phosphogluconate dehydrogenase_ decarboxylating OS=Homo sapiens OX=9606 GN=PGD
B5MCT8_HUMAN	B5MCT8	40S ribosomal protein S9 OS=Homo sapiens OX=9606 GN=RPS9 PE=1 SV=1
HNRPM_HUMAN	P52272-2	Isoform 2 of Heterogeneous nuclear ribonucleoprotein M OS=Homo sapiens OX=9606 GN=hnRNPM
B9A041_HUMAN	B9A041	Malate dehydrogenase_ cytoplasmic OS=Homo sapiens OX=9606 GN=MDH1 PE=1 SV=1
TCPQ_HUMAN	P50990	T-complex protein 1 subunit theta OS=Homo sapiens OX=9606 GN=CCT8 PE=1 SV=4

RL7_HUMAN	P18124	60S ribosomal protein L7 OS=Homo sapiens OX=9606 GN=RPL7 PE=1 SV=1
B4DXW1_HUMAN	B4DXW1	Actin-related protein 3 OS=Homo sapiens OX=9606 GN=ACTR3 PE=1 SV=1
A0A7I2V4H6_HU MAN	A0A7I2V4H6	Polypyrimidine tract-binding protein 1 OS=Homo sapiens OX=9606 GN=PTBP1 PE=1 SV=1
AL4A1_HUMAN	P30038-3	Isoform 3 of Delta-1-pyrroline-5-carboxylate dehydrogenase_ mitochondrial OS=Homo sapiens OX=9606 GN=ALDH4A1
IF4A3_HUMAN	P38919	Eukaryotic initiation factor 4A-III OS=Homo sapiens OX=9606 GN=EIF4A3 PE=1 SV=4
WDR19_HUMAN	Q8NEZ3	WD repeat-containing protein 19 OS=Homo sapiens OX=9606 GN=WDR19 PE=1 SV=2
C9JEV0_HUMAN	C9JEV0	Zinc-alpha-2-glycoprotein OS=Homo sapiens OX=9606 GN=AZGP1 PE=1 SV=1
AATM_HUMAN	P00505-2	Isoform 2 of Aspartate aminotransferase_ mitochondrial OS=Homo sapiens OX=9606 GN=GOT2
TBB1_HUMAN	Q9H4B7	Tubulin beta-1 chain OS=Homo sapiens OX=9606 GN=TUBB1 PE=1 SV=1
A0A2R8YDT5_HU MAN	A0A2R8YDT 5	ATP-dependent RNA helicase DDX3X OS=Homo sapiens OX=9606 GN=DDX3X PE=1 SV=1
B7Z4L4_HUMAN	B7Z4L4	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 OS=Homo sapiens OX=9606 GN=RPN1 PE=1 SV=1
RL13_HUMAN	P26373-2	Isoform 2 of 60S ribosomal protein L13 OS=Homo sapiens OX=9606 GN=RPL13
ADT3_HUMAN	P12236	ADP/ATP translocase 3 OS=Homo sapiens OX=9606 GN=SLC25A6 PE=1 SV=4
PRDX5_HUMAN	P30044-2	Isoform Cytoplasmic+peroxisomal of Peroxiredoxin-5_ mitochondrial OS=Homo sapiens OX=9606 GN=PRDX5
J3KSD8_HUMAN	J3KSD8	Bleomycin hydrolase (Fragment) OS=Homo sapiens OX=9606 GN=BLMH PE=1 SV=8
TTC7A_HUMAN	Q9ULT0	Tetratricopeptide repeat protein 7A OS=Homo sapiens OX=9606 GN=TTC7A PE=1 SV=3
A0A3B3IS84_HU MAN	A0A3B3IS84	Coatomer subunit alpha OS=Homo sapiens OX=9606 GN=COPA PE=1 SV=1
IF4G1_HUMAN	Q04637-6	Isoform E of Eukaryotic translation initiation factor 4 gamma 1 OS=Homo sapiens OX=9606
TCPG_HUMAN	P49368	T-complex protein 1 subunit gamma OS=Homo sapiens OX=9606 GN=CCT3 PE=1 SV=4
H7C0A3_HUMAN	H7C0A3	ARPC4-TTLL3 readthrough (Fragment) OS=Homo sapiens OX=9606 GN=ARPC4-TTLL3 PE=3 SV=1
UBP1_HUMAN	O94782	Ubiquitin carboxyl-terminal hydrolase 1 OS=Homo sapiens OX=9606 GN=USP1 PE=1 SV=1
E9PLL6_HUMAN	E9PLL6	60S ribosomal protein L27a OS=Homo sapiens OX=9606 GN=RPL27A PE=1 SV=1
A0A0A0MSK5_HU	A0A0A0MSK	Torsin-1A-interacting protein 1 OS=Homo sapiens OX=9606 GN=TOR1AIP1 PE=1 SV=1
E7ENZ3_HUMAN	5 E7ENZ3	T-complex protein 1 subunit epsilon OS=Homo sapiens OX=9606 GN=CCT5 PE=1 SV=1
A0A8Q3SIN6_HU	A0A8Q3SIN6	Glucose-6-phosphate 1-dehydrogenase OS=Homo sapiens OX=9606 GN=G6PD PE=1 SV=1
TTC3_HUMAN	P53804	E3 ubiquitin-protein ligase TTC3 OS=Homo sapiens OX=9606 GN=TTC3 PE=1 SV=2
C9JZ20_HUMAN	C9JZ20	Prohibitin OS=Homo sapiens OX=9606 GN=PHB1 PE=1 SV=2
A0A087WTJ9_HU	A0A087WTJ9	E3 ubiquitin-protein ligase OS=Homo sapiens OX=9606 GN=UBR1 PE=1 SV=1
Q5T621_HUMAN	Q5T621	Aldo-keto reductase family 1 member A1 (Fragment) OS=Homo sapiens OX=9606 GN=AKR1A1
CTNB1_HUMAN	P35222	Catenin beta-1 OS=Homo sapiens OX=9606 GN=CTNNB1 PE=1 SV=1
F8W0G4_HUMAN	F8W0G4	Poly(rC)-binding protein 2 (Fragment) OS=Homo sapiens OX=9606 GN=PCBP2 PE=1 SV=1
H0YAP2_HUMAN	H0YAP2	Polyadenylate-binding protein 1 (Fragment) OS=Homo sapiens OX=9606 GN=PABPC1 PE=1 SV=1
SPB6_HUMAN	P35237	Serpin B6 OS=Homo sapiens OX=9606 GN=SERPINB6 PE=1 SV=3
RAGP1_HUMAN	P46060	Ran GTPase-activating protein 1 OS=Homo sapiens OX=9606 GN=RANGAP1 PE=1 SV=1
OCRL_HUMAN	Q01968-2	Isoform B of Inositol polyphosphate 5-phosphatase OCRL OS=Homo sapiens OX=9606 GN=OCRL
CNOT1_HUMAN	A5YKK6-4	Isoform 4 of CCR4-NOT transcription complex subunit 1 OS=Homo sapiens OX=9606 GN=CNOT1
PLSL_HUMAN	P13796	Plastin-2 OS=Homo sapiens OX=9606 GN=LCP1 PE=1 SV=6
A0A7I2V2R3_HU	A0A7I2V2R3	Heterogeneous nuclear ribonucleoprotein A3 OS=Homo sapiens OX=9606 GN=hnRNPA3 PE=1
MAN A0A087X0B7_HU	A0A087X0B7	SV=1 Synaptosomal-associated protein 47 OS=Homo sapiens OX=9606 GN=SNAP47 PE=1 SV=1
ARH37_HUMAN	A1IGU5	Rho guanine nucleotide exchange factor 37 OS=Homo sapiens OX=9606 GN=ARHGEF37 PE=2
ALDOB_HUMAN	P05062	Sv=2 Fructose-bisphosphate aldolase B OS=Homo sapiens OX=9606 GN=ALDOB PE=1 SV=2
Q3SXZ0_HUMAN	Q3SXZ0	C9orf126 protein OS=Homo sapiens OX=9606 GN=SCAI PE=1 SV=1
ESYT1_HUMAN	Q9BSJ8	Extended synaptotagmin-1 OS=Homo sapiens OX=9606 GN=ESYT1 PE=1 SV=1
CAPZB_HUMAN	P47756	F-actin-capping protein subunit beta OS=Homo sapiens OX=9606 GN=CAPZB PE=1 SV=5
GRM7_HUMAN	Q14831-5	Isoform 5 of Metabotropic glutamate receptor 7 OS=Homo sapiens OX=9606 GN=GRM7

ADT1_HUMAN	P12235	ADP/ATP translocase 1 OS=Homo sapiens OX=9606 GN=SLC25A4 PE=1 SV=4
LRC59_HUMAN	Q96AG4	Leucine-rich repeat-containing protein 59 OS=Homo sapiens OX=9606 GN=LRRC59 PE=1 SV=1
MROH5_HUMAN	Q6ZUA9	Maestro heat-like repeat family member 5 OS=Homo sapiens OX=9606 GN=MROH5 PE=2 SV=2
DPYL2_HUMAN	Q16555	Dihydropyrimidinase-related protein 2 OS=Homo sapiens OX=9606 GN=DPYSL2 PE=1 SV=1
SYNC_HUMAN	O43776	AsparaginetRNA ligase_ cytoplasmic OS=Homo sapiens OX=9606 GN=NARS1 PE=1 SV=1
TGM3_HUMAN	Q08188	Protein-glutamine gamma-glutamyltransferase E OS=Homo sapiens OX=9606 GN=TGM3 PE=1
S2512_HUMAN	O75746	Electrogenic aspartate/glutamate antiporter SLC25A12_ mitochondrial OS=Homo sapiens OX=9606 GN=SLC25A12 PE=1 SV=2
NALP4_HUMAN	Q96MN2	NACHT_LRR and PYD domains-containing protein 4 OS=Homo sapiens OX=9606 GN=NLRP4 PE=1 SV=3
UBF1_HUMAN	P17480	Nucleolar transcription factor 1 OS=Homo sapiens OX=9606 GN=UBTF PE=1 SV=1
STIP1_HUMAN	P31948	Stress-induced-phosphoprotein 1 OS=Homo sapiens OX=9606 GN=STIP1 PE=1 SV=1
S2513_HUMAN	Q9UJS0	Electrogenic aspartate/glutamate antiporter SLC25A13_ mitochondrial OS=Homo sapiens OX=9606 GN=SLC25A13 PE=1 SV=2
FLNC_HUMAN	Q14315-2	Isoform 2 of Filamin-C OS=Homo sapiens OX=9606 GN=FLNC
CPSM_HUMAN	P31327	Carbamoyl-phosphate synthase [ammonia]_ mitochondrial OS=Homo sapiens OX=9606 GN=CPS1
K7EM30_HUMAN	K7EM30	DENN domain-containing protein 1C OS=Homo sapiens OX=9606 GN=DENND1C PE=4 SV=1
IDHC_HUMAN	O75874	Isocitrate dehydrogenase [NADP] cytoplasmic OS=Homo sapiens OX=9606 GN=IDH1 PE=1 SV=2
PSB1_HUMAN	P20618	Proteasome subunit beta type-1 OS=Homo sapiens OX=9606 GN=PSMB1 PE=1 SV=2
TRI66_HUMAN	O15016	Tripartite motif-containing protein 66 OS=Homo sapiens OX=9606 GN=TRIM66 PE=1 SV=5
C9JMN9_HUMAN	C9JMN9	Protein disulfide-isomerase A4 OS=Homo sapiens OX=9606 GN=PDIA4 PE=1 SV=2
PERP_HUMAN	Q96FX8	p53 apoptosis effector related to PMP-22 OS=Homo sapiens OX=9606 GN=PERP PE=1 SV=1
TCPH_HUMAN	Q99832-2	Isoform 2 of T-complex protein 1 subunit eta OS=Homo sapiens OX=9606 GN=CCT7
ATRX_HUMAN	P46100-4	Isoform 3 of Transcriptional regulator ATRX OS=Homo sapiens OX=9606 GN=ATRX
PRKDC_HUMAN	P78527	DNA-dependent protein kinase catalytic subunit OS=Homo sapiens OX=9606 GN=PRKDC PE=1
PDC6I_HUMAN	Q8WUM4	Programmed cell death 6-interacting protein OS=Homo sapiens OX=9606 GN=PDCD6IP PE=1 SV=1
CLH2_HUMAN	P53675	Clathrin heavy chain 2 OS=Homo sapiens OX=9606 GN=CLTCL1 PE=1 SV=2
A0A0G2JP90_HU	A0A0G2JP90	Nodal modulator 1 OS=Homo sapiens OX=9606 GN=NOMO1 PE=1 SV=1
A0A804HK59_HU MAN	A0A804HK59	Spatacsin OS=Homo sapiens OX=9606 GN=SPG11 PE=1 SV=1
A0A5F9ZGZ7_HU MAN	A0A5F9ZGZ7	Septin-7 OS=Homo sapiens OX=9606 GN=SEPTIN7 PE=1 SV=1
A0A7P0TAQ1_HU	A0A7P0TAQ	Transitional endoplasmic reticulum ATPase OS=Homo sapiens OX=9606 GN=VCP PE=1 SV=1
PIWL4_HUMAN	Q7Z3Z4	Piwi-like protein 4 OS=Homo sapiens OX=9606 GN=PIWIL4 PE=1 SV=2
NGN3_HUMAN	Q9Y4Z2	Neurogenin-3 OS=Homo sapiens OX=9606 GN=NEUROG3 PE=1 SV=2
MYH11_HUMAN	P35749-4	Isoform 4 of Myosin-11 OS=Homo sapiens OX=9606 GN=MYH11
A0A499FIY5_HU MAN	A0A499FIY5	F-box/WD repeat-containing protein 8 OS=Homo sapiens OX=9606 GN=FBXW8 PE=1 SV=1
A0A0C4DGH5_H	A0A0C4DGH	Cullin-associated NEDD8-dissociated protein 1 (Fragment) OS=Homo sapiens OX=9606 GN=CAND1 PE=1 SV=1
DPYL3_HUMAN	Q14195	Dihydropyrimidinase-related protein 3 OS=Homo sapiens OX=9606 GN=DPYSL3 PE=1 SV=1
CUL3_HUMAN	Q13618-3	Isoform 3 of Cullin-3 OS=Homo sapiens OX=9606 GN=CUL3
UBA1_HUMAN	P22314-2	Isoform 2 of Ubiquitin-like modifier-activating enzyme 1 OS=Homo sapiens OX=9606 GN=UBA1
GT2D1_HUMAN	Q9UHL9	General transcription factor II-I repeat domain-containing protein 1 OS=Homo sapiens OX=9606
A0A7P0TB30_HU	A0A7P0TB30	DNA damage-binding protein 1 OS=Homo sapiens OX=9606 GN=DDB1 PE=1 SV=1
A0A8V8TQS9_HU	A0A8V8TQS	Dedicator of cytokinesis protein 9 OS=Homo sapiens OX=9606 GN=DOCK9 PE=4 SV=1
RPN2_HUMAN	9 P04844-2	Isoform 2 of Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 OS=Homo
E9PD68_HUMAN	E9PD68	Dihydropyrimidinase-related protein 1 OS=Homo sapiens OX=9606 GN=CRMP1 PE=1 SV=1
CO3A1_HUMAN	P02461	Collagen alpha-1(III) chain OS=Homo sapiens OX=9606 GN=COL3A1 PE=1 SV=4
H0YM09_HUMAN	H0YM09	Activity-dependent neuroprotector homeobox protein 2 (Fragment) OS=Homo sapiens OX=9606
GALT7_HUMAN	Q86SF2	N-acetylgalactosaminyltransferase 7 OS=Homo sapiens OX=9606 GN=GALNT7 PE=1 SV=1

CACO2_HUMAN	Q13137-5	Isoform 5 of Calcium-binding and coiled-coil domain-containing protein 2 OS=Homo sapiens OX=9606 GN=CALCOCO2
RSF1_HUMAN	Q96T23	Remodeling and spacing factor 1 OS=Homo sapiens OX=9606 GN=RSF1 PE=1 SV=2
PSIP1_HUMAN	075475	PC4 and SFRS1-interacting protein OS=Homo sapiens OX=9606 GN=PSIP1 PE=1 SV=1
SYRC_HUMAN	P54136-2	Isoform Monomeric of ArgininetRNA ligase_ cytoplasmic OS=Homo sapiens OX=9606 GN=RARS1
CC136_HUMAN	Q96JN2	Coiled-coil domain-containing protein 136 OS=Homo sapiens OX=9606 GN=CCDC136 PE=1 SV=3
RRBP1_HUMAN	Q9P2E9	Ribosome-binding protein 1 OS=Homo sapiens OX=9606 GN=RRBP1 PE=1 SV=5
DDX4_HUMAN	Q9NQ10-2	Isoform 2 of Probable ATP-dependent RNA helicase DDX4 OS=Homo sapiens OX=9606 GN=DDX4
TEP1_HUMAN	Q99973	Telomerase protein component 1 OS=Homo sapiens OX=9606 GN=TEP1 PE=1 SV=2
IF4G3_HUMAN	O43432	Eukaryotic translation initiation factor 4 gamma 3 OS=Homo sapiens OX=9606 GN=EIF4G3 PE=1 SV=2
FILA2_HUMAN	Q5D862	Filaggrin-2 OS=Homo sapiens OX=9606 GN=FLG2 PE=1 SV=1

11.7 Anexo 7. Análisis de clustering del interactoma de mRNA-ATXN7-SCA7

# cluster	color	gene count	protein name	protein identifier	protein description
1	Red	13	AKR1A1	9606.ENS P0000036 1140	Alcohol dehydrogenase [NADP(+)]; Catalyzes the NADPH-dependent reduction of a variety of aromatic and aliphatic aldehydes to their corresponding alcohols. Catalyzes the reduction of mevaldate to mevalonic acid and of glyceraldehyde to glycerol. Has broad substrate specificity. In vitro substrates include succinic semialdehyde, 4- nitrobenzaldehyde, 1,2-naphthoquinone, methylglyoxal, and D- glucuronic acid. Plays a role in the activation of procarcinogens, such as polycyclic aromatic hydrocarbon trans-dihydrodiols, and in the metabolism of various xenobiotics and drugs, including the an []
1	Red	13	ALDOB	9606.ENS P0000036 3988	Fructose-bisphosphate aldolase, class i; Belongs to the class I fructose- bisphosphate aldolase family
1	Red	13	ANXA5	9606.ENS P0000029 6511	Annexin A5; This protein is an anticoagulant protein that acts as an indirect inhibitor of the thromboplastin-specific complex, which is involved in the blood coagulation cascade; Annexins
1	Red	13	ENO3	9606.ENS P0000032 4105	Beta-enolase; Appears to have a function in striated muscle development and regeneration; Belongs to the enolase family
1	Red	13	G6PD	9606.ENS P0000037 7192	Glucose-6-phosphate 1-dehydrogenase; Catalyzes the rate-limiting step of the oxidative pentose-phosphate pathway, which represents a route for the dissimilation of carbohydrates besides glycolysis. The main function of this enzyme is to provide reducing power (NADPH) and pentose phosphates for fatty acid and nucleic acid synthesis; Belongs to the glucose-6-phosphate dehydrogenase family
1	Red	13	GAPDH	9606.ENS P0000022 9239	Glyceraldehyde-3-phosphate dehydrogenase; Has both glyceraldehyde-3- phosphate dehydrogenase and nitrosylase activities, thereby playing a role in glycolysis and nuclear functions, respectively. Participates in nuclear events including transcription, RNA transport, DNA replication and apoptosis. Nuclear functions are probably due to the nitrosylase activity that mediates cysteine S- nitrosylation of nuclear target proteins such as SIRT1, HDAC2 and PRKDC. Modulates the organization and assembly of the cytoskeleton. Facilitates the CHP1-dependent microtubule and membrane associations throu []
1	Red	13	IDH1	9606.ENS P0000039 0265	Isocitrate dehydrogenase [nadp] cytoplasmic; Isocitrate dehydrogenase 1, cytosolic
1	Red	13	MDH1	9606.ENS P0000043 8144	Malate dehydrogenase, cytoplasmic; Malate dehydrogenase 1; Belongs to the LDH/MDH superfamily. MDH type 2 family
1	Red	13	PGD	9606.ENS P0000027 0776	6-phosphogluconate dehydrogenase, decarboxylating; Catalyzes the oxidative decarboxylation of 6- phosphogluconate to ribulose 5-phosphate and CO(2), with concomitant reduction of NADP to NADPH; Belongs to the 6-phosphogluconate dehydrogenase family
1	Red	13	PRDX1	9606.ENS P0000026 2746	Peroxiredoxin-1; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. Might participate in the signaling cascades of growth factors and tumor necrosis factor-alpha by regulating the intracellular concentrations of H(2)O(2). Reduces an intramolecular disulfide bond in GDPD5 that gates the ability to GDPD5 to drive postmitotic motor neuron differentiation (By s []
1	Red	13	PRDX4	9606.ENS P0000036 8646	Peroxiredoxin-4; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying peroxides and as sensor of hydrogen peroxide-mediated signaling events. Regulates the activation of NF-kappa-B in the cytosol by a modulation of I-kappa-B-alpha phosphorylation; Peroxiredoxins
1	Red	13	PRDX5	9606.ENS P0000026 5462	Peroxiredoxin-5, mitochondrial; Thiol-specific peroxidase that catalyzes the reduction of hydrogen peroxide and organic hydroperoxides to water and alcohols, respectively. Plays a role in cell protection against oxidative stress by detoxifying

					peroxides and as sensor of hydrogen peroxide-mediated signaling events:
					Belongs to the peroxiredoxin family. Prx5 subfamily
1	Red	13	TXN	9606.ENS P0000036 3641	Thioredoxin; Participates in various redox reactions through the reversible oxidation of its active center dithiol to a disulfide and catalyzes dithiol-disulfide exchange reactions. Plays a role in the reversible S-nitrosylation of cysteine residues in target proteins, and thereby contributes to the response to intracellular nitric oxide. Nitrosylates the active site Cys of CASP3 in response to nitric oxide (NO), and thereby inhibits caspase-3 activity. Induces the FOS/JUN AP-1 DNA- binding activity in ionizing radiation (IR) cells through its oxidation/reduction status and stimulates A []
2	Salm on	10	DDX5	9606.ENS P0000022 5792	Probable ATP-dependent RNA helicase DDX5; Involved in the alternative regulation of pre-mRNA splicing; its RNA helicase activity is necessary for increasing tau exon 10 inclusion and occurs in a RBM4-dependent manner. Binds to the tau pre-mRNA in the stem-loop region downstream of exon 10. The rate of ATP hydrolysis is highly stimulated by single-stranded RNA. Involved in transcriptional regulation; the function is independent of the RNA helicase activity. Transcriptional coactivator for androgen receptor AR but probably not ESR1. Synergizes with DDX17 and SRA1 RNA to activate MYOD1 tr []
2	Salm on	10	hnRNP A2B1	9606.ENS P0000034 6694	Heterogeneous nuclear ribonucleoproteins A2/B1; Heterogeneous nuclear ribonucleoprotein (hnRNP) that associates with nascent pre-mRNAs, packaging them into hnRNP particles. The hnRNP particle arrangement on nascent hnRNA is non- random and sequence-dependent and serves to condense and stabilize the transcripts and minimize tangling and knotting. Packaging plays a role in various processes such as transcription, pre-mRNA processing, RNA nuclear export, subcellular location, mRNA translation and stability of mature mRNAs. Forms hnRNP particles with at least 20 other different hnRNP and h []
2	Salm on	10	hnRNP D	9606.ENS P0000031 3199	Heterogeneous nuclear ribonucleoprotein a/b/d; Heterogeneous nuclear ribonucleoprotein D0; Binds with high affinity to RNA molecules that contain AU- rich elements (AREs) found within the 3'-UTR of many proto- oncogenes and cytokine mRNAs. Also binds to double- and single- stranded DNA sequences in a specific manner and functions a transcription factor. Each of the RNA-binding domains specifically can bind solely to a single-stranded non-monotonous 5'- UUAG-3' sequence and also weaker to the single-stranded 5'-TTAGGG-3' telomeric DNA repeat. Binds RNA oligonucleotides with 5'-UUAGGG-3' r []
2	Salm on	10	hnRNP K	9606.ENS P0000036 5439	Heterogeneous nuclear ribonucleoprotein K; One of the major pre-mRNA-binding proteins. Binds tenaciously to poly(C) sequences. Likely to play a role in the nuclear metabolism of hnRNAs, particularly for pre-mRNAs that contain cytidine-rich sequences. Can also bind poly(C) single- stranded DNA. Plays an important role in p53/TP53 response to DNA damage, acting at the level of both transcription activation and repression. When sumoylated, acts as a transcriptional coactivator of p53/TP53, playing a role in p21/CDKN1A and 14-3-3 sigma/SFN induction (By similarity). As far as transcription []
2	Salm on	10	hnRNPL	9606.ENS P0000022 1419	Heterogeneous nuclear ribonucleoprotein L; Splicing factor binding to exonic or intronic sites and acting as either an activator or repressor of exon inclusion. Exhibits a binding preference for CA-rich elements. Component of the heterogeneous nuclear ribonucleoprotein (hnRNP) complexes and associated with most nascent transcripts. Associates, together with APEX1, to the negative calcium responsive element (nCaRE) B2 of the APEX2 promoter; RNA binding motif containing
2	Salm on	10	hnRNP M	9606.ENS P0000032 5376	Heterogeneous nuclear ribonucleoprotein M; Pre-mRNA binding protein in vivo, binds avidly to poly(G) and poly(U) RNA homopolymers in vitro. Involved in splicing. Acts as a receptor for carcinoembryonic antigen in Kupffer cells, may initiate a series of signaling events leading to tyrosine phosphorylation of proteins and induction of IL-1 alpha, IL-6, IL-10 and tumor necrosis factor alpha cytokines
2	Salm on	10	hnRNP R	9606.ENS P0000036 3745	Heterogeneous nuclear ribonucleoprotein R; Component of ribonucleosomes, which are complexes of at least 20 other different heterogenious nuclear ribonucleoproteins (hnRNP). hnRNP play an important role in processing of precursor mRNA in the nucleus; RNA binding motif containing
2	Salm on	10	PCBP2	9606.ENS P0000035 2438	Poly(rC)-binding protein 2; Single-stranded nucleic acid binding protein that binds preferentially to oligo dC. Major cellular poly(rC)-binding protein. Binds also poly(rU). Negatively regulates cellular antiviral responses mediated by MAVS signaling. It acts as an adapter between MAVS and the E3 ubiquitin ligase ITCH, therefore triggering MAVS ubiquitination and degradation
2	Salm on	10	RBMX	9606.ENS P0000035 9645	Heterogeneous nuclear ribonucleoprotein g; RNA-binding motif protein, X chromosome; RNA-binding protein that plays several role in the regulation of pre- and post-transcriptional processes. Implicated in tissue-specific regulation of gene transcription and alternative splicing of several pre-mRNAs. Binds to and stimulates transcription from the tumor suppressor TXNIP gene promoter; may thus be involved in tumor suppression. When associated with SAFB, binds to and stimulates transcription from the SREBF1 promoter. Associates with nascent mRNAs transcribed by RNA polymerase II. Component []
2	Salm on	10	SYNCRI P	9606.ENS P0000035 8635	Heterogeneous nuclear ribonucleoprotein Q; Heterogenous nuclear ribonucleoprotein (hnRNP) implicated in mRNA processing mechanisms. Component of the CRD- mediated complex that promotes MYC mRNA stability. Isoform 1 and isoform 3 are associated in vitro with pre-mRNA, splicing intermediates and mature mRNA protein complexes. Isoform 1 binds to apoB mRNA AU-rich sequences. Isoform 1 is part of the APOB mRNA editosome complex and may modulate the postranscriptional C to U RNA-editing of the APOB mRNA through either by binding to A1CF (APOBEC1 complementation factor), to APOBEC1 []
3	Fire Brick	5	ACTB	9606.ENS P0000034 9960	Actin, cytoplasmic 1; Actins are highly conserved proteins that are involved in various types of cell motility and are ubiquitously expressed in all eukaryotic cells
3	Fire Brick	5	ACTN1	9606.ENS P0000037 7941	Alpha-actinin-1; F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein; Belongs to the alpha- actinin family
---	--------------------------	---	-------------	------------------------------	--
3	Fire Brick	5	ACTN2	9606.ENS P0000044 3495	Alpha-actinin-2; F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein; Actinins
3	Fire Brick	5	ACTN3	9606.ENS P0000042 2007	Alpha-actinin-3; F-actin cross-linking protein which is thought to anchor actin to a variety of intracellular structures. This is a bundling protein; Actinins
3	Fire Brick	5	LCP1	9606.ENS P0000038 1581	Lymphocyte cytosolic protein 1; Plastin-2; Actin-binding protein. Plays a role in the activation of T-cells in response to costimulation through TCR/CD3 and CD2 or CD28. Modulates the cell surface expression of IL2RA/CD25 and CD69; EF-hand domain containing
4	Sand y Brow n 2	5	EIF4A3	9606.ENS P0000026 9349	Eukaryotic initiation factor 4A-III; ATP-dependent RNA helicase. Core component of the splicing-dependent multiprotein exon junction complex (EJC) deposited at splice junctions on mRNAs. The EJC is a dynamic structure consisting of core proteins and several peripheral nuclear and cytoplasmic associated factors that join the complex only transiently either during EJC assembly or during subsequent mRNA metabolism. The EJC marks the position of the exon-exon junction in the mature mRNA for the gene expression machinery and the core components remain bound to spliced mRNAs throughout all s []
4	Sand y Brow n 2	5	EIF4G1	9606.ENS P0000041 6255	Eukaryotic translation initiation factor 4 gamma 1; Component of the protein complex elF4F, which is involved in the recognition of the mRNA cap, ATP- dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome: Parkinson disease associated genes
4	Sand y Brow n 2	5	EIF4G3	9606.ENS P0000038 3274	Eukaryotic translation initiation factor 4 gamma 3; Probable component of the protein complex eIF4F, which is involved in the recognition of the mRNA cap, ATP-dependent unwinding of 5'-terminal secondary structure and recruitment of mRNA to the ribosome. Thought to be a functional homolog of EIF4G1
4	Sand y Brow n 2	5	PABPC 1	9606.ENS P0000031 3007	Polyadenylate-binding protein 1; Binds the poly(A) tail of mRNA, including that of its own transcript. May be involved in cytoplasmic regulatory processes of mRNA metabolism such as pre-mRNA splicing. Its function in translational initiation regulation can either be enhanced by PAIP1 or repressed by PAIP2. Can probably bind to cytoplasmic RNA sequences other than poly(A) in vivo. Involved in translationally coupled mRNA turnover. Implicated with other RNA- binding proteins in the cytoplasmic deadenylation/translational and decay interplay of the FOS mRNA mediated by the major coding- r []
4	Sand y Brow n 2	5	PSIP1	9606.ENS P0000037 0109	PC4 and SFRS1-interacting protein; Transcriptional coactivator involved in neuroepithelial stem cell differentiation and neurogenesis. Involved in particular in lens epithelial cell gene regulation and stress responses. May play an important role in lens epithelial to fiber cell terminal differentiation. May play a protective role during stress-induced apoptosis. Isoform 2 is a more general and stronger transcriptional coactivator. Isoform 2 may also act as an adapter to coordinate pre-mRNA splicing. Cellular cofactor for lentiviral integration; Heparin binding growth factor family
5	Saddl e Brow n	5	CAND1	9606.ENS P0000044 2318	Cullin-associated NEDD8-dissociated protein 1; Key assembly factor of SCF (SKP1-CUL1-F-box protein) E3 ubiquitin ligase complexes that promotes the exchange of the substrate-recognition F-box subunit in SCF complexes, thereby playing a key role in the cellular repertoire of SCF complexes. Acts as a F-box protein exchange factor. The exchange activity of CAND1 is coupled with cycles of neddylation conjugation: in the deneddylated state, cullin-binding CAND1 binds CUL1-RBX1, increasing dissociation of the SCF complex and promoting exchange of the F-box protein. Probably plays a similar r []
5	Saddl e Brow n	5	CUL3	9606.ENS P0000026 4414	Cullin-3; Core component of multiple cullin-RING-based BCR (BTB- CUL3-RBX1) E3 ubiquitin-protein ligase complexes which mediate the ubiquitination and subsequent proteasomal degradation of target proteins. BCR complexes and ARIH1 collaborate in tandem to mediate ubiquitination of target proteins. As a scaffold protein may contribute to catalysis through positioning of the substrate and the ubiquitin-conjugating enzyme. The E3 ubiquitin- protein ligase activity of the complex is dependent on the neddylation of the cullin subunit and is inhibited by the association of the deneddylated cu []
5	Saddl e Brow n	5	DDB1	9606.ENS P0000030 1764	DNA damage-binding protein 1; Required for DNA repair. Binds to DDB2 to form the UV- damaged DNA-binding protein complex (the UV-DDB complex). The UV-DDB complex may recognize UV-induced DNA damage and recruit proteins of the nucleotide excision repair pathway (the NER pathway) to initiate DNA repair. The UV-DDB complex preferentially binds to cyclobutane pyrimidine dimers (CPD), 6-4 photoproducts (6-4 PP), apurinic sites and short mismatches. Also appears to function as a component of numerous distinct DCX (DDB1-CUL4-X-box) E3 ubiquitin-protein ligase complexes which mediate the ubiq []
5	Saddl e Brow n	5	FBXW8	9606.ENS P0000031 0686	F-box/WD repeat-containing protein 8; Substrate-recognition component of a Cul7-RING ubiquitin-protein ligase complex, which mediates the ubiquitination and subsequent proteasomal degradation of target proteins. The Cul7-RING(FBXW8) complex mediates ubiquitination and consequent degradation of GORASP1, acting as a component of the ubiquitin ligase pathway that regulates Golgi morphogenesis and dendrite patterning in brain. Mediates ubiquitination and degradation of IRS1 in a mTOR-dependent manner: the Cul7-RING(FBXW8) complex recognizes and binds IRS1 previously phosphorylated by S6 ki []
5	Saddl e Brow n	5	USP1	9606.ENS P0000034 3526	Ubiquitin carboxyl-terminal hydrolase 1; Negative regulator of DNA damage repair which specifically deubiquitinates monoubiquitinated FANCD2. Also involved in PCNA-mediated translesion synthesis (TLS) by deubiquitinating monoubiquitinated PCNA. Has almost no deubiquitinating activity by itself and requires the interaction with WDR48 to have a bind activity
6	Sand y	5	ALDH4 A1	9606.ENS P0000036 4490	Delta-1-pyrroline-5-carboxylate dehydrogenase, mitochondrial; Irreversible conversion of delta-1-pyrroline-5- carboxylate (P5C), derived either from proline or ornithine, to glutamate. This is a necessary step in the pathway interconnecting

	Brow n				the urea and tricarboxylic acid cycles. The preferred substrate is glutamic gamma- semialdehyde, other substrates include succinic, glutaric and adipic semialdehydes
6	Sand y Brow n	5	GOT2	9606.ENS P0000024 5206	Aspartate aminotransferase, mitochondrial; Catalyzes the irreversible transamination of the L- tryptophan metabolite L-kynurenine to form kynurenic acid (KA). Plays a key role in amino acid metabolism. Important for metabolite exchange between mitochondria and cytosol. Facilitates cellular uptake of long- chain free fatty acids; Belongs to the class-I pyridoxal-phosphate-dependent aminotransferase family
6	Sand y Brow n	5	PDCD6I P	9606.ENS P0000041 1825	Programmed cell death 6-interacting protein; Multifunctional protein involved in endocytosis, multivesicular body biogenesis, membrane repair, cytokinesis, apoptosis and maintenance of tight junction integrity. Class E VPS protein involved in concentration and sorting of cargo proteins of the multivesicular body (MVB) for incorporation into intralumenal vesicles (ILVs) that are generated by invagination and scission from the limiting membrane of the endosome. Binds to the phospholipid lysobisphosphatidic acid (LBPA) which is abundant in MVBs internal membranes. The MVB pathway requires []
6	Sand y Brow n	5	SLC25A 12	9606.ENS P0000038 8658	Solute carrier family 25 (mitochondrial aspartate/glutamate transporter), member 12/13; Calcium-binding mitochondrial carrier protein Aralar1; Catalyzes the calcium-dependent exchange of cytoplasmic glutamate with mitochondrial aspartate across the mitochondrial inner membrane. May have a function in the urea cycle; Belongs to the mitochondrial carrier (TC 2.A.29) family
6	Sand y Brow n	5	SLC25A 13	9606.ENS P0000040 0101	Solute carrier family 25 (mitochondrial aspartate/glutamate transporter), member 12/13; Calcium-binding mitochondrial carrier protein Aralar2; Catalyzes the calcium-dependent exchange of cytoplasmic glutamate with mitochondrial aspartate across the mitochondrial inner membrane. May have a function in the urea cycle; EF-hand domain containing
7	Dark Golde n Rod	5	KRT6B	9606.ENS P0000025 2252	Keratin, type II cytoskeletal 6B; Keratins, type II; Belongs to the intermediate filament family
7	Dark Golde n Rod	5	KRT6C	9606.ENS P0000025 2250	Keratin, type II cytoskeletal 6C; Keratins, type II; Belongs to the intermediate filament family
7	Dark Golde n Rod	5	KRT75	9606.ENS P0000025 2245	Keratin, type II cytoskeletal 75; Plays a central role in hair and nail formation. Essential component of keratin intermediate filaments in the companion layer of the hair follicle
7	Dark Golde n Rod	5	KRT76	9606.ENS P0000033 0101	Keratin, type II cytoskeletal 2 oral; Probably contributes to terminal cornification; Keratins, type II
7	Dark Golde n Rod	5	KRT79	9606.ENS P0000032 8358	Keratin, type II cytoskeletal 79; Keratins, type II; Belongs to the intermediate filament family
8	Sand y Brow n 3	4	CCT3	9606.ENS P0000029 5688	T-complex protein 1 subunit gamma; Molecular chaperone; assists the folding of proteins upon ATP hydrolysis. As part of the BBS/CCT complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia. Known to play a role, in vitro, in the folding of actin and tubulin; Chaperonins
8	Sand y Brow n 3	4	CCT5	9606.ENS P0000028 0326	T-complex protein 1 subunit epsilon; Molecular chaperone; assists the folding of proteins upon ATP hydrolysis. As part of the BBS/CCT complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia. Known to play a role, in vitro, in the folding of actin and tubulin; Chaperonins
8	Sand y Brow n 3	4	CCT7	9606.ENS P0000025 8091	T-complex protein 1 subunit eta; Molecular chaperone; assists the folding of proteins upon ATP hydrolysis. Known to play a role, in vitro, in the folding of actin and tubulin (By similarity); Chaperonins
8	Sand y Brow n 3	4	CCT8	9606.ENS P0000028 6788	T-complex protein 1 subunit theta; Molecular chaperone; assists the folding of proteins upon ATP hydrolysis. As part of the BBS/CCT complex may play a role in the assembly of BBSome, a complex involved in ciliogenesis regulating transports vesicles to the cilia. Known to play a role, in vitro, in the folding of actin and tubulin; Belongs to the TCP-1 chaperonin family
9	Brow n	4	CPS1	9606.ENS P0000040 2608	Carbamoyl-phosphate synthase [ammonia], mitochondrial; Involved in the urea cycle of ureotelic animals where the enzyme plays an important role in removing excess ammonia from the cell
9	Brow n	4	CRMP1	9606.ENS P0000032 1606	Dihydropyrimidinase-related protein 1; Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. Plays a role in axon guidance, invasive growth and cell migration. May participate in cytokinesis; Belongs to the metallo-dependent hydrolases superfamily. Hydantoinase/dihydropyrimidinase family
9	Brow n	4	DPYSL2	9606.ENS P0000030 9539	Dihydropyrimidinase-related protein 2; Plays a role in neuronal development and polarity, as well as in axon growth and guidance, neuronal growth cone collapse and cell migration. Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. May play a role in endocytosis; Belongs to the metallo-dependent hydrolases superfamily. Hydantoinase/dihydropyrimidinase family
9	Brow n	4	DPYSL3	9606.ENS P0000034 3690	Dihydropyrimidinase-related protein 3; Necessary for signaling by class 3 semaphorins and subsequent remodeling of the cytoskeleton. Plays a role in axon guidance, neuronal growth cone collapse and cell migration (By similarity)
10	Yello w	4	DDX3X	9606.ENS P0000038 2840	ATP-dependent RNA helicase DDX3X; Multifunctional ATP-dependent RNA helicase. The ATPase activity can be stimulated by various ribo- and deoxynucleic acids indicative for a relaxed substrate specificity. In vitro can unwind partially double-stranded DNA with a preference for 5'- single-stranded DNA overhangs. Is involved in several steps of gene expression, such as transcription, mRNA maturation, mRNA export and translation. However, the exact mechanisms are not

					known and some functions may be specific for a subset of mRNAs. Involved in transcriptional regulation. Can enhance transcriptional
10	Yello	4	hnRNP	9606.ENS	Heterogeneous nuclear ribonucleoprotein H: This protein is a component of the
	w		H1	P0000034 9168	heterogeneous nuclear ribonucleoprotein (hnRNP) complexes which provide the substrate for the processing events that pre-mRNAs undergo before becoming functional, translatable mRNAs in the cytoplasm. Mediates pre-mRNA alternative splicing regulation. Inhibits, together with CUGBP1, insulin receptor (IR) pre- mRNA exon 11 inclusion in myoblast. Binds to the IR RNA. Binds poly(RG); RNA binding motif containing
10	Yello w	4	PTBP1	9606.ENS P0000034 9428	Polypyrimidine tract-binding protein 1; Plays a role in pre-mRNA splicing and in the regulation of alternative splicing events. Activates exon skipping of its own pre- mRNA during muscle cell differentiation. Binds to the polypyrimidine tract of introns. May promote RNA looping when bound to two separate polypyrimidine tracts in the same pre-mRNA. May promote the binding of U2 snRNP to pre- mRNA. Cooperates with RAVER1 to modulate switching between mutually exclusive exons during maturation of the TPM1 pre-mRNA. Represses the splicing of MAPT/Tau exon 10. In case of infection by picornav []
10	Yello w	4	RANGA P1	9606.ENS P0000040 1470	Ran GTPase-activating protein 1; GTPase activator for the nuclear Ras-related regulatory protein Ran, converting it to the putatively inactive GDP-bound state
11	Gree n	4	EEF1A1	9606.ENS P0000033 9063	Elongation factor 1-alpha 1; This protein promotes the GTP-dependent binding of aminoacyl-tRNA to the A-site of ribosomes during protein biosynthesis. With PARP1 and TXK, forms a complex that acts as a T helper 1 (Th1) cell-specific transcription factor and binds the promoter of IFN-gamma to directly regulate its transcription, and is thus involved importantly in Th1 cytokine production; Belongs to the TRAFAC class translation factor GTPase superfamily. Classic translation factor GTPase family.
11	Gree n	4	EEF1D	9606.ENS P0000041 0059	Elongation factor 1-delta; Isoform 1: EF-1-beta and EF-1-delta stimulate the exchange of GDP bound to EF-1-alpha to GTP, regenerating EF-1- alpha for another round of transfer of aminoacyl-tRNAs to the ribosome; Belongs to the EF-1-beta/EF-1-delta family
11	Gree n	4	RPL11	9606.ENS P0000036 3676	60S ribosomal protein L11; Component of the ribosome, a large ribonucleoprotein complex responsible for the synthesis of proteins in the cell. The small ribosomal subunit (SSU) binds messenger RNAs (mRNAs) and translates the encoded message by selecting cognate aminoacyl- transfer RNA (tRNA) molecules. The large subunit (LSU) contains the ribosomal catalytic site termed the peptidyl transferase center (PTC), which catalyzes the formation of peptide bonds, thereby polymerizing the amino acids delivered by tRNAs into a polypeptide chain. The nascent polypeptides leave the ribosome throug []
11	Gree n	4	RPL7	9606.ENS P0000033 9795	60S ribosomal protein L7; Component of the large ribosomal subunit. Binds to G- rich structures in 28S rRNA and in mRNAs. Plays a regulatory role in the translation apparatus; inhibits cell-free translation of mRNAs
12	Light Gree n	4	HSP90B 1	9606.ENS P0000029 9767	Endoplasmin; Molecular chaperone that functions in the processing and transport of secreted proteins. When associated with CNPY3, required for proper folding of Toll-like receptors (By similarity). Functions in endoplasmic reticulum associated degradation (ERAD). Has ATPase activity; Belongs to the heat shock protein 90 family
12	Light Gree n	4	HSPA5	9606.ENS P0000032 4173	78 kDa glucose-regulated protein; Plays a role in facilitating the assembly of multimeric protein complexes inside the endoplasmic reticulum. Involved in the correct folding of proteins and degradation of misfolded proteins via its interaction with DNAJC10, probably to facilitate the release of DNAJC10 from its substrate (By similarity); Belongs to the heat shock protein 70 family
12	Light Gree n	4	PERP	9606.ENS P0000039 7157	P53 apoptosis effector related to PMP-22; Component of intercellular desmosome junctions. Plays a role in stratified epithelial integrity and cell-cell adhesion by promoting desmosome assembly. Plays a role as an effector in the TP53-dependent apoptotic pathway (By similarity)
12	Light Gree n	4	PHB	9606.ENS P0000047 9488	Prohibitin 1; Prohibitin; Prohibitin inhibits DNA synthesis. It has a role in regulating proliferation. As yet it is unclear if the protein or the mRNA exhibits this effect. May play a role in regulating mitochondrial respiration activity and in aging
13	Light Gree n 2	3	NEFL	9606.ENS P0000048 2169	Neurofilament light polypeptide; Neurofilaments usually contain three intermediate filament proteins: L, M, and H which are involved in the maintenance of neuronal caliber
13	Light Gree n 2	3	NEFM	9606.ENS P0000022 1166	Neurofilament medium polypeptide (neurofilament 3); Neurofilament medium polypeptide; Neurofilaments usually contain three intermediate filament proteins: L, M, and H which are involved in the maintenance of neuronal caliber
13	Light Gree n 2	3	PRPH	9606.ENS P0000025 7860	Peripherin; Class-III neuronal intermediate filament protein
14	Mediu m Aqua Marin e	3	DENND 1C	9606.ENS P0000037 0889	DENN domain-containing protein 1C; Guanine nucleotide exchange factor (GEF) which may activate RAB8A, RAB13 and RAB35. Promotes the exchange of GDP to GTP, converting inactive GDP-bound Rab proteins into their active GTP-bound form; DENN/MADD domain containing
14	Mediu m Aqua Marin e	3	YWHAE	9606.ENS P0000026 4335	14-3-3 protein epsilon; Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner (By similarity). Positively regulates phosphorylated protein HSF1 nuclear export to the cytoplasm; Belongs to the 14-3-3 family
14	Mediu m Aqua Marin e	3	YWHAQ	9606.ENS P0000037 1267	14-3-3 protein theta; Adapter protein implicated in the regulation of a large spectrum of both general and specialized signaling pathways. Binds to a large number of partners, usually by recognition of a phosphoserine or phosphothreonine motif. Binding generally results in the modulation of the activity of the binding partner. Negatively regulates the kinase activity of PDPK1; Belongs to the 14-3-3 family

15	Aqua marin	3	hnRNP A3	9606.ENS P0000037	Heterogeneous nuclear ribonucleoprotein A3; Plays a role in cytoplasmic trafficking of RNA. Binds to the cis-acting response element, A2RE. May be
45	e 4	0		6309	involved in pre-mRNA splicing; RNA binding motif containing
15	Aqua marin e 4	3	C	9606.ENS P0000045 1291	Heterogeneous nuclear ribonucleoproteins C1/C2; Binds pre-mKNA and nucleates the assembly of 40S hnRNP particles. Interacts with poly-U tracts in the 3'-UTR or 5'-UTR of mRNA and modulates the stability and the level of translation of bound mRNA molecules. Single hnRNPC tetramers bind 230-240 nucleotides. Trimers of hnRNPC tetramers bind 700 nucleotides. May play a role in the early steps of spliceosome assembly and pre-mRNA splicing. N6- methyladenosine (m6A) has been shown to alter the local structure in mRNAs and long non-coding RNAs (IncRNAs) via a mechanism named 'm(6)A-switch', f []
15	Aqua marin e 4	3	TEP1	9606.ENS P0000026 2715	Telomerase protein component 1; Component of the telomerase ribonucleoprotein complex that is essential for the replication of chromosome termini. Also component of the ribonucleoprotein vaults particle, a multi- subunit structure involved in nucleo-cytoplasmic transport. Responsible for the localizing and stabilizing vault RNA (vRNA) association in the vault ribonucleoprotein particle. Binds to TERC (By similarity); WD repeat domain containing
16	Aqua marin e 2	3	ARHGD IA	9606.ENS P0000026 9321	Rho GDP-dissociation inhibitor 1; Controls Rho proteins homeostasis. Regulates the GDP/GTP exchange reaction of the Rho proteins by inhibiting the dissociation of GDP from them, and the subsequent binding of GTP to them. Retains Rho proteins such as CDC42, RAC1 and RHOA in an inactive cytosolic pool, regulating their stability and protecting them from degradation. Actively involved in the recycling and distribution of activated Rho GTPases in the cell, mediates extraction from membranes of both inactive and activated molecules due its exceptionally high affinity for prenylated forms. T []
16	Aqua marin e 2	3	CFL1	9606.ENS P0000043 2660	Cofilin-1; Binds to F-actin and exhibits pH-sensitive F-actin depolymerizing activity. Regulates actin cytoskeleton dynamics. Important for normal progress through mitosis and normal cytokinesis. Plays a role in the regulation of cell morphology and cytoskeletal organization. Required for the up-regulation of atypical chemokine receptor ACKR2 from endosomal compartment to cell membrane, increasing its efficiency in chemokine uptake and degradation. Required for neural tube morphogenesis and neural crest cell migration (By similarity)
16	Aqua marin e 2	3	sep-07	9606.ENS P0000038 1992	Septin-7; Filament-forming cytoskeletal GTPase. Required for normal organization of the actin cytoskeleton. Required for normal progress through mitosis. Involved in cytokinesis. Required for normal association of CENPE with the kinetochore. Plays a role in ciliogenesis and collective cell movements. Forms a filamentous structure with SEPT12, SEPT6, SEPT2 and probably SEPT4 at the sperm annulus which is required for the structural integrity and motility of the sperm tail during postmeiotic differentiation; Septins
17	Cyan	3	CALCO CO2	9606.ENS P0000039 8523	Calcium-binding and coiled-coil domain-containing protein 2; Xenophagy-specific receptor required for autophagy- mediated intracellular bacteria degradation. Acts as an effector protein of galectin-sensed membrane damage that restricts the proliferation of infecting pathogens such as Salmonella typhimrium upon entry into the cytosol by targeting LGALS8- associated bacteria for autophagy. Initially orchestrates bacteria targeting to autophagosomes and subsequently ensures pathogen degradation by regulating pathogensone []
17	Cyan	3	SPG11	9606.ENS P0000026 1866	SPG11, spatacsin vesicle trafficking associated; Spatacsin; May play a role in neurite plasticity by maintaining cytoskeleton stability and regulating synaptic vesicle transport
17	Cyan	3	VCP	9606.ENS P0000035 1777	Transitional endoplasmic reticulum ATPase; Necessary for the fragmentation of Golgi stacks during mitosis and for their reassembly after mitosis. Involved in the formation of the transitional endoplasmic reticulum (tER). The transfer of membranes from the endoplasmic reticulum to the Golgi apparatus occurs via 50-70 nm transition vesicles which derive from part-rough, part-smooth transitional elements of the endoplasmic reticulum (tER). Vesicle budding from the tER is an ATP-dependent process. The ternary complex containing UFD1, VCP and NPLOC4 binds ubiquitinated proteins and is neces []
18	Aqua marin e	3	KRT19	9606.ENS P0000035 5124	Keratin, type I cytoskeletal 19; Involved in the organization of myofibers. Together with KRT8, helps to link the contractile apparatus to dystrophin at the costameres of striated muscle; Keratins, type I
18	Aqua marin e	3	KRT27	9606.ENS P0000030 1656	Keratin, type I cytoskeletal 27; Essential for the proper assembly of type I and type II keratin protein complexes and formation of keratin intermediate filaments in the inner root sheath (irs)
18	Aqua marin e	3	NEURO G3	9606.ENS P0000024 2462	Neurogenin-3; Acts as a transcriptional regulator. Together with NKX2- 2, initiates transcriptional activation of NEUROD1. Involved in neurogenesis. Also required for the specification of a common precursor of the 4 pancreatic endocrine cell types (By similarity); Basic helix-loop-helix proteins
19	Aqua marin e 3	3	GNB2L1	9606.ENS P0000042 6909	Receptor of activated protein C kinase 1; (Microbial infection) Contributes to the cap-independent internal ribosome entry site (IRES)-mediated translation by some RNA viruses; Belongs to the WD repeat G protein beta family. Ribosomal protein RACK1 subfamily
19	Aqua marin e 3	3	RPL13	9606.ENS P0000030 7889	Large subunit ribosomal protein I13e; Ribosomal protein L13
19	Aqua marin e 3	3	RPS9	9606.ENS P0000030 2896	Small subunit ribosomal protein s9e; Ribosomal protein S9
20	Sky Blue 5	3	BLMH	9606.ENS P0000026 1714	Bleomycin hydrolase; The normal physiological role of BLM hydrolase is unknown, but it catalyzes the inactivation of the antitumor drug BLM (a glycopeptide) by hydrolyzing the carboxamide bond of its B- aminoalaninamide moiety thus protecting normal and malignant cells from BLM toxicity
20	Sky Blue 5	3	FLG2	9606.ENS P0000037 3370	Filaggrin-2; S100 fused type protein family; In the N-terminal section; belongs to the S-100 family

20	Sky Blue 5	3	TGM3	9606.ENS P0000037 0867	Protein-glutamine gamma-glutamyltransferase E; Catalyzes the calcium- dependent formation of isopeptide cross-links between glutamine and lysine residues in various proteins, as well as the conjugation of polyamines to proteins. Involved in the formation of the cornified envelope (CE), a specialized component consisting of covalent cross-links of proteins beneath the plasma membrane of terminally differentiated keratinocytes. Catalyzes small proline-rich proteins (SPRR1 and SPRR2) and LOR cross-linking to form small interchain oligomers, which are further cross-linked by TGM1 onto the g []
21	Sky Blue 3	3	ADNP2	9606.ENS P0000026 2198	Activity-dependent neuroprotector homeobox protein 2; May be involved in transcriptional regulation; ZF class homeoboxes and pseudogenes
21	Sky Blue 3	3	CBX3	9606.ENS P0000033 6687	Chromobox protein homolog 3; Seems to be involved in transcriptional silencing in heterochromatin-like complexes. Recognizes and binds histone H3 tails methylated at 'Lys-9', leading to epigenetic repression. May contribute to the association of the heterochromatin with the inner nuclear membrane through its interaction with lamin B receptor (LBR). Involved in the formation of functional kinetochore through interaction with MIS12 complex proteins. Contributes to the conversion of local chromatin to a heterochromatin-like repressive state through H3 'Lys-9' trimethylation, mediates the []
21	Sky Blue 3	3	TRIM66	9606.ENS P0000038 4876	Tripartite motif-containing protein 66; May function as transcription repressor; The repressive effects are mediated, at least in part, by recruitment of deacetylase activity. May play a role as negative regulator of postmeiotic genes acting through CBX3 complex formation and centromere association (By similarity); Bromodomain containing
22	Sky Blue	2	TUBA3 C	9606.ENS P0000038 2982	Tubulin alpha-3C/D chain; Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain; Belongs to the tubulin family
22	Sky Blue	2	TUBB1	9606.ENS P0000021 7133	Tubulin beta-1 chain; Tubulin is the major constituent of microtubules. It binds two moles of GTP, one at an exchangeable site on the beta chain and one at a non-exchangeable site on the alpha chain (By similarity); Belongs to the tubulin family
23	Sky Blue 2	2	LRRC59	9606.ENS P0000022 5972	Leucine-rich repeat-containing protein 59; Required for nuclear import of FGF1, but not that of FGF2. Might regulate nuclear import of exogenous FGF1 by facilitating interaction with the nuclear import machinery and by transporting cytosolic FGF1 to, and possibly through, the nuclear pores
23	Sky Blue 2	2	PLOD3	9606.ENS P0000022 3127	Lysyl hydroxylase/galactosyltransferase/glucosyltransferase; Procollagen-lysine,2- oxoglutarate 5-dioxygenase 3; Forms hydroxylysine residues in -Xaa-Lys-Gly- sequences in collagens. These hydroxylysines serve as sites of attachment for carbohydrate units and are essential for the stability of the intermolecular collagen cross-links
24	Sky Blue 4	2	DDX4	9606.ENS P0000042 4838	Probable ATP-dependent RNA helicase DDX4; ATP-dependent RNA helicase required during spermatogenesis. Required to repress transposable elements and preventing their mobilization, which is essential for the germline integrity (By similarity). Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons (By similarity). Involved in the secondary piRNAs metabolic process, the production of piRNAs in fetal male germ ce [1]
24	Sky Blue 4	2	PIWIL4	9606.ENS P0000029 9001	Piwi-like protein 4; Plays a central role during spermatogenesis by repressing transposable elements and preventing their mobilization, which is essential for the germline integrity (By similarity). Acts via the piRNA metabolic process, which mediates the repression of transposable elements during meiosis by forming complexes composed of piRNAs and Piwi proteins and governs the methylation and subsequent repression of transposons (By similarity). Directly binds piRNAs, a class of 24 to 30 nucleotide RNAs that are generated by a Dicer-independent mechanism and are primarily derived from []
25	Cornfl ower Blue 3	2	NARS	9606.ENS P0000025 6854	AsparaginetRNA ligase, cytoplasmic; Aminoacyl tRNA synthetases, Class II
25	Cornfl ower Blue 3	2	RARS	9606.ENS P0000023 1572	ArgininetRNA ligase, cytoplasmic; Forms part of a macromolecular complex that catalyzes the attachment of specific amino acids to cognate tRNAs during protein synthesis. Modulates the secretion of AIMP1 and may be involved in generation of the inflammatory cytokine EMAP2 from AIMP1; Aminoacyl tRNA synthetases, Class I
26	Cornfl ower Blue	2	PDIA4	9606.ENS P0000028 6091	Protein disulfide-isomerase A4; Protein disulfide isomerase family A member 4; Belongs to the protein disulfide isomerase family
26	Cornfl ower Blue	2	RRBP1	9606.ENS P0000036 7038	Ribosome-binding protein 1; Acts as a ribosome receptor and mediates interaction between the ribosome and the endoplasmic reticulum membrane
27	Blue	2	MYH11	9606.ENS P0000037 9616	Myosin heavy chain 9/10/11/14; Myosin-11; Muscle contraction; Belongs to the TRAFAC class myosin-kinesin ATPase superfamily. Myosin family
27	Blue	2	TTC3	9606.ENS P0000038 1981	E3 ubiquitin-protein ligase TTC3; E3 ubiquitin-protein ligase that mediates the ubiquitination and subsequent degradation of phosphorylated Akt (AKT1, AKT2 and AKT3) in the nucleus. Acts as a terminal regulator of Akt signaling after activation; its phosphorylation by Akt, which is a prerequisite for ubiquitin ligase activity, suggests the existence of a regulation mechanism required to control Akt levels after activation. Catalyzes the formation of 'Lys-48'- polyubiquitin chains. May play a role in neuronal differentiation inhibition via its interaction with CIT; Ring finger proteins
28	Cornfl ower Blue 2	2	HSPA6	9606.ENS P0000031 0219	Heat shock 70 kDa protein 6; Molecular chaperone implicated in a wide variety of cellular processes, including protection of the proteome from stress, folding and transport of newly synthesized polypeptides, activation of proteolysis of misfolded proteins and the formation and dissociation of protein complexes. Plays a pivotal

					role in the protein quality control system, ensuring the correct folding of proteins, the re-folding of misfolded proteins and controlling the targeting of proteins for subsequent degradation. This is achieved through cycles of ATP binding, ATP hydrolysis and ADP []
28	Cornfl ower Blue 2	2	HSPA9	9606.ENS P0000029 7185	Stress-70 protein, mitochondrial; Chaperone protein which plays an important role in mitochondrial iron-sulfur cluster (ISC) biogenesis. Interacts with and stabilizes ISC cluster assembly proteins FXN, NFU1, NFS1 and ISCU. Regulates erythropoiesis via stabilization of ISC assembly. May play a role in the control of cell proliferation and cellular aging (By similarity); Belongs to the heat shock protein 70 family
29	Mediu m Slate Blue 2	2	RPN1	9606.ENS P0000029 6255	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1; Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains; Belongs to the OST1 family
29	Mediu m Slate Blue 2	2	RPN2	9606.ENS P0000023 7530	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2; Essential subunit of the N-oligosaccharyl transferase (OST) complex which catalyzes the transfer of a high mannose oligosaccharide from a lipid-linked oligosaccharide donor to an asparagine residue within an Asn-X-Ser/Thr consensus motif in nascent polypeptide chains; Belongs to the SWP1 family
30	Purpl e	2	ACTR3	9606.ENS P0000026 3238	Actin-related protein 3; Functions as ATP-binding component of the Arp2/3 complex which is involved in regulation of actin polymerization and together with an activating nucleation-promoting factor (NPF) mediates the formation of branched actin networks. Seems to contact the pointed end of the daughter actin filament. Plays a role in ciliogenesis; Belongs to the actin family. ARP3 subfamily
30	Purpl e	2	ARPC4- TTLL3	9606.ENS P0000038 0427	ARPC4-TTLL3 readthrough
31	Mediu m Slate Blue	2	CAPZB	9606.ENS P0000040 1010	Capping actin protein of muscle z-line beta subunit; F-actin-capping protein subunit beta; F-actin-capping proteins bind in a Ca(2+)-independent manner to the fast growing ends of actin filaments (barbed end) thereby blocking the exchange of subunits at these ends. Unlike other capping proteins (such as gelsolin and severin), these proteins do not sever actin filaments. Plays a role in the regulation of cell morphology and cytoskeletal organization
31	Mediu m Slate Blue	2	DOCK9	9606.ENS P0000036 5643	Dedicator of cytokinesis protein 9; Guanine nucleotide-exchange factor (GEF) that activates CDC42 by exchanging bound GDP for free GTP. Overexpression induces filopodia formation; Belongs to the DOCK family
32	Mediu m Purpl e	2	GALNT 7	9606.ENS P0000026 5000	N-acetylgalactosaminyltransferase 7; Glycopeptide transferase involved in O- linked oligosaccharide biosynthesis, which catalyzes the transfer of an N-acetyl-D- galactosamine residue to an already glycosylated peptide. In contrast to other proteins of the family, it does not act as a peptide transferase that transfers GalNAc onto serine or threonine residue on the protein receptor, but instead requires the prior addition of a GalNAc on a peptide before adding additional GalNAc moieties. Some peptide transferase activity is however not excluded, considering that its appropriate pentide su [1]
32	Mediu m Purpl e	2	UBR1	9606.ENS P0000029 0650	E3 ubiquitin-protein ligase UBR1; E3 ubiquitin-protein ligase which is a component of the N-end rule pathway. Recognizes and binds to proteins bearing specific N- terminal residues that are destabilizing according to the N-end rule, leading to their ubiquitination and subsequent degradation. May be involved in pancreatic homeostasis. Binds leucine and is a negative regulator of the leucine-mTOR signaling pathway, thereby controlling cell growth; Belongs to the UBR1 family
33	Mediu m Purpl	2	RAB15	9606.ENS P0000026 7512	Ras-related protein Rab-15; RAB15, member RAS oncogene family
33	Mediu m Purpl e 2	2	SNAP47	9606.ENS P0000031 4157	Synaptosomal-associated protein 47; Plays a role in intracellular membrane fusion
34	Mediu m Purpl e 3	2	SLC25A 4	9606.ENS P0000028 1456	Solute carrier family 25 (mitochondrial adenine nucleotide translocator), member 4/5/6/31; ADP/ATP translocase 1; Involved in mitochondrial ADP/ATP transport. Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane; Belongs to the mitochondrial carrier (TC 2.A.29) family
34	Mediu m Purpl e 3	2	SLC25A 6	9606.ENS P0000037 0808	Solute carrier family 25 (mitochondrial adenine nucleotide translocator), member 4/5/6/31; ADP/ATP translocase 3; Catalyzes the exchange of cytoplasmic ADP with mitochondrial ATP across the mitochondrial inner membrane. May participate in the formation of the permeability transition pore complex (PTPC) responsible for the release of mitochondrial products that triggers apoptosis; Belongs to the mitochondrial carrier (TC 2.A.29) family
35	Mediu m Purpl e 4	2	H2AFV	9606.ENS P0000030 8405	H2A histone family member V; Histone H2A.V; Variant histone H2A which replaces conventional H2A in a subset of nucleosomes. Nucleosomes wrap and compact DNA into chromatin, limiting DNA accessibility to the cellular machineries which require DNA as a template. Histones thereby play a central role in transcription regulation, DNA repair, DNA replication and chromosomal stability. DNA accessibility is regulated via a complex set of post-translational modifications of histones, also called histone code, and nucleosome remodeling. May be involved in the formation of constitutive heterochro []
35	Mediu m Purpl e 4	2	UBTF	9606.ENS P0000030 2640	Upstream binding transcription factor; Nucleolar transcription factor 1; Recognizes the ribosomal RNA gene promoter and activates transcription mediated by RNA polymerase I through cooperative interactions with the transcription factor SL1/TIF-IB complex. It binds specifically to the upstream control element

36	Orchi d 5	2	ATRX	9606.ENS P0000036 2441	Transcriptional regulator ATRX; Involved in transcriptional regulation and chromatin remodeling. Facilitates DNA replication in multiple cellular environments and is required for efficient replication of a subset of genomic loci. Binds to DNA tandem repeat sequences in both telomeres and euchromatin and in vitro binds DNA quadruplex structures. May help stabilizing G-rich regions into regular chromatin structures by remodeling G4 DNA and incorporating H3.3- containing nucleosomes. Catalytic component of the chromatin remodeling complex ATRX:DAXX which has ATP-dependent DNA translocase []
36	Orchi d 5	2	RSF1	9606.ENS P0000031 1513	Remodeling and spacing factor 1; Required for assembly of regular nucleosome arrays by the RSF chromatin-remodeling complex. Facilitates transcription of hepatitis B virus (HBV) genes by the pX transcription activator. In case of infection by HBV, together with pX, it represses TNF-alpha induced NF-kappa-B transcription activation. Represses transcription when artificially recruited to chromatin by fusion to a heterogeneous DNA binding domain; PHD finger proteins
37	Orchi d 4	2	CCDC1 36	9606.ENS P0000029 7788	Coiled-coil domain-containing protein 136; May play a role in acrosome formation in spermatogenesis and in fertilization
37	Orchi d 4	2	FLNC	9606.ENS P0000032 7145	Filamin-C; Muscle-specific filamin, which plays a central role in muscle cells, probably by functioning as a large actin-cross- linking protein. May be involved in reorganizing the actin cytoskeleton in response to signaling events, and may also display structural functions at the Z lines in muscle cells. Critical for normal myogenesis and for maintaining the structural integrity of the muscle fibers
38	Orchi d 2	2	ARF4	9606.ENS P0000030 6010	ADP-ribosylation factor 4; GTP-binding protein that functions as an allosteric activator of the cholera toxin catalytic subunit, an ADP- ribosyltransferase. Involved in protein trafficking; may modulate vesicle budding and uncoating within the Golgi apparatus; ARF GTPase family
38	Orchi d 2	2	COPA	9606.ENS P0000035 7048	Coatomer subunit alpha; The coatomer is a cytosolic protein complex that binds to dilysine motifs and reversibly associates with Golgi non- clathrin-coated vesicles, which further mediate biosynthetic protein transport from the ER, via the Golgi up to the trans Golgi network. Coatomer complex is required for budding from Golgi membranes, and is essential for the retrograde Golgi-to-ER transport of dilysine- tagged proteins. In mammals, the coatomer can only be recruited by membranes associated to ADP-ribosylation factors (ARFs), which are small GTP-binding proteins; the complex also inf []
39	Violet 2	2	CLTCL1	9606.ENS P0000044 1158	Clathrin heavy chain like 1; Clathrin heavy chain 2; Clathrin is the major protein of the polyhedral coat of coated pits and vesicles. Two different adapter protein complexes link the clathrin lattice either to the plasma membrane or to the trans- Goldi network (By similarity)
39	Violet 2	2	OCRL	9606.ENS P0000036 0154	Inositol polyphosphate 5-phosphatase OCRL-1; Converts phosphatidylinositol 4,5- bisphosphate to phosphatidylinositol 4-phosphate. Also converts inositol 1,4,5- trisphosphate to inositol 1,4-bisphosphate and inositol 1,3,4,5- tetrakisphosphate to inositol 1,3,4-trisphosphate. May function in Iysosomal membrane trafficking by regulating the specific pool of phosphatidylinositol 4,5-bisphosphate that is associated with Iysosomes. Involved in primary cilia assembly; Belongs to the inositol 1,4,5-trisphosphate 5- phosphatase type II family
40	Violet	1	CNOT1	9606.ENS P0000032 0949	CCR4-NOT transcription complex subunit 1; Scaffolding component of the CCR4- NOT complex which is one of the major cellular mRNA deadenylases and is linked to various cellular processes including bulk mRNA degradation, miRNA- mediated repression, translational repression during translational initiation and general transcription regulation. Additional complex functions may be a consequence of its influence on mRNA expression. Its scaffolding function implies its interaction with the catalytic complex module and diverse RNA-binding proteins mediating the complex recruitment to selected mR []
41	Violet 3	1	UCHL1	9606.ENS P0000028 4440	Ubiquitin carboxyl-terminal hydrolase isozyme L1; Ubiquitin-protein hydrolase involved both in the processing of ubiquitin precursors and of ubiquitinated proteins. This enzyme is a thiol protease that recognizes and hydrolyzes a peptide bond at the C-terminal glycine of ubiquitin. Also binds to free monoubiquitin and may prevent its degradation in lysosomes. The homodimer may have ATP-independent ubiquitin ligase activity; Parkinson disease associated genes
42	Orchi d	1	RPL27A	9606.ENS P0000034 6015	Large subunit ribosomal protein I27ae; Ribosomal protein L27a; Belongs to the universal ribosomal protein uL15 family
43	Orchi d 3	1	COL3A1	9606.ENS P0000030 4408	Collagen alpha-1(III) chain; Collagen type III occurs in most soft connective tissues along with type I collagen. Involved in regulation of cortical development. Is the major ligand of ADGRG1 in the developing brain and binding to ADGRG1 inhibits neuronal migration and activates the RhoA pathway by coupling ADGRG1 to GNA13 and possibly GNA12
44	Hot Pink	1	NPM1	9606.ENS P0000029 6930	Nucleophosmin; Involved in diverse cellular processes such as ribosome biogenesis, centrosome duplication, protein chaperoning, histone assembly, cell proliferation, and regulation of tumor suppressors p53/TP53 and ARF. Binds ribosome presumably to drive ribosome nuclear export. Associated with nucleolar ribonucleoprotein structures and bind single-stranded nucleic acids. Acts as a chaperonin for the core histones H3, H2B and H4. Stimulates APEX1 endonuclease activity on apurinic/apyrimidinic (AP) double- stranded DNA but inhibits APEX1 endonuclease activity on AP single-stranded RNA. []
45	Pink	1	CTNNB 1	9606.ENS P0000034 4456	Catenin beta-1; Key downstream component of the canonical Wnt signaling pathway. In the absence of Wnt, forms a complex with AXIN1, AXIN2, APC, CSNK1A1 and GSK3B that promotes phosphorylation on N-terminal Ser and Thr residues and ubiquitination of CTNNB1 via BTRC and its subsequent degradation by the proteasome. In the presence of Wnt ligand, CTNNB1 is not ubiquitinated and accumulates in the nucleus, where it acts as a coactivator for transcription factors of the TCF/LEF family, leading to activate Wnt responsive genes. Involved in the regulation of cell adhesion, as component of an []

46	Hot Pink 2	1	PRKDC	9606.ENS P0000031 3420	DNA-dependent protein kinase catalytic subunit; Serine/threonine-protein kinase that acts as a molecular sensor for DNA damage. Involved in DNA non-homologous end joining (NHEJ) required for double-strand break (DSB) repair and V(D)J recombination. Must be bound to DNA to express its catalytic properties. Promotes processing of hairpin DNA structures in V(D)J recombination by activation of the hairpin endonuclease artemis (DCLRE1C). The assembly of the DNA-PK complex at DNA ends is also required for the NHEJ ligation step. Required to protect and align broken ends of DNA. May also act []
47	Pale Violet Red	1	UBA1	9606.ENS P0000033 8413	Ubiquitin-like modifier-activating enzyme 1; Catalyzes the first step in ubiquitin conjugation to mark cellular proteins for degradation through the ubiquitin- proteasome system. Activates ubiquitin by first adenylating its C-terminal glycine residue with ATP, and thereafter linking this residue to the side chain of a cysteine residue in E1, yielding a ubiquitin-E1 thioester and free AMP. Essential for the formation of radiation- induced foci, timely DNA repair and for response to replication stress. Promotes the recruitment of TP53BP1 and BRCA1 at DNA damage sites
48	Light Coral 2	1	STIP1	9606.ENS P0000035 1646	Stress-induced-phosphoprotein 1; Acts as a co-chaperone for HSP90AA1. Mediates the association of the molecular chaperones HSPA8/HSC70 and HSP90 (By similarity); Tetratricopeptide repeat domain containing
49	Light Coral	1	PSMB1	9606.ENS P0000026 2193	Proteasome subunit beta type-1; Component of the 20S core proteasome complex involved in the proteolytic degradation of most intracellular proteins. This complex plays numerous essential roles within the cell by associating with different regulatory particles. Associated with two 19S regulatory particles, forms the 26S proteasome and thus participates in the ATP-dependent degradation of ubiquitinated proteins. The 26S proteasome plays a key role in the maintenance of protein homeostasis by removing misfolded or damaged proteins that could impair cellular functions, and by removing prot []

11.8 Anexo 8. Numeros de acceso GO asociados a glutamato

GO Access number	Gene Ontology
GO:0060199	clathrin-sculpted glutamate transport vesicle
GO:1905232	cellular response to L-glutamate
GO:1904493	tetrahydrofolyl-poly(glutamate) polymer binding
GO:1904719	positive regulation of AMPA glutamate receptor clustering
GO:1904718	negative regulation of AMPA glutamate receptor clustering
GO:1904717	regulation of AMPA glutamate receptor clustering
GO:1904783	positive regulation of NMDA glutamate receptor activity
GO:1904782	negative regulation of NMDA glutamate receptor activity
GO:0099573	glutamatergic postsynaptic density
GO:0031804	type 7 metabotropic glutamate receptor binding
GO:0031805	type 8 metabotropic glutamate receptor binding
GO:0031802	type 5 metabotropic glutamate receptor binding
GO:0031803	type 6 metabotropic glutamate receptor binding
GO:0031800	type 3 metabotropic glutamate receptor binding
GO:0031801	type 4 metabotropic glutamate receptor binding
GO:0110141	L-glutamate import into mitochondrion
GO:1903294	regulation of glutamate secretion, neurotransmission
GO:1903295	negative regulation of glutamate secretion, neurotransmission
GO:1903296	positive regulation of glutamate secretion, neurotransmission
GO:0070909	glutamate:gamma-aminobutyric acid antiporter activity
GO:0006536	glutamate metabolic process
GO:0006537	glutamate biosynthetic process
GO:0006538	glutamate catabolic process
GO:0006539	glutamate catabolic process via 2-oxoglutarate
GO:0006540	glutamate decarboxylation to succinate
GO:0061646	positive regulation of glutamate neurotransmitter secretion in response to membrane depolarization
GO:0062145	L-propargylglycineL-glutamate ligase activity

GO:2001157	negative regulation of proline catabolic process to glutamate
GO:2001158	positive regulation of proline catabolic process to glutamate
GO:2001156	regulation of proline catabolic process to glutamate
GO:0035235	ionotropic glutamate receptor signaling pathway
GO:0060203	clathrin-sculpted glutamate transport vesicle membrane
GO:0035229	positive regulation of glutamate-cysteine ligase activity
GO:0035228	negative regulation of glutamate-cysteine ligase activity
GO:0035227	regulation of glutamate-cysteine ligase activity
GO:0035226	glutamate-cysteine ligase catalytic subunit binding
GO:0035254	glutamate receptor binding
GO:0035256	G protein-coupled glutamate receptor binding
GO:0035255	ionotropic glutamate receptor binding
GO:0035249	synaptic transmission, glutamatergic
GO:0060204	clathrin-sculpted glutamate transport vesicle lumen
GO:0036241	glutamate catabolic process to 4-hydroxybutyrate
GO:0036242	glutamate catabolic process to succinate via 2-oxoglutarate-dependent GABA-transaminase activity
GO:0061535	glutamate secretion, neurotransmission
GO:0022849	glutamate-gated calcium ion channel activity
GO:0008765	UDP-N-acetylmuramoylalanyl-D-glutamate-2,6-diaminopimelate ligase activity
GO:0008764	UDP-N-acetylmuramoylalanine-D-glutamate ligase activity
GO:0010133	proline catabolic process to glutamate
GO:0103044	ribosomal protein S6 glutamate-glutamate ligase activity
GO:0140867	NAD+-histone H2BE18 glutamate ADP-ribosyltransferase activity
GO:0140844	NAD+-histone H2BE2 glutamate ADP-ribosyltransferase activity
GO:0140822	NAD+-histone H2BE35 glutamate ADP-ribosyltransferase activity
GO:0140807	NAD+-protein-glutamate ADP-ribosyltransferase activity
GO:0140788	L-glutamate uniporter activity
GO:0102665	indole-3-acetyl-glutamate synthetase activity
GO:0140291	peptidyl-glutamate ADP-deribosylation
GO:0089704	L-glutamate transmembrane export from vacuole
GO:0009332	glutamate-tRNA ligase complex
GO:0009342	glutamate synthase complex (NADPH)
GO:0008984	protein-glutamate methylesterase activity
GO:0008983	protein-glutamate O-methyltransferase activity
GO:0033854	glutamate-prephenate aminotransferase activity
GO:0008882	[glutamate-ammonia-ligase] adenylyltransferase activity
GO:0008881	glutamate racemase activity
GO:0032983	kainate selective glutamate receptor complex
GO:1902604	p-aminobenzoyl-glutamate transmembrane transport
GO:1902793	glutamate decarboxylase complex
GO:0120006	regulation of glutamatergic neuron differentiation
GO:0120007	negative regulation of glutamatergic neuron differentiation
GO:0120008	positive regulation of glutamatergic neuron differentiation
GO:0019353	protoporphyrinogen IX biosynthetic process from glutamate
GO:0007206	phospholipase C-activating G protein-coupled glutamate receptor signaling pathway
GO:0007215	glutamate receptor signaling pathway

GO:0007216	G protein-coupled glutamate receptor signaling pathway
GO:0019461	glutamine catabolic process to fumarate, using glutamate synthase (NADPH)
GO:1900449	regulation of glutamate receptor signaling pathway
GO:1900450	negative regulation of glutamate receptor signaling pathway
GO:1900451	positive regulation of glutamate receptor signaling pathway
GO:0005234	extracellularly glutamate-gated ion channel activity
GO:0030409	glutamate formimidoyltransferase activity
GO:0005314	high-affinity L-glutamate transmembrane transporter activity
GO:0005313	L-glutamate transmembrane transporter activity
GO:0019544	arginine catabolic process to glutamate
GO:0019549	glutamate catabolic process to succinate via succinate semialdehyde
GO:0019555	glutamate catabolic process to ornithine
GO:0019554	glutamate catabolic process to oxaloacetate
GO:0019557	histidine catabolic process to glutamate and formate
GO:0019556	histidine catabolic process to glutamate and formamide
GO:0019551	glutamate catabolic process to 2-oxoglutarate
GO:0019550	glutamate catabolic process to aspartate
GO:0019553	glutamate catabolic process via L-citramalate
GO:0019552	glutamate catabolic process via 2-hydroxyglutarate
GO:0019670	anaerobic glutamate catabolic process
GO:0019671	glutamate catabolic process via mesaconate and citramalate
GO:0042286	glutamate-1-semialdehyde 2,1-aminomutase activity
GO:1990609	glutamate-cysteine ligase regulator activity
GO:0017146	NMDA selective glutamate receptor complex
GO:0002036	regulation of L-glutamate import across plasma membrane
GO:0002037	negative regulation of L-glutamate import across plasma membrane
GO:0002038	positive regulation of L-glutamate import across plasma membrane
GO:1902065	response to L-glutamate
GO:0047131	saccharopine dehydrogenase (NAD+, L-glutamate-forming) activity
GO:0047148	methylamine-glutamate N-methyltransferase activity
GO:0008068	extracellularly glutamate-gated chloride channel activity
GO:0008066	glutamate receptor activity
GO:0072591	citrate-L-glutamate ligase activity
GO:0072590	N-acetyl-L-aspartate-L-glutamate ligase activity
GO:0031798	type 1 metabotropic glutamate receptor binding
GO:0031799	type 2 metabotropic glutamate receptor binding
GO:0097113	AMPA glutamate receptor clustering
GO:0097114	NMDA glutamate receptor clustering
GO:0097054	L-glutamate biosynthetic process
GO:0004818	glutamate-tRNA ligase activity
GO:0004755	saccharopine dehydrogenase (NADP+, L-glutamate-forming) activity
GO:1901481	L-glutamate import involved in cellular response to nitrogen starvation
GO:0004042	acetyl-CoA:L-glutamate N-acetyltransferase activity
GO:0004971	AMPA glutamate receptor activity
GO:0004970	ionotropic glutamate receptor activity
GO:0004972	NMDA glutamate receptor activity

GO:0042085	5-methyltetrahydropteroyltri-L-glutamate-dependent methyltransferase activity
GO:0017109	glutamate-cysteine ligase complex
GO:0097688	glutamate receptor clustering
GO:0043294	mitochondrial glutamate synthase complex (NADH)
GO:0045181	glutamate synthase activity, NAD(P)H as acceptor
GO:0070501	poly-gamma-glutamate biosynthetic process
GO:0070502	capsule poly-gamma-glutamate biosynthetic process
GO:0098985	asymmetric, glutamatergic, excitatory synapse
GO:0098989	NMDA selective glutamate receptor signaling pathway
GO:0098988	G protein-coupled glutamate receptor activity
GO:0098990	AMPA selective glutamate receptor signaling pathway
GO:0098991	kainate selective glutamate receptor signaling pathway
GO:0098978	glutamatergic synapse
GO:0098712	L-glutamate import across plasma membrane
GO:0016595	glutamate binding
GO:0016040	glutamate synthase (NADH) activity
GO:0016041	glutamate synthase (ferredoxin) activity
GO:0033054	D-glutamate metabolic process
GO:0031026	glutamate synthase complex
GO:0031027	glutamate synthase complex (NADH)
GO:0033509	glutamate catabolic process to propionate
GO:0033508	glutamate catabolic process to butyrate
GO:0033526	tetrapyrrole biosynthetic process from glutamate
GO:0008421	long-chain fatty-acyl-glutamate deacylase activity
GO:0032281	AMPA glutamate receptor complex
GO:0071713	para-aminobenzoyl-glutamate hydrolase activity
GO:0007196	adenylate cyclase-inhibiting G protein-coupled glutamate receptor signaling pathway
GO:0008328	ionotropic glutamate receptor complex
GO:0047942	glutamate-ethylamine ligase activity
GO:0047943	glutamate-methylamine ligase activity
GO:0047482	UDP-N-acetylmuramoyl-L-alanyl-D-glutamate-L-lysine ligase activity
GO:0047421	N-acyl-D-glutamate deacylase activity
GO:0047821	D-glutamate oxidase activity
GO:0047820	D-glutamate cyclase activity
GO:0047819	D-glutamate(D-aspartate) oxidase activity
GO:0004349	glutamate 5-kinase activity
GO:0004351	glutamate decarboxylase activity
GO:0004350	glutamate-5-semialdehyde dehydrogenase activity
GO:0004353	glutamate dehydrogenase [NAD(P)+] activity
GO:0004352	glutamate dehydrogenase (NAD+) activity
GO:0004355	glutamate synthase (NADPH) activity
GO:0004354	glutamate dehydrogenase (NADP+) activity
GO:0004357	glutamate-cysteine ligase activity
GO:0004358	glutamate N-acetyltransferase activity
GO:1901411	negative regulation of tetrapyrrole biosynthetic process from glutamate
GO:1901410	regulation of tetrapyrrole biosynthetic process from glutamate

GO:1901412	positive regulation of tetrapyrrole biosynthetic process from glutamate
GO:1905962	glutamatergic neuron differentiation
GO:2000312	regulation of kainate selective glutamate receptor activity
GO:0034024	glutamate-putrescine ligase activity
GO:2000213	positive regulation of glutamate metabolic process
GO:2000212	negative regulation of glutamate metabolic process
GO:2000211	regulation of glutamate metabolic process
GO:0050561	glutamate-tRNA(GIn) ligase activity
GO:0015277	kainate selective glutamate receptor activity
GO:0015930	glutamate synthase activity
GO:0090515	L-glutamate transmembrane import into vacuole
GO:0090461	intracellular glutamate homeostasis
GO:0090454	glutamate transmembrane import into vacuole
GO:0014049	positive regulation of glutamate secretion
GO:0014048	regulation of glutamate secretion
GO:0014047	glutamate secretion
GO:0014050	negative regulation of glutamate secretion
GO:0050025	L-glutamate oxidase activity
GO:0102195	UDP-N-acetylmuramoyl-L-alanyl-D-glutamateD-lysine ligase activity
GO:0102088	N-(4-hydroxybenzoyl)-L-glutamate synthetase activity
GO:0102087	N-benzoyl-L-glutamate synthetase activity
GO:0102086	N-vanillate-L-glutamate synthetase activity
GO:0102085	N-(4-aminobenzoyl)-L-glutamate synthetase activity
GO:0102013	ATPase-coupled L-glutamate tranmembrane transporter activity
GO:0052618	coenzyme F420-0:L-glutamate ligase activity
GO:0052619	coenzyme F420-1:gamma-L-glutamate ligase activity
GO:0106427	negative regulation of kainate selective glutamate receptor signaling pathway
GO:0106428	positive regulation of kainate selective glutamate receptor signaling pathway
GO:0106426	regulation of kainate selective glutamate receptor signaling pathway
GO:0106421	L-glutamate:proton antiporter activity
GO:0015501	glutamate:sodium symporter activity
GO:0015558	secondary active p-aminobenzoyl-glutamate transmembrane transporter activity
GO:0001642	group III metabotropic glutamate receptor activity
GO:0001641	group II metabotropic glutamate receptor activity
GO:0001640	adenylate cyclase inhibiting G protein-coupled glutamate receptor activity
GO:0001639	PLC activating G protein-coupled glutamate receptor activity
GO:0015814	p-aminobenzoyl-glutamate transport
GO:0015813	L-glutamate transmembrane transport
GO:0000514	3-sulfino-L-alanine: proton, glutamate antiporter activity
GO:1990148	glutamate dehydrogenase complex
GO:1990190	peptide-glutamate-alpha-N-acetyltransferase activity
GO:0051967	negative regulation of synaptic transmission, glutamatergic
GO:0051968	positive regulation of synaptic transmission, glutamatergic
GO:0051966	regulation of synaptic transmission, glutamatergic
GO:0051938	L-glutamate import
GO:0051935	glutamate reuptake

GO:0051948	negative regulation of glutamate uptake involved in transmission of nerve impulse
GO:0051946	regulation of glutamate uptake involved in transmission of nerve impulse
GO:0051951	positive regulation of glutamate uptake involved in transmission of nerve impulse
GO:0106104	regulation of glutamate receptor clustering
GO:0099620	UDP-4-amino-4-deoxy-L-arabinose aminotransferase
GO:0006424	glutamyl-tRNA aminoacylation
GO:0061672	glutathione hydrolase complex
GO:0021930	cerebellar granule cell precursor proliferation
GO:0021711	cerebellar unipolar brush cell differentiation
GO:0021707	cerebellar granule cell differentiation
GO:2001249	negative regulation of ammonia assimilation cycle
GO:2001248	regulation of ammonia assimilation cycle
GO:2001250	positive regulation of ammonia assimilation cycle
GO:0061907	negative regulation of AMPA receptor activity
GO:0061174	type I terminal bouton
GO:0061175	type II terminal bouton
GO:0061176	type lb terminal bouton
GO:0061177	type Is terminal bouton
GO:0036381	pyridoxal 5'-phosphate synthase (glutamine hydrolysing) activity
GO:0036374	glutathione hydrolase activity
GO:0035609	C-terminal protein deglutamylation
GO:0035608	protein deglutamylation
GO:0035611	protein branching point deglutamylation
GO:0035610	protein side chain deglutamylation
GO:0010285	L,L-diaminopimelate aminotransferase activity
GO:0103046	alanylglutamate dipeptidase activity
GO:0103031	L-Ala-D/L-Glu epimerase activity
GO:0102572	N-glutamylanilide hydrolase activity
GO:0102933	GDP-4-dehydro-6-deoxy-D-mannose-4-aminotransferase activity
GO:0140282	carbon-nitrogen ligase activity on lipid II
GO:0034386	4-aminobutyrate:2-oxoglutarate transaminase activity
GO:0033852	thyroid-hormone transaminase activity
GO:0033855	nicotianamine aminotransferase activity
GO:0008841	dihydrofolate synthase activity
GO:0008883	glutamyI-tRNA reductase activity
GO:0008793	aromatic-amino-acid:2-oxoglutarate aminotransferase activity
GO:0150099	neuron-glial cell signaling
GO:0034722	gamma-glutamyl-peptidase activity
GO:0033969	gamma-glutamyl-gamma-aminobutyrate hydrolase activity
GO:0002948	archaeosine synthase activity
GO:0002951	leukotriene-C(4) hydrolase
GO:0046900	tetrahydrofolylpolyglutamate metabolic process
GO:0046901	tetrahydrofolylpolyglutamate biosynthetic process
GO:0046820	4-amino-4-deoxychorismate synthase activity
GO:0019460	glutamine catabolic process to fumarate
GO:0019462	glutamine catabolic process to fumarate, using glutaminase

GO:0046535	detection of chemical stimulus involved in sensory perception of umami taste
GO:0005950	anthranilate synthase complex
GO:0005283	amino acid:sodium symporter activity
GO:0019676	ammonia assimilation cycle
GO:0017168	5-oxoprolinase (ATP-hydrolyzing) activity
GO:0017171	serine hydrolase activity
GO:0003842	1-pyrroline-5-carboxylate dehydrogenase activity
GO:0003867	4-aminobutyrate transaminase activity
GO:0003871	5-methyltetrahydropteroyltriglutamate-homocysteine S-methyltransferase activity
GO:0003922	GMP synthase (glutamine-hydrolyzing) activity
GO:0003942	N-acetyl-gamma-glutamyl-phosphate reductase activity
GO:0003952	NAD+ synthase (glutamine-hydrolyzing) activity
GO:0003991	acetylglutamate kinase activity
GO:0003992	N2-acetyl-L-ornithine:2-oxoglutarate 5-aminotransferase activity
GO:0003883	CTP synthase activity
GO:0047317	N6-acetyl-beta-lysine transaminase activity
GO:0047309	dihydroxyphenylalanine transaminase activity
GO:0047302	UDP-2-acetamido-4-amino-2,4,6-trideoxyglucose transaminase activity
GO:0047298	(S)-3-amino-2-methylpropionate transaminase activity
GO:0047578	4-hydroxyglutamate transaminase activity
GO:0047582	4-methyleneglutaminase activity
GO:0047589	5-aminovalerate transaminase activity
GO:0047581	4-methyleneglutamate-ammonia ligase activity
GO:0047537	2-aminohexanoate transaminase activity
GO:0047536	2-aminoadipate transaminase activity
GO:0006760	folic acid-containing compound metabolic process
GO:0004587	ornithine aminotransferase activity
GO:0004400	histidinol-phosphate transaminase activity
GO:0004838	L-tyrosine:2-oxoglutarate aminotransferase activity
GO:0004753	saccharopine dehydrogenase activity
GO:0004642	phosphoribosylformylglycinamidine synthase activity
GO:0004648	O-phospho-L-serine:2-oxoglutarate aminotransferase activity
GO:0043824	succinylglutamate-semialdehyde dehydrogenase activity
GO:0004252	serine-type endopeptidase activity
GO:0043774	coenzyme F420-2 alpha-glutamyl ligase activity
GO:0043773	coenzyme F420-0 gamma-glutamyl ligase activity
GO:0004185	serine-type carboxypeptidase activity
GO:0043760	acetyldiaminopimelate aminotransferase activity
GO:0018719	6-aminohexanoate transaminase activity
GO:0004066	asparagine synthase (glutamine-hydrolyzing) activity
GO:0004069	L-aspartate:2-oxoglutarate aminotransferase activity
GO:0004084	branched-chain-amino-acid transaminase activity
GO:0004088	carbamoyl-phosphate synthase (glutamine-hydrolyzing) activity
GO:0043685	conversion of glutamyl-tRNA to glutaminyl-tRNA
GO:0004021	L-alanine:2-oxoglutarate aminotransferase activity
GO:0004044	amidophosphoribosyltransferase activity

GO:0004049	anthranilate synthase activity
GO:0017084	delta1-pyrroline-5-carboxylate synthetase activity
GO:0097467	type III terminal bouton
GO:0097707	ferroptosis
GO:0019161	diamine transaminase activity
GO:0019163	pyridoxamine-phosphate transaminase activity
GO:0019179	dTDP-4-amino-4,6-dideoxy-D-glucose transaminase activity
GO:0019180	dTDP-4-amino-4,6-dideoxygalactose transaminase activity
GO:0018282	metal incorporation into metallo-sulfur cluster
GO:0070002	glutamic-type peptidase activity
GO:0070008	serine-type exopeptidase activity
GO:0070007	glutamic-type endopeptidase activity
GO:0070009	serine-type aminopeptidase activity
GO:0070149	mitochondrial glutamyl-tRNA aminoacylation
GO:0045484	L-lysine 6-transaminase activity
GO:0045303	diaminobutyrate-2-oxoglutarate transaminase activity
GO:0016598	protein arginylation
GO:0080130	L-phenylalanine:2-oxoglutarate aminotransferase activity
GO:0080100	L-glutamine:2-oxoglutarate aminotransferase activity
GO:0080099	L-methionine:2-oxoglutarate aminotransferase activity
GO:0016212	kynurenine-oxoglutarate transaminase activity
GO:0008110	L-histidine:2-oxoglutarate aminotransferase activity
GO:0047740	cephalosporin-C transaminase activity
GO:0033042	umami taste receptor activity
GO:0033094	putrescine2-oxoglutarate transaminase activity
GO:0070737	protein-glycine ligase activity, elongating
GO:0070738	tubulin-glycine ligase activity
GO:0070736	protein-glycine ligase activity, initiating
GO:0070739	protein-glutamic acid ligase activity
GO:0070740	tubulin-glutamic acid ligase activity
GO:0008488	gamma-glutamyl carboxylase activity
GO:0047914	gamma-glutamylhistamine synthase activity
GO:0047958	glycine:2-oxoglutarate aminotransferase activity
GO:0047990	hydroxyglutamate decarboxylase activity
GO:0033345	asparagine catabolic process via L-aspartate
GO:0033346	asparagine catabolic process via 2-oxosuccinamate
GO:0047320	D-4-hydroxyphenylglycine transaminase activity
GO:0047388	[glutamine synthetase]-adenylyl-L-tyrosine phosphorylase activity
GO:0047810	D-alanine:2-oxoglutarate aminotransferase activity
GO:0047801	L-cysteine transaminase activity
GO:0047802	cysteine-conjugate transaminase activity
GO:0008236	serine-type peptidase activity
GO:0047823	D-glutamyltransferase activity
GO:0047861	diiodotyrosine transaminase activity
GO:0043911	D-lysine transaminase activity
GO:0004326	tetrahydrofolylpolyglutamate synthase activity

GO:0004356	glutamine synthetase activity
GO:0004359	glutaminase activity
GO:0004360	glutamine-fructose-6-phosphate transaminase (isomerizing) activity
GO:0043802	hydrogenobyrinic acid a,c-diamide synthase (glutamine-hydrolysing) activity
GO:0043825	succinylornithine transaminase activity
GO:2000969	positive regulation of AMPA receptor activity
GO:0009065	glutamine family amino acid catabolic process
GO:0009064	glutamine family amino acid metabolic process
GO:2000311	regulation of AMPA receptor activity
GO:2000310	regulation of NMDA receptor activity
GO:0009084	glutamine family amino acid biosynthetic process
GO:0009017	succinylglutamate desuccinylase activity
GO:0009016	succinyldiaminopimelate transaminase activity
GO:0050567	glutaminyl-tRNA synthase (glutamine-hydrolyzing) activity
GO:0050566	asparaginyl-tRNA synthase (glutamine-hydrolyzing) activity
GO:0050568	protein-glutamine glutaminase activity
GO:0015426	ATPase-coupled polar amino acid-transporter activity
GO:0015327	cystine:glutamate antiporter activity
GO:0015183	L-aspartate transmembrane transporter activity
GO:0000820	regulation of glutamine family amino acid metabolic process
GO:0050001	D-glutaminase activity
GO:0050048	L-leucine:2-oxoglutarate aminotransferase activity
GO:0050986	isopeptide cross-linking via N-(L-isoglutamyl)-glycine
GO:0050917	sensory perception of umami taste
GO:0050129	N-formylglutamate deformylase activity
GO:0050097	methylaspartate mutase activity
GO:0050099	methylglutamate dehydrogenase activity
GO:0050415	formimidoylglutamase activity
GO:0050417	glutamin-(asparagin-)ase activity
GO:0050416	formimidoylglutamate deiminase activity
GO:0050480	imidazolonepropionase activity
GO:0050322	taurine-2-oxoglutarate transaminase activity
GO:0050362	L-tryptophan:2-oxoglutarate aminotransferase activity
GO:0050330	theanine hydrolase activity
GO:0102081	homotaurine:2-oxoglutarate aminotransferase activity
GO:0052649	coenzyme gamma-F420-2 metabolic process
GO:0052645	F420-0 metabolic process
GO:0106438	protein-glutamic acid ligase activity, elongating
GO:0106437	protein-glutamic acid ligase activity, initiating
GO:0050170	peptidyl-glutaminase activity
GO:0051698	saccharopine oxidase activity
GO:0015810	aspartate transmembrane transport
GO:0000515	aspartate:glutamate, proton antiporter activity
GO:0000107	imidazoleglycerol-phosphate synthase activity
GO:0051921	adenosylcobyric acid synthase (glutamine-hydrolyzing) activity
GO:0051823	regulation of synapse structural plasticity

11.9 Anexo 9. Números de acceso GO asociados a SNARE

GO Access number	Gene Ontology
GO:0035495	regulation of SNARE complex disassembly
GO:0035494	SNARE complex disassembly
GO:0035493	SNARE complex assembly
GO:0035540	positive regulation of SNARE complex disassembly
GO:0035544	negative regulation of SNARE complex assembly
GO:0035543	positive regulation of SNARE complex assembly
GO:0035542	regulation of SNARE complex assembly
GO:0035541	negative regulation of SNARE complex disassembly
GO:1904032	regulation of t-SNARE clustering
GO:1904033	negative regulation of t-SNARE clustering
GO:1904034	positive regulation of t-SNARE clustering
GO:1990656	t-SNARE clustering
GO:0097654	platelet SNARE complex
GO:0031201	SNARE complex
GO:0000149	SNARE binding
GO:0010808	positive regulation of synaptic vesicle priming
GO:0010807	regulation of synaptic vesicle priming
GO:0010809	negative regulation of synaptic vesicle priming
GO:0120124	membrane fusion priming complex
GO:0005484	SNAP receptor activity
GO:0005483	soluble NSF attachment protein activity
GO:0070044	synaptobrevin 2-SNAP-25-syntaxin-1a complex
GO:0070046	synaptobrevin 2-SNAP-25-syntaxin-3 complex
GO:0070045	synaptobrevin 2-SNAP-25-syntaxin-2 complex
GO:0070048	endobrevin-SNAP-25-syntaxin-1a complex
GO:0070047	synaptobrevin 2-SNAP-25-syntaxin-4 complex
GO:0070033	synaptobrevin 2-SNAP-25-syntaxin-1a-complexin II complex
GO:0070032	synaptobrevin 2-SNAP-25-syntaxin-1a-complexin I complex
GO:0070066	cellubrevin-VAMP4-endobrevin-syntaxin-6 complex
GO:0070065	cellubrevin-VAMP4-syntaxin-16 complex
GO:0070068	VAMP4-syntaxin-6-syntaxin-16-Vti1a complex
GO:0070067	syntaxin-6-syntaxin-16-Vti1a complex
GO:0070049	endobrevin-SNAP-25-syntaxin-2 complex
GO:0070554	synaptobrevin 2-SNAP-25-syntaxin-3-complexin complex
GO:0070356	synaptotagmin-synaptobrevin 2-SNAP-25-syntaxin-1a-syntaxin-1b-Rab3a complex
GO:0070355	synaptotagmin-synaptobrevin 2-SNAP-25-syntaxin-1a-syntaxin-1b-Rab3a-complexin II complex
GO:0070766	endobrevin-synaptobrevin 2-alpha-SNAP-NSF-syntaxin-4 complex
GO:0070768	synaptotagmin-synaptobrevin 2-SNAP-25-syntaxin-1a-syntaxin-1b-Unc13 complex
GO:0033263	CORVET complex
GO:0048213	Golgi vesicle prefusion complex stabilization