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Resumen

El análisis de flujo de potencia modal proporciona una técnica de análisis muy

general para investigar la influencia de generadores, dispositivos de control, cargas y

la red de transmisión en la estabilidad de pequeña señal de sistemas de potencia a

gran escala.

Esta tesis propone un marco sistemático para el análisis de flujo de potencia

oscilatoria en grandes sistemas de potencia. Se hace hincapié en el estudio de voltaje

modal y las contribuciones de potencia reactiva. Un enfoque que conserva la

estructura del sistema para el cómputo de potencia oscilatoria es presentado y

probado. Métodos para la interpretación de la estructura modal son- dados y

herramientas especiales para el estudio de la distribución de flujo de potencia modal

son desarrollados.

Basado en esta representación, un marco unificado para estudios de flujo de

potencia oscilatoria modal es desarrollado para analizar el comportamiento modal

de acciones de control de FACTS y el comportamiento de las cargas. El método

puede ser utilizado para el estudio de redes con varias estructuras y tamaño

arbitrario y puede también ser aplicado a datos medidos.

La metodología de análisis es demostrada en dos sistemas prácticos de

prueba. Los resultados muestran que la técnica propuesta es aplicable a modelos de

sistemas grandes y complejos.
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Abstract

Modal power flow analysis provides a very general analysis technique to investigate

the influence of generators, control devices, loads and transmission network on the

small-signal stability of large-scale power systems.

This thesis proposes a systematic framework for the analysis of power swing

flow of large-scale power systems. Emphasis is placed on the study of modal voltage

and reactive power contributions. A structure-preserving approach to power swing

computation flow is presented and tested. Methods for interpreting modal structure

are then gjven and special tools for studying power flow distribution are developed.

Based on this representation, a unified framework for modal power oscillation

flow studies is then developed to analyze the sensitivity of modal behavior to

FACTS control action and load behavior. The method can be used to study networks

with various structures and arbitrary size and can be applied to measured data.

The analysis methodology is demonstrated on two practical test systems.

Results show that the proposed technique is applicable to large, complex power

system models.
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Chapterl

Introduction.

This introductory chapter presents a brief description of the research work in this

thesis and serves as a general introduction to the problem of small-signal system

modeling. The background and motivation, along with the problem statement, the

objectives and the contributions of this research are also presented in this chapter.

A brief review of previous works is also summarized. The chapter closes with

the structure of the thesis and a summary of the work done.
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1 . 1 Background and Motivation

Power systems exhibit a number of unique dynamical processes that provoke
intense system interactions.

Interárea oscillations in the low frequency range (0.1-2 Hz) have been

evidenced in many power systems often associated with the interconnection of

power systems through weak transmission lines. Electromechanical oscillations can

develop between groups of machines of an interconnected system and can propágate

through tie lines to neighboring systems. Physically, the frequency and damping of

the oscillations depends on various factors such as the electrical distances between

machines, the equivalent inertia and load and transmission characteristics [l]-[3].

Small perturbations in particular, may trigger electromechanical oscillations

involving groups of generators swinging against each other. For such situations,

power system dynamic behavior can be described as the superposition of oscillation

modes called electromechanical modes of oscillations. With today's practical power

systems becoming more and more stressed, complex phenomena involving
interaction between the fundamental modes of oscillation may occur.

Oscillations related to the interconnection of systems are of particular interest.

Due to its relatively large number of degrees-of-freedom, power systems exhibit

highly complex phenomena including modal interactions and complex transient

motions characterized by the emergence and subsequent mode decay.

As discussed in [1], critical interface are often limited by insufficient damping

torque and are often highly dependent on network and control actions.

Quantification of spatial and temporal patterns of dominant modes is an important

step toward developing regional control systems and protective and control actions.

Traditional approaches to the study of electromechanical oscillations have

focused on the analysis of modal properties of linear state space representations
which require complete or partial specification of system modes of oscillations

[2],[3]. These models have proven very valuable. However, they can provide only

partial characterization of system behavior.

Recent developments in the application of linear analysis techniques have

provided mechanisms to analyze oscillatory phenomena in power systems. As

discussed later in this research, large-scale power system models derived from

physical concepts are represented by nonlinear differential-algebraic equation (DAE)
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systems. Even with simplifications and approximations, the resulting
models may be

overwhelmingly large too expensive for direct small signal analysis reflecting
the

complexity of modern interconnected systems.

The models presented in this thesis are motivated by an attempt to assess
the

effect of network influence on system behavior. New algorithms to compute the

power oscillation flow associated with a mode or given modes of concerns are

proposed and evaluated. In this approach, the magnitudes
and phases of the power

flow associated with a mode of concern can be determined and the specific

contribution of system elements to the oscillatory process can be singled
out.

Modal power flow algorithms provide a rapid quantitative technique for

visualization of complex intersystem oscillations. The results may also be
relevant to

the interpretation of structural properties and to the design of system controllers to

direct the time-varying power flows across the network.

1.2 Problem Statement

Power systems networks are composed of a large number of subsystems interacting

in structured ways. Understanding the behavior of such complex systems, including

their response characteristics continúes
to be a significant quest.

Sustained or poorly damped intersystem oscillations are a growing cause for

concern in many weakly interconnected power systems. Wide-area phenomena

involve a complicated interaction between machine dynamics and transmission

system dynamics especially if the power systems are extensively interconnected.

In an interconnected system, the location of major critical paths may be

complicated by the facts that there are múltiple modes of oscillation and múltiple

loads. In addition, proper identification of loads having a significant influence on

system behavior may result in enhanced load modulation techniques.

Oscillations can be aggravated or stimulated by a number of factors. Loads in

particular can provide damping by varying the load voltage in phase with local

frequency variations [14]. Ties having a large participation in the modal power are

also good candidates for wide area monitoring and control.

Intersystem oscillations are essentially manifested by a periodic interchange

of mechanical energy caused by the relative rotor acceleration of the system
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generators or interconnected systems. A challenge is to develop a model which

accurately captures the relevant dynamics of both generators and controllers and

load characteristics. Consideration of network effects is vital to understand the

nature of modal and to identify critical transmission paths. Furthermore, load

characteristics often play a role in the physical mechanism underlying oscillations.

The advent of transmission system controls, on the other hand, offers a direct

means for controlling oscillations. Recent studies show that loads can contribute

significantly to interárea oscillations [15, 16]. Other devices such as FACTS

controllers may also contribute to the oscillations.

As power systems become more and more complex, the onset of interárea

oscillations is manifesting in rather more complex manners, often as complex
oscillations involving the interaction of various system modes. For large-scale power

systems, however, the exchange of osculating energy through transmission lines

may be difficult to determine.

By identifying the impact of machines and the transmission characteristics on

the oscillation pattern, the predominant cause can be determined and remedial

actions can be developed.

The work in this thesis is focused on the analysis of modal oscillation flow

associated with major interárea modes. Major challenges being addressed include:

a) The generalization of existing approaches to the study of large power system

DAE models.

b) The analysis of the effect of voltage and reactive power contributions to the

power oscillation flow.

c) The identification of voltage control áreas and dominant loads related to the

power oscillation flow.

1.3 Relations with Previous Literature

A great deal of work has been reported in the literature on determination of

modal properties from large DAE models. These include the analysis of modal

properties such as eigenvalue information, the computation of modal controllability
and observability and sensitivity information. Recent research reports summarize

the experience in the application of these techniques [9] and [17]-[19]. Other

4



advances can be traced back to the study of modal controllability and observability

in large DAE models.

The concept of power swing flow was introduced by Zhou at [7] as a means
to

identify the distribution and strength of power flow associated with critical interárea

modes. Nayebzdeh and Messina et al. [15] extended this idea to allow the study of

large power system models described by state space realizations.

With this method, the transmission corridors and system parameters having a

large contribution to critical system oscillations modes are determined. The method

is particularly well suited for investigating inter-system oscillations in large-scale

power systems with embedded FACTS controllers.

Nayebzdeh and Messina [15], Ochoa [8] and also Segundo et al. [16]

advocated the use of modal power swing flow to compute voltage and power-

oscillation flow for each mode of concern in power systems with embedded FACTS

controllers.

Much of the previous research in modal power flow analysis has been

concerned with the computation of system oscillation modes. What is missing, even

after extensive small signal studies is an understanding of the essential aspects of the

network contribution to the power oscillation flow. Thus, for instance, the effects of

loads on system behavior can lead to the concept of load modulations.

Several authors have recently outlined that the method could be used to

identify voltage control áreas.

The idea of a voltage control áreas has been presented in works as [10, 11],

where the power system is separated in smaller áreas in order to ensure the

effectiveness of reactive support. The concept of electrical distance was used in these

works.

Also in [10] after portioning the power network, it is necessary to identify the

mix of sources of reactive support that would be effective, it is done by determining
the sensitivity of load bus voltages to reactive injections of sources as exposed in

[12]. This identification is based on analysis techniques of the static representation of

the power system through a complex power balance equations. This and another

methodologies for the study and analyses of voltage stability are presented and

discussed in references [5, 12], where the electric power systems is modeled by its

power balance equations, a static representation.
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Bolden [14], discusses the use of this concept to design and lócate voltage
control devices.

1 .4 Thesis Objectives

The primary objective of this research is the development of new techniques for the

analysis of power swing flows in large-scale interconnected power systems. Other

related objectives indude:

• The assessment of voltage and reactive power contribution to the power

swing flow.

• The identification of critical loads and voltage control áreas.

• The generalization of modal power flow algorithms to extract modal

information from measured data.

1.5 Contributions of this Thesis

This research provides an attempt to extend modal power flow analysis to address

modal power flow analysis for power systems modeled as DAEs. Major
contributions in this work include new techniques for modeling and analysis of

large-scale DAE models, and for the identification of transmission elements having a

large contribution to the oscillations flow.

Other contributions include:

1. The development of a new methodology for the analysis of voltage control

áreas in the small signal stability problem. In this sense, modal reactive

contributions are determined.

2. The study of the importance of an active load model in the damping of the

system. The development of altemative methodologies to identify dominant

loads in the system.

3. An altemative strategy to compute modal power flow based on modal

analysis of large differential-algebraic systems.
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4. The extensión of existing approaches to compute power swing
flow from

measured data.

1 .6 Organization of the Thesis

The organization of the thesis is as follows:

In Chapter 2 the underlying model of the system is presented. The chapter

offers an overview of ongoing research in small-signal power flow analysis of large

interconnected power systems. A procedure to determine modal voltage control

áreas as well as the procedure to find the dominant loads for any swing

mode/modes in the power system is introduced. Examples are used throughout to

illustrate various points.

Chapter 3 gives a description of the proposed algorithm used to compute

modal power oscillation flow of electric power systems and describes characteristics

of the oscillation problem in detail. A detailed review of the method including

mathematical properties is presented, along with a brief description of the effects of

FACTS controllers and load characteristics on the oscillation flow. Several options

for computing the power oscillation flow are presented. Algorithms to compute the

contribution of machines, loads and control systems to the swing energy are

developed. Emphasis is placed on the contribution of reactive power to the power

oscillation flow.

In Chapter 4, a novel framework for dynamic characterization of modal

behavior is presented based on the analysis of the modal properties differential-

algebraic equation systems. The theoretical basis of the proposed technique is

established. The general numerical scheme used in the computation of power

oscillation flow is finally described. Further, the chapter addresses various aspects of

modal power flow computation. The incorporation of PMU measurements to modal

estimation is discussed and hybrid estimators incorporating network information

and observational data are proposed. The proposed technique when combined with

a wide-area monitoring system would be an effective tool for detecting and

identifying the source of transient disturbances in the power system.

Chapter 5 discusses the application of the developed methodology to the

study of practical power systems.
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Finally, in Chapter 6 some concluding remarks and suggestions for future

research are presented. Possible improvements are considered.
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Chapter2

Modal Voltage Control Áreas and

Dominant Loads

Over the past few years there has been considerable interest in studying oscillatory

processes in power systems with forced load variations. In this chapter, a physically

motivated procedure for identifying voltage control áreas associated with critical

interárea modes is proposed.

A single-machine infinite-bus (SMIB) system is analyzed as illustrative

example. The physical and mathematical connection between system oscillations

and voltage fluctuations is discussed.

Following a brief overview of small signal analysis in Section 2.1, a

mechanical analogy is introduced. A framework is then outlined for a unified

approach to assessing the impact of load characteristic variation for the active power

in the system damping. The framework involves two steps: a) identification of

mechanisms underlying oscillatory behavior, and b) assessment of the feasibility of

using load modulation to enhance damping.
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2.1 Motivational Example: Single Machine-lnfinite Bus System

Much insight into the behavior of complex power systems can be found by

examining the physics of simple power systems. In this section, we exploit an exact

analogy between the temporal dynamics of a pendulum with the corresponding

dynamics of a single-machine infinite bus system. We begin with a review of the

equations for the SMIB system.

Consider the single-machine infinite bus test system shown in Fig. 2.1. For

simplicity, the test system is partially represented by its classical model;

transmission losses are neglected and the generator is represented by a constant

voltage source £" behind transient reactance X'd. Account is taken in this model of

the effect of nonlinear voltage-dependent load characteristics.

The internal angle S is defined as the angle by which £" leads the infinite bus

voltage | Vx | and 8 the angle by which | V\ leads the infinite bus voltage.

Figure 2.1: A single machine infinite bus system.

In the classical system representation, the differential-algebraic equations of

motion of the system can be written as

—AS = ú)0Aú)r (2.1)
dt

2HÍA(0r ^^-^e-Zü^r] (22)

where Ad is the angular position of the rotor in electrical radians with respect to the

infinite system, co is the angular position of the rotor in electrical rad/s, Pm is the

mechanical input power in pu KD is the generator damping coefficient in pu

torque/pu speed, and His the inertia constant in MWs/MVA.

In the case when Pioad=Qioad=0, the solutions are well known. In the more

general, and interesting case, the mismatch equations become
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'Load—'t+'ll

o =Q,+Q,

(2.3)

(2.4)

where

EV

P. = - —Sin{5-0)
X'j+X,

a=
EVCos(S-0)-V\'

vv

P„=-—^Sin(0)

Q,,=
VVxCos(0)-V2

and Pe, P,¡, Qe and Qfl are the active and reactive power flowing from the transformer

and transmission line, respectively.

These equations have the same structure as those for the multi-machine

power system model as described in Chapter 3.

Let now the state variables of the system be x = [Aoor AS A0AV/V]T

Expanding the nonlinear model (2.1)-(2.4) around some equilibrium point, the

equation of motion can be described by the four-dimensional linear system,

.H 0 0 0" Aú)r

0 1 0 0 d AS

0 0 0 0 dt A0

0 0 0 0 j"v-A

■KD -K{

Ú)n

K,

K,

-K.

0 -K, K.-K6

-K2 A<yr "0"

0

*2~^6

AS

A0
+

0

-1

*^78 av nv 0

AP,Load

where,

(2.5)

E'V EV VV

-cos(S-0); K2 = — sin(S-0); K} = -cos(6>)
Xd+X. X'l+X,
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2

X„
'

X'_+X,
•

X,

K-ll = ^1 + ^*3 ' -K-78 = -^*7 + ^8

Next, a mechanical analogy for the SMIB system is proposed and the effect of

voltage variations on system behavior is investigated.

2.2 Voltage Oscillations from Swing Oscillation Modes

Voltage oscillations often accompany the rotor oscillations signaling the importance

of various physical processes. Thus, for instance, it is known that voltage oscillations

can be reduced when FACTs controllers are in operation near the electrical centers of

the systems exchanging energy (the physical point where the voltage swings are

greatest for the dominant swing mode) [8].

More formally, the dependence of voltage fluctuations with respect to the

variation in electromechanical modes can be expressed as

AV =MA,,A2,...,A„mc) (2.6)

where nmc indicates the number of modes of concern. And separating in magnitude
and phase angle, one has

AV =

A<-*V
~

f&OyiKiKi-iKmc)

(2.7)

where

A | V\ denotes the magnitude of the modal bus voltage deviation.

A6K denotes the phase of the modal bus voltage deviation.

Depending on the nature of the selected mode, the valúes for the voltage

magnitude and phase angle deviations will be real or complex quantities and can be

analyzed by calculating the argument and phase of the bus voltage deviations. The

remainder of this section outlines the procedure.
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2.2.1 Magnitude oftheModal Bus Voltage Deviations

Physically, the magnitude of the bus voltage deviation allows the identification of

those buses where the swing oscillation has a stronger influence in the bus voltage

magnitude. It can be defined as the variation of the voltage magnitude at each bus

within the system with respect to an excited mode or modes of interest. It reflects the

buses in the system where variations in voltage magnitude are greater. This

information can be used to lócate dynamic voltage support or monitoring system

behavior [6].

2.2.2 Pendulum Analogy

A more insightful analysis into the nature of system oscillations can be

attained from the analysis of a mechanical analogy. Following Samuelson, consider a

single machine infinite bus system shown in Fig 2.2 [3, 4].

*) b)

r»i¿o°"~

I2j

r-a2

\V\Z0—
J^U>^ F

Uu
TI*, J\

—

a/ét
X2

E/.8 (*\.)
M^^

XI

Figure 2.2: a) Single machine power system, b) Pendulum analogy.

The equations of motion of a single machine infinite bus system (Figure 2.2.a)
have their exact analogy in a simple pendulum (Figure 2.2.b) for the case of a

classical machine representation. As suggested in figure 2.2, the variation in active

load power (APLoad) can be represented as a forcé F acting on the flexible string. The

deviations from a steady state point XI and X2 correspond to the phase angles
8 and0.
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It is intuitively obvious that as F approaches the mass the influence
over the

swinging mass will be greater. An effective way to damp the pendulum is to apply

viscous damping Le. let a forcé proportional to the mass velocity act on the
mass.

Based on the DAE model (2.5), and assuming negligible variations in voltage

magnitude and KD
= 0 the equation ofmotion of the SMIB can be written as

2H 0 0

0 l/cy0 0

0 0 0

Acor

AS

A0

0 -K_

1 0

0 K,

K_ Acor 0

0 AS + 0

~K-K A0 L-l

AP,Load (2-8)

For the case of small displacements, the state space equations associated
with

the mechanical system are

"1 0 0"
d

dt

'Vl'

0 1 0

0 0 0

XI

_X2

—

0 -c, c,

1 o o

o c, -c,

("Fl" 0

XI + 0

[X2 -MM

(2.9)

where XI and X2 are the mass displacement VI as the mass velocity, g represents the

gravity forcé acting on the ball, and Mis the mass of the pendulum.

and

1

/l

c2=g(~+—)

Xl = (/l)(al) + X2

X2 = {l2){a2)

The following conclusions can be drawn from this analogy:

1. The phase angle of the bus voltage deviations indicates the relative oscillation

pattem experienced by the buses inside the SMIB system, and allows the

identification of buses with coherent oscillation behavior.
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2. An active power load osculating in opposition to the oscillation of the bus

where is connected will increase the system damping, and will have more

influence in the oscillation as it gets electrically closer [3, 9] to the oscillation

mode, indicated by the magnitude of the modal voltage phase angle.

The above analysis framework can be extended readily to multi-machine

systems. These arguments suggest that the angle calculated from the modal voltage

phase angle variations may be used to lócate áreas inside the power system with

coherent oscillation behavior.

Clearly, the load effect on the mode will depend on its oscillation pattern.

Loads with a similar oscillation pattern to the one experienced by the bus where they

are connected will decrease damping of the mode of concern. Conversely, loads

exhibiting an out of phase oscillation will introduce damping to the system.

Drawing upon these ideas, a general method based on modal analysis, for

determining voltage coherent áreas associated with a mode of concern is proposed.

2.3 Modal Voltage Control Áreas

Identification of modal voltage control áreas is done in two steps. In the first step,

two dominant áreas are identified with angles near 0o and 180°. The largest bus

participation is set to 0o.

In the second step clusters of buses within these áreas are identified based on

electrical distances. Within each group:

a) Group buses which have phase angles within a small range. This will

result in several clusters.

b) Within each group sort the buses with decreasing magnitude of phase.

c) Retain only the buses with above a certain threshold of the largest

magnitude of bus voltage phase angle. The dominant bus within each

group is chosen as the bus with the largest modal voltage deviation.

Figure 2.3 gives a schematic representation of a modal voltage control area.
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Power System

Elements ln

Modal Voltage Control Area 2

Figure 2.3: Modal voltage control area inside a power system.

2.4 Effect of Active Power Load on System Damping

2.4.1 LoadModeling and Simulation

For the purposes of this discussion, the nonlinear load behavior is represented as

function of the bus voltage, with an exponential model [1, 2]. From [1], the voltage

dependency of the load may be written

P = P
rLoad **

LO

VxK
(2.10)

where P^ad is the load active power, PL0 is the load active power for initial bus

voltage magnitude | F0 1 ; |F]is the magnitude of the bus voltage, and m is the

coefficient representing the load sensitivity to bus voltage changes.

After linearization, the variations in active power load demand are expressed
as:

W^^mP^
í\vr-rrol

\v\m
A\V\ = mP„

'aikO

V
K lol j

= P„
AjF|

(2.11)

By substituting equation (2.11) into the differential-algebraic model (2.5)

yields
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!// 0 0 0" Aü)r

0 1 0 0 d AS

0 0 0 0 dt A0

0 0 0 0 A\V\/\V\

-Kr

(On

-K{

0

0 K,

0 -K,

0

~KU

K2~K6

~K2 Acor

0 AS

K2~K6-Pm A0

^*78 A\V\\V\

(2.12)

and reducing the algebraic equations, the ordinary differential equations for the

system becomes

2H 0

0 1

Aú)r

AS

-KD -Kx

a>__ 0

0 K{

o -a:,

-*.,

K2
-

K6

K2~K6

0

K, Acor

AS

d_
dt

Aú)r

AS

■KJ2H -KJ2H

con 0

Acor

AS
(2.13)

The characteristic equation is

£ +^¿ +^0,-0
IH IH

° (2.14)

which can be written

/¡,2+2#vl + í»„2=0 (2.15)

In terms of undamped natural frequency (co„) and damping ratio (tf) the

complex conjúgate roots of the characteristic equation are

\A2=-&„±ja>n4irri2

Where

■■•-«.£
1 KD Kr

llHcon 1^¡Ks1Hco0

From the above expression, it can be seen that as Ks increases, the natural

undamped frequency increases and the damping ratio decreases. Similarly, an
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increase in KD increases the damping ratio and an increase in inertia constant

decreases both, damping ratio and natural frequency.

To assess the effect of load characteristics on system behavior, coefficient K$ is

analyzed for the cases without and with active load deviations AP^d ,
these are as

follows:

Without load deviations:

g
_

_fr +

~

Kx 3K2 + 2KXK2 {K2 -K6) + K{ K1% „

^\

(K2-K6) +Kl3K7it

With load deviations:

K =-K +

~

Kl 3^2 + 2K¡K2 (K2 -K6) + Kl K7fs
-

KtK2Pm

(K2-K6)2+Kl3K7S-(K2-K6)Pm

It follows from equations (2.16) and (2.17) that the active load modifies the

expression of the Ks by introducing new terms proportional to Pm. These new terms

in (2.17) will decrease or increase the valué of coefficient Ks, indirectly

decreasing/increasing the natural frequency and increasing/decreasing the damping
ratio. The ability of the load to affect damping depends on the load exponent, m.

We expand on the above observations in the following example.

2.4.2 Application to SingleMachine-Infinite Bus System.

Consider a single-machine infinite bus system shown in Fig. 2.4. The post fault

system conditions in per unit on the 2220 MVA, 24KV system base are shown in the

diagram.

The generator is represented by its classical model with KD = 10, //=3.5 MW

s/MVA and X'd = 0.3 in per unit on the system base.
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Figure 2.4: Initial conditions for the SMIB system.

Table 2.1:

Mode damping variations for different load characteristics.

r j r-x l-l- f. ■ j Damping Damped
Load Characteristic m Mode

r

Ratio Freq. (Hz)

Constant Impedance 2 -0.7143 + 7.8075Í 0.0911 1.2426

Constant Current 1 -0.7143 + 7.9247Í 0.0898 1.2613

Constant MVA 0 -0.7143 + 8.0471Í 0.0884 1.2807

Table 2.1 shows the system eigenvalues for various load characteristics. It can

be seen that as tn increases, the damping ratio is increased. These results are in line

with the conclusions presented in previous sections.

In large interconnected systems, however, the impact of load on system
behavior will depend on several interacting factors such as the load nature and its

location relative to voltage control devices and excitation control.

For the purpose of introducing the more general ideas that follow, the active

power swing flow, as well as the modal voltage phase angle for all buses associated

with the electromechanical mode was computed1.The special structure of this system
allows the easy calculation of the modal distribution.

Following tables and figures show the contribution of each system element to

the total oscillation flow associated with the electromechanical mode. The results are

presented for three cases: (a) constant impedance load characteristics, (b) constant

current characteristics, and (c) constant power characteristics.

Valúes are normalized against the largest magnitude. For modal active power, phase angle near 0° as

injecting element and angle near 180° as absorbing element.
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Constant Impedance Characteristic

Table 2.2:

Modal voltage phase angle deviations. Constant impedance characteristic.

Modal Voltage Phase Angle Deviations

Normalized

Bus Relative Mag. (%) Relative Phase

LV 100 0

HV 68.16784574 0

Infinite Bus 0.2633 0.17

Table 2.3:

Modal active power flow. Constant impedance characteristic.

Modal Active Power Flow

Normalized

Element Relative Mag. (%) Relative Phase
!

Generator 86.6556 180

Infinite bus 100 0

Load 13.345 180

Transmission Line 100 0

Transformer 86.6668 0

Figure 2.5: Modal power flow and voltage phase angle. Constant impedance characteristic.



Constant Current Characteristic

Table 2.4:

Modal voltage phase angle deviations. Constant current characteristic.

Modal Voltage Phase Angle

Norme

Bus Relative Mag. (%)

Deviations

lized

Relative Phase

LV 100 0

HV 66.6512 0

Infinite Bus 0.2578 0.16

Table 2.5:

Modal active power flow. Constant current characteristic.

Modal Active Power Flow

Normalized

Element Relative Mag. (%) Relative Phase

Generator 92.8514 180

Infinite bus 100 0

Load 7.1496 180

Transmission Line 100 0

Transformer 92.8627 0

Figure 2.6: Modal power flow and voltage phase angle. Constant current characteristics.
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Constant Power Characteristic

Table 2.6:

Modal voltage phase angle deviations. Constant power characteristic.

Modal Voltage Phase Angle Deviations

Normalized

Bus Relative Mag. (%) Relative Phase

LV 100 0

HV 64.9827 0

Infinite Bus 0.2518 0.15

Table 2.7:

Modal active power flow. Constant power characteristic.

Modal Active Power Flow

Normalized

Element Relative Mag. (%) Relative Phase

Generator 100 180

Infinite bus 100 0

Load 0

Transmission Line 100 0

Transformer 100 0

Figure 2.7: Modal power flow and voltage phase angle. Constant power characteristics.

The results in the preceding example have made clear that analyzing the

distribution of modal power flow gives insight into the possible patterns of modal

behavior that are likely to exist at any particular time across the network.

A few remarks are in order:
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1. For the case under study, constant impedance load result in the highest

contribution to modal power flow.

2. Static nonlinear load characteristics approaching constant power behavior

have no effect on damping and no participation in modal power flow.

3. A load osculating in opposition to the oscillation of the bus where is

connected will have a positive effect on system damping. In contrast, a load

osculating in phase with the bus oscillation will have a positive impact on

damping.

4. The extent to which the damping of and specific mode or a combination of

modes is affected depends on the arguments of the modal active power flow

of the load and modal voltage phase angle variations of the bus where is

connected.

For the analysis of large-scale systems a procedure for dominant loads is

presented below. Generalizations to this approach to compute power swing flows

and modal voltage are discussed in detail in Chapters 3 and 4.

2.4.3 Analytical Procedure to Determine Dominant Loads

A load inside the power system is considered to be dominant for a mode or modes of

interest, if variations in its dynamic characteristics result in changes in system

damping.

1. More precisely, identification of dominant load requires analysis of two basic

aspects:

1.1. The magnitude of the modal voltage phase angle variations of the buses

where a load is connected. The greater the magnitude the greater the effect

of the load over the damping.

1.2. The participation of the load in the exchange of modal active power.

2. Having selected the possible dominant loads it is important to verify the

nature of the contribution to modal power. Results suggest that
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2.1. If bus voltages and load contributions swing out of phase, the

contribution will be positive.

2.2. If modal bus voltage deviations and modal load contributions are in

phase the effect will be negative.

Once the dominant loads within the power system have been selected, the

voltage dependant characteristic can be changed for one load at a time, leaving the

rest unchanged; the effects on damping can then be calculated. This allows the

variations of the load model to be considered or neglected.

The advantages of this approach are two-fold. First, loads having a larger

impact on system behavior can be identified. Further, the nature of load contribution

can be determined.
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Chapter3

Modal Power Oscillation Flow

Modal power flow is an efficient technique for describing spatial modal flow

distribution in large power systems. In this chapter the concept of modal oscillation

flow is introduced and its application to power system models is discussed. The

method incorporates two aspects of conventional small signal analysis: modal

analysis and small signal behavior.

The derivation is given of a systematic procedure for determining modal

power flows in power systems incorporating synchronous machines, FACTS devices

and dynamic loads. The analysis of system dynamic behavior is explored by a modal

power oscillation flow algorithm.

Using this approach, a linear state model of an electric power system is

developed which considers the representation of synchronous machines and

controllers as subsystems of the state model which interact through the network

description. The analysis framework also allows for explicit quantification of the

impact of loads and system controllers on system behavior.

The potential advantages and limitations are pointed out and notation is

established.

27



3.1 Power System Model and Equations

The power system state representation is seen as constituted of dynamic subsystems

interacting through the transmission system. Consider to this end, a network

composed of several dynamic subsystems, each of which can be represented by a

component connection model [1]. Regardless of the connection structure, it is always

possible to construct a composite state space model.

More precisely, each dynamic subsystem is represented by its own partial

state model and an algebraic equation expressing its interaction with the power

network. All elements are connected to the power network through its own current

balance equation in order to obtain the global state representation of the electric

power system.

In this representation, the input for every dynamic device and each load in the

system is the real and imaginary parts of the terminal voltage variations and the

output is the real and imaginary parts of the injected current variations to the power

network.

Generalization to these models to include supplementary signals from the

system such as frequency deviations, tie-line power or remote bus voltages are

discussed below.

3.1.1 Partial Device Representation

In the system model, each dynamic device is represented by its own state

representation as

Xk=Akxk+CkAVt+Bkuk (3.1)

AIt=Wtxt+YtAVt (3.2)

where

xk is the vector of the fcth device state variables.
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AV¿ is the vector of terminal bus voltages for the fcth dynamic device in D-Q

reference frame [AVDk AV,** ]T

AI* is the vector of current injections into the network of the fcth dynamic device

in D-Q reference frame [AIDk AI^J7

uk is the vector of input signals to the kth device.

In what follows, we briefly review the nature of the adopted model. Emphasis

is placed on the modeling of synchronous machines and network equations.

Synchronous Machine Equations

For simplicity and clarity of exposition, each synchronous machine is represented by

its classical model - refer to Fig. 3.1. More general models follow this representation.

Figure 3.1: Synchronous

machine equivalent model

Following Kundur [2], the equations relating the voltage at the terminal of a

synchronous machine to that behind the transient reactance can be expressed as

follows

V,Z0 = V,D+jVlg (3.3)

and

.

,
. . .. EZS-V,Z0

ItZt = I,o+JIlg= -^J— (3.4)
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where E' is the voltage behind transient reactance X'd, and -5 is the internal rotor

angle. V,¿ü is the terminal voltage and It¿Sb is the current injected to the network.

Separating (3.4) in real and imaginary parts and linearizing around an

operating point, a linear incremental equation for the current injections of the

synchronous machine to the network is given by the following expression

Xd

A.
X'd

AS

Acó.

0

1

1

X'd

X'd

0

AV,'D

AV
(3.5)

where <?°and e^are the initial condition of the real and imaginary parts of the

voltage behind transient reactance in D-Q network coordinates.

Expression (3.5) is in the form given by equation (3.2) with AX=[Aá Awr] .

Expanding the equations ofmotion about the initial equilibrium point yields

d_
Jt

AS

Acó.

U co0

~KS ~KD

2H 2H

AS

Acó.

0

-el

0

4
llHXd 2HX'd.

AV,'o

AV

0

1

2H

AP (3.6)

where, H is the inertia constant, KD is the damping torque coefficient, Ks is the

synchronizing torque coefficient and co0 is the rated speed in electrical radians per

second. The above procedure can be extended to more complicated machine models.

As indicated in the expressions above a transformation, from the machine d-q
reference frame to the network common D-Q reference frame must be applied before

linearization.

FACTS Devices Equations

The structure of the dynamic representation of FACTS devices follows that of the

system model in equations (3.1) and (3.2). Each dynamic device is represented by its

own partial state representation, expressed as a function of its terminal voltage
deviations. The interaction with the network can be obtained by a device-network

interface equation, representing the FACTS device as current injections of the form

presented in equation (3.2). See [3] for further details about this model.
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3.2.2 Load Equation

For the purposes of this analysis, nonlinear load behavior can be represented by the

following exponential model

Pl=Plo (3.7)

Ql=Ql (3.8)

where PL and QL are the load active and reactive power, PU) and QL0 are the load

active and reactive power for initial bus voltage magnitude \Vfí\; \V\ is the

magnitude of the bus voltage, and m, n are coefficients representing the load

sensitivity to bus voltage changes. The static behavior of the loads can be related to

the current injection equations from its small signal representation as

A/¿

A/¿

B.

-B.
Ql)

IV

'QQ

'^l

AV,
(3.9)

where GDD, BDq, BqD and Gqq are entries depending on the load characteristics and

initial conditions given in [2].

Finally, the current injections from all loads in the system is given as

AI, = \LA\L

where the elements of matrix Y¿ contain the effects of nonlinear static loads.

(3.10)

3.1.3 Network Equation

The interconnecting network is represented by the node equations. For a

network having n nodes, the interconnecting transmission network can be

represented by the node equations

Al,

.A»..

=

Y Y1
dd

**

dl. "AV/

AV,.
(3.11)
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where

AI,/ is the vector of current injections into the network from the devices. In D-Q

reference frame.

AI¿ is the vector of current injections into the network from the loads. In D-Q

reference frame.

AVd is the vector of device bus voltages in D-Q reference frame.

AV¿ is the vector of network bus voltages in D-Q reference frame.

Each entry of the symmetrical admittance matrix of expression (3.11) consists

of 2x2 submatrices of the form

y
_

Gkm ~Bhn
km ** f*

_Bbn ^km

for A:, m=\, 2, 3, ..., n.

3.2 Augmented System Model

A modified large-scale small-signal stability program is used to determine voltage
control áreas and reactive power sources having a strong influence on system
behavior.

In developing the system equations we assume that each dynamic device is

represented by a partial state model. The state space representation of the

interconnected system can now be written as

Xd
= Adxd + C^AV, + B,U</ (3.12)

AI^W^+Y.AV, (3.13)

where the subscript "d" is used to indicate equations for dynamic devices. Matrices

Ad and Cd are block diagonal matrices composed of the individual state models.

Substitution of equation (3.10) into the section of expression (3.11) for the load

current variations gives
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0 = Y¿rfAVd+(Yi¿-Y¿)AVi
(3.14)

With the connection of the loads represented by above expression, the

interconnecting transmission network is now represented by

AI = Y' AV (3.15)

where

AI =
AL

Y' =
1

BUS

*dd '■dL

Yw (YiL-Y¿)

AV =

AVd

AV¿

The subsystem equations can be combined
as follows:

-w y:

X

+
B,

_AV_ L»J
u (3.16)

[y]=[c, cv]
x

AV
(3.17)

where x is the state vector, AV is the voltage deviations vector, y is^the
vector of

outputs, and u is the vector of control inputs, and matrices W, C andY^ are defined

as follows

W =

o

Y
"I

_

anvlBVS

(Y* -Y,) lJL

'
Ld (Y„-YJ

c = [cd o]

In above equations, sub-matrices Ad, Bd, Cd, Wd and Yd represent the

physical relations describing the interconnection of variables and the effects of

controllers. In what follows this model is used to compute modal power flow

studies. In the next chapter this model will help us to determine the modes of

concern and the modal voltage deviations in a more efficient way for large power

systems.

Figure 3.2 gives a block diagram representation of the dynamic model of

power system in (3.16). As suggested in the diagram, the feedback signals (Kx, Kv)

can be obtained from any measurement made to the power system, and are
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represented by dotted lines. From this diagram we can define transfer functions and

sensitivity functions between variables of concern.

íí^H

K,

^4r* í w (Y^r
AV ^®

K,

Figure 3.2: Block diagram for the dynamic model of the power system.

3.3 Modal Deviations Analysis of Voltage and Current

Useful insight into the effect of voltage control on small signal stability can be found

from the analysis of modal voltage solutions. As discussed in previous sections, the

augmented system model shows the interaction between the internal parameters of

the power system. These interactions are the basis of the modal power flow

algorithm presented on this chapter.

Before introducing this technique, an interesting approach of the model

proposed can be obtained, by defining the notion of modal deviations as matrices

representing the interaction inside the power system. In the next two

subsections, the notion of modal voltage deviations and modal current deviations

are introduced and their practical application is analyzed in order to establish the

best path for the analysis.

3.3.1 Modal Voltage Deviations

Useful insight into the effect of voltage control on small signal stability can be found

from the analysis of modal voltage solutions.
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Solving for the bus voltage deviations in (3.16) yields

x=S„AX (3-18)

where Svx is a sensitivity matrix that relates the changes in the bus terminal voltages

to the changes in the state vector deviations. In order to develop the concept of

modal voltage deviations it is important to introduce the notion of system modes.

The Notion of System Modes.

Consider the linear system representation

x(t) = A x(t) (3.19)

where A is the nA x nA state matrix and x is the perturbed «^-vector.

From linear system theory [5] it follows that the free system response is given

by

x(r) = eA'x(0) (3.20)

Matrices A and eAt may be written as dynamic expansions

a=i;:*wv/ (3.2D

e" =X"=/"U/V' (3*22)

Equation (3.20) may then be written as

x« = Zm (V,rx(0))U/<' = ££ (c, )U/' (3.23)

where X¡ (/'=1, 2,..., nA\) are the system eigenvalues and U, and V* are the

corresponding left and right eigenvectors: x(0) is the initial state condition.

Inserting (3.23) into (3.18) yields

AV,

AV,

(Y* -Y,)

<Y»-YJ

W,
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AV(4) = (Y^r'íW^íc,)^^ (3.24)

where nmc is the number of modes of concern.

For a swing mode of concern, (3.24) allows modal voltages to be computed as

a function of modal quantities. Because of its linearity, modal solutions can be

associated with a single mode or mode combinations.

Several possibilities exist in the analysis process. These are briefly described

below.

An interesting physical interpretation can be given to the above equation as

the product of impedance and modal current injections

AV(A/) = (Y;6S)-'lra(d(^) (3.25)

in which lm0d is the modal current injection from every dynamic device defined as

(XV N

I-W)= ¿Y>.W" (3-26)

Now, letting t=0 in equation (3.26) the modal voltage deviations associated

with each combination of motion modes or energy modes can be determined by

solving equation (3.25) for different Imoa- Thanks to the linearity of the model

proposed the sum of the modal voltage for each motion mode gives the total

solution. For the case of stable systems, the expression for modal current injections is

analyzed at time t=0 because for a stable mode of the system the máximum valúes

are found at that time.

Once the modal voltage is obtained, the modal current deviations experienced

by all dynamic devices within the power system can be calculated from (3.13)

AIM)*w*v *(Á) + Y, AV/A,.) = ITOd/;,) + Y,AV,(A,.) (3.27)

Figure 3.3 sketches the nature of the adopted model.
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Fori=1, 2, 3, ... nmc

avlm.)

AVL2W

avlm

Figure 3.3: Equivalent model for the modal voltage analysis of the power system.

For the algorithm developed the lmod is selected as a combination of motion

modes or energy modes. Table 3.1 illustrates the nature of the modal current

injections for specific modes of interest, as defined in [9].

Table 3.1:

Evaluation of modal current injections.

Mode Description

Motion Mode

Modal Current Injection

i„»dW =

'W/

v°y
(V(rx(0))U/<'

A-+A* Energy Mode Imo-M.O
v«y

{(V,rx(0))U,^'+(V:x(0))U,/-'}

X_ + A;

fxu \

Energy Mode

W

v»/
I*™A.*/)

=

*

{(V,rx(0))U/<'+(V;x(0))U/''}

(A¡+A')
+ (rlj+V) Energy Mode

f\V \ a .

Ud (4 - -V - ¿j - A/ ) = n" {(V,rx(0))U,^' + (V!"x(0))U ,e
■

K.l
+ (V;x(0))U//+(V'.x(0))U..e' }

It should be noted that the modal voltage may be real or complex numbers

depending on the nature of the modal current injections.

A few remarks are in order in the interpretation of the system model:
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1. Relation (3.18) involves a transformation from the eigenvalue/vector

reference frame to the common D-Q network reference frame [8].

2. An efficient computational technique for the analysis of power systems

and it allows the use of conventional analysis tools.

The information from (3.26) is calculated as real and imaginary parts, in order

to exploit the ideas presented in chapter 2, the voltage magnitude and phase angle
deviations need to be calculated.

Let the bus voltages be expressed in terms of the real and imaginary

components as:

n=K+v¿
(v \

0V = arctan
v

K Qn )

(3.28)

(3.29)

From (3.28) and (3.29) the voltage magnitude and angle deviations for a k bus

in the system can be calculated using

AKh
v° Vo

YQk

I Vo I \V°
(3.30)

A0V =

-Vo
vQx

Vo

rO x2 , jrO ,2

AVD

AVn
(3.31)

Substitutions of (3.25) in (3.30) and (3.31) the modal contribution in voltage

magnitude and angle for all buses in the system is given as:

A|V¡(A) = |A|V||Z<pJ|K, =MUY^r1!^,.) (3.32)

A9„(4) = AeJZ(pAÉ, = IVL (Y^)- I^M) (3.33)

where M|V| and M8v are block diagonal matrices containing the initial bus voltage
valúes in D-Q reference frame and are represented as
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M|v|
= diag<

v°
yQx

Vo

\V2°

D„
'
Q„

v!\ wr.

M., = diag<
Vo
yQx

Vo
yDx

K

.1/0
yQ,

Vo

rO |2 i r/O |2

_r/0 v°
'O. D.

Once modal voltages are computed, the phase of modal contributions can be

used to identify geographical áreas showing coherent behavior. Buses experiencing

the largest magnitude of oscillations indicate zones where voltage support is

expected to have the largest influence on the inter-area modes of concern. These

buses are grouped together using the phase information to form a voltage control

area.

With the purpose of comparing an altemative procedure is developed and

presented in the following section.

3.3.2 Modal Current Deviations

In this procedure, the current deviations on termináis of dynamic devices within the

power system are calculated as the main variable. From (3.14) modal voltage
deviations at load buses can be expressed in terms of AVd as follows:

AV^-ÍY^-YJ-'Y^AV, (3.34)

and

AIrf = [l„ -

Yd [Y,, -

Y«(YU
-

Y¿ )"'YuY ]"'W, x = S, (3.35)

where I„ is the identity matrix. Here matrix S¡x represents the sensitivity of current

injections from the dynamic devices to changes in the state vector.

Substituting (3.23) into (3.35) we can write

. - . .. . r-. ^—xnmc , . _. T li

AW) = S„XM(c,.)U/' (3.36)
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Now, letting t=0 in equation (3.36) the modal current deviations associated with each

mode or combination of modes can be determined.

It then follows that

AV(,=Y/l(AIrf-W<, AX) (3.37)

And the solution for (3.37) is substituted into equation (3.35) to obtain the

modal voltages for load buses. This analysis requires great amount of calculation

effort and evaluation time.

Alternatives to compute modal quantities are discussed in Chapter 4.

3.4 Modal Active and Reactive Power

Modal power flow analysis provides a general framework for the analysis of

kinetic energy exchange in complex systems. It establishes the variations of power
from any element inside the electric power system due to the excitation of a specific

system mode or a combination of modes.

Before proceeding with the analysis of modal power flow, some basic

concepts are briefly revisited. Let VDk, VQ¡¡ , ID/¡ and IQk be the real and imaginary

parts of the voltage and current at bus k. It follows that

pk -vdJd_, + VqJq. (3.38)

Qk=VQJDk-VDJ{Q, (3.39)

3.4.1 Contribution of SynchronousMachines and Control Devices to the

Modal Power Flow

Expanding equations (3.38) and (3.39) around an initial condition of interest and

neglecting terms involving second and higher orders, the modal active and reactive

power for any k-device can be expressed as

¿xrdk
~

Vd, 1Qk J

AVD
ln v¿\

AI

AIr

Dk

(3.40)
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¿o. =[-4 7íJ
AK,Da

AK Vi -n]
A/

A/,

o»
(3-41)

where V°Dk_V0Qk_ I°Dk and I°Qk represent the initial operating conditions for the voltages

and currents at the device termináis. Inserting the expression for modal current

deviations (3.27) in the above equations gives after some simplifications

AVd(Xi)=\AY>d\Zi9pd =

(C +V^Y,) AVM) + V°gd Wd x(A,)

AQrf(A,)=|AQJa/(perf
=

K +KYd) WAW +K w, M)

(3.42)

(3.43)

where nc is the number of dynamic devices and \°gd, \°gql \gd and \gq are the real and

imaginary parts of the initial valúes for currents and voltages in the system, given by

lld=diag{[ll¡ I¡] [ll2 II] -.. fa II]}

K,=diag{[-Il /•] [-11 fd] - [-11 fj}

Vld=diag{[vl Vq] fc, /»] - [Vd\r Vl]}

K=^{k -v:] fc -v:] ■■■ Vi -vi]}

The second term on each of the above equations contains the vector of modal

current injections associated with the mode or modes of interest. Defining

A/>dW =K APdi ... APjT

A0,W =k A&2 ... AQjT

the participation of each device in the modal power oscillation flow is calculated by

substituting the expression for modal voltage (3.25) and modal current injections

(3.26) associated to the modes of concern into equations (3.42) and (3.43).
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The following conclusions can be drawn from the above analysis:

For modal active power:

1. In general, modal powers are complex quantities. The magnitude related to a

specific mode allows identifying the contribution of each machine in the

system to the inter-area oscillation phenomenon. The largest magnitude

indicates which device has the higher contribution.

2. The phase angle indicates the power exchange pattern between machines in

the power system. The power exchange pattern can be established by

grouping those generators that shows coherent behavior (similar angle phase)
and determine which group ofmachines oscillates respect to another group of

machines inside the system.

3. The balance of modal active power is equal to zero for every node of the

system.

4. The modal active power is related with the acceleration power of the system.

For modal reactive power:

1. Normalized magnitudes indicate the participation of the dynamic devices in

modal reactive power flow. The dependence of reactive power deviations of

the dynamic devices due to variations in voltage, represented by equation

(3.21), which in turn depend on changes in the states of the system.

2. Phase angle indicates the behavior of the dynamic device in the modal

reactive power exchange. Devices with angle near 0o can be grouped as

generating units and devices with angle phase near 180° as absorbing

devices).

3. The balance of modal reactive power flow is equal to zero for every node of

the system.
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4. Information from the modal reactive power is important in voltage stability

because indicates which devices will experience the highest variation
of

reactive power due to changes in voltage magnitude.

3.4.2 Contribution ofLoads to the Modal Power Flow

From (3.7) and (3.8) we can write

AP,\
= Vr Lp\2t J

AVD¡

AVn
P¿k,AV¿, (3.44)

Afta = [A?. I, LQX2k]
AV,

D,

AVn

= QLyAXLV.^-Ll (3.45)

in which the model coefficients are given by

Lp\ \k
—

VDí (jdd Vq^ BqD +IDk

LPX 2„
=

VDkBdq + VQk Gqq + IQk

'-'QX 1,
=

Vgt (~TDD + Vpk DqD
~

Iq.

Lq\ 2k
=

VQk Bjjq
-

V^Gqq + 1^

where the sensitivity coefficients GDD, BDQ, Bqd and Gqq depend on load

characteristics and operation conditions. The initial valúes for load currents can be

obtained from the following expressions:

°-
"

\k$
' "'

W

0 \2 , /j/0 \2

Substituting expression (3.25) into equations (3.44) and (3.45) the contribution

of the nl loads of the power system in modal power is obtained
as

AP£(4H AP¿ I ¿q>P¿ = Pl, AV£W
= Plv (KusTW x(A,) =

= ?LV Srxx(Ai) = PL, (Y;ÜS)"'i1IXJd(/i,.)
(3.46)
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AQ^H AQ, \Z9ql =QLy A\L(AÍ) = QLV fef'w x(A,) =

= QLy Syxx(Ai) = QLV (Y-J'l^^,)
(3.47)

where

and

PL). =diag{[Lm, Ln2] ta,,2 Lm] ••• [lpUi LPl2J]

QLy=diag[[LQu. LQi2] ta„2 LQV] - tan., -^.J )

AP¿(^í) = [APii APU ... APLJ

AQ¿(^) = [Aa, AQU ... AQLJ

According to previous chapter the load contribution to the active oscillation

flow depends on the following factors;

1. Characteristics of loads model: Loads with constant impedance characteristic

have the higher participation, while with constant MVA the participation is

equal to zero.

2. Location of the loads: Depending of the oscillation of the load and the bus

where is connected the contribution can be in a positive way, contrary

oscillation, or in a negative way, coherent oscillation.

3. Location of control devices: According to [8], Loads with poor voltage

regulation characteristics may contribute very significantly to modal power

flow.

As in the dynamic devices, for the modal reactive power flow, the argument
indicates the loads in the system experiencing the highest participation and the .angle
indicates if those loads are injecting, with angle near 0o, modal reactive power or

consuming, with angle near 180°.
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3.4.3 Contribution ofTransmission Lines to the Modal Power Flow

Consider a line transmission represented by its equivalent IT circuit:

Y/2

£~ ITi

Y/2

-Pn,

Z-rYll

Figure 3.4: Transmission line model.

From figure 3.4 the complex power can be expressed as:

S =P + iQ = V r
nm

*

mn JxZmn tn* mn (3.48)

where
*
indicates conjúgate. Linearazing above equation around an operating point

gives

AVn

^sk *J J" +K *UAVn

AVn

Aftt=b,1( Qn] J" +fah ftj
AVn

AVD

AVn

AVD

AV^

(3.49)

(3.50)

where coefficients /»,,, PX2, P2U P22 and Qn, Qn, Qn, Qn depend on parameters
of the transmission line: series resistance and reactance and the shunt susceptance as

well as the initial voltages for bus "m" and "n"

Substituting expression for modal voltage deviations into above equations
and for a system with L transmission links and B buses the modal active and reactive

power are given by:

APMHAPS \Zym =PAV(4) = P fef'w x(A,) = P feJXdW (3.51)
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AQMH AQ-T l¿9<* =Q AV(A,) = Q fejT'w x(A,) =Q (y^JT'i^íA,) (3.52)

where P and Q are L x 2B block diagonal matrices numerically depending on

transmission line parameters and initial operation conditions.

The following conclusions in transmissions lines can be established:

1. Magnitude of modal active power for transmission lines indicates the stress

level of the branches in the power system. Lines having greater magnitude of

oscillation are, generally, those that connect machines showing the largest

participation in the mode of concern.

2. Normalized phase angle, for active power, indicates if the modal flow

proposed is correct (angle = 0o) or is in the opposite direction (angle=180°).

3. Transmission lines, like loads and dynamic elements, injects or absorbs modal

reactive power, having a different behavior to that seen in the modal active

power, where only work as the connection between generating units and

absorbing units.

4. The phase angle of reactive power indicates the direction of the modal

reactive power flow, injecting to or absorbing from a specific node.

It is important to mention that the analysis for transmission lines presented in

this section is from bus "m" to bus "n" but, and specially for modal reactive power,
an analysis from bus "n" to bus "m" is necessary to be performed.

3.4.4 Contribution ofTransformers to the Modal Power Flow

Consider a transformer represented by the following circuit
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Figure 3.5: Transformer model.

Where A, B and C are the parameters of the transformer expressed in terms of

admittance and off-nominal turns ratio given in reference [4] as

Y
A = ~=-,

tap
B=±-(^—\)Yim,

tap tap

C = {\-±-)Ym
tap

Following the same procedure as for transmission lines, the expressions for

modal active and reactive power for the kth transformer are given by:

AVn

^rk=h Pn] Jm +ta4 ^J
AVn

AVDi

AVn
(3.53)

AVn

Aft,=[ftlÁ flj AI/D" + [ft,Á ftj
AVn

AVD

AVn
(3.54)

where coefficients Pn, P*2, P21, P22 and Qu, Qn, Q2V Q22 depend on parameters

of the transformer: turns ratio, resistance and reactance as well as the initial voltages.

Equations (3.53) and (3.54) can be integrated to the expression for

transmission lines (3.51) and (3.52) and the same conclusions applied for

transformers.

3.5 Closed-Form Solution

In previous sections of this chapter the solution proposed for modal power

oscillation study was assumed in open loop. However the influence of feedback

signals over the modal power flow can also be evaluated by following
the proposed
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closed-loop representation of the augmented system model. It is obtained by

expressing the input signals in control devices as function of the state variables and

terminal voltage deviations.

The augmented state model with the system output signals is expressed as

-w y:

X

AV

+

0
(3.55)

M=[c. cj
x

AV
(3.56)

where the output vector y contains measured signáis, namely line power and

current, and terminal bus voltages.

The feedback signals are introduced to the system through the input signals
vector u, this is

■ =KJ>]=K[C, Cj
x

AV

=K K,]
x

AV
(3.57)

where K is the matrix of feedback gains and Kx, Ky are appropriate connecting

matrices. Substitution of (3.57) into (3.55) yields

Oj |_-W YB"£jSJ|_AvJ
+

Lo_ [K, Kj
x

AV

[Y| |~Ad
C irxl

+ |"B(íK;t B„KV

LoJ L"W Y^JLavJ [O 0

x

AV

AAC

Oosed-loop solution is given as

(3.58)

Ad +B,K, C +B,^

-W Ym■ di rc

x

AV
(3.59)

*cz
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Proposition 3.1: The variations in the open-loop system eigenvalues and

eigenvectors depend on the nominal (undisturbed) valúes of AOL ,
and matrix AA/rS

as well as the eigenvalues and eigenvectors of the open-loop system.

Proof:

Linear systems (3.58) and (3. 59) can be rewritten as

Mx = A0ix + AArax (3.60)

Mx = ACix (3.61)

where M is a constant diagonal matrix with entry "1" for differential equations and

entry "0" for algebraic equations.

The nominal characteristic polynomial is represented as

f{XOL , M, AOL ) = det(AOLM -

AOL )= 0 (3.62)

and \ou a finite and distinct root of (3.62). The problem is to find the root variations

AL, such thatv

¿CL,
=

¿ol, + A/íj

is a finite and distinct root of the characteristic polynomial of (3.61), expressed as

f(ACL , M, ACL ) = det(Ac/M -

ACL )= 0 (3.63)

Expanding (3.63) in Taylor series about the nominal valúes X.0¿ and AOL one

obtains (sub-index "0" indicates nominal valúes)

/(Aa,M,AcJ = /(Aci)M,Aa|0+XL^V(Ac¿,M,Aa)0=0 (3.64)

Since

/(/lCi,M,Ac¿|0=/(/lOi,M,AC£) = det(AOiM-AcJ = 0
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and if the variations of AAra are sufficiently small, then the terms under summation

sign in (3.64) for k>l may be neglected, relation (3.64) becomes

/■(^,M,ACi) = a/(^¿,HAc¿j|0 =0 (3.65)

From references [7,13], for any square matrix D,

5(det(D)) = adj(D) • dD (3.66)

where • denotes the inner product of two equidimensional square matrices, i. e.,

C»D=trace(CD), [7]. Applying (3.66) to (3.65) yields

/(/lc¿,M,Ac¿) = 5/(/lCi)M,AcJo =adet(AC£,M,Ac¿}0 =0

ajf-(-íC£,M,Ac¿)|0 *»S(/lCi,M,AcJ0 =0

adj(AOLM-AOL)»(MAA-AAFS)=0 (3.67)

Solving for the particular characteristic root XOLi, variations are given by

M = (adj(.lOL M -

AOL) • (M)Yadj(AOLM -

AOL) . AAra (3.68)

The paper at reference [7] was used to derive this expression.

Definition 3.1 [6]: Let A, M be n x n matrices with real or complex

components. The number X (real or complex) is called an eigenvalue of A, M if there

is a nonzero vector u in <Cn such that:

Au,=A,Mu,. (3.69)

The vector u£^0 is called an eigenvector of A, M corresponding to the eigenvalue A*.

Linearizing (3.69) around nominal valúes yields

(A0i -

MAOLi }\u; = (AA,Muoí
-

AArau0i/ ) (3.70)
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For the left eigenvector a similar expression is found

Avf (A0£ -MAol)= (v^.IVLU,. -

v^AAra) (3.71)

Variations in eigenvalues and eigenvectors from the open loop model depend on the

feedback signals of the proposed cióse loop representation.

End ofproof.

3.6 Non-Homogeneous Response

In applying modal power flow to system analysis, it is desirable to relate the

open loop formulation to the non-homogeneous case. In section 3.3.1 the

homogenous response was used in order to calcúlate firstly the modal current

injections associated to a mode of concern and secondly the modal voltage
deviations. In this section the non-homogenous response is presented as a different

approach in the modal power flow analysis.

In order to examine these relationships, consider a linear system

X(7) =Ax(0 +Bu(/) (3.72)

where A is the nA x nA state matrix and x is the perturbed nA -vector, B is the nA x r

input matrix and u is the perturbed input r-vector.

The non-homogenous solution in time for above system is given by

x(/) = e^xfO) + JVb u(r)dr (3.73)

where the first term is the response to the initial conditions, and the second term is

the response to the input vector u.

Substitution of (3.22) into (3.73) yields

*W = Z"J, U,rvrx(0)+ VrB |V'ru(r)¿r
JO

ex<< (3.74)
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By eigenvalue analysis the eigenvalues k¡ 0=1, 2,..., nA) and the right and left

eigenvectors, U, and V, respectively, can be obtained.

By replacing equation (3.74) into (3.18) a new equation for modal voltage
deviations with the effect of the input vector is obtained.

From (3.23) the response for the /th mode at time í=0 is given as

x(^) = (c,.)U/'°=(c(.)U( (3.75)

and from expression (3.74) the solution is given by

x(/t,) = U¡rvTx(0)+ V¡TBjV'l'ru(r)í/z- ex'°

x(^) = Ui[vTx(0)]=Ui(C,)

x(A,) = (c,)Ui (3.76)

At time f=0 the data obtained from a modal power flow analysis performed
with homogenous and non-homogenous response is the same, expressions (3.75) and

(3.76). The effect of the input vector in the modal power flow can be analyzed in a

time range of interest.

These findings provide basic insight into the linear behavior of large-scale

dynamic systems. The results may be useful for understanding and predicting the

dynamic behavior of inter-area oscillations.

We briefly summarize the standard modal power flow algorithm.

3.7 Computation Procedure for Modal Power Oscillation Flow

Computation of modal power flow is straightforward.

Step 1: Modal power oscillation flow analysis starts by choosing a steady-
state operating point by performing a load flow study of the power

system.

Step 2: Form the state matrix and find the eigenvalues and eigenvectors.
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Step 3: Select motion modes and energy modes of concern.

For each mode of concern follow the next steps:

Step 4: Calcúlate the modal voltage deviations using equation (3.24).

Due to the computer calculation time and effort needed to obtain the inverse

of the modified admittance matrix, an algorithm is proposed in [9] for numerical

calculation of the modal voltage deviations.

Step 5: Calcúlate the modal voltage magnitude and phase angle deviations.

Step 6: Calcúlate modal current deviations according to equation (3.27).

Step 7: With modal and current contributions determined as in eqs. (3.24)

and (3.27), calcúlate modal power oscillation flow for:

Each synchronous machine in the power system.

Each control device within the system.

Each load.

Each Transmission line and transformer in the power system.

And other elements connected to the system.

Step 8: Normalize modal power deviations and modal voltage deviations

Power oscillation flows and modal voltage solutions are obtained based on

the eigenvector, whose entries are relative valúes. Therefore the solutions are

relative valúes too, and need to be normalized. For each mode of concern there

always exist some elements of the power system which are experiencing the largest

magnitude of oscillation, servicing as the bottleneck of the power system flow.

1. The magnitudes and phase angles of the modal active and reactive power

calculated for the dynamic devices in the power system are normalized

against the machine with the largest contribution.

AP
^lA-T-Z Xr \AQdA =
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N

¿<f>Pdk = Z<r>Pdk
~

¿fodREF i ¿¿Qd" = ¿<t>Qdk
~

^Qdn*

for fc=l, 2, 3, . . ., nc: number of dynamic devices

Here, subscript "REF" indicates the dynamic device with the largest contribution

to the modal power oscillation flow and superscript "N" represents normalized

valúes. The reference machine will have a modal power magnitude equal to 100.0%

and modal power phase angle of 0o.

2. Participation of transmission lines and transformers in modal power flow

»i Iap* I „, \aqr\

AP*
' '

\AQd

Z<t>PRNk = ¿<t>PRk
~

¿<f>PdREF i ¿</>QRk
=

¿</>QRk
~

^Qd^

for k= 1
, 2, 3, . . .

,
nr: number of branches.

3. Participation of loads in modal power flow

,
AP, . AO,

AP,
' '

AO,
REF

¿foLk
~

¿fpLk
-

^PdREF > ^QlI = ¿</>QLk
~

¿^OdREF

for k=\, 2, 3, .... nl: number of loads.

4. Modal voltage solutions are also normalized. This will be done against the

bus experiencing the largest argument of modal voltage deviations.

\AV»\ = r*viL; z</>vNk=z</>Vk-z</>Vh
\AVref

for k=\, 2, 3, ...,«: number of buses in the electric power system.
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Step 9: Select information of concern for future analysis.

A schematic depiction of the method is given in Fig. 3.6. As described in

Chapter 4, the general form of the modal power flow problem is very amenable to

analysis, especially using sparsity-based analysis techniques.

X

AV

+

0

[y]=[c, cj
X

AV

Find Eigenvalues
and Eigenvectors

Augmented Power

System
Modes of Concern

Modal Current

Deviations

I
Modal Voltage
Deviations

Synchronous Machines.

Control Devices.

Loads.

Transmission Lines.

Transformers.

Other Elements in the

System.

Figure 3.6: Modal power oscillation flow computation procedure.
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Chapter4

Advanced Power Oscillation Flow

Methodologies

In chapter 3 the method of modal power oscillation flow was presented and

discussed. Standard modal power flow algorithms rest upon reduced-order

representations in which the algebraic equations representing the network behavior

are included in the set of differential equations.

In this chapter, a new approach based on modal analysis is proposed for

modeling of power systems described by differential-algebraic equations. This

approach leads to new insights into the DAE modeling problem.

Criteria for the proposed representation are derived and implementation

issues are then discussed. The proposed techniques offer a compact description of

the system dynamics, and are especially useful for the study of electromechanical

oscillations since they preserve the essential features of system behavior in terms of

actual observational data.

Extensions to the basic algorithm to compute modal power flow from

measured data are finally proposed based on least-squares optimization. Relations

between the standard approach and the proposed methodology are provided.
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4. 1 Problem Statement

The difficulties associated with analyzing large linear power system models have

long been recognized [12]-[14]. In addition to sparsity, large DAE models may result

in a vast amount of information that needs to be monitored and analyzed.

Consider a power system linear model described by a DAE system (3.16) and

(3.17). Assuming that matrix Ybus is non-singular, elimination of the algebraic

variables from equation (3.16) yields the following reduced system

x = Ax + Bdu (4.1)

where

A = (A(,+CCY^y)-Iw)

This approach is not satisfactory in most cases, because the information it

provides is restricted to the physical states. As a result, the network structure is

destroyed thus preventing the analysis of the impact of transmission elements on

system behavior.

Altemative approaches to extract modal information are of interest to this

research. In order to explain the proposed procedure we introduce important

definitions and theorems.

Definition 4.1 [2]: Let A be an nx n matrix with real or complex components.

The number X (real or complex) is called an eigenvalue of A if there is a nonzero

vector u in £n such that:

Au = Au (4.2)

The vector u-^O is called an eigenvector of A corresponding to the eigenvalue X.

59



The small-signal stability of the power system can be analyzed by calculating
the eigenvalues X oí A, i.e. solving equation (4.2). More precisely, we have the

following theorem.

Theorem 4.1 [6]: The eigenvalue problem of equation (4.2) is equivalent to:

(Ad-AIJ C

-W Y"

u

v

=

0

0
(4.3)

That is, u is a solution of (4.3) if and only if u is a solution of (4.2).

Proof. See reference [6].

Theorem 4.1 is important because it provides explicit criteria that can be used

to compute modal properties of large power system models.

4.2 DAE Power System Model

Power system models are naturally very sparse. As discussed in Chapter 3, a linear

DAE power system model can be expressed in the general form

w y:

X

AV
+

0

bhK cv][
X

AV

(4.4)

(4.5)

where y is the vector of output variables and Cx and Cv are appropriate connection

matrices.

The study of DAE models presents significant problems in simulation and

analysis. In what follows, important properties of these models are investigated.

4.2.1 Reduced OrderModels

It is apparent that if the admittance matrix Ybus i*3 non-singular, the system model

can be rewritten in the form
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X —

"-ODE
X "■"

"ODE
U

y=cODE

(4.6)

(4.7)

where

and

A0fl£=(Arf+C(Y^rW)

"ODE
~

"d

C0DE=(Cr+Cv(Y^sylW)

l"V" \-i 7m —

V x BUS >
~

^BUS
~

^dd
~

'¿'d
(4.8)

From the above expression we see that the new state matrix AODE is composed
of two submatrices; the first submatrix, Ad, is the individual state matrix associated

with each of the dynamic devices. The second submatrix represents the interaction

between the dynamic devices through the transmission network.

Figure 4.1 shows a standard block diagram representation of the reduced-

order model of the system.

u

"ODE ^
^

í
X

c

i i+

^■ODE

Figure 4.1: Block diagram ofthe ODE model ofthe power system.

From definition 4.1 it follows that the eigenvalue A¿ and the right eigenvector
U* of Aqde can be calculated as

KDE'[]i=W. (4.9)
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Further, the eigenvalue A* and left eigenvector V¡ can be found from the

definition

V.A^^V, (4.10)

A disadvantage of this formulation is that the sparsity of the system matrix is

destroyed. Techniques for computing the eigenvalues/vectors for large power

systems are discussed next in the context of sensitivity analyzes in power systems in

[71-

4.2.2 Differential-Algebraic Equation (DAE)Model

The augmented system of equations (4.4) and (4.5) preserves system structure and

therefore the sparsity of the model. In this section, we introduce simple analytical
relations between the modal properties of reduced-order models and DAE models.

u

B, -ülr* í
..+

• w (*;«)-
AV -S©^-

Figure 4.2: Block diagram of the DAE model of the power system.

In the light of these observations, an important property of a linear model can

be defined.

Definition 4.2 [5]: Let A, M be nxn matrices with real or complex components.

The number X (real or complex) is called an eigenvalue of A, M if there is a nonzero

vector u in Cn such that:

Au = X Mu (4.11)

The vector u=é0 is called an eigenvector of A, M corresponding to the eigenvalue X.
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Clearly, if M is invertible, then (4.11) can be solved as (4.2).

Using definition 4.2 the eigenvalue A* and the right eigenvector VDAEl of ADAE

can be computed as

AmU^^MU^ (4.12)

where

"T„ «1
M =

o oj

Partitioning the right eigenvectors, UDAEi, in (4.12) as VDAEi
= [UDaexíi ^daev1]

the eigenvalue problem in (4.12) can be rewritten as

-W Y
BUS A

DAE»

DAE,,

= 1
o o

DAE„

DAE.,

or, in a more convenient form,

'(A, -41.) C

-W
bus.

u
DAE„

(4.13)

By theorem 4.1, expression (4.13) and (4.9) are equivalent. Therefore,

UDAE and U* are solutions for both eigenproblems.

Proof: Solving (4.13) for Udaexí yields

(Ad+C(Y^)-'W)U —

ri.ViDiiE^ (4.14)

where the term within parenthesis is the reduced system matrix, A0DE.

Clearly, the DAE model shares the eigenvalues and the correspondent right

eigenvectors related to the dynamic states of the ODE model. Henee, the algebraic

part of the DAE eigenvector can be expressed in terms of the dynamic part as
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IW =(Y^r'wuDAE, (4.15)

Similarly, one has for the left eigenvectors

*Q4£, "DK£
- 4 *£M£,

™

(4.16)

or, in terms of the dynamic and static subvectors,

\YiMEm *DA£m\
-W Y

BUS

-A¡\y DAE
„ *DA£„\

i- o

o o

[v V 1 <A,-AJ.) C

W Y-

= [0 0] (4.17)

By theorem 4.1 expressions (4.17) and (4.10) are equivalent; VDAExi and V, are

solutions for both eigenproblems.

Proof Solving (4.17) for VD/1£xí gives

V^ (A„ +C(Y^ )"«W) = A¡V£ (4.18)

It is straightforward to verify that the DAE model sh^es the eigenvalues and

dynamic part of the left eigenvectors of the reduced-order model. Consequently,

\
DAE. can

be calculated as

*
DAE, -M*BUS/ 'M, (4.19)

This discussion demonstrates that the reduced-order model (4.6) can be

analyzed as a DAE system, thus preserving the structure of the modified admittance

matrix as well as the sparsity of the system. More importantly, the augmented

representation preserves
valuable information regarding the interaction between the

algebraic and dynamic components
of the right eigenvector.
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4.3 Computation of Modal Voltage Deviations from Right Eigenvector

Given a particular mode of oscillation A, the modal voltage deviations in (3.18) can

be expressed in terms of the time evolution of the state vector as

AV(A,.) = (YBraIJS)-,Wx(A.) (4.20)

in which, for the homogeneous case,

x(A,) = (V-XOflU,** = {c,yu,e» (4.21)

where U, and V, are the right and left eigenvectors of the eigenvalue A¡ and x(0) is a

vector of the initial conditions of the variable states of the system.

The solution of (4.21) at time t=0 is then given by

x(A,) = (c,)U;. (4.22)

Substituting (4.22) into (4.20), the modal voltage deviations at t=0 yields

AV(A/) = (Y;w)-IW(c,)Ui (4.23)

Comparing equations (4.15) and (4.23), it can be observed that the expressions

for modal voltage deviations are a particular case of the solution based on the right

eigenvector; the latter model is weighted only by the scalar c¡ in (4.23).

Theorem 4.2 [3]: If u is an eigenvector of the matrix A with eigenvalue A then

any scalar múltiple a *■ 0 is also an eigenvector of A with the same eigenvalue

Proof:

A(a u) = «Au = aAu = Á(a u) (4.24)
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By theorem 4.2 it can be concluded that the subvector of the right eigenvector

vdaeví is proportional to the modal bus voltage deviations, Le.

1. VDAE =AV^) ifc(* = 1.

2. U,
'P

\cu
AV(A,.) if c, ^ landc**0.

Based on the above results, it is clear that both quantities lead to identical

results since the factor c, affects all entries of the right eigenvector. DAE models,

however, allow the full potential of modal power flow algorithms to be reached.

Further, the modal bus voltage deviations are calculated from the algebraic

component of the right eigenvector. The inverse of the modified admittance matrix is

not calculated.

Table 4.1 illustrates the nature of the modal voltage deviations for specific

modes of interest.

Table 4.1:

Evaluation of modal voltage deviations.

Modes Description Modal Voltage Deviations from Right Eigenvector

A< Motion Mode AV(A,)=UD^

X_ + X\ EnergyMode AV(A,,A/) =U^+U^/
Xl+kj Energy Mode AV(A„A.) = U0^*fUD^.

(A-+A-)

+ (a; + a;)
EnergyMode AV(A,, A/ ,XpX;) = VDAE¡¡ + MDAE¡ + \}DAEi + \}DAE'

Given the linearity of the model, we can write

AV=Z*=1^)UDAE^ (4.25)

where n is the number of eigenvalues of the system, and
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*i(0)

r i *2(°)
=K V2

.- vj

Extensions to this approach are discussed later in this document.

In the proposed approach, the modal bus voltage deviations, magnitude and

phase angle, can be expressed in terms of the right eigenvectors as

A|V|(A,.) = |A|V||Z(p^|K|
=M|n2X7U^tí (4-26)

A9,(A,.) = ]Ae(,|Z(P^ =M^X*=7 VdaevI (427)

where M*-/* and Mgv depend on the initial valúes of the terminal voltages as

indicated in previous chapter.

4.4 Computation of Modal Power Flow from Right Eigenvector

In order to exploit the advantages of calculating the eigenvalues/vectors directly
from the augmented system, a modified power flow algorithm is proposed.

4.4.1 Modal Current Injections

In an extensión to the above model, modal current injections are computed using
modal information. Straightforward analysis results in

Ud(4 ) = YBUS Z"=7 VDAE, (4.28)

where Y^is the modified admittance matrix and VDAEví is the dynamic voltage

component of the right eigenvector.

The modal current deviations experienced by all dynamic devices within the

power system can be calculated from (3.27) as
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AIM) =W4) +Y-jlW (4-29)

where In,^ is the modal current injection of dynamic devices and UDAEvdl is the

subvector of the right eigenvector section related with the voltage deviations in

buses where dynamic devices are connected.

With these equations, the system model needed for power flow analysis is

complete. Once the modal voltages and currents are calculated, the modal power

flow can be computed as discussed below.

4.4.2 Contribution ofDynamic Devices

From expressions (3.42) and (3.343) the contribution of dynamic devices to the modal

power flow for the ith mode of interest become

AP„(A,.H AP, |¿9„ =(I>V°rfYd)UD^ +VXJA,.) (4-30)

AQ^) =\ AQ, | Z9gd
= (I°M +V^YJU^ +V;JTOdrf (A,) (4.31)

where \°gd, \°gq, \°gd and \°gq are the initial valúes for currents and voltages in the

system reference frame.

Similar expressions can be derived for other control devices such as FACTS

controllers. This is not discussed here.

4.4.3 Contribution ofLoads

Assuming we know the modal voltages and currents, we get

AP¿(A,) H AP£ | Zq^ =

PÍKU^ (4.32)

AQtW=|AQJZ90t=QLVUai£iii
(4.33)
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where PLV and QLV are 2nlx2nl block diagonal matrices depending on the initial

conditions, voltage and current, besides the voltage depending load characteristic.

VDAEvLl is related with the voltage
deviations in buses where loads are connected.

4.4.4 Contribution ofthe Transmission Network

Given the models of transmission lines and transformers in Chapter 3, the modal

contributions can be expressed as

APR(A,) =| APR | ZifPR = PUDAEtí (4.34)

AQR(A,) H AQR | Ztpe,
=

QU^ (4.35)

where P and Q are Lx2B matrices numerically depending on the parameters of the

transmission lines and transformers as well as on the initial voltage for buses "m"

and "n"

4.5 Modified Power Oscillation Flow Algorithm

Computation of modal power flow using the proposed approach is as follows:

Step 1: Given an initial operating point, construct the DAE model in (4.12).

Step 2: Compute right and left eigenvectors using sparsity-based techniques.

Step 3: Select modes or combination of modes for analysis.

For each mode or modes of concern follow the next steps.

Step 4: Extract from the right eigenvector the subvector associated with the

algebraic states (voltage deviations).

Step 5: Calcúlate the modal voltage magnitude and phase angle deviations.

Step 6: Calcúlate modal current deviations from expression (4.29).
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Step 7: Calcúlate the active and reactive contributions for

Each synchronous machine in the power system.

Each control device within the system.

Each load

Each Transmission line and transformer in the power system

And other elements connected to the system.

Step 8: Normalize modal power deviations and modal voltage deviations as

discussed in Chapter 3.

Step 9: Select information of concern for future analysis.

Now attention is turned to the problem of estimating modal power flow from

measured data.

4.6 Modal Power Flow from Measured Data

The recent advent of phasor measurement units has opened the way to compute

modal power flow from measured data. The viability of the proposed method

depends to a great extent of efficient modal estimation methods

4.6.1 Modal Voltage Deviations

Assume, without loss of generality, that measurements are taken at all load buses.

Shown in Fig. 4.3 is a conceptual representation of the proposed method.

Measurements at Load

Buses

AC,■r') -O

Modal

Decomposition

Technique

Fourier,

Prony,
HHT,

r>AyL, =Y1A,e°'cos(a,,,+<Pj)

r^> a vL. =zAie°' <*°s(<v + <p, )
^*

J=X

Q> AVi... =ZAje'1' cos(m,t +?,)

Figure 4.3: Conceptual representation of modal decomposition of PMUs.
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As a first step towards the implementation of the method, let a vector of

measured voltages be defined as

AVL =

AV,,

AV
Lnln

AV,.

(4.36)

and it is assumed that each element in (4.36) is decomposed into a sum of modal

components:

AV, = Re

m

{ \

£íAJe''i'cos[a)jt + <Pj)

and

AV, =Im
LQJ %A/Jt cos(üíjt+<Pj)

L J=l

by an appropriate modal decomposition technique.

The power system represented by the augmented state model (4.4) can be

written as

X

"

Arf Cd 0 X B,

0 = -w, forf-Yj YdL AV, + 0

0 0 \d (Yt£-Yj AyL_ L°

u (4.37)

It then follows that the bus voltage deviations can be expressed in terms of the

load bus voltage deviations as

Y^AV^-ÍY^-YJ AV, (4.38)
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where Yu is an nlxnc matrix, nc is the number of dynamic devices and nl is the

number of load buses.

Normally, Yu is a rectangular matrix, unless the number of load buses is

equal to the number of termináis with dynamic devices. (Y¿¿-Y¿) is a nlxnl matrix,

AYd is a ncxl vector and AV¿ is an nc x l vector.

The linear system can be represented by:

Ax = b

where A = Yu e 9t"'
" nc

,
and

b = -(Yu-Yi)AV£69r"1

x =AV,e9rc"

Lemma 4.1 [4]: Suppose that the rank of A 6 Rn/xnc is r < nc. Then a general

solution to the least-square problem can be written as

min \Ax
— b

with A e 91""", and b=69T"'

is given by

x = A+b + (I„-A*A)z;Vzer"

The important point to note here is that x=A+b is the unique minimum norm

solution, where A+is the Moore-Penrose generalized inverse or pseudoinverse [11].

By this lemma the solution for the modal voltage deviations of dynamic

devices can be solved by a least-square method.

4.6.2 Modal Current Injections

From system (4.37) the modal current injections in terms of the voltage variations
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-■■mod
~~

W„
X =

(Y,, -Y,)

'■Ld (Y^-YJ

AV,

AV,
(4.39)

4.6.3Modal CurrentDeviations

Modal current deviations from each dynamic device terminal can be expressed as:

"AV
AL

0
x + [Y, 0]

d„

AV¿*■**

= Im0d,+Y,AV, (4.40)

Imodd is the section of the modal current injections related
to the dynamic devices; the

rest of this vector is full of zeros and is related to the loads.

It follows that

and

I**nod„
=

WdX

AI^Y.AV, (4.41)

where

Y¿ =

'dd, "dq,

-B
QD, ^QQ,

DD„i

-B

B
DQ„,

QD., ^QQr.1

in which GDD, BDQ, BQD and Gqq are dependent on the load characteristics and

initial conditions.

From the linearized node equations, the current deviations in termináis where

dynamic devices are connected can be calculated as, (3.11):
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AI,1
-=

*,, YdL

-Ld *ll_

"AV,"

.AV,_
(4.42)

As mentioned in the previous chapter, each entry of the symmetrical

admittance matrix consists of elementary 2x2 submatrices.

Once the modal and current deviations are obtained, the contribution of each

system element to the oscillation flow can be computed.

4.6.4Modal Power Flow

We present below a description of how to compute the power oscillation flow; for

more details the reader is referred to Chapter 3.

Participation of dynamic devices

AP, =(I0g,+V^Y,)AV,i+V^Im)d, (4.48)

^ =(4+^)AV4+1On»d, (4.49)

where \°gd, \°gq, V°gd and \°gq are the real and imaginary parts of the initial valúes
for

currents and voltages in the system as presented in chapter 3, at time t„.

Participation of loads

In this case,

AP¿ = \?Lr AV¿ (4.50)

AQ£ =QiKAV£ (4.51)

where ?LV and QLV are 2nlx2nl block diagonal matrices depending on the conditions

at t0, voltages and currents at termináis and load characteristic- see chapter 3 for

more details.
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Participation of transmission links

For a transmission system consisting of L branches and b buses, the

contribution from transmission lines and transformers can be expressed as

AVR = P AV (4.52)

AQ^QAV (4.53)

where P and Q are Lx2b matrices numerically depending on the parameters of the

transmission lines or on the parameters of the transformers as well as the initial

voltages for the end termináis.

These matrices are defined in Section 3.4.3 for transmission lines and 3.4.4 for

transformers and are not repeated here.

4.7 Numerical Implementation

Based on the above representation, a computer algorithm was developed for modal

analysis of power system models described by DAEs.

The main steps in the method are described below.

Step 1: Calcúlate the modal voltage deviations of loads from the measured

data, as indicated by expression (4.36).

Step 2: Construct the DAE model around an initial condition t0.

Step 3: Using least-squares techniques, compute modal voltage deviations

at dynamic devices.

Step 4: Calcúlate modal current injections as presented in section 4.7.2

Step 5: Calcúlate modal current deviations for dynamic devices and loads.

Step 6: Calcúlate the participation in modal active and reactive power for:

• Each synchronous machine in the power system.
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• Each control device within the system.

• Each load

• Each Transmission line and transformer in the power system

• And other elements connected to the system.

Step 7: Normalize modal power deviations against the máximum valué of

modal active and reactive power.

The data can be calculated for all the time interval of the measurements, with

the initial condition at t0.
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Chapter5

Application.

This chapter describes the application of the proposed modal power flow algorithm

to the study of small signal stability of power systems.

The method is tested on two power systems. The first test system is a 6-

machine, 10-bus system; the second system is a 46-machine, 191-bus simplified

equivalent of the Mexican Interconnected System.

First, the ability of the technique to identify modal voltage control áreas is

investigated. The reactive modal contribution is computed and the effect of

generators, SVCs and loads to the reactive power swing flow is determined.

The application of the method to the 6-machine system and the Mexican

system also focuses on the analysis of the impact of load on system behavior.
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5.1 Outline of the Study

The proposed methodology of coherency and dominant loads identification

was tested on two power networks. These are:

1. A 6-machine, 10-bus test system. Voltage support is provided by a

synchronous compensator at a major transmission bus.

2. A 5-area simplified equivalent of the Mexican interconnected system. This

system consists of 46 machines and 191 buses and 2 SVCs.

5.2 Application to the 6-Machine System

Figure 5.1 shows the 6-machine test system used in this research work. The

machine and excitation control data used in the system are given in Ref. [1]. The

system has two inter-area modes of interest.

For the present discussion, attention is focused on the inter-area modes 4,

-0.1430 ± 5.6635Í, and 5, 0.0088 ± 3.1272Í. Mode 4 is of interest to system behavior as it

represents an interárea oscillation involving machines GEN-006 and GEN-001

swinging against the rest of the system. Mode 5 represents an oscillation involving

GEN-001 and the rest of the machines in the system.

5.2.1 Modal Voltage ControlÁreas

Interárea mode 4

Using modal analysis, the system can be divided into three main voltage control

áreas. The first area is formed by buses experiencing phase angles around 0o. Area 2

is formed only with bus 1, whilst area 3 is formed with bus 4. Bus 2 and 9 can be

considered inside area 1 because their oscillation pattern is closer to this area. Figure

5.1 gives a schematic representation of the system showing voltage control áreas.

For this mode, the dominant generator is GEN-012 with a modal active power

of 100% with an angle of 0o GEN-001 and GEN-006, with participations on modal

active power of 59% angle of 180.06° and 77.23% angle of 175.09° respectively.
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Figure 5.1: Modal voltage control áreas for mode 4.

The analysis of modal line contributions shows that transmission paths

linking machine GEN-006 with bus 3 have a large participation to the modal power

flow.

Table 5.1:

Modal active power flow in transmission elements.

Modal Active Power Flow

Line

Normalized

Relative Mag. Relative P.

(%) Angle

3 --9 35.38 -4.46

3-9 35.38 -4.46

9 --8 35.49 -4.95

9-8 35.49 -4.95

8-4 75.95 -4.911

For MCVA 1, the machines having the largest deviations in modal reactive

power, on the other hand, are GEN-012 (100%) and GEN-004 (93.03%). Loads inside

this area have a participation of 12.03% (L3), 10.08% (L2), 8.65% (Ll) and 8.12% (L4).

In turn, for MCVA 3, GEN-006 has an important participation (98.1%) while for

MCVA 2, the participation of GEN-001 is 67.39%.
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Insight into the nature of modal voltage behavior can be gleaned from

study of modal bus voltage magnitudes in Fig. 5.2. As shown, buses 9 and 8 sl

the largest modal deviations.

Modal Voltage Magnitude
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Figure 5.2: Normalized arguments for voltage magnitude
deviations. Mode 4.

From above results can be observed that buses 9 and 8 are between MVCA 1

and MVCA 3. Being the link that connects two áreas with different oscillation may

be the reason why the oscillation has more effect in those
buses.

Interárea mode 5

The analysis of mode 5 suggests that the system can be divided into two modal

voltage control áreas. Where the exchange of modal active power is between area 1,

with the largest participation coming from GEN-006 (61.62% angle of 180.44°) and

GEN-012 (21.38% angle of 178.75°), and area 2, where the infinite bus is experiencing

100% angle of 0° All generators are osculating against the infinite bus, represented

by GEN-001.

The first area is formed with all the buses experiencing angles around 0° and

second area is formed only by bus 1, with an angle around 180°. Figure 5.3 depicts

the modal voltage áreas for this mode.
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The analysis of modal power flow in Table 5.2 reveáis that the transmission

lines with the largest participation in the mode is the lines between buses 1 and 7

(100%). The analysis of bus voltage magnitudes ín Fig. 5.4 identifies buses 9 and 8

with the largest deviations.

Table 5.2:

Modal active power flow in transmission elements.

Modal Active Power Flow

Normalized

Line Relative Mag. Relative P.

(%) Angle

1-7 50 0

1-7 50 0

120

100

80

60

40

20

0

Modal Voltage Magnitude

■

1 | ■ ■

7 2 10

Bus Number

Figure 5.4: Normalized arguments for voltage magnitude deviations. Mode 5.
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Inside MVCA 1, GEN-006, GEN-003 and GEN-004 exhibit the largest

deviations of reactive power with normalized valúes of 100%, 57.09%, and 29.83%.

The participation of GEN-001 in MVCA 2 is high with valué of 86.20%. All loads are

inside MVCA 1, and the largest participation is from load L3 with 12.07%.

5.2.2 Dominant Loads

The studies were carried out for modes 4 and 5. For the latter mode, the damping
variations calculated were very small and the analysis is not shown. The study is

then only presented and discussed for mode 4.

Interárea mode 4

The results for voltage phase angle deviations are presented in figure 5.52 and for

modal active power in table 5.3 for all the loads in the system. These results suggest,

due especially for the large contribution of this mode to the bus voltage deviations,

that load at bus 10 is the dominant load.

Bus voltage and load contribution are swinging out of phase, the contribution

of load 10 to the system is positive with the greatest damping found with load

modeled as constant impedance.

10

Angle near 0°

54.5291

'6.2681

3 1.3963

20 40 60 80

Modal Voltage Phase Angle (%)

100

Figure 5.5: Modal voltage phase angle deviations. Mode 4.

(+) Phase angle near 0°and (-) phase angle near 180°.
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Table S.3:

Modal .active power flow for loads. Mode 4.

Modal Active Power Flow

Normalized

Relative Mae. (%) Relative Phase

Bus 3 52043 202.36

Bus 7 4.4655 201.36

Bus 9 3.1054 187.17

Bus 10 4.1986 228.25

The results of varying the load characteristic in the four loads of test system 2

are presented at figure 5.6.

0.027

0.026

OQ2S

o

S O024
K

■•

1. 0.023

|
° 0.022

0-021

0.02

0.019

Variations in Mode Damping

0.0252 0.0252

d.Ó'2'45
'

0.0251

ao2ai^

— — — Load at Bus 7

— -LoadatBus9

.*■■■—■— Load at Bus 10

^\^
^^ 0.0206

Load Characteristic

Figure 5.6: Variations in mode damping due to variations in load characteristic. Mode 4.

Examination of above results indicates that load at 10 is having a large

influence over mode 4, where the variation of load characteristic produces the

highest variations in mode damping.

5.3 Application to a Large System

In this section, the modal power swing flow technique is applied to a larger test

system. See Ref. [2] for further details about this system.
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For reference and comparison, standard small signal analyzes were conducted

to assess system behavior. Table 5.4 summarizes the 3 slowest modes of the system

showing swing patterns and dominant generators, calculated with a modal active

power flow analysis.

Table 5.4:

Slowest modes for large power system.

Damped
Damping _ _

.
_

Mode Eigenvalue Freq. Dominant Generators'
Ratio.

/TY

'

(Hz)

1 -0.1331 ±2.6795i 0.0496 0.4265

Gen 33 (+100%), Gen 32 (+95.25%),

Gen 28 (+51.00%), Gen 40 (+46.34%),

Gen 41 (+46.22%), Gen 25 (+42.17%).

2 -0.2176 ±3.7647i 0.0577 0.5992

Gen 33 (+100%), Gen 32 (+90.86%),

Gen 25 (-39.87%), Gen 26 (-34.48%),

Gen 31 (+32.93%), Gen 29 (-31.14%).

3 -0.0877 ±4.6273i 0.0190 0.7365

Gen 19 (+100%), Gen 35 (+94.15%),

Gen 36 (+93.85%), Gen 24 (+88.61%),

Gen 23 (+84.48%), Gen 22 (+81.00%).

5.3.1 Modal Voltage ControlÁreas

Interárea mode 1

Application of the modal power flow technique for this mode results in 6 modal

voltage control áreas. The modal áreas and the interconnected regional systems are

illustrated in figure 5.7. For this swing mode the machines in the north (N) and

north-eastern (NE) systems are osculating coherently against the machines in central

(C), western (W) and south-eastern (SE).

Table 5.5 lists the transmission buses belonging to MVCA 1. This area is

formed mainly by buses with angles around 9o and magnitudes of the modal voltage

phase angle from 45% to 12%. Buses located in the north and north-eastern system of

the MIS. Figure 5.8 shows the normalized modal voltage magnitude. This

information suggests possible locations of voltage control devices. The largest modal

Valúes are normalized against the generator with largest magnitude. (+) Phase angle near 0°and (-) phase

angle near 180°.
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deviations are 100% (bus 185) and bus 90.94% (186) followed by 8 buses with relative

valúes between 80% and 89%.

MVCA 1 includes 10 generators and 1 SVC. It is noteworthy that the SVC at

bus 48 exhibits a modal reactive power participation of 100%. Generators 39, 38, 37

and 34 show relative participation of 56.89%, 28.41%, 21.26% and 19.46%

respectively. Shunt elements connected inside this area show contributions below

9%, whilst the load participation is less than 4% to the modal reactive power flow.

Figure 5.7: Diagram of modal voltage control áreas for mode 1 and the 5 regional systems of the MIS.

Buses insic

Table 5.5:

le modal voltage control area 1 for mode i.

MVCA: Buses

1

25 34 48 139 144 155 160 165 170 185

26 37 135 140 145 156 161 166 171 186

27 38 136 141 146 157 162 167 180 187

29 39 137 142 149 158 163 168 183 188

30 42 138 143 150 159 164 169 184 189

MVCA 2 is formed by 4 sub-areas with angles around 5o, 6°, 7o and 8o each

one. Argument of modal voltage phase angle deviations has a máximum valué of
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54% and a minimum of 39%. Buses inside area 2 are listed at table 5.6.
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Figure 5.8: Normalized arguments for voltage magnitude deviations. MCVA 1. Mode 1.

Modal analysis of the reactive power shows that dynamic devices in MCVA 2

are having deviations of less than 6% as well as negligible variations from shunt

element and loads (0.47% and less than 1% respectively).

Table 5.6:

Buses inside modal voltage control area 2 for mode 1.

MVCA Buses

2

28 41 151 154 174 177

31 147 152 172 175 178

40 148 153 173 176 179

Modal contribution on voltage magnitudes deviations are shown at figure 5.9

with a máximum valué of 32.57% at bus 178.

40 -

Modal Voltage Magnitude

E
§ 30 -

*c
M

i
20 '

■o

§ 10

rD

E

o 0
2

fl-

1 1 1 1 ■ ■

1
178

1
176

1
179

1
177

1
40

I
41

t
175 173

B

1
172

usN

1
28

umb

1
31

er

1
174

1
152

t
151

t
153

1
148

I
147

i
154

Figure 5.9: Normalized arguments for voltage magnitude deviations. MCVA 2. Mode 1.
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Finally, MVCA 3 is formed by 4 buses in the northeast región with a

máximum valué of modal voltage phase angle of 100% and phase angles around 0o

Table 5.7:

Buses inside modal voltage control area 3 for Mode 1.

MVCA Buses

32 33 181 182

Participation of generators in reactive power flow inside area 3 has a

máximum valué of 4.89%. Load and shunt element connected to bus 181 have also

small participations. The variations of the modal voltage magnitude are 39.03%,

40.18%, 38.69% and 37.55% for buses 32, 33, 181 and 182 respectively.

The following control áreas are showing phase angles near 180° and are

formed with buses located inside the C, W and SE regional systems. The first MCVA,

denoted as area 4, consists of 4 sub-areas with angles around -171°, -172°, -173° and -

174° each one. Magnitudes of voltage angle deviations inside this area are from 25%

to 18%.

Table 5.8:

Buses inside modal voltage control area 4 for mode 1.

MVCA Buses

4

1 6 49 52 55 58 67 75

2 46 50 53 56 59 71 84

3 47 51 54 57 65 72

Examination of modal reactive power shows that SVC at bus 47 has a

participation of 20.85% followed by generators 1, 2 and 3 with 19.99%, 15.34% and

14.48%. Shunt elements and loads show contributions of less than 2.14% (Bus 50) and

less than 2.52% (Load at bus 52). The máximum valué of bus voltage magnitude

deviations is located at bus 58 as it can be observed from figure 5.10.

Table 5.9 lists the buses grouped inside MVCA 5, with all buses with angles

around -175° and relative magnitudes of voltage phase angle from 16% to 25%.

The studies of modal reactive power showed low participations of generators,
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shunt elements and loads inside this area with valúes of less than 5%, 1% and 1.5%

respectively.
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Figure 5.10: Normalized arguments for voltage magnitude deviations. MCVA 4. Mode 1.

Figure 5.11 depicts the information of voltage magnitude deviations due to

mode 1 for buses inside area 5. Máximum valúes experienced by buses 74 and 70.

Table 5.9:

Buses inside modal voltage control area 5 for mode 1.

MVCA: cuses

5

5 12 17 23 63 70 85 92 97 103 108 113 127 133

7 13 19 45 64 73 86 93 99 104 109 114 128 134

8 14 20 60 66 74 89 94 100 105 110 122 129

9 15 21 61 68 79 90 95 101 106 111 123 131

10 16 22 62 69 80 91 96 102 107 112 124 132
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Figure 5.11: Normalized arguments for voltage magnitude deviations. MCVA 5. Mode 1.
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MCVA 6 exhibits voltage phase angle deviations from 25% to 14%, with

angles mainly around -176° as well as some buses experiencing angles of -177°. The

buses inside this are listed in Table 5.10.

GEN-4 has 42% of participation in modal reactive flow, the rest of the devices

are only participating with less than 5%. Low deviations of shunt elements with less

than 2% (bus 76) and loads with less than 1.24% (bus 81). Contribution of oscillation

mode 1 on bus voltage magnitude can be seen from figure 5.12.

Table 5.10:

Buses inside modal voltage control area 6 for mode 1.

MVCA Buses

6

4 35 44 78 83 116 119 125 190

11 36 76 81 98 117 120 126 191

24 43 77 82 115 118 121 130
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Figure 5.12: Normalized arguments for voltage magnitude deviations. MCVA 6. Mode 1.

Buses 88, 87 and 18 were not grouped because their phase angles are not near

any of the áreas described before (-211°, -254° and -271°). GEN-18 is experiencing

18% on modal reactive power. The shunt element at bus
87 is experiencing 9.06%

and loads are showing magnitudes of 2.24% at bus 87 and 4.82% at bus 88. The

voltage magnitude variations for these buses are high with valúes of 63.41%, 56.79%

and 52.26% for 87, 88, and 18.

Buses 18 and 88 are connected to bus 87 and are located in between two áreas

with complete different oscillation pattern. Transmission line from bus 183 to bus 88

is experiencing a large participation in modal active power flow with a normalized
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magnitude of 311.49%, bus 183 is part of MVCA 1, while bus 88 is connected to bus

81, which is grouped inside MVCA 6.

Study results show that the bus voltage magnitude is higher in area 1 and

within this group the higher variations of modal reactive power are experienced.

The mode influence over the voltage magnitude is low for MVCAs 2 and 3 and the

participation of dynamic devices within these áreas are also small. MCVAs 4, 5 and 6

exhibit small modal voltage magnitude deviations and participation in modal

reactive power flow as well, with the exception of GEN-4 located in area 6 and GEN-

1 in area 4. Special attention must be taken for the 3 non-grouped buses, where the

voltage magnitude variations are considerable high.

Interárea mode 2

The analysis of interárea mode 2 reflects a more complex oscillation behavior due to

the exchange of modal active power between the south-eastern, central and western

systems as well as two generators of the north-eastern system (GEN 32 and GEN 33)

osculating against the machines in the north and north-eastern systems. The áreas

formed for this mode are represented in the diagram at the figure below.

l-MVCAS i ¡MVCÁT
"

1 ■

k
Central "System ^ South-eastern System

N,

Figure 5.13: Diagram of modal voltage control áreas for mode 2 and the 5 regional systems ofthe MIS.
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MVCA 1 is formed with buses in the N and NE regions experiencing angles of

modal voltage phase angle deviations of 172° and 173° with the larger cluster formed

around 172° Modal voltage phase angle has relative valúes from 43.54% to 12.59%.

The buses inside this area are shown at table 5.11.

SVC at bus 48 is showing the highest magnitude of modal reactive power

with 100% followed by generator 25 with 16.47%. Except for these devices the shunt

element at bus 183 is showing participation greater than those shown by the rest of

the dynamic devices with 8.35%. Loads variations are small, with máximum valué of

3.34% at load connected to bus 151.

Table 5.11:

Buses inside modal voltage control area 1 for mode 2.

MVCA Buses

1

25 29 48 137 140 143 146 149 152 183 189

26 30 135 138 141 144 147 150 153 185

27 31 136 139 142 145 148 151 154 188

Voltage magnitude deviations within MVCA 1 are small with 10 buses

experiencing magnitudes from 32% to 34% as is depicted by graphic at figure 5.14.
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Figure 5.14: Normalized arguments for voltage magnitude deviations. MCVA 1. Mode 2.

Buses showing angles around 171°, mainly from the NE system, are grouped

together inside MCVA 2, with arguments of modal voltage phase angle from 25.54%

to 21.14%. The buses grouped inside are listed below
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Table 5.12:

Buses inside modal voltage control area 2 for mode 2.

MVCA Buses 1

2

34 39 156 159 162 165 168 171 186

37 42 157 160 163 166 169 180 187

38 155 158 161 164 167 170 184

Modal reactive power studies carried out show generators 39, 34, 37 and 28

with valúes of 79.88%, 28.40%, 28.15% and 25.98% respectively. Negligible

participation from loads inside area 2 and the higher participation of shunt elements

from those at buses 159 and 170 with valúes of 4.16% and 4.06%.

Deviations in bus voltage magnitude for this area are depicted in figure 5.15.
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Figure 5.15: Normalized arguments for voltage magnitude deviations. MCVA 2. Mode 2.

MVCA 3 is formed only by four buses located in the NE región of the MIS,

with «angles around 0o and arguments of voltage phase angle from 87% to 100%.

Table 5.13 shows the buses inside this control area.

Table 5.13:

Buses inside modal voltage control area 3 for mode 2.

MVCA Buses

32 33 181 182

GEN-32 and GEN-33 show low modal reactive power deviations with valúes

of 13.81% and 16.11% respectively. Load participation is 15.97% (bus 181) and shunt

element at the same bus with 6.32%. Variations of modal voltage magnitude are
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high with valúes of 77.97%, 69.13%, 68.79% and 68.61% for buses 182, 33, 32 and 181

respectively.

The next area, denominated as MCVA 4, is formed with buses in the C, W and

SE systems showing .angles around -20° and magnitudes of modal voltage phase

angle with a máximum valué of 7.40% at bus 36. Buses within this area are listed in

table 5.14.

Generators inside this area exhibit minor participation in modal reactive

power with GEN-19 showing the máximum contribution (6.05%). Load and shunt

elements participations are negligible with magnitudes of less than 1%.

Table 5.14:

Buses inside modal voltage control area 4 for mode 2.

MVCA Buses

15 19 23 36 108 112 116 119 122 125 128 133 191

4 16 21 24 68 109 113 117 120 123 126 129 134

1 17 22 35 86 111 115 118 121 124 127 130 190

Graphic at figure 5.16 shows the contribution of mode 2 on the bus voltage

magnitude for MVCA 4.
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Figure 5.16: Normalized arguments for voltage magnitude deviations. MCVA 4. Mode 2.

MVCA 5 is formed only with buses experiencing angles around -21° and

showingmagnitudes of modal voltage phase angle not greater than 6%. Buses inside

area 5 are listed in table 5.15.
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Table 5.15:

Buses inside modal voltage control area 5 for mode 2.

MVCA Buses

5

12 20 62 93 105 114

13 60 63 96 106 131

14 61 64 104 107

Low contributions of modal reactive power in this area all elements, with

generators contributing with less than 2%, loads with less than 1.5% and shunt

elements with less than 0.5%
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Figure 5.17: Normalized arguments for voltage magnitude deviations. MCVA 5. Mode 2.

Figure 5.17 shows that the variations in bus voltage magnitude due to mode 2.

Buses of the central system showing angles around -22° and modal voltage

phase angle variations of less than 3.3% compose MVCA 6. Table 5.16 enlists the

buses grouped within this area.

Results for modal reactive power flow show that GEN-9 is experiencing the

máximum participation with 6.22%., load's contribution is 2.5% and shunt element

at bus 90 is contributing with less than 0.5%.

Table 5.16:

Buses inside modal voltage control area 6 for mode 2.

MVCA Buses

6

7 10 89 92 97 101 110

8 79 90 94 99 102

9 80 91 95 100 103
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The modal voltage magnitude deviations are depicted in figure 5.18, small

variations are observed for this area.
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Figure 5.18: Normalized arguments for voltage magnitude deviations. MCVA 6. Mode 2.

The oscillation behavior of the rest of the buses in the system exhibit larger

angular distances from the áreas mentioned before. From these buses there are some

buses where the contribution of mode 2 has an important effect on the bus voltage

magnitudes, as seen from figure 5.19. The identified buses are grouped together as

sub-areas in the system, and are listed in table 5.17.

Buses inside sub-groups 1 and 2 have oscillation pattern more similar to that

experienced byMCVA 2, but both sub groups are connected to sub group 3, which is

exhibiting an out of phase oscillation with them. Sub-group 1 is formed with angles

between 167° and 163°, sub-area 2 with angles from 158° to 153° and sub-group 3

with angles around 32°

Modal reactive power calculations show small participation from GEN-40 and

GEN-41 with valúes of 10.75% and 3.65% respectively, and negligible participations

of loads in sub-area 2. Also small contributions are found from GEN-28 in sub-area

3.

Table 5.17:

Buses inside modal sub-areas for Mode 2.

Sub Buses

1 172 173 174

2
40 176 178

41 177 179

3 28 175

96



Figure 5.19: Normalized arguments for voltage magnitude deviations. Sub áreas. Mode 2.

Important participations in the exchange of modal reactive power are found

in devices at buses outside the voltage áreas, these are: generators 4, 47, 1, 18 and 2

with 50.04%, 37.72%, 30.09%, 24.30% and 20.74% respectively.

Results exposed above show that MVCA 1 and MVCA 2 has the highest

variations of modal reactive power, with SVC at bus 48 with 100% and GEN-39 with

79.88%. Other devices with good participation are found outside the MVCAs

formed, GEN-4 and SVC at 47 with 50.04% and 37.72% respectively. Best locations

for parallel voltage control are located in sub-area 3 and MVCA 3.
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5.3.2 Dominant Loads

Interárea mode 1

Modal voltage phase angle results are depicted in the following figures, with those

buses experiencing an angle near 0o with positive magnitude and those with angles
near 180° as negative. The máximum contribution is found at bus 181.

Angle near 0°
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Figure 5.20: Modal voltage phase angle deviations, angle near 0°. Mode 1.
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Figure 5.21: Modal voltage phase angle deviations, angle near 180'. Mode 1.
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The voltage phase angle variations of buses with angles near 0o goes from

30% to 98.92% and buses 185 and 183 with less than 30% whilst the participations of

buses with angles near 180° goes from 1% to 25%.

The participation of the loads in modal active power flow is shown in table

5.18, only participations higher than 10% are listed.

Table 5.18:

Modal active power flow for loads. Mode 1.

Modal Active Power Flow

Load

Bus

Normalized

Magnitude Angle

88 28.9725 -3.0219

184 20.4403 -3.9133

181 19.8447 225.7401

52 15.3421 197.3764

157 14.6596 -3.7451

161 14.0580 -4.5977

87 13.5525 -3.1641

97 12.4664 -5.3211

169 10.9479 -2.3293

180 10.6186 -4.7611

Examination of relative magnitudes and phase angles of modal active power
and modal voltage phase angle it is expected that load at 181 be the dominant load

for mode 1, where the variations in load's characteristic will result in significant
variations in mode damping. On the other hand, loads at bus 179 and 175 have low

modal power participation (3.66% and 0.48%) and variations in damping are

expected to be small even when the magnitude of bus voltage angle is high.

As shown in fig. 5.22, the influence of load at bus 181 is significant. With this

load modeled as constant impedance the mode damping is cióse to 5%, valué that

may be considered as a minimum acceptable. But with constant current the damping
calculated is equal to 3.97% and 2.81% for constant MVA.
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Figure 5.22: Variations in mode damping due to variations in load characteristic, Mode 1.

Analysis as the ones presented for buses 181, 175 and 179 where performed
for loads at buses with modal voltage phase angle from 30% to 47% and

participations in modal active power flow from 4.7% to 15%. As expected, the

variations were small.

The analysis presented before were performed for buses experiencing high

magnitudes of voltage phase angles, now the studies are focused on loads with high
contribution to modal active power flow, loads at buses 88, 184 and 181.
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Figure 5.23: Variations in mode damping due to variations in load characteristic, mode 1.

From this analysis it can be determined that load at bus 181 has an important
influence over mode 1. The variations in the model representing this loads produces
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significant changes in damping of mode 1. In this way it is important to have a well

representation of the behavior of load 181.

Interárea mode 2

Valúes of voltage phase angle are exhibit in the following graphics
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Figure 5.24: Modal voltage phase angle deviations, angle near 0°. Mode 2.
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Figure 5.25: Modal voltage phase angle deviations, angle near 180°. Mode 2.

From a modal voltage analysis it is observed that load at bus 181 is

experiencing the largest magnitude, the angle at this bus is near 0o
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The load's participation in the exchange of modal active power are presented
in the following table, only loads with magnitudes greater than 4% are listed.

Table 5.19:

Modal active power flow for loads, mode 2

Modal Active Power Flow

Load

Bus

Normalized

Magnitude Angle
181 23.7519317 208.329982

88 7.75176608 165.879385

52 6.49498752 10.2203516

151 4.69557501 2.03274486

153 4.31193871 2.01696284

The modal analysis performed shows that load at bus 181 may have a

significant influence over the mode damping, with important participation in

voltage phase angle and also in modal power. Other loads that are analyzed are

located at bus 136, 151 and 153, but with lower valúes. Figure 5.26 depicts the

variations in damping from variations in load dynamics characteristic.
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Figure 5.26: Variations in mode damping due to variations in load characteristic. Mode 2.

From these results is determined that load at bus 181 is the dominant load for

mode 2 and attention to the model of this load must be taken into account.
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5.4 Concluding Remarks

In this chapter, the practical application of the modal voltage variations and modal

power flow from the right eigenvector to the study small disturbances stability has

been presented for 2 different systems.

Modal bus voltage calculation can be helpful in the identification of áreas

with coherent oscillation, denominated in this work as modal voltage control áreas,

as well as possible location for voltage control. Modal reactive power flow, on the

other hand, can indicate the dynamic devices, loads and elements inside the power

system with larger participation on the reactive power due to one mode or

combination of modes of concern.

The analysis of the argument of modal voltage phase angle and the study of

modal active power helps to lócate loads in the system with significant influence

over the system damping. After the selection of the possible dominant loads, the

influences were proven by varying the dynamic characteristic at one load at time

and calculating the effects over system damping.

5.5 References

[1] J. R. Yam, "Aportaciones al Modelado de Parques Eólicos para Estudios de

Estabilidad Electromecánica" Centro de Investigación y Estudios Avanzados del

I.P.N. (CINVESTAV), Unidad Guadalajara. Guadalajara Jalisco. June 2012.

[2] M. Nayebzadeh, A. R. Messina, "Advanced Concepts of Analyzing Static VAR

Compensators to Damp Inter-Area Oscillation Modes" ETEP 9 (3) (1999) 159-

165.

[3] P. Kundur, "Power System Stability and Control", McGraw-Hill, Inc. Ney York,

1994.

[4] P W. Sauer and M. A. Pai, "Power System Dynamics and Stability", Prentice

Hall, 1998.

103



Chapter6

Conclusions

6. 1 General Conclusions

The work exposed in this thesis has focused primarüy on the analysis and

understanding of the modal quantities calculated with the modal voltage variations

and modal power flow studies.

The analytical procedure proposed for modal voltage control áreas permits,
for an oscillation mode or combination of modes, to detect and group together buses

showing coherent oscillation behavior into áreas of voltage control. The analysis of

reactive modal contribution allows the comprehension of the elements with more

participation in the exchange of reactive power inside each area, whilst the study of

the voltage magnitude variations suggests suitable locations for dynamic voltage

support.

Study experience with power systems showed that not all buses can be

grouped inside a modal voltage area whether for a low contribution the swing

modes have on the bus voltage angle variations or for being located between two

áreas osculating out of phase, and was also found that this can happen for buses

between synchronous generators with different oscillation behavior.

The analysis tool for the voltage stability control presented in this document

has been developed with a dynamic perspective that has not been widely addressed

in the literature. Due to the linearization of the power system is only valid for small

disturbances.
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In the analysis of dominant loads the information from modal voltage phase

angle and the modal active power is used to identify load buses with large influence

over the system damping. The advantages of this approach are two-fold. First, loads

having a larger impact on system behavior can be identified. Further, the nature of

load contribution can be determined.

The results of practical application presented in this work clearly showed that

for a load to be referred as dominant the contribution in modal active power as well

the relative location for a mode/modes of concerns, modal voltage phase angle, are

important.

The analogy of the active loads as forces can be extent, with proper

considerations, for locating parallel devices focused on adding damping to

electromechanical oscillations from a point of view of small signal behavior.

This work also focused on the development and discussion of a new

methodology for computing the modal power flow from a section of the right

eigenvector. The proposed technique is based in the equivalences between the

solution for the modal voltage deviations developed in chapter 3 and the solution for

the algebraic part of the DAE eigenvector. The proposed method was applied for the

study of modal voltage áreas and dominant loads.

The advantages of the new methodology for the analysis of oscillation modes

of large power system are:

1. Allows the use of sparse methods for computing eigenvalues/vectors.

2. Avoids the calculation of the inverse of the modified admittance matrix for

the computation of modal voltage deviations.

3. Maintains the structure of the system model.

A disadvantage is that the solution is only valid for time at t=0, not allowing the

study in time of the effect of the electromechanical modes.

Other developments discussed in this research work include:

1. The study of the non-homogenous response as different approach for the

formulation of the modal power oscillation flow.
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2. Cióse loop representation of the augmented system model for the evaluation

of the influence of feedback signals in the modal power flow.

3. Extensions to the basic algorithm to compute modal power flow from

measured data based on least squares optimization were proposed with

relations between the standard approach and the proposed methodology.

6. 1 Suggestions for Future Work

1. The study of the non-linear behavior of the power system in the exchange of

modal power with the use of 2nd or higher order equations for the modal

oscillation power flow method, together with the normal form method.

2. The effect of reactive power load has on the system damping. As long as the

study of loads where their dynamic behavior have a significant influence on

the damping of the system, for active and reactive power loads.

3. The analysis of power systems from measured systems based on the concepts

of modal power flow.

4. The modal power oscillation flow method indicates the participation that the

elements already connected to the power system have in the exchange of

modal active and reactive power for a mode or combination of modes of

concern. It would be interesting to develop a variation of the method where

the participation of a not connected element may be predicted.
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