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Esquemas de observadores para SED modelados con RPI

RESUMEN:

La observabilidad se define como la posibilidad de determinar de manera única y en un

tiempo finito, el estado inicial de un sistema, a partir del conocimiento de sus entradas,

salidas y estructura.

En este trabajo se extiende esa definición de observabilidad al ámbito de los Sistemas de

Eventos Discretos (SED) modelados con Redes de Petri Interpretadas (RPI).
El problema de observabilidad se divide en dos partes: la posibilidad de detectar la

ocurrencia de todos los eventos que se suceden en el sistema y la de determinar en algún
momento su estado actual.

Se prueba que el primer problema puede resolverse en base al conocimiento de la estructura

del modelo del sistema y de la salida. Para resolver el segundo problema se introduce la

necesidad de conocer la cantidad de recursos con que cuenta el SED.

Se presentan condiciones suficientes para que el modelo de un SED en términos de RPI sea

observable y finalmente, se presentan dos esquemas diferentes para diseñar observadores

asintóticos en términos de RPI y que logran determinar de manera única el marcado actual

del sistema cuando la secuencia de eventos que se han sucedido en él, cumple con cierta

condición.



Observer schemes for DES modeled by IPN

SUMMARY:

Observability is defined as the possibility of uniquely determining in a finite time, the

initial state ofa system, from the knowledge of its inputs, outputs and structure.

In this work that definition of observability is extended to the scope of Discrete Event

Systems (DES) modeled with Interpreted Petri Nets (IPN).
The observability problem is divided in two parts: the possibility of detecting the

occurrence of all the events in the system and the one of determining at some moment its

current state.

It is shown that the first problem can be solved on the basis of the knowledge of the

structure of the model of the system and the outputs. In order to solve

the second problem it is necessary to know the amount of resources contained in the DES.

Sufficient conditions for the observability of IPN modeling DES are presented. Finally, two

different asympthotic observer schemes are given. These observers uniquely determine the

current system marking when the event sequence oceurring in it fulfills a certain condition.
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Chapter 1

General Introduction

Summary: At the end of this chapter it should be clear that discrete event systems are those where the

state space is numerable and state valué changes abruptly by the occurrence of events; also that observability

is a property of dynamic systems that guaranties that the initial state of the system can be computed in a

finite time from the knowledge of its inputs, outputs and structure; and that this property is important for

control purposes, for fault tolerance and recovery and to determine the minimum number of sensors needed

in a system.

1



2 CHAPTER 1. GENERAL INTRODUCTION

1.1 Introduction

Consider a system devoted to maintain the temperature of a room within a certain rank of valúes. It is

clear that temperature is a continuous valué, but if significant thresholds are defined for it -in this case those

could be "bigger", "less" and "within'' the specified temperature rank- then it can be considered discrete.

In the same way it can be established that the actuator -in this case the temperature regulator- can be

"increasing",
"

diminishing'' or "maintaining" the temperature. Under these assumptions it is possible to

establish that the system state is a combination of the temperature in the room and the action that the

actuator is making, i.e.: "bigger-increasing" , "bigger-diminishing'' , "bigger-maintaining", etc. Notice that

the set of valúes that the system state can take is numerable.

It can also be assumed that the "heating" .and "cooling" of the room and the changes in the action that

the actuator is making are instantaneous events that abruptly change the system state. Those events can

be classified as controllable and no-controllable in the following way: since the changes in the action that

the actuator is making depend only on the commands given to it, it is possible to say that those events are

controllable. The "heating" and -'cooling" of the room depend on factors like the temperature outside the

room or the number of persons in it; that is why those events can be classified as no-controllable.

It is important to note that, because of malfunctions or communication failures, not all commands given

to actuators are necessarily executed. Therefore, events can also be classified as measurable if there is a way

to determine their occurrence and no-measurable in any other case. For the temperature regulator system

example, only if it is assumed that the actuator emits a signal each time that a command is executed, then

the changes in the action that it is making are measurable events.

Notice now that in order to determine the entire state of the temperature regulator system, besides the

signal emitted by the actuator when a command is executed, a sensor devoted to measure the temperature

in the room is needed. In that way, the temperature can be read from the sensor and the action that the

actuator is making can be determined form the last command that the actuator has executed.

Systems that exhibit -by their own nature or because assumptions like those described above were made-

a numerable state space and abrupt changes in the valué of the state in consequence to the occurrence

of events, are said to be Discrete Event Systems (DES). Under the assumptions described above, the

temperature regulator system can be considered a DES.

Since the number of vehicles in a road, the data transmitted from a terminal to another one and in some

cases the components of a product are numerable sets, traffic, computerized and manufacturing systems

are usually considered as DES. The increasing importance of this kind of systems has made necessary to

extend the results that exist for continuous system so that they can be applied to DES. Among those results

are those that address the observability problem, and the design of observers. Observability deals with

establishing the conditions that need to be held in a system so that its initial state can be computed in a

finite time by the knowledge of its inputs, outputs and structure[4]; and the design of observers deals with

establishing devices or algorithms to compute the system state.
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1.2 Literature review

There are many works that deal with DES where the valué of all states cannot be directly obtained by

the system output, some of them [16] [17] [15] [22] try to establish necessary conditions to guarantee that the

system behavior can be restricted to stay within a set of desired behaviors. It will be shown in chapter 3 that

it is not necessary to compute the system state to impose that restriction on the system behavior. For that

reason most of the results presented in those works do not precisely deal with the observability problem.

Even when Ozveren and Willsky in [20] present an observer that determines the system state at event

intervals, no conditions to determine when the initial state can be computed, are given. An algorithm that

uniquely determines the current state of the system is presented by Giua in [8]. The observability problem

is presented as a necessary condition for controllability but it is addressed in a separated way. In that work

it is assumed that all events that affect the state of the system are measurable and that the minimum valué

that each state can take is known. That valué is assigned to the observer as an initial estimation of the

system state and the estimation is improved each time that an event oceurs in the system. Actually, since

all events in the system are assumed to be known, the initial state can be computed once the current one

has been determined. However, the assumption on the accessibility of all events is too restrictive, because

-like in the temperature regulator system described above- it is common that external factors that are not

controllable, affect the state of the system.

Aguirre et al. in [1] present a similar work. Interpreted Petri Nets (IPN), an extensión to Petri Nets

(PN), Me used as DES modeling tool. Just like Giua, they assume that all events are known and reduce the

estimation error as the system evolves. However, they take the máximum valué that each state in the system

can reach as the initial state estimation and present the algorithm to compute the state of the system as an

observer in IPN terms.

The problem that arrises when not all events are known is addressed in [2]. It is shown that determining

the occurrence of unknown events can be solved with a linear programing algorithm. Ichikawa and Hiraishi

in [11] determine that any sequence of events can be computed if all the columns in the incidence matrix

modeling the DES are ''additively independent" Even when they present an easier solution to the problem,

in that work the information provided by the events that are known is not used and the algorithm presented

does only give an estimation of the system state and not a unique valué.

1.3 Motivation

None of the works resumed above present a formal definition on observability for DES that captures the

meaning of this property as it is understood in system theory. Besides none of them present an algorithm

that -taking into account the existence of unknown events- uniquely determines the state of the system.

In order to optimize the instrumentation necessary to determine the state of a system, a simple character

ization of observable DES is necessary. The design of observers -besides of computing the system state- can
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introduce in the system useful redundancy to provide security and fault detection, tolerance and recovery.

The following table shows some of the most important results ineluded in works addressing the observ-

ability problem and the extensión made herein to those works.

Year Author Results Extensions in this work

1987
Ichikawa &

Hiraishi

sufficient conditions to

determine any transition

firing sequence in a PN

1988 Li & Wonham

supervisory control

under partial
observation

1990
Ozveren <S_

Willsky

resilent observer for

DES under partial
observation

1997 A. Giua

observer for PN

models of DES were all

events are accessible

observer for IPN models

of DES were no accessible

events are allowed

1999 Aguirre et al.

observer in IPN terms

for DES were all

events are accessible

observer that accepts

different initial markings
and no accessible events

1.4 Objectives and organization of this work

The objectives of this work are:

• To extend the existing definition on observability to a definition for IPN that accurately captures the

meaning of this property as it is understood in system theory.

• To characterize observable IPN models.

• Designing an observer for IPN modeling DES where uncontrollable events are allowed.

This work is organized as follows:

In chapter 2 IPN and some of the properties that will be useful in the remaining of this work are

introduced. Chapter 3 addresses the observability problem. An observability definition for IPN, that is

an extensión of the one used in system theory for continuous systems, is proposed. Also the concept of

event-detectable system, which is a necessary condition for observability, is presented. Chapter 4 presents

an asymptotic observer for IPN models. That observer is improved in chapter 5 to make it more general.

Finally, some conclusions and future work are presented.

The results ineluded herein have been presented or submitted to international conferences or magazines:

[23] contains the results on the observability problem and observer design for DES modeled by binary IPN.

[24] contains all the results presented herein for no-binary IPN, except for the observer scheme presented in

chapter 5 which is ineluded in [25].



Chapter 2

Interpreted Petri Nets

Summary: This chapter presents a PN extensión called IPN that allows to assign a physical meaning

to the models. It is accomplished by adding input and output alphabets and functions to PN. IPN axe

preférred among other modeling tools because they capture, in compact models, important characteristics

of DES such as synchronism, concurrence, parallelism and mutual exclusión. IPN also provide qualitative

and quantitative methods to analyze DES properties.

5
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2.1 Introduction

There are several formalisms to model DES, one of the most popular is Finite Autómata (FA) [10]. This

tool describes systems as graphs where every different system state is represented as a node, and events by

ares going from a state to another. Models obtained with FA provide a clear description of small systems,

however in complex systems the number of nodes in the model increases exponentially.

Another modeling tool for DES is PERT/CPM graphs. Even when there are fine analysis methods for

these graphs, important DES characteristics such as cycles and decisions, cannot be captured by this tool.

GERT graphs[21], an extensión of the PERT/CPM graphs, is a more powerful modelling tool in the sense

that it captures more DES characteristics, unfortunately not all GERT models can be analyzed.

PN is another formal tool for DES modeling. Models obtained in PN terms capture DES characteristics

such as concurrence, parallelism, asynchronism, causal relationships and mutual exclusión. PN also provide

a fine visual representation and a simple mathematical background to work with. For systems that exhibit

parallelism, the size of the models obtained with this tool is considerably less than the size of those obtained

in FA terms.

IPN is an extensión to PN where input and output alphabets and labeling functions are added to give a

physical meaning to models[18]. Being an extensión to PN, IPN exhibit all modeling and analysis capabilities

ofPN.

In this chapter some basic concepts and properties of PN are presented. Also IPN, the extensión to PN

that is used herein as DES modeling tool is introduced.

2.2 Petri Nets

The formal definition of PN is given as follows:

Definition 2.1 A Petri Net structure G is the 4-tuple G = (P,T,I,0) where P = {pi,P2,-,Pn} and

T = {íi, í2, —,tm} o-re finite sets of elements respectively called places and transitions which are graphically

represented as circles and bars. I : P xT—> {0, 1} is a function representing the ares going from places to

transitions, and O : P xT—> {0, 1} is a function representing the ares going from transitions to places.

The incidence matrix of G is C = [cy], where a, = 0(j>i,tj)
-

I(pi,tj). The function M : P—

> {Z>0}

assigns a nonnegative integer to each place of the net, representing the number of tokens (depicted as dots

into the places) residing in them.

Definition 2.2 A Petri Net (PN) is the pair N = (G,M0), where G is the PN structure and M0 is an

initial token distribution.

A transition t¡ is enabled at a marking M if and only ifVp. _ P, M(p.) 7> I(Pi,tj)- An enabled transition

tj can be fired reaching a new marking M' which can be computed by the PN state equation: M' = M +Cv,
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&

Mn =

I

I

C = 0-l =

000 100

100 0 10

100 001

0 1 1 000

■1 0 0

1 1 0

1 0 -1

0 1 1

Figure 2.1: PN graphic representation, initial marking and incidence matrix.

where v(i) —0 for t jt j and v(j) = 1 (that firing vector v can also be represented as tj). This fact is also

represented as: M —'-* M',

Example 2.1 Figure 2.1 shows the pictorial representation of a PN, its initial marking and incidence ma

trix. According to that, the state equation for that PN is

Mk +

-1 0 0 1

1 -1 0

1 0 -1

0 1 1

Uk

Notice that transition ti is enabled at marking Mq because [1010] _S [ 1 0 0 0 1 If tran

sition ti is fired, then the new marking reached can be computed using the state equation in the following

way:

Mi +

-1 0 0 1
'

1
.

° 1
1 -1 0 0 1

1 0 -1 0 2

0 1 1 0 0

Definition 2.3 For a given transition tj € T, '(tj) and (tj)» denote the sets of all places p, such that

I(pi,tj) ^ 0 and 0(pi,tj) jí 0, respectively. Similarly, »(p.) denotes the set of all transitions tj such that

0(pi,tj) jí 0 and (p¿)« the set of all transitions tj such that I(pi,tj) ^ 0.

For the PN described in the previous example and depicted in figure 2.1, •(ti) = {pi}, (ti)» = {p2,Pz},

•(p4) = {¿21*3} and (p4)« is an empty set.

Definition 2.4 A firing sequence of a PN (G,Mo) is a sequence o
=

Utj...tk such that Mq

...Mw ±+ ....

Mi
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Definition 2.5 The firing language of (G,M0) is: £(G,M0) = {o\o = titj...tk and Mq -^-* Mi
—^

For instance, Í3M2Í3, M2Í3Í3, M3Í2Í3, ¿3*1*3*2, *i*3*3*2 and any prefix of those words[10] axe firing

sequences for the PN described in example 2.1 and depicted in figure 2.1. The set of all those firing sequences

is the firing language of that PN.

A pair of weil known concepts are the repetitive and conservative components of a PN[5], their formal

definition is the following:

Definition 2.6 Let C be the incidence matrix of the PN (G, Mq) . A t-semiflow is a semi-positive rational-

valued solution of equation CY = 0 and a p-semiflow is a semi-positive rational-valued solution of equation

XC = 0.

P-semiflows indicate that the addition of the markings of a set of places remains equal for any reached

marking, t-semiflows indicate a transition firing sequence that when executed returns to the initial marking.

In the following example, t and p-semiflows are obtained for a PN.

Example 2.2 Consider the PN depicted in figure 2.2. For this PN the incidence matrix is

-1-1 0 0 1

10 0 1-1

10-100

0 10-10

0 110-1

and the initial marking is Mo = [ 1 0 0 1 1 ] Vectors [ 1 0 1 0 1 ] and [ 0 1 0 1 1 ]

are semi-positive rational solutions for Y in the equation CY = 0 and vectors [ 1 1 0 1 0 ] and

[1 0 1 0 1 }T forX inXC = 0.

If the transition sequence 01
= *iÍ3Í5, corresponding to [ 1 0 1 0 1 ] is fired in that PN, the new

marking Mj reached is equal to the initial marking Mq. The same holds for the transition firing sequence

02 = *2*4*5; corresponding to [ 0 1 0 1 1 ] That is the reason why those vectors are said to be

repetitive components or t-semiflows in the PN.

Notice that for any reachable marking Mk it holds that Mk(p\) + Mfc(p_) + Mk(j>i) = 2 and Mk(pi) +

Mk(j>z) +Mkíps) = 2. Each equation respectively contains the places corresponding to [ 1 1 0 1 0 ]

and [10 10 1] Since those vectors represent sets of places that conserve the same number of

tokens for any reachable marking, it is said that they are conservative components or p-semiflows in the PN.

Qualitative analysis methods available for PN can be classified as enumerative, structural, based on

transformations and based on simulation.

Enumerative methods are based on the knowledge of the following set:

Definition 2.7 The reachability set of a PN, R(G, Mq), is the set of all possible reachable markings from

Mq by firing enabled transitions.
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Figure 2.2: P and t-semiflows in a PN.

If the reachability set is a finite one, the following graph can be used to study qualitative properties of

the PN.

Definition 2.8 Given a PN (G,Mo) the reachability graph is the graph consisting of a node for each

different marking contained in R(_?,Mo) and ares joining them, labeled with the transitions that, when

firing, make ihe state change from a marking to another.

Example 2.3 The reachability graph of the PN depicted in figure 2.3.a) is shown in figure 2.3.b). Notice

that

\ ° 1 .

° 1
'

1 1 r i
'

1 1 0 0

1 0
'■'

1 0
>

0 1 0 1
d

is the set of all reachable states and that the firing sequences that lead to each of those states are represented

in the reachability graph.

In the case when the reachability set is not finite, the coverability graph is used[7]. That case is out of

the scope of this work.

Structural analysis methods are based in studying the incidence matrix of the net using ünear algebra,

convex geometry or linear progranüng.

Analysis methods based on transformations (simplification of G) provide algorithms to reduce a PN

model to a simpler one where it is easier to decide if the model exhibits a certain property. These methods

and those based on simulation are expensive in time and computational effort.
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Figure 2.3: PN and reachability graph.

Herein, the reachability graph is used in order to clarify the properties and concepts presented. The

interested reader can find more details about PN properties and analysis methods in [26] and [5].

Consider now the following concept:

Definition 2.9 Given a PN (G, Mq), the synchronic distance of a transition t.
with respect to a transition

tj is the máximum number of firings ofU without firing tj in all transition firing sequences. This vahe is

denoted as SD(G,Mo;ti,tj).

This concept will result specially useful in the observability study presented herein, because it allows to

determine if a certain marking can be reached.

The following example illustrates this concept.

Example 2.4 Consider the PN (G, Mq) depicted in figure 24.a). The initial marking of that PN is M0 =

[1 0 0 0 0 1
T
and its reachability graph is shown in figure 24- b). Notice then that SD(G,M0; *i , *3) =

1. This is because *i can only be fired once from marking M0, which is the only marking that enables that

transition, andonceh is fired ihe only way to return to Mq ísfiringt3t5. Now, 5D(G,M0;í3,*i) = 1 because

í3 can only be fired once form the marking [ 0 1 1 0 0 ]T which is the only marking that enables that

transition, and in order to reach that marking again ti has to be fired. However, the synchronic distance is

not symmetric: notice that SD(G,M0;ti,t5) = 1 but SD(G,M0;t5,ti) = oo, i.e. transition ti can only be

fired once without firing t5, but t5 can be fired infinite times without firing ti.

2.2.1 PN basic properties

Three basic PN properties will be now presented because this work focuses on the IPN models that exhibit

these characteristics.

Definition 2.10 A PN (G,M0) is said to be cyclic ¿/VM. € R(G,M0) ü holds that 3o such that M. -^

M0.
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a)

ti Pi .2

^Í3^

b)

Figure 2.4: Synchronic distance in PN.

Definition 2.11 A PN (G,M0) is said to be live ifVMi € R(G,M0) andVteTit holds that 3M, such

that Mi -?-> Mj -Í-» .

As it will be shown in the next chapters, cyclicness and liveness provide conditions that can guarantee

that a certain transition sequence can be fired.

Boundedness guaranties that the marking of a net cannot grow indennitely, for that reason boundedness

is considered a security property.

Definition 2.12 A PN(G,M0) is said to be bounded i/VM e R(G,M0) it holds that Vpi,M(pi) s, oo. If

there is a positive integer L such that VM 6 R(G, Mo) it holds that Vpi,M(pi) s, L then (G,Mo) is said to

be L-bounded and if L = 1 then (G, Mo) is said to be binary or safe.

The fact that none of previous properties (liveness, cyclicness and boundedness) imply any other, can be

easily checked by considering the PN in figure 2.5.

Characterizations of the PN that exhibit those properties axe available by different methods, herein only

the characterizations in terms of the reachability graph are given.

First, a PN is bounded if and only if its reachability graph has a finite number of nodes, a PN is cyclic

if and only if its reachability graph is strongly connected (every node can be reached from any other), and

a PN is Uve if in every node begins a path of transition firings containing all transitions.

Example 2.5 Consider the PN depicted in figure 2.6.a). For that PN, the reachability graph is shown in
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a)

r*©—41—o—4J-]

¿-fl-o-fl-i b) D-o-4]

cyclic live and bounded cyclic live and unbounded

o—*0-o-»Q-,
c) r

'

<J~0-o-»D-|
cyclic no-live and bounded

D—2"H]

cyclic no-live unbounded

iii L I Hl*j T 1

r<SH-»0-o-»Q_ri
e)

Mt=£^n
f) 1 1 ,

1
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Figure 2.5: Cyclicness, liveness and boundedness in PN.

figure 2. 6. b). Using this graph, it is easy to see that the PN is cyclic (because from any reachable marking

there is a path ending in the initial marking), live (because every transition is contained in all possible

transition firing sequences) and 3-bounded (because any place contains at most three tokens at any reachable

marking).

2.3 Interpreted Petri Nets

IPN is an extensión to PN that allows to assign input and output languages to the models, adding a physical

meaning to them.

Definition 2.13 An Interpreted Petri Net (IPN) is the 6-tuple Q = (_V, E,$, X,D,<p) where

• N = (G, M0) ia a PN,

•
__

= {(Tj, (72, •■■, oy} is the input alphabet of the net, where oi is an input symbol,

• _> = {4>i,4>i, ...,4>a} is the output alphabet, where (j), is an output symbol,

• A:T-»Eu{e}íso labeling function of transitions with the following restriction: Ví¿ ,tk £ T, j ^ k

ifl(putj) = I(putk) # 0 and both X(tj), X(tk) ¿ e, then X(tá) # X(tk), where e represents an internal

system event,
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Figure 2.6: Cyclic, Uve and 3-bounded PN and reachability graph.

• D : {Z^°}m —» {Z^°}p is linear output function, represented as a m x p matrix D — [D¡¿] where m

is the number of transitions, p is the number of measurable transitions, and the i-th row vector Dj

ofD is the transpose of the elemental vector e¿ (ej[i ^ j] = O, ej[j] = 1) if tj is the i-th measurable

transition according to the order given by the transition labeling.

• ip : R(G, Mo)
—► {Z^°}? is a linear output function, represented as a q x n matrix íp

= [fu] where

n is the number of places, q is the number of measurable places, and the i-th row vector <p(i, •) of (p is

the transpose of the elemental vector ej ifpj is the i-th measurable place according to the order given

by the place labeling.

Remark 2.1 To enhance the fact that there is an initial marking in an IPN, (Q, Mq) will be used instead

ofQ = (N,X,$,X,D,<p).

For IPN the firing rules are redefined as follows:

A transition tj e T of an IPN is enabled at a marking M if Vp. S P, M(pi) _í I(j>i,tj). If A(f¿) = Oj j= e

is present and tj is enabled, then tj must fire. If A(í¿) = e and tj is enabled then tj can be fired. If an

enabled transition tj fires at a marking M„, then a new marking Mk+i is reached which can be computed

using the dynamical part of the state equation: Mk+i = Mk + Cvj, where C .and Vj are defined like in a PN.

The following classifícation is made over transitions and places, depending on the way that functions A,

ip and D are defined.
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Figure 2.7: Manufacturing cell layout.

Definition 2.14 If A(í¿) ^ e the transition ti is said to be manipulated, otherwise it is no-manipulated.

A place pi G P is said to be measurable if the i-th column vector of ip is not nuil (i.e.: ip(»,i) ^ 0) and

no-measurable, otherwise. A transition tj is said to be measurable if the j-th column vector ofD is not

nuil (i.e.: D(»,j) ^ 0) and no-measurable, otherwise. In this work, the measurable places of an IPN are

depicted as clear circles, the no-measurable ones as dark circles, the measurable transitions as clear bars,

while the no-measurable ones as dark bars.

The following example shows the meaning of measurable and no-measurable place and transition.

2.3.1 Manufacturing cell example

Example 2.6 Figure 2.7 shows a scheme of a manufacturing cell layout where a product consisting of two

parts (Pa, Pb) is processed. Pa requires to use the machines MI and M2, and Pb requires M3 and M2,

both in that sequence. After both parts are processed they are assembled and the product is released, then

the system is ready to start another cycle. The IPN of figure 2.8 is a model of the system where a token in

place pi represents an idle state of the system; transition ti represents the beginning of a cycle. A token in

P2 (ps) represents that the machine MI (MZ) is being used and in p3 (p^) that MI (M3) is available. *2

and Í3 represent the ending ofthe process inMI and M3 respectively, a token inp& andp-j represent a piece

waiting for M2 to be available. £4 and -5 represent the beginning of the process of a part in M2. A token in

pg represents that M2 is available. ps and pío represent a part being processed in M2. *e and t-j represent

the ending of the process in M2. Tokens inpu andpi2 represent the parts waiting to be assembled. Finally,

*8 represents the assembling and reléase of the product.

Different signáis are displayed when MI and M3 are being used, and M2 display two different signáis

depending on the piece that is being processed. Therefore P2, ps, ps and pío are measurable places in the

model and since the releasing of a product can be detected, tg is also measurable.
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Figure 2.8: Manufacturing cell IPN model.

2.3.2 IPN state equation

A special representation of the state equation of an IPN will be used in the remaining chapters of this work,

it is formally established as follows:

(2.1)

Definition 2.15 The state equation of an IPN can be written as:

Mk+x = Mk + Cev% + CDv%

2/fci
=

¡P • Mfc

Vk2
= D • vk

where C = [C£:CD], Ce is formed by the columns of the no-measurable transitions and CD by the columns

of the measurable ones. D is a function on the firing vector that shows if a measurable transition has been

fired.

Example 2.7 In figure 2.9 an IPN is shown along with its state equation. That state equation is composed

by a dynamical part that describes the state changing, and an output part that describes the part of the

marking that is accessible and the firing ofmeasurable transitions. In this work it is assumed that the output

functions íp and D are linear functions represented as matrices.

In this work the output part 2/„2 corresponding to function D will be often omitted from the IPN state

equation and yl will be written as the output part corresponding to function ip.
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0001
M,

)fk2= looiolvk

Figure 2.9: IPN, dynamic and output part of state equation.

If in an IPN (<2,M_) it holds that 3C(-,.) = C(»,j), i ^ j, since transitions .< and tj cause the same

effect when firing, those transitions í¿ emd tj axe said to be equivalent.

Remark 2.2 It is assumed in this work that no IPN (Q, Mo) contains equivalent transitions.

Example 2.8 For the IPN depicted in figure 2.10.a)

C-
-1 -1 1

1 1 -1

is the incidence matrix. Since the columns corresponding to transitions ti and *2 are equal, those transitions

are equivalent. That IPN is out of the scope of this work. The IPN depicted in figure 2.10. b) is equivalent

to the other net and contains no equivalent transitions.

2.3.3 IPN input and output languages

Note that all the concepts introduced for PN can be extended to IPN. In addition, the following definition

presents the input and output languages that can be associated to an IPN.

Definition 2.16 The input language of Q is £in(Q,Mo) = {X(U)X(tj)... X(tk)\Utj...tk •_ £(Q,Mq)}, and

the output language is £out(Q,Mo) = {íp(M0)íp(Mi)... tp(Mw)... \M0 -^+ Mi — Mw and

titj...tk<=£(Q,Mo)}.

Also the output part corresponding to function D can be considered in the output language of an IPN.

Example 2.9 The input and output languages of the IPN depicted in figure 2.11 respectively are: {a (e + b)}

and e + e +

0 0

0 + 1

0 1

e +
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Figure 2.10: IPN with equivalent transitions and equivalent IPN.
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= b

<p=

1000
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0001

Figure 2.11: IPN, input and output functions.

2.4 Conclusions

In this chapter IPN, an extensión to PN is introduced as a DES modeüng tool. IPN provide a fine visual

representation of DES and compact mathematical models in terms of difference equations. IPN allow to

assign a physical meaning to models using input and output alphabets and functions.

Basic notions and properties of IPN useful for the observability study presented in this work were defined.



18 CHAPTER 2. INTERPRETED PETRI NETS



Chapter 3

Observability in IPN

Summary: Observability deals with the possibility of determining the initial state of a system from

the knowledge of its structure, inputs and outputs.

Herein, it is proved that the observability problem is equivalent to solve two problems. The first one

deals with determining any sequence of events and the second with computing the marking of the system

model. IPN models where any transition firing sequence can be determined are called event-detectable. A

simple characterization for the IPN that exhibit this property is given in terms of the structure of the net.

Event-detectability is not enough to provide observability since it does not guarantee that the marking of

the IPN can be computed. Physical characteristics of DES can provide some knowledge about the máximum

number of tokens that a set of places in the model can hold. Event-detectability, the knowledge of physical

characteristics of the system and a condition on the transition sequences that can be fired in the IPN need

to be held to provide observability.

19
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Figure 3.1: Finite autómata example.

3.1 Introduction

In system theory it is said that a system is observable if its initial state can be computed in a finite time

using the knowledge of the system structure, inputs and outputs[4]: i.e., in an observable system it is possible

to know the state of the system even when it is initially unknown.

As it was mentioned above, works like [16], [17] and [22] study the controllability of partially observed

DES. Those works present an observability concept that is useful only for control purposes. In the sense ofthe

concept presented in those works, even DES were the system state cannot be determined can be observable.

It is only necessary that the control actions required by the system considering partial observation result

equal to those required when that consideration is not made, i.e. it is only needed that partial observation

does not affect the DES control.

Example 3.1 As an example consider figure 3.1. The events ^20 = {a,p} are ''observable'' (measurable),

events J_u = {-y,(/>,6,p} are "no observable" (no-measurable) and the desired behavior for that DES is to

execute the word E = «(7^ + 6p)f3.

Notice that the language of the DES is equal to the desired behavior, then there is a controller that can

restrict the behavior of the DES to a desired one. Since the control actions necessary to impose the behavior

E to the system when the "observability" of events is not considered do not need to be modified when the

-'observability" of events is considered, according to [16] the system is observable.

However, since events 7, <p, 6, p are no-measurable, once 7 or 6 oceurs and until /? does, it is not possible

to determine the state ofthe system, i.e. once the system evolves from _i to S2 -since no further information

is provided by the occurrence of other events-, the system state is not known but when it evolves from s5 to

sq. Then, according to the observability concept used in systems theory, that system is not observable.

As it has been shown in the previous example, the observability concept used in [16] does not capture

the essence of this property: the possibility of computing the initial state of the system.

Works like [8], [6], [1], and [11] deal with determining the initial state of PN
models of DES. In [8] and [1]

algorithms to determine the current system state are presented, however it is assumed that
all transitions are
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accessible, i.e. the state estimator knows exactly which transition was fired. That hypothesis only holds for

systems where the instrumentation necessary to determine the occurrence of any event that may affect the

system state is provided. Providing that instrumentation may result in monetary or technologic excessive

cost.

In [11], the observability problem is divided into two sub-problems: computing the initial marking of the

net and determining the firing sequence that leads the observer from the initial marking to the current state.

In that work, algorithms to determine a set of possible initial markings of a PN and the corresponding firing

sequence are presented. However, the initial or current state of the system is not uniquelly determined and

the information provided by detectable events is not used.

The first topic addressed in this chapter is the statement of necessary conditions to determine every

transition firing sequence executed in a system, then the observability concept and the characterization of

the IPN that exhibit this property will be introduced.

These results are presented in [23], [24] and [25].

3.2 Event-detectability

In some IPN, the transition firing sequence can be detected from the information that functions íp and D

provide when the visible part of the marking changes or a measurable transition fires.

This work presents an IPN classifícation depending on the detectability of the trsmsition firing sequences.

When this sequence can be detected using only the output and the IPN structural information, the IPN will

be called event-detectable IPN, otherwise it will be called nonevent-detectable IPN.

Example 3.2 Consider the IPN depicted in figure 3.2.a). The state equation for that IPN is:

Mk+i = Mk +

-1 -1

1 0

0 1

0 0

0 1
'

0 0

1 0

1 -1

•uk

Vk.
=

Vk\
=

0 0 10

0 0 0 1
•Mfc

1 0 0 0 0 ] • vk

Notice that places pi and p2 are no-measurable, and p$ and pt are measurable. ti is a measurable transition

and <2, Í3, *4 and Í5 are no-measurable.

Since ti is measurable, its firing can be detected by the valué of the function D. The firing of ti can

be detected because that transition firing is the only one that can increase the marking of the measurable

place p¡. Í3 and Í4 are input transitions to p^ but .4 is also output transition to p$, and that provides

enough information to uniquely determine their firings. Since Í5 is the only output transition to p^ which is

a measurable place, its firing can also be uniquely determined by the difference in consecutive output valúes.

Then, all transition firing can be computed using the information provided by C and functions tp and D. For

that reason, that IPN model is said to be event-detectable.
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Figure 3.2: a) event-detectable IPN, b) nonevent-detectable IPN.

Consider now figure 3.2.b). Now transition ti is no-measurable and t¡ is measurable. The firings oft^,

*3, *4 and Í5 still can be detected, but now ihe firing of ti does not produce any signal or visible change in

the IPN marking and then that transition firing cannot be detected. Since the information provided by ihe

output functions is not enough to determine the firing of every transition, that is a nonevent-detectable IPN.

Definition 3.1 An IPN (Q, Mo) = (_V, E,$,A,D,<t) described by the state equation (2.1) is said to be

event-detectable if every transition firing sequence can be detected for any initial marking Mo using the

information provided by the structure, input and output of the system.

The following lemma can be considered as an extensión to the one presented in [11] for PN. This result

states a characterization of event-detectable IPN.

Lemma 3.1 Let (Q,Mo) = (N,Y;,$,X,D,o) be an IPN described by the state equation (2.1). Every tran

sition firing sequence o € £(Q, Mo) is fully detected for any initial marking Mo if and only if all ip • Ce

columns are not nuil and different from each other.

Proof. (If) All íp • Ce columns are not nuil and different from each other. Assume, without loss of

generality that marking Mj is reached firing tj from marking Mi, i.e. M¿

equation, a difference of markings can be computed as

Mj. Now, from the state

M, - M

or using the output yt

.

_

í C£ tj if tj is no-measurable
1

\ CD tj if tj is measurable

' ,
_

( ip • CeT¡ ií tj is no-measurable
__-!/¡

=

| ip%CDVj 'ú tj is measurable
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Also ip»Ce tj (tp • CD tj ) is a column oítp»Ce (íp* CD), if all íp • C£ and all íp • CD columns are not

nuil and different from each other then the firing of any transition can be detected (from the y'j
- y¡ valué),

but since the firing of measurable transitions always can be detected from the output function D, then the

condition on tp • C is not needed, reducing previous condition to the following one:

If all íp • Cc columns are not nuil and different from each other then the firing of any transition can be

detected.

The same procedure can be appüed to any pair of consecutive markings, then any firing transition

sequence can be detected if all ip • C£ columns are not nuil and different from each other.

(Only if) Now suppose that there are two columns íp»Ce(»,i), íp»C£(»,j), i ^ j such that ip»C£(»,i) =

vCe(;j). Then

y'i-y.=<P'Ce(.,j) = íP.Ct(.,i)

and the firing of tj is confused with the firing of í¿, then no sequence containing U or tj can be fully

detected. ■

Although it has been determined the cases when any transition firing in an IPN can be detected, that

is not enough to guarantee that its state can be computed. Next section is devoted to establish the other

conditions that need to be held to provide observability in an IPN.

3.3 Observable IPN

Consider an event-detectable IPN with an unknown initial marking Mo and assume that the transition firing

sequence represented by the set ofthe of firing vectors vi...v„ is executed in that IPN, then the following set

of equations can be obtained for the IPN outputs y'0—y'n.

y'o = íp(M0)

y[ = ip(Mi)=íp(M0 + C£vei + CDv?)

y'2 =

íp (M2) = íp(Mi + C£v\ + CDv§) = <p(M0 + C£v\ + CDv? + C£v\ + CDv§)

/ n n \

y'n =

íp (_kfB) = ^(Mn_i + C£v£n + CDv%) = ip í M0 +£ C£vf +£ CD«f J

Since the IPN is event-detectable, all the firing vectors in those equations can be computed and if the

function íp is linear, the equations can be rewritten in the following way:
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y'o = <P(Mq)

21 = <f(Mo)

*2 = f(MQ)

zn = ip(M0)

Where zi = y'i-ipl ¿ C£v£ + ¿ CDvf I
,
i G [1, ..., ra] and y¿ are known. According to that, the initial

\_=i _=i /

marking Md can be computed only if ip has full rank.

The previous result is too restrictive because tp has full rank only when all places are measurable. For-

tunately, sometimes physical constraints of DES provide additional information and this problem can be

overeóme [8]. This information is provided by a set of conservative marking laws defined in the following way.

Definition 3.2 A set of Conservative Marking Laws CML for an IPN (Q, Mo) is a set of w equations

f:a}.M(Pj)=k1
3=1

£ af • M(pj) = kw
.7=1

such that aj _ Z^°, Vpj no-measurable it oceurs that aj ^ 0 for at least one equation and Va} ^ 0, fci/a}

¿s an integer valué.

The set of conservative marking laws (CML) of an IPN does not only depend on its structure but also

on its initial marking Mq. Fortunately, it is common to know this set in most of the systems [8] even when

the initial marking is unknown, because it can be obtained from the knowledge of the p-semiflows of the net

and the máximum number of parts that a store can hold, or the capacity of a machine, etc.

Given an CML, it is possible establish upper and lower bounds for all reachable markings of an IPN in

the following way.

Definition 3.3 Let (Q, Mq) be an IPN, where a CML is defined. Then

MLB(pk)= minM(pk)
s.t.

Y, oc} • M(pj) = h
.=i

E af . M(p¿) = K

Vp.,M(p.)S-0

MUB(Pk)= maxM(pk)
s.t.

£ a] • M(pá) __ fc.
3=1

£ af • M(pj) = fc.

VPi,M(p¡)^0

are the minimum and máximum marking bounds of place pk respectively, k — l,...,n. Also, the

máximum marking gap in place pk is B/t = MUB(pk) - MLB(pk)- These quantities can be arranged as

the vectors MUB = [MUB(Pl)...MUB(pn)]T, MLB = [MLB(j>i)..MLB(pn)}T D = [B(pi)...B(pn)]T
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Figure 3.3: a) observable IPN, b) no-observable IPN.

The knowledge of these conservative laws, and upper and lower marking bounds, as stated, depends on

the model interpretation and the physical characteristics that the actual system exhibits. Therefore the

existence of a CML for an IPN can only be assumed when the IPN is considered as the model of a system.

Now, a definition of observability which is sm extensión of that used in system theory [4] is presented for

DPN modeling DES.

Definition 3.4 An IPN (Q,Mq) is observable at k steps if and only í/Vw 6 £in(Q, Mo) 3z, such that

uz e £m(Q, Mo), \uz\ «5 fc < oo the information provided by uz, the output word generated by uz, a set of

conservative marking laws CML and the structure ofthe system C are enough to compute Mo-

Previous definition estabüshes the observability concept that will be used in the remaining of this work.

Loosely speaking, an IPN is observable if for all possible transition firing sequences there is another one that

when it is executed produces enough information to fully determine the initial marking.

Example 3.3 Figure 3.3 is useful to understand that event-detectability is a necessary condition for ob

servability. Consider first the IPN depicted in 3.3.a). Suppose for a moment that it is known that the IPN

contains 4 tokens, then when a marking Mk such that Mk(p¡) +Mk(j>i) = 4 is reached, the marking of all the

places can be computed. Moreover, since that IPN is event-detectable, once the current marking of the net

is known, the initial or any reached marking for that net can be computed using its state equation. Consider

now figure 3.3.b). Let the marking [ 1 1 1 1 ] be the initial marking for that IPN. Since the firing of

ti cannot be detected, that marking cannot be distinguished from [0 2 1 1 ] for example. Moreover,

not even if a marking Mk such that Mk(pz) + Mk(j>i) = 4 is reached, the initial marking can be uniquely

determined.
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Next result is a characterization of observable IPN.

Theorem 3.1 Let (Q,Mq) be a cyclic, live, bounded and event-detectable IPN, described by the state equa

tion (2.1), where the initial marking Mq is unknown, but a CML in the sense of definition 3.2 can be

obtained.

(Q,Mq) is observable, ¿/Vp.,- such thatpj is no-measurable either:

i) SD(Q, Mo; • (j>j) , (p» J- % or

ii) SD(Q, Mq; (pj) ., . (pj)) 2 % •

Proof. Since (Q, Mq) is event-detectable, any firing sequence t¡í such that Mo —*■» Mi can be computed.

To compute Mo, it is necessary to know Mí; however, it cannot be directly obtained because of the existence

of no-measurable places.

The proof consist in showing that the marking Mi can be known if either condition i) or condition ii)

holds and then, using event-detectability, computing Mo-

Let pfc be a no-measurable place:

Assume that i) holds, then a firing transition sequence ok -such that the number of firings of transitions

in • (pfc) without firing any transition in (pfc)« is equ._l to Bfc- exists. If Ok does not occur immediately

from Md then, since (Q, Mo) is cycüc, it will return to Mo and eventually <r„ will occur. crj. can be spüt as

Ok = O1O2, such that 02 does not contain any transition in (í_ )• and the transitions in • (j)j) appears Dfc

times. Then Mj(pk) = M0(pk) + C(pk, »)ot +C(pk,»)oí = Mn(pk) + Bfc = Mn(pk) +MUB(pk) - MLB(pk).

Now, the claim Mn(pk) = MLB(pk) -and Mj(pk) = MUB(pk) is made. To prove it assume for a moment

that Mn(pk) = MLB(pk) + AM, this implies that AM > 0, then Mj(pk) = MLB(pk) + AM + MUB(jpk) -

MLB(pk) = MUB(pk) + AM > MUB(pk), which is a contradiction. Thus, after firing Ok the marking of pk

is MUB(pk). Ok can be determined from the output because (Q, Mo) is event-detectable.

Now, assume that ii) holds, then a firing transition sequence o'k -such that the number of firings of

transitions in (pk) • without firing any transition in «(pt) is equsd to _tfc- exists. Following a similar procedure

like in the previous case, after firing o'k the marking of pk can be determined as MUB(pk).

Once the .actual marking of pk has been computed, it will remain known for any firing sequence since

(Q, Mo) is event-detectable.

Moreover, using this procedure, the marking of the remaining no-measurable places can be determined.

Then the whole marking M¿ will be known and using event-detectability, Mo can be computed using the

fired sequence and the state equation (2.1). Therefore, (Q, Mo) is observable. ■

It is important to note that if a no-measurable place is not contained in any CML equation, then there

is no way to determine the marking in that place and the IPN is not observable.

Example 3.4 Figure 34 shows an IPN its tpC£ matrix and a CML defined for it. In that IPN places pi

and p5 and all transitions are no-measurable. Since the CML establishes that each p-semiflow contains two
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Figure 3.4: Observable IPN.

tokens, it holds that Vfc Bfc = 2, MUB(pk) = 2, MLB(pk) = 0. The IPN is event-detectable because all

columns in the matrix ipC£ are different from each other and not nuil. Notice that the IPN is live, cyclic

and bounded, then according to previous theorem the IPN is observable if it holds that Vpy such that pj is

no-measurable either: SD(Q, Mq; • (pj) , (pj)») _í Bj or SD(Q, Mo; (pj) •, • (j>j)) ^ Bj.

Notice that the transition firing sequence o
= tit^tz-t^t», is enabled at the initial marking. o con

tains two consecutive firings of both *2 and Í4, since those transitions are respectively output transitions

of pi and ps, and those are all the no-measurable places in the IPN, it holds Vp,- no-measurable that

SD(Q, Mq; • (pj) , (pj)») _, Bj = 2. Notice that when 01 = *i*2<2 is executed, it is known that M^(pi) = 0

and when 02 = ¿3*4*4 fires it is also known that Me(ps) = 0. At that moment then the marking of all

no-measurable places is knotun, moreover, it is known that M(¡ =[00200] Since that IPN is

event-detectable, the firing sequence o
= O1O2 can be computed and then the initial marking can be obtained

using the IPN state equation.

The existence of a firing sequence o (enabled at the initial marking) that allows to determine the initial

marking in a live, cyclic, bounded and event-detectable IPN is enough to guarantee observability because from

any reachable marking the initial one can be reached again; and from there the sequence o can be fired.

Previous theorem establishes that the condition on the synchronic distance is enough to guarantee ob-
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servability in a cyclic, live, bounded and event-detectable IPN. Next corollary shows that this condition can

be dropped if the IPN is binary. This result was first presented in [23].

Corollary 3.1 Let (Q,Mo) be a cyclic, live and binary IPN, described by the state equation (2.1), where

the initial marking Mq is unknown.

(Q,Mo) is observable if it is event-detectable.

Proof. Since (Q, Mq) is cycüc, all places in the IPN are covered by a p-semiflow, then a CML can be

obtained. For that CML it holds that Vfc Bfc = 1 because the net is binary. Liveness implies that each

transition can be fired at least once from every reachable marking then, there is a firing sequence that fires

an input transition to each place, and then the condition on the synchronic distance holds, and the result

follows. ■

The results presented in this chapter provide algorithms to determine the initial state of a DES modeled

by IPN. However, computing the initial state of the system in not always necessary. For some control and

security purposes it is only needed to determine the current state of the system, that is what the asymptotic

observers for IPN presented in the following chapters are devoted to achive.

3.4 Conclusions

The observability problem was divided into the possibility of determining the occurrence of every event in

the system and the computation of the IPN marking.

When every event can be detected in an IPN, it is said to be event-detectable. A simple characterization

of the IPN that exhibit this property was presented.

To determine the marking of an IPN model, information of the resources contained in the DES is needed.

That information provides a set of conservative marking laws.

The event-detectability property, a set of conservative marking laws, and a condition on the synchronic

distance between the sets of input and output transitions to each no-measurable place are sufficient conditions

for observability in cyclic, uve and bounded IPN models.



Chapter 4

Observer in IPN terms

Summary: An observer in IPN terms is presented for IPN modeling DES where no-measurable

transitions can exist. The observer firing vectors are obtained using the information provided by the inputs

and outputs of the system and the máximum number of tokens that each place in the system can contain.

The observer is a copy of the IPN model of the system with a bigger initial marking. An output transition

is added to each place to remove the exceeding tokens. A condition on the synchronic distance between the

output and input transitions of each place, that needs to be held in order to guarantee that the marking in

the observer will become equal to the system marking, is stated.

29
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„D

input k output 9Mk

observer
<pMk-q>Mk

Figure 4.1: Observer scheme.

4.1 Introduction

Computing the current marking of the IPN modeüng DES is enough for some control and security purposes.

An observer is a device devoted to estimate the current system state and provides useful redundancy to

provide fault tolerancy and recovery.

Giua in [8] presents an algorithm to determine the marking of the PN modeüng a DES, however, he

assumes that all the events in the system are accessible, Aguirre et al. in [1] present a similar work making

the same assumption. The case when that assumption does not hold has been addressed in [2]. In that

work it was shown that the observer firing vectors can be computed by solving a linear programing problem.

Herein another approach is taken, the computation of the firing vectors presented in this work require less

computational effort and the observer initial marking is defined in a different way that increases the marking

convergency speed.

The results presented in this chapter are ineluded in [24].

4.2 Observer for IPN models

In this work it is considered the pair system-observer scheme depicted in figure 4.1. In this case, the system

and the observer are IPN and have the same controUable input.

Definition 4.1 The system IPN model is

Ns = (Ps.Ts,Is,Os,Z,$,X,D,ip)

and the observer net is

N0 = (Po,To,Io,Oo,Z,*,Id, Id, Id)
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Note that in the observer all transitions are measurable and manipulated and all places are measurable.

The state equation of the IPN modeling the system is:

Mk+1=Mk+CDv£ + Cevi¡

j/jbi = tpMk

yk2
= Dvk

and the state equation of the observer net is:

Mt+i = M, + C°vf> + T(ipMk - tpMi)

Vk
= Ml

The number of places in the observer is the same that the number of places of the system IPN model,

however the observer structure is stül unknown because T has not being defined. Fortunately, using the

observation error, T can be computed. The observation error is defined as:

el¿=Mk-Mlk

That error can be expressed as the difference equation:

elk\\=ei+[C£ -r] M)
(4.1)

where

V(e'fc)
is the "firing vector" of the observer. To make the marking of the observer equal to the

marking of the system, then special valúes must be assigned to T(íp(elk)). Next proposition states sufficient

conditions to perform this task.

Proposition 4.1 IfT(íp(elk)) ~ [ C£-yk FPk ] such^ ^vf. = C£7fe and e\ = FPk ^en the error 4+_

¿s equal to 0.

Proof. As r(ip(elk)) = [ C£-yk F0k ] such that C£v% = Cejk and e'k = Fpk tissa introducing these

equations in equation (4.1)

e/+1 -eí
efc+l

~

efe + [ C£ -C£ -F ] 7fc

Pk

= elk + C£v£k-C£lk-FPk=0.

As r(<£>(e'fc)) = [ Ce7fc FPk ] is a solution, then the observer state equation becomes:

Mí+1 =Mi+[CD C£ F ]

Vk
= Ml

7fc

Pk

Now, as l + 1 depends only on fc, it is not necessary to maintain two subscripts, so the observer structure

is redefined as foüows.
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Definition 4.2 The observer net No = (Ps,Ts UT', Io,0o,E,$, Id, Id, Id) has the state equation:

Mk+i = Mfc + [ CD C£ F]

y'k=Mk

vk

7fc

Pk

Note that the observer is a copy of the system IPN model with some extra transitions defined in F

To guarantee that el¿¿. = ek+i
= 0, FPk and 7fc must be adequately computed. As the error equation is

efc+i
= efc + Cevk

—

CE7fc
—

FPk = 0 then one solution is to propose that C£vk = Ce7fc and that e*,
= FPk-

Next proposition states how to compute 7fc; FPk wül be analyzed later on.

Proposition 4.2 Let (Q, Mo) = (N, E, _>, A, D, o) be an event-detectable IPN then ~fk can be computed to

be equal to vk.

Proof. As (Q, Mq) is .an event-detectable IPN then any firing transition sequence can be detected. So,

the sequence o such that o =

vk can be detected and this valué is assigned to 7fc. ■

The computation of FPk is more difficult because it is related with the initial error over aü system-

observer pair and just the error over measurable places is known, then FPk cannot be directly computed

to fullfil efc
= FPk- This problem can be solved when a CML is known and the foUowing special initial

marking is given to the observer.

Definition 4.3 Let Ns be an IPN model of a system and No be its observer IPN, where a CML is defined.

The initial admissible marking Mo ofNo is

m ( \ — / M)(p») ifpi is measurable
°W.)

| MUB(j>i) ifpi is no-measurable

where MUB(pi) is the upper marking bound.

Using this initial admissible marking, by the Monotonicity lemma [5], if tj is an enabled transition in the

system then it is enabled in the observer. Also, the observer has more tokens that the system, so one way

to eüminate these tokens is adding one output transition to each place in the observer and firing this output

transition at the appropriate moment. F is devoted to perform this task and it is defined as foUows.

Definition 4.4 F : {1,2, ...,n} x {1,2, ...,ra} —> {-1,0}, such that F [i, i) = -1 andF[i,j] = 0,./j

F is a matrix (a Petri net incidence matrix) representing the fact that one output transition is added to

each place. Let us define /3k as foUows.

Definition 4.5 Let Ns = (Ps,Ts, Is,Os, E, <_>, A, D, tp) be the system IPN model where a CML is defined,

Nq = (Ps,Ts UT',Io, Oo, E, $ , Id, Id, Id) be the observer net with an state equation:

Mk+i = Mk + [ CD C£

y'k=Mk

vk

lk

Pk
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where vk is the same that is given to the system, yk was computed as in proposition 4-2. Then ¡3k is defined
"

»i

,
whereas/3k =

w< = <
max{Mfc(p<) — MUB(pi),0} if pi is no-measurable

max{M„(p¿) —

Mfc(pi),0} ifpi is measurable

Previous definition states that only when the number of tokens into an observer place is greater than its

bound or the marking in the corresponding measurable place in the system, then the added output transition

must be fired eliminating the exceeding tokens. Using ¡3k the error ejt+i
= efc

— FPk wül eventu.aUy be

canceüed.

As it is not easy to see that there is a fc < oo such that efc
—

FPk = 0, the remainder of this chapter is

devoted to prove it.

Lemma 4.1 Let Ns be a system and No be an observer with an initial marking according to definition 4-3.

If the same input word is given to both IPN, then the marking Mk is always greater than or equal to the

marking Mk ofNs (i.e. Vfc Mfc _í Mk).

Proof. With the initial marking Mo = Mo + Mi, where Mi Js 0, because of Monotonicity Lemma[5],

any enabled transition in Ns is also enabled in No- If the same transition U is fired in Ns and in No then

the markings Mi = M0 + C*. and Mi = M0 + C*í = Mo +Mi+ CU, with C = [ CD C£ ] ,
are reached in

Ns and No respectively and Mi Js Mi. The same procedure can be performed for aü reachable markings.

■

Note that one result of previous lemma is that 7fc = v\ is an enabled transition sequence in the observer.

Now a more complex firing word wiU be given to the net. First, the same input word wiü be given to the

system and to the observer, and afterwards /3k wiU be appüed to the observer to eliminate exceeding tokens

and it wiü be proved that the marking of the observer asymptoticaUy tends to the marking of the system.

Lemma 4.2 Let Ns be a system and No be an observer with an initial marking according to definition 4-3.

If the same input word is given to both IPN and afterwards f3k is given to the observer, then the marking

Mk is always greater than or equal to the marking Mk ofNs (i.e. Vfc Mfc ., Mk).

Proof. Again the observer initial marking is M0 = M0 + Mi, where Mi .> 0. The part when the same

input word is given to both IPN was proved before, now the part of (3k wül be proved. When the same

input word is appüed to both nets the marking in the system is Mi = Mo + C*¿ and in the observer is

Mi = M0 +Mi+ CU = Mi +Mr. Then, the error is ei = -Mi, then /.j wiU be fired and some tokens wül be

removed; note that at most Mi(jh) tokens can be removed in Mi = Mi +Mi because Mi is the actual marking

and it is never bigger than the bound. Assume that M/j tokens are removed so M2 = M0 +Mf+ CU - Mix ,

Le. M2 = Mi + Mi - Mi\. For convenience, the subindex of previous marking wül be renamed to 1, i.e.

Mi = Mi +Mi-Mii . Since Mi - M>i ,? 0, Mi > Mi . The same procedure can be performed for aü fc and

then Mfc 5- Mfc. ■
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Note that one result of previous lemma states that 7fc/_ k is an enabled transition sequence in the observer

and also that the observer marking tends to the system marking. Now, the next theorem uses previous

lemnias to show that when the system is observable, then the observer structure and firing sequences ikPk

proposed can be used to estimate the system marking.

Theorem 4.1 Let Ns be a cyclic, live and bounded IPN modelling a system, where a CML is defined. Let

No be an observer with an initial marking according to definition 4-3. IfVpi G Ps, SD(N, Mo; *(p.), (Pt)*) =

MUB(pi) and the same input word is given to both IPN and afterwards f3k is given to the observer, then

üm Mfc+i-Mfc+i =0

lk+"„lh°°" "

Proof. In Lemma 4.2 it was proved that if the same input word is given to both IPN and afterwards pk

is given to the observer, then Vfc Mfc sj Mfc .and that the enabled transitions in Ns are also enabled in No-

Again the observer initial marking is Mo = Mq +Mt, where Mi J5 0. Notice that the initial marking in the

observer is equal to the initial marking in the system for every measurable place, then Mi corresponds to

no-measurable places. Let p¡ be a measurable place in the system such that p¿ € '(tj) U (*,■)• .and that tj fires

in the system. Then since the same input word is given to both nets, tj also fires in the observer. Therefore

Vfc Mk(p.) = Mk(pi). Let pj be a no-measurable place in the system such that pj 6 (tj)». Suppose that tj

is the first transition to fire in the system. Then it is also fired in the observer and the markings Mi(pj) =

Mq(pj) + 1, Mi(pj) = Mq(pj) + 1 are reached. Then, by the effect of /3j the marking Mi(pj) is reduced

Wj units, until MUB(j>j) is reached. Then Mo(p¿)
— Mo(pj) = Mi (pj)

— 1 —

___,— Mi (p¿) + 1 and

M)(p.)
—

M)(pj) ¡> Mi(pj)
—

M\(pj) II. Suppose now that tj repeatedly fires until Mk(pj) = MUB(pj)

then Mfc(pj)
-

Mfc(p¿) __ 0. Since Vpi € Ps, SD(N, Mq; •(?.), (p.)») = Mc/B(pi), such sequence exists.

This reasoning can be appüed to each place, and then M|-|
—

M|-| =0 for a transition firing sequence o.

■

Since it is considered in this work that no-manipulated transitions can exist in the IPN model of the

system, the transition firing sequence a cannot be imposed to the system. For that reason, it is only said

that the marking in both nets wiü be equal when the lenght of the input word tends to infinite, assuming

that at that moment the condition on the synchronic distance wiU be held for aü places.

4.2.1 Observer example

Example 4.1 Let the IPN depicted in figure 4.2.a) be a model of a DES, where the CML = {M(pi) +

M(p2) +M(p4) = l,M(pi) +M(p3)-|-M(p5) = 1} is defined. This IPN is cyclic, live and bounded, since the

IPN is event detectable and the synchronic distance properties are fulfilled, then the net is observable. This

is true because the IPN is live and binary so Vp¿ no-measurable place SD(Q, Mq; ■ (j>j) , (pj) •) > 1, and all

columns in the matrix

'

-1 -1 0 0 1
"

ipC£ =
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a) SYSTEM b) OBSERVER

Figure 4.2: Observable system with asymptotic observer.

are not nuil and different from each other. Figure 4-2.b) represents the asymptotic observer. As an example,

assume that in the system the sequence *i,<3,*5,*2,*4 is fired, then in the observer, the sequence 7i/?i I2P2

I3P3 I4P4 J5P5 ts computed as *i*8>*3.*5,*2*9,*4- Firing it, the marking of the observer will be equal to the

marking of the system.

Note that the marking ofthe system also can be computed using theorem 3.1.

4.3 Conclusions

In this chapter a method for designing asymptotic observers for IPN modeling DES was presented. The

observer is a copy of the system with output transitions added to each place and it aUows no-measurable

transitions to exist in the system IPN model.

It is shown that the same measurable inputs can be given to the system and the observer if the marking

in the observer is supposed to be bigger than in the system; and that the estimation error is reduced by the

firing of the output transitions added to the observer.

Measurable inputs are given to both nets at the same time and the rest of the observer firing vector are

computed by comparing the incidence matrix of the IPN modeling the system with the difference in the

outputs of the observer and system nets.
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Chapter 5

Observer improvement

Summary: The observer presented in the previous chapter is improved to accept an initial marking

that does not need to be the máximum number of tokens that each place in the system can contain. Another

set of transitions are ineluded in the observer, these transitions are devoted to add tokens to the places when

it is known that the marking in an observer place is less than in the corresponding system place. A less

restrictive condition on the synchronic distance needs to be held for this observer scheme.

37
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inputs
system IPN

outputs

compute

J = ?+]_*+ 5*

observer IPN

observer

state

4

estimation

Figure 5.1: Observer block diagram.

5.1 Introduction

In this chapter another observer scheme is presented. This observer requires a less restrictive condition on

the synchronic distance to be held in order to guarantee that the observer marking wiü be equal to the

system marking. An input transition is added to each place in the observer and the observer initial marking

can be choosen as any valué between the minimum and máximum marking that each place can reach.

The marking estimation method presented herein includes the incremental approach taken by Giua in

[8] and the decremental one used in the previous chapter.

The observer scheme design technique herein presented is based on the block diagram depicted in figure

5.1 and is presented in [25].

5.2 Observer design

Let us begin by giving the foUowing definition.

Definition 5.1 The system IPN model is

Ns = (Ps,Ts,/s,Os,E,$,A,D,v)

and the observer net is

N0 = (Ps,Tojo, Oo, E, $, Id, Id, Id)

Note that in the observer all transitions are manipulated and measurable and all places are measurable.

The state equation of the IPN system is as the state equation (2.1) and the state equation of the observer
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net is:

7*

Mfc+i = Mfc + [ C F T ] /.*

L «*

J/¿ = Mfc

t_/».sr_ F[i,i] = -1 orad r[»,j] = 0,¿ ^ j; oncí T[i,i] = 1 and t[i,j] = Q,i ^ j.

Now the observer initial marking M0 and the firing vectors *fk> Pk> Sk wiü be defined.

Definition 5.2 Let Ns be an IPN model of a system and No be its observer IPN, where a CML is defined.

The initial admissible marking Mq ofNo is the following M(j>i) = M(pi) ifpi is measurable and M(j>.)

is any valué fulfilling that MUB(pi) #s M0(pi) > MLB(j>i) if pi is no-measurable.

Notice that this observer initial marking definition contains those presented in [8], [1] and in [23].

Now the foUowing proposition is used to compute the firing vectors 7fc, ¡3k, and e5_.

Definition 5.3 Let Ns be an IPN model of the system and No be its observer net. If transition tk fires in

Ns then

7fc

• Pk

_ / *fc iftk is enabled in the observer

other case

ra.

,
where

Wi

i if
7fc
=

__V
andMk^ + cfa> *)7* > M (Pi) or

Ikí tk, Pi& •(tk), and Mk(p.) > MLB(pi)
0 other case

• 6k =

Ul

,
where

Vi= <
1 if

lk
=

__,'
and **&*) + c(Pi. -hk < MLB(pi) or

lk í ^ ,Pi 6 («fc)-, <md Mk(pi) < MUB(pi)
0 other case

The previous definition states that when the number of tokens in the observer are not enough to fire the

same transition tj that fires in the system then the added input transitions in the observer wiU be fired to

add tokens into the output places of tj-, or when the marking of a place exceeds the known marking bound

for that place, those tokens are removed by the firing of the added output transitions in the observer.

Using these firing vectors the state of the observer wül tend to the state of the system as wiü be proved

in the foUowing theorem.
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Theorem 5.1 Let Ns be a cyclic, live, bounded and event detectable IPNmodelling a system, where a CML

is defined. Let No be an observer with an initial marking according to definition 5.2. IfVpi € Ps either,

SD(N, M0; »(pí), fe)») = Di or SD(N, M0; (j>í); •&)) = Bj and the firing vectors of the observer jk, ¡3k

and Sk are computed as in definition 5.3, then

üm ||Mfc+i-Mfc+i||=0
||a||-*oo II II

where a is the transition sequence fired in Ns-

Proof. The observer initial marking is Mo = Mo +Mi, where M/ < ID).

Assume that SD(N, Mo; »(pfc), (Pfc)«) = B_ for some pk, and the firing vectors of the observer 7, /. and

8 are computed as in definition 5.3, then, a transition firing sequence Ok -such that the number of firings

of transitions in • (pt) without firing any transition in (pt)« is equal to Bfc- exists. Then, as in theorem

3.1, when Ok is fired, a new marking is reached: Mj(pk) = Mn(pk) + Bfc, where Mj(j>k) = MUB(pk) and

M„(pk) = MLB(pk). Three cases must be studied:

a) Mi(j>k) = 0. If a transition tj e «(pfc) is fired in Ok, then by definition 5.3 either 7 = tj or Vk = 1

and Wk = 0, then the estimation error of pk remains zero over the execution of Ok-

b) Ml(pk) > 0. If a transition tj € •(?„) is fired in Ok, then by definition 5.3 the foUowing cases are

possible:

i) 7 = tj or Vk
= 1 and Wk = 0 when M(pk) < MUB(pk), the estimation error of pk does not change.

ii) 7 = tj or Vk = 1, and Wk = 1 and when M(pk) í* MUB(pk), then the estimation error of pk decreases,

and will be equal to zero over the execution of Ok-

Note that in both cases 7
= tj is mutually exclusive with Vk = 1 and that case ü) oceurs exactly M/(pk)

times because marking MUB(pk) is reached and the observer marking is not aUowed to exceed it.

c) Mi(pk) < 0. During the firing of Ok, the marking Mn(pk) = MLB(pk) was reached. By definition 5.3,

when the firing of any transition reduces the marking M(pk) below MLB(pk), then vk
= 1 "freezing'' this

marking in MLB(j>k), so the estimation error of pk is reduced to zero when the marking Mn(pk) is reached.

Then in aü the cases the estimation error of pfc is reduced to zero.

Now assume that SD(N, M0; (pfc)», «(p/t)) = Bfc for some pk, and the firing vectors of the observer 7, /.

and S are computed as in definition 5.3, then a transition firing sequence erfc -such that the number of firings

of transitions in (pk) • without firing any transition in »(pfc) is equal to Bfc- exists. Using a similar reasoning

it can be proved that the estimation error wiU be equal to zero for place pk when Ok has been fired.

Since at least one of the conditions on the synchronic distance holds for each place and Ns is a cycüc

IPN, then the estimation error wiU be zero in aü places when a transition sequence a
= £_ Oí fires in the
t__..n

system. Therefore the theorem holds. ■

Theorem 5.1 formaüy estabüshes that the markings in the observer and in the system become equal after

a finite sequence of events occur in the system. However, since the net can contain uncontroüable events

(no-manipulated transitions), the length of this sequence cannot be estabüshed.
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Figure 5.2: System and Observer IPN.

5.2.1 Manufacturing cell observer example

The manufacturing ceU example 2.6, whose description is transcript here for the readers comfort, is used for

showing the operation of the observer presented in this chapter.

Example 5.1 Consider a manufacturing cell where a product consisting oftwo parts (Pa, Pb) is processed.

Pa requires to use the machines MI andM2, and Pb requires MZ andM2, both in that sequence. After both

parts are processed they are assembled and the product is released, then the system is ready to start another

cycle. The IPN of figure 5.2a) is a model of ihe system where a token in place pi represents an idle state of

the system; transition *i represents the beginning of a cycle. A token in p2 (P2) represents that the machine

MI (MZ) is being used and inp3 (p4) that MI (MZ) is available. *2 and *3 represent that the process inMI

and MZ has finished respectively, a token in p6 and p7 represent a piece waiting for M2 to be available. t4

and í5 represent the beginning of the process of a part in M2. A token in pg represents that M2 is available.

Ps and pío represent a part being processed in M2. t6 and t7 represent that the process in M2 has finished.

Tokens ínpn andpi2 represent the parts waiting to be assembled. Finally, íg represents the assemblíng and

reléase of the product.

Different signáis are displayed when MI and MZ are being used, and M2 display two different signáis

depending on the piece that is being processed. Therefore P2, Ps, Ps o-nd pío o.re measurable places in the

model and since the releasing of a product can be detected also tg is measurable.
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The model for this example is a binary IPN where a CML is given by the following p-semiflows:

M(p2) + M(p3) = l (5.1)

M(p4) +M(ps) = 1

M(j>i) + M(p5) = 1

M(pi) + M(p2) + M(p6) + M(p8) +M(pn) = 1

M(pi) + M(p5) + M(p7) +M(pio) +M(pi2) = 1

For this model all columns in the matrix

"1-1 0 0 0 0 0'

„e_
1 0-10 0 0 0

9
0 0 0 10-10

0 0 0 0-1 0 1

are not nuil and different; then any transition firing can be determined. Using the information provided by

the CML set 5.1 for the initial marking depicted in the figure 5.2b) the transition firing sequence o
= ti is

enough to compute the system markings Mi and Mo since it is known that P2 and ps are marked at Mi and

using 5. 1 the number of tokens in all other places can be computed.

If the observer with the initial marking Mq = 0, shown in figure 5.2b) is used and if, for instance, in the

system the sequence *i,Í2,*3,*4 is executed and in consequence *2,*5i*2,*3)*8>*6 ^ executed in the observer,

then ihe markings in both IPN become equal.

5.3 Conclusions

Any marking between the minimum and máximum number of tokens that each place can reach can be chosen

to be the initial marking of the observer introduced in this chapter. Because of this, the observer presented

in the previous chapter and some of those ineluded in the works cited herein can be consider as special cases

of this observer.

The observer scheme presented in this chapther requires a less restrictive condition on the synchronic

distance to be held and for that reason achives to determine the marking of more IPN than the observer

presented in the previous chapter.



Chapter 6

Conclusions and future work

6.1 Conclusions

In this work, the observabiüty problem for DES was addressed. A definition that clearly extends the meaning

of this property as it is understood in systems theory to DES
was presented. That definition estabüshes that a

DES is observable if the information provided by the inputs, outputs and structure of the system
is enough to

compute its initial state when a finite sequence of inputs is given
to it. Using this definition a characterization

of the IPN models that exhibit this characteristic was given. Unfortunately that characterization is not

completely given in terms of the structure of the IPN and only provides sufficient conditions to guarantee

that the initial system state can be computed.

In order to determine the marking of an IPN some knowledge on physical characteristics ofDES is needed,

however the assumption on the knowledge of aü events that affect the
state of the system has been dropped.

An observer in IPN terms that achieves to compute the marking of observable IPN was given. Since

observable IPN are event-detectable, once the current marking is known, the initial one can be easüy com

puted. This observer is improved to accept different initial markings,
which can be useful to perform further

analysis to increase the state estimation speed.

6.2 Future work

The foUowing extensión of the results herein presented are left as future work:

• Determining aü necessary conditions for an IPN to be observable.

• The extensión of this work to colored, generaüzed, stochastic and timed PN.

• The appUcation of this observer scheme to state feedback
control and fault tolerant systems.

• Finding the minimum number of measurable places needed in an IPN model to be observable.

• Determining the best way to define the observer initial marking in order to increase the convergency

speed of the state estimation.
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Appendix A

Symbols and abbreviations

o

A.l Symbols

G a PN structure.

P the set of places of a PN, P = {pi,P2, -,Pn}-

p¡ the i-th place of a PN.

T the set of transitions of a PN, T = {*i , *2, •■■, tm}.

tj the j-th transition of a PN.

the function representing the ares going from places to

transitions I-.PxT—► {0, 1}.
the function representing the ares going from transitions to

places O-.PxT
—► {0, 1}.

C the incidence matrix of a PN.

b^ the ij-th element of a matrix B.

J?° the nonnegative integer numbers.

{x}k a fc-dimentional vector of x.

the marking function that assigns a nonnegative integer
to each

M
place of the net ,M : P—. {Z>°}n

N a PN, _V = (G, M0), where M0 is an initial token distribution.

v a firing vector of a PN.

R(G , M0) the reachabiüty set of a PN.

•(tj) the set of aü places pi such that I(pi,tj) / 0.

(tj)» the set of aü places pi such that 0(putj) ¿ 0.

•fa) the set of aü transitions tj suchthat 0(pi,tj) ^ 0.

(p¿)« the set of aü transitions tj such that I(j>i,tj) ^ 0.

Q an IPN.

E the input alphabet of an IPN, E = {<7i , «72, ..., >->}.

a an input symbol.

$ the output alphabet of an IPN, $
= {<Pi, <¡>2, -,<Pa}-

0¿ an output symbol.

e a nuü valué in an input or output alphabet.

A a transition labeling function, A : T —* E U {e}-
r the set of ñames of the transitions.

D feed-forward function, D : T —

■ T, where T = r U {_}.

tp output function, tp : R(G,Mq) -+ {$ U {e}}?.
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Mk -^-> transition tj is enabled at marking Mfc.

. transition tj is enabled at marking Mk and the firing of

Mfc —^ Mfc+i this transition in this marking leads to the marking Mfc+i-

the firing of the transition sequence o is enabled at

Mj —> Mk
marking Mj and leads to the marking Mfc.

e. elemental vector, e¡[i ^ j] = 0, ej[j] = 1.

submatrix of C formed by the columns of the

no-measurable transitions in an IPN.

submatirx of C formed by the columns of the

measurable transitions in an IPN.

£(Q,M0) the firing language of the IPN (Q,Mq).

£ín(Q,M0) the input language of (Q, Mq).

£out(Q,Mo) the output language of (Q, Mq).
the synchronic distance of a transition U with respect

SD(Q,M0;ti,tj) to a transition *j;.
CML a set of conservative marking laws.

MLB(pk) marking lower bound for place pfc.

MUB(pk) marking upper bound for place pt.

Bj. máximum marking gap for place pfc.

M observer marking function.

e observation error M — M.

f a PN incidence matrix containing output transition.

X a PN incidence matrix containing input transition.

a /3! jt S observer firing vectors.

\G\ the size of a set G.

Y(» x) the x-th column vector of the matrix Y.

Y(x, •) the x-th row vector of the matrix Y.

A.2 Abbreviations

DES Discrete Event System

FA Finite Autómata

PN Petri Net

IPN Interpreted Petri Net
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