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Resumen

A pesar del gran éxito del Modelo Estándar, existen motivaciones para suponer que
puede existir f́ısica más allá de dicho modelo. Un caso de gran relevancia es la posibil-
idad de que haya más estados de masa de neutrinos, tales como los leptones pesados
neutros (Neutral Heavy Leptons). En este caso existirán efectos de no-unitariedad
en la matriz de mezcla leptónica. Estos efectos de no-unitariedad cambian la proba-
bilidad de oscilación de los neutrinos activos y podŕıan dar evidencia de nueva f́ısica.
En este tesis exploramos implicaciones fenomenológicas de la no-unitariedad en ex-
perimentos actuales y futuros, tales como el detector de FASERν y los de búsqueda
de decaimientos cargados con violación del sabor leptónico (cLFV). Mostraremos la
relevancia de estos experimentos en la busqueda de estas señales de nueva f́ısica y
sus perspectivas en el futuro.
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Abstract

Despite the great success of the Standard Model, there are some motivations to
think about new physics beyond the Standard Model. One case of great relevance
is the possibility of new neutrino massive states, such as the Neutral Heavy Lep-
tons (NHL). With more neutrino massive states, there are non-unitary effects in
the leptonic mixing matrix. The non-unitary effects change the oscillation prob-
ability of active neutrinos, which could give evidence of new physics. This thesis
explores the phenomenological implications of the non-unitary effects in current and
future experiments, such as the FASERν detector and the experimental searches
of charged lepton flavor violation (cLFV) processes. We will show the relevance of
these experiments in searching for new physics and their future perspectives.
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Chapter 1

Introduction

The Standard Model (SM) is one of the most successful theories, with its capa-
bility to explain much experimental evidence with high accuracy. The SM is a
gauge theory that is conformed by three quantum field theories (QFT) and with
SU(3)c × SU(2)L × U(1)Y symmetry that governs its dynamics [1]. Each QFT
describes one force in the SM. The first one was the quantum electrodynamics
(QED) created by Feynman, Tomonaga, Schwinger, and many others. Then, Shel-
don Glashow [2], Steven Weinberg [3], and Abdus Salam [4] unified the QED with
the weak interaction in the Electro-Weak theory (EW). Finally, quantum chromo-
dynamics theory (QCD) describes strong interactions.

One of the greatest predictions of SM is the existence of the Higgs particle, which,
in the EW theory, gives mass to the charged fermions and the Z and W± through
the Higgs mechanism. The CMS and ATLAS detectors discovered the Higgs boson
at the Large Hadron Collider (LHC) in 2012 [5, 6] and confirmed the EW predic-
tions, giving more reliability to the theory.

Despite all the achievements the model gives us, there is some phenomenology
beyond its predicted capabilities, such as the asymmetry of matter and antimatter
in the universe and the nature and mass mechanism of neutrinos that have tiny
masses, as evidenced by neutrino oscillations. In this work, we will explore some
neutrino phenomenology to answer these questions.

Pauli postulated the neutrino as a solution to the missing energy in the beta
decay. Neutrinos are one of the most copious particles in the universe; however,
neutrinos weakly interact with matter, and the fact that neutrinos are chargeless
particles makes their measurement more difficult. But even before the neutrino os-
cillation evidence, there was some description of the neutrino oscillation.
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Pontecorvo was the first person to postulate the neutrino oscillation; in his vi-
sion, the neutrino oscillates between the neutrino and antineutrino as an analogy
to K0 ⇆ K̄0 [7], since at that time, we only had measurements of one neutrino
flavor. Nowadays, the neutrino oscillation theory is known to describe an oscil-
lation between different flavors. Different experiments supported this hypothesis,
but it wasn’t until the Super-Kamiokande collaboration and the Sudbury Neutrino
Observatory (SNO) had enough neutrino events that the oscillation theory was es-
tablished. In 2015, Takaaki Kajita [8] and Arthur B. McDonald [9] were awarded
the Nobel Prize in Physics ”for their contributions to the discovery of neutrino os-
cillations, which demonstrated that neutrinos have mass”.

The confirmation of neutrino oscillation opens the door to many questions, such
as the nature, the mass hierarchy, and the mechanism that gives mass to the neu-
trinos. One way to answer these questions is to add more particles or symmetries,
as in the seesaw mechanism. In the minimal seesaw, we add heavy right-handed
neutrinos that would act as a messenger to give mass to the active neutrinos. In
this model, all the neutrinos are Majorana particles; therefore, this mechanism not
only answers about how the neutrino acquires mass but also what the nature of
neutrinos is.

Adding more neutrinos to the theory will be reflected in the dimension of the
neutrino mixing matrix, and these new neutrinos also have effects in the active
sector of the neutrino mixing matrix. Therefore, the oscillation probability of the
active neutrino is changed, and the observation of anomalies in the neutrino num-
ber of events could confirm these new particles. Of particular interest is the effect
due to non-unitary; as mentioned above, we would detect this effect in the neutrino
events independently of the model, making such signatures in neutrino experiments
a very appealing subject. The relation of specific seesaw models with the model-
independent non-unitary parameters would be equally interesting. In this work, we
will test the non-unitary effects in different schemes. We will use several observ-
ables that would be useful to constrain the non-unitary parameters. Examples of
this are the analysis of the neutrino events in the future FASERν detector that we
will discuss in this work or the study of a theoretical model as the low-scale seesaw
combined with the charged lepton flavor violation limits to restrict the non-unitary
parameter space. In the literature, we can see other works in a similar direction [10–
18].

The manuscript’s structure is as follows: In chapter 2, we will talk about the SM
particle content and the interaction that we will be interested in. Then, we will com-
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pute the oscillation probability and describe the model-independent parametrization
of the neutrino mixing matrix in chapter 3. In chapter 4, we study the seesaw type I
mechanism and how it works using the model-independent parametrization. At the
end of the chapter, we will find a match between the two parametrizations. Using
the FASERν and FASERν2 data, we perform a χ2 analysis to study the sensitivity
to the non-unitary parameters in the model-independent parameterization in the
chapter 5. In chapter 6, we use the linear seesaw to compute the branching ratio of
ℓi → ℓjγ and use the current and future limits to restrict the non-unitary parameters
and find the expected future sensitivity. We also use the matching between different
parametrizations to translate these limits to the model-independent parametriza-
tion. Afterward, we use the limits of the processes and the limits of the non-unitary
parameters that came from oscillation experiments to do a combined analysis for
the seesaw type I in chapter 7. Finally, in chapter 8, we present a summary and the
conclusions of the work.
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Chapter 2

The Standard Model Particle
Content, its Interactions, and
Lagrangian

The Standard Model (SM) is a gauge theory with a symmetry group of SU(3)c ⊗
SU(2)L⊗U(1)Y , where the index c is for color, L is for left-handed chirality, and Y
is the hypercharge. The SM is described by two quantum field theories: Quantum
Chromodynamics (QCD), which governs the strong interaction, and the Electroweak
(EW) theory, which unifies the weak interaction with the Quantum Electrodynamics
(QED). The group’s generators correspond to the gauge boson fields, which mediate
the forces between particles. For the SM, we have 12 bosons that govern the dy-
namics of the different Quantum field theories (QFT). QCD is in charge of processes
such as hadronization. In this case, the conserved charge is the color; we have eight
bosons called gluons in this gauge theory. In the case of the electroweak (EW) the-
ory, there are four generators before spontaneous symmetry breaking, corresponding
to the gauge fields (Aiµ) (associated with the SU(2)L group) and (Bµ) (associated
with the U(1)Y group). After spontaneous symmetry breaking, these gauge fields
mix to form the well-known physical bosons: (W±), (Z0), and the photon (γ). The
W± bosons mediate charged weak interactions, the Z0 boson mediates neutral weak
interactions, and the photon mediates electromagnetic interactions. The following
section will introduce the 12 fundamental fermions that interact in the SM.

2.1 Standard Model Particle Content

The SM particle content consists of the bosons, which carry the different forces, and
the fermions that are coupled to the bosons. The bosons fulfill the Bose-Einstein
statistics. In other words, these particles could be in the same quantum state as
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other bosons. On the other hand, the fermions follow the Fermi-Dirac statistics and
cannot be in the same quantum state; this is called the Pauli exclusion principle.
The fermions are grouped into two categories: quarks and leptons; for each case, the
particle’s spin is 1

2
. In the leptonic sector, we have the electrons (e), muons (µ), taus

(τ), and their respective neutrinos for each family (νe,νµ,ντ ). In the SM, neutrinos
are electrically neutral particles, and the other leptons have the fundamental electric
charge. We can see the physical properties of the leptons in Table 2.1. The neutrinos
only interact in the weak processes and, for this reason, only couple withW± and Z0

bosons. The charged leptons participate in the weak and electromagnetic processes,
so they can also couple with the γ.

Leptons
Particles Q mass [GeV] IW3

First family
Electron (e) -1 0.511 x 103 −1

2

Electron neutrino (νe) 0 <10−9 +1
2

Second family
Muon (µ) -1 105.658x10−3 −1

2

Muon neutrino (νµ) 0 <10−9 +1
2

Third family
Tau (τ) -1 1.777 −1

2

Tau neutrino (ντ ) 0 <10−9 +1
2

Table 2.1: The physical properties and quantum numbers of the Standard Model
lepton sector. Here, Q is the electric charge, and IW3 is the third component of weak
isospin. All the information is extracted from the particle data group (PDG) [19].

On the other hand, quarks are also particles with spin 1
2
and are charged particles

with a fraction of the fundamental charge. In the SM, we have six quarks: up
(u), down (d), charm (c), strange (s), top (t), and bottom (b). We can see its
physical properties in Table 2.2 which has more details. The quarks have a color
charge and, for this reason, interact with the gluons. The quarks also participate
in the electroweak interaction. However, we can not see free quarks due to the
color confinement. Confinement restricts us to observing only color-singlet states
in nature. Combinations of quarks make these states, and the particles composed
of quarks are known as hadrons. Hadrons are further classified into two categories:
mesons, which consist of a quark-antiquark pair, and baryons, which consist of three
quarks. Finally, the last ingredient of SM is the Higgs boson. This boson gives mass,
through the Higgs mechanism, to the W± and Z0 bosons and also provides mass to
the charge fermion particles. A typical representation of the SM appears in Fig. 2.1

12
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Quarks
Particles Q mass [GeV] IW3

First family
Up (u) +2

3
2.2 x 10−3 +1

2

Down (d) −1
3

4.7× 10−3 −1
2

Second family
Muon Charm(c) +2

3
1.27 +1

2

Strange (s) −1
3

96× 10−3 −1
2

Third family
Top (t) +2

3
173.21 +1

2

Bottom (b) −1
3

4.18 −1
2

Table 2.2: The physical properties and quantum numbers of the Standard Model
quark sector, where Q is the electric charge and IW3 is the third component of weak
isospin. All the information is extracted from the particle data group (PDG) [19].

2.2 The Dirac Equation

The fermions in the SM have spin 1
2
. The equation of motion that describes this

kind of particle is the Dirac Equation. We can write it as [1, 20, 21]:

(iℏγµ∂u −mc)ψ = 0, (2.1)

or in natural units

(iγµ∂u −m)ψ = 0. (2.2)

This equation of motion comes out from the Lagrangian density [20]

LDirac = ψ̄(iγµ∂u −m)ψ (2.3)

where

ψ̄ ≡ γ0ψ†. (2.4)

It is important to remark that the ψ is a spinor with four components; the first two
describe the particle, while the other two the antiparticle (in Dirac representation),
and the γ represents the four gamma matrices, which are:

γ0 =

(
02×2 12×2

12×2 02×2

)
, (2.5)

γi =

(
0 σi

−σi 0

)
, (2.6)
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Figure 2.1: The periodic table of the SM with the fundamental particles .

where σi are the Pauli matrices. Also, it will be useful to define the following γ
matrix:

γ5 = iγ0γ1γ2γ3 =


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , (2.7)

and in general, these matrices fulfill the following anticommutation relation:

{γµ, γν} = 2ηµνI4×4, (2.8)

where I4×4 is the identity in four dimensions. This representation of the γ matrices
is called the Weyl o Chiral representation. In this case, the spinor represents the
two possible chiralities

ψ =

(
ψL
ψR

)
. (2.9)

This will be useful in the electro-weak interaction because SU(2) only interacts with
left-handed particles. In this context, the γ5 is called the chirality matrix. Since it is
Hermitian, the chirality is observable and it has two eigenvalues ±1. The eigenstates
are the ψL and ψR

γ5ψR =+ ψR (2.10)

γ5ψL =− ψL (2.11)
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we can project a generic spinor field into its chiral components as:

ψR =
1 + γ5

2
ψ (2.12)

ψL =
1− γ5

2
ψ. (2.13)

It is useful to define the projection operators:

PR ≡1 + γ5

2
, (2.14)

PL =
1− γ5

2
. (2.15)

These operators fulfill the general condition of the projector:

(PR)
2 =PR, (2.16)

(PL)
2 =PL, (2.17)

and also

PL + PR = 1. (2.18)

As a consequence, we can write every spinor as:

ψ = ψR + ψL. (2.19)

Using Eqs. (2.3) and (2.19), we get the Dirac equation for each chirality

iγµ∂µψR = mψL, (2.20)

iγµ∂µψL = mψR. (2.21)

It is important to understand that this expression for the Dirac Equation only
describes the dynamics of a free fermion. When we add an interaction term, it is
better to consider the covariance of the Lagrangian density.

2.3 Introducing the Interactions in the Lagrangian

It is easy to notice that the Eq. (2.3) is invariant under a global phase, however,
when the phase is dependent on the space-time coordinate (local symmetry) the
Dirac equation is no longer invariant. To illustrate this, we describe the spinor
transformation as

ψ′(xµ) = exp(−ieQθ(xµ))ψ(xµ), (2.22)
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and the derivative of the spinor is:

∂µψ
′(x) = exp(−ieQθ(x))[∂µψ(x)− ieQ(∂µθ)ψ(x)]. (2.23)

Now, we compute the difference between the original Lagrangian

L ′
0 − L0 = eQ(∂µθ)ψ̄(x)γ

µψ(x). (2.24)

If we want the Lagrangian to be invariant, we need to change the derivative to the
so-called covariant derivative:

L = ψ̄(iγµDu −m)ψ, (2.25)

where
Dµ = ∂µ + ieQAµ. (2.26)

We impose that the Aµ transforms non-trivially under the transformation given in
the Eq. (2.22).

A′
µ = Aµ + ∂µθ, (2.27)

the invariance at the Lagrangian level can be seen as

L ′ − eQψ̄′(x)γµψ′(x)A′
µ = L − eQψ̄(x)γµψ(x)Aµ. (2.28)

We recognize Aµ as the photon field. In our desire to make the Lagrangian invariant
under Eq.(2.22) (U(1) symmetry), we naturally added the photon into the fermions
Lagrangian. Adding the electrodynamics Lagrangian, we have:

L = ψ̄(iγµDu −m)ψ − 1

4
FµνF

µν − 1

2ξ
(∂µA

µ)2. (2.29)

This is the QED Lagrangian of the SM. This Lagrangian contains the interaction
between the photons and fermions. The interaction term in the Lagrangian is:

Lint = −eQψ̄γµψAµ. (2.30)

This term tells us that fermion and antifermion can couple to a photon.

2.4 The Electro-Weak Interaction

In the previous section, we explained the methodology to make the Lagrangian
invariant under certain symmetry. Consequently, we can naturally introduce the
interaction term through the covariant derivative. However, the previous case was
relatively easy because the U(1) symmetry is abelian. Our purpose is to study the
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neutrino interaction, and for the sake of this, we need to describe the electro-weak
interaction, which symmetry is SU(2)L × U(1)Y .

Let’s describe first the SU(2) symmetry, this symmetry has 3 generators that
follow the angular momentum algebra:

[Ia, Ib] = iϵabcIc. (2.31)

The U(1)Y symmetry, also called hypercharge symmetry, is related to the charge
operator and the third component of the weak isospin by the Gell-Mann-Nishijima
equation:

Q = I3 +
Y

2
(2.32)

This relation already implies the unification between the weak and electromagnetic
interactions. As in the last section, to have an invariant Lagrangian, we need to in-
troduce three fields related to the SU(2) and one related to the U(1) in the covariant
derivative

Dµ = ∂µ + igW⃗µ · I⃗ + ig′Bµ
Y

2
. (2.33)

Where W µ and Ii =
τi
2
have three components. The electroweak Lagrangian takes

the form [21]:

L =iL̄Lγ
µDµLL + iQ̄Lγ

µDµQL +
∑

f=e,u,d

if̄Rγ
µDµfR

− 1

4
WµνW

µν − 1

4
BµνB

µν

+ (Dµϕ)
†(Dµϕ)− µ2ϕ†ϕ− λ(ϕ†ϕ)2

− ye(L̄LϕeR + ēRϕ
†LL)

− yd(Q̄LϕdR + d̄Rϕ
†QL)− yu(Q̄Lϕ̃uR + ūRϕ̃

†QL), (2.34)

where ϕ is the Higgs doublet, Q is the quarks doublets, and L is the lepton doublets.

This Lagrangian is invariant under the following transformations

LL → L′
L = U l

L(θ(x), η(x))LL, (2.35)

QL → Q′
L = U q

L(θ(x), η(x))QL, (2.36)

where

U l
L(θ(x), η(x)) =e

i
2
θ(x)·τ− i

2
η(x) (2.37)

U q
L(θ(x), η(x)) =e

i
2
θ(x)·τ+ i

6
η(x) (2.38)

U l and U q ϵ SU(2)L × U(1)Y . (2.39)
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Also, the bosons have transformations under these symmetries. For example, B only
transforms with the η function and the W i

µ with the θ functions. As we can notice,
in the Lagrangian we do not have mass terms proportional to ff̄ = fRf̄L + fLf̄R
because the gauge symmetry prohibits such a term. The fermions acquire mass due
to the Higgs mechanism. For our purpose, we only focus on the neutrino interaction
with the gauge bosons. We obtain the interaction term in the Lagrangian expanding
the covariant derivate.

LI = −1

2
L̄L(gγ

µ
∑
i

W i
µτ

i − g′γµBµ)LL + g′ēRγ
µBµeR, (2.40)

where g and g′ are the coupling constants of SU(2)L and U(1)Y respectivetly. We
want to know what the coupling between neutrinos and bosons is. To simplify the
explanation, we will focus on the electron family; however, the generalization to all
families is straightforward

LI,L =− 1

2

(
¯νeL ēL

)(gγµW 3
µ − g′γµBµ gγµ(W 1

µ − iW 2
µ)

gγµ(W 1
µ + iW 2

µ) −gγµW 3
µ − g′γµBµ

)(
νeL
eL

)
+ g′ēRγ

µBeR. (2.41)

It is convenient to separate the charged (off-diagonal) and neutral (diagonal) terms.
The charged part is called the Charged Current (CC) Lagrangian

L CC
I,L = −g

2
(ν̄eLgγ

µ(W 1
µ − iW 2

µ)eL + ēLgγ
µ(W 1

µ + iW 2
µ)νeL). (2.42)

On the other hand, the Neutral Current (NC) Lagrangian is

L NC
I,L = −1

2
(ν̄eLγ

µ(gW 3
µ − g′Bµ)eL− ēLgγ

µ(gW 3
µ + g′Bµ)νeL − 2g′ēRγBγeR). (2.43)

We define a field W±
µ that annihilates and creates W+ and W− bosons:

W±
µ ≡ W 1

µ ∓ iW 2
µ√

2
. (2.44)

The Lagrangian in terms of the W±
µ field is

L CC
I,L = − g√

2
(ν̄eLγ

µW+
µ eL + ēLγ

µW−
µ νeL). (2.45)

Using Eq. (2.15) and their properties, we can write the Lagrangian as

L CC
I,L = − g

2
√
2
ν̄eγ

µ(1− γ5)eW+
µ +H.c. (2.46)
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We can do the same for the NC Lagrangian with the next transformation(
Zµ

Aµ

)
=

(
cos θw − sin θw
sin θw cos θw

)(
W µ

3

Bµ

)
, (2.47)

where Aµ is the photon field and Zµ is the Z0 field and θW is the weak mixing angle
[3]. The NC Lagrangian becomes

L NC
I,L =− 1

2
(ν̄eL [(g cos θw + g′ sin θw)γ

µZµ + (g sin θw − g′ cos θw)γ
µAµ]νeL

− ēL[(g cos θw − g′ sin θw)γ
µZµ + (g sin θw + g′ cos θw)γ

µAµ]eL

− 2g′ēR[− sin θwγ
µZµ + cos θwγ

µAµ]eR). (2.48)

As we know, the neutrinos do not have a coupling with the photon, so the second
term in the first row of the Eq. (2.48) is zero. This leads us to the next equivalence

g sin θw = g′ cos θw (2.49)

tan θw =
g′

g
. (2.50)

This expression relates the coupling constant with the weak mixing angle. We can
rewrite the NC Lagrangian as follows

L NC
I,L =

g

cos θw
[ν̄eLγ

µZµνeL − (1− 2 sin2 θw)ēLγ
µZµeL + 2 sin2 θwēRγ

µZµeR

+ g sin θwēγ
µAµe], (2.51)

being the last term the electromagnetic one, so that coefficient should be equal to
the QED coupling

g sin θW = e. (2.52)

Using Eq. (2.52) and (2.49), we get

e =
gg′√
g2 + g′2

(2.53)

Now we have a relation between all of the coupling constants of the theory. It
is important to remark that we use only one family (e and νe) to exemplify the
Lagrangian for NC and CC, it is straightforward to generalize the result to all the
lepton families. Also, as we see in Eq.(2.34) there exists a CC and NC Lagrangian
for the quarks.
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2.5 Majorana Neutrinos

Massing the neutrino opens the question of what kind of particle it is. The most
straightforward way to explain the neutrino mass is that the SM Higgs gives its
mass (Dirac nature); however, there are other options. The seesaw mechanism in
the minimal model uses right-handed neutrinos to provide mass to the active ones.
In this model, all the neutrinos are Majorana particles. But what is a Majorana
particle? In simple words, a Majorana particle is its antiparticle. In this sense, we
remember the Eqs. (2.21) and (2.20). If the particle is massless, these equations are
decoupled, and we only need one chirality to describe the whole spinor. In other
words, the particle and the antiparticle have the same motion equation. This is
the case of the massless neutrino in the SM. However, we want to analyze the case
when the neutrino has mass. In this case, we need to consider that one of the chiral
components depends on the other to have the same degrees of freedom as in the
case of a massless particle. Consequently, the two chiral parts of the Dirac equation
(Eqs. (2.20) and (2.21)) must describe the same thing in two ways. We are going to
use the Eq. (2.21) and conjugate it

(iγµ∂µψL)
† = (mψR)

†, (2.54)

we define ψ̄ = γ0ψ† and we will use the γ0γµ
†
γ0 = γµ, γ0

2
= I properties to rewrite

the equation

−i∂µψ̄Rγµ = mψ̄L. (2.55)

Now, to have the same structure as in Eq. (2.20) we need to transpose the equation
above and then multiply on the left with the charge conjugation operator C. In the
QFT language, the C operator transforms a particle into an antiparticle and has
the property that Cγµ

T
C− = −γµ. Now, the motion equation becomes

iγµ∂µCψ̄
T
R = mCψ̄TL . (2.56)

The condition for Eq. (2.56) to describe the same motion equation that Eq. (2.20)
is

ψR = Cψ̄TL . (2.57)

The main goal of the Majorana description is to use only one chirality to describe
the whole spinor, we can write the equation of motion in terms only the ψL

iγµ∂µψL = mCψ̄TL . (2.58)

Now we can describe the full spinor as

ψ = ψL + ψR = ψL +mCψ̄TL = ψL + ψCL . (2.59)
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As a consequence, a Majorana field can be written as

ψ = ψC . (2.60)

In this way, it is easier to see that a Majorana particle equals the antiparticle.

2.6 Neutrino Mixing, its Components and De-

grees of Freedom

As for the quarks, the flavor neutrino is composed of a massive neutrino state su-
perposition, giving rise to the neutrino oscillation. We will discuss the oscillation
probability computation in the next chapter. In this chapter, we want to introduce
the matrix that matches the flavor and mass basis

U =

1 0 0
0 c23 s23
0 −s23 c23

 c13 0 s13e
−iδCP

0 1 0
s13e

−iδCP 0 c13

 c12 s12 0
−s12 c12 0
0 0 1

 , (2.61)

where cij ≡ cos θij, θij are the mixing angles that are measured by all the sources
(Solar, Atmospheric, Terrestrial), and the δCP is the CP violation phase. This matrix
is valid when the neutrinos have a Dirac nature. If the neutrinos are Majorana
particles, we need to multiply Eq. (2.61) by the matrix

P =

1 0 0
0 eiη1 0
0 0 eiη2

 (2.62)

2.6.1 Counting of Degrees of Freedom for Dirac Neutrinos

In the case of three neutrino flavors and massive states, the neutrino mixing matrix
has dimension N = 3 and in general 2 × N2 degrees of freedom. However the
neutrino mixing matrix is a unitary one, so we have N2 constraints and therefore
the degrees of freedom down to N2. For the unitary matrix, we have mixings and
phases to describe the matrix as degrees of freedom:

N(N − 1)

2
mixings, (2.63)

N(N + 1)

2
phases. (2.64)

However, for the Dirac neutrinos case, we can reabsorb five phases in the fields of
neutrinos and the charged leptons. This reabsorption of the phases is easy to see at

21



Chapter 2

the charged current level, for this reason, we write the full weak charged current

j = 2
∑

α,β=e,µ,τ

ν̄αγ
µV lβ, (2.65)

where
V = U ν†ΩL, (2.66)

Uν is the neutrino mixing and ΩL is the lepton charged mixing matrix, commonly
diagonal. As we know the CC Lagrangian is invariant under a global U(1), we can
transform the fields as:

να → eiψνανα, lα → eiψlα lα. (2.67)

We can write the charged current as:

jµ = 2
∑

α,β=e,µ,τ

ν̄αe
−iψναγµV eiψlα lβ, (2.68)

and factorize out the muon phase from the V matrix:

jµ = 2e−i(ψνµ−ψlµ )
∑

α,β=e,µ,τ

ν̄αe
−i(ψνα−ψνµ )γµV ei(ψlα−ψlµ )lβ. (2.69)

From this expression, we can count the number of independent phases that we can
eliminate from the mixing matrix. Besides, the phase that we have factorized out,
there are other four phases in this expression, two for the subindex e ((N-1) phases if
N = 3) and the other two for the τ subindex. All these five phases can be absorbed
and we will have, for N = 3

1 + (N − 1) + (N − 1) = 2N − 1 = 5, (2.70)

now, we subtract this number of degrees from our total number of parameters, N2

and we get the physical degrees of freedom for this case:

N2 − (2N − 1) = 4. (2.71)

For that reason, the neutrino mixing has only 3 mixings and one phase. This
procedure can be extended for the case of more neutrino families.

2.6.2 Counting of Degrees of Freedom for Majorana Neu-
trinos

For the Majorana case, the counting of degrees of freedom is slightly different since
the mass term does not conserve the leptonic number, in other words, the Majorana
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neutrino Lagrangian is not invariant under the global U(1) and we cannot reabsorb
2N − 1 phases. We can describe the Majorana mass term as:

LM
mass =

1

2
ν̄CLνL +H.c.

=− 1

2
m(νTLC

†νL + v†LCv
∗
L) (2.72)

We know that the Majorana particles are the same as the antiparticle, as a conse-
quence the mass term does not conserve the Lepton number and for that reason, we
can write the Right-handed spinor in terms of the Left-handed one. Another way
to observe this statement is that we can not absorb the same number of phases in
this case. We can use the following transformation to exemplify:

νL → eiϕνL, (2.73)

Then, the Lagrangian takes the form

LM
mass = −1

2
m(e2iϕνTLC

†νL + e−2iϕv†LCv
∗
L), (2.74)

as we can see, we can not factorize the phase; consequently, it is not invariant under
U(1). The mass term does not allow us to absorb phases in the left-handed neutrino
spinors, so we can only absorb phases using the charged Lepton spinors and the total
degrees of freedom in the Majorana neutrino case is N2−3 = 6. From these 6 degrees
of freedom, 3 are mixing and 3 are phases. In the next chapter, we will describe the
degrees of freedom when we add more Majorana neutrinos to the formalism using
the symmetric parametrization.
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The Neutrino Mixing Matrix
Parametrizations in the Standard
Model and Beyond

In the late 1950s, Pontecorvo made the first attempt to describe neutrino oscillations,
postulating an oscillation between the neutrino and the antineutrino, inspired by the
analogy with Kaon oscillations. This idea was a natural hypothesis at the time, as
only the electron neutrino flavor had been experimentally observed. Later, in the
late 1960s, with the Homestake experiment by Raymond Davis, the first evidence for
a deficiency in the solar neutrino flux made the neutrino oscillation hypothesis gain
more importance and relevance. Still, it was not until the Super Kamiokande and the
SNO experiments that the neutrino oscillation was confirmed. In this chapter, we
want to describe the neutrino mixing matrix and the neutrino oscillation formalism
in different parametrizations.

3.1 The PMNS Standard Parametrization

The most common way to describe the mixing neutrino matrix is the Particle Data
Group (PDG) parametrization

U = R23(θ23; 0)R13(θ13; δ)R12(θ12; 0)P, (3.1)

where R is a rotation matrix with their corresponding mixing angle and, in the case
of R13, with a CP violation phase as follows

R13(θ13; δ) =

 cos θ13 0 sin θ13e
−iδ

0 1 0
− sin θ13e

iδ 0 cos θ13

 . (3.2)
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P is a diagonal matrix with two Majorana phases and is needed if neutrinos have a
Majorana nature

P = diag(1, eiα, eiβ). (3.3)

The full mixing matrix takes the form:

U =

 c12c13e
iα s12c13e

iβ s13e
−iδ

−(s12c23 + c12s23s13e
iδCP )eiα (c12c23 − s12s23s13e

1δCP )eiβ s23c13
(s12s23 − c12c23s13e

iδCP )eiα −(c12s23 + s12c23s13e
iδCP )eiβ c23s13

P.

(3.4)
Many Beyond Standard Model (BSM) theories are interested in adding more neu-
trinos to the mixing matrix, like the seesaw mechanism, so we need to extend the
dimensions of the matrix and add more massive neutrino states. We will discuss
this case in the next section.

3.1.1 Oscillation Probability

The oscillation probability is a pure quantum effect of the neutrinos. In other words,
only for time evolution, a neutrino state with a flavor α could become a neutrino
with flavor β. We can describe a flavor state as a superposition of neutrino massive
states

|να⟩ =
∑
i

U∗
αi|νi⟩, (3.5)

where U is the leptonic mixing matrix. From now on the Greek letter represents the
flavor index and the Latin letter the massive index. We consider that the massive
neutrino states are orthonormal:

⟨νk|νi⟩ = δki. (3.6)

The fact that the mixing matrix is unitary suggests that the flavor states are or-
thonormal

⟨να|νβ⟩ = δαβ. (3.7)

The massive states obey the Schrödinger equation and, for that reason, their evolu-
tion is described by

|νi(t)⟩ = e−iEkt|νi⟩. (3.8)

We can substitute equation (3.8) into equation (3.5):

|να⟩ =
∑
i

U∗
αie

−iEit|νi⟩, (3.9)

the U matrix has a unitary property∑
α

U∗
αkUαi = δki. (3.10)

25



Chapter 3

Therefore, we can describe the massive states in terms of flavor states. Using this
idea, we describe the flavor states as:

|να(t)⟩ =
∑

β=e,µ,τ

∑
k

U∗
αke

−iEktUβk|νβ⟩, (3.11)

then we can compute the amplitude

⟨νβ|να(t)⟩ =
∑
i

U∗
αie

−iEitUβi. (3.12)

Therefore, we can write the oscillation probability as

Pνα−→νβ = |⟨νβ|να(t)⟩|2 =
∑
ki

U∗
αkUβkUαiU

∗
βie

−i(Ek−Ei)t. (3.13)

Using the energy dispersion

Ek =
√

|p⃗|2 +m2
k, (3.14)

and the ultra-relativistic approximation for neutrinos, we can approximate the dis-
persion relation as:

Ek ≈ E +
m2
k

2E
, (3.15)

where we have taken advantage of that, in the ultra-relativistic case, the dispersion
relation is E = |p⃗| and we can equal the momentum with the energy. For that
reason, we can obtain the next equation

Ek − Ei ≈
∆m2

ki

2E
=
m2
k −m2

i

2E
. (3.16)

We can substitute Eq. (3.16) into the probability expression to get

Pνα−→νβ =
∑
ki

U∗
αkUβkUαiU

∗
βie

−i∆m2
ki

2E
t. (3.17)

As mentioned above, we are working in the ultra-relativistic regime, where it is
reasonable to approximate time and distance, t ≈ L. We did this approximation
because we have more control over the distance between the detector and the source
than the propagation time in the experiment

Pνα−→νβ =
∑
ki

U∗
αkUβkUαiU

∗
βie

−i∆m2
kiL

2E . (3.18)
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Another way to write the oscillation probability is:

Pνα−→νβ(L,E) = δαβ − 4

[∑
k>i

Re(U∗
αkUβkUαiU

∗
βi)

]
sin2

(
∆m2

kiL

4E

)

+ 2

[∑
k>i

Im(U∗
αkUβkUαiU

∗
βi)

]
sin

(
∆m2

kiL

2E

)
. (3.19)

Notice that we have computed this oscillation probability in the standard three flavor
paradigm. In this case, the PDG parametrization is very useful for the description of
the leptonic mixing matrix. However, for BSM theories, where we usually add several
massive neutrino states, it is more convenient to use a different parametrization, as
we will see in the next section.

3.2 The Symmetric Parametrization and the Non-

Unitary Effects

As we have seen above, we can describe the neutrino oscillation using the PMNS
matrix parametrization. However, it is not the only way to describe the leptonic
mixing matrix. We want to use the symmetric parametrization that seems more
intuitive as we will understand it later in the chapter. The main difference between
the PMNS and the symmetric parametrization is that in the last case, each mixing
has a Majorana phase. We can write the leptonic mixing matrix in the symmetric
parametrization as follows [22]

K = ω23(θ23;ϕ23)ω13(θ13;ϕ13)ω12(θ12;ϕ12), (3.20)

the ω matrix has the next form:

ω13 =

 cos θ13 0 sin θ13e
−iϕ13

0 1 0
− sin θ13e

iϕ13 0 cos θ13

 , (3.21)

where θ is the mixing angle and ϕ is the Majorana phase. We recover the CP
violation phase as a linear combination of the three Majorana phases. Therefore, in
this parametrization, it is easier to understand that the CP violation is related to
the three families. Another advantage of this parametrization is that the effective
Majorana mass in neutrinoless double beta decay is described only by Majorana
phases. We are interested in extending this parametrization to an arbitrary number
of neutral heavy leptons (NHL), the new mixing matrix takes the form

Un×n = ωn−1,n × ωn−2,n × · · ·ω1,n × · · ·ω23ω13ω12. (3.22)
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This matrix describes the unitary matrix that changes the basis between the
flavor and the mass basis. It is common to describe this matrix as:

Un×n =

(
N3×3 S3×m
Vm×3 Tm×m

)
, (3.23)

where N describes the mixing in the light sector, n=m+3, and m is the total number
of extra NHL. This matrix is not the PMNS due to the extra neutrino massive states.

We can factorize these new effects which are called non-unitary effects as [15]

N = NNPU =

α11 0 0
α21 α22 0
α31 α32 α33

U. (3.24)

It is also important to remember, that this is not the only way to describe the
non-unitary effects. Besides, it is also important to notice that the NHLs do not
oscillate with the light neutrinos due to their heavy masses, but their effects are
present in the α parameters. The α parameters depend on the mixing and the
Majorana phases as follows:

α11 =c1nc1n−1c1n−2 · · · c14
α22 =c2nc2n−1c2n−2 · · · c24 (3.25)

α33 =c3nc3n−1c3n−2 · · · c34
α21 =c2nc2n−1 · · · c25η24η̄14 + c2n · · · c26η25η̄15c14 + · · ·+ η2nη̄1nc1n−1c1n−2 · · · c14
α32 =c3nc3n−1 · · · c35η34η̄24 + c3n · · · c36η35η̄35c24 + · · ·+ η3nη̄2nc2n−1c2n−2 · · · c24
α31 =c3nc3n−1 · · · c35η34η̄14c24 + c3n · · · c36η35c25η̄15c14 + · · ·

+ η3nc2nη̄1nc1n−1c1n−2 · · · c14.

Where cij = cos θij and ηij = e−iϕij sin θij.

It is important to note that while the light sector of the neutrino mixing matrix,
N , is no longer unitary, the full mixing matrix, U , remains unitary.

It will be useful to define the next rectangular matrix

K =
(
N S

)
. (3.26)

This matrix is the one that characterizes the charge current Lagrangian and we will
explain it better when we talk about the non-unitary effects in the seesaw models.
This matrix needs to fulfill a unitary condition

KK† = NN † + SS† = I. (3.27)

We can demonstrate that the light sector of the neutrino mixing matrix is no longer
unitary by computing
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NN † =NNPUU †NNP †

=

 α2
11 α11α

∗
21 α11α

∗
31

α11α21 α2
22 + |α21|2 α22α

∗
32 + α21α

∗
31

α11α31 α22α32 + α31α
∗
21 α2

33 + |α31|2 + |α32|2

 . (3.28)

This modification of the mixing matrix has an impact on the oscillation proba-
bility.

We can follow the same procedure as the standard neutrino oscillation case and
we can obtain the following probability

Pαβ =
3∑
i,j

N∗
αiNβiNαjN

∗
βj − 4

3∑
j>i

Re
[
N∗
αjNβjNαiN

∗
βi

]
sin2

(
∆m2

ijL

4Eν

)
(3.29)

+ 2
3∑
j>i

Im
[
N∗
αjNβjNαiN

∗
βi

]
sin

(
∆m2

ijL

2Eν

)
.

The oscillation experiments could prove this discrepancy in the oscillation proba-
bility between the standard description and models with NHLs. The short-baseline
experiments give us a perfect scenario to find constraints to the α parameters due
to the zero-distance approximation. This approximation is allowed when the beam
energy is bigger than the distance between the source and the detector. In this case,
we can approximate L ≈ 0 and then, the oscillation probability will be

Pαβ =
3∑
i,j

N∗
αiNβiNαjN

∗
βj. (3.30)

As usual, the Greek letters refer to lepton-flavor and the Latin ones denote the
mass state. In this approximation, the oscillation probability only depends on the
α parameters, this is easier to see using the next equivalence:

Nαβ =
∑
κ

NNP
ακ Uκβ. (3.31)

Then, the oscillation probabilities are [15, 17, 23]:

Pµe = α2
11|α21|2,

Peτ = α2
11|α31|2, (3.32)

Pµτ ≈ α2
22|α32|2,

Pee = α4
11,

Pµµ = (|α21|2 + α2
22)

2,

Pττ = (|α31|2 + α2
32 + α2

33)
2.
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The zero-distance approximation will be useful in analyzing the FASERν and FASERν2
experiments.

3.2.1 The Degrees of Freedom of a Mixing Matrix with an
Arbitrary Number of Majorana Neutrinos

We know that the whole neutrino mixing matrix must be unitary. A unitary matrix
with dimension N has N2 degrees of freedom. By looking again at Eq. (3.22), we
notice that the matrix has N(N-1) parameters and we may think of the existence
of a mistake in the formalism. However, this could be explained if we consider the
neutrino mixing’s physical parameters. We know that the NHL does not take part in
the weak interaction and, for that reason, many parameters are not physical. That
is the reason why we focus on counting the degrees of freedom of the rectangular
matrix K, since this matrix is the one that appears in the CC Lagrangian.

Here, we are going to count the degrees of freedom for an arbitrary number
of Majorana neutrinos, this computation was done in several works [21, 24]. The
CC Lagrangian has NA = 3 active neutrinos and an arbitrary number of massive
neutrino states N = NA+NS, where NS is the number of extra NHL. A rectangular
matrix with these dimensions has 2 × NA × N parameters, but as we know (from
Eq. (3.27)) the K matrix has the property that KK† = I3x3, then we have N2

A

restrictions and the degrees of freedom that remains physical are NA(2×N−NA) =
NA(2 × NS + NA). Moreover, we know that in the case of Majorana neutrinos we
can absorb 3 phases, so we expect that the K matrix in any parametrization would
have NA(2×NS +NA − 1) degrees of freedom.

Besides the total number of degrees of freedom, we aim to determine the number
of mixing angles and phases. To do this, we will consider a unitary matrix of size
N × N , which has N2 degrees of freedom. This matrix will then be truncated to
a rectangular form, to identify the remaining degrees of freedom. We will use the
next N ×N neutrino mixing matrix to count the degrees of freedom

Un×n = D(ω){
N∏

a<b=1

W ab(θab, ηab)}, (3.33)

where D(ω)n×n = diag(eiω1 · · · eiωN ) and the term between keys is the Eq.(3.22). For
the D(ω) matrix, we have N degrees of freedom and the W ab matrix has N(N − 1).
The total degrees of freedom of Eq. (3.33) is N2, as we expect.

To determine how many and which parameters are degrees of freedom, we need
to truncate Eq.(3.33) to a rectangular matrix with the desired dimensions. For
instance, we will consider truncating to the NB row, where NB < N . The truncated
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matrix has the next form [21][24]:

UNB×N = D(ω)NB×NB

[
NB∏
a=1

N∏
b=1

W ab(θab, ηab)

]
NB×N

. (3.34)

We will focus on how many parameters have the W ab matrix. We count the
number of indices ab allowed by the W ab matrix. Using the product operator in Eq.
(3.34), we found the next indices:

12
13 23
...

...
. . .

1NB 2NB · · · (NB − 1)NB

1(NB + 1) 2(NB + 1) · · · (NB − 1)(NB + 1) NB(NB + 1)
...

... · · · ...
...

1N 2N · · · (NB − 1)N NBN

(3.35)

For each index, we have one mixing and one phase according to Eq. (3.21). We
observe a triangular structure in the (NB − 1)NB index. As a result, this part

contains NB(NB−1)
2

indices, while below this triangle, there are NB(N −NB) indices.
Then we have NB(NB − 1) + 2NB(N −NB) +NB degrees of freedom. The last NB

comes from the D(ω)NB×NB
matrix. For the special case that NB = NA, which is

the case that keeps our interest, we have NA(NA + 2 × NS) degrees of freedom, as
we said above. For this case, we have:

NA(NA − 1)

2
+NANS = 3 + 3NS mixings, (3.36)

NA(NA + 1)

2
+NANS = 6 + 3NS phases. (3.37)

As we already mentioned, we are in the Majorana neutrino case, so we can absorb
3 phases and the total amount of phases is 3 + NS. Those three phases come
from the D(ω) matrix, and all the physical parameters are in the W ab matrix.
We have 6 + 6NS = 6 × (N − 2) degrees of freedom, and as we remember in the
symmetric parametrization (Eq. (3.21)) we have N(N − 1), as a consequence in our
parametrization we have N(N − 1)− 6(N − 2) = NS(NS − 1) parameters that are
not observables. The parameters that are not observable are the mixing and the
phases between Neutral Heavy leptons, this could be seen in the indices of ab from
W ab matrix, if both indices are greater than 3, the parameters are not physical. For
example, mixing θ45 and the phase eϕ45 are not physical because it is the mixing
(and phase) between two sterile neutrinos and we cannot detect it. On the other
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hand, all the mixings and phases between the active and the sterile neutrinos are
physical and we can observe this in the counting of the indices in Eq. (3.35). The
sterile neutrinos could be indirectly detected through the active neutrinos as an
anomaly in the neutrino events. An important remark is that the α parameters are
described solely in terms of mixing and phases between active and sterile neutrinos.
This confirms that the non-unitary parameters are physical quantities.

3.2.2 The Triangle Inequality Condition on the α Parame-
ters

The diagonal α parameters are related to the off-diagonal ones, this happens due to
the KK† unitary property described in Eq.(3.27). In this subsection, we follow the
computation of the triangle inequality condition from [25]:

3∑
j

KαjK
∗
βj +

n∑
j=4

KαjK
∗
βj =

3∑
j

NαjN
∗
βj +

n−3∑
j=1

SαjS
∗
βj = δαβ, (3.38)

for the case α ̸= β we have the next equivalence:

|
3∑
j

NαjN
∗
βj|2 = |

n−3∑
j=1

SαjS
∗
βj|2. (3.39)

We can apply the Cauchy-Schwarz inequality to the right side of the equation above,
and then use the unitary condition with α = β to get:

|
3∑
j

NαjN
∗
βj|2 ≤

(
n−3∑
j=1

|Sαj|2
)(

n−3∑
j=1

|Sβj|2
)

=

(
1−

3∑
j

|Nαj|2
)(

1−
3∑
j

|Nβj|2
)
. (3.40)

We can rewrite this inequality as:

|(NN †)αβ|2 ≤ (1− (NN †)αα)(1− (NN †)ββ). (3.41)

We can compute explicitly the triangle inequality in terms of the α parameters using
equation (3.28). There are three triangle inequality conditions, we begin with the
α21:

|(NN †)eµ|2 ≤ (1− (NN †)ee)(1− (NN †)µµ)

α2
11|α21|2 ≤ (1− α2

11)(1− α2
22 − |α21|2)

−α2
11|α21|2 + |α21|2 + α2

11|α21|2 ≤ (1− α2
11)(1− α2

22)

|α21|2 ≤ (1− α2
11)(1− α2

22). (3.42)
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In the case of α31, we have:

|(NN †)eτ |2 ≤ (1− (NN †)ee)(1− (NN †)ττ )

α2
11|α31|2 ≤ (1− α2

11)(1− α2
33 − |α31|2 − |α32|2)

−α2
11|α31|2 + |α31|2 + α2

11|α31|2 ≤ (1− α2
11)(1− α2

33 − |α32|2)
|α31|2 ≤ (1− α2

11)(1− α2
33 − |α32|2). (3.43)

It is straightforward to know that (1− α2
11)(1− α2

33 − |α32|2) ≤ (1− α2
11)(1− α2

33),
then:

|α31|2 ≤ (1− α2
11)(1− α2

33). (3.44)

The last triangle inequality condition is to the α32

|(NN †)µτ |2 ≤ (1− (NN †)µµ)(1− (NN †)ττ ),

|α22α32 + α∗
21α31|2 ≤ (1− α2

22 − |α21|2)(1− α2
33 − |α31|2 − |α32|2). (3.45)

However, this case is different, we can not use the same procedure as the other two
inequalities. We will focus on the terms of the left side of Eq. (3.45) and using the
Cauchy-Schwarz inequality, we get:

|α22α32 + α∗
21α31|2 ≥ (α22|α32| − |α21||α31|)2. (3.46)

We can focus on two cases, the first one is when α22|α32| ≤ |α21||α31| we can use
their respective inequalities (Eq. (3.42) and (3.43)) to get:

α2
22|α32|2 ≤ (1− α2

11)
2(1− α2

22)(1− α2
33 − |α32|2)

α2
22|α32|2 ≤ (1− α2

22)(1− α2
33 − |α32|2)

|α32|2 − α2
22|α32|2 + α2

22|α32|2 ≤ (1− α2
22)(1− α2

33)

|α32|2 ≤ (1− α2
22)(1− α2

33). (3.47)

For the case α22|α32| ≤ |α21||α31| we have:

|α22α32 + α∗
21α31| ≥ α22|α32| − |α21||α31|. (3.48)

Using the equation (3.45) we get:

α22|α32| ≤ |α21||α31|
√
(1− α2

22 − |α21|2)(1− α2
33 − |α31|2 − |α32|2) (3.49)

After some manipulation, we get the same form as the other cases:

|α32| =
√
(1− α2

33)(1− α2
22). (3.50)

In general, we can write the triangle inequality condition as:

αij =
√
(1− α2

ii)(1− α2
jj). (3.51)

These inequality conditions tell us that the rectangular matrix is unitary. These
conditions will be important in our numerical analysis.
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µ−

νµ

νe

e−

W−

Figure 3.1: From this process comes the measurement of Gµ with the highest accu-
racy

3.2.3 The HNL and Electro-Weak Precision Measurements

The HNL affects the experimental observables that depend on the mixings. Our
interest in this subsection is focused on the Fermi constant, GF . This constant is
measured with the highest accuracy using the process in Fig. (3.1). However, in
the non-unitary case, each vertex of this process has a quadratic term of the mixing
matrix and the coupling constant of this process has the next form [12, 26, 27]:

Gµ = GF

√
(NN †)ee(NN †)µµ (3.52)

In terms of the α parameters, we obtain:

GF =
Gµ√

α2
11(α

2
22 + |α21|2)

(3.53)

It is important to remark that, in this scenario, GF contains HNL effects that are
valid for the particular case of the muon decay. It is for that reason that in other
processes we redefine the Fermi constant through the previous equation. Other
observables, like the CKM components [26], are also affected by the HNL, although
that is out of the scope of this work.
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3.2.4 Non-unitary Effects in Neutral Current Detection

In the case of the charge current detection, we know that the vertex of the W± is
coupled to a neutrino and their corresponding charged lepton. However, in the case
of the neutral current, we do not know the flavor of the final state of the neutrino. If
the neutrino is generated by a charged current process then we write the probability
as

Pα =
∑
β

Pαβ, (3.54)

where the sum is over all the flavor of the final neutrino, and the α index is for
the flavor of the initial neutrino. We want to compute the oscillation probability
in the zero-distance approximation, so we are going to neglect the evolution of the
states. A charge current process will create the initial neutrino and the detection
will be through a neutral current, as we can see in Fig (3.2). Then the probability

Figure 3.2: Feynman diagram of the creation and detection of the neutrino

amplitude in this process is

Aαj =

n,3∑
i,β

KαiK
∗
βiKβj. (3.55)

Therefore, the probability is

Pα =

n,n,n,3,3∑
i,l,j,β,β′

KαiK
∗
βiKβjK

∗
β′jKβ′lK

∗
αl. (3.56)

We remember that the matrix K has the property of Eq.(3.27), then we can use the
equation (3.38). We use this property in the probability:

Pα =
∑
i,l,β,β′

KαiK
∗
βiδββ′Kβ′lK

∗
αl =

∑
i,l,β

KαiK
∗
βiKβlK

∗
αl

=
∑
β

(
3∑
i,l

NαiN
∗
βiNβlN

∗
αl +

n∑
i,j>3

KαiK
∗
βiKβlK

∗
αl

)

=
∑
β

(
3∑
i,l

NαiN
∗
βiNβlN

∗
αl +

n−3∑
i,j=1

SαiS
∗
βiSβlS

∗
αl

)
. (3.57)
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We neglect the terms of the S for its smallness

Pα ≈
3∑

i,l,β

NαiN
∗
βiNβlN

∗
αl.

The probability remains the same structure as in the charged current detection case
(Eq. (3.30)), with the sum over all the possible final states. Although it is not
possible to determine the final flavor of a neutrino in neutral current interactions,
many studies have explored the effects of non-unitarity in this context [18, 28, 29].
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The Seesaw Mechanism Type I
and the Relation Between
Different Parametrizations

After the discovery of neutrino oscillations and the realization that neutrinos have
mass, several fundamental questions arose: What is the nature of the neutrino mass
(Majorana or Dirac)? How do neutrinos acquire their masses, and why are these
masses tiny? Various theories attempt to explain the suppression of neutrino masses
by invoking the exchange of heavy fields at the tree level, such as the right-handed
neutrinos in the seesaw type I [30–33], using scalar triplets as in the seesaw type
II [24, 33], or using fermion triplets as in seesaw type III [34]. In this chapter, we will
focus on seesaw type I because of its simplicity and rich phenomenological scheme,
which is due to the low-scale seesaw type I models as the inverse and lineal seesaw.

4.1 Overview of the Seesaw Type I

In this section, we will compute the masses using the block matrix diagonalization
method (BMDM) in the minimal seesaw type I, as well as in low-scale scenarios such
as the linear and inverse seesaw.

4.1.1 The Most Simple and General Seesaw Type I

First, we will talk about the minimal general seesaw type I. In this scheme, we
only add extra right-handed neutrinos in the SM to get tiny masses to the active
neutrino. In this theory, we have the following Lagrangian mass term [35, 36]

L = ν̂Li(MD)ijN̂Rj
+

1

2
N̂ c
Li(MR)ijN̂Rj

+ h.c., (4.1)
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where N c
R = CN

T
. We can describe this Lagrangian using a mass matrix

Mn×n =

(
03×3 MD3×m

MT
Dm×3

MRm×m

)
, (4.2)

where m = n+3, and n is the dimension of the mass matrix, the index m represents
the number of right-handed neutrinos in the theory. To obtain the mass matrix in
the physical basis, we need to change the basis by performing the following trans-
formations

UTMn×nU =Mdiag. (4.3)

We can consider the polar decomposition to describe the matrix, U , as [37]

U = exp(iH) · V, (4.4)

where

H =

(
0 S
S† 0

)
, V =

(
V1 0
0 V2

)
. (4.5)

The S matrix depends on a small parameter ϵ in which we expand in power series,
we get

Ũ =

(
(I− 1

2
SS†)3×3 iS3×m

iS†
m×3 (I− 1

2
S†S)m×m

)
V =

(
V13×3 0
0 V2m×m

)
, (4.6)

We can put equation (4.6) into (4.3) to get

iS∗ = −MDM
−1
R . (4.7)

With this relation, we can put the mixing matrix in terms of the mass

Ũn×n =

(
I3×3 − 1

2
(M∗

D(M
∗
R)

−1M−1
R MT

D)3×3 (M∗
D(M

∗
R)

−1)3×m,
(M−1

R MT
D)m×3 I3×3 − 1

2
(M−1

R MT
DM

∗
D(M

∗
R)

−1)m×m

)
.

(4.8)
Now, we can compute the masses in terms of the flavor basis using equation (4.8)
and (4.3), at leading order, we get

mdiag =− (V T
1 (MDM

−1
R MT

D)V1)3×3 (4.9)

Mdiag
N =(V T

2 MRV2)m×m. (4.10)

This approximation, which computes the physical masses is called the BMDM.
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4.1.2 The Non-Unitary Effects in the Seesaw Type I

As we said in the last chapter, the new extra neutrino massive states impact the
light sector of the neutrino mixing matrix. This change will be reflected in the K
matrix, which characterizes the charged current interactions. We define this matrix
as [24]

Kij =
n∑
c=1

Ω∗
ciUcj. (4.11)

The Ω matrix is the charged lepton mixing matrix, and we will work on a diagonal
basis, so the K matrix depends entirely on the neutrino mixing matrix. It is useful
to describe this matrix as a block matrix

K = (N,S), (4.12)

where N describes the mixings in the light sector and S in the sector of the new
massive states. We can extract these matrices from the Eq. (4.8)

N =(I3×3 −
1

2
(M∗

D(M
∗
R)

−1M−1
R MT

D)3×3)V1, (4.13)

S =(M∗
D(M

∗
R)

−1)3×mV2. (4.14)

We can see in Eq. (4.13) that the neutrino mixing matrix deviates from the unitary
matrix by a factor. This factor is the non-unitary effects in this scheme, which we
can write as

η =
1

2
(M∗

D(M
∗
R)

−1M−1
R MT

D)3×3. (4.15)

In the next subsection, we will discuss the non-unitary effects in the low-scale seesaw
theories and find that we recover this equation in some approximations.

4.1.3 The Low-Scale Seesaw

In the minimal seesaw type I, we just add the right-handed neutrinos. However,
the heavy neutrinos are in the GUT’s scale, as a consequence, it is impossible to
see phenomenology in the next generation of experiments. An alternative to this
problem is the so-called low-scale seesaw mechanisms, which allow a reachable phe-
nomenology in the current experiments. In the next subsection, we will talk about
the inverse and the lineal seesaw.

An Overview of the Inverse Seesaw

In this model, we add an extra suppression to the neutrino mass, that is a µ matrix
that must be small. In this scheme, we add right-handed neutrinos and left-handed
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singlets [35, 38]. The mass matrix has the next form

Mν =

 0 MD 0
MT

D 0 M
0 MT µ

 . (4.16)

We can compute the light masses as in the most general type I seesaw, for this
reason, we can define the following matrices

M ′
D3×6

= (MD3×3 , 03×3), MR6×6 =

(
03×3 M3×3

MT
3×3 µ3×3

)
. (4.17)

The inverse matrix of the heavy sector is:

M−1
R6×6

=

(
−((MT )−1µM−1)3×3 (M)−1

3×3

(MT )−1
3×3 0

)
. (4.18)

We can compute the mν the same way as in Eq. (4.9), using the equation (4.3), we
get the next equation

mν3×3 = (MD(M
T )−1µM−1MT

D)3×3, MN6×6 =MR6×6 . (4.19)

In this case, using the equations (4.6) and (4.3), we can find the S matrix

iS∗ = −M ′
D3×6

M−1
R6×6

(4.20)

= −(MD3×3 , 03×3) ·
(
−((MT )−1µM−1)3×3 (M)−1

3×3

(MT )−1
3×3 0

)
= ((MD(M

T )−1µM−1)3×3,−(MDM
−1)3×3).

In the limit µ −→ 0 we have:

iS∗ = (03×3,−(MDM
−1)3×3). (4.21)

Using equation (4.21) into (4.6) we can write the non-unitary deviation in this model:

η =
1

2
(M∗

D(M
∗
R)

−1M−1
R MT

D)3×3 (4.22)

and we recover Eq. (4.15).

An Overview of the Linear Seesaw

Another low-scale model to try to explain the neutrino mass is the Linear seesaw
mechanism [39]. The linear seesaw avoids the µ term, instead, the second suppression
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comes from ML. However, in this work, we are not interested in the model building
that allows these low-scale models, but in the rich phenomenology that we can study.
In this scheme, the mass matrix is

Mν =

 0 MD ML

MT
D 0 M

MT
L MT 0

 . (4.23)

In the same way that in the inverse seesaw, we can define the following block matrices

M ′
DL3×6

= (MD3×3 ,ML3×3), ML
R6×6

=

(
03×3 M3×3

MT
3×3 0

)
. (4.24)

The inverse matrix of the heavy sector is

ML−1

R6×6
=

(
03× (MT )−1

3×3

(M)−1
3×3 03×3

)
. (4.25)

We can use the equation (4.6) and (4.8) to get a relation between the S matrix and
the mass matrix, we find that is the same relation as the other schemes

iS∗ = −M ′
DL3×6

ML−1

R6×6
(4.26)

= −(MD3×3 ,ML3×3) ·
(

03×3 (M)−1
3×3

(MT )−1
3×3 0

)
= −(ML(M

−1)3×3, (MDM
−1)3×3),

the neutrino masses are

mν3×3 =MD(MLM
−1)T + (MLM

−1)MT
D, MN6×6 =MR6×6 . (4.27)

In the limit ML −→ 0,

N = (I3×3 − ηLS3×3) · V13×3 , S = (03×3, (M
∗
D(M

∗T )−1)3×3) · V26×6 , (4.28)

and the non-unitary effects are characterized by:

ηLS =
1

2
(M∗

D(M
∗)−1M−1MT

D)3×3. (4.29)

We have some limits where the three models have the same nonunitary effects.
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4.2 The Symmetric Parametrization in the Linear

Seesaw Models

As we said in the last chapter, symmetric parametrization is used to constrain the
non-unitary parameters in oscillation experiments. An important feature is that
this parametrization is model-independent. For this reason, we need to see how the
parametrization works in the seesaw model. We will begin with the simplest case,
with only three extra right-handed neutrinos. We can compute the neutrino mixing
matrix using equation (3.22), for this case we get [40–42]:

U =ω56ω46ω36ω26ω16ω45ω35ω25ω15ω34ω24ω14ω23ω13ω12 (4.30)

=UNHLU3×3, (4.31)

where,
UNHL = ω56ω46ω36ω26ω16ω45ω35ω25ω15ω34ω24ω14. (4.32)

The ω matrices related to heavy mixings commute with the ω matrices related to
mixing between heavy and light states. We can rearrange the equation above as

UNHL = ω56ω46ω45ω36ω26ω16ω35ω25ω15ω34ω24ω14. (4.33)

We can notice that the matrices that mix the heavy sector are now grouped[42]:

UH = ω56ω46ω45. (4.34)

All the information about the new physical parameters is contained in the term

ULH = ω36ω26ω16ω35ω25ω15ω34ω24ω14. (4.35)

The full mixing matrix in this case is

U6×6 = UHULHU3×3 =

(
I3×3 03×3

03×3 ω56ω46ω45 = H3×3

)
ULH

(
UPMNS 03×3

03×3 I3×3

)
, (4.36)

where H3×3 is the unitary matrix that diagonalizes the heavy sector. In this sense,
it is somehow analog to the UPMNS, which is a unitary mixing matrix for the light
sector. The UPMNS is composed by (ω23ω13ω12). We want to see if this parametriza-
tion gives us the same results as in Eqs. (4.9), (4.19), and (4.27). We work under the
hypothesis that the mixings between active and sterile neutrinos are small. There-
fore, we retain only the quadratic terms in the power series expansions of the sine
and cosine functions, as in the case of the S element in the polar decomposition of
Eq. (4.6). The ω matrix has the next form

ω13 =

1− 1
2
θ213 0 θ̂∗13

0 1 0

−θ̂13 0 1− 1
2
θ213

 , (4.37)
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where θ̂ij = θije
iϕij . The light sector of the ULH , after the expansion, is

ULH
L ≈ I3×3−

 1
2
(θ214 + θ215 + θ216) 0 0

θ̂16θ̂
∗
26 + θ̂15θ̂

∗
25 + θ̂14θ̂

∗
24

1
2
(θ224 + θ225 + θ226) 0

θ̂16θ̂
∗
36 + θ̂15θ̂

∗
35 + θ̂14θ̂

∗
34 θ̂26θ̂

∗
36 + θ̂25θ̂

∗
35 + θ̂24θ̂

∗
34

1
2
(θ214 + θ215 + θ216)

 .

(4.38)
The deviation from the identity will be called α′ matrix. We can generalize this
result to an arbitrary number of new neutral heavy leptons as follows:

α′ =


∑n

j=4
1
2
(θ21j) 0 0∑n

j=4 θ̂1j θ̂
∗
2j

∑n
j=4

1
2
(θ22j) 0∑n

j=4 θ̂1j θ̂
∗
3j

∑n
j=4 θ̂2j θ̂

∗
3j

∑n
j=4

1
2
(θ23j)

 , (4.39)

where n is the total number of neutral leptons. We can see that adding more neutral
heavy leptons adds mixing angles to the α′. We now need to determine the whole
matrix ULH to compute the light masses and prove that are the same as described
in the last section. We can parametrize the ULH as:

ULH =

(
U ′
L3×3

S3×3

−S†
3×3 V3×3

)
. (4.40)

In terms of the mixing angles, the matrix S takes the next form

S3×3 =

θ̂∗14 θ̂∗15 θ̂∗16
θ̂∗24 θ̂∗25 θ̂∗26
θ̂∗34 θ̂∗35 θ̂∗36

 , (4.41)

for more neutral heavy lepton states we add more columns with the same pattern:

S3×j =

θ̂∗14 θ̂∗15 θ̂∗16 · · · θ̂∗1j
θ̂∗24 θ̂∗25 θ̂∗26 · · · θ̂∗2j
θ̂∗34 θ̂∗35 θ̂∗36 · · · θ̂∗3j

 . (4.42)

As we see the S matrix, in general, is rectangular and the case of 3 extra NHLs is
the only case where the matrix is squared. The V matrix in terms of the mixing
angles for the case of 3 extra NHLs is

V3×3 =

 1− 1
2
(θ214 + θ224 + θ234) 0 0

−θ̂15θ̂∗14 − θ̂25θ̂
∗
24 − θ̂35θ̂

∗
34 1− 1

2
(θ215 + θ225 + θ235) 0

−θ̂16θ̂∗14 − θ̂26θ̂
∗
24 − θ̂36θ̂

∗
34 −θ̂16θ̂∗15 − θ̂26θ̂

∗
25 − θ̂36θ̂

∗
35 1− 1

2
(θ216 + θ226 + θ236)

 ,

(4.43)
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For an arbitrary number of new states, the matrix has a dimension m ×m and is
given by

Vm×m =


1−∑3

i=1
1
2
(θ2i4) 0 0 · · · 0

−∑3
i=1 θ̂i5θ̂

∗
i4 1−∑3

i=1
1
2
(θ2i5) 0 · · · 0

−∑3
i=1 θ̂i6θ̂

∗
i4 −∑3

i=1 θ̂i6θ̂
∗
i5 1−∑3

i=1
1
2
(θ2i6) · · · 0

...
...

...
. . .

...

−∑3
i=1 θ̂imθ̂

∗
i4 −∑3

i=1 θ̂imθ̂
∗
i5 −∑3

i=1 θ̂imθ̂
∗
i6 · · · ∑3

i=1
1
2
(θ2im)

 .

(4.44)
With this structure of the matrices, we can compute equation (4.3) using the equa-
tion (4.36). To compute the masses, first, we need to define the mixing matrix with
the new parametrization

U6×6 =

(
ULH
L UPMNS

3×3 S3×3

−HS†UPMNS
3×3 HV3×3

)
. (4.45)

To diagonalize the mass matrix, we need the transpose of the matrix above

UT
6×6 =

(
UPMNST

ULHT

L3×3
−UPMNST

S∗HT
3×3

ST V THT
3×3

)
. (4.46)

It is important to remember that we can rewrite the matrices ULH
L and V as:

ULH
L3×3

= I3×3 − δ3×3 δ3×3 ∼ O(θ2ij), (4.47)

V3×3 = I3×3 −∆3×3 ∆3×3 ∼ O(θ2ij). (4.48)

Then, we can compute the equation (4.3) using the mass matrix of equation (4.65)

UTMνU11 =− UPMNST

(I − δ)TMDHS
†UPMNS − UPMNST

S∗HTMT
D(I − δ)UPMNS

+ UPMNST

S∗HTMRHS
†UPMNS, (4.49)

UTMνU12 =U
PMNST

(I − δ)TMDH(I3×3 −∆3×3)− UPMNST

S∗HTMT
DS

− UPMNST

S∗HTMRH(I3×3 −∆3×3), (4.50)

UTMνU21 =− STMDHS
†UPMNS + V THTMT

D(I3×3 − δ3×3)U
PMNS

− (I3×3 −∆3×3)
THTMRHS

†UPMNS, (4.51)

UTMνU22 =S
TMDH(I3×3 −∆3×3)

T + (I3×3 −∆3×3)
THTMT

DS

+ (I3×3 −∆3×3)
THTMRH(I3×3 −∆3×3). (4.52)

The UTMνU12 and UTMU21 are zero because this matrix is in the mass basis, at
leading order in θij we have:

UTMU12 ≈ UPMNST

MDH − UPMNST

S∗HTMRH = 0,

S∗HT =MDM
−1
R . (4.53)
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The equation above matches the mixing angles of the new extra states with the mass
matrix of the model. Now, we can compute the physical masses using equations
(4.49) and (4.52). First, we compute the light masses at the leading order of θij:

UTMU11 ≈− UPMNST

MDHS
†UPMNS − UPMNST

S∗HTMT
DU

PMNS

+ UPMNST

S∗HTMRHS
†UPMNS = mdiag. (4.54)

We use equation (4.53) in (4.54):

− UPMNST

MDM
−1
R MT

DU
PMNS − UPMNST

MDM
−1
R MT

DU
PMNS

+ UPMNST

MDM
−1
R MRM

−1
R MT

DU
PMNS = −UPMNST

MDM
−1
R MT

DU
PMNS.

Then, we have
mdiag = −UPMNST

MDM
−1
R MT

DU
PMNS. (4.55)

We recover the mass of the most simple realization of the seesaw type I mν =
−MDM

−1
R MT

D. Also, we can see that the UPMNS diagonalizes the light sector, as the
V1 matrix did in the last section. We show that this parametrization of the mixing
matrix recovers the light masses of the simplest seesaw type I, now we compute the
masses of the heavy sector using equation (4.52) at leading order:

UTMνU22 ≈STMDH +HTMT
DS +HTMRH −∆T

3×3H
TMRH −HTMRH

−HTMRH∆3×3. (4.56)

We keep the only term that is at zeroth order:

UTMνU22 ≈ HTMRH =Mdiag. (4.57)

We recover the mass of the heavy sector and we see that the matrix H is the matrix
that diagonalizes the heavy sector, in analogy with the V2 matrix. It is time to do
the same with low-scale seesaw models. As we said above, this parametrization is
model-independent, in other words, it does not matter the structure of the mass
matrix only matter how many new NHL states are in the theory. For this reason,
using models with 6 extra NHLs, as the inverse and linear seesaw, leads to the same
mixing matrix in the symmetric parameterization

U9×9 =

(
I3×3 03×6

06×3 H6×6

)
ULH
9×9

(
UPMNS
3×3 03×6

06×3 I6×6

)
. (4.58)

Some works with a similar approach are done in the literature [43].

In the inverse and linear seesaw cases, the matrix H is:

H6×6 = ω89ω79ω69ω59ω49ω78ω68ω58ω48ω67ω57ω47ω56ω46ω45. (4.59)
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It is important to remember that all the ω matrices, in this case, are dimension
9 × 9. However, it only acts in the submatrix 6 × 6 that we call the H matrix. In
this case, ULH

9×9 is:

ULH = ω39ω29ω19ω38ω28ω18ω37ω27ω17ω36ω26ω16ω35ω25ω15ω34ω24ω14. (4.60)

We focus now on the inverse seesaw case. It would be important to rewrite the mass
matrix as a matrix with 4 submatrices to get the same form that we used in the
minimal seesaw type I. With this in mind, we will use equation (4.17) to obtain

M9×9 =

(
03×3 M ′

D3×6

M ′T
D6×3

M ′
R6×6

)
, (4.61)

in this case, we can parametrize the ULH matrix as

ULH
9×9 =

(
U ′
LU

PMNS
3×3 S3×6

−(HS†UPMNS)6×3 HV6×6

)
. (4.62)

We can express the submatrices in terms of the mixing angles using Eqs. (4.39),
(4.42) and (4.44). We can do the same procedure to compute the Eq. (4.3) and we
obtain the same Eqs. (4.49-4.52) with the only difference being the dimension of
the matrices. The matrix MR has different scales because the µ matrix commonly
is smaller than the M matrix. We can compute the Eq. (4.53) for this case and get

S∗
3×6H

T
6×6 =M ′

D3×6
M ′−1

R6×6
= (MD3×3 , 03×3)

(
−((MT )−1µM−1)3×3 (MT )−1

3×3

(M)−1
3×3 0

)
= (−MD3×3((M

T )−1µM−1)3×3,MD3×3(M
T )−1

3×3). (4.63)

We know the form of the S matrix, and we can compute the light masses using the
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Eq. (4.54):

UTMνU11 ≈

− UPMNST (
MD3×3 03×3

) [−(MT )−1
3×3µ3×3M

−1
3×3M

T
D3×3

(M)−1
3×3M

T
D3×3

]
UPMNS

− UPMNST

(−MD3×3((M
T )−1µM−1)3×3,MD3×3(M

T )−1
3×3)

[
MT

D3×3

03×3

]
UPMNS

+ UPMNST (−MD3×3((M
T )−1µM−1)3×3 MD3×3(M

T )−1
3×3

)( 03×3 M3×3

MT
3×3 µ3×3

)
×
[−(M)−1

3×3µ3×3M
−1
3×3M

T
D3×3

(MT )−1
3×3M

T
D3×3

]
UPMNS

= UPMNST

MD3×3(M
T )−1

3×3µ3×3M
−1
3×3M

T
D3×3

UPMNS

+ UPMNST

MD3×3(M
T )−1

3×3µ3×3M
−1
3×3M

T
D3×3

UPMNS

− UPMNST

MD3×3(M
T )−1

3×3µ3×3M
−1
3×3M

T
D3×3

UPMNS

= UPMNST

MD3×3(M
T )−1

3×3µ3×3M
−1
3×3M

T
D3×3

UPMNS = mdiag. (4.64)

We recover the equation (4.19), and as the last case the UPMNS matrix diagonalizes
the light sector. In the case of heavy masses, we do not need to compute again, we
keep the zeroth order term of the equation (4.57) Mdiag6×6 = HTM ′

RH.

This form of the heavy masses remains for the linear seesaw model with the
difference that the MR has other structure. In fact, in the case of the linear seesaw
model, we use the same mixing matrix as the inverse model, but with a different
mass matrix that is defined by the equation (4.24):

M9×9 =

(
03×3 M ′

DL3×6

M ′T
DL6×3

ML
R6×6

)
. (4.65)

As in the other cases, we want a relation between the model’s mixing angles and the
mass matrices. For the reason above, we want to get the expression for Eq. (4.53)

S∗
3×6H

T
6×6 =M ′

DL3×6
ML−1

R6×6
=
(
MD3×3 ML3×3

)( 03× (MT )−1
3×3

(M)−1
3×3 03×3

)
=
(
ML3×3(M)−1

3×3 MD3×3(M
T )−1

3×3

)
. (4.66)
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With this result, we can get the masses of the light sector using the equation (4.49)

UTMνU11 ≈

− UPMNST (
MD3×3 ML3×3

) [(M−1)T3×3M
T
L3×3

(M)−1
3×3M

T
D3×3

]
UPMNS

− UPMNST (
ML3×3(M)−1

3×3 MD3×3(M
T )−1

3×3

) [MT
D3×3

MT
L3×3

]
UPMNS

+ UPMNST (
ML3×3(M)−1

3×3 MD3×3(M
T )−1

3×3

)( 03×3 M3×3

MT
3×3 03×3

)
×
[
(M−1)T3×3M

T
L3×3

(M)−1
3×3M

T
D3×3

]
UPMNS

= −UPMNST

(MD(MLM
−1)T + (MLM

−1)MT
D)U

PMNS

− UPMNST

(MD(MLM
−1)T + (MLM

−1)MT
D)U

PMNS

+ UPMNST

(MD(MLM
−1)T + (MLM

−1)MT
D)U

PMNS

= −UPMNST

(MD(MLM
−1)T + (MLM

−1)MT
D)U

PMNS = mdiag. (4.67)

We recover the linear seesaw’s light masses as described in the last section. We repro-
duce all the masses of the three models using another parametrization for the mixing
matrix. In this case, it has more physical meaning than the other parametrization.
In the symmetric parametrization, the small parameter is the mixing angle between
the active and the heavy states. We observe a correspondence between the two
parameterizations, as both yield the same results on the mass basis. Consequently,
we expect the non-unitary description to exhibit this correspondence. For the po-
lar decomposition of the mixing matrix, we have the η matrix that describes the
non-unitary effects and for the symmetric parametrization, we have the α′ matrix.
Both parameterizations must describe the same way neutrino oscillation, with this
in mind, we will use the Eqs. (4.13) and (4.39) to get an equivalence between these
parametrizations:

(I − η)UPDG = (I − α′)U sym, (4.68)

where UPDG is the PDG parametrization of the neutrino mixing matrix and U sym

is the active mixing matrix in the symmetric parametrization. Both sides of the
equation are an approximation to second order in their respective parameters (for the
η parametrization the parameter isMDM

−1
R and for the symmetric one is θiN , where

N refers to the heavy states). The match between the η and α′ using the equation
(4.68) seems straightforward. However, this presents some issues because the mixing
matrix is not the same in both parametrizations. We are only interested in the
equivalence of the non-unitary effects so we can skip this problem by multiplying
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the neutrino mixing with their conjugate matrix

NN † = (I− η)(I− η)† = I− 2η +O(2) (4.69)

NN † = (I− α′)(I− α′)† = I− (α′ + α′†) +O(2) (4.70)

η =
1

2
(α′ + α′†) =

1

2

2α′
11 α′∗

21 α′∗
31

α′
21 2α′

22 α′∗
32

α′
31 α′

32 2α′
33

 . (4.71)

The equation above shows a relationship between the two parametrizations that
describe the non-unitary effects. This will be important in our work because we
can use the current limits of the non-unitary parameters that came from neutrino
experiments and use it to constrain an observable that is related to the seesaw
mechanism.
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The Non-Unitary Effects in the
FASERν Detector and a Forecast
to FASERν2

The FASERν detector will be a great laboratory to study the deviation of the neu-
trino mixing matrix due to their high statistics in the neutrino and antineutrino
events. Recently, the FASER Collaboration reported their first neutrino detec-
tion [44]. With this breakthrough, we now have a new source of neutrinos that
could provide valuable insights and potential evidence of new physics in the neu-
trino sector. In this chapter, we will discuss the FASER experiment and the FASERν
detector, the neutrino event computation, the non-unitary analysis, and a forecast
for the second phase of the FASER ν2 detector.

5.1 The FASER Experiment and the FASERν De-

tector, a Brief Description

The main goal of The ForwArd Search ExpeRiment (FASER) is to search very
weakly interacting particles in the LHC; these particles travel long distances through
concrete and rock without interaction and then decay into visible particles in the de-
tector decay volume [45]. The weakly interacting particle candidates include neutral
heavy leptons (NHLs), light gauge bosons, and axion-like particles, among others.
We will focus on the subdetector called FASERν; this subdetector was created to
take advantage of the great number of neutrinos that are produced in the LHC
collisions via hadron decays. The FASERν detector consist of a 1.2 tons Tungsten
target and has a 480 m baseline. It works in an energy regime from 100 GeV to 1
TeV, and the detection will be through CC interaction.
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Figure 5.1: Neutrino interactions per bin vs the neutrino energy at the FASERν
detector with 150 fb−1 integrated luminosity, according to Ref. [47].

5.2 Computing the Neutrino Events Number

Although the FASER collaboration has computed the interaction at the FASERν
detector [46], there is recent work with more accuracy in the neutrino events and
the uncertainties using various event generators [47]. We use this data to recompute
the number of events using the next equation

NSM
α = ϵαNT

∫
f(Ereco)R(Ereco, Eν)σα(Eν)ϕαdEνdEreco, (5.1)

where σα is the neutrino-nucleus DIS cross section, ϕα is the expected flux at the
detector, R(Ereco, Eν) is the gaussian smearing function of width 0.3Eν , NT is the
number of targets in the experiment, f(Ereco) is the vertex reconstruction efficiency
and ϵα is the charged-lepton identification efficiency (ϵe = 100%,ϵµ = 86%,ϵτ =
76%).
In Fig. 5.1, we reproduce the neutrino interaction rates per bin as reported by [47].
Using Eq. (5.1), we will also compute the expected number of events for FASERν2.
FASERν2 is an upgrade of the current detector at LHC with a target mass of 20
tonnes and 20 times the luminosity. Consequently, FASERν2 will have two orders
of magnitude more events than the previous detector. For FASERν, we compute
the neutrino events into different cases; the first case uses all of the energy range of
Fig. 5.1. The second case uses an energy region smaller than the first case to avoid
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FASERν FASERν2

Lepton flavor 102 − 104 GeV 100− 600 GeV 102 − 104 GeV 100− 600 GeV

e 1095±937 307±101 44230 20775
µ 2807±909 1163±190 193630 85044
τ 19±19 6±4 767 314

Table 5.1: Expected number of events with their corresponding systematic uncer-
tainties used in the analysis, for the different cases. For the forecast of FASERν2,
we will consider two systematic uncertainties, 5% and 10%, in accordance with [23]
.

the big uncertainties in the high-energy regime; this region is between 100-600 GeV.
As a consequence, we have fewer neutrino events, but at the same time, we have
smaller systematical uncertainties that could help in the analysis. For FASERν2, we
consider two cases; the first is with 5% of systematical uncertainty, and the second
is with 10%. We can see the neutrino events in Table 5.1.

5.3 The χ2 Analysis

We want the expected sensitivity of the non-unitary parameters through a χ2 anal-
ysis, but first, we need to talk about the approximation that we will make for the
non-unitary oscillation probability. As we said above, the detector works between
100-10000 GeV, and the baseline is 480 m. it is easy to see that with this configu-
ration we have

∆m2L

E
<< 1. (5.2)

We use the equation above in Eq. (3.29) to get the zero-distance approximation
shown in Eq. (3.30). Taking into account this approximation, the χ2 is

χ2 =
τ∑

α=e

(NNU
α −N exp

α )2

σ2
α

+
∑
ij

(αij − δij)
2

σ2
ij

, (5.3)

where, in the first summation, N exp
α is the expected measured number of events

per neutrino flavor, NNU
α is the number of events computed in the presence of non-

unitary, and the index α refers to the lepton flavor. The σα is the total uncertainty,
statistical and systematical. Despite the uncertainties reported from the FASER
collaboration, we symmetrize the uncertainties (In the case of FASERν detector)
and for the case of the FASERν2, we consider two scenarios, 5% and 10% as the
systematical uncertainty, due to the expected improvement in the flux estimation
by the time the experiment starts taking data.
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To have a robust analysis, we are going to consider the three observables that
FASERν will measure, for this reason, we need to consider all the appearance and
disappearance channels. As a consequence, we have 6 non-unitary parameters that
we must add to the analysis, and we have more free parameters than observables, so
we need to consider a statical prior, as a penalization, to perform the analysis. In
Eq. (5.3), we have added the prior (the second sum) to the values of αij non-unitary
parameters that will be marginalized in our χ2 analysis using as uncertainties, σij,
the constraints reported in Ref. [25]. We use the constraints at 90% confidence level
(C.L.), making our results conservative.

The expected number of events adding the non-unitary effects are defined as:

NNU
α =

1

α2
11(α

2
22 + |α21|2)

(
NSM
α Pαα +

∑
β ̸=α

PαβN
SM
β

)
, (5.4)

where NSM
α is the Standard Model number of events for each flavor. Pαα and Pαβ

are the disappearance and appearance probabilities in the approximation of the
zero-distance, Eq. (3.19). The prefactor in Eq. (5.4) is the extra contribution of the
NHLs to the effective µ constant, Gµ, that is mentioned in Chapter 2.

Since we consider all the non-unitary parameters at a time, the disappearance
events may compensate for the appearance events, preventing them from having a
visible effect. We will consider only one parameter at-a-time and marginalize the
other 5 non-unitary parameters. It is important to recall that the αij parameters
satisfy a triangle inequality condition, as described in Chapter. We incorporate
these three inequalities into the computation of the χ2.

5.4 Results

In this section, we will show the χ2 analysis results and the sensitivity of the non-
unitary parameters in FASERν and FASERν2 in two different energy regimes. We
illustrate the expected FASERν sensitivity in Fig. 5.2. It is important to remember
that the second scenario removes big uncertainties of the analysis and this could
be reflected in a more restrictive sensitivity in the non-unitary parameters. We can
observe that in FASERν the α33 parameter is not in the analysis because we do not
have enough statistics in the ντ events. For the FASERν2, we still use the reduced
energy regime (100-600 GeV), because we understand that the big uncertainties
remain in the second phase of the experiment. In Fig. 5.3, we show the results of
the FASERν2. The use of all the disappearance and appearance channels, with a
prior that penalizes the α parameters (using as an uncertainty the current limits)
gives us a realistic projection of the FASERν and FASERν2 sensitivity in the non-
unitary parameters.
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Figure 5.2: Sensitivity of the diagonal (left panel) and non-diagonal (right panel)
non-unitarity parameters in the FASERν detector. The dashed curves and the
solid curves show the sensitivity for the full FASERν energy window and the more
restricted case with events between 100-600 GeV, respectively. The horizontal line
represents the 90% C.L. for one free parameter according to [23].

Table 5.2 shows the expected sensitivity of the non-unitary parameters for all
the cases at 90% C.L. We can observe that the FASERν future sensitivity does not
improve the current limits. However, the limits in the 100-600 GeV regime have
better sensitivity than using the full energy spectrum.

The FASERν 2 expects more restricted results than the FASERν detector and in
fact, in the α11 and α33 parameters their sensitivity are better than the current con-
straint. Focusing on the disappearance of the νe and ντ channels will be crucial for
placing constraints on these parameters. This could provide a valuable opportunity
to shed light on the non-unitary parameters. We can see these results in Table 5.2
and Fig. 5.3.

The FASERν2 sensitivity can play a key role in constraining the non-unitary
parameters and must be useful for a global analysis. The FASERν2 has the purpose
of collecting a high statistic of neutrino events and, for that reason, it is plausible
to reduce the systematical uncertainties to the levels we talk about in the work.

It is important to notice that this analysis was made to see the experiment’s
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FASERν FASERν2

Parameter 102 − 104 GeV 100− 600 GeV 100− 600 GeV (5%) 100− 600 GeV (10%) Current limit

α11 ≥ 0.818 0.894 0.970 0.944 0.969
α22 ≥ 0.760 0.873 0.944 0.928 0.995
α33 ≥ – – 0.945 0.932 0.890
α21 ≤ 0.028 0.027 0.022 0.025 0.013
α31 ≤ 0.118 0.114 0.083 0.089 0.033
α32 ≤ 0.048 0.048 0.042 0.043 0.009

Table 5.2: Expected sensitivities for the αij non-unitary parameters for the case
of FASERν and FASERν2 in different configurations [23]. The constraint on α33

is not shown for FASERν because there is no expected sensitivity. We also show
for reference, in the last column, the current constraints reported in Ref. [25]. The
results are shown at 90% C.L.

sensitivity to an indirect signature for NHL through the non-unitary parameters. In
this work, we are not searching for direct signatures of these NHLs. We also recall,
as noted in Chapter 2, that the standard oscillation probability for three flavors and
three massive states is recovered when the diagonal α parameters approach one and
the off-diagonal parameters approach zero. In this context, we consider a sensitivity
to be more restrictive than other experiments when the constraints are closer to
these SM limit values for a given confidence level.
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Figure 5.3: Left panel: sensitivity regions to the diagonal non-unitary parameters
for the FASERν2 experiment. Right panels: the non-diagonal parameters case. For
the upper panels we consider a systematic uncertainty of 5% while in the lower
panels the 10% case is shown. The 90% C.L. is shown with a horizontal line [23].
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The Non-Unitary Effects in the
Linear Seesaw Mechanism
Constrained by the cLFV
Processes

In the literature, various approaches have been proposed to constrain the non-
unitary parameters in neutrino experiments [10–18]. However, as shown in Eq.
(4.71), constraints can be translated from one parametrization to another. This
opens up new possibilities for studying non-unitary parameters within specific mod-
els, such as the linear seesaw, by leveraging constraints from other observables, such
as experimental limits on cLFV branching ratios, to further restrict the non-unitary
parameters and then translate the constraint to the α parameters. These cLFV
processes can be described as ℓi −→ ℓjγ, where the mediator is the NHL particle, as
shown in Fig.6.1. In this chapter, we will use the current and future experimental
constraints of the cLFV branching ratios to obtain restrictions on the non-unitary
parameters. We will show the explicit dependence of the branching ratios on the
mixing neutrino matrix and relate them to the non-unitary effects in the light neu-
trino sector. For other works with a similar approach in the literature, see Refs. [14,
35–37, 48].

We will construct the neutrino mass matrix for the Linear seesaw mechanism.
Afterward, we will use the Block Matrix Diagonalization Method (BMDM) approx-
imation to diagonalize this matrix and obtain the mixing matrix and the physical
neutrino masses. The next step will be computing the branching ratio of the cLFV
processes and we will use the reported limits to obtain the current non-unitary con-
straints and the expected future sensitivity. Finally, we will translate these seesaw
type I non-unitary constraints into model-independent parametrization results.
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Figure 6.1: The cLFV processes, where ℓi could be τ , µ and ℓj could be µ, e.

6.1 Charged Lepton flavor Violation Processes (cLFV)

As we said above we will use the ℓi −→ ℓjγ processes, the branching ratio of these
decays are [49–51]

BR(ℓ −→ ℓ′γ) =
α

γℓ
m3
ℓ |F γ

M(0)|2, (6.1)

F γ
M(0) =

αW
16π

mℓ

M2
W

∑
i

K∗
ℓiKℓ′if

γ
M(xi),

fγM(xi) =
3x3logx

2(x− 1)4
− 2x3 + 5x2 − x

4(x− 1)3
+

5

6
.

Where xi ≡ m2
χi
/M2

W and mχi
are the physical masses of the neutrino states, α =

e2/4π is the fine-structure constant, and αW ≡ α/s2W . Table 6.1 shows the current
and future constraints of these processes, these limits will be used to constrain the
non-unitary effects in the linear seesaw. It is important to notice that the sum in the
previous branching ratio is over the number of neutrino massive states, for the case
of the linear seesaw model it would be nine states. To compute the branching ratio
we need to diagonalize the mass matrix of the linear seesaw, and for that reason, we
make assumptions to obtain the mass matrix numerically.

6.2 Numerical Analysis

As we see in Chapter 3 the mass matrix of the linear seesaw depends on the ML,
MD, and M . For each matrix, we have 18 free parameters that came from the 9
components, and each component could have a real and imaginary part. For this
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Process Present limit Future Sensitivity

µ −→ eγ 4.2× 10−13 [52] 6× 10−14 [53]

τ −→ eγ 3.3× 10−8 [54] 3× 10−9[55]

τ −→ µγ 4.2× 10−8 [54] 10−9 [55]

Table 6.1: The present and future sensitivity in the cLFV processes that will be
used to constrain the non-unitary effects, this table was taken of [35]

reason, we need to assume some structure for the matrices, to remove some degrees
of freedom due to our limited computational power. In this analysis, the matrices
ML and M are considered diagonals and their components are real as follows

M3×3 = vM · diag(1 + ϵM11 , 1 + ϵM22 , 1 + ϵM22), (6.2)

ML =vLdiag(1 + ϵL11 , 1 + ϵL22 , 1 + ϵL33), (6.3)

where vSM is the SM vacuum expectation value (vev), and the vM is the mass scale
for the heavy sector. We decided to put the new physics in the structure of the MD

and use the Casas-Ibarra parametrization.

6.2.1 The Casas-Ibarra Parametrization

The idea behind this parametrization is to define the MD matrix in terms of ML

and M , using the light mass equation of the linear seesaw model. However, this
parametrization could be used in other models like the inverse seesaw[56]. For the
case of the linear seesaw, we are going to use Eq. (4.27)

mν3×3 = V ∗
1 mdiagV

†
1 =MD(MLM

−1)T + (MLM
−1)MT

D,

I =(
√
mdiag)

−1V T
1 MD(MLM

−1)TV1(
√
mdiag)

−1

+(
√
mdiag)

−1V T
1 (MLM

−1)MT
DV1(

√
mdiag)

−1. (6.4)

We can rewrite the last equation as follows:

I = A+ AT , (6.5)

where A takes the form

A =

1
2

−a −b
a 1

2
−c

b c 1
2

 , (6.6)
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where a, b, and c are real numbers. Now we can get the MD matrix using the
equation above, and we get

MD = V ∗
1

√
mdiag
ν AT

√
mdiag
ν V ∗T

1 (MT
L )

−1MT . (6.7)

For completeness, we can do the same for the inverse seesaw. In that case, we have

mν3×3 = V ∗
1 mdiagV

†
1 = (MD(M

T )−1µM−1MT
D)3×3,

I =
√
mdiag)

−1V T
1 (MD(M

T )−1(
√
µ)T

√
µM−1MT

D)3×3V1(
√
mdiag)

−1,

I = (
√
µM−1MT

DV1(
√
mdiag)

−1)T (
√
µM−1MT

DV1(
√
mdiag)

−1). (6.8)

We can rewrite the last equation as follows:

I = RTR. (6.9)

Where R is an orthogonal matrix, now we can express the MD in terms of the other
matrices

MD = V ∗
1

√
mdiagR

T (
√
µ)−1MT . (6.10)

In this way, some works have studied the inverse seesaw phenomenology [35, 37].

6.3 Numerical Scan

We are using the BMDM approximation to obtain the light and heavy masses. In
this case, for the light sector, we have a prescription for the diagonal mass matrix
in terms of the light neutrino mixing matrix. In contrast, for the heavy sector, we
must compute the diagonalization numerically. To compute the branching ratio we
need to perform a random scan for the free parameters that we have in our model.

• To construct the light neutrino mixing we need three mixing angles, the CP
phase, the ∆m2, andm1 (the lightest massive state). We will use the oscillation
data at 3σ to perform the random scan. We will also analyze the inverted
hierarchy. We show the values of the mixing angles and the CP phase in
Table 6.2.

• The ϵMii
and ϵLii

parameters are varied randomly from -0.5 to 0.5.

• The vL scale is varied in the range of [10−1 − 102] eV.

• The vM is fixed at 1 TeV.

• The real parameters a, b, and c are varied in the range of (0−10−2] to respect
the scale of the light masses.
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Additionally, we put a condition for the MD matrix to guarantee that the mass
scales between the different matrices are fulfilled and that the Yukawas coupling is
around one, as the naturalness argument tells us. Finally, we compute numerically
the diagonalization of the heavy sector of the linear seesaw mass matrix. Then, we
get the physical masses for the NHLs and compute the branching ratio of the cLFV
processes using the Eqs. (4.8) and (6.1). Also, we can get the non-unitary effects
using Eq. (4.15).

6.4 Results

In this section, we show the results of the analysis using the structure and scan
described above. We first compute the branching ratio for the process µ → eγ in
terms of the vL. We show this result in Fig. 6.2. We notice that the current and
future limit of Br(µ→ eγ) restricts the vL to be above 10 eV. We use the µ −→ eγ
process because it has the most restricted limits. Using Eq. (4.15), we compute
the off-diagonal non-unitary parameters for each process under both normal and
inverted ordering. The results are presented in Figs. 6.3 and 6.4.

As mentioned above, the Br(µ → eγ) process is more restrictive and, conse-
quently, the non-unitary parameters will also be more constrained compared to the
other two processes. Also, we see a correlation in some cases; for example, α21 in
µ −→ eγ, α31 in τ −→ eγ, α32 in τ −→ µγ. We notice the importance of off-diagonal
non-unitary parameters in the cLFV processes. In the next chapter, we talk about
how we can suppress the cLFV processes with non-unitary parameters.

In tables 6.3 and 6.4, we put the constraints of each off-diagonal parameter for
each process and each ordering of the neutrino masses. We can conclude that, in the
case of µ −→ eγ, the non-unitary parameters are of the order of 10−5 and the other
processes give us complementary results with bigger constraints for these parame-
ters than the ones that come from neutrino experiments [25]. We can compare the
restrictions between parametrizations using the Eq. (4.71). In Table 6.5, we see the
constraints in the α parametrization. As in the case of the η parametrization, the
µ −→ eγ gives us the most restricted results. These off-diagonal alpha parameters
have better constraints than the current limits [25].

The cLFV processes could be a great observable to constrain the non-unitary
parameters using the branching ratio of the processes. We see that the cLFV pro-
cesses give us better constraints than the current ones that came from neutrino
experiments. These results must encourage the search for these channels.
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Parameters Normal ordering at 3σ Inverse ordering at 3σ

∆m2
21(eV

2) (6.94− 8.14)× 10−5 (6.94− 8.14)× 10−5

∆m2
31(eV

2) (2.47− 2.63)× 10−3 (2.37− 2.53)× 10−3

θ12/
◦ 31.4-37.4 31.4-37.4

θ23/
◦ 41.2-51.33 41.16-51.25

θ13/
◦ 8.13-8.92 8.17-8.96

δ/◦ 128-359 200-353

Table 6.2: Allowed parameter range, at 3σ [57] level, for the mixing angles, CP-
violating phase, and neutrino mass differences. We use this range for the scan of
light neutrino mixing in this scenario.

Parameters µ −→ eγ τ −→ eγ τ −→ µγ
Current Future Current Future Current Future

|η12| ⪅ 2× 10−5 10−5 2× 10−2 10−2 2× 10−2 5× 10−3

|η13| ⪅ 2× 10−4 6× 10−5 10−2 3× 10−3 2× 10−2 7× 10−3

|η23| ⪅ 4× 10−4 2× 10−4 3× 10−2 2× 10−2 10−2 2× 10−3

Table 6.3: The current and future sensitivity for the off-diagonal parameters from
the different cLFV processes in the normal ordering case.

Parameters µ −→ eγ τ −→ eγ τ −→ µγ
Current Future Current Future Current Future

|η12| ⪅ 2× 10−5 10−5 2× 10−2 10−2 2× 10−2 10−2

|η13| ⪅ 2× 10−4 6× 10−5 10−2 3× 10−3 2× 10−2 7× 10−3

|η23| ⪅ 2× 10−4 7× 10−5 3× 10−2 2× 10−2 10−2 2× 10−3

Table 6.4: The current and future sensitivity for the off-diagonal parameters from
the different cLFV processes in the inverse ordering case.
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Figure 6.2: Branching ratio of the µ → eγ decay vs the ML scale in the normal
ordering case. The solid line is for the current constraint, while the dashed one
represents the future expected sensitivity for this decay.

Parameters µ −→ eγ τ −→ eγ τ −→ µγ
Current Future Current Future Current Future

|α12| ⪅ 4× 10−5 2× 10−5 4× 10−2 2× 10−2 4× 10−2 10−2

|α13| ⪅ 4× 10−4 1.2× 10−4 2× 10−2 6× 10−3 4× 10−2 1.4× 10−2

|α23| ⪅ 8× 10−4 4× 10−4 6× 10−2 4× 10−2 2× 10−2 4× 10−3

Table 6.5: The current and the future sensitivity for the α off-diagonal parameters
from the different cLFV processes in the normal ordering case.

63



Chapter 6

Figure 6.3: Scan of the branching ratio for the processes ℓi −→ ℓjγ versus the
nonunitary parameters in the normal ordering case. The solid is for the current con-
straints, while the dashed ones represent these decay’s expected sensitivity according
to [42].
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Figure 6.4: Scan of the branching ratio for the processes ℓi −→ ℓjγ versus the
nonunitary parameters in the inverse ordering case. The solid line accounts for the
current constraints, while the dashed ones represent the future expected sensitivity
for these decays [42].
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The cLFV Suppression Via
Non-Unitary Effects

The cLFV processes are intrinsically related to the non-unitary effects. An example
is the correlation that we can see in the last chapter between the processes and the
non-unitary parameters in some cases. In [35], the authors explore a parametriza-
tion where the η matrix is diagonal (Eq. 4.15) and, as a consequence, the cLFV
processes are suppressed. The easy way to produce this outcome is to assume that
the MD and M matrices are diagonal and all the new physics come from the µ and
ML for the inverse and linear seesaw, respectively.

However, in this work, we will diagonalize the full mass matrix for each model
(Linear and Inverse seesaw) and we will study the suppression under the cLFV pro-
cesses. We will compare the results using the full mass matrix diagonalization and
the BMDM approximation to ensure that both methods agree and we will use the
non-unitary parameter current limits to constrain the heavy scale of the model.

Moreover, we can control which channels are allowed by introducing off-diagonal
parameters into the M matrix. Appendices A and B present models that explain
the suppression of cLFV processes or enable only specific channels. The purpose
of this analysis is to constrain the parameter space by combining branching ratio
limits with non-unitary bounds derived from neutrino experiments.

7.1 The Mass Matrix Parametrization

According to [35], we can suppress the cLFV processes if the non-unitary matrix is
diagonal, showing us that we can have non-unitary effects without the cLFV pro-
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cesses. Using the non-unitary limits instead of the branching of the cLFV processes,
we could restrict the parameter space of the minimal and low-scale seesaw.

7.1.1 The mass parametrization to suppress the cLFV pro-
cesses

As we said above, to suppress the cLFV processes, we need the non-unitary matrix
to be diagonal, one of the ways to get that is to parametrize theM andMD matrices
as follows:

M3×3 = vM · diag(1 + ϵM11 , 1 + ϵM22 , 1 + ϵM22), (7.1)

MD3×3 =
vSM√

2
· diag(Y11, Y22, Y33), (7.2)

where vM is the heavy scale, vSM = 249 GeV is the SM scale, the ϵMii
and Yii

are random variables. With this, we can compute the non-unitary effects in the
BMDM approximation. On the other hand, to diagonalize the full mixing matrix of
the inverse and linear seesaw, we need to give structure to the µ and ML matrices
respectively. Using the full diagonalization method, we need to find how it looks
the non-unitary effects in terms of the neutrino mixing matrix. We can compute
the non-unitary condition of the 3× 3 light neutrino submatrix,

(NN †)3×3 = (I − η)(I − η)† (7.3)

In the case of the seesaw type I realization, and using the definition of the η matrix
in the DBDM approximation of Eq. (4.15), we see that the η matrix is equal to their
conjugate transpose matrix. Therefore, we can rewrite the previous equation as

(NN †)3×3 = I − 2η +O(η2) (7.4)

η ≈ 1

2
(I − (NN †)3×3). (7.5)

We neglected second-order terms in the η matrix to get the Eq. (7.5). So, we need
the full neutrino mixing to extract the light sector of it, to do so we need the µ and
ML matrices

Inverse Seesaw

The main goal is the diagonalization of the full mass matrix. This matrix depends
on the model that we are using, for the case of the inverse seesaw we will use the
Eq. (4.16) as the mass matrix. We already have discussed the structure of the MD

andM matrix. Therefore, we need to discuss now the case of the µmatrix. To give it
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a structure, we will use the Eq. (4.19) and will remember that we can put the flavor
mass matrix in terms of the physical masses, using the unitary transformations, and
obtain

µ =MTM−1
D U∗

PMNSdiag(m1,m2,m3)U
†
PMNS(M

−1
D )TM, (7.6)

where the UPMNS is the 3 × 3 neutrino mixing matrix for the light sector and mi

are the physical masses.

Linear Seesaw

In this case, we will use Eq. (4.23) as the mass matrix. Our goal is to provide
structure to the ML matrix. While we would like to follow the same approach as in
the inverse seesaw case, it is not possible to explicitly solve for ML from Eq. (4.27).
Nonetheless, we can interpret the flavor mass matrix, as in the previous chapter, as
mν = A + AT . In this way, we can distribute the value of mν matrix between the
ML components. With this in mind, we generate the following parametrization,

ML =


M11

2MD11
mν11

M22

MD22
mν12 · x1 M33

MD33
mν13 · x2

M11

MD11
mν12 · (1− x1)

M22

2MD22
mν22

M33

MD33
mν23 · x3

M11

MD11
mν13 · (1− x2)

M22

MD22
mν23 · (1− x3)

M33

2MD33
mν33

 , (7.7)

where x1, x2, and x3 are random numbers that give a percentage of the value of the
mν components. Again, in this framework, we consider MD and M are diagonal
and real matrices. This means that MD = MT

D = M∗
D and we can rewrite the ML

in terms of the non-unitary matrix η in the DBDM approximation, Eq. (4.15), as
follows

ML =


1√
2

√
|η−1|

11
mν11

√
2|η−1|

22
mν12 · x1

√
2|η−1|

33
mν13 · x2√

2|η−1|
11
mν12 · (1− x1)

1√
2

√
|η−1|

22
mν22

√
2|η−1|

33
mν23 · x3√

2|η−1|
11
mν13 · (1− x2)

√
2|η−1|

22
mν23 · (1− x3)

1√
2

√
|η−1|

33
mν33

 ,

(7.8)

As we can see, we have three additional variables compared with the inverse seesaw
case. The idea behind constructing the full mass matrix is to have the full neutrino
mixing matrix and not an approximation. Also, to ensure that the full method is
well-behaved, we will compare its results with those of the BMDM approximation.
Once we are convinced of our method, we switch on one cLFV channel.
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7.1.2 The Mass Parametrization Allowing One cLFV Pro-
cess

The suppression of the cLFV processes comes from the choice to put MD and M
diagonal, so the easiest way to allow these processes is to generate off-diagonal
terms in these matrices. We only put off-diagonal terms in theM matrix for model-
building purposes. An important remark of this analysis is that we use only the
inverse seesaw due to its simplicity. For this reason, we continue using Eqs. (7.1),
(7.2), and (7.6) to construct the full mass matrix. As we saw in the last chapter, the
cLFV processes are correlated with the off-diagonal non-unitary parameters. The
µ −→ eγ process is related with η12, the τ −→ eγ process is related with η13, and
the τ −→ µγ process is related with η23. We will allow only one of these channels
in each case, with the fewest parameters that our numerical analysis allows. This
can be achieved using the following M matrices

M = vM

1 + ϵ11 0 0
1 + ϵ21 1 + ϵ22 0

0 0 1 + ϵ33

 , (7.9)

M = vM

1 + ϵ11 0 0
0 1 + ϵ22 0

1 + ϵ31 0 1 + ϵ33

 , (7.10)

M = vM

1 + ϵ11 0 0
0 1 + ϵ22 0
0 1 + ϵ32 1 + ϵ33

 . (7.11)

These M matrices allow the µ − e, τ − e, and τ − µ processes, respectively. We
notice that we only need one parameter in the analysis to allow these processes.
Computationally, this does not represent any difficulty.

7.2 Numerical Scan of the free parameters

Up to now, we know the structure of the mass matrix, but not the running of the
variables. In this section, we will discuss the parameter space of the variables that
we use in the analysis.

69



Chapter 7

7.2.1 parameter scan in the cLFV suppression case

Our numerical analysis for this chapter will be similar to one introduced in the
previous chapter, but instead of having the ML matrix diagonal, we will have the
MD matrix as a diagonal one. All the new physics information will be contained
in the µ and ML matrices for the inverse and linear seesaw, respectively. These
matrices depend on the mν , M , and MD matrices. All the variables that compound
these matrices are random variables. We can notice that mν depends on the PMNS
matrix and the neutrino physical masses, as we can see in Eq. (4.3). The PMNS
matrix is generated using random values for the oscillation data, varying them up
to 3σ. We can see this region for the PMNS values in Table 6.2. Here we enlist all
the variables that we use in this analysis

• For the lightest mass state, we use the cosmological constraints that came from
Table 6.2.

• The ϵMii
and ϵDii

parameters are varied randomly from -0.5 to 0.5 .

• The vM scale is varied in the range of [1010 − 1014] eV.

• The vSM is fixed at the SM scale (≈ 249 Gev).

• The real parameters x1,x2, and x3 are varied in the range of [0 − 1], this
parameters are used only in the linear model.

It is important to remember that each case has a different number of random vari-
ables. For example, to compute the non-unitary effects in the BMDM approximation
we only need the MD and M matrices, while for the full diagonalization, we need
more parameters. The full mass diagonalization is performed using the Takagi de-
composition to guarantee the non-negative real eigenvalues for a symmetric complex
matrix using a Python routine with arbitrary accuracy. After the diagonalization of
the mass matrix for each case, we need to use Eq. (7.5) to extract the non-unitary
effects of the light neutrino sector.

7.2.2 Parameter Scan Allowing one cLFV channel

The numerical analysis with one cLFV process will be done using the inverse seesaw
model due to its simplicity and the fact that the model has fewer parameters than
the linear seesaw model. We will keep using the same parameters as in the inverse
model above and only add one new parameter depending on which cLFV process
we want to allow. These parameters will be in the off-diagonal components of the
M matrix, as we can see in the Eqs. (7.9-7.11). Each new parameter is varied from
-0.5 to 0.5. The cLFV processes open the possibility of constraining the parameter
space due to the new non-unitary restrictions that we can use in this analysis.
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7.3 Results

We are analyzing two scenarios. The first scenario assumes a diagonal non-unitary
matrix, which suppresses all cLFV processes. For this analysis, we constructed a
parametrization for the µ and ML matrices to diagonalize the full mass matrix for
the low-scale seesaw models and compare it with the BMDM approximation. In
the second scenario, we allow only one cLFV process by introducing an off-diagonal
component in the M matrix. In the first case, the primary objective of this analysis
is to calculate the neutrino mixing matrix and constrain the heavy scale of the seesaw
model using the non-unitary limits. The first scenario served as a test to validate
the reliability of our numerical approach.

Consequently, for the second scenario, we focus solely on the inverse seesaw
mechanism due to its straightforward implementation. The aim is to compute the
branching ratio for each process using Eq. (6.1) and to constrain the parameter space
in the inverse seesaw model by applying the experimental limits on the branching
ratios and the non-unitary bounds coming from neutrino experiments. At the theory
level, these phenomenological scenarios are explained in the Appendix A and B.

7.3.1 Suppressing all the cLFV processes

For this case, we compute the non-unitary effects using the BMDM and the full
mass matrix diagonalization for the inverse and the linear seesaw cases. As we
said, all the cLFV processes are forbidden. Therefore, we can not take advantage
of the branching ratio constraints to restrict the parameter space. However, we
can use the non-unitary constraints on |α22| that comes from neutrino oscillation
experiments [25] to restrict the parameter space and, more specifically, the scale of
the heavy sector, as we can see in Fig. 7.1, that indicates that the heavy scale must
be greater than 2 TeV. We only use this α22 constraint because it is the non-unitary
parameter with the most restrictive limit and the other parameters do not have
enough sensitivity.

We are confident that our method for the full-diagonalization matrix behaves
correctly because we made the same analysis with the BMDM approximation and
confirmed that each point in the parameter space coincides in both cases.

7.3.2 Allowing one cLFV process

As we said above, this analysis only uses the inverse seesaw model due to its sim-
plicity. Now we can use the branching ratio and the non-unitary limits to constrain
the parameter space of the three processes. In Fig. 7.2, we can see the parameter
space of the processes in different planes. As we expected, the µ → eγ process is
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Figure 7.1: the vev vs the α22 using the BMDM and full diagonalization method of
the inverse and linear models. The red line is the current limit of the α22 coming
from the oscillation experiments [25]

very constrained by its limits. In the plane α22-vM (Fig. (7.3)) there are some points
that, while being allowed by the branching ratio limits, are not when we consider
the neutrino experiment constraints on α22. These points are represented as red
points in the plots.

On the other hand, we observe that the branching ratio limits can provide stricter
constraints than those coming from neutrino experiments. Additionally, the branch-
ing ratio limits the α21 to values below 10−5 (see for instance the |α21| − vM plane).
In the Br(µ → eγ)-|α22| plane, we notice many points in the parameter space that
are excluded by the current α22 limit. It is important to emphasize that, although
not immediately apparent in this process, the branching ratio and non-unitary limits
complement each other in constraining the parameter space.

In the case of τ → eγ, it is important to note that the parameter space excluded
by the neutrino experiment constraint on α22 is larger than in the previous case.
This is easy to see in the α22-vM and Br(τ −→ eγ)-α22 planes. However, if we see
the Br(τ −→ eγ)-|α31| planes it seems like the α22 constraints a big part of the
parameter space of the process, this happens because the overlap effect in the plot.
Additionally, the Br(τ → eγ)-|α31| and α22-vM planes show that the limit on α31

coming from neutrino experiments restricts the same parameter space as the current
limit on the branching ratio in the τ → eγ process.
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Figure 7.2: The parameter space of the Br(ℓi −→ ℓjγ) using the current (black solid
line) and future (black dashed line) constraints of each process and the non-unitary
constraints that came from neutrino oscillation experiments. The red dashed lines
are the current non-unitary parameter limit. Also, the red points are the ones
forbidden by the α22 restriction.

TheBr(τ −→ µγ) process gives us similar results as theBr(τ −→ eγ). We notice
a big parameter space that is allowed by the branching limits, but it is not by the
non-unitary limits. Also, we see the same overlap effect in the Br(τ −→ µγ)-|α32|
plane. In this case, the α22 is not the only non-unitary parameter that constrains
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Figure 7.3: The parameter space of the Br(ℓi −→ ℓjγ) in the |αij|−vM planes. The
red dashed lines are the current non-unitary limits, and the solid and dashed black
lines are the future and current constraints of the processes. Also, the red points are
the ones forbidden by the α22 restriction. The dark blue points show the parameter
space forbidden by the current cLFV limits, the green points shows the additional
exclusion by including future limits. The purple points are allowed by the future
cLFV constraints [58].

phase space regions. If we see the α32-vM plane, we notice that α32 constrains more
than the current branching limit and also, could restrict the parameter space. On
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the right side of Fig 7.3 we see in the α32-vM plane that the α22 rules out almost
the same region than the α32 parameters.

Additionally, it is important to note that the region excluded by α22 (that comes
from neutrino experiments) tends to disfavor values for the heavy sterile neutrinos
below 1 TeV across all channels [58].
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Conclusions

Non-unitary effects in the active sector of neutrino mixing arise when additional
heavy neutral leptons are introduced into the theory. These effects depend on pa-
rameters associated with the new particles, which can be constrained through neu-
trino experiments. By analyzing both the appearance and disappearance channels
for each neutrino flavor, we can identify possible anomalies in the neutrino event
number that would be a signature of the presence of these non-unitary effects.

In this thesis, we have explored non-unitary sensitivities in various current and
future experiments, as well as within different models. We analyzed the FASERν
and FASERν2, where we explored the non-unitary effects using a model-independent
(α) parametrization. We computed the neutrino number of events in the SM using
the neutrino fluxes from [47], and with these values, we computed how the neutrino
events changed with the new, zero-distance, oscillation probability for every channel
(appearance and disappearance). To obtain a forecast of the FASERν sensitivity
to non-unitary parameters, we compared the expected neutrino number of events in
the SM case with those expected in the non-unitary framework, using a χ2 analysis
to quantify such a sensitivity. For FASERν, we analyzed two different scenarios,
with the most restrictive one being the one with a reduced energy region. However,
the resulting constraints are not competitive with the current limits. On the other
hand, we performed a forecast for the FASERν2 experimental setup, considering
both 5% and 10% systematic uncertainties. The results of FASERν2 are more en-
couraging, and in this case, we noticed that the α11 and α33 sensitivities are better
than the current limits. We hope these results will help to encourage the FASER
collaboration to improve their systematic uncertainties and pay attention to the e
and τ disappearance channels.

There are other processes where the non-unitary effects are present, as we said
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above, the non-unitary effects appear when we have additional massive states, as
in the case of the seesaw type I mechanism. Besides the FASER case, we used the
(current and future) limits of the Branching ratio of cLFV processes in the linear
seesaw model to restrict the non-unitary effects in the η parametrization. We also
translated these limits into the model-independent α parametrization and we saw
that these results are two orders of magnitude more restrictive than the current
limits in neutrino experiments.

Using alternative parametrizations for the mass matrices in the inverse seesaw
mechanism [35], we can suppress the cLFV processes. Similarly, we developed a
parametrization to observe the same phenomenology in the linear seesaw case. We
used the current non-unitary limits for these scenarios to constrain the parameter
space. However, the branching ratios and the non-unitary limits come from inde-
pendent experiments and we can use them to restrict the parameter space of the
low-scale seesaw models. Then, we described how we can switch on each cLFV pro-
cess. Using the current limits we concluded that our analysis disfavor scales below
the 1 TeV.

Non-unitary effects are fascinating observables, as they manifest in various mod-
els, such as the seesaw mechanism, and provide a means to constrain the parameter
space. Remarkably, these effects can be studied even in experiments not specifically
designed for neutrino oscillation, such as the FASERν detector. This highlights the
significance of non-unitary effects as a valuable probe in particle physics, and we
hope this work inspires further research in this area.
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Appendix A

Models to Suppress the cLFV
Processes

A.1 Linear Seesaw

In the linear seesaw mechanism, we consider three right-handed neutrinos, with B-
L charge -1, and three left-handed sterile neutrinos with no lepton number. The
Lagrangian of the linear seesaw is:

LY uk = y
(ℓ)
i L̂iH ℓ̂Ri + y

(ν)
i L̂i H̃ N̂Ri + ỹ

(ν)
i L̂i H̃ Ŝci +M

(N)
i Ŝi N̂Ri + h.c. (A.1)

where,

H =

(
H+

H0

)
, H ′ =

(
H ′+

H ′0

)
, Li =

(
νLi
ℓi

)
(A.2)

H̃ = iσ2H
∗ and H̃ ′ = iσ2H

′∗. We can notice that the B − L symmetry forbids the
Majorana mass term of the right-handed neutrinos. To forbid the Majorana mass
of the left-handed sterile and to construct the MD and MR diagonals, we need to
include a discrete group Zn. All the fermions must transform non-trivially under
the discrete group; for each lepton f we have: f1 ∼ ω1, f2 ∼ ω2, f3 ∼ ω3 where
f = L,N, S and the ωN = 1. To forbid any Majorana mass term, we need to fulfill
the next condition N > 6 [58]. With this condition, we propose the model in the
Table A.1.
The mν will have the next form:

mν =

 0 0 ỹ1v
3
2

0 ỹ2v
3
2 ỹ4v

2
2

ỹ3v
3
2 ỹ5v

2
2 ỹ6v

1
2

 . (A.3)

this is the A1 two-zero texture accordingly with [59]. This is compatible with
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Le Lµ Lτ le lµ lτ N1 N2 N3 S1 S2 S3 H H i
2 ϕ

SU(2)L 2 2 2 1 1 1 1 1 1 1 1 1 2 2 1
U(1)B−L −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 1 1

Z7 ω ω2 ω3 ω ω2 ω3 ω ω2 ω3 ω ω2 ω3 1 ω, ω2, ω3 1

Table A.1: Linear seesaw model with three extra Higgs and one extra scalar field in accordance
with [42].

the neutrino phenomenology as the neutrino oscillation and the restriction on the
effective mass of the neutrinoless double beta decay [60–62]. To get the ML mass
term, we need to add more Higgs doublets, which needs B-L, and Z7 charges to
compensate the charges of S and N leptons. This is one way to get the MD and
M diagonals but it is not unique. It is important to remark that we work with a
U(1)B−L symmetry that could be local, as a consequence new boson would be in
the model.

A.2 Inverse Seesaw

The inverse seesaw model is well studied in [35]. However, we will summarize it and
then extend this model to the case where we allow only one cLFV channel. As in
the linear seesaw case, we will use the B−L symmetry to forbid the Majorana term
in the right-handed neutrino. This model has three right-handed neutrinos N̂R with
B − L charge -1 and three sterile fermions Ŝ. In this model, Lagrangian is:

LY uk = y(ℓ) L̂H ℓ̂R + y(ν) L̂ H̃ N̂R +M (N) Ŝ N̂R + µŜŜc + h.c. (A.4)

we can build a model that is allowed by the oscillation data and has a A1 two-zero
texture as in Eq. A.3 using the U(1)B−L × Z5 symmetry. We use two scalar fields ξ
and ϕ to break these symmetries. The µ matrix has the next form:

µ =

 0 0 ỹ1v
3
2

0 ỹ2v
3
2 µ1

ỹ1v
3
2 µ1 ỹ3v

1
2

 . (A.5)

Where µ1 are the Majorana mass terms that appear in the model. The ξ field
generates the other components of this matrix. As in the linear seesaw case, the
U(1)B−L can be local, so a Z ′ would be in the model.
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Le Lµ Lτ le lµ lτ N1 N2 N3 S1 S2 S3 H ξ ϕ
SU(2)L 2 2 2 1 1 1 1 1 1 1 1 1 2 1 1
U(1)B−L −1 −1 −1 −1 −1 −1 −1 −1 −1 0 0 0 0 0 1

Z5 ω ω2 ω3 ω ω2 ω3 ω ω2 ω3 ω ω2 ω3 1 ω 1

Table A.2: Inverse-seesaw model with two scalar fields that broke the U(1)B−L×Z5,
in accordance with [35].
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Appendix B

Models to Allow One cLFV
Process

B.1 Linear Seesaw

If we want only one decay channel we need to add more particles to the model. The
condition to allow the τ −→ eγ process using the same symmetries and charges that
in the Table A.1 is to add a Higgs with charge ω−2 and change the charges of H ′

i

that are ω, ω2, ω5 and for this case, we have the same charge on the fermions.For
this case the mν matrix structure is a B3 two-zero texture:

ML =

ỹ1v32 0 ỹ2v
3
2

0 0 ỹ4v
2
2

ỹ3v
3
2 ỹ5v

2
2 ỹ6v

1
2

 . (B.1)

The two other processes have the same number of particles and the same charges in
H ′
i and the extra Higgs with charge ω−2, but instead we need to permutate the Z7

in the fermion sector. For the µ −→ eγ the Z7 charges of the fermions are: f1 ∼ ω1,
f2 ∼ ω3, f3 ∼ ω2 a consequence of this, the structure of the light neutrino mass
matrix change to:

νµ =

ỹ1v12 ỹ1v
2
2 0

ỹ3v
2
2 ỹ2v

3
2 ỹ4v

2
2

0 ỹ5v
2
2 0

 . (B.2)

This is the so-called B4 two-zero texture. At last, to allow the τ −→ µγ process
and suppress the other two processes, we need to permutate again the Z7 charges
of the fermions as follows: f1 ∼ ω3, f2 ∼ ω1, f3 ∼ ω2, in this case the mν matrix
has the A1 two-zero texture (Eq. (A.3)), as in the model with all cLFV processes
suppressed.
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B.2 Inverse Seesaw

to allow only one channel we are going to use the same permutation of charges as
in the linear seesaw due to the Lagrangian term that generates the M matrix being
the same in both models. The field that generates the new terms that allow the
processes for each case is a new scalar field with a charge ω2. It is important to
remark that this new extra scalar field would have a B − L charge equal to zero,
and for this reason, we can put a charge ω2. In the case of τ → eγ the mν matrix
has the A1 two-zero texture, the τ → µγ has the B3 two-zero texture and at last the
µ→ eγ has a A2 two zero texture in the mν that is described by the next equation:

νµ =

 0 ỹ1v
3
2 0

ỹ3v
3
2 ỹ2v

3
2 ỹ4v

2
2

0 ỹ5v
2
2 ỹ6v

1
2

 . (B.3)
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