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Resumen

El problema de optimización de la potencia reactiva es muy importante para la seguridad del

sistema de potencia y el funcionamiento económico. El objetivo fundamental es encontrar los

ajustes de las variables de control, tales como el voltaje de los generadores, la derivación de

los transformadores, los capacitores e inductores en derivación, que ayudan a mantener los

perfiles de voltaje aceptable y minimizar las pérdidas de energía.

La estabilidad de voltaje es una preocupación importante en la planificación y operación de

los sistemas de potencia. Es bien sabido que el colapso y la inestabilidad de voltaje dan lugar
al principal fallo del sistema. El problema de la estabilidad de voltaje puede explicarse

simplemente como la incapacidad del sistema de potencia para proporcionar el consumo de

potencia reactiva.

Varios modelos matemáticos para el despacho de la potencia reactiva han sido reportados en

la literatura. La mayoría de ellos adoptan una función de un solo objetivo. La minimización

de las pérdidas de potencia activa es a menudo considerada como una función objetivo para
el envío de potencia reactiva en sistemas de potencia. Dado que esta función objetivo tiende a

elevar los voltajes del generador, el estado resultante puede dar lugar a una falta de reservas

necesarias para proporcionar potencia reactiva durante las contingencias. Reducir al mínimo

las desviaciones de los voltajes de los valores deseados es ampliamente utilizado.

Recientemente, los métodos de optimización multi-objetivo para el control de la potencia
reactiva se han hecho populares. Convencionalmente, la atención se ha centrado en las

pérdidas de potencia y la desviación de voltaje. Relativamente, pocos esfuerzos han estado

directamente involucrados con la mejora de la estabilidad de voltaje.

Hasta ahora, varios algoritmos de optimización matemáticos, tales como los algoritmos de

gradiente, programación lineal, programación no lineal y los métodos de puntos interiores,

han sido ampliamente utilizados para resolver el problema. Sin embargo, el despacho de la

potencia reactiva es un problema de optimización de funciones no continuas y no lineales.

Estas técnicas convencionales necesitan muchos supuestos matemáticos, tales como la

continuidad, convexidad, etc., y muchas veces quedan atrapados en soluciones óptimas
locales. En los últimos años, los algoritmos evolutivos (AE), tales como algoritmos

genéticos, programación evolutiva y estrategia evolutiva, se han aplicado al problema de

optimización de la potencia reactiva. Teóricamente, estas técnicas convergen a la solución

óptima global con alta probabilidad. Son útiles especialmente cuando fallan otros métodos de

optimización para encontrar la solución óptima.

En esta tesis se propone una formulación multi-objetivo del problema de la potencia reactiva

y el control de voltaje, resuelto mediante una técnica evolutiva multi-objetivo. Los objetivos
son la desviación de voltaje y un índice de estabilidad de voltaje del sistema. Las

restricciones de las cargas y operación son también tomadas en cuenta. El enfoque propuesto
se evalúa en tres sistemas de potencia de diferente complejidad.



Abstract

The reactive power optimization problem is very important to power system security and

economical operation. The basic objective is to find proper adjustments on the control

variables, such as generator voltages, transformer taps, shunt capacitors and inductors, that

help to maintain acceptable voltage profiles and minimize power losses.

Voltage stability is a major concern in power systems' planning and operation. It is well

known that voltage instability and collapse have led to major system failure. The problem of

voltage stability may be simply explained as the power system inability to provide the

reactive power consumption.

Several mathematical models for the reactive power dispatch have been reported in the

literature. Most of them adopt a single-objective function. The active power losses

minimization is often considered as an objective function for reactive power dispatch in

power systems. Since this objective function tends to raise generator voltages, the resulting
state may give rise to a lack of required reserves to provide reactive power during

contingencies. Minimizing the deviations ofvoltages from desired valúes is widely used.

Recently, multi-objective optimization approaches for reactive power control have become

popular. Conventionally, the attention has been focused upon power losses and voltage
deviation. Relatively, little effort has been directly involved with voltage stability

improvement.

Up to now, several mathematical optimization algorithms, such as gradient-based algorithms,
linear programming, non-linear programming and interior point methods, have been widely
used to solve the problem. However, the reactive power dispatch is an optimization problem
of non-continuous and non-linear functions. These conventional techniques need many

mathematical assumptions, such as continuity, convexity, etc., and often they become stuck

into local optimal solutions. In recent years, evolutionary algorithms (EAs), such as genetic

algorithm, evolutionary programming and evolutionary strategy, have been applied to

reactive power optimization problem. Theoretically, these techniques converge to the global

optimum solution with high probability. They are useful especially when other optimization
method fail in finding the optimal solution.

In this thesis, a formulation multi-objective of the reactive power and voltage control

problem solved by a multi-objective evolutionary technique is proposed. The objectives are

voltage deviation and a voltage stability index of the system. The load constraints and

operational constrains are also taken into account. The proposed approach is evaluated in

three power systems of different complexity.
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Chapter 1

Introduction

Recently, the problem of the reactive power and voltage control or volt/var control

(WC) to improve the power system economy and security, has attracted special attention.

The basic objective is to find proper adjustments on the control variables, such as generator

voltages, transformer taps, shunt capacitors and inductors, which help to maintain

acceptable voltage profiles and to minimize power losses. A proper volt/VAr control can

increase system efficiency, decrease system power losses, and improve voltage profile.
Several reactive power dispatch's formulations have been reported. There are two

general approaches to solve this complex problem.
The first approach employs conventional optimization techniques, such as gradient-

based algorithms, linear programming, non-linear programming and interior point methods

[1.1-1.4]. Unfortunately, theWC is a non-linear and non-continuous optimization problem
and may have several local mínima. Since these conventional techniques require many

mathematical assumptions, such as differential properties of the objective functions and a

unique minimum within the variables' domain, they are susceptible to be trapped into local

minima.

The second approach is based on the heuristic methods to search for the optimal
solution in the problem space [1.5-1.7]. Theoretically, these techniques converge to the

global optimum solution with high probability. These heuristic methods have been applied
to solve the reactive power dispatch problem with impressive success.

Nowadays, multi-objective optimization approaches for reactive power control have

become popular. However, some approaches do not address the problem as a true multi-

objective problem, because it converts to a single objective problem [1 .8-1 .10].
The recent direction is to handle the objectives simultaneously as competing objectives

instead of simplifying the multi-objective problem to a single objective problem.

Conventionally, the attention has been focused upon power losses, fuel cost, atmospheric

emissions, and voltage deviation [1.11-1.14]. Relatively, little effort has been directly
involved with voltage stability improvement. In this thesis, this is one of our major

purposes.

Any real-power production, transport, and/or consumption are at the same time

accompanied by the production, transport, and/or consumption of reactive power. In

particular, each load consumes certain reactive power QL as it consumes real power PL.

Because ofthis, it is necessary to balance reactive power.
The reactive-power compensation for the power consumed by loads and reactive power

lost in transport could be provided by the loads themselves, by the reactive-power-

compensating devices on the transmission system (such as shunt and series capacitor

banks), and/or by the power plants.



The problem of reactive-power dispatch is generally bundled with the problem of

maintaining load voltages within the pre-specified limits. The generator voltage set-point
valúes VGiref are optimized with respect to certain performance criteria subject to the

reactive-power-balance constraints, the load voltage acceptable limits, and the available

limits on the reactive power generated and the limits on generator voltages. The generation-
based reactive-power dispatch falls under the category ofthe optimal power flow (OPF).

The optimal power flow (OPF) problem, which was introduced in 1960s is an important
and powerful tool for power system operation and planning [1.15]. Reactive power

optimization is a sub-problem of OPF calculation, which determines all the controllable

variables, such as tap ratio of transformers, output of shunt capacitors/reactors, reactive

power output of generators and static reactive power compensators etc., and minimizes

transmission losses or other appropriate objective functions, while satisfying a given set of

physical and operational constraints.

Since transformer tap ratios and outputs of shunt capacitor/reactors have a discrete

nature, while reactive power output generators, bus voltage magnitudes and angles are, on

the other hand, continuous variables, the reactive power optimization problem is formulated

as mixed-integer, nonlinear problem [1.16].
Modern algorithms are considered as effective tools for nonlinear optimization

problems with applications to power systems scheduling, e.g. economic load dispatch

(ELD). The algorithms do not require that the objective functions and the constraints have

to be differentiable .and continuous.

Algorithms based on the principies of natural evolution have been applied successfully
to a set of problems of numerical optimization. With a good degree of parallelism and

stochastic characteristics, they are adequate for solving complicated problems of

optimization, such as those found in reactive optimization, distribution systems planning,

expansión of transmission systems, etc. [1.17-1.21]. The literature presents an extensive list

of works concerning the application of evolutionary techniques to problems of power

systems [1.22]. In general, these applications concéntrate primarily on power system

planning, followed by distribution systems.
Lai and Ma [1.17] have presented a modified evolutionary program to solve the reactive

power dispatch, obtaining good results. Other authors [1.19, 1.20] have applied the same

algorithm for other power system problems, reporting results using the IEEE30 system. A

simplified evolution strategy has been used in [1.20] and compared with genetic algorithms
and the Lai and Ma algorithm. More recently, a proposal quite similar to [1.17] has been

presented in [1.21]. In spite of these efforts, evolutionary techniques have not yet been

explored completely for power system applications [1.23].

Recently, different heuristic algorithms have been analyzed to solve optimization

problems. Generally speaking, all population-based optimization algorithms suffer from

long computational times because of their evolutionary/stochastic nature. This crucial

drawback sometimes limits their application to offline problems with little or no real-time

constraints.

In a population of potential solutions to an optimization problem within an n-

dimensional search space, a fixed number of vectors are randomly initialized, and then new

populations are evolved over time to explore the search space and lócate the mínima ofthe

objective function. Ifthe fitness ofthe trial vector is better than that ofthe target, the target
vector is replaced by the trial vector in the next generation.
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Optimization techniques are applied to determine the steady-state optimal operating

conditions, where voltage magnitudes and angles at all buses are evaluated for specific
levéis of load and generation. Evidently the results of any optimization technique will

impact on the power system stability. Therefore, in this paper the implication on steady
state voltage stability is taken into account.

1.1. Thesis Objectives

The aim ofthis thesis is the proposition ofa multi-objective formulation for the reactive

power and voltage control or volt/var control (WC) optimization problem. The objectives
are the buses' voltage deviations and the system's voltage stability, measured through an

index. The load and operational constraints are also taken into account.

It also proposes the application ofmulti-objective evolutionary techniques as effective

tools to solve the multi-objectiveWC problem.

1.2. Thesis Outline

The thesis is broke down into five chapters to report on the whole research activities

and the results obtained.

• Chapter 1 presents a brief introduction, as well as the main objectives of the

thesis.

• Chapter 2 introduces the general concept of the multi-objective problem, and

several concepts and definitions related to multi-objective optimization. Also

presents an overview on the evolutionary algorithm for multi-objective

optimization.

• Chapter 3 presents and describes the statement of the problem to be handled

with, as well as the voltage stability index definition and the voltage deviation

function. The utilized multi-objective evolutionary approaches and the spacing
metric used to evalúate quantitatively the performance of the proposed

algorithms are also summarized.

• Chapter 4 exposes the application ofthe proposed multi-objective evolutionary

techniques to the 9-bus power system, 26-bus power system, and the 39-bus

system.

• Finally, some concluding remarks and recommendations for future works are

presented.
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• Finally, some concluding remarks and recommendations for future works are

presented.
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Chapter 2

Multi-Objective Optimization

As the ñame suggest, a multi-objective optimization problem (MOP) deals with more

than one objective function. In most of the real world problems, múltiple objectives or

múltiple criteria are possible. If these objectives are conflicting, then the problem becomes

one of finding the best possible designs that satisfy the competing objectives under

different tradeoff scenarios [2.1]. With these múltiple objectives and constraints taken into

account, an optimum design problem can then be formulated. This type of problems is

known as multi-objective, multi-criteria, or vector optimization problems [2.2].

Multi-objective optimization (MO) is a very demanding research topic because most

real-world problems have not only amulti-objective nature, but also many open issues to be

answered qualitatively and quantitatively [2.1]. In fact, there is not even a universally

accepted definition of optimum as in single-objective optimization [2.3], because the

solution to a MOP is generally more than a single point. It consists ofa family of points in

a feasible solution space, which describes the tradeoff among contradicted objectives.

2.1 The general multi-objective optimization problem

Multi objective optimization (MO) is a methodology to look for an optimal solution to

multivariable problems with múltiple, often conflicting, objectives [2.4]. The problem can

be formulated as follows [2.5]:

Find the vector x" = [x[,x'2,...,x*n_Twhich will satisfy the m inequality constraints:

gi{x)<0 i = l,2,...,m (2.1)

the/? equality constraints:

h)(x) = 0 i = \,2,...,p (2.2)

and optimizes the vector function:

f(x) = [fi(x),f2{x),...,fk{x)J (2.3)

where x =[x_,x2>...,x„] is the vector of decisión variables.

In other words, we wish to determine the set of decisión variables which satisfy (2.1)

and (2.2). That is, the particular set x',x'2,...,x'n which also yields the optimum valúes of all

the objective functions.



Constraints expressed through (2. 1 )-(2.2) define the feasible región F and any point x

in F defines a feasible solution. The vector function f(x) is a function which maps the set

F into the set X, which represents all possible objective functions' valúes.

The problem usually has no unique, perfect (or utopian) solution, but a set of non-

dominated, altemative solutions, known as the Pareto-optimal set [2.6].

2.1.1 Background concepts

Several concepts and definitions related to multi-objective optimization are described in

the following [2.7].

Decisión variables:

The decisión variables are a set of n parameters whose valúes give a solution (can be

valid or not) to a problem. These parameters are denoted as *., j = \,2,...,n In this work,

these variables will be represented by:

x=[x1,x2,...,x„]r (2.4)

Constraints:

Most real world optimization problems have (natural and problem dependant)
constraints to be satisfied (they draw up the boundaries of the feasible set). Constraints

depend on the decisión variables and can be expressed in form ofmathematical inequalities

(2.5)-(2.6).

£,(3c)<0 1 = 1,2 m (2.5)

hi(x) = 0 i = \,2,...,p (2.6)

We say that an inequality constraint is active at x ifg,(3c) = 0 . All equality constraints

h, (regardless ofthe valué of 3c used) are considered active at all points ofF.

Objectivefunctions:

The objective functions are the evaluation criteria used to estimate how good a solution

is. As in the case of constraints, objective functions depend on the decisión variables. In

multi-objective optimization problems there are k (> 2) objective functions

f(x~),f2(x),....,fk(x~) . In this document, we will represent / in the following way:

7w =[./;(-*)- /2(*)-* .f,mT (2.7)
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Pareto Dominance:

A vector x' =(xl,x2,...,xk) is said to domínate y' = (y,, y2, ..,yk) (denoted by x <y)

if and only \ix ispartially less than y, i.e., V/e{l,. ..,&}, x, Éy, A3ie{l,...,k}:x1 <yr
As an example, for the case of two decisión vectors 3c", y* e X,

* _*

x <y

(3c* strictly dominatesy')

* •

x <y

(3c* weakly dominates y')

x ~y

(3c
'

and Jv* are non-dominated

between themselves)

for every i
= \,...,k

iff /,[*)£/,(?)
for every /

= !,..., k

iff /(r)//(r)A^(-v-)^(r)
for every i

= \,...,k

These definitions are analogous for maximization problems (>-,>j~)* To reinforce these

concepts, let's consider the following example:

3c* =[2,5,4.5j\ y* =[2,5,4.8f andz" =[3,6,4.7f

3c" < ~z because 2 < 3, 5 < 6 and 4.5 < 4.7

3c" -< y' because 2 = 2, 5 = 5 and 4.5 < 4.8 and,

y' ~ z* because 2 < 3, 5 < 6 and 4.8 > 4.7

Figure 2.1 shows the difference between the decisión variable space and the objective
function space.

A-p.1]

B = [3,2]

■-Q

-O

1 2 3 x

Decisión variable space

With A:

/1(x,y)=l-l + l = l

/2(x,y)=l2-l2+l = l

WithB:

/,(x,y) = 3-2+l=2

/2(x,y)
= 32-22+l=6

A B A B

Because 1 < 2 and 1 < 6

We say that A dominates B

A-< B

-9

A

0

/i(x,y)
=

x-y + i

12 3 f,
Objective fiínction space

Figure 2. 1 : Graphical illustration ofthe decisión variable space (left) and objective function space (right).
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Pareto optimum:

The concept of Pareto optimum was formulated by Vilfredo Pareto [2.8] in the XIX

century, and constitutes by itself the origin of research in multi-objective optimization. The

formal definition is as follows [2.5]:

A point 3c*eF is Pareto Optimalii for every xsF and / = {l, 2,. ..,k) either

f,G?) = ft{x), Vi el (2.8)

Or, there is at least one / e / such that

f,{x)<fi(x) (2.9)

In words, this definition says that 3c
*

is Pareto optimal if there exists any feasible vector

3c which would decrease some criterion without causing a simultaneous increase in at least

one other criterion. Unfortunately, the Pareto optimum almost always gives not a single

solution, but rather a set of solutions called non-inferior or non-dominated solutions.

Paretofront:

When plotted in the objective space, the non-dominated points are collectively known

as the Pareto front. The mínima in the Pareto sense are going to be in the boundary ofthe

design región, or in the locus ofthe objective functions' tangent points. In figure 2.2 a bold

line is used to mark this boundary for a bi-objective problem which is known as the Pareto

front [2.5].

¡ x Points A, B: nondomínated points

Point C: dominated point

Figure 2.2: Graphical illustration ofthe Pareto front ofa two objective minimization problem

2.2 Examples under different test functions

A set ofmulti-objective test functions taken from the specialized literature are presented

below, each one presents a different complexity.
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2.2.1 Deb's test function

This example is a bi-objective test function proposed by Deb [2.9]:

Minimize f(x) = xi

Minimize f2 (x) = g(x)- h(x)

where:

g(x) = l + \0x2

h(x) = l- [J__ fx
sin(l2*.r*y¡)

(2.10)

(2.11)

(2.12)

(2.13)

£ind0<;c,<l, / = 1, 2

This problem h.as the Pareto front and the Pareto optimal set disconnected. Figure 2.3

shows the Pareto optimal set and the Pareto front ofthe Deb's test function.

Optimal set Pareto Front

0.5

-0.5

*-■? 0

0 0.2 0.4 0.6 0.8 1

x

-0.5

0 0.2 0.4 0.6 0.8 1

1 f,

Figure 2.3: Pareto front and optimal set for Deb's test function.

2.2.2 Kursawe's test function

This test function was proposed by Kursawe [2.10]:

(-0.2)»,/^24. v2 ,

Minimize f(x) = ^\-l0e

n .

Minimize /2(x) = ^(|*,| +5sin(x,)j
/=i

(2.14)

(2.15)

where -5 <
xl,x2,x3

< 5 .

Figure 2.4 shows the Pareto optimal set and the Pareto front for the Kursawe's test

function.
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Optimal set Pareto Front

-0.5

Figure 2.4: Pareto front and optimal set for Kursawe's test function.

2.2.3 Schaffer's test function

This test function is a two objective problem proposed by Schaffer [2.11]:

Minimize f(x)~-

x if x<\

-2 + x if l<x<3

4-x if3<x<4

-4 + x ifx>4

Minimize f2(x)-(x-5)
where -5<x<10.

The graphic on the left in figure 2.5 shows the Pareto optimal set, and the graphic on

the right the Pareto front for the Schaffer's test function.

(2.16)

(2.17)

Optimal set Pareto Front

-0.5

3 4 5 6 -1 -0.5 0 0.5

X1 /;
Figure 2.5: Pareto front and optimal solution for Schaffer's test function

1.5
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2.2.4 Kitta's test function

This is a two objective problem proposed by [2.12]:

Maximize f, (x, y) = -x2 + y

Maximize f2(x,y)-—x+ v + 1

Subject to:

-x + y <0

6 2

1 15
„

-x + y <0

2 2

-+v-30<0

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)

and 0<x,>><7.0.

Figure 2.6 displays the optimal solution and the Pareto front ofthe Kitta's test function.

Optimal set Pareto Front

12 3 4 -5

x1

Figure 2.6: Pareto front and optimal solution for Kitta's test function

2.2.5 Belegundu's test function

This test function was proposed by Belegundu [2.13]:

Minimize f (x) = -2x + y

Minimize f2(x) = 2x + y

Subject to

0>-x +y-l

0>x+y-7

(2.23)

(2.24)

(2.25)

(2.26)
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The decisión variables' bounds are the following:
0<x<5

0<. y<,3

(2.27)

(2.28)

The graphic of the left in figure 2.7 depicts the Pareto optimal set, and the graphic of the

right shows the Pareto front for Belegundu's test function.

Optimal set Pareto Front

Figure 2 7: Pareto front and optimal solution forBelegundu's test function.

The first three problems involve unconstrained optimization: Deb, Kursawe and

Schaffer with its Pareto Front and Pareto optimal set disconnected. The other two are

constrained optimization problems: Kitta and Belegundu with its Pareto Front and Pareto

optimal set connected. All these test problems have different levéis of complexity like

convexity, non-convex and disconnected Pareto optimal solutions.

It is noteworthy that the Pareto optimal set lies within the decisión variable space,

whereas the Pareto Front lies in the objective space.

2.3 Classical optimizationmethods

In any growing field of research and application, it becomes difficult to cali any study
'classicaV We are going to refer all search and optimization algorithms that use a single
solution updating within each iteration and mainly use a deterministic transition rule as

classical methods [2.14]. Such optimization algorithms can be found in standard textbooks

[2.15-2.17].
Most classical point by point algorithms utilize a deterministic procedure for

approaching the optimum solution. Such algorithms start from a random guess solution.

Thereafter, b.ased on a pre-specified transition rule, the algorithm suggests a search

direction, which is often arrived at by considering local information. A unidirectional

search is performed along the search direction to find the best solution. This best solution

becomes the new solution and the above procedure is continued for a number of times

[2.14].
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Classical optimization methods can be classified into two distinct groups: direct

methods and gradient-based methods [2.16]. In direct search methods, only the objective

function /(3c) and the constraint valúes (2.1)-(2.2) are used to guide the search strategy,

whereas gradient-based methods employ the first and/or second order derivatives of the

objective function and/or constraints to guide the search process. Since derivative

information is not used, the direct search methods are usually slow, requiring many

function evaluations in order to converge. On the other hand, gradient-based methods

quickly converge near an optimal solution, but are not efficient in non-differentiable or

discontinuous problems. There are some common difficulties with most classical direct and

gradient-based techniques, as follows [2.14]:

• The convergence to an optimal solution depends on the chosen initial solution.

• Most algorithms tend to get stuck in a suboptimal solution.

• Aín efficient algorithm to solve one optimization problem may not be efficient to

solve a different optimization problem.
• Algorithms are not efficient in handling problems having a discrete search

space.

• Algorithms cannot be efficiently used on a parallel machine.

In general, the difficulties associated to the classical optimization methods can be

summarized as follows [2.18]:

1. An algorithm has to be applied many times to find múltiple Pareto-optimal
solutions.

2. Most algorithms require some knowledge about the problem being solved.

3. Some algorithms are sensitive to the shape ofthe Pareto-optimal front.

Since 1980s, several multi-objective evolutionary algorithms (MOEAs) have been

proposed and applied in multi-objective optimization problems [2.2]. These algorithms
share the same purpose-searching for a uniformly distributed, near-optimal, and near-

complete Pareto front for a given MOP.

Generally, the approximation of the Pareto-optimal set involves two conflicting

objectives: the distance to the true Pareto front is to be minimized, while the diversity ofthe

generated solutions is to be maximized [2.19]. To address the first objective, a Pareto-based

fitness assignment method is usually designed in many existing MOEAs [2.20] in order to

guide the search toward the true Pareto-optimal front. For the second objective, some

successful MOEAs provide density estimation methods to preserve the population density.

2 .4 Evolutionary algorithm formulti-objective optimization

The first attempts to adapt evolutionary algorithm to solve multi-objective optimization

problems relied on straightforward transformations of a multi-objective optimization

problem into a single-objective one, known as the aggregating approaches.
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Fonseca and Fleming categorized several MOEAs and compared different fitness

assignment approaches. They classify these approaches in non-Pareto-based approaches,
and Pareto-based approaches [2.20].

2.4. 1 Plain aggregating approaches

The approach of combining objectives into a single function that is used for fitness

calculation is normally named aggregating functions. Although these approaches have the

advantage of producing one single solution, they require well-known domain knowledge
that is often not available. In addition, múltiple runs are required to find a family of non-

dominated solutions and to identify the Pareto optimal solution. The most popular

aggregating approaches are described in the following [2.5].

2.4.1.1 Weighted sum approach
This method consists of adding up all the objective functions together using different

weighting coefficients for each one. This means that our multi-objective optimization

problem is transformed into a scalar optimization problem through:

min¿W/¿(3c) (2.29)
/=i

where w,
> 0 are the weighting coefficients representing the relative importance of the

objectives. It is usually assumed that

¿w,=l (2.30)
;'=1

Ifwe w.ant that w¡ reflects closely the importance ofthe objectives, all functions should be

expressed in units of similar numerical valúes. Additionally, we can also transform (3.6) to

the form:

k

min*£w,y:(3c)c( (2.31)
í=i

where c, are constant multipliers that will scale properly the objectives.

This method is computationally efficient and can be applied to genérate strongly non-

dominated solutions that can be used as an initial solution for other techniques. The

problem with this approach is how to determine the appropriate weights when we do not

have enough information about the problem.

2.4.1.2 Goalprogramming

Charnes-Cooper [2.21] and Ijiri [2.22] propose the development of the goal

programming method for a linear model. In this method, the decisión maker has to assign

targets or goals that one's wishes to achieve for each objective. These valúes are

incorporated into the problem as additional constraints. The objective function will try to

minimize the absolute deviations from the targets to the objectives. The simplest form of

this method may be formulated as follows:

min

/=i
¿|/(*)-4 subjecttoxeF (2.32)
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where T, denotes the /th objective function f¡(x) target or goal set, and F represents the

feasible región. Thus, the criterion is to minimize the sum of the absolute valúes of the

differences between target valúes and the actually achieved valúes.

This technique is computationally efficient ifwe know the desired goals, and if they are

into a feasible región. However, the decisión maker has the task of devising the appropriate

weights or priorities for the objectives that will elimínate the non-commensurable

characteristics of the problem, which in most cases is difficult, unless there is prior

knowledge about the shape of the search space. Also, if the feasible región is difficult to

approach, this method could become very inefficient. Nevertheless, this technique may be

useful for linear or piecewise-linear approximation objective function. On the other hand, in

non-linear cases, altemative approaches may be more efficient.

2.4.1.3 The e-constraint method

This method is based on minimization of one (the most preferred or primary) objective

function, considering the other objectives as constraints, bounded by some allowable valué

et . Henee, a single objective minimization is carried out for the most relevant objective

function /¡ subject to additional constraints. Valúes e, are then altered to genérate the

entire Pareto óptima set. The method may be formulated as follows:

I. Find the minimum ofthe r th objective function, i.e. find 3c" such that

/r(x>min/,(*) (2.33)

subject to additional constraints ofthe form

f(x)<s¡ for i = 1,2,. ..,k and i*r (2.34)

where ■?, are assumed valúes of the objective functions which should not to be

exceeded.

II. Repeat I, for different valúes of e¡ . The information derived from a well chosen

set of ei can be useful to make decisions. The search is stopped when the

decisión maker finds a satisfactory solution.

The drawback of this approach is that it is time-consuming, and the coding of the

objective functions may be difficult for certain problems, particularly if there are too many

objectives. Furthermore, finding weakly non-dominated solutions may not be appropriate in

some applications.

2.4.2 Population-based non-Pareto approach

To overeóme the difficulties involved in the aggregating approaches, altemative

techniques based on population strategies, selection criteria, or special objectives' handling
has been developed [2.23]. These approaches are known as non-Pareto-based approaches.
The advantage of these approaches is that múltiple non-dominated solutions can be

simultaneously evolved in a single mn. The most popular approaches that fail into this

category are described in the following [2.5].
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2.4.2.1 VEGA

David Schaffer [2.1 1] extended the Grefenstette's GÉNESIS program [2.24] to include

múltiple objective functions. Schaffer's approach is an extensión of the Simple Genetic

Algorithm (SGA) that he called the Vector Evaluated Genetic Algorithm (VEGA), and that

differs from the first only in the way the selection is performed. This operator is modified
so that at each generation a number of sub-populations are generated by performing
proportional selection, according to each objective function in turn. Thus, for a problem
with k objectives, k sub-populations of size Nik each would be generated (assuming a total

population size of N). These sub-populations would be shuffled together to obtain a new

population of size N, on which GA would apply the crossover and mutation operators as

usual.

Richardson et al [2.25] noted that the shuffling and merging of all sub-populations

corresponds to averaging the fitness components associated with each of the objectives.
Therefore, the resulting expected fitness corresponds to a objectives' linear combination,
where the weights depend on the distribution of the population at each generation. The

main consequence ofthis is that when we have a concave trade-off surface, certain points in

concave regions will not be found through this optimization procedure.

2.4.2.2 Lexicographic ordering
In this method, the objectives are ranked by the designer in order of importance. The

optimum solution 3c* is then obtained by minimizing the objective functions, starting with

the most important one and proceeding according to the assigned order of importance.

Let the subscripts of the objectives indicate the priority of the objectives. Thus f (3c)
and fk (3c) denote the most and least important objective functions, respectively. Then the

first problem is formulated as:

Minimize f{ (3c) (2.35)

subject to

g,(*)<0, ;
= l,2,...,m (2.36)

and its solution 3c* and /," = (3c*) is calculated. Then the second problem is formulated as:

Minimize f2 (3c) (2.37)

Subject to

g;(3c)<0, j = \,2,...,m (2.38)

fx{*) = fx' (2*39)

The solution to this problem is 3c2* and f2 = f2 \x2 ) . This procedure is repeated until all k

objectives have been taken into account. The rth problem is given by

Minimize f (3c) (2.40)

subject to

gj(x)<0, f = l,2,...,m (2.41)
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fl(x) = fl* l = \,2,...,i-l (2.42)

The solution obtained at the end, i.e., xk is taken as the desired solution x ofthe

problem.
The use of tournament selection within this approach makes an important difference

with respect to other approaches such as VEGA. This technique may be able to see as

convex a concave trade-off surface, although really depends on the distribution of the

population and on the problem itself. Its main drawback is that this approach will tend to

favor more certain objectives, because the randomness involved in this process, and this

will have the undesirable consequence to converge to a particular part of the Pareto front,

rather than to delinéate it completely [2.26].

2.4.2.3 Use ofGame Theory
This technique involves a simple optimization problem with two objectives and two

design variables which graphical representation is shown in figure 2.8. Let fi(xl,x1) and

/2(x,,x2) represent two scalar objectives and jc, and x2 two scalar design variables. It is

assumed that one player is associated with each objective. The first player wants to select a

design variable jc, which will minimize his objective function /, , and similarly the second

player seeks a variable x2 which will minimize his objective function f2 . If f and f2 ate

continuous, then the contours for constant valúes of fx and f2 appear as shown in Figure

3.8. The dotted lines, passing through 0, and 02, represent the loci of rational

(minimizing) choices for the first and second player for a fixed valué of x2 and jc,,

respectively. The intersection of these two lines, if it exists, is a candidate for the two

objectives minimization problem, assuming that the players do not cooperate with each

other (non-cooperative game). In figure 2.8, the point N(x¡ ,jc2*) represents such

intersection point. This point, known as a Nash equilibrium solution, represents a stable

equilibrium condition in the sense that any player can deviate unilaterally from this point
for further improvement of his/her own criterion [2.27].

This point is characterized by

f(xx,x;)<f(xvx;) (2.43)

and

f_(x_,x2)<f2(xx,x2) (2.44)

where jc, may be located to the left or right of jc, in equation (2.43), while x2 may lie

above or below jc2 in (2.44).

This approach seems to be computationally very efficient, but is not possible to

genérate more than one non-dominated solution, which hopefully will be the best overall

solution to the problem [2.28]. However, it is indeed possible to extend this approach to k

players, and to have several Nash equilibrium points, with which the Pareto front can

actually be found, although a cooperative game may be preferred in that case over a non-

cooperative approach [2.29].
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Cooperative and non-cooperative game solutions.

2.4.3 Pareto-based approaches

The basic idea of the Pareto-based fitness assignment is to find a set of solutions in the

population that are non-dominated by the rest of the population. The highest rank to these

solutions are assigned and eliminated from further contention. Generally, all approaches of

this class explicitly use Pareto dominance in order to determine the reproduction probability
of each individual. Some Pareto-based approaches are described in the following [2.18].

2. 4. 3. 1 Non-dominatedSorteaGeneticAlgorithm (NSGA)
Srinivas and Ded [2.30] propose the NSGA, which is based on several layers of

individuáis' classifications. Before the selection is performed, the population is ranked on

the basis of non-domination. All non-dominated individuáis are classified into one

category, with a dummy fitness valué, which is proportional to the population size, to

provide an equal reproductive potential for these individuáis. To maintain the population's

diversity, these classified individuáis are associated with their dummy fitness valúes. Then

this group of classified individuáis is ignored and another layer of non-dominated

individuáis is considered. The process continúes until all individuáis in the population are

classified.
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Since individuáis in the first front have the máximum fitness valué, they always get

more copies than the rest of the population. This allows searching for non-dominated

regions, and results in quick convergence.

2.4.3.2 NichedPareto GeneticAlgorithm (NPGA)
Horn et al [2.31] propose a tournament selection schema based on Pareto dominance.

Two competing individuáis and a comparison set of other individuáis are picked at random

from the population. The number of individuáis in the comparison set is given by the

parameter tdom .

Generally, the tournament selection is carried out as follows. If one candidate is

dominated by the comparison set while the other is not, then the latter will be selected for

reproduction. If neither of both candidates is dominated by the comparison set, then the

winner will be decided by sharing. Phenotypic sharing on the attribute space is used in this

technique.
Since this approach does not apply Pareto selection to the entire population, but only to

a segment of it at each run, the technique is very fast and produces good non-dominated

runs that can be kept for a large number of generations [2.26]. However, besides requiring a

sharing factor, this approach also requires a good choice of the valué of tdom to perform

well, complicating its appropriate use in practice.

2. 4.3. 3 Strength Pareto Evolutionary Algorithm (SPEA)
Zitzler and Thiele [2.32] presented SPEA as a potential algorithm for multi-objective

optimization. This technique stores externally the individuáis that represent a non-

dominated front among all solutions considered so far. All individuáis in the external set

particípate in selection. SPEA uses the concept of Pareto dominance in order to assign
scalar fitness valúes to individuáis in the current population.

The procedure starts with assigning a real valué s in [0, 1) called strength for each

individual in the Pareto-optimal set. The strength of an individual is proportional to the

number of individuáis covered by it. The strength ofa Pareto solution is at the same time its

fitness. Subsequently, the fitness of each individual in the population is the sum of the

strengths of all external Pareto solutions by which it is covered. In order to guarantee that

Pareto solutions are most likely to be produced, one is added to the resulting valué. This

fitness assignment ensures that the search is directed toward the non-dominated solutions

and, at the same time, the diversity among dominated and non-dominated solutions is

maintained.

Since non-dominated sorting ofthe whole population is not used for assigning fitness,

the fitness valúes do not favor all non-dominated solutions of the same rank equally. This

bias in fitness assignment in the solutions of the same front is dependent on the exact

population and densities of solutions in the search space. Moreover, in the SPEA fitness

assignment, an external solution which dominates more solutions gets a worse fitness.

20



2.5 Remarks

Most of the real world problems involve more than one objective, making the múltiple

conflicting objectives interesting to solve. Classical optimization methods are inconvenient

to solve multi-objective optimization problems, as they could at best find one solution in

one simulation mn. However, evolutionary algorithms can find múltiple optimal solutions

in one single simulation mn due to their population-based search approach. Thus, EAs are

ideally suited for multi-objective optimization problems.
The use of evolutionary algorithms for multi-objective optimization, an área called

evolutionary multi-objective optimization, has significantly grown in the last few years,

giving rise to a wide variety of algorithms. In this work, we will have the opportunity to

apply some ofthem.
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Chapter 3

Reactive power and voltage control

Voltage stability is a major concern in power systems' planning and operation. It is well

known that voltage instability .and collapse have led to major system failure. The voltage

stability problem may be simply explained as the power system inability to provide the

reactive power consumption.
The reactive power optimization problem is very important in power system security

and due to economical operation. The basic objective is to find proper control variables'

adjustments, such as generator voltages, taps of transformers, shunt capacitors and

inductors, which help to maintain acceptable voltage profiles and minimize power losses.

Recently, multi-objective optimization approaches for reactive power control have

become popular [3.1-3.4]. Conventionally, attention has been focused upon power losses

and voltage deviations. Less effort has been given to voltage stability improvement. In this

chapter, one way to take into account such aspect is proposed.

3.1 Problem formulation

The reactive power and voltage control or volt/var control (WC) optimization problem

may be formulated as the minimization of two competing objective functions: (/) the

voltage deviation; (ii) the voltage stability index, while satisfying several equality and

inequality constraints. Generally the problem is formulated as follows.

3.1.1 Voltage stability index minimization

Among different indexes for voltage stability and voltage collapse prediction, a voltage

stability index, L-index [3.5], is chosen as an indicator related to voltage stability. This

index is chosen because ofa compromise between simplicity and suitability.

Apart from its fast calculation, this index is able to evalúate in each bus its steady state

voltage stability margin. Likewise, the chosen index can also take into account generator

buses reaching reactive power limits.

The L-index valué ranges between zero (no load) and one (voltage collapse). This valué

implicitly incorporates the effect of all loads on its evaluation at individual load buses. The

bus with the highest L-index valué will be the most vulnerable and henee this method helps
to identify the weak áreas requiring critical reactive power support. The general theory and

algorithm ofthe L-index are summarized in the following.



The network equations in terms ofthe node admittance matrix can be written as:

/ =Y V
bus

*
bus bus (3.1)

Segregating the nodes into two categories: (i) the set of loads' buses (aL); and (ii) the

set ofgenerators' buses (aG). Thus, equation (4.1) becomes:

(3.2)

It is assumed that the transmission system is linear and allows a representation in terms

ofa hybrid matrix H:

IL JY1 Y2~\ VL'

_ig\''[y3 y4¡ vG

'yi' ~IL~
= H- —
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•yLL TpLG

IfGL -yGG

IL
(3.3)

where VL and IL are voltage's and current's vectors for load buses; Va and Ia are

voltage's and current's vectors for generator buses; Z" FLG KGL Y00 are sub-matrices

ofthe hybrid matrix H.

The H matrix can be evaluated from the admittance matrix (YbUS) by a partial inversión,
where the load buses' voltage vector is exchanged for the current vector. This

representation can then be utilized to define a voltage stability indicator in the load bus,

namely Lj which is defined by [3.5],

h
= 1-

y f.v
¿-iiea0 Ji i

(3.4)

For stable conditions, 0<Z,<1 must not be violated for any j. Henee, a global

indicator L describing the whole system's stability is defined by [3.5],

■WaBaMN (3.5)

Pragmatically, L must be lower than a given threshold valué. The predetermined
threshold valué is specified depending on the system configuration and on the utility policy

regarding service quality and allowable margin. Therefore, in this thesis, the first objective
to take into account within the WC optimization problem is to minimize the system

voltage indicator:

min /-A'index (3.6)
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3.1.2 Voltage deviation minimization

The bus voltage is one of the most important security and service quality indexes.

Treating the bus voltage limits as constraints often makes all voltages move toward their

máximum limits after optimization. Thus, the optimization results may lack the required
reserves to provide reactive power during contingencies. One ofthe effective ways to avoid

this issue is to choose the voltage deviation from the desired valué as an objective function

[3.3]. Therefore, the second objective function oftheWC optimization problem becomes,

t\r.-*\
min /.=-«=! (3.7)

where f2 is the per unit average voltage deviation; N¿ is the total number of load buses; V¡

and Vi are the actual voltage magnitude and the desired voltage magnitude at bus /,

respectively.

3.1.3 Equality constraints

The equality constraints are the active and reactive power balance described by a set of

power flow equations, which can be expressed as follows:

Pc, -Poi-ÍnvMcos(Sl-SJ+ 0^ = 0 (3.8)
7=1

Qa,-Qa-_tHvj\Msia(s'-sJ+0uh° <3-9)
y=i

V/,y'e{l,2,...,w}

where PGi and ^ are the net real and reactive power at the /-th bus, respectively; the load

demand at the same bus is represented by PD¡ and QD¡ ; the elements ofthe bus admittance

matrix are represented by \Y0 and 9¡j .

These constraints can be expressed in a compact form by,

H(x,u) = 0 (3.10)

3.1.4 Inequality constraints

In this thesis, the set of constraints representing the system operational and security
limits is described in the following.
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3.1.4.1 Generating constraints
Generator voltages (VG), generator real (PG), and reactive power (QG) outputs are

restricted by their lower and upper limits as follows:

VGr<Va<VGr i = \ NG (3.11)

PGr^PG¡^PGr i = \,-.,NG (3.12)

Qo^^OcrOcr ¿ = 1 NG (3.13)

where NG is the number of generators.

3.1.4.2 Transformer constraints

Transformer tap T settings are bounded as follows:

T^íT^TT*, i = l,...,NT (3.14)

where NT is the number of transformers.

3.1.4.3 Switchable VAR sources constraints

Switchable VAR compensations (Qc) are restricted by their limits as follows:

Qa'*&Qc_*Q_rix i = \,...,NC (3.15)

where NC is the number of switchable VAR sources.

3.1.4.4 Load bus voltage
These include the constraints of load bus voltages (V£) as follows:

VLlmia < Vu < Vumax i = 1,...,NL (3.16)

whereM. is the number of load buses.

3.1.4.5 Transmission constraints

Transmission lines loading are restricted by:

S, <5,max i = l,...,NB (3.17)

where NB is the number of transmission lines.

These constraints can be expressed in the following compact form:

G(jc,m)<0 (3.18)
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3.1.5 Problem statement

In general, adding up the objectives and constraints, the WC problem can be

mathematical ly formulated as a non-linear constrained multi-objective optimization
problem as follows:

minimize f =

lindex (3.19)

t\Vt"K\
minimize /, =-is! (3.20)

NL

Subject to:

H(x,u) = 0 (3.21)

G(jc,h)<0 (3.22)

where jc is the vector of state variables consisting of slack bus real power Pgi, load bus

voltages Vl, generator reactive power outputs QG, and transmission line loadings S¡.

Therefore, vector x becomes:

x =YPgx>Vlx""Vlnl>Qgx--"Qgng>Si\----Sinbj (3.23)

u is the vector of control variables consisting of generator voltages VG, real power outputs

PG (except at the slack bus), transformer tap settings T. Henee, u can be expressed as:

U =\yG\"""Qm>*G2""PGm>*\*'"*NT\ \i.¿A)

3.2 Multi-objective Particle Swarm Optimizer (MOPSO)

3.2.1 Overview

Particle Swarm Optimization (PSO) seems particularly suitable for multi-objective

optimization mainly because of its high speed of convergence in single-objective

optimization [3.6].
Based on such behavior, one would expect that a multi-objective PSO (MOPSO) to be

computationally efficient. However, there is no standard (unique) versión of the MOPSO

algorithm that had been adopted in the specialized literature.

There have been several recent proposals to extend PSO to handle múltiple objective

problems. We will review some ofthe most important.
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• The algorithm of Moore and Chapman [3.7]: This algorithm was the first

extensión of PSO for handling multi-objective problems (MOPSO). It is based on

Pareto dominance. The authors emphasize the importance to perform both an

individual and a group search (a cognitive component and a social component).
Nevertheless, the authors did not adopt any scheme to maintain diversity.

• Dynamic Neighborhood PSO proposed of Hu and Eberhart [3.8]: In this

algorithm, only one objective is optimized at a time using a scheme similar to the

lexicographic ordering. This one tends to be useful only when few objective
functions .are used (two or three), and it may be sensitive to the ordering of the

objectives. The ¡dea of the dynamic neighborhood is, however, quite interesting
and is novel in this context.

• The Multi-objective Particle Swarm Optimizer (MOPSO) of Coello & Lechuga
[3.9]: This proposal is based on the idea of having a global repository in which

every particle will deposit its flight experiences after each flight cycle.

Additionally, the updates to the repository are performed considering a

geographically-based system, defined in terms of the objective function valúes of

each individual. This repository is employed by the particles to identify a leader

that will guide the search. This approach also uses a mutation operator that acts

both on the particles of the swarm and on the range of each design variable of the

problem to be solved.

• The PS-EA of Srinivasan and Hou [3.10]: The Particle Swarm Inspired

Evolutionary Algorithm (PS-EA) is a hybrid between PSO and an evolutionary

algorithm. The authors claim that the conventional PSO equations are too

restrictive when applied to multi-constrained search spaces. Thus, they propose to

replace the PSO equations with a self-updating mechanism. Such mechanism uses

an inheritance probability tree to update each individual within the population. An

additional mechanism to dynamically adjust the inheritance probabilities, based on

the status ofthe algorithm at a certain moment in time, is proposed. The approach
uses a memory to store the élite particles and does not use a recombination

operator.

• The approach ofBaumgartner et al. [3.11]: This approach utilizes weighted sums

(i.e., linear aggregating functions) to solve multiobjective optimization problem. In

this approach, the swarm is equally partitioned into n subswarms, each of which

uses a different set of weights and evolves into the direction of its own swarm

leader. The approach adopts a gradient technique to identify the Pareto optimal
solutions.

• The MOPSO-CD of Raquel and Naval [3.12]: This algorithm handles

multiobjective optimization problems by incorporating the mechanism of crowding
distance computation into the algorithm of PSO. Specifically on global best

selection and in the deletion method of an external archive of nondominated
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solutions. The crowding distance mechanism together with a mutation operator
maintains the diversity ofnon-dominated solutions in the external archive.

• The TV-MOPSO of Proveen et al. [3.13]: The algorithm called Time Variant

Multi-objective Particle Swarm Optimization (TV-MOPSO) is made adaptive in

nature by allowing its vital parameters (inertial weight and acceleration

coefficients) to change with iterations. This adaptiveness helps the algorithm to

explore the search space more efficiently. A new diversity parameter has been used

to ensure sufficient diversity amongst the solutions of the non-dominated fronts,
while retaining at the same time the convergence to the Pareto-optimal front.

• Micro-MOPSO of Fuentes & Coello [3.14]: This MOPSO is characterized for

using a very small population size, which allows it to require a very low number of

objective function evaluations to produce reasonably good approximations of the

Pareto front in problems of modérate dimensionality. The proposed approach first

selects the leader and then selects the neighborhood for integrating the swarm. The

leader selection scheme adopted is based on Pareto dominance and uses a

neighbor's density estimator. Additionally, the proposed approach performs a re-

initialization process to preserve diversity and uses two external archives: one for

storing the solutions that the algorithm finds during the search process and another

for storing the final solutions. Furthermore, a mutation operator is incorporated to

improve the algorithm's exploratory capabilities.

3.2.2 The proposed MOPSO technique

The MOPSO strategy utilized in this thesis in order to solve the multi-objective reactive

power and voltage control problem can be described in the following steps [3.12].

1 . For / = 1 to M (M is the population size)
a. Initialize P[i] randomly. (P is the population)
b. Initialize V[i]

= 0. (V is the speed if each particle)
c. Evalúate PfiJ.
d. Initialize the personal best of each particle:

PBESTfiJ
=

PfiJ.
e. GBESTfiJ

= Best particle found in P[iJ.

End for.

2. Initialize the iteration counter (/
=

0)

3. Store the non-dominated vectors found in P into A. (A is the external archive)

4. Repeat
a. Compute the crowding distance valúes of each non-dominated solution mA.

b. Sort the non-dominated solutions in A in descending crowding distance

valúes.
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For / = 1 to M

/. Randomly select the global best guide for PfiJ from a specified top portion
ofA and store its position to GBEST.

ii. Compute the new velocity:
V[i]

= Wx VfiJ +Rlx( PBESTfiJ -PfiJ) + R2x( AfGBESTJ
-

PfiJ )

(W\s the inertial weight equal to 0.4)
(Rl and R2 ate random numbers in the range [0 1])

(PBESTfiJ the best position ofthe particle / have reached)

(AfGBESTJ is the global best guide for each non-dominated solution)
///. Calcúlate the new position ofPfiJ:

PfiJ
=

PfiJ + VfiJ.
iv. If PfiJ goes beyond the boundaries. Then, it is reintegrated by having the

decisión variable take the valué of its corresponding lower or upper

boundary, and its velocity is multiplied by (-1) so that it searches in the

opposite direction.

v. \í(t<MAXTxPMUT)
Then perform mutation on PfiJ.

(MAXT is the máximum number of iterations)

(PMUT is the probability ofmutation)
v/. Evalúate PfiJ.
End for.

c. If they are not dominated by any ofthe stored solutions, insert all new non-

dominated solution in P into A. All dominated solutions in A are removed

from the archive by the new solution. Ifthe archive is full, the solution to be

replaced is determined by the following steps:

i. Compute the crowding distance valúes of each non-dominated solution in

the archive A.

ii. Sort the non-dominated solutions in A in descending crowding distance

valúes.

///. Randomly select a particle from a specified bottom portion which comprise
the most crowded particles in the archive then replace it with the new

solution.

d. Update the personal best solution of each particle in P If the current

PBESTS dominates the position in memory, the particles position is updated

using PBESTS[i]
=

PfiJ.
e. Increment iteration counter /.

Until máximum number of iterations is reached.

The flowchart of MOPSO based reactive power and volt control problem is depicted in

Figure 3.1.
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Figure 3.1: Flowchart ofMOPSO based WC problem.
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3.3 Multi-objective Micro Genetic Algorithm (MicroGA)

3.3.1 Overview

The term micro-genetic algorithm (micro-GA) refers to a small-population genetic
algorithm with re-initialization. The approach was derived from some theoretical results

obtained by Goldberg [3.15], according to which a population size of three was sufficient to

converge, regardless ofthe chromosome's length. The process suggested by Goldberg was

to start with a small randomly generated population, then apply to it the genetic operators
until reaching nominal convergence (e.g., when all the individuáis have their genotypes
either identical or very similar), and then to genérate a new population by transferring the

best individuáis of the converged population to the new one. The remaining individuáis

would be randomly generated.
Krishnakumar [3.16] was the first in report a micro-GA implementation. A population

size of five, a crossover rate of 1, and a mutation rate of 0, were used. His approach also

adopted an elitist strategy that copied the best string found in the current population to the

next generation. Selection was performed by holding four competitions between strings that

were adjacent in the population array, and declaring to the individual with the highest
fitness as the winner. After him, several other researchers have developed applications of

micro-GAs (e.g., [3.17, 3.18]). However, one ofthe first attempts to use a micro-GA for

multi-objective optimization was presented by Jaszkiewicz [3.19]. In which a small

population initialized from a large external memory is used for a short period of time.

However, this approach has been used only for multi-objective combinatorial optimization.
Another MicroGA approach for multi-objective optimization was developed by Coello and

Toscano [3.20]. The population in this approach is divided in two parts: a replaceable and

non-replaceable portion. The non-replaceable portion will never change during the entire

mn and provides the required diversity for the algorithm. In contrast, the replaceable

portion will experience changes after each cycle ofthe MicroGA.

3.3.2 The proposed MicroGA technique

A summary ofthe MicroAG algorithm utilized in this thesis in order to solve the multi

objective reactive power and voltage control problem is described in the following [3.21].

Genérate randomly the initial population P of size N and store P in the population

memory MR and Mm .

/ = 0

While / < GMax do

Get Pe fromM

Repeat

Apply binary tournament selection

Apply two-point crossover

Apply uniform mutation (usually 1/ number ofbits ofthe chromosome)

Apply elitism (retain only one non-dominated vector per generation)

Produce a new population
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Until nominal convergence is reached

Copy solutions to external memory (first form of elitism)
if external memory is full then

Apply the Adaptive_grid and Copy two non-dominated vectors to M.

( second form of elitism ).
if i mod replacement cycle then

Move points from external memory to MR

( third form of elitism )
end if

i=i+l

end while

where, MR and MNR are the replaceable and non-replaceable population memory,

respectively. GMax is the máximum number of generations, Pe is the evolutionary
population, ana M'k the random mixture ofnon-replaceable and replaceable portion.

First, a random population is generated. This random population feeds the population
memory, which is divided into two parts: a replaceable and a non-replaceable portion. The

non-replaceable portion ofthe population memory never changes during the entire mn and

is aimed to provide the required algorithm's diversity. In contrast, the replaceable portion

experiences changes after each microGA's cycle. The population of the microGA at the

beginning of each cycle is taken (with a certain probability) from both portions of the

population memory, so that there is a mixture of randomly generated individuáis (non-

replaceable portion) and evolved individuáis (replaceable portion). During each cycle, the

microGA undergoes conventional genetic operators.
After the microGA finishes one cycle, two non-dominated vectors are chosen from the

final population, and both of them are compared with the contents of the external memory

(this memory is initially empty). If either of them (or both) remains as non-dominated after

comparison respect to vectors in the external memory, then it is included there (i.e., in the

external memory). This is the historical archive of non-dominated vectors. All dominated

vectors contained in the external memory are eliminated.

The microGA utilizes three types of elitism: (1) it retains non-dominated solutions

found within the microGA internal cycle, (2) it uses a replaceable memory which contents

is partially "refreshed" at certain intervals, and (3) it replaces the population of the

microGA by the nominal solutions produced (i.e., the best solutions found after a full

microGA internal cycle).

3.4 Metrics ofPerformance

Comparing different optimization techniques experimentally always involves the

notion of performance. In the case ofmulti-objective optimization, the definition of quality
is substantial ly more complex than in a single-objective optimization problem, because of

the optimization goal itself consists ofmúltiple objectives.
In order to allow a quantitative assessment of the performance on a multi-objective

optimization algorithm, three issues are normally taken into consideration [3.22].
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1. Minimize the distance ofthe Pareto front produced by the algorithm with respect to

the tme Pareto front (assuming we know its location).

2. A good distribution ofthe solutions.

3. Maximize the spread of solutions found, so that we can have a distribution of

vectors as smooth and uniform as possible.

However for the WC problem previously defined, the true Pareto front is unknown,
therefore one metric to evalúate quantitatively the performance of the proposed algorithms
is adopted as follows.

3.4.1 Spacing metric (SM)

Schott [3.23] proposed a metric which is calculated through a relative distance measure

between consecutive solutions in the obtained non-dominated set. This metric is defined by,

where,

di =mK,* {|A-
~

fxj | + 1/2,
~

k¡ |}
and d is the mean valué oí. di.

The distance measure is the minimum valué ofthe sum ofthe absolute difference in

the objective function valúes between the i-th solution and any other solution in the

resultant non-dominated set. Notice that the distance measure is different from the

minimum Euclidean distance between two solutions.

The above metric measures the standard deviations of different valúes d¡. When the

solutions are almost uniformly spaced, the corresponding distance measure will be small.

Thus, an algorithm finding a set of non-dominated solution having a smaller spacing (SM)
is better.

3.5 Remarks

In this chapter, a multi-objective formulation to solve the reactive power and voltage

control problem by a multi-objective evolutionary technique is proposed. The objectives are

the voltage deviations in buses and the system's voltage stability index. The load and

operational constraints are also taken into account.

A review of the most important proposals to extend the PSO algorithm to handle multi

objective problems is presented. Also we present a review of the MicroGA algorithms for

multi-objetive problems.
The metric to evalúate quantitatively the performance of the proposed algorithms is

described.
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Chapter 4

Applications and results

The aim of this chapter is to prove the effectiveness and feasibility of the proposed

algorithms to solve the WC problem. Three studies were performed. In the first study, we

consider the nine-bus test system [4.1]. In the second case study, we consider the IEEE 26

bus-test system [4.2]. Finally, in the third case study we consider the ten generator test

system [4.3]. In all cases, bus 1 is considered as the slack bus. For each study, two sets of

10 test mns for solving the WC problem were performed. The first set is based on the

MOPSO algorithm and the second one is based on the MGA algorithm. On all

optimizations runs, the máximum size of the Pareto Optimal set was chosen as 100

solutions. For the power flow convergence, the tolerance was set to 10"4 p.u.

Techniques used in this thesis were developed and implemented using the C++

language.

4.1 Case 1: nine-bus test system

The nine-bus test system consists of 9 transmission lines and 3 generating units. The

single-line diagram ofthis system is depicted in figure. 4.1. Data are given in [lj.

Figure 4.1: The 9-bus test system



For the purpose of comparison between the proposed techniques, two different tests

over this system have been considered as follows.

4.1.1 Case 1.1: System without constraints

In this case, network constraints are no considered. The voltage stability function and

the Voltage Deviation function were treated simultaneously as competing objectives. The
control parameter settings used by the MOPSO and MGA algorithms in this case are given
in Table 4. 1 .

Table 4.1

Control parameter settings ofMOPSO and MGA, case 1.1

MOPSO MGA

Parameter Setting

Population size 100 4

Mutation rate 0.6 0.03

Crossover rate 0.7

Adaptive grid subdivisión 25

Second elitism 150

Máximum number of generationts 100 1500

The diversity of the Pareto optimal front of the two proposed algorithms over the

voltage stability (Lindex) and voltage deviation (VD) functions is shown in Figure 4.2. It is

worth mentioning that the Pareto optimal front obtained by MOPSO and MGA algorithms
has 100 non-dominated solutions. The two non-dominated solutions that represent the best

Lindex and VD found by both algorithms are compared in Table 4.2.

Table 4.2

Comparison ofthe best solutions ofMOPSO and MGA algorithms for case 1.1

Variable Limits MOPSO MGA

lower upper Lindex VD Lindex VD

Vgl(p.u) 1 1.05 1.05 1.0243 1.05 1.0064

Vg2(p.u) 1 1.05 1.05 1.0059 1.05 1.0214

Vg3(p.u) 1 1.05 1.05 1.0024 1.05 1.0103

Pg2 (MW) 100 240 100 110.9374 104.31 141.99

Pg3 (MW) 45 125 64.1152 73.4475 57.51 66.04

Ploss(MW) 2.604 2.94 2.625 3.504

Lindex 0.1474 0.1599 0.1474 0.1614

VD 0.0421 0 0.042 0

SM :L.95E-04 2.90E-04

The results show that the MOPSO is able to proportionate the minimum valué on the

Spacing Metric (SM). Thus, this algorithm has better diversity characteristics, regarding the

MGA method.
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Figure 4.2: Comparison ofthe Pareto optimal fronts, case 1.1

It is evident that the Pareto-optimal front of these algorithms have good diversity
characteristics of the non-dominated solutions. It can be observed that there is good

agreement between MOPSO and MGA, which prove that the problem is efficiently solved

by both techniques.

4.1.2 Case 1.2: System with constraints

In this case, the transmission line constraint is included. The load limit for line (8-9) is

80 MW. The control píirameter settings used byMOPSO and MGA algorithms for this case

are described in Table 4.3.

Table 4.3

Control parameter settings ofMOPSO and MGA, case 1.2

MOPSO MGA

Parameter

Population size

Mutation rate

Crossover rate

Adaptive grid subdivisión

Second elitism

Máximum number of generationts

Setting

100 4

0.65 0.03

0.7

25

300

110 3000
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Figure 4.3: Comparison ofthe Pareto optimal fronts, case 1 2

The Pareto optimal fronts obtained by the MOPSO and MGA methods for this case are

illustrated in figure 4.3. The closeness ofthe non-dominated solutions of these algorithms
demónstrales good performance to solve the problem. The best solutions obtained out often
runs applying the two different algorithms are given in Table 4.4.

Table 4.4

Comparison ofthe best solutions ofMOPSO and MGA algorithms for case 1.2

Variable Limits MOPSO MGA

lower upper Lindex VD Lindex VD

Vgl(p.u) 1 1.05 1.05 1.0254 1.05 1.0278

Vg2(p.u) 1 1.05 1.05 1.0023 1.0492 1.0064

Vg3(p.u) 1 1.05 1.05 1.0055 1.0492 1.0008

Pg2 (MW) 100 240 101.356 118.3644 103.08 102.33

Pg3{MW) 45 125 61.7054 79.6647 53.52 116.24

SM(MW) 0 80 38.39 56.17 36.31 60.12

Ploss(MW) 2.609 3.184 2.641 3.642

Lindex 0.1474 0.1601 0.1475 0.1598

VD 0.0421 0 0.0414 0

SM 1.90E-04 2.40E-04

Likewise, the SM's minimum valué is obtained through theMOPSO. It can be observed

that this technique has better diversity characteristics in both cases.
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4.2 Case 2: IEEE 26-bus test system

This system has 26 buses, 46 branches, six generators, seven transformers, and nine

shunt capacitors. The detailed data are given in [2]. The single-line diagram ofthis system

is shown in figure. 4.4.
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Figure 4.4: The 26-bus test system

For the purpose of comparison, the MOPSO and MGA techniques have been applied to

the IEEE 26-bus system in two different tests, as follows.
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4.2.1 Case 2.1: System without constraints

In this case study, network constraints are no considered. The 26-bus test system has six

generators at buses 1, 2, 3, 4, 5 and 26, and therefore five active power outputs; seven

transformers with off-nominal top ratio in lines 2-3, 2-13, 3-13, 4-8, 4-12, 6-19 and 7-9.

The number of control variables in this case is 18. The control parameter settings used by
the MOPSO and MGA algorithms for this case are given in Table 4.5.

Table 4.5

Control parameter settings ofMOPSO and MGA, case 2.

MOPSO MGA

R3rameter

Population i

Mutation rate

Crossover rate

Adaptive gid subcfviaon

Sfecond elitism

Máximum number of generationts

Sfetting

100 4

0.7 0.008

- 0.7

20

1330

220 13300

The Pareto optimal fronts for this case obtained by MOPSO and MGA methods for this

case are illustrated in figure 4.5.
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Figure 4 5 Comparison ofthe Pareto optimal fronts, case 2 1
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It can be observed that there is good agreement between MOPSO and MGA, which

prove that the problem is efficiently solved by both techniques. The best solutions obtained
out often runs applying the two different algorithms are summarized in Table 4.6.

Table 4.6

Comparison ofthe best solutions ofMOPSO and MGA algorithms for case 2.1

Variable Limits MOPSO MGA

lower upper Lindex VD Lindex VD

Vgl(p.u) 1 1.05 1.0498 1.0445 1.05 1.0429

Vg2(p.u) 1 1.05 1.0416 1.0322 1.05 1

Vg3(p.u) 1 1.05 1.05 1.029 1.05 1

Vg4(p.u) 1 1.05 1.0416 1.0196 1.05 1

Vg5(p.u) 1 1.05 1.0487 1.0386 1.0429 1.0286

Vg26(p.u) 1 1.05 1.0384 1.0217 1.0357 1.0286

Pg2 (MW) 50 100 80.8557 74.6438 51.2147 58.198

Pg3 (MW) 20 80 34.6603 50.3352 44.5465 34.9139

Pg4 (MW) 90 150 122.5639 128.6227 141.818 139.701

PgS(MW) 280 400 333.5387 306.2301 307.284 329.295

Pg26(MW) 50 90 74.4517 70.5222 70.9426 69.3211

T3(p.u) 0.9 1.1 0.9138 1.0862 0.9129 1.0613

T6(p.u) 0.9 1.1 0.9 1.0754 0.9065 1.0613

T8(p.u) 0.9 1.1 0.9007 0.9675 0.9 0.9774

T9(p.u) 0.9 1.1 1.0318 1.0295 1.0613 0.9968

TlO(p.u) 0.9 1.1 0.9041 0.9069 0.9065 0.9323

T15(p.u) 0.9 1.1 0.9 0.9076 0.9 0.9065

T18(p.u) 0.9 1.1 0.9 1.0591 0.9065 0.9323

Ploss(MW) 23.33 18.31 23.25 17.3

Lindex 0.1063 0.1192 0.1063 0.1196

VD 0.0676 0 0.0675 0

SM 2.60E-04 3.50E-04

It can be observed that the MOPSO and MGA converge practically to the same

solutions for the voltage stability and voltage deviation functions. It is evident that the non-

dominated solutions obtained by these algorithms have good diversity characteristics.

However, the results show that MOPSO exhibits better diversity characteristics.

4.2.2 Case 2.2: System with constraints

In this case, the transmission line constraint is included. The máximum allowable load

through the line (10-12) is 108 MW. The control parameter settings used by MOPSO and

MGA algorithms for this test are given in Table 4.7.
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Table 4.7

Control parameter settings ofMOPSO and MGA, case 2.2

MOPS) MGA

Parameter

F-bpulation;

Mutation rate

Crossover rate

Adaptive grid subdivisión

Second elitism

Máximum number of generationts

Setting

100 4

0.7 0.008

0.7

- 25

1800

100 18000

The distribution of the non-dominated solutions in the Pareto-optimal front using the

proposed MOPSO and MGA algorithms is shown in figure 4.6. It can be observed that the

non-dominated solutions of the proposed MOPSO approach have better diversity
characteristics.
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Figure 4.6: Comparison ofthe Pareto optimal fronts,
case 2.2

The best solutions obtained out of ten runs applying the proposed algorithms are

summarized in Table 4.8.
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Table 4.8

Comparison ofthe best solutions ofMOPSO and MGA algorithms for case 2.2

Variable Limits MOPSO MGA

lower upper Lindex VD Lindex VD

Vgl(p.u) 1 1.05 1.0493 1.0497 1.05 1.05

Vg2(p.u) 1 1.05 1.0285 1.0322 1.05 1.0429

Vg3(p.u) 1 1.05 1.0293 1.0265 1.0357 1.0071

Vg4(p.u) 1 1.05 1.0406 1.0349 1.0429 1.0143

Vg5(p.u) 1 1.05 1.0202 1.0217 1.0357 1

Vg26(p.u) 1 1.05 1.0416 1.0413 1.0214 1.0214

Pg2 (MW) 50 100 83.7284 81.8594 92.0706 60.0232

Pg3 (MW) 20 80 41.7733 43.7334 58.574 20.7984

Pg4 (MW) 90 150 102.3267 100.2135 93.1644 101.83

PgS(MW) 280 400 390.295 385.5824 364.988 397.788

Pg26(MW) 50 90 59.8118 58.4668 88.779 51.1038

T3(p.u) 0.9 1.1 0.9 1.0628 0.9516 1.0484

T6(p.u) 0.9 1.1 0.902 1.0125 0.9 0.9323

T8(p.u) 0.9 1.1 0.9041 1.0696 0.9065 1.0807

T9(p.u) 0.9 1.1 0.9698 1.0056 0.971 1.0355

TlO(p.u) 0.9 1.1 0.9025 0.9453 0.9129 0.9323

T15(p.u) 0.9 1.1 0.901 0.9016 0.9 0.9

T18(p.u) 0.9 1.1 0.9 0.9451 0.9194 0.9194

S-m(MW) 0 108 107.49 106.71 107.39 105.86

Ploss(MW) 23.99 20.77 20.75 23.36

Lindex 0.1074 0.119 0.1079 0.1192

VD 0.0633 0 0.0591 0

SM 2.50E-04 3.80E-04

It is noteworthy that all control and state variables remain within their permissible
limits in both case studies for the IEEE 26-bus test system. Also, results show that the

MOPSO attains the minimum valué of SM and therefore the best diversity characteristics in

both case studies ofthe IEEE 26-bus test system.

The closeness of the non-dominated solutions of the MOPSO and MGA demonstrates

good performance to solve the problem for this test system.
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4.3 Case study 3: Ten generator test system

This system contains 10 generating units, 39 buses and 46 transmissions lines. The

transmission lines' parameters and load data are taken from [3]. The single-line diagram of

this system is shown in figure. 4.7.
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Figure 4.7: Ten generator test system

For the purpose of comparison, the proposed MOPSO and MGA algorithms have been

applied to the ten generator test system in two different tests, as follows.

4.3.1 Case 3.1: System without constraints

In this case, network constraints are no considered. The system has a total of 3 1 control

variables, being: ten generators and therefore nine active power outputs and twelve

transformers with off-nominal tap. The control parameter settings used by MOPSO and

MGA algorithms for this case are displayed in Table 4.9.
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Table 4.9

Control parameter settings ofMOPSO and MGA, case 3.1

MOPSO MGA

Parameter SBtting

100 4

0.65 0.004

0.7

•■ 25

2500

180 25000

Population:

Mutation rate

Oossover rate

Adaptive gid subdivisión

Second elitism

Máximum number of generationts

0.12r

+ MGA

+ MOPSO

0.215

index

Figure 4 8: Comparison ofthe Pareto optimal fronts, case 3 1

The distribution of the non-dominated solutions in the Pareto-optimal front using the

proposed MOPSO md MGA algorithms for this case is depicted in figure 4.8. It is evident

that the non-dominated solutions of the MOPSO approach have better diversity

characteristics and better non-dominated solutions.

In this case, the MGA's performance is degraded with the increased problem

complexity. The best voltage stability and best voltage deviation solutions obtained out of

ten runs are given in Table 4.10.
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Table 4.1 0

Comparison ofthe best solutions ofMOPSO and MGA algorithms for case 3.1

Variable Limits MOPSO MGA

lower upper Lindex VD Lindex VD

Vgl(p.u) 0.98 1.05 1.05 1.0307 1.04 1.04

Vg2(p.u) 0.98 1.05 1.0499 1.0395 1.05 1.05

Vg3(p.u) 0.98 1.05 1.0499 1.0441 1.05 1.05

Vg4(p.u) 0.98 1.05 1.0492 1.0326 1.05 1.05

Vg5(p.u) 0.98 1.05 1.05 1.0473 1.05 1.05

Vg6(p.u) 0.98 1.05 1.0484 1.0472 1.05 1.05

Vg7(p.u) 0.98 1.05 1.0489 1.0306 1.04 1.04

Vg8(p.u) 0.98 1.05 1.05 1.0169 1.03 1.03

Vg9(p.u) 0.98 1.05 1.0454 1.0247 1.05 1.05

VglO(p.u) 0.98 1.05 1.049 1.0281 1.03 1.03

Pg2 (MW) 950 1400 1368.121 1348.8489 1381.09 1381.09

Pg3 (MW) 550 750 595.4809 596.557 567.756 568.268

Pg4 (MW) 450 600 524.3367 519.9305 491.906 487.804

Pg5(MW) 500 750 698.4651 652.4778 560.472 560.472

Pg6(MW) 450 600 450 462.288 542.593 542.593

Pg7(MW) 400 600 405.1213 462.5501 507.779 526.066

Pg8(p.u) 400 650 624.4318 577.7122 542.827 507.83

Pg9(p.u) 500 900 771.2427 779.0989 817.711 582.289

PglO(p.u) 150 350 258.6252 274.6497 341.949 158.051

T35(p.u) 0.9 1.1 1.1 1.0738 1.1 0.9

T36(p.u) 0.9 1.1 1.0966 1.0017 1.0871 0.9194

T37(p.u) 0.9 1.1 0.9183 0.9389 0.9323 1.0677

T8(p.u) 0.9 1.1 1.0264 1.0138 0.9903 0.9065

T39(p.u) 0.9 1.1 1.1 1.0761 1.0548 0.9387

T40(p.u) 0.9 1.1 1.1 1.065 1.029 1.0226

T41(p.u) 0.9 1.1 1.1 0.9365 1.0807 0.9516

T42(p.u) 0.9 1.1 1.1 1.0768 1.1 0.9065

T43(p.u) 0.9 1.1 1.1 1.0852 1.0871 0.9258

T44(p.u) 0.9 1.1 1.0751 0.9002 1.0871 1.0613

T45(p.u) 0.9 1.1 1.0953 0.9154 1.1 1.1

Ploss(MW) 38.51 50.89 36.28 38.88

Lindex 0.1817 0.2036 0.186 0.2148

VD 0.1091 0 0.0896 0

SM 4.82E-04 0.0014

The results show that the MOPSO obtained the best solutions for the voltage stability

and voltage deviation functions as well as the best diversity characteristics in the non-

dominated solutions.
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4.3.2 Case 3.2: System with constraints

This case incorporates the constraints on the voltage magnitudes of the load buses as

well as the transmission line loadings. The máximum allowable load through the line (16-
17) is 415 MW and through the line (21-22) is 585 MW. The limits of the voltage

magnitudes ofthe load buses are: 0.975 <. Vu < 1.025 for i =14... 18.

The control parameter settings used by MOPSO and MGA algorithms for this case are

given in Table 4.1 1. The diversity ofthe Pareto optimal fronts are compared in figure 4.9.

Table 4.11

Control parameter settings ofMOPSO and MGA, case 3.2

MOPSO MGA

Rarameter

Population!

Mutation rate

Crossover rate

Adaptive grid subdivisión

Second elitism

Máximum number of generationts

Setting

100 4

0.65 0.004

- 0.7

25

3000

150 30000

0.07

+ MOPSO

+ MGA

index

Figure 4 9: Comparison ofthe Pareto optimal fronts, case 3 2
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Table 4.12

Comparison ofthe best solutions ofMOPSO and MGA algorithms for case 3.2

Variable Limits MOPSO MGA

lower upper Lindex VD Lindex VD

Vgl(p-u) 0.98 1.05 1.0461 1.0394 1.05 1.05

Vg2(p.u) 0.98 1.05 1.0399 1.0485 1.02 1.02

Vg3(p.u) 0.98 1.05 1.0468 1.0474 1.05 1

Vg4(p.u) 0.98 1.05 1.0436 1.0457 1.04 0.99

Vg5(p.u) 0.98 1.05 1.0493 1.0495 1.05 1.04

Vg6(p.u) 0.98 1.05 1.0485 1.0486 1.04 0.99

Vg7(p.u) 0.98 1.05 1.0456 1.049 1.04 0.99

Vg8(p.u) 0.98 1.05 1.0479 1.0132 1.03 1.05

Vg9(p.u) 0.98 1.05 1.0481 1.0423 1.05 1.02

VglO(p.u) 0.98 1.05 1.0494 1.0288 1.04 1.02

Pg2 (MW) 950 1400 1287.7313 1321.4804 1392.33 1325

Pg3 (MW) 550 750 562.0143 570.7668 617.94 648.514

Pg4 (MW) 450 600 542.9121 546.6559 474.089 535.918

Pg5(MW) 500 750 512.3916 521.3608 570.795 525.445

Pg6(MW) 450 600 584.4023 588.0919 503.69 590.597

Pg7(MW) 400 600 577.5718 577.488 470.272 446.638

Pg8(p.u) 400 650 540.9562 538.4097 547.923 595.418

Pg9(p.u) 500 900 884.7529 851.0744 842.065 761.717

PglO(p.u) 150 350 185.4424 188.9824 272.66 217.953

T35(p.u) 0.9 1.0593 1.0619 1.0936 0.9774

T36(p.u) 0.9 1.1 1.0318 1.0807 1.0161

T37(p.u) 0.9 0.9209 0.9294 0.9258 0.9065

T8(p.u) 0.9 0.9114 0.9164 0.9194 1.0807

T39(p.u) 0.9 1.0867 1.0274 1.0613 0.9903

T40(p.u) 0.9 1.1 0.9 1.0548 1.0355

T41(p.u) 0.9 1.0492 1.0331 1.1 1.0226

T42(p.u) 0.9 1.0987 1.0842 1.1 1.0936

T43(p.u) 0.9 1.1 0.9942 1.0807 0.9

T44(p.u) 0.9 0.9043 0.9102 0.9839 1.0871

T45(p.u) 0.9 1.0684 1.0688 0.9903 1.029

Ploss(MW) 43.18 46.19 39.2 43.95

Lindex 0.1889 0.2042 0.1904 0.2172

VD 0.0634 0 0.0574 0

SM 4.70E-04 0.0014

The best solutions obtained by the MOPSO and MGA are compare in Table 4.12. The

results show that MOPSO obtained the minimum valué of SM and therefore has better

diversity characteristics, regarding the MGA method in both cases.
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The valué of the state variables obtained by the MOSPO and MGA for this case is

summarized in Table 4.13.

Table 4.13

Comparison ofthe state variables ofMOPSO and MGA algorithms for case 3.2

Variable Limits MOPSO MGA

lower upper Lindex VD Lindex VD

VL14(p.u) 0.975 1.025 1.024 0.982 1.025 0.993

VL15(p.u) 0.975 1.025 1.019 0.994 1.016 1.003

VgL16(p.u) 0.975 1.025 1.021 0.997 1.017 1.008

VL17(p.u) 0.975 1.025 1.01 0.988 1.006 0.996

VL18(p.u) 0.975 1.025 1.01 0.987 1.004 0.9954

S16.17(MW) 0 415 352.071 341.72 328.62 350.62

SM.22(MW) 0 585 562.37 561.87 453.48 492.14

It is worth noting that all control and state variables remained within their permissible
limits. The results show that the MOPSO can solve the problem more efficiently compared
to MGA for both case studies ofthe ten generator test power system.

4.4 Remarks

In this chapter, two multi-objective evolutionary algorithms have been compared and

successfully applied to the reactive power and voltage control or volt/var control (VVC)

optimization problem. The problem has been formulated as a multi-objective optimization

problem with voltage deviation and voltage stability objectives.
In order to demónstrate the effectiveness of the proposed algorithms to solve the VVC

problem, these algorithms have been applied in three power systems with different

complexity. The Spacing Metric described in a previous chapter has been used to compare

the diversity among the techniques.
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Conclusions and future work

The conventional power system optimal power flow (OPF) objective is to obtain a

startup and shutdown schedule of generating units to meet the required demand at

minimum production cost, satisfying units' and system's operating constraints, by adjusting
the power system control variables. Such ones include the active power supplied by each

available generator, the tap position of transformers, and the reactive power generation of

the VAR sources.

The advanced OPF takes into account security constraints. It has been formulated as a

nonlinear, nonconvex, and large-scale, mixed-integer, optimization problem. Several

techniques have been used for solving such one, for instance: optimization methods

involving derivative-based techniques, and heuristic optimization techniques such as

genetic algorithms. Likewise, very important contributions on optimization applications in

power systems have been published.

The aim of this work is to propose a multi-objective formulation to the reactive power

and voltage control or volt/var control (VVC) optimization problem. The selected

objectives are the bus voltage deviations and one measure for the voltage stability.

Likewise, the evolutionary techniques: MOPSO and MGA are proposed as effective tools

to solve the multi-objective VVC problem. The heuristic strategies allow to reduce the

penalty functions' bad-conditioning problem.

In this thesis, an approach for the solution ofthe OPF with security constraints through

the use of heuristic strategies is proposed. Conventionally, the PSO handles constraints by

penalizing the objective function. In this work, a multi-objective formulation is used.

Results confirm the potential ofmulti-objective evolutionary algorithms to solve nonlinear

constrained multi-objective optimization problems like the VVC problem.

In order to demónstrate the effectiveness and robustness of the proposed algorithms to

solve the VVC problem, the algorithms have been applied in three power systems with

different complexity. Results are very satisfactory from the power system's operation point

ofview.

The results presented show that the proposed approaches achieved acceptable results in

the VVC multi-objective optimization problem. The non-dominated solutions in the

obtained Pareto-optimal fronts are well distributed and exhibit satisfactory diversity

characteristics. It was also noted that the minimum spacing metric was attained by the

MOPSO, which proves that the non-dominated solutions of this approach have better

diversity characteristics in all analyzed cases.



It is evident that the non-dominated solutions obtained by the MGA are well distributed

and have satisfactory diversity characteristics for the nine-bus and IEEE 26- bus test

systems. However, when the system increases its complexity the performance ofMGA is

degraded.

Based on the comparisons and discussions, it can be concluded that MOPSO has better

robustness than MGA technique for the VVC optimization problem, since the Pareto

optimal fronts with satisfactory diversity characteristics have been obtained in the studies.

Contributions

A complete model that allows to include restrictions associated to the context of steady
state of an electric power system is presented, which take ¡nto account inequality
constraints to bound important variables on the power system operation.

The proposed methodology is able to manage the outlined optimization problem, which

is highly restricted, through a multi-objective formulation.

The used methods are able to solve objective functions and no-convex restrictions, what

allows the handling of realistic models in the components of the electric power systems.

This is an advantage respect to many of the conventional optimization problems that are

based on simplifications on modeling.

For their capacity, the proposed multi-objective formulation exhibits a bigger

probability to find the global solution, compared to the conventional optimization

techniques that are dependent on the starting point, and with an inappropriate election of

this, they can be caught in a local minimum.

At the end of the process, the proposed methodology is able to find a group of feasible

solutions cióse to the global, what implies an important advantage on the conventional

optimization techniques, in the sense that they provide to the power system operator with

choices. This is useful for those cases where it is not possible to implement the best

solution for any reason.

Recommendations and future work

One of the main features of the evolutionary algorithms is to have parameters that

control their performance. Choosing the valué of the different parameters of an

evolutionary algorithm is crucial for good performance. There is also evidence that using

different valúes ofthe parameters in the various stages ofthe evolutionary process seem to

be something appropriate.

The algorithms used in this work used a fixed mutation factor. Thus, a recommendation

based on the above premise is to modify the program code to include a random mutation

factor for each mutation point.
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Another multi-objective evolutionary algorithms' limitation is the computation time

when the problem exhibits a high degree of complexity. As future work, to consider the use

of parallel computation using a network of computers to reduce the execution time in order

to improve the algorithm's performance is proposed.

The inclusión ofa dynamic formulation to alleviate power system stability's problems
must be taken into account into future works.
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