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Resumen

El objetivo de la presente investigación es desarrollar un esquema de compensación de

voltaje novedoso, capaz de mitigar algunos de los problemas más comunes concernientes a

la calidad de energía en los sistemas eléctricos de distribución. Los disturbios suscitados en

las redes de suministro de energía provocan variaciones en los perfiles de voltaje a lo largo

del sistema especialmente en los nodos cercanos a la falla. Por otro lado, el incremento en

la utilización de sistemas industriales automatizados, la conexión de fuentes convertidores

basadas en electrónica de potencia, etc., generan una gran cantidad de componentes

armónicos contaminando el sistema eléctrico. Estos eventos deterioran el rendimiento de

equipos convencionales, ocasionan fallas en líneas de producción, provocan la desconexión

de un gran número de usuarios y causan grandes pérdidas económicas en general.

Con el propósito de compensar tales condiciones adversas en el voltaje, en este trabajo de

tesis se proponen dos nueva topologías para un Restaurador Dinámico de Voltaje (DVR)

basadas en el convertidor matricial. Los esquemas propuestos incorporan la tecnología de la

conversión de energía CA-CA y adquieren del sistema la energía de compensación

requerida, lo que permite eliminar las desventajas que supone el uso de un enlace de CD y

la necesidad de elementos de almacenamiento. La topología convencional del DVR se

utilizada para generar los voltajes de compensación durante condiciones que involucran

variaciones de voltaje balanceadas y desbalanceadas, además de voltajes distorsionados en

el sistema. En la segunda topología, los voltajes de compensación se inyectan en el lado del

sistema de suministro. Esta configuración permite que se mantenga un voltaje constante en

las terminales de entrada del convertidor, resultando en una solución eficiente para la

compensación de variaciones pronunciadas en el voltaje.

El control el DVR se logra mediante la combinación de un controlador feed-back /feed

forward y la estrategia de modulación propuesta, Modulación Directa en el Espacio

Vectorial Modificada (MDSVM), desarrollada para generar los voltajes de compensación a

través del convertidor matricial.

La implementación experimental del convertidor matricial está basada en interruptores de

estado sólido IGBTs y el control se programó en un Procesador Digital de Señales (DSP).

Se llevaron a cabo simulaciones numéricas en el programa PSCAD para validar las

topologías propuestas, y además se presentan los resultados experimentales obtenidos a fin

de confirmar el esquema de control.
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Abstract

The objective of this research is to develop a novel voltage compensation scheme that can

be able to cope with common power quality problems presented in power distribution

systems. Disturbances occurring in the supply power networks or facilities in plants can

cause variations in voltages profile throughout the system, especially in the nodes located

cióse to the fault. On the other hand, the increasing use of industrial systems

microprocessor-based, utility line-connected solid state power converters, etc., have

polluted the power system with harmonic components. These events are reasons for failures

in common equipment, tripping of computer-controlled industrial processing lines, power

disruption for end users and economic losses in general.

In order to mitigate such voltages conditions, this dissertation proposes two novel DVR

topologies based on the matrix converter. The proposed schemes include the AC-AC power

conversión technology and acquire from the grid the necessary energy during the

disturbance, which eliminates the drawbacks imposed by the use of DC-link passive

devices and the need of energy storage components. The conventional DVR topology is

used to genérate the compensation voltages in conditions that involve balanced and

unbalanced variations, and distorted supplied voltages. In the second topology,

compensation voltages are injected on the supply-side of the system. This configuration

permits to hold a constant input voltage for the converter, resulting in an efficient solution

for deep voltage sags.

DVR's control is achieved by the combination of the feed-back / feed-forward controller

and the proposed Modified Direct Space VectorModulation (MDSVM) strategy, developed

to genérate the compensation voltages through the matrix converter.

The hardware implementation ofthe matrix converter is based on IGBTs and DSP control.

Simulations in PSCAD software have been carried out to verify the validity ofthe proposed

topologies, and prototype experimental results are provided to confirm the control scheme.
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CüAPTEC I

Introduction

1.1 Introduction and Motivation

Nowadays, electricity supply industry has been experienced extraordinary changes mainly

aroused by the imminent scarcer of natural resources, the continuously energy demand

increments and the quality ofdelivered energy concerned. All these reasons, together with a

variety of environmental and regulatory pressures that prevent the building of new power

generating plants and transmission lines, are taking the power systems to opérate cióse to

their stability and thermal limits.

Among the actual issues related to electric power systems (EPS's), the term electric power

quality has gained considerable attention by both electric suppliers and end users. From the

standpoint of Utilities, the major concern relies on fact that contemporary devices and

equipment (electronic-based systems) being used by industrial and commercial customers

are more sensitive to power quality variations than equipment used in the past. From the

power grid point of view, the increment of electronic loads becomes important sources of

power quality degradation, which causes a growth in the application of passive devices as

capacitors for harmonic filtering and power factor correction. These capacitors change the

system impedance resulting in possible resonance, which can magnify transient

disturbances and harmonic distortion levéis.

Power quality delivery refers to the ability of transmission and distribution systems to

deliver the electric power to any point of consumption in the amount and quality demanded

by the customer. Every system has different influence on the level of the quality of

delivery. For example, a failure in a transmission component may lead to subsequent loss in

distribution power. A failure in distribution components only causes local losses in

costumer loads. Whereas problems related to power transmission systems and power

distribution systems are all fundamental from power quality point of view, only some

distribution systems issues are considered in this dissertation.
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Deterioration of energy at distribution levéis can be caused by natural causes: faults or

lightning strikes in feeders and equipment failure, by feeder line operation or loads. For

instance, power electronic based loads, switching on/off large loads etc. When one of this

events occurs somewhere in a distribution system, the voltage is affected throughout it.

Therefore the term power quality includes two important aspects [1.1]:

• Voltage quality. Involves rapid changes, harmonics, interharmonics, imbalance, etc.

• Supply Reliability. Involves phenomena with longer duration, voltage sags, swells,

interruptions, etc.

As stated above, in front ofthe importance acquired by power quality topics in EPS's there

is a general agreement by researchers worldwide, that novel power electronics equipment is

a potential substitute for conventional solutions, which are normally based on

electromechanical technologies that have slow response and high maintenance costs [1.2].

As conventional devices are being inefficient for actual power delivery problems, many

researchers have focused their efforts in the developing of novel control strategies and

operational techniques in order to replace them [1.3]. In the present investigation two novel

topologies are proposed for a Custom Power System (CUPS) device, with the purpose of

mitígate some of the common power quality problems found on electric distribution

systems.

1.2 Justification

As mentioned above, the actual technological advance achieved in the power electronics

área has allowed the optimization ofa diversity of components inside the EPSs, particularly
in the energy conditioning field. On the other hand, this tendency has given rise to the

appearance of new issues in power transmission and distribution systems, which implies a

huge challenge. One ofthe main concerns in which researches around the world have been

focused on, is the power quality topic. The adverse effects caused by sags or swells in the

manufacture process and sensitive loads have been described in several publications [1.4]-

[1.7]. Likewise, the voltage harmonics problematic has been broached in manifold

publications [1.8]-[1.10]. In general, power quality issues become direct factors of

economic losses. Henee, the development of Custom Power Systems for improving the

power system operation is imperative.

The series compensation device DVR (Dynamic Voltage Restorer) was introduced for

voltage sag mitigation and has been adopted as a common solution to the problem. Since its

introduction in 1 994, several topologies have been developed, along with different control
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methods and with harmonic compensation purposes [1.11]-[1.14]. While DVR topologies

with energy storage are highly favored to compénsate deep level voltage sags, this type of

systems has significant drawback regarding complexity and overall cost.

Most ofthe DVR topologies presented in the literature share one specific characteristic: the

DC-link. In order to elimínate the drawbacks imposed by the use of DC-link passive

elements, some researchers have focused their efforts in develop novel topologies based on

AC-AC power conversión [1.6], [1.15]-[1.8]. The advantages of utílizing AC-AC

converters as an altemative to the use ofDC-link converters are listed:

• The presence of huge electrolytic capacitors or another external storage system as

batteries, super-capacitors or super magnetic energy storage (SMES) is not required.

• Reduced maintenance requirements

• High Power density

• Reduced harmonic level of low frequencies in the input current

Among the AC-link conversión topologies aimed to opérate as a voltage compensator, the

matrix converter offers the next operative advantages:

• Theoretically a non limited output frequency

• High quality output voltage and input current waveforms

• Controllable input power factor

• Four quadrant operation

• Excellent dynamic response

• Compact design

A further analysis ofmatrix converter is presented along with novel DVR topologies based

on this device.

1.3 Objectives and Contributions

This dissertation proposes a Modified Direct Space Vector Modulation (MDSVM) strategy

to control the matrix converter voltage generation which is developed from the analysis of

voltage and current Park vectors in the complex space, considering a set of three phase

unbalanced input voltages. The precise control ofthe reference vectors allows generating a

set of controllable voltages in magnitude, phase and frequency. Control of the phase

voltages are accomplished independently, characteristic that allows the matrix converter to

opérate as a voltage compensator which results in the proposition of two novel DVR

topologies based on the AC-AC converter.
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Through the proposed DVR topologies, this dissertation addresses the more common power

quality problems, in particular sags, swells, unbalanced and harmonic voltages. Together,

they account for more than 90% of the power quality disturbances affecting most

commercial and industrial customers. Simulation and experimental results are provided to

verify the proposed configurations. The hardware implementation ofthe matrix converter is

based on IGBTs and DSP control.

Taking into account the operative features achieved through the combination of the feed-

back-feed-forward controller and the MDSVM strategy, the proposed DVR topologies

become an economical effective solution to overeóme the power quality problems in

electric distribution systems.

The main contributions of current research work are summarized as follows:

• The mathematical development oftheMDSVM to control the matrix converter

operation
• Design of two novel multi-functional DVR topologies based on the matrix converter

• Numerical evaluation ofthe proposed DVR topologies dynamic performance

through a detailed model implemented in PSCAD software

• Implementation ofa laboratory-scale prototype ofthe matrix converter based DVR

1.4 Thesis Outline

The thesis organization is as follows:

Chapter II. A brief overview ofthe power quality issues including literature surveys about

voltage disturbances, related industrial standards, and mitigation schemes are presented.

This chapter is focused on the more common power quality problems: sags, swells,

unbalanced and harmonic distortion in voltages.

Chapter III. This chapter presents the matrix converter state-of-the-art. A historical review

is carried out based on the literature, towards matrix converter introduction. Then,

theoretical and practical basic concepts are reviewed to completely understand the AC-AC

converters operational principie, emphasizing advantages and drawbacks of this

technology, towards matrix converter practical implementation. Finally, commutation

techniques and modulation strategies are analyzed and compared.
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Chapter IV. In this chapter the proposed MDSVM strategy is developed which is one ofthe

main objectives of this dissertation. The MDSVM technique is based on the direct DSVM

modulation in which the output voltage and input current are controlled by means of

magnitude and phase modification of the reference vectors in the complex space.

Simulation and experimental results over various adverse conditions are presented to verify

the strategy's effectiveness.

Chapter V. In chapter V, this research proposes two DVR's topologies for voltage

compensation incorporating the matrix converter technology. The DVR's operational

principie is presented, along with a comparison of the conventional topologies. After

analyzing different schemes, and according to the objectives above mentioned, the final

topologies are justified and the basic configurations are presented. To efficiently mitígate

the voltage disturbance, a voltage controller is designed and explained. Finally the state-

space equations for both system configurations are derived.

Chapter VI. Simulation results of voltage disturbances are presented to show the fast

control response and the well-regulated output voltage using the proposed scheme.

Experiments have been carried out to demónstrate the validity of the proposed topologies
and results are presented in this chapter. Likewise, the hardware configuration is briefly

explained.

Chapter VII. The conclusions and contributions resulting from this research work are

presented in this chapter. Recommendations for future research on this topic are also

provided.
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CHAPTEE II

Voltage Disturbances and

Mitigation Devices

Nowadays, there is an increasing demand for high quality and reliable power. One

important reason for that is that all electrical devices are prone to failure or malfunctioning

when they are exposed to one or more power quality problems. The concept of power

quality at distribution level refers to maintaining a near sinusoidal power distribution bus

voltage at a rated magnitude and frequency.

This chapter introduces the concept of power quality, reviewing the common terms and the

typical characteristics of some voltage disturbances. In addition, a brief comparison of

previous work in power electronics-based equipment for voltage compensation is exposed.

2.1 Power Quality Issues

The power quality term is commonly used to denomínate the shortcomings present in

transmission and distribution systems. This concept implies supply availability, reliability

and voltage quality in the power supplied to the customers. Power quality degradation is

inherently related to any failure of equipment due to deviations ofthe line voltage from its

nominal characteristics, which often results in industrial process interruption causing

substantial economic losses [2.1].

The principal phenomena concerned in power quality are [2.2]:

• Harmonics and other departures from the intended frequency of the alternating

supply voltage

• Voltage fluctuations, especially those causing flicker

• Voltage dips and short interruptions
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• Unbalanced voltages on three-phase systems

• Transient over-voltages, having some of the characteristics of high-frequency

phenomena.

Fig 2.1 shows a general classification of power quality issues originated in the power

distribution system and within the end-user. As in this thesis voltage based compensation is

considered, the adverse effects of distribution system voltages are briefly revised in the next

sections.

Point of

Common Coupling

(PCQ,

Transmission

Voltage Levéis

Distribution

Substation

Load Effects on

Power systems

Current Distortion
• Current Imbalance
• Voltage Flickering
Voltage Interruptions

Sensitive

Load

■ Voltage Sag
■ Voltage Swell

■ Voltage Distortion
• Voltage interruption!
■ Voltage Imbalance

p System Effects on

Sensitive loads

Figure 2.1. Sources of power quality problems

2.1.1 Voltage disturbances in distribution systems

A few years back, the main concern of consumers of electricity was reliability of supply.

However, actual sensitive loads and modern Communications needs a reliable supply with

high quality voltage, that means AC line voltage supply with a puré sine wave of

fundamental frequency and at rated peak valué. Achieving such power delivery conditions

is very difficult in electric distribution systems because to all the failures generated within

the system are associated problems of voltage variations and power interruptions.

Unfortunately, at the present time most of the loads in the distribution system are not

tolerant to large voltage fluctuations.

There are many ways in which the lack of quality power affects customers [2.3]. Voltage

dips can cause loss of production in automated process, and can also forcé a computer

system or data processing system to crash. Sustained overvoltage can cause damage to

household appliances, industrial equipment failures due to insulation breakdown, magnetic
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saturation, and resultant harmonic generation. Under-voltages may cause degradation in the

performances of the loads such and induction motors, light bulbs, etc. Voltage imbalance

can cause temperature rises in motors. Harmonics can cause losses and heating in

transformers, electromagnetic interference and acoustic noise. In conclusión, it is crucial to

maintain a power quality high standard. Thus, is necessary to have a vast knowledge ofthe

actual phenomena which may cause the problems. The main voltage disturbances are

summarized in Figure 2.2.

Among various power quality problems, the majority of events are associated with either a

voltage sag or a voltage swell, and they often cause serious power interruptions.

Voltage sag is a momentary decrease ofthe voltage rms valué with the duration ofa half a

cycle up to many cycles. According to the Canadian Electrical Association (CEA) and the

Electric Power Research Institute (EPRI) surveys, a voltage sag is defined as being less

than 92% and 90% of nominal voltage, respectively [2.4]-[2.6]. For the CEA, a swell

condition can be defined as the voltage level greater than 104% of nominal voltage, while

that ofthe EPRI is 110%. In the National Power Laboratory (NPL) survey, the voltage

range of 106% to 110% of nominal voltage is considered to be a voltage swell event. A

revisión of the data collected concerning on voltage disturbances indicates a predominant

presence of voltage sags in electric power systems. In [2.7] it can be seen that voltage sags

events defined by 0% to 87% of nominal voltage comprise 68% of power disturbances

registered by the NPL and 93.3% of total events registered by the EPRI.

Voltage
Sag M wWWi

Voltage
Swell

Harmonic

distortion Wl V\f\, Transient

Flicker

'

ANli <\K M\ Short duration

interruptionsVV VI

wm Voltage
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Figure 2.2. Voltage disturbances
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Besides the above surveys, many papers have reported power quality surveys. The data

presented in [2.8] indicates that most of faults are single-line to-ground fault, where 2% of

all faults correspond to voltage sags with the remaining amplitude down to 40-50% of

nominal valué, and that most of these faults last for less than 2 seconds. Long-term

interruptions (2 seconds to ten minutes) proved to be rare, accounting for an additional 4%

of all faults. Similar data have also been recorded in a survey ofCanadian power systems in

1997 [2.9]. According to [2.10], switching power supplies, industrial control relays,

contactors, solenoids, adjustable-speed motor drives and thyristor controlled rectifiers are

all susceptible to short term voltage sags.

2.1.2 Harmonic distortion

Another power quality issue which recently has receives considerable attention are the

power systems harmonics. The increasing use of industrial systems microprocessor based,

utility line-connected solid-state power converters, etc., has prompted growing concern

over this aspect. A widely definition uses for harmonics establish that: "harmonics are

sinusoidal voltages or currents having frequencies that are integer múltiples of the

frequency at which the supply system is designed to opérate''' [2.1 1].

Ideally, three-phase voltages are balanced and with constant rms (root mean square) valué

and frequency in each phase. Thus, when an electric load is linear, the voltage and currents

are perfect sinusoids. However, the popularity of electronic components and other kind of

non-linear loads makes these waveforms become distorted. A common non linear load is an

ac induction motor drive, in which the most significant harmonic currents injected into the

ac supply include the 5th, 7*, 11*, and 13* harmonics. When source inductance is taken

into account, circulation of harmonic currents in the ac system results in voltage distortion

at various points in the ac system. The distorted voltage waveform affects the operation of

both the nonlinear load and other linear and nonlinear loads connected to the same bus, or

PCC, or adjacent buses, as Fig 2.3 shows.

Harmonic voltages impact on power systems consists in the generation of harmonic

currents. When these currents flow through magnetic devices such as energy transformers,

motors, etc., can genérate excess heat, additional losses and shorten devices' lifetime. On

the other hand, harmonics or interharmonics with frequencies within hearing range, can

produce interferences on telephone lines via inductive coupling, as well as over-current

relays and power brakers malfunctioning due to skin effect [2.12]-[2.13]. Additionally to

problems mentioned above, there exists other kind of events related to harmonics that have

impacts in power system capacitors. Although a capacitor is not a harmonic source, it can

provide the loop to harmonic currents, creating the conditions for repetitive over-voltages

in capacitor banks increasing the temperature, accelerating age, and even explode. In
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addition, if capacitors are applied at locations having large adjustable-speed drives, the

potential to resonance problems must be considered.
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r.Q

t

PCC Voltage

s

y

t

I Load Current

Non-Linear

Load '-td ¡IVA.
1 V

-±* Load Current

Figure 2.3. Voltage harmonics propagation

2.13 Voltage imbalance

In three-phase systems, load imbalance could be caused by unevenly distributed single-

phase load or by balanced three-phase load running at a fault condition, such as phase open

or short fault.

An unbalanced three-phase voltage source applied to three-phase motors causes the

appearance of a negative sequence current which increases the motor's internal losses,

heating it up. If the motor is running at near rated loads, then this could cause the motor

overheat and could be severely damaged. Table 2.1, displays the effects of unbalanced

phase voltages applied to class A and class B three-phase motors running at rated loads. In

addition to motor damage, voltage imbalance in three phase systems can cause

malftinctioning ofthe electronic equipment connected [2.16].

Table 2.1. Effect ofvoltage imbalance on motors at rated load

Voltage Imbalance (%) 0 2 3.5 5

I Negative sequence current (%) 0 15 27 38

Increase in losses (%) 0 9 25 50

Class A Temperature raise (°C) 60 65 75 90

Class B Temperature raise (°C) 80 85 100 120
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2.2 Power Quality Guidelines and Standards

Currently, several engineering organizations and standard bearers in several parts of the

world are spending a large amount of resources to genérate power quality standards. The

American National Standards Institute (ANSÍ) and the Institute of Electrical and

Electronics Engineers (IEEE) have established several guidelines concerning major power

quality problems.

Regarding voltage tolerance, it depends on the specific application. That is the main reason

why it is almost impossible to develop guidelines and operative standards that can

encompass acceptable limits regarding voltage levéis in distribution systems. Companies

that build sensitive equipment should provide acceptability curves for the equipment they

produce. Anyhow, curves as CBEMA [2.17], and Information Technology Industry
Council (ITIC) curve [2.18], Fig. 2.4, suggest a guideline for voltage quality in power

distribution systems serving main computers, and it can become an industry reference for

acceptable voltage tolerance. This curve specifies the voltage dip magnitude and the

duration of the voltage sag for 120 V single-phase applications. This curve is useful for

providing general insight into acceptable voltage quality.
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Figure 2.4 ITIC curve

About the harmonic distortion presented in distribution systems, several organizations as

CENELEC (European Committee for Electrotechnical Standardization), IEC (International
Electrotechnical Commission) and IEEE-IAS (Institute of Electrical & Electronics

Engineering, Industry Application Society), have established professional committees to

investígate the harmonic distortion impacts. Among the standards developed to supervise
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harmonic distortion issues, the IEEE-519 guide for evaluation of the power system

harmonic level issued in 1992 [2.15], is the most comprehensive.

Summaries of the acceptable amount of harmoriic distortion presented in distribution

systems are given in Table 2.2.

Table 2.2. Voltage distortion guidelines for power systems

Power system

voltage level

'Dedicated Power System General Power

System

Médium Voltage

2.4 kV to 69 kV 8% 5% l

High Voltage

115 kV and above 1.50% 1.50%

* A dedicated power system is one supplying only converters or loads that are not affected by voltage

distortion.

Where voltage distortion percentage is defined as,

%ú
distortion

h=2

n
100 (2.1)

where Vh is the amplitude of the h'h harmonic voltage and V¡ is the amplitude of the

fundamental voltage.

Finally, referring to voltage imbalance, there are several ways to define it. One definition is

given in NEMA standard MG1 [2.14], where voltage imbalance is expressed as a

percentage according to,

**?(/*M>,**max Va,b,cmm) ...
'"unbalance

y y y
'a

T r
b

~

'
c

(2.2)

where Vabcmm is the máximum rms phase voltage, and Va¿ c,min
is the minimum rms phase

voltage. NEMA MG1 sets a voltage imbalance guideline of no more than 1% in order to

prevent damage to sensitive loads.
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2.3 Power Electronics Applications in Power Systems

The evolution taking place in the electricity supply industry is heading toward maximizing

existing transmission and distribution resources, with high levéis of stability and power

quality. This trend points in the direction of power electronics [2.19]. Two kinds of power

electronics applications have gained importance in power systems, and now are already

well defined: active and reactive power control, and power quality improvement.

The first application área is for arrangements known as Flexible Alternating Current

Transmission Systems (FACTS), where the latest power electronic devices and methods are

used to control the transmission side ofthe electric network. The second application área is

for devices known as Custom Power System (CUPS), which focus on the distribution

system supplying the energy to end-users and is a technology created in response to reports

ofpoor quality of supplied energy.

2.3.1 FACTS controllers

The FACTS concept was introduced by Narain G. Hingorani [2.20]-[2.21] at the end 80's,

to face with the requirement of improving the transmission system operation. According to

IEEE, FACTS controllers are defined as [2.22]: Alternating current transmission systems

which use power electronics-based static compensators to improve the controllability and

increase the power transfer capability.

FACTS controllers' operational principie is based on the modification of electric system

parameters such as: transmission line impedance, voltage magnitude and phase angle in one

system node. Some ofthe advantages achieved by FACTS controllers are [2.23]-[2.24]:

• Higher control on power flow.

• Voltage regulation on system nodes.

• Increase the system transient stability margins.
• Damp system oscillations, preventing equipment damage and increasing power

transmission capability.
• Allow reliable interconnections between companies and neighbor regions.
• High power flow transfer capability between controlled interconnected systems.

According to the connection, FACTS controllers can be divided into [2.25]:

• Series connected devices.

♦ Static synchronous series compensator (SSSC).
♦ Thyristor switched series capacitor (TSSC).
♦ Thyristor switched series reactor (TSSR).
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• Shunt connected controllers

♦ Static synchronous generator (SSG).
♦ Static var generator (SVG).
♦ Static compensator (STATCOM).
♦ Thyristor controlled reactor (TCR).
♦ Thyristor switched capacitor (TSC).

• Combined controllers

♦ Unified power flow controller (UPFC)
♦ Shift phase transformer

Each FACT device is designed to carry out specific control functions within the power

systems. At present, an extensive bibliography related FACTS technology does exist

[2.25]-[2.27].

23.2 Custom Power System (CUPS) devices

As with FACTS devices in transmission systems, power electronics devices can be applied

to the power distribution systems to increase reliability and the quality of power supplied to

the customers [2.28] -[2.29]. The devices applied to the power distribution systems for the

benefit of customers are called Custom Power Systems.

Custom power devices are basically a compensating type, used for active filtering, load

balancing power factor correction and voltage regulation. These devices usually include

VSCs controlled by various control strategies and depending on the topology can be

divided in three major types: current, voltage and combined compensation. Selected

devices pertinent to CUPS technology are:

• Distribution Static Compensators (DSTATCOM) [2.30]. This device can complete
current compensation, power factor correction, harmonic filtering, load balancing
and also voltage regulation.

• Dynamic Voltage Restorer (DVR) [2.31]. The DVR is a device implemented in low

and médium voltage to perform voltage based compensation as voltage harmonics

filtering, voltage regulation and balancing. The conventional DVR topology is

constituted by a passive storage element feeding a voltage inverter through a DC-

link. In recent years the DVR has gained acceptance among industrial consumers as

an efficient and economic solution to mitígate voltage disturbances on power

feeders. However, despite its operational advantages exhibited, DVR capabilities
are conditioned by the energy storage device used. As the main objective of this

thesis is to develop a novel DVR topology, more details about DVR operational

principie, configuration and control techniques are presented in Chapter V.
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• Unified Power Quality Conditioner (UPQC) [2.32]-[2.33]. The combination of

current and voltage compensation in distribution systems is referred to as the

UPQC. The conditioning functions ofthe UPQC are shared by the series and shunt

compensators; while its series compensator performs harmonic isolation between

supply and load, voltage regulation and voltage flicker/imbalance compensation, the

shunt compensator performs harmonic current filtering and negative sequence

balancing as well as regulation ofthe DC-link voltage.

2.4 AC-link Power Converters

The second generation of FACTS controllers is based mainly on DC-link voltage source

converters [2.34]-[2.35]. However, some advances on AC-AC converter-based controllers

have appeared recently [2.36]-[2.40], being a novel choice for power conditioning and

power flow control.

According to the operating principie, the AC-AC converters can be classified as follows

[2.36]:

• Direct AC-AC converters.

• AC-link converters.

• AC-DC-AC converters.

Since the AC-DC-AC converter requires a DC-link it will not be considered as part ofthe

AC-Link technology and therefore will not be analyzed here. The other two types of

configurations are briefly presented, emphasizing their main characteristics.

2.4.1 Direct AC-AC converters

Direct AC-AC converters belong to the static frequency changers devices. The term static

frequency changer is applied to electric circuits integrated by semiconductor switches and

able to convert electric power with a frequency coi, at the input supply system termináis, to

electric power with a frequency co2, at the load termináis. Static frequency changers can

control frequency and voltage magnitude at load termináis without the need of

transformers, just based on the static power switches control. Thus, load voltage is

synthesized from segments of input voltage.

According to the switches' technology they can be divided in:

• Naturally CommutatedCycloconverters (NCC).
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A three-phase to three-phase NCC is illustrated in Fig. 2.5 [2.41]. It requires

naturally commutated back-to-back three-phase inverters for each output phase.

Depending on the load current direction, the positive or negative inverter will be

switched on. In each inverter, the operational mode (rectifier or inverter modes) is

determínate by the output voltage sign.

Employing NCCs output voltage and frequency can be controlled but it is not

possible to regúlate input power factor. Tráditionally, NCCs have been applied as

drivers for high power AC motors, where no other kind of drive can be used.

Concerning its drawbacks, next limitations can be pointed out:

Output frequency of approximately 0.33 of input frequency

Complex control strategy

High number of thyristors

Output voltages and input currents with a high level of harmonic content

Input power factor depending on load power factor.
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Figure 2.5. Three phase-to-three phase NCC

• AC-AC Matrix converters.

Matrix converter devices are based on the forced-commutation principie, for which

utilize power bidirectional switches commutating at high frequencies. The matrix

converter denomination is due to its structure resembles a power cells matrix with
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"m" input lines and "ri" output columns, as can be seen on Fig 2.6. The matrix

converter belongs to the Unrestricted Frequency Changers family, since the output

frequency is only restricted by practical aspects. On the other hand, a major

restriction imposed to this converter is related to its transfer voltage ratio, which is

limited to 0.866 times the input voltage. Another important limitation in matrix

converter implementation is the lack of commercially available power bidirectional

switches; however, this disadvantage can be overeóme through the use of

unidirectional switches configurations. By connecting a LC passive filter at the

input termináis of the converter, input current harmonics are attenuated and the

commutation process is improved.

Three remarkably aspects make this kind of technology very attractive:

i) Unrestricted output frequency

ii) Input current with low harmonic content

iii) Controllable input power factor

Due to the matrix converter advantages, it is a good option for the following

applications:

AC motor driver in áreas where physical size is to be considered or operation
under adverse environments is required.
Link-converter between non-conventional electric sources and the AC power

supply system.
Interconnection ofpower systems with different frequencies.

■

Voltage disturbances compensation in distribution systems.

2.4.2 AC-link converters

AC-link converters are converters without frequency change capability but with simpler

topologies than AC-AC direct converters. They can be transformers assisted or not. The

most important AC-link converters' applications are focused on power flow control and

voltage regulation. The AC-link converter principie is the high frequency chopping of an
AC signal with constant duty cycle, in this way the converter can modifíes the amplitude of

the fundamental frequency component. The output signal contains such modified

component plus high frequency components due to the switching.
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Figure 2.6. Three phase-to-three phase matrix converter

Based on o the well known DC-DC energy conversión strategy, AC-link converters have

emerged as a novel solution for compensation voltage applications. For instance: buck,

boost and buck-boost topologies. Fig 2.7 shows a one-phase AC-link buck and boost

converters. In these topologies AC-link converters consists of two static power switches per

phase and passive elements such as inductors and capacitors, used for increasing or

decreasing voltage magnitudes. Since in AC-link converters current flows in both

directions, bidirectional switches have to be taken into account. In Fig. 2.7, switches Sl and

S2 opérate in a complementary way, being necessary to provide a dead-time between

switching operation to avoid the risk of short-circuits.

a)AC Buck Converter b)AC Boost Converter

Figure 2.7. AC-AC voltage regulator topologies

For voltage compensation purposes with the previous topologies, a transformer would be

necessary to reject steps down and voltage swells variations. Then the topology with the

AC-link buck type converter with a transformer at the output termináis would be similar to

the traditional DVR configuration just replacing the energy storage device and the DC-AC
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inverter with the AC-link converter. In this way, by reducing the number of elements, the

overall cost of the system is reduced as well. Along with the topologies presented, other

topologies with AC-link converters have been proposed for voltage sags compensation

[2.19], [2.42]-[2.43].

In the power flow control, FACTS controllers based on AC-link converters have been

developed analogously to the DC-link based FACTS controllers. Similarly to the SSSC, the

Xi controller is proposed as a controllable capacitive reactance [2.44], Fig 2.8. Switches Sl

and S2, in Fig 2.8, opérate under the same switching function in a complementary way. The

operational principie can be divided in two states: when capacitors are connected to the

system through a series injection transformer, S¡ on, and when the series injection

transformer is shorted and the primary winding exhibits low impedance, S2 on.

X/2 X/2

Figure 2.8. AC-link converter based series compensator (Xi controller).

Analogously to the unified power flow controller "UPFC", advanced controllers are

developed such as the Gamma controller, which can control independently the active and

reactive power on transmission line [2.36]-[2.37], Fig. 2.9. Gamma controller is constituted

by a set of phase shift transformers that generates N three-phase voltages with a phase shift

of 2n/N between them. The set produces four three-phase voltages shifted 90 electrical

degrees between them. By PWM, a 4x1 vector switching converter can synthesize a three-

phase voltage with controlled amplitude and phase. Injecting the generated voltage in series

with a transmission line, the active and reactive power flow can be controlled in an

independent way.
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FACTS controllers recently proposed work under the Vector Switching Converter (VeSC)

principie [2.36]. The VeSC couples several three-phase voltage sources with several three-

phase current sources in complex interconnections [2.45], Fig. 2.10. The systems' buses are

considered voltage sources while loads and series injection transformers are current

sources. Series inductor or shunt capacitors can be added to modify voltage or current

sources into current or voltage sources respectively, then systems' buses can be coupled as

current sources using series inductors.

2.-3 Conclusions

In this chapter, the main power quality issues have been briefly reviewed. It was known

from various power quality researches that most of power quality problems are related to

voltage sags, swells, imbalance and harmonic distortion, and they can cause serious power

distribution problems which can result in millionaire losses. A summary of the-state-of-the

art methods proposed for voltage compensation has been presented along with the actual

tendencies. It has been shown that many kinds ofmethods can be used for the purpose of

this research, and the AC-AC conversión technology has been successfully used in DVR

topologies for sag mitigation and in FACTS devices with power flow control purposes.

These various schemes for compensation have been reviewed to determine the direction of

the research.

It is known that the DVR devices represent the best option concerning voltage

compensation but recently conventional DC-link-based topologies have been replaced by

novel AC-link topologies due to the advantages offered by this new technology. Among the

existing AC-AC converter configurations, the set ofmatrix converters' operating features is

a quite attractive choice to substitute the DC-link configuration in conventional controller

devices.
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CHAPTER III

Fundamentáis of the Matrix

Converter Technology

This chapter is an introductory material to the matrix converter technology. It presents the

state-of-the-art in the matrix converter technology. First, a historical overview is presented,

departing from the former static frequency changers until the actual matrix converter

configuration. Then, the most significant technological aspects concerning the performance

of the converter are reviewed, emphasizing issues that have to be taken into account for

practical implementation. Since this converter employs bidirectional switches, a specific

bidirectional switch commutation technique is presented. Finally, different modulation

strategies applied to device are summarized.

3.1 Background

Documented history about static direct frequency changer begins in 1923 with L. A.

Hazeltine's work [3.1], in which the fundamental principie for synthesizing an AC voltage

waveform of controllable frequency from a multi-phase AC voltage supply of known

frequency was stated. However, his system could not be implemented because electric

valves with appropriate characteristics and capacity were unavailable [3.2].

During the 30' s, practical experimental results were published through mercury are valves

available at the time [3.3]-[3.4]. In the results presented, variable output frequencies below

input levéis as well as variable output voltage magnitude were accomplish by means of

controlling switching angles in the valves. Based on these valves, the term eyele-converter

was introduced by H. Rissik [3.5]-[3.6].

At the end of 50's, the evolution ofthe silicon controlled rectifier (SCR) or thyristor, along

with advantages offered over mercury are rectifiers, such as higher commutation speed,
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lower voltage fail in on-state, compact and robust construction, etc., aroused the motivation

of researchers over applications concerning power systems with constant output frequency
- variable speed [3.7]-[3.12].

In the mid 60's, some researchers had achieved important progress towards overeóme

obstacles associated to waveform distortion in frequency changers [3.13]-[3.14]. In spite of

the inherent limitation of thyristors about turn-off just by natural commutation, some

researchers aware of eyeloeonverters potential, persevere on develop a technology based on

on-line commutation and succeeded in terms of output voltage amplitude and frequency

control. The main field of application was in AC electric motors, fulfilling the industrial

requirements imposed for DC motors. Cycloconverters became the perfect choice for

controlling large AC motors spinning at low speed [3.15]-[3.27].

It was until power electronic devices with turn-off capability were developed for high

power capacity, at the end of 70 's, that static frequency changers expand to new capabilities

such as input power factor control [3.28]-[3.30], and novel topologies for power conversión

appeared [3.31]-[3.32]. Two theoretical publications by L. Gyugyi and B. R. Pelly [3.33]-

[3.34] endose an analysis of different types of frequency changers terminal characteristics

including a complete study about the natural commutated eyele-converter (NCC). This

work was followed by other publications by W. McMurray [3.35], covering theory and

design of cycloconverters. In 1976, L. Gyugyi and B. R. Pelly published "Static power

frequency changers" [3.2]. The authors summarize the available knowledge in the field of

static frequency changers at the time, in a mathematical frame and state the future trends for

the development of frequency changers based on forced commutation. The book became

the main reference of that period. Since then, evolution of frequency changers has been

taking place due to advances in semiconductor technology, developing of novel topologies
and the incursión ofnew modulation and control techniques.

The real developing of matrix converter starts with two publications by M. Venturini and

A. Alesina [3.36]-[3.37] in 1980. In these works a novel frequency changer was proposed,
able to opérate with input/output sinusoidal signáis, bidirectional power transfer,

controllable power factor and reactive power generation. One of their main contributions is

the mathematical analysis that describes the behavior of converter for low frequency

operation. This modulation technique is also known as direct transference function.

Additionally, the use of matrix converters (term adopted for static frequency changers

whose topology consists on a matrix of bidirectional power switches) was proposed for

AC-AC, DC-AC and DC-DC types of conversión, with a buck or boost.

In the first control algorithm presented by Venturini [3.37], the input current waveform was

distorted, there was not power factor control and the máximum input/output achieved

voltage magnitude relation was 50 percent. A second Venturini's control strategy presented
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several advantages over the first one, such as: limited input power factor control [3.38]-

[3.39], better input current quality [3.40] and a máximum of 86.6 percent in voltage

magnitude relationship [3.41]-[3.42]. The really controllable input power factor was

obtained by Asher, through novel control algorithms [3.43], based on the combination of

input and output phase displacements.

Among the different types of control algorithms developed for matrix converter operation,

there are some identified as scalar techniques [3.44]-[3.47], which demand a lot of

mathematical calculations. In 1983, Rodríguez introduced a conceptually different control

technique based on the idea ofthe presence ofa hypothetic DC-link [3.48], modulation also

known as indirect transfer function. In 1985-86 Ziogas gives a mathematical formalization

to Rodríguez's idea in [3.49]. Likewise in [3.50]-[3.51], the use ofPark's transformation in

matrix converter analysis and control was introduced. A series of publications made by

Huber [3.52]-[3.54] present the space vector modulation (SVM) concept applied to matrix

converter control and, along with Borojevic, establish a model for direct AC-AC converter.

By applying the SVM strategies to matrix converter it is possible to accomplish the

máximum theoretical ratio between input/output voltages, a high quality input current and a

controllable input power factor by reducing the mathematical calculations.

In 1992, D. G. Colmes and T. A. Lipo applied the AC-AC converters theory to controllable

inverters and rectifiers [3.55]-[3.56], in order to intégrate different applications in one

system. In this manner, a one-phase to three-phase matrix converters can opérate in every

possible configuration, that is, AC-AC, AC-DC, DC-AC and DC-DC. To change from one

specific application to another just some software modifications have to be taking into

account.

In spite of all the theoretical background, there is still a lot of work to do in matrix

converter technology maturation process towards industrial implementation.

3.2 Introduction to Matrix Converter Technology

A matrix converter consists of nine bidirectional switches, arranged in three groups of

three, each group being associated with an output line. This arrangement of bidirectional

switches connects any ofthe input lines a, b, or c to any ofthe output lines A, B, or C, Fig

3.1. A bidirectional switch is able to control the current and to block the voltage in both

directions. If the input and the output three-phase systems are orthogonal disposed, the

converter diagram becomes similar to a matrix, with the rows consisting of the three input

lines (a, b, c), the columns consisting ofthe three output lines (A, B, Q and bidirectional

switches connecting each row to each column. There are two basic rules that ensure matrix

converter proper and safe operation:
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• Do not connect two different input lines to the same output line (short-circuit ofthe

mains, which causes over-currents);
• Do not disconnect the output line circuits (interrupt inductive loads, which causes

over-voltages).

Therefore, an output line has to be all the time connected to a single input line. By

following the basic rules mentioned before, the máximum number of permitted switching

states ofthe matrix converter is reduced from 5 12 to 27, as it is shown in Appendix A.

A matrix with existential functions My representing the state of each bi-directional power

switch, where My
= 0 for off-state and My

= 1 for on-state, can be used to represent the

matrix output voltages (v^, v& v¿) as functions ofthe input voltages (v^ v¡,, vc) as follows,

"BC

VCAj

ML

M.

'31

'23

f33

or V„, = M x V,'ol ittp (3.1)

r-^

—Qh
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Figure 3.1. Basic matrix converter structure

Due to the instantaneous power transfer of the matrix converter, the electrical parameters

(voltage, current) in one side may be reconstructed from the corresponding parameters in

the other side, at any instant. The output currents are a result of applying the previously
determined output voltages to a given load. Input/output currents relationship can be

expressed by:
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M„ M„ M3I' ''a

Ma M22 M32 's

Ml3 M23 M33 Jc.

orlln = MTxlBUI (3.2)

where MT is the transpose matrix ofM.

Due to the lack of energy storage devices the output voltage is generated directly from the

input voltages, so if not restrictions are imposed to output frequency, the máximum line-to-

line voltage in a three-phase to three-phase converter will be the corresponding to the

minimum valué of input voltage enveloping. It is analogous to a voltage generated by an

inverter fed by the rectified input voltage through a non-controlled bridge rectifier. Thus the

máximum output voltage achieved by any commutation strategy applied to matrix

converter will be equal to 0.866.

This restriction, inherent to the direct converter itself, is its most important drawback as it

limits its operation in standard AC motors. Nonetheless, it is not a problem for other

applications such as voltage compensation devices.

Another relevant aspect concerning output voltages and input currents is the harmonic

content. The line-to-line output voltage is made up by the three input voltages, reducing the

magnitude of harmonics around switching frequency compared to a voltage source inverter

(VSI), as it is shown in [3.57]. Likewise, in [3.57] a comparison ofthe input current THD

for an AC-AC indirect converter (non-controllable rectifier-inverter configuration) and a

matrix converter, is also presented. It can be seen on the publication, how the input filter in

the matrix converter reduces the THD to a 4% approximately compared to a THD of near

39% generated by the indirect converter.

3.3 Analysis of Bidirectional Power Switches

The direct AC-AC converter requires the presence of bidirectional power switches able to

conduct the current and to block voltages in both directions. Unfortunately those kinds of

devices are not available yet in the market (at least for high power performance). In [3.58] a

new power device for matrix converter applications is proposed: the reverse blocking IGBT

(RIGBT), decreasing the number of devices per phase. This will créate conditions to

increase reliability and efficiency ofthe matrix converter because conduction losses will be

produced only by a single RIGBT.

Meanwhile a true force-commutated bidirectional switch is industrially produced; the

solution is to implement bidirectional switches with discrete components such as IGBT or
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MOSFET devices. Using unidirectional devices available on the market, there are five ways

to obtain a bidirectional switch:

• Diode embedded switch (Fig 3.2a). This commutation cell requires only one gate

driver and one active switch. It has higher conduction losses because the current

path consists of two FRDs and one IGBT and current direction can be controlled

so all commutations have to be hard switched.

Common emitter switches (Fig 3.2b). This cell is built up by two FRDs and two

IGBTs connected in anti-parallel. FRDs incorpórate inverse blocking capability. In

this arrangement conduction losses are low because the current path consist only
of one FRD and one IGBT and current direction control can be accomplish for soft

switching implementation.

Common collector switches (Fig 3.2c). In this topology conduction losses are the

same as for common emitter switch, but only six isolated voltage sources are

required for the drivers.

Bidirectional topologies using CSC switches which can drain voltage in only one

direction (Fig 3.2d-e). Connecting these cells in anti-parallel, both current

directions can be drain while blocking voltage in both polarities.

■A--. h
(d)

V
(e)

h

Figure 3.2. Bidirectional switch topologies using unidirectional components

Although it is possible to achieve bidirectional switches from combining unidirectional

components, some attempts have been reported in literature [3.59], as a trend to incorpórate

complex silicon structures in power modules. This type of power modules has remarkable

advantage of reducing stray inductances in current commutation paths.

3.4 Current Commutation Techniques

A safe current commutation between two bidirectional power cells in a matrix converter is

not a simple process to achieve as in a VSI, because in the matrix there is not a natural path

for current flow. Thus, in matrix converter operation, time of switching signáis sent to
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bidirectional power cells is very critical. Inaccurate or delayed signáis on the gate drivers

and the non-instantaneous switching of the bidirectional power cells can provoke over-

currents by short-circuiting the input voltage source termináis and over-voltages due to

inductive load currents' interruptions [3.60]-[3.61].

There .are two options to elimínate the risk of shoot-through in matrix converters. Some

researches employs snubber circuits [3. 62],which results in complicated arrangements and

increasing of losses; while others implement specific commutation techniques by operating

the bidirectional switches [3.63]-[3.65]. The commutation technique depends on the type of

bidirectional switches employed in the matrix converter hardware.

The two basic methods to perform the commutation in bidirectional cells are:

• The dead-time current commutation, referred as "break before made" is shown in

Fig 3.3c. In this method, there is a time interval where none ofthe power cells is

shot on. By using dead-times the load is momentarily disconnected. As consequence
this technique causes high switching losses and a clamp circuit or snubber circuits

connected to the output to provide continuity ofthe load current is necessary.

• The overlap current commutation, referred as "make before break" is shown in Fig
3.3d. This method consists in turning on the on-coming switch while the off-going
switch is still conducting, to provide continuity for the output line circuit. This will

cause high circulating currents between input phases, and makes it necessary to add

extra chokes to limit these currents.

Ideal Dead-time

S. on

off

*>
off

on

on

off

off
on

Ove rlap

on

off

off
on

(b) (c) <d)

Figure 3.3. Commutation ofthe out phase from input phase a to input phase b: a) Power circuit; b) Ideal commutation; c)

Dead-time commutation; d) Overlap commutation.

Both methods require extra reactive elements and produce high losses. A reliable method

for current commutation is the strategy known as four step commutation technique.

Basically, both IGBTs are shot active allowing current flow in both directions. For

implementing this strategy is necessary the use of bidirectional cells with anti-paralleled

unidirectional switches, which provide independent control for each direction of the

current. Thus, depending on the direction of the output current or on the magnitude of the
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input voltages involved in the commutation process, the first action is to disable the current

path for circulating currents and the second is to apply overlapping for the on-coming

switch with the off-going switch. Therefore the risk of short circuit on the input side is

eliminated, and semi-soft commutation, is achieved.

3.4.1 Four step commutation strategy

This commutation strategy takes place in four steps. For a better comprehension, the circuit

shown in Fig. 3.4 is analyzed.

• Step one: The non-conducting switch (S]p) is turned off, Fig 3.4b. This way, current

direction is not able to change sign.

• Step two: The switch that would conduct the current (S2n) is turned on, Fig 3.4c.

Now, there is unidirectional connection between input lines, but no circulating
current may occur, since S-n and S2P are off.

• Step three: The switch S*p is turned off, Fig 3.4d. At this time the current is forced

to switch from input phase 1 to input phase 2.

• Step four: The non-conducting switch (S2„) is turned on, Fig 3.4e. This is a passive

step, with the purpose to re-establish the four quadrant characteristic of the AC

switch, so the currents can change sign naturally.

As mentioned above, the current direction is required for implementing this method, which

makes the current direction measurement necessary. Fig. 3.4 displays the possible path for

the output current allowed by the four step commutation strategy for both current signs.

When implementing this strategy, the duration of commutation steps is one important

aspect to be considered. The duration ofthe passive commutation steps (1 and 4) is non

critical, because the switch on the bidirectional cell that do not change state allows the

current flow; then, the complementary switch does not have to change so fast. Duration of

the active commutations (2 and 3) is critical and should be chosen in agreement with the

switching characteristics ofthe devices employed.

Other problems that can adversely affect the matrix converter operation by employing

multistep commutation techniques are related to errors on the current sign caused by

commutation near to zero output current and the current sign detection method utilized.

Current transducers based on Hall Effect are commonly used in order to control properly

the commutation, but methods based on the voltage drop across unidirectional switches

have been also proposed.
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Figure 3.4. Path current allowed during the four-step commutation

3.» Modulation Techniques

Output-voltage in a direct AC-AC converter is integrated by portions of each one of the

input-voltage phases in sequences and time intervals well defined. Likewise, input currents

are made up by portions of the output-currents. A typical switching pattern is exhibited in

Fig 3.5.

Considering a high switehing frequency applied to the bidirectional power switches, an

output-voltage with controllable amplitude and low variable frequency can be generated

through the modulation of duty cycles nty(t). Where m¡¡(t) is the duty cycle for the power

switch My defined as:

"
T.

(3.3)

where ty is the time elapsed while switch My is on during the commutation period Ts. Duty

cycle can only have the next valúes:

0<mv(t)<l i = {1,2,3} j = {1,2,3}, Vi (3.4)
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Figure 3.5. Typical switching pattern

Low frequency transference matrix can be stated as:

M(/) =

m„(t) m12(t) m,3{t)

m2,{t) m22{t) m23{f)

«J/(0 ««(O «*s(0.

(3.5)

This matrix can be used to define the low frequency component of output voltage, given by:

MO

Vfl(0

MO

»//(') ««(0 «»(0

«27 (0 «22 (0 «2.K0

«1/(0 ««(0 »«(').

V.M

V»(0

Ve(0

or v„„
= M(i)xV^ (3.6)

Low frequency input-current component is,

'.(0 "•//(O «2/(0 %/(0 'x(0

4(0 = *«(0 «22(0 «J2Í0 <B(0 on/B = M(í)rxI

UO. .«/i(0 «2j(0 ««(O. .¿c(0.

(3.7)

Where in order to fulfill the basic commutation rules for matrix converters,

Z w/.(0= S «2,(0= S ^(0
/=;,2,J /=/,2,J i=A2,J

(3.8)

The matrix converter control's main problem may be stated as: "For a given set ofinput-

voltages and output currents, a modulation matrix M(t) able to accomplish a set of

dependant output-voltages and input-currents, is required"
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As was reviewed in the initial section, the first modulator proposed for matrix converter

was made by M. Venturini and A. Alesina, using a complicated scalar model [3.36]-[3.37].

After that, some algorithms based on the Venturini modulation were proposed, known as

scalar techniques. Next, the indirect modulation was introduced. This approach simplified

the modulator model by making possible to implement classical PWM modulation

strategies in matrix converters. Modulation models using SVM permits control the

converter even under unbalanced and distorted conditions. In the next sections, these

common modulation techniques are briefly presented.

3.5.1 Scalar algorihtms

In this kind of algorithms the magnitude of a voltage signal, denoted as Venturini

modulation method establish independent relations for each output, by sampling and

distributing portions of input voltages in such a way that the average result follows the

reference output phase voltage. Assuming that the input voltages are given by:

V tn
— v,-

eas(mj)

COsí<V+-yj
COSsh'+f)

(3.9)

and the currents can be expressed as,

Ioul = I„

cos(t>)oult+eoul)

cosí a0Mt +
-y

+ 0out\

( 4n
a

cosí cooult+— +6oul

(3.10)

The desired input-current and output-voltage vectors can be denoted by:

-q-Vm

eos ((Omlt)

COsíoou,/ + -yj
( 4lt

eos a)„,j +
—

(3.11)
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Iout —

q
■ 1
0

cos (-»,„/ + 0,„)

f 2*
a

cosi<»,„í+—+e„

( 47C
a

cos| to,„t +
—

+0„

(3.12)

where q is the matrix converter voltage gain.

The two solutions for the conversión matrix, proposed by Venturini are,

M;(/) =
-

2tt 4ti
J + 2q cos(mmt) l + 2q co${a>mt

——

) l + 2q cos(ú)mt
——

)

7 + 2q co_(mmt
—-) i+2q co$(<omt) l+2q cos(comt

——

)

2ti 4ti
l + 2qcos((omt-—) l + 2qcosx[amt-—) l+2qcos(ú)mt)

(3.13)

where com
=

(co0ut - coin)

M2(t) =
--

2tt 4tí
1 + 2q cos{wmt) l + 2qoos(mmt

—

-) l+ 2qcos(ú)mt
——)

2~ 4lt
l + 2qcos(mmt ) l + 2qcos(comt ) l + 2qcos(tomt)

l+2qcos(a)mt ) l+2qcos(tvmt) l + 2qcos(cvmt
——)

(3.14)

where com
=

- (a>out + toin)

M¡(t) establish that 6in
= 0ovt, while M2(t) states that (9„

power factor control can be achieved.

= -dout- Combining both solutions

M(t) = a,x\l1(t) + a2-M2(t) (3. 1 5)

where a¡+ a2
=

l, and for a¡= a2 the matrix converter input power factor is unitary.

Even when this solution allows input power factor control, its main drawback resides in its

limited (50 %) input/output voltage ratio as is represented in Fig 3.6.
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I

Figure 3.6. Output voltage limited to 50%

In order to provide máximum voltage transfer ratio, injection of third harmonics on the

output voltage is needed. Then, the reference output voltage becomes,

Vom =q-Vin

cos(cbo„,0
-

Y6 cos(3moult) +y n <-os(3a>,„t)

cos(eoMlt + 2*/3)
-

l/6 costSa^t) +^j cos(5ojn/)

cos(<¡w + **/$)
*-

1/6 cos(.3<omlt) +y^ cos{3e»¡nt)

(3.11)

Fig 3.7 illustrates this strategy. Therefore duty cycles are given by,

'y 1
rita =

— =■ —

*
r 3

2vi(t)vJ(t) 4q
1+

-^—+-^=&m(mlnt+fil)sm(3m¡nt) (3.12)

where

"/ = {(l,A),{2,B),{3,C))j = {(l,a),(2,b),(3,c)}

Pt={0,2y3,4y3}vani = {1,2,3}

v, (t) includes third harmonics addition

Vin is the RMS valué of input voltage system
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Figure 3.7. Máximum output voltage (86.6%)

This algorithm requires complex mathematical calculations for duty-cycles estimation,

which represents time consuming computations, besides it requires nine commutations in

the switching period because both type of vectors, rotating and active, are inherent

generated. Other modulator models have been derived employing only one type of

switching state vectors, which simplified the mathematical models. In [3.66] only rotating
vectors of both, direct ad inverse sequence, are used, in conjunction with zero vectors in

order to vary smoothly the amplitude and the instantaneous frequency ofthe output voltage.

3.5.2 Indirect modulation

In the Indirect Space Modulation Method (ISVM) [3.68], the modulation process is split
into two steps as indicated in (3.13)

Vou,=(áv.„)b (3.13)

where V,„ is defined by (3.9).

In (3.13), pre multiplication ofthe input voltages by A generates a fictitious DC-link, while

post multiplication by B generates the desired output by modulating the fictitious DC-link

inverter transformation due to the similarity with the conventional rectifier/DC-linlc/inverter

system. A is generally referred to as the rectifier transformation, and B as the inverter

transformation due to the similarity with a traditional rectifíer/DC-link/inverter system. A is

given by,
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A = A\

costo*-/)

<*s(<»,„t +2*y3)

cos(a)l„t+4y3)
Henee,

AV,„ = KAV„

cos(-»jB/)

cos(a)Jn/ +2^j

cos(«ín/ +^)

cos(a>/B/)

cos(ay+^Q

cos(«v +^)

MA

(3.14)

(3.15)

B is defined as,

B = Kt

cxis(a)oult)

«» (aw+2*y3) (3.16)

Henee,

[XV,„)__% =
3KAKBV„

cos(oOI(,/)

<m(mmlt + 2xy3)

^(<Oou,t + 4y3)

(3.17)

Voltage ratio q
= 3KaKb/2. A and B are not continuous in time but must be implemented by

a suitable choice ofthe switching states.

The voltage ratio obtainable is greater than the one obtained with other methods but

improvement is only obtained at the expense ofthe quality ofthe input currents, the output

voltages or both. For voltages of q > 0.866, the mean output voltage no longer equals the

target output voltage in each switching interval, this inevitably leads to low frequency

distortion in output voltage and/or the input current compared to other methods with q <

0.866. For q < 0.866, the indirect method yields very similar results to the direct methods.

3.5.3 Space vector modulation methods

An effective way to genérate the desired PWM pattern is to use the space vector

modulation techniques. Space vector modulation technique uses a combination of the two

adjacent vectors and a zero-vector to produce the reference vector. The proportion between
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the two adjacent vectors gives the direction and the zero-vector duty cycle determines the

magnitude of the reference vector. The input current vector llr, and the output voltage

vector Üouii are the reference vectors. In order to implement the DSVM, it is necessary to

determine the position of the two reference vectors. The input reference current vector 1¡„

is given by the input voltage vector Uiv in case instantaneous unitary power factor is

desired, or is given by a custom strategy to compénsate for unbalanced and distorted input

voltage system [3.67]. The output reference voltage vector TJouti results ofa vector control

scheme. Vector modulation strategies allow:

• Output frequency control

• Output voltage magnitude and phase control

• Input current phase control, which means input power factor control

A variant ofthe Direct Space Vector Modulation (DSVM) is explained in detail in Chapter

IV. Another approach based on space vector modulation technique is modeling the direct

AC-AC converter as the combination of an AC-DC converter and a DC-AC converter. In

this way, the matrix converter can be controlled indirectly through the rectifier and inverter

controls. This technique is known as Indirect Space Vector Modulation (ISVM) [3.52]-

[3.54].

As sated before, space vector modulation techniques are based on Park's reference vectors

tracking [3.57], Fig 3.8.
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Figure 3.8. Reference vector tracking

Duty cycles of the active switching vectors are calculated for the rectification stage by

using,

ca * \ ha
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¿^•sin^-X) (3.18)

ds=mrzm(é¡„) (3.19)

For the inversión stage,

-^=my.sin(|-C) (3.20)

d^ =m*y*sin(-9Ów) (3.21)

where ;w/ and mu are the rectification and inversión stage modulation indexes, 6 ¡„ and 6 om

are the angles within their respective sector of the input and output voltage reference

vectors. Usually m¡
= 1 .and mu

=

U0JUpn, in ideal sinusoidal and balance input voltages:

Upn=dy.Ulmt_r+ds.Uline_s=0.86-42Ulinc (3.22)

To obtain a correct balance of the input currents and the output voltages, the modulation

pattern should be a combination of all the rectification and inversión duty-cycles (ay-a8-p8-

fty-0). The duty cycle of each sequence is determined as a product of the corresponding

duty cycles:

dar
= dadr, daS=dads; d0S=dfids; dff=d0dy (3.23)

Therefore, duration ofthe zero vector can be calculated by

d0 = l
-

(dar + daS + dPr + dPr ) (3 .24)

Finally, the duration of each sequence is calculated by multiplying the corresponding duty

cycle times the switching period.

3.6 Overvoltage Protection Circuit

Matrix converter topology needs to be protected against overvoltage and over-current.

Furthermore, due to the lack of an energy storage element this topology is more sensitive to

disturbances and therefore more susceptible to failures. Disturbances, which may cause

hardware failures, are:
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• Faulty inter-switch commutations, as internal short-circuit of the mains or

discontinuing the circuit ofthe motor currents;
• Shutdown ofthe matrix converter during an over-current situation, in the load side

• Possible overvoltage on the input side caused by the converter power-up or by

voltage sags.

Protection issues ofmatrix converters have always commanded attention, in order to build a

reliable prototype. A solution to solve some ofthe problems consists of connecting a clamp

circuit on the output side [3.69], Fig. 3.9. The clamp circuit consists of two B6 fast

recovery diode rectifiers back to back connected and a capacitor to store the energy

accumulated in the leakage inductance ofthe load, caused by the output currents. The worst

case regarding the energy level stored in the leakage inductance occurs when the output

current reaches the over-current protection level, causing a converter shutdown.

Other interesting methods to lamp the reactive energy of the inductive load have been

proposed. In [3.70] a new configuration using only six diodes is proposed. A strategy of

protection against over-voltages employing varistors connected at the input and output

termináis, plus an extra protection circuit for each IGBT is proposed in [3.71]
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Figure 3.9. Diode Clamp circuit in matrix converter applications

3.7 Conclusions

This chapter has presented a compilation of around three decades of investigation

concerning the direct ac-ac converter, since the first mathematical model to provide sine

wave in - sine wave out operation was developed, to the actual situation of the matrix

converter technology. It have been established the main components required for practical
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implementation, as well as the protection issues and safe commutation techniques to ensure

the proper operation.

The operational characteristics ofthe matrix converter, advantages and disadvantages, can

be summarized as follows:

Advantages:

• It has not internal energy storage (DC-link)
• Theoretical unlimited output frequency
• Bidirectional power flow

• High quality output voltage
• High quality input current

• Controllable input power factor

• Four-quadrants operation
• Compact design
• Low level of acoustic noise when operates as driver ofAC motors

Disadvantages:

• Low input/output voltage gain
• High number of solid state components
• Complex commutation scheme

Regarding the modulation strategies, some of them were briefly reviewed at the end of the

chapter. In order to compare each strategy, several simulations were performed in the

MATLAB software. Even when the results were not included in the chapter, they served to

realize a comparison between the modulation techniques, from which the next statements

can be mentioned:

• Scalar algorithms require more computational resources in order to perform the

complex mathematical calculations required.
• The hardware requirements for implementation are the same in all algorithms,

because all need to measure the same signáis.
• Respect to the output voltages harmonic content, the vectorial strategies generates

voltages with a harmonic spectrum slightly distorted. For low valúes in the voltage

gain, q, the output voltages' distortion is important for all strategies.
• About the input current harmonic content, only differences are appreciated when

the converter is operating with low valúes of q, being the vectorial techniques the

ones with lower distortion.

• Finally, the input power factor control is simple and easy to implement in the

vectorial strategies, in contrast with the scalar techniques.
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In conclusión, for practical implementation the vectorial strategies are the best option.

Among these two topologies, the direct SVM is more suitable to uhderstand the operation

of matrix converter because its analysis is based on the particularities of each switching

configuration which reflects the output voltage vectors and input current vectors. As a

result, the control of the output voltage reference can be derived directly by selecting the

suitable switching patterns.
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CHAPTER IV

Modified DSVM Strategy

As it was stated in chapter III, three-phase matrix converters have advantages over

traditional frequency changers such as four-quadrant operation capability, sinusoidal

input/output waveforms, controllable input power factor and minimal energy storage

requirements, etc. However, since the matrix converter performs direct power conversión

and has no internal energy storage device, it is high sensitive to disturbances at the input

port that are transmitted directly to the output side [4.1]. In order to speed up the maturation

process of matrix converter technology towards industrial application, several performance
and reliability issues of the matrix converter are being investigated, and the novel

modulation strategies a particular case of interest [4.2].

In the present chapter a novel modulation technique denominated "Modified Direct Space
Vector Modulation" is developed with the purpose of synthesize the reference output

voltage vector despite the conditions presented in the input termináis of the matrix

converter. The proposed altemative DSVM method has the advantage of easy

implementation and improved power quality.

4.1 Introduction

The conventional modulation strategies are derived under the assumption that input

voltages are sinusoidal and balanced, which results in ideal output waveforms. However,

when unbalanced supply voltages are present, these strategies genérate low-order

harmonics in the input voltages [4.3]. With reference to the switching control methods

proposed for deal with abnormal conditions at the input termináis, they are commonly
based on two different approaches: the Venturini method as in [4.4], and the space vector

modulation (SVM), [4.1],[4.3],[4.5]-[4.9]. In the algorithms proposed in [4.3], [4.5]-[4.8]
the conversión process has been fictitiously divided in two stages: rectification and

inversión, by introducing an imaginary DC-link. In [4.1], [4.9] a direct formulation of SVM

is employed in order to analyze the input current performance ofmatrix converter. In [4.6],
it has been shown that, it is possible to produce balanced and sinusoidal output voltages
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even when the input voltages are unbalanced. In this case by taking into account the

input/output power balance equation, it can be shown that non-sinusoidal input currents

will appear. On the other hand, [4.9] deals with the performance evaluation of SVM

controlled matrix converters under input and output unbalanced conditions. Finally,

altemative control methods have been developed as in [4.10] were the authors were focused

on minimizing the switching losses.

In applications concerning voltage compensation is a compelling requirement to genérate a

controllable output-voltage no matter the particular condition of the supplied voltages. In

this chapter a modulation strategy based on the well known SVM algorithm is developed in

order to synthesize controllable voltages in magnitude and waveform for compensation

purposes, from unbalanced conditions and harmonic distortion in the supply voltages. The

technique presented performs the power conversión directly from AC-to-AC and the

calculation of the duty cycles relies on instantaneous samples of two of the three line-to-

line input voltages. The final equations obtained are easy to implement in real time digital

controllers.

4.2 Modified DSVM to Compénsate Unbalanced and Distorted Input

Voltages

The DSVM is presented in [4.11], considering a set of balanced input voltages. That

technique is considered as a direct control strategy, since it is developed from the direct

AC-AC converter model, different from those strategies developed from the AC-DC-AC

model established by Huber and Borojevic [4.12]-[4.17].

Since one of the main objectives in this research is the implementation of a voltage

compensator based on the matrix converter, to develop a modulation strategy that allows

adequate converter operation under distorted conditions in the supply voltages is required.

4.2.1 Unbalanced conditions specification

In the SVM algorithm, the three phase framework is mapped into a complex vector in terms

of aP coordinates, being the frequency translated on its speed of rotation and the amplitude
on its modulus. The control strategy implies the modification ofthe amplitude and phase of

the reference vector, from which the switches' triggering pulses are determined. Within the

SVM technique the reference vector is time variant, thus it is possible accomplish studies at

steady and transient regimes.
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It is known that when the supply voltage is unbalanced and/or distorted, the matrix

converter operation can be affected by the generation of output voltages and currents which

are also unbalanced and distorted. To overeóme such a shortcoming, is necessary to modify

the duty cycles relations by incorporating the characteristics ofthe supply voltages into the

computation. So as to develop a general strategy that encompasses typical abnormal input-

voltage conditions is necessary to analyze the resulting space vectors. For unbalanced case,

consider a three phase voltage system defined as follows,

v,=

va(0

v»(0

Lvc(0

Kr, sin(atf)

k2Vinsm(mt + 2y3 + 62)

(4.1)

where coefficients k¡ and k2 specify the degree of unbalance in two of the input phase

voltage magnitudes. Likewise, adding the angles 6¡ and 62, it is possible to admit angles
different from 2n/3 among phases. Under such conditions, the line-to-line input-voltages
become:

v„4(/)

V»c(0

v-(0.

x,V¡nsm(o)t-P,)

x2V¡nsm(tot + P2)

x3Vinún(mt-.p3)

(4.2)

where,

x2
= ]kf+kÍ-2k1k2smxfel-x92-l\

x3=^l+l4-2k2ún{82-^]¡

(4.3)

= tan"

P2=taiT'
k, eos B¡ +

—-\-k2 eos 02 +
—

*'SÍn(''~?)~Mn(*2~fl
(4.4)
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P3=tan

k2cosN) I
A2sin 82-

5n
-1

For developing the modified DSVM strategy, the direct AC-AC three-phase converter

illustrated in Fig 4. 1 is considered. Mapping the three-phase sets of electric parameters of

the converter to the complex space, the corresponding Park's vectors can be defined:

Input phase voltage

.2lt .4rr

ÜtnP(t) = (va(t) +vb(t)-e~+vc(t)-e^)= Üir,P .e""» (4.5)

ÍW)
= (vo(0+vé(0+vc(0) (4.6)

Input/output line-to-line voltages

2rc

Uin,(t) = (vab(t)+vbc(t)-e
**

+vjt)-e
*
) = \UM le*"*

i— tu.

Uou„{t) = {yAB{t)+vBC{t)e
■»
+vCA{t)-e

3
) = \Ü0J-ejZU-

(4.7)

(4.8)

Input/output line currents

_ 2it_ ,4£

hn(t) = (ia{t) +m-e
¡ +ic(t)-eJ 3

) = \l„\-ejzl- (4.9)

.2n ,4n

Iou,{t) = (iA(t)+iB(t)-e
3

+ic(t)-e
3
) = [lou<\-ej/~u (4.10)

In addition, it is worth noting that for line-to-line voltages the homopolar component is

equal to zero. Then, for the input line-to-line vector,

Re{l//n,(0}=|vfli(?)

\m{Ü,„l(t)) = 43vhc{t) + ^-Vah{t)

(4.11)
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Finally the modulus and phase ofPark's input line-to-line voltage vector are,

\Uxnl | = ^(viíO + viW + VrtW-VfcW)

ÁJmi = tan"'
'
2Vbc(t) + vab(tf

{ VJVrfíO J

vcaW

Neutral point

(4.12)

(4.13)

hft)

yab(t)\ b

x

va(0 hft)
—-

,

*b.(0\ c

x

v„(t)

.

hft)
—*-

,

X

vc(t)

X

^

*■ ^M" ^M" r-^"
O O Q

M, M,

O 0 O
Mi

M, M,

o-:-o-:-o
M,

k ro

v^ftí
•■*•—-—•■*

,/*0

vBC(y

hft)

»ca(0

Output line-to-line

voltages

Figure 4.1. Conversión matrix basic structure

By substituting eq. (4.1) within the last expressions all actual unbalanced conditions can be

taken into account, where the balanced condition is a particular case.

With the purpose of setting up quantitative indexes among arguments and modulus on

Park's vectors (Ump and Umi ), expressions defined as a function ofthe same variables for

both vectors are required. Thus, the following relationships arise:

\Ui*p\ = yjv2ab(t) + v2bc(t) + vab(t)-vbcx:t)

'

J3vbc(<) )
ZUi„p = tan"

^«iO + VfcíO.

(4.14)

(4.15)
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Finally,

\Ulrtl\ = -¡3-Uinp (4-16)

ZÜi„,=ZÜi„p+^ (4-17)
o

These two expressions can be satisfied independently ofthe unbalance degree.

4.2.2 Switching states analysis in Park's complex space for unbalanced conditions

As it is known, in the DSVM control strategy just the fixed and zero vectors are utilized

[4.16]. The corresponding Park's vectors Tjml and 7/„ under unbalanced conditions are

presented in Appendix A. For comparison purposes, analysis for state S2, Fig. 4.2, is

developed here.

The input/output voltages relationships become:

vBC(') = vAB(t) (4.18)

*ca (0 = -vAB(t)

Then output-voltage Park's vector is,

\Üm,i (í)| = VJ
■

vab (i) ZÜouii (/) = - (4.1 9)

For generating a set of balanced output line-to-line voltages in the matrix converter, the

input/output relationships of currents are,

'flW = 'iO + '8(0 = -'cW

WO-fcM (4.20)

ic(t) = 0
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The corresponding Park's vector is,

\lm{t)\-S-¡cV) ¿Iin{t) =—
O

(4.21)

a
hft)

*ca(0

*ab(*)

.. v»|

v.w

v0(/;

vcro

/*ro

M„ JMn Ml3

Mr

0-^—0
Mt M,

4,0
M, M,

Q-^—Q-^-Q
M,

hft)

*ab(0
é-* •**

hft)

*bc(0

Jcft)

Neutral point *ca(0

Output line-to-line

voltages

Figure 4.2. Matrix topology for state S2.

The previous analysis shows that the expressions obtained for vectors Uomi and lm under

balanced conditions, Table A.1, can be also utilized for the case of unbalanced input

conditions just taking into account the voltages defined by eqs. (4.1) and (4.2). The

modifications aroused by unbalanced conditions are manifested on the vectors behavior and

the magnitude of the output voltages. For instance, fixed vectors during input balanced

conditions divide complex space in six sectors forming up a regular hexagon, and the

output voltage vector that can be generated for máximum balanced output voltage

conditions corresponds to 0.866 times the máximum circle that can be inscribed inside the

hexagon, Fig. 4.3a. On the other hand, if sag of 50% is considered on input phase b, fixed

vectors still divide the complex space in six sectors; however, now the máximum

magnitude ofthe balanced output voltage that can be generated is reduced by a factor of 2/,

.Such variations have to be considered at the moment of synthesizing the reference Park's

vectors.

Taking the output voltage and input current vectors as references, these vectors U0uii(re/) and

/«(ref) can be located within any sector, Figs. 4.4 and 4.5.
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—

U„„;/(f) Fixed Vectors

— Input Voltage Locus

— Máximum balanced output
Voltage Locus

• Zero Vectors (Sl, SU, S27)

(«) (b)

Figure 4.3. (a) Voltage vectors for balanced input voltage condition. (b) Voltage vectors for unbalanced conditions (sag of

50% on phase A).

S2,S1S,S2S

S7, Sil, S24

S9, SIO, S23

SS, SIS, S19

S4,S17,S21

S3, S13, S26

S18,S24,S26

S2, $4, SIO

S3, S7, S19

S9,S21,S25

S5, SU, S13

S1S,S17,S23

Figure 4.4. Output-voltage 's fixed vectors Figure 4.5. Input-current's fixed vectors

The major aim ofthe strategy is to control the Park's vector ofthe output voltage [/„„,• , and

to control the phase 8¡n between the input voltage Üi„P and the input current lin . This allows:

• Controllable output-voltages, despite input-voltages condition.

• Output voltages and input currents with acceptable harmonic content
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• Control of amplitudes and frequency on the output voltages
• Control of input power factor.

4.2.3 Voltage reference tracking

In the following, it is assumed that vectors u,mr,-n and lin'nf) are located within sector I,

respectively. In order to determine the line-to-line output voltage, Fig 4.6, the following

relationships are used:

UouH'nf) =Wouii m, j+ít/ot,// mu 1 (4.22)

Uoutiinf) = I Uouii •

m„, I+ 1 Uouii ■

m¡v I (4.23)

where m¡ represents the commutation-vectors' duty cycle. i.e.,

T

-,=f
i = {I, II, III, IV} (4.24)

's

Ts is the sample time .and T¡ is the time elapsed while the i-th state ¡s on.

outl

Figure 4.6 Uoui(ref) tracking

After conduct the corresponding vectorial projection on Fig 4.6, the following expressions

can be deduced:

UoidUref) =—r=\Uoutl(Kf)\- COS \ ¿Uoull'ref)
—

-|-C
*

(4.25)
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Uoull(ref) = —j= \Uoutl(ref)
* COS ZUoutl(ref) + (4-26)

From (4.22)-(4.23), (4.25)-(4.26), it is established that:

Uoutl'ref) =\Uoullrn, J+ 1Uoutl
■

»»//)
=

—j=
\Uoull(ref) -COS ZUoutl(ref)

—- Ye 6

Uoutl(ref) =\Uoull-mm\+ [Uoull-m,v\ =—jJjJouil'ref) -COS ZUoull(ref) +
— *C

6

(4.27)

(4.28)

From Figs 4.4 and 4.5, it is worth noting that the fixed states have three alternatives (for

example, S19, S18, S5) whose modulus varíes instantly depending on the line-to-line input

voltages. One way to attain the vector Uoutiw) is selecting the commutation states with the

greatest modulus. As a consequence, the selected commutation states depend on the

position of vector Ui„p . The argument of Tj
¡np depends on the line-to-line input voltages as

indicated in eq. (4.15). Figure 4.7, illustrates the relationship between the line-to-line input

voltages and the sector where the vector u ¡np
is located, despite unbalanced degree. Thus,

vector V outi'nf) must be constituted by commutation states S5 and S9, while vector u «"'(«/)

by states S4 and S7, Fig. (4.8).

Figure 4.7 Relationship between line-to-line input voltages and Utnp vector's sectors
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T.¡y
uL=-Í3.vm*í<

s_

U«,(/=-*/j*v<Ij>*e **

Figure 4.8 Required states for tracking Uoutl(ref) when U,„p is in sector I.

By defining instantaneous line-to-line input voltages in terms of its Park vector, as:

Vab(t) = íjpinl\cOs(zÜM)

Vbc(.) = l\Üin,\cOs(zU'inl-ífj

Vca(') = ||í//-./|cOsízí7í„/-yj

(4.29)

(4.30)

(4.31)

It is possible, from Fig 4.8 and (4.29)-(4.31), to rearrange (4.27) and (4.28) in terms ofthe

line-to-line input voltage vector,

|í/o«;(r**/)|*COS ZUoutl(ref)
—- = |t//*,;|cos(Z(/íB/ JOT/ -|[//„;|COS ZUini

—— \m¡, (4.32)

k/>w-/(n/)|-COs( ZUoutl(ref) +— 1 = \Ulnl \gOs[ZUihI )l»ffl
—

|C//«/ jcosl ZUinl -—\m,y (4.33)

4.2.4 Current reference tracking

Similarly to the previous section, the input reference current /,«(«/) can be determined, Fig

4.9. It can be established that,

Iin(ref) = I Iin ■

mu I + 1 Iin *

m,y I (4.34)
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Iin(ref) = I Iin *

m¡ 1+ 1 //*i •

mm I (4.35)

Additionally,

*r

//«(re/) = -**=|//**(re/)|*SÍn
— +ZIi„(ref) Ve

7" 2 17 I ■ í * /? 1 -y7
Iin(ref)=—¡=Uin(ref)\-Sm\—-ZIin(ref) \e

°

Vi1 ' U -1

(4-36)

(4.37)

From (4.34)-(4.37), and after mathematical manipulations,

-r=\Iin(ref) |
* Sin ( ^+Zl i„(ref) j

= (VI
*

ÍA
■

m,¡ )
-

(Vi
•

tg
■

mIV )

-**= \lin(ref) |
* sin I ^

- Zlin(ref) 1 = (VI
*

¡A ■171,')- (VI
*

ÍB
■

til,,, )

(4.38)

(4.39)

Iin =y¡3-iB-e
**

lin =VI;B*e 6

íl-Jl-i^

\'in=-f3-iA-e''6

Figure 4.9 //•-(«/) tracking

In order to avoid the use of current parameters, eqs (4.38)-(4.39) are rewritten as:

• (*
n¡¡ -sin

— ■

111,1 Sinj —-ZIin(ref)
-

m, sin —

+Z/,„(re/) 1 = 0 (4.40)
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"¡v
■ 1 í í* - ZÍin(rtf) j

-

m,„
• Sin í *| + ZIln(ref) 1 = 0 (4.4 1 )

4.2.J Duty cycles computation

Solving the equation set (4.32)-(4.33) and (4.40)-(4.41) the duty cycles become:

\Uou„(ref)\ ^[-Vou.Href)
- ~

J
■ COS\j +Zl^nf) j

Vi \Üinl\ COS0,„
^4.«l.-i ^^ ¿ (4.42)

, lf/ i/ nl cos \ ¿Uoull(ref)
~ — *COS — -Zlin(ref)\

2

|^(y|_l jj U ^
VI k/J COS0,„"ib

2 |t/«-f(^)| <»«[*^-K'^)+jJ-«»[j+^*w)
"»///

=

-t-
•

i-

" — ~ L (4-44)
Vi ü* C0S^

2 |t^w| 0M(^-^"<r)+fJ-0°»(f-z/'-K^)J
Vi ly-wl cos^„

(4.45)

The last expressions are valid within the intervals:

Jt ,T~, Jt Jt
—

Jt I A AtT\

-—< ZUoull(ref) <
— -— < ZIin(ref) < — (4.46)

6 6 6 6

Being necessary to verified that:

m, + m¡, + m,¡¡ +m,y<l (4.47)

Ifthe sum ofduty cycles is less than one, the use ofzero states is required.

Substituting (4.42)-(4.45) into (4.47) results,

Üou,l(ref)\<^-\Üin,\ . - ^ . r (4.62)
■í

COS^ZÍ/0i4i/(re/)j*COS(Z//n(re/)J
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Considering that [cosZ//«(«/)J =/ and [cosZí/ow/(«/)J =1, from (4.14) the input/output

voltage relationship q
= -^ can be established:

V <—— V
""'

-

342
'" Íy+¿+1y2 + X2 + tp2 - 2yX • sin *j 2wt +

X-y
cosft„ (4.63)

where,

Y
= x¡cos(p¡) + x2 k, *cos(/?2)cos 6¡ \ + x3 -k2cos(P3)cos\ 62+—

X = x2-k¡ sin(^2)sin 0, \ + x3
■

k2 sxrx(p3)s.rx\ 82 ■{

(p
= -xlúrx(P,)+x2k1sxrx[p2+9,—j \+x3 k2 siní p3 +82 +-^ j

x¡ and Pi (for /
= /, 2, 3) are defined in (4.3)-(4.4), and k¡, k2, 6¡, and 62 are used to specify

the degree.

From (4.63) it may be observed that k/J a time variant quantity which depends on the

unbalance degree. Besides, it can be noticed that the máximum voltage relationship is

reached when cos^„ = 1. Then,

V <——-V
""'

-

3J2
'" Jy+X + Jy2 + X2 +(p2 -2yX-sxrx\2cvt + -\ (4.64)

Eq. (4.64) implies that under unbalanced conditions on input voltages, the output-voltage
Park's vector is at the most 0.866 times the minimum valué of the input voltages Park's

vector.

Employing the line-to-line voltages, the following relations are defined:

Vlt,b(t)-Vlca(t) = ^jp,n\cOsízU,„~ (4.65)
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—*=-|(/Jc0S ZUm+-
Ví1 - K 6

VjirW-VtojW-
~

TfNcosí ^t7"- +T I (4-66)

v/„(0- vJfc(0 = ~pm\cos[zUt„ -|j (4.67)

Using (4.17), and taking into account a unitary input power factor (zt//*,, = zlln(ref)), the

duty cycles become:

VJmill(nf)

|t/-*rf
picosízt/01„;(re/) -jj(v4c(0-voA(0) (4.68)

í/ou//(re/) / _ ffA
*//

= ~

,_ l2
-COS] ZUou,l(ref)

--

HVcax:t)-VlK(t)) (4.69)

pinl\
V i^

"•nr
=- .r'T *cosízt7OB„(re/) +£l(vtc(0-vat(0) (4.70)

|t/ln/|
V ^^

L^P-cosÍzí/™,,^/) + ~\(vca(t)-vlK(t)) (4.71)
í/,-i V ■>/

m/K
--

From the above expressions, by incorporating the characteristics of the supply voltage into

the computation of the duty cycles makes the modulation process adaptive to the

characteristics of the input voltages, henee enabling the output voltages to track closely

their reference counterpart even when the supply voltages are non-sinusoidal. The

significance of this is that the switching functions of the converter are now varying with

variations ofthe input voltage, while still aiming to track the reference output voltage. This

effectively prevents the undesirable features of the supply voltages from propagating on to

the output voltages.

4.2.6 Commutation tables

Table 4.1 shows the switching sequences that can be used to avoid múltiple switch

commutations, based on the proposed optimized double-sided vector sequence presented in

[4.18]. Finally the duty cycles can be expressed as indicated in tables 4.2-4.4, where:
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• Pi represents the sector where the vector /,„(«/) is located; as cos<9„,=l,

ÍZUinp =ZIin(ref)J ■

•
aoul is the angle related to the voltage reference vector, measured from the initial

vector ofthe corresponding sector, Fig. 4.10.

Table 4.1 DSVM vector sequences

!

CURRENT SECTORS
VOLTAGE SECTORS

II III

mi mn ntm mjv mv m, n»u mm miv mv mi mu n>m ntiv mv

S4 S5 S9 S7 Sl S2 S5 S9 S3 El S2 Sil S21 S3 Sl

11 S9 S7 S17 S18 S27 S9 S3 S15 S18 S27 S21 S3 S15 S24 S27

ni S17 S18 SIO su S14 S15 S18 SIO S13 S14 S15 S24 S4 S13 S14

IV SIO Sil S21 S19 Sl SIO S13 S25 S19 Sl S4 S13 S25 S7 Sl

V S21 S19 S23 S24 S27 S25 S19 S23 S26 S27 S25 S7 S17 S26 S27

VI S23 S24 S4 S5 S14 S23 S26 S2 S5 S14 S17 S26 S2 su S14

IV V VI

mi mn •nm mw mv mi mu «nm m*v my m, mu mni miv mv

I SIO Sil S21 S19 Sl SIO S13 S25 S19 Sl S4 S13 S25 S7 Sl

II S21 S19 S23 S24 S27 S25 S19 S23 S26 S27 S25 S7 S17 S26 S27

III S23 S24 S4 S5 S14 S23 S26 S2 S5 SU S17 S26 S2 su S14

IV S4 S5 S9 S7 Sl S2 S5 S9 S3 Sl S2 Sil S21 S3 Sl

V S9 S7 S17 S18 S27 S9 S3 S15 S18 S27 S21 S3 SIS S24 S27

VI S17 S18 SIO Sil SU S15 S18 SIO S13 S14 S15 S24 S4 S13 S14

Table 4.2 Duty cycles for P-= I y IV

Pi = I y IV

m, =(-!)'
Uoull(ref)

Utnl
sin[ --aM |-(vtc(f)-va4(0) (4.72)

Uotitl(ref)
~¡¡ =(-/)

'
■

_ 2 •9Ín(aw<)*(vte(/)-vat(0)
Uinl

(4.73)

«•jo
= (-/)''

„ Uoxill(ref)

U,„l

■«'"(««^MO-VkW) (4.74)

(4.75)-„
= (-/)''

U nuil (ref)

u,„i2
s™\--aou, \{vca(i)-vbA'))
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Table 4.3 Duty cycles for P,
= II y V

Pi-IIyV

Uoutnref) („
i

. .cinl

-j~ siní*!*- aoul ■ (vab (t)
-

vca (/))
Uinl V J '

(4.76)

Uoml(ref)
11 =("')'

'

_ , ■sin(gOB,)*(vBft(/)-va,(/))
i//,

(4.77)

«m=(-7)-n'i
Uoull(ref)

Utnl

— ■ s>" (««,/)• (v*c(')-vaA(0) (4.78)

«w = (-/)'■
routl(ref)

s'níy-"o*«l-(v(')-voi(0) (4.79)

TabU 4.4. Duty cycles for PI
=

IIIy VI

,
v null(ref)

siní aou, j*(v„(/) vaA(0) (4.80)~1 —\ 1)

Jtnl
2

na
= (-y)^ •

Uoull(ref)
s'n (««,)• (vca(0 voé(í)) (4.81)

Uinl
2

Mjv
= (-//'•

Uoull(ref)

(4.82)
TJ.nl

2 -•slnl."ouJ Ava*W vc<A'.>,)

outl (ref

'níy-aowj(vaí,(')-vca(/)) (4.83)"•/f ( ' 41

Ülnl
2
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S2, S15, S25

Voutl(re/) (]j\

S5, S18, S19

S4, S17, S21

Output-voltage Park's fixed vectors

Figure 4.10 a^, definition.

4.3 Matrix converterwith the modified DSVM simulations

To verify the time domain performance of the matrix converter when is controlled by the

MDSVM, numerical simulations are carried out. The converter is analyzed under different

operating conditions using PSCAD software. The system key parameters used in the

simulations are given in table 4.5. The overall system architecture, as well as the

computation process to implement the MDSVM strategy is exposed in Fig. 4.11. It is

important to mention that, in order to appreciate the matrix converter characteristic

waveforms, no input /output filter was used in this study.

Table 4.5. List ofparameters

Parameter Valué

Fs: Switching frequency 6 kHz

■Vi**-: Máximum phase input voltage valué 42-120

fin = fout: Input / output frequency 60 Hz

L - R: Inductance - Resistance Load lOmH/lOQ

Departing from the input phase-voltage measurements, the sector K¡ (where the vector U,„p

is located) is calculated. As unity power factor is considered, UmP
=

/<*-e*/) • Likewise, from

the reference voltages, the sector Ky and the angle aoul are definite. From table 4. 1 the

switching pattern is obtained and the duty cycles are computed from the equations

expressed in Tables 4.2-4.4, using the valúes ofK¡, aoul, and the line-to-line input voltages.
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Finally, with the switching states and duty cycles it is possible to establish the state in every

switch ofthe matrix converter, during the actual switching period.

Voltage Reference»

v„(0

1 *i i *

■

1 -'iif-s-.T

J;■*•*. ?%":*■•--■?
*.-*** ¿"rT •*-*■-;

"

'-*'.s'tC-.*-í

i"

Duty Cycle
Tables

Figure 4.11. System architecture to simúlate the modified DSVM control algorithm.

4.1.1 Condition I: Unbalanced Input Voltage

The performance of the MDSVM under unbalanced input voltages is evaluated through a

test with the next input conditions: va
= Vin ZO, vA

= \5-V¡n Zjtfl and vc
= 0.5*^„ Z-jt/3 . The

expected output voltages have to be a set of three-phase balanced voltages. Fig. 4.12 shows

Park's vectors U¡„i and Uouii(r^) in the complex space. From this figure, it can be

appreciated that the voltage imbalance limits the output voltages according to eq. (4.64).

Under this condition j^L "0.4\vlnp nominal
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Figure 4.12. From left to right: Uml and Uoutl(ref) Park vectors in the complex space, Vectors magnitude.

Input and output phase voltages are depicted in Fig. 4.13. Since no passive filters have been

employed, output-voltage harmonic content is relatively high but harmonics are

concentrated around the vicinity of the switching frequency and its múltiples. Thus, by

increasing the switching frequency, harmonics order also will increase making them easier

to filter out.
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Figure 4.13. From Top to bottom: Input phase voltages, Output phase voltages and output voltage harmonic spectrum (as

percent ofthe fundamental component). a)Phase a, b) Phase b, c) Phase c.
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In Fig. 4.14, a similar analysis is presented for the currents. In a similar way as voltages,

input currents shows harmonic components of considerable magnitude around the

commutation frequency, but the inductive nature of the load has filter the load currents

which are practically sinusoidal. Finally, the comparison exhibited in Fig. 4.15 shows that

despite the substantial degree of imbalance in the supply voltages, the proposed modulation

strategy has no problem in synthesized eflfectively the voltage reference imposed which can

be verified through the load currents.
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Figure 4.14. From Top to bottom: Output currents, Input currents and Input currents harmonic spectrum (as percent ofthe

fundamental component). ). a) Phase a, b) Phase b, c) Phase c.
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Figure 4.15. From left to right: Input phase voltages, Output voltage references and Output currents
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4.3.2 Condition II: Distorted input voltage

The next step in the evaluation ofthe MDSVM is to analyze the converter behavior against

another adverse condition commonly presented in distribution systems, the presence of

voltage harmonic components. For this study case, 5* and 7* harmonic components of

different magnitudes have been added to the phase voltages as follows: 0.5 and 0.1 on

phase a, 0.3 and 0.3 on phase b, 0.4 and 0.2 on phase c, this valúes are related to the

magnitude ofthe fundamental component ofphase a.

In this case, for a balance output set of voltages the máximum output voltage magnitude is

restricted to 0.7 times the nominal valué ofthe input voltage, as Fig. 4.16 illustrates.

In Fig 4.17, input voltages show the distorted waveform expected by the addition ofthe

harmonic components. The low order components added are no longer presented in the

output signáis, which only show the harmonic spectrum caused by the modulation scheme.

It is worth noting that by reducing the imbalance degree, the magnitudes of harmonic

components in the output voltages are even lower than they were in the previous case.

Currents shows a similar behavior as in the study case analyzed before; again, the output

currents are practically puré sinusoidal. In contrast, input currents shows the matrix

converter characteristic waveforms, low order harmonics of magnitude less than 7% still

remains after voltage compensation.

By means ofthe output currents, it is verified that even under considerably distortion in the

supply voltages, the control strategy does not exhibit problems to synthesize the reference

voltages provided the restrictions imposed by the algorithm are fulfilled, Fig. 4. 1 9.

72



R« £

i |s|

(0)

Figure 4.16. a) (,',„/ and Uauil(nf) Park vectors in the complex space. b) Vectors magnitude.

j JU JL__
-200^ ^n *^ I

200

0

-200

l|sl

* 50

,1 i jL

VV
0.02

tls]

0.04

1
3 6

VB

^F tF...
0.02

IM

0.04

i ,d.

Vc

200

0

-200

100

0.02

tls]

0.04

so

0 1
3 6

VC

200

L '*.JM JL
0

V fKrfH
-200 Tr Tr ^

0.02

tls)

0.04

100

50

.1 A
6 12

FlkHlJ F[kHz]

6 12

F IHHz]

Figure 4.17. From Top to bottom: Input phase voltages, input voltages harmonic spectrum, output phase voltages and

output voltage harmonic spectrum. (Harmonics expressed as percent ofthe fundamental component).
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Input phase voltages

200 V
■

Añ a AA A A A ñA h

0

200

Output reterence voltages Output currents

S o

0.02 0.04

Us]

s. o

Figure 4.19. From left to right: Input phase voltages, Output voltage references and Output currents

4.4 Experimental results

The hardware validation of the proposed modulation strategy was conducted on a matrix

converter laboratory-scale prototype property of the Institute of Energy Technology of

Aalborg University. The matrix converter topology is illustrated in Fig. 4.20.
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Figure 4.20. Schematic diagram ofthe matrix converter prototype

The main characteristics ofthe prototype are listed: .

• Matrix converter power stage consists of three power modules 3<(>— 1 <t> with IGBT's

ofl200V/25A

• Input filter components: Inductance per phase of 1.2 mH/10 Apk type B82505-W-

A4 (S-M) and capacitance per phase of 6X1 uF/250 V (class X2) type PHE

830MF7100M (Evoxrifa).
• The Clamp circuit was built with diodes BYPT 12PI-1000, V,™ = 1000 V, Ifsm

= 12

A, Ifhn
= 150 A, and a capacitor of9.4 uF/1050 Vac snubber type.

The proposed MDSVM strategy was implemented in a digital signal processor (DSP) of

32-bit floating point from Analog Devices (ADSP 21062). DSP board is internally

connected to a control PC in order to improve the data storage capability. Data acquisitions

are made through an AD board of 8 channels, 12 bits. A control board based on SAB

80C167 microcontroller from Siemens is employed to genérate all the time signáis required

for the system. The system control diagram is shown in Fig. 4.21.

For the experimental tests the prograrnmable AC Power Source 15003ÍX from California

Instruments as utilized for disturbance generation. Likewise, the matrix converter is

supplied by a 4 kVA autotransformer and is connected as driver ofa 4 kW induction motor

which is mechanically coupled with a DC machine. An image of the overall system is

presented in Fig. 4.22.
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Figure 4.21. Schematic diagram ofthe matrix converter control system.

Figure 4.22. Image ofthe matrix converter prototype. (Laboratory ofthe Institute ofEnergy Technology, Aalborg
University, Denmark).

With the purpose of validate the modulation strategy proposed, several experimental tests

were carried out. The first one was made under nominal input conditions, balanced input

voltages at 50 Hz and a switching frequency of 6.5 kHz. Fig. 4.23 shows the main motor
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signáis under this condition. The harmonic content in the input and output currents on

matrix converter is very low as expected. Furthermore, the unity power factor can be

verified in the figure.

(a) (b)

Figure 4.23. a) Input voltages (100V/div, lOms/div), Phase c Input current (24Vdiv, lOms/div) and input current FFT

(200n*A/d¡v, 625 Hz/div). b) Output currents (1/Vdiv, lOms/div) and phase a output current FFT (250mA/div, 1.25

kHz/div).

The characteristic output voltage waveforms can be appreciated in Fig. 4.24, in which it can

be seen that the output voltage only contains harmonic components at the switching

frequency and its múltiples.

Figure 4.24. Phase a output voltage (50V/div, 4ms/div), Line-to-line output voltage (250V/div, 4ms/div). Bottom: Phase

voltage FFT (50V/div, 12.5 kHz/div)

In the second test, performance of matrix converter under unbalanced input voltages

condition is evaluated. Input voltages of 165 Vpeak, 127 Vpeak and 113 Vpeak were utilized.

Results are presented in Fig. 4.25. The supplied voltages contain a 12.83 % of imbalance,
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according to the definition found in NEMA standard MG1 [4.18]. Despite the high

imbalance degree presented at the input termináis, the output currents just exhibit an

unnoticeable percent of imbalance plus a slight distortion produced by the SVM over-

modulation, but as the FFT indicates not any considerable harmonic component is present

in the output voltage. At this voltage level, the small variations on the output signáis

complícate the precise calculation of imbalance percent therefore NEMA's criterion cannot

be considered. Anyway, the improvement obtained on the system performance is

undeniable.
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Figure 4.25. a) Input voltages ( 100V/div,10ms/div),Phase c input current (2íVdiv, lOms/div) and input current FFT

(200mA/div, 625 Hz/div). b) Output currents (l,A/div, lOms/div), Phase a output voltage (50V/div, lOms/div). Bottom:

Phase a output current FFT (200mA/div, 125 Hz/div).

In the last case analyzed, the input voltages have the next characteristics:

V„: Fundamental component of 100 V with a 5* harmonic component of 5 V with a

phase angle of 355 degrees and a 7* harmonic component of 3 V with a phase angle of
173 degrees. THD

= 6%.

Vb'. Fundamental component of 90 V with a 5* harmonic component of 45 V with a

phase angle of 356 degrees. THD
= 45%.

Vc: Fundamental component of 98 V with a 5* harmonic component of 1 5 V with a

phase angle of 1 75 degrees. THD
= 1 5%.
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Figure 4.26. a) Input voltages (100V/div,10ms/div), Phase c input current (2,Vdiv,10ms/div) and input current FFT

(200mA/div,625 Hz/div). b) Output currents (Wdiv, lOms/div), Phase a output voltage (50V/div, lOms/div). Bottom:

Phase a output current FFT (400n**A/div,125 Hz/div).

The results obtained are shown in Fig. 4.26. The current waveforms confirm the

effectiveness of the proposed modulation. The output currents have a slight distortion

caused by the over modulation introduced.

4.(5 Conclusions

In the present chapter the novel MDSVM strategy has been proposed in order to control the

matrix converter output voltages. The modulation technique was developed based on the

vectorial analysis of the output voltages and input currents in the complex space,

considering a set of unbalanced voltages at the input termináis of the converter. The

modified duty cycles incorpórate the characteristics of the supply voltage into the

computations and adjusting the calculated ratios accordingly. This makes the modulation

process adaptive to the characteristics ofthe input voltages.

Simulation and experimental results show that the new method is able to synthesize the

desired reference voltages even when the supply voltages are unbalanced and/or distorted.

In conclusión, the results presented not only improve the performance of the converter

when operates as a driver for induction motors, but now its operational features have been

enhanced through the incorporation of the MDSVM, making it suitable for voltage

compensation applications.
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CHAPTEE V

Matrix Converter-Based

Voltage Compensator

Once that power quality issues and their adverse effects on power systems have been

addressed, as well as conventional and novel topologies for mitigation devices have been

reviewed, in this chapter two DVR topologies will be proposed. From the literature review,

it is well known that the DVR has gained industrial acceptation as voltage compensator,

mainly motivated by the high economical losses that represent the damage of sensitive

equipments. Notwithstanding DVR technology is well established nowadays, the

development of novel multi-functional topologies with improved characteristics and lower

costs must continué.

In the previous chapter the improved features of the matrix converter under the proposed

MDSVM control shows that the compensation voltage application is well suited for this

converter, which leads to the topologies proposed in the present chapter.

«5.1 DVR Operational Principie

The DVR is one ofthe CUPS devices that use the power electronics technology, especially

inverter technology and is configured as a series connected voltage controller. A schematic

diagram of a conventional DVR incorporated into a distribution network is shown in Fig.

5.1. v, represents the supply system voltage, vpcc is the voltage at the point of common

coupling before compensation, v\oad is the load voltage after compensation, Vdvr is the series

injected voltage ofthe DVR, is is the current demanded to the supply and i¡oad is the current

drawn by the load.

The restorer typically consists of an injection transformer, the secondary winding of which

is connected in series with the distribution line, a pulse-width modulated (PWM) voltage
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source inverter (VSI) bridge connected to the primary side ofthe injection transformer and

an energy storage device connected at the dc-link ofthe inverter bridge [5.1]. To control the

voltage on the load, the inverter injects the missing voltage in series with the system

voltage, using self-commutable electronic switches such as an insulated gate bipolar

transistor (IGBT), Fig. 5.2.
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Figure 5.1. Typical schematic ofa power distribution system compensated by a DVR

The series injected voltage of the DVR is synthesized by modulating pulse widths of the

inverter switches, being necessary to filter the voltage in order to mitígate the switching

frequency harmonics generated by the inverter.
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Figure 5.2. Operational principie ofa dynamic voltage restorer (DVR)

The injection of an appropriate voltage in the face of an up-stream voltage disturbance

requires a certain amount of real and reactive power supply from the DVR. It is quite usual

for the real power requirement of the DVR be provided by the energy storage device in the
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form ofa battery, a capacitor bank or a fly-wheel [5.2]. In some DVR topologies, there is a

shunt connected auxiliary providing energy in the DC-link [5.3]. The reactive power

requirement is generated by the inverter.

Power requirements on a DVR depend on the scheme utilized for injecting the

compensating voltage. For instance, when the injecting voltage has the same phase angle of

the distribution system voltage, the magnitude of the injected voltage is small, but a large

active power is required. In the case of phase invariant voltage injection scheme, the DVR

injects the missing voltage that keeps the magnitude ofthe voltage as well as the phase of

the supply voltage. This scheme needs a large injected voltage and may cause over

injection of reactive power. Finally, if the injected voltage is in quadrature with the load

current, the DVR does not inject active power. This scheme is highly dependent on the load

power factor and can genérate a sudden jump ofthe voltage phase angle. To avoid sudden

phase angle jump, the phase of the injected voltage should be gradually changed at the

beginning of the compensation as well as at the restoration in order to do not disturb the

operation of sensitive loads.

A DVR located between the supply and critical loads, has demonstrated excellent dynamic

capability for mitigating voltage sags or swells. Each phase can be controlled

independently, and the DVR can adjust the magnitude of the load voltage and the voltage

phase angle as well. The advantages of the DVR are its fast response and ability to

compénsate for a voltage sag and a voltage phase shift using an inverter system. However,

DVRs are relatively expensive because ofthe inverter system, the coupling transformer and

mainly by the energy storages that need to contain energy to supply active and reactive

power for the missing voltage.

•5.2 DVR Topologies

As stated above, conceptually DVRs opérate to maintain the load supply voltage at its rated

valué. During a voltage sag, the DVR injects a voltage to restore the load supply voltages.

In this mode the DVR exchanges active and reactive power with the surrounding system. If

active power is supplied to the load from the DVR, it needs a source for this energy. Since

the first DVR introduced in 1994, several topologies have been developed, along with

different control methods and with harmonic compensation purposes [5.4]-[5.5].

Most of the DVR topologies presented in the literature can be classified within two

categories:

• DVRs using stored energy devices (batteries, capacitors, flywheel, etc.) to supply

the delivered power.
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• DVRs having no significant internal energy storage

In the latter case, the energy is taken from the faulted grid supply.

5.2.1 DC Link-based DVR topologies

In [5.6] a detailed comparison of four DVR topologies, Fig. 5.2, is presented. These

topologies share one same specific characteristic: the DC-link.

According to the results reported, each DVR topology varíes in complexity, performance
and cost. From this analysis, the no energy storage DVR topology with a load-side

connected passive converter, Fig 5.3b, has been evaluated as the best, followed by the

stored energy topology with constant dc-link voltage, Fig. 5.4b. The poorest performance is

achieved by the no energy storage topology with a supply side connected passive converter,

Fig 5.3a.
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Figure 5.3. DVR topologies with no energy storage. a) Supply side connected converter, b) Load side connected shunt

converter

DVR with energy storage and variable DC-link voltage is the simplest topology and

consequently the less expensive; however, presents a relatively poor performance for severe

and long duration sags. On the other hand, DVR with energy storage and constant dc-link

voltage has an excellent performance, particularly for deep voltage sags, but with

significant drawbacks regarding complexity, and overall cost. Those reasons disqualify the
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two DVR topologies with energy storage, according to the objectives planted at the

beginning ofthis investigation.

Regarding the topologies with no energy storage, the load side connected shunt converter is

an excellent altemative with a generally high performance and relatively low cost and

complexity. The main drawback of this topology could be the negative grid effects caused

by the distorted current drawn by the dc-ac converter. The second topology with no energy

storage, the one with the supply side connected converter has the highest number of

negative attributes. The particular issues of concern are related to the dc-link performance.
The latter topologies' drawbacks could be eliminated by substituting the conventional

converter technology.
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Figure 5.4. DVR topologies with energy storage. a) Variable DC-link voltage. b)With constant DC-link voltage

5.2.2 AC-AC converter-based DVR topologies

In order to elimínate the drawbacks imposed by the use of DC-link passive elements some

researchers have focused their efforts on the topologies based on AC-AC power converters,

which results in reduced maintenance requirements and improved power density [5.7]-

[5.10].
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Similarly to the DC-link based topologies, in DVRs with AC-AC converters there are two

types of system to be considered. The first one, Fig. 5.5, has not significant energy storage.
DVR topologies without external energy devices assume that a part of the supply voltage
remains during the sag, and this residual supply can be used to genérate the energy required
to maintain full load power at rated voltage. Henee, the ability to compénsate deep voltage

sags will be limited by the input voltage. For instance, in [5.10] a VeSC-based DVR with

this topology is proposed to mitígate symmetric voltage sags. Other examples of this

technology are found in [5.11] and [5.12], where ac link-based voltage compensators with

no energy storage and with a reduced number of power switches are proposed for sags

mitigation.
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Figure 5.5. AC-AC DVR without energy storage devices.

The second type of configuration, Fig. 5.6, uses stored energy to feed the required power.

DVR topologies with energy storage are highly favored to compénsate deep level voltage

sags to protect sensitive loads within a wide power factor range. However, as stated above a

significant drawback relies on the overall system cost. In [5.8] and [5.9] a matrix converter-

based DVR using flywheel energy storage is proposed for deep-level symmetric voltage

sags. Considering that most of the voltage disturbances in distribution systems are

asymmetric [5.13], the unbalanced voltage compensation function is a desirable operational
characteristic for a practical DVR. In the same manner, since voltage sags generally only
occur a few times each year at any particular location, a DVR system will generally spend
most of its time in standby mode waiting for a sag to occur. Unfortunately, it will still
introduce extra impedance to the line, primarily due to the series transformer and this

impedance will in turn cause a voltage drop to the load and increased load voltage
harmonics when non-linear loads are present [5.14]. In principie it would be advantageous
ifthe series-connected inverter ofthe DVR could also be used to compénsate for any steady
state load voltage harmonics. This would increase the power quality benefits to the system,

which is the definition and driving forcé of custom power systems, with minimal extra
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capital cost, but of course, with some increase in inverter steady state losses. The

limitations in achieving this objective could be steady state power flow constraints and the

low modulation depths that must be used with a DVR that has a typical voltage injection

capacity, but for ac-ac converter-based DVR it is still unclear.

Grid

Supply Injection
Transformer

Input
Filter

Figure 5.6. AC-AC DVR with energy storage device

Considering the previous aspects, a DVR topology should fulfill the next requirements:

• The device must have the ability to compénsate deep-level symmetric voltage sags

and unbalanced voltage variations.

• DVR system must provide voltage harmonic compensation capabilities with

minimal effect o the sag compensation performance ofthe basic DVR.

• Minimization of cost and operational complexity.

Since in the case of no energy storage device configurations the energy is taken from the

supply system in ac form, the best option for the line interface inverter is to employ an

integrated ac-ac converter. Moreover, to accomplish asymmetric and harmonic voltage

compensation, the ac-ac matrix converter operating with the modified SVM technique

developed in chapter III, represents a very attractive solution, which leads to the proposed

schemes in this dissertation. Compared to the existing DVR topologies, the herein proposed
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topologies are developed according to the multi-functional requirements and are

particularly tailored to the series compensation applications.

5.3 Matrix Converter-based DVR: Input Termináis Connected on the

Supply Side (Topology 1)

The first DVR topology proposed, Fig 5.7, employs the matrix converter as the main

device, and is developed with the purpose of compénsate balance and unbalanced voltage

variations as well as voltage harmonic distortion on the supply system voltages. Basically

the proposed topology has the same structure as the one presented in Fig. 5.3a, the only

difference is the substitution ofthe AC-DC-AC conversión arrangement by the ac-ac matrix

converter. Since no energy storage device is used, the energy require for compensation is

taken from the incoming supply. This approach has the disadvantage of drawing more

current from the line during the fault, and henee the upstream loads will see a higher

voltage drop. However, ifthe DVR is connected to a strong grid the necessary power to the

load can be ensured by increasing the input current and injecting the missing voltage with

the converter. Even when a saving is obtained on the energy storage system, the ability to

compénsate deep-level voltage sags is limited as the main disadvantage ofmatrix converter

is the limited voltage transfer ratio.

During voltage sags, the input voltage of the matrix converter drops proportionally to

the sag, henee the máximum injected voltage become,

where:

Vinj is the injected voltages in pu and a is a voltage sag factor defined as the ratio between

the voltage during the sag and the load rated voltage.

For instance, if the supply falls to 0.5 pu at rated load, the máximum injection voltage

generated by the matrix converter will be 0.432 pu, which would be unsatisfactory. Henee,
the ability to compénsate for symmetric voltage sags will be theoretically limited up to 0.45

pu voltage drops.

5.3.1 Modeling of the matrix converter DVR system

Figure 5.1 shows the schematic of the matrix converter-based DVR system for

configuration 1. A second order LC filter is used at the input termináis ofthe converter to

improve the input currents waveform. A second order RLC filter is utilized at the output
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termináis of the matrix converter in order to filter the switching harmonic components in

the generated voltages. The combined effect ofthe non ideal AC source and the three phase
line is represented by the inductance Ls. The state equations for the ac quantities in the

system can be formulated in synchronous reference frame in the complex vector domain.

The state equations of the system can be consequently expressed using complex space

vectors.

Grid

Supply ¡s L.
Load

Converter i

Output Filter

Figure 5.7. Proposed DVR with matrix converter input termináis connected on the supply side.

The dynamic behavior ofthe overall system can be established as follows.

• Input Filter

The dynamic equations for the input filter can be derived from the circuit law and they are

given in (5.2).

di.

dt
v
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£~-lr

((vds
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R¡f ('ds
~

'dif
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'dload )~vdi)
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di.w M
dt

d-di

yh,

dt
=^'

+
'l

S

dv.
3L-.

v<V/

1

dt
-Wdi +|

~

\'qs 'qif 'qload )

('ds
~

'dload
~

'di)

\'qs
~

'qload
~~

'qi ) ■.

• Outputfilter

Equations for the output filter are given by (5.3).
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• RCLoad

Considering an RC load, dynamic equations are given by (5.4).
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• Matrix converter

To establish the input/output voltage and current relationships of a matrix converter, the

following assumptions are made [5.15]:

i) Power electronic switches are ideal

ii) Switching harmonics are neglected and only average voltage and currents over a

switching period are considered.

Output phase voltages [va, v& vc] are related to the input phase voltages [va, v_,, vc] by,
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lvA vb vcf=A/[va vb vj (5.5)

Transforming the three phase input and output voltages into their synchronous rotating

reference trames yields:

•Vo

■qo

■M
Jq (5.6)

Where Vd0 and vqo are the d and q axis output voltages ofthe matrix converter; likewise, v,/,

and v9, are the input voltages of the converter, all referred in the synchronous frame which

rotates at an angular speed of co.

For unity power factor the relationships between the input and output voltages can be

further expressed by;

v_,=(SmVinl2)cos<p0

vd0=-(.-JlmVi„l2)smtp0

(5.7)

Where V¡„ is the peak input voltage, tn is the modulation index and <p0 is the initial angle of

the output voltage. Eq. (5.7) can be further reduced to,

V.
(5.8)

V = —-

-----V
V

^
"qo

Where U¡ is the peak voltage used by a modulation scheme to determine the modulation

index m, and v¿ and vq' are the demanded output voltages.

Using the duality principie, the d and q axis input currents of the matrix converter are

related to the output currents by,

'j,
= M

dq

'do

1°.

(5.9)

Which can be further reduced to, [5.15],

93



'di
~

JJj[vdo'do
+
vqo 'qo) (5.10)

■
_ 'ql I *

.
,

«. \

'di
~

~2\Vdo'do
+

Vqo 'qo )
u,

The state-space equations for the complete matrix converter-based DVR system are:

X = f(X,U) (5.11)

where X and U are the vectors ofthe state variables and inputs respectively, and f(X,U) is

the vector ofthe non-linear functions ofX and U. They are given by:
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53.2 DVR controller

The objective ofthe DVR controller is to control the load voltages through the injection of

the right compensation voltages, ensuring a good transient response. Two control methods

may generally be used for DVRs, being either open-loop control, or closed-loop control. A

control structure fulfilling this objective is shown in Fig. 5.8. The primary control structure

is based on a combination of supply voltage feed-forward and a Pl-based load voltage feed

back. The feed-forward component provides the required transient response at the

beginning of the disturbance and reduces the overvoltage caused at system restoration.

However, it does not account for the voltage drop across the filter inductor and other

parameters such as the transformer. Therefore, a closed-loop load voltage feedback is

added, and is implemented in the d-q frame to minimize any steady state error in the

fundamental component.

Line-to-line voltages

Figure 5.8. Proposed DVR control scheme
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The DVR is synchronized to the grid supply with a phase-locked loop (PLL). A relatively

slow PLL is used to limit influence from harmonics and non-symmetrical input voltages

and also to maintain a smooth output voltage even during the phase jump presented during

the disturbance [5 .4], [5. 16]. When a disturbance occurs, the PLL reacts slowly and

consequently the phase variation is minimum compared to the pre-sag condition. In this

way the PLL allows synchronization during the compensation process.

As shown in Fig. 5.8, the voltage at PCC, Vpcc, is measured and transformed to a rotating dq

reference frame. The actual state of the supply voltages vpcc(d-q) is used for voltage

disturbance detection and for load voltage reference generation. After a disturbance is

detected, the difference between the voltage reference vref(d-q) and measured voltage VpcC(d-q)

is utilized to determine the reference DVR injection voltage. Considering a coupling

transformer with a unity voltage ratio, the DVR injected voltages would be approximately

the matrix converter output voltages.

The transformed load voltage vioad(d-q) is compared with the voltage reference vref(d^) and the

error is fed to a Pl-based voltage controller. Outputs from both main control ranches are

combined to genérate the compensation references to the DVR, Vdvr,re/(d-q), which are then

transformed into a/3 coordinates in order to implement the modified SVM technique. In the

modulation technique proposed for controlling the matrix converter, the main control

variables are |f70U-/(re/)|and lümi I corresponding to the magnitudes ofthe DVR injected

voltage reference and the supply system voltage Park vectors, respectively. The limiter

block in the controller is employed to avoid DVR false operations. The modified SVM

scheme incorporates the characteristics of the supply voltages into the computation of the

duty cycles. The only restriction that needs to be verified in the modulation scheme

proposed is established by eq. (5.12).

|yow/(**../)|<^|t7,*-/| (5.12)

5.4 Matrix Converter-based DVR: Input Termináis Connected on the

Load Side (Topology 2)

The second DVR topology proposed, Fig 5.9, is based on the dc-link configuration with a

no energy storage device and a shunt converter connected on the load side, Fig. 5.3b. As

was established in previous sections, this topology is good altemative for voltage

compensation due to its good performance and relatively low cost. However, the negative

grid effects caused by the distorted current drawn by the shunt converter could disqualify
this solution for certain applications.
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It is well known that one ofthe most attractive advantages ofmatrix converter is the quality
ofthe input current signáis. This characteristic leads to the second proposed scheme in this

dissertation. By including an integrated ac-ac converter instead of the conventional ac-dc-

ac structure, the negative grid effects associated with this topology can be reduced.

Furthermore, with this topology the voltage on the matrix converter input termináis can be

held almost constant at the load rated level by injecting sufficient voltage which increases

DVR compensation capability. So,

iFíl-ptail-lF-. + F^I (5.13)

where:

W,\ =Matrix converter input voltages

\vioad\ = Load voltages

\vs\ = System voltages

\v,n, I = Injected voltages

To exemplify the operation ofthe DVR with proposed configuration 2, it will be consider

that the supply voltage falls to 0.5 pu at rated load. In this condition the matrix converter

can generates a máximum voltage of 0.433 pu. Then, the load voltage would be 0.933 as

well as the voltage available at the matrix converter input termináis. The compensation can

be seen as an accumulative process in which as long as the matrix converter keeps injecting

voltage, the available voltage for compensation grows until the load reaches its rated valué.

In this way, this topology overcomes the matrix converter limited voltage ratio

disadvantage the only drawback is that the converter has to handled large currents.

A.4. 1 Modeling of the matrix converter DVR system

Figure 5.9 shows the schematic of the matrix converter-based DVR system for

configuration 2. A second order RLC filter is used at the input termináis ofthe converter to

improve the input currents waveform. A second order LC filter is utilized at the output

termináis of the matrix converter in order to filter the switching harmonic components in

the generated voltages. The state equations of the system in the synchronous reference

frame are expressed as follows.
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Figure 5.9. Proposed DVR with matrix converter input termináis connected on the load side.

• Input Filter

Equations for the input filter are given by (5.14).
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• Outputfilter

Equations for the output filter are given by (5.15).
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• RCLoad

Considering an RC load, dynamic equations are given by (5.16).
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Input/output voltage and current relationships of a matrix converter were established in

section 5.4.1. Taking into account eqs., (5.8) and (5.10), the state-space equations for the

complete matrix converter-based DVR system are:

x = f(X,U) (5.17)

where X and U are the vectors of the state variables and inputs respectively. f(X,U) is the

vector ofthe non-linear functions ofX and U. They are given by:
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5.4.2 DVR controller

In the proposed DVR topology 2, a controller very similar to the one analyzed in section

5.4.2, is utilized. As can be seen in Fig. 5.10, the only difference between both controllers

is in the way they obtain the magnitude \Ui„i I corresponding to the matrix converter input

voltage and which represents the voltage available for compensation. Since in this topology
the input termináis ofthe converter are connected on the load side ofthe system, the input

voltage magnitude should correspond to the load voltages. However, by utilizing the

voltage reference in the a/? coordinates, the DVR response is more stable.

This strategy can be seen as a predictive control in which the controller is always fed with

the ideal condition, |t//J= v¡oad
= 1 pu and sinusoidal. In this manner, the distortion
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presented in the actual input voltages at the moment the disturbance occurs does not affect

the compensation-voltage generation. A remarkable transient response is accomplished by

adjusting the gain on the feed-forward control branch, as well as the proportional and

integral gains ofthe PI controller.
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Line-to-line voltages

Figure 5.10. Proposed DVR configuration 2 control scheme

<5.*5 Conclusions

In this chapter two novel DVR topologies based on the matrix converter have been

proposed. At first, the conventional DVR configuration was evaluated, concluding that the

main drawbacks of this topology reside in the DC-link and the way the energy required for

it is obtained. Then, existing DVR topologies were evaluated and the ones with AC-AC

power conversión and no energy storage were selected based on the evaluation of each

topology and the objectives planned at the beginning of the research. Both proposed

topologies have been analyzed and mathematical models have been obtained, aimed to

future stability analysis.

Finally a voltage controller, based on a PI controller, was designed with the objective of get

a fast dynamic response. The controller has a combination of feed-back and feed-forward

schemes to improve the overall response ofthe system.
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The incorporation of the matrix converter technology to the voltage compensation devices

is intended to reduce the cost and size of power converters commonly used while improves

the reliability.

5.6 References

[5.1] N. A. Samra, C. Neft, A. Sundaram, and W. Malcom: "The distribution system

dynamic voltage restorer and its applications at industrial facilities with sensitive

loads" in Proc. Power Conversión Intell. Motion Power Quality, Long Beach, CA,

Sept. 1995.

[5.2] E. K. K. Sung, S. S. Choi, and D. M. Vilathgamuwa: "Analysis of series

compensation and DC-Link voltage controls of a transformerless selfcharging

dynamic voltage restorer", IEEE Trans. on Power Delivery, vol. 19, pp. 1511-1518,

2004.

[5.3] T. Jimichi, H. Fujita, and H. Akagi: "Design and experimentation of a dynamic

voltage restorer capable of significantly reducing an energy-storage element", in

Conf. Record IndustryApplications Conference, Mth IASAnnualMeeting. 2005.

[5.4] J. G. Nielsen, F. Blaabjerg, and N. Mohán, "Control strategies for dynamic voltage

restorer compensating voltage sags with phase jump", in Proc. IEEE/APEC'01

Conference, vol. 2, 2001, pp. 1267-1273.

[5.5] M. J. Newman, D. G. Holmes, J. G. Nielsen and Frede Blaabjerg, "A dynamic

voltage restorer (DVR) with selective harmonic compensation at médium voltage

level," in Conference Record IEEE-IAS Annual Meeting, vol. 2, 2003, pp. 1228-

1235.

[5.6] J. G. Nielsen and F. Blaabjerg: "A detailed comparison of system topologies for

dynamic voltage restorers", IEEE Trans. on IndustryApplic, vol. 41, pp.1272-1280,

Sep/Oct2005.

[5.7] J. Pérez, V. Cárdenas, L. Moran, C. Nuñez: "Single-phase ac-ac converter operating

as a dynamic voltage restorer (DVR)," 32nd IEEE Industrial Electronics Annual

Conference, IECON 2006, Nov. 2006, pp. 1938-1943.

[5.8] B. Wang and G. Venkataramanan: "Dynamic voltage restorer utilizing a matrix

converter and flywheel energy storage," IEEE Transactions on Industry

Applications, Jan-Feb 2009, vol. 45, pp. 222-231.

[5.9] P. Gamboa, J. F. Silva, S. Ferreira Pinto and E. Margato: "Predictive óptima matrix

converter and flywheel energy storage," IEEE 35th Annual Industrial Electronics

Conference, IECON'09, pp. 759-764, Porto, Portugal, Nov. 2009.

[5.10] F Mancilla-David and G. Venkataramanan, "A pulse width modulated AC link

Unified Power Flow Controller," in Proceeding of the 2005 IEEE Power

Engineering Society GeneraMeeting, PES-GM, San Francisco, California, 2005.

102



[5.11] Julio Cesar Rosas Caro, "Simple Topologies for power conditioners and FACTS

controllers," Tesis de Doctorado en Ciencias, CINVESTA V Unidad Guadalajara,

2009.

[5.12] Dong-Myung Lee, "A Voltage Sag Supporter Utilizing a PWM-Switched

Autotransformer," Ph. D. Thesis, School of Electrical & Computer Engineering

Georgia Institute ofTechnology, Atlanta GA, April 2004.

[5.13] D. D. Solin, T. E. Grebe, M. F. Granaghan, and A. Sundarm: "Statistical analysis of

voltage DIP's and interruption-Final results from the EPRI distribution system

power quality monitoring survey", in Proc. CIRED'99, ch. 2, 1999.

[5.14] J. G. Nielsen: "Design and control of a dynamic voltage restorer," PhD.

dissertation, Inst. Energy Technol, Aalborg University, Aalborg, Denmark, 2002.

[5.15] Jiabin Wang and M. Bouazdia: "Influence of filter parameters/topologies on

stability ofmatrix converter-fed permanent magnet brushless motor drive systems,"
IEEE International Electric Machines andDrives Conference, IEMDC'09, pp. 964-

970, Miami, Florida, May 2009.

[5.16] J. G. Nielsen, M. Newman, H. Nielsen, and Frede Blaabjerg: "Control and testing of

a dynamic voltage restorer at médium voltage level", IEEE Trans. On Power

Electron., vol. 19, pp. 806-812, May 2004.

103



104



CHAPTER VI

Simulation and

Experimental Results

This chapter presents implementation details of the matrix converter laboratory prototype

analyzed in previous chapters. This prototype will be used to validate the performance of

the two DVR topologies proposed.

In order to establish the capabilities of the DVR, simulation results through detailed

dynamic models implemented in PSCAD software, are presented. Experimental results are

also provided for both DVR topologies.

6.1 Matrix Converter Prototype

As already presented in previous chapters, the matrix converter needs certain elements in

order to run properly. A low pass filter at the input termináis is used to reduce the high

frequency ripple from the input current. A clamp circuit, which consists of a capacitor and

two B6 diode bridges in a back-to-back configuration connected to the input and output

lines, to protect the converter against over-voltages in both sides.

For a proper analysis of the matrix converter prototype performance, aspects related to

unavailability ofvarious desirable components have to be taken into account.

6.1.1 Matrix of bidirectional switches

An important drawback of building a matrix converter prototype is the lack of power

semiconductor bi-directional switches. When such devices are developed in a reduced

number for research purpose, these are more expensive than regular devices at equivalent

ratings, which mean that is very expensive to start building custom designed devices for a

wide power range. Therefore, the construction of a low voltage prototype was decide for
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this research, in order to obtained representative results just to validate the DVR

configurations proposed in the dissertation.

For the bidirectional switches a common emitter configuration was adopted, as indicated in

Fig 6.1. Due to the unavailability ofa power module that integrates the set of bidirectional

switches, the matrix converter power stage was built with analog devices. For building the

bidirectional switches the 12N60A4D IGBT was used, along with the integrated driver and

opto-coupler HCPL-3120. The common-emitter requires nine isolated DC sources for

supply the power cells, in this case were implemented with AM1S-0515SZ DC-DC

converters.

Matrix of Bi-directional

Switches

-ó ^ -t

i
i —t

Ji
i

a

51 i i

b

$ ¥
i

i

H

>:
i

c

—r 2 i H<■ i <i i

<> i H?' i H?' i

A B c

Figure 6.1. Matrix converter structure with IGBT's in common-emitter configuration

The PCB layout, which includes the nine bi-directional switches and the nine isolated DC

sources, is displayed in Fig. 6.2. It is clear to see from Fig. 6.2, that some ofthe connection

paths between IGBTs from the same bidirectional cell are quite long, resulting in

significant stray inductances which causes internal over-voltages and limit the power

capacity of the overaU converter. Fig. 6.3 presents the matrix converter physical

arrangement.
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9 0 0

Figure 6.2. Matrix converter PCB layout

Figure 6.3. Matrix converter Prototype
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6.1.2 The input filter

Considering that the matrix converter requires an LC filter to improve the quality of the

input current, it is necessary to analyze the possible topologies for a low pass LC filter. In

[6.1] a comparison ofthe LC filters configurations exhibit in Fig. 6.4, is presented. From

the analysis exposed in [6.1], the one-stage LC filter represents the best commitment

between number of elements required and the attenuation degree performed. For the matrix

converter prototype an input filter with L¡f = 2.2mH and a C¡f = 10 \iF, is utilized. It is

important to comment that the election of the element valúes is strongly influenced by the

components availability.
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(c)

c c.

(d)

Figure 6.4. LC Filter configurations. a) One-stage LC filter, b) Multi-stage LC filter, c) ji LC filter, and d) One-stage LC

filter with notch addition.

Thus, the cut-off frequency ofthe filter can be obtained by,

/.

2n4LifCif 27tsj(2.2xl0-3)(10xl0-6)
= 1.073kHz (6.1)

With the one-stage LC filter the gain at resonance frequency is high enough to deteriórate

the quality of the current waveform. With the purpose of reduce this effect is necessary to

implement a damping circuit as the one represented in Fig. 6.5. This topology also

improves the system stability [6.2], therefore is the one selected for the matrix converter

prototype.
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Figure 6.S. L-C filter with the addition ofa damping resistor

The transfer function ofthe input filter is given by,

i+-a-s

H(s) = -

%

I+-fs + ClfL¡fs2
(6.2)

The cut-off frequency and the damping coefficient are obtained by (6.1) and (6.3)

respectively.

(6.3)
2/VV<-V

Figure 6.6 illustrates the LC filter's frequency response with and without damping

resistance. The addition ofthe damping resistance to the filter reduces considerably the gain

at the resonance frequency; even though the attenuation degree is reduced as well. A 50Q

resistance was used for simulating tests while the 13.3.Q was employed in experimental

implementation.

Input current waveforms with different input filter conditions are presented in Fig. 6.7. As

Figure 6.7 illustrates, using the LC filter without damping resistor reduces the harmonic

content around switching frequency but introduces some harmonics of low order, mainly

the 18* and 19* harmonic components. On the other hand, with the addition of the

damping resistor the low order harmonics are eliminated but some harmonics around

switching frequency still remains, although with considerably reduced magnitudes. Last

filter configuration was considered in both DVR topologies.
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Figure 6.7. Harmonic analysis ofmatrix converter phase a input current made with PSCAD software, a) Without filter, b)
With One-stage LC filter, c) With One-stage LC filter with damping resistor (R=13.3íl).
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€.1.3 The control system

Aimed to provide high performance results, the control strategy ofthe matrix converter was

implemented in the Texas Instruments DSP board eZdsp-TMS320F2812, programmed in C

language through the Code Composer Studio development environment (simulator,

compiler and programmer).

Figure 6.8 shows the cyclic task operation ofthe control system. The core ofthe system is

the DSP which produces all signáis necessary for the control, including the signáis required
in the commutation logic for the four-step commutation strategy. Since the selected IGBTs

have a turn on time of 17 ns and a turn off time of 96 ns, the signáis exhibit in Fig. 6.9 are

generated in order to achieve the proper four-step commutation operation. Timer T2 is

configured to run in the automatic reload mode at a 6 kHz rate. The order in which the

signáis to control the matrix converter switches are generated is as follows:

• Timer T2 overflow triggers the ADC every 166 ps. The ADC performs nine

conversions, three input voltage signáis, three output voltage signáis and the three

signáis of the output current signs. After the signáis are read and stored in ADC

registers, the ADC triggers a user-defined interruption.
• The code inside the interruption performs SVM control. First, matrix converter

duty cycles are computed and loaded in the corresponding variables. Then, the new

switching states are calculated using a look-up table that stores the 21 permitted
commutation states.

• Timer Tl is configured in period match mode to count for duty cycle duration.

Every time that Tl matches the valué stored in the corresponding register for the

period, an interruption is triggered. The code in that interruption reloads the new

switching state and new duty cycle.

The procedure explained above repeats every switching period producing the switching

pattern for the MDSVM strategy revised in chapter IV. The task of the DSP which

performs the matrix converter control is shown in Fig. 6.10, and these are:

• Starts acquisitions ofthe three input voltages, the three output voltages and the three

output current signs.
• Performs output voltage reference vector calculation

• Performs input current reference vector calculation

• Performs reference vectors tracking
• Calculates the modulation indexes for the modified SVM strategy proposed
• Calculates the commutation sequence

• Performs four-step commutation strategy.
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Figure 6.8. Control system task management ofthe matrix converter prototype

Figure 6.9. Signáis generated by the DSP on the four step commutation strategy. (a) Commutation from phase a to phase
b. b) Commutation from phase b to phase a. (lV/div, lOOns/div).

Among the two DVR configurations proposed, the only difference regarding the control

scheme of Fig. 6.10 is found on the generation of vector Umi . For topology 1, vector uM is

generated from the input voltages whereas in topology 2 the same vector is generated from

the reference voltage, as indicated by dotted lines.
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Figure. 6.10. DSP control diagram for the matrix converter prototype

6.2 DVR Topology 1 Results

The performance of the whole DVR system is verified by detailed numerical simulation

using PSCAD software and through experimental tests. The system key parameters for the

simulations are given in Table 6.1. The DVR topology 1 matrix converter-based, Fig. 6.1 1,

is used for asymmetric voltage sags and swells compensation, as well as a voltage

harmonics filtering. For improving injected voltage's quality, a RLC output filter is

utilized.

6.2.1 Numerical verification

In the first study case an unbalanced disturbance is applied in the supply system, consisting

of a voltage sag of 40% over input phase b. The Parks' vectors Um and u°<"' on the

complex plañe are displayed in Fig. 6.12. In this case, voltage imbalance is exhibited on

both set of termináis ín the matrix converter. Nonetheless, as long as the vector Uoun

remains inside the vector Üm loci, the control algorithm is able to synthesize the

compensation voltages. Figs. 6.13 and 6.14 depict selected voltage and current waveforms

during voltage sag period (from 0.4 s until 0.5 s).
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FTgmrefcll. Proposed DVR topology 1 system ardütecture

Table 6.1 System Parameters

Parameter Valué

Qf: Input filter capacitor 10 uF

Lñ*: Input filter inductor 2.1 mH

Rtf: Input filter resistor 50 Í2

C_f. Output filter capacitor 4.7 uF

W- Output filter inductor 25 mH

Rof: Output fiher resistor íoo n

Lioa,-: Load Inductor 213 mH

Rioad- Load Resistor 120 a
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Figure 6.12. a). Uinl and Uoutl in the complex space. b) Vectors magnitude

The control algorithm has accomplished to reduce the imbalanced percent from 15.38% at

the input voltages to 0.42%, valué which fulfils the NEMA criterion about permitted
imbalance percent of 1%. Besides, each phase output voltage presents an average THD less

than 3% during the fault which falls inside the guidelines established in the IEEE-519 for

general power systems ofmédium voltage.
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Figure 6.13. DVR response under unbalanced voltage variation. From top to bottom: Supply voltages, injected voltages

and load voltages

115



In Fig. 6.14, the shown output-currents do not exhibit any variation during the disturbance.

The RL load acts as a low-pass filter reducing almost all the harmonic components, as can

be seen in the figure. On the other hand, the matrix converter generates a set of unbalanced

voltages to achieve the compensation, which provokes a distortion in the currents drawn by
the converter and consequently the system currents are distorted as well, Fig. 6.14. The

output voltages and system currents' THD during the fault, are presented in Fig. 6.15.

Load Currents

0.5

< 0

-0.5

0.5;

< 0 •

-0.5-

0.4

MC phase a input current

0.5

VWWSA/^^

Phase a system current

Figure 6.14. DVR response under unbalanced voltage variation. From top to bottom: Load currents, matrix converter

phase a input current and supply system current phase a.
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t(sj

(a)

0.42 0.44 0.46 0.48

tW

(b)

Figure 6.15. a) Load voltages' THD. b) System supply currents' THD.

Once evidenced the capability of the proposed DVR topology 1 to opérate satisfactorily
before unbalanced conditions, its behavior under distorted input voltages will be evaluated..
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In such case, a 5* harmonic is added into phases a and c, an a 7* harmonic component into

phase b. The magnitudes ofthe harmonics added are 0.2 times the fundamental component
in each phase. Output filter valúes used in this study case were: Rof

=

70£1, L0f
= 5 mH and

Co/= 5 pF. Voltage compensator response is illustrated in Figs. 6.16-6.18.
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Figure 6.16. a). Um and U outl in the complex space. b) Vectors magnitude
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Figure 6.17. DVR response under voltage with harmonic distortion. From top to bottom: Supply system voltages, injected

voltages and load voltages.
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Again, the matrix converter does not have difficulties to synthesize the required voltages

for compensation, Fig. 6.16. In the input voltages the low order harmonics are appreciated,
but they no longer appear on the output voltages, Fig. 6.17. The THD=20% on every phase

input voltage is reduced to approximately 5% on the output voltages. The harmonic content

in the output signáis is due to the saturation in the output filter's inductor model and the

low modulation indexes.

In Fig. 6.18 it is noteworthy that the output currents' harmonic content has been filtered

naturally by the RL load. By comparing input and output voltages' harmonic spectrum and

THD, Fig. 6.19, it is verified that even with considerable distorted conditions in the supply

voltages, the compensator operation is remarkable.

Load Currents

& 0

0.4 0.5

MC phase a input current

< 0*\^K^^^^
0.5

Phase a system current

Figure 6.18. DVR response under voltage with harmonic distortion. From top to bottom: Load currents, matrix converter

phase a input current and supply system phase a current.
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6.2.2 Experimental results

The major parameters utilized for experimental tests are listed in Table 6.2. Some

parameters' valúes are different from the ideal ones shown in Table 6.1, and this is due to

unavailability ofall components at that time in the laboratory.

Table 6.2. System Parameters

Parameter Valué

C¡f: Input filter capacitor 10 pF

L,r: Input filter inductor 2.1 mH

Cof-. Output filter capacitor 4.7 uF

L0f: Output filter inductor 2.2 mH

Rof: Output filter resistor 171 Í2

Lioad: Load Inductor 213 mH

Rioad". Load Resistor 120 n
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The voltage sag correction and the harmonic suppression performance of the system are

verified by means of several experimental tests. The voltages and currents comparison

presented in Figs 6.20, 6.21 and 6.22 exhibits the performance ofthe compensator for an

unbalanced case, where a 37.5% voltage sag was applied on phase a. The load voltages

magnitudes remain almost undisturbed during the time of analysis which means the control

strategy is able to reject the disturbance. The evident distortion in the load voltages during
both conditions is partly due to the saturation of the inductors used in both filters

(input/output), because low frequency inductors were used. A second aspect to be

considered in order to explain the distortion is the modulation index. Before the sag takes

place, a very low modulation index was used; that is why the distortion is more noticeable

during pre-sag condition. Anyway, as in the simulated waveforms exposed, the load

voltages are fully maintained, which demónstrate the effectiveness ofthe DVR. Likewise,

during the fault the load currents remain almost invariant.

Figure 6.20. Supply voltages during the unbalanced voltage sag test, a) Pre-sag condition. b) Sag condition.

(20V/div,5ms/div)

(a) --y-
Figure 6.21. Load voltages during the unbalanced voltage sag test, a) Pre-sag condition. b) Sag condition. (50V/div,

1Oms/div)
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(a) (b)

Figure 6.22. Load currents during the unbalanced voltage sag test, a) Pre-sag condition. b) Sag condition.

(0.5iVdiv,10ms/div)

The latter study case involves harmonic distortion in the supply voltages, provoked by a

nonlinear load supplied by the same feeder. The nonlinear load was a diode bridge rectifier

with a resistive load. As it can be seen on Fig. 6.25, the 5* and 7* harmonic components

are reduced by a factor of 20 and 15 dB respectively, after compensating action was

performed. In this way the total harmonic distortion (THD) is also reduced since these

harmonics .are the most dominant in the system voltage spectrum. In Figs. 623, 6.24 and

6.26 voltages and currents with and without compensation are displayed. For the no-

compensation condition the matrix converter was operated with a zero reference voltage.

Note that in the load voltage after compensation was performed, some high order harmonic

components still exist which can be generated by the saturation characteristics of the

inductor in the output filter. Nevertheless, the effects of these harmonics are minimal for

the load as it is shown in Fig. 6.26.

Figure 6.23. Supply voltages during the distorted voltage test, a) No-compensation condition. b) Compensation condition.

(20V/div, 5ms/div)
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(a)
v

(b)

Figure 6.24. Load voltages during the distorted voltage test, a) No-compensation condition (50V/div, lOms/div). b)

Compensation condition (50V/div, 5ms/div).

(a) (b)

Figure 6.25. Load voltages FFT during the distorted voltage test, a) No-compensation condition. b) Compensation
condition. (lOdB/div, 250Hz/div)

(a) (b)

Figure 6.26. Load currents during the distorted voltage test, a) No-compensation condition. b) Compensation condition.

(0.5A/div, lOms/div)
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6.3 DVR Topology 2 Results

Likewise, as with the topology 1 the performance ofthe whole DVR system is verified by
detailed numerical simulation using PSCAD software and some experimental tests. The

system key parameters for simulation are given in Table 6.2. The input filter selected for

this topology is a RLC filter as the one illustrated in Fig. 6.5, with a cut-off frequency of

318 Hz and a 20£2 damping resistor. The matrix converter-based DVR with the proposed

topology 2, Fig. 6.27, is utilized for balanced and unbalanced voltage sags and swells

compensation.

Table 6.2 System 2 Parameters

Parameter Valué

C¡f Input Filter Capacitor 50 uF

R¡f-: Input Filter Resistance I Ü

C0f: Output Filter Capacitor 6^

L0f: Output Filter Inductor 1.2 mH

Lioad* Load Inductor 33.6 mH

Rload 20 íi

6.3.1 Numerical verification

For the case of balanced sag, a 50% three-phase voltage sag in the supply voltage is

simulated, lasting for 0.08s. Voltage and current waveforms during the voltage sag period
are plotted in the abe reference frame, Figs. 6.28 and 6.29. It can be observed that the DVR
is able to maintain the voltage load almost undisturbed during the sag period, by injecting
the appropriate compensation. Load voltages' THD are about 4% during the disturbance, as

Fig. 6.30 illustrates.

The fast response of the control is illustrated through the load current plot. The currents

flowing from the supply into the matrix converter increase during the sag, but both currents

shows not considerable harmonic distortion as expected. The system currents' distortion

also depends in the currents magnitude demanded by the load.

In the second test, the DVR performance is evaluated under an unbalanced voltage

variation. For this test, voltage sags of 20% and 40% in phase b and c, respectively, are

considered. Furthermore, a 17% voltage swell is applied on phase a. The DVR response for

unbalanced test is illustrated in Figs. 6.31 and 6.32.
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Figure 6.27. Proposed DVR topology 2 system architecture
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Figure 6.28. DVR response for balanced voltage sag compensation. From top to bottom: Supply voltages, Injected

voltages and Load voltages.
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Figure 6.29. DVR response for balanced voltage sag compensation. From top to bottom: Load currents, Matrix converter

phase a input current and Phase a supply system current.
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Figure 6.30. a) Load voltages' THD. b) System currents' THD
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Supplied Voltages

Figure 6.31. DVR response for unbalanced voltage disturbance. From top to bottom: Supply voltages, Injected voltages
and Load voltages

Load Currents

Figure 6.32. DVR response for unbalanced voltage disturbance. From top to bottom: Load currents, Matrix converter

phase a input current and Phase a supply system current.

The DVR is able to reduce the percent of imbalance from 22.17%, to 1.1% approximately,
which demónstrate the effectiveness of this proposition. The supplied system currents show

a higher harmonic content, Fig. 6.33, compared to the previous study case because of the

harmonics generated in the currents drawn by the matrix converter. However, this condition

does not affect the overall performance. The load voltages maintained and average THD

less than 5%.
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Figure 6.33. a) Load Voltages' THD. b) System currents' THD

6.3.2 Experimental results

As was established in chapter 5, present DVR topology is more suited to compénsate deep-
level voltage sags than topology 1. An experimental test was carried out to verify the

previous statement; henee, a symmetric voltage sag of 46 % is applied at the system supply

voltages. In Fig. 6.34, a comparison between supply and load voltages, in one phase, is

illustrated for pre-sag and sag conditions.

Results are similar to the simulation's results in which despite of the disturbance the load

current amplitudes do not suffer evident variations, Fig. 6.35.

(a) (b)

Figure 6.34. a) Pre-sag condition. b) Sag condition. Ch 1: Load current (0.5 ,Vdiv), Ch 2: Load voltage (20V/div), Ch 3:

Supply voltage (20V/div, 5ms/div).
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^ v^p
Figure 6.35. a) Pre-sag condition (0.5 jVdiv, 5ms/div). b)Sag condition. Load currents (0.5 A/div, lOms/div).

6.4 Conclusions

To demónstrate the validity of the proposed topologies, the matrix converter based-DVR

has been implemented. The experiments have been performed under low voltage

conditions. To precisely control the output voltage, the proposed MDSVM along with the

software routines ofthe controller were programmed in the board eZdsp-TMS320F2812.

Details on the prototype design and the complete control scheme were also explained.

In order to validate the proposed topologies several cases were analyzed. The results

obtained showed that the proposed scheme controls the output voltage fast and accurately

for the different disturbances conditions. Experimental results were also provided, verifying

this approach.
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CHAPTEEVil

Conclusions and Future

Work

7.1 Conclusions

This dissertation proposed two novel DVR topologies based on the AC-AC matrix

converter to cope with power quality issues presented in distribution systems. The

developing of the proposed Modified Direct Space Vector Modulation (MDSVM) allows

the incorporation ofmatrix converter technology into the conventional DVR configuration

which results in a cost-effective and multifunctional solution. Likewise, the use ofAC-AC

energy conversión technology instead of the traditional DC-AC allows eliminating all the

drawbacks associated to the DC-link and increases the device's reliability.

A literature survey regarding power quality issues and a discussion ofthe modern solution

commonly employed in industrial applications were presented. Based on the analyzed

information the objectives ofthe present research were established.

According to the specialized literature the traditional DVR is the best option in applications

concerning voltage compensation. However, AC-AC energy conversión technology has

emerged as a novel solution. Advantages such as bidirectional power flow, high power

density, high quality input currents and the lack of energy storage devices, etc., ratifies the

actual trend.

On the other hand, among the different AC-AC converters, the matrix converter has been

selected as the device with better features. However, despite all the advantages offered by

this converter, some disadvantages have delayed its industrial implementation. In order to

accelerate the maturation process of this technology and to expand its application field, the

MDSVM was developed. The proposed strategy is based on the control of the reference

vectors in the complex, allowing the matrix converter to genérate totally controllable
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voltages, characteristic that leads to the novel DVR topologies proposed. The main features

ofthe MDSVM:

• Generation ofbalanced output voltages despite the condition ofthe input voltages
• Generation of input currents with an acceptable harmonic content.

• Amplitude and frequency control in the output voltages
• Input power factor controllable

• Fast and accurate generation ofthe reference voltages in spite of its condition.

In order to verify the performance of the matrix converter with the MDSVM, several

simulations were carried out considering different conditions. The results obtained indicate

that the matrix converter is able to synthesize a great variety of reference voltages departing

from distorted supply voltages, as long as the operative restrictions of the converter are

fulfilled. Taking into account these characteristics, a voltage compensator based on the

matrix converter was designed.

The voltage regulation is performed through a controller build by the combination of feed

back and feed-forward control branches. The feed-back control loop is used to achieve zero

steady state error, while the feed-forward branch has been included to accelerate the

dynamic response and reduce the overvoltage at restoration.

Finally, to validate the functionality of the DVR topologies proposed, a laboratory-scale

prototype was implemented. Several experimental tests elucídate the capabilities of the

proposed topologies. Topology 1 is able to compénsate symmetric voltage drops up to 43

%. Besides it is able to compénsate voltage imbalanced and mitígate the presence of

voltage harmonics. Topology 2, is suitable for deep-level voltage sags, theoretically it can

compénsate sags up to 80%, but experimentally it has been proven that after sags of 60%

the system becomes unstable.

In conclusión, the DVR topologies operates satisfactorily before each analyzed condition,

that is why it is proposed as an cost-effective solution to mitígate the power quality

problems presented in power distribution systems.

7.2 Contributions

The main contributions of current research work are summarized as follows:

• The Mathematical development of the MDSVM strategy to control the matrix

converter operation. The proposed technique allows the converter to genérate an
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totally controllable output voltage despite the adverse existing conditions in the

input voltages.

• The design of two novel multi-functional DVR topologies, proposed to improve the

power quality in distribution systems. The matrix converter based DVR is aimed to

compénsate asymmetric and asymmetric voltage disturbances as well as filter

voltage harmonics components and power factor correction.

• Development of a detailed model of the DVR topologies in order to evalúate their

dynamic behavior through simulations in time-domain performed in PSCAD

software.

• Development of mathematical models of the DVR topologies intended for future

stability and power flow control analysis.

• Design and implementation ofa laboratory-scale prototype ofthe matrix converter-
based DVR.

• Implementation of the MDSVM strategy, voltage controller software routines and

four-step commutation strategy in the DSP based board eZdsp-TMS320F2812.

7.3 Recommendations for future work

Regarding the research developed so far, the following topics are proposed as possible
future research:

• Confirm the validity ofthe proposed topologies under higher power ratings

• Analyze the stability ofthe electric systems when the matrix converter based DVR

is incorporated.

• Investígate the performance of the matrix converter in power flow control

applications.

• Design and implementation of a robust and adaptive control algorithm, it can be

based in neural networks or fuzzy logic.

• Analyze the performance ofthe proposed DVR topologies when feeding non-linear

loads.

131



4 Activities developed during the Ph. D.

• Doctoral Fellowship: At the Institute of Energy Technology, Aalborg University,

Denmark, From January 2008 to October 2008.

• Conference: Modern Electric Power Systems International Symposium,

MEPS'2010, held in Wroclaw, Poland.

5 List of Publications

• Juan M. Ramírez, José M. Lozano y Julio Rosas C, "Sags, Swells and Harmonic

Solid State Compensator", Proceedings on IEEE Industrial Electronics Conference

2006, IECON'06, París, France, Nov. 2006.

• Juan M. Ramírez and José M. Lozano, "Matrix converter performance under

unbalanced input voltages", 40th North American Power Symposium, NAPS '08

Calgary, Canadá, Sep. 2008.

• José M. Lozano, Juan M. Ramírez, "AC-AC converter for unbalanced supply," 19*

International Symposium on Power Electronics, Electrical Drives, Automation and

Motion, SPEEDAM '08, Ischia, Italy. July 2008.

• José M. Lozano, Juan M. Ramírez and Rosa Elvira C. "A novel dynamic voltage
restorer based on matrix converters," Modern Electric Power Systems International

Symposium, MEPS'2010, Wroclaw, Poland Sep. 201 0.

• Juan M. Ramírez, José M. Lozano, "Voltage compensator based on ac-ac

converters," submitted for publication to Electric Power Research, Ms. Ref. No.

EPSR-D07-00819R1.

• Antonio Valderrabano, Juan M. Ramírez and José M. Lozano, "Implementation ofa

84-pulse voltage source converter for special applications," submitted for

publication to Electric Power Components and Systems, Manuscript ID. UEMP-

2010-0705.

132



APPENDIX A

Commutation Vectors

In this appendix all the possible states for the matrix converter switches represented in the

Park's complex space are exhibited, for a set of three phase balanced voltages.

A.i Input-voltage vectors in the complex space

Park's vector is applied to systems with three magnitudes and two degrees of freedom.

Considering a system with a set of three-phase balanced voltages defined as,

vfl(0

"„(')

vc(0

yinsm(cot)

Vlnsmi cal—j-\

F/Bs¡nLí+-yj

(A.1)

The line-to-line input-voltages will be,

V(')

"ca(')_X

VJf^sin ©/ +—

ViKf„sinL/-|*J
43V,nsm\0t +^}

(A.2)
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The Park's vectors ofthe input-voltages are defined by:

Ui„p(t)--

Ulnl(t) =
-

"a{¡) + "b(t)e
3

+"A')e

.4 A

"ab{<)+"bc(')e
3

+"ca(¡)*

(A.3)

(A.4)

which both vectors rotate at a speed of cot.

A.1 Switching States

The matrix converter consists of nine bidirectional switches arranged in three groups, each

being associated with an output line. This bi-directional switches arrangement connects any

of the input lines to any of the output lines, Fig A.1. A matrix with elements Hij,

representing the state of each bidirectional switch (on=l, off=0) leads to a 29 possible

combinations. Nonetheless, for ensure a matrix converter proper operation just one and

only one power switch in each column must be active at any instant. This restriction

reduces the permitted configuration ofthe conversión matrix from 512 to 27 switching

states, as indicated in Table A.1.

"ca(0

vab(t)

"bc(0

Neutral point

¡a(0
M„ Mu

1 , X

b "a(0 hd)
—-

,

lc "b(0

:

ic(t)
(

, x

\

vc(t)

Q O O
M,

M, M,

o
—

0 O
M,

M, M,

o
—
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Output line-to-line
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Figure A.1. Conversión matrix basic structure
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A.2.1 Switching states analysis

For any switching state the output-voltage and the input-current complex vectors are

defined as:

Uoutl(t) = v^(')+vbc(')«
3

+"cA(t)'3

i t'HU0+M0'/2*+4«^

(A.5)

(A.6)

where the modulus and argument depend on the active state. Because of that, is necessary

to carry out an individual analysis for each state represented in Table A.1. As an example

the state S2, Fig A.2, is analyzed as follows. The input/output voltages relationships can be

stated by:

"AB(t) = 0

"Bc(') = "ab(t)

"CA«) = -"ab(t)

(A.7)

The Park's vector ofthe output-voltage is,

\Uou,(t)\ = j3-vIab(t) ZUout(t) = ^ (A.8)

Eq. (A.8) defines a fixed position vector with a time-varying modulus. The input/output

currents relationships are,

¡a(0 = ¡A(0 + ÍB(t) = -Íc(t)

¡b(') = ¡c(0

ic(t) = 0

(A.9)

The corresponding Park's vector is,

|/,*-(<)|=-yj*/c(') ¿luíQ-
Sa

(A.10)

representing a fixed vector too.

135



Table A.1 Permitted switching states in a three phase to three phase matrix converter

STATE H„ fín B¡} Hi, fín H.3 fís, H.I2 Hp
Sl 1 1 0 0 0 0 0 0

S2 1 0 0 0 1 0 0 0

S3 1 0 0 0 0 0 0 1

S4 0 1 0 1 0 0 0 0

S5 0 0 0 1 1 0 0 0

S6 0 0 0 1 0 0 0 1

S7 0 1 0 0 0 0 1 0

S8 0 0 0 0 1 0 1 0

S9 0 0 0 0 0 0 1 1

SIO 0 1 1 0 0 0 0 0

Sil 0 1 0 0 1 0 0 0

S12 0 1 0 0 0 0 0 1

S13 0 0 1 1 0 0 0 0

S14 0 0 0 1 1 0 0 0

S15 0 0 0 1 0 0 0 1

S16 0 0 1 0 0 0 1 0

S17 0 0 0 0 1 0 1 0

S18 0 0 0 0 0 0 1 1

S19 0 1 1 0 0 0 0 0

S20 0 1 0 0 0 1 0 0

S21 0 1 0 0 0 0 0 1

S22 0 0 1 0 1 0 0 0

S23 0 0 0 0 I 1 0 0

S24 0 0 0 0 1 0 0 1

S25 0 0 1 0 0 0 1 0

S26 0 0 0 0 0 1 1 0

S27 0 0 0 0 0 0 1 1
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FoUowing a similar procedure it is possible to determine the output-voltage and input

current complex vectors for all the permitted switching states. From the states analysis it

can be concluded that among the 27 switching configurations:

- Six switching states provide a direct connection of each output line to a different

input line. producing a rotating voltage vector with amplitude and frequency similar

to the input voltage system and direction dependant on the sequence: synchronous
or inverse,

- Eighteen switching states produce .%ctive vectors, of variable amplitude, depending
on the selected line-to-line voltage, but ofstationary position.
The last three switching states produce a zero vector, by connecting all the output
lines to the same input Une.

Tables AJ-A.4 summarize the results obtained. FigsA3-A.4 depkt a set ofvectors at time

t
= 0.

—
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— lom (/) Inverse Rotating Vectors

•••

Ioi*f(f) Direct Rotating Vectors

• Zero Vectors (Sl, S14, S27)

*► a

Figure A.4 Vectors Im(t) and Iout(t) in the complex space

Table A.2. Parks' vector arguments and modulus of line-to-line output voltage and input current for each

commutation state (Zero Vectors)

ZERO VECTORS

i STATE V out lm ¿ln

Sl (aaa) 0 0 0 0

S14 (bbb) 0 0 0 o !

S27 (ccc¿_ 0 0 0 o 1

Table A.3. Parks' vector arguments and modulus of line-to-line output voltage and input current for each

commutation state (Rotating Vectors)

ROTATING VECTORS

STATE Uoutl • Iout ¿lat»

S6 (abe) */5/. v
/2 '" cot~y3 3A<° cot~y2

S16 (bea)

34lÁ^
COt-Jt

3Áh "'-7V¿
/O

S20 (cab)

^ at+y 3/2¡o at-11*/.
/o

S8 (acb)
343A-^ ¿y-,», #'. y- cot

S12 (bac)
*%■** -2y3-tvt 3Á'- ?nÁ-"t

/o

S22 (cba)
iVJA»

-col

Vr'o ""A-cot
/o
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Table A.4. Parks' vector arguments and modulus of line-to-line output voltage and input current for each

commutation state (Fixed Vectors)

FIXED VECTORS

STATE
Uoul ¿Uou, lm ¿lin

S2 (aab) Vivü„(0 tt/
72 4~3ic(t) 5V

S3 (aac) J3"ca(') -Jt/
72 VH(') _Sa/

/6

S4 (aba) VJ-V..W -Ve fi-iB(t) Sn/
76

S5 (abb) SvahX[t) jt/
7*5 yÍ3¡AC) _a/

76

S7 (acá) •f3vca(t) Sn/
/ó J~3iñ(t) Sn/
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/<5

S -iA(t) a/
/6
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/6 •f3iA{t) Sa/

/ó

Sil (bab) ^■v¿W Sn/
76 J~3iH't) -a/

76
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72 VJ/C(0 -v
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/l
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S18 (bcc) Vj-v^o 'A SiA(t) a/
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76 >/H(0 -5V
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76 J3M0 V

S23 (cbb) Vi*vAcw Sn/
/6 •f3iA(t) -V

S24 (ebe) VI*vAc(o Sn/
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