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Resumen

El analisis de flujo de potencia modal proporciona una técnica de analisis muy
general para investigar la influencia de generadores, dispositivos de control, cargas y
la red de transmision en la estabilidad de pequena senal de sistemas de potencia a

gran escala.

Esta tesis propone un marco sistematico para el analisis de flujo de potencia
oscilatoria en grandes sistemas de potencia. Se hace hincapié en el estudio de voltaje
modal y las contribuciones de potencia reactiva. Un enfoque que conserva la
estructura del sistema para el computo de potencia oscilatoria es presentado y
probado. Métodos para la interpretacion de la estructura modal son dados y
herramientas especiales para el estudio de la distribucion de flujo de potencia modal -

son desarrollados.

Basado en esta representacion, un marco unificado para estudios de flujo de
potencia oscilatoria modal es desarrollado para analizar el comportamiento modal
de acciones de control de FACTS y el comportamiento de las cargas. El método
puede ser utilizado para el estudio de redes con varias estructuras y tamano

arbitrario y puede también ser aplicado a datos medidos.
La metodologia de analisis es demostrada en dos sistemas practicos de

prueba. Los resultados muestran que la técnica propuesta es aplicable a modelos de

sistemas grandes y complejos.
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Abstract

Modal power flow analysis provides a very general analysis technique to investigate
the influence of generators, control devices, loads and transmission network on the

small-signal stability of large-scale power systems.

This thesis proposes a systematic framework for the analysis of power swing
flow of large-scale power systems. Emphasis is placed on the study of modal voltage
and reactive power contributions. A structure-preserving approach to power swing
computation flow is presented and tested. Methods for interpreting modal structure

are then given and special tools for studying power flow distribution are developed.

Based on this representation, a unified framework for modal power oscillation
flow studies is then developed to analyze the sensitivity of modal behavior to
FACTS control action and load behavior. The method can be used to study networks

with various structures and arbitrary size and can be applied to measured data.
The analysis methodology is demonstrated on two practical test systems.

Results show that the proposed technique is applicable to large, complex power

system models.
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Chapterl
Introduction.

This introductory chapter presents a brief description of the research work in this
thesis and serves as a general introduction to the problem of small-signal system
modeling. The background and motivation, along with the problem statement, the

objectives and the contributions of this research are also presented in this chapter.

A brief review of previous works is also summarized. The chapter closes with

the structure of the thesis and a summary of the work done.



1.1 Background and Motivation

Power systems exhibit a number of unique dynamical processes that provoke
intense system interactions.

Interarea oscillations in the low frequency range (0.1-2 Hz) have been
evidenced in many power systems often associated with the interconnection of
power systems through weak transmission lines. Electromechanical oscillations can
develop between groups of machines of an interconnected system and can propagate
through tie lines to neighboring systems. Physically, the frequency and damping of
the oscillations depends on various factors such as the electrical distances between
machines, the equivalent inertia and load and transmission characteristics [1]-[3].

Small perturbations in particular, may trigger electromechanical oscillations
involving groups of generators swinging against each other. For such situations,
power system dynamic behavior can be described as the superposition of oscillation
modes called electromechanical modes of oscillations. With today’s practical power
systems becoming more and more stressed, complex phenomena involving
interaction between the fundamental modes of oscillation may occur.

Oscillations related to the interconnection of systems are of particular interest.
Due to its relatively large number of degrees-of-freedom, power systems exhibit
highly complex phenomena including modal interactions and complex transient
motions characterized by the emergence and subsequent mode decay.

As discussed in [1], critical interface are often limited by insufficient damping
torque and are often highly dependent on network and control actions.
Quantification of spatial and temporal patterns of dominant modes is an important
step toward developing regional control systems and protective and control actions.

Traditional approaches to the study of electromechanical oscillations have
focused on the analysis of modal properties of linear state space representations
which require complete or partial specification of system modes of oscillations
[2],[3]. These models have proven very valuable. However, they can provide only
partial characterization of system behavior.

Recent developments in the application of linear analysis techniques have
provided mechanisms to analyze oscillatory phenomena in power systems. As
discussed later in this research, large-scale power system models derived from
physical concepts are represented by nonlinear differential-algebraic equation (DAE)
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systems. Even with simplifications and approximations, the resulting models may be
overwhelmingly large too expensive for direct small signal analysis reflecting the
complexity of modern interconnected systems.

The models presented in this thesis are motivated by an attempt to assess the
effect of network influence on system behavior. New algorithms to compute the
power oscillation flow associated with a mode or given modes of concerns are
proposed and evaluated. In this approach, the magnitudes and phases of the power
flow associated with a mode of concern can be determined and the specific
contribution of system elements to the oscillatory process can be singled out.

Modal power flow algorithms provide a rapid quantitative technique for
visualization of complex intersystem oscillations. The results may also be relevant to
the interpretation of structural properties and to the design of system controllers to
direct the time-varying power flows across the network.

1.2 Problem Statement

Power systems networks are composed of a large number of subsystems interacting
in structured ways. Understanding the behavior of such complex systems, including
their response characteristics continues to be a significant quest.

Sustained or poorly damped intersystem oscillations are a growing cause for
concern in many weakly interconnected power systems. Wide-area phenomena
involve a complicated interaction between machine dynamics and transmission
system dynamics especially if the power systems are extensively interconnected.

In an interconnected system, the location of major critical paths may be
complicated by the facts that there are multiple modes of oscillation and multiple
loads. In addition, proper identification of loads having a significant influence on
system behavior may result in enhanced load modulation techniques.

Oscillations can be aggravated or stimulated by a number of factors. Loads in
particular can provide damping by varying the load voltage in phase with local
frequency variations [14]. Ties having a large participation in the modal power are
also good candidates for wide area monitoring and control.

Intersystem oscillations are essentially manifested by a periodic interchange
of mechanical energy caused by the relative rotor acceleration of the system
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generators or interconnected systems. A challenge is to develop a model which
accurately captures the relevant dynamics of both generators and controllers and
load characteristics. Consideration of network effects is vital to understand the
nature of modal and to identify critical transmission paths. Furthermore, load
characteristics often play a role in the physical mechanism underlying oscillations.

The advent of transmission system controls, on the other hand, offers a direct
means for controlling oscillations. Recent studies show that loads can contribute
significantly to interarea oscillations [15, 16]. Other devices such as FACTS
controllers may also contribute to the oscillations.

As power systems become more and more complex, the onset of interarea
oscillations is manifesting in rather more complex manners, often as complex
oscillations involving the interaction of various system modes. For large-scale power
systems, however, the exchange of oscillating energy through transmission lines
may be difficult to determine.

By identifying the impact of machines and the transmission characteristics on
the oscillation pattern, the predominant cause can be determined and remedial
actions can be developed.

The work in this thesis is focused on the analysis of modal oscillation flow
associated with major interarea modes. Major challenges being addressed include:

a) The generalization of existing approaches to the study of large power system
DAE models.

b) The analysis of the effect of voltage and reactive power contributions to the
power oscillation flow.

c) The identification of voltage control areas and dominant loads related to the
power oscillation flow.

1.3 Relations with Previous Literature

A great deal of work has been reported in the literature on determination of
modal properties from large DAE models. These include the analysis of modal
properties such as eigenvalue information, the computation of modal controllability
and observability and sensitivity information. Recent research reports summarize
the experience in the application of these techniques [9] and [17]-[19]. Other
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advances can be traced back to the study of modal controllability and observability
in large DAE models.

The concept of power swing flow was introduced by Zhou at [7] as a means to
identify the distribution and strength of power flow associated with critical interarea
modes. Nayebzdeh and Messina et al. [15] extended this idea to allow the study of
large power system models described by state space realizations.

With this method, the transmission corridors and system parameters having a
large contribution to critical system oscillations modes are determined. The method
is particularly well suited for investigating inter-system oscillations in large-scale
power systems with embedded FACTS controllers.

Nayebzdeh and Messina [15], Ochoa [8] and also Segundo et al. [16]
advocated the use of modal power swing flow to compute voltage and power-
oscillation flow for each mode of concern in power systems with embedded FACTS
controllers.

Much of the previous research in modal power flow analysis has been
concerned with the computation of system oscillation modes. What is missing, even
after extensive small signal studies is an understanding of the essential aspects of the
network contribution to the power oscillation flow. Thus, for instance, the effects of
loads on system behavior can lead to the concept of load modulations.

Several authors have recently outlined that the method could be used to
identify voltage control areas.

The idea of a voltage control areas has been presented in works as [10, 11],
where the power system is separated in smaller areas in order to ensure the
effectiveness of reactive support. The concept of electrical distance was used in these
works.

Also in [10] after portioning the power network, it is necessary to identify the
mix of sources of reactive support that would be effective, it is done by determining
the sensitivity of load bus voltages to reactive injections of sources as exposed in
[12]. This identification is based on analysis techniques of the static representation of
the power system through a complex power balance equations. This and another
methodologies for the study and analyses of voltage stability are presented and
discussed in references [5, 12], where the electric power systems is modeled by its
power balance equations, a static representation.



Bolden [14], discusses the use of this concept to design and locate voltage
control devices.

1.4 Thesis Objectives

The primary objective of this research is the development of new techniques for the
analysis of power swing flows in large-scale interconnected power systems. Other
related objectives include:

e The assessment of voltage and reactive power contribution to the power
swing flow.

e The identification of critical loads and voltage control areas.

e The generalization of modal power flow algorithms to extract modal
information from measured data.

1.5 Contributions of this Thesis

This research provides an attempt to extend modal power flow analysis to address
modal power flow analysis for power systems modeled as DAEs. Major
contributions in this work include new techniques for modeling and analysis of
large-scale DAE models, and for the identification of transmission elements having a
large contribution to the oscillations flow.

Other contributions include:

1. The development of a new methodology for the analysis of voltage control
areas in the small signal stability problem. In this sense, modal reactive
contributions are determined.

2. The study of the importance of an active load model in the damping of the
system. The development of alternative methodologies to identify dominant

loads in the system.

3. An alternative strategy to compute modal power flow based on modal
analysis of large differential-algebraic systems.



4. The extension of existing approaches to compute power swing flow from
measured data.

1.6 Organization of the Thesis

The organization of the thesis is as follows:

In Chapter 2 the underlying model of the system is presented. The chapter
offers an overview of ongoing research in small-signal power flow analysis of large
interconnected power systems. A procedure to determine modal voltage control
areas as well as the procedure to find the dominant loads for any swing
mode/modes in the power system is introduced. Examples are used throughout to
illustrate various points.

Chapter 3 gives a description of the proposed algorithm used to compute
modal power oscillation flow of electric power systems and describes characteristics
of the oscillation problem in detail. A detailed review of the method including
mathematical properties is presented, along with a brief description of the effects of
FACTS controllers and load characteristics on the oscillation flow. Several options
for computing the power oscillation flow are presented. Algorithms to compute the
contribution of machines, loads and control systems to the swing energy are
developed. Emphasis is placed on the contribution of reactive power to the power
oscillation flow.

In Chapter 4, a novel framework for dynamic characterization of modal
behavior is presented based on the analysis of the modal properties differential-
algebraic equation systems. The theoretical basis of the proposed technique is
established. The general numerical scheme used in the computation of power
oscillation flow is finally described. Further, the chapter addresses various aspects of
modal power flow computation. The incorporation of PMU measurements to modal
estimation is discussed and hybrid estimators incorporating network information
and observational data are proposed. The proposed technique when combined with
a wide-area monitoring system would be an effective tool for detecting and
identifying the source of transient disturbances in the power system.

Chapter 5 discusses the application of the developed methodology to the
study of practical power systems.



Finally, in Chapter 6 some concluding remarks and suggestions for future
research are presented. Possible improvements are considered.
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Chapter2

Modal Voltage Control Areas and
Dominant Loads

Over the past few years there has been considerable interest in studying oscillatory
processes in power systems with forced load variations. In this chapter, a physically
motivated procedure for identifying voltage control areas associated with critical

interarea modes is proposed.

A single-machine infinite-bus (SMIB) system is analyzed as illustrative
example. The physical and mathematical connection between system oscillations

and voltage fluctuations is discussed.

Following a brief overview of small signal analysis in Section 2.1, a
mechanical analogy is introduced. A framework is then outlined for a unified
approach to assessing the impact of load characteristic variation for the active power
in the system damping. The framework involves two steps: a) identification of
mechanisms underlying oscillatory behavior, and b) assessment of the feasibility of

using load modulation to enhance damping.
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2.1 Motivational Example: Single Machine-Infinite Bus System

Much insight into the behavior of complex power systems can be found by
examining the physics of simple power systems. In this section, we exploit an exact
analogy between the temporal dynamics of a pendulum with the corresponding
dynamics of a single-machine infinite bus system. We begin with a review of the
equations for the SMIB system.

Consider the single-machine infinite bus test system shown in Fig. 2.1. For
simplicity, the test system is partially represented by its classical model;
transmission losses are neglected and the generator is represented by a constant
voltage source E' behind transient reactance X'y. Account is taken in this model of
the effect of nonlinear voltage-dependent load characteristics.

The internal angle § is defined as the angle by which E' leads the infinite bus
voltage |V, | and 6 the angle by which | V] leads the infinite bus voltage.

EZo v|<6 v, £0°
i Infinite

I
?XE' fh JX, i o
Load

Figure 2.1: A single machine infinite bus system.

In the classical system representation, the differential-algebraic equations of
motion of the system can be written as

d

—Ad =w,Aw 2.1

dt a)O r ( )
2H %Aw, =[AP,-AP - K Aw,] 2.2)

where Ad is the angular position of the rotor in electrical radians with respect to the
infinite system, w is the angular position of the rotor in electrical rad/s, P, is the
mechanical input power in pu Kp is the generator damping coefficient in pu
torque/pu speed, and H is the inertia constant in MWs/MVA.

In the case when Pui=01a=0, the solutions are well known. In the more
general, and interesting case, the mismatch equations become



Bpui = B0+ Fy (2.3)
0=0.+0, (2.4)
where
E'V
X', +X,
_E'VCos(5-6)- V"

XX
Vv,

P= Sin(6 - 6)

0.

By =— Sin(6)

o
_VV _Cos(0)-V*

Q” X ol

and P,, P;, O, and Q,, are the active and reactive power flowing from the transformer
and transmission line, respectively.

These equations have the same structure as those for the multi-machine
power system model as described in Chapter 3.

Let now the state variables of the system be x=[Aw, AdAGAV/V]T
Expanding the nonlinear model (2.1)-(2.4) around some equilibrium point, the
equation of motion can be described by the four-dimensional linear system,

2H 0 0 O Ao, -K, -K, K, -K, Ao, 0
0 1 0 0|g| AS @, 0 0 0 A 0
. = + AP[.aad
0 0 0 O0l|dr| A@ 0 K, -K,;, K,-K, AO -1
0 0 0O AV, V. 0 -K, K,-K K AV vV 0
(2.5)
where,
K ' (6-60) K LA (6-0) K e (0
= 0s(d6 —6); = -0); = cos
: X',+X,C X 4X, - X,
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| B | 2
PARALTRW « _ EVicos(3-0)-2v" o V. leos(o-0)-2V
’ X'I ’ ’ X' 1 +X1 ’ s Xrl

K; =K, +K;; Ky =K; +K;

Next, a mechanical analogy for the SMIB system is proposed and the effect of
voltage variations on system behavior is investigated.

2.2 Voltage Oscillations from Swing Oscillation Modes

Voltage oscillations often accompany the rotor oscillations signaling the importance
of various physical processes. Thus, for instance, it is known that voltage oscillations
can be reduced when FACTs controllers are in operation near the electrical centers of
the systems exchanging energy (the physical point where the voltage swings are
greatest for the dominant swing mode) [8].

More formally, the dependence of voltage fluctuations with respect to the
variation in electromechanical modes can be expressed as

AV = £y (s Ao ) (2.6)

where nmc indicates the number of modes of concern. And separating in magnitude
and phase angle, one has

AV|= fap((Gas Zaseess Aue)
Ak = 2.7)

Aey = fAB,, (A‘l’/l_!""’ﬂ'nmc)

where
AlV]  denotes the magnitude of the modal bus voltage deviation.
A8y  denotes the phase of the modal bus voltage deviation.

Depending on the nature of the selected mode, the values for the voltage
magnitude and phase angle deviations will be real or complex quantities and can be
analyzed by calculating the argument and phase of the bus voltage deviations. The
remainder of this section outlines the procedure.
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2.2.1 Magnitude of the Modal Bus Voltage Deviations

Physically, the magnitude of the bus voltage deviation allows the identification of
those buses where the swing oscillation has a stronger influence in the bus voltage
magnitude. It can be defined as the variation of the voltage magnitude at each bus
within the system with respect to an excited mode or modes of interest. It reflects the
buses in the system where variations in voltage magnitude are greater. This
information can be used to locate dynamic voltage support or monitoring system
behavior [6].

2.2.2 Pendulum Analogy
A more insightful analysis into the nature of system oscillations can be

attained from the analysis of a mechanical analogy. Following Samuelson, consider a
single machine infinite bus system shown in Fig 2.2 [3, 4].

| a) b)
a2
2
> AP,

7 food F
lanas) >
mm X2

1 e

EZS ‘
M o
X1

Figure 2.2: a) Single machine power system, b) Pendulum analogy.

The equations of motion of a single machine infinite bus system (Figure 2.2.a)
have their exact analogy in a simple pendulum (Figure 2.2.b) for the case of a
classical machine representation. As suggested in figure 2.2, the variation in active
load power (AP;,.4) can be represented as a force F acting on the flexible string. The
deviations from a steady state point X/ and X2 correspond to the phase angles
dand 6.
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It is intuitively obvious that as F approaches the mass the influence over the
swinging mass will be greater. An effective way to damp the pendulum is to apply
viscous damping i.e. let a force proportional to the mass velocity act on the mass.

Based on the DAE model (2.5), and assuming negligible variations in voltage
magnitude and K, = 0 the equation of motion of the SMIB can be written as

2H 0 0 Aw,

0 lw, O 4l a5 |=
dt
0 0 0 AG

. K, || Ao, 0

-
0o o0 ||as|+|0|aR,., (28)
K, -K,|l a6 |-1

oS = O

1

For the case of small displacements, the state space equations associated with
the mechanical system are

1 00] [m] [o -¢, ¢ [P 0
010%,\’1:1 0 o |[x1]+] o |F (2.9)
00 0| |x2] [0 ¢ -G x2| |-U/M

where X7 and X2 are the mass displacement ¥/ as the mass velocity, g represents the
gravity force acting on the ball, and M is the mass of the pendulum.

and

1 1
C,=g(—+—
2 g(ll 12)

X1=()al) + X2
X2=(2)a2)

The following conclusions can be drawn from this analogy:
1. The phase angle of the bus voltage deviations indicates the relative oscillation

pattern experienced by the buses inside the SMIB system, and allows the

identification of buses with coherent oscillation behavior.
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2. An active power load oscillating in opposition to the oscillation of the bus
where is connected will increase the system damping, and will have more
influence in the oscillation as it gets electrically closer [3, 9] to the oscillation
mode, indicated by the magnitude of the modal voltage phase angle.

The above analysis framework can be extended readily to multi-machine
systems. These arguments suggest that the angle calculated from the modal voltage
phase angle variations may be used to locate areas inside the power system with
coherent oscillation behavior.

Clearly, the load effect on the mode will depend on its oscillation pattern.
Loads with a similar oscillation pattern to the one experienced by the bus where they
are connected will decrease damping of the mode of concern. Conversely, loads
exhibiting an out of phase oscillation will introduce damping to the system.

Drawing upon these ideas, a general method based on modal analysis, for

determining voltage coherent areas associated with a mode of concern is proposed.

2.3 Modal Voltage Control Areas

Identification of modal voltage control areas is done in two steps. In the first step,
two dominant areas are identified with angles near 0° and 180°. The largest bus
participation is set to 0°.

In the second step clusters of buses within these areas are identified based on
electrical distances. Within each group:

a) Group buses which have phase angles within a small range. This will
result in several clusters.

b) Within each group sort the buses with decreasing magnitude of phase.

¢) Retain only the buses with above a certain threshold of the largest
magnitude of bus voltage phase angle. The dominant bus within each
group is chosen as the bus with the largest modal voltage deviation.

Figure 2.3 gives a schematic representation of a modal voltage control area.
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Power System

Modal Voltage Control Area 1
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it IS

Modal Voitage Control Area 2

.| Modal Voltage' §.
“| Control Area3 g

Figure 2.3: Modal voltage control area inside a power system.

2.4 Effect of Active Power Load on System Damping

2.4.1 Load Modeling and Simulation

For the purposes of this discussion, the nonlinear load behavior is represented as
function of the bus voltage, with an exponential model [1, 2]. From [1], the voltage
dependency of the load may be written

% m
I:)Load = 1)I.O(|| v ‘lj (210)
0

where P,,,; is the load active power, P;,is the load active power for initial bus

voltage magnitude |Vy|; |V]is the magnitude of the bus voltage, and m is the
coefficient representing the load sensitivity to bus voltage changes.

After linearization, the variations in active power load demand are expressed

| Jm—l
AP,y =mPy, Vol - }AIV[ =mP, (MV'J =P, [é‘ﬂ] (2.11)
;VOI ]VOJ lVoI

By substituting equation (2.11) into the differential-algebraic model (2.5)
yields

as:
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2H 0 0 O Aw, -K, -K, K, —K; Ao,

0 1 00[d| 46 | | @ O 0 0 AS

0 00 Oldr] A6 | | 0 K, -K, K,-K,—P,|| A8

0 0 0 0] |AV|/V 0 -K, K,-K, Ko AV
2.12)

and reducing the algebraic equations, the ordinary differential equations for the
system becomes

2H 0]d[aw ] |[-K, -K] [0 K |[ -k, K,-K-B]J[K -K]|[4e
0 1lldr|as| || @ O 0 -K,||K,-K, Ky 0 0 [||Aas

el e
The characteristic equation is
,12+f_13/1+f_1f1w0 =0 (2.14)
which can be written
F+2Uw A+a =0 (2.15)

In terms of undamped natural frequency (w,) and damping ratio (¢') the
complex conjugate roots of the characteristic equation are

My =—b0, * jo,\1-&

Where
2 1 kK, 1 K
. = K _0; =i — D = — D
"% 2H ¢ 22Ho, 2./K,2Hw,

From the above expression, it can be seen that as K increases, the natural
undamped frequency increases and the damping ratio decreases. Similarly, an
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increase in K increases the damping ratio and an increase in inertia constant
decreases both, damping ratio and natural frequency.

To assess the effect of load characteristics on system behavior, coefficient K is
analyzed for the cases without and with active load deviations AP,,,, , these are as

follows:

Without load deviations:

KK +2K K (K, — K) + KK

K.=—-K (2.16)
s l (Kz _K6)2 +K|3K7s
With load deviations:
Ks = "Kl + _K13K22 + 2K1K2(K2 _K6)+ K12K7s _K1K2Pm (2_17)

(Kz _Ks)z +K13K7x _(Kz _Ké)Pm

It follows from equations (2.16) and (2.17) that the active load modifies the
expression of the K by introducing new terms proportional to P,,. These new terms
in (217) will decrease or increase the value of coefficient Ks indirectly
decreasing/increasing the natural frequency and increasing/decreasing the damping
ratio. The ability of the load to affect damping depends on the load exponent, m.

We expand on the above observations in the following example.

2.4.2 Application to Single Machine-Infinite Bus System.

Consider a single-machine infinite bus system shown in Fig. 2.4. The post fault
system conditions in per unit on the 2220 MVA, 24KV system base are shown in the
diagram.

The generator is represented by its classical model with K = 10, #=3.5 MW-
s/MVA and X’; = 0.3 in per unit on the system base.
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Figure 2.4: Initial conditions for the SMIB system.

Table 2.1:
Mode damping variations for different load characteristics.

Da i D d
Load Characteristic Mode o et dimpe

Ratio Freq. (Hz)
Constant Impedance 2 -0.7143 + 7.8075i 0.0911 1.2426
Constant Current 1 -0.7143 + 7.9247i 0.0898 1.2613
Constant MVA 0 -0.7143 + 8.0471i 0.0884 1.2807

Table 2.1 shows the system eigenvalues for various load characteristics. It can
be seen that as m increases, the damping ratio is increased. These results are in line
with the conclusions presented in previous sections.

In large interconnected systems, however, the impact of load on system
behavior will depend on several interacting factors such as the load nature and its
location relative to voltage control devices and excitation control.

For the purpose of introducing the more general ideas that follow, the active
power swing flow, as well as the modal voltage phase angle for all buses associated
with the electromechanical mode was computed'.The special structure of this system
allows the easy calculation of the modal distribution.

Following tables and figures show the contribution of each system element to
the total oscillation flow associated with the electromechanical mode. The results are
presented for three cases: (a) constant impedance load characteristics, (b) constant
current characteristics, and (c) constant power characteristics.

* Values are normalized against the largest magnitude. For modal active power, phase angle near 0° as
injecting element and angle near 180° as absorbing element.
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Constant Impedance Characteristic

Table 2.2:
Modal voltage phase angle deviations. Constant impedance characteristic.

Modal Voltage Phase Angle Deviations

Normalized
Bus Relative Mag. (%) Relative Phase
LV 100 0
HV 68.16784574 0
Infinite Bus 0.2633 0.17
Table 2.3:

Modal active power flow. Constant impedance characteristic.

Modal Active Power Flow

Normalized
Element Relative Mag. (%)  Relative Phase
Generator 86.6556 180
Infinite bus 100 0
Load 13.345 180
Transmission Line 100 0
Transformer 86.6668 0
100% 68-l7% .................. 026%
£0.0° | 2000 2017
£ : I l Infinite
-3 <+ I Bus
8666% LV ?677% | H g 1335% 100 <+
<+ 2180 ¢ 100%

Figure 2.5: Modal power flow and voltage phase angle. Constant impedance characteristic.
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Constant Current Characteristic

Table 2.4:

Modal voitage phase angle deviations. Constant current characteristic.

Modal Voltage Phase Angle Deviations

Normalized

Bus Relative Nag. ("0 Relative Phase
LV 100 0
HV 66.6512 0
Infinite Bus 0.2578 0.16
Table 2.5:

Modal active power flow. Constant current characteristic.

Modal Active Power Flow

Normalized

HVe 715%
Z180°

Element Relative Mag. (“s)  Relative Phase
Generator 92.8514 180
Infinite bus 100 0
Load 7.1496 180
Transmission Line 100 0
Transformer 92.8627 0
100% Tesese 0.26%
£0.0° £0.0° £0.16°
35 I I Infinite
3& <+ I Bus
9285% LV m 100 :;:

Figl.nre 2.6: Modal péwer flow and voltage phase angle. Constant current characteristics.
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Constant Power Characteristic

Table 2.6:
Modal voltage phase angle deviations. Constant power characteristic.

Modal Voltage Phase Angle Deviations

Normalized
Bus Relative Mag. (%)  Relative Phase
LV 100 0
HV 64.9827 0
Infinite Bus 0.2518 0.15
Table 2.7:

Modal active power flow. Constant power characteristic.

Modal Active Power Flow

Normalized

Element Relative Mag. (%)  Relative Phase
Generator 100 180
Infinite bus 100 0
Load 0
Transmission Line 100 0
Transformer 100 0

...............................

§ 100% [ 64.98% s 0.25%
| £0.0° £0.0° £0.17° i
| 7 I I-;j ‘
A\ 1 |
| % gg :\{ Infinite |
5 - l\\ Bus |
| < 100% |
1% LV 100 HV vy 0% <+ ‘
| — 100% \

Figure 2.7: Modal power flow and vdliig-é pl;aééré;\gle.v Constant E)aw;;ch;raderns}lc;

The results in the preceding example have made clear that analyzing the
distribution of modal power flow gives insight into the possible patterns of modal
behavior that are likely to exist at any particular time across the network.

A few remarks are in order:
23



1. For the case under study, constant impedance load result in the highest

contribution to modal power flow.

2. Static nonlinear load characteristics approaching constant power behavior
have no effect on damping and no participation in modal power flow.

3. A load oscillating in opposition to the oscillation of the bus where is
connected will have a positive effect on system damping. In contrast, a load
oscillating in phase with the bus oscillation will have a positive impact on
damping.

4. The extent to which the damping of and specific mode or a combination of
modes is affected depends on the arguments of the modal active power flow
of the load and modal voltage phase angle variations of the bus where is
connected.

For the analysis of large-scale systems a procedure for dominant loads is
presented below. Generalizations to this approach to compute power swing flows
and modal voltage are discussed in detail in Chapters 3 and 4.

2.4.3 Analytical Procedure to Determine Dominant Loads

A load inside the power system is considered to be dominant for a mode or modes of
interest, if variations in its dynamic characteristics result in changes in system
damping.

1. More precisely, identification of dominant load requires analysis of two basic

aspects:

1.1. The magnitude of the modal voltage phase angle variations of the buses
where a load is connected. The greater the magnitude the greater the effect
of the load over the damping,.

1.2. The participation of the load in the exchange of modal active power.

2. Having selected the possible dominant loads it is important to verify the

nature of the contribution to modal power. Results suggest that
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2.1.1f bus voltages and load contributions swing out of phase, the
contribution will be positive.

2.2.If modal bus voltage deviations and modal load contributions are in

phase the effect will be negative.

Once the dominant loads within the power system have been selected, the
voltage dependant characteristic can be changed for one load at a time, leaving the
rest unchanged; the effects on damping can then be calculated. This allows the
variations of the load model to be considered or neglected.

The advantages of this approach are two-fold. First, loads having a larger
impact on system behavior can be identified. Further, the nature of load contribution
can be determined.
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Chapterd
Modal Power Oscillation Flow

Modal power flow is an efficient technique for describing spatial modal flow
distribution in large power systems. In this chapter the concept of modal oscillation
flow is introduced and its application to power system models is discussed. The
method incorporates two aspects of conventional small signal analysis: modal

analysis and small signal behavior.

The derivation is given of a systematic procedure for determining modal
power flows in power systems incorporating synchronous machines, FACTS devices
and dynamic loads. The analysis of system dynamic behavior is explored by a modal

power oscillation flow algorithm.

Using this approach, a linear state model of an electric power system is
developed which considers the representation of synchronous machines and
controllers as subsystems of the state model which interact through the network
description. The analysis framework also allows for explicit quantification of the

impact of loads and system controllers on system behavior.

The potential advantages and limitations are pointed out and notation is
established.

27



3.1 Power System Model and Equations

The power system state representation is seen as constituted of dynamic subsystems
interacting through the transmission system. Consider to this end, a network
composed of several dynamic subsystems, each of which can be represented by a
component connection model [1]. Regardless of the connection structure, it is always
possible to construct a composite state space model.

More precisely, each dynamic subsystem is represented by its own partial
state model and an algebraic equation expressing its interaction with the power
network. All elements are connected to the power network through its own current
balance equation in order to obtain the global state representation of the electric

power system.

In this representation, the input for every dynamic device and each load in the
system is the real and imaginary parts of the terminal voltage variations and the
output is the real and imaginary parts of the injected current variations to the power
network.

Generalization to these models to include supplementary signals from the
system such as frequency deviations, tie-line power or remote bus voltages are
discussed below.

3.1.1 Partial Device Representation

In the system model, each dynamic device is represented by its own state
representation as

x, =A,x, +C,AV, +B,u, (3.1)
AL = W,x, + Y,AV, (3.2)
where
Xk is the vector of the kth device state variables.

28



AV, s the vector of terminal bus voltages for the kth dynamic device in D-Q
reference frame [AVp, AV, T

Al,  is the vector of current injections into the network of the kth dynamic device
in D-Q reference frame [Al, Al ]T

uy is the vector of input signals to the kth device.

In what follows, we briefly review the nature of the adopted model. Emphasis
is placed on the modeling of synchronous machines and network equations.

Synchronous Machine Equations

For simplicity and clarity of exposition, each synchronous machine is represented by
its classical model - refer to Fig. 3.1. More general models follow this representation.

machine equivalent model

Following Kundur [2], the equations relating the voltage at the terminal of a

synchronous machine to that behind the transient reactance can be expressed as

follows
V,49=V,D+jV,g (3.3)
and
"L6-V
129=1, +j1, =E£0- 00 (34)
D % jX g
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where E’ is the voltage behind transient reactance X’;, and § is the internal rotor
angle. V,£0 is the terminal voltage and 7,20 is the current injected to the network.

Separating (3.4) in real and imaginary parts and linearizing around an

operating point, a linear incremental equation for the current injections of the
synchronous machine to the network is given by the following expression

0
e 1

0 o -—
AI,D _ de A5 X'd AVrD
AL 7| el ro |t 1 AV 8
1 e @, o 0 1
X'd X'd

where ¢)and eg are the initial condition of the real and imaginary parts of the

voltage behind transient reactance in D-Q network coordinates.

Expression (3.5) is in the form given by equation (3.2) with AX=[AdAwr]".
Expanding the equations of motion about the initial equilibrium point yields

0 ) 0 0 0
AS o | [ AS AV,
_g_[A ]:{—KS —KD} [A }r[ — ”AVD}J{ 1 }AP (3.6)
"WAel S 2m W2 |\ oHx'd 2HXG ol [2H

where, H is the inertia constant, K, is the damping torque coefficient, K is the
synchronizing torque coefficient and wj is the rated speed in electrical radians per
second. The above procedure can be extended to more complicated machine models.

As indicated in the expressions above a transformation, from the machine d-q
reference frame to the network common D-Q reference frame must be applied before
linearization.

FACTS Devices Equations

The structure of the dynamic representation of FACTS devices follows that of the
system model in equations (3.1) and (3.2). Each dynamic device is represented by its
own partial state representation, expressed as a function of its terminal voltage
deviations. The interaction with the network can be obtained by a device-network
interface equation, representing the FACTS device as current injections of the form
presented in equation (3.2). See [3] for further details about this model.
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3.1.2 Load Equation

For the purposes of this analysis, nonlinear load behavior can be represented by the
following exponential model

b= PLO[MT (3.7)
Vs
_o [T (3.8)
Q/_ QLO|:I Vo J

where P, and Q, are the load active and reactive power, Py and Q,, are the load
active and reactive power for initial bus voltage magnitude |Vyl; |V is the
magnitude of the bus voltage, and m, n are coefficients representing the load
sensitivity to bus voltage changes. The static behavior of the loads can be related to
the current injection equations from its small signal representation as

g
" oo Yoo Ly
where Gpp, Bpg, Bgp and Gy are entries depending on the load characteristics and
initial conditions given in [2].

Finally, the current injections from all loads in the system is given as

Al, =Y,AV, (3.10)

where the elements of matrix Y, contain the effects of nonlinear static loads.
3.1.3 Network Equation

The interconnecting network is represented by the node equations. For a

network having n nodes, the interconnecting transmission network can be
represented by the node equations

Ald — Yzld Yzll. Avd (311)
Al L YLd YI.I, A vL
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where

Al; is the vector of current injections into the network from the devices. In D-Q
reference frame.

Al;,  is the vector of current injections into the network from the loads. In D-Q
reference frame.

AV, s the vector of device bus voltages in D-Q reference frame.
AV, is the vector of network bus voltages in D-Q reference frame.

Each entry of the symmetrical admittance matrix of expression (3.11) consists
of 2x2 submatrices of the form

fork, m=1,2,3, ..., n

3.2 Augmented System Model

A modified large-scale small-signal stability program is used to determine voltage
control areas and reactive power sources having a strong influence on system
behavior.

In developing the system equations we assume that each dynamic device is
represented by a partial state model. The state space representation of the
interconnected system can now be written as

x,=A,x,+C,AV,+B,u, (3.12)

AL =W,x, +Y,AV, (3.13)

where the subscript “d” is used to indicate equations for dynamic devices. Matrices
A, and C, are block diagonal matrices composed of the individual state models.

Substitution of equation (3.10) into the section of expression (3.11) for the load
current variations gives
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0=Y, AV, +(Y,, - Y,)AY, (3.14)

With the connection of the loads represented by above expression, the
interconnecting transmission network is now represented by

AI=Y', 0 AV (3.15)

where

Y Y AV
AI:[AIJJ; Y'BUS=[ dd dL i\; AV=[ d}
0 Y. (Y, - Y,) AV,

The subsystem equations can be combined as follows:

R C )
[y]=[c, c.] { AXV} (3.17)

where x is the state vector, AV is the voltage deviations vector, y is the vector of
outputs, and u is the vector of control inputs, and matrices W, C and Y5 are defined
as follows

W (Ydd_Yd) YdL i\
w=| ‘|, Y= ; c=[c, o
l: 0 } o [ YLd (YLL _YL) [ ¢ ]

In above equations, sub-matrices Ay, By, C,, W, and Y4 represent the
physical relations describing the interconnection of variables and the effects of
controllers. In what follows this model is used to compute modal power flow
studies. In the next chapter this model will help us to determine the modes of
concern and the modal voltage deviations in a more efficient way for large power
systems.

Figure 3.2 gives a block diagram representation of the dynamic model of

power system in (3.16). As suggested in the diagram, the feedback signals (K,, K,)
can be obtained from any measurement made to the power system, and are
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represented by dotted lines. From this diagram we can define transfer functions and
sensitivity functions between variables of concern.

= - |
! f K,
" : C |«
| 3% v+ |
A u X X
f B, | I > W (v e C. - y
i+ + AV +

Ad > Cx %

|

Figure 3.2: Block diagram for the dynamic model of the power system.

3.3 Modal Deviations Analysis of Voltage and Current

Useful insight into the effect of voltage control on small signal stability can be found
from the analysis of modal voltage solutions. As discussed in previous sections, the
augmented system model shows the interaction between the internal parameters of
the power system. These interactions are the basis of the modal power flow
algorithm presented on this chapter.

Before introducing this technique, an interesting approach of the model
proposed can be obtained, by defining the notion of modal deviations as matrices
representing the interaction inside the power system. In the next two
subsections, the notion of modal voltage deviations and modal current deviations
are introduced and their practical application is analyzed in order to establish the
best path for the analysis.

3.3.1 Modal Voltage Deviations

Useful insight into the effect of voltage control on small signal stability can be found
from the analysis of modal voltage solutions.
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Solving for the bus voltage deviations in (3.16) yields

|:AVde _ |:(Ydd -Y,) Y, ]"{Wd] x=S AX (3.18)
AVL YLd (YLL - L) 0 "

where S,, is a sensitivity matrix that relates the changes in the bus terminal voltages
to the changes in the state vector deviations. In order to develop the concept of
modal voltage deviations it is important to introduce the notion of system modes.

The Notion of System Modes.
Consider the linear system representation

x(t) = A x(t) (3.19)
where A is the n,x n, state matrix and x is the perturbed n,-vector.

From linear system theory [5] it follows that the free system response is given
by

x(¢) = e*x(0) (3.20)
Matrices A and ¢ may be written as dynamic expansions
A=) AUV (3.21)
M= eV, (3.22)
Equation (3.20) may then be written as

X()=)" (V/x(O)U,e" =" (c)U,e" (3.23)

where 4, (i=1,2,...,n,) are the system eigenvalues and U; and V, are the
corresponding left and right eigenvectors: x(0) is the initial state condition.

Inserting (3.23) into (3.18) yields
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AV(2) = (Y5) (W)™ (c,)U e (3.24)
where nmc is the number of modes of concern.

For a swing mode of concern, (3.24) allows modal voltages to be computed as
a function of modal quantities. Because of its linearity, modal solutions can be
associated with a single mode or mode combinations.

Several possibilities exist in the analysis process. These are briefly described
below.

An interesting physical interpretation can be given to the above equation as
the product of impedance and modal current injections

AV(4) = (Y ) ' T o (4) (3.25)
in which I,,,4 is the modal current injection from every dynamic device defined as

W, e .
l....d(ﬂ»i)=[ 0" JZ,z, (c)Ue™ (3.26)

Now, letting t=0 in equation (3.26) the modal voltage deviations associated
with each combination of motion modes or energy modes can be determined by
solving equation (3.25) for different I,,4. Thanks to the linearity of the model
proposed the sum of the modal voltage for each motion mode gives the total
solution. For the case of stable systems, the expression for modal current injections is
analyzed at time t=0 because for a stable mode of the system the maximum values
are found at that time.

Once the modal voltage is obtained, the modal current deviations experienced
by all dynamic devices within the power system can be calculated from (3.13)

AL(Z) =W, x(2)+Y, AV, (%) =1, (/) + YAV, (%) (3:27)

Figure 3.3 sketches the nature of the adopted model.
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AV, ()

Al (4,)
AV, ,(4,) 2(4)
Ald:(/l Electric Power
T System :
= YBijS nl (A’r )
AV, (4)
A[(I nc (ll)

Fori=1, 2, 3, ... nmc

Figure 3.3: Equivalent model for the modal voltage analysis of the power system.

For the algorithm developed the I,,,4 is selected as a combination of motion
modes or energy modes. Table 3.1 illustrates the nature of the modal current
injections for specific modes of interest, as defined in [9].

Table 3.1:
Evaluation of modal current injections.
Mode Description Modal Current Injection
wd T At
A Motion Mode Loa(Z)=| o [(Vix(O)U,e

4 s\ Wd T At T Apt
A+ A Energy Mode I...4,4 )= 0 {(V.x(0))U,e +(Vi. X(O))Ui.e }

W At
A+ A Energy Mode Imd()»,-,lj)=[ Od j{(vfr"(o))UieM +(V/x(0)U e}

# - Wd T At T At
A +22) Loa(Aisdi 54,4, )= 0 {(V, x(0)U,e™ +(V.x(0)U .e’
+(4+4) Energy Mode

F(VIXO)U e +(VIxO)U ¢}

It should be noted that the modal voltage may be real or complex numbers
depending on the nature of the modal current injections.

A few remarks are in order in the interpretation of the system model:
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1. Relation (3.18) involves a transformation from the eigenvalue/vector
reference frame to the common D-Q network reference frame [8].

2. An efficient computational technique for the analysis of power systems
and it allows the use of conventional analysis tools.

The information from (3.26) is calculated as real and imaginary parts, in order
to exploit the ideas presented in chapter 2, the voltage magnitude and phase angle
deviations need to be calculated.

Let the bus voltages be expressed in terms of the real and imaginary
components as:

V= Vo, + ¥, (3.28)

VD
6,, =arctan| — (3.29)
VQk

From (3.28) and (3.29) the voltage magnitude and angle deviations for a k bus
in the system can be calculated using

v v AV,
AV, |=| 2= 2| > (3.30)
Vi LVH |V£|} _AVQ,}
-2 v [V,
AG, =| -2 D D‘} (3.31)
5 [IK"IZ |V.°|2_[AVQ,

Substitutions of (3.25) in (3.30) and (3.31) the modal contribution in voltage
magnitude and angle for all buses in the system is given as:

AV(3,) = V]2, = My (Vs Lna(A) (332)
AGV (’11) = ‘AGV 14(%0, = Moy (Yl’;us )_I Imod (’li) (3.33)

where My; and M, are block diagonal matrices containing the initial bus voltage
values in D-Q reference frame and are represented as
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) Py, W Vs, V5 v,V
MIVI =diag e : : 2 e | P -
Vel v A v, v, |

0 0 0 0 0 0
M, = diag o V Yo, Vo - J— V_Q~ Vo, .
' A I AT AN A

Once modal voltages are computed, the phase of modal contributions can be

used to identify geographical areas showing coherent behavior. Buses experiencing
the largest magnitude of oscillations indicate zones where voltage support is
expected to have the largest influence on the inter-area modes of concern. These
buses are grouped together using the phase information to form a voltage control

area.

With the purpose of comparing an alternative procedure is developed and
presented in the following section.

3.3.2 Modal Current Deviations

In this procedure, the current deviations on terminals of dynamic devices within the
power system are calculated as the main variable. From (3.14) modal voltage
deviations at load buses can be expressed in terms of AV as follows:

AV, =—(Y,, - Y,)"'Y, AV, (3.34)

and
-1 1!
AL, = [1 ~Y, [V, - Y, (Y, - Y)Y, } W, x=S, x (3.35)

where 1, is the identity matrix. Here matrix S, represents the sensitivity of current
injections from the dynamic devices to changes in the state vector.

Substituting (3.23) into (3.35) we can write

nmc

AL(4)=8,>""(c)U,e" (3.36)

i=1
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Now, letting t=0 in equation (3.36) the modal current deviations associated with each
mode or combination of modes can be determined.

It then follows that
AV, =Y, '(AI, - W, AX) (3.37)

And the solution for (3.37) is substituted into equation (3.35) to obtain the
modal voltages for load buses. This analysis requires great amount of calculation
effort and evaluation time.

Alternatives to compute modal quantities are discussed in Chapter 4.

3.4 Modal Active and Reactive Power

Modal power flow analysis provides a general framework for the analysis of
kinetic energy exchange in complex systems. It establishes the variations of power
from any element inside the electric power system due to the excitation of a specific
system mode or a combination of modes.

Before proceeding with the analysis of modal power flow, some basic
concepts are briefly revisited. Let Vp,, Vg, ,Ip, and Iy be the real and imaginary

parts of the voltage and current at bus k. It follows that
B =Vp I, +Vy 1, (3.38)

O, =V Ip, V1, (3.39)

&

3.4.1 Contribution of Synchronous Machines and Control Devices to the
Modal Power Flow

Expanding equations (3.38) and (3.39) around an initial condition of interest and
neglecting terms involving second and higher orders, the modal active and reactive
power for any k-device can be expressed as

ap, =[5, 1] [22‘}[”& vl [ZIZ} (3.40)
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ag, =13 13 ] [22 ‘]+[Vg°k e [i{l"} (3.41)

O«

where Vp,.Vg,, I, and Iy represent the initial operating conditions for the voltages

and currents at the device terminals. Inserting the expression for modal current
deviations (3.27) in the above equations gives after some simplifications

AP,(4)=|AP,| Loy, =

3.42
(x5, +V§de) AV, (1) + Vo, W, x(4) (342)

AQ,(4)=AQ, | A(Pgd =

3.43
(ng * Vé(’)qu) AV,(4,)+ V:q W, x(4,) ( )

where nc is the number of dynamic devices and Igd, ng, ng and ng are the real and
imaginary parts of the initial values for currents and voltages in the system, given by

0, =gl 1] o 1] - B 5l
e | LR LRSI R
v, =diag{lre ve] e ] o e vl

ve —diagl e -ve] e w2 o b -ne])

The second term on each of the above equations contains the vector of modal
current injections associated with the mode or modes of interest. Defining

AP(2)=|aP, AP, .. AP, |
AQ,(A)=r0, AQ, ... AQ, |

the participation of each device in the modal power oscillation flow is calculated by
substituting the expression for modal voltage (3.25) and modal current injections
(3.26) associated to the modes of concern into equations (3.42) and (3.43).
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The following conclusions can be drawn from the above analysis:

For modal active power:

1. In general, modal powers are complex quantities. The magnitude related to a
specific mode allows identifying the contribution of each machine in the
system to the inter-area oscillation phenomenon. The largest magnitude
indicates which device has the higher contribution.

2. The phase angle indicates the power exchange pattern between machines in
the power system. The power exchange pattern can be established by
grouping those generators that shows coherent behavior (similar angle phase)
and determine which group of machines oscillates respect to another group of
machines inside the system.

3. The balance of modal active power is equal to zero for every node of the
system.

4. The modal active power is related with the acceleration power of the system.

For modal reactive power:

1. Normalized magnitudes indicate the participation of the dynamic devices in
modal reactive power flow. The dependence of reactive power deviations of
the dynamic devices due to variations in voltage, represented by equation
(3.21), which in turn depend on changes in the states of the system.

2. Phase angle indicates the behavior of the dynamic device in the modal
reactive power exchange. Devices with angle near 0° can be grouped as
generating units and devices with angle phase near 180° as absorbing

devices).

3. The balance of modal reactive power flow is equal to zero for every node of
the system.
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4. Information from the modal reactive power is important in voltage stability
because indicates which devices will experience the highest variation of

reactive power due to changes in voltage magnitude.

3.4.2 Contribution of Loads to the Modal Power Flow

From (3.7) and (3.8) we can write

AV,
APL/( = [LPI I LP12‘ ] |:AV jl PLV‘ AV (344)
O

AQL, Z[LQH, Lle,][A } QLV, L (3.45)

in which the model coefficients are given by

Ly, 1 = Vgﬁ Gpp— VQO,k BQD +k g,(
Ly, =V, Bt Vo Gpt Iy
L -1

10 0
o, =V0,Gop +Vp, Bop
L

_ 0 _ 0 0
o2, = Vo, Boo =V, oo + I,

where the sensitivity coefficients Gpp, Bpg, Bgp and Ggyp depend on load
characteristics and operation conditions. The initial values for load currents can be
obtained from the following expressions:

0oy
2 _PLO‘ ‘+QL‘V° .0 _PLk QL,k
D, ’

ey~ " QVI’ J

Substituting expression (3.25) into equations (3.44) and (3.45) the contribution
of the n/ loads of the power system in modal power is obtained as

m -1 —
APL(}H') =| AP, | £@p =Py AVL(/li) =P, (YBUS) W x(4)=

r (3.46)
=P, S, x(4)=P, (YIIJ"US) Ioa(4)
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AQ,(4)=AQ, | L9, =Q,, AV, (2)=Q,, (Yo ]'W x(4,) =

| (3.47)
=Q, Sixx(4)=Q,, (Y;'L'S)' Ioa(4)

where

P, =diag { [Lm. Lmz.] [Lm 1 LPI:;] [LPH., LPIZ,:]}

QLV=diag{ [LQu, Lle,] [LQllz Llez] [LQII,., LQIZ.,]}

and

AP, () =[aR, AR, ... AR T

AQ)=[rg, a0, .. a0 f

According to previous chapter the load contribution to the active oscillation
flow depends on the following factors;

1. Characteristics of loads model: Loads with constant impedance characteristic
have the higher participation, while with constant MVA the participation is
equal to zero.

2. Location of the loads: Depending of the oscillation of the load and the bus
where is connected the contribution can be in a positive way, contrary
oscillation, or in a negative way, coherent oscillation.

3. Location of control devices: According to [8], Loads with poor voltage
regulation characteristics may contribute very significantly to modal power
flow.

As in the dynamic devices, for the modal reactive power flow, the argument
indicates the loads in the system experiencing the highest participation and the angle
indicates if those loads are injecting, with angle near 0°, modal reactive power or
consuming, with angle near 180°.
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3.4.3 Contribution of Transmission Lines to the Modal Power Flow

Consider a line transmission represented by its equivalent IT circuit:

V
’"’I Inm
Y -
[¥/2] [¥/2]
P, —> <P
o] | *o.

Figure 3.4: Transmission line model.
From figure 3.4 the complex power can be expressed as:

S =P+ Oy =V, I,

mn

(3.48)

where * indicates conjugate. Linearazing above equation around an operating point
gives

(R INAN [

APR‘ = qu PIZ‘ AV f; 22, _AVQ,,J (3.49)
AV, ]

AQRk = [Ql I Qn ] l: J [QZlk szk] (AVQ"J (3.50)

where coefficients P}, Py, P;;, Py and O, 915 055 Oy, depend on parameters
of the transmission line: series resistance and reactance and the shunt susceptance as
well as the initial voltages for bus “m” and “n”

Substituting expression for modal voltage deviations into above equations

and for a system with L transmission links and B buses the modal active and reactive
power are given by:

AP,(1) = AP, | £9, =P AV(2) =P (Y ['W x(2) =P (Y2, 'L (1) 351
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AQq(4) 5 AQ, | £05, =Q AV(4) = Q (s ' W x(4) = Q (Y ) Toa(4) (3.52)

where P and Q are L x 2B block diagonal matrices numerically depending on
transmission line parameters and initial operation conditions.

The following conclusions in transmissions lines can be established:

1. Magnitude of modal active power for transmission lines indicates the stress
level of the branches in the power system. Lines having greater magnitude of
oscillation are, generally, those that connect machines showing the largest
participation in the mode of concern.

2. Normalized phase angle, for active power, indicates if the modal flow
proposed is correct (angle = 0°) or is in the opposite direction (angle=180°).

3. Transmission lines, like loads and dynamic elements, injects or absorbs modal
reactive power, having a different behavior to that seen in the modal active
power, where only work as the connection between generating units and
absorbing units.

4. The phase angle of reactive power indicates the direction of the modal
reactive power flow, injecting to or absorbing from a specific node.

It is important to mention that the analysis for transmission lines presented in
this section is from bus “m” to bus “n” but, and specially for modal reactive power,
an analysis from bus “n” to bus “m” is necessary to be performed.

3.4.4 Contribution of Transformers to the Modal Power Flow

Consider a transformer represented by the following circuit

46



v, V.

1 mn Inm !

| : |
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— <

L L

" Figure 3.5: Transformer model.

Where 4, B and C are the parameters of the transformer expressed in terms of
admittance and off-nominal turns ratio given in reference [4] as

P B= (-, c=@- )Ymn
tap tap tap

Following the same procedure as for transmission lines, the expressions for
modal active and reactive power for the kth transformer are given by:

AV, AV,
[11‘ Plz‘]{AVZM:I+[le, gz‘][AVj} (3.53)

AV,
80, <[, Qu,][AV} +[o,, sz,]{ ] (354)

where coefficients Pyj, Py, Py, Py and Q,,, 0, ©,,, ©,, depend on parameters
of the transformer: turns ratio, resistance and reactance as well as the initial voltages.

Equations (3.53) and (3.54) can be integrated to the expression for
transmission lines (3.51) and (3.52) and the same conclusions applied for
transformers.

3.5 Closed-Form Solution

In previous sections of this chapter the solution proposed for modal power
oscillation study was assumed in open loop. However the influence of feedback
signals over the modal power flow can also be evaluated by following the proposed
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closed-loop representation of the augmented system model. It is obtained by
expressing the input signals in control devices as function of the state variables and
terminal voltage deviations.

The augmented state model with the system output signals is expressed as

[;]z[—AJV v:":us] [AV]+[Z] (355)
vl=[c, Cv][:v] (3.56)

where the output vector y contains measured signals, namely line power and
current, and terminal bus voltages.

The feedback signals are introduced to the system through the input signals
vector u, this is

a-kl-klc, €| 3 |- k[ ] 6

where K is the matrix of feedback gains and K,, K, are appropriate connecting
matrices. Substitution of (3.57) into (3.55) yields

x] [A, C |[x] [B, [ x ]
= + [KX KV]
0] |-W Y |[AV] [ O AV |
~ o - e a -
x| _[ A Clix | |BK, BK, ) x (3.58)
0] [-W Yo ||AV] | o 0 |[AV]
e 3
AOL AAFS
Closed-loop solution is given as
x| |A,+B,K, C+BK, || x
= m (3:59)
0 -W Y5 AV
ACL
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Proposition 3.1: The variations in the open-loop system eigenvalues and
eigenvectors depend on the nominal (undisturbed) values of Ao, , and matrix AAgg
as well as the eigenvalues and eigenvectors of the open-loop system.

Proof:
Linear systems (3.58) and (3. 59) can be rewritten as
Mx=A, x+AALX (3.60)

Mx = A, X (3.61)

where M is a constant diagonal matrix with entry “1” for differential equations and
entry “0” for algebraic equations.

The nominal characteristic polynomial is represented as
f()'OL’MAOL)= det(AOLM_AOL)= 0 (3.62)

and Ag,; a finite and distinct root of (3.62). The problem is to find the root variations
A),;, such that

’1011 = %L,. + A4
is a finite and distinct root of the characteristic polynomial of (3.61), expressed as
f(’lcuM’ Ay)= det(’laM_ Ay)=0 (3.63)

Expanding (3.63) in Taylor series about the nominal values Ay, and Ay, one
obtains (sub-index “0” indicates nominal values)

o | }
s M A )= f(Ae, M, A, Xo + Zk=l Eak f(Aers M, A, )0 =0 (3.64)

Since

f(’icu M, ACL]Q = f(’lou M, ACL): det(’lmM - ACL)= 0
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and if the variations of AAgg are sufficiently small, then the terms under summation
sign in (3.64) for k>1 may be neglected, relation (3.64) becomes

f(lcu M, ACL) = af(/lcuM ACLXO =0 (3.65)
From references [7,13], for any square matrix D,
d(det(D)) = adj(D) s 6D (3.66)

where e denotes the inner product of two equidimensional square matrices, i. e.,
C e D=trace(CD), [7]. Applying (3.66) to (3.65) yields

P M A )=0f(Ac, M, ACL}O = 0det(4,, M, A ), =0
adj(Ae,, My Agy)|, ® A, My A, ), =0
adi(Ag,M—Ap,) e (MAL—AA)=0 (3.67)
Solving for the particular characteristic root Ay, variations are given by
AL, = (adi(Go, M~ Ag,) ¢ (M) adi(Aoy, M~ Ag,) ¢ AA (3.68)
The paper at reference [7] was used to derive this expression.

Definition 3.1 [6]: Let A, M be n x n matrices with real or complex
components. The number 4 (real or complex) is called an eigenvalue of A, M if there

is a nonzero vector u in C" such that:
Au; = AMu, (3.69)
The vector u;#0 is called an eigenvector of A, M corresponding to the eigenvalue 2;.

Linearizing (3.69) around nominal values yields

(AOL -MA,, )Aui =(AMMu,, —AAu,, ) (3.70)
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For the left eigenvector a similar expression is found
Av; (AOL -MJA,, )= (VouMAZ — V<T)L, AAg) (3.71)

Variations in eigenvalues and eigenvectors from the open loop model depend on the

feedback signals of the proposed close loop representation.

End of proof.

3.6 Non-Homogeneous Response

In applying modal power flow to system analysis, it is desirable to relate the
open loop formulation to the non-homogeneous case. In section 3.3.1 the
homogenous response was used in order to calculate firstly the modal current
injections associated to a mode of concern and secondly the modal voltage
deviations. In this section the non-homogenous response is presented as a different
approach in the modal power flow analysis.

In order to examine these relationships, consider a linear system

x(t)=A x(?) +B u(?) (3.72)

where A is the n, x ny state matrix and x is the perturbed n,-vector, Bis the n xr
input matrix and u is the perturbed input r-vector.

The non-homogenous solution in time for above system is given by
x(r) = e¥x(0)+ [ VB u(r)dr (3.73)

where the first term is the response to the initial conditions, and the second term is
the response to the input vector u.

Substitution of (3.22) into (3.73) yields

x(f) = Zf;][u,[vfx(0)+ VB J';e“"u(r)dr}e‘f’ (3.74)
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By eigenvalue analysis the eigenvalues 4; (i=1, 2,..., ny) and the right and left
eigenvectors, U; and V; respectively, can be obtained.

By replacing equation (3.74) into (3.18) a new equation for modal voltage
deviations with the effect of the input vector is obtained.

From (3.23) the response for the ith mode at time =0 is given as
x(4;) = (ci)Uieilo =(c)Y, (3.75)
and from expression (3.74) the solution is given by

x(4)= Ui[V,T x(0) + VETB_":e"“'u(z')dr}e"'0

x(4) = U,[V'x(©)= U, (c)
x(4) = (c)Y; (3.76)
At time =0 the data obtained from a modal power flow analysis performed
with homogenous and non-homogenous response is the same, expressions (3.75) and
(3.76). The effect of the input vector in the modal power flow can be analyzed in a
time range of interest.
These findings provide basic insight into the linear behavior of large-scale
dynamic systems. The results may be useful for understanding and predicting the
dynamic behavior of inter-area oscillations.

We briefly summarize the standard modal power flow algorithm.

3.7 Computation Procedure for Modal Power Oscillation Flow

Computation of modal power flow is straightforward.
Step 1: Modal power oscillation flow analysis starts by choosing a steady-
state operating point by performing a load flow study of the power

system.

Step 2: Form the state matrix and find the eigenvalues and eigenvectors.
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Step 3: Select motion modes and energy modes of concern.
For each mode of concern follow the next steps:
Step 4: Calculate the modal voltage deviations using equation (3.24).

Due to the computer calculation time and effort needed to obtain the inverse
of the modified admittance matrix, an algorithm is proposed in [9] for numerical
calculation of the modal voltage deviations.

Step 5: Calculate the modal voltage magnitude and phase angle deviations.
Step 6: Calculate modal current deviations according to equation (3.27).

Step 7: With modal and current contributions determined as in egs. (3.24)
and (3.27), calculate modal power oscillation flow for:

e  Each synchronous machine in the power system.

e  Each control device within the system.

e  Eachload.

¢  Each Transmission line and transformer in the power system.

e And other elements connected to the system.

Step 8: Normalize modal power deviations and modal voltage deviations

Power oscillation flows and modal voltage solutions are obtained based on
the eigenvector, whose entries are relative values. Therefore the solutions are
relative values too, and need to be normalized. For each mode of concern there
always exist some elements of the power system which are experiencing the largest
magnitude of oscillation, servicing as the bottleneck of the power system flow.

1. The magnitudes and phase angles of the modal active and reactive power
calculated for the dynamic devices in the power system are normalized

against the machine with the largest contribution.

_ 80,
A,

; AQ)
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N
L = L Ppas = L Prarer ; 4¢Qd:v = Lou, ~ “Pouper
for k=1, 2, 3, ..., nc: number of dynamic devices
Here, subscript “REF” indicates the dynamic device with the largest contribution
to the modal power oscillation flow and superscript “N” represents normalized
values. The reference machine will have a modal power magnitude equal to 100.0%

and modal power phase angle of 0°.

2. Participation of transmission lines and transformers in modal power flow

- 250 ot 22
' ‘ dper ' ’AQ‘]REF
N
Leri =L Peri = £ Ppapers 4¢QR:¢V = ZLor, ~ £ Ppaper
for k=1, 2, 3, ..., nr: number of branches.
3. Participation of loads in modal power flow
pr o oy - 22
' }APdREF ' ‘AQdREF
4¢PL:/ = A¢PLk - 4¢Pdkﬂ<‘; 4¢QL,I‘V = 4¢QL,( - 4¢QdREF

for k=1, 2, 3, ..., nl: number of loads.

4. Modal voltage solutions are also normalized. This will be done against the

bus experiencing the largest argument of modal voltage deviations.

‘ k

ar¥|= D L =L~ Ly

‘ REF

for k=1, 2, 3, ..., n: number of buses in the electric power system.
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Step 9: Select information of concern for future analysis.

A schematic depiction of the method is given in Fig. 3.6. As described in
Chapter 4, the general form of the modal power flow problem is very amenable to
analysis, especially using sparsity-based analysis techniques.

x| | A, C x ], B,
o) l-w ova llav]Tloe Y
| bvl=[c. C,][ x] { Find Eigenvalues

B, {  and Eigenvectors

Augmented Power
System

Initial Conditions

Modes of Concern

Power Flow Study

Modal Voltage
Deviations

Modal Current
Deviations

/Synchronous Machines. \
i Control Devices. i

| Loads.

; Transmission Lines.

! Transformers.

i Other Elements in the

:‘\§ystem. ) /

Modal Power Flow

Normalized Results |

Select
Information for
Future Analysis

Figure 3.6: Modal power oscillation flow computation proceduré.
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Chapter4

Advanced Power Oscillation Flow
Methodologies

In chapter 3 the method of modal power oscillation flow was presented and
discussed. Standard modal power flow algorithms rest upon reduced-order
representations in which the algebraic equations representing the network behavior

are included in the set of differential equations.

In this chapter, a new approach based on modal analysis is proposed for
modeling of power systems described by differential-algebraic equations. This
approach leads to new insights into the DAE modeling problem.

Criteria for the proposed representation are derived and implementation
issues are then discussed. The proposed techniques offer a compact description of
the system dynamics, and are especially useful for the study of electromechanical
oscillations since they preserve the essential features of system behavior in terms of

actual observational data.
Extensions to the basic algorithm to compute modal power flow from

measured data are finally proposed based on least-squares optimization. Relations

between the standard approach and the proposed methodology are provided.
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4.1 Problem Statement

The difficulties associated with analyzing large linear power system models have
long been recognized [12]-[14]. In addition to sparsity, large DAE models may result
in a vast amount of information that needs to be monitored and analyzed.

Consider a power system linear model described by a DAE system (3.16) and
(3.17). Assuming that matrix Yjys is non-singular, elimination of the algebraic
variables from equation (3.16) yields the following reduced system

x=Ax+B,u 4.1)
where
A= (Ad +C(Ygs)™ W)

This approach is not satisfactory in most cases, because the information it
provides is restricted to the physical states. As a result, the network structure is
destroyed thus preventing the analysis of the impact of transmission elements on

system behavior.
Alternative approaches to extract modal information are of interest to this

research. In order to explain the proposed procedure we introduce important

definitions and theorems.
Definition 4.1 [2]: Let A be an nx n matrix with real or complex components.

The number A (real or complex) is called an eigenvalue of A if there is a nonzero

vector u in C" such that:

Au=4u 4.2)

The vector u#0 is called an eigenvector of A corresponding to the eigenvalue 4.
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The small-signal stability of the power system can be analyzed by calculating
the eigenvalues A of A, i.e. solving equation (4.2). More precisely, we have the
following theorem.

Theorem 4.1 [6]: The eigenvalue problem of equation (4.2) is equivalent to:

gl w

That is, u is a solution of (4.3) if and only if u is a solution of (4.2).
Proof . See reference [6].

Theorem 4.1 is important because it provides explicit criteria that can be used
to compute modal properties of large power system models.

4.2 DAE Power System Model

Power system models are naturally very sparse. As discussed in Chapter 3, a linear
DAE power system model can be expressed in the general form

m ) [—AJV YBSUS] [Axv]‘“[l;d]“ (4.4)
yl=[c. c,] [AXV] (4.5)

where y is the vector of output variables and C, and C, are appropriate connection
matrices.

The study of DAE models presents significant problems in simulation and
analysis. In what follows, important properties of these models are investigated.

4.2.1 Reduced Order Models

It is apparent that if the admittance matrix Yzys is non-singular, the system model
can be rewritten in the form
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x=A,, X+B,,, u (4.6)

y=lomne X 4.7)
where
Ao = (A, +C(Yys )W)
Bope =B,
CODE = (Cx + Cv(Yg’US )_] W)
and
m N-l _gm de_zd ZdL 4.8
(YBUS) - ZBUS —I: ZM ZLL ZL:| ( : )

From the above expression we see that the new state matrix Agpg is composed
of two submatrices; the first submatrix, A, is the individual state matrix associated
with each of the dynamic devices. The second submatrix represents the interaction
between the dynamic devices through the transmission network.

Figure 4.1 shows a standard block diagram representation of the reduced-
order model of the system.

’BODE

A ope

Figure 4.1: Block diagram of the ODE model of the power systér;i.

From definition 4.1 it follows that the eigenvalue A; and the right eigenvector
U; of Appg can be calculated as

Aope U, = /{iUi 4.9)
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Further, the eigenvalue A; and left eigenvector V; can be found from the
definition
V. A, =AY, (4.10)

A disadvantage of this formulation is that the sparsity of the system matrix is
destroyed. Techniques for computing the eigenvalues/vectors for large power
systems are discussed next in the context of sensitivity analyzes in power systems in

(7].
4.2.2 Differential-Algebraic Equation (DAE) Model

The augmented system of equations (4.4) and (4.5) preserves system structure and
therefore the sparsity of the model. In this section, we introduce simple analytical
relations between the modal properties of reduced-order models and DAE models.

C (= ‘
x m -1 y

| W ) e € ()

A, [ » C,

" Figure 4.2: Block diagram of the DAE model of the power system.

In the light of these observations, an important property of a linear model can
be defined.

Definition 4.2 [5]: Let A, M be nxn matrices with real or complex components.

The number A (real or complex) is called an eigenvalue of A, M if there is a nonzero
vector u in C" such that:

Au =4 Mu (4.11)

The vector u#0 is called an eigenvector of A, M corresponding to the eigenvalue A.
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Clearly, if M is invertible, then (4.11) can be solved as (4.2).

Using definition 4.2 the eigenvalue 4; and the right eigenvector Upgg, of Ap,g
can be computed as

ApUpy =AM Upe (4.12)

I, 0
M=
00
T
Partitioning the right eigenvectors, Up,g,, in (4.12) as Upyg, = [UDAEH., Up AEvi]
the eigenvalue problem in (4.12) can be rewritten as

|:Ad C} Upse, | _ //{|:In 0} Ubee,
-W Yo l| Ups, 10 0)|Up;,

or, in a more convenient form,

A,-AL) C 1[Upe1 [0
R | el RN

where

bus

By theorem 4.1, expression (4.13) and (4.9) are equivalent. Therefore,
Upag,;and U; are solutions for both eigenproblems.

Proof: Solving (4.13) for Up,g, yields

(Ay +C(Yj5) " WUy, = /liUDAE,, (4.14)

AODE
where the term within parenthesis is the reduced system matrix, Agpg.

Clearly, the DAE model shares the eigenvalues and the correspondent right
eigenvectors related to the dynamic states of the ODE model. Hence, the algebraic
part of the DAE eigenvector can be expressed in terms of the dynamic part as

63



Upe, =(Yp5) ' WU, (4.15)
Similarly, one has for the left eigenvectors
Voue, Apie =4V M (4.16)

or, in terms of the dynamic and static subvectors,

C
Ve Youl[ Ny g |40, Voul[y o

A,-41) C
[VDAE_ VDAE,,][( W ‘ Y:]z[o 0] (417)

By theorem 4.1 expressions (4.17) and (4.10) are equivalent; Vg, , and V; are
solutions for both eigenproblems.

Proof: Solving (4.17) for Vp g, gives

Ve, (A, +C(Y )™ W)=A4V,,. (4.18)

AODE

It is straightforward to verify that the DAE model shares the eigenvalues and
dynamic part of the left eigenvectors of the reduced-order model. Consequently,
Vpak,, can be calculated as

Vo, =C(Yaus) " Voie, (4.19)

This discussion demonstrates that the reduced-order model (4.6) can be
analyzed as a DAE system, thus preserving the structure of the modified admittance
matrix as well as the sparsity of the system. More importantly, the augmented
representation preserves valuable information regarding the interaction between the
algebraic and dynamic components of the right eigenvector.



4.3 Computation of Modal Voltage Deviations from Right Eigenvector

Given a particular mode of oscillation 4; the modal voltage deviations in (3.18) can

be expressed in terms of the time evolution of the state vector as
AV(4) = (Yms) ' W x(1) (4.20)
in which, for the homogeneous case,
x(4) = (Vx(0)U,e* = (c,)U,e* (4.21)

where U; and V; are the right and left eigenvectors of the eigenvalue 4; and x(0) is a

vector of the initial conditions of the variable states of the system.
The solution of (4.21) at time t=0 is then given by
x(4)=(c,)U, (4.22)
Substituting (4.22) into (4.20), the modal voltage deviations at t=0 yields
AV(L) = (Yps) " W(e)U, (4.23)
Comparing equations (4.15) and (4.23), it can be observed that the expressions
for modal voltage deviations are a particular case of the solution based on the right

eigenvector; the latter model is weighted only by the scalar ¢; in (4.23).

Theorem 4.2 [3]: If u is an eigenvector of the matrix A with eigenvalue A then

any scalar multiple @ #0 is also an eigenvector of A with the same eigenvalue
Proof:

A(au) = aAu = alu = A(au) (4.24)
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By theorem 4.2 it can be concluded that the subvector of the right eigenvector

Upag,, is proportional to the modal bus voltage deviations, i.e.

1. Upe =AV(A) ifc;=1.

1
C;

l

2 Up, =(

JAV().,.) ifc;# landc; #0.

Based on the above results, it is clear that both quantities lead to identical

results since the factor ¢; affects all entries of the right eigenvector. DAE models,

however, allow the full potential of modal power flow algorithms to be reached.

Further, the modal bus voltage deviations are calculated from the algebraic

component of the right eigenvector. The inverse of the modified admittance matrix is
not calculated.

Table 4.1 illustrates the nature of the modal voltage deviations for specific

modes of interest.

Modes Description

Table 4.1:

Evaluation of modal voltage deviations.
Modal Voltage Deviations from Right Eigenvector

A Motion Mode AV(A4) =Upyge,
A+ A Energy Mode AV(/I,- »/1:) = UDAE,, + UDAE‘, ‘
Ai + 4 Energy Mode AV(’L, /1;) = UDAE” + UDAEW
A+ A v " — *
5_ (’1/' + )/1].) Energy Mode AV(’L" Ai ’/1/" /{j ) - UDAE" + UDAE\, + UDA}:‘7 + UDAE‘,

Given the linearity of the model, we can write

AV = Z:;l (€)Upy,

where 7 is the number of eigenvalues of the system, and

(4.25)
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x,(0)

e = [V.I vV Vi“] xz(O)

x,(0)
Extensions to this approach are discussed later in this document.

In the proposed approach, the modal bus voltage deviations, magnitude and
phase angle, can be expressed in terms of the right eigenvectors as

nmc

A V(4 )=‘A]V”4(p4yl =M, > Upy, (4.26)

AO,(4)= ‘AB 14 ‘éq’AGV = Mey Z:'lw UDAEW- (4.27)

where M;;; and My, depend on the initial values of the terminal voltages as
indicated in previous chapter.

4.4 Computation of Modal Power Flow from Right Eigenvector

In order to exploit the advantages of calculating the eigenvalues/vectors directly
from the augmented system, a modified power flow algorithm is proposed.

4.4.1 Modal Current Injections

In an extension to the above model, modal current injections are computed using
modal information. Straightforward analysis results in

nmc

Looa(A)=Ys o Ubu, (4.28)

where Y} is the modified admittance matrix and Uy, is the dynamic voltage

component of the right eigenvector.

The modal current deviations experienced by all dynamic devices within the
power system can be calculated from (3.27) as
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AL(A) =1,y (A)+Y,Upy (4.29)

where 1,4, is the modal current injection of dynamic devices and Upg,,, is the
subvector of the right eigenvector section related with the voltage deviations in
buses where dynamic devices are connected.

With these equations, the system model needed for power flow analysis is

complete. Once the modal voltages and currents are calculated, the modal power
flow can be computed as discussed below.

4.4.2 Contribution of Dynamic Devices

From expressions (3.42) and (3.343) the contribution of dynamic devices to the modal
power flow for the ith mode of interest become

AP,(4) AP, | Lo = (Izd + V;’de)U pae,, + V;)dlmodd (/1,.) (4.30)
AQ, (%) HAQ, | £y = (o + Vo Y ) Upye + VoI, (4) (4.31)

where Ig , ng, ng and ng are the initial values for currents and voltages in the

system reference frame.

Similar expressions can be derived for other control devices such as FACTS
controllers. This is not discussed here.

4.4.3 Contribution of Loads

Assuming we know the modal voltages and currents, we get

AP, (4)=AP, | Lo, = PLVUDAE‘,,_, (4.32)

AQ,(4)HAQ, | £og =Qyy UDAE‘-L. (4.33)
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where P,y and Q,, are 2nl x 2nl block diagonal matrices depending on the initial
conditions, voltage and current, besides the voltage depending load characteristic.
Upyg,,, is related with the voltage deviations in buses where loads are connected.

4.4.4 Contribution of the Transmission Network

Given the models of transmission lines and transformers in Chapter 3, the modal

contributions can be expressed as

AP (1) = APy | L@ pr =PU (4.34)

AQr(A) = AQg | £opr =QUp, (4.35)

where P and Q are Lx2B matrices numerically depending on the parameters of the
transmission lines and transformers as well as on the initial voltage for buses “m”
and llnn
4.5 Modified Power Oscillation Flow Algorithm
Computation of modal power flow using the proposed approach is as follows:
Step 1: Given an initial operating point, construct the DAE model in (4.12).

Step 2: Compute right and left eigenvectors using sparsity-based techniques.

Step 3: Select modes or combination of modes for analysis.

For each mode or modes of concern follow the next steps.

Step 4: Extract from the right eigenvector the subvector associated with the
algebraic states (voltage deviations).

Step 5: Calculate the modal voltage magnitude and phase angle deviations.

Step 6: Calculate modal current deviations from expression (4.29).
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Step 7: Calculate the active and reactive contributions for

¢  Each synchronous machine in the power system.

e Each control device within the system.

. Each load

e  Each Transmission line and transformer in the power system

¢ And other elements connected to the system.

Step 8: Normalize modal power deviations and modal voltage deviations as
discussed in Chapter 3.

Step 9: Select information of concern for future analysis.

Now attention is turned to the problem of estimating modal power flow from
measured data.

4.6 Modal Power Flow from Measured Data

The recent advent of phasor measurement units has opened the way to compute

modal power flow from measured data. The viability of the proposed method

depends to a great extent of efficient modal estimation methods

4.6.1 Modal Voltage Deviations

Assume, without loss of generality, that measurements are taken at all load buses.

Shown in Fig. 4.3 is a conceptual representation of the proposed method.

/

A

Perturbation ‘

Electric Power
System

Measurements at Load
Buses

AV, (1) E>

AV, () e D Modal

Decomposition

A VL_, ) D Technique

Fourier,
Prony,
HHT,

|:> AV, = i A’ cos(a),t +o, )
j=
[:> AV, = ;A]e”" cos(w,t +0,)

D AV, = iA/e”" cos(a),t +¢1)
=

Figure 4.3: Conceptual representation of modal decomposition of PMUs.
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As a first step towards the implementation of the method, let a vector of

measured voltages be defined as
[AV,,, ]
AV,

AV, (4.36)

AI/LnID
AV,

and it is assumed that each element in (4.36) is decomposed into a sum of modal

components:
AV, =Re D A4,e”" cos (a)jt + qoj)
L /=1 5
and
AV, =Im D 4,e” cos (a)jt + (pj)

L=

by an appropriate modal decomposition technique.

The power system represented by the augmented state model (4.4) can be

written as

x] [ A, C, 0 X B,
0=|-w, (Y,-Y,) Y, AV, [+| 0 |u (4.37)
0 0 Y., (YLL - YL) AV, 0

It then follows that the bus voltage deviations can be expressed in terms of the

load bus voltage deviations as
Y, AV, =~(Y, -Y,) AV, (4.38)
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where Y, is an nlxnc matrix, nc is the number of dynamic devices and n/ is the
number of load buses.

Normally, Y,, is a rectangular matrix, unless the number of load buses is
equal to the number of terminals with dynamic devices. (Y,;-Y;) is a nlxnl matrix,
AV, is a ncx1 vector and AV, is an nc x [ vector.

The linear system can be represented by:

Ax =b
where A=Y,, e R"*™, and
b=—Y, -Y,) AV, eR""'

x=AV, e R™""

Lemma 4.1 [4]: Suppose that the rank of A € R**™ is r < nc. Then a general
solution to the least-square problem can be written as

min Ax —b

e e |
with AeR"*", and b=eR"*'
is given by

x=Ab+(I, —A*A)z; VzeR"“" 1

The important point to note here is that x=A"b is the unique minimum norm
solution, where A*is the Moore-Penrose generalized inverse or pseudoinverse [11].

By this lemma the solution for the modal voltage deviations of dynamic
devices can be solved by a least-square method.

4.6.2 Modal Current Injections

From system (4.37) the modal current injections in terms of the voltage variations
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A Wa | Y- Ys) Y, AV,
Imod —[ 0 ]x "I: Y[,d (YLL —YL )} |:AVL } (439)

4.6.3 Modal Current Deviations

Modal current deviations from each dynamic device terminal can be expressed as:
Wy A dy
Al = h x+[Y, 0] =L, + YAV, (4.40)

Lnod, is the section of the modal current injections related to the dynamic devices; the
rest of this vector is full of zeros and is related to the loads.

It follows that
Imod,, =WwW,X
and
Al =Y,AV, (4.41)
where
[ G, Bpg } 0
- BQD| GQQl
Y= - 1
O e GDDHI BDin
=By, Gy,

in which Gpp, Bpg, Bgp and Ggp are dependent on the load characteristics and
initial conditions.

From the linearized node equations, the current deviations in terminals where
dynamic devices are connected can be calculated as, (3.11):
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AL [Yu Y. ][AV, @42)
AL Y. Y,.][AV,
As mentioned in the previous chapter, each entry of the symmetrical

admittance matrix consists of elementary 2x2 submatrices.

Once the modal and current deviations are obtained, the contribution of each
system element to the oscillation flow can be computed.

4.6.4 Modal Power Flow

We present below a description of how to compute the power oscillation flow; for
more details the reader is referred to Chapter 3.

Participation of dynamic devices

AP, =(1‘;d+V§de) AV, +V§d | (4.48)
AQ, =(ng+V§qu) AV, +V§q | (4.49)

where Ig , lgq, ng and ng are the real and imaginary parts of the initial values for
currents and voltages in the system as presented in chapter 3, at time t,.

Participation of loads

In this case,
AP, = P AV, (4.50)
AQ, =Q,, AV, (4.51)

where P, and Q,, are 2nix2nl block diagonal matrices depending on the conditions
at to, voltages and currents at terminals and load characteristic.- see chapter 3 for
more details.
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Participation of transmission links

For a transmission system consisting of L branches and 5 buses, the
contribution from transmission lines and transformers can be expressed as

AP, =P AV (4.52)
AQ, =Q AV (4.53)

where P and Q are Lx2b matrices numerically depending on the parameters of the
transmission lines or on the parameters of the transformers as well as the initial
voltages for the end terminals.

These matrices are defined in Section 3.4.3 for transmission lines and 3.4.4 for
transformers and are not repeated here.

4.7 Numerical Implementation

Based on the above representation, a computer algorithm was developed for modal
analysis of power system models described by DAEs.

The main steps in the method are described below.

Step 1: Calculate the modal voltage deviations of loads from the measured
data, as indicated by expression (4.36).

Step 2: Construct the DAE model around an initial condition t,.

Step 3: Using least-squares techniques, compute modal voltage deviations
at dynamic devices.

Step 4: Calculate modal current injections as presented in section 4.7.2
Step 5: Calculate modal current deviations for dynamic devices and loads.
Step 6: Calculate the participation in modal active and reactive power for:

* Each synchronous machine in the power system.
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¢ Each control device within the system.

e Each load

e Each Transmission line and transformer in the power system
¢ And other elements connected to the system.

Step 7: Normalize modal power deviations against the maximum value of
modal active and reactive power.

The data can be calculated for all the time interval of the measurements, with
the initial condition at t;.
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Chapter5
Application.

This chapter describes the application of the proposed modal power flow algorithm
to the study of small signal stability of power systems.

The method is tested on two power systems. The first test system is a 6-
machine, 10-bus system; the second system is a 46-machine, 191-bus simplified

equivalent of the Mexican Interconnected System.
First, the ability of the technique to identify modal voltage control areas is
investigated. The reactive modal contribution is computed and the effect of

generators, SVCs and loads to the reactive power swing flow is determined.

The application of the method to the 6-machine system and the Mexican

system also focuses on the analysis of the impact of load on system behavior.
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5.1 Outline of the Study

The proposed methodology of coherency and dominant loads identification
was tested on two power networks. These are:

1. A 6-machine, 10-bus test system. Voltage support is provided by a
synchronous compensator at a major transmission bus.

2. A 5-area simplified equivalent of the Mexican interconnected system. This
system consists of 46 machines and 191 buses and 2 SVCs.

5.2 Application to the 6-Machine System

Figure 5.1 shows the 6-machine test system used in this research work. The
machine and excitation control data used in the system are given in Ref. [1]. The

system has two inter-area modes of interest.

For the present discussion, attention is focused on the inter-area modes 4,
-0.1430 + 5.6635i, and 5, 0.0088 + 3.1272i. Mode 4 is of interest to system behavior as it
represents an interarea oscillation involving machines GEN-006 and GEN-001
swinging against the rest of the system. Mode 5 represents an oscillation involving
GEN-001 and the rest of the machines in the system.

5.2.1 Modal Voltage Control Areas
Interarea mode 4

Using modal analysis, the system can be divided into three main voltage control
areas. The first area is formed by buses experiencing phase angles around 0°. Area 2
is formed only with bus 1, whilst area 3 is formed with bus 4. Bus 2 and 9 can be
considered inside area 1 because their oscillation pattern is closer to this area. Figure

5.1 gives a schematic representation of the system showing voltage control areas.

For this mode, the dominant generator is GEN-012 with a modal active power
of 100% with an angle of 0° GEN-001 and GEN-006, with participations on modal
active power of 59% angle of 180.06° and 77.23% angle of 175.09° respectively.
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Figure 5.1: Modal voltage control areas for mode 4.

The analysis of modal line contributions shows that transmission paths
linking machine GEN-006 with bus 3 have a large participation to the modal power
flow.

Table 5.1:
Modal active power flow in transmission elements.

Modal Active Power Flow

Normalized

Line Relative Mag. Relative P.

(%) Angle
3--9 35.38 -4.46
3--9 35.38 -4.46
9--8 35.49 -4.95
9--8 35.49 -4.95
8--4 75.95 -4.911

For MCVA 1, the machines having the largest deviations in modal reactive
power, on the other hand, are GEN-012 (100%) and GEN-004 (93.03%). Loads inside
this area have a participation of 12.03% (L3), 10.08% (L2), 8.65% (L1) and 8.12% (L4).
In turn, for MCVA 3, GEN-006 has an important participation (98.1%) while for
MCVA 2, the participation of GEN-001 is 67.39%.
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Insight into the nature of modal voltage behavior can be gleaned from the
study of modal bus voltage magnitudes in Fig. 5.2. As shown, buses 9 and 8 show
the largest modal deviations.
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Figure 5.2: Normalized .l{}.}llllll‘ll!\ for voltage magnitude deviations, Mode 4,

From above results can be observed that buses 9 and 8 are between MVCA 1
and MVCA 3. Being the link that connects two areas with different oscillation may
be the reason why the oscillation has more effect in those buses.

Interarea mode 5

The analysis of mode 5 suggests that the system can be divided into two modal
voltage control areas. Where the exchange of modal active power is between area 1,
with the largest participation coming from GEN-006 (61.62% angle of 180.44°) and
GEN-012 (21.38% angle of 178.75°), and area 2, where the infinite bus is experiencing
100% angle of 0° All generators are oscillating against the infinite bus, represented
by GEN-001.

The first area is formed with all the buses experiencing angles around 0° and
second area is formed only by bus 1, with an angle around 180°. Figure 5.3 depicts

the modal voltage areas for this mode.
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Figure 5.3: Modal voltage control areas for mode 5.

The analysis of modal power flow in Table 5.2 reveals that the transmission
lines with the largest participation in the mode is the lines between buses 1 and 7
(100%). The analysis of bus voltage magnitudes in Fig. 5.4 identifies buses 9 and 8
with the largest deviations.

Table 5.2:
Modal active power flow in transmission elements.

Modal Active Power Flow

Normalized

Relative P.

Angle
1--7 50 0
1-7 50 0

g
o

Normalized Magnitue (%)
8§ & 8

o

Bus Number

F gure 5 4 hormahzed ,r,urrnms for Joi!dge magnnude deviations. Moma 55
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Inside MVCA 1, GEN-006, GEN-003 and GEN-004 exhibit the largest
deviations of reactive power with normalized values of 100%, 57.09%, and 29.83%.
The participation of GEN-001 in MVCA 2 is high with value of 86.20%. All loads are
inside MVCA 1, and the largest participation is from load L3 with 12.07%.

5.2.2 Dominant Loads

The studies were carried out for modes 4 and 5. For the latter mode, the damping
variations calculated were very small and the analysis is not shown. The study is
then only presented and discussed for mode 4.

Interarea mode 4

The results for voltage phase angle deviations are presented in figure 5.5 and for
modal active power in table 5.3 for all the loads in the system. These results suggest,
due especially for the large contribution of this mode to the bus voltage deviations,
that load at bus 10 is the dominant load.

Bus voltage and load contribution are swinging out of phase, the contribution
of load 10 to the system is positive with the greatest damping found with load
modeled as constant impedance.

Angie near 0°

76.2681

Load Buses

0 20 40 60 80 100
_______ WodalVoitage Phase Angle (¥) -
Figure 5.5: Modal voltage phase angle deviations. Mode 4.

2 (+) Phase angle near 0°and (-) phase angle near 180°.
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Table 5.3:
Modal active power flow for loads. Mode 3,

Modal Active Power Flow

Normalized

) Relative Mag. (%) Relative Phase
Bus 3 5.2043 202.36
Bus7 44655 201.36
Bus 9 3.1054 187.17

Bus 10 41986 228.25

The results of varying the load characteristic in the four loads of test system 2
are presented at figure 5.6.

Variations in Mode Damping
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| gad at Bus 10
0.019
2 1 0

Load Characteristic

Figure 5.5: Variations in mode damping due to variations in load characteristic. Mode 4.

Examination of above results indicates that load at 10 is having a large
influence over mode 4, where the variation of load characteristic produces the
highest variations in mode damping.

5.3 Application to a Large System

In this section, the modal power swing flow technique is applied to a larger test
svstem. See Ref. [2] for further details about this system.
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For reference and comparison, standard small signal analyzes were conducted
to assess system behavior. Table 5.4 summarizes the 3 slowest modes of the system
showing swing patterns and dominant generators, calculated with a modal active

power flow analysis.

Table 5.4:
Slowest modes for large power system.

Eigenvalue Dominant Generators?

GEN 33 (+100%), GEN 32 (+95.25%),

1 -0.1331 £ 2.6795i 0.0496 0.4265 GEN 28 (+51.00%), GEN 40 (+46.34%),
GEN 41 (+46.22%), GEN 25 (+42.17%).

GEN 33 (+100%), GEN 32 (+90.86%),

2 -0.2176 + 3.7647i 0.0577 0.5992 GEN 25 (-39.87%), GEN 26 (-34.48%),
GEN 31 (+32.93%), GEN 29 (-31.14%).

GEN 19 (+100%), GEN 35 (+94.15%),

3 -0.0877 +4.6273i 0.0190 0.7365 GEN 36 (+93.85%), GEN 24 (+88.61%),
GEN 23 (+84.48%), GEN 22 (+81.00%).

5.3.1 Modal Voltage Control Areas

Interarea mode 1

Application of the modal power flow technique for this mode results in 6 modal
voltage control areas. The modal areas and the interconnected regional systems are
illustrated in figure 5.7. For this swing mode the machines in the north (N) and
north-eastern (NE) systems are oscillating coherently against the machines in central
(C), western (W) and south-eastern (SE).

Table 5.5 lists the transmission buses belonging to MVCA 1. This area is
formed mainly by buses with angles around 9° and magnitudes of the modal voltage
phase angle from 45% to 12%. Buses located in the north and north-eastern system of
the MIS. Figure 5.8 shows the normalized modal voltage magnitude. This
information suggests possible locations of voltage control devices. The largest modal

? Values are normalized against the generator with largest magnitude. (+) Phase angle near 0°and (-) phase
angle near 180°.
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deviations are 100% (bus 185) and bus 90.94% (186) followed by 8 buses with relative
values between 80% and 89%.

MVCA 1 includes 10 generators and 1 SVC. It is noteworthy that the SVC at
bus 48 exhibits a modal reactive power participation of 100%. Generators 39, 38, 37
and 34 show relative participation of 56.89%, 28.41%, 21.26% and 19.46%
respectively. Shunt elements connected inside this area show contributions below
9%, whilst the load participation is less than 4% to the modal reactive power flow.

Western System

Figure 5.7: Diagram of modal voltage control areas for mode 1 and the 5 regional systems of the MIS.

Table 5.5:
Buses inside modal voitage control area 1 for mode 1.

MVCA: Buses

25|34 | 48 | 139|144 | 155|160 | 165 | 170 | 185
26 |37 | 135|140 | 145 | 156 | 161 | 166 | 171 | 186
1 27 138|136 | 141 | 146 | 157 | 162 | 167 | 180 | 187
29 {39137 |142 | 149 | 158 | 163 | 168 | 183 | 188
30|42 | 138|143 [ 150 | 159 | 164 | 169 | 184 | 189

MVCA 2 is formed by 4 sub-areas with angles around 5°, 6°, 7° and 8° each
one. Argument of modal voltage phase angle deviations has a maximum value of
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54% and a minimum of 39%. Buses inside area 2 are listed at table 5.6.
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Figure 5.8: Normalized arguments for voltage magnitude deviations. MCVA 1. Mode 1.

Modal analysis of the reactive power shows that dynamic devices in MCVA 2
are having deviations of less than 6% as well as negligible variations from shunt
element and loads (0.47% and less than 1% respectively).

Table 5.6:
Buses inside modal voltage control area 2 for mode 1.

|28 41 |151|154|174|177

2 131]|147|152|172|175|178
40|148|153|173 (176|179

Modal contribution on voltage magnitudes deviations are shown at figure 5.9
with a maximum value of 32.57% at bus 178.
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Figure 5.9: Normalized arguments for voltage magnitude deviations. MCVA 2. Mode 1.
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Finally, MVCA 3 is formed by 4 buses in the northeast region with a
maximum value of modal voltage phase angle of 100% and phase angles around 0°

Table 5.7:
Buses inside modal voltage control area 3 for Mode 1.

3 32133 [181182

Participation of generators in reactive power flow inside area 3 has a
maximum value of 4.89%. Load and shunt element connected to bus 181 have also
small participations. The variations of the modal voltage magnitude are 39.03%,
40.18%, 38.69% and 37.55% for buses 32, 33, 181 and 182 respectively.

The following control areas are showing phase angles near 180° and are
formed with buses located inside the C, W and SE regional systems. The first MCVA,
denoted as area 4, consists of 4 sub-areas with angles around -171°, -172°, -173° and -
174° each one. Magnitudes of voltage angle deviations inside this area are from 25%
to 18%.

Table 5.8:
Buses inside modal voltage control area 4 for mode 1.

1|6|49|52|55|58|67|75
4 2 146(50]153[56|59|71|84
3 |47|51|54|5765|72

Examination of modal reactive power shows that SVC at bus 47 has a
participation of 20.85% followed by generators 1, 2 and 3 with 19.99%, 15.34% and
14.48%. Shunt elements and loads show contributions of less than 2.14% (Bus 50) and
less than 2.52% (Load at bus 52). The maximum value of bus voltage magnitude
deviations is located at bus 58 as it can be observed from figure 5.10.

Table 5.9 lists the buses grouped inside MVCA 5, with all buses with angles
around -175° and relative magnitudes of voltage phase angle from 16% to 25%.

The studies of modal reactive power showed low participations of generators,
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shunt elements and loads inside this area with values of less than 5%, 1% and 1.5%

respectively.
Modal Voltage Magnitude
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Figure 5.10: Normalized arguments for voltage magnitude deviations. MCVA 4. Mode 1.

Figure 5.11 depicts the information of voltage magnitude deviations due to
mode 1 for buses inside area 5. Maximum values experienced by buses 74 and 70.

Table 5.9:
Buses inside modal voltage control area 5 for mode 1.

12|17 23|63 [70(85[92| 97 | 103|108 | 113 | 127 | 133
13|19(45[64|73[86|93| 99 | 104|109 | 114 [ 128 | 134
14 (20|60 (66|74 (89|94 | 100|105 | 110 | 122 | 129
15(21|61(68]|79(90]|95| 101|106 | 111 | 123|131
101622 (62|69 (80]91|96|102 | 107 | 112 | 124 | 132
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Figure 5.11: Normalized arguments for voltage magnitude deviations. MCVA 5. Mode 1.
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MCVA 6 exhibits voltage phase angle deviations from 25% to 14%, with
angles mainly around -176° as well as some buses experiencing angles of -177°. The
buses inside this are listed in Table 5.10.

GEN-4 has 42% of participation in modal reactive flow, the rest of the devices
are only participating with less than 5%. Low deviations of shunt elements with less
than 2% (bus 76) and loads with less than 1.24% (bus 81). Contribution of oscillation
mode 1 on bus voltage magnitude can be seen from figure 5.12.

Table 5.10:
Buses inside modal voltage control area 6 for mode 1.

35(44 |78} 83 1116119125
36(76|81| 98 |117|120]|126]191
124(43|77(82|115]118|121|130
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Figure 5.12: Normalized arguments for voltégé magnitude deviations. MCVA 6. Mode 1.

Buses 88, 87 and 18 were not grouped because their phase angles are not near
any of the areas described before (-211°, -254° and -271°). GEN-18 is experiencing
18% on modal reactive power. The shunt element at bus 87 is experiencing 9.06%
and loads are showing magnitudes of 2.24% at bus 87 and 4.82% at bus 88. The
voltage magnitude variations for these buses are high with values of 63.41%, 56.79%
and 52.26% for 87, 88, and 18.

Buses 18 and 88 are connected to bus 87 and are located in between two areas
with complete different oscillation pattern. Transmission line from bus 183 to bus 88

is experiencing a large participation in modal active power flow with a normalized
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magnitude of 311.49%, bus 183 is part of MVCA 1, while bus 88 is connected to bus
81, which is grouped inside MVCA 6.

Study results show that the bus voltage magnitude is higher in area 1 and
within this group the higher variations of modal reactive power are experienced.
The mode influence over the voltage magnitude is low for MVCAs 2 and 3 and the
participation of dynamic devices within these areas are also small. MCVAs 4, 5 and 6
exhibit small modal voltage magnitude deviations and participation in modal
reactive power flow as well, with the exception of GEN-4 located in area 6 and GEN-
1in area 4. Special attention must be taken for the 3 non-grouped buses, where the
voltage magnitude variations are considerable high.

Interarea mode 2

The analysis of interarea mode 2 reflects a more complex oscillation behavior due to
the exchange of modal active power between the south-eastern, central and western
systems as well as two generators of the north-eastern system (GEN 32 and GEN 33)
oscillating against the machines in the north and north-eastern systems. The areas
formed for this mode are represented in the diagram at the figure below.
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Figure 5.13: Diagram of modal voltage control areas for mode 2 and the 5 regional systems of the MIS.
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MVCA 1 is formed with buses in the N and NE regions experiencing angles of
modal voltage phase angle deviations of 172° and 173° with the larger cluster formed
around 172°. Modal voltage phase angle has relative values from 43.54% to 12.59%.
The buses inside this area are shown at table 5.11.

SVC at bus 48 is showing the highest magnitude of modal reactive power
with 100% followed by generator 25 with 16.47%. Except for these devices the shunt
element at bus 183 is showing participation greater than those shown by the rest of
the dynamic devices with 8.35%. Loads variations are small, with maximum value of
3.34% at load connected to bus 151.

Table 5.11:
Buses inside modal voltage control area 1 for mode 2.

Voltage magnitude deviations within MVCA 1 are small with 10 buses
experiencing magnitudes from 32% to 34% as is depicted by graphic at figure 5.14.
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Figure 5.14: Normalized arguments for voltage magnitude deviations. MCVA 1. Mode 2.

Buses showing angles around 171°, mainly from the NE system, are grouped
together inside MCVA 2, with arguments of modal voltage phase angle from 25.54%
to 21.14%. The buses grouped inside are listed below
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Table 5.12:
Buses inside modal voltage control area 2 for mode 2,

»,
A D

34|39 [156]159|162]165]168|171|186
2 |37] 42 |157|160|163|166{169|180|187
38[155|158|161|164|167 (170|184

Modal reactive power studies carried out show generators 39, 34, 37 and 28
with values of 79.88%, 28.40%, 28.15% and 25.98% respectively. Negligible
participation from loads inside area 2 and the higher participation of shunt elements
from those at buses 159 and 170 with values of 4.16% and 4.06%.

Deviations in bus voltage magnitude for this area are depicted in figure 5.15.
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Figure 5.15: Normalized arguments for voltage magnitude deviations. MCVA 2. Mode 2.

MVCA 3 is formed only by four buses located in the NE region of the MIS,
with angles around 0° and arguments of voltage phase angle from 87% to 100%.
Table 5.13 shows the buses inside this control area.

Table 5.13:
Buses inside modal voltage control area 3 for mode 2.

3 32133181182

GEN-32 and GEN-33 show low modal reactive power deviations with values
of 13.81% and 16.11% respectively. Load participation is 15.97% (bus 181) and shunt

element at the same bus with 6.32%. Variations of modal voltage magnitude are
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high with values of 77.97%, 69.13%, 68.79% and 68.61% for buses 182, 33, 32 and 181
respectively.

The next area, denominated as MCVA 4, is formed with buses in the C, W and
SE systems showing angles around -20° and magnitudes of modal voltage phase

angle with a maximum value of 7.40% at bus 36. Buses within this area are listed in
table 5.14.

Generators inside this area exhibit minor participation in modal reactive
power with GEN-19 showing the maximum contribution (6.05%). Load and shunt
elements participations are negligible with magnitudes of less than 1%.

Table 5.14:
Buses inside modal voltage control area 4 for mode 2.

: 15119 23]| 36 1108|112{116(119]|122|125(128|133}191
P4 16 | 21 |24] 68 |109]113{117|120]123[126|129}134
L 1712213586 |111]115]|118}121|124|127|130/190

Graphic at figure 5.16 shows the contribution of mode 2 on the bus voltage
magnitude for MVCA 4.
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Figure 5.16: Normalized arguments for voltage magnitude deviations. MCVA 4. Mode 2.

MVCA 5 is formed only with buses experiencing angles around -21° and
showing magnitudes of modal voltage phase angle not greater than 6%. Buses inside
area 5 are listed in table 5.15.
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Table 5.15:
Buses inside modal voltage control area 5 for mode 2.

Low contributions of modal reactive power in this area all elements, with
generators contributing with less than 2%, loads with less than 1.5% and shunt

elements with less than 0.5%
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Figure 5.17: Normalized arguments for voltage magnitude deviations. MCVA 5. Mode 2.

Figure 5.17 shows that the variations in bus voltage magnitude due to mode 2.

Buses of the central system showing angles around -22° and modal voltage
phase angle variations of less than 3.3% compose MVCA 6. Table 5.16 enlists the
buses grouped within this area.

Results for modal reactive power flow show that GEN-9 is experiencing the
maximum participation with 6.22%., load’s contribution is 2.5% and shunt element
at bus 90 is contributing with less than 0.5%.

Table 5.16:
Buses inside modal voltage control area 6 for mode 2.
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The modal voltage magnitude deviations are depicted in figure 5.18, small
variations are observed for this area.
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Figure 5.18: Normalized arguments for voltage magnitude deviations. MCVA 6. Mode 2.

The oscillation behavior of the rest of the buses in the system exhibit larger
angular distances from the areas mentioned before. From these buses there are some
buses where the contribution of mode 2 has an important effect on the bus voltage
magnitudes, as seen from figure 5.19. The identified buses are grouped together as
sub-areas in the system, and are listed in table 5.17.

Buses inside sub-groups 1 and 2 have oscillation pattern more similar to that
experienced by MCVA 2, but both sub groups are connected to sub group 3, which is
exhibiting an out of phase oscillation with them. Sub-group 1 is formed with angles
between 167° and 163°, sub-area 2 with angles from 158° to 153° and sub-group 3
with angles around 32°

Modal reactive power calculations show small participation from GEN-40 and
GEN-41 with values of 10.75% and 3.65% respectively, and negligible participations
of loads in sub-area 2. Also small contributions are found from GEN-28 in sub-area
3

Table 5.17:
Buses inside modal sub-areas for Mode 2.

1 172173174

40 |176|178
2 41 (177|179
3 28 |175
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5.19: Normalized arguments for voltage magnitude deviations. Sub areas. Mode 2.

Important participations in the exchange of modal reactive power are found
in devices at buses outside the voltage areas, these are: generators 4, 47, 1, 18 and 2
with 50.04%, 37.72%, 30.09%, 24.30% and 20.74% respectively.

Results exposed above show that MVCA 1 and MVCA 2 has the highest
variations of modal reactive power, with SVC at bus 48 with 100% and GEN-39 with
79.88%. Other devices with good participation are found outside the MVCAs
formed, GEN-4 and SVC at 47 with 50.04% and 37.72% respectively. Best locations
for parallel voltage control are located in sub-area 3 and MVCA 3.
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5.3.2 Dominant Loads

Interarea mode 1

Modal voltage phase angle results are depicted in the following figures, with those
buses experiencing an angle near 0° with positive magnitude and those with angles
near 180° as negative. The maximum contribution is found at bus 181.
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Figure 5.20: Modal voltage phase angle deviations, angle near 0°. Mode 1.
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Figure 5.21: Modal voltage phase angle deviations, angle near 180°. Mode 1.
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The voltage phase angle variations of buses with angles near 0° goes from
30% to 98.92% and buses 185 and 183 with less than 30% whilst the participations of
buses with angles near 180° goes from 1% to 25%.

The participation of the loads in modal active power flow is shown in table
5.18, only participations higher than 10% are listed.

Table 5.18:
Modat active power flow for loads. Mode 1.

Modal Active Power Flow

Load Normalized
Bus  Magnitude Angle
88 28.9725 -3.0219
184 20.4403 -3.9133
181 19.8447 225.7401
52 15.3421 197.3764
157 14.6596 -3.7451
161 14.0580 -4.5977
87 13.5525 -3.1641
97 12.4664 -5.3211
169 10.9479 -2.3293
180 10.6186 -4.7611

Examination of relative magnitudes and phase angles of modal active power
and modal voltage phase angle it is expected that load at 181 be the dominant load
for mode 1, where the variations in load’s characteristic will result in significant
variations in mode damping. On the other hand, loads at bus 179 and 175 have low
modal power participation (3.66% and 0.48%) and variations in damping are
expected to be small even when the magnitude of bus voltage angle is high.

As shown in fig. 5.22, the influence of load at bus 181 is significant. With this
load modeled as constant impedance the mode damping is close to 5%, value that
may be considered as a minimum acceptable. But with constant current the damping
calculated is equal to 3.97% and 2.81% for constant MVA.
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Figure 5.22: Variations in mode damping due to variations in load characteristic, Mode 1.

Analysis as the ones presented for buses 181, 175 and 179 where performed
for loads at buses with modal voltage phase angle from 30% to 47% and
participations in modal active power flow from 4.7% to 15%. As expected, the
variations were small.

The analysis presented before were performed for buses experiencing high
magnitudes of voltage phase angles, now the studies are focused on loads with high
contribution to modal active power flow, loads at buses 88, 184 and 181.
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Figure 5.23: Variations in mode damping due to variations in load characteristic, mode 1.

From this analysis it can be determined that load at bus 181 has an important
influence over mode 1. The variations in the model representing this loads produces
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significant changes in damping of mode 1. In this way it is important to have a well
representation of the behavior of load 181.

Interarea mode 2

Values of voltage phase angle are exhibit in the following graphics
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Figure 5.24: Modal voltage phase angle deviations, angle near 0°. Mode 2.
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Figure 5.25: Modal voltage phase angle deviations, angle near 180°. Mode 2.

From a modal voltage analysis it is observed that load at bus 181 is
experiencing the largest magnitude, the angle at this bus is near 0°
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The load’s participation in the exchange of modal active power are presented
in the following table, only loads with magnitudes greater than 4% are listed.

Table 5.19:
Modal active power flow for loads, mode 2

Modal Active Power Flow

Load Normalized
Bus Magnitude  Angle
181 23.7519317 | 208.329982
88 7.75176608 | 165.879385
52 6.49498752 | 10.2203516
151 4.69557501 | 2.03274486
153 4.31193871 | 2.01696284

The modal analysis performed shows

that load at bus 181 may have a

significant influence over the mode damping, with important participation in
voltage phase angle and also in modal power. Other loads that are analyzed are
located at bus 136, 151 and 153, but with lower values. Figure 5.26 depicts the
variations in damping from variations in load dynamics characteristic.
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Figure 5.26: Variations in mode damping due to variations in load characteristic. Mode 2.

From these results is determined that load at bus 181 is the dominant load for
mode 2 and attention to the model of this load must be taken into account.

102



5.4 Concluding Remarks

In this chapter, the practical application of the modal voltage variations and modal
power flow from the right eigenvector to the study small disturbances stability has
been presented for 2 different systems.

Modal bus voltage calculation can be helpful in the identification of areas
with coherent oscillation, denominated in this work as modal voltage control areas,
as well as possible location for voltage control. Modal reactive power flow, on the
other hand, can indicate the dynamic devices, loads and elements inside the power
system with larger participation on the reactive power due to one mode or
combination of modes of concern.

The analysis of the argument of modal voltage phase angle and the study of
modal active power helps to locate loads in the system with significant influence
over the system damping. After the selection of the possible dominant loads, the
influences were proven by varying the dynamic characteristic at one load at time
and calculating the effects over system damping.
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Chapter6
Conclusions

6.1 General Conclusions

The work exposed in this thesis has focused primarily on the analysis and
understanding of the modal quantities calculated with the modal voltage variations
and modal power flow studies.

The analytical procedure proposed for modal voltage control areas permits,
for an oscillation mode or combination of modes, to detect and group together buses
showing coherent oscillation behavior into areas of voltage control. The analysis of
reactive modal contribution allows the comprehension of the elements with more
participation in the exchange of reactive power inside each area, whilst the study of
the voltage magnitude variations suggests suitable locations for dynamic voltage
support.

Study experience with power systems showed that not all buses can be
grouped inside a modal voltage area whether for a low contribution the swing
modes have on the bus voltage angle variations or for being located between two
areas oscillating out of phase, and was also found that this can happen for buses
between synchronous generators with different oscillation behavior.

The analysis tool for the voltage stability control presented in this document
has been developed with a dynamic perspective that has not been widely addressed
in the literature. Due to the linearization of the power system is only valid for small
disturbances.
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In the analysis of dominant loads the information from modal voltage phase
angle and the modal active power is used to identify load buses with large influence
over the system damping. The advantages of this approach are two-fold. First, loads
having a larger impact on system behavior can be identified. Further, the nature of
load contribution can be determined.

The results of practical application presented in this work clearly showed that
for a load to be referred as dominant the contribution in modal active power as well
the relative location for a mode/modes of concerns, modal voltage phase angle, are
important.

The analogy of the active loads as forces can be extent, with proper
considerations, for locating parallel devices focused on adding damping to
electromechanical oscillations from a point of view of small signal behavior.

This work also focused on the development and discussion of a new
methodology for computing the modal power flow from a section of the right
eigenvector. The proposed technique is based in the equivalences between the
solution for the modal voltage deviations developed in chapter 3 and the solution for
the algebraic part of the DAE eigenvector. The proposed method was applied for the
study of modal voltage areas and dominant loads.

The advantages of the new methodology for the analysis of oscillation modes
of large power system are:

1. Allows the use of sparse methods for computing eigenvalues/vectors.

2. Avoids the calculation of the inverse of the modified admittance matrix for
the computation of modal voltage deviations.

3. Maintains the structure of the system model.

A disadvantage is that the solution is only valid for time at =0, not allowing the
study in time of the effect of the electromechanical modes.

Other developments discussed in this research work include:

1. The study of the non-homogenous response as different approach for the
formulation of the modal power oscillation flow.
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2. Close loop representation of the augmented system model for the evaluation
of the influence of feedback signals in the modal power flow.

3. Extensions to the basic algorithm to compute modal power flow from
measured data based on least squares optimization were proposed with
relations between the standard approach and the proposed methodology.

6.1 Suggestions for Future Work

1. The study of the non-linear behavior of the power system in the exchange of
modal power with the use of 2" or higher order equations for the modal

oscillation power flow method, together with the normal form method.

2. The effect of reactive power load has on the system damping. As long as the
study of loads where their dynamic behavior have a significant influence on
the damping of the system, for active and reactive power loads.

3. The analysis of power systems from measured systems based on the concepts
of modal power flow.

4. The modal power oscillation flow method indicates the participation that the
elements already connected to the power system have in the exchange of
modal active and reactive power for a mode or combination of modes of
concern. It would be interesting to develop a variation of the method where
the participation of a not connected element may be predicted.
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