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Resumen

El monitoreo de area amplia de procesos dinamicos complejos es un problema de
gran importancia para el andlisis y el control del comportamiento dinamico de los
sistemas de potencia. Un monitoreo confiable de la dinamica espacio-temporal
mediante unidades de medicién fasorial sincronizadas en tiempo, con el objetivo
final de su aplicacion al diagndstico, proteccion y control de sistemas en tiempo real,
permanece como un desafio importante de investigacion debido a la complejidad de
la dindmica y los procesos de control que ocurren simultaneamente a diferentes
escalas.

Este trabajo de investigacion examina la aplicacion de la teoria de modos
Koopman para la identificacion y extraccion de mecanismos coherentes y sus
propiedades modales correspondientes, a partir de la respuesta observada del
sistema de potencia. Basandose en las propiedades espectrales del operador de
Koopman, se desarrollan y se verifican técnicas para extraer el perfil modal y las
propiedades de los modos, en conjuntos de datos provenientes tanto de mediciones
como de simulaciones de estabilidad transitoria.

Se proporciona ademas, una interpretacion fisica de los modos Koopman que
permita estimar la dinamica global no lineal del sistema. Se muestra que, para el
caso de comportamientos lineales, el método converge hacia los modos lineales. En
el caso de dinamicos no lineales, el analisis de los modos Koopman tiene una
interpretacion interesante en términos del analisis de formas normales en la teoria
de perturbaciones.

Se plantean avances en el desarrollo de métodos para evaluar la estabilidad
de grandes redes de potencia y se identifican direcciones fundamentales de la
investigacion.

Adicionalmente, se abordan algunos problemas de simulacion encontrados
en la aplicacion de técnicas para la implementacion del analisis espectral de
Koopman en sistemas de potencia de grandes dimensiones. Las nuevas estrategias
desarrolladas para mejorar la eficiencia del analisis por medio de optimizacion
numerica permiten que el método sea capaz de tratar sistemas complejos.

Se realizan algunas comparaciones con otras propuestas existentes para
evaluar la eficiencia del marco propuesto.



Abstract

System wide-area monitoring of complex dynamic processes is a problem of great
importance in the analysis and control of power system dynamic behavior.
Reliable monitoring of the spatial and temporal dynamics by means of time-
synchronized phasor measurement units, with the ultimate application to real-time
system diagnostics, protection and control, remains a major research challenge due
to the complexity of the driving dynamics and control processes occurring at
different scales.

This research work examines the application of Koopman mode theory to
identify and extract coherent mechanisms and their associated modal properties
from power system observed response. Based on the spectral properties of the
Koopman operator, techniques to extract mode shapes and modal properties from
recorded data at'various critical locations are developed and tested in both,
synthetic and simulated datasets.

A physical interpretation of the Koopman modes is then provided, which
enables assessment of global nonlinear dynamics. It is shown that for linear
observables, the method converges towards the linear stability modes. In the case
of nonlinear dynamics, Koopman mode analysis has an interesting interpretation
in terms of normal form analysis in perturbation theory.

Advances in the development of methods for assessing the stability of large
power grids are stated and key research directions in the area of spatio-temporal
modeling are discussed.

Numerical issues encountered in the application of Koopman spectral
analysis to large scale power systems are also discussed. Newly developed
strategies for improving analysis efficiency via numerical optimization enable the
analysis method to better handle complex systems. Comparisons with other
approaches are provided to assess the efficiency of the proposed framework



Index

Chapter 1
Introduction
1.1 Background and motivation ............cccociviiiiiiniieiiireieenerrnseeerencsnessssesncsnness 2
1.2 Probhlent ShalERIBNE . oo o s s s e s s e AR R A s 3
1.3 A brief review of Previous WOLK .....cc..i o assaissssssasssisis sssssisssinissing 5
1.4 THEBIE ODJEEEIVEE. ..o sinvavsnn s i s aasme s s smasidawsiswsia v oo seibvms 7
1.5 Regearch CONLTIDUBIONS ,..cuvvirissssmmmpevsinersissssnsversessessinorssesssvessoravarsssvaves 7
1.6 Organization of the thesis........ccoiveiieiiiieeiiiieieceee e eeresesaeennes 8
0T SO 9
Chapter2
Koopman Mode Analysis
2.1 Mapping onto basis fUNCtIONS.............vvurieuiimuiiiiiii e e e eeenns 14
2.2 LIDErRiOn EhBUER ... s i s s s s s s e i 15
2 i, ] LIBICATY OPETEEOTS oo oot st aoms s ms s s s s s ssasams 16
2.2.2 Resolution of the 1dentity .........cocouiiiiiiniiiniriireciiiiiieiieeiereseressensnnnen. 17
22y OPRCEEEL BICOTN cninsionsnsnsnmniniinsieiesiiis s s asmim s 19
2.2.4 The Koopman Operator..............ooeuuiieiieeiieeiiiieeierieieeroneenessenssnnsees 21
2.3 Koopman operator for continuous-time dynamical systems................ 23
2.3.1 Koopman €1g2enfunctlons.........c.cceeuueeimeiiieeiienneeiiieeenseeneesesnesannsaen. 23
2.3.2 Properties of the Koopman operator............coveeeeeeeieeeeeeeeieeeeneennnnn. 24
B0 s SOIODITTVENY TUNUROUBIN oo e s iy s 26
2.4 Koopman mode analysis for discrete-time dynamical systems............ 26
2.4.1 Linear dynamical systems..........ccooeeueriuiriencirereeennnnnn.. I——— 28
2.4.2 Nonlinear dynamical SYSteImMS........c.vvveiuiieieeieeeeeeeiereeeseeeneeeeeennes 29
2.5 Comparison against other methods..............ccoovemmmmiiiiiiieeneienreeneeeenene. 30
2.5.1 Discrete Fourier transform ........cooveeeiiiieniiiiereeieiieieieeeseernesesesennss 31
2.5.2 Proper orthogonal decomposition.........ocoeueieneveeieiiiieeeeeeeeeeeeeiann,s 31
B0 EVOIEY WO ninsomnnnssons onmsms i s R oA AR s s msiasiv s nmi 32
2.6 Concluding remarks ..........coouvueeiiiiiimiiee et eeeeee e e eea e e ees e 33

LA T e O S SO 34



Chapter3
Optimized Dynamic Mode Decomposition Methods

3.1 Generalized Laplace analySiS . .....coueiuiiieeeeeieieiieeeieeeeeeieeeneesnsenssanssanees 37
3.2 Dynamic mode deCOmMPOSITION ....ouvuineieerieiieieeeeeee e iseneesresensnasnesasennes 38
3.2.1 Computation from sﬁapshots .......................................................... 38
3.2.2 Algorithm for computation of Koopman modes.............cceeevemeeeeeeee 41
9.2 OtADLLILY S CORVEFTBIIDE .o rmsainmmniisinmssssssnssasssis st s SAsEAL TSI 43
3.3 SVD-based dynamic mode decompoSItion .........eeveeenerereiveeneeeensieennneesess 44
Bt ] VL] PEOIREEIINL ..o isssinimsinssmmmnermmesmsmss s sosss s i s aamn S 45
3.3.2 Algorithm for comPuUtAtION .......oveeieeeeeeeeeeeeee e eeeeee e isesasnesenaannees 46
3.4 Optimized dynamic mode decompPoSItiON ........ccvuevieuieiuneeeeereeeienerenaeennns 47
3.4.1 Optimized DMD formulation ........cocoeenimniieiiiiieeeieeeesaensensesasessennenns 48
3.4.2 Computation of optimized DMD .........coovimeiiiniiiiiiiiciiicereeeene e 49
3.0 I1UStratiVe @X APl oueneinieieii ettt eeereesessesnnsnssnsnnsnesnesaessnsnnenns 49
3.5.1 Application to synthetic SIENAlS.......ccovvvniieiieiereeeiieeeeeensreneeseseneanesnes 50
3.5.2 Application to simulated data from an electric circuit .................. b3
.8 Mogal DDEBETHIIIIEY . ... oo s issmmissmemmmn 55 56
L T ¢ T T—— 56
3.6.2 QUANtItatIVe IMNEASUYES .....c.ieiieerierieeeaeninaeeneeesnsnsnsnsnsassssssasasasssssanness 57
3:1 CORCHINE TEMATES cawn e s iy s s G s S s DT 59
B:0 OB OIIEEE. s tissscsassnis s AR A AR T R R 60
Chapter4
Physical Interpretation of KMA
4.1 Linear observables ... e e e e 63
4.1.1 Small-signal stability analysis.......c.cccceeruirmiireiiicirniiinirniniesnenserecans 63
4.1.2 Physical interpretation for linear observables.......ccccccccvvverrennen..... 64
3 2 N I eHE DB R EVADIES . ..ot ammmsmmorsmi s 66
4.2 1. Normal IGEI BRALVEIE ..o ey i mis s s sms 66
4.2.2 Physical interpretation for nonlinear observables......................... 70
4.2.3 Comparison between KMA and the MNF .......cooovimiiiiiiiiiiiinnnnnn, 13
4.2.4 Nonlinear Koopman structures.....cc.o.ie oo e 75
4.3 ConchuinE COIBT RS s sins iinssbos umeisnsesnnh s i osonis sy de s 77

2.4 B EIEREREEDL s it i s i i e i 77



Chapterb

Application
B.L D0Eline of the StuAY ......commsmmnsmssnsvnsanssnsshasds s aARIEES SEEH 5EETESI R A GRS aS 80
Bl LB RO s nury s inesunns demmmpppoiveromvins s ssmena et i s A A AT 80
5.1.2 Modeling considerations.........cccceeeetieiiiuereninneeiessecrnesreeeeeseesnsenns 80
b.2 Two ares, four-generator BYBEEIN «.:wawmsmminomsnssssmsimusones s svuvermyressever 81
5.2.1 Classical system representation ..........cccceeveeiveciniiiiiiicrnnciinncinnn, 82
5.2.2 Detailed system representation..........ccoceeveiiiiiiiiiiciiiirniiiicininnenes 87
5.3 The New-England 16-generator system............ccccoevveerrmrernccerecseennnenene 90
5.3.1 Linear stability analysis......cccccouuiiiiiieiiiiiiiiiiirrerrccreecreereeecneseneenes 90
5.3.2 Observabilily BNAIVELS ... ccommsmmsmmmarsumsasnspasssvassssssnsrsynes spvsvase 90
5.4 The 46-machine, 189-bus model of the Mexican power gnd................. 93
5.4.1 Modal characteXiStICs ... i isaieisaessisse s s s smsmmm 93
5.4.2 Koopman mode analysSiS.....ccccooiuceiiiiieiiriiniiiinieiereerienerncressncensssensnns 94
5.5 Concluding FEMATKE ... coovr s svmmmvsmismmssimmspsasssss ssinspreopys sayrasvanvssvensessnssess 99
) T e T 100

Chapter6
Conclusions

6.1 Lyehieral EOREHBIIAE «onunmessmimani G o a e s TR S R A TR 102

R T T e O — 103



Index of figures and tables

Figure 3.1. Synthetic S1gNals. ..o e rrvaaanaeaes 50

Figure 3.2. Reconstructed signals by taking the first three modes of

AR D) s anssnncsssansssnnissintibmmemsinmmmmmssimaschmo e AR AR s s s 52

Figure 3.3. RLC Circuit showing parameters used in the analysis. ............. 54
- Figure 3.4. Signals of the electric circuit used for KIMA. ....oovoenenieevecereneeses 55

Figure 5.1. Speed deviations of system generators. Case A. ......cccceeereeevnneens 83

Figure 5.2. Original signals of the case of study A and the signals
reconstructed with the KMs. Here are drawn just the first 1.5 seconds of the

transient to make the error more SEeable. ... e ieieeessesessssssassssasses 86

Figure 5.3. Speed deviations of system generators following a three-phase

R DI B DB 88
Figure 5.4. Speed deviation of Generator 5, (a) original signal (b) the 0.6267

FLE ORI, o crnasem s R S SR 92
Figure 5.5. Speed deviations of selected system generators......................... 94

Figure 5.6. Mode shapes of the approximate Koopman mode at 0.5656 Hz, 97

Figure 5.7. Mode shapes of the approximate Koopman modes (a) 0.2700 Hz
R R MM MO cctosooosonsso s S R s 98

Figure 5.8. Comparison of measured signals with the reconstructed mode shape
estimates using the three dominant Koopman modes. Speed deviations of generators

(a) DEL U1, (b) SYC U1, and MDA UL ..o, 99
Table 3.1. Dominant Ritz eigenmodes obtained by the DMD algorithm for

the-fata. Bt T PIE. 8. L. oomnismisnmsiossssing miss s s s i s Bk bk 51
Table 5.1. Small-signal stability analysis eigenvalues. ..........covvvevimeinnivnninnn. 82

Table 5.2. Dominant Ritz eigenmodes obtained by DMD for the data shown
B . B s 83

Table 5.3. Comparison among mode shapes..........c....oevveieeieiireeeirieeennecessennenn 84



Table 5.4. Comparison among mode shapes..........ccceeereireeirriicinininiiinneniienee. 84

Table 5.5. Approximate KMs obtained by the optimized DMD for the data

Ti T ol s N T U 85
Table 5.6. Comparison among mode shapes.........ccoeceevuiiineineriiceininnrenieninne.. 85
Table 5.7. Comparison among mode shapes........cccccceivviniieccrnciiinirenenieneeennen. 86
Table 5.8. Oscillatory modes of the system. .......ccoovvrveveeiiiiiiiiiiiiiiieeneeeen. 87
Table 5.9. Main approximate KMs obtained by the optimized DMD for the
data of Pip. D.3. oo s s i i (e s sasis S ssas s 88
Table 5.10. Comparison among amplitudes and phases of the modes. The
amplitudes are normalized.............ccoouieiiiiiiiiiiiiiiir e aaes 89
Table 5.11. Comparison among mode Shapes......cccceeveiieiierineieicenereeeeirenennee. 89

Table 5.12. Eigenmodes of case of study C used for the observability study.90

Table 5.13. Minimum values of the observability measure of the modes to be
identified by DMD and optimized DMD algorithms. .........cocovieiiiuiiienninnnn.. 91

Table 5.14. The five slowest mode of the system...........ceeueeemiimmiiiiiomriaaan... 93

Table 5.15. Approximate Koopman modes obtained by the DMD algorithm.

Table 5.16. First 10 approximate KMs obtained by the optimized DMD
algorithm for the data of Fig. 5.11. ..o 96



Chapterl
Introduction

This introductory chapter presents a brief description of the research work contained in
the thesis.

The background and motroations are explained as well as the statement of the
problem that is attached in this document.

Further, a concise review of the previous work related to the topics treated in this
thesis is presented. Also, the pursued objectives, the obtained results and limitations of
the approach are then stated.

Moreoover, the main contributions are summarized.

The last part of the chapter is an outline of the general structure of the thesis.



1.1 Background and motivation

The stability of large interconnected power systems is of primary concern in the

power industry. Power system dynamic behavior is intrinsically nonlinear and

non-stationary [1], [2].

Transient dynamic processes in power systems exhibit complex phenom-
ena that occur on a wide range of spatial and temporal scales. In practice, sys-
tem behavior is interpreted in terms of oscillatory modes involving the exchange

of swing energy between machines.

The oscillatory modes of electromechanical origin (local and inter-area)
are of special concern since they describe global behavior. With a few excep-
tions, oscillatory activity in the general range of 0.1 Hz to 1.0 Hz is associated
with inter-area modes that are related to the swinging of many machines in one
part of the system against machines in other parts. They are caused by two or
more groups of closely coupled machines being interconnected by weak ties and
can be affected by many factors. Modes in the range of 1.0 Hz to perhaps 1.8 Hz

are usually local to some particular generator or plant, and not globally observ-
able [1], [2].

Accurate estimation and characterization of electromechanical oscillation
modes interacting throughout a large, interconnected grid is a critical part of
analyzing, controlling and operating a power system. Mode estimation can be
accomplished by modeling the system or by obtaining a mode decomposition
that optimally fits a measured system response. Both methodologies have ad-

vantages and disadvantages that make them complementary [3].

The process of modeling a power system is based on a certain grade of
linearization of the dynamic equations describing the interaction among differ-
ent variables and elements of the system. The increased use of control devices
and the huge dimension of modern interconnected systems in addition to its

intrinsic nonlinear behavior make this a very difficult and demanding task.



With the advent of wide area measurement systems (WAMS), and the
consequent availability of simultaneous measurements at various system loca-
tions coordinated via global positioning systems, there is a need for developing
techniques with the capability of effidently identify dynamical (nonlinear)
modes from large amounts of synthetic or measured recorded data [1].

Knowledge of a power system’s modal properties may provide critical in-
formation for control dedsions and thus enable reliable grid operation at higher
loading levels [3]. This is the thrust of the present research.

1.2 Problem statement

sized above, this behavior is particularly relevant in the analysis of measured
data from wide-area measurements systems involving various temporal and
spatial scales [1], [5}H8].

Techniques for describing global behavior of complex transient processes
are of particular interest for characterization of wide-area phenomena. Expen-
ence shows that simultaneous analysis of measured data may improve data
characterization and result in a better description of global phenomena [6]{8].

Global stability analyses of measured data may be used to detect impend-
ing system breakdown and may be the basis for wide-area control and protec-
tion. Direct nonlinear analysis of large data sets, however, may be prohibitive
and result in a large amount of data that has to be processed for assessing power
system's health.

This research discusses the application of nonlinear analysis techniques to
the problem of power system modal identification. Methods based on Koopman

mode decomposition are to this end developed and tested on both synthetic and
simulated data. The methods extend the notion of linear modal decompositions
to the nonlinear setting and can be used to characterize global phenomena.



By extending linear analysis, modal interactions, trends and other arti-

facts can be accurately identified.

Extracting dynamical features of a power system by global linear analysis
require the underlying matrix of the system. In the case of transient stability
measurements, this kind of matrices is not available [9]. A bulk of approaches
has been proposed over the past two decades to conduct modal analysis using
only time-synchronized actual-system measurements [4]. Some of these tech-
niques may represent accurately the entire ensemble of data with a few modes
obtained by means of correlation or most energetic trajectories, but without a

clear physical meaning of each of them.

There are some other methods, also known as ringdown analyzer algo-
rithms which underlying assumed signal model is a sum of damped sinusoids.
For large systems, however, most of these techniques are computationally ineffi-
cient and accurate characterization of relevant modal behavior becomes diffi-
cult. Moreover, these approaches are mainly based on linear techniques and

some of them cannot perform adequately for nonlinear or nonstationary signals.

Further, large stressed interconnected systems when subjected to large
disturbances, due to its number of degrees of freedom, and the sparse geograph-
ical distribution, exhibit highly complex phenomena including modal interac-
tions, temporarily chaotic vibrations, and intermodulation. To determine the
mechanisms governing these physical variations, it is essential to characterize

the large-scale interactions between the system modes [2].

The huge number of elements encountered in a power systems and the
needed detail to describe their dynamic behavior to obtain a precise description
of the evolution of a power system imply an enormous computational effort.
Additionally, power systems are continually excited by random inputs with
high-order independence. Because of this stochastic nature, no algorithm can
exactly estimate the modal properties of the system from finite-time measure-

ments [4].



It is clear from this analysis, that techniques with the ability to simultane-
ously analyze measured data at various system locations are needed that can

account for nonlinear and non-stationary behavior.

The following section briefly describes work in this area and areas of fu-

ture research are identified.

1.3 A brief review of previous work

Existing approaches to power system dynamic characterization are largely
based on linear analysis techniques. Examples include Prony analysis tech-
niques, eigenrealization algorithms, block processing techniques, and recursive
algorithms, among others. These procedures have been successfully used to ex-
tract modal information from complex data sets [3], [4], [10]-[12].

As the number of measured signal increases, accurate characterization of
relevant modal behavior becomes difficult, especially in the presence of noise,
trends and abrupt system changes [13]. Some of this sort of approaches have
been developed or enhanced in recent years. Even though under relatively high
measurement-noise conditions accurate estimates have been provided, the anal-
ysis is made via linear techniques, and so is assumed to be the dynamical behav-

ior of the power system [4], [12].

Some techniques which use is efficient with a relatively high number of
measured signals (some of them even in the presence of noise) also have been
introduced in the last years; the most for analyzing nonstationary and nonlinear
phenomena, e.g., proper orthogonal decomposition (POD), empirical orthogonal
function (EOF), wavelet-based analysis, and Hilbert spectral analysis [6]-[8],
[14]. Nevertheless, the eigenfunctions or modes obtained frequently enclose sev-

eral electromechanical modes mixed and in some cases mode shape extraction is
not addressed [14].

Recently, an interesting and potentially powerful tool based on the

Koopman operator has been developed for dynamical-analysis of mechanical
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systems, mainly in the area of turbulence and fluid dynamics [15]-[18]. The
technique is especially useful for describing the behavior of complex nonlinear
systems by decomposing snapshots of measured observables into modes deter-
mined from spectral analysis of the Koopman operator. It was proposed by Ber-
nard O. Koopman while investigating linear transformations in Hilbert spaces to

analyze Hamiltonian systems [19].

Koopman mode analysis was introduced in the power systems literature
in [20]-[23). The technique was used in [20] to identify coherency by perform-
ing modal analysis based on nonstationary data of short-term, nonlinear swing
dynamics. It was observed that the Koopman modes provide a nonlinear exten-

sion of linear oscillatory modes.

In [21] it is suggested a precursor to phenomena of loss of transient stabil-
ity in multi-machine power systems. Modes are extracted using the Koopman
mode decompos'ition to analyze data provided by sensors or simulations. Also
of interest, the Koopman operator has been used for nonlinear dynamical sys-
tems in order to enable a data-based approach to stability assessment of power

systems without models [22].

In [23] a study for an optimal islanding strategy based on the dynamical
properties of the system extracted by means of Koopman mode analysis is de-

veloped.

Koopman operator is infinite dimensional even if the governing dynam-
ics are finite dimensional, and does not rely on linearization of the dynamics.
Indeed, it captures the full information of any nonlinear system [15]. Modes ob-
tained, referred as Koopman modes are associated with a particular observable,
and may be determined directly from measurement data. They have an associ-
ated temporal frequency and growth rate and may be viewed as a nonlinear

generalization of linear global modes of a linearized system [15], [16].



1.4 Thesis objectives

The primary objective of this thesis is to develop advanced analytical models to
characterize power system nonlinear oscillatory behavior from measured data.

Extensions and generalizations to Koopman mode decomposition are suggested
and tested.

Specific objectives include:

* The development of an analytical framework for nonlinear analysis of

measured data based on an optimized dynamical mode decomposition
technique.

* The analysis of the physical characteristics of the extracted modes and

their comparison with other nonlinear analysis methods.

The analysis of factors affecting the model performance. In particular, the
performance of the technique under limited measurements, noise, and in-

complete modal observability.

1.5 Research contributions

The main original contributions of this research work are:

* The development of a rigorous analytical framework for the simultane-

ous analysis of spatio-temporal data based on advanced Koopman mode

decomposition

* The evaluation of optimized dynamic mode decomposition techniques

inspired by computational intelligence

* The interpretation of modal behavior in terms of nonlinear mode interac-

tion in perturbation theory



The extension and generalization of Koopman analysis to incorporate ob-
servability information into the modal characterization strategy. The
evaluation of sources of error arising from incomplete observability of the

system

1.6 Organization of the thesis

This thesis is structured in six chapters. After this introductory chapter, Chapter
2 presents a theoretical background on Koopman operator analysis. The theo-
retical basis of this method are described in the context of the analysis of simul-

taneous measured data.

Chapter 3 discusses different strategies for an accurate computation of
the Koopman modes. These include the dynamic mode decomposition algo-
rithm, an optimized dynamic mode decomposition technique, and some other
variants explored through the development of this research work. A brief de-
scription of the proposed optimized dynamic mode decomposition technique is
given, together with an analysis of synthetic data. A comparison with both, line-

ar and nonlinear analysis techniques is presented.

In Chapter 4, a physical interpretation of the Koopman mode decomposi-
tion is provided. It is shown that, under small perturbations, the Koopman
modes converge to the linear global modes of the system. A rigorous analytical
interpretation is then provided that shows the conditions under which this is
achieved. Extension and generalizations to the nonlinear case are investigated

and comparisons with perturbation theory are presented.

The application of the proposed technique to simulated data is presented
in Chapter 5. Detailed simulation studies show that the proposed framework

outperforms existing modal decomposition approaches.

Finally, in Chapter 6 some conclusions, suggestions, and future works are

summarized.
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Chapter2
Koopman Mode Analysis

The expansion of a complicated function of space and time into a sum of simpler compo-
nents is a problem of current interest. The most common methods of analysis are based
on the Taylor and Fourier expansions. This idea, though has provided important infor-
mation about the process dynamics, is called into question since the equations describing

the behavior of dynamical systems are nonlinear.

An alternate concept has emerged: the problem of decomposing the evolution of a
set of observables from the perspective of operator theory, namely based on the projection
onto eigenfunctions of the Koopman operator. Koopman mode analysis (KMA) captures
the full information of a (nonlinear) system through the spectral analysis of the
Koopman operator. It does not rely in any linearization process and cgn represent any
nonlinear response as a linear combination of an infinite sum of linear and nonlinear

functions. It is considered as a nonlinear generalization of linear global analysis.

In this chapter, a brief description of Koopman mode analysis and the Koopman
operator is pregented to analyze discrete systems. The main properties of this technique
are developed, and special attention is focused on its mathematical formulation. A brief
comparison with other methods, such as the discrete Fourier transformation (DFT) and

the proper orthogonal decomposition (POD) is provided.



2.1 Mapping onto basis functions

Power systems dynamics exhibit complex phenomena that occur on a wide
range of scales in both space and time. Even with large amounts of information
available from simulations and measurements, analysis of complex dynamical

phenomena directly from raw time histories is usually not fruitful.

In practice, analyses of dynamic structures are often performed by de-
composing measured data into modes. Common techniques include global
eigenmodes for linearized dynamics, discrete Fourier transform (DFT), proper
orthogonal decomposition (POD) for nonlinear flows, balancing modes for line-

ar systems, and many variants of these techniques [1],[2].

Many of the methods used for capturing coherent structures and for
model reduction involve projecting known, high-dimensional dynamics onto a
set of modes. A problem of particular importance is the analysis of n state vari-

ables x(t)e R” function of time ¢ with known dynamics

x(r)= f(x), (2.1)
where f(-)e R” denotes the intrinsic function of the dynamics.

From linear system theory, the vector of states x(t) can be expanded in

terms of a set of N basis functions, or modes, ¢, (x)e €"[3]:

x(r)=gak(:)¢j(x), 2.2)

with a,(t)e € being coefficients of the basis functions and j,k are integer in-

dexes.

If the modes ¢,(x) are orthonormal, the dynamics can be projected as

a;(t)="f(x()).o,(x(r), o)

where () denotes the inner product.
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If the modes are not orthonormal, then there is a complementary set of

adjoint modes y,(x)e €" that satisfy

<¢f (x)y, (x)> =0 (2. 4)

Here, §, denotes the Kronecker delta. In this case, the expansion (2. 2)

can still be determined, but the projected dynamics are given by
a,(e)= (S (xe))w; (x(c))). (2.5)

In such a projection method, the main choices are therefore how to choose
the modes ¢,(x) and y, (x) [3].

When the equations that describe the behavior of a dynamical system are
summarized as a function of an operator, it can be analyzed from the perspec-
tive of (linear) operator theory. The Koopman operator theory deals with opera-
tor theory to analyze dynamical systems. Using the Koopman operator, the
spectral properties of the system can be determined and so obtained a set of ba-
sis functions related to its intrinsic dynamical response [4].

In what follows, the main theoretical aspects related to the analysis of

(linear) operators and the Koopman operator are discussed.

2.2 Operator theory
The theory of operators has, as its object, the study of functions defined on infi-

nite-dimensional spaces. There are important parts of mathematics which can-
not be understood in depth without the help of theory of operators. Some ex-
amples are the theory of functions of a real variable, integral equations, and the

calculus of variations, among others [5].

In order to state the same framework and following [6]-[8], all the con-

cepts below are defined in a complex abstract Hilbert space H which is charac-
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terized by five properties: linearity, the existence of a unitary metric, the non-

existence of a finite basis, completeness, and separability [6].
The notion of linear operator can be defined as follows.

Definition 2.1 (Linear operator). Let G,,G, be subspaces such that
G,,G,cH and T:G,—>G, be a function (operator, transformation) under
which an element ye G, corresponds to each element xe€ G, in the following
manner y=T(x). If: for any x,x,eG, and @a,feC, then
T(ax, + fx,)= aT(x, )+ BT(x,), the operator 7 is said to be adc%itive. If, in addi-
tion, G,and G, are metric spaces, that is to say that in each space the distance

between pairs of elements is defined, one can consider continuous operators T

Operators which are both additive and continuous are called linear [5][5].

The fundamental problem of the theory of linear transformations is to
prove the existence of linear subspaces of H invariant under a given transfor-
mation 7 and to determine these subspaces [6]. An important type of linear op-

erators for this purpose are the unitary operators U

2.2.1 Unitary operators
Definition 2.2 (Unitary operator). The operator U with Hc R” as its domain

and range is unitary if
Uz s, )=ix.x, (2. 6)
for x,,x, € H [8][8].
Another definition of the unitary operator is the following

Definition 2.3 (Unitary operator). A bounded linear operator U on a

space Hc R" into itself is unitary if and only if
Ul'=U" (2. 7)
where U is the adjoint operator of U [9].
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The unitary operator U has an inverse operator U™ which is also uni-
tary. Moreover, the unitary operator is necessarily linear and is an isometry [10],
18]

A solution of the problem of the existence of linear subspaces of H mnvar-
iant under T may be formulated by means of the resolution of the identity and

the spectral analysis of unitary operators.
2.2.2 Resolution of the identity

Assume that T is an operator in H, and.that it has a finite or countable set of
pairwise orthogonal and normalized eigenvectors e,.e,.....e,, which corre-

spond to nonzero complex eigenvalues 4,,4,.....4,. The set H, of all vectors
from H which are orthogonal to each vector e, is a subspace.

It follows that for xe H,, Tx=0. Therefore, it is possible to consider H,
as the eigenmanifold of the operator T which belongs to the eigenvalue 4,=0.
As far as H is separable and {e,} is an orthonormal basis for it, the space
H © H, can be represented in the form of an orthogonal sum of eigenmanifolds
H, , which belongs to distinct eigenvalues. Then

H=H,©H ®&H,&---, (2. 8)

Tv, = AV, (2.9)
for each eigenvector v, € H, [10].
Designating the operator of projection on H, by P, , we can write

I=P,+P+P +---. (2. 10)
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-For each xe H,
Tx:ﬂl})lx+,‘[2pzx+... (2 11)

Now let G, be the subspace spanned by the eigenvectors which belong to
the eigenvalues less than ¢ in some sense. Let E, be the operator of projection
on G,; then E, has a limit both for increasing and for decreasing t. Therefore,
E_, and E,_, exist, and E,_, =E, . Thus, E, is a function of ¢ that is continuous
from the left, If 4, € € is an eigenvalue, then the difference E, ,,— E;, = F, is the

operator of projection into the eigenmanifold H, .

Now, the terms x and Tx can be represented in the form:

B
x=Ex=[dE,x (2. 12)
B
Tx = [td Ex (2.13)

where the integrals are taken over an interval la, B] which contains all the ei-

genvalues of the operator T. Then, by generalizing the above ideas, the follow-

ing definition arises.

Definition 2.4 (Resolution of the identity). A resolution of the identity is a

one-to-one parameter family of projection operators E, defined through a finite

or infinite interval [, 8], which satisfy the following conditions (If the interval

l, B is infinite it can be defined E, = E _=1lim E ,and E s =E_=limE,) [10]:

(i). E,=0, E,=1. (2. 14)
(ii). E_,=E (e<t< f), (2. 15)
(iii). E,E, =E, (s=min{u,v} (2. 16)
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An important subject is that the eigenmanifold constitutes a set of invari-
ant subspaces under 7. Hence, the spectral analysis of linear operators allows to
obtain this set of invariant subspaces. Moreover, the spectral analysis of unitary
operators has some interesting properties useful for the analysis of dynamical

systems.

2.2.3 Spectral theory

Let T be a linear operator which domain D(T’) and range R(T) both lie in H. It

is considered the linear operator
T,=AI-T (2. 17)

where A is a complex number and / the identity operator. The distribution of

the values A for which T, has an inverse and the properties of the inverse when

it exists, are called the spectral theory for the operator T [9].

Definition 2.5 (Spectrum’ and resolvent). If 4, € € is such that the range
R(Tz,) is dense in H and T; has a continuous inverse (/1, I-T )" , it is said that
A, is in the resolvent set p(T) of T, and we denote this inverse (/1 I =T )" by
R(}l t,T) and qall it the resolvent of T All complex numbers A, not in p(T)

form a set called the spectrum of T The spectrum o(T) is decomposed into dis-
joint sets P_(T'), C,(T), and R _(T) with the following properties [9]:

(i). P,(T) is the totality of complex numbers A for which T, does not have

an inverse; P_(T) is called the point spectrum of T

(ii). C,(T) is the totality of complex numbers A for which 7, has a discon-
tinuous inverse with domain dense in H; C_(T) is called the continu-

ous spectrum of T.
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(iii). R ,(7) is the totality of complex numbers A for which T, has an
inverse whose domain is not dense in H; R _(7) is called the residual

spectrum of T

Definition 2.6 (Normal operator). An operator T defined on H is normal
if and only if

T =T°F (2. 18)

The main assertion of the spectral theorem is that every bounded normal
operator T on a Hilbert space induces a resolution E of the identity on the Borel
subsets of its spectrum ¢ (T) and that T can be reconstructed from E. A large

part of the theory of normal operators depends on this fact [8].

Theorem 2.1. If Te Hand T is normal, then there exists a unique resolu-

tion of the identity E on the Borel subsets of o (T) which satisfies:

T=| . AdE(A). (2. 19)

E is referred as the spectral decomposition of T . Sometimes it is convenient
to think of E as being defined for all Borel sets in €; to achieve this put
E(w)=0 if wno(T)=0 [8].

Then, recalling that the eigenvectors of an operator 7 span eigenmani-

folds that indeed are invariant subspaces, the following theorem can be stated.

Theorem 2.2. Let o(T) be the spectrum of a normal operator T, and
Ae€.If 6(T)= {/11, As, ...,/1,,} 1s a countable set, then every xe H has a unique

expansion of the form
x=) x,, (2. 20)
where T x, = 4,x,. Also, x; 1L x;, whenever i # j [8].
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Furthermore, analysis of the spectral decomposition of the unitary opera-
tors shows that these type of operators are suitable for the spectral analysis of
dynamical systems as can be seen below.

Theorem 2.3. A normal operator U defined on H is unitary if and only if
o (T) lies on the unit circle [8].

Following Theorem 2.3, as U is a unitary operator, all of its eigenvalues
have absolute value unity, i.e., each has the form e¢* where A is a complex

number that contains a term called eigenfrequency of the unitary operator. The
equation

Utv, = ey, (2. 21)
holds for integer k if v, € €" is an eigenvector associated with the eigenvalue
A, €€, and also if U*(~e <k <) is a continuous group of unitary operators
(8, [10].

2.2.4 The Koopman operator

In [8], the concepts presented above were extended to include classical Hamilto-

nian mechanics. The equations of the system which state variables are x, € ®"

define the operator S, which has the following properties:
(i)- S,(x,)— x,for an initial conditiori x, and a determined time ¢. (2. 22)
(). §, S, =S§.,,, for any times ¢ and ¢,, and (2. 23)

(). S,=17fort=0. (2. 24)

In the search of invariant surfaces where the operator S, projects the dy-

namics of a certain subspace of a space H c R" onto itself, it can be defined a set

of characteristic functions @,(x) which are complex single-valued, measurable
and bounded for all xe H.
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Then, the transformation U, which eigenfunctions are ¢, (x) is defined by

U, 9,(x)=9,(S,(x)) (2. 25)

and is continuous in ¢, (x) ; also is defined and continuous for all real ¢. Thus,
U, ¢,(x) has at x the value which ¢, (x) has at the point S,x into which x flows

after the lapse of time 7. The transformation U, is unitary, and so it arises that

[8]:
U, lag,(x)+bg, (x)|=ap,(s,(x)+bg, (S, (x)
_ aU,0,(x)+ U, ,(x) 2. 26)

There exists a resolution of the identity E, corresponding with U,, which

consists of a family of operators as defined in Section 2.1.2. Analogously to (2.13)
and (2.19), effectuates a spectral resolution of U, :

U,g,(x)= |e"dE,p,(x) (2.27)

An evident property of U, is that, for an arbitrary single-valued function

of several variables F

U, F(‘?’I(X)r @, (X), )= F(U: ¢,(X), U, ¢, (x): ), (2. 28)

where ¢,(x),..., ¢,(x)e € are characteristic functions corresponding to the

characteristic values A1,,...,4, € €, which indeed are of the form e** and are

distributed around the unit circle.

2.3 Koopman operator for continuous-time dynamical systems

For a continuous-time dynamical system evolving on a manifold M c R" such

that for xe M, where f () is a possible nonlinear mapping from M onto itself
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and is assumed to be approximately the same over the full interval of time
[12]

x=f1x) (2.29)

it can be defined a family of operators U’, the Koopman operator of the contin-
uous time, just as have been defined in the previous section.

Recalling, that the Koopman operator is a linear operator that acts on a
vedor-valuﬂ function g :M — R°, mapping g(x,) into g(r.x,), in the follow-

i:ngmannen

glt.x,)=U" g(x,)=g(5"(x,)). (2. 30)

where S'(x,) denotes the position in time ¢ of the trajectory defined by (2.28)
that starts at time zero at point x,.

2.3.1 Koopman eigenfunctions

In analogy with linear stability analysis, Koopman mode analysis provides a set
of eigenvalues and eigenfunctions that describe the dynamical behavior of the
system and constitutes a set of structures which the observables,can be decom-

posed in.

According with the concepts presented in the previous section, the fol-
lowing definition can be provided:

Definition 2.7 (Koopman eigenfunction and Koopman eigenvalue). Let
Mc®R* and ¢,(x): M — € denote eigenfunctions; ;lje € denote eigenvalues of

the Koopman operator, then the evolution in time of the dynamical system is
given by [1]:

U'e,(x,)=0(s"(x,))= exlg(ljt)ﬂ (x,) j=12.... (2-31)

Despite the dynamics itself being linear, the eigenfunctions of the
Koopman operator are not necessarily linear. These eigenfunctions span the
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space of real-analytic functions on R, and thus nonlinear observables evolving
under linear dynamics can be represented by a spectral expansion using
Koopman eigenfunctions. This can be seen from the properties of the Koopman

operator described below [1].

2.3.2 Properties of the Koopman operator

In order to understand the power and applicability of Koopman mode analysis
for dynamical systems, the main and more important properties of the
Koopman operator are listed below. Although some have been presented above,

here are rewritten with the aim of provide a clearer description.

Property 2.1 (Linearity). Although the dynamical system is nonlinear and
evolves on a finite-dimensional manifold M cR" the Koopman operator is

linear and infinite-dimensional. Since U is linear, it holds that
U'lag, +Beg,)(x,)=al'g (x,)+BU'g,(x,) (2. 32)
for any functions g,, g, and scalars a, S [2].
Property 2.2 (Potency). Let ¢(x)=x",xe R,ne £*,and A€ €. Then
U'¢(x)=¢(xexp (A1) = x"exp (ndt) = exp (nit) g (x), (2. 33)

and thus the functions ¢(x)= x" are eigenfunctions of U’ associated with eigen-

values nA .

Now, by considering the Taylor expansion of the evolution of any real-

analytic observable g(x):
glx)=> g;x" (2. 34)
j:

where g, =(1/j")d’g/dx’(0).
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Its evolution, given by g(r,x)=U"g(x), can be represented as
gl.x)=U'g(x)=U '(igr“f ] o _ig; exp(jd1)x’ (2. 35)

For n real or negative, x" is also an eigenfunction; provided those, the
space of observables can be expanded in which that are of interest [1].

Property 23 (Modal interaction). Let x,e M where Mc®R [If
¢. :M >R is an eigenfunction of U’ at 4, € and ¢, :M >R is an eigen-
function of U’ at 4,€ €, then ¢, -¢, isaneigenfunctionat 4,+4, [1}:

U'lg, (x)¢. (x))=¢, (s x))e. (s* (x))
=exp (4, )¢, (x)exp (4, 1)¢; (x)

=exp (4 + 4,)1)¢, (x)g, (x). (2- 36)

Thus, the properties 2.35 and 2.36 allow express the Taylor expansion of a
set of real-analytic nonlinear observables that capture the behavior of a dynam-
ical system in terms of nonlinear interaction of linear modes in similar way to
the method of normal forms [13]. This affirmation is further developed and ana-
lyzed in the following sections and in Chapter 4.

2.3.3 Koopman modes

It can be assumed now a vector-valued observable g(x)e R*, with xe M where
M c R" is the state space of the dynamical system.

Definition 2.8 (Koopman mode). The Koopman mode v(x)e €" at isolat-
ed eigenvalue A€ € of algebraic multiplicity 1 is the projection of g(x) onto the
eigenfunction ¢,(x) of U’ at A [1].



The projection in question can be obtained as an inner product with the

eigenfunction ¢;(x) at A° of the adjoint of U’. the Perron-Frobenius operator.

This would, however, require an explicit calculation of such an eigenfunction.
Alternatively, some other ways for Koopman modes computation have been

developed; these are described in Chapter 3.

Koopman modes are independent of initial conditions and form a basis

for the expansion of the evolution of the observable g(x) starting from any ini-

tial condition in the state space. They are of interest because they are akin to the
eigenvector expansion utilized in linear analysis. In fact, for linear systems the

Koopman modes coincide with its eigenvectors as shown below [1].

2.4 Koopman mode analysis for discrete-time dynamical systems

Owing to the discrete nature of the data that is available to perform an analysis,

it is convenient to state Koopman operator theory in terms of discrete-time.

Thus a discrete sequence U",n=0,1,...,N is obtained and if 4, € € is an eigen-
value of U’ with mode ‘s;,‘ (x)e €", then the obtained evolution associated with
that mode is a"v, (x)=exp (n 4,At)v, (x) yielding log, (a)=(1, At), and the eigen-
value is plotted at exp| (log, &)/ At] [11.

Then the operator U* that composes the family of operators U’ is re-
ferred just as the Koopman operator U Thus, henceforth the analysis and con-
tains of the thesis are developed into a discrete-time frame. It is appropriate to
make mention that the definitions and properties defined previously can be ex-

tended to discrete-time framework.

Similarly to the previous section, it is considered a dynamical system

evolving on a manifold M c R” such that for x, e M,

X, = f(x,), (2. 37)
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where f(-) is a map from M toitself and k is an integer index. It is important to
highlight that as in the previous section, the mapping f(-) is assumed to be ap-
proximately the same over the full interval of time [12].

The Koopman operator is a linear operator U that acts on vector-valued
functions g - M — R, mapping g into a new function given by

U g(x)=g(/(x)). (2. 38)

Let @, :M — € denote eigenfunctions and 4, € € denote eigenvalues of
the Koopman operator [2],

U'r(x)= "j’;(ll ’- = Lz!---r (2 39)
and consider a vector-valued observable g - M — R*

In addition, the existence of a continuous spectrum possess a largely open
problem on how to represent the part of the dynamics in terms of structures that

are local (but not associated with linearization) in ime, frequency, and space but
that also possess aspects of collective motion [1}].

Following [14], for dynamics that have not continuous spectrum in fre-
quency domain (practical experience suggests this situation in power system
analysis [15]), and if each of the » components of g lies within the span of the

eigenfunctions ¢@,, then the observables may be expressed exactly by expanding
the vector-valued g in terms of those eigenfunctions as

g(x)=i=l¢j(x) v, . @ 40)

The eigenfunctions ¢, are referred to as the Koopman eigenfunctions
(KFs) and the corresponding vectors v, € € are called the Koopman modes
(KMs) of f, corresponding to g.




Iterates of x, are then given by

g(xk)-: iU*(Oj (-xo) vV, = iﬂ,},k(oj (xo) V. (2. 41)

=1

The Koopman eigenvalues (KVs) A, characterize the temporal behavior

of the corresponding Koopman mode v,: the phase of 4, determines its fre-

quency, and its magnitude determines the growth rate. For a system evolving

on an attractor, the Koopman values always lies on the unit circle [2].

These modes have the property that they represent the dynamics of the
system, in which a spatial shape is multiplied by a time-dependent function of

the form exp(ﬂ:‘F kAt) for complex A, =0, +iw; (time dependence can be more
complicated in the case of degenerate eigenvalues). The real part o, is the
damping coefficient and . the angular frequency. Therefore, each Koopman

mode has by construction just one frequency.

The resulting modes are not necessarily orthogonal. They are also a natu-
ral extension of the concept of linear eigenmodes as collective motions occurring

at the same frequency, growth, or decay rate [1].

2.4.1 Linear dynamical systems

Suppose M cR" is an n-dimensional linear space, .and suppose the map

f:M > R" is a linear scheme determined by f(x)=A-x. It turns out that the

eigenvalues of A are also eigenvalues of U, and its eigenvectors are related to

the eigenfunctions of U as well. Let v, € €" and 4, € € denote the eigenvectors
and eigenvalues of A, Av, =Av,, and let v, € €" be corresponding functions of

the adjoint A (i.e, A v, =Av;), normalized so that V.V jlr> =0-
Nexf, define the real-scalar-valued function

(oj(x)={ix,lvj>, F=) ol (2. 42)
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Then, the @, are eigenfunctions of U since

U¢j(x)= ¢Jj(AI)=<A x,vj> = \ x,A'v1> = A).{:x,v) = A9, (x). (2. 43)

Unlike A, the operator U has a countable infinite number of eigenvalues
since A' is also an eigenvalue with eigenfunction @,(x)" for any integer k.
Now, for any xe M, as long as A has a full set of eigenvectors, it may be

written
x=i<x,vj>nj =i¢j(x)n}.. (2. 44)

Thus, for linear systems the Koopman modes coincide with the eigenvec-
tors of A [2]. Moreover, any nonlinear analytic observable can be expanded in

the same way as is established in the following subsection.

2.4.2 Nonlinear dynamical systems

Koopman mode analysis is based on the fact discovered in [14], that normal
modes of linear oscillations have their natural analogs, the Koopman modes, in
the context of nonlinear dynamics; consequently, the Koopman modes are more
effective at decoupling and isolating dynamics [2]. To pursue this analogy the
state-space representation of the system must be changed into the dynamics
governed by the linear Koopman operator on an infinite-dimensional space of

observables.

Additionally, as stated in [1], despite the dynamics itself being linear, the
eigenfunctions of the Koopman operator are not necessarily linear. These func-
tions span the space of real-analytic functions on R, and thus nonlinear observ-
ables evolving under linear dynamics can be represented by a spectral expan-
sion using the Koopman modes. Moreover, any nonlinear analytic observable
can be expanded according to properties 2.2 and 2.3 where products of eigen-
functions are used in the expansion. Indeed, all linear combinations of the fre-

quencies excite higher modes [2].
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In the case of a nonlinear setting that form a periodic solution of (2.37),
the Koopman modes as defined above are vectors given by the discrete Fourier

transform (DFT) and the phases of corresponding eigenvalues are frequencies of
the form 27z /m [2].

In fact, above statement applies more generally to non-periodic systems
when dynamics are restricted to any attractor and the Koopman modes may be

calculated by harmonic averages [14], [16] [17].

Consequently, the Koopman mode analysis is a method capable to extract
the intrinsic dynamics of a (non)linear system by means of the spectral analysis
of the Koopman operator. In order to point out the main advantages and disad-
vantages of Koopman mode analysis, in the following section is made a compar-

ison against other methods commonly used.

2.5 Comparison with other methods

In this section a brief comparison between Koopman mode analysis and three
decomposition methods commonly used, namely discrete Fourier transform
(DFT), proper orthogonal decomposition (POD), and Prony analysis is

presented.

2.5.1 Discrete Fourier transform

The discrete Fourier transform (DFT) of a data vector x(n) is defined as the
evaluation of its Fourier transform X(w) in a set of N discrete frequencies

equally separated and can be determined by means of [18]

N-1

X(k)=) x(n)exp(- j2wkn/N), k=0,12,....N-1. (2. 45)

n=0

A key limitation of the DFT is that its frequencies depends only on the
number of data points and not on the data content. In consequence, to ensure
that a particular frequency is properly captured, the data must cover an integer

number of corresponding periods. If multiple frequencies are of interest, then
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this constraint may be prohibitive, especially if the frequencies are unknown or

are not related by a simple rational number.

In addition, as the longest period the DFT can capture is the time span of
the data, the algorithms for computation of Koopman modes have no theoretical
lower bound on the frequencies that can capture, although they are still subject-
ed to the Nyquist frequency constraint.

Moreover, the DFT is incapable of determine modal growth rates, and
many modes are needed to be retained to reproduce the non-periodic data cor-
rectly, as shown in [17].

2.5.2 Proper orthogonal decomposition

A common technique for identifying coherent structures is the proper orthogo-
nal decomposition (POD) method, introduced in fluid dynamics in [19]. This
method, as originally developed, is capable of extracting information from
snapshots of the dynamic field by decomposing it into a sum of spatially
orthogonal modes, and is thus applicable to experimental data.

POD method determines the most energetic structures by diagonalizing
the spatial correlation matrix computed from the snapshots. The resulting
decomposition is closest to the original field in the least-squares sense [14]. Two
major drawbacks that are tacitly acknowledged by employing this method are
associated with this technique: (i) the energy may not in all circumstances be the
correct measure to rank the flow structures and (ii) due to the choice of second-
order statistics as a basis for the decomposition, valuable phase information is
lost [12]. POD models can work well, nonetheless they often require careful tun-
ing and there is always the awareness that low-energy modes can be critically

important to the dynamics [3].

Although some variants of POD have been studied to overcome these sit-
uations, this family of methods are applicable only to linear systems and fur-

thermore, they do not have the physical meaning inherent to Koopman modes.
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They are fundamentally decoupled from any sense of time or dynamics, and
therefore may not provide the best mode basis for constructing dynamical mod-
els [17]. Whereas POD concentratés on a representation based on spatial orthog-
onality, Koopman mode analysis focuses on a representation based on temporal

orthogonality (frequencies) [12].

2.5.3 Prony analysis

Prony analysis is a widely used algorithm in oscillation mode parameter identi-
fication, whose principle is to fit a linear combination of exponential terms to the
analytical signal. In principle, Prony analysis methods assume the system to be
single output, and individual signals are analyzed independently often resulting

in conflicting frequency and damping estimates [20].

It is considered a general continuous signal y(¢) that is modeled by:
P
y(t)= > B,e* (2. 46)
m =1

where B, € € is the output residue for the continuous-time pole4, e €, A # A

for m # n. These parameters are obtained by fitting, in a least squares sense, y(t)
to the system output y(t). The signal fit given by (2.46), in conjunction with the

system input signal, allow for the identification of a low order linear system
[21].

There also exists extensions to Prony analysis that allow multiple signals
to be analyzed simultaneously i'esulting in one set of mode estimates [20]. Nev-

ertheless, this is computational demanding.

Although this method have been widely studied and developed, it is lin-
ear, and when the signal is non-stationary it can provide spurious modes. Fur-
thermore, for a few quantity of snapshots it may obtain erroneous results,
whereas with a large amount of déltha the time of convergence is considerably

increased. In some sense, Prony analysis is an ‘extension of DFT [20} [20]-[22].
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2.6 Concluding remarks

In this chapter the theoretical background and main properties and aspects of
the Koopman operator have been stated. The Koopman operator theory pro-
vides a rigorous framework that unifies a number of different concepts includ-
ing linear stability analysis, triple decomposition, and Koopman mode decom-
position; as well as linear stability theory and the discrete Fourier transform [1],
[3]-

Unlike many decomposition techniques, the data needed to compute
Koopman mode decomposition does not need to be neither periodic nor from a
linear process to construct a meaningful modal decomposition [17]. Koopman
mode analysis is not based on the linearization of the system; instead, it projects
the dynamics onto an infinite-dimensional space that is predetermined by the
spectral properties of the Koopman operator. Aside, the spectrum of the
Koopman operator is constructed by the intrinsic linear modes of the dynamics,
and their mte;acﬁms, defining in this way an infinite-dimensional space.

Nonetheless, all the theoretical background presented in this chapter is
not useful if there exists no way for computing Koopman mode analysis. This is
treated in the following chapter.
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Chapter3

Optimized Dynamic Mode
Decomposition Methods
In this chapter, a critical evaluation of dynamic mode decomposition methods is provid-

ed. Vaniants of the Koopman operator based on Arnold: algorithms are developed and

First, a review of the existing Koopman analysis methods is presented. Variants
of Koopman analysis based on the notion of a dynamic mode decomposition are presented
mdmnnechbnswiﬂ:ﬂ:eKwpmmapeermegimAdmumgﬁdeOf
the dynamic mode decomposition algorithms are.pointed out.

The chapter concludes with a discussion of the observability 1ssues in the devel-

Example simulations of synthetic and simulated data are presented to demon-
strate the usefulness of the developed algorithms.



3.1 Generalized Laplace analysis

The Generalized Laplace Analysis (GLA) theorem gives an iterative procedure
to compute projections onto an eigenspace [1]. The theory behind generalized

Laplace analysis is briefly described here in the context of the Koopman mode

decomposition.

Theorem 3.1 (Generalized Laplace analysis). Let {ll, — | k}, A, €€ bea
(finite) set of simple eigenvalues of U’ such that lexp (/1,:)] > ‘exp (izr)’z---z
exp(Ayt)|, and let 9; €€ and v, el be an eigenfunction and a Koopman
mode, respectively, corresponding to A,. Define now the vector-valued ob-

servable at time ¢, as g (S' (x))e R", which is function of the vector of (state) var-
iables x e R" [1].

Then, the Koopman mode associated with A, can be obtained via

¢, (x)v,(x)= }_Ln; i IDT exp (— /T.kt)l:g (S‘ (x))— zexp (ﬁjt)cﬁj (x)vj (x)}dt s il

Analogously, for discrete time holds that

k-1

¢k(x) —llm ZeXp( )I: ( ) ZCXp(/l t) x)v ( )], (3..&)

Kk"‘ﬁ

where T (K) is the sampling interval in the real (discrete) time-domain.

It is noted that for Theorem 3.1, a set of eigenvalues is needed but they
are not computed as part of the theorem. The generalized Laplace analysis starts
by identifying or estimating the largest Koopman eigenvalue associated with the

evolution of the observable and removing its contribution.

The caveat here is that different observables in principle will present dif-
ferent spectra, so the whole Koopman spectrum and its modes might not be re-

vealed. Moreover, this can lead to an unstable computation as for large ¢ in-
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volves multiplication of a very large number with & very smiall number. An al-
ternative to estimating the:Koopman modes is provided by the Amoldi-type
methods described below, which reveal a richer spectrum-[1], [2].

3.2 Dynamic mode decomposition

In practice, it is not possible to have an explicit representation of the Koopman

operator U. Its behavior can only be ascertained by its action on an observable
g and commonly only at a finite number of initial conditions [1].

Dynamic mode decomposition (DMD) is based on a variant of the Ar-
noldi algorithm by utilizing companion matrices, described in [4]. It was intro-
duced in [5] as a method able to extract dynamical information from flow fields

generated by numerical simulation or measured data and to describe the under-
lying physical mechanisms captured.

3.2.1 Computation from snapshots

A standard method for computing estimates of the eigenvalues of a dynamical
system governed by (2.37) is a Krylov method. These methods produce approx-
imations to the eigenvalues of Koopman operator and their corresponding
modes. Given a vector of initial conditions, x, e R", after m —1 timesteps, it has

been generated a collection of m vectors that span a Krylov subspace, given by

{xo, fix)l — I ("'")(xn)}. The approximate eigenvalues and eigenvectors are

found by projecting f onto this subspace [3], [5].

Further, for any state x, measured in a vector-valued observable

g(x j)e R" the data can be represented as a snapshot sequence X € R"™" de-
fined as:

X=[x, x, - x.], (3.3)

where x; stands for the j th snapshot.
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Let now the data vectors be stacked into a matrix K € R™" defined as fol-

lows:

K [xo f(xo) f(f(xu)) f(m-l)(xo)] (3'-4)

K=[xo X, X, - xm_,]. (3.9)

As the number of snapshots increases, it is reasonable to assume that, be-

yond a critical number of snapshots (n < m), the vectors given by (3.5) become

linearly dependent. In such a case, the vector x,, can be expressed as a linear

combination of the previous snapshots according to:

xm = f(xm—l )= cﬂxﬂ +oeee Cm—lxm—l = Kc (3' 6)
where ¢ = [cu cm_l]T and c; € R [4]. Then, it follows that
K, = f(K)=KC, (3.7)

where K, is an index-shifted data matrix defined as [6]:
K- == I_xl X, = X, .|’ (3' 8)

and CeR™" is a companion matrix given by

0 0O 0
1 0O 0 ¢

C=|0 1 0 ¢ |. (3.9)
0 0 --- 1 ¢,

The eigenvalues of C are then a subset of the eigenvalues of f. As a con-
sequence, the decomposition into eigenmodes for the companion matrix C can

be expressed in terms of le€ ael" as

Ca=Ia ; (3_ 10)
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Then, using (8.7)

K.a=f(K)a=KCa=1Ka, (3. 11)

it can be shown that ve €", defined as

is an eigenvector of f with eigenvalue a.

More generally, if the m th vector is not a linear combination of previous

snapshots, then instead of (3.6) we have a residualr e R":

r=xXx, -Kec, (3 13)

which is minimized when ¢ is chosen. such that r is orthogonal to
spm:{1:':,,._..,.1:,“,,_l }.In this case, the relation (3.7) becomes f(K)=KC+re’_,

where e__, =[0 l]eiR"'

The eigenvalues of C are then approximations to the eigenvalues of f

called empirical Ritz values; the corresponding approximate eigenvectors given
by (3.12), are called the empirical Ritz vectors [5]. In physical terms, the finite-
dimensional companion matrix C can be thought of as an approximation to the
action of the Koopman operator U on the associated finite-dimensional Krylov
subspace [2].

3.2.2 Algorithm for computation of Koopman modes

Algorithms for the computation of the Koopman modes are discussed below. It
is assumed that the snapshots are sampled at regular times; i.e., it is not re-

quired explicit knowledge of f

To formalize the process, consider a sequence [x,,...,x, | where x ;ER

The empirical Ritz values ;1: €& and empirical Ritz vectors v, e £" of the se-

quence are determined by the following algorithm:
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(i). Define K by (3.5) and find the real constants c ) such that
m -1
r=x, —Ke=x, _Zcij’ rlspan{xn ..... xm_,}- (3. 14)
=

(ii). Construct the companion matrix, C in (3.9) and find its eigenvalues

and eigenvectors:

C=T'AT, A=diag(4,, .1, (3. 15)

where the eigenvectors of C are columns of T

(iii).  Define ¥, to be the columns of V=KT"'

Consider now a set of data [x,,...,x,, | governed by (2.37) and let ;1; , V,; be

the empirical Ritz values and vectors of this sequence. Assuming that A ;7 A, for

all j # k, then it can be shown that

MZ =0,....,m-1, (3. 16)

and
MZZ* V. +r, r.Llspan {x0 ..... } (3. 17)

Equation (3.5) may be rewritten as

=lx, x, x, - %,
1 1, A Jf,'"“]
Keff, — w0 2 2 A (3. 18)
1 Z:,,, 2t ;f,,,:""
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The nghtmost matrix above is a Vandermonde-matrix, which actually is
the matrix T of (3.15) that diagonalizes the companion matrix C as long as the

i S

eigenvalues {1, ..., | are distinct.

Comparison of (3.16) and (3.17) with (2.41), it follows that the empirical

Ritz values ;1; and vectors v, behave in the same manner as the eigenvalues 4,

and modes v, of U, but for a finite number of them, instead of an infinite sum.

On one hand, if r =0 in (3.17), the approximate modes are indistinguish-
able from the eigenvalues and modes of U with the expansion (2.40) consisting
only of a finite number of terms. On the other hand, if r # 0, then there is some
error, but in fact, this is the same as the smallest possible error in projecting
g(x_) onto any modes ¥ ; formed from linear combinations of the first m data

vectors [5].

Therefore, empirical Ritz values ;1: and vectors v are (usually) good ap-
proximations of the true Koopman eigenvalues 4, and Koopman modes v re-
spectively. The terms v, are scaled by the constant values ¢, (x,).

3.2.3 Stability and convergence

The well-known Arnoldi method is closely related to the decomposition above.
When f(x j)= Ax,, AeR™" the Amoldi method successively orthogonalizes
the vectors of K resulting in a decomposition of the form AQ= QH with
K=QR and H=RSR™ as a Hessenberg matrix. The eigenvalues of H approx-

imate some of the eigenvalues of A .

In practice, the Amoldi method is accomplished by a sequence of projec-
tions onto successive Krylov subspaces. This yields a more stable algorithm, but
for these projections the matrix A has to be available. In contrast, the dynamic
mode decomposition algorithm has less favorable stability (and convergence)

properties since it is assumed that there is no information about f [4].
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Furthermore, in [6} it has been proved that the dynamical-mode"decom-
position is unique, provided that eigenvalues are isolated and snapshots are In-
dependent. It is also observed that the mean subtraction leads to all possible e1-
genvalues being on the unit circle and the companion matrix analysis reducing
to the discrete Fourier transform matrix. However, the problem with subtracting
the mean of the sequence of snapshots is in fact related to the observation that
the companion matrix C is an approximation to the Koopman operator repre-

sentation on a finite-dimensional set of functions.

In general, the computation of the Koopman modes by the dynamic
mode decomposition method needs to be done without subfracting the mean if

decaying or growing modes are to be captured [2].

Additionally, the above algorithm is tied to the initial conditions. This
dependence rises since the empirical Ritz values and vectors are found using a
Krylov subspace generated by a sequence of vector-valued observations along a

finite trajectory with a vector of initial conditions x, e M. Since f can be de-

composed into eigenspaces that are invariant subspaces, and recalling (2.11), it

follows that f ( X }-.) can be expressed as:
x . =flx,)=A4,Bx,+1,P,x, +-- (3. 19)

where P, is a projection operator P, :M — M, being M, the eigenmanifold cor-

responding to the eigenvalue 4, .

Then, if x, € M, its projection into M, is Px,=0; i.e.,, the spectral dy-
namics inherent to f are not present in the observables and consequently that

part of the spectrum is not revealed. Thus, different initial conditions can reveal

different parts of the spectrum [1].

Numerically there is another concern with the convergence of the

method: experiments show that its results are more sensitive to variations in x_

than to variations in other data vectors. This is because the Ritz values are the
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eigenvalues of the companion matrix C; which dictates this reconstruction. The
presence of noice iri-x_ could drastically change the contents, and hence the ei-
genvalues, of the companion matrix [6].

Moreover, even though the above decomposition is mathematically cor-
rect, a practical implementation yields an ill-conditioned algorithm that is often
not capable of extracting more than the first or first two dominant dynamic
modes [4]. To address these problems, two more techniques are presented for
Koopman mode analysis computation.

3.3 SVD-based dynamic mode decomposition

In order to avoid the practical problems exposed in the last paragraph of the
previous section, it has been proposed in [4] a more robust implementation that
results in a reduced matrix C € ™" related to C via a similarity transformation.

3.3.1 SVD projection

Robustness is achieved by a preprocessing step using a singular value decom-
position (SVD) of the data sequence K=UXW" where UeR™ X ecR"" isa
diagonal matrix and W eR™"™ Substituting the SVD of K into (3.7), and rear-
ranging the resulting expression we obtain

b

C=U’K. WL ' =XW7CWxZ". (3. 20)

In the particular case that f( X, )= Ax, the previous expression can be al-
so expressed as

C=TYAU. (3.21)

- The above operation amounts to a projection of the companion matrix C,
the linear operator A for (3.21), over (onto for A ) a basis from the singular val-
ue decomposition. A further advantage is the opportunity to account for a rank-



deficiency in the data sequence K ‘via a restriction to a limited projection basis
given by the nor-zero singular values of X (or by singular values above a pre-
scribed threshold) [4], [6]-

Then the modes can be obtained from the matrix C by solving the diago-

nalization problem
C=YAY" (3. 22)

where the eigenvectors of C are columns of Y; A is as in (3.15). The modal

structures can be obtained as presented below [4], [6].

3.3.2 Algorithm for computation

Consider .a sequence [x,,...,x, | of snapshots sampled at regular times, where
X, €eR" Then the Koopman operator behavior approach based on the singular

value decomposition can be implemented by the following algorithm:

(i). Define K by (3.5), find the real constants c; as in (3.14) and define the

companion matrix C by (3.9).

(ii).Define the projected companion matrix C by (3.20) and find its eigen-

values and eigenvectors in accordance to (3.22)

(iii).  Project the eigendecomposition of C into the basis of C and define

the matrices ® and V to represent the samples matrix Kas

K = ®V (3. 23)

that is equivalent to (2.41) but for all the ensemble of data and consid-

ering g(x,)=x,. Similarly, the index-shifted data matrix can be ex-

pressed as

K. =®AV (3. 24)
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The dehinition of the matrices ® and ¥ can be determined by substitut-
Ing (3.22) into (3.2C) and rearranging: -

K, =UYAY 'TW” (3. 25)

Then by comparing with (3.24), we can define the matrices ® and V as

follows

® =UY, (3. 26)
V=Y'EtW” (3.27)

The previous formulation, albeit is mathematically correct and computa-
tionally stable, indeed is similar to the proper orthogonal decomposition ex-
posed in the preceding chapter.

This affirmation rises from the fact that the product Y XW" depends on
the singular values contained in X that are related to the energy, and is not con-
formed by functions of a single frequency as has been shown in Section 2.4.

Another variant tollowing [6] keeps the matrices A and ® defined as

above, and assuming that the :1; are approximated to the Koopman eigenvalues,

V must be estimated in such a way to satisfy (3.24).

The dynamic mode decomposition based on the calculation of the singu-

lar values may provide good approximations to the Koopman eigenvalues 4,

but the approximated Koopman modes can be quite inaccurate. This method is
useful mainly to obiain a first approximation of the true Koopman values for the
method described below, though it is not applicable to all classes of data se-

quences.

3.4 Optimized dynamic mode decomposition

Inspired by the work in [6], an optimized version of the dynamic mode decom-
position is now proposed, in which instead of a residual error at the last snap-



shot, it is allowed for errors at all snapshots but optimizing the eigenvalues to fit
the data.

As in principle, the observables are fitted accurately with m empirical

Ritz eigenmodes, this optimized approach regards p modes with p <m, where

p can be predefined or optimized in base of an accuracy criterion.

3.4.1 Optimized DMD formulation

Suppose that {x, |, is a set of vector-valued observables. Given p <m, the tar-

get is to find a set of complex scalars {;f j }; and complex vectors {7 j }f _, such

that
xk=zp:’f;’ij+r,,, k=0,....m-1 (3. 28)
J=i
whereas ' e R,
rzzu |’ (3. 29)

is minimized.

Then, let K be as above, where V and T are redefined by:

v=ly, - ¥,] (3. 30)
1 A, A} ol
I & B2 o B

T=l, . . 2 (3. 31)
1 A, A2 .. A

Now the residue matrix R e R™" is constructed as follows

R=[r1 e T, (3. 32)
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Furthermore, instead of (3.18) it can be written
K=VT+R. (3. 33)

The matrix V and the Vandermonde matrix T are sought in order to

minimize the squared Frobenius norm I'=|R|:, which is indeed a least-

squares problem for V The choice of V with the smallest Frobenius norm is
V=KT’ (3. 34)

where T" is the Monroe-Penrose pseudo-inverse matrix of T if 4. # 4, for

J#k.

3.4.2 t’omputatian of optimized DMD
At this point there is no analytic algorithm for computing the optimized dynam-
ic mode decomposition. In [6], two optimization methods are proposed to com-

pute a global mode decomposition:

a). A global optimization technique that combines simulated annealing and
the Nelder-Mead simplex method, and

b). The Broyden-Fletcher-Goldfarb-Shanno quasi-Newton iterator for pure-
ly local minimization,. taking the results of the SVD-based dynamical

mode decomposition as initial conditions.

In this research work, a highly flexible approach to estimating the opti-
mized dynamic mode decomposition is developed using a genetic algorithm.

Results are compared with the algorithms above.

3.5 lllustrative examples

In this section, the three above algorithms for computation of Koopman modes
(DMD, SVD-based DMD, and optimized DMD) are examined in terms of their

ability to extract and characterize electromechanical behavior.

47



3.5.1 Application to synthetic signals

As a first example, the method is applied to a set of sinusoidal signals. Let
X=[u1(t)---um(t)]r be a nxm matrix of data as in (3.3) where n=9 and m 1s

the number of snapshots of the functions.

Each snapshot u, () is a damped sinusoidal function of the form
u j(t)=aj exp(—- o t)sin (27: fjt), with amplitude a; damping coefficient o,
and frequency f; where f,;=03125Hz, f,5,=05562Hz, and
f759 =0.8321Hz.

Signal 1
Signal 2 | -
Signal 3
Signal 4
Signal 5
Signal 6
Signal 7
Signal 8 |
Signal 9

Amplitude [pu]

.8 | | | | | ] | I 1

Fig. 3.1. Synthetic signals.

The associated vector of frequencies is defined as f=[f, f, - f,]"; the
damping coefficients vector is 6=|o, 0,:-0,|", where 0,25 ==0.13 ,

0,56 =0.00, and o,,,=-0.10 Np/s, i.e., the functions have damping ratios of

7.6172 %, 0.0000 %, and 1.9123 %, respectively. The vector of time begins with
t,=0 s up to ¢, =10 s with Ar=0.01 s, and the vector of amplitudes is

a=[08 09 1.0 05 06 07 02 03 04]
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Figure 3.1 shows the time evolution of the test signals.

The data set is analyzed by the first alternative of computation which
gives 100 empirical Ritz eigenmodes. Table 3.1 summarizes the first 10 modes,

ordered by the absolute value of the respective Ritz values.

The entire set of Ritz eigenmodes has a maximum reconstruction error of

3.2930 x107'* with respect to the original data set.

Table 3.1. Dominant Ritz eigenmodes obtained by the DMD algorithm for the data

set 1n Fig. 3.1.

Mode j 7 Frequency Damping Ngrm
b T e[

1 0.9883 0.8198 2.2816 0.3218
2 0.9821 0.5899 4.8802 1.5981
3 0.9797 0.3274 9.9153 1.1534
4 0.9787 0.7035 4.8694 0.4484
5 0.9757 0.9412 4.1494 0.2027
6 0.9751 0.2063 19.1148 0.4957
7 0.9721 0.1022 40.3011 0.5353
8 0.9714 0.0000 100.0000 0.5500
9 0.9702 0.4472 10.7057 1.7605
10. 0.9694 1.0441 4.7350 0.2717

It can be seen from Table 3.1 that the first three modes have frequencies
and damping coefficients similar to the original data. Nonetheless, the norm
values on the fifth column do not correspond to the ordering, so this is not an

adequate parameter to identify those modes containing more physical infor-

mation.
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Reconstructed signals resulting from the first few modes were compared.
First, the set of signals obtained by using only the three first modes are given In
Fig. 3.2. As can be observed, the amplitudes of the signals 4 through 6 have an
additional frequency and another attenuation that adds error mainly at the be-
ginning of the period of time, whereas the amplitudes of the rest of the signals

are quite similar to the respective signals of Fig. 3.1.

The maximum mismatch was about 2.3746 unities of magnitude.

Signal 1
Signal 2 |-
Signal 3
Signal 4 | -
Signal 5
Signal 6 |~
Signal 7
Signal 8 | -
Signal 9

£} s :

Amplitude [pu])

2.5 | | - | [
0 1 2 3 4 “o 6 7 8 9 10

Time [s]

Fig. 3.2. Reconstructed signals by taking the first three modes of Table 3.1.

Moreover, it has been introduced a phase into the signals of Fig. 3.2, albe-
it the percentage of participation of the frequencies in the conformation of the

signals is almost preserved.

On the other hand, the second technique fails to extract information about
the dynamics of the signals. This can often occur with this method since it de-
pends on the singular value decomposition. In other words, it is based on the
singular values, which are related to the signals energy. This approach is more

suitable for large sets of observables.
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Finally, the optimized dynamic mode decomposition is'used to analyze
the signals in Fig. 3.1, beginning with the 5 modes of Table 3.1 and- an initial er-
ror of 3.0202 unities of magnitude.

The results are summarized in Table 3.2, where the maximum error was

minor to 0.02 %.

Table 3.2. Modes of the signals of Example 3.1 obtained by the DMD and optimized DMD
algorithms compared with the true modes of the data.

~ Mode Original data DMD Optimized DMD
j Frequency Damping Frequency Damping Frequency Damping
[Hz] [%] [Hz] [%] [Hz] [%]
1 0.3125 7.6172 0.3274 9.9153 0.3125 7.6174
2 0.5562 0.0000 0.5899 4.8802 0.5562 0.0001
3 0.8321 1.9123 0.8198 2.2816 0.8321 1.9117

3.5.2 Application to simulated data from an electric circuit

As a second example, the developed methods are applied to a simple electric
circuit. The analysis focuses on the ability of the dynamic mode decomposition
schemes to extract the linear modes from the simulated circuit responses to

small perturbations.

Figure 3.3 shows a single line diagram of the test circuit. For the purposes

of this analysis, it is assumed that v, (0)=1V with all the other initial conditions

equal to zero.
The observables are the voltages at each node; the nxm observation ma-
trix is defined as X =|[x, x |= [u,(¢)---u(¢)]" where each snapshot is

X =[“uc UM l"c, (k) e, (k) o (k) VL,(jf) -vh(k) VLi(k)]T The voltages
are sampled using a constant sampling period Ar=0.001 s. A window width

equal to 5 seconds was selected for analysis.
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R;=0.10Q  C,=200uF

R, =0.15Q L =50mH L,=25mH | R,=0200
-+ VLI = e M. =
- + L+
Ve CI = IOOﬂF CZ — 300)“F sz L; =100mH VL3

Fig. 3.3 RLC Circuit of Example 3.2 showing parameters used in the analysis.

As a first step, the linear model of the system x= Axwas obtained. Then,

an eigenanalysis is performed to determine the natural frequencies and linear

modes of the system, and a matrix of observations is created from model simu-

lations.

Figure 3.4 shows selected simulations which are representative of the ob-

served system response.

1.5 - : : ,
V C1
g V C2
1 ‘ VL2 ||
5 1 i
e « ¥
g S 3 no, 3424
_ iy ‘s " . g r-
> P
[ — . ":-
D ‘:'L.
&5 :
S i)
-1.5 ] L | |
0 0.C5 0.1 0.15 0.2 0.25

Time [s]

Fig. 3.4 Signals of Example 3.2 used for KMA.
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The results of the three versions of the dynamical mode decompositions
are shown in Table 3.3.. As can be seen from this Table, the numerical errors are

4.4395x107" V (with the first four modes), 0.6603 V, and 1.9584x10™" V, respec-
tively.

As seen In Table 3.3, the SVD-based dynamical mode decomposition fails
to charactenize the frequency and damping of modes 2 and 3. This is consistent
with our numerical results in Chapter 5.

Also of interest, the norm of the second approximate Koopman mode of
the dynamical mode decomposition in Table 3.3, and the norms of the rest of the
Ritz eigenmodes are almost zero, showing the appropriateness of the model.

Table 3.3. Comparison of the linear modes extracted by the DMD, SVD-based DMD, and

Mode  Eigenmodes @ DMD  SVD-based DMD  Optimized DMD

- Freq. » Freq. Damp. Freq. Damp. Freq. Damp.
J Damp. [*%) v T md % Hd (%)

1 1641186 0.7331 1641171 07331 161.1328 1823, 1641171 027331
2 415651 03310 463997 25806 333555 20238 415651 03310
3 215788 02302 415651 03310 7.6690 157060 215/88 02402

4 215788 02402

When applied to linear process, Koopman mode analvsis recovers the
global stabilitv modes of the flow. When decomposing a nonlinear process, the
analvsis ailows identification of the dominant frequenaes and their assocated
spatial structures.

3.6 Modal observability
In this section, a strategv based on the observabilitv of the modes is sought in

order to provide a criterion to select the best entrances that provide an accurate



Koopman modes computation.- The basic.idea of the proposed method derives

from the modal controllability and observability notions advocated in [7].

3.6.1 Background

Consider a general linear system described by the state-space model

x(t)= Ax(z)+Bu(z), x(0)=x, (3. 35)

y (£)=Cx(¢) (3. 36)

where x(t)e R" are the state variables, Aec R™" is the system matrix, Be R™" is

the input matrix, u(t) e R” is the vector of system inputs, x, is the vector of ini-

tial conditions, Ce R”*" is the outputs matrix, and y(t)e R” is the vector of sys-

tem outputs.

The solution to this system can be written as

-’

y(¢)=H(x,)+CL(u) (3. 37)
where H(-) and L() are linear operators defined as
L(u)= [*“"Bu(r)dr (3. 38)
and
H(x,)=Ce*'x,. (3. 39)

The system described by (3.36) and (3.37) is said to be completely observ-

able if the state variables x(¢,) at time ¢, can be found from the observation of

y(¢) during a finite interval of time, i.e. if H has a void null space. Therefore,

the system is completely observable if all the state transitions affect eventually

all the elements of the output vector [8].

This approach, however, is not satisfactory in most cases because the in-

formation it provides is qualitative in nature, it can say, at best, what parts of the
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system are :observable and what parts are not, but it is not capable to make

quantitative statements about the different parts of the system.

Observability for the aims of this research work refers to the sensor’s abil-
ity to see the internal states of the system. In what follows, method for evaluat-
ing a quantitative measure of observability of a linear dynamical system by tak-

ing into account the mode shape as well as the system outputs is suggested.

3.6.2 Quantitative measures

A quantitative measure of observability is motivated by the following expres-
sion for y(t) [7):

y(¢)= i{évf [wfxo + wai’e"" “u(z)d r]e“'J (3. 40)

i=l

where A, € € is the ith eigenvalue, and v, e €" and w, € €" are the correspond-

ing right and left eigenvectors.

It is clear from this equation that the extent to which the ith mode ap-
pears at the different outputs is determined by the elements of the vector C v.. If

the matrix C is written as

C=row|c’, ¢’ ...,cr], (3. 41)

p

then the matrix CV given by

¢V, CV, -+ €V
cv=| : 1 . (3. 42)

i g T
C,V, €V, === ¢,V

have a useful interpretation: the magnitude of the entry ¢;v; of CV measures

how much the jth mode appears in the ith output of y (t)
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Based on this reasoning, the elements of CV are freated as measures of

observability.

Additionally, in [7] it is introduced the notion of the unit momentum scal-
ing, mainly thought to determine in a better way the controllability of the states
that allows a better performance of the controllers. In our case, this is not of in-
terest. Instead, a quantitative measure of the presence of the modes in the data

sequence is useful.

The observability measure ¢, v, can be interpreted as the & th output sig-

nal at ¢ =0", subject to an initial condition x(0)= v,. More precisely,

J’k( +)=C:V5(W:Tvi)
y.(0%)=cTv,. (3. 43)

Then, the vector of initial conditions x(0) can be expressed as a linear

combination of the right eigenvectors x(0)=q,v, +a,v, +...+a,v,, a, e €. Con-
sequently, the observability measures are now a,c, v,, which are the elements of

the matrix CVK, where K € €™" is a diagonal matrix which elements are the

coefficients a 4
CVK =| : . : (3. 44)

This matrix changes with each new initial condition, but as it was stated
in Section 3.2, for Koopman mode analysis generally there are available just a

finite number of initial conditions, and the algorithms for its computation are
highly dependent on this fact.

The main objective of the evaluation of the matrix CVK is to determine
the minimum quantitative value of observability of a mode where it can still be

identified in the analysis of the Koopman operator.
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3.7 Concluding remarks
Koopman eigenvalues and modes at a spatial point can be determined-by the

generalized Laplace analysis provided even a single point but also a long time

trace of data.

Conversely, the variants of the dynamic mode decomposition methods based on
Arnoldi-type algorithms seem to be able to capture the Koopman values and
their corresponding modes over a shorter-period from data that have a larger
spatial extent. Nonetheless, in contrast with Definition 2.8, the Koopman modes
obtained by the Armoldi-type algorithms depend on initial conditions.

In practice, the Koopman operator does not have to be realized to obtain
the Koopman modes. Generalized Laplace analysis and the dynamic mode de-
composition deals with snapshots sequences whereas linear stability analysis

relies on linearization [2].

An interesting conclusion of the Section 3.5 is that the complete and the
optimized dynamic mode decomposition algorithms capture the eigenvalues
and eigenvectors relatively well. The first algorithm obtains good approxima-
tions to the frequency and damping coefficients for the main modes, but the
representation has an error of considerable magnitude. On the other hand the
optimized dynamic mode decomposition obtains a set of very accuracy approx-

imations to the Koopman modes, although it generally needs much more time.

Additionally, it has been observed that when the empirical Ritz values
are close enough to the true Koopman eigenvalues, their norm is a good param-

eter to distinguish among the true and spurious approximations to the

Koopman modes.

In the examples presented in this section, the approach based on the sin-
gular value decomposition was not useful, albeit it may provide good results for
larger sets of data, in the sense of spatial dimension. In some cases, it is just use-

ful to obtain good approximations of the A, or their own frequencies.

o7



Finally, a method to evaluate quantitatively the observability of the-

modes of a linear dynamical system was described in Section 3.6, allowing to

evaluate how is that this observability measure can affect the accuracy and con-

vergence of the Arnoldi-type algorithms. This measure as weli as other parame-

ters can be used posteriorly to develop better strategies for an efficient computa-

tion of the Koopman operator analysis.
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Chapter4
Physical Interpretation of KMA

Koopman mode analysis provides a powerful method for analyzing empirical data gener-

ated by nonlinear dynamical processes.

In this chapter, a physical iriterpretation of the Koopman modes is provided in
the context of system oscillatory response. It is observed that when the Koopman mode
decomposition is applied to a linear process, the dynamic decomposition allows recover-

ing the linear stability modes of the linearized system.

For a nonlinear process, the Koopman decomposition identifies the dominant fre-
quencies and thetr associated spatial structures, which provides a physical interpretation

of the decomposition for nonlinear systems similar to the decomposition provided by the

method of normal forms.



4.1 Linear observables

In this section, a physical interpretation of the Koopman modes when a set of
linear observables is analyzed is provided. In this sense, the linear observables

are defined as the output signals y(¢) of a linear system defined by (3.35) and

(3.36), which can be totally described by the linear stability modes obtained
through a linear stability analysis (small-signal stability analysis for electric

power systems).

It has been suggested that the Koopman modes are related to the linear
global modes of the linear system in such a manner that the (optimized) dynam-
ic mode decomposition indeed extracts them whereas the empirical Ritz values
and vectors converge towards the true Koopman modes and Koopman eigen-

values.

4.1.1 Small-signal stability analysis

Small-signal stability analysis refers to the analysis of the system response to

small perturbations.

In order to illustrate the physical significance of the modes, consider a
classical power system model. The dynamic behavior of the system is given by

the nonlinear model [1]:

d
E A(gj = (UUACUj y (4 1)

d
2H,~Aw, =B, ~ P, K, Ao, (4.2)

j=12,...,ng , where ng is the number of generators.

Here, Ao, is the angular position of the rotor of generator ; with respect
to a synchronously rotating reference, @, is the synchronous speed in rad/s,

Aw, is the deviation of the normalized rotor speed relative to the normalized

synchronous speed in pu.
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H, e R, the inertia constant in s, X, € R, is the damping coefficient in
pu, B, €R, is the input mechanical power pu, and F; € R, is the output elec-

trical power, pu. Loads are represented as constant impedances.

The linearized system is obtained through the Taylor’s series expansion
of (4.1) and (4.2) with terms involving second and higher order powers of the
states neglected. Conventionally, the dynamical behavior of the system is repre-
sented by a constant coefficients matrix A € R*"**"

X = AX (4. 3)
where x = [Aé] yowon DO AWy .,Am"g]T
The solution of (4.3) with initial conditions x,, is given by [1]:
x(t)=w, x, v, e* +---+ u’,,. XoVs,, e’ (4. 4)

Here v';, u’; are the right and left eigenvectors associated with the eigen-

value A’, of matrix A, satisfying
Av . =A"Vv. j=12,...2ng. (4. 5)

Equation (4.4) provides a decomposition of the system response into sin-

gle-frequency modal components; the terms u’; x, give the initial excitation of
each mode, while the vectors v', are the mode shapes associated with a given

modal component [1].

4.1.2 Physical interpretation for linear observables

Koopman modes are of particular interest here because they are similar to the
eigenvector expansion utilized in linear dynamics [2]. As discussed in Chapter

2, each snapshot x, of the matrix X can be decomposed into a linear combina-

tion of Koopman modes multiplied by their respective values of Koopman ei-

genfunctions evaiuated at time instant, ¢, .
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More formally, we can rewrite (3.18) or (3:33) as:
X, =AV, + 5V, +---+ AV (4. 6)

where n is the number of snapshots, and p <n is the number of Koopman

modes obtained by any of the algorithms described in Chapter 3.

By comparison of (4.5) with (4.6), and assuming that the contribution of

p empirical Ritz vectors, p <2ng, accurately represents the observables x,, that
is, the A ; are different each other, and that the frequencies and damping ratios

captured by the p empirical Ritz eigenvalues are very similar to those given by

the linear modal decomposition, namely

XV =V (4.7)

J

Then, given that the eigenanalysis of the Koopman operator allows to
capture the intrinsic dynamics of the system, it can be stated that the Koopman
mode decomposition of the linear observables is equivalent to that determined

by means of the linear stability analysis and so:
u'.xﬂv':(o(xﬂ)vj, (4. 8)

where ¢(x,) is the value of the jth Koopman eigenfunction for the initial con-

ditions x,,and v, is the jth (normalized) Koopman mode.

Finally, it can be derived that
(4. 9)
where v is the normalized empirical Ritz vector and a, is a real constant value.

Consequently,

V.=V (4. 10)
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4.2 Nonlinear observables

Koopman modes have an interesting interpretation in terms of normal form
analysis in perturbation theory [3]-[4]. This is an aspect of the analysis that has

not been addressed in the literature.

Though in general, the analysis of normal forms can be formulated for
any order of approximation, the analysis here is restricted to second-order per-

turbations, following the recommendations in [5].

4.2.1 Normal form analysis

The equations that describe the dynamical behavior of the power system are
nonlinear. As a result, linear modes may interact with each other and result in
nonlinear interactions between the linear modes. It has been observed in [6] that,
under stressed system conditions, linear analysis may fail to characterize the

observed system response.

The method of normal forms (MNF) is a well-established mathematical
procedure to simplify nonlinear differential equations. The set of nonlinear dif-
ferential equations are transformed up to a specified order, into a collection of
linear differential equations by means of a sequence of nonlinear coordinate
transformations. These linear transformed equations allow the study of the es-

sential modal characteristics [5].

Here, the MNF is briefly described in the power systems framework, for a
deeper treatment of the techniques, the reader is referred to [5] and references

therein.

In its most elementary form, normal form analysis begins by performing
a Taylor series expansion of the nonlinear system in the neighborhood of certain
linear or nonlinear operaticn point. The expansion can be carried out up to a
specified order that in this case is fixed at the second order of a proximation.
This is because of the high computational effort required to compute higher or-

der terms.
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The Taylor series expansion of the nonlinear system up to second order is

given by
x=Ax+X, +0(3) (4. 11)

where O(3) denotes an expression containing residual terms of order 3 and
higher.

For the ith state variable, neglecting the terms of third and higher order,

one has

. 1 .o
X =A x +-x Hx, (4. 12)

2

where A, is the ith row of the Jacobian matrix A, and H' is a Hessian matrix;

the jk th element of H' is given-by

N LY
h'. = ! 4. 13
*9x,9x, f -

Equation (4.12) can be transformed to its Jordan form by applying the

similarity transformation x=Uy, where U is the matrix of right eigenvectors of

A . Use of this assumption in (4.12) results in the decoupled system

yTUTHlUy
. Tyg1Tyxy?2
5'=Ay+-;—V"" y UHOy (4. 14)
y' U'H?’Uy

The elements of the diagonal matrix A are the eigenvalues of A,
A, Ay....A,, and V is the matrix of left eigenvectors of A. It follows that, the

j th Jordan form variable can be expressed as

p__p |
j)j =ljyj+zzcifykyf' (4 15)

k=1 =l
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where C/, is the. ki th element of the matrix C’ defined by

c’'=1%y [uTHeU]. (4. 16)
245

We note that, in (4.16) the bracketed term is a pXx p matrix and v is the
Jjq th element of the matrix V

The next step is to transform (4.13) into its simpler form, the normal form,

by eliminating the nonlinear terms. Use of the nonlinear transformation
y =2+ hy,(2) (4.17)

In (4.15) gives

M=
M

Yy =8y hoyy i1 (4. 18)

Ll
I
.
oy
Il

]
where z is a vector of normal form state variables.

It can be shown that the nonlinear coefficients, h(z)L can be computed

from

. C!
hy), = i ,1::_,1 jk1=12,...n (4. 19)
J

provided that 4, +4, -4, #0. By means of (4.17), the second-order terms are

removed from (4.14). This is known as the non-resonant condition.

The transformed equation is a set of decoupled first-order linear differen-

tial equations

z=Az+03) 2,=4,2,+0(3) j=12,..p (4. 20)

where O(3) denotes third and higher order terms, while the second-order terms

have been transformed into elements of first order.
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Neglecting third and higher order terms, the time evolution of the normal

form variables, z,(r), givenby
4
z;(t)=2;,€™ (4. 21)
where z, denotes the initial condition associated with the state variable z;.

The vector of initial conditions z, is computed by solving the nonlinear

equation (4.17) for a given initial condition y,:

f2)=z-y,+h,)(z)=0 (4. 22)

The solution to the above equation provides the initial condition z,, and

then the solution of the original set of equations (4.11) is obtained by transform-
ing the z variables back to the original state variables x. This is done by first

using (4.17) to compute y, (1)=2z J,.De’l"'r +Z:=1 Z; h(z)i!zkuz,ue("*+"')' followed by

the application of the similarity transformation x =Uy to compute Xx.

Transforming the normal form solutions into the physical states gives the

second-order approximation

3 I ST L ol ST iy |
xi(t)=zuijzjﬁe +Z"U Zzh(z)ﬂzmzme (4. 23) .

j=l j=1 k=1 I=] J
where u,; is an element 6f the matrix of right eigenvectors U.

Equation (4.23) expresses the system response for x,,x,,...,x,, in terms of
the individual system modes 4,,4,,...,4,, and the second-order modes A +4,,
AtA,. A +A,4 +A,. The terms associated with the mode pairs A4, + 4,

provide information not available from the linear approximation of the power

system equations.
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These terms represent “modal interactions’ ’ that arise due to the inclusion
of the higher order terms. Moreover, the coefficents of the exponential terms
e!4*4* give a measure of the participation of the mode combination 4, + 4, in a

given variable.

Of paramount importance, equations (4.23) reveals that, if the system is
stable, the second term involving ¢'**** will be more heavily damped than the
first-order modes e* or e*' as discussed in [5].

4.2.2 Physical interpretation for nonlinear observables

In Section 4.1 it has been suggested that, for linear observables, the normalized
empirical Ritz eigenmodes converges towards the Koopman modes which in
fact are equivalent to the linear stability modes.

Fer nonlinear observables the Koopman mode analysis provides a similar
decomposition of the space generated by the snapshots. In this subsection is
provided a physical interpretation of the Koopman mode analysis as a decom-
position of the nonlinear behavior of the system in its intrinsic nonlinear com-
ponents. These nonlinear structures are interpreted as dynamics analogous to
the method of normal forms.

To begin with the comparison among both nonlinear decomposition
techniques, we start by developing the nonlinear expansion of the Koopman
mode decomposition; a comparison is then provided with normal form analysis.

Let each snapshot x, of the matrix X be decomposed into the linear
combination
X, = AV, + AV, 4+ AV _ 4+ AV (4. 24)

where n is the number of snapshots, g <n—1 is the number of Koopman modes
obtained by any of the algorithms described in Chapter 3, and p <gq is the num-
ber of linear stability modes of the system.
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Recalling properties 2.2:and 2.3, it can be stated that the combinations of
the Koopman eigenvalues that approximate the linear eigenvalues of the system
originate another Koopman eigenvalues with its respective Koopman modes

and Koopman eigenfunctions. Consequently, it can be assumed that the ;th

Koopman mode, p < j <gq, is a combination of the previous Koopman modes:
1v,=(1 7V, =e%Hy, (4. 25)

where A4, and A, are the kth and /th linear eigenvalues of the system, and v,,

is the corresponding mode. Then, if it is assumed that the first p Koopman

modes are approximations to the linear stability modes, it can be hypothesized
that the rest of the Koopman modes are nonlinear structures of the form (4.25),

and so (4.24) can be rewritten as

_ kT . Tk, -y Akre TR 1k = Tk = Tk <
xk T— Al vl +% vZ +.-'+A¢pvp +A1JVLI +A1'2v1'2 ...+1F-I.PVF-I.P + AF.PVPJ?

P L L™

= %(xoﬁl’t{'l +¢z(xo I‘;iz +'”+5p (xo)/‘i';{’p +51,1 (xn)j:l{’l,i L

Pt

+ 5;.2 (xﬂ )th {?1.2 o .+ ap-l,p (XD )Z;-Ip% p-l.p + ¢p,p (xl} )Z;p i} p.p° (4 26)

L

where ¢ (x,).4,(x,)e € are the norms of the vectors ¥, and ¥,;, respectively. The

vectors v, and v,, are the normalized vectors v, and Vv,,.

[t is observed that, although in (4.24) the term x, is decomposed by

means of ¢ modes, in (4.26) we have used p+ p!/ terms with the aim of empha-

sizing that all the modes of second-order can be present in the decomposition.
Moreover, in the decomposition of (4.26) may be any nonlinear Koopman mode
of any order, and not just second-order terms. Only the second-order terms have
been added with the assumption that the higher-order terms have minimal par-

ticipation and with the target of establish a comparison with normal forms.

Tust as in the case of the method of normal form analysis, in the Koopman

mode decomposition, it is assumed that a nonlinear system can be decomposed
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in an infinite sum of terms of different order:Whether'is taken‘into accounit that
for both methods the terms of third and higher order are neglected, the nonline-
ar behavior of the system is ruled by (4.23) for normal forms analysis. Then, the

set of nonlinear observables can be expressed by means of (4.26) with Koopman

mode analysis.

Insight into the nature of the observed behavior can be obtained by re-

writing (4.23) in the more interesting form

P

xt(t)=z¢; xn lm ;2) +ZZ¢H(X (A +A,)kmv(2)u (4. 27)

J=I k=l1=|

where ¢,(x,), ¢,(x,)e € are constant values dependent on the initial conditions

X,, and the vectors sz),rvzz)k, e €" are the modes related to 4, and (4, +4,), re-

spectively.
The following conclusions can be drawn from this analysis:

By assuming that the Koopman mode decomposition accurately repre-

sents the nonlinear observables x,, then from the comparison of (4.26) with

(4.27), it can be assumed that the first p Koopman modes approximate the
linear stability modes of the system as was stated in the preceding section. It

results that for the first-order terms

2,(x Vis), =9, (%, )V, (4. 28)
whereas for the second-order terms

B (%o Wiy, = (%0 Vi (4.29)

Finally, it can be shown that

¢j (XU)V'(Z)J_ = .¢’j (X{J)vj T ;;j = ¢j {xo ){’jr (4 30)



and
¢.u (x'él)V Qu= 9P H(xﬂ)vﬂ = H‘?H = ¢H (xo )Gur (4* 31)

where ¢, (x,), @, (x,) are the true Koopman frequencies, and v,,v,, are the true

Koopman vectors.

4.2.3 Comparison between KMA and the MNF

As discussed above, the Koopman mode decomposition can be interpreted in
terms of normal form analysis in perturbation theory." These methods, however,
differ in several ways, most significantly in the way to be applied to describe the

nonlinear response of an electric power system.

First, the method of normal forms works with the nonlinear model of the
power system, linearizing it around a specified point, the Koopman mode anal-

ysis works just with recorded data.

This means that the method of normal forms has the possibility of study
each one of the dynamics interacting in the response of the system. Also, the
computational effort required to carry out the decomposition is very high, in
such a way that this study in most cases is not achieved farther than the second

order of approximation.

On the other hand, Koopman mode analysis requires the same effort to
calculate the approximate Koopman modes regardless of the dynamics de-
scribed. Koopman mode decomposition computational demand is mainly relat-
ed with the amount of information to be analyzed (number of observables and
the quantity of snapshots). As a consequence, Koopman mode analysis is capa-
ble to identify and extract efficiently nonlinear structures related with any order
of nonlinearity, i.e. it can identify nonlinearities related to normal forms of sec-

ond and higher order of approximation.

Though this mnay seem a great advantage, the closeness of the true

Koopman eigenvalues and the absence of physical information make the distinc-
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tion between the Koopman modes that describe the linear behavior and those

that describe the nonlinear behavior and the spurious modes generated by the
numerical method difficult.

In the light of the above observations, the following strategy is proposed:

1. Perform the linear stability analysis for the electric power system

for the post-fault condition to obtain the linear stability-modes.

2. Through the theory of normal forms determine the nonlinear

Koopman eigenvalues that could describe the nonlinear behavior

of the system

3. By means of the number of snapshots, the extent of the time in-
creasing step, and the main dynamics that can be excited (mainly
those related to the inter-area linear modes), provide a set of true
Koopman eigenvalues that probably decompose the observables

accurately.

4. Use the set of true Koopman modes as initial conditions for the
dynamical mode decomposition or as the initial approximate set-

ting to perform the optimal dynamic mode decomposition.

This strategy was not used in this thesis because it is not part of the objec-
tives pursued, but its application to assess system dynamic behavior is envi-

sioned in future work.

4.2.4 Nonlinear Koopman structures

In this section is established a theoretical procedure to obtain nonlinear struc-
tures of the Koopman mode analysis that contain information of the spatial evo-
lution of the dynamics related with a nonlinear modeé. These structures are anal-

ogous to the linear right eigenvectors and allow to perform a nonlinear mode

shape analysis.
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In the method of normal forms this nonlinear structures are calculated by

means of multiplications of the elements of the right eigenvectors, the nonlinear

coefficients, h(z)L and the initial conditions of the normal form state variables

z,, and z,,, as can be observed in (4.23). This nonlinear structures do not have a

clear relation with the linear right eigenvectors.

In the case of Koopman mode analysis, nonlinear structures of the

Koopman eigenvalues can be theoretically determined in the following manner.

First, by recalling Property 2.3, which shows that the interaction of
Koopman modes generate another Koopman mode, and rewriting it for the dis-

crete-time domain, one has
U* (g, ()¢, (x)) =, (s* (%)), (s* (x))
= exp (;lem);% (x)exp (ﬂzkm)@q (x)

=exp (4, +4,)kAt)g, (x)g;, (x), (4.32)

and then recalling how an observable g(x) is decomposed into Koopman

modes:

gx)=Y0,(x)v,,

j=!

it can be expressed the time evolution of the observables with initial conditions

g(xo)at t, as:

Uglx,)=Y U, (x,)v, (4. 33)

j=I

Then, by regarding the evolution of the dynamics associated to a modal

interaction,

Ut [(?; (xn) v, ) (@: (xa) v, )]= g ('S”’r (xn ))(a: (Sk(xo ))(Vj 'V:)
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= €Xp. (j‘j M‘)?; (x, Jexp (4, kAt)g, (xtr)("k -v;)
= €Xp ((/lj + 4, )kﬁ“)% (xu) P, (xo )(vk ' vf)
= €Xp ((’lj + 4 )kAt)¢j: (xo) by v (4. 34)

where (-) denotes a term by term product, b, is the norm of the vectorial term
(v, -v,), @,(x,) is the Koopman eigenfunction product of the multiplication of

the j th and !/ th Koopman eigenfunctions, and v,, is the resulting normalized

nonlinear structure related to the Koopman eigenvalue (/1 .+ 4, )

In particular, for the nonlinear Koopman mode corresponding to the

Koopman eigenvalue (4 s+ A )= (24 3 ),

U* [(¢j(xn) Vj)' ((aj(xo) V; )]= ‘P;(Sk (xﬂ))wj(sk(xﬂ))(‘r} ' Vj) :
- exp 24, kA1) x,) (v, )
= exp (24, kAt)p, (x,) v, (4. 35)

Here, the term v ; represent the vector of the squared values of each el-

ement of T

This theoretical result is based on the Koopman operator theory and is
used in Chapter 5 to determine a theoretical mode shape of a nonlinear

Koopman mode to demonstrate its validity.

4.3 Concluding remarks

It can be observed that the Koopman modes capture the dynamics of a dynam-
ical linear or nonlinear system in a manner analogous to small-signal analysis
and the method of normal forms (though in this Chapter has been shown ap-

proximations up to the second order), respectively.
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Also, an interesting result associated to the determination of nonlinear
Koopman structures has been presented, which may be used for an easy deter-
mination of the spatial behavior of the nonlinear dynamics. The validity of this

result is been proved in Chapter 5, where its usefulness is demonstrated.

Nevertheless, as the empirical Ritz vectors are an estimation of the
Koopman modes, the dynamics will not be captured accurately. Numerical ex-
perience in Chapter 5, however, shows that the empirical Ritz vectors converge

towards the Koopman modes even for complex systems.
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Chapter)
Application

This chapter describes the application of nonlinear mode decompositions techniques
based on the Koopman operator to extract and characterize nonlinear behavior in meas-
ured data. Three approaches are considered: dynamic mode decomposition (DMD),
SVD-based dynamic mode decomposition and the optimized dynamic mode decomposi-

tion.

The techniques are demonstrated on a wide range of examples, including data-
generated by transient stability simulations and synthetic data. Simulation results

show that Koopman mode analysis may be used to assess global stability from simulta-

neously recorded data.

The effects of observability of critical modes on the accuracy and robustness of the
various modeling approaches are examined in detail. In all cases, the optimized dynamic
mode decomposition methodology is seen to provide more accurate approximations to

system dynamic behavior than those of the (SVD-based) dynamic mode decomposition.



5.1 Outline of the study

The accuracy and robustness of the various modeling approaches was evaluated

for observational data obtained from detailed transient stability simulations.
The object of these simulations and analyzes are:

1. To verify the extent to which global mode decomposition techniques can
be used to extract and characterize critical intersystem modes of oscilla-

tion

2. To verify the accuracy and robustness of the proposed modeling ap-
proaches

3. To find robust and stable reducéd order models (ROMs) that accurately

describe the inter-area dynamics of interest

In the analysis below, attention is focused on the ability of these method-

ologies to characterize simulated data. First, the test cases are described.

5.1.1 Test cases

Three power systems have been used for analysis of wide-area phenomena.

1. The two-area, four-generator presented in [1]. For the purposes of this

study, two models are considered:
a: A classical system representation
b. A detailed transient stability model [2]
2. The New-England 16-machine system

3. A 46-machine, 189-bus model of the Mexican interconnected system [3].

5.1.2 Modeling considerations

An initial step before computing the Koopman modes from the data set is to

extract the mean speed of each measurement. It is not meant to remove the
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mean value of the entire data set, because of the possibility of reaching discrete

Fourier transform [4].

With these considerations, the observation matrix, X, turns into:

X=X X2—=X 0 Xima — %
% Xy, =Xy Xaas =X, v X - X
2.1 : .
X = _ 2 2.2 | 2 Znu-l‘ 2] (5_ 1)
xn.l - xn xn,l o xn In.m+l _ ‘xn

where x, is the mean value of the jth observable, given by

x,=mean(x, .x, - x,..).

The percentage of the error of the representation is calculated as:

sup( |ov-X
sup(| X

where the term sup(-) denotes the supremum, and the matrix ®V gives the de-

error(%)= : J x100. (5. 2)

composition of the original signals in terms of the approximate Koopman
modes. That is, ®V is equivalent to (2.41) but for all the ensemble of data as-

suming g(x,)=x,.

Equation (5.2) is used to evaluate the accuracy of the representations of
the original signals obtained by the approximations to the true Koopman modes
computed using the different approaches.

We now discuss the application of the proposed techniques.

9.2 Two-area, four-generator system

As a first example, the two-area four-generator system in [1] is used to introduce
the application of the proposed techniques to assess system behavior. The base
case operating conditions and system parameters are given in [1] for the classi-

cal system representation and in [5] for the detailed system representation.
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Two disturbance scenarios are considered for analysis:

1) Case A. Classical system representation. Loss of 5% of mechanical power

in Generator 1.

2) Case B. Detailed system representation. Three phase fault applied at Bus
5 cleared in 0.019 s with no line switching.

5.2.1 Classical system representation

Linear analysis was used to benchmark Koopman analysis results..

Table 5.1 summarizes the linear system modes for the classical system
representation. The system exhibits an inter-area mode at about 0.56 Hz and two

local modes-associated with areas 1 and 2 at 1.19 Hz and 1.23 Hz, respectively.

Table 5.1. Small-signal stability analysis eigenvalues.

Mo.de i Frequ(;ncy Damp'_
] J [HZ] [%] tion
1 0.0018 + 0.0000i 0.0000 -100.0000 Trend
2 ~0.0798+0.00001 0.0000 100.0000 Mean value
3,4 -0.3994 X 3.5602i 0.5666 1.1218 Inter-area
5,6 -0.0385 X 7.5344i 1.1991 0.5109 Local Area 1
7, 8 -0.0404 X 7.7622i 1.2354 0.5211 Local Area 2

Transient stability simulations were recorded over 10 s at a rate of 20
samples per second. Plots of the simulated speed deviations for Case A above

are shown in Fig. 5.1. This contingency ‘s found to excite modes 3 and 5 in Table
9.1.

The observation matrix associated with the system response to this per-
turbation is defined as

X=[A0, a0, - A@,J e (5.3)
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with n =4 and m =201.

The five most dominant empirical Ritz eigenmodes obtained by the dy-
namical mode decomposition are shown in Table 5.2. The frequencies of the sec-
ond and third empirical Ritz eigenvalues approximate the dynamic of the linear
modes 3 and 5 in Table 5.1. The other empirical Ritz eigenmodes are spurious

modes.
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Fig. 5.1. Speed deviations of system generators. Case A.

Table 5.2. Dominant Ritz eigenmodes obtained by DMD for the data shown in Fig. 5.1

Mode i i I_,— Fre&;lze)ncy Dal(%mg F_:I;n}:‘l
1 1.0003 0.0485 -1.9127 1.000000
2 0.9914 0.5743 1.1036 0.0930
3 0.9