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Resumen

El monitoreo de área amplia de procesos dinámicos complejos es un problema de

gran importancia para el análisis y el control del comportamiento dinámico de los

sistemas de potencia. Un monitoreo confiable de la dinámica espacio-temporal

mediante unidades de medición fasorial sincronizadas en tiempo, con el objetivo

final de su aplicación al diagnóstico, protección y control de sistemas en tiempo real,

permanece como un desafío importante de investigación debido a la complejidad de

la dinámica y los procesos de control que ocurren simultáneamente a diferentes

escalas.

Este trabajo de investigación examina la aplicación de la teoría de modos

Koopman para la identificación y extracción de mecanismos coherentes y sus

propiedades modales correspondientes, a partir de la respuesta observada del

sistema de potencia. Basándose en las propiedades espectrales del operador de

Koopman, se desarrollan y se verifican técnicas para extraer el perfil modal y las

propiedades de los modos, en conjuntos de datos provenientes tanto de mediciones

como de simulaciones de estabilidad transitoria.

Se proporciona además, una interpretación física de losmodos Koopman que

permita estimar la dinámica global no lineal del sistema. Se muestra que, para el

caso de comportamientos lineales, el método converge hacia los modos lineales. En

el caso de dinámicos no lineales, el análisis de los modos Koopman tiene una

interpretación interesante en términos del análisis de formas normales en la teoría

de perturbaciones.

Se plantean avances en el desarrollo de métodos para evaluar la estabilidad

de grandes redes de potencia y se identifican direcciones fundamentales de la

investigación.

Adicionalmente, se abordan algunos problemas de simulación encontrados

en la aplicación de técnicas para la implementación del análisis espectral de

Koopman en sistemas de potencia de grandes dimensiones. Las nuevas estrategias
desarrolladas para mejorar la eficiencia del análisis por medio de optimización
numérica permiten que el método sea capaz de tratar sistemas complejos.

Se realizan algunas comparaciones con otras propuestas existentes para

evaluar la eficiencia del marco propuesto.



Abstract

System wide-area monitoring of complex dynamic processes is a problem of great

importance in the analysis and control of power system dynamic behavior.

Reliable monitoring of the spatial and temporal dynamics by means of time-

synchronized phasor measurement units, with the ultímate application to real-time

system diagnostics, protection and control, remains a major research challenge due

to the complexity of the driving dynamics and control processes occurring at

different scales.

This research work examines the application of Koopman mode theory to

identify and extract coherent mechanisms and their associated modal properties

from power system observed response. Based on the spectral properties of the

Koopman operator, techniques to extract mode shapes and modal properties from

recorded data at
'

various critical locations are developed and tested in both,

synthetic and simulated datasets.

A physical interpretation of the Koopman modes is then provided, which

enables assessment of global nonlinear dynamics. It is shown that for linear

observables, the method converges towards the linear stability modes. In the case

of nonlinear dynamics, Koopman mode analysis has an interesting interpretation
in terms of normal form analysis in perturbation theory.

Advances in the development of methods for assessing the stability of large

power grids are stated and key research directions in the area of spatio-temporal

modeling are discussed.

Numerical issues encountered in the application of Koopman spectral

analysis to large scale power systems are also discussed. Newly developed

strategies for improving analysis efficiency via numerical optimization enable the

analysis method to better handle complex systems. Comparisons with other

approaches are provided to assess the efficiency of the proposed framework
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Chapterl

Introduction

This introductory chapter presents a briefdescription ofthe research xoork contained in

the thesis.

The background and motivations are explained as weü as the statement of the

problem that is attached in this document.

Further, a concise review ofthe previous work related to the topics treated in this

thesis is presented. Also, the pursued objectives, the obtained results and limitations of

the approach are then stated.

Moreover, the main contributions are summarized.

The last part cfthe chapter is an outline ofthe general structure ofthe thesis.



1 . 1 Background and motivation

The stability of large interconnected power systems is of primary concern
in the

power industry. Power system dynamic behavior is intrinsically nonlinear
and

non-stationary [1], [2].

Transient dynamic processes in power systems exhibit complex phenom

ena that occur on a wide range of spatial and temporal scales. In practice, sys

tem behavior is interpreted in terms of oscillatory modes involving the exchange

of swing energy between machines.

The oscillatory modes of electromechanical origin (local and inter-area)

are of special concern since they describe global behavior. With a few excep

tions, oscillatory activity in the general range of 0.1 Hz to 1.0 Hz is associated

with inter-area modes that are related to the swinging of many machines in one

part of the system against machines in other parts. They are caused by two or

more groups of closely coupled machines being interconnected by weak ties and

can be affected by many factors. Modes in the range of 1.0 Hz to perhaps 1.8 Hz

are usually local to some particular generator or plant, and not globally observ

able [1], [2].

Accurate estimation and characterization of electromechanical oscillation

modes interacting throughout a large, interconnected grid is a critical part of

analyzing, controlling and operating a power system. Mode estimation can be

accomplished by modeling the system or by obtaining a mode decomposition

that optimally fits a measured system response. Both methodologies have ad

vantages and disadvantages that make them complementary [3].

The process of modeling a power system is based on a certain grade of

linearization of the dynamic equations describing the interaction among differ

ent variables and elements of the system. The increased use of control devices

and the huge dimensión of modern interconnected systems in addition to its

intrinsic nonlinear behavior make this a very difficult and demanding task.
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With the advent of wide area measurement systems (WAMS), and the

consequent availability of simultaneous measurements at
various svstem loca

tions coordinated via global posi tioning systems, there is a need for developing

techniques with the capability of efficiently identify dynamical (nonlinear)

modes from large amounts of synthetic ormeasured recorded data [1].

Knowledge of a power system's modal propertiesmay provide critical
in

formation for control decisions and thus enable reliable grid operation at higher

loading levels [3]. This is the thrust of the present research.

1 .2 Problem statement

Methods of investigating and approximating nonlinear system behavior of

power system dynamic processes are of special interest to utilities. As empha

sized above, this behavior is particularly relevant in the analysis of measured

data from wide-area measurements systems involving various temporal and

spatial scales [1], [5]-[8].

Techniques for describing global behavior of complex transient processes

are of particular interest for characterization of wide-area phenomena. Experi

ence shows that simultaneous analysis of measured data may improve data

characterization and result in a better description of global phenomena [6]-{8].

Global stability analyses ofmeasured datamay be used to detect impend-

ing system breakdown and may be the basis for wide-area control and protec

tion. Direct nonlinear analysis of large data sets, however, may be prohibitive

and result in a large amount of data that has to be processed for assessing power

systems health.

Tliis research discusses the application of nonlinear analysis techniques to

the problem of power system modal identificationMethods based on Koopman

mode decomposition are to this end developed and tested on both synthetic and

simulated data. The methods extend the notion of linear modal decompositions

to the nonlinear setting and can be used to characterize global phenomena.
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By extending linear analysis, modal interactions, trends and other arti

facts can be accurately identified.

Extracting dynamical features of a power system by global linear analysis

require the underlying matrix of the system. In the case of transient stability

measurements, this kind of matrices is not available [9]. A bulk of approaches

has been proposed over the past two decades to conduct modal analysis using

only time-synchronized actual-system measurements [4]. Some of these tech

niques may represent accurately the entire ensemble of data with a few modes

obtained by means of correlation or most energetic trajectories, but without a

clear physicalmeaning of each of them.

There are some other methods, also known as ringdown analyzer algo

rithms which underlying assumed signal model is a sum of damped sinusoids.

For large systems, however, most of these techniques are computationally ineffi-

cient and accurate characterization of relevant modal behavior becomes diffi

cult. Moreover, these approaches are mainly based on linear techniques and

some of them cannot perform adequately for nonlinear or nonstationary signals.

Further, large stressed interconnected systems when subjected to large

disturbances, due to its number of degrees of freedom, and the sparse geograph

ical distribution, exhibit highly complex phenomena including modal interac

tions, temporarily chaotic vibrations, and intermodulation. To determine the

mechanisms governing these physical variations, it is essential to characterize

the large-scale interactions between the system modes [2],

The huge number of elements encountered in a power systems and the

needed detail to describe their dynamic behavior to obtain a precise description

of the evolution of a power system imply an enormous computational effort.

Additionally, power systems are continually excited by random inputs with

high-order independence. Because of this stochastic nature, no algorithm can

exactly estimate the modal properties of the system from finite-time measure

ments [4].
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It is clear from this analysis, that techniques with the ability to simultane

ously analyze measured data at various system locations aré needed that can

account for nonlinear and non-stationary behavior.

The following section briefly describes work in this area and áreas of fu-

ture research are identified.

1 .3 A brief review of previous work

Existing approaches to power system dynamic characterization are largely

based on linear analysis techniques. Examples include Prony analysis tech

niques, eigenrealization algorithms, block processing techniques, and recursive

algorithms, among others. These procedures have been successfully used to ex

tractmodal information from complex data sets [3], [4], [10]-[12].

As the number of measured signal increases, accurate characterization of

relevant modal behavior becomes difficult, especially in the presence of noise,

trends and abrupt system changes [13]. Some of this sort of approaches have

been developed or enhanced in recent years. Even though under relatively high

measurement-noise conditions accurate estimates have been provided, the anal

ysis is made via linear techniques, and so is assumed to be the dynamical behav

ior of the power system [4], [12].

Some techniques which use is efficient with a relatively high number of

measured signals (some of them even in the presence of noise) also have been

introduced in the last years; the most for analyzing nonstationary and nonlinear

phenomena, e.g., proper orthogonal decomposition (POD), empirical orthogonal

function (EOF), wavelet-based analysis, and Hilbert spectral analysis [6]-[8],

[14]. Nevertheless, the eigenfunctions or modes obtained frequently endose sev

eral electromechanical modes mixed and in some cases mode shape extraction is

not addressed [14].

Recently, an interesting and potentially powerful tool based on the

Koopman operator has been developed for dynamical analysis of mechanical
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systems, mainly in the area of turbulence and fluid dynamics [15]-[18]. The

technique is especially useful for describing the behavior of complex nonlinear

systems by decomposing snapshots of measured observables into modes deter

mined from spectral analysis of the Koopman operator. It was proposed by Ber

nard O. Koopman while investigating linear transformations in Hilbert spaces
to

analyze Hamiltonian systems [19].

Koopman mode analysis was introduced in the power systems literature

in [20]-[23]. The technique was used in [20] to identify coherency by perform

ing modal analysis based on nonstationary data of short-term, nonlinear swing

dynamics. It was observed that the Koopman modes provide a nonlinear exten

sión of linear oscillatorymodes.

hn [21] it is suggested a precursor to phenomena of loss of transient stabil

ity in multi-machine power systems. Modes are extracted using the Koopman

mode decomposition to analyze data provided by sensors or simulations. Also

of interest, the Koopman operator has been used for nonlinear dynamical sys

tems in order to enable a data-based approach to stability assessment of power

systems without models [22].

In [23] a study for an optimal islanding strategy based on the dynamical

properties of the system extracted by means of Koopman mode analysis is de

veloped.

Koopman operator is infinite dimensional even if the governing dynam

ics are finite dimensional, and does not rely on linearization of the dynamics.

Indeed, it captures the full information of any nonlinear system [15]. Modes ob

tained, referred as Koopman modes are associated with a particular observable,

and may be determined directly from measurement data. They have an associ

ated temporal frequency and growth rate and may be viewed as a nonlinear

generalization of linear global modes of a linearized system [15], [16].
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1 .4 Thesis objectives

The primary objective of this thesis is to develop advanced analytical models to

characterize power system nonlinear oscillatory behavior from measured data.

Extensions and generaliza tions to Koopman mode decomposition are suggested

and tested.

Specific objectives include:

■ The development of an analytical framework for nonlinear analysis of

measured data based on an optimized dynamical mode decomposition

technique.

■ The analysis of the physical characteristics of the extracted modes and

their comparison with other nonlinear analysis methods.

The analysis of factors affecting the model performance. In particular, the

performance of the technique under limited measurements, noise, and in

complete modal observability.

1.5 Research contributions

The main original contributions of this research woík are:

■ The development of a rigorous analytical framework for the simultane

ous analysis of spatio-temporal data based ón advanced Koopman mode

decomposition

■ The evaluation of optimized dynamic mode decomposition techniques

inspired by computational intelligence

■ The interpretation of modal behavior in terms of nonlinear mode interac

tion in perturbation theory
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The extensión and generalization of Koopman analysis to incorpórate
ob

servability information into the modal characterization strategy. The

evaluation of sources of error arising from incomplete observability
of the

system

1.6 Organization of the thesis

This thesis is structured in six chapters. After this introductory chapter, Chapter

2 presents a theoretical background on Koopman operator analysis. The theo

retical basis of this method are described in the context of the analysis of simul

taneous measured data.

Chapter 3 discusses different strategies for an accurate computation of

the Koopman modes. These include the dynamic mode decomposition algo

rithm, an optimized dynamic mode decomposition technique, and some other

variants explored through the development of this research work. A brief de

scription of the proposed optimized dynamic mode decomposition technique is

given, together with an analysis of synthetic data. A comparison with both, line--

ar and nonlinear analysis techniques is presented.

In Chapter 4, a physical interpretation of the Koopman mode decomposi

tion is provided. It is shown that, under small perturbations, the Koopman

modes converge to the linear global modes of the system. A rigorous analytical

interpretation is then provided that shows the conditions under which this is

achieved. Extensión and generalizations to the nonlinear case are investigated

and comparisons with perturbation theory are presented.

The application of the proposed technique to simulated data is presented

in Chapter 5. Detailed simulation studies show that the proposed framework

outperforms existing modal decomposition approaches.

Finally, in Chapter 6 some conclusions, suggestions, and future works are

summarized.
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Chapter2

KoopmanModeAnalysis
The expansión ofa complicatedfunction of space and time into a sum ofsimpler compo

nents is a problem of current interest. The most common methods of analysis are based

on the Taylor and Fourier expansions. This idea, though has provided important infor

mation about the process dynamics, is called into question since the equations describing

the behavior ofdynamical systems are nonlinear.

An altérnate concept has emerged: the problem ofdecomposing the evolution ofa

set ofobservables from the perspective ofoperator theory, namely based on the projection

onto eigenfunctions of the Koopman operator. Koopman mode analysis (KMA) captures

the full information of a (nonlinear) system through the spectral analysis of the

Koopman operator. It does not rely in any linearization process and can represent any

nonlinear response as a linear combination of an infinite sum of linear and nonlinear

functions. It is considered as a nonlinear generalization of linear global analysis.

ln this chapter, a brief description ofKoopman mode analysis and the Koopman

operator is presented to analyze discrete systems. The main properties of this technique

are developed, and special attention is focused on its mathematical formulation. A brief

comparison with other methods, such as the discrete Fourier transformation (DFT) and

the proper orthogonal decomposition (POD) is provided.



2.1 Mapping onto basis functions

Power systems dynamics exhibit complex phenomena that occur on a wide

range of scales in both space and time. Even with large amounts of information

available from simulations and measurements, analysis of complex dynamical

phenomena directly from raw time histories is usually not fruitful.

In practice, analyses of dynamic structures are often performed by de

composing measured data into modes. Common techniques include global

eigenmodes for linearized dynamics, discrete Fourier transform (DFT), proper

orthogonal decomposition (POD) for nonlinear flows, balancing modes for line

ar systems, and many variants of these techniques [1],[2].

Many of the methods used for capturing coherent structures and for

model reduction involve projecting known, high-dimensional dynamics onto a

set of modes. A problem of particular importance is the analysis of n state vari

ables x(í)e 9T function of time t with known dynamics

Ü»=/to, (2-1)

where /(*)e 91" denotes the intrinsic function of the dynamics.

From linear system theory, the vector of states x(í) can be expanded in

terms of a set of N basis functions, or modes, •^(x)s C" [3]:

«W=í>*MfrM' (2-2)
/-i

with at(í)s <£ being coefficients of the basis functions and j,k are integer in

dexes.

If the modes -py(x) are orthonormal, the dynamics can be projected as

¿,(0 = (/«0).Mx('))> (2-3)

where {•) denotes the inner product.
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If the modes are not orthonormal, then there is a complementary set of

adjointmodes yij{x)e€N that satisfy

(f,tór*WHV (24)

Here, S^ denotes the Kronecker delta. In this case, the expansión (2. 2)

can still be determined, but the projected dynamics are given by

¿yW=(/W0)^yW0)). (2-5)

In such a projectionmethod, the main choices are therefore how to choose

themodes »p,(x) and t/t(x) [3].

When the equations that describe the behavior of a dynamical system are

summarized as a function of an operator, it can be analyzed from the perspec

tive of (linear) operator theory. The Koopman operator theory deals with opera

tor theory to analyze dynamical systems. Using the Koopman operator, the

spectral properties of the system can be determined and so obtained a set of ba

sis functions related to its intrinsic dynamical response [4].

In what follows, the main theoretical aspects related to the analysis of

(linear) operators and theKoopman operator are discussed.

2.2 Operator theory

The theory of operators has, as its object, the study of functions defined on infi-

nite-dimensional spaces. There are important parts of mathematics which can

not be understood in depth without the help of theory of operators. Some ex

amples are the theory of functions of a real variable, integral equations, and the

calculus of variations, among others [5].

In order to state the same framework and following [6]-[8], all the con

cepts below are defined in a complex abstract Hilbert space H which is charac-
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terized by five properties: linearity, the existence of a unitary metric, the non-

existence of a finite basis, completeness, and separability [6].

The notion of linear operator can be defined as follows.

Definition 2.1 (Linear operator). Let G,,G2 be subspaces such that

G,,G2czH and 7':G1-»G2 be a function (operator, transformation) under

which an element ye G2 corresponds to each element xe G, in the following

manner y
= r(x). If,- for any x,,x2eG, and a.fieC, then

T(axx + _Bx2) = aT(xx)+ f}T(x2), the operator T is said to be additive. If, in addi

tion, G, and G2 are metric spaces, that is to say that in each space the distance

between pairs of elements is defined, one can consider continuous operators T

Operators which are both additive and continuous are called linear [5] [5].

The fundamental problem of the theory of linear transformations is to

prove the existence of linear subspaces of H invariant under a given transfor

mation T and to determine these subspaces [6]. An important type of linear op

erators for this purpose are the unitary operators U

2.2.1 Unitary operators

Definition 2.2 (Unitary operator). The operator U with H c 91" as its domain

and range is unitary if

(Uxx,Ux2) = 'xx,x2) (2.6)

for x„x2eH[8][8].

Another definition of the unitary operator is the following

Definition 2.3 (Unitary operator). A bounded linear operator U on a

space H c 9t" into itself is unitary if and only if

[/-' = U" (2. 7)

where U is the adjoint operator of U [9].
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The unitary operator U has an inverse operator l/-1 -which is also uni

tary. Moreover, the unitary operator is necessarily linear and is an isometry [10],

[8].

A solution of the problem of the existence of linear subspaces of H invar

iant under T may be formulated by means of the resolution of the identity and

the spectral analysis of unitary opera tors .

2.2.2 Resolution ofthe identity

Assume that T is an operator in H
,
and .that it has a finite or countable set oí

pairwise orthogonal and normalized eigenvectors e,.e2 tt, which corre

spond to nonzero complex eigenvalues A_.A2 A.t . The set H# of aD vectors

from H which .ire orthogonal to each vector et is a subspace.

It follows that for xe He, rx = 0. Therefore, it is possible to consider H,

as the eigenmanifold of the operator T which belongs to the eigenvalue á „
= 0 .

As far as H is separable and {e. } is an orthonormal basis for it, the space

H0H, can be represented in the form of -an orthogonal sum of eigenmanifolds

Ht , which belongs to distinct eigenvalues. Then

H =H,©H1©H2e .--. (18)

where

rv,=V* (2-9)

for each eigenvector \t e Ht [10].

Designating the operator of projection on Ht by Pk , we can write

I = P„+P}+P2+-- (2.10)
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Foreach xe H,

Tx = ^Plx + A2P2x + -- (2.11)

Now let G, be the subspace spanned by the eigenvectors which belong
to

the eigenvalues less than t in some sense. Let Et be the operator of projection

on G, ; then £, has a limit both for increasing and for decreasing / . Therefore,

£,_„ and El+0 exist, and £,_,, = E, . Thus, E, is a function of t that is continuous

from the left, If \ e C is an eigenvalue, then the difference E^a -E^ =Pk is the

operator of projection into the eigénmanifold Ht .

Now, the terms x and Tx can be represented in the form:

P

x = Ex = \dE,x (2.12)
a

P

Tx = \tdE,x (2.13)
a

where the integráis are taken over an interval [a.fi] which contains all the ei

genvalues of the operator T . Then, by generalizing the above ideas, the follow

ing definition arises.

Definition 2.4 (Resolution of the identity). A resolution of the identity is a

one-to-one parameter family of projection operators E, defined through a finite

or infinite interval [cr,/#], which satisfy the following conditions (If the interval

[ar,/?] is infinite it can be defined Ea = E^_ = lim Et , and Eg = E„= lim£V ) [10]:

(i). Ea -=0, £,
= /. (2.14)

CÚ).El_0=El(a<t<p), (2.15)

(iii). Eu Ev =Es(s= min{M, v}) (2. 1 6)
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An important subject is that the eigénmanifold constitutes a set of invari

ant subspaces under T. Henee, the spectral analysis of linear operators allows to

obtain this set of invariant subspaces. Moreover, the spectral analysis of unitary

operators has some interesting properties useful for the analysis of dynamical

systems.

223 Spectral theory

Let T be a linear operator which domain D(T) and range R(r) both lie in H . It

is considered the linear operator

TX=XI-T (2.17)

where A is a complex number and / the identity operator. The distribution of

the valúes A for which TA has an inverse and the properties of the inverse when

it exists, are called the spectral theory for the operator T[9].

Definition 2.5 (Spectrum' and resolvent). If Ak e C is such that the range

Rl7!i, j is dense in H and Tx has a continuous inverse \Ak I
-Tj' , it is said that

At is in the resolvent set p(T) oí T, and we denote this inverse [Ak I-T)x by

K\Ak,T) and cali it the resolvent of T All complex numbers Ak not in p{j)

form a set called the spectrum of T The spectrum a(T) is decomposed into dis

joint sets P„(r), Ca(T), and R a(T) with the following properties [9]:

(i). PCT(7") is the totality of complex numbers A forwhich Tx does not have

an inverse; PCT(7") is called the point spectrum of T

(ii). Ca(T) is the totality of complex numbers A for which TÁ has a discon

tinuous inverse with domain dense in H ; Ca(T) is called the continu

ous spectrum of T.
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(iii). R^y) is the totality of complex numbers A for which Tx has an

inverse whose domain is not dense in H; Rff(r) is called the residual

spectrum of T

Definition 2.6 (Normal operator). An operator T defined on H is normal

if and only if

TT'=T'T (2.18)

The main assertion of the spectral theorem is that every bounded normal

operator T on a Hilbert space induces a resolution E of the identity on the Borel

subsets of its spectrum <j(t) and that T can be reconstructed from E. A large

part of the theory of normal operators depends on this fact [8].

Theorem 2.1. If Te Hand T is normal, then there exists a unique resolu

tion of the identity E on the Borel subsets of (t(t) which satisfies:

T =

l{T)AdE(A). (2.19)

E is referred as the spectral decomposition oí T. Sometimes it is convenient

to think of E as being defined for all Borel sets in C; to achieve this put

E(co) = 0 ií corxa{T) = 0[8].

Then, recalling that the eigenvectors of an operator T span eigenmani-

folds that indeed are invariant subspaces, the following theorem can be stated.

Theorem 2.2. Let a(T) be the spectrum of a normal operator T, and

Ake€.lí a(T) = \Ax, A2, ...,Ak\ is a countable set, then every xe H has a unique

expansión of the form

*-2>„ (2-20)

where 7] x, = A¡xj. Also, x, ± x, whenever / * j [8].
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Furtbermore, analysis of the spectral decomposition of the unitary opera

tors shows that these type of operators are suitable for the spectral analysis of

dynamical systems as can be seen below.

Theorem 2.3. A normal operator U defined on H is unitary if and only if

<f{t) lies on the unit circle [8].

Following Theorem 2.3, as U is a unitary operator, all of its eigenvalues

have absolute valué unity, i.e., each has the form ex where A is a complex

number that contains a term called eigenfrequency oí the unitary operator. The

equation

Uk\k=euvk (2.21)

holds for integer k ií \k e €." is an eigenvector associated with the eigenvaalue

Ate€, and also if U* (— <» < k < <») is a continuous group of unitary operators

[8], [10].

2.2.4 The Koopman operator

In [8], the concepts presented above were extended to include classical Hamilto

nian mechanics. The equations of the system which state variables are xt e 91"

define the operator S, which has the following properties:

(i), ^(ipj-^ x,for an initial condition x0 and a determined time t . (2. 22)

(ii). S,Sli
=

•S'((i+,j*, for any times /, and t2, and (2. 23)

(iii). S0 = líort = 0. (2.24)

In the search of invariant surfaces where the operator 5, projects the dy

namics of a certain subspace of a space H c 91" onto itself, it can be defined a set

of characteristic functions q>t(x) which are complex single-valued, measurable

and bounded for all i e H .
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Then, the transformation U, which eigenfunctions are <pk(x) is defined by

DiftM-ftfoM) <225)

and is continuous in <pk (x); also is defined and continuous for all real / . Thus,

U, (pk(x) has at x the valué which (pk(x) has at the point 5,x into which x flows

after the lapse of time t. The transformation U, is unitary, and só it arises that

[8]:

U, l^.(x)+¿^(x)J= a^toWHA^foM)

= aUl(Pj(x)+bU,(pk{x) (2.26)

There exists a resolution of the identity E, corresponding with U, , which

consists of a family of operators as defined in Section 2.1.2. Analogously to (2.13)

and (2.19), effectuates a spectral resolution of Ut :

Ul^(x)=]ei"-dE^k(x) (2.27)

An evident property of U, is that, for an arbitrary single-valued function

of several variables F

U, Fl>,(x), <p2 (x), ...)=F{U, <p_(x), U, q>2 (x), . . .), (2. 28)

where (p¡(x), .... (pk(x)e C are characteristic functions corresponding to the

characteristic valúes Ax,...,A__e€, which indeed are of the form e"1' and are

distributed around the unit circle.

2.3 Koopman operator for continuous-time dynamical systems

For a continuous-time dynamical system evolving on a manifold M c 91" such

that for xe M, where /"(■) is a possible nonlinear mapping from M onto itself
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and is assumed to be approximately the same over the full interval of time

[12]

x=/to (2-29)

it can be defined a family of operators U' , the Koopman operator aí the contin

uous time, just as have been defined in the previous section.

Recalling, that the Koopman operator is a linear operator that acts on a

vector-valued function g:M -»9t", mapping g(x0) into g{t.x,), in the follow

ingmanner.

g{?,x,)=U'g(x.)=gte-M), (2.30)

where S'(x„) denotes the position in time t oí the trajectory defined by (228)

that starts at time zero at point x#.

23.1 Koopman eigenfunctions

In analog}7 with linear stability analysis, Koopmanmode analysis provides a set

of eigenvalues and eigenfunctions that describe the dynamical behavior of the

system and constitutes a set of structures which the observables,can be decom

posed in.

According with the concepts presented in the previous section, the fol

lowing definition can be provided:

Definition 2.7 (Koopman eigenfunction and Koopman eigenvalue). Let

McSH' and xfj (x) .- M —» € denote eigenfunctions; Aj e C denote eigenvalues of

the Koopman operator, then the evolution in time of the dynamical system is

given by [1]:

í/>y(x0)=^(s'(x.))=expU/)^(x.)l ,
= 1.2 (2.31)

Despite the dynamics itself being linear, the eigenfunctions of the

Koopman operator are not necessarily linear. These eigenfunctions span the
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space of real-analytic functions on 9í, and thus nonlinear observables evolving

under linear dynamics can be represented by a spectral expansión using

Koopman eigenfunctions. This can be seen from the properties of the Koopman

operator described below [1].

23.2 Properties ofthe Koopman operator

In order to understand the power and applicability of Koopman mode analysis

for dynamical systems, the main and more important properties of the

Koopman operator are listed below. Although some have been presented above,

here are rewritten with the aim of provide a clearer description.

Property 2.1 (Linearity). Although the dynamical system is nonlinear and

evolves on a finite-dimensional manifold M c 91" the Koopman operator is

linear and infinite-dimensional. Since U is linear, it holds that

U'iag^figJix^aU'gM+fiWgM (2.32)

for any functions gx, g2 and scalars a, J3 [2].-

Property 2.2 (Potency). Let <p(x) = x",xe %n e Z+, and Ae C . Then

U'0(x) = tp(xexp(At)) = x',exp(nAt) = exp(nAt)<p(x), (2. 33)

and thus the functions <p(x) = x" are eigenfunctions of U' associated with eigen

values nA.

Now, by considering the Taylor expansión of the evolution of any real-

analytic observable g{x):

g{x)=YdgJxJ (2.34)
;=o

where g,
= (l/j\)djg/dxi{0).
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Its evolution, given by g{t.x)=U'g{x), can be represented as

g(rx)=í/'g(x)=(/'í¿g/x^ = ¿g/expOvl0x/ (2-35)

For n real or negative, x* is .also an eigenfunction; provided those, the

space of observables can be expanded in which that are of interest [1].

Property 23 (Modal interaction). Let xteM where Mc9t* If

xf, :M -» 91 is an eigenfunction of U' at A, e € and +¿ :M -» 91 is an eigen

function of U' at /i.e €, then A •■#, is an eigenfunction at Al+A1 [1]:

=

expU f)^Mexp (^ f)#i (x)

= cxp((>l1+>l2)0^(x)^(x). (2.36)

Thus, the properties 235 and 236 allow express theTaylor exp.ansion of a

set of real-analytic nonlinear observables that capture the behavior of a dynam

ical system in terms of nonlinear interaction of linear modes in similar way to

the method of normal forms [13]. This affirmation is further developed and ana

lyzed in the following sections and in Chapter 4.

233 Koopman modes

It can be assumed now a vector-valued observable g(x)e 91", with xe M where

M c= 9t" is the state space of the dynamical system.

Definition 2.8 (Koopmanmode). The Koopman mode v(x)e C at isolat

ed eigenvalue /le C of algebraicmultiplicity 1 is the projection of g(x) onto the

eigenfunction fx(x) of U' at A [1].
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The.projection in question can be obtained as an inner product with the

eigenfunction fá(x) at X oí the adjoint of U' - the Perron-Frobenius operator.

This would, however, require an explicit calculation of such an eigenfunction.

Alternatively, some other ways for Koopman modes computation have been

developed; these are described in Chapter 3.

Koopman modes are independent of initial conditions and form a basis

for the expansión of the evolution of the observable g (x) starting from any ini

tial condition in the state space. They are of interest because they are akin
to the

eigenvector expansión utilized in linear analysis. In fact, for linear systems the

Koopman modes coincide with its eigenvectors as shown below [1].

2.4 Koopman mode analysis for discrete-time dynamical systems

Owing to the discrete nature of the data that is available to perform an analysis,

it is convenient to state Koopman operator theory in terms of discrete-time.

Thus a discrete sequence £/"*,« = 0,1,...,N is obtained and if A¡_ e C is an eigen

value of U' with mode vt(x)e C", then the obtained evolution associated with

that mode is aa\k(x) = exp(nAkAt)vk(x) yielding \og„(a) = (Ak At), and the eigen

value is plotted at exp[ (loge a)/At] [1].

Then the operator Í/A< that composes the family of operators U' is re

ferred just as the Koopman operator U Thus, henceforth the analysis and con

tains of the thesis are developed into a discrete-time frame. It is appropriate to

make mention that the definitions and properties defined previously can be ex

tended to discrete-time framework.

Similarly to the previous section, it is considered a dynamical system

evolving on a manifold M <= 91" such that for r,eM,

**+1=/0t), (2-37)
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where /"(-) is a map from M to itself and k is an integer index. It is important to

highlight that as in the previous section, the mapping /(-) is assumed to be ap

proximately the same over the full interval of time [12].

The Koopman operator is a linear operator U that acts on vector-valued

functions g
*

M -» 9t , mapping g into a new function given by

Ug{*)=g(A*.)- (2-38)

Let q>t .

•

M —» C denote eigenfunctions and A
(
e € denote eigenvalues of

the Koopman operator [2],

t/f.»=^f,W /
=U.-.., (2-39)

and consider a vector-valued observable g :M
—» 91*

In addition, the existence of a continuous spectrum possess a largely open

problem on how to represent the part oí the dynamics in terms of structures that

are local (but not associated with linearization) in time, frequency, and space but

that also possess aspects of collective motion [1].

FoUowing [14], for dynamics that have not continuous spectrum in fre

quency domain (practical experience suggests this situation in power system

analysis [15]), and if each of the n components of g lies within the span of the

eigenfunctions <p; , then the observables may be expressed exactly by expanding

the vector-valued g in terms of those eigenfunctions as

aSM=¿?,(*K- (2-40)
/■*=•

The eigenfunctions (p_ are referred to as the Koopman eigenfunctions

(KFs) and the corresponding vectors v; e C* are called the Koopman modes

(KMs)of /, corresponding to g.
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Iterates of x0 are then given by

g(xJ=¿C/y(x0)v; =f»,(x0K. (2-41)
j
= X j=X

The Koopman eigenvalues (KVs) A¡ characterize the temporal
behavior

of the corresponding Koopman mode v,
: the phase of Aj determines

its fre

quency, and its magnitude determines the growth rate. For a system evolving

on an attractor, the Koopman valúes always lies on the unit circle [2].

These modes have the property that they represent the dynamics
of the

system, in which a spatial shape is multiplied by a time-dependent function of

the form exp(AjkAt) for complex A¡ =oj+icoj (time dependence can be more

complicated in the case of degenerate eigenvalues). The real part cr,. is the

damping coefficient and «*a; the angular frequency. Therefore,
each Koopman

mode has by construction just one frequency.

The resulting modes are not necessarily orthogonal. They are also a natu

ral extensión of the concept of linear eigenmodes as collectivemotions occurring

at the same frequency, growth, or decay rate [1].

2.4.3 Linear dynamical systems

Suppose M<z9{" is an n-dimensional linear space, .and suppose the map

/ : M -> 91" is a linear scheme determined by f(x) = A • x . It turns out that the

eigenvalues of A are also eigenvalues of U , and its eigenvectors are related to

the eigenfunctions of U as well. Let »y e C" and A¡ e C denote the eigenvectors

and eigenvalues of A, K\¡j
= Av¿, and let V, e C" be corresponding functions of

the adjoint A (i.e., A vy
=

A\j), normalized so that X*.vt) = Sjk .

Next, define the real-scalar-valued function

^(x)=íx,vy). 7 = 1 "• (2-42)
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Then, the <p¡ are eigenfunctions of U since

C/«?,(x)=^.(Ax)=(Ax,v,) = {x,A\) = ^{x,vy) =V;W- (2- 43)

Unlike A , the operator U has a countable infinite number of eigenvalues

since A* is also an eigenvalue with eigenfunction q>¡(x) for any integer k.

Now, for any xeM, as long as A has a full set of eigenvectors, it may be

written

i=x i=x

Thus, for linear systems the Koopman modes coincide with the eigenvec

tors of A [2]. Moreover, any nonlinear analytic observable can be expanded in

the same way as is established in the following subsection.

2.4.2 Nonlinear dynamical systems

Koopman mode analysis is based on the fact discovered in [14], that normal

modes of linear oscillations have their natural analogs, the Koopman modes, in

the context of nonlinear dynamics; consequently, the Koopman modes are more

effective at decoupling and isolating dynamics [2]. To pursue this analogy the

state-space representation of the system must be changed into the dynamics

govemed by the linear Koopman operator on an infinite-dimensional space of

observables.

Additionally, as stated in [1], despite the dynamics itself being linear, the

eigenfunctions of the Koopman operator are not necessarily linear. These func

tions span the space of real-analytic functions on 91
,
and thus nonlinear observ

ables evolving under linear dynamics can be represented by a spectral expan

sión using the Koopman modes. Moreover, any nonlinear analytic observable

can be expanded according to properties 2.2 and 2.3 where produets of eigen

functions are used in the expansión. Indeed, all linear combinations of the fre

quencies excite higher modes [2].
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In the case of a nonlinear setting that form a periodic solution
of (2.37),

the Koopman modes as defined above are vectors given by the discrete
Fourier

transform (DFT) and the phases of corresponding eigenvalues are frequencies
of

the form 2nj/m [2].

In fact, above statement applies more generally to non-periodic systems

when dynamics are restricted to any attractor and the Koopman modes may be

calculated by harmonic averages [14], [16] [17].

Consequently, the Koopman mode analysis is a method capable to extract

the intrinsic dynamics of a (non)linear system by means of the spectral analysis

of the Koopman operator. In order to point out the main advantages and disad

vantages of Koopman mode analysis, in the following section is made a compar

ison against other methods commonly used.

2.5 Comparison with other methods

In this sectioi? a brief comparison between Koopman mode analysis and three

decomposition methods commonly used, namely discrete Fourier transform

(DFT), proper orthogonal decomposition (POD), and Prony analysis is

presented.

2.5.1 Discrete Fourier transform

The discrete Fourier transform (DFT) of a data vector x(n) is defined as the

evaluation of its Fourier transform X(ú)) in a set of N discrete frequencies

equally separated and can be determined by means of [18]

N-X

X(k)=YJx{n)exp(-j2iTkn/N), ¿t = 0,l,2 N-l. (2.45)
■1=0

A key limitation of the DFT is that its frequencies depends only on the

number of data points and not on the data content. In consequence, to ensure

that a particular frequency is properly captured, the data must cover an integer

number of corresponding periods. If múltiple frequencies are of interest, then
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this constraint may be prohibitive, especially if the frequencies are unknown
or

are not related by a simple rational number.

In addition, as the longest period the DFT can capture is the time span of

the data, the algorithms for computation of Koopman modes have no theoretical

lower bound on the frequencies that can capture, although they are still subject

ed to the Nyquist frequency constraint.

Moreover, the DFT is incapable of determine modal growth rates, and

many modes are needed to be retained to reproduce the non-periodic data cor

rectly, as shown in [17].

2.5.2 Proper orthogonal decomposition

A common technique for identifying coherent structures is the proper orthogo

nal decomposition (POD) method, introduced in fluid dynamics in [19]. This

method, as originally developed, is capable of extracting information from

snapshots of the dynamic field by decomposing it into a sum of spatially

orthogonal modes, and is thus applicable to experimental data.

POD method determines the most energetic structures by diagonalizing

the spatial correlation matrix computed from the snapshots. The resulting

decomposition is closest to the original field in the least-squares sense [14]. Two

major drawbacks that are tacitly acknowledged by employing this method are

associated with this technique: (i) the energy may not in all circumstances be the

correct measure to rank the flow structures and (ii) due to the choice of second-

order statistics as a basis for the decomposition, valuable phase information is

lost [12]. POD models can work well, nonetheless they often require careful tun

ing and there is always the awareness that low-energy modes can be critically

important to the dynamics [3].

Although some variants of POD have been studied to overeóme these sit

uations, this family of methods are applicable only to linear systems and fur

thermore, they do not have the physical meaning inherent to Koopman modes.
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They are fundamentally decoupled from any sense of time or dynamics, and

therefore may not provide the best mode basis for constructing dynamical mod

els [17]. Whereas POD concentrates on a representation based on spatial orthog

onality, Koopman mode analysis focuses on a representation based on temporal

orthogonality (frequencies) [12].

2.53 Prony analysis

Prony analysis is a widely used algorithm in oscillation mode parameter identi

fication, whose principie is to fit a linear combination of exponential terms to the

analytical signal. In principie, Prony analysis methods assume the system to be

single output, and individual signals are analyzed independently often resulting

in conflicting frequency and damping estimates [20].

It is considered a general continuous signal y (t) that is modeled by:

K')= É5»/"' (2-46)
*»=1

where Bm e C is the output residue for the continuous-time pole/lra e C, Am * An

for m*n. These parameters are obtained by fitting, in a least squares sense, y (t)

to the system output y(t). The signal fit given by (2.46), in conjunction with the

system input signal, allow for the identification of a low order linear system

[21].

There also exists extensions to Prony analysis that allow múltiple signals

to be analyzed simultaneously resulting in one set of mode estimates [20]. Nev

ertheless, this is computational demanding.

Although this method have been widely studied and developed, it is lin

ear, and when the signal is non-stationary it can provide spurious modes. Fur

thermore, for a few quantity of snapshots it may obtain erroneous results

whereas with a large amount of data the time of convergence is considerably

increased. In some sense, Prony analysis is an 'extensión of DFT [20][20]-[22].
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2.6 Concluding remarks

In this chapter the theoretical background and main properties and aspects of

the Koopman operator have been stated. The Koopman operator theory pro

vides a rigorous framework that unifies a number of different concepts indud-

ing linear stability analysis, triple decomposition, and Koopman mode decom

position; as well as linear stability theory and the discrete Fourier transfonn [1],

[3]-

Unlike many decomposition techniques, the data needed to compute

Koopman mode decomposition does not need to be neither periodic ñor from a

linear process to construct a meaningful modal decomposition [17]. Koopman

mode analysis is not based on the linearization of the system; instead, it projects

the dynamics onto an infinite-dünensional space that is predetermined by the

spectral properties of the Koopman operator. Aside, the spectrum of the

Koopman operator is constructed by the intrinsic linear modes of the dynamics,

and their interactions, defining in thisway an infinite-dimensional space.

Nonetheless, all the theoretical background presented in this chapter is

not useful if there exists no way for computing Koopmanmode analysis. This is

treated in the following chapter.
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Chapter3

Optimized Dynamic Mode

DecompositionMethods

In this chapter, a critical evaluation cfdynamic mode decomposition methods is provid

ed. Variants of the Koopman operator based on Arnoldi algorithms are developed and

tested on synthetic and simulated data.

First, a review of the existing Koopman analysis methods is presented. Variants

ofKoopman analysis based on the notion ofa dynamic mode decomposition are presented

and connections with the Koopman operator are groen. Advantages and limitations of

the dynamic mode decomposition algorithms are-pointed out.

The chapter concludes with a discussion of the observabüity issues in the devel

oped modal decompositions.

Example simulations of synthetic and simulated data are presented to demón

strate the usefulness ofthe developed algorithms.



3.1 Generalized Laplace analysis

The Generalized Laplace Analysis (GLA) theorem gives an iterative procedure

to compute projections onto an eigenspace [1]. The theory behind generalized

Laplace analysis is briefly described here in the context of the Koopman mode

decomposition.

Theorem 3.1 (Generalized Laplace analysis). Let {Ax, .... Ak\, A.eí be a

(finite) set of simple eigenvalues of U' such that |exp(A,í)|> |exp(A2í)|>-->

\exp(ANt)\, and let <p; eC and v; e£" be an eigenfunction and a Koopman

mode, respectively, corresponding to Ar Define now the vector-valued ob

servable at time t, as g(s"(x))e 91", which is function of the vector of (state) var

iables xe9T [1].

Then, the Koopman mode assodated with Ak can be obtained via

1 tr

A (*K (x) = lim - Jj exp (-Ákt) ^'to)-¿exP(vMtov,M
/=■

dt . (3. 1)

Analogously, for discrete time holds that

1
K~i

í \

<l>k (x)\k (x) = lim—Y exp í- Akt) i^'M)-¿exp(vVy(x)v,(x)
y=i

(3.2)

where T (K ) is the sampling interval in the real (discrete) time-domain.

It is noted that for Theorem 3.1, a set of eigenvalues is needed but they

are not computed as part of the theorem. The generalized Laplace analysis starts

by identifying or estimating the largest Koopman eigenvalue assodated with the

evolution of the observable and removing its contribution.

The caveat here is that different observables in prinriple will present dif

ferent spectra, so the whole Koopman spectrum and its modes might not be re-

vealed. Moreover, this can lead to an unstable computation as for large / in-



volves multiplication of a very large number with a very snrlall number. An al

temative to estimating the Koopman modes is provided by the Arnoldi-fype

methods described below,which reveal a richer spectrum- [1], [2].

3.2 Dynamic mode decomposition

In practice, it is not possible to have an explidt representation of the Koopman

operator U . Its behavior can only be ascertained by its action on an observable

g and commonly only at a finite number of initial conditions [1].

Dynamic mode decomposition (DMD) is based on a variant of the Ar-

noldi algorithm by utilizing companion matrices, described in [4]. It was intro

duced in [5] as a method able to extract dynamical information from flow fields

generated by numerical simulation or measured data and to describe the under

lying physical mechanisms captured.

32.1 Computationfrom snapshots

A standard method for computing estimates of the eigenvalues of a dynamical

system govemed by (2.37) is a Krylov method. These methods produce approx

imations to the eigenvalues of Koopman. operator and their corresponding

modes. Given a vertor of initial conditions, x0 e 9T , after m
- 1 time-steps, it has

been generated a collection of m vectors that span a Krylov subspace, given by

{x0 , f(x0 ), .... /■(""l*,(x0 )} . The approximate eigenvalues and eigenvectors are

found by projecting / onto this subspace [3], [51.

Further, for any state xy measured in a vector-valued observable

g(i;)e9T rhe data can be represented as a snapshot sequence XeíR""'"*'1 de

fined as:

X = [x0 x,
- xj, (3.3)

where Xj stands for the /' th snapshot.
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Let now the data vectors be stacked into a matrix K e 9í"xm defined as fol

lows:

K = [x0 /(x0) /(/(x0)) - />-'>(x0)]

K = |x0 x, x2 •■•. xm_,J.

(3.4)

(3.5)

As the number of snapshots increases, it is reasonable to assume that, be

yond a critical number of snapshots (n < m), the vertors given by (3.5) become

linearly dependent. In such a case, the vertor xm can be expressed as a linear

combination of the previous snapshots according to:

xm
= /■(*,*--,)= c0x0 +

- + cm_xxm_x
= Kc

where c = [ c0 ■ • •

cm_x \ and c, e SR [4] . Then, it follows that

K. = /(K)=KC,

where K. is an index-shifted data matrix defined as [6]:

K. =|x, x2
••• xm_,J,

•ind C e 5Rmxm is a companion matrix given by

"0 0 ••• 0 c„

(3.6)

(3.7)

(3.8)

C =

1 0

0 1

o o

0 c,

0 c,

1 <•„,_,

(3.9)

The eigenvalues of C are then a subset of the eigenvalues of / . As a con

sequence, the decomposition into eigenmodes for the companion matrix C can

be expressed in terms of A e C a e C"
,
as

Ca = Aa. (3. 10)
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Then, using (8.7)

K.a = /(K)a = KCa = ¿Ka, (3. 11)

it can be shown that veí", defined as

v = Ka (3.12)

is an eigenvertor of / with eigenvalue A .

More generally, if the m th vertor is not a linear combination of previous

snapshots, then instead of (3.6) we have a residualr e SR" :

r = x„-Kc, (3.13)

which is minimized when c is chosen such that r is orthogonal to

span{x0,...,x,,_l}.In this case, the relation (3.7) becomes /(K) = KC + re^_,,

where e„,_,
= [0 ... lJeSR"

The eigenvalues of C are then approximations to the eigenvalues of /

called empirical Ritz valúes; the corresponding approximate eigenvedors given

by (3.12), are called the empirical Ritz vectors [5]. In physical terms, the finite-

dimensional companion matrix C can be thought of as an approximation to the

action of the Koopman operator U on the assodated finite-dimensional Krylov

subspace [2].

3.22 Algorithm for computation ofKoopman modes

Algorithms for the computation of the Koopman modes are discussed below. It

is assumed that the snapshots are sampled at regular times; i.e., it is not re

quired explidt knowledge of /

To formalize the process, consider a sequence [x0,...,xm] where xy eSR"

The empirical Ritz valúes A} e C and empirical Ritz vertors v^ eC oí the se

quence are determined by the following algorithm:
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(i). Define K by (3.5) and find the real constants c such that

m-1

r = x*n-Kc = xm-^cyx;, r±í/>aw{x0,...,x„1_,j. (3. 14)
j=o

(ii). Construct the companion matrix, C in (3.9) and find its eigenvalues

and eigenvectors:

C = T-'AT, A = diag(Ax,---,Am) (3.15)

where the eigenvectors of C are columns of T"1

(iii). Define v, to be the columns of V =KT-1

Consider now a set of data [x0<...,xm] governed by (2.37) and let Ajf v, be

the empirical Ritz valúes and vectors of this sequence. Assuming that A, * Ak for

all j&k ,
then it can be shown that

xk=_TéÁjVj> k = 0,...,m-l, (3. 16)

and

m-^
--w ( \

x»
= ZA*^+r' r±span{x0 xm_x). (3. 17)

Equation (3.5) may be rewritten as

K — [x0 x, x2 Xm-lJ/

K-I?

1 a»*Tj aA*[

1 l_ A22

i K -V

(3. 18)
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The rightmost matrix above is a Vandermonde matrix, which actually is

the matrix T of (3.15) that diagonalizes the companion matrix C as long as the

eigenvalues \A., ...,Am\ are distinct

Comparison of (3.16) and (3.17) with (2.41), it follows that the empirical

Ritz valúes Aj and vectors 5, behave in the same manner as the eigenvalues Aj

and modes \j of U , but for a finite number of them, instead of an infinite sum.

On one hand, if r = 0 in (3.17), the approximate modes are indistinguish

able from the eigenvalues and modes of U with the expansión (2.40) consisting

only of a finite number of terms. On the other hand, if r * 0, then there is some

error, but in fact, this is the same as the smallest possible error in projecting

g(*m) onto any modes vy formed from linear combinations of the first m data

vectors [5].

Therefore, empirical Ritz valúes A} and vectors v . are (usually) good ap

proximations of the true Koopman eigenvalues Aj and Koopman modes v re-

spectívely. The terms vy are scaled by the constant valúes q> (x,,) .

3.2.3 Stability and convergence

The well-known Arnoldi method is dosely related to the decomposition above.

When /(xy)=Ax/, Ae5R"x" the Amoldi method successively orthogonalizes

the vectors of K resulting in a decomposition of the form AQ-cQH with

K =QR and H = RSR"1 as a Hessenberg matrix. The eigenvalues of H approx

imate some of the eigenvalues of A .

In practice, the Amoldi method is accomplished by a sequence of projec

tions onto successive Krylov subspaces. This yields a more stable algorithm, but

for these projections the matrix A has to be available. In contrast, the dynamic

mode decomposition algorithm has less favorable stability (and convergence)

properties since it is assumed that there is no information about / [4].
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Furthermore, in [6] it has been proved that the dynamical mode decom

position is unique, provided that eigenvalues are isolated and snapshots are
in

dependent. It is also observed that the mean subtraction leads to all possible ei

genvalues being on the unit drcle and the companion matrix analysis reducing

to the discrete Fourier transform matrix. However, the problem with subtracting

the mean of the sequence of snapshots is in fact related to the observation that

the companion matrix C is an approximation to the Koopman operator repre

sentation on a finite-dimensional set of functions.

In general, the computation of the Koopman modes by the dynamic

mode decomposition method needs to be done without subtracting the mean if

decaying or growing modes are to be captured [2].

Additionally, the above algorithm is tied to the initial conditions. This

dependence rises since the empirical Ritz valúes and vectors are found using a

Krylov subspace generated by a sequence of vector-valued observations along a

finite trajectory with a vector of initial conditions x0 eM . Since / can be de

composed into eigenspaces that are invariant subspaces, and recalling (2.11), it

follows that/(xj) caribe expressed as:

XM ■= /( x; )= k. pi *j + Á2 P2 *j +
• " (3- 19)

where Pj is a projection operator P} : M —> M; being My the eigénmanifold cor

responding to the eigenvalue A} .

Then, if x0 «My, its projection into My is Pyx0
= 0; i.e., the spectral dy

namics inherent to / are not present in the observables and consequently that

part of the spectrum is not revealed. Thus, different initial conditions can reveal

different parts of the spectrum [1].

Numerically there is another concern with the convergence of the

method: experiments show that its results are more sensitive to variations in xm

than to variations in other data vectors. This is because the Ritz valúes are the
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eigenvalues ofthe companion matrix C; which dicta tes this reconstruction. The

presence of noise in x_ could drastically change the contents, and henee the ei

genvalues, of the companion matrix [6].

Moreover, even though the above decomposition is mathematically cor

rect, a practical implementation yields an ill-conditioned algorithm that is often

not capable of extracting more than the first or first two dominant dynamic

modes [4]. To address diese problems, two more techniques «are presented for

Koopman mode analysis computation.

3.3 SVD-based dynamic mode decomposition

In order to avoid tiie practical problems exposed in the last paragraph of the

previous section, it has been proposed in [4] a more robust implementation that

results in a reduced matrix C e Sí"" related to C via a similarity transformation.

33.1 SVD projection

Robustness is achieved by a preprocessing step using a singular valué decom

position (SVD) of the data sequence K = U IW* where U e«"' L e «"" is a

diagonal matrix and W e 3i€'" Substituting the SVD of K into (3.7), and rear-

ranging rhe resulting expression we obtain

C = ü"K.WL
'
= £W"CWL . (3. 20)

In the particular case that /( x , )= Ax; the previous expression can be al

so expressed as

C = C*AU. (3.21)

The above operation amounts to a projection of the companion matrix C ,

the linear operator A for (3.21 ), over (onto for A ) a basis from the singular val

ué decomposition. A further advantage is the opportunity to account for a rank-
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defidency in the data sequence K -via a restriction to a limited projection basis

given by the non-zero singular valúes of 2 (or by singular valúes above
a pre

scribed threshold) [4], [6].

Then the modes can be obtained from the matrix C by solving the diago-

nalization problem

C =YAY"' (3.22)

where the eigenvectors of C are columns of Y ; A is as in (3.15). The modal

structures can be obtained as presented below [4], [6].

3.3.2 Algorithmfor computation

Consider,a sequence [x0,...,xm] of snapshots sampled at regular times, where

X- g SR" Then the Koopman operator behavior approach based on the singular

valué decomposition can be implemented by the following algorithm:

(i). Define K by (3.5), find the real constants cj as
in (3.14) and define the

companion matrix C by (3.9).

(ii).Define the projected companion matrix C by (3.20) and find its eigen

values and eigenvectors in accordance to Í3..22)

(iii). Project the eigendecomposition of C into the basis of C and define

the matrices <4> and V to represent the samples matrix K as

K = 0»V (3. 23)

that is equivalent to (2-41) but for all the ensemble of data and consid

ering g(xk )-xk. Similarly, the index-shifted data matrix can be ex

pressed as

K. - OAV (3. 24)
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The -definition of the matrices O and V can be determined by substitut

ing (3.22) into (3.20) and rearranging:

K. =UYAY-'LW" (3. 25)

Then by comparing with (3.24), we can define the matrices <D and V as

follows

<& =UY, (3.26)

V =Y-'IW" (3.27)

The previous formulation, albeit is mathematically correct and computa

tionally stable, indeed is similar to the proper orthogonal decomposition ex

posed in the preceding chapter.

This affirmation rises from the fact fhat the product Y~'EWW depends on

the singular valúes contained in £ that are related to the energy, and is not con

formed by functions of a single frequency as has been shown in Section 2.4.

Another variant following [6] keeps the matrices A and O defined as

above, and assuming that the /. are approximated to the Koopman eigenvalues,

V must be estimated in such a way to satisfy (3.24).

The dynamic mode decomposition based on the calculation of the singu

lar valúes may provide good approximations to the"Koopman eigenvalues Ajr

but tine approximated Koopman modes can be quite inaccurate. This method is

useful mainly to obtain a first approximation of the true Koopman valúes for the

method described below, though it is not applicable to all dasses of data se

quences.

3.4 Optimized dynamic mode decomposition

Inspired by the work in [6], an optimized'versión of the dynamic mode decom

position is now proposed, in which instead of a residual error at the last snap-
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shot, it is allowed for errors at all snapshots but optimizing the eigenvalues to
fit

the data.

As in principie, the observables are fitted accurately with m empirical

Ritz eigenmodes, this optimized approach regards p modes with p<m, where

p can be predefined or optimized in base of an accuracy criterion.

3A.l Optimized DMD formulation

Suppose that {xk }""'„ is a set of vector-valued observables. Given p <m, the tar

get is to find a set of complex scalars {Aj \P=i and complex vertors { v ¡ }' such

that

j=i

(3. 28)

whereas T e SR ,

m-X

r-Zk (3. 29)

is minimized.

Then, let K be as above, where V and T are redefined by:

(3. 30)

T =

1 Ai A**

1 A*2 A*2

p p

Ax~'

J2m-'
(3.31)

Now the residue matrix R e SR"*"1 is constructed as follows

(3. 32)
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Furthermore, instead of (3!8yit can be written

K = VT + R . (3. 33)

The matrix V and the Vandermonde matrix T are sought in order to

minimize the squared Frobenius norm T = | R || , which is indeed a least-

squares problem for V The choice of V with the smallest Frobenius norm is

V = KT+ (3.34)

where T+ is the Monroe-Penrose pseudo-inverse matrix of T if A. ± Ak for

j*k.

3A.2 Computation ofoptimized DMD

At this point there is no analytic algorithm for computing the optimized dynam

ic mode decomposition. In [6], two optimization methods are proposed to com

pute a global mode decomposition:

a). A global optimization technique that combines simulated annealing and

the Nelder-Mead simplex method, and

b). The Broyden-Fletcher-Goldfarb-Shanno quasi-Newton iterator for pure

ly local minimization,. taking the results of the SVD-based dynamical

mode decomposition as initial conditions.

In this research work, a highly flexible approach to estimating the opti

mized dynamic mode decomposition is developed using a genetic algorithm.

Results are compared with the algorithms above.

3.5 Illustrative examples

In this section, the three above algorithms for computation of Koopman modes

(DMD, SVD-based DMD, and optimized DMD) are examined in terms of their

ability to extract and characterize electromechanical behavior.
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3.5.1 Application to synthetic signals

As a first example, the method is applied to a set of sinusoidal signals. Let

X = [u.(t)— um(t)]T be a nxm matrix of data as in (3.3) where « = 9 and m is

the number of snapshots of the functions.

Each snapshot «.(/) is a damped sinusoidal function of the form

uj(t) = ajex_p(-(TJt)sin(2xfJt), with amplitude a, damping coeffident er
¡

and frequency f} where fx2i =0.3125Hz, /456 = 0.5562Hz, and

/7g9= 0.8321Hz.

Fig. 3.1. Synthetic signals.

The assodated vector of frequendes is defined as f = [/¡ f2 ••-/,] ; the

damping coefficients vector is o = [cr, cr2 ••■«•7,1]r, where <r123 =-0.15 ,

<t456 =0.00, and <x789 =-0.10 Np/s, i.e., the functions have damping ratios of

7.6172 %, 0.0000 %, and 1.9123 %, respectively. The vector of time begins with

í0=0 s up to i,, =10 s with At = 0.01 s, and the vector of amplitudes is

a = [0.8 0.9 1.0 0.5 0.6 0.7 0.2 0.3 0.4]r
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Figure 3.1 shows the time evolution of the testsignals.

The data set is analyzed by the first altemative of computation which

gives 100 empirical Ritz eigenmodes. Table 3.1 summarizes the first 10 modes,

ordered by the absolute valué of the respective Ritz valúes.

The entire set of Ritz eigenmodes has a máximum reconstruction error of

3.2930 xlO"14 with respect to the original data set.

Table 3.1. Dominant Ritz eigenmodes obtained by the DMD algorithm for the data

set in Fig. 3.1.

Mode / III Frequency Damping
Norm

I J\ [Hz] [%] v.

1 0.9883 0.8198 2.2816 0.3218

2 0.9821 0.5899 4.8802 1.5981

3 0.9797 0.3274 9.9153 1.1534

4 0.9787 0.7035 4.8694 0.4484

5 0.9757 0.9412 4.1494 0.2027

6 0.9751 0.2063 19.1148 0.4957

7 0.9721 0.1022 40.3011 0.5353

8 0.9714 0.0000 100.0000 0.5500

9 0.9702 0.4472 10.7057 1.7605

10 0.9694 1.0441 4.7350 0.2717

It can be seen from Table 3.1 that the first three modes have frequendes

and damping coeffidents similar to the original data. Nonetheless, the norm

valúes on the fifth column do not correspond to the ordering, so this is not an

adequate parameter to identify those modes containing more physical infor

mation.
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Reconstructed signals resulting from the first few modes were compared.

First, the set of signals obtained by using only the three first modes are given
in

Fig. 3.2. As can be observed, the amplitudes of the signals 4 through 6 have an

additional frequency and another attenuation that adds error mainly at the be

ginning of the period of time, whereas the amplitudes of the rest of the signals

are quite similar to the respective signals of Fig. 3.1.

The máximummismatch was about 2.3746 unities of magnitude.

.2.5 1 1 1 x 1 1 1 1 1 1 1

0 1 2 3 4-5 6 7 8 9 10

Time [s]

Fig. 3.2. Reconstructed signals by taking the first three modes of Table 3.1.

Moreover, it has been introduced a phase into the signals of Fig. 3.2, albe-

it the percentage of participation of the frequendes in the conformation of the

signals is almost preserved.

On the other hand, the second technique fails to extract information about

the dynamics of the signals. This can often occur with this method since it de

pends on the singular valué decomposition. In other words, it is based on the

singular valúes, which are related to the signals energy. This approach is more

suitable for large sets of observables.
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Finally, the optimized dynamic mode decomposition is used to analyze

the signals in Fig. 3.1, beginning with the 5 modes of Table 3.1 and an initial er

ror of 3.0202 unities of.magnitude.

The results are summarized in Table 3.2, where the máximum error was

minor to 0.02 %.

Table 3.2. Modes of the signals of Example 3.1 obtained by the DMD and optimized DMD

algorithms compared with the true modes ofthe data.

Mode Original data DMD Optimized DMD

Frequency Damping Frequency Damping Frequency Damping
J

[Hz] [%] [Hz] [%] [Hz] [%]

1 0.3125 7.6172 0.3274 9.9153 0.3125

2 0.5562 0.0000 0.5899 4.8802 0.5562

3 0.8321 1.9123 0.8198 2.2816 0.8321

3.5.2 Application to simulated data from an electric circuit

As a second example, the developed methods are applied to a simple electric

circuit. The analysis focuses on the ability of the dynamic mode decomposition

schemes to extract the linear modes from the simulated drcuit responses to

small perturbations.

Figure 3.3 shows a single line diagram of the test drcuit. For the purposes

of this analysis, it is assumed that vc (o) = 1 V with all the other initial conditions

equal to zero.

The observables are the voltages at each node; the nxm observation ma

trix is defined as X = [x, x2
• • • xm] = [u, (?) • ••

un (t)]T where each snapshot is

x*
= [".*•-• "Jr= [vC|(¿) vCl(k) vc,{k) v¿,(¿) vLi(k) vL¡{k)\T The voltages

are sampled using a constant sampling period At = 0.001 s. A window width

equal to 5 seconds was selected for analysis.

7.6174

0.0001

1.9117
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C3 = 200^F

¿2=25mH

+ vt,
-

+

:vc2

R2=0.20n

AA/V

X3=100mH

Fig. 3.3 RLC Circuit of Example 3.2 showing parameters used in the analysis.

As a first step, the linear model of the system i
= Axwas obtained. Then,

an eigenanalysis is performed to determine the natural frequendes and linear

modes of the system, and a matrix of observations is created from model simu

lations.

Figure 3.4 shows selected simulations which are representative of the ob

served system response.

1.5

Pi¡tiJÉf<
— Jí!*:!* v l—íln NÍ*,** -'•-.•'•■íl Ki*

VC1

VC2

VL2

i í^yu

-1.5

1! H*n*;:á aSaflIlllIiH:: ;:i:*,riRi'Ui «i-: .1/;

M irtil Prf)lÍí^ífH-^KÉ;- 'sal

HHlUHlfflfflRlüHlln WMp

0.C5 0.1 0.15

Time [s]

02 0.25

Fig. 3.4 Signals of Example 3.2 used for KMA.
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The results of the three versions of the dynamical mode decompositions

are shown in Table 33. As can be seen from this Table, the numerical errors are

4.4395 x 10"!r V (with the first four modes), 0.6603 V, and 1.9584 x 1 0"'3 V, respec

tively.

i\s seen in Table 33, the SVD-based dynamical mode decomposition fails

to characterize the frequency -and damping of modes 2 .and 3. This is consistent

with our numerical results in Chapter 5.

Also of interest, fine norm of the second approximate Koopman mode of

the dynamical mode decomposition in T.able 33, and the norms of the rest of the

Ritz eigenmodes are almost zero, showing the appropriateness ofthe modeL

Table 3.3. Comparison ofthe linear modes extracted by the DMD, SVD-based DMD, and

optimized DMD algorithms.

Mode Eigenmodes DMD SVD-based DMD Optimized DMD

Freq. . . Freq. Damp. Freq. Damp. Freq. Damp.
3

[Hz]
UamP-l*J

Ufa] [%] tHz] [%] [Hz] [%]

1 164.1186 0.7331 164.1171 0.7331 161.1328 1.8237 164.1171 0.7331

2 413651 03310 463997 23806 333555 2.0238 413651 03310

3 213788 0.2402 413651 03310 7.6690 15.Jn060 213788 0.2402

4 213788 02402

YVhen applied to linear process, Koopmaan mode analysis recovers the

global stability modes of the flow. When decomposing a nonlinear process, the

analvsis allows identification of the dominant frequendes and their .assodated

spatial structures.

3.6 Modal observability

In this section, a strategy based on the observabüity of the modes is sought in

order to provide a criterion to select the best entrances that provide an accurate
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Koopman modes computation. The basic idea of the proposed method derives

from the modal controllability and observability notions advocated in [7].

3.6.2 Background

Consider a general linear system described by the state-space model

x(t) = Ax{t)+Bu{t), x(0) = xo (3.35)

y{t)=Cx{t) (3.36)

where x(f)e 9T are the state variables, Ae 3t"x" is the system matrix, B e SR'"'" is

the input matrix, u(í) e 9ím is the vector of system inputs, x0 is the vector of ini

tial conditions, Ce Jl'" is the outputs matrix, and y (í)e 5R'' is the vector of sys

tem outputs.

The solution to this system can be written as

yO) = //(x0)+C¿(u) (3.37)

where /f (■) and £,(•) are linear operators defined as

¿(u)=JV('-r)Bu(r)¿r (3.38)

and

H{x0)=CeA\. (3.39)

The system described by (3.36) and (3.37) is said to be completely observ

able if the state variables x(/0 ) at time t0 can be found from the observation of

y(t) during a finite interval of time, i.e. if H has a void nuil space. Therefore,

the system is completely observable if all the state transitions affect eventually

all the elements of the output vector [8].

This approach, however, is not satisfactory in most cases because the in

formation it provides is qualitative in nature, it can say, at best, what parts of the
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system are observable and what parts are not, but it is not capable to make

quantitative statements about the different parts of the system.

Observability for the aims of this research work refers to the sensor's abil

ity to see the infernal states of the system. In what follows, method for evaluat

ing a quantitative measure of observability of a linear dynamical system by tak

ing into account the mode shape as well as the system outputs is suggested.

3.6.2 Quantitative measures

A quantitative measure of observability is motivated by the following expres

sion for y(t) [7]:

y(0=Z Cv. wfxj +wfBje vu(r)í/r
M

(3.40)

where A¡ e C is the ith eigenvalue, and v( e C" and w, eC are the correspond

ing right and left eigenvectors.

It is clear from this equation that the extent to which the ith mode ap

pears at the different outputs is determined by the elements of the vector C v, . If

the matrix C is written as

C=row[cf,cf. ...,crp], (3.41)

then the matrix CV given by

CV

T T

C, V, c, v2

lfr> fr*

cfv.

fr.

(3.42)

have a useful interpretation: the magnitude of the entry cfvy of CV measures

how much the / th mode appears in the i th output of y (t) .
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Based on this reasoning, the elements of CV are treated as measures of

observability.

Additionally, in [7] it is introduced the notion of the unitmomentum scal

ing, mainly thought to determine in a better way the controllability of the states

that allows a better performance of the controllers. In our case, this is not of in

terest. Instead, a quantitative measure of the presence of the modes in the data

sequence is useful.

The observability measure c[v, can be interpreted as the k th output sig

nal at r = 0+, subject to an initial condition x(o)= v,_ More predsely,

>'*(0+)=cIvl.(wfv,.)

vt(V)=cív,.. (3.43)

Then, the vector of initial conditions x(o) can be expressed as a linear

combination of the right eigenvectors x(ü)= a,v, + a2v2 +... + anyn, a¡ e
C Con

sequently, the observability measures are now a¡cTk\¡ , which are the elements of

the matrix CVK, where K e C"x" is a diagonal matrix which elements are the

coeffidents a,.

'fr.
T

c,v2
• •• fr,' a¡ 0

CVKa = 1

_c>. crv - ••

fr*. 0 ün_

(3.44)

This matrix changes with each new initial condition, but as it was stated

in Section 3.2, for Koopman mode analysis generally there are* available just a

finite number of initial conditions, and the algorithms for its computation are

highly dependent on this fact.

The main objective of the evaluation of the matrix CVK is to determine

the minimum quantitative valué of observability of a mode where it can still be

identified in the analysis of the Koopman operator.
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3.7 Concluding remarks

Koopman eigenvalues and modes at a spatial point can be determined-by the

generalized Laplace analysis provided even a single point but also a long time

trace of data.

Conversely, the variants of the dynamic mode decomposition methods based on

Arnoldi-type algorithms seem to be able to capture the Koopman valúes and

their corresponding modes over a shorter-period from data that have a larger

spatial extent. Nonetheless, in contrast with Definition 2.8, the Koopman modes

obtained by the Arnoldi-type algorithms depend on initial conditions.

In practice, the Koopman operator does not have to be realized to obtain

the Koopman modes. Generalized Laplace analysis and the dynamic mode de

composition deals with snapshots sequences whereas linear stability analysis

relies on linearization [2].

An interesting condusion of the Section 3.5 is that the complete and the

optimized dynamic mode decomposition algorithms capture the eigenvalues

and eigenvectors relatively well. The first algorithm obtains good approxima

tions to the frequency and damping coeffidents for the main modes, but the

representation has an error of considerable magnitude. On the other hand the

optimized dynamic mode decomposition obtains a set of very accuracy approx

imations to the Koopman modes, although it generally needs much more time.

Additionally, it has been observed that when the empirical Ritz valúes

are dose enough to the true Koopman eigenvalues, their norm is a good param

eter to distinguish among the true and spurious approximations to the

Koopman modes.

In the examples presented in this section, the approach based on the sin

gular valué decomposition was not useful, albeit itmay provide good results for

larger sets of data, in the sense of spatial dimensión. In some cases, it is just use

ful to obtain good approximations of the A} or their own frequendes.
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Finally, a method to evalúate quantitatively the observability of the

modes of a linear dynamical system was described in Section 3.6, allowing to

evalúate how is that this observability measure can affect the accuracy and con

vergence of the Arnoldi-type algorithms. This measure as well as other parame

ters can be used posteriorly to develop better strategies for an effident computa

tion of the Koopman operator analysis.
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Chapter4

Physical Interpretation ofKMA

Koopman mode analysis provides a powerful method for analyzing empirical data gener

ated by nonlinear dynamical processes.

In this chapter, a physical interpretation of the Koopman modes is provided in

the context of system oscillatory response. It is observed that when the Koopman mode

decomposition is applied to a linear process, the dynamic decomposition allows recover

ing the linear stability modes ofthe linearized system.

For a nonlinear process, the Koopman decomposition identifies the dominant fre

quencies and their associated spatial structures, which provides a physical interpretation

ofthe decomposition for nonlinear systems similar to the decomposition provided by the

method of normal forms.



4.1 Linear observables

In this section, a physical interpretation of the Koopman modes when a set of

linear observables is analyzed is provided. In* this sense, the linear observables

are defined as the output signals y (t) of a linear system defined by (3.35) and

(3.36), which can be totally described by the linear stability modes obtained

through a linear stability analysis (small-signal stability analysis for electric

power systems).

It has been suggested that the Koopman modes are related to the linear

global modes of the linear system in such a manner that the (optimized) dynam

ic mode decomposition indeed extracts them whereas the empirical Ritz valúes

and vectors converge towards the true Koopman modes and Koopman eigen

values.

4.2.1 Small-signal stability analysis

Small-signal stability analysis refers to the analysis of the system response to

small perturbations.

In order to illustrate the physical significance of the modes, consider a

classical power system model. The dynamic behavior of the system is given by

the nonlinear model [1]:

d „

-ASj=ú)0Aú)J, (4.1)

2Hj JtAü)J=P^ -P*j -Kd*<»j, (4. 2)

f = 1,2,..., ng , where ng is the number of generators.

Here, A8j is the angular position of the rotor of generator /' with respect

to a synchronously rotating reference, <a0 is the synchronous speed in rad/s,

Aíüj is the deviation of the normalized rotor speed relative to the normalized

synchronous speed in pu.
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H e 9Í , the inertia constant in s, KDj e 91, is the damping coeffident in

pu, P¿ e 91, is the input mechanical power pu, and PE e 9? , is the output elec

trical power, pu. Loads are represented as constant impedances.

The linearized system is obtained through the Taylor's series expansión

of (4.1) and (4.2) with terms involving second and higher order powers of the

states neglected. Conventionally, the dynamical behavior of the system is repre

sented by a constant coeffidentsmatrix A e -Jí2"**2"*

x = Ax (4.3)

where x = [A-5, , . . ., ASV ,Aú)x , . . ..Aú)^ \T

The solution of (4.3) with initial conditions x0, is given by [1]:

x(/)=u', x0v'. e* + -+u'2ngx^ eM-' (4. 4)

Here \'jt u', are the right and left eigenvectors assodated with the eigen

value A'j oímatrix A, satisfying

AvW,v', J = l2....,2ng. (4.5)

Equation (4.4) provides a decomposition of the system response into sin-

gle-frequency modal components; the terms uV x0 give the initial exdtation of

each mode, while the vectors v'; are the mode' shapes assodated with a given

modal component [1].

4.1.2 Physical interpretation for linear observables

Koopman modes are of particular interest here because they are similar to the

eigenvector expansión utilized in linear dynamics [2]. As discussed in Chapter

2, each snapshot xk oí the matrix X can be decomposed into a linear combina

tion of Koopman modes multiplied by their respective valúes of Koopman ei

genfunctions evaluated at time instant, tk .
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More formally, we can rewrite (3.18) or (333) as:

xk=Axkyx+%v2+- + Akpvp (4.6)

where n is the number of snapshots, and p
< n is the number of Koopman

modes obtained by any of the algorithms described in Chapter 3.

By comparison of (4.5) with (4.6), and assuming that the contribution of

p empirical Ritz vectors, p < 2ng, accurately represents the observables xk, that

is, the Aj are different each other, and that the frequendes and damping ratios

captured by the p empirical Ritz eigenvalues are very similar to those given by

the linear modal decomposition, namely

U',X0V';
=

V (4.7)

Then, given that the eigenanalysis of the Koopman operator allows to

capture the intrinsic dynamics of the system, it can be stated that the Koopman

mode decomposition of the linear observables is equivalent to that determined

by means of the linear stability analysis and so:

■'yx0V;-f(x,)vy, (4.8)

where <p(xa) is the valué of the y'th Koopman eigenfunction for the initial con

ditions x0,and \j is the j th (normalized) Koopman mode.

Finally, it can be derived that

«'; *<>▼', = <P{*0 )Vj " ?, = aoV (4. 9)

where v; is the normalized empirical Ritz vector and a0 is a real constant valué.

Consequently,

v'.=v «— v =v (4.10)
«o
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4.2 Nonlinear observables

Koopman modes have an interesting interpretation in terms of normal form

analysis in perturbation theory [3]-[4]. This is an aspect of the analysis that has

not been addressed in the literature.

Though in general, the analysis of normal forms can be formulated for

any order of approximation, the analysis here is restricted to second-order per

turbations, following the recommendations in [5].

4.2.1 Normal form analysis

The equations that describe the dynamical behavior of the power system are

nonlinear. As a result, linear modes may interact with each other and result in

nonlinear interactions between the linear modes. It has been observed in [6] that,

under stressed system conditions, linear analysis may fail to characterize the

observed system response.

The method of normal forms (MNF) is a well-established mathematical

procedure to simplify nonlinear differential equations. The set of nonlinear dif

ferential equations are transformed up to a spedfied order, into a collection of

linear differential equations by means of a sequence of nonlinear coordinate

transformations. These linear transformed equations allow the study of the es

sential modal characteristics [5].

Here, the MNF is briefly described in the power systems framework, for a

deeper treatment of the techniques, the reader is referred to [5] and references

therein.

In its most elementary form, normal form analysis begins by performing

a Taylor series expansión of the nonlinear system in the neighborhood of certain

linear or nonlinear operation point. The expansión can be carried out up to a

spedfied order that in this case is fixed at the second order of a proximation.

This is because of the high computational effort required to compute higher or

der terms.
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The Taylor series expansión of the nonlinear system up to second
order is

given by

x = Ax +X2+0(3) (4. 11)

where 0(3) denotes an expression containing residual terms of order 3 and

higher.

For the i th state variable, neglecting the terms of third and higher order,

one has

1 r

jc,.
= A,, x,. +-x H'x, (4. 12)

where A, is the i th row of the Jacobian matrix A
,
and H' is a Hessian matrix;

the jk th element of H' is given by

37,
Jk

dxjdxk
h' = (4. 13)

Equation (4.12) can be transformed to its Jordán form by applying the

similarity transformation x = U y , where U is the matrix of right eigenvectors of

A . Use of this assumption in (4.12) results in the decoupled system

y
= Ay +V

y7U7HUy

yrUrH2Uy

yrUrH'*Uy

(4* 14)

The elements of the diagonal matrix A are the eigenvalues of A,

Ai,A2,...,A ,
and V is the matrix of left eigenvectors of A. It follows that, the

/ th Jordán form variable can be expressed as

(4. 15)
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where C'kl is the. kl th element of the
matrix C' defined by

C'=±¿vJu,,H*u]. (4.16)

We note that, in (4.16) the bracketed term is a p x p matrix and vJq is the

jq th element of the matrix V

The next step is to transform (4.13) into its simpler form, the normal form,

by eliminating the nonlinear terms. Use of the nonlinear transformation

y
= z + /,(2)(z) (4.17)

in (4.15) gives

-V;=*,+Éltoz" (4-18)
*=i ;=i

where z is a vector of normal form state variables.

It can be shown that the nonlinear coeffidents, h^Ju can be computed

from

Vi"vfe JXt-IX....» (4.19)

provided that Ak+A_-Aj*0. By means of (4.17), the second-order terms are

removed from (4.14). This is known as the non-resonant condition.

The transformed equation is a set of decoupled first-order linear differen

tial equations

z = Az + 0(3\ ¿j=AjZj+0(3), j = \,2,...,p (4.20)

where 0(3) denotes third and higher order terms, while the second-order terms

have been transformed into elements of first order.
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Neglecting third and higher order terms, the time evolution of the normal

form variables, zy(i), given by

where zJ0
denotes the initial condition associated with the state variable zy

The vector of initial conditions z0 is computed by solving the nonlinear

equation (4.17) for a given initial condition y0 :

/(z)=z-y0+/i(2)(z)=0 (4.22)

The solution to the above equation provides the initial condition z0 , and

then the solution of the original set of equations (4.11) is obtained by transform

ing the z variables back to the original state variables x . This is done by first

using (4.17) to compute y . (/) = zJ0ex'' +Zr=.Z,=1A(2)iz*o^o^+*)' followed by

the application of the similarity transformation x = Uy to compute x .

Transforming the normal form solutions into the physical states gives the

second-order approximation

r r

xl\t)=2_]uijZj0e
J'
+2^u¡j

k.l
■? *

ZLAháW**1' (4.23).

where uiJ is an element óf the matrix of right eigenvectors U .

Equation (4.23) expresses the system response for xx,x2,...,xp, in terms of

the individual system modes Ax,A1,...,Ap, and the second-order modes Ax+Ax,

Ax+A_,,...,All_x+All,Aa+An. The terms assodated with the mode pairs Ak+Al,

provide information not available from the linear approximation of the power

system equations.
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These terms represent "modal interactions" that arise due to the inclusión

of the higher order terms. Moreover, the coeffirients of the exponential terms

el*»**)t gjyg a measure of the partidpation of Ihe mode combination A¡. + A, in a

given variable.

Of paaamount importance, equations (4.23) reveáis that, if the system is

stable, the second term involving e^**"* will be more heavily damped than the

first-ordermodes e** or e*1' as discussed in [5].

4.2.2 Physical interpretationfor nonlinear observables

In Section 4.1 it has been suggested that, for linear observables, the normalized

empirical Ritz dgenmodes converges towards the Koopman modes which in

fact are equivalent to the linear stabilitymodes.

Fer nonlinear observables the Koopman mode analysis provides a similar

decomposition of the space generated by the snapshots. In this subsection is

provided a physical interpretation of the Koopman mode analysis as a decom

position of the nonlinear behavior of the system in its intrinsic nonlinear com

ponents. These nonlinear structures are interpreted as dynamics analogous to

themethod of normal forms.

To begin with the comparison among both nonlinear decomposition

techniques, we start by developing the nonlinear expansión of the Koopman

mode decomposition; a comparison is then provided with normal form analysis.

Let each snapshot xt oí the matrix X be decomposed into the linear

combination

xk
= Afvx +£v2 + -+l;v„ + -+^v, (4. 24)

where n is the number of snapshots, q < n
— 1 is the number of Koopman modes

obtained by any of the algorithms described in Chapter 3, and p
<
q is the num

ber of linear stability modes of the system.
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Recalling properties 2.2* and 2.3, it can be stated that the combinations of

the Koopman eigenvalues that approximate the linear eigenvalues of the system

originate another Koopman eigenvalues with its respective Koopman modes

and Koopman eigenfunctions. Consequently, it can be assumed that the jth

Koopman mode, p < j < q , is a combination of the previous Koopman modes:

¿,VM)W4+*V (4*25)

where A^ and A¡ are the k th and /th linear eigenvalues of the system, and vw

is the corresponding mode. Then, if it is assumed that the first p Koopman

modes are approximations to the linear stability modes, it can be hypothesized

that the rest of the Koopman modes are nonlinear structures of the form (4.25),

and so (4.24) can be rewritten as

xk
= Afv, +%v¿ +

• ••+A\v, + 4* v, , + #2v, 2 ■ • ■ + A\_Xpyp_Xp + Akpp\pp

= #(x0)#v, +&(x0)#v2 +- + ^(x0)X*vp + ¿,.(x0)#,vM +

+ ñ.2 (**o )%v, .2
- + <*,-*,, fro )¿Upíp-l-P + 0p.p (xo )¿Lp vp.p ■ (4- 26)

where tpj (x0 ), _pj (x0 )e C are the norms of the vectors v;
and vw , respectively. The

vectors vy and vw are the normalized vectors vy and vw .

It is observed that, although in (4.24) the term xk is decomposed by

means of q modes, in (4.26) we have used p + pl terms with the aim of empha

sizing that all the modes of second-order can be present in the decomposition.

Moreover, in the decomposition of (4.26) may be any nonlinear Koopman mode

of any order, and not just second-order terms. Only the second-order terms have

been added with the assumption that the higher-order terms have minimal par-

tidpation and with the target of establish a comparison with normal forms.

Just as in the case of the method of normal form analysis, in the Koopman

mode decomposition, it is assumed that a nonlinear system can be decomposed
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in an infinite sum oí terms of different order.xWhetherMs taken -into account that

for both methods the terms of third and higherorder are neglected, the nonline

ar behavior of the system is ruled by (4.23) for normal fonhs analysis. Then, the

set of nonlinear observables can be expressed by means of (4.26) with Koopman

mode analysis.

Insight into the nature of the observed behavior can be obtained by re

writing (4.23) in the more interesting form

«.«-£#AV^«/ÉÉ*k)^**M. (4.27)
j=X k=XI=X

where tpj_x„), _pu(x0)e C are constant valúes dependent on the initial conditions

x0, and the vectors v{2),V(2)w e C™ are the modes related to Aj and (Ak + Al), re

spectively.

The following conclusions can be drawn from this analysis:

By assuming that the Koopman mode decomposition accurately repre

sents the nonlinear observables xk, then from the comparison of (4.26) with

(4.27), it can be assumed that the first p Koopman modes approximate the

linear stability modes of the system as was stated in the preceding section. It

results that for the first-order terms

^>oK2),=^(xo)v (4.28)

whereas for the second-order terms

<Pta fa )v(2)„ - fat froK« / (4. 29)

Finally, it can be shown that

^(xoV(2)y
= ^(x0)v, =v. = <pj(x0)yJ, (4.30)
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and

<*a(xo)v(2)u = «'*/(Io)vH =vu
= <Pu{x0)\kl, (4.31)

where «p, (x0), <pu (x0) are the true Koopman frequendes, and v^.Vj,
are the true

Koopman vectors.

4.2.3 Comparison between KMA and theMNF

As discussed above, the Koopman mode decomposition can be interpreted in

terms of normal form analysis in perturbation theory ."These methods, however,

differ in several ways, most significantly in the way to be applied to describe the

nonlinear response of an electric power system.

First, the method of normal forms works with the nonlinear modd of the

power system, linearizing it around a specified point, the Koopman mode anal

ysis works just with recorded data.

This means that the method of normal forms has the possibility of study

each one of the dynamics interacting in the response of the system. Also, the

computational effort required to carry out the decomposition is very high, in

such a way that this study in most cases is not achieved farther than the second

order of approximation.

On the other hand, Koopman mode analysis requires the same effort to

calcúlate the approximate Koopman modes regardless of the dynamics de

scribed. Koopman mode decomposition computational demand is mainly relat

ed with the amount of information to be analyzed (number of observables and

the quantity of snapshots). As a consequence, Koopman mode analysis is capa-

ble to identify and extract effidently nonlinear structures related with any order

of nonlinearity, i.e. it can identify nonlinearities related to normal forms of sec

ond and higher order of approximation.

Though this may seem a great advantage, the closeness of the true

Koopman eigenvalues and the absence of physical infonnation make the distinc-
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tion between the Koopman modes that describe the linear behavior and those

that describe the nonlinear behavior and the spurious modes generated by the

numerical method difficult.

In the light of the above observations, the following strategy is proposed:

1. Perform the linear stability analysis for the electric power system

for the post-fault condition to obtain the linear stability modes.

2. Through the theory of normal forms determine the nonlinear

Koopman dgenvalues that could describe the nonlinear behavior

of the system

3. By means of the number of snapshots, the extent of the time in

creasing step, and the main dynamics that can be exdted (mainly*

those rdated to the inter-area linear modes), provide a set of true

Koopman eigenvalues that probably decompose the observables

accurately.

4. Use the set of true Koopman modes as initial conditions for the

dynamical mode decomposition or as the initial approximate set

ting to perform the optimal dynamicmode decomposition.

This strategy was not used in this thesis because it is not part of the objec

tives pursued, but its application to assess system dynamic behavior is envi-

sioned in future work.

4.2.4 Nonlinear Koopman structures

In this section is established a theoretical procedure to obtain nonlinear struc

tures of the Koopman mode analysis that contain information of the spatial evo

lution of the dynamics related with a nonlinear mode. These structures are anal

ogous to
the linear right eigenvectors and allow to perform a nonlinear mode

shape analysis.
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In the method of normal forms this nonlinear structures are calculated by

means of multiplications of the elements of the right eigenvectors, the nonlinear

coeffidents, h,Y and the initial conditions of the normal form state variables

zk0 and z/0, as can be observed in (4.23). This nonlinear structures do not have a

clear relation with the linear right eigenvectors.

In the case of Koopman mode analysis, nonlinear structures of the

Koopman eigenvalues can be theoretically determined in the followingmanner.

First, by recalling Property 2.3, which shows that the interaction of

Koopman modes genérate another Koopman mode, and rewriting it for the dis

crete-time domain, one has

£/*(^(x)^(x))=^(s*(x)K(s*(x))

=

exp (AfiAt)^ (x)exp {AJAí)^ (x)

=

exp ((A, + A, )kAt)^ (x)^ (x), (4. 32)

and then recalling how an observable g(x) is decomposed into Koopman

modes:

g(x)=I>y(x)v;'
j=X

it can be expressed the time evolution of the observables with initial conditions

g(x0)at t0 as:

Ug{x0h\tU(PA^)vj (4-33)
/-i

Then, by regarding the evolution of the dynamics assodated to a modal

interaction,
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= exp. [A-) kAt)(pj (x0 )exp (A, kAt)tp, {x<r)(vk •

v, )

= exp{{Ai + A, )kAt)(pj(xl))<p¡(x0){yk v,)

=
exp ((^ + A, )kAt)<pJI(x_)buyk! (4. 34)

where (■) denotes a term by term product, bu is the norm of the vectorial term

(yk ■

v, ), q>j¡ (x0 ) is the Koopman eigenfunction product of the multiplication of

the j th and / th Koopman eigenfunctions, and ya is the resulting normalized

nonlinear structure related to the Koopman eigenvalue \Aj +A¡).

In particular, for the nonlinear Koopman mode corresponding to the

Koopman eigenvalue \Aj + A¡ )= \2Aj ),

^[kfro)v>)fe(x0)vJ)]=«>,(s*(xD))^(1S*(x0))(v,-v/).

= exp(2;ijAAí)^(x0)(vy)2

= exp(2/lj*A/)^(x0)yff (4.35)

Here, the term v¿ represent the vector of the squared valúes of each el

ement of y
j.

This theoretical result is based on the Koopman operator theory and is

used in Chapter 5 "to determine a theoretical mode shape of a nonlinear

Koopman mode to demónstrate its validity.

4.3 Concluding remarks

It can be observed that the Koopman modes capture the dynamics of a dynam

ical linear or nonlinear system in a manner analogous to small-signal analysis

and the method of normal forms (though in this Chapter has been shown ap

proximations up to the second order), respectively.
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Also, an interesting result assodated tó the determination of nonlinear

Koopman structures has been presented, which may be used for an easy deter

mination of the spatial behavior of the nonlinear dynamics. The validity of this

result is been proved in Chapter 5, where its usefulness is demonstrated.

Nevertheless, as the empirical Ritz vectors are an estimation of the

Koopman modes, the dynamics will not be captured accurately. Numerical ex

perience in Chapter 5, however, shows that the empirical Ritz vectors converge

towards the Koopman modes even for complex systems.
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Chapter5

Application

77n*s chapter describes the application of nonlinear mode decompositions techniques

based on the Koopman operator to extract and characterize nonlinear behavior in meas

ured data. Three approaches are considered: dynamic mode decomposition (DMD),

SVD-based dynamic mode decomposition and the optimized dynamic mode decomposi

tion.

The techniques are demonstrated on a wide range of examples, including data-

generated by transient stability simulations and synthetic data. Simulation results

show that Koopman mode analysis may be used to assess global stability from simulta

neously recorded data.

The effects ofobservability ofcritical modes on the accuracy and robustness ofthe

various modeling approaches are examined in detail. In all cases, the optimized dynamic

mode decomposition methodology is seen to provide more accurate approximations to

system dynamic behavior than those ofthe (SVD-based) dynamic mode decomposition.



5.1 Outline ofthe study

The accuracy and robustness of the various modeling approacheswas evaluated

for observational data obtained from detailed transient stability simulations.

The object of these simulations and analyzes are:

1. To verify the extent to which global mode decomposition techniques can

be used to extract and characterize critical intersystem modes of oscilla

tion

2. To verify the accuracy and robustness of the proposed modeling ap

proaches

3. To find robust and stable reduced order models (ROMs) that accurately

describe the inter-area dynamics of interest

In the analysis below, attention is focused on the ability of these method

ologies to characterize simulated data. First, the test cases are described.

5.1.1 Test cases

Three power systems have been used for analysis of wide-area phenomena.

1. The two-area, four-generator presented in [1]. For the purposes of this

study, two models are considered:

a: A classical system representation

b. A detailed transient stability model [2]

2. The New-England 16-machine system

3. A 46-machine, 189-bus model of the Mexican interconnected system [3].

5.1.2Modeling considerations

An initial step before computing the Koopman modes from the data set is to

extract the mean speed of each measurement. It is not meant to remove the
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mean valué of the entire data set, because of the possibility of reaching discrete

Fourier transform [4].

With these considerations, the observationmatrix, X, turns into:

*1,l
—

*i •'i^
—

xx

Y _

X2.X
~

X2 Xl,i
—

X2

_Xm.X
~

Xr, Xn.2~Xm X*.m+X~Xn_

where x. is the mean valué of the /th observable, given by

Xj =mean(x>l .xj2 - xJjm+l) .

The percentage of the error of the representation is calculated as:

aqpf ||0V-X¡ )
error(%)= ^—. YL± x 1 00 . (5.2)

where the term sup(-) denotes the supremum, and the matrix OV gives the de

composition of the original signals in terms of the approximate Koopman

modes. That is, OV is equivalent to (2.41) but for all the ensemble of data as

suming g{xk)=xk.

Equation (5.2) is used to evalúate the accuracy of the representations of

the original signals obtained by the approximations to the true Koopman modes

computed using the different approaches.

We now discuss the application of the proposed techniques.

5.2 Two-area, four-generator system

As a first example, the two-area four-generator system in [1] is used to introduce

the application of the proposed techniques to assess system behavior. The base

case operating conditions and system parameters are given in [1] for the classi

cal system representation and in [5] for the detailed system representation.

(5.1)
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Two disturbance scenarios are considered for analysis:

1) Case A. Classical system representation. Loss of 5% ofmechanical power

in Generator 1.

2) Case B. Detailed system representation. Three phase fault applied at Bus

5 cleared in 0.019 s with no line switching.

5.2.1 Classical system representation

Linear analysis was used to benchmark Koopman analysis results.

Table 5.1 summarizes the linear system modes for the classical system

representation. The system exhibits an inter-area mode at about 0.56 Hz and two

local modes associated with áreas 1 and 2 at 1.19 Hz and 1.23 Hz, respectively.

Table 5.1. Small-signal stability analysis eigenvalues.

Mode

h
Frequency

[Hz]

Damping

[%]

Mode Descrip

tion

1 0.0018 + 0.0000i 0.0000 -100.0000 Trend

2 -0.0798+O.OOOOi 0.0000 100.0000 Mean valué

3,4 -0.3994 ± 3.5602Í 0.5666 1.1218 Inter-area

5,6 -0.0385 ± 7.5344Í 1.1991 0.5109 Local Area 1

7,8 -0.0404 ± 7.7622Í 1.2354 0.5211 Local Area 2

Transient stability simulations were recorded over 10 s at a rate of 20

samples per second. Plots of the simulated speed deviations for Case A above

are shown in Fig. 5.1. This contingency is found to exdte modes 3 and 5 in Table

5.1.

The observation matrix assodated with the system response to this per

turbation is defined as

X = [Acox Aú>2
■■■ Aaj 69rx(,"+1) (5.3)
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with n = 4 and m =201.

The five most dominant empirical Ritz eigenmodes obtained by the dy

namical mode decomposition are shown in Table 5.2. The frequendes of the sec

ond and third empirical Ritz eigenvalues approximate the dynamic of the linear

modes 3 and 5 in Table 5.1. The other empirical Ritz eigenmodes are spurious

modes.
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Fig. 5.1. Speed deviations of system generators. Case A.

Table 5.2. Dominant Ritz eigenmodes obtained byDMD for the data shown in Fig. 5.1

Mode N
Frequency Damping

(Hz)

'

(%)

Norm

I v ,

1 1.0003 0.0485 -1.9127 1.000000

2 0.9914 0.5743 1.1036 0.0930

3 0.9871 1.2050 1.2071 0.0717

4 0.9980 0.1638 12.2237 0.1895

5 0.9954 0.2653 9.9980 0.1058
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Some discrepancies are noted, espedally in the damping of the modal es

timates.

The approximation error is of 4.41 x 10
"i2

% when all 200 modes are in

cluded in the modal reconstruction. For comparison, the reconstruction error is

29.67% when the first ten modes are used to reconstruct the simulated signal.

This error increases to 36.31% when only three modes are used in the recon

struction.

Also of interest, Tables 5.3 and 5.4 compare the mode shape computed

using conventional linear analysis of the linear system representation and the

Koopman representation for the 0.56 añd 1.20 Hz modes.

Table 5.3. Comparison amongmode shapes.

Ritz eigenmode (0.5743 Hz) Eigenvector U3 4 (0.5666 Hz)

Amplitude Phase Amplitude Phase

0.36180 179.60181 0.45851 -180.05759

0.26326 179.34981 0.36760 -180.07060

1.00000 0.00000 1.00000 0.00000

0.89860 0.03097 0.87862 0.00330

Table 5.4. Comparison among mode shapes.

Ritz eigenmode (1.2050 Hz) Vector U5 6 (1.1991 Hz)

Amplitude Phase Amplitude Phase

0.92Ó70 -175.17165 0.88593 -180.00181

1.00000 0.00000 1.00000 0.00000

0.27763 156.02513 0.24086 -180.40626

0.28833 -54.94551 0.18997 -0.64832
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The analysis suggests that dynamic
n-iode decomposition provides a gcod

approximation to mode shapes for the dominant modes of interest.

Using the optimized dynamical mode decomposition method, four

Koopman modes that represent the recorded response were obtained. The re

sults are presented en Table 5.5. In contrast to the results from the previous ap

proach, the máximum error valué is of almost 0.56%. Again, some discrepancies

are noted with the linear estimates.

Additionally, when the eigenvalues of the system are introduced as the

Koopman valúes for the analysis, the error is of 15.49%.

Table 5.5. Approximate KMs obtained by the optimized DMD for the data shown in Fig. 5.1.

Mode j N
Frequency

[Hz]

Damping

[%]

Norm

II 'J

1 1.0001 0.0000 -100.00 1.0000

2 0.9997 1.2009 0.1623 0.0049

3 0.9991 0.5742 1.0184 0.0098

4 0.9979 0.0000 100.00 0.6581

The assodated mode shape for the first and second Koopman modes are

presented in tables 5.6 and 5.7. Similar conclusions to the dynamic mode de

composition case are drawn.

Table 5.6. Comparison among mode shapes.

Ritz eigenmode (0.5742 Hz) Vector Uj4 (0.5666 Hz)

Amplitude Phase Amplitude Phase

0.46927 -179.55802 0.45851 179.9492

0.38215 179.48726 0.36760 179.9294

1.00000 0.00000 1.00000 0.00000

0.87793 -0.19867 0.87862 0.00330
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Table 5.7. Comparison among mode shapes

Ritz Mode (1.1973 Hz) Vector U5 6 (H991 Hz) Vector U7 8 (1.2354 Hz)

Amplitude Phase AmpUtude Phase Amplitude Phase

0.91452 178.92790 0.88593 -180.00181 0.07849 -0.56741

1.00000 0.00000 1.00000 0.00000 0.10069 -180.50397

0.21264 169.49399 0.24086 -180.40626 0.81162 -179.99498

0.17766 -13.42432 0.18997 -0.64832 1.00000 0.00000

Results show that both, the dynamic mode decomposition and the opti

mized dynamic mode decomposition identify in similar way the mode of 0.5666

Hz and have difficulties to identify separately the modes of 1.1991 and 1.2345

Hz, though the optimized approach has lower error of representation.

Then, by comparing the signals of the original data set and the recon

structed signals obtained by dynamic mode analysis, is obtained the Fig. 5.2. It

can be seen the error between both groups of signals.

x10

Fig. 5.2. Original signals of the case of study A and the signals reconstructed with the KMs.

Here are drawn just the first 1.5 seconds ofthe transient to make the error more seeable.
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5.2.2 Detailed system representation

As a furthermeasure of the performance of the decomposition techniques, mod

al decompositions were obtained for a detailed system representation. Compari

sons are provided with the method of normal form analysis in [2], [5].

For reference and comparison, Table 5.8 shows the linear system modes,

whilst Fig. 5.3 shows the system response to a three phase stub fault applied at

bus 5 cleared in 0.019 s.

Table 5.8. Oscillatory modes ofthe system.

Mode

j.k *,*
Frequency

[Hz]

Damping

[%]
Mode Description

1,2 -1.1021 ± 7.7247Í 1.2294 14.1236 LocalAreal (-5,,<52)

3,4 -1.9594 ±7.5176i
1.1965 25.2211

Local Area 2 {^,5^}

5,6 -1.4668±2.2223i
0.3537 55.0851

Ed4,Cú__,S4,Ú),,S3

7,8 -0.1084 ± 1.3809Í
0.2198 7.8278

Inter-area l><^,G^,<^,<?iaJ

9,10 -1.2160+ 0.7717Í 0.1228 84.4320 Controls unit Generator 4

11,12 -0.2727 ±0.5169i 0.0823 46.6663 Controls unit Generator 1

13,14 -0.3340 ± 0.4559Í 0.0726 59.1008 Controls unit Generator 3

15,16 -2.8790 ± 0.4097Í

0.0652 99.0025 ^ qX''1' ql'^qi'^qi,

In order to build the matrix of observables, it has been taken 401 samples

with a sample frequency of 20 Hz through a time window of 20 s.

Optimized dynamic mode decomposition of the system results in 20

modes. A reconstruction error of 1.71 x 10~2 % is obtained from the method. Table

5.9 shows the extracted Koopman modes. As seen, optimized dynamical mode

decomposition provides a good estimate of the inter-areamode 7 in Table 5.8
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x10

Fig. 5.3. Speed deviations of system generators following a three-phase stub fault at bus 5.

Table 5.9. Main approximate KMs obtained by the optimized DMD for the data of Fig. 5.3.

Mode j
Frequency

[Hz]
Damping [%]

Norm

5 0.9945 0.2207 7.9443 2.7304E-02

6 0.9909 0.4412 6.5827 1.8972E-03

7 0.9894 0.1393 23.5869 4.1163E-03

9 0.9856 0.1034 40.8333 1.1765E-02

Several conclusions can be drawn from this analysis:

• Mode 5 in Table 5.9 provides a good approximation to mode 3 in

Table 5.8. Comparison of the mode shapes estimates in Table 5.10

• Also of interest, Koopman mode 6 appears to represent a second-

order mode.
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• Finally, following Property 2.3, a theoretical mode shape of the

nonlinear mode related to the linear eigenmode of 0.2198 Hz is

shown in Table 5.11 to be compared against the mode shape of the

0.4412 Hz of the approximation.

Table 5.10. Comparison among amplitudes and phases ofthe modes. The amplitudes are

normalized

App. KM (0.2207 Hz) Vector U7g (0.2198 Hz)

AmpUtude Phase Amplitude Phase

0.8562 25.8286 0.8562 25.7167

0.8507 28.4999 0.8507 28.3128

1.0000 0.0000 1.0000 0.0000

0.9850 -2.5343 0.9850 -2.5102

Table 5.11. Comparison among mode shapes

App. KM (0.4412 Hz)
Theoretical mode shape

(0.4396 Hz)

Amplitude Phase Amplitude Phase

0.3494 52.2018 0.7331 51.4333

0.3654 55.2006 0.7237 56.6256

1.0000 0.0000 1.0000 0.0000

0.9631 -5.0026 0.9703 -5.0203

As can be seen, the normalized amplitudes of the last two terms and all

the phases of both mode shapes are almost the same. The discrepancy between

the normalized amplitudes of the first and second generators is of almost the

half. With a different amount of approximation of the optimized dynamical

mode decomposition a similar result was achieved. By now there is not a clear

explanation for that phenomenon.
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The rest of the modes are approximations and mixtures of nonlinear

modes which ampUtude decay rapidly: liras, they
are not analyzed in depth in

this work because the modes of lcwer frequency and damping rate are the most

concerning.

5.3 The New-England 16-generator system

As a second test system, the 16-generator test system is adopted for further

analysis with the dassical system representation [1]. Here, emphasis is placed

on improvements to the technique when observability information is incorpo

rated to the estimation procedure.

5.3.2 Linear stability analysis

This system comprises 16 generators and 39 buses. Six modes of synchronizing

power flow oscillations are of interest to this study (refer to Table 5.12).

Table 5.12. Eigenmodes of case of study C used for the observability study.

Mode j Frequency Hz Damping %

3 0.3799 14.8756

4 0.4892 122710

5 0.6267 9.1479

11 1.2227 32524

15 1.5051 2.6426

17 2.2854 1.7408

5.3.2 Observability analysis

Observability of the critical modes has an important effect on the ability of the

Koopman decomposition to identify and characterize modal behavior. The

reader is referred to Section 3.6.2 of this document for further information relat

ed to the computation of observability measures, and spedfically in the evalua

tion of the matrix of observability of (3.44).
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The observability measure of the modes is varied in this study by mesns

of the vector of initial conditions x_ . The mode* that are taken for this study are

the six modes of Table 5.12.

A summary of the results is shown in Table 5.13.

Table 5.13. Minimum valúes ofthe observabüity measure ofthe modes to be identified by

DMD and optimized DMD algorithms.

Modeof Modeof Mode of Modeof Modeof Mode of

22854 Hz 13051Hz 1.2270 Hz 0.6267 Hz 0.4789 Hz 0.3799 Hz

1x10-'° UIO'10

lxlO"5 1x10-*

The minimum valúes of the observability measure shown in Table 5.13

were determined by the following procedure: the measure of observability was

decreased until it was not identifiable.

The minimum observability measure valué required to be identifiable by

the dynamic mode decomposition was almost the same for all the modes. For

the optimized dynamical mode decomposition, in change, the minimum re

quired observability measure was alternating between lx io~5 and 1 x io~"

The measure of observability of the other five modes practically did not

have any influence in the results.

As c«an be seen in Table 5.13, the modes can be extracted from the observ

ables even though they have a very low observability.

In Fig. 5.4 are shown the signáis of the system when the observability

measure of the mode of 0.6267 is fixed in l x io7 and the measures of the others

at 1.0. The amplitude of the mode of Fig.5.4 (b) is of approximately 1.57x io' %

of the original signal.

DMD lxlO"12 lxl0"': lxlO"12 lxlO"12

yTL 1x10"' 1x10"* 1x10"* 1x10"'
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(a) Speed deuation of Generator 5
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(b) Component of 0.6762 of the speed deviation of Generator 5

Fig. 5.4. Speed deviation of Generator 5, (a) original signal (b) the 0.6267 Hz component.

It must be noted that the damping ratio and the mode shape calculated

for the mode of 0.6267 Hz are almost the same that those calculated by means of

a linear stability analysis.

Based on the above analysis, a two-step strategy for an effident computa

tion of Koopman mode analysis for large sets of observables is proposed:

1. In the first stage, a few signals contain the modes of the system

with a certain valué of observability greater than a given threshold

are selected

2. This subset of observables is used in .an enhanced optimized dy

namic mode decomposition to obtain the best approximations to

the true Koopman modes

3. Finally, the best approximations are used to decompose the rest of

the observables.

4. It is important to say that this last process can be made partially
for smaller subspaces of observables in order to avoid numerical

issues.
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5.4 46-machine, 189-bus model of the Mexican power grid

The fourth case have been designed to be compared against results presented in

[3] and [6], to show that Koopman mode analysis provides an extensión of linear

global analysis for nonlinear dynamics. by extracting Koopman modes from

simulation data of a large disturbance in a real, nonlinear system. It illustrates

both, linear and nonlinear behavior, and was computed with a time step of

0.0128 s and a time window of 30 s.

A detailed 46-machine, 189-bus of the Mexican interconnected system (MIS) is

used to assess the ability of the Koopman operator to characterize wide-area

phenomena in complex power systems.

The disturbance of interest is the outage of the Mérida (MDA) power station

unit # 1 in the Peninsular system. This .contingency is known from previous

studies to exdte the two slowest modes in the system [3], [6].

5.4.1 Modal characteristics

The 46-machine MIS model has 5 inter-area modes in the low frequency range

that are of interest to this research: For reference and comparison, Table 5.14 lists

the damping and frequency of the five slowest modes in the system [3].

Table 5.14. The five slowest mode ofthe system

Inter-area

Mode j
Eigenvalue a*,*

Frequency

(Hz)

Damping

(%)

1 -0.011+ 2.010Í 0.31 0.57

2 -0.032-t-3.251i 0.51 0.98

3 -0.043 ± 3.912Í 0.62 1.09

4 -0.031 ± 4.824Í 0.76 0.64

5 -0.177± 5.693Í 0.91 3.10
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Discussion will be limited to the first four modes of Table 5.14 which

dominate system response for mostmajor contingendes of interest.

5A.2 Koopman mode analysis

To identify the dynamics interacting in the observables- is used the dynamic

mode decomposition algorithm to obtain approximations to the true Koopman

modes. Then, the ensemble of signals is decomposed with the optimized

approach.

Figure 5.5 shows the time evolution of selected signals for analysis. Visual

inspection suggests the presence of nonlinear trends and multicomponent be

havior.

x10"3
1.5 1 , 1 r 1 1

i

DELU1

H SLM U1

JFig. 5.5. Speed deviations of selected system generators.

The dynamic mode decomposition algorithm it has been used to analyze

the set of observables of the Fig. 5.5.

With the entire collect of empirical Ritz vectors (237) gotten by the dy

namic mode decomposition, the máximum error is of 6.63 x 10
~13

%. The first 10

approximate Koopman modes are contained in Table 5.15.
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Table 5.15. Approximate Koopman modes obtained by the DMD algorithm.

.. . . ir I Frequency Damping
Norm

Mode / \A ¡i
J r o

y ~ y' \ A
1Hz] [%] \\v,\\

1 1.0003 0.0000 -100.0000 0.2887

2 0.9969 0.5096 0.778-1 0.3104

3 0.9961 0.2693 1.8128 1.0000

4 0.9953 1.1369 0.5206 0.0093

5 0.9953 2.3700 0.2499 0.0023

6 0.9949 2.4111 0.2688 0.0022

7 0.9938 1.0387 0.7554 0.0208

8 0.9937 1.6029 0.4991 0.0047

9 0.9936 1.2672 0.6432 0.0067

10 0.9934 1.8018 0.4632 0.0046

With these first 10 approximate Koopman modes, -the error has a máxi

mum valué of 84.88%. Also, it is noted that the frequendes of second and third

rows are similar to that of the inter-area modes provided in Table 5.14, and if

just the first three empirical Ritz vectors are contemplated, the máximum error

takes the válue of 85.05%, what is not much different of the error of taking the

first 10 modes.

Then the optimized dynamic mode decomposition is used. With 30

modes the máximum error valué was of 0.69%. The first ten approximate

Koopman modes found by the algorithm are shown in Table 5.16.

It can be observed that some modes with low frequendes as the first and

the fifth provide an approximation to the trend of the signal.
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Table 5.16. First 10 approximate KMs obtained by the optimized DMD algorithm for the

data ofFig. 5.11.

Mode j r
Frequency

[Hz]

Damping

[%]

Norm

V

1 1.0960 0.0892 -79.2319 0.0000

2 1.0056 0.2602 -2.6878 0.0024

3 0.9978 0.5124 0.5543 0.0359

4 0.9947 0.2700 2.4748 0.1627

5 0.9938 0.0160 43.8355 0.0987

6 0.9904 0.7341 1.6522 0.0745

7 0.9882 0.2834 5.2640 0.0150

8 0.9844 0.5656 3.5085 0.0089

9 0.9824 1.6560 1.3554 0.0016

10 0.9804 0.6384 3.9097 0.0674

Additionally, the modes number 3, 4, 6, and 10 have frequendes similar

to that shown in Table 5.14 so they can be interpreted as approximations to the

inter-area modes of the system. Nevertheless, some other approximations seem

to be residuals of these approximations to the inter-area modes. The second and

seventh modes are similar to the third. Some other cases are present in the rest

of the approximate Koopman modes.

Also, the fifth inter-area mode of Table 5.14 is contained in the list of the

30 approximate Koopman modes, but there are other several approximations

with almost the same frequency that can be residuals or other local modes.

Figures 5.6 and 5.7 give the normalized mode shapes of the approximate

Koopman modes of the inter-area modes 0.2700 Hz, 0.5656 Hz, and 0.7341 Hz.

Results are in good agreement with previous small-signal stability results in [6].
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Fig. 5.6. Mode shapes ofthe approximate Koopman mode at 0.5656 Hz,

20 25

Generator

(a) 0.27 Hz mode
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20 25

Generator

(b) 0.734 Hz mode

Fig. 5.7. Mode shapes ofthe approximate Koopman modes (a) 0.2700 Hz and (b) 0.7341 Hz

If the approximate Koopman modes that are similar to the trend and the

four inter-area modes (6 in total) are taken to reconstruct the observables it rises

a máximum error of 91.74%.

Figure 5.8 compares the original measured signal with the reconstructed

signal using the dynamic mode decomposition and optimized DMD decomposi

tion. Simulation results show that the two approaches provide a good approxi

mation for the steady state system behavior. Clearly, the optimized DMD meth

od outperforms the dynamic modes approximation.

In all cases, the dynamic mode decomposition technique fails to approx

imate system behavior following the inception of the fault, while the optimized

DMD method provides an accurate modal approximation for the whole obser

vation window.
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Fig. 5.8. Comparison ofmeasured signals with the reconstructed mode shape estimates using the

three dominant Koopman modes. Speed deviations of generators (a) DELUl, Ab) SYC Ul, and

(c)MDAUl.

5.5 Concluding remarks

Three types of test cases have been presented in this chapter: the linear case, the

simulation of a real nonlinear power system and the simulation of a fault in a

synthetic nonlinear system.

The linear case studied demonstrated that the Koopman modes converge

to the linear eigenmodes. Then, for nonlinear observables it was shown that

Koopman mode analysis is capable to decompose the set of signals into a few

physically meaningful Koopman modes with an acceptably accuracy. Therefore,

although the approximate Koopman modes can be a mixture of a few intrinsic

modes of the observables, their properties are still preserved together in the



mode shape of the corresponding Koopman eigenvalue. Further results for ob

servables with Ihe adequate resolution are not presented in this research work

due to the space and the aim of the investigation.

Then, it was found that though a component could have a very low

measure of observability, Koopman mode analysis is still able to extract it.

Finally, in this chapter was performed an analysis of a nonlinear response

and it was demonstrated that Koopman mode analysis provides analogous re

sults to the method of Normal Forms. An important detail was that a theoretical

approximation was used to calcúlate the second-order eigenmode of the main

nonlinear mode identified. Nonetheless, more investigation is needed.

In the numerical performance of the Koopman mode decomposition,

some details have been found:

1. The norm valué is not always the best parameter to identify the empirical

Ritz vectors that approximate in the best way the intrinsic dynamics.

2. The dynamic mode decomposition algorithm is faster than the optimized

approach, but sometimes it cannot identify the most meaningful struc

tures due to its dependence on the first and last vectors of the snapshots

series.

3. The approach based on the singular valué decomposition was not report

ed in this chapter because it got the worst approximation. Its results are

useful mainly for some cases as initial set for an optimization process.

4. The optimized Koopman mode decomposition for large sets of approxi
mate Koopman modes does not converge efficiently to the true Koopman

modes.
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Chapter6

Conclusions

6. 1 General conclusions

In this thesis, a rigorous analytical framework for global nonlinear stability

analysis of wide-area measurements' is presented.

Drawing upon the theory of Koopman modes, variants of Koopman

mode decomposition are introduced and tested on measured data. These in

dude dynamic mode decomposition, SVD-based dynamic mode decomposition

and optimized dynamic mode decomposition.

Extensive numerical simulations show that existing methods suffer from

various limitations:

1) The SVD-based approach is severally affected by the number of ob

servables and their correlation.

2) Dynamic mode decomposition is highly sensitive to the variation of

the last snapshot.

3) The ranking criterion used for the approximate Koopman modes is

defident.



mode shape of the corresponding'Koopman eigenvalue. Further results for ob

servables with the adequate resolution are not presented in this research work

due to the space and the aim of the investigation.

Then, it was found that though a component could have a very low

measure of observability, Koopmanmode analysis is still able to extract it.

Finally, in this chapter was performed an analysis of a nonlinear response

and it was demonstrated that Koopman mode analysis provides analogous re

sults to the method of Normal Forms. An important detail was that a theoretical

approximation was used to calcúlate the second-order eigenmode of the main

nonlinear mode identified. Nonetheless, more investigation is needed.

In the numerical performance of the Koopman mode decomposition,

some details have been found:

1. The norm valué is not always the best parameter to identify the empirical

Ritz vectors that approximate in the bestway the intrinsic dynamics.

2. The dynamic mode decomposition algorithm is faster than the optimized

approach, but sometimes it cannot identify the most meaningful struc

tures due to its dependence on the first and last vectors of the snapshots
series.

3. The approach based on the singular valué decomposition was not report
ed in this chapter because it got the worst approximation. Its results are

useful mainly for some cases as initial set for an optimization process.

4. The optimized Koopman mode decomposition for large sets of approxi
mate Koopman modes does not converge effidently to the true Koopman
modes.
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