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Resumen

El análisis y caracterización de mediciones de área amplia sincronizadas en

tiempo requiere de herramientas matemáticas que sean adaptables a las condi

ciones variantes del sistema, exactas y rápidas, y que al mismo tiempo reduzcan la

complejidad de los datos para hacerlos útiles en decisiones de control y de tiempo

real. En esta tesis, nuevos algoritmos basados en análisis de variación canónica y
mínimos-cuadrados recursivos son propuestos para extraer propiedades modales

a partir de mediciones sincronizadas en el tiempo. Los métodos toman en cuenta

la naturaleza estocástica del comportamiento dinámico del sistema y pueden ser

aplicados en tiempo real.

Se proponen y se evalúan técnicas rápidas de monitoreo de sistemas de área

amplia para la evaluación y seguridad del sistema utilizando señales sintéticas y

medidas. Las comparaciones con enfoques bien establecidos tales como algoritmos
medidores de modos por procesamiento a bloques demuestran la exactitud y

eficiencia de los algoritmos propuestos.



Abstract

Analysis and characterization ofwide-area time-synchronizedmeasurements

requires mathematical tools that are adaptable to the varying system conditions,
accurate and fast while reducing the complexity of the data to make them useful

for control and real-time decisons. In this thesis, novel algorithms b-ased on

canonical variation analysis and recursive leeist-square algorithms are proposed
to extract modal properties from time-synchronized measurements. The methods

take into account the stochastic nature of system dynamic behavior and can be

applied in real time.

Fast wide-area system monitoring techniques for both system monitoring
and security are proposed and tested using synthetic and measured signáis. Com

parisons with well-established approaches such as mode-meter block-processing

algorithms demónstrate the accuracy and efficiency of the proposed algorithms..
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Chapter 1

Introduction

1.1 Research Motivation and Problem

Statement

Modal identification is a neccesary first step towards improved modeling and

control of power system dynamic processes. It complements theoretical mod

eling by allowing the analyst to investigate several aspects of system behavior

that cannot otherwise be explored.
Recent advances in comprehensive monitoring of power system behav

ior by means of properly placed time-synchronized phasor measurement units

(PMUs) along with technical developments in communication technologies pro
vide the opportunity to analyze and characterizing inter-area swing dynamics.
Wide-area real-time monitoring, in particular, may provide invaluable in power

system dynamic analysis by giving a quick assessment of the damping and fre

quency content of dominant system modes. Prediction of temporal dynamics,
with the ultimate application to real-time system monitoring , protection and

control, remains a major research challenge due to the complexity of the driving

dynamic and control processes operating on various temporal scales that can

become dynamically involved. In addition, measured data, may exhibit quite
different dynamics at each system location or exhibit abrupt changes, dynamic

irregularities, or be complicated by nonlinear trends or noise.

Measurement-based signal processing techniques are becoming a standard

tool for analyzing the dynamic properties of the system. Determining the con

ditions for the onset of system oscillations can be a challenging task because of

the complexity of observed system behavior.

Measured ambient data
,
in particular, are known to exhibit noisy, nonsta-

tionary fluctuations resulting primarily from small magnitude, random changes
in load, driven by low-scale motions or nonlinear trends originating from slow

control actions or changes in operating conditions.

Traditional analysis approaches for system identification which rely on

stationarity are unable to resolve the localized nature of these processes and

henee provide little useful information concerning the nature of noisy, time-

varying oscillatory proceses.

In this thesis, a new method for analyzing the temporal dynamics of



inter-area oscillations using canonical and recursive least-squares methods is

proposed. This research is motivated by the limitations of a wide variety of

techniques proposed in the literature to deal with time-varying behavior. Two

novel algorithms are developed to address identification issues that present sev

eral conceptu.al and numerical advantages. The first method is a canonical

varíate algorithm. The second is an algorithm to compute modal information

using recursive least-squares algorithms.
As specific applications, data obtained from PMU measurements from real

events in various power systems are used to examine the potential usefulness and

accuracy of time series analysis techniques to characterize the modal structure

of the observed oscillations.

The methods can be implemented for on-line estimation ofmodal damping

and frequency using synchronized wide-area measurement systems.

1.2 Review of previous work

Recently, the problem of modal identification of electromechanical data from

time-synchronized measurements has received considerable attention. Several

representations have been explored over the last years to analyze natural and

synthetic signáis which are characterized by non-stationary behavior.

The detection of instantaneous or locally-occurring transient oscillations

is crucial to protection and control strategies [3] . The past few years witnessed a

remarkable breakthrough in numerical algorithms to estimate modal properties

from ambient data. Algorithms with the ability to extract modal information

in the presence of noise, and changing operating conditions are being developed

and tested using measured data [24], [29] with varied success.

A variety of techniques have been proposed for automatic extraction of

dynamic features from measured data. Block- processing techniques have been

used for extracting and characterizing dynamic features. Extending these ap

proaches to extract modal parameters in near real-time, however, is very chal-

lenging [32], [33].
In parallel to this effort, ambient-noise driven based electromechanical

mode estimation techniques with the ability to track modes under ambient con

ditions have been developed and tested using real measured data. As pointed

out in [13], the accuracy of any mode estimation technique is limited and may

be affected by the very nature of system dynamic behavior as well as the ap

proximation made in the computation.

Currently the concept of treating power system motion stochastically has

been widely accepted. In this connection, many studies have been undertaken

to analyze the problems of characterization, simulation and response of large,



complex power systems. Preliminary , analytical explorations on the use of these

techniques indicate that these methods have the potential to be used in real-

time wide-area monitoring and control systems. Several technical challenges,

however, need to be solved to enable efficient implementation of these techniques
in existing wide-area measurement, control and protection systems.

This has provided the thrust of this work.

1.3 Thesis Objectives and Overview of

Contributions

The main objectives of this research can be summarized as follows:

The development of an analytical framework for estimating electromechanical

modes from ambient data.

The development of efficient numerical techniques to assess modal structure

in near real-time. In particular, novel algorithms based on stochastic sub

space identification techniques are developed that improve numerical charac

teristics of existing implementations. The key innovation in the new method

is the use of an statistical framework which incorporates linear filtering tech

niques. In addition, the new model leads to a more realistic power system

representation in the presence of noise and random load variations. Because

of its adaptive nature, the proposed techniques can capture temporal varia

tions better than other approaches

The original contributions of this thesis are:

1. The development of a methodology for automatically implementing a mode-

meter algorithm in near real-time that incorporates predictive techniques

2. To this end, a mathematical framework is developed, which extends cur

rent formulations. Unlike existing approaches, the technique has a solid

analytical foundation and incorporates dynamic features in an stochastic

framework. Other methods such as canonical variate analysis (CVA) can

be shown to be a particular case of the developed techniques.

3. The comparison of various adaptive filtering methods for modal identifica

tion.

4



1.4 Thesis structure

This thesis is comprised of eight chapters.
This introductory chapter gives the motivation and background neccesary

for this research, and gives a general overview of existing analysis methods.

The remainder of the thesis is organized as follows:

Chapter 2 provides a general overview of modal identification methods in

power systems. The theoretical basis for these methods is described as well as

application, properties and performance.
In Chapter 3, a review of previous work on modal identification is pre

sented with an emphasis on its application to power system measured data.

Traditional identification methods used in the power system literature are ex

amined and models which adequately characterize the underlying oscillatory
behavior are reviewed.

Chapter 4 presents a conceptual modeling approach based on the use of

stochastic subspace identification methods to estimate modal structure that uses

wide-area measurements. Methods related to stochastic subspace identification

are also discussed and their relative advantages and limitations are pointed out.

Chapter 5 discusses the application of recursive least-squares techniques
to monitor power system oscillatory dynamics. Numerical algorithms for the

system identification problem are given.

Chapter 6 discusses the application of the proposed techniques to extract

modal damping and frequency from time-synchronized measured data. Both

simulated and measured data are considered.

Finally, Chapter 7 presents the general conclusions and suggestions for

future work. Possible modifications and improvement are considered.

5



Chapter 2

Modal Identification in Power

System

Ambient-noise driven based electromechanical mode estimation techniques

•with the ability to track modes under ambient conditions have been devel

oped and tested using real measured data.

This Chapter provides a perspective on the use of wide-area measurement

systems analysis tools for tracking power system oscillatory characteris

tics. Sources of dynamic information are reviewed and system identifi

cation methods are classified. The performance properties of parametric

and non-parametric methods are reviewed in the light of their application

to the analysis of power system oscillatory dynamics. Factors affecting

the performance of numerical algorithms for automated dynamic stability

assessment are also reviewed.

2.1 Modal Identification

Advances in signal processing algorithms, along with continuously growing com

putational resources and monitoring systems are beginning to make feasible the

analysis of transient processes using real-time information. Much of the re

cent work has been driven by interest in near real-time estimation of electro

mechanical modal properties from measured ambient data collected using Pha

sorMeasurement Systems (PMUs) [4], [3]. Wide-area measurements improve the

visibility and observability of critical system modes and may lead to improve

controllability [23].
By tracking the modal attributes of critical modes, the onset of system

instability can be determined and this information may be used to trigger control

actions in the system [23] and provide valuable information to system operator

[24], [35].
In recent years, the notion a mode-meter has been introduced [4]. The

mode meter algorithms automatically estimate the instantaneous damping and

frequency of critical modes. To be of practical use, mode meters must be able

to process, in near real time, all types of data.

Sources of dynamic information include [4] [35] :
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Figure 2.1: Data types according to type of exciting in inputs of system

• Ambient noise measurements

• Ringdown measurements

• Probing test

Ambient analysis estimate the modes when the primary excitation to the

system is random load variations. Short term (noise) fluctuations are a con

sequence of load variations whose characteristics vary in both the short and

longer term. Ringdown analysis, on the other hand, is aimed at estimating
modal properties from a transient data arising from large perturbations in the

system. By tracking the evolving dynamics of the underlying oscillations, the

onset of system stability can be determined and the critical stages for ansdysis
and control can be identified.

Finally, probing data is obtained from the system response to test signáis
of known characteristics [35]. Figure (2.1) gives a conceptual representation of

measured data showing the system response to various operating conditions.

Ambient-based mode estimation, in particular, can be conducted in both

the time domain and the frequency domain. As discussed above, extraction of

modal information may involve different types of analysis:

• Disturbance analysis

• Ambient data analysis (spectral and correlation analysis, parametric
modal analysis)

• Analysis of direct tests involving topology switching tests and low-level

excitation test

7
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Figure 2.2: Block diagram illustrating information sources for system identifi

cation at system locations where the mode of interest is most observable

The modal properties of specific electromechanical modes are obtained

using time-synchronized measurements at system locations where the mode of

interest is most observable as explained in [33] Figure (2.2) gives a conceptual
representation of a wide-area measurement system showing inputs and outputs
of interest and sources of noise.

In the case when the input u{n) see (2.2) is any deterministic input,
all topology characteristics are known. Tipically, the probing signáis u{n) is

designed to excite a given set of modes or frequencies of concern [4] .

Referring to Figure (2.2), when the input u{n) is natural input noise, the

power system produces a colored or process noise component in the output

y{n). An example of input noise is the random variation in the loads. The

output signal also contains measurement noise fí{n) produced by instruments.

In addition, topology changes result in noise in system measurements that has

to be accounted for.

A motivation for this research is the fact that process (colored) noise is

particulary attractive for nonintrusive identification of system dynamics, it is

identification without changes to the system, and it is an advantage of ambient

analysis. However, the natural input noise u{n) is not observable and its true

nature is not known. A common assumption is that input noise is white and

wide-sense stationary.



2.2 Classification of System Identification

Methods used for Modal Identification

System identification deals with the problem of building mathematical models of

dynamical systems based on observed data from the system. The models more

tised are rational functions and state space models. From these models it is

possible obtain the low frequency electromechanical modes in power system [16] .

In the sections that follow, the main characteristics of methods used for modal

identification are examined. These methods are classified into two main groups;

nonparametric and parametric.

2.2.1 Nonparametric Estimation

A linear time-invariant (LTI) model can be described by its transfer functions or

by the corresponding impulse responses. Methods that aim at determining these

functions by direct techniques without first selecting a confined set of possible
models are often called nonparametric, that is to say, they do not employ a

finite-dimensional parameter vector in the search for a best description [17]
[16]. Before presenting the characteristics of these methods, some definitions

are needed.

Nonrecursive Representation. Consider a stable LTI system with im

pulse response g{n) and input u{n). The output y{n) can be written formally
as the infinite sum

oo

y(n) = Yl 9(k)u(n
- k)

k=—oo

where the output is a weighted combination of system inputs.

Recursive Representation. Let the inverse system G{z) = \/G{z) be
causal and stable. If it is further assumed, without any loss of generality, that

g{0) = 1, then g{n) = Z~l {G(z)} has g(0) = 1 and the input u{n) can be

written as

00

u{n) = g{n) +£ 9{k)y{n
-

k) (2.1)
fc=i

Solving for y{n), yields

oo

V(n) = -*Y^9{k)y{n -k)+ u{n)



in which the output y(n) is a linear combination of all past output valúes plus

the present input valué.

Innovation Representation. If the system G{z) is minimun-phase, then

g{n) and g{n) are causal and stable. Therefore, the output signal can be ex

pressed nonrecursively by

oo n

y{n) = Y2g(k)u{n-k)= ^2 g{n-k)u{k)
fc=0 k=-ao

From this expression, and using Equation (2.1) it is possible to show that

n

y(n + 1) = Y, -?(n + l
~ k)u(k' + u(n + *) (2"2)

k=—oo

n

= ]T g{n + 1 -

k)y(k) + u(n + 1)
k=—oo

Equation (2.2) indicates that if the system generating y{n) is minimum-

phase, the sample u{n + 1) captures all the new information (innovation) in the

sample y{n + 1) . All other information can be predicted from the past samples

y{n),y{n
—

1), ... of the signal.
In practical applications, where only a finite segment of a signal is avail

able, it forces previous representations to become parametric.

The nonparametric techniques that do not assume a particular functional

form, but allow the form of the estimator to be determined entirely by the data,

are those nonparametric methods based on the discrete Fourier transform of

either the signal segment or its autocorrelation sequence [17].

Random Signal Model. If the system has a zero-mean white noise input

e(n) with variance a\, autocorrelation re{l) = crl6{l), and PSD Re{e^) = al,
—

n < u < ir, then the autocorrelation and PSD of the output y{n) are given

by[17][ll]

OO

ry{l)=o\ Y. h{k)h"{k-l) = alrh{l)
k=—oo

Rv{en = o-l\H{en\2 = olRh{en
Then, the shape of the autocorrelation and the power spectrum of the

output signal are completely characterized by the system.
To deal with the problem of estimating the power spectrum Ry{eju) of a

stationary process y{n) from a finite record of observations of a single realization.



the power spectral density of a zero-mean stationary stochastic process is defined

as

¡=-oo

where it is assumed that the autocorrelation sequence rv{l) is absolutely sum-

mable.

The objective is to find an estimate that can characterize the power-versus-

frequency distribution of the stochastic process using only a segment of a single

realization. For this to be possible, the estimate should typically involve some

kind of averaging among several realizations or along a single realization.

In some practical applications, it is possible to directly measure the auto

correlation ry{l) with great accuracy but focus on the stochastic versión of the

problem where Ry(ejw) is estimated from the data segment j/(n).One approach
to estimate Ry{eju) is using Equation (2.3) where ry{l) is estimated from the

available data. Another form is using the periodogram. The periodogram of

the data segment y(n) is defined by [17]

£(«*> =

Jj

N-l

£?(«>
n=0

2

=>(^le»"!

where P (e-"") is the DTFT of the windowed sequence

p{n) = y{n)w{n) 0 < n < N — 1

In practice, the second-order moments of the signal to be modeled are not

known a priori and have to be estimated from a set of signal observations. This

element introduces a new dimensión and additional complications to the system

identification problem.

2.2.2 Parametric Estimation

The parametric estimation is based on estimate a finite number of parameters of

a functional form such as a rational transfer function. The modal identification

in power system is obtained of models as rational transfer functions or finite

dimensional state-space descriptions.

A linear time-invariant model is specified by the impulse response g(n), the

spectrum Rye(^u) = o\ \H{eju)\ ofthe additive disturbance, and, possibly, the

probability density function (PDF) ofthe disturbance e(í) [16] [11]. A complete

model is thus given by
ll



y(n) = G{z)u{n) + H{z)e{n) (2.4)

/,(•), the PDF of e

with

00 oo

G{z) = l + YJ9{k)z-k H{z) = l + YJKk)z-k
fe=i fc=i

A particular model thus requires the specification of the three functions

G, H, and fe It is often impractical to make this specification by enumerating

the infinite sequences g(k),h{k) together with the function fe{-). Instead, one

chooses to work with structures that permit the specification of G and H in

terms of a finite number of numerical valúes. Rational transfer functions and

finite dimensional state-space descriptions are typical examples of this. Also,

frequently, the PDF fe is not specified as a function, but described in terms of

the first and second moments.

The specification of Equation (2.4) in terms of a finite number of numer

ical valúes, or coefficients, has another and most important consequence for

the purposes of system identification. This means that the coefficient in ques

tion enter in the model (Equation (2.4)) as parameter to be determined. Such

parameter is denoted by the vector 8.

Assume that a set of candidate models has been selected, and it is para-

metrized as a model structure, using a parameter vector 6. The search for the

best model within the set then becomes a problem of determining or estimating

9. There are many different ways of organizing such a search and also different

views on what one should search for, [16] .

Principies of parametric estimation methods

As was discussed earlier in this section, the nonparametric representations

such as recursive and innovation in practice adjusts a model using a set of data,

then these representations taking a parametric approach. The models have a

structure S (model estructure). Particular models are denoted by S{Q) and are

parametrized using the parameter vector 6 G Ds C Rd

The set of models is defined by

S3et = {S{G)\eeDs}
The model S{&) can contain assumptions about the character of the associated

prediction errors, such as their variances or their probability distribution.

Assume we are given a set of data



z"= [2/(1), u(l),..., 1/(17), «(»/)]
the problem that guises in parametric estimation is to decide how to use the

information contained in z'* to obtain an adecúate valué 0,, of the parameter

vector, and henee an adecúate member S(@v) in the set Sset. This represents a

mapping z*7 —> 0,, G Ds, and forms the basis of parametric estimation methods.

Each model of Sset is a linear predictor for the system in Eq(2.4) of the

form,

5(0) : y{n | 0) = [1 - H~\z, Q)]y(n) + \H~\z, Q)G{z, 6)]«(n)

Then the prediction error given by a certain model 5(0p)is given by

e(n,ep) = y(n)-y{n\Qp) (2.5)

Based on zn, the prediction error can be computed for n = 1,2, ...,77.

The principal objective of model identification based on prediction error is to

adjust the error to be zero or as small as possible. The general procedure is to

compute the error e(n, 0) for a set of data zv, at time n = r¡, select 0^ so that

the prediction errors e(n, ©,,), n = 1, 2, ...,n, become as small as possible.

There are two general approaches to determine the minimization error.

One approach is to form a scalar-valued norm or criterion function that measures

the size of e other approach is achieve that e{t, 0n) be uncorrelated with a given

data sequence, that is to say, that certain projections of e{t, 0„) are zero [17]

[16].

Prediction Error Identification Approach

Prediction error identification methods are based on criterion functions

that measure the size of e using any norm applied to the prediction error se

quence vector in R™ The way of evaluating how large is as follows:

The prediction error sequence is filtered through a stable linear filter

ef{n, 0) = l{z)e{n, 0) 1 < n < rj (2.6)

If the predictor is linear and time invariant with y{n) and u{n) being

scalars, then filtering e is the same result as first filtering the input and output.
With the filter applied to prediction error sequence, the norm is applied to e¡

as follows:

AT,(0,z") = *i¿>(e/(n,0)) (2.7)



where p(-) is a scalar-valued function. Because Nv{@, iP) is a well-defined scalar-

valued function for any z^of the model parameter 0, it is possible to estimate

0n by minimization of Equation (2.7):

§, = §,(■■>) = %g£m¿n NV{Q, z") (2.8)
arg mm

h

The methods based on Equation (2.8) are classified as prediction-error
identification methods, with the different methods varying depending on the

choices of p(-) and /(■).

The Least Squares Method

A predictor using a linear regression model structure is defined by

y{n | 0) = 4>T{n)e (2.9)
where the prediction is linear in the parameters and rp is the vector of regressors:

ip(n) = [—y{n
-

1) —y{n
— 2)... —y{n

—

a) u{n
- 1)... u{n

-

b)]

The associated prediction error is

e{n,Q) = y{n)-if{n)Q
The Least-Squares criterion is a particular case of Equations (2.6), (2.7)

with l{z) = 1 and p{e) = ^e2, namely:

N-{e,tf) = -¿^y(n)-/(n)6]2 (2.10)
'
n—l

Equation (2.10) is a quadratic function in 0 and can be minimized ana-

lytically as follows

0,, = argminNn{Q,zn) = l¿^(n)VT(n) -J2Hn)yT(n)rx ■■* *n *—*

'
71=1n=l

It can be seen that this minimization consist of estimates of the covariances

functions of y{n) and u{n) and is therefore related to correlation analysis.

Estimating State Space Models using Least-Squares. A linear

system in state space form is represented by:



x(n + 1) = Ax{n) + Bu{n) + w{n)

y{n) = Cx(n) + Du{n) 4* v(n)

(2.11)

with plant noise w{n) and observation noise v{n) both are white noise. Being

possible estimates the states x{n) using subspace methods and having u(n) and

y{n) measured, the model Equation (2.11) becomes a linear regression:

with

Y{t) = *#(n) + n(n) (2.12)

Y(n) =
x{n + 1)

y(n)
* =

i4 B

C D
, *(n) =

x(n)

,y(n).
7¿(n)=

u;(n)

í;(ti)
(2.13)

From Equation (2.12), all thematrix elements in * can be estimated using

a least-squares approximation. Straightforward computation yields

W,(¥-z*) = Í¿||y(n)-¥T*(n)
with the estimate

71=1

* = Í¿*$(n)$T(n) l¿$(n)yT(n)
„'-' t=l J ^

77=1

The covariance matrix for /i(n) can also be estimated easily as the sample
sum of the squared model residuals. This will give the covariance matrices as

well as the cross covariance matrix for w and v [16] [21] .

The Máximum Likelihood Method

Máximum likelihood is an approach that dealswith the problem of extract-

ing information from observation that themselves could be unreliable; these

observations are described as realizations of stochastic variables [16]. The

máximum likelihood is based on the probability density function (PDF) of

y" = [2/(1), ...,1/(77)]:

f{<d;x_,x2,-.,xn) = fy{Q;xv)
where 0 is supposed to be unknown and the purpose is in fact to estimate the

vector 0 using the observation yT? ,
that is to say, Q{yn). Then an estimate of

0 that maximize the probability of event observed is the máximum likelihood

estimator. The probability that the realization indeed should take the valué yn

is thus proportional to fy(Q; yv) and an estimator of 0 is given by
15



0(y") = argmax/v(0;y")
This expression is the máximum likelihood estimator for fixed yn

Relation ofMáximum Likelihood with Error-Prediction Method.

Having a model described by

5(0) : y{n | 0) , e{n, 0) = y{n) - y{n | 0) are independent

.and have the PDF fe{x, n; 0)

and replacing the dummy variables -c¿ by the corresponding observations

y¿ and using Baye's Rule [11] the likelihood function, one has

fvid.y") = II/e(y(n)-y(n|0),n;0) (2.14)
71=1

■7

= n¿-(£(n'e)>n*e)
71=1

Noting that this function can be maximized by multiplying it by
i log:

-

log /,(©; y") =
- V log fe (e(n. 0), n; 0)

and defining p(-) =
— log/e(*) it is possible show that the máximum likelihood

method is a special case of the prediction-error criterion:

W) = ^^ - -

E log f- (e(n, 6), n; 0)
'
71=1

In practice, the exact likelihood function is quite complicated for time-

series problems and several approximation have to be introduced.

Correlation Approach

The main idea behind this method is that it produces prediction errors that

are independent of past data. That is to say, select a certain finite-dimensional

vector sequence <¡){n) derived from z™-1 and demand a certain transformation

of e(n, 0) to be uncorrelated with (p{n) [17], [11], [21] [6]. More formally, we

can write

-¿>(n)e(n,e) = 0 (2.15)
77
n=1

16



and the 0-value that satisfies this equation would be the best estimation 0,,
based on the observed data, it is:

®«= etsM (^í>M"-©)
=

o) (2.16)

Would be the case when is useful to consider an augmented correlation

sequence of higher dimensión so that Equation (2.16) is an overdetermined set

of equations, typically without any solution. Then the estimate is taken to

be the valué that minimizes some quadratic norm of Equation (2.15), these

correlation approaches links with the minimization errors of last section.

Instrumental-Variable Methods [16] [11]. These methods use the

linear regression model in Equation (2.9) where the solution using <j){n) = x¡){n)
is:

§„ = sol í - ¿ V(n) W)
~ V(n)@] = 0 )

\ 71=1 /

When the data is described by

y{n) = ipT{n)Q + v{n)

being v{n) some sequence and having the restrictions of not be a sequence of

independent random variables with zeros mean valúes or not be independent of

the input sequence u(n) and not has a = 0. Then 0,, will not tend to real valué

0. The form of tend real valué 0 is choice elements of <p{n) having the following

properties:

E [(f){n)ijjT{n)] be nonsingular

E [<j){n)vT{n)} = 0

Solving this expression for 0 yields

§, = sol (-¿ 4>{n) [y{n)
- V>T(n)0] = 0

j
\ 71=1 /

or

0„ = i¿0(n)VT(n) -J2<P(n)yT(n)
rx *■—' rx *■—'

2

71=1 ^l

17
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Figure 2.3: Synthesis or coloring filter

2.3 Ambient Data Pre-Processing

2.3.1 Assumptions of Ambient Data

In this research, ambient data of power system are assumed to be produced by

white noise inputs u(n) springing from random perturbations such as random

load changes, these perturbations are enough for exciting the modes of the sys

tem to be observed for adecúate identification technique. The noise input u{n)
have the character of input, but it is not controllable and not is observable. It is

not known beforehand. It is thus natural to employ a probabilistic framework

to describe the process noise. A complete characterization would be to describe

the conditional joint probability density function. This would, however, in most

cases be too laborious and impractical. The approach used in this research is

versatile enough for most practical purpose. The principal idea to consider the

white noise input u{n) injected to the system H{z) is generates the signal y(n)

by introducing dependence in the white noise input u{n) and it is known as the

synthesis or coloring filter, the Figure (2.3) shows a block diagram of coloring

filter.

Other aspect to be consider is that of the colored noise output y{n) pro
duced by the system H{z) is contamined by measurement noise ¡j,{n) as shows

the Figure (2.2).

2.3.2 Pre-Processing

The data collected of power system y{n) are not likely to be in shape for imme-

diate use in identification algorithms. There are several deficiencies in the data

that should be taking account, such as, high-frequency disturbances occasional

that are not interest to the system dynamics, outliers, missing-data and offsets

[16] [35]. One approach to this problem is the use of pre-processing techniques.

Signal Offset. An approach to deals with offset is removing the dis

turbances by explicit pretreatment of the data. The most natural way is to



y=mean(YN)
w(n)

YN=[y(1)...y(L)] + ^YN> Resampling Y*> Windowing
M

n

^w?nf Low-Pass

Filter

High-Pass
Filter

Figure 2.4: Block diagram of ambient data pre-processing

determine the level offset y that corresponds to a constant cióse to the desired

operating point. A sound approach is to define:

1
v

'
71=1

Then am output that varíes around y is likely to be cióse to a steady point,
it is substract to data y{n).

Outliers and Missing Data. In practice, the data collected may exhibit

missing of singles valúes or portions [16] [4] [35], due to malfunctions in the

measuring devices or communication channels.

Such bad valúes are often called outliers, and may have a substantial

negative effect on the estimate. To deal with outliers and missing data, there

are a few possibilities. One is to cut out segments of the data sequence so that

portions with bad data are avoided. The segments can then be merged. The

outliers is better to treat as missing data and view then as unknown parameters.

Prefiltering. The prefilter applied to data have the propose to remove

disturbance of high and low frequencies that is not want to include in the mod

eling [16]. In this research is avoid the frequencies out of range 0.1-1 Hz. Pre

filtering the data y{n) is equal as filtering the prediction errors.

High-frequency disturbances in the data, above the frequencies of interest

for the system dynamics, indicate that the choices of sampling interval and

presampling filters were not thoughtful enough. This can however be remedied

by low pass filtering of the data.

Figure (2.4) shows a block diagram of pre-processing ambient data before

apply the modal identification algorithm.



Chapter 3

Previous Work on Modal

Identification Techniques Using
Ambient Data

Modal identification techniques on power system have increased and per-

fected using ringdown data. However, in the case to use ambient data, the

techniques have some shortcomings. The ability to track the low frequency

modes in equilibrium conditions of power system and before perturbations

is very important because it provides evidence and possible prediction of os

cillations and thus it is possible take corrective actions. This chapter dis

cusses the experience in the use of ambient-based modal identification tech

niques. The analysis focuses on three major analysis techniques: Prony

and matrix pencil methods, and parametric methods.

The analytical basis of these techniques are reviewed in the context of their

application to power system data.

3.1 Improved Ringdown Methods To Deal With

Ambient Data

3.1.1 Prony Method

Prony analysis is a method of fitting a linear combination of exponential terms

to a signal. Consider the problem of fitting a sum of exponential functions

M

y(n) = 5>(fc)es(fc-" (3.1)
fc=i

to real data, for N > 2M . where the parameters a{k) and s{k) for k = 1, 2, ..., M

are unknown complex numbers. Assume that the valúes of y are specified on

a set of equally spaced points 1,2, ...,N. Evaluating this expression at y
=

0,1,...,AT-1 results in [8].



a(l) + a(2) + ... + o(AÍ) = y(0) (3.2)

o(l)es« + a(2)eiW + ... + o(M)es(M) = y(l)

a(l)e2s(1) + a(2)e2s(2)*f...+a(M)e2s(M) = y(2)

a(l)e(-v-i)S(D + a(2)e(Af-1)s(2) + ... + a{M)e^~1>^ = y(N - 1)

For purposes of illustration, consider a four-sample case. It follows that

Ci + Ca = M0 (3.3)

C1/JJ+C2M2 = M

cll4 + c2r4 = m2

Cxu\ + C2u\ = M3

representing four equations in the four unknowns ¡j,_, fi2, C\ and C2. Assuming

now /íj and ¡j_ to be the zeros of A{i¿)

A{fi) = (n- n_)(fJ.
-

/J2) = M2 + oiiu + a2
= 0 (3.4)

the problem now is to determine the coefficients aj and c^-To find these coef

ficients the third equation of (3.3) is multiplied by 1, the second by «i and the

first by «2> and using Eq. (3.4) one finds

M2 + Miai + M0a2 = 0

Similary, from the fourth, third, and second equations we obtain

M3 + M2«i + M_a2 = 0

Returning now back to the set of equations (3.2) and generalizing the

above concept, the roots of the algebraic equation may be written

M

A{e<]¿)) = J](es-esW) = 0 (3.5)
it=i

= eMa + a_eW-Vs + a2e(M~2)s + ... + aM-iea + aM

are solved for the coefficients ai,..., aM- Following a similar procedure to that of

the example, the first equation in (3.2) is multiplied by au the second equation

by q.m-i\ the process is continued until the Mth equation is multiplied by a-.,

and the (M -I- l)th equation by 1, and the results are summed together. It can

be proved that

y{M)+y{M-l)a1 + ... + y{0)aM = 0
Zi



This yields a set of N — M — 1 equations of the form

y(M)+y{M-l)a_ + ... + y(0)aM = 0

y{M + 1) + y(M)a_ + ... + y{l)aM = 0

(3.6)

y{N
- 1) + y{N

- 2)a_ + ... + y{N
- M -

l)aM = 0

This set can be solved directly if N = 2M or solved approximately by the

method of least squares if N > 2M. After the as are determined, the M es(-k~> 's

are found as the roots of Eq. (3.5). The Equations (3.2) then become linear

equations in the M a 's, thus they are determined from the first M of these

equations or by applying the least square technique to the entire set [5] [8].
Several variations to this method to deal with noise have been applied to

Prony Method. We next discuss two of these approaches.
Kumaresan and Tufts proposed in [13], [25] that the observed data se

quence y{n) consists of Eq. (3.1) plus white Gaussian noise w{n) :

M

y{n) = ^a(fc)es(fe)n + w(n) (3.7)
fc=i

Then, a singular valué decomposition (SVD) is applied to set of linear

prediction equations using data in the backward direction:

2/(1)

2/(2)

y(2)

2/(3)

.y{N-L) y{N-L + l)

V(L)

y(L + i)

y{N
-

1) J |_ oll .

a*.

a2

2/(0)

2/(2)

Ly(AT-L-l)
(3.8)

Aa = -h

where L is chosen to satisfy the inequality M ^ L ^ N—M. The SVD is applied

because of the presence of noise in the data and the equations are solved in the

least square sense injecting perturbations in a [14], [13] However, moderately

large valúes of L are essential in improving the accuracy of the pole location

estimates [12], [13]. The main idea behind this approach is to apply SVD to A

and then find a truncated SVD solution by setting the smaller singular valúes

of A to zero. The SVD of a is given by

M

a=[a1,a2,...,aL]T= -^(7fcu{.hvfc
**=i

(3.9)
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where ak, k = 1, 2, .., L are the singular valúes of A.Vk, k = 1,2, ..., L and ujt, k =

1, 2, ..., N
- L are the eigenvectors of A*A and .¿¿l1' respectively and f stands

for matrix complex conjúgate transpose. The polynomial

A{z) = 1 + a.z-1 + a2z~2 + ... + aLz~L (3.10)
has Vk, 1 < k < L roots.

Kumaresan and Tufts have shown in [12], [13] that when ak
= 0 (when

there is no measurement noise) this polynomial has exactly M roots outside the

unit circle, which are the reciprocáis of e*^k\ 1 < k < M. The extra roots of

A(z) are guaranted to be inside the unit circle. Based on this observation, the

roots of A(z) of signáis with noise are estimated from

es(k) = v-l .

l < k < M

where vk ; 1 < k < M are the roots of K{z) outside the unit circle.

The effect of using a truncated SVD is to increase the signal-to-noise-ratio

(SNR) in the data prior to obtaining the solution vector qi.

Another approach to deal with noisy data proposed in [14] is to use the

conventional Prony method (Eq. 3.6) with L as in Eq. 3.8. The result is a

set of L exponentials which are candidates for signal components. Then, with

high-order Prony calculation, determine the best subset of size M. A best subset

of M exponentials is one for which a linear combination of the M exponentials
best approximates the observed data using a least squares criterion. If M is

unknown a priori, a search with increasing M in one to one and computed the

error respectively, the stop criterion is when the rate of decrease of the error

with increasing valúes of M is small. The valué M that make this small error

is taken as M.

3.1.2 Matrix Pencil Method

The singular valúes decomposition (SVD) step in Matrix Pencil method acts as

a filtering process, thus this method can extract dynamic information from noisy
data [26]. When noise is present, the zero singular valúes are perturbed by the

noise and take small positive valúes [15] . Now, the singular valué decomposition

provides an effective way of noise filtering. The singular valúes below some

specified threshold are considered to be caused by noise and need to be set as

zero. In the matrix pencil method, L is a free parameter subject to M < L <

N-M.

Another approach to deal with the problem of estimating the unknowns in

Eq. (3.7) is the Matrix Pencil method. Unlike Prony Method the Matrix Pencil



Method is a one step process for determining the roots zk in the polynomial Eq.

(3.10) The matrix Pencil method is not only computationally more efficient,

but it also has better statistical properties for the estimates of zk than the Prony

Method.

The matrix pencil arises of combining two functions defined on a common

interval, with a scalar parameter, A. A pencil function of g{n) and h{n) is given

by [26]:

f{n,\)=g{n)+Xh{n)

and parameterized by A and where g{n) is not permitted to be a scalar múltiple
of h{n). The pencil-of-functions enables extracting information about zk, given

y{n), when g{n), h{n), and A are approximately selected.

Similar to Prony methods, the Matrix Pencil method is designed to fit the

signal with a model of the form

M M

y{n) = x{n) + w{n) =^ a{k)es(k)n + w{n) =^ akz% + w{n)
fc=i fc=i

where ak
= a{k) and zl = es(fc)n

If the data is assumed noise free, then the following equalities hold
24



Y2 =

x(l)

x{2)
x{2)

s(3)
x(L)

x(L + l)

x{N -L) x{N-L + l) ■■■ x(N - 1) .

fc=i «*4 Eit=i afc^fc
V-»-»»

„ _2 ****-iJw 3

¿^fc=i akZk 22k=i akz¿k

—-\M r,

EM
L

fe=l akZk
,L+1

fc=l Ofe-2*; 2^fe=l «fc^fc
.JV-L+1

fc=l «fc^fc
,Af-l

= EiAZ=.2

and the same form that Equation (3.11) Yí is defined by:

(3.11)

Ol a2 aM "l ^ zL~x 1
zl

ai-2i a2z2 o-mZm 1 22 ZL~lz2

. ai^i a2z2
. -. „N-l>
lMzM 1 zM

■•■

ZM

1 1 1
'

ai

■

Zl z2 zm a-2

„N-L-1
L *i

-N-L-1
Z1

,N-L-1
ZM J

(N -L)xM
O-M

.

"

Zi

Z-i

"l Zi
■■

1 z_>
■ •

zl

Z1

. zm
. MxM

_

1 zM
■ z¿-1ZM M kL

MxM

Vl

x(0)

x(l)
x(l)

x{2)

x(N-L-l) x{N-L)
= EiAE2

x{L-l)
x(L)

x(N -

2) .

(3.12)

where L is referred to as the pencil parameter. Then, considering the matrix

pencil

y2-\Yi = EiA{z-xi)e2
The rank of Y2 - AYi will be M. Note that, if A = zk,k = 1...M, the

kth row of Z - AI is zero, and the rank of this matrix is M - 1. Henee, the
25



parameters zk are determined by solving an ordinary eigenvalue problem of the

form [15], [9], [26]:

Y¡Y2 - AI

To deal with noise, the total-squares Matrix Pencil has been found to be

superior that PronyMethod [15]. In the implementation ofthe method [26], [15],
it is used the matrix Y from the noisy signal y{n), i.e.

Y =

2/(0)
x(l)

2/(1)
x(2)

y(L)

y(L + i)

y{N-L- 1) y{N-L) ■■■ y{N
- 1) .

where L is chosen between N/3 to N/2 for an efficient noise filtering. Applying

a SVD to Y

Y = USVT

the valué M is selected considering the eigenvalues ak of S such that

ok
10"

Cn

where the ratio of singular valúes ak that are below 10~p is considered noise

singular valúes and they are not considered in modeling. In this form M + 1 to

L small eigenvalues are discarded. Therefore, Sm is from the M columns of S

and Vm contains only M dominant right-singular vectors of V Then Yi and Y2

are obtained by

Yi = USMVMi

Y2 = USmVM2
where Vmi is obtained from Vm with the last row of Vm deleted and Vm2 is

obtained by removing the first row of Vm- Then, the eigenvalues are obtained

from

Y¡Y2 - AI

Once M and the zk are known, the residues ak are solved from a least-

square problem.
The results of Prony Method and Matrix Pencil in [15] , [26] are different

under noise. It can be shown in [15] that under noise, the statistical variance

of the poles zk for the MP method is always less than that of Prony Method.
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3.2 Models of Random Process and Yule-Walker

Equations

Models for process differ from those for deterministic signáis in two ways. First,

a random process may only be characterized statistically and the valúes of y{n)
are only known in a probabilistic sense. The second difference is in the char

acteristic of the signal that is used as the input to the system that is used to

model y(n). For a random process the input signal must be a random process.

3.2.1 Autoregressive Moving Average Processes

An Autoregressive Moving Average (ARMA) process is a causal linear shift-

invariant filter with white noise v{n) input. The rational system function with

p poles and q zeros is given by

m = W; = . ^rzi^-i (3-i3)
B(z) ZLobiQz-1

A(z) I + ELigW-*-1
It can be shown that an ARMA process of order (p, g) referred to as an

ARMA(p.q) process has a power spectrum for the output y{n) of the form

'«^-'•^f (314)

where it is .assumed that the filter is stable, the output process y{n) will be

wide-sense stationary and with Rv{eíu) = ct2 [6].
Since y{n) and v(n) are related by the linear constant coefficient difference

equation

y{n) +¿ a{l)y{n - l) =¿ b(l)v(n
-

l) (3.15)
/=i (=0

the autocorrelation of y{n) and the cross-correlation between y{n) and v{n)

satisfy the same difference equation. Then, multiplying both sides of Eq.(3.15)

by y*{n — k) and taking the expected valué, then it is obtained [32], we get

p i

rv(k) + Y. o.{l)ry{k ~l) = Y. b(l)rvy(k
-

l) (3.16)
1=1 1=0

where it is assumed that v{n) is wide-sense stationary and

rvy{k
-

í) = E [v{n
-

l)x*{n
- k)}

However, by writing the cross-correlation rvy{k
—

l) in terms of the unit

sample response of the filter, it is obtained:
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E [v{n - l)x*{n - k)} = a2vh*{l - fc)

Then, equation (3.16) can be expressed by

ry(k) + ¿a(0ry(fc - l) = <72¿6(/)/i*(/ -

fc) (3.17)
1=1 ¡=o

Because h(n) is causal, equation (3.17) can be written as

1=1
{"

2 ■sr^q-k
T,nKl + k)h*{l) 0<k<q

ry{k) + J2a(l)ry{k-l)=\°^^^^^
»*

-j
h

, ,, ,

These are the Yule-Walker equations.

Modified Yule-Walker Equation method.

In this work, only the coefficients of polynomial A{z) are of interest, since

it is aimed at extracting the modal content of signal, which are the roots of

A{z). A [28] Modified Yule-Walker Equation (MYWE) method is obtained by

expressing Equation (3.18) in matrix form forfc = <7 + l,...,(7-|-p:

*■»(? + 1)
rv{q

- 1)

Ty(q)

ry(q+p-l) ry{q + p-2)

ry(q-p + i)
ry(q-p + 2)

ry{q)

a(l)

a(2)

a(p)

ry(q+l)
ry(q + 2)

ry{q + p)

This procedure results in p lineal equations with p unknowns , a(fc) This

set of Uneal equations can be solved for a(fc) using different methods as discussed

below.

Least Squares MYWE method.

A problem that arises in practical applications using the MYWE is that

often the autocorrelations are unknown and they have to be estimated using a

sample realization of the process. In [29], [28], [32] a better estimate of ry{k) is

obtained by using a long data sequence; this gives a set of linear equations in

the unknown a{k) :
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rv(q) rv{q
- 1)

ry(q + 1) ry(q)

ry{L-l) ry{L-2)

ry(q-p + l)

ry(q-p + 2)

ry{L-p)

a(l)

a{2)

a{p)

ry(q + l)

ry(q + 2)

ry(L)

where L > p and a least squ.ares solution can be found.

3.2.2 Autoregressive Processes

An ARMA(p,0) process is called an autoregressive process of order p. In this

case y(n)is generated by filtering white noise with an all-pole filter of the form:

ff(,) =M £„(*),-*
k=i

The power spectrum in an AR(p) give for the output y{n) is

Ry(¿n = *l;
^ . a \m\2

■\A{e-")\2
where R»^") = a\.

The Yule-Walker equations for an AR(p) process are [6]:

p

ry(l) + Y,a(l)ry{k
-

l) = a2v\b{0)\2 6(k) ; fc>0 (3.19)
¿=i

Yule-Walker Equation method

The Yule Walker Equation is obtained for expressing Equation (3.19) in
matrix form for fc = 1, 2, ..p,using the conjúgate symmetry of ry{k):

ry(0)
r„(l)

*í(l)
rv(0)

r*y(p~l)
r*y(p-2)

ry(p-l) ry{p-2) ru(0) J L-(p)

a(l)
a{2)

r»(l)
r„(2)

ry{p)
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3.3 Adaptive Algorithms

An adaptive algorithms approach has been applied in [31], [30], [34], [36] to track

low frequency modes in near real-time using measured ambient power system

data. These adaptive techniques are based on the .assumption that there is

random noise at the input. In what follows we give a brief review of various

adaptive filtering techniques which are relevant to this research.

3.3.1 Least-Mean Squares (LMS) Adaptive Filtering

Technique

With the assumption that input of the power system is approximately white

noise, adaptive filtering techniques can be applied to track the frequency and

damping associated with the electromechanical modes in the system. This is

acomplished by finding the weights associated with the specific adaptive filter

block applied to the ambient data.

The LMS filter is used in a linear predictor to make a whitening filtering.

The dominant modes of the whitening filter correspond to the dominant modes

of the time-varying power system. The LMS algorithm is used in [31] to adapt
the weights in order to track time variations in the power system. The LMS

process is described by:

y{n) = w*(n)y(n-l) (3.20)

e{n) = y{n)
- y{n)

w(n-fl) = w(n) + ^y(n- l)e*(n)

where y(n
- 1) = [y{n

- 1) y{n
-

2) ... y{n
- M))T is a vector of M past valúes

of power system data y{n) , w(n) = [wi{n) w2(n) ...WM(n))T is a vector of

time-varying filter weights, y{n) is filter output, e{n) is the approximate white

noise filter output, M is the order of the filter and \i is the step-size parameter.

The figure (3.1) shows a diagram of LMS adaptive filtering.

Then, the LMS filtering process consist of generated a linear prediction

y{n) using a set of past data y(n
- 1) and a weight vector w(n) ,

and error e(n)
is used to regenérate the adaptive process.

For the convergence of LMS tracking algorithm this is guaranted for wide-

sense stationary data and small ¡x, the step-size can be adjusted to the interval

0 < n < {2/ total MSV), where

M
N~1

total MSV=— J^ y2 (n)



y(n) y(n-D Transversal
Filter

w(n)

Adaptive weight
control mechanism

Figure 3.1: Diagram of LMS adaptive filtering

The vector w(n) have the coefficients of the polynomial on z-domain, its

roots and converting they to s-plane give knowledge of the modes of the system,

this polynomial is represented by:

A{z) = [ 1 z'1 -M

]
1

—w(n)

3.3.2 Normalized Least Mean Squares (NLMS) Filtering

The main characteristic of this to improve the convergence time of the estimates

compared to the LMS. In LMS algorithm [1], [7], the correction fiy{n
- l)e*(n)

applied to the weight vector w(n) at iteration n + 1 is directly proportional to

the input vector y(n- 1). Therefore, when y(n- 1) is large, the LMS algorithm

experiences a gradient noise amplification problem. To deal with this problem

is used the NMLS. In this method the correction applied to the weight vector

w(n) at iteration n + 1 is normalized with respect to the squared Euclidian

norm of the input vector y(n
—

1).
The problem to solve in NLMS filtering is that given the input vector

y(n
—

1) and y{n), determine the weight vector w(n + 1) so as to minimize the

squared Euclidian norm of the change

Aw(n + 1) = w(n + 1)
—

w(n)

in the weight vector w(n + 1) with respect to its previous valué w(n).
In [1], [7], the minimization is given by

Aw(n-fl) =
1

\y{n-i)
¡y(n

-

l)e*(n)
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A positive reíd scaling factor e is introduced to exercise control over the

change in the weight vector from one iteration to the next without changing its

direction. Then, Aw(n + 1) is given by

Aw(n + 1) = / —

2y{n
- l)e*(n)

o+||y(n-l)||
where 0 < € < 2 to ensure the convergence in the mean square [7], and a is

a positive constant to avoid numerical difficulties when ||y(n
—

1)|| be a small

valué. Now, it is possible write w(n + 1) by

w(n + l)=w(n)+
—- - y(n-l)e*(n) (3.21)

a+||y(n-l)||

Equation (3.21) replace equation (3.20) for w(n+ 1) for Normalized LMS.

The normalized LMS algorithm exhibits a rate of convergence that is potentially
faster than of LMS algorithm for both uncorrelated and correlated data input.

3.3.3 Adaptive Step-Size Least Mean Squares (ASLMS)

Filtering

In [30], an adaptive step-size Least Mean Square algorithm (ASLMS) for es-

timating the electromechanical modes is proposed in which the step-size \i is

adaptively controlled to same proposed that NLMS, namely, the time of the es

timates is improved compared to the LMS. The main equations associated with

the ASLMS, added to the set of three LMS equations in (3.20) is given by

//(n) = \i{n -1)+ pe{n)-yH{n)y(n -

1)

where jH is the gradient vector and p is a small positive constant which controls

the update of the step size parameter.

3.3.4 Recursive Least Squares (RLS) algorithms

In [36] and [34] R3LS and RRLS algorithms are proposed respectively. In [34]
an Robust Recursive Least Square (RRLS) algorithm is proposed for find the

parameters of AR in the case of ambient data. Zhou and Pierre said that the

prediction model for the AR takes the same form as in the prony analysis, it is

based on [27], [16]. Thus,

y{n | 0) = -aiy{n
-

1) -

a2y(n
-

2)
-

...

-

aay{n
-

a)
= i?{n)Q
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can be used as a prediction model for both signal types (Ringdown data and

Ambient data).
The RRLS algorithm in[34] is described by

§(n) = é(n - 1) + R{n)p'{e{n))

e(n) = y(n)
- VT(n)6(n - 1)

P{n) = A_1P(n - 1) - \-lR{n)il?{n)P{n - l)p"(e(n))

R(n) =
P(n-lWn)

V
A + p"(e(n))V'T(n)P(n-l)V'(n)

where p(e) = e2/2 is a scalar-valued function as in Eq. (2.7) and p'{e) = e if

|e| < Aa or p'(e) = 0 if |e| > Act. p"(e) = 1 if |e| < Act or p"(e) = 0 if |e| > Act.

ct is the standard deviation of e, and A is a user chosen positive constant. For

more details see [34] .

3.4 Method of Stochastic Realization by using a

linear matrix inequality

There are different approaches to solve for the unknown parameters of models,

such as correlation methods and prediction error methods. Others methods

that have been recently used, focus in determining the unknown parameters of

stochastic state-space models. They are numerically robusts because they utilize

techniques such as QR-factorization and singular valué decomposition (SVD).
As a result, the system modes are computed directly from system matrix A of

the stochastic state space model obtained. In [11], it is presented a method of

stochastic realization by using the deterministic realization theory and a linear

matrix inequality (LMI) satisfied by the state covariance matrix. This results

in a stochastic realization algorithm based on a finite covariance data.
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Chapter 4

Method of Stochastic Subspace

Identification for Ambient Modal

Estimation

System identification provides a meaningful engineering altemative to phys
ical modeling. Compared to models obtained from physics, system identifi

cation models have a limited validity and working range and in some cases

have no direct physical meaning[21]. But, they are relatively easy to ob

tain and use and even more importantly, these models are simple enough

to make model-based control system design mathematically (and also prac

tically) tractable.

This chapter discusses the development of subspace identification methods

for modal estimation from measured data. The underlying assumption is

that small motions of the power system can be described by a set of ordinary

difference equations in discrete time or differential equations in continué

time.

4.1 Background

It is assumed that matrices A G Rpxj, B G Rq*j are given. The elements of a

row of one of given matrices can be considered as the coordinates of a vector in

the j—dimensional ambient space.

4.1.1 Orthogonal Projections

Orthogonal projection projects the row space of the matrix A onto the row space

of the matrix £[11]:

A/B = ABT{BBT)]B
where •* denotes the Moore-Penrose pseudo-inverse of the matrix, and •. A/B
is a shorthand for the projection of matrix A G Kpx** on the row space of the

matrix B.



4.1.2 Statistical Assumptions

Consider two sequences ak G R"a and ek G W1', k = 0, 1, ..., j. If the sequence

ek is a zero mean sequence, independent of ak it is straightforward to show

that

E[efc] = 0 (4.1)

E [akel] = 0 (4.2)
In subspace identification [20], [18] it is assumed that long time series of

data available {j
—> oo) are available, and that the data is ergodic. Due to

ergodicity and the infinite number of data, the expectation operator E ( average
over an infinite number of experiments) can be replaced with the difference

operator Ej applied to the sum of variables (average over one, infinitely long,

experiment) [11]. Then, for the correlation between ak and ek, we have

E [akel] = lim
]
—>oc

1
j

• Ea¡^
J
i=0

Ej Ylai€?
i=0

(4.3)

and

Ej [•] = .Hm 7 [•] (4.4)

These equations lie at the heart of the subspace approach. Let uk be a

sequence of inputs and ek be a disturbance. If it is assumed that an infinite

number of data are available and that the data are ergodic and that uk and ek

are independent, it can be proved that [21]:

E, E
,í=0

Uid

or

(4.5)

E¿ [ueT] = 0 (4.6)

where u = {u<_ ui Uj); e = (eo ei ... e_;),which implies that the input vec

tor u is perpendicular to the noise vector e [6]. So, geometrically (and for

j
—> oo) it is possible to state that the row vectors of disturbances are perpen

dicular to the row vector of inputs (and to other variables not correlated with

the noise).
This property is used in subspace identification algorithms to filter out

noise effects [19].
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4.1.3 Covariance

The covariance $[a,b] between two matrices A G Wxj and B G R'**7 is defined

in the statistical (stochastic) framework as [11]:

from which it follows that
$(/1,B]=Ej[A£T]

$[A,B] =í -AB1

Then, for the orthogonal projection:

A/B = *tA,B]*[B,fl)£

\abt
3

1 -

-BBT
u

= abt[bbtYb
and

ABT <— $
[A,B]

(4.7)

(4.8)

(4.9)

(4.10)

4.2 Stochastic System

Stochastic subspace identification algorithms compute state space models from

given

output data. A stochastic linear system can be described by the state

space model [11], [21]:

xk+i
= Axk+ujk (4.11)

yk
= Cxk + vk k = 0,l,...s

where x G Kn is the state vector, y G M! is the observation vector, w e tn is

the plant noise vector, and v G M' os the observation noise vector. The system
matrices are A G Rnxn C{t) G K'xn ujk and t^ are zero mean, white noise

vector with covariance matrices:

E :;) . - * >
Q S

5T R Jpq (4.12)
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Figure 4.1: A lineaur time-invariant stochastic system with outputs yk and states

Xk, described by the matrices A, C and the covariances matrices Q, S, R.

where Q G Rnxn ,5 G W1*1
,
R G Rixí so that the second order statistics of the

output of the model and of the given output are equal [18] .

The system described by Equation(4.11) is schematically shown in Figure

(4.1).
We note that, if the matrix A is stable the process becomes a stationary

process [11] with:

E|>fc] = 0

E[-rfe(-rfe)T] = n

where the state covariance matrix TI is independent of time k.

(4.13)

4.2.1 Forward Model

Since bjk and vk are zero mean white noise vector sequences independent of xk,

we have

E[sfc«¡n = o

E[xkul] = 0

and the Lyapunov equation for the state covariance matrix IJ is:

(4.14)

II = E[{Axk+tjk){Axk + ujk)T]
= AE[xk(xk)T]AT+E[ujku.l]
= AnAT + Q

To obtain the covariance matrices, let

(4.15)
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Then,

A¿ = E [yk+iyk]

Ao = E[yfc(yfc)T]
= E {Cxk + vk) {Cxk + vkf

= CE[xk{xk)T]CT + E[vkvTk]
= cncf + R

Further, defining

(4.16)

G = E[*rfc+1y¡n
= E {Axk + u.k){Cxk + vk)'1

= AE [xk{xk)T] CT + E [u.k{vkf]
= AÍICT + S

(4.17)

From [21], for i = 1,2,

Ai = CA*-lG

A_¿ = GT{Ai-1)TCT

(4.18)

This last observation, indicates that the output covariances can be con

sidered as Markov parameters of the deterministic linear time invariant system

A,G,C,Ao[ll],[21].

4.2.2 Block Hankel Matrices

Output Hankel Matrices are useful in stochastic subspace identification algo
rithms. Based on the foregoing analysis, the output measurements are put into

a block Hankel matrix in the form
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Yq\í-i =

*past
—

yo yx

yx V2

yi

y¡

yj-2 yj-i

vj-i y¡

5^|2t-i = Yjfuture —

\ yi-i y¿ yí+i
• • •

y¿+j-3 y¿+j-2 /

/ Vi Vi+X Vi+2
■■■

Vi+j-2 Vi+j-X \
Vi+X Vi+2 Vi+3

■ ■ •

Vi+j-X Vi+j

\ V2Í-X V2i V2Í+X
■ ■ ■

V2Í+J-3 V2Í+J-2 j

*0|2t-l
%-i \

=

f Y^ \
=
(YP\

(4.19)
i|2i-l / \

* future } \ lf /

The matrices Yp (the past outputs) and Yf (the future outputs) are struc

tured as i block rows, Yp and Yf splitting Vó|2i-i h*-*0 *wo equal parts of i block

rows. The subscripts lo^i-i Vó|¿_i and Yí|2¿-i are the first and last element

in the first column of the block Hankel matrix. The matrices Y+ and YJ are

defined by shifting the border between past and future data one row down in

Equation (4.19), as:

V = Y0\i

^¡+1121-1

The number of block rows i is typically equal to 2M/1 [2], where l is

the number of outputs of system, M represents the expected maximal order of

the system, and it is assumed that i > n.The number of columns j is typically

equal to s — 2i + 1, where s is the number of me-asurements of outputs, which

implies that all given data samples are used. However, in subspace identification

it is assumed that there are long time series of data available {j
—> oo), for

statistical reasons [19].

4.2.3 System Related Matrices

Another important matrix for stochastic subspace identification algorithms is

the observability matrix. The extended {i > n) observability matrix <D¿ (where
the subscript i denotes the number of block rows) can be written as
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Di =

C

CA

CA2 (4.20)

V CA
i-l

I

where D¿ G R',xn.Moreover, it is assumed that the pair {A, C} is observable, that

is D(A, C) has rank n [18]. Also, the reversed extended stoch.astic controllability
matrix C< is defined [21] as:

Ci = ( A{-lG A*-2G ■■■ AG G) (4.21)

where Cj G Rnxii.It is assumed that the pair [A, Q1/2} is controllable. This

implies that all the dynamical modes of the system are excited by the plant

(or process) noise [18]. The block Toeplitz matrices are constructed from the

output covariemce matrices.

Denote the block Toeplitz covariance matrix Li as

Li =

( A0 A_i A_2 ■■■ Ai_í \
Ai A0 A_i ■•■ A2_i

^ Ai_j Ai_2 Aí_3 ■ • • A0 /

where L¿ G R/ixii.

Also, the corresponding block Toeplitz cross covariance matrix £■ is de

noted by

Hi =

l Ai Ai-i Ai_2 ••• Ai \
Ai+i Ai Ai_i •■■ A2

\ A2i_i A2i_2 A2i_3 • • • Ai /
where £"¿ G Ri¿xi¿

Based on the above developments and using the theory in section 4.1.3

the ¿th output covariance matrix become:

"j-i

Aí = Ej ^2yk+iyl
.k=0

The following equalities hold true:

= lim t
j—>°°3

(Yi¥)(Y0]Q)J í>¡
^ílii^Olo]

(«?4(£:;)(^T^-')T)=(¿*f )
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Figure 4.2: Block Diagram of Kalman filter

U = $[YP,YP] = $[Yf,Yf] (4.22)

H{ = $¡
W

4.2.4 Kalman Filter States

The Kalman filter algorithm for the discrete-time stochastic system described

by Equation (4.11) and (4.12) is given by an one-step-ahead estimator [11]:

xfc+i
= Axk + Kk{yk

- Cxk) (4.23)

Figure(4.2) displays a block diagram of Kalman filter that produces the

one-step ahead estimates xk+i.

Therefore, the reconstruction error x = x
—

x is governed by:

ñk+x =

Xk+x
-

Xk+x
= A(x/_ - Xfc) + Wfc

-

Kk(yk

= Axk + ujk- Kk{yk
- Cxk)

= Axk + wfc
- Kk{Cxk + vk- Cxk)

= {A
- KkC)xk + u.fc

- iífc*Ufc

Cxk) (4.24)

It should be observed that noise properties are taken into account; the

criterion is to minimize the variance of the estimation error, which is denoted

by Pfc+iis given by

Pfc+i = E {xk+x
- E [xk+x]) {xk+x

- E [ífc+i])7
where the mean valué of x is obtained from Equation (4.24):

(4.25)

41



E[xfc+i] = 04-.F¡:fcC)E[a.fc] (4.26)
Note that since E [xo] = 0

,
the mean valué of the reconstruction error is

zero for all times fc > 0, independent of K if xo = 0. Because Xfc is independent
of uk and vk ,

it follows from Equation (4.24) that:

a = ( / -Kk ),

'£>

(uk'
c =

<vk

K+i = E [xk+x(xk+x)T] (4.27)

= E [(abxjt + ac)(abxfc + ac)T]
= abE [xfc(xfc)T] bTaT + accTaT

, . „ . / APkAT + Q APkCT + S \ ( I
~

ly
Kk>\CPkAT +^ CPkCT + R )\-Kl

By using the idea of the completion of squares, it also follows that aTPka
is minimized by Kk satisfying:

Kk{CPkCT + R) = APkCT + S (4.28)
for any a.Further ,if CPkCT + R is positive definite then:

Kk = (APkCT + S) (CPkCT + R)-1 (4.29)

Inserting Equation (4.29) into Equation (4.27), one has

Pfc+i = APkAT +Q- (APkCT + S){R + CPkCT)-\CPkAT + ST) (4.30)

The reconstruction defined by recursive Equations (4.23), (4.29) and (4.30)
is called the Kalman filter:

Xfc+i
= Axk + Kk{yk

-

Cxfc) (4.31)

Kk = (APkCT + S) {CPkCT + R)-1 (4.32)
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Pfc+i = APkAT +Q- {APkCT + S)(R + CPkCTY\CPkAT + ST) (4.33)

For the purpose of stochastic subspace identification algorithms [11], [21],
a different form of these recursive Kalman filter equations is more useful. With

A,C,Q,S,R given, the matrices ÍI,G and Ao can be computed through the

Equations (4.15), (4.16), and (4.17). Now define the transformation:

Pfc ^— n - Pfc

From Equation (4.32) we have

n-Pk+i = AnÁr-APkÁr + {n-AnAT) (4.34)

-

[{AncT + s)- APkcT] [{cncT + r)- cpkcT]
_1

x [{AncT + S)
- APkCT]T

n-pk+i = n-AiTAT - APkAT + (77
- AnAT)

-{G
- APkCT){A0 - CPkCTY\G - APkCT)T

Pk+i = APkAT + {G- APkCT){A0 - CPkCT)-\G - APkCT)T

Then, the Kalman filter can be expresed as

xfc
= Axk + Kek (4.35)

yk
= Cxfc + efe

where ek is the innovation process with covariance matrix

E [efc (efc )T] = (A0
- CPkCT)

Equation (4.32) is the (forward) Kalman gain, and Pjt+1 in Equation (4.34)
is the forward state covariance matrix, which can be determined as the stabi

lizing solution of the forward Riccati equation (4.34).The state space Equation

(4.35) is called a forward innovation model for the process y.

Forward non-steady state Kalman filter.

The non-steady state Kalman filter state estimate Xfc is defined by the

following recursive formulas:

£fc+i = Axk + Kk{yk
-

Cxfc) (4.36)

Kk = {G- APkCT){A0 - CPkCT)-1 (4.37)



Pk+i = APkAT + {G- APkCT)(A0 - CPkCT)~l{G - APkCT)T (4.38)

in which

x0
= 0

P0 = E [x0(x0)T] = O

The output measurement yo, ...,yfc_i

can be adopted as initial conditions, then with this initial conditions is possible
obtain the next.

From Equation (4.36) with k = 0,

xi
= Ax0 + K0 (yo

-

Cx0)
= 7<oyo

with

K0 = (G-AP0CT){Ao-CP0CT)-1
= GAñ1
= CiLr1

In addition, xi and Pi are calculated from

x-t = GAó'yo (4.39)
= CxLi'yo

Pi = APoAT + {G-APoCT){A0-CPoCT)-1{G-AP0CT)T (4.40)
= GAo"1^

= CiLi'fCiY
For k = l,it is obtained

Ki = {G-APiCT){A0-CPiCT)-1 (4.41)
= {G-AGA^GTCT){A0-CGA^GTCTrl

Inserting Equation (4.18) into Equation (4.41), we obtain:
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Ki = (G- AGA^A-iKAo - AjA^A-i)-1 (4.42)

Then, for X2:

x2
= Axi + Ki{yi -

Cxi)
= AGAo'yo + {G- AGAj1A. í)(Ao - AiA^A-i)"^ - A^yo)

fAGAo1 + {G- AGAolA-i){A0
- A^A-O^-A-iAí1)

mT

{G - AGA^A-iXAo - AiAo^A-i)-!

( AC r\\ Ao* ~ (Ao'A-iM-AiAq x) (AóxA_i)fi \ (y0
'

{ '■' l' j l ^(-AiAo-1) n yx

withíí = (Ao
- Ai^A-i)-1

Using now the lemma of inverse of block matrices [10] , X2 is calculated as

* = ( AG ° > ( £ X1 ) fc) (443)

^ T-i (vo

yx

Finally, using Equation (4.39) and (4.40), this expression is generalized to

Xfc = CkLk

í yo \
Vi

V yk-i )

(4.44)

This is an explicit form to obtain the state estimates.

For fc = 1:

P_ = CiLr1 (Ci)
Now, following a similar procedure used for Xfc,it is possible to write

Pt = CfcLfc
1

N' (4.45)

Note that of this expression is true for fc = p, it is also true for fc = p + 1.

Using now the inverse lemma of block matrices, we obtain.
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Pp+l =

Cp+iLp+1 ^Cp+iJ

= (ACP

= (AC,

CpCT
-i

&
L-1 +L?clCTA~1CCPL-' -Í^C^A-1

-A-'CCpL-1 A-1

where A = Aq -

CCpLlxtpCTp±jp »-*p
v>

— Ao —

CCpC

Pp+i ACpL;1CTpAT + {G- J4CpLl1c!,CT)A-1(G - ACPL;16'PÓT)T

o
—

•

*wpv.

p ^p*"1
' v— -,*-*-'p-"p >-'pv-' ,"-■■ V**

—

-rl'k-,p*t'p ^p'
-

APPAT + (G - ¿PPCT)(A0 - CPPCT)-1(G - APpG7)7

This liast equation clearly indicates that the matrix Pp+i calculated from

Equation (4.38) and from Equation (4.45) are the same.

Then, it is possible estimates the states in explicitly form from

/ yo \

xk = ^>kLk .

\ Vk-i )

«md the explicit solution of the covariance matrix Pfc can be written as

(4.46)

Pt = CfcLfe
1

(«O' (4.47)

The .assumption P0 = 0 is the same as the assumption Po = 77. This means

that the state will be estimated exactly when an infinite amount of output data

is available [11].
The significance of Equation (4.46) and (4.47) is that it indicates how the

Kalman filter state estimates Xfc can be written as a linear combination of the

past output measurement [18]. In stochastic subspace identification [21], [11],
the forward Kalman filter state sequence can be recovered from the expression

Ai —

( Xi x¿+i
■ ■ ■

Xí+j+i ) — CiL¿ Yp (4.48)

4.2.5 Stochastic Identification
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In this subsection it is shown how calcúlate the row space of the state sequence

Xi .and the column space of the extended observability matrix Di directly from

the output data, without any previous knowledge of the system matrices. The

system matrices can then be extracted from Xi and Di.
Assume now that:

1. The plant noise ui* and the observed noise Vk are not zero.

2. The number of measurement from outputs yk goes to infinity j —+ oo.

3. The weighting matrices Wx G R,ixíi and W2 G R¿xj are such that Wx is of

full rank and W2 obeys: rank(yp)=rank(ypW2).

The orthogonal projection from the row space of the Hankel matrix Yf
onto the row space of the Hankel matrix Yp is denoted by

Zi = Ys/Yp (4.49)

and the singular valué decomposition is:

WiZíW2 =(Ui U2)(SQl l ) Q£) = UiSiViT (4.50)

From Equation (4.49), and using Equations (4.22), it is possible to show

that:

Zi = Yf/Yp (4.51)

=

%rrfiYr,Yr]Yr
= HiL~ Yp

and
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Hi =

' Ai Aí_i A¡_2 ■

Ai+i Ai Ai_i •

■ Ai\
• A2

\ A2i_i A2i_2 A2¡_3 * • AJ
/ CA^G CA^G ■

CA*G CA^G ■

•• CAG

■ ■ CA2G

CG \
CAG

K
CA2i~2G CA2i~3G ■ ■ ■ CA{G CA^G i

( C \
CA

CA2 ( A*"XG A{--2G ■■■ AG G)

\
CAi~1

)

= c)íCí

Replacing H into Z_:

(4.52)

Zi — HiLi Yp — ÓíKjíL^ Yp

Using now Equation (4.48), yields

Zi = Yf/Yp = DX (4.53)

Equation (4.53), shows that Zi is equal to the product of the extended

observability matrix and the forward Kalman filter state sequence. In other

words, the row space of the states Xi can be found by orthogonally projecting
the row space of the future outputs Y¡ on the row space of the past outputs

y„ [20], [19].
Since WiZ_W2 is of rank n, the number of singular valúes different from

zero will be equal to the order ofthe system in Equation (4.11) [11]. Also, since

Wi is of full rank, and since the rank of YPW2 is equal to the rank of Yp, then

the rank ofWiZiW2 is equal to the rank of Zi.which in turn is equal to n. This

is due the fact that Zi is equal to the product of a matrix with n columns and

a matrix with n rows.

Combining equations (4.50) and (4.53), it is obtained

WiZíW2 = WiDíXíW2

= UiS\/2S{l2V?

(4.54)

where

^ = sl'WfWrT1 (4.55



is the state sequence Xi,axxd

Di = W^UiSl'2 (4.56)
is the extended observability matrix.

Alternatively, the forward sequence Xi can be written as

Xi = D¡Zi (4.57)

4.2.6 System Matrices

Using Equation (4.50) it is possible to determine the order of system by taking
the largest singular valúes. Using a similar approach to that in Equation (4.49),
it is possible to show that the following holds:

Zi-i = Yf~/Y; = Di-iXi+i (4.58)
Deleting the last l (number of outputs) rows of Di, result in

Di-x = ^ (4.59)

From the above discussion and using Eq. (4.58) and Eq. (4.59) we can

calcúlate Xi+i as follows

Xi+x = DUZi-i (4.60)
From these results, we can partition the state vector in the extended form

This set of equations can be solved for A and C.Since the Kalman filter

residuals pw and pv are uncorrelated with Xi, it seems natural to solve this

set of equations in a least squares sense (since the least squares residuals are

orthogonal and thus uncorrelated with the regressors X_). The solution of A

and C is

An important observation is that the identified sequence determined by

A, G, C, Ao should be a positive sequence. If this is not true, a spectral factor

can not be computed, and the set of forward realizations of the covariance

sequence is empty [21]. It turns out that if one starts from raw data, even when

it was generated by simulation of a linear stochastic system, the positive real
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condition of the identified covariance sequence is hardly ever satisfied. This is

due to either the finite amount of data available or to the real data is often not

generated by a linear stochastic time invariant system.
An altemative way to ensure positive realness of the estimated covariance

sequence is possible when the covariance of the process and measurement noise

are recover from the residuals pw and pv of equation (4.61) as

E¡ &)(**>]-($£)
The subscript i indicates that the estimated covariances are not the steady

state covariances, but are the non-steady state covariance matrices of the non-

steady state Kalman filter equation:

Pí+i = APí^t + Qí

G = APiCT + Si

A0 = CPiCF + Ri

When i —> oo, which is upon convergence of the Kalman filters, we have

[21] that Qi
—> Q, Si —> S, Ri —> P.This result guaranteed positive real covari

ance sequence.

The matrices G and Ao can now be extracted from the solution of the

Lyapunov equation for 77 as follows:

77 = AUAT + Q

Further,

G = AüCT + S

A0 = cncT + R

The form can be converted into a forward innovation form by solving the

Riccati equation:

P = APAT + {G- APCT){A0 - CPCT)-\G - APCT)T
for matrix PAlso of interest, the Kalman gain can be computed from:

Kk = (G- APkC1 )(Ao
- CPkC1 )

T\-X
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4.2.7 Canonical Variation Algorithm

The weights in Eq(4.50) can be used to derive the Canonical Variation Algorithm
as described below.

When j' -$¿ oo or when the data-generating system is not linear, the singular
valúes from WiZíW2, are edl different from zero. In that case the row space of Z_

is of dimensión i and the order has to be chosen equal to the number of dominant

singular valúes. The complexity reduction step is then truly a reduction of the

dimensión of the row space of Z¡, and the weights Wi and W2 play an important
role in determining which part of the original row space of Zi is retained.

The canonical correlation analysis (CCA) [11] is a technique of multivari

able statistical analysis that clarifies the mutual dependence between two sets

of variables by finding a new coordinate system in the space of each set of vari

ables. The principal idea of canonical correlation analysis is find vectors wi and

zi with the máximum mutual correlation in the linear spaces spanned by x and

y (which are two vectors of zero mean random variables), and define (wi, zi) as

the first coordinates in the new system. Then find w2 and z_> such that their cor

relation is máximum under the assumption that they are uncorrelated with the

first coordinates (w\,z_). This procedure is continued until two new coordinate

systems are determined.

Having obtained the covariances matrices of Yp and Y}, the canonical cor

relations are computed by the SVD as

■c
= *rJ/l.i*rv..v.i*^.i (4-62)»
=

*[y/>/]*[i7,»i]*Pi.iW

= (".».)(so'S)(:f)
The cosines of the principal angles between Yf and Yp are given by the

elements of Sx and the principal directions a in Yp and ¡3 in Y¡ are given by

.Ta-i/9
a = v{^^{Yp)

? = ^UYí)
The order of the system is determined from the number of principal angles

different from \tx.
It should be remarked that equation (4.62) from Canonical Variation Al

gorithm corresponds to the Equation (4.51) of the subspace algorithm with the

following weights [18]: 51



Wi =

*¡^- (4.63)

W2 = Ij

From previous results, we also have

which is denoted as Mc

WiZiW2 = {Ui u2 ) (
* °

) Q') = v&v*

Mc = ^r'l.ZiL
■[YtxrtV'

^YtflYf.YrriYr.Yr]1''
Finding the covariance matrix of the weighted projection yields

= $r1/,;2 ,$r -«3>t Y

M°(MCf =

^fiZj*^
=

^Y^Yr}*^
=

$[^]*[^^]*r¿v^[^]$^]
= {UiSiVT){UiSiVT)T
= UiS2Ul = if{lf)T = viY.2vi

This implies that the left singular vectors and singular valúes of both

matrices are equal.

CVA for Modal Identification

The numerical algorithm developed take advantage of numerical tools as

the RQ-decomposition, and SVD decomposition. The algorithm can be sum

marized as follows:

1.- Calcúlate the orthogonal projections of Y¡ onto Yp :

Zi = Yf / Yp

Zí-i = Yf /Yj,
Calcúlate the RQT decomposition with the matrices QT orthonormal and

R lower triangular as follows. Defining the matrix H



H =

-jj{Yol2i)=RQT
with R G 2il x 2il and QT G 2il x j, we can show that

• -

*(í)-A(?)-a(*£.) „*„*-
I» I l(i-l) j

« / Pi,i o o \ / gf
= RQT= l P2,i P2,2 0 Q^

«(i ~

1) V -R3.1 P3,2 7*3,3 )\Qi

Using the orthogonal project concept in Eq (4.9) and using Eq (4.64) for

Yp and Yf, the orthogonal projections are:

Zi = Yf/Yp
=

®[Yf,Yp\®[Yt,,Yp_YP
= {R2«,X«QTQRll,l..Z) (Rl:l,l:3QTQRll¡ljRl:l,l:3QT
= R2:3,l:lQl

Zí-i =

y,- /y;
= {R3:3,X:3QTQRl2,l:3) {Rl:2,l:3QTQRl2,lJRl:2,l:3QT
= P3:3,l:2*-5l:2

2.- Calcúlate the SVD from projections with weights

WiZiW2 = $r'/l]Zi = usvT
[Yf.Yf]

3.- Determine the system order by taking the greatest singular valúes and

partition the SVD for obtain Í7* and Si .

4.-Determine Di and ¡Di_iusing

D< = W^UiS1/2 = $^2Yf]UiSl/2

5.-Determine Xi and JQ+i

Xi = 0,- Zi
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Xí+i — Dí_iZí-i
6.-Solve the set of linear equations for A and C

(%)-©(*) + fc
7.-The eigenvalues from matrix A are the characteristic valúes of the sys

tem, then the corresponding frequency and ratio are calculated, in this form:

Si
= Oi± j/3i, with ai =

- ln \z_\ ,

Pi = - tan-1 \ — \ and x.
= zRi + jzK

í \ZRi)

Futhermore, the natural frequency and damping are calculated from:

a,„=(a2 + /32)1/2
and

Si = -ai¡Uln
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Chapter 5

Monitoring of Power System

Oscillatory Dynamics using RLS

Adaptive filtering algorithms are well suited for mode estimation in power
system because they rely heavily on the ambient noise that characterizes the

daía[29] ,[24] . The algorithms discussed in this chapter offer the potential of
being a useful tool for feature extraction and modal identification of mea
sured data and can be applied in real time. Advantages of these algorithms
are the ability to track time varying parameters, small computational bur-
den at each step thus enabling use of small computers for on-line data

analysis, and as an aid in model building where form of parameter time
variation may suggest cause of a model inadequacy.

5.1 RLS for mode identification using Ambient

Data

Power systems .are random in nature and inherently nonstationary. Random

load variations act as constant low-level excitation to the electromechanical

dynamics of the system which shows up as ambient noise in field measurements

[30]. We recall from Chapter 2 that the ambient noise in a power system is

caused by a white noise input. Because white noise input is relatively small,
the small-signal dynamics are assumed to domínate the response. This in turn,
allows using a whitening filter approach.

Based on this analysis, the ambient noise output of the power system is

the result of an approximately stationary white noise input in the frequency
band of interest over an analysis window. Then, the output of power system

can be filtered with a whitening filter [24].

Figure (5.1) shows a block diagram of whitening filtering of power system
data y(n).

Let the power system transfer function H (z) be given by the AR model



u(n)~\NN{0,a*u)
H(Z)

additive noise

y(n) jry(n)
■*&

Power System

H(z)=
1

H(z)

gM~WN(0au2)

Whitening Filter

Figure 5.1: Block diagram of whitening filtering of power system data y(n).

u(n)~vm{0,a2u)

Approximate
White noise

A(z)

additive noise

y(n) jry(n)
-*&

Power System

W(z)
ü(n)~\NN{0,o¡)

Whitening Filter

Approximate
White noise

Figure 5.2: Block diagram of whitening filter where the power system transfer

function is l/^4(z) and the whitening filter transfer function is given by w{z).

u(n)~\NN(0,o2u)

Approximate
White noise

An(z)

additive noise

y(n)jr
-►0

Time-Varying
Power System

y(n)

y(n-1)

W(n)

RLS

Mechanism

:£/(n)~WN(0,au2)
i*<í)t>a *

.

Approximate
White noise

RLS adaptive filtering

Figure 5.3: Diagram of Adaptive whitening filter of power system data using
the RLS adaptive filtering.
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It then follows that, it is possible to use a FIR filter described by the

transfer function [29], [31], [30]

W{z) = 1 +w^z-1 + ... + w{M)z~M
to whiten the power system data. As a consequence, the poles of system, roots
of A(z), can be estimated as the dominant roots of W(z). Figure (5.2) clarines
this fact.

Alternatively, the whitening filter function transfer W{z) can be computed
by RLS adaptive filters where the coefficients of polynomial W{z) is given by
the RLS adaptive filter weights. Figure (5.3) shows a diagram of a RLS adap
tive filter used to whitening filter; the details for RLS adaptive filters used to

whitening filter will be explain in the next section.

5.2 Least-Saquares Method

The advantage of using the method of least squares to solve the linear filtering

problem is that it does not make assumptions on the statistics of the inputs

apphed to the filter [1], [7].
The method of least-squares use a linear regression model structure (Eq(2.9))

to a lineal predictor where the response y{n) is modeled as

M

y(n) = X] w*(k)y(n ~k) + /■*■(")
fc=i

where the í-y(l), .-., w{M) are the unknown parameters of the model, and p,{n)

represents the measurement error to which the statistical nature of the phe
nomenon is ascribed. The measurement error ¿¿(n) is an unobservable random

variable that is introduced into the model to account for its inaccuracy. It is

assumed that the measurement error process ¡j.{n) is white with zero mean [7].
That is, E[/i(n)] = 0 for all n.

The mean of the response y{n), in theory, is uniquely determined by the

model £2LiW(*)y(n-]fe).
The solution for the weights w{l), ...,w{M) can be obtained by using a

linear transversal filter:

e'n) = y{n)
- y{n) (5.1)
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M

e(n) == y(n)
-

]TV(fc)y(n
-

A;) (5.2)
k=X

In the method of least-squares, the weights i/;(l), ...,w(M) of the transver
sal filter are choose so as to minimize a criterion function that consists of the

sum of error squares [1] :

JVn2-n*(e)=£|e(n)|2
n=n_

where 0 = w{l), ..., w{M). This sum may also be viewed as an error energy.

The problem to solve in least-squares is to minimize the criterion function

7Vn2_ni(0) with respect 0 of the transversal filter and using Eq. (5.1). In the

minimization, 0 is constant during the interval ni <n <n2. The filter obtened

is termed a linear least squares filter.

The criterion function for a set of data finite is

N

NN_M(e) = X>0)l2 (5.3)
n=M

N

= ^2 e(n)e*(n)
n=M

From optimization theory [6], it can be shown that Nn^m(®) depends

only on the coefficients, w{k). Therefore, the coefficients that minimize this

squared error may be found by setting the partial derivatives of NN-m{&) with

respect to w*{k) equal to zero. This yields

dNN.M{8) -A d{e{n)e\n)\

dw*(k) ¿^ dw*{k)

y»
d[y(n)

- Y.tx gWgfr
~

^]
e*(n) 0

¿—t dw*(k)
n=M

v '

N

= _yíy{n-k)e*{n)=0, k = l,...,M

n=M

Based on principie of orthogonality (Eq. (5.4)), it is possible to demón

strate that:
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.V

J2 y{n)e*{n) = O (5.5)
n=M

which states that when a transversal filter operates in its least-squares condition,
the least-squares estimate of the desired response, produced at the filter output
and represented by the time series y(n), and the minimum estimation error time

series e{n) are perpendiculars to each other over time n.

The principie of orthogonality in Eq. (5.4) is used to find the normal

equations for a linear least-squares filter [6]. Substituting Eq. (5.2) into Eq.

(5.4), and rearranging terms, a system of M equations is obtained

M N N

]r>(0£y(n-%*(n-í)=5>(n-A.)y*(n) k = l,...,M (5.6)
t=i n=M n=M

Defining

N

ry{t,k) = ^2y(n-k)y*{n-t), l<t,k<M
n=M

where ry{t, k) represents the time averaged autocorrelation function of inputs

in the transversal filter, Eq. (5.6) becomes:

M

^2w{t)ry{t,k)=ry{0,-k) ,
k = l,..., M (5.7)

t=i

Equation (5.7) represents the expanded system of the normal equations

for a linear least-squares filter. In matrix form, we can write

"

ry{l,l) r„(2,l)
••

rx(l,2) rx{2,2) ■■

• ry(M,l) 1

• rx{2,p)

r ™(i) i

w{2)

í rs(0,-l) 1

rx(0, -2)

_rx(l,M) rx{2,M)
■• ■ rx{M,M)_ . ™{M) . _rx{0,-M)

or, in compact form

Rj,w =

Ty (5.8)

Assume now that Ky is nonsingular, and the inverse matrix R"1 exists.

Solving Eq.(5.8) for the weight vector w of the linear least-squares filter yields

w = R^r, (5.9)

Equation (5.9) is fundamental to the development of all recursive formu-

lations of the linear-squares filter.
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Ry{n) = J¿Xn-ky{k)yH{k) (5.11)
fc=i

and the M x 1 correlation vector r„(n) is

r,(n) = ¿An-fcy(fe)y*W (5.12)
fc=i

Isolating the term corresponding to A; = n from the rest of the summation

in Eq. (5.11), we obtain

R» = ¿A"-fcy(*)y"(*) (5.13)
fc=i

n-l

= y£xn~ky(k)y"(k)+y(n)yH(n)
k=X

= AR>-l) + y(n)yií(n)

where Ry(n) = ARj,(n
-

1) + y(n)yff(n) is a recursive equation for updating
the valué of the correlation matrix of the inputs. Similary, Eq. (5.12) can be

represented by recursive form:

n

r» = J>"-fcy(%*(fc) (5.14)
fc=i

= \ry{n
-

1) + y(n)y*(n)

To avoid performing the inverse K~l{n) to find w(n) it is possible to use

the matrix inversión lemma [7]. Using this notion, the inverse of the correlation
matrix can be written as

„_!,
.

,_lTI_i, ,y A-g¿(n
- l)y(n)y* (tQR¿V

- 1)
R/n =A XR/(n-l) 1 l,-i H( m>-ic ÍT^^

5-15
y

1 + A 1y-ff(n)R^I(n- l)y(n)

where, for convenience of notation, we define

F{n) = R¿1(n) (5.16)

vt \
A^FCn --

l)y(n)
K(n) = —,

—

^7-—
—

: . .

, (5.17)V ;
1 + \-ly»{n)F{n -

l)y(n)
V '

ol



Then

F(n) = X-'Fin -

1)
- k^K^y"(n)F(n -

1) (5.18)

The M x M matrix F{n) is referred to as the inverse correlation matrix.

The M xl vector K(n) is referred to as the gain vector. Next, we develop a

recursive equation for updating the least-squares estimate w(n) for the weight
vector, based on Equations (5.14) and (5.16). More precisely,

R»(n)w(n) = r„(n)

w(n) = AF(n)r„(n
-

1) + F(n)y(n)y*(n)
Now, based on Eq. (5.18) we get

w(n) = F(n -

l)p„(n
-

1)
- K{n)yH{n)F(n -

l)r„(n - 1) + (5.19)

F(n)y(n)y*(n)
= R/fa

-

l)r„(n
- 1) -

K^y^R/fa -

l)r„(n
-

1) +

F(n)y(n)y*(n)
= w(n

-

1) + K(n) (y*(n) - y"(n)w(n -

1)) due to K(n) = F(n)y(n)
= w(n

-

1) + K(n)e*(n)

where

e(n) = y(n)
- yT(n)w*(n - 1) (5.20)

= y(n)
- \vH{n -

l)y(n)

is the a priori estimation error. Equations (5. 17), (5.20), (5. 19) and (5.18) in that

order, form the Recursive Least-Squares (RLS) algorithm. Figure (5.4) give a

block diagram of RLS algorithm. Equation (5.19) describes the adaptive oper
ation of the algorithm, where the weight vector is updated by incrementing its

oíd valué by an amount equal to the complex conjúgate of the priori estima

tion error e(n) times the time- varying gain vector K(n) which is updated by

Eq.(5.17) and (5.18).
To initialize of RLS algorithm, the valué F(0) has to ensure the nonsingu-

larity ofthe correlation matrix Ry(n). An altemative [7], [1] to deal with this

problem is to evalúate the inverse

¿ X'ky(k)yH(k)
Kk=-n '
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Figure 5.4: Representations of the RLS algorithm

from an initial block of data for —

n < k < 0. Another approach is to use

F(0) = SI, where 5 is a small positive constant where it should be small

compared to 0.01er2. The vector w(0) can be initialized by [31], [29] w(0) = 0.

In a stationary environment, the rate of convergence of the RLS algorithm
is typically an order of magnitude faster than that of the LMS algorithm, the

rate of convergence of the RLS algorithm is invariant to the eigenvalue spread
of the ensemble-averaged correlation matrix of the input vector and the excess

mean-squared error of the RLS algorithm converges to zero as the number of

iterations n go to infinity.

5.4 Recursive Least-Squares algorithm with

adaptive forgetting factor

Because the power system is a time varying system the LMS and RLS algorithms

should calcúlate optimum valúes for the for the step-size parameter p, in the LMS

algorithm and calcúlate optimum valúes for the exponential weighting factor A

in the RLS algorithm. The conventional form of the adaptive filters to track the

time varying system requires knowledge of the correlation matrix of the process

noise and the correlation matrix of the measurement noise. However, sometimes

this may be a drawback since the data are not known. Certain modifications to

the RLS algorithm can be made to improve its performance in non-stationary

ambient. This consist in turning A in the RLS.
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RLS .algorithm can be adapted for tuning the forgetting factor A [7] .The
objective is to find the particular valué A that optimizes the criterion function

/V(n) = ±E[|e(n)|2] (5.21)
where e(n) is defined by Eq. (5.20). Differentiating the criterion function N(n)
with respect to A yields

v« - °-^ = ¡*
de{n) ,. . de*{n) ,

.

V(n) +—\r-e(n)
dX

c
v*> ^

dX

= -\E [<l>H{n -

l)y(n)e*(n) + y"{n)<f>H{n -

l)e(n)]

V(n) is a scalar gradient ,where

(5.22)

Having that

**(») = "^ (5-23)

w(n) = w(n - 1) + F(n)y(n)e*(n) (5.24)
and defining the derivative of the inverse correlation matrix F{n) with respect
to A by

DW = Í5M (5.25,

and using Eqs. (5.20), (5.24) and (5.25) in Eq. (5.23) it is possible to show that

4>(n) = (I
- K{n)yH{n)) 0(n -

1) + D(n)y(n)e*(n) (5.26)

Equations (5.15) and (5.16) allows us to write

F{n) = A-»F(» - D
- ^"-yWn-l) ^K ' V '

1 + A"V(n)F(n -

l)y(n)
v '

where is possible obtain an expression for the recursive compute of D(n) differ

entiating Eq.(5.27) with respect to A :

D(n) = r1(l-K(n)y'í(!i))D(n-l)(l-y(n)Kí'(n)) (5.28)

+A-1K(n)KH(n) - X~lF{n)

Then, using the instantaneous estimate -Re(0H(n- l)y(n)e*(n) ) for

the scalar gradient v(n) is possible adaptively compute the forgetting factor

using the recursión [7]:



A(n) = A(n-l)-v(n)

= [X{n -

1) + Re (0*(n -

l)y(n)e*(n) )]£

The bracket with A+ and A_ indicates truncation. The RLS algorithm
with adaptive forgetting factor is summarized as follows:

K(n) =
A-x(n-l)F(n-l)y(n)

1 + X~\n -

l)y»{n)F(n
-

l)y(n)

e(n) = y{n)
- wH(n -

l)y(n)

w(n) = w(n-l) + K(n)e*(n)

F(n) = A-1(n-l)r-((i-l)-A-1(ji-l)K(n)y/,(n)r(!i-l)

A(n) = [A(n-l) +Rfi(0*(n-l)y(n)e»)]£
D(n) = A"1.» (i - K^y^n)) D(n - 1) (i - y{n)KH{n))

+A-1(n)K(n)KH(n) - A-1(n)F(n)

<p(n) = (l-K(n)yH(n))^(n-l)+D(n)y(n)£*(n)

The RLS algorithm with adaptive forgetting factor is useful for time-

varying systems due to the characteristic of tuning the forgetting factor.

The practical validity of the this idea has been fully supported by sig

nal processing applications on adaptive equalization and Phase-Locked Loop,

and proof of convergence based on a fairly strong result rooted in stochastic

approximation theory [7] .
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Chapter 6

Applications

This chapter describes the application of canonical and least-squares algo
rithms to estimate low-frequency electromechanical modes through ambient

analysis.

First, simulation data from a 16-machine test power system is used to test

the performance of the method in the presence of random load fluctuations.

Then, actual measured ambient data from actual system events is used to

evalúate the ability of the method to characterize power system oscilla

tory dynamics. The non-stationary character of the recorded oscillations

provides the thrust to examine the application of the method for on-line

estimation of instantaneous attributes. Comparisons are provided with

overdetermined ARMA methods and LMS algorithms, and power spectral

density.
The analysis demonstrates that the nonstatíonary characteristics of ambi

ent data can be reasonably assessed by simple subspace identification tech

niques and the information thus obtained can be helpful in developing im

proved real-time monitoring and control systems.

6.1 Dynamic model verification using simulated

data

In this section the continuous modal parameter estimation techniques are val

idated on a practical 16-machine test system. To test the methods, simulated

data containing small oscillations arising from changes is load behavior are used.

In this analysis, the system model is perturbed by random load variations

at a number of points in the system, and the system response of the model is

obtained at locations where the modes are observable in an attempt to replicate

the actual power system dynamics.

6.1.1 Power system model

The test power system is a 16-machine system with 86 transmission lines and

68 buses model of the New England test system (NETS) and New York power
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Figure 6.1: Diagram of 16 machine system

system (NYPS). Figure (6.1 ) gives a single-line diagram of this system show

ing major transmission resources. Each generator is fully represented using a

detailed two-axis transient model and excitation and speed controllers. The de

tailed description of the test system including network data and dynamic data

for the machines, buses, branches can be found in [22] .

The system dynamic behavior of this system is characterized by several

low-frequency oscillation modes in the range of 0.2-0.7 Hz. Table (6.1) sum

marizes the main characteristics of the slow-frequency modes showing their fre

quencies and damping ratios.

The simulations were conducted using the Power System Transient (PST)

stability program.

Mode Eigenvalue Frequency (Hz) Damping Ratio

1 -0.366 ± 2.677Í 0.426 0.135

2 -0.290 ± 3.597Í 0.572 0.080

3 -0.504 ± 4.206Í 0.669 0.119

4 -0.3816 ± 5.178Í 0.824 0.073

(6.1)
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6.1.2 Simulated data

For the analysis of system response, the system model is perturbed by random

load variations. Specifically, independent Gaussian random load modulations

are added to the real and reactive loads at buses. The following considerations

are introduced in this analysis:

• The smaller loads change frequently and this leads to an actual system
load which varies almost randomly about a constant valué.

• The loads change varies about of ±1% from its nominal valué.

• Each load is taken to be independent of other loads.

• The load was assumed to change randomly every 0.01 S.

The time-domain response was calculated using PSTV2 for a duration of

10 minutes. A sampling rate of 0.01 seconds was used in all simulations.

Records were selected based on the following criteria:

• Selected outputs from these simulations are the active power flows across

selected lines.

• Selected transmission lines interconnected major coherent groups

• Critical inter-area modes are observable at these interties. In this

analysis, participation factors are used to select signáis of interest.

Table 6.11ists major inter-area modes of interest obtained using the

software PSTV2.

For illustration, Fig. (6.2) shows the real power flow across transmission

fine 82. Note the stochastic nature of system behavior.

6.1.3 Selection of measurement locations

Transmission lines were selected based on participation factors but other tech

niques could also be used. Mode 1 was selected for analysis.

Figure (6.3) shows the participation factors for the 0.426
Hz mode showing

the participation of dominant generators. As
seen in this plot, generators 13-15

show the largest participation.

Based on these results, transmission lines having a dominant participation

in this mode were selected. Table (6.2) identifies major transmission lines having

an important contribution on the 0.426 Hz mode.
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Figure 6.2: Real-power flow on line 82

Paiticipation Factors for Moda 1
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Generator Number

Figure 6.3: The mode 1 can be observed in the lines 82, 83, 84, 85 corresponding

to generators 13, 14, 15 y 16 respectively.
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Number of Line Number of Mode

82 1 3

83 1 2 4

84 1 4

85 1 2 4

6.1.4 Modal Identiñcation using canonical variate analysis

The mode frequency and damping of the data generated was estimated using
1 and 5 minutes windows. Figures (6.4) and (6.5) show modal estimates as

a function of the observation window for 1 minute block size. The solid bold

lines represents the actual valúes obtained from PSTV2. Table (6.3) compares
the estimated frequency and modal damping for 5 minutes block size with the

results from PSTV2. As observed from these figures, modal estimates are in

excellent agreement with actual system valúes for the entire observation period.

Applying the CVA, the system matrix A is obtained, the eigenvalues from

matrix A are the characteristic valúes of the system, then the corresponding

frequency and ratio are calculated. For the system, the stochastic subspace
method with weights for CVA was applied to estimate both the frequency and

damping ratio of the 0.426 Hz mode and the simulated signal used for this

estimation was the Line 82. The method was applied a single trial of data. This

is consistent with theoretical expectations.

PSTV2 CVA

frequency 0.426 0.432

Damping 0.135 0.1613

6.1.5 Modal Identification using Recursive Algorithms

To use the recursive algorithms, the data was pre-processed before using the

adaptive algorithms. First, the mean valué is removed from the data; then

a low pass filter with a cutoff frequency of 2 Hz is used to remove the high

frequency measurement noise from the data. Finally, the data is decimated

from 100 samples/second to 5 samples/second. The main purpose for applying

the decimated is achieve the Nyquist criterion in looking at the modes with

frequencies below 2.5 Hz. Finally, the decimated data is high pass filtered to

remove very low frequencies below 0.1 Hz and to remove any offset. Figure (6.6)

shows a portion of preprocessed megawatt data of line 82.

The exponentially weighting RLS algorithm
and RLS algorithmwith adap-
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Figure 6.6: 30 seconds of preprocessed megawatt data of Line 82 of 16-machine
model.

tive forgetting factor were applied to the data to track the 0.426 Hz. Figures

(6.7), (6.8) show the frequency and damping ratio estimates, respectively ob

tained using the exponentially weighting RLS algorithm and RLS algorithm
with adaptive forgetting factor. The comparison was made with LMS algo

rithm.

As can be seen from the plots, the accuracy and convergence time compare

with LMS algorithm. It is worth noting that the RLS algorithms provide better

estimates of damping ratios. RLS algorithms lead to similar estimates because

the adaptation of the forgetting factor X was limited to a narrow range (0.989
to 0.999) very near to the valué A (0.999) of the exponentially weighting RLS

algorithm. We emphasize that the initial valúes of weight vectors was adjusted

to zero (cold start).

6.2 Modal Estimation using Ambient Data

Several time series collected using phasor measurement systems are used as

example to investigate the capacity of the proposed techniques to extract modal

information. The data set includes recordings of various events, namely:

(a) A real signal from a transient event in the North American system
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Figure 6.7: RLS algorithms frequency estimate using simulated data of 16-ma
chine model (10 minutes of data) and compared with LMS frequency esti

mate, (all are initialized by zero weigth vectors).
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Figure 6.8: RLS algorithms damping ratio (%) estimate using simulated data

of 16-machine model (10 minutes of data) and compared with LMS damping

ratio estimate, (all are initialized by zero weigth vectors).

73



Malin-Round Mountain #1 (MW)
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Figure 6.9: Oscillation buildup for the WSCC breakup of August 10, 1996

(b) Ambient data from the Nordic power system

This data is representative of many complex oscillations involving tran

sient variations.

For completeness, the CVA method is compared with an overdetermined

ARMA and the recursive least-squares methods are compared with LMS meth

ods.

6.2.1 Malin-Round Mountain signal

The first signal analyzed is tie-line power from the August 10, 1996 event. The

event shows a condition of high dynamic stress; the mechanism of failure was

a transient oscillations, under conditions of high power transfer on long paths

that had been progressively weakened through a series of seemingly routine

transmission line outages. Figure (6.9) gives the time evolution of selected tie-

line power at a critical interface.

Figure (6.10) shows the estimate of the power spectral density for the

real-power flow Malin-Round Mountain. The analysis shows a dominant peak

at about 0.253 Hz.
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Figure 6.10: Power spectral density of test signal 1.

Modal Identification using canonical varíate analysis

Canonical varíate analysis technique and ARMA models were applied to

the test signal. Figure (6.11) compares the instantaneous frequency estimates

whilst Fig. (6.12) shows the corresponding damping ratio estimates. In both

cases a 1-minute sliding window, updated every minute was used.

Comparison of the instantaneous attributes shows that the CVA and the

ARMA models are able to extract the underlying mode of interest for the entire

interval of interest with each of the methods yielding better results for some

intervals of the signal.

Figures (6.13) and (6.14) show simulation results for a 2-minute sliding
window updated every 2 minutes.

Modal Identification using Recursive Algorithms

The Malin-Roun Mountain #1 (MW) ambient power system data was

preprocessed before applying the recursive algorithms. The results with expo

nentially weighting RLS algorithm and RLS with adaptive forgetting factor

algorithm were compared with LMS, LMS normalized and overdetermined AR

block processing method results. The analysis was made with initial valúes

adjusted to zero, namely, cold start.

The analysis was applied to the first 18 minutes of the signal; this includes

the portion of larger oscillation for also analysis of the methods to large pertur*
75



Frequency Estimate Using 60-seconds window size
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Figure 6.11: CVA and ARMA frequency estimates usingMalin-Round Mountain

megawatt data (1-minute window size)
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Figure 6.13: CVA and ARMA frequency estimate using Malin-Round Mountain

(2-minute window size)

bations. The exponentially weighting RLS and RLS with adaptive forgetting

algorithms were applied to the ambient data to track the 0. 2539 HZ mode

during its equilibrium condition and when it is have large perturbations. The

reference used to mode frequency was the peak in the PSD and the reference

used to mode damping ratio was an overdetermined AR of order 24 using full

block size (18 minutes). In all simulations of adaptive algorithms was used an

order 28.

Figures (6.15) and (6.16) shows the mode frequency estimate using the

RLS algorithms, these estimates are compared with LMS and normalized LMS

algorithm estimates. The reference PSD for mode frequency shows that the

normalized LMS algorithms and the RLS algorithms yield very good estimates.

At about N=2000 and N=4000 it is possible observe the perturbations in the

mode frequency estimates arising from large perturbations in the ambient data,

following a large perturbation. This is more clearly observed in the damping
ratio estimates in figures (6.15) and (6.16).
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Damping Factor estimate using 2-minute window size
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Figure 6.14: CVA and ARMA damping ratio estimates using Malin-Round

Mountain (2-minute window size)
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Figure 6.15: RLS frequency estimate using Malin-Round Mountain # 1 (18
minutes of data) and compared with LMS, Normalized LMS and PSD frequency
estimates (cold start).
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Figure 6.16: RLS with adaptive forgetting factor frequency estimate using Ma
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malized LMS and PSD frequency estimates (cold start).
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6.2.2 Test Signal 2

The second signal represents ambient data from Nordic Power System and shows

a strongly nonstationary ampie content caused by switching actions in the sys

tem. Figure (6.19) shows the time evolution of this signal.

Also of interest, the spectra of this signal in Fig (6.20) shows a dominant

mode at about 0.351 Hz. Other modes are practically negligible

Modal Identification using CVA

Following a procedure similar to that in the previous section, the CVA

method was applied using various window sizes. Figures (6.21) and (6.22) shows

modal estimates. In both cases, a 4-minute sliding window updated every 4

minutes was used.

Simulation results are again found to be in good agreement with theoretical

expectations showing the correctness of results.

Modal Identification using Recursive Algorithms

The results with exponentially weighting RLS algorithm and RLS with

adaptive forgetting factor algorithm were compared with LMS, LMS normalized

and PSD results. The analysis was made with initial valúes adjusted to zero.
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Mode Frequency estimate using 4-minute window size
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Figure 6.21: CVA frequency estimate using test signal 2 (4-minute window size)

The analysis was applied to the first 50 minutes of the signal. The ex

ponentially weighting RLS and RLS with adaptive forgetting algorithms were

apphed to the ambient data to track the 0. 351 HZ mode. In all simulations of

adaptive algorithms was used an order 28.

Figures (6.23) show the mode frequency estimate using the RLS algo
rithms, this estimate is compared with LMS and normalized LMS algorithm
estimates. The reference PSD for mode frequency shows that the RLS algo
rithm yield very good estimate. The Figure (6.24) show that RLS algorithm

yield very good estimate of damping ratio

In the literature, this mode is described as a mode of 0.33 Hz with a

4.34% damping factor being observable as power oscillations between Finland

and South Norway (Hammond, 1968).
Several interesting observations from these results can now be formulated.

Both, CVA and ARMA models are found to provide a good

approximation to the temporal evolution of modal characteristics.

Of particular importance, estimation of modal damping is the most

challenging problem as pointed out in the above discussion

The analysis of transient conditions on the other hand illustrates other

aspects of interest in the application of the methods. As may be seen

from these plots, canonical analysis appears to detect the onset of system
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oscillations. This is highly desirable feature since the system undergoes
an abrupt transition



Chapter 7

General Conclusions

Transient processes in power systems are inherently non-stationary. In

this thesis, continuous, block-meter processing techniques based on canonical

and least-squares recursive techniques have been employed to characterize the

dynamic behavior of ambient. Compared to other approaches, these techniques
are thought to be more suitable to analyze ambient measurements. Simulation
studies conducted on time-synchronized data demónstrate the potential of these
methods to be used in real-time applications.

The two approaches lead to different methods for modal extraction and

provide comparable information. Other aspects such as computation effort,

sensitivity to outliers and missing data, and performance in the presence of

noise, among other aspects need to be further investigated.

7.1 Future work

Several lines of investigation open from these studies. First, further examination

is needed of numerical properties, especially in the presence of noise. Further

study is also required to understand and characterize nonlinearities in system

performance. The results are an initial step in this direction.

Future work including improved analytical models and validation under

more general operating and testing conditions are needed. In addition, para

metric investigations have to be performed to investígate the effects of sampling
rates and other dynamic parameters of interest.

It is hoped that this information will be useful in the further development

of nonstationary stochastic models when mathematical sophistication permits,

and that eventually they can be used in solving on-line prediction problems.
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