
 
 
 

CENTRO DE INVESTIGACIÓN Y DE ESTUDIOS AVANZADOS 
DEL INSTITUTO POLITÉCNICO NACIONAL 

 
 

 
Unidad Zacatenco 

Departamento de matemáticas 
 
 
 

Dimensión homotópica de espacios de configuraciones de cuadrados 
duros vía teoría de Morse discreta 

 
 
 

Tesis que presenta: 
Mary Carmen Pérez Morales 

 
 
 

para obtener el grado de  
Maestra en ciencias 

 
 
 

en la Especialidad de 
Matemáticas 

 
 
 

Director de Tesis: 
Dr. Jesús Gonzáles Espino Barros 

 
 
 

Ciudad de México.                                                                         Enero, 2025. 
 
 
 



 



 
 
 

CENTER FOR RESEARCH AND ADVANCED STUDIES 
OF THE NATIONAL POLYTECHNIC INSTITUTE 

 
 

 
Zacatenco Campus 

Department of Mathematics 
 
 
 
 

 Homotopy dimension of configuration spaces of hard squares via 
discrete Morse theory 

 
 
 

A dissertation presented by 
Mary Carmen Pérez Morales 

 
to obtain the Degree of  

Master in Science 
 

in the Speciality of 
Mathematics 

 
 

Thesis advisor: 
Dr. Jesús González Espino Barros 

 
 
 

 
 

 
 

 
 

Mexico City                                                                                                       January, 2025 





Contents
Resumen 3

Abstract 4

Acknowledgements 5

1 Introduction 6

2 Preliminaries 9
2.1 Simplicial complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Cubical complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Cell complexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Discrete Morse theory . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.5 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Configuration spaces of hard squares 28

4 Deeply inside particular cases 31
4.1 q=1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 n=2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 n=3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.4 n=4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Conclusions 85

2



Resumen

En este trabajo se estudia la dimensión homotópica del espacio de configuraciones
C(n; p, q) de n cuadrados duros en un rectángulo p×q . En [1], H. Alpert y sus colab-
oradores, describen un algoritmo para construir un campo vectorial gradiente sobre
el complejo cúbico X(n; p, q), el cual es un retracto por deformaciòn de C(n; p, q),
y conjeturan cotas superiores sobre j para las cuales Hj[X(n; p, q)] ̸= 0. Aquí se
propone usar un algoritmo distinto para construir un campo vectorial gradiente V
sobre X(n; p, q), el cual es diferente al propuesto en [1]. Luego, usando el algo-
ritmo propuesto, se obtiene la dimensión homotópica de X(n; p, q) para 1 ≤ q ≤ 2;
mientras que para n = 3 las cotas para el valor de j son verificadas para valores
arbitrarios de p y q. Finalmente, mediante una implementación computacional de
este algoritmo sobre X(4; p, q), las cotas para j son verificadas también para valores
relativamente pequeños de p y q.
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Abstract

In this work, the homotopy dimension of configuration spaces C(n; p, q) of n hard
squares in a rectangle p × q are studied. In [1], H. Alpert and her collaborators,
give a procedure for constructing a gradient vector field over the cubical complex
X(n; p, q), which is a deformation retract of C(n; p, q), and conjecture upper bounds
over j when Hj[X(n; p, q)] ̸= 0. This work proposes to use a different algorithm
to construct a gradient vector field V over X(n; p, q). Then, using the algorithm
proposed, for grids of height q ∈ {1, 2}, the homotopic dimension of X(n; p, q) is
obtained. Meanwhile for n = 3 the conjectured bounds for j are verified for arbitrary
values of p and q. Finally, via a computational implementation of the same algorithm
used for the previous cases, for n = 4 and relatively small values of p and q, the
bounds are again verified too.
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1 Introduction
For a topological space X, the classical configuration space F (n,X) of n labelled
non-collisioning particles in X consists of the n-tuples (x1, . . . , xn) in the topological
product Xn satisfying xi ̸= xj for i ̸= j. When X is in fact a metric space and ϵ > 0,
we can consider in addition the subspace Fϵ(n,X) ⊂ F (n,X) of n labelled non-
overlapping ϵ-thick particles in X. To fix ideas, assume X is the closure of a convex
bounded open region Int(X) of an Euclidean space endowed with a specific metric
d, and let ∂X stand for the boundary of X. Then Fϵ(n,X) consists of the n-tuples
(x1, . . . xn) ∈ F (n, Int(X)) for which the corresponding closed ϵ-balls B1, . . . Bn in
X centered at the points x1, . . . , xn satisfy Bi ∩Bj = ∂Bi ∩ ∂Bj for i ̸= j, as well as
Bi ∩ ∂X = ∂Bi ∩ ∂X for all i.

In this work we focus on the case where X is a bounded rectangle in the plane
with sides parallel to the axes and of integer sides, say p and q. Additionally we con-
sider the max metric and ϵ = 1/2. The resulting space, also denoted as C(n; p, q),
thus consists of configurations of n labelled non-overlapping squares of unit side
that are confined to a p× q grid. This object was initially studied by Alpert et al in
[1]. In that work, inspired by the classical moves in the well-known 15 puzzle which
holds with (n, p, q) = (15, 4, 4), the authors constructed a natural cubical complex
X(n; p, q) sitting inside C(n; p, q) as a deformation retract. In particular, computa-
tional techniques can be used to assess the topological properties of C(n; p, q) via
its homotopy equivalent combinatorial model X(n; p, q). Indeed, Alpert and her
collaborators constructed a discrete gradient field on the cubical complex X(n; p, q)
which lead them to prove that the j-dimensional homology group Hj(C(n; p, q)) is
non-zero only for

j ≤ min
{
pq − n, n,

pq

3

}
.

In fact, a closer analisis of the methods reveals that their argument gives an explicit
upper bound for the homotopy dimension of C(n; p, q), namely

hdim(C(n; p, q)) ≤ min
{
pq − n, n,

pq

3

}
. (1)

Here, by homotopy dimension of a space Z we mean the smallest dimension of a cell
complex having the homotopy type of Z. As showed by Alpert and her collaborators,
the assessment of homotopy dimension in (1) is surprisingly close to being optimal
on a large scale perspective. Yet, based on extensive computer calculations, Alpert
and her collaborators realized that, in particular instances, the homotopy dimension
of C(n; p, q) would seem to be smaller than the bound indicated by (1).

In this work we address the problem of determining the homotopy dimension of
C(n; p, q) for small values of n or q. With this in mind we use a gradient field on
X(n; p, q), which is valid for arbitrary values of n, p and q, but completely different
from the one developed by Alpert et al. The gradient field constructed and used
in the present work seems to read off the homotopy dimension of C(n; p, q) with
a precision that is apparently better —almost optimal— than the one provided by
the discrete gradient field originally used by Alpert and her collaborators. Such a
situation might be a result, in part, of the fact that, unlike Alpert’s et al field, our
discrete gradient field is not equivariant with respect to the free action of the sym-
metric group on n letters and, consequently, has the ability of picking up topological
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aspects inherent to the ordered, rather than the unordered, configuration space of
hard squares.

More specifically, in some of the cases we study in detail here, all critical cells in
our gradient field lie in dimensions that are actually smaller than the upper bound
in (1), thus improving on the homotopy dimension bound. In some other instances
, by comparing with the homology computations by Alpert et al, we verify that our
homotopy dimension upper bounds are in fact optimal.

A point that must be spelled out arises from the fact that our gradient field
is extremely involved in the general situation. Actually, this is the reason why
we are forced to refrain from analyzing the field in situations with large values of
n and min{p, q}. On our view, this situation is an unavoidable consequence of
the fact that the topology of C(n; p, q) (and therefore of X(n; p, q)) appears to be
highly complex. Having said so, it should be remarked that as p and q increase,
the topology of C(n; p, q) stabilizes into the much better understood topology of the
classical configuration space of n labelled (infinitesimal) points in the plane R2, i.e.,
the Eilenberg-MacLane space corresponding to Artin’s classical braid group with n
strands.

Together with Alpert’s and collaborators ideas, our techniques can be consid-
ered as a discrete counterpart of those used by Plachta in [7] to study configuration
spaces of labelled non-overlapping hard squares moving on rectangular environments
whose size do not have to be integer numbers. In such a more general situation, affine
Morse-Bott theory and smooth flows are used to study the resulting spaces. Yet, it
should be noted that the connectivity properties in these slightly more general con-
figuration spaces are deduced by Pachta from their interplay with the configuration
spaces C(n; p, q) based on integer-sized rectangles.

After reviewing the needed essentials on combinatorial complexes and Forman’s
discrete Morse theory, we introduce our discrete gradient field, and apply it into
the study of the topology of C(n; p, q) for small values of n or q. We stress on the
homotopy-dimension optimality of our gradient field in the case of a few families
of triples (n, p, q), as well as for some additional examples based on computer cal-
culations. We remark that the full determination of the homotopy dimension of
C(n; p, q) as an explicit function of n, p and q is a currently open problem with
important insights into phase transition problems for hard-spheres systems.

We close this introduction with a statement that summarizes the goals achieved
in this work, together with an analysis of their implications within the context of
previous results in the area.

Theorem 1.1. The gradient field constructed in this work for the homotopy model
X(n; p, q) of the configuration space of n non-overlapping squares in a p×q rectangle
has the following properties:

a) When min{p, q} = 1 (and max{p, q} ≥ n, so that C(n; p, 1) ̸= ∅), there are n!
critical cells, all of dimension 0. In particular C(n; p, 1) has n! components,
each of which is contractible, so the homotopy dimension of C(n; p, q) is 0.

Assuming in addition min{p, q} ≥ 2:
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b) When n = 2 there are only 2 critical cells, one of dimension 0 and the other
one of dimension 1. In particular C(2; p, q) has homotopy dimension 1 with
the homotopy type of a circle.

c) When n = 3 and p = q = 2, the gradient field has 8 critical cells, 4 of
which have dimension 0, and the other 4 have dimension 1. In particular
the homotopy dimension of C(3; 2, 2) is 1. In fact, has 2 components, each
homotopy equivalent to a circle.

d) When n = 3, min{p, q} = 2 and max{p, q} ≥ 3, the gradient field has no
critical cells in dimension greater than 1, so that the homotopy dimension of
C(3; p, q) is 1. In fact, C(3; p, q) is connected and has homotopy type of a
wedge of 7 circles.

e) When n = 3 and min{p, q} ≥ 3, the gradient field has no critical cells of
dimension greater than 2, and only 9 critical cells of dimension 2. In fact, the
homotopy dimension of C(3; p, q) is 2.

In order to contextualize the above results, it is convenient to take a slightly
closer look at the work of Alpert et al in [1], where it is proved that any non-trivial
homology group Hj[C(n; p, q)] must hold with

j ≤ min
{
pq − n, n,

pq

3

}
. (2)

Furthermore, on the basis of extensive homological computations, the authors con-
jectured that the estimated in (2) could be sharpened to

j ≤ min
{
pq − n, n− 8n2

9pq
,
pq

4

}
. (3)

In this line of thinking, the theorem above allows us to see that the conjecture
improvement in (3) holds true in a number of cases, sometimes being sharp and
some other times admitting further improvements.

For instance, a simple initial situation where (3) holds true in a sharp way arises
with min{p, q} ≥ 2 = n, in view of item (b) of the theorem above.

Concerning cases where (3) can be further improved, take min{p, q} = 1 with
max{p, q} ≥ n. Then item (a) of the theorem above implies that the actual ho-
motopy dimension of C(n; p, 1) is zero, while the right-hand side in (3) can be
arbitrarily large (take for instance q = 1 and p = n2). A more interesting and
substantial example of this improvement situation arises with n = 3, min{p, q} = 2
and max{p, q} ≥ 4, say p ≥ 4 and q = 2. In such a case, the integral part of the
right-hand side in (3) satisfies⌊

min
{
pq − n, n− 8n2

9pq
,
pq

4

}⌋
=

⌊
n− 8n2

9pq

⌋
= 2, (4)

however item (d) of the theorem above implies that, in fact, C(n; p, q)=C(3; p, 2)
has homotopy dimension 1, so that the upper stimate in (3) can be improved by one
unit and so that the conclusion applies in homotopical (rather than just homological)
terms.
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2 Preliminaries
In this section, we introduce standard definitions and useful results for the purposes
of this work. The results of subsections 2.1 to 2.5 can be found on [5], [4], [6], [2]
and [3] respectively.

2.1 Simplicial complexes

Definition 2.1. Let n ≥ 0 be an integer and [vn]:= {v0, v1, ..., vn} a collection of
n+1 symbols. An (abstract) simplicial complex K on [vn] or simply a complex is a
collection of subsets of [vn], excluding ∅, such that

1. If σ ∈ K and τ ⊂ σ, then τ ∈ K

2. {vi}∈ K for every vi ∈ [vn]

The set [vn] is called the vertex set of K and the elements {vi} are called vertices or
0-simplices and the set with all of them is denoted by V(K).

As an easy example, with [v3] ={A, B, C, D} then defining K :={{A}, {B},
{C}, {D}, {A, B}, {A, C}, {A, D}, {B, C}, {B, D}, {C, D}, {A, D, C}, {A, B, C},
{A, D, B}, {D, B, C}} it is easy to check K satisfies the definition of a simplicial
complex. This simplicial complex may be viewed as in the figure below.

A

B

C

D

Figure 1: Simplicial complex associated to K

Definition 2.2. Given a simplicial complex K; a set σ ∈ K of cardinality i + 1 is
called an i-dimensional simplex or i-simplex. The dimension of K, denoted by
dim(K) is the maximum of the dimensions of all its simplices.

In the last example, dim(K) = 2 since the maximum of the cardinalities of all
the simplices of K is 3.

Definition 2.3. Let L ⊂ K, L is said to be a subcomplex of K if L is a simplicial
complex by itself.
For σ ∈ K the subcomplex generated by σ (denoted by σ) is defined as

σ := {τ ∈ K | τ ⊂ σ}

Besides if σ, τ ∈ K and τ ⊂ σ, then τ is said to be a face of σ and σ is said to be
a coface of τ , and is common to use the notation τ < σ for this. And finally, the
i-skeleton of K is given by Ki = {σ ∈ K | dim(σ) ≤ i}.
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In the last example, by the definition, the complex generated by a simplex, it is
easy to see

{D,B,C}:={ {B}, {C}, {D}, {B, C}, {B, D}, {C, D}, {D, B, C}}

where all of its elements are faces of {D, B, C}.
Let K be a simplicial complex and τ, σ ∈ K The notation σi is used to denote

the dimension of σ and τ < σi is used for any face of σ of dimension strictly less
than i.
For τ < σ, the number dim(σ) − dim(τ) > 0 is called the codimension of τ with
respect to σ.

Definition 2.4. Let K be a simplicial complex, for any simplex σ ∈ K, the boundary
of σ in K is defined by

∂K(σ) := ∂(σ) :={τ ∈ K | τ is a codimension 1-face of σ}.

Also, if σ is not properly contained in any other simplex of K, then σ is called to be
a facet of K.

Definition 2.5.

1. A geometric n−simplex σ is the convex hull of a set A of n + 1 affine inde-
pendent points in RN , for some N ≥ n. The convex hulls of subsets of A are
called subsimplices of σ.

2. The standard n−simplex is the convex hull of the set of endpoints of the stan-
dard unit basis {(1, 0, ..., 0), (0, 1, 0, ..., 0), ...(0, ..., 0, 1)} in Rn+1.

More generally, given a finite set A, taking the vector space RA, whose coordi-
nates are indexed by the elements of A; and correspondingly, for any B ⊂ A, then a
standard B−simplex in RA as the one that is spanned by the endpoints of the part
of the standard unit basis indexed by elements in B in that vector space.

Definition 2.6. Given a finite abstract simplicial complex K, its standard geo-
metric realization is defined to be the topological space whose underlying space is
obtained by taking the union of standard σ−simplices in RV (K), for all σ ∈ K.

Given a nonempty abstract simplicial complex K and thinking of Kσ as the
standard σ−simplex of σ ∈ K the constructive definition of the geometric realization
of K goes as follows:

• Start with an arbitrary vertex of K, and then add new simplices one by one,
in any order, with the only condition being that all the proper subsimplices of
the simplex that is being added have already been glued on at this point.

• Assume that we are at the situation in which we would like to glue the simplex
σ ∈ K onto the part of the realization of X that we have so far. The new space
is X ∪∂Kσ Kσ, which is obtained by identifying the boundary of Kσ with the
subspace of X, which is the result of gluing the simplices corresponding to the
proper subsimplices of σ. In shortly, the simplex Kσ is glued onto X along its
boundary in the usual way.

10



As an illustrative example, given K ={{A},{B},{C},{D},{A,B},{B,C},{A,C},{A,B,C},{C,D}},
by the first item, first all the vertices are needed, and then one by one each of the
edges are glued, and finally is glued the 2-simplex {A,B,C}, as shown in the figure
below.

Figure 2: Caption

One way to think of this gluing process is the following. Given a collection
of simplices {Kσ}σ∈K , together with inclusion maps iσ,τ : Kσ ↪→ Kτ whenever
σ < τ . The geometric realization |K| of K is obtained from the disjoint union of
the simplices by one extra condition: two points are identified whenever one of them
maps to the other one by one of these inclusion maps.

Definition 2.7. A geometric simplicial complex K in Rn is a collection of simplices
in Rn such that every subsimplex of a simplex of K is a simplex of K and the
intersection of any two simplices of K is a subsimplex of each of them.

As for abstract simplicial complexes, the concepts of face, subcomplex and skele-
ton can be defined for geometric simplicial complexes.

Definition 2.8. For a geometric simplicial complex K, let |K| denote the union of
all simplices of K. The topology on |K| is defined as follows: every simplex σ of K
has the induced topology, and in general A ⊂ |K| is open if and only if A∩σ is open
in σ, for all simplices σ ∈ K (equivalently, the word "open" could be replaced with
the word "closed").

It is importan to note that

• If K has finitely many simplices, then the intrinsic topology of |K| is the same
as the topology induced from the encompassing space Rn.

• In general, a geometric realization of an abstract simplicial complex is a geo-
metric simplicial complex.

Remark: From here, we will refer to geometric simplicial complexes as sim-
plicial complexes.

Definition 2.9. Let K be a simplicial complex and α, β ∈ K with α < β then α is
said to be a free face of β if α is a face of β but not a face of any other simplex.

Definition 2.10. Let K be a simplicial complex and α, β ∈ K such that α < β with
α a free face of β, dim(α + 1) = dim(β) and β a facet of K, the pair (α, β) is said
to be a free pair and the act of removing a free pair of K is called an elementary
simplicial collapse.
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For example, on the simplicial complex K1 on the right of figure 3, the face
{B,C} of {A,B,C} is free and {A,B,C} is a facet of K1, and K2 = K1 −
{{B,C}, {A,B,C}} on the left is the result of the the elementary collapse.

A

B C

D

A

B C

D

Figure 3: Example of an elementary simplicial collapse

Since for a free pair neither of the elements are faces of other elements, it follows
that the result of an elementary collapse is another simplicial complex and a finite
sequence of elementary collapses is a simplicial complex too. As usual, if K2 is
obtained from K1 by elementary simplicial collapses then it is said that K1 collapses
to K2 and this is indicated by K1 ↘ K2. Moreover, as can be seen in figure 3, for
the geometric realization of K1, a collapse can be seen as pushing down the edge
{B,C} through the triangle {A,B,C} and stopping at K2, i.e. K1 is a deformation
retract onto K2 so both of them are homotopy equivalent.

Definition 2.11. For K and L simplicial complexes, they are said to be simple
homotopy equivalent , denoted by K ∼ L, if they are related by a sequence K =
K0, K1, ..., Kk = L where for each 0 ≤ i < k there is an elementary collapse from
either Ki to Ki+1 or vice versa.

Definition 2.12. A discrete vector field V on a simplical complex K is a collection
of pairs {αp < βp+1} of simplices of K such that each simplex is in at most one pair
of V. i.e.,

V :={(αp, βp+1) | α, β ∈ K,α < β and each simplex is in at most one pair}

Let K be a simplicial complex and V a discrete vector field on it, a V-path is a
sequence of simplices of K

αp
0, β

p+1
0 , αp

1, β
p+1
1 , ..., αp

l , β
p+1
l , αp

l+1

such that for each i = 0, ..., l, αi < βi, (α, β) ∈ V and βi > αi+1 ̸= αi, such a path
is a non-trivial closed path if l ≥ 0 and α0 = αl+1. A discrete gradient field V with
no non-trivial closed paths is said to be a gradient vector field.
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2.2 Cubical complexes

Definition 2.13. An elementary interval is a closed interval I ∈ R of the form

I = [l , l + 1 ] or I = [l , l ]

for some l ∈ Z. Elementary intervals that consist of a single point are known as
degenerate, while those of length 1 as nondegenerate.

To simplify the notation, it is written

[l ]=[l , l ]

Definition 2.14. An elementary cube Q is a finite product of elementary intervals,
i.e.

Q = I1 × I2 × ...× In ⊆ Rn

where each Ii is an elementary interval. Kn is used to denote the set of all elementary
cubes in Rn and K for the set of all elementary cubes, namely

Kn := {Q ⊆ Rn | Q is elementary cube}

and

K =
⋃∞

n=1 Kn

respectively.

Figure 1 shows examples of the elementary cubes I1 = [1]× [1], I2 = [2]× [2, 3],
I3 = [3, 4]× [1] and I4 = [5, 6]× [2, 3], all in R2

x

y

0 1 2 3 4 5 6 7
0

1

2

3

4

Figure 4: Examples of elementary cubes in R2.

Definition 2.15. Let Q = I1 × I2 × ... × In ⊆ Rn be an elementary cube. The
dimension of Q, denoted as dim(Q), is defined to be the number of nondegenerate
components in Q. The interval Ii is referred to as the ith component of Q and is
written as Ii(Q). The embedding number of Q, denoted by emb(Q), is defined as n
since Q ⊆ Rn.
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Since emb(Q) = n, then Q ∈ Kn

Definition 2.16. Kk is defined as

Kk :={Q ∈ K | dim(Q) = k}

and

Kn
k := Kk ∩ Kn

By definition the elements of Kn
k are elementary cubes Q with k nondegenerate

components and such that they are embedded in Rn. Is easy to see that for any Q
the inequality

0 ≤ dim(Q) ≤ emb(Q)

holds.

Proposition 2.17. Let Q ∈ Kn
k and Q ∈ Kn′

k′ . Then

Q× P ∈ Kn+n′

k+k′

Proof. By definition, Q and P can be written as Q = I1 × I2 × ... × In and P =
J1 × J2 × ...× Jn ′ respectively, with Ii and Ji ′ elementary intervals. So

Q × P = I1 × I2 × ...× In × J1 × J2 × ...× Jn ′

is the product of n + n ′ elementary intervals, also is easy to see the nondegenerate
intervals in Q×P are exactly the same that those in Q or P, it is dim(Q)×dim(P ) =
dim(Q) + dim(P )

Definition 2.18. Let Q,P ∈ K. If Q ⊆ P , then Q is a face of P. This is denoted
by Q ⪯ P and if Q is a face of P and Q ̸= P then Q is said to be a proper face of
P, which is written as Q ≺ P

For Q and P in K, with Q ⪯ P it is clear dim(Q) ≤ dim(P ) with the equality
only when Q=P, also if Q ≺ P then dim(Q) ≤ dim(P )− 1

Definition 2.19. A set X ⊆ Rn is cubical if X a finite union of elementary cubes.

As for elementary cubes, if X ⊆ Rn is a cubical set, then the following notation
is adopted

K(X) :={ Q ∈ K | Q ⊂ X }

and

Kk(X) :={ Q ∈ K(X) | dim(Q) = k }

Since for Q ⊂ X with X ⊂ Rn and Q ∈ K it follows emb(Q) = n hence X ⊂ Kn,
then for X the notation Kd(X) is somewhat redundant. It is important to note that,
for X ⊆ Rn cubical X =

⋃n
l=0Kl(X), since emb(X) ≥ dim(Q) for every Q ∈ K(X).

14



Example 2.1. In figure 4, the elementary intervals I1 = [1]× [1], I2 = [2]× [2, 3],
I3 = [3, 4]× [1] and I4 = [5, 6]× [2, 3] in R2 are shown. Now if X = I1 ∪ I2 ∪ I3 ∪ I4
then X ⊂ R2 is a cubical set with

K0(X) = {[1]× [1], [2]× [2], [2]× [3], [3]× [1], [4]× [1], [5]× [2], [5]× [3], [6]× [2],
[6]× [3]}
K1(X) = {[2]× [2, 3], [3, 4]× [1], [5, 6]× [2], [5, 6]× [3], [5]× [2, 3], [6]× [2, 3]}
K2(X) = {[5, 6]× [2, 3]}
Figure 5 shows K0(X) in red, K1(X) in pink, and K2(X) in a darker pink for X

x

y

0 1 2 3 4 5 6 7
0

1

2

3

4

Figure 5: K0(X), K1(X) and K2(X) for X.

Proposition 2.20. If X ⊂ Rd is cubical, then X is closed and bounded.

Proof. Since by definition a cubical set is the finite union of elementary cubes,
and elementary cubes are finite products of closed intervals, then X is closed. Let
Q ∈ K(X), Q = I1 × I2 × ... × In where Ii are elementary interval Letting ρ(Q) =
max{|li| + 1 | i ∈ i, ..., d}, since K(X) < ∞ then R = max{ρ(Q) | Q ∈ K(X)}
satisfies X ⊂ B0(0, R).

As an important part and in a similar way to that for simplicial complexes, cells
in the context of cubes are defined.

Definition 2.21. Let I be an elementary interval. The associated elementary cell
is

I̊ =

{
(l , l + 1 ) ifI = [l , l + 1 ],

[l ] ifI = [l , l ].

This definition is extended to a general elementary cube in the easiest way.

Definition 2.22. Given an elementary cube Q= I1×I2×...×In ⊂ Rn, the associated
elementary cubical cell or elementary n−cubical cell is defined as

Q = I̊1 × I̊2 × ...× I̊n

By its utility for the next section, some properties of elementary cells are sum-
marized in the following proposition.

15



Proposition 2.23. Elementary cells have the following properties:

1. A ⊂ Rd bounded implies that card{Q ∈ Kd | Q̊ ∩ A ̸= ∅} <∞

2. For every Q ∈ K, cl(Q̊) = Q

3. If P,Q ∈ Kd, then P̊ ∩ Q̊ = ∅ or P = Q.

4. If X is a cubical set and Q̊∩X ̸= ∅ for some elementary cube Q then Q ⊂ X.
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2.3 Cell complexes

Definition 2.24. A closed Euclidean n-cell En is a homeomorphic image of the
Euclidean n-elementary cube In, i.e. the cartesian product of n copies of the closed
unit interval I = {t ∈ R | 0 ≤ t ≤ 1}

Other n-cells besides the n-cube are

• The unit n-disc Dn = {(t1, t2, ..., tn) ∈ Rn |
∑n

i=1 t
2
i ≤ 1}

• The standard n-simplex ∆n={(t0, t1, ..., tn) ∈ Rn+1 | ti ≥ 0, for 0 ≤ i ≤
n,
∑n

i=1 ti = 1}

Definition 2.25. The boundary ∂(En) of a closed Euclidean n-cell embedded as
a convex set in Rn is its topological frontier and is homeomorphic to the standard
(n− 1)-sphere

Sn−1 = {t1, t2, ..., tn ∈ Rn |
n∑

i=1

t2i = 1}

An open n-cell is a homeomorphic image of En − ∂(En).

All these spaces except the open n-cell are compact (closed and bounded for being
in Rn), and the open n-cell is locally compact. Next is stated the definition of a cell
structure within a set, it is important to note X is not necessarily a topological set
for the following definition.

Definition 2.26. Let X be a set. A cell structure on X is a pair (X,Φ), where
Φ is a collection of maps of closed Euclidean cells into X satysfying the following
conditions

1. If ϕ ∈ Φ and ϕ : En → X then ϕ is injective on En − ∂(En).

2. The images {ϕ(En − ∂En) | ϕ ∈ Φ} partition X, i.e., they are disjoint and
have union X.

3. If ϕ ∈ Φ has domain En, then ϕ(∂En) ⊂
⋃

{ψ(Ek − ∂Ek) | ψ ∈ Φ, ψ : Ek →
X, for k ≤ n− 1}

If ϕ ∈ Φ, ϕ : En → X, then ϕ(En) = σn is called an n− cell or closed n-cell
of (X,Φ), as well ϕ is called the characteristic map of σn, so Φ is a set of charac-
teristic maps for the cells of (X,Φ). Similarly ϕ(∂En) = ∂σn and ϕ(En − ∂En) are
called the boundary and the interior of the cell σn respectively, besides for n > 0,
ϕ(En − ∂En) is called an open n-cell. All of the terminology is useful, but since X
is just a set (and not a topological one necessarily) these terms do not mean the cells
are neither open nor closed topologically, and even with a topology on X open cells
need not be topological open sets and closed cells need not be topological closed sets.

Definition 2.27. Let X be a set with a cell structure, the (n− 1) skeleton Xn−1 is
defined as

Xn−1 =
⋃

{ψ(Ek − ∂Ek) | ψ ∈ Φ has domain Ek and k ≤ n− 1}

Lemma 2.28. Let (X,Φ) be a cell structure. Then
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1. If σn is a cell with charateristic map ϕ, then ϕ(En − ∂En) = σn − ∂σn is the
interior of σn

2. each n-cell is a subset of Xn,

3. for each n Xn =
⋃

{σk | σk is a k-cell of (X,Φ) and k ≤ n.}

Proof. 1. By 3. in the definition, ∂σn = ϕ(∂En) is in Xn−1 and by 2. ∂σn is
disjoint from ϕ(En − ∂En). Hence σn = ϕ((En − ∂En) ∪ ∂En) = ϕ(En −
∂En) ∪ ϕ(∂En) is a disjoint union, hence σn − ∂σn is the interior.

2. By the first statement, σn − ∂σn ⊂ Xn and by 3. in the definition, ∂σn is in
Xn−1 ⊂ Xn. Therefore σn = (σn − ∂σn) ∪ ∂σn ⊂ Xn.

3. It is always true that σn − ∂σn ⊂ σn so Xn ⊂
⋃

{σk | σk is a k-cell of (X,Φ)
and k ≤ n}, and by the statement before, the reverse inclusion is true too.

By definition of Xn, it is easy to see that

X0 ⊂ X1 ⊂ ... ⊂ Xn ⊂ ... ⊂ X

Definition 2.29. Let (X,Φ) and (X,Φ′) be two cell structures, it is said that they
are strictly equivalent if there is a one-to-one correspondence between Φ and Φ′ such
that a characteristic function with domain En, and its corresponding function differ
only by a reparametrization of their domain. That is, if ϕ and ϕ′ are corresponding
functions of Φ and Φ′ respectively, then ϕ′ = ϕ◦h, where h : (En, ∂En) → (En, ∂En)
is a homeomorphism of pairs.

Given that the functions h are homeomorphism of pairs, then strictly equivalence
is actually an equivalence relation on the collection of cell structures. If (X,Φ) is a
cell structure, let CΦ ={(σn, [ϕ]) | σn = ϕ(En), [ϕ] the strict equivalence class of ϕ
}. In an abuse of notation such a pair (σn, [ϕ]) is denoted just by σn.

Definition 2.30. A cell complex on a set X or a cellular decomposition on a
set X is an equivalence class of cell structures (X,Φ) under the equivalence relation
of strict equivalence. A cell complex on X will be denoted by a pair (X, C), where
C = CΦ for some representative cell structure (X,Φ). The set C is called the set of
(closed) cells of (X, C)

Definition 2.31. A subcomplex (A,F) of a cell complex (X, C), denoted as (A,F) ⊂
(X, C), is a cell complex (by its own) such that A ⊂ X and F ⊂ C.

Letting (X, C) be a cell complex and taking Cn ={σp ∈ C | p ≤ n}, then it is
clear that (Xn, Cn) is a subcomplex of (X, C) and it is called the n-skeleton of (X, C).
Note that, for n-skeletons

(X0, C0) ⊂ (X1, C1) ⊂ ... ⊂ (X, C).

Proposition 2.32. Let (A,F) be a subcomplex of the cell complex (X, C), and let
σ be a cell in C. Then σ is a cell of F if and only if (σ − ∂σ) ∩ A ̸= ∅.
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Proof. The right implication is clear. Conversely, if (σ − ∂σ) ∩ A ̸= ∅, choosing
F = FΨC = CΦ and ϕ ∈ Φ such that σ = ϕ(En) = ϕσ, then ϕσ(E

n − ∂En) ∩ A ̸= σ
and since the open cells partition X, in order for this intersection being non empty
then ϕσ ∈ FΨ.

Definition 2.33. For a cell complex (X, C) :

• It is finite or countable if C is a finite or countable set.

• It is locally finite or locally countable if each closed cell meets only a finite or
countable number of cells.

• It is closure finite if each n-cell meets only a finite number of open cells σp−∂σp

with p < n. Also, the cell complex (X, C) has dimension n if it has no cells σp

of dimension greater than n and at least one cell of dimension n.

The following definitions are just a useful remainder

Definition 2.34. A topological space X is said to be a Hausdorff space if any two
distinct points x, y ∈ X posses non intersecting neighborhoods.

Definition 2.35. Let {ϕσ | σ ∈ C} a set of characteristic functions for cells of C.
Then the weak topology on X with respect to C is obtained by:

• Giving each cell σ ∈ C the quotient topology with respect to its characteristic
function.

• Giving X the weak topology with respect to the subsets σ ∈ C, i.e., a set F ⊂ X
is closed if and only if F ∩ σ is closed in σ for each σ ∈ C.

Definition 2.36. Let X be a Hausdorff topological space, X is said to be a CW
complex with respect of a family of sets C provided:

1. The pair (X, C) is a cell complex such that each cell σ ∈ C has a continuous
characteristic function.

2. The space X has the weak topology with respect to C.

3. the cell complex (X, C) is closure finite.

If (X, C) is a cell complex such that satisfies 1., 2., and 3. with respect to C,
then is said X is a CW-complex with cells in C.
CW-complexes are constructed by gluing together cells, i.e. topological cells home-
omorphic to standard disks. For example, the torus T 2 can be obtained by gluing
together of opposite sides of a square, so T 2 can be presented as the union of one
2-dimensional cell, two 1-dimensional cells and one 0-dimensional cell.

Figure 6: T 2 gluing cells

The first point in the definition of a CW-complex relates σ ∈ C to the topology
of the more familiar space Eσ, and the following can be proved.
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Lemma 2.37. Let X be a CW complex with cells C. Then

1. Each cell σ ∈ C is a closed subset of X.

2. For each cell σ ∈ C, the restriction of the characteristic map ϕσ to Eσ − ∂Eσ

is a homeomorphism onto σ − ∂σ.

Proof.

1. Given any closed set K ⊂ Eσ then K is compact because Eσ is, and by the
continuity of ϕσ it follows ϕσ(K) is compact in X, with X a Hausdorff space,
so ϕσ(K) is closed in X.

2. By ϕσ is a closed function and for the subspace Eσ−∂Eσ the restricted function
ϕσ | (Eσ − ∂Eσ) is continuous and injective by definition and by lemma 2.16
it is bijective so ϕσ | (Eσ − ∂Eσ) is a homeomorphism onto ϕ− ∂ϕ.

Definition 2.38. Let X and Y be topological spaces, let A ⊂ X closed and let
f : A → Y be a continuous map. The adjunction space Y ∪f X is the quotient of
the disjoint union of Y and X by the small equivalence relation which identifies each
a ∈ A with its image f(a) ∈ Y .

If Φ : Y ∪X → Y ∪f X is the quotient map, then Φ is continuous and it is easy
to see that

• Φ|Y is a homeomorphism of Y onto the closed subset Φ(Y ).

• Φ(X−A) is a homeomorphism of X − A onto the open subset Φ(X − A).

• Y ∪f X = Φ(Y ) ∪ Φ(X − A) is a partition of Y ∪f X

Now, supposing that X is a topological space and for each λ ∈ Λ there is a map
fλ : ∂Eλ → X of the boundary of the Euclidean cell Eλ into X. Letting ξ = ∪{Eλ |
λ ∈ Λ} and ∂ξ = {∂Eλ | λ ∈ Λ} be the disjoint unions, and let F = ∪λfλ : ∂ξ → X
be the union map. The adjunction space X ∪F ξ is said to be obtained by attaching
cells Eλ to X. The maps fλ : ∂Eλ → X are called attaching maps for the cells Eλ

of X ∪F ξ. The adjunction of a family of 0−cells is just the disjoint union. The
following proposition is stated as an important result and its proof can be found in
[4].

Proposition 2.39. Let X be a CW complex, and for each λ ∈ Λ, let fλ : ∂Eλ →
Xn−1 be a map attaching the cell En

λ to the (n − 1)−skeleton of X. Define ξn =
∪{En

λ | λ ∈ Λ}, ∂ξ = ∪{∂Eλ | λ ∈ Λ}, and let F = ∪ : ∂ξn → Xn−1 be the union
map. Then X ∪F ξ

n is a CW complex

To end this subsection, the concept of regular CW complex is introduced.

Definition 2.40. A CW complex X is called regular if for each cell α of X, the
restriction of the characteristic map fα : ∂Eα → fα(∂Eα) is a homeomorphism.

By definitions 2.7 and 2.8 it follows that simplicial complexes are regular CW
complexes.

20



2.4 Discrete Morse theory

LetM be simplicial complex, K the set of simplices ofM , andKp the set of simplices
of dimension p, then the definition of a discrete Morse function is as follows.

Definition 2.41. A function
f : K → R

is a discrete Morse function if for every αp ∈ K

(i)
∣∣{βp+1 > α | f(β) ≤ f(α)}

∣∣ ≤ 1

and
(ii)

∣∣{γp−1 < α | f(γ) ≥ f(α)}
∣∣ ≤ 1.

In the figure below are shown two different functions for the same simplicial
complex. For the function on the right, it is easy to see it is not a Morse function
since the edge with value zero has both endpoints with higher value. Instead, for
the function on the left, all the elements fulfill the requirements of a discrete Morse
function.
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Figure 7: In the left a discrete Morse function and in the right a discrete Morse
function.

Definition 2.42. A simplex αp is critical if∣∣{βp+1 > α | f(β) ≤ f(α)}
∣∣ = 0

and ∣∣{γp−1 < α | f(γ) ≥ f(α)}
∣∣ = 0.

Any simplex that is not critical is called regular and the total number of critical
simplices of dimension p is denoted by mp.

In this definition, taking αp ∈ K a non-critical simplex, then either of the fol-
lowing conditions holds

1. There exists a unique βp+1 ∈ K such that β > α and f(β) ≤ f(α).

2. There exists a unique σp−1 ∈ K such that σ < α and f(σ) ≥ f(α).

An important thing to note about this, is that just one of the conditions can hold.
This is proved in the following lemma, sometimes referred as the exclusion lemma.

Lemma 2.43. Let f : K → R be a discrete Morse function of the simplicial complex
and σ ∈ K a regular simplex. Then the conditions i) and ii) cannot be simultaneously
true. Hence, exactly one of the conditions holds whenever σ is a regular simplex.
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Proof. Suppose by contradiction, for α = {a0, a1, ..., ap} = a0, a1, ..., ap there exist
β = a0, a1, ..., ap, ap+1 and σ = a0, a1..., ap−1 such that σ < α < β and f(β) ≤
f(α) ≤ f(σ), taking σ̃ = a0, a1, ...ap−1, ap+1 satisfies σ < σ̃ < β then it follows that
f(σ) < f(σ̃) < f(β) since we already have f(σ) ≥ f(α) and f(β) ≤ f(α) and our
function is a discrete Morse function. Hence

f(β) ≤ f(α) ≤ f(σ) < f(σ̃) < f(β)

which is a contradiction.

For example, in the last figure, all the edges labeled with four, are critical, but
they are not the only ones, also the 2-simplex and the right edge are critical.

By the exclusion lemma, for 0 ≤ p < dim(K) taking αp ∈ K a regular simplex
then exists a unique 1-coface βp+1 ∈ K of α such that f(β) ≤ f(α), and taking all
of these pairs (α, β) a discrete vector field can be constructed. So, for any Morse
function over K one can obtain a discrete vector field that is, in fact, a discrete
vector gradient field, as is proved in the next proposition.

Proposition 2.44. If V is the discrete vector field on a simplicial complex K, V is
the gradient vector field obtained from a Morse function f : K → R if and only if
there are no non-trivial closed V−paths. It is said that V is acyclic

Proof. For αp
0, β

p+1
0 , αp

1, β
p+1
1 , ..., αp

l , β
p+1
l , αp

l+1 a non-trivial V-path, then f(αi) ≥
f(βi) and f(βi) > f(αi+1) for all 0 ≤ i < l. So the chain of inequalities

f(α0) ≥ f(β0) > f(α1) ≥ f(β1) > ... > f(αl+1)

guarantees α0 ̸= αl+1. So no non-trivial V-path is closed.

The converse of this proposition is going to be proved after giving some other
necessary concepts. Consider a simplicial complex K, it can be "drawn" by repre-
senting each simplex as a point, and drawing an arrow from βp+1 to αp if αp ⊂ βp+1.
This is called the Hasse diagram of K.
As an example of a Hasse diagram, suposse the simplicial complex is an abstract
one K = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}, then the Hasse diagram of K
is like

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

Figure 8: Example of the Hasse diagram of a simplicial complex K

Now, supposing V is a discrete vector field on K, the Hasse diagram can be
modified by reversing the direction of the arrow from β to α whenever (α, β) ∈ V .
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In the above example, if V = {({2, 3}, {1, 2, 3}), ({1}, {1, 2}), ({3}, {1, 3})}, then
modified Hasse diadram results in the directed graph shown below

{1} {2} {3}

{1,2} {1,3} {2,3}

{1,2,3}

Figure 9: Example of the modified Hasse diagram of a simplicial complex K

As can be seen in the example, in general, for every simplicial complex with a
discrete vector field V , the new Hasse diagram Hv, i.e. that resulting from modifying
the original one by inverting the arrows whose head and tail are in V , is a directed
graph.

Proposition 2.45. If V is a discrete vector field on a simplicial complex K and
there are no closed V−paths then the corresponding directed graph Hv has no cycles.

Proof. Suposse there is a cycle in the directed graph, since the dimension of adjacent
simplices differs by 1, the cycle must have an even number of elements, let call them
α0, β0, ..., αr, βr. Without loss of generality αp

0 < βp+1
0 . For some simplex αi in the

cycle, if βi is such that the arrow connecting them is pointing up αi ↗ βi then
the following must be an arrow pointing down βi ↘ αi+1 by the definition of V,
dim(αi) = dim(αi+1) and the same can be deduced for β′s. So the considered cycle
is actually a closed V−path

Theorem 2.46. If G is a finite directed graph, there exist f from the vertices of G
to R such that f(a) > f(b) whenever there is an arrow from a to b if and only if G
has no cycles.

Proof. Is clear that if such function exists, G cannot have a cycle since the strict
inequality would yield a contradiction. Now, since F is finite and acyclic, calling a
node to each point that is not the tail of any arrow, then for a path starting on any
vertex, its must eventually hit a node. Then, for a vertex α, let f(α) be the greatest
number of vertices in a path from a to a node (which is finite). Then if there is an
arrows from α to β, any path from α to a node can be appended to the arrow from
α to β to make that path one vertex longer, so necessarily f(α) > f(β).

The converse of proposition 2.44 is proven directly using the function obtained
from the Hasse diagram associated to the gradient vector field V A very relevant
result about discrete Morse function is the following.

Theorem 2.47. Let M be a regular CW complex, then M is homotopy equivalent to
a CW complex with mp(f) cells of dimension p.

A proof of this theorem can be found in [2].
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2.5 The algorithm

Proposition 2.44 says that if there is a gradient vector field V over a simplicial com-
plex K then it is associated to a discrete Morse function. So, constructing a gradient
vector field over K is sufficient to be able to use theorem 2.47. In such setting, it
is clear that the critical cells correspond to vertices on the modified Hasse diagram
such that they are not in V i.e. they do not have a partner. On reference [3], an
algorithm for constructing a gradient vector field over subcomplexes of powers of
simplicial complexes is described. Here we will adapt the idea in order to construct
a suitable gradient field on an arbitrary subcomplex of more general cartesian prod-
ucts. Details follow.

Let K1, ..., Kn be simplicial complexes and X a subcomplex of the ordered prod-
uct K1 × ...×Kn, where for every c ∈ {1, ..., n}, the sets Vc = V (Kc) have a linear
order, such that every d−cell σ ∈ Kc, has a unique expression like a word σ = v0...vd.
In such a context, it is said that, the vertex vi appears in the position i of the cell
σ. In particular, the d−cells of Kc are ordered linearly in a lexicographic form, and
establishing that any cell of dimension p is greater than any other of dimension q
providing p < q, then all the cells of Kc are linearly ordered too. In such terms, the
d′−cells (c1, ..., cn) of K1 × ...×Kn are ordered lexicographically:

(c1, ..., cn) < (d1, ..., dn)

if ci < di for some i ∈ {1, ..., n}, and cj = dj for every j < i.
The gradient field on X is built through an iterative process (described in the follow-
ing paragraph), in which d′−cells α = (e1, ..., en) of X are paired with (d+1)′−cells
of X such that β = (e1, ..., ec−1, ec+p v, ec+1, ..., en), where the notation ec+p v refers
to the potential cell of Kc that would be obtained by inserting the vertex v ∈ Kc in
the coordinate ec of α and such that v is in the position p of ec+p v (0 ≤ p ≤ d+1).
At each moment of the algorithm, for all 0 ≤ m ≤ dim(X) there is a list of all
available m−cells, that is, those that have not been paired yet. Each time a pair is
identified, both of these cells are deleted of their corresponding lists. The identifi-
cation and formation of pairs is organized inside a process P . Such process consist
of other sub-processes described below:

• P(D) is a sub-process of P executed at dimension D, where D starts at D =
dim(X)− 1 and ends at D = 0.

• P(D, c) is a sub-process of P(D) executed over the coordinates c, where c
starts at c = n and ends at c = 1.

• P(D, c, p) is a sub-process of P(D, c) executed by position, where p starts at
p = d+ 1 and ends at p = 0.

• P(D, c, p, v) is a sub-process of P(D, c, p) executed over each vertex v of Kc,
starting from the greatest to the lowest

According to the last two items, the position refers to that which will have v
inside the coordinate ec +p v.
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• P(D, c, p, v, α) is a sub-process of P(D, c, p, v) executed over all the d′−cells
which are available at the moment when P(D, c, p, v) starts. Concretely, for ev-
ery d′−cell, say α = (e1, ..., en) which is available, P(D, c, p, r, α) asks whether
β = (e1, ..., ec−1, ec+p v, ec+1, ..., en) is a (d+1)−cell of X and if it is available.
If the answer is positive, then the pair α ↗ β is added to the field, and α, β
are deleted of their respective lists, i.e. they are not available anymore.

Remark 1. In the last part of the algorithm, i.e. on P(D, c, p, r, α), it is not relevant
the order of how the d′−cells α are taken. In fact, if Ad′ is the set of all d′−cells which
are available when P(d, c, p, v) starts, it is not possible that two different d′−cells,
say α, α′ in Ad′, to be paired with the same (d+1)′−cell β in A(d+1)′, this is because
all the parameters for inserting v are fixed, so then β determines its pair α according
to where the parameters indicate that vertex v is being inserted. Thus the task of
P(D, c, p, v) is to make all the possible pairings α ↗ β at the moment when the
vertex v ∈ Kc is being inserted in the position p of the coordinate c. Still, for the
purpose of demonstrating acyclicity of the resulting field, it is considered that the
instructions P (D, c, p, r, α) are executed in order, from the lowest to the greatest of
all the available d′−cells α at the moment when P(D, c, p, v) starts.

This concludes the definition of the algorithm that builds the vector field that con-
cerns us. The demonstration of the acyclicity of this field is based on the following
version of the main lemma in the proof of acyclicity on [3]:

Lemma 2.48. Assume α = (e1, ..., en) ↗ β = (e1, ..., ec−1, ec +p v, ec+1, en) is a
pair produced during the stage P(l, c, p, v, α) of the algorithm. Let γ ∈ X a l−cell
obtained from β by removing the vertex w that is at the position q of the coordinate
d of β, such that γ ̸= α (particularly (c, p) ̸= (d, q)) and suppose one and only one
of the following conditions holds:

a) c < d.

b) c = d and p < q.

Then γ is part of a pair γ ↗ δ constructed by the algorithm during the sub-process
P(l, e, r, u, γ), for parameters l, e, r, u, γ that satisfies one, and necessarily just one,
of the following conditions

a’) d < e.

b’) d = e and q < r.

c’) d = e and q = r and w < u.

Particularly, the pair γ ↗ δ is done before the pair α ↗ β

Proof. Given ec = (ec0 , ..., ecp , ..., ecs) then

α = (e1, ..., (ec0 , ..., ecp−1 , ecp , ..., ecs), ..., en)

and
β = (e1, ..., (ec0 , ..., ecp−1 , v, ecp ..., ecs), ..., en)︸ ︷︷ ︸ .
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By the hypotheses a) and b), γ is obtained from β by removing the vertex w from
any of the places indicated by the horizontal key. Since the algorithm is executed
from the largest to the smallest of the values of both coordinates and positions,
then P(l, c, p, v) is posterior to P(l, d, q, w), an so β is available at the moment when
P(l, d, q, w) is executing, but then γ could not be available in such a moment since,
if that were the case, the pair γ ↗ β could have been realized first, but that is not
possible. So, γ had to be paired before the sub-process P(l, d, q, w) starts.

In the case that concerns us, all the complexes Ki are of dimension 1, so the
acyclicity of the field is proved under such conditions.

Proposition 2.49. The discrete field V obtained by the algorithm is gradient when
each Ki, 1 ≤ i ≤ n is of dimension 1.

Proof. Assume, for a contradiction, the algorithm produced a cycle

α0 ↗ β0 ↘ α1 ↗ β1 ↘ ...αn ↗ βn ↘ αn+1 = α0

. Without loss of generality, it can be supposed α0 ↗ β0 is the first pair produced by
the algorithm. Say, βi is obtained from αi by inserting the vertex vi on the position
pi of the coordinate ci of βi, i.e. αi ↗ βi = αi + ci, pivi, then it is produced during
the sub-process P(l, ci, pi, vi, αi), where l = dim(αi), for every i. By hypothesis, and
in view of remark 1, for every i = 1, ...n, one and only one of the following conditions
holds:

• ci < c0.

• ci = c0 and pi < p0.

• ci = c0 and pi = p0 and vi < v0.

• ci < c0 and pi = p0 and vi = v0 and α0 < αi.

Case 1 : p0 = 0. Given that dim(Kc0) = 1, α0 and β0 are of the form α0 = (..., α00, ...)
and β = (..., v0α00, ...), where the vertex α00 of Kc0 and the 1−simplex v0α00 appears
on the coordinate c0 of α0 and β0 respectively. By the lemma and given that α1 ̸= α0,
α1 is obtained from β0 by removing a vertex from a simplex at a coordinate less than
c0 of β0, while the pair α1 ↗ β1 necessarily happens with c1 < c0, as dim(Kc0) = 1.
In particular, both α1 and β1 are of the form (..., v0α00, ...), i.e. with the 1−simplex
v0α0 on the coordinate c0. inductively, it follows that αi ↗ βi happens with ci < c0
and with both cells of the form (..., v0α00, ...), where the 1−simplex v0α00 is at the
coordinate c0. By the lemma, αi+1 is obtained from βi by removing a vertex from
a simplex on a coordinate less than c0 of βi, while the pair αi+1 ↗ βi+ 1 happens
with ci+1 < c0, so all the αj, j ≥ 1, have the 1−simplex v0α00 at coordinate c0, but
this impossible since αn+1 ̸= α0.
Case 2: p0 = 1. This time α = (..., α0, ...) and β0 = (..., α00v0, ...), with α00 and α00v0
at the coordinate c0. Say v0 remains as vertex of the coordinate c0 for all the cells of
the curve β0 ↘ ... ↘ αr ↗ βr, r ≥ 1, but αr+1 is obtained from βr by removing v0
of the coordinate c0, this situation necessarily happens since α1 ̸= α0 and v0 is not
a vertex of the coordinate c0 of αn+1 = α0. Then, there are two different options for
βr, either βr = (..., wv0, ...) or β = (..., v0w, ...), with wv0 and v0w at the coordinate
c0. The second is not possible as w had to have been inserted in a pairing previous
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to α0 ↗ β0. Hence βr = (..., wv0, ...), and by the election of α0 ↗ β0, it follows
αr ↗ βr arises with cr ≤ c0. If cr < c0 it follows is not possible for the curve to be a
cycle. If cr = c0, then vr = w < v0, and in that case, removing v0 from the simplex
wv0 to form the face βr ↘ αr+1, the lemma says that αr+1 ↗ βr+1 happens before
αo ↗ β0, which is a contradiction.
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3 Configuration spaces of hard squares
Configuration spaces of non-overlapping hard squares in a p × q rectangle were
studied by Alpert et al in [1]. In this short chapter we review relevant definitions
and basic results. Readers whishing to check proof details are referred to [1].

As its name says, taking n, p, q ∈ N, the configuration space C (n; p, q) of n
unit squares in a p × q rectangle consists of all the possible forms to have n non-
intersecting —they can intersect each other at the boundary or at the rectangle’s
boundary, but nothing more — unit squares inside a bounded rectangle of size
p × q. By keeping track of the coordinates of the centers of the squares, as can
be seen in the figure below, and taking for convenience, the p × q rectangle as
[1
2
, p+ 1

2
]×[1

2
, q+ 1

2
] ⊂ R2, if (xi, yi) is the coordinate of the center of the i−th square,

then (x1, y1, x2, x2, . . . , xn, yn) ∈ R2n completely characterizes a typical element of
C (n; p, q) and thus considered as a subspace of R2n

x

y

1
2

1
2

71
2

41
2

Figure 10: Example of an element in C (6 ; 7 , 4 )

Definition 3.1. The configuration space C(n; p, q) of n unit squares in a p × q
rectangle is defined to be the set of all points

(x1, y1, x2, x2, . . . , xn, yn) ∈ R2n

such that

• 1 ≤ xk ≤ p and 1 ≤ yk ≤ q for all 1 ≤ k ≤ n and

• |xk − xl| ≥ 1 or |yk − yl| ≥ 1 for all 1 ≤ k < l ≤ n

There are two different ways to draw a grid on the rectangle that will be used.
For the one, since the rectangle used is [1

2
, p+ 1

2
]× [1

2
, q + 1

2
], the set of all possible

positions for the centers of squares is [1, p]× [1, q] which can be thought of as having
vertices at the points where both coordinates are integers, edges between vertices
have distance one, there are (p−1)(q−1) square 2-cells, this grid is denoted as G1.
These vertices, edges and squares are referred as coordinate grid vertices, coordinate
grid edges and coordinate grid squares respectively, together are called coordinate
grid cells. The second grid (G2) is that of the [1

2
, p+ 1

2
]× [1

2
, q+ 1

2
] itself. An example

of grids is shown in the figure below.
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(1
2
, 1
2
)
(1, 1)

Figure 11: Grids G1 and G2, continuous gray lines are for G2 and the dashed ones
for G1

Taking a coordinate grid vertex v, and considering of the rectangle [1
2
, p + 1

2
] ×

[1
2
, q+ 1

2
] as a p×q chessboard, the unit square centered at v is called a board square.

Also the other coordinate grid cells have a rectangle of board squares given by taking
the union of all unit squares for which the center lies on that coordinate grid cell,
so for a coordinate grid edge there is a pair of adjacent board squares, and for a
coordinate grid square there is a 2 × 2 rectangle of board squares. An example of
these rectangles is shown in the next figure

Figure 12: Rectangles of board squares for different coordinate grid cells

Let G(n; p, q) := ([1 , p] × [1 , q ])n ⊂ R2n, then G(1; p, q) = [1 , p] × [1 , q ]) so
G(n; p, q) = G(1; p, q)n, where G stands for grid . We take G(n; p, q) with its natural
cubical complex structure, i.e. as G(n; p, q) =

⋃2n
l=1Kl(G(n; p, q)). Now, taking

an element Q of K(G(n; p, q)) then Q = I1 × ... × In with Ii the product of two
elementary, but possibly degenerate) intervals in p×q, setting Ii inside the rectangle
according to its own components and doing this for every elementary interval of Q,
then G(n; p, q) can be seen as the set of configurations of labeled squares (from here
on the intervals will be referred to as squares) in the rectangle where the squares
are allowed to overlap. As a cubical complex, each cell of G(n; p, q) corresponds to
a n-tuple in which each entry is a coordinate grid cell, so a cell of G(n; p, q) can be
drawn as n rectangles of board squares on p × q. Any list of n rectangles of board
squares of sizes 1× 1, 1× 2, 2× 1, 2× 2 is the rectangle arrangement of some cell
in G(n; p, q).

Definition 3.2. The subcomplex X(n; p, q) ⊂ G(n; p, q) consists of all the cells of
G(n; p, q) that are fully contained in C(n; p, q).

Proposition 3.3 below is one of the central results in [1].
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Proposition 3.3. X(n;p,q) consists of all the cells of G(n; p, q) for which their
corresponding rectangle arrangement has none of its pieces overlapping. Futhermore,
the inclusion X(n; p, q) ↪→ C(n; p, q) is a homotopy equivalence. Indeed, X(n; p, q)
sits inside C(n; p, q) as a strong deformation retract.
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4 Deeply inside particular cases
From the deformation retract X(n; p, q) of C(n; p, q), the configuration space of
hard squares can be seen as the collection of at most 2n−dimensional cells whose
components are unit squares, unit horizontal or vertical segments, or points over
the grid G1 such that their board squares over the grid G2 do not intersect each
other (maybe just on their boundary). On the other hand, by proposition 2.49,
it follows that a vector gradient field can be constructed for the cubical complex
X(n; p, q) with the algorithm described, since X(n; p, q) is actually a subcomplex
of the Cartesian product [1, p]× [1, q]× [1, p]× [1, q]× ...× [1, p]× [1, q]. Then, by
proposition 2.44 it follows V is related to a discrete Morse function, so theorem 2.47
can be used to obtain information about X(n; p, q).

Before starting with calculations, it is useful to remark some facts:

• Given any cell α ∈ X(n; p, q), α = (α1, ..., αn), there are four possible options
for αi, i = 1, ...n, namely

1. αi is a point, in such case αi = (ai1,1 , ai1,2).

2. αi is a horizontal line, in such case αi = (ai1,1ai1,2 , ai2,1), with ai1,2 =
ai1,1 + 1.

3. αi is a vertical line, in such case αi = (ai1,1 , ai2,1ai2,2), with ai2,2 = ai2,1+1.

4. αi is a square, in such case αi = (ai1,1ai1,2 , ai2,1ai2,2), with ai1,2 = ai1,1 + 1
and ai2,2 = ai2,1 + 1.

• In particular, we think of X(n; p, q) on a cubical subcomplex of a product of
1−dimensional simplicial complexes, namely, as a cubical subcomplex of

[1, p]× [1, q]× [1, p]× [1, q]× ...× [1, p]× [1, q],

where there are n factors [1, p]× [1, q]. Thus, for the purposes of the algorithm
of section 2.5, we have 2n coordinates which are packed as ((1, 2), (3, 4), ..., (2n−
1, 2n)) to form the original n coordinates of X(n; p, q). Note that even coor-
dinates are "vertical" and correspond to factors [1, q], while odd coordinates
are "horizontal" and correspond to factors [1, p]

• At a fixed dimension d, the algorithm consists of the 2n processes

P(d, 2n),P(d, 2n− 1), ...,P(d, 2),P(d, 1),

executed in that order (from left to right). Since dim[1, p] = dim[1, q] = 1,
each of these processes P(d, c) (1 ≤ c ≤ 2n) is limited to two sub-processes:

P(d, c, 1) and P(d, c, 0),

which are run in that order. When c = 2i, with 1 ≤ i ≤ n, i.e. for a vertical co-
ordinate, the identification of pairs by P(d, c, 1) (respectively by P(d, c, 0)), i.e.
by insertion of vertices in position 1 (respectively in position 0) of coordinate
c, is based on checking whether the i− th coordinate of available grid cells of
dimension d of X(n; p, q) can be "stretched upwards" (respectively "stretched
downwards") yielding an available grid cell of dimension d + 1 of X(n; p, q).
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Likewise, when c = 2i− 1 with 1 ≤ i ≤ n, i.e. for a horizontal coordinate, the
identification of pairs by P(d, c, 1) (respectively by P(d, c, 0)), i.e. by insertion
of vertices in position 1 (respectively in position 0) of coordinate c, is based
on checking whether the i− th coordinate of available grid cells of dimension
d of X(n; p, q) can be "stretched to the right" (respectively "stretched to the
left") yielding an available grid cell of dimension d+ 1 of X(n; p, q).
In particular, the way in which each of the final instructions P(d, c, r, v, α) can
assemble a pair α ↗ β is forced to obey the "stretching" descriptions above.
For instance, when α = (α1, ..., αn), with αi = (αi1,1 , αi2,1αi2,2), P(d, 2i, r, v, α)
cannot produce a pair α ↗ β, while P(d, 2i − 1, r, v, α) can produce a pair
α ↗ β only when v = αi1,1 + 1 and r = 1 (in which case a "stretching-to-
the-right pairing" arises), or when v = αi1,1 − 1 and r = 0 (in which case a
"stretching-to-the-left pairing" arises). In each case, the potential partner β
is well defined and the pairing α ↗ β is assembled as β is a cell of X(n; p, q)
which is available at that moment of the algorithm. All possible stretching
patterns of coordinates of cells are shown below.

or

or

or

or

• Since the processes P(d, 2i, 1),P(d, 2i, 0),P(d, 2i−1, 1) and P(d, 2i−1, 0) run
in that order, for the viewpoint of a given cell α = (α1, ..., αn) of dimension
d, the algorithm amounts to running i from n down to 1 and, in each such
iteration, the component αi of an available cell, α is first attempted to be
stretched upwards, then stretched downwards, then stretched to the right and,
finally, stretched to the left. As soon as the first one of these stretching trials
matches an available cell of X(n; p, q), the process stops for α and the two
paired cells are marked as no longer available. If neither of these processes
do not find a partner for α then the process repeats one dimension below and
α is then the subject to be the partner of a (d − 1)−dimensional cell via the
corresponding sequence of stretching trials.

• An important feature in the application of the algorithm is that all the cells
are ordered tuples if grid cells which are unequivocally determined by their
components ( , , or ) and their position within the cells. Then for a fixed
component, there is just one way at a time for pairing it, so in this sense the
order is not relevant, thus recovering the observations in Remark 1.

All of these observations are considered and used for the following sections. More-
over, arrows ↑ and → are used to denote whether cells are being matched by adding
a vertex at a coordinate 2i or 2i− 1, respectively. This does not mean that cells are
being matched by stretching the respective component only up or to the right, in
other words, in each case we take into account both positions 0 or 1.
The calculations that will be made in the following sections cover the cases:
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• q = 1 with p, n ∈ N arbitrary.

• n = 2 with p, q ∈ N arbitrary.

• n = 3 with p, q ∈ N arbitrary.

4.1 q=1

In order to illustrate and prepare the argument for values of n and p general, we
start with some particular cases n, q. The first explored case is n = 2 and q = 1,
i.e. the grid is of height one with arbitrary length, so there are no cells with squares
or vertical lines as components. When p = 2 there are just two cells of dimension
zero. If p = 3 then there are cells of dimension one, and by the size of the grid,
there are four cells of this dimension, and six cells of dimension zero and it is easy
to deduce all 1-cells can be paired except two critical cells, both of dimension zero,
so that X(2; 3, 1) has two components each of which is contractible. Our first goal
is to show that this phenomenon holds for all X(2; p, 1), which therefore, recovers
the fact that C(2; p, 1) has zero homotopy dimension.

For p ≥ 4 there are cells of dimension 2 and all the types of cells are listed in
the next table

Dimension 0
(
,
)

Dimension 1
(
,

)( )
Dimension 2

(
,

)
Table 4.1: Types of cells for n = 2 and p ≥ 4

The algorithm starts matching cells of dimension 2 with cells of dimension 1,
more precisely (

,
) (

,
)
.

It is easy to see that any 2-cell of this form with an empty space at the right side of
the second coordinate gets paired to a 2−cell by stretching the second component
to the right. This procedure deletes all 2−cells, while the only 1−cells remaining
have either the form

(
,

)
or
(

,
)
, where the blue cross mark indicates that

the spot at the right of the vertex is taken (either by the horizontal cell or by the
end of the board).
With all the 2-cells matched, then the process continues with the pairings from
dimension 0 to dimension 1, starting with those of the form(

,
) (

,
)
.

With the same argument as before, but for cells of dimension 1, it is deduced at all
these 1−cells are deleted and the 0−cells that remain look like

(
,

)
. Finally, the

last pairing has the form ( ) (
,
)
.
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By the matching 1 ↗ 2, these 1−cells look like
(

,
)
, and the 0-cells have

a blockage on the right side of their second coordinate too, so for each of these
1−cells, there is a 0−cell partner. Then all the 1−cells are paired and the critical
0−cells are those of the form (

,
)
.

It is easy to deduce, that there are exactly 2 of these cells, namely

where the figures illustrate (p− 1, p) and (p, p− 1). Thus, for p ≥ 2, by the theorem
2.47, it follows X(2, p, 1) is homotopic equivalent to S0.
We next consider the case of X(3; p, 1), for which p ≥ 3 is needed in order to have
non-empty spaces. When p = 3 there are only 6 cells of dimension zero so no pairing
can be performed, and we get X(3; 3, 1) = ∨5S

0.
For p = 4 there are no cells of dimension greater than 1, whereas there are three
types of cells of dimension 1, namely(

, ,
) (

, ,
) (

,
)

and according to the algorithm, the first step is(
, ,

) (
,

)
.

It is clear that every one of these 1−cells is paired with one of these 0−cells, so
that all of these 1−cells are deleted, and since the 1-cells are paired with the 0-cells
related to take the left end point of the horizontal line and this corresponds to all
the 0-cells whose third coordinate is able to stretch to the right, then the remaining
0-cells of this step are those in

(
, ,

)
[a]. The next step is(

, ,
) (

, ,
)
.

Since all the grid is filled (recall p = 4), then considering the 0-cells related to take
the left end point of the horizontal line corresponds with the 0-cells whose second
coordinate is able to grow to the right and whose third coordinate is blocked to grow
to the right, so all of these 1-cells are deleted and remain those 0-cells in

(
, ,

)
.

The last step of the algorithm is(
, ,

) (
, ,

)
and with the same reasoning as before, it is concluded that there is no cell of di-
mension one remaining and the critical cells of dimension 0 are those in

(
, ,

)
,

and it is easy to see that this corresponds to all the components together and next
to the right border, i.e.,

Clearly, all permutations of this configuration need to be considered, so again we
get that X(3; 4, 1) is homotopy equivalent to ∨5S

0.
Before addressing the general case of X(3; p, 1), let us consider the situation for
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p = 5, as here we encounter for the first time cells of dimension two. In fact, all the
types of cells for this case are shown in the table below

Dimension 0
(
, ,

)
Dimension 1

(
, ,

) (
, ,

) (
, ,

)
Dimension 2

(
, ,

) (
, ,

) (
, ,

)
Table 4.2: Types of cells for n=3, p=5 and q=1

For these cells, the first pairings are(
, ,

) (
, ,

)
(

, ,
) (

, ,
)
.

Considering the 0-cells related to take the left end point of the third coordinate of
the 2−cell, then it is clear all 2−cells are deleted and the remaining 1−cells are
modified as

(
, ,

)
and

(
, ,

)
.

As can be seen in the next pairing(
, ,

) (
, ,

)
all these 2−cells are deleted and the modified 1−cells are

(
, ,

)
. So all 2−cells

have been paired and the process continues with the pairing(
, ,

) (
,

)
.

As in [a], these 1-cells are all deleted and the 0-cells are modified as
(
, ,

)
. The

next step is given by (
, ,

) (
, ,

)
.

Since for both of these cells, their third coordinate is blocked like , taking the 0-cell
related to the left end point of the vertical line gives rise to a pair, and the remaining
0-cells are those whose second coordinate is unable to grow to the right, i.e. those
in
(
, ,

)
. The final pairing is(

, ,
) (

, ,
)

and since a similar reasoning as before can be applied, it is deduced that all the 1-
cells are deleted, and as in the case p = 4 the remaining cells are those in

(
, ,

)
,

which again correspond to all the permutations of the points that are all together,
next to the right border, i.e. like,

So, once again X(3; 5, 1) is homotopy equivalent to ∨5S
0.

Is it true that, for every p ≥ 4 our gradient field leads to a homotopic equiv-
alence of X(3; p, 1) and ∨5S

0? We next answer this question on the positive. For
p ≥ 6, all the types of cells are shown on the table below
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Dimension 0
(
, ,

)
Dimension 1

(
, ,

) (
, ,

) (
, ,

)
Dimension 2

(
, ,

) (
, ,

) (
, ,

)
Dimension 3

(
, ,

)
Table 4.3: Types of cells for n=3, p ≥ 6 and q=1

Starting with the process, the first pairing is(
, ,

) (
, ,

)
.

All the 3−cells can be paired with a 2−cell related to take the left end point of the
third coordinate, while all the paired 2−cells are those whose third coordinate is
allowed to grow to the right [b] so the remaining 2−cells are

(
, ,

)
.

The following pairings start to match 1−cells with 2−cells as(
, ,

) (
, ,

)
(

, ,
) (

, ,
)
.

With a reasoning as in [b] but this time for 2−cells and not for 3−cells, it is clear all
the 2−cells are deleted and the modified 1−cells are

(
, ,

)
and

(
, ,

)
.

Following with the algorithm, the last pairing from dimension 2 to dimension 1 is(
, ,

) (
, ,

)
.

For both types of cells, the third coordinate is blocked on the right, and for a 1−cell
whose second coordinate is able to grow to the right, its related 2−cell is an available
2−cell, and since for a 2−cell with its third coordinate blocked on the right, taking
the 1−cell related to take the left end point of the second coordinate is one of these
cells [c], then all the 2−cells are deleted and the remaining 1−cells are

(
, ,

)
.

Finally, the process considers pairings between dimensions zero and one, starting
with (

, ,
) (

,
)
.

As in [b] but for 1−cells, it is concluded all these 1cells are deleted and the remaining
1−cells are

(
, ,

)
. The following pairing is given by(

, ,
) (

, ,
)
.

Using reasonings as those on [b] and [c], it follows all of these 1−cells are deleted
and the remaining 0−cells are modified as

(
, ,

)
. The last pairing is(

, ,
) (

, ,
)

and again by [b] and [c] the 1−cells are all deleted and the critical 0−cells are those
in
(
, ,

)
. Then, is concluded that, indeed, X(3; p, 1) is homotopic equivalent

to ∨5S
0.

From the above calculations, it can be expected that by applying the same
algorithm, taking values q = 1 and p > n ≥ 4, then an analogue conclusion can
be drawn, but instead of ∨5S

0, these cases gives rise to an homotopy equivalence
between X(n, p, 1) and ∨n!−1S

0. To give the details of such an assertion, we first
note that there are three different cases:
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1. If p ≥ 2n then the process starts pairing cells from dimension n to dimension
n− 1.

2. If p = 2n − 1 then the process starts pairing cells from dimension n − 1 to
dimension n− 2.

3. If p < 2n− 1 then the maximum dimension of the cells is at most n− 2.

Then, for p ≥ 2n the process stars with(
, ..., ,

) (
, ..., ,

)
.

Considering the (n− 1)−cell related to take the left end point of the n−coordinate
gives rise to a match, and then all the n−cells are deleted [c] while the remaining
(n− 1)-cells are like

(
, ..., ,

)
.

Next it, is time to match cells of dimension n− 2 with cells of dimension n− 1,
for this the algorithm can start or continue, depending on the value of p. Indeed, it
is important to note that, for p = 2n− 1 the (n− 1)−cells are of the form(

, ..., , i, , ..., , ...
)

where the point can be in any of the n entries of the cell, i.e. i = 1, ..., n and given
the size of the grid being considered, the points are actually like(

, ..., , i, , ..., , ...
)
.

In particular the description of the remaining cells of dimension n−1 in the previous
instance are kept, which justifies our assertion that, for p ≥ 2n − 1, the process
starts or continues as stated here. This situation applies in all further instances of
our analysis of the gradient field. Analogously, the (n− 2)−cells are of the form(

, ..., , i, ..., , j, ...
)

for i, j = 1, ..., n, i ̸= j. So, for p ≥ 2n − 1 the process starts/continue with the
pairings from dimension n− 2 to dimension n− 1 of the form(

, ..., , i, ..., n

) (
, ..., , i, ..., n

)
for i > n. If p = 2n − 1, with an argument analogue to [c] it is concluded that
all the (n − 1)−-cells in this pairing are deleted, and the remaining (n − 2)−cells
are modified like

(
, ..., , i, ..., n

)
. If p > 2n − 1, using [c] too, it turns

out again that all the (n− 1)−cells are deleted and the modified (n− 2)−cells are
modified like

(
, ..., , i, ..., n

)
.

As can be expected, each time a pairing is done, [c] can be used as the case may
be, and this gives rise to the same deletions and modifications. An (n − 1)−cell is
unequivocally determined by the coordinate of its point coordinate, of which there
are n possible positions, so given that i > n, the only type of (n− 1)−cell left is the
one that has point on its n−coordinate, so, the following pairing is(

, ..., n−1, n

) (
, ..., n−1, n

)
.
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If p = 2n−1, making use of [c], it is clear that all of these (n−1)−cells are deleted and
the remaining (n−2)−cells are modified as

(
, ..., , n−1, n

)
, but since the size

of the grid is exactly p = 2n− 1, these cells can be seen like
(

, ..., , n−1, n

)
.

On the other hand, if p > 2n − 1, the modified (n − 1)−cells of the match (n −
1) ↗ n are paired here, and given that the (n − 2)−cells which are paired with
those (n − 1)−cells are the cells

(
, ..., , n−1, n

)
, then both of them are

blocked on the right of the n−coordinate, and taking one of these (n− 1)−cells, the
corresponding (n−2)−cell related to take the left end point of the (n−1)−coordinate
is a match for this cell, and the right end point of (n− 1)−coordinate corresponds
to the left end point of another similar cell but whose (n−1)−coordinate moves one
step, so while the (n − 1)−coordinate of a (n − 2)−cell has an empty space at its
right side, then this cells is paired [c.2]. So in this case, the modified (n− 2)−cells
are

(
, ..., , n−1, n

)
. Then, for the pairing (n− 2) ↗ (n− 1) there are 2

different kind of modified cells, which are those on the table below.

Modified (n− 2)−cells(
, ..., , i, ..., n

)(
, ..., , n−1, n

)
Table 4.4: Modified (n− 2)−cells remaining for the (n− 2) ↗ (n− 1) pairing.

Following with the procedure, the next pairing is for cells of dimension n − 3
to cells of dimension n − 2. In this case, for p < 2n − 2 the process cannot start,
meanwhile for p ≥ 2n− 2 the process stars (if p = 2n− 2) or continue if p > 2n− 2
with the pairing(

, ..., i, ..., j, ... n

) (
, ..., i, ..., j, ... n

)
with i, j > n and i ̸= j. For this pairing, all the (n−2)−cells have not been modified
by any previous process because their last coordinate is an horizontal line. Making
use of [c], it is clear all of the (n− 2)−cells are deleted, meanwhile the (n− 3)−cells
are modified as

(
, ..., i, ..., j, ... n

)
. In the next step, all the previous

modified (n − 2)−cells are paired, with only one exception, and given that all the
(n−2)−cells which have an horizontal line on its last coordinate were paired already,
then the pairings are specifically(

, ..., i, ..., n−1, n

) (
, ..., i, ..., n−1, n

)
for i > n− 1. For p = 2n− 2 all the (n− 2)−cells occupied all the spaces available
on the grid, so they have in particular the same form as the remaining cells of the
last pairing. Then, with p ≥ 2n − 2, using the reasoning on [c.2], it can be seen
that all of these (n − 2)−cells are paired and the modified (n − 3)−cells are like(

, ..., i, ..., n−1, n

)
. Finally, the last pairing is(

, ..., , ..., n−2, n−1 n

) (
, ..., , ..., ,n−2 , n−1 n

)
.

Since for both cells on the pairing, their two final points are blocked on its right side,
so using the reasoning used in [c.2], it follows that the (n−2)−cells are all deleted and
the remaining (n− 3)−cells are modified like

(
, ..., , ..., n−2, n−1 n

)
.

Summarizing, the three different kind of modified (n− 3)−cells are indicated in the
following table, where i < n− 1.
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Modified (n− 3)−cells(
, ..., i, ..., n−1, n

)(
, ..., i, ..., n−1, n

)(
, ..., , ..., n−2, n−1 n

)
Table 4.5: Modified (n− 3)− cells remaining for the (n− 3) ↗ (n− 2) pairing.

Let 0 ≤ l < n, then for p ≥ 2n−l−1, the pairing from cells of dimension n−l−1
to cells of dimension n− l starts or continues (as the case may be) with(

, ..., i1 , ..., il−1
, ... n

) (
, ..., i1 , ..., il−1

, ... n

)
.

As in [c], all the (n− l)−cells whose last coordinate is an horizontal line are deleted,
these cells are in fact those that have not been used by any step before, meanwhile
the remaining (n − l − 1)−cells are modified as

(
, ..., i1 , ..., il−1

, ... n

)
.

With all the (n− l)−cells with an horizontal line in its last coordinate paired, then
the following pairing is given precisely by(

, ..., i1 , ..., il−2
, ... n−1, n

)(
, ..., i1 , ..., il−2

, ... n−1, n

)
.

It is important to note that, since the components of a cell are limited to be a hori-
zontal line or a point and its position within the components of the cell determines
it unequivocally, then for any (n − l)−cell with a point on its last coordinate, this
cell has been modified by the matching from (n− l) to (n− l + 1), and then these
kind of cells have a block on the right side of the n−coordinate, and since for the
last pairing, the (n − l − 1)−cells have a block on the right of its last coordinate
too, then applying [c] it is clear the (n − l)−cells are deleted, and the remaining
(n− l−1)−cells are modified as

(
, ..., i1 , ..., il−2

, ... n−1, n

)
. Following

with the process, and given that all the (n − l)−cells whose (n − 1)−coordinate is
an horizontal line were paired already, then the next pairings are specifically(

, ..., il−3
, ... n−2, n−1, n

) (
, ..., il−3

, ... n−2, n−1, n

)
,

for 1 ≤ i < n − 2. Again, since these (n − l − 1)−cells have a point on their last
two coordinates, then by the pairings made before both of the coordinates must be
blocked on their right side, and given that the (n − l)−cells have a point on their
last two coordinates too, these cells were modified by a matching from (n − l) to
(n − l + 1). This is clear because the (n − l + 1)−cells with a point on its last
coordinate can be paired just with this kind of (n− l)−cells, and these in turn were
matched before with (n− l + 1)−cells with an horizontal line on its last coordinate
first and after with those cells with an horizontal line on the (n−1)−coordinate and
a point on the last, so both cells have blockages on the right side of their last two
coordinates [c.4]. Using a reasoning as [c], it follows these (n− l)−cells are deleted
and the (n− l− 1)−cells are modified as

(
, ..., il−3

, ... n−2, n−1, n

)
for

1 ≤ i < n− 3.
As can be expected for the last two pairings, as the procedure progresses the matches
on the jth−step, j < l, of (n−l−1) ↗ (n−l) can be identified by how many of their
final coordinates have a point as a component (at most l+1 for the (n− l−1)−cells
since they must have n− l−1 horizontal lines), since all of those (n− l)−cells with a
horizontal line at some kth−coordinate, n−j < k ≤ n, must have been paired before.

39



On the case of the jth matching of the (n− l − 1) ↗ (n− l), the (n− l − 1)−cells
must have a point on their last j coordinates, while the (n − l)−cells must have a
point on their last (j − 1) coordinates and a horizontal line on the j−coordinate.
i.e., (

, ..., il+1−j
, ... j, ..., n

) (
, ..., il+1−j

, ... j, ..., n

)
.

Now, using a reasoning similar to that in [c.4], it is clear the last j − 1 coordi-
nates of the cells are blocked on their right side, and by [c], it follows the (n −
l)−cells are all deleted, while the remaining (n − l − 1)−cells are modified like(

, ..., il+1−j
, ... j, ..., n

)
.

Then, for (n − l − 1) ↗ (n − l), l > n, the (n − l)−cells are all deleted, while the
modified remaining cells are those in the table below.

Modified (n− l − 1)−cells(
, ..., i1 , ..., il−1

, ... n

)(
, ..., i1 , ..., il−2

, ... n−1, n

)(
, ..., i1 , ..., il−2

, ... n−1, n

)(
, ..., il−3

, ... n−2, n−1, n

)
(

, ..., , ..., n−l, ..., n

)(
, ..., , n−l, ..., n

)
Table 4.6: Modified (n− l−1)−cells remaining for the (n− l−1) ↗ (n− l) pairing.

Since all of this was done for 0 ≤ l < n and p ≥ 2n − l − 1, then for l = n − 1
and p ≥ n, all the 1−cells are deleted and the critical 0−cells are exactly those in(

1, 2, ... n

)
.

Then, for this kind of cells, the only possible option is to have all the points along the
right border of the grid next to each other. Taking into account all their n! possible
permutations, then it follows that X(n; p, 1) is homotopy equivalent to ∨n!−1S

0.
As we will see in the rest of the thesis, for n = 2 and p, q arbitrary, the pairing

process turns out to be reasonably short and there are just a few types of cells,
while in the case n = 3 and p, q arbitrary, the total number of pairings increases
significantly, but it is still feasible to handle the analysis of the whole algorithm.
However for n ≥ 4 the total number of pairings increases a lot compared to the
two previous cases, mainly due to the fact that the type of cells grows considerably
because of the combinatorial nature of their components. Nonetheless, final part of
the thesis we describe the critical cells reported by a computational implementation
of the gradient field for X(4; p, q) when p and q are reasonably small. In particular
this will suggest that, for general values of n, p and q, the gradient field is surprisingly
close to detecting the homotopy dimension of X(n; p, q).
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4.2 n=2

Dimension Cell types for n=2

Dimension 0
(
,
)

Dimension 1

(
,
)
,
(
,

)(
,
)
,
(

,
)

Dimension 2

(
,
)
,
(
,

)(
,
)
,
(
,

)(
,
)
,
(

,
)

Dimension 3

(
,
)
,
(
,

)(
,

)
,
(
,

)

Dimension 4
(
,

)
Table 4.7: Cell types of X(2; p, q), for p, q > 1

In the last subsection, the vector gradient field of X(2; p, 1) has been described using
the algorithm of subsection 2.5, as particularized to the case of X(n; p, q) in Chapter
3. Here n = 2 is taken too, but now p and q are strictly greater than 1. In this case,
the components of a cell can be points or horizonal lines but, unlike the previous,
also squares or vertical lines. All the types of cells are listed on table 4.7.

The procedure begins with the process P(3, 4, i), for i = 0, 1, so the first match
is (

,
) (

,
)
.

All the 4−cells have an available 3−face, namely the 3−cell related to take the
bottom edge of the second component (figure 18).

Figure 13: Example of a 4−cell (on the left) and its 3−face related to take the
bottom side of the second component (on the right)
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Besides, for a 3−cell for which its horizontal line is unblocked above, then growing
up this component, the cell can be matched with a unique 4−cell. Moreover, if its
horizontal line is unblocked below too, it is not possible for this same cell to be paired
with a 4−cell by growing downwards its second component because the vertices are
added from the largest to the smallest, so first the cell is matched by growing upwards
its horizontal line and when the vertex v−1 is added, this cell is no longer available.
So all 4−cells are deleted and the modified 3−cells are all characterized by having
their second component blocked above in some way, so all of them can be denoted
by
(
,

)
.

Remark 2. For the rest of the calculations, when a process P is written, the letter
i will always be i = 0, 1, since for a given P(d, c), the calculation is performed for
stretching up and down or to the sides, as the case may be, simultaneously.

Since all the 4−cells were deleted, the next pairing step is from cells of dimension
two to cells of dimensions three. The pairings of P(2, 4, i) are(

,
) ( )

(
,

) ( )
(
,
) (

,
)
.

Again, all the 3−cells have the 2−cell related to take the bottom side of its second
component available, and all the 2−cells for which its second component is unblocked
above can be paired with a 3−cell by growing up this component. Moreover if it
is unblocked below too, since the vertices are added from greater to lower, there is
no confusion about how this cell match. Then, the 3−cells in P(2, 4, i) are deleted,
while the modified 2−cells are those in the table below.

Dimension 2 Dimension 3(
,

)(
,

)(
,
) (

,
)

Table 4.8: Modified cells of P(2, 4, i)

The following step is P(2, 3, i), and the corresponding pair is(
,

) (
,

)
.

From table 4.8, it is known the remaining cells have their second coordinate blocked
above, so their horizontal line can be blocked like
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As noted at the beginning of this section, given that the algorithm adds vertices
from greater to lower, a component tends to grow to the right first, if it can do
so. For an available 2−cell for which its second component does not have a block
on its right side, then by growing to the right this component, it can be matched
with a 3−cell; and since the component is moving to the right, it is clear the 3−cell
must have its second component blocked like the first or third case. Furthermore, all
3−cells with their second component blocked above in the left or in both sides have
an available 2−cell, namely, that related to take the left end point of the line. So
all of these cells get paired. It is important to note that there are cases for 2−cells
like the one presented below

These kind of cells just can be paired by growing their point to the left, but the
resulting 3−cells have already been eliminated. So they remain unpaired. For the
second case, there are two different possibilities

or

If the line is blocked on its right side too, the 2−cell related to take its left final
point has not been paired yet, so a 3−cell with its second component like this can
be matched. But, if the line has the blocks like in the second option, the 3−cell
does not have a pair, since the only 2−cell it can match with is the one relative to
taking its right endpoint, but this cell has already been eliminated. On the other
hand, it is clear every every 2−cell with its second component blocked on the right
and unblocked on its left side get a pair. Then, the unmated 2−cells are those with
their point blocked like

or

To simplify notation, both types of locks are denoted by

And taking this into account, the modified cells are shown in the following table

Dimension 2 Dimension 3(
,

)(
,

)(
,

) (
,

)

Table 4.9: Modified cells of P(2, 3, i)

The last step for delete all 3−cells is P(2, 2, i), i.e.(
,

) (
,

)
.

From table 4.9, it is clear that all the 3−cells are paired, since the blockages such
as are all on and given that the 2−cells have no restrictions on their first
component, it is enough that it is unlocked from above to be able to be paired. The
modified cells from P(2, 2, i) are listed on table 4.10
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Dimension 2(
,

)
(

,
)
,
(

,
)
,
(

,
)(

,

)
Table 4.10: Modified cells of P(2, 2, i)

Remark 3. From here, the notation used in the tables, denotes that both end-
points of the line are blocked, but also denotes the block .

With all 3−cells removed, the next step is P(1, 4, i).(
,

) (
,

)
(
,
) (

,
)

(
,
) (

,
)
.

For these pairings, the same reasoning in P(2, 4, i) or P(3, 4, i) can be done here, so
the remaining cells are listed right in the table below.

Dimension 1 Dimension 2(
,

)(
,
)(

,
)

(
,

)
(

,
)
,
(

,
)
,
(

,
)(

,

)
Table 4.11: Modified cells of P(1, 4, i)

The following step is P(1, 3, i) and the pairings are(
,

) (
,

)
(

,
) (

,
)
.

For these pairings, a reasoning analogous to that in P(2, 3, i) can be done, so the
remaining cells are straightforward obtained.

Dimension 1 Dimension 2(
,

)(
,

)(
,

)
(
,

)(
,

)(
,

)
Table 4.12: Modified cells of P(1, 3, i

For P (1, 2, i) the pairings are
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(
,

) (
,

)
(

,
) (

,
)
.

For the first pair, it is easy to see that the only kind of available 2−cell is of the
form

And since the only way to have 1−cells like
(
,

)
is

then, it is clear all the 2−cells can be matched with a 1−cell like the one above, for
which its point is not blocked from going up, so all of these cells are deleted.

For the second pair, it is straightforward to verify that there are only three
different 2−cell shapes, namely

while for the 1−cells the possibilities are

So, it is clear that the 2−cells of the options one and three are paired with those
1−cells related to take the bottom edge of the square, while the second with those
related to take its top edge. Also, it is clear that the remaining 1-cells are those whose
horizontal line is not blocked above, except for those for which the first component
is just to the right of the second and the line is able to go down. These cells are
described with the notation

(
,

)
−
(

2 1
)
. The modified cells are listed

on table 4.13.

Dimension 1 Dimension 2(
,

)
,
(
,

)
,
(
,

)(
,

)(
,

)
−
(

2 1
) (

,
)

Table 4.13: Modified cells of P(1, 2, i)

The last step for these dimensions is P(1, 1, i), i.e.(
,

) (
,

)
.

The only available shape of 2−cells is

12
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while for 1−cells like
(
,

)
there is just one possibility too, namely

So, as long as the point can grow to the right, all the 2−cells are paired. Furthermore,
since the right side of the line must be free, it follows that all 1−cells are also deleted.
The modified 1−cells are described on the following table.

Dimension 1(
,

)
,
(
,

)(
,

)(
,

)
−
(

2 1
)

Table 4.14: Modified cells of P(1, 1, i)

Continuing with the process, the next step is P(0, 4, i), with pairing rule(
,
) (

,
)
.

As in P(3, 4, i) or P(2, 4, i), it follows all of these 1−cells are deleted and the 0−cells
are modified like

(
,

)
. The next step is P(0, 3, i), i.e.(

,
) (

,
)
.

Since all the 1−cells with its line blocked like were all deleted already and
using the reasoning in P(2, 3, i) it follows all of these 1−cells are all deleted. The
modified cells are those on table 4.15.

Dimension 0 Dimension 1(
,

) (
,

)(
,

)
−
(

2 1
)

Table 4.15: Modified cells of P(0, 3, i)

For P(0, 2, i) the pairing rule is( ) (
,
)

For 1−cells there are just two possible shapes

2 2

Meanwhile, for 0−cells, the possible shapes are

2 1 2
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For the first 1−cell, the 0−cell related to take the top point of the line is available, so
a match can be done. For the second 2−cell, the 0−cell related to take the bottom
point is available, so it can be matched too.

Dimension 0 Dimension 1(
,

)
−
(

2 1
) (

,

)
−
(

2 1
)

Table 4.16: Modified cells of P(0, 2, i)

The last pairing is given by P(0, 1, i), i.e.( ) (
,
)
.

An straightforward verification shows there are three different shapes for 1−cells,
namely

Also for 0−cells there are two possibilities

21 2
1

For the second options of 1−cells, the 0−cell related to take the left end point of the
line is available, so it is matched. For the third options, the 0−cells related to take
the right final point of the line is available too, so it is matched. In the first case,
neither of the final points of the line are related to an available 0−cell, so this is not
deleted. Summarizing, we have shown that X(2; p, q) has only two critical cells, one
in dimension zero, and the other in dimension one, with explicit forms described on
Table 4.17.

Dimension 1

(
,
)

like

B

Dimension 0

(
,
)

like

B
21

Table 4.17: Critical cells of X(2, p, q)

So, for any p, q ≥ 2, X(2, p, q) is homotopy equivalent to S1. In particular we
recover the homotopy dimension of X(2; p, q).

Using the algorithm described in [1] for X(2, 2, 2), the authors obtained four
critical cells of dimensions one and another four in dimension zero, so for this case,
the algorithm proposed in this work is quite powerful. Even more, using our gradient
field the total number of critical cells of dimension 1 and 0 for X(2; p, q) is optimal
and the resulting homotopy type corresponds with that of 2 non-collisioning particles
on R2.
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4.3 n=3

Dimension Cells Types for n=3

Dimension 0
(
, ,

)

Dimension 1
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, , ,

)
,
(

, , ,
)

Dimension 2

(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
(
, ,

)
,
(

, ,
)
,
(

, ,
)
,
(
, ,

)
,
(
, ,

)
,
(
,

)
(
, ,

)
,
(

, ,
)
,
(

, ,
)

Dimension 3

(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(

, ,
)

(
, ,

)
,
(

, ,
)
,
(
, ,

)
,
(

, ,
)
,
(

, ,
)
,
(
, ,

)
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(

, ,
)
,
(

, ,
)
,
(
, ,

)
(
, ,

)
,
(
, ,

)
,
(
, ,

)

Dimension 4

(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(

, ,
)
,
(
, ,

)
,
(
, ,

)
(

, ,
)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(

, ,
)
,
(

, ,
)

(
, ,

)
,
(

, ,
)
,
(

, ,
)

Dimension 5
(

, ,
)
,
(

,
)
,
(
, ,

)
,
(
, ,

)
,
(
,

)
,
(

, ,
)

Dimension 6
(
, ,

)
Table 4.18: Table with dimensions and cell types

In the subsection before, with a grid of height 1, was relatively straightforward to
obtain the homotopy type ofX(n; p, 1), and as mentioned before, it was easy because
the total number of cell types does not have a very large variety despite being large
in number, also the algorithm used makes the procedure simple. Now, for n = 3,
the cells can be at most dimension six and can be classified by the shape of its
components too, which could be a square , an horizontal line , a vertical line or
a point . Table 4.18 shows all the types of cells that there are for n = 3.
It can be seen from table 4.18, the algorithm starts by verifying the possible pairs
from the 5-cells

(
, ,

)
to the 6-cells

(
, ,

)
, and as usual it is denoted by(

, ,
) (

, ,
)
.
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Every
(
, ,

)
cell has a codimension-1 face which is available, so every sixth

dimensional cell is paired. Moreover, for a cell in
(
, ,

)
for which its third

component, the horizontal line, does not have a block above for any of the squares
components or by the boundary of the grid, then it has a unique available 1-coface,
and given the preference to grow upwards, then all of the 6−cells are paired, while
the remaining 5−cells in this process are those for which its horizontal line is blocked
for growing upwards [A]. Graphically the blockages can be like:

B

Here the position of tells if the line is blocked by another component (left, right or
both) or by the boundary (both sides blocked or the letter "B" above). All the kind
of blocks are included in the notation , so the remaining 5-cells are

(
, ,

)
and all the others fifth dimensional cells.

Having finished all the 6-cells, then the process of pairing 4-cells with 5-cells
starts with the matches (

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(

, ,
) (

,
)

(
, ,

) (
,

)
(
, ,

) (
, ,

)
.

Using the same argument as in [A], it is clear the modified cells after these pairings
are those listed in table 4.19.

Dimension four Dimension five(
, ,

)
(

, ,
)

(
, ,

)
(
, ,

)
(
, ,

)

(
, ,

)

Table 4.19: Modified cells of P(4, 6, i)

For the remaining 5−dimensional cells, the pairing that follows is(
, ,

) (
, ,

)
.

For both dimensions, the cells have their third coordinate blocked above, for the
5−cells the blocks are like:
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Given the preference for moving right first, as long as the point in the 4-cell is free
to move to the right (i.e. ) then it can be paired with a 5−cell whose horizontal
line has a block like the first or the second option (by the left or in both sides), while
for there are two options

or

For the first option a match can be done by growing the point to the left, but not
for the second because its 5-coface was already deleted. Thus, the remaining cells of
dimension five are

(
, ,

)
. Meanwhile for dimension four, the remaining

cells are those for which the point satisfies [B]:

or

and again, in order to simplify the notation, it is agreed that both cases are con-
templated in the notation:

Then the remaining 4-cells are
(

, ,

)
.

Given that there are still cells of dimension five, the next step is P(4, 4, i)(
, ,

) (
, ,

)
.

It is clear all the 5−cells have an available face of dimension four. For the remaining
fourth dimensional cells, as in [A], a 4-cell is paired as long as its second coordinate
does not have a block above but also the condition must be hold. This means
that the second coordinate can grow up and, when it does, the third coordinate is
still unblocked on the right, but since the second is increasing, it may happen that

in which case the cell is not paired, this kind of unpaired cell is denoted with(
, ; ,

)
[C]. Then, after this pairing, the modified cells are:

Dimension four(
, ,

)
(

, ,
)

(
, ,

)
(
, ,

)
,
(

, ,
)
,
(

, ,
)
,
(

, ,
)

(
, ,

)

Table 4.20: Modified cells of P(4,4,i)

50



Remark 4. In this and the next tables, the notation is used for denote this
specific block and also .

Next, the first pairings from dimension 3 to dimension 4 are the following ones:(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
.

Again by [A] and table 4.20, it is easy to verify that the modified cells are those
in table 4.21.

Dimension three Dimension four(
, ,

)
(
, ,

)
(
, ,

)
(
, ,

)
(

, ,
)

(
, ,

)
(

, ,

)
(
, ,

)
(

, ,

)
(

, ,

)

(
, ,

)
(

, ,
)

(
, ,

)
(
, ,

)
,
(

, ,
)
,
(

, ,
)
,
(

, ,
)

(
, ,

)

Table 4.21: Modified cells of P(3, 6, i)
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The next step is given by the third coordinate going left or right and according
to table 4.21, the pairings are:(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
.

For all the pairings, the argument explained in [B] can be applied, but for the last,
since some cells have the restriction they cannot be paired because the point in
3-cells first went to the right and got paired with the 4-cells whose third coordinate
satisfy . Moreover those with are paired too since all of them have an
available 3-face whose third coordinate fulfills the blocks and can grow to the left.
The modified cells of this process are listed in table 4.22.

Dimension three Dimension four(
, ,

)
(
, ,

)
(
, ,

)
(
, ,

)
(

, ,
)

(
, ,

)
(

, ,

)
(
, ,

)
(

, ,

)
(

, ,

)

(
, ,

)
(

, ,
)

(
, ,

)
(

, ,
)
,
(

, ,
)

(
, ,

)

Table 4.22: Modified cells of P(3, 5, i)

The next step leads to: (
, ,

) (
, ,

)
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(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
.

According to table 4.22, it is easy to see that the first three fourth dimensional kind
of cells have available faces, so all of them are paired. By [A] and [C], the remaining
3−cells are those in table 4.23. The last pairing must be examined carefully, as it is
necessary ensure that the blocks in the third coordinate are met and since what is
moving is the second coordinate, it is convenient to take a look at how the square
can be blocking the point:

For the last two, as long as the other blocks holds, they can be paired with a three
dimensional cell with a similar configuration and such that the third coordinate is
not block for going up. The fourth option cannot happen and for the third it is only
possible have the boundary or the square of the first coordinate blocking the point
and the upper right side of the second coordinate, i.e.

B

or
B

in both cases the cells have an available 3−face. The second option only could hap-
pen if the first coordinate is just above the point, in which case it has an available
face for being paired. Meanwhile for the first if the upper blockage is due to the
boundary, it is paired with a three dimensional cell but this time the second coordi-
nate must go down, but if it is due to the square of the first coordinate then there
are three possible options:

B B

in the first two cases there exists an available 3-face taking the upper side of the
square and the 3-cell with this same configuration, which can be paired by increasing
its second coordinate downwards. However for the first case, the only face that can be
taken is that corresponding to the upper side of the square of the second coordinate
too, i.e.

but this type of cells has already been paired by going up in the second option. So
cells like:

1
2
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cannot be paired [D]. It is important to remember that a cell of dimension three is
paired by going down when the second coordinate is at the right side of third and
it is blocked above and completely free below, this kind of configuration is denoted

by
(

3 2
)

[E].

Keeping in mind these modifications to the remaining cells, the algorithm continues
by doing pairings fixing the first coordinate of the second component with the rules(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
.

As for the first pairing, the remaining cells are of the specific type in table 4.22. It
is clear that taking the left side of the second square, the resulting three dimensional
cell is available, so these fourth dimensional cells are deleted while the 3-cells like:

1
2

are also deleted, this type of cells are denoted by

(
1
3 2

)
.

For the last pairing, one part of the cells according to table 4.2 are like those
described in [C]. Then the 3-cells whose second coordinate also fulfills that can grow
to the right and are all paired, remainly only those with a block on their right side,

like [G]. Finally for:(
, ,

) (
, ,

)
.

Since both comply with then by [B], the modified cells of dimension four
and three are listed on table 4.23.
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Dimension three Dimension four(
, ,

)
(
, ,

)
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
(
, ,

)
(

, ,
)

(
, ,

)
,
(

, ,
)
,
(

, ,
)
,
(

, ,
)

(
, ,

)
(
, ,

)
,
(

, ,
)
,
(

, ,

)
,
(

, ,

)
(

, ,

)
-

(
1
3 2

)
(

, ,

)
-
(

3 2
)

(
, ,

)

Table 4.23: Modified cells of P(3, 3, i)

To remove all the 4-cells, the last pairing is:(
, ,

) (
, ,

)
,

Evidently every cell in
(

, ,
)

has a free face in
(

, ,
)

and since there are just two different forms to have in both second and third
coordinate [G.0], namely:

2
3

1
ó

3
2

1

then the unpaired cells are those whose second coordinate is blocked like or
or those whose first coordinate is blocked above, i.e. the cells in

(
, ,

)
.

So the 3-cells remaining from this process are in table 4.24
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Dimension three(
, ,

)
(
, ,

)
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
(
, ,

)
(

, ,
)

(
, ,

)
,
(

, ,
)
,
(

, ,
)

(
, ,

)
,
(

, ,
)
,
(

, ,
)

(
, ,

)
(
, ,

)
,
(

, ,
)
,
(

, ,

)
,
(

, ,

)
(

, ,

)
-

(
1
3 2

)
(

, ,

)
-
(

3 2
)

Table 4.24: Modified cells of P(3, 2, i)

Now it is time to start with the pairings from dimension two to dimension three:(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
,

) (
,

)
(

, ,
) (

, ,
)
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(
, ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
.

As before, by [A] all these 3-cells are deleted. So the modified cells are in the
table 4.25.

Dimension two Dimension three

(
, ,

)
(
, ,

)
(
, ,

)
(
, ,

)
(
, ,

)
(
,

)
(

, ,
)

(
, ,

)
(

, ,

)
(

, ,

)

(
, ,

)
(
, ,

)
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
(
, ,

)
(

, ,
)

(
, ,

)
,
(

, ,
)
,
(

, ,
)

(
, ,

)
,
(

, ,
)
,
(

, ,
)

(
, ,

)
(
, ,

)
,
(

, ,
)
,
(

, ,

)
,
(

, ,

)
(

, ,

)
-

(
1
3 2

)
(

, ,

)
-
(

3 2
)

Table 4.25: Modified cells of P(2, 6, i)

The next step is given by fixing the third component, but now fixing its first
coordinate, namely (

, ,
) (

, ,
)

(
, ,

) (
, ,

)
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(
, ,

) (
,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
.

Using [B] it is easy to see that the modified cells are those in table below (4.26).

Dimension two Dimension three

(
, ,

)
(
, ,

)
(
, ,

)
(
, ,

)
(
, ,

)
(
,

)
(

, ,
)

(
, ,

)
(

, ,

)
(

, ,

)

(
, ,

)
(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
(

, ,
)

(
, ,

)
(

, ,
)
,
(

, ,
)
,
(

, ,
)

(
, ,

)
(

, ,

)
,
(

, ,

)
(

, ,

)
-

(
1
3 2

)
(

, ,

)
-
(

3 2
)

Table 4.26: Modified cells of P(2, 5, i)

Now, fixing the second component, given that there are already multiple restric-
tions for the leftover cells, the pairings need to be examined carefully.(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
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(
, ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
.

According to table 4.26, the pairings one, two and four are easy to do using the
same idea as in [B]. For the fifth match, with the same reasoning as [D] and [E] the
unpaired cells are easily deduced. For the third, an idea similar to [D] can be done
but now taking into account the shape of the first coordinate. Namely, again the
second coordinate can block the point as:

Now, while the other blocks holds, for the last two just taking the bottom side of
the square and a 2-cell with a similar configuration and with its second coordinate
unblocked from above then a pair is obtained. Unlike [D] in this case the fourth
option is possible:

B

and again taking the bottom side of the square and a 2-face similar to it whose
second coordinate is free to grow up, then it can be paired. For the third one, there
are two possible options:

B

B

For the second, the 2-cell related to take the bottom side of the square is a pair of
it, but for the first the only face this type of cell could have is the one due to the
top side of the square but this has been paired already in the fourth option, so this
remains unpaired. Finally as in [D], for the first and second options cells like:

B

remain too [D.1] Taking into account [D] and noting that throughout the explana-
tion what really influences is the bottom side of the square in the first coordinate,
then the remaining 3-cells are those like:

1
2

For the last pairing a similar procedure to that done in [D] is useful, so considering
the second coordinate is moving:
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For the first, while all the other blocks hold, it is clear the cell has a free 2-face
such that it has the same configuration as the 3-cell when the lower point of the line
is taken and it is able to go up, and the same for options two an four, this due to the
preference to move upwards. The third one also gets a pair by a three dimensional
cell going up because the block above the point can only be done for a square or the
boundary and in both cases the upper side of the line needs to be covered too. In
the last option it is clear that the pairing needs to be done going downwards, if is
possible, since it is necessary to have . Then the upper block of the point is done
by the boundary or by the square, i.e.

B

The former is paired by a 2-face with a similar configuration and taking the upper
side of the line, and the same for the last. But the second case no longer has a pair
because it was paired before by growing upwards in the fourth option. Now, taking
into consideration that there are cells that were deleted before as can be seen in
table 4.26 , then the unpaired cells are precisely like:

B

Having finished these pairings, the remaining cells are listed in table 4.27.
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Dimension two Dimension three(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
(
, ,

)
-
(

3 2
)

(
, ,

)
,
(

, ,
)

(
, ,

)
,
(

, ,

)
(

, ,

)
(

, ,

)
-
(

3 2
)

(
, ,

)
-
(

3 2
)

(
, ,

)
,
(
, ,

)

(
, ,

)
like B or B

(
, ,

)
,
(

, ,
)

(
, ,

)
,
(

, ,
)

(
, ,

)
like

1
2

(
, ,

)
,
(

, ,

)

(
, ,

)
like

B

(
, ,

)
-
(

3 2
)

Table 4.27: Modified cells of P(2, 4, i)

The following pairings are:
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(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
.

In the first pairing, by [F] the cells
(
, ,

)
are all deleted, meanwhile

for
(
, ,

)
the possible ways for this to hold are:

3 3 3
B

3 3 3 3

B

For those configurations with a point at the start point of the second coordinate it
is clear that they have a free face and are paired, but for those without a point it
is not possible to get a match. In the second case, taking any of the end points of
the second coordinate, the 2-face related to it is no longer available, meanwhile in
the fifth case, the 2-face related to take the right end point were matched before,
precisely in the option number four. Furthermore, it is important to see that both
cases are the only possible to have

(
, ,

)
with the exception that for

the second case it is also possible that the second coordinate is blocked at the right
end point by the boundary, such cells are denoted by

(
, B ,

)
[G.1].

For the third pairing, using [F] it is easy to see the cells
(

, ,
)

are
all deleted and for the other kind of cells the reasoning is very similar to that in the
first pairing, only with slight changes. Explicitly, the 3-cells are:

32
1

32
1

32
B

3 1
2

3 2
1

B

3 12

B

23 1
B

321
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Those cells with a point in its second coordinate are clearly matched with a 2-face,
and the 2-cells not paired are those with , with an exception, given that the
condition is necessary, seeing the option number six, it is easy to note that
there is an specific kind of cells which is not matched [C.0]:

B

3 12

As in [C], these cells are denoted by
(

, ,
)
.

The last pairing has different types of unpaired cells. First:

2

is not paired because taking neither of the ends points in the second coordinate and
the 2-face related to it, it is not available. It is important to note that the point must
be free at its left side, if there was a blockage there; then the cell is paired by taking
the 2-cell related to the right end point of the second coordinate [I]. Specifically the
cell:

1

B

is matched with the 2-cell related to take the right end point of the second coordinate,
so this kind of cell needs to be deleted of the remaining cells. Another kind of

unpaired cells are those due to the fact that the cells
(

3 2
)

were removed.

As can be seen, the available 3-cells with the second coordinate at the right of the
second coordinate are precisely:

1

B

B

1
B

1

B

1

For those with a point at the left end of the second coordinate, there is a partner
which is the 2-cells related to take that point, but for the last the left end point does
not comply with being locked down, and the right point does not block the left of
the third coordinate. Then these cells cannot be paired. The last type of cell that
does not have partner are those deduced by a reasoning as [B].

For the pairings two and four, it is clear that all the third dimensional cells have
an available 2-face and it is only necessary to remove those 2-dimensional cells which

were paired, so B and B are denoted by
(

3
1

2

)
and

(
2 3

1
)

respectively. Moreover the cells

1
2 are denoted by

(
3
1

2

)
too and there
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should be no confusion since, despite of being the same notation, the entries of the
cells are not the same. Cells that were modified for these pairings are listed in table
4.28.

The next step in the process is given by:(
; , ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(

, ,
) (

, ,
)
.

In the first pairing, it is clear that all the 3-cells have a pair, and as in [G.0] and
[G.1], it is easy to see which cells are left, but in this case the cells with or

in the second and third coordinate are denoted by
(
, B ,

)
For the second, doing:(

, ,

) (
, ,

)
,

all the 3-cells are deleted and remain the 2-cells with its first coordinate as .
For cells in

(
, ,

)
there exists only two different ways to meet the

restrictions, namely [H]:

B

or

B
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Dimension two Dimension three(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
,
(
, ,

)

(
, ,

)
-

{(
3
1

2

)
∪
(

2 3
1
)}

(
, ,

)
-
(

3 2
)

(
, ,

)
,
(

, ,
)

(
, ,

)
,
(

, ,

)
(

, ,
)

(
, ,

)
-
(

3
1

2

)

(
, ,

)
-
(

3 2
)

(
, ,

)
-

{(
3 2

)
∪
(

2
3

)}

(
, ,

)
,
(
, B ,

)
(

, ,
)

(
, ,

)
,
(

, ,

)

(
, ,

)
like

B

(
,

)

{
(

, ,

)
−
(

3 2
)

|

(
2

3

)
or
(

3 2
)
}

Table 4.28: Modified cells of P(2, 3, i)

Meanwhile in
(

, ,

)
the options are:

B

or

B

The first options in both kind of cells, as long as the first coordinate is not like ,
then they are paired. But the 3-cells in the second option no longer have pairs.
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The 2-cells in both options comply . Given that the available 3-cells in the third
pairing are of the specific type in table 4.28 since its second coordinate is right next
to the boundary then have a free 2-face to mate with and it is necessary to delete

the paired 2-cells, which are denoted by

 1

3 2

.

For the last one the same thing happens as in [H] for
(

, ,

)
so the

paired 2-cells denoted by

 1

2

 must to be deleted from their respective kind of

cells. While for the others, the specific 2-cells are:

B B
B B B B

Except for the penultimate option, all 3-cells have a cell to pair with by considering
the bottom side of the square and taking the 2-cell relative to this configuration.
The first four and the last one are respectively on the sets

S0 =

{(
2

3

)
| its first coordinate can grow upwards and does not block the right of the point.

}

S1 =

{(
3 2

)
| its first coordinate is able to grow downwards

}
and both of them must be deleted. The modified cells are presented in table 4.29.

The final pairings from dimension two to dimension three are(
, ,

) (
, ,

)
(

, ,
) (

, ,
)

(
, ,

) (
,

)
.

From table 4.29, for the last two pairings just taking the right side of the square
and the 2-cell with a similar configuration to it, then the 3-cells can be paired, so it

is just necessary to delete these cells. Cells like

B

in the penultimate case are

denoted by

(
2 1
3

)
, meanwhile cells as

B

or

B

in the last case are denoted

by

(
3 1
2

)
and

(
2

3 1

)
.

For the first, specifically the pairing is:(
, B ,

) (
, ,

)
.

And the only available 3-cells are:
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B

2
3

1 or
B

3
2

1

Dimension two Dimension three(
, ,

)
(
, ,

)
,
(
, ,

)
,
(
, ,

)
(
,

)
(
, ,

)
,
(
, B ,

)
(
, ,

)
(
, ,

)
,
(
, ,

)
(
, ,

)
,
(
, ,

)

(
, ,

)
-

{(
3
1

2

)
∪
(

2 3
1
)}

(
, ,

)
-
(

3 2
)

(
, ,

)
,
(

, ,
)

(
, ,

)
,
(

, ,

)
(

, ,
)

(
, ,

)
-

{(
3
1

2

)
∪

 1

3 2

}

(
, ,

)
-

{(
3 2

)
∪ S0 ∪ S1

}
(

, ,

)
,
(

, ,

)
-

 1

2


(

, ,

)
-

{(
3 2

)
∪
(

2
3

)}

(
, ,

)

(
, ,

)
like

B

{
(

, ,

)
like

B

or

B

Table 4.29: Modified cells of P(2, 2, i)

And similarly for the 2-cells:

B

2
3
1 or

B

3
2
1
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so every 3-cells has a partner. All the modifications are listed on table 4.30.

Dimension two(
, ,

)
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
,

)
,
(
, B ,

)
(
, ,

)

(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
-

(
2 1
3

)

(
, ,

)
-

{(
3
1

2

)
∪
(

2 3
1
)}

(
, ,

)
-

{(
3 2

)
∪

(
3 1
2

)
∪

(
2

3 1

)}

(
, ,

)
,
(

, ,
)
,
(

, ,

)
,
(

, ,

)
,
(

, ,
)

(
, ,

)
-

{(
3
1

2

)
∪

 1

3 2

}

(
, ,

)
−

{(
3 2

)
∪ S0 ∪ S1

}

(
, ,

)
,
(

, ,

)
−

 1

2


(

, ,

)
−

{(
3 2

)
∪
(

2
3

)}

Table 4.30: Modified cells of P(2, 1, i)
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The process of dim(1) ↗ dim(2) starts with the pairing rules(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, , ,

) (
, ,

)
(

, ,
) (

, ,
)
.

And the remaining cells of dimension one and two are described in table 4.30 and
4.31 respectively.

Dimension one(
, ,

)
,
(
, ,

)
(
, ,

)
,
(
, ,

)
(

, ,
)

Table 4.31: Modified cells of dimension one of P(1, 6, i)

The process continues in the third component and its first coordinate:(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(
, , ,

) (
, ,

)
(

, ,
) (

, ,
)
.

For this step, by [B] it is easy to see that all the 2-cells such that its third compo-
nent is blocked as cannot be paired because those whose third component is
blocked as or are matched first, so the resulting cells are in table 4.32.

For the following step, the second component and its second coordinate are fixed,
then the corresponding matches are(

, ,
) (

, ,
)

(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(

, ,
) (

, ,
)
.
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Dimension one Dimension two

(
, ,

)
(
, ,

)
(
, ,

)
(
, ,

)
(

, ,

)

(
, ,

)
(
, ,

)
,
(
,

)
,
(
, B ,

)
(
, ,

)

(
, ,

)
,,
(
, ,

)
-

(
2 1
3

)

(
, ,

)
-

{(
3
1

2

)
∪
(

2 3
1
)}

(
, ,

)
-

{(
3 2

)
∪

(
3 1
2

)
∪

(
2

3 1

)}

(
, ,

)
,
(

, ,

)
,
(

, ,
)

(
, ,

)
-

{(
3
1

2

)
∪

 1

3 2

}

(
, ,

)
-

{(
3 2

)
∪ S0 ∪ S1

}

(
, ,

)
,
(

, ,

)
-

 1

2


(

, ,

)
-
(

3 2
)

∪
(

2
3

)
Table 4.32: Modified cells of P(1, 5, i)

For the first, it is evident that all the 2-cells are deleted, and for the 1-cells, it
is easy to see which are the unmatched cells. It is important to note there are cells
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like those in [C] which are not paired too. For the second, as explained in [D.1],
there are still remaining cells of dimension two, namely

B3 B 3

For the last two, if the second coordinate is above the third and all the other blocks
hold, then while the second coordinate is able to grow up, then it is paired. In fact,
as it can be seen in previous cases the problem arises when it is in the same side
but in different positions, i.e.

and

For the third, while the correct blocks of the third component hold, the first
2-cells to be matched are the first ones of both cases, and for the others, there are
just two possible options:

B2 2B

Both kinds of cells are not matched since their 1-cell available were matched before
by growing up, but most of these cells were deleted already according to table 4.32.
So the only remaining cells are those with their second coordinate blocked on the
left or on the right respectively, a situation that only happens when p = 2. For the
last pairing the previous cases also hold, but since the first coordinate of the cells
is an horizontal line, using [D] and noticing the same reasoning can be used even if
the second coordinate is a vertical line and not a square, it is easy to see that cells
like

1
2

Since the remaining 2-cells for the last three pairings are of the specific types already
show and all of the first were deleted, for this time just the modifications of the
remaining 1-cells are listed on the table below (4.33).
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Dimension one

(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
(
, ,

)
(
, ,

)
-
(

3 2
)

(
, ,

)
-
(

3 2
)

(
, ,

)
-
(

3 2
)

Table 4.33: Modified 1-cells of P(1, 4, i)

Still in the second component, the process continues by setting the first coordi-
nate (

,
) (

, ,
)

(
, ,

) (
, ,

)
(
, ,

) (
, ,

)
(

, ,
) (

, ,
)
.

For the first, just taking the 1-cell related to the right or left side of the square as
the case may be, makes all the 2-cells be deleted. On the second, the pairings are:(

, ,

) (
, ,

)
(
, ,

) (
,

) (
, B ,

)
.

Given the specific shape of the cells in the first case, it becomes clear all the 2-cells
are deleted. For the cells in

(
,

)
, since also denotes and given

the components of the cells, this blocks can be realized as

B
2 2

Then, while the block on the third component holds, it is clear that by the preference
for moving to the right, all of these 2-cells are matched. For the unpaired 1-cells, as
in [C.0] there is the special case

B

312
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that fulfills that its second coordinate is able for move to the right but whose 2-cell
is not available, these cells are not paired and are denoted as those in [C.0] too.
Finally, for this pairing, it remains exactly one 2-cell, namely

B

32

For the third, since the blockages of the third coordinate are like

or

then it is easy to deduce that, given that it is the second coordinate which is under
consideration, a deeper look must be taken about when it is making the upper or
the right block. This is because when it makes the left block, since both coordinates
must be blocked above, then they are right below the boundary and taking the 1-cell
related to the point on the right side of the horizontal line, then the 2-cell is paired.
Now, there are three options

while the other corresponding blocks hold, for the first if there is a block on the
left of the point, the cell is paired, otherwise the 2-cell remains unpaired. For the
middle option, there must be blockages on the left and right, so taking the left point

of the line, a match is achieved. For the last one, since the cells like
(

3 2
)

were

deleted already, the cells actually considered are

The first case can be paired just taking the left side of the horizontal line, but not
the second because neither of the ends of the line are related to available 1-cells.
Finally, even if the second coordinate is not making any of the blockages of the
point, there is still the case on [B], and this case must be considered on the remain-

ing cells. So the remaining cells are those on

{(
, ,

)
−

(
3 1
2

)}
or

C =

{(
, ,

)
|

(
2

3

)
or
(

3 2
)}

−

{(
3 1
2

)
∪

(
2

3 1

)}
.

For the last one, given that there are several kinds of cells, all the 2-cells are il-
lustrated below for the three cases. First, for the 2-cells in

(
, ,

)
and

considering all the special types of 2-cells with these blocks but deleted already, all
the cells are (1 to 16)

2 21 2
1

1
2

1
2

2
1 2

1 1
2 2

1
2
1

2
1
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2
1

2
1 2 1

1
2

1
2

Meanwhile for the cells on
(

, ,

)
there are just two different options,

namely (17 and 18)

2
1 1

2

Finally, for those cells in B =
(

, ,

)
-

 1

2

 there are two possible

options too (19 to 21)

2
1 12 1

2

For these, since the possible 1-cell available is that related to take the right end
point of the second coordinate, but this 1-cell was already paired on 12 and 15 re-
spectively, then 19 and 20 are not paired, also 21 cannot be paired since neither of
the end points of the first coordinate are related to available 1-cells. For 17 and 18,
either are matched with the 1-cell related to take the right end point of the second
coordinate. Now, for 1 to 5, since the point is not blocked on the left, neither of
the end points of the second coordinate have an available related 1-cell. For 6 to
10 and 12 to 16, taking the 1-cell related to take the left end point of the second
coordinate, then the 2-cell is paired, but not for 11 since neither of its end points
are related to available 1-cells. So for the remaining cells, setting

A0 =

{(
2

3

)
| its first coordinate is blocked above

}
,

A1 =

{(
2

3

)
| its first coordinate can block the left side of the point if it grows up

}
and

A2 =

{(
3 2

)
| its second coordinate is blocked below at the right by the first coordinate

}

then the remaining 2-cells are those in B∪

{(
, ,

)
| A0 ∪ A1 ∪ A2

}
.

All the modified cells are listed on table 4.34.
Now, almost finishing, the first component is fixed, and the pairings are those

where the first coordinate can go up or down, i.e.,(
, ,

) (
, ,

)
(
, , ,

) (
,

)
(

, , ,
) (

, ,
)

(
, ,

) (
, ,

)
.
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Dimension two(
, B ,

)
(
, ,

)
,
(
, ,

)
-

(
2 1
3

)
{(

, ,

)
|
(

3
1

2

)
∪
(

2 3
1
)}

{(
, ,

)
−

(
3 1
2

)}
∪C

(
, ,

)
,
(

, ,

)
,
(

, ,
)

(
, ,

)
like

1
2

B∪

{(
, ,

)
| A0 ∪ A1 ∪ A2

}
(

, ,

)
-
(

3 2
)

∪
(

2
3

)
Dimension one

(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
(
, ,

)
−

{(
3
1

2

)
∪
(

2 3
1
)}

(
, ,

)
-
(

3 2
)

(
, ,

)
−

{(
3 2

)⋃( 2
3

)}

(
, ,

)
−

{(
3 2

)⋃( 2
3

)}
Table 4.34: Modified cells of P(1, 3, i)

First, for

75



(
, ,

) (
, ,

)
it is easy to see that all the 2-cells are paired and for the 1-cells there is just one
unique remaining cell whose first coordinate is below the upper boundary. Concern-
ing (

, ,

) (
, ,

)
−

(
2 1
3

)
,

for the 1-cells, there are just two possible options with these blocks, namely

2 1 2
1

And for the 2-cells the options are

1 1

As can be verified on table 4.34, the last option was deleted already, and taking the
1-cell related to take the end point of the vertical line above the third coordinate
gives a match for the first option.
For the second pairing, an exhaustive verification gives that all the possible options
for C are (1 to 6)

2 1
1

2 1
2

2
1 2

1
2

1

Meanwhile for the cells on

{(
, ,

)
−

(
3 1
2

)}
there is just one option

(7)

2
1

These last kinds of 2-cells are all paired since taking the 1-cells related to take the
end point of the vertical line above the second coordinate gives a pair for it, because
this 1-cell does not move to the right first since that 2-cell were deleted before. For
options 1 and 2 to 6, taking the final end point of the vertical line and the 1-cell
related to it gives a match for the 2-cell, but not for 2 since for it the starting point
must be taken, but this 1-cell was paired with a 2-cell like 1. For the remaining
1-cells, it is just necessary to delete specific cells as the case may be. So, dividing

the cells and taking D0 =

{(
3 2

)
,

}
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D1 =

{(
2

3

)
| its first coordinate can grow up and does not block the left side of the point if it does.

}

D2 =

{(
3 2

)
| its second coordinate is blocked below at the right by the first and this can grow downwards

}

D3 =

{(
2

3

)
| its first coordinate can grow up

}
and D4 =

{(
1

2

)
| its first coordinate can grow up

}
then the remaining 1-cells are those in(

, ,

)
− {D0 ∪D1 ∪D2}(

, ,

)
−D3(

, ,

)
−D4.

For the third pairing, since the remaining 2-cells are of the specific types in table
4.34, and taking the related 1-cell obtained by taking the end point of the first co-
ordinate which is exactly the one that has not been eliminated yet, then all of these
2-cells are deleted and taking F = F0 ∪ F1 with

F0 =

{(
3
1

2

)
∪
(

2 3
1
)}

and F1 =

{(
3
1

2

)
∪
(

2 3
1
)

| its first coordinate can grow up
}

then the remaining 1-cells are those in(
, ,

)
− F.

Finally, for the fourth pairing, it is convenient to illustrate all possible 2-cells (1
to 13)

2 3

2

3

3

2

2

3 3 2

3

23 32 3

2

where all the cells without numbers of coordinates means that the point can take
any of the values 2 or 3. For the options 1, 2, 3, 5, 6 and 12, the 2-cells are paired by
taking the bottom side of the square and the 1-cell related to it (in 6, this only can
be done if the third coordinate is above and the second is below). For the options
6, 9, 10 and 11 the 2-cells are paired by taking the upper side of the square and the
1-cell related to it (in 6, this is done just when the second coordinate is the one on
the top and the second is the one below, this because some of the 1-cells were deleted
already, but there is still a partner for it). Finally, for the cells like 4, 7, 8 and 13
neither of the upper or bottom sides of the square can be taken to form an available
1-cell, so these specific cells still remain. For the unpaired 1-cells, it is only necessary
to delete those 1-cells related to the 2-cells paired before. So denoting the next sets
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E0 =

{(
2
3

)}
, E1 =

{(
2 1

)
| the first is able to grow downwards

}

E2 =

{(
3 1

)
| the first coordinate is able to grow downwards

}
, E3 =

{(
1 2

3

)}
and

E4 =

{(
3 2
1

)
| the first coordinate is able to grow downwards

}
then the remaining cells are those in(

, ,

)
− {D0 ∪ E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4}.

Then, the modified cells are those presented on table 4.35
For the pairings from dimension one to dimension two, the last step is given by the
following matches (

, ,
) (

, ,
)

(
, , ,

) (
, ,

)
(

, ,
) (

, ,
)

(
,
) (

, ,
)
.
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Dimension two(
, B ,

)

(
, ,

)
like 1

2

(
, ,

)
,
(

, ,

)
,
(

, ,
)

(
, ,

)
like

1
2

B ∪

{(
, ,

)
| A0 ∪ A1 ∪ A2

}

(
, ,

)
like

3

Dimension one

(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
,
(
, ,

)
(
, ,

)
− F

(
, ,

)
− {D0 ∪D1 ∪D2}(

, ,

)
−D3(

, ,

)
−D4

(
, ,

)
−

{(
3 2

)⋃( 2
3

)}
(

, ,

)
− {D0 ∪ E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4}

Table 4.35: Modified cells of P(1, 2, i)

Getting started with the third pairing that is the easiest, according to table 4.35,
the cells like

3
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are paired with the 1-cells related to take the left or the right side of the square
respectively. But for the cells

neither of its sides is related to an available 1-cell, so they are not deleted. And for
the remaining 1-cells, we set

F2 =

{(
2
3 1
)

| the first coordinate is unblocked on its right side
}

,

F3 =

{(
3
2 1
)

| the first coordinate is unblocked on its right side
}

and

F4 =

{(
3
21

)
| the first coordinate is unblocked on its right side

}
.

Then the remaining 1-cells are those in(
, ,

)
−

{(
3 2

)⋃( 2
3

)
∪ F2 ∪ F3 ∪ F4

}
.

As seen before, the remaining 2-cells for the pairing number two are (1 to 9)

2
1 12 1

2
2
1

2 21 2
1

1
2

1
2

For the options 1, 2, 4, 6, 7 and 8, according to table 4.35, just considering the
1-cell obtained by taking the left end point of the first coordinate gives an available
1-cell, so these cells are paired. For 3, 5 and 9, neither of the end points of the first
coordinate give rise to an available 1-cell. On table 4.36 are the remaining 1-cells,
for which just were deleted the 1-cells deleted here, and for which

D5 =

{(
2

3

)
| its first coordinate is blocked above and unblocked on its right side.

}
and
D6 =

{(
3 2

)
| its second coordinate is blocked below at the right by the first and this is unblocked on its right side

}
.

For the first pairing, there are few remaining 2-cells, those in
(

, ,

)
are (1 to 3)

13 13 13

Meanwhile for those in
(

, ,

)
and

(
, ,

)
there is re-

spectively one option, namely

13 31
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For these two, the 1-cell related to take the left end point of the coordinate 1, gives
rise to matches for these 2-cells. For options 1 and 2, the same can be done and then
both kinds of cells are paired. For the third, neither of the end points of the first
coordinates is related to an available 1-cell, so this cell is not deleted. For the remain-
ing 1-cells, it is evident that all the cells on

(
, ,

)
and

(
, ,

)
are all paired here, and the only modified cells of the form

(
, ,

)
are

those whose first coordinate is blocked like .

Finally, for the cell

1
2 since the third coordinate is not blocked on its left side

and neither of the end points of the first coordinate can block the point properly,
this cell is not deleted.
The modified remaining cells, are all listed on the table below (4.36).
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Dimension two

(
, ,

)
like

B

32

(
, ,

)
like 1

2

(
, ,

)
like

B

31

(
, ,

)
like 2

1

(
, ,

)
like

2
1

1
2 1

2

(
, ,

)
like

3

2

2

3
Dimension one

(
, ,

)
,
(
, ,

)
,
(

, ,

)
(
, ,

)
− F

(
, ,

)
− {D0 ∪D1 ∪D2 ∪D5 ∪D6}(

, ,

)
−D3(

, ,

)
−D4

(
, ,

)
−

{(
3 2

)⋃( 2
3

)
∪ F2 ∪ F3 ∪ F4

}
(

, ,

)
− {D0 ∪ E0 ∪ E1 ∪ E2 ∪ E3 ∪ E4}

Table 4.36: Modified cells of P(1, 1, i)

We refrain to describe the pairing process between dimension 0 and 1 and, in-
stead, we close this section with a few final remarks that complete a proof of the
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theorem on the introduction:

Proof of item (e). The analysis above of the gradient field gives the assertions
about the dimension of critical cells, together with the inequality hdim(C(3; p, q)) ≤
2, where hdim stands for "homotopy dimension of". The fact that the previ-
ous inequality is an equality follow from the homological calculations in [1] giving
H2(C(3; 3, 3)) ̸= 0 (see table 1 in [1]) together with the fact (communicated by
Matthew Kahle) that, when min{p, q} ≥ n, the homotopy type of C(n; p, q) de-
pends solely on n (and agrees with that of the classical configuration space of n
ordered points in the plane).

Proof of item (d). Under the present conditions there are no critical 2−cells on
table 4.36, so that C(n; p, q) has the homotopy type of a graph which is connected
in view of Proposition 21 in [7]. The asserted homotopy equivalence then follows
from the homological calculations in [1] (again, see table 1 in [1]).
Lastly, we leave as a very illustrative exercise for the reader to verify the assertions
in item (c) for X(3; 2, 2). In any case, it is transparent from its definition that
C(3; 2, 2) is in fact homeomorphic to the disjoint union of two circles.

Items (a) and (b) are fully contained in the analysis of the gradient field in
subsections (4.1) and (4.2).
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4.4 n=4

A computational implementation for the case n = 4 yields the information reported
in the following table.

q
p 2 3 4 5 6 7

2 0 1 2 2 2 2
3 1 2 3 3 3

Table 4.37: Maximum value of j such that mj ̸= 0 depending of p× q for n = 4

This table indicates, for different sizes of the grid p× q, the maximum value of j
such that mj ̸= 0. The following tables are obtained considering the values q = 2, 3
respectively

2 3 4 5 6 7

−3
−2
−1

1
2
3
4
5
6
7
8

p

f(p) = 2p− 4

g(p) = 4− 64
9p

h(p) = p
2

2 3 4 5 6 7−1

1
2
3
4
5
6
7
8
9
10

p

f(p) = 3p− 4

g(p) = 4− 128
27p

h(p) = 3p
4

From table 4.37 and these graphics, it is easy to see for q = 2 and p = 2, 3, 4, the
bounds established by the conjecture are very well adjusted, meanwhile for p > 4 are
more than necessary. Moreover, for q = 3 and again for p = 2, 3, 4, the bounds are
met very well. It is of special interest investigate over the cases with p < n or q < n
because as noted at the end of the previous subsection, if p ≥ n and q ≥ n, then
the configuration space C(n; p, q) of n hard squares in a p× q rectangle is homotopy
equivalent to the classical and well known configuration space of n points in the
plane.
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5 Conclusions
The homotopy type ofX(n, p, 1) was calculated in a very simple way, mainly because
the combinatorial nature of the components of a cell is not too difficult to handle with
the algorithm described, since there are just two different components, a horizontal
line or a point, and even if the total number of cells can be very huge for very large
values of n, the procedure followed allows us to deduce the homotopy dimension of
X(n, p, 1) for arbitrary n and p. Even more, for this case, is deduced that both upper
bounds for j (those established in theorem 1.1 in [1] and those that are conjectured)
are larger than necessary.

For X(2, p, q), the gradient field described in [1] for X(2; 2, 2) produced four crit-
ical cells of dimensions one and another four in dimension zero, while our gradient
field have only one critical 0−cell and one critical 1−cell. So for this case, the algo-
rithm proposed in this work is quite useful. Even more, the total number of critical
cells of dimension 1 and 0 for X(2, p, q) is optimal and the resulting homotopic type
corresponds with that of 2 non-collisioning particles on R2.

On the other hand, for n = 3, the total cell types is not very large, but despite
this, the calculations become much more laborious. Indeed, the modifications to
the remaining cells become more restrictive even in similar pairings to those made
for the case n = 2. Nevertheless, it could be deduced that for p = 2 the maximum
dimension of critical cells is one, which makes it clear that the upper bounds for j in
theorem 1.1 of [1] can be larger than necessary. In all other cases analyzed here we
see that the conjectured upper bounds fit quite well. Finally, with n = 4 a similar
conclusion can be drawn.

Unlike the gradient field in [1], our gradient field fails to be equivariant with
respect of the natural free action of the symmetric group. Such a characteristic
stands in sharp contrast with (and is perhaps responsible for) its apparent optimality
(at least homotopy-dimension wise). The algorithm for producing our gradient field
is very natural, easy to visualize, and simple to implement on a computer. Yet,
given the combinatorial (and complex) nature of the cells in X(n; p, q), the analysis
of the algorithm, and description of resulting critical cells, becomes a hard major
challenge, even for a computer dealing with relatively small values of the parameters
n, p and q.
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