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Diseño de la estructura y el control de área amplia del sistema de

potencia

Resumen

En esta tesis, se propone un marco de trabajo general analitico para diseñar

simultáneamente la estructura y el control de área amplia del sistema de

potencia para amortiguar oscilaciones inter área. Primero, se propone una

formulación general basada en el valor singular estructurado, la cual permite

evaluar el efecto de la incertidumbre compleja en la robustez de la estabilidad.

Entonces, se desarrolla una nueva técnica para determinar los mejores pares

entrada salida para controladores de área amplia multivariables basado en la

ganancia por bloques relativa.

En este contexto, la teoría de control robusto multivariable es aplicada para

generar controles descentralizados o parcialmente descentralizados que

garantizan un rendimiento con respecto a las incertidumbres en la estructura

de la red y las condiciones de operación. La técnica es particularmente

adecuada para sistemas de potencia grandes y complejos, en los cuales varios

controladores del sistema de potencia son usados para amortiguar

simultáneamente los modos inter área y locales de las diferentes frecuencias

que aparecen simultáneamente.

Finalmente, las técnicas de desigualdades lineales matriciales son

empleadas para diseñar controladores de área amplia. En general, esta

plataforma de trabajo permite una mejor coordinación de las capacidades del

control, y el uso de las medidas de interacción permite ayudar en la elección

de la estructura y localización del control.

La eficacia de la configuración de control jerárquica propuesta para mejorar

los modos oscilatorios críticos del sistema es examinado en un modelo real del

sistema interconectado mexicano. Son investigados en detalle los efectos de

latencia, incertidumbre y la interacción del control en el comportamiento del

sistema. Simulaciones de tiempo no lineales detalladas son realizadas para

verificar la eficiencia de las metodologías de diseño propuestos.



Wide-area power system control and structure design

Abstract

In this dissertation, a general analytical framework for simultaneously

designing wide-area power system control and structure for damping inter-

area oscillations is proposed. First, a general formulation based on the mixed

structural singular valué, which allows to assess the effect of complex

uncertainty on stabiUty robustness is introduced. Then, a novel technique to

determine the best input-output pairings for multivariate wide-area

controllers based on the block relative gain is developed.

In this framework, multivariable robust control theory is applied to genérate
decentralized or partially centralized controls that guarantee performance
with respect to uncertainties in network structure and operating conditions.

The technique is particularly well suited for large, complex power systems in

which several power system controllers are used to simultaneously damp local

and inter-area modes of different frequencies appearing simultaneously.

Linear matrix inequality techniques are finally employed to design wide-

area damping controllers. In general, this framework allows for a better

coordination of control capabilities, and the use of interactionmeasures allows

to help in the choice of control location and structure.

The effectiveness of the proposed hierarchical control configuration to

enhance damping of critical system oscillatory modes is tested on a realistic

model of the Mexican interconnected system. The effects of latency,

uncertainty and control interaction on system behavior are investigated in

detail. Detailed nonUnear time simulations are conducted to verify the

efficiency of the proposed design methodologies.
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Chapter 1

Introduction

1.1 Introduction and motivation

Power system oscillatory behavior has received a great deal of attention in

recent research. The critical dynamics are often associated with inter-area

and local oscillation modes associated with the exchange of kinetic energy

among system generators. Under some circumstances, these oscillations can

result in system instability and blackout. Unfortunately, power systems are

complex networks that defy predictions with any degree of certainty due to

the vast number of generators and transmission lines that make the

analysis and control of power system oscillatory behavior difficult [1-3].

As a result of the size of the power system, linear methodologies are

preferred to analyze and design power system controllers. Using linear

analysis approaches, wide-area controllers can be represented by transfer

functions for local input-output or multiple-input multiple-output (MIMO)

channels. In general, these characteristics must be considered during linear

analysis and design of controllers.

Decentralized controllers are preferred in large linear systems because

they result in local feedback signáis and simpler control structures. A single-

input single-output (SISO) decentralized controller design, however,

neglects loop interactions due to the off-diagonal elements of a plant, which

can lead to performance deterioration and even instability. This motivates

this research work.

Ideally, a multivariable plant would be controlled by a centralized

controller where the control action of each manipulated variable is a function

of all the measurements, but it is preferable to design SISO controllers.
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In the last decades, multivariable controllers have been avoided in favor of

simpler decentralized controllers due to the fact that power system

generator controllers are decentralized through power system stabilizers

(PSSs). The basic function of a PSS is to add damping to the generator rotor

oscillations by controlling its excitation using auxiliary stabilizing signáis.

To provide damping, the PSS must produce a component of electrical torque
in phase with the rotor speed deviations [l]. In addition, with the

incorporation of flexible alternating current transmission system (FACTS)

devices have been possible to design supplementary controllers to enhance

power system stability in addition to their main principal function of power

flow.

It is further assumed that the nominal scenario of a power system is stable

to design supplementary controllers, which can be expressed in frequency
domain. Unfortunately, the high degree of nonlinearity of power systems and

continuous change in operating points make very difficult to achieve a

controller design using only a single nominal model. These limitations have

lead to the development of robust decentralized controllers which can

incorpórate uncertainties for robust performance and analysis.

Another related problem in power systems is the location of the most

suitable input-output signáis for control configurations. In the last decade,
with the incorporation of phasor measurement units (PMUs) and satellite

Communications, wide-area measurement system (WAMS) technology has

made it possible to implement multi-level control configurations for damping
electromechanical modes through remote measurements.

Much of recent research has therefore focused on developing new methods

to assess and select input-output signáis for wide-area damping controllers.

Although wide-area damping controller (WADC) devices have the potential
to improve the damping of inter-area oscillations, the use of hierarchical

configurations also introduces new challenges into the synthesis of

controllers and loop interactions to damp local modes.

Uncertainties arise due to varying parameters, unmodeled or neglected

dynamics in linear systems, etc. Robust stability and robust performance are

essential in electric power systems to mitígate electromechanical oscillations

through robust decentralized controllers. Structured and unstructured

uncertainty representations in power systems are useful in describing load

flow changes, variations in network topology and changes in operating
conditions, deregulation in the sector, and neglected dynamics

This thesis discusses the problem of simultaneous wide-area

control/structure design and robustness.
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The main motivations behind this research include:

• In contrast to conventional PSSs and FACTS devices, the

implementation of wide-area controllers is much more effective for

damping inter-area oscillations because it suffices to choose of a set

of global signáis and the associated most suitable input-output

pairings.

• Multi-level hierarchical control structures can be used to

simultaneously damp local and inter-area modes or inter-area modes

of different frequencies appearing simultaneously

• The analysis and evaluation of robust stability in the presence of

unmodeled dynamics and variations in power system operating

conditions is a problem of increasing importance in

centralized/decentralized wide-area control design.

1.2 Statement of the problem

Control structure design is an important first step in the design of robust

power system controllers. Characterization of dynamic loop interactions is

required for both, the selection of control structure and the minimization of

adverse control interactions. In addition, an important requirement for a

practical control system is robustness with respect to uncertain plant

parameters.

Robust control theory provides a rich class of control configurations and

methods to design controllers such as: ^ [36-37, 48], "Ka_ [7], and <K-¿l'K_t_ [50]

techniques. Current research suggests that while the problem is hard in

general, certain classes of robust controllers with special information

structures are tractable via convex optimization techniques. Among them,

H2/Ha> method have been applied in several researches with good results.

The implementation of efficient algorithms using linear matrix inequalities
(LMIs) and /rsynthesis in power systems has been developed in previous
research to damp electromechanical modes. In general, the application of

these methods provides attractive characteristics to design MIMO and SISO

controllers. Two types of methodologies have been applied by most

researchers to represent uncertainty in power systems to compute the

structure singular valué (SSV) [33]: the structure uncertainty based on

percent representation which can include unstructured uncertainty, and the

polynomial representation derived from least square minimization [25-28,
40].

1-3



The first uncertainty representation is more conservative and limited to

each coefficient of linear matrix equations. In general, the SSV have been

introduced in the literature to evalúate the robust stability and the robust

performance.

If a power system does not have robust stability, the main objective is to

find a robust controller to mitígate power system oscillations including

robust performance. Unfortunately, to achieve these objectives, robust

controllers must be carefully designed to achieve robust stability of the

electromechanical modes without reducing the damping of other modes with

weighting functions.

The relative gain array (RGA) is a tool to describe interactions among

control loops, and is very easy to implement in large power systems.

Furthermore, the selection and location of input-output signáis, which play

an important role in the stability of control devices, is crucial to stabilize

inter-area and local modes. This method, however, does not provide

additional information about MIMO loop interactions. In many applications

several control configurations are modeled by MIMO systems, such as

WADCs which take into account MIMO signáis. Then, a solution for this

problem must be given based on interaction measures. Finally, another

drawback ofthe classical RGA analysis is the concept of phase.

It is therefore necessary to use a technique that could capture the

uncertainties and include them into the model. Furthermore, a technique to

describe interaction among control loops in frequency domain is deemed

necessary.

1 . 3 Review of previous work

Over the last few years, research in robust control design, interactions

measures and power systems has led to the development of many different

tools for the design of robust SISO controllers and WADCs.

A brief review of these approaches is presented next in the context of this

research.

1.3.1 Loop interactions and the RGA analysis

The problem of control loop interaction has been addressed using two

interrelated approaches [4-5]: choosing suitable input-output pairs that will

lead to the least interaction among control loops, and designing control

strategies that will attenuate the effects ofthe
interaction.
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One of the earliest measures of interaction was the relative gain array

(RGA). This original technique was introduced by Bristol [6]. The Bristol

method has been extensively used to design decentralized controls by

assuming that the control has a proportional integral (PI) feedback. The

RGA, however, is a conservative and empirical method because it uses

knowledge of the steady-state process and lacks dynamic information [7-8],

which may result in wrong pairings and inaccurate indication of the amount

of loop interaction present.

The above limitations have led some researchers to develop dynamic

measures with the ability to improve the pairing capabilities of the steady

state RGA in cases where the RGA changes substantially with frequency [9].

In the literature this method is called dynamic relative gain (DRGA). Other

related works in the process control literature have been motivated by the

goal of evaluating loop interaction in the frequency domain [10-14].

There is a large and growing literature on control loop interaction analysis.

Two main approaches for choosing input-output pairings for PSSs and

FACTS devices have emerged: modal analysis and frequency methods. The

first approach involves the calculation of the eigenvalues and residues of the

system, while the latter can be derived using the singular valué

decomposition or frequency methods [15-16].

The notion of interaction measures has been used for some time in

designing and locating power system controllers [17-18]. In [19], a

decentralized method to mitigate adverse interaction between controllers

and electromechanical oscillations based on the notion of a dynamic RGA

was proposed.

More recently, the RGA in [20, 21] was used to evalúate the capability,

control structure and the bifurcation subsystems of a /rsynthesis power

system stabilizer design. References [22, 23] examine the use of various

analytical methods to select signáis for FACTS devices and lócate

controllers.

A more recent and interesting development, has been the use of DRGA-

based techniques to assess and select suitable inputs for FACTS and high-

voltage direct current (HVDC) devices in wide-area control schemes [24]. In

most cases, however, the selection of the input-output variables for the

design ofWADCs has been based on single-input single-output models.
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1.3.2 Robust analysis using the structured singular valué

Generally, in the literature two linear methodologies have been applied by

most researches to determine stability in linear power systems: small signal

stability that uses the eigenvalues analysis and robust techniques that use

the SSV [25-28]. However, small signal stability is limited on a few selected

points from the wide range of possible operating points. Then, the task is

based in experience and on engineering judgment. Furthermore, these

methods do not consider structured and unstructured uncertainty. Then, it

is possible to design robust controllers to modify a mode of oscillation by

feedback, but the size of the system must be considered to evalúate these

techniques.

The use of the SSV in power systems has emerged as an altemative to

quantify the robust stability and the robust performance in linear systems.
This linear methodology presents an elegant technique to represent the

nominal scenario and the structured uncertainty. Uncertainty is represented

using the LFT representation which naturally unify the frequency-domain
and state space methods [29-31]. Nevertheless, the structured uncertainty

representation in power systems has a strong computational demand and

arise due to changes in loads, transmission lines of the network, neglected

dynamics, etc.

An essential and sometimes underrated concept regarding to the SSV is

the difference between the complex and the mixed SSV. The complex case

was derived using upper and lower bounds out of real parametric
uncertainties [32-33]. Unfortunately, the gap among these bounds can be

conservative. In fact, the mathematical formulation of the complex SSV

shows that it may be considered as a first approximation with respect to the

mixed SSV.

On the other hand, in [34] the robustness framework for multimachine

power systems using £«, was developed. The main advantage of this

approach is the simplicity of the derived conditions for robustness, which

consists of computing the spectral radius of a certain nonnegative matrix.

The mixed SSV has been the focus of some researches due to the fact that

it incorporates real parametric uncertainties [35-38]. A solution is to

reformúlate the upper and lower bounds with new scaling matrices.

However, the computational burden of the procedure grows and the mixed

SSV is discontinuous. This means that the possibility ofmissing a point does
exist. A partial solution for the discontinuity behavior ofthe mixed SSV is to

incorpórate a percent of complex uncertainty, but this will result in an

increase ofthe uncertainty [39].
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1.3.3 Design ofWADCs in power systems

There exist several robust linear methodologies to design robust controllers

or optimal in some sense in power systems. One approach was developed

using a set of LMIs [40-42]. This approach presents multi objectives

characteristics derived from disturbance rejection, pole -placement, minimum

damping ratio, etc. However, the nominal system is represented by

unstructured uncertainty and balanced reduced-order model. Furthermore,

in [43-44] similar results for unstructured uncertainty was derive using ?£«,

and the polynomial approach. In [45], the normalized coprime factorization

approach for loop-shaping design was proposed to design robust controllers.

Essentially, all these methodologies describe unstructured uncertainties as

the standard state space Ha,.

The introduction of techniques with /rsynthesis to design robust

controUers has been applied in different researches [46-47]. In all these

methodologies, the synthesis process is supporting with complex fi using D-K

iteration. Nevertheless, the structured uncertainty is modelled as real

parametric. These limitations emerge due fact to represent the structured

uncertainty as a complex uncertainty.

For system models which incorpórate real parametric uncertainties, it was

developed the D-G-K iteration as a consequence of the mixed structured

singular valué [48-49]. However, in large power systems the D-G-K iteration

increases the computational burden due to due to the scaling matrices of the

mixed and complex SSV upper bounds.

1.4 Objectives of the dissertation

In this dissertation a common mathematical framework for decentralized,

quasi-decentralized control and multilevel of large interconnected power

systems is provided. A systematic analytical procedure based on the concept

of the block relative gain (BRG) and block generalized dynamic relative gain

(GDRG) is used to design block-decentralized controllers to damp
electromechanical oscillations. The method allows to identify the most

suitable pairing loops for MIMO WADCs and avoids degradation of

performance and stability among designed controllers.

In a first stage the damping factor of electromechanical modes are studied

using the small-signal analysis. Then the complex and mixed SSV are

computed to evalúate and compare the robust stability. From the results

obtained from modal analysis, the input-output selection criterion for MIMO

controllers using the BRG is described. The use of the BRG method extends

the conventional use of the RGA for interacting control systems, to the BRG

to analyze interactions among MIMO controllers.

1-7



This gives candidate sets for supplementary controllers which are solved

using the LMI techniques and evaluated in closed loop to evalúate

interactions. Finally, in order to quantify the effectiveness of controllers an

eigenvalue analysis of the closed-loop system is necessary. Then, the robust

stability of designed controllers are computed using the SSV and non-linear

simulations are simulated in a power system with real specifications.

1.5 Contributions of this dissertation

The main contributions ofthis dissertation are:

• A framework to evalúate the robust stability in power systems using
the complex and mixed SSV is proposed and tested. Moreover, the

incorporation of a percent of complex perturbations to real parameters
to avoid the semi continuity of the mixed SSV for large power systems.

• A block decentralized control perspective to design WADCs which

include hierarchical control configurations in power systems using
LMI techniques is suggested.

• A systematic methodology to study interactions derived from the

MIMO linear systems is developed. This document proposes the use of
the BRG and block GDRG methodologies to select the more suitable

input-outputs pairings for MIMO controllers.

• In addition, the concept of phase for interaction measures in SISO

control loops is introduced.

1.6 Outline of the dissertation

This document is organized as follows: Chapter 2 introduces the robust

control theory for unstructured and structure uncertainty and their

criterions in linear systems; emphasis is placed on the difference between

the complex SSV and mixed SSV In addition, via incorporating a percent of

complex perturbations to real parameters, the semicontinuity of the mixed

SSV for large power systems is avoided. Then, a general modeling approach
for modeling real-valued parametric uncertainty in power systems is

presented.

The problem of selecting the input-output pairings in large systems is

treated in chapter 3. This problem emerges as a necessity to choose the most
suitable input-output signáis for MIMO and SISO controllers. Then, basic
criterions are developed using the BRG.
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Furthermore, this chapter proposes the use of the skewed SSV to measure

the interaction impact due to the nominal model. Finally, a new method is

proposed to select MIMO pairings for wide-area damping controllers and the

development of new measures for interaction that account for more realistic

operating conditions and control structures.

In chapter 4, a rigorous review of the robust control synthesis methods is

presented. These topic includes, the LMI technique, the D-K iteration, the D-

G-K iteration and the /rK iteration and their respective limitations. The

objective of this review is to have a general idea of the numerical limitations

for large power systems.

Finally, chapter 5 discusses the proposed control scheme of block

decentralized controllers on a realistic 5-area model of a practical test

system. Furthermore, robust performance simulations using the mixed and

complex SSV are included to evalúate the linear system and large

disturbances are simulated to evalúate the performance of controllers.

1.7 Publications
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Chapter 2

Robust Stability and Robust

Performance Analysis of Linear

Systems Using the Structured

SingularValué

The analysis of stability and performance robustness to variations in

uncertain system parameters represents a major issue in system design and

operation of power systems. Robustness refers to the ability of a system to

preserve system characteristics, stability or performance in the presence of

unknown perturbations and noise. Robust stability and robust system

behavior have to be guaranteed for the entire expected working range.

This chapter examines the problem of robust stability and robust

performance analysis in plants with parametric uncertainty using the

concept of structured singular valué and discusses basic robust control

theory. Using this approach, stability can be guaranteed for all parameter

combinations modeled and perturbations which includes Jft» and the

multivariable gain margin as special cases.

A general modeling approach for modeling real-valued parametric

uncertainty in power systems is presented. Numerical issues associated with

the application of robustness analysis techniques are also discussed. Finally,
this chapter concludes with a formal statement of a general framework to

include a percent of complex uncertainty for large power systems.
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2.1 Introduction

In many studies, uncertainty arises as a natural expression of unmodeled

dynamics, parameter variations, and nonlinear variations. In general,

uncertainty can lead to instability or performance problems. In addition, the

investigation of the closed-loop subject to model uncertainty is an important
issue to assure stability and performance robustness of a designed control as

well as to describe and forecast uncertain behavior in control processes.

Uncertainty can be modeled within the framework of linear fractional

transformation (LFT) theory and can be broadly divided into two types:

structured uncertainty associated with parametric uncertainty quantified by

assuming that each uncertainty is bounded with some región, and

unstructured uncertainty associated with neglected or unmodeled dynamics

[1-2].

In the control literature, the concept of unstructured uncertainty is based

on the description of the model uncertainty as a transfer function which is

norm-bounded, but otherwise unknown using the small gain theorem and

the singular valué decomposition (SVD). This kind of unstructured

uncertainty can be additive, multiplicative, or other uncertainty. These

methods, however, do not capture the parametric uncertainties and present
various limitations [1-2].

In order to overeóme the limitations of unstructured uncertainty, the

structured singular valué (SSV) theory was developed by Doyle [3].

Unfortunately, the exact valué of the SSV has shown to be NPhard (Non-

deterministic polynomial-time hard) and in practice its exact valué cannot be

computed for large systems except for very low order systems. Consequently,
these constraints have led some researchers to improve an upper and lower

bound to approximate the SSV.

Algorithms for computing lower and upper bounds have been documented

in several publications [4- 10]. Furthermore, in the theory of the SSV an

essential difference is the relation between the complex and mixed SSV

The complex SSV is derived using upper and lower bounds without real

parametric uncertainties. Unfortunately, the gap between these bounds can

be conservative. That is, the mathematical expression of the complex SSV

can be considered as a first approximation of real parametric uncertainties.

The mixed SSV has been the focus of research due to the fact that

incorporates real parametric uncertainties [11-16].
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In the case where \í has real parametric uncertainties, a solution is to

reformulate the upper and lower bounds of the complex SSV. However, the

computational cost of the procedure grows and the mixed SSV is

discontinuous. This means that there exists the possibility of missing a

point. A partial solution for the discontinuity of the mixed SSV is to

incorpórate a percentage of complex uncertainty in each block [17-18].

This chapter reviews existing methodologies for computing the complex

and mixed SSV for large power systems models. The main focus is to avoid

the discontinuities of the mixed SSV.

2.2 The parametric uncertainty modeling problem

In order to gain insight into the problem of robust stabiUty and robust

performance analysis, consider a finite dimensional linear time-invariant

(LTI) dynamical system described by the linear constant coefficient

differential equation:

x(t) = Ax(t) + Bu(t), x(t0) = x„ (2. 1)

y(t) = Cx(t) + Du(t)

where x(t) G En is the vector of system states, x(t0) is the initial condition of

the system, u(t) 6 EPU is the vector of system inputs, and y(t) G Rqy is the

vector of system output; A G Rnxn, B G Enxp C G Rqxn, D G Rqxp are the

state, input, output matrices, respectively.

The corresponding frequency response G(ja)) E Cqxp of the transfer matrix

from u(s) to y(_s) is given by

y(s) = G(s)u(s) = [C(sl - A)"^ + D]u(s) (2.2)

where u(s) and y(s) are in the frequency domain.

For uncertain analysis, assume that the uncertain system models (2.1) and

(2.2) can be expressed in the form

x(t) = [A + AA(p)]x(t) (2.3)

yOO = [G(s)+A(s)]u(s) (2.4)

where AA(p) represents an unknown real perturbation term, and p is a

vector of uncertain parameters, combining all uncertainties. On the other

hand, the complex matrix A(s) can be a block diagonal transfer function

matrix. In practice, the uncertainty matrix A(s) is confined to a certain

bounded set as discussed below.
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These approaches allow for perturbations in the coefficients of the state

space model, and enable the connection between system identification and

robust control theories to be examined.

The main problem in (2.3) and (2.4) consists in approximating these

expressions including uncertainty in a robust stability and robust

performance framework that allows the use ofthe SSV.

2.3 Basic concepts

A key concept to evalúate and describe the performance specifications of a

control system is in terms of the size of certain signáis of interest. For this

purpose, in this section is introduced the holomorphic Hardy space rK___. In

general, these Hilbert spaces can specify in robust control theory the

requirements and objectives of controllers, when the loops of transfer

functions through the uncertainties are closed. A few definitions are needed

[91.

Suppose a vector space with an inner product which is called an inner

product. This inner product induces a norm with the next properties:

i. {x, ay + fiz) = a{x, y) + fi{x, z)

ii. (x,y)- (y,x)

iii. {x,y) > 0 if x * 0.

A sequence {/n} in a normed space V converges to f G V. and / is the limit

ofthe sequence, ifthe sequence of real positive numbers \\f
—

fn\\ converges
to zero and n -» oo. Essentially, this definition says that in any neighborhood

around the limit point, /, there exist an infinite number of points. If such /

exists, then the sequence is convergent.

A sequence {/„} in V is called a Cauchy sequence if for each e > 0 there

exists a natural number n0 G M such that for n,m>n0 and n,m -* oo then

ll/n _/mll Ss. A normed space (V, {-,■)) is said to be complete if every Cauchy

sequence is convergent. A pre-Hilbert space (V, (•,-)) is said to be complete
with respect to the norm induced by the scalar product (•,). A complete
normed space is called a Banach space and a complete pre Hilbert space is

denoted a Hilbert space.

¿«.(yl) is the space of all functions ¥(joj), defined on the imaginary axis,

which take valúes in <Cmxn and are bounded on the imaginary axis. L^ljR) is

a Banach space under the norm
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IIF(/w)|L = 5up||F0co)||2 = sup o [FO'w)]
<oelR a>€D_

Here, Hm is the space of all functions F(s) which are analytic in Re(s) > 0

take valúes in Cmxn and are essentially (ess) bounded in the right half plañe

(RHP):

sup ||F(<0||2 = ess sup <f[F(ja))]
Re>0 co6R

The real rational subspace of H<__ is denoted by JUím, which consists of all

proper and real rational stable transfer matrices. It then follows that, for a

transfer function G(s) G JZHao

||F(s)|L =
sup 9[V(Jtú)]
(_)£__

(2.5)

The above equation (2.5) for a stable transfer function ||G(s)||oo is induced

by the operator II -

11(2,2) and a is the maximal gain. If F(s) G K^ and u(ü) G

"K-¿, then y(t) G "K2 and the induced operator 2-norm of u(t) on y(t) equals
the Wo, norm || F(s) || o,,. This means that a stable linear system maps bounded

energy inputs onto bounded energy outputs. In addition, L„_(_\R) is defined

only on the imaginary axis, its domain is jR.

2.4 Nominal stability and nominal performance

The requirement of internal stability in a feedback system is essential to get

robust stability and robust performance. To illustrate these ideas considered

the feedback configuration shown in Fig. 2.1. Here, d*(s) is the plant input

disturbance, d(s) is the plant output disturbance, n(s) is the noise, r(s) is

the reference, u(s) is the control input, and up(s) is the plant input.

d,

•O K(s) ■^4G(¡)Uk
n

Qr-

Figure 2.1. General feedback control configuration.

Disregarding input and output disturbances, d(s), d*(s), and noise n(s), the

system has internal stability, G(s) G RHoo and K(s) G JZHo_. The next

generalized Nyquist stability criterion is derived for multiple-input multiple-

output (MIMO) systems.
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Theorem 2.1 (The generaUzed Nyquist stabiUty criterion) [19]. If the open

loop transfer function matrix G(s)K(s) has p poles in the right-half s-plane,
then the closed loop system is stable if and only if the map of det(l +

G(s)K(s)), as s traverses the Nyquist JD contour once, encircles the origin p

times anti-clockwise assuming no right-half s —plañe zero-pole cancellations

have occurred forming the product G(s)K(s).

With reference to Fig. 2.1, it is convenient to define the input loop transfer

function matrix L*(s) = K(s)G(s) and the output loop transfer function

matrix, L0(s) = G(s)K(s) with G(s) G RHm and K(s) G ##"«,. Also of interest,

the input sensitivity is defined as the transfer function from d¿(s) to up(s),
i.e. up(s) = S£(s)d*(s) where S£(s) = (i + L¿(s)) and the output sensitivity is

defined as y(s) = S0(s)d(s) where S0(s) = (i + L0(s))

Furthermore, the input and output complementary sensitivity are defined

as:

T*(s) = I - S¿(s) = L£(s)(l + L£(s))-1 (2.6)

T0(s) = I - S0(s) = L0(s)(l + L0(s))-1 (2.7)

T0(s) + S0(s) = I (2.8)

Straightforward analysis yields

y(s) = T0(s)[r(s)
- n(s)] + S0(s)G(s)d¿(s) + S0(s)d(s) (2.9)

r(s)
-

y(s) = e{s) = S0(s)[r(s)
- d(s)] + T0(s)n(s)

- So(s)G(s)d¡(s)(2.10)

u(s) = K(s)S0(s)[r(5)
- n(s)]

-

K(s)S0(s)d(s) -

T.(s)d¡(s) (2.11)

up(s) = K(s)S0(s)[r(s)
- n(s)] - K(s)S0(s)d(s) -

S*(s)d¡(s) (2.12)

The following observations can be made about this model [8] :

• For disturbances dÉ(s) and d(s) to affect the output y(s) to the least

extent, (2.9) shows that the sensitivity S0(s) should be small.

• For good disturbance error reduction due to the disturbances [r(s) —

d(s)] and d(s) to the least extent, (2.10) shows that the sensitivity
S0(s) should be small.

• For disturbances [r(s)
- n(s)] and d(s) to affect the inputs u(s) and

up(s) to the least extent, (2.11) and (2.12) show that the sensitivity

S0(s) should be small.
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However, due to the equation (2.8) S0(s) and T0(s) cannot both be small in

the same frequency range. For good rejection d(s) at output y(s), it will be

required that ||S0C*s)||oo « 1- Similarly, for good rejections r(s) and n(s) at

output, it will be required that ||To(_0||oo « 1. Fortunately, the limitations

in (2.8) can be avoided with proper choice of weighting functions, and

physical reasons. On the other hand, the sensitivity is a very good indicator

of closed loop performance [8].

A feedback control configuration with weighting functions is shown in Fig.

2.2. The weighting functions are chosen to reflect the design objectives and

knowledge ofthe disturbances and sensors noise. In practice, the selection of

weighting functions should be guided by the expected system inputs and the

relative importance of the outputs.

Ü
Wd£(s)

O K(s)

Wá(s)

k5
u+V u.

G(s)
x +

o

<>-*We(s)

wvO)

-Ó Wn(s)

Figure 2.2. Feedback control configuration with weighting functions.

Definition 2.1 [19]. The nominal performance problem is, given weighting
functions Wy(s) and Wd(s), to design a stabilizing controller K(s) such that

the cost function

||Wy(s)S0(s)Wd(s)|| (2.13)

is minimized.

Thus,

K(s) = argKmm J|Wy(s)S0(s)Wd(5)||oo
where %s denotes the set of all stabilizing controllers and JH",» represents a

control problem. Ifa controller can achieve||Wy(s)S0(s)Wd(s)|| < 1, it is said

that the closed loop system has nominal performance.
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2.5 Robust stability and robust performance with unstructured

uncertainty

A m x m complex-value norm-bounded unstructured perturbation Ac is the

set of m x m transfer functions A(s):C -> Cmxm which are analytic in the

closed right half-plane and have a nornrbound less than or equal to some

given positive function 5c(co): R -* R+ then Ac=

(A(s) G ÜHK^ó [A(/&0] < 5c(o.), co G (-00, 00)} with o as the máximum

singular valué. The normalized uncertainty set is given by BAC=

{A(s) G KK^a [AO'w)] < l,a» G (-00,00)}.

From the above definition it can be established a frequency dependent

magnitude bound uncertainty to describe many types of uncertainty. The

basic representations of unstructured uncertainty models are: additive

uncertainty GT(s) = G(s) + A(s), input multiplicative uncertainty GT(s) =

G(s) íl + A(s)J, output multiplicative uncertainty GT(s) = íl + A(s)J G(s),

inverse input multiplicative uncertainty Gr(s) = G(s) íl + A(s)J and

inverse output multiplicative uncertainty GT(s) — íl 4* A(s)J G(s), where

A(s) = Wu2 (s)A(s)Wul (5) (2. 14)

Equation (2.14) has two weighting matrices Wu_.{s) and Wu2(s). Using the

SVD for the perturbation model, A(s) is normalized and ||A(s)j|oo < 1. These

weighting matrices are natural expressions of the uncertainty model, but it

is important their normalization. In the literature, the unstructured

uncertainty A(s) is simple called a full complex block.

Theorem 2.2 (SmaU gain theorem) [9]. Suppose M(s) G JU£m and let y > 0.

Then the interconnection system shown in Fig. 2.3 is well-posed and

internally stable for all A(s) G RH<__ with ||A(s)||oo<- if and only if

||M(s)|L<yor||A(s)||.
1 1

< -ifand only if||M(s)|U < y.

w_(s) e-^s)

o

e200 >

Ot
w2oo

Figure 2.3. M(s) — A(s) loop for stability analysis.
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For a given controUer, K(s), the small gain theorem therefore guarantees

the stabiUty of the closed loop system with unstructured uncertainties. The

small gain theorem, which requires that the modulus of M(s)
— A(s) be less

than 1 for all frequencies, plays an important role in robust control and is

shown graphicaUy in Fig 2.4.

\%

Complex plañe

M(s)-A(s)

Figure 2.4. SmaU gain theorem in the complex plañe M(s) — A(s).

In general, the smaU gain theorem provides only a sufficient condition for

stabiUty and is therefore potentiaUy conservative. It then foUows that using

the small gain theorem ||M(s)A(s)||oo < 1 for aU eu G R, and

a [M(s)A(s)] = |M(s)A(s)| = |M(s)||A(s)| = o [M(s)]a [A(s)]

FinaUy, the next expression can be written for different types of

unstructured uncertainty:

a [Míjü))W [AO'o-0] < 1 (2.15)

Consider the linear fractional transformation in Fig 2.5, where HA^H^, <

1, w(s) and z(s) are the exogenous inputs and the exogenous outputs,

respectively. It is assumed that uncertainty is extracted, the control is

absorbed. Then, from the smaU gain theorem, the next important theorem

for robust stabiUty can be derived:

Theorem 2.3 [19]. Assume that the interconnection ofM(s) G JttCa, and A(s)
is of such a form that the perturbed cióse loop system is stable if and only if

the map of det(l + G(s)K(s)) as s traverses the JD contour does not encircle

the origin. Then the closed loop system has robust stabiUty for aU

perturbations A(s) with a [A(/_u)] < 1 ifand only if ||M(s)||oo < 1.

The nominal open-loop interconnected transfer function matrix P(s) in Fig.
2.5 does not consider the controUer K(s) and the perturbation A(s). Let P(s)

may be partitioned as
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P(s) =
Pll (*) Pu(s) Pu(s)

Pii(-s) Pn(s)

PllW Pll(s)J

The signáis y(s) and u(s) represent the feedback signáis and the control

signal, respectively.

11

PnOO

PnOO

y¿
A(s) "A

Pis)
i

f

i ■ '■

z W

y

—► K(s)
u

Figure 2.5. General framework ofthe linear system.

It then follows that the relationship between N(s) in Fig. 2.6 and P(s) can

be obtained by a lower LFT as

NiiCO N12(s)

N2i(í) N22(s)J

Pn (^)

P21OO

F-[P(s),K(s)]****-N(s)[P(s),K(s)] =

K(s)(l
- P33(s)K(s))_1[P31(s) P32(s)]

P12W

P22OO
+

P13W

P23W
(2.16)

where N(s) is written as N(s)[P(s),K(s)] to show that N(s) is formed by P(s)
and K(s); F¡[P(s),K(s)] represents the lower LFT. In the literature Fig. 2.6 is

sometimes called the N(s)
—

A(s) framework for robust analysis.

y¿
►

A(s)
"a

N(s)
•

z w

Figure 2.6. N(s)
— A(s) framework for robust analysis.

Henee, the robust stability of equation (2.16) is given by M(s) = Nn(_;) into
the M(s)

— A(s) framework for robust stability shown in Fig. 2.7.
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r- A(s) -,

M(s)—

U¿

Figure 2.7. M(s)
-

A(s) framework for robust stability.

Assume now that the augmented perturbation matrix is described by

A(s) = diag[A(s),bp(s)], then the fundamental importance of this

representation is expressed in the following theorem.

Theorem 2.4 [19]. Assume that the interconnection F*[P(s), K(s)] is stable

and that the perturbation A(s) is of such a form that the perturbed closed

loop system in Fig. 2.8 is stable if and only if the map of det í I —

[F-[P(s), K(s)]]A(s)J as s traverses the JD contour does not encircle the origin.

Then the system Fu[F*[P(s), K(s)],A(s)] will satisfy the robust performance
criterion Fu[Ft[P(s),K(s)],A(s)] < 1 ifand only if Fj[P(s),K(s)] is stable for aU

perturbations A(s) with ¿f[A(/aO] < 1.

ApOO

y d'

Fu[F-[P(s),K(s)],A(s)] •

y*

__(s) 0

0 Ap(s*)

uA

y' d'

F-[P(<.),K(s)]

Figure 2.8. Diagram structure for robust performance analysis.

In general from the above theorem, the optimal robust performance

problem can be expressed as

K(s) ■=

arg min sup ||FjF£[P(s),K(s)],A(s)]|U (2.17)
K(s)EJfsú(s)3||A(s)||oo<1

if HFjFitPCsXKOOLACs^lL < 1, for all A(s) with HA^IL < 1, it is said that

the closed loop system has robust performance. The equation

Fu[F-[P(s), K(s)], A(s)] satisfies the robust performance condition if and only if

it is robustly stable for a norm bounded matrix perturbation Ap(s) with

llv*)IL*i-

2-11



Systems with unmodelled dynamics can be represented in the standard

M(s) - A(s) configuration. The robust stability and the robust performance

analysis developed in this section are necessary, conservative, sufficient

conditions, and vary with the assumptions of the unstructured uncertainty

descriptions and the robust performance requirements.

The last limitations lead to the definition of the SSV, which is a unified

framework to treat exactly the robust stability and the robust performance

problems for systems with múltiple sources of uncertainties.

2.6 Theory and computing of the complex and mixed SSV

The structured uncertainty can include complex parametric uncertainties,

real parametric uncertainties and individual sources of uncertainty that are

identified and represented directly. That is, if the uncertainty modeling
results in structural zeros in entries of Ac, the uncertainty is called

"structured" This representation leads to an uncertainty description with

múltiple perturbations. The differences between some of these uncertainties,

including the ones used here, are described in [2, 4, 8-9].

Suppose that a r x r complex-value repeated perturbation Ac is defined as

Ac= {A|A = 5CI, |5C| < 6C} (2.18)

with 6C G R+ being some real number. Then, the normalized versión is

_?AC={A|A = 8CI,|5C| <1) (2.19)

In the preceding equations I is the r xr identity matrix and Ac is restricted

to square uncertainty matrices. Any non-square uncertainty can be made

square adding zero rows or columns. In addition, the máximum SVD of Ac
can vary whit frequency while the máximum SVD of Ac, which is equal to

máximum absolute valué, is fixed.

Lemma 2.1 Let A(s) be a structured set M(s) G JUHa.. Then

sup mJM(s)] = sup n¿__[M(s)] = sup ¡J.A[M(jcx))] (2.20)
seC+ S6C+ oi

where fi¿_ is called the SSV

Consider repeated complex scalars and full blocks for uncertainty, and two

nonnegative integers, Sc and F, which denote the number of repeated scalar

blocks and the number of full blocks, respectively. It is necessary that

{m = Sc + F} < n. Then, the block structure is an m -tupie
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C = (r! rSc,mx, ... ,mF) (2.21)

Equation (2.21) specifies the dimensions of the perturbation blocks. For

consistency among all the dimensions, _Cyii ^7 + Sf=i rn¿ =n Cl2]- Once this

notation has been given, define Xc as a general uncertainty as

Xc = {diag [s£lr. 5/cIrSe, Acm. A^] : Sf E C, Acm G Cm'xm'} (2.22)

The unit baU is introduced in the space of transfer matrices

fíXc = {A = diag [fff1^ ff|.IrvA^. A^] : a [A] < l} (2.23)

Note that the relation a [A] < 1 can be expressed as \Sf\ < 1 and átA^-j < 1.

Then, the complex SSV can be defined as:

Definition 2.2 [6]. For M G Cnxn, ¡uc_M] is the complex structural singular

valué and can be expressed as:

^tM]=n,,BCrM!d^,+MA1=0) (2*24)

4SXC

unless no A G Xc makes I + MA singular, in which case fic[M] = 0.

The complex SSV has the next properties

a) If Xc = {ffl: ff G C), then fic[M] = p[M],

b) If Xc = Cnxn, then/¿c[M] = a[M).

c) /¿c[aM] = |cx|/íc[M] for any complex scalar a.

d) Let A G Xc, A = dia^{A1(A2} be a block-diagonal perturbation, and let

M be partitioned accordingly. Then ¡uc[M] > max{/¿c:[M11],^c[M22]}.

e) /¿c[M] is bounded by the spectral radius and the singular valué

(spectral norm):

p[M] <MC[M] <o[M] (2.25)

Using (2.25), it is possible to describe an upper bound and a lower bound.

The gap between p and a can be arbitrarily large! however, it can be refined

with transformations on M that do not affect ¿íc[M]> but do affect p and a. To

do this, define subsets on €nxn ff-fl-^, ...,Ssclrs , A^i( ...,A£,F

UC = {UE Xc: UU* = In) (2.26)
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D=f diag[D1,....DSe.d1lmi dFlmF]: )
(£ 2?)

(Dy G Cixri, Dy
=

d; > O, d£ G R, dj > O j .

For any A G Xc, U G Xc, and D G D

U* G Uc, UA G Xc, AU G Xc, ¿f[UA] = éf[AU] = ff[A] (2.28)

DA = AD (2.29)

Therefore, the bounds in (2.25) can be tightened to

maxp[UM] < maxp[AM] = uc[M] < inf a[DMD_1] (2.30)
ueuc Aexc D6D

L J

Henee, without affecting the loop properties it can insert an identity matrix

into the loop affected by UU*= U*U = I where U is a unitary matrix. Then, the

lower bound can be increased trough U and U* in the loop such that the

uncertainty block A is unchanged while the M part is maximized in p. This

method for the lower bound is shown in Fig. 2.9.

rH A - U*
—

í M U -JJ

Figure 2.9. Structure of U related to A for the lower bound where UA G Xc.

On the other hand, the upper bound is minimized trough A with D as

shown in Fig 2.10.

D
-i

D
DAD1 e A

D - M -D"1
DMD-

Figure 2.10. Structure of D related to A for the upper bound where

infatDMD-1].
D6D

The limitations imposed with repeated complex scalars in structured

uncertainty for the complex SSV leads to the mixed SSV It is natural then

to express repeated real scalars in structured uncertainty. However, data

analysis and computation will be more complex.
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i Assume that a kxk, real-value repeated perturbation Ar is defined as

Ar={A|A = 6rI,5G[-ff,+ 5]} (2.31)

Hwith ff E E being some real number. The normalized versión is

fíAr= {A|A = 6rI, ff E [- 1, + 1]} (2.32)

in both equations I is the kxk identity matrix.

The mixed SSV considers three types of blocks: repeated real scalar,

repeated complex scalar and full blocks. Three nonnegative integers: sr, Sc

and F

Zf:ifc¿ + Iíc=1ry+Sf=1mi = n

The block structure can be defined as M =

(klt ...,kSr,rSr+1, ... ,rSr+Sc,mSr+Sc+1, ... ,mF). Henee the normalized uncertainty

is given by

BXM = ¡A = diag [ffflkl íp^, fff Ir. fff.Irv &Pmi A^] : a [A] <, l) (2.33)

The purely complex case corresponds to 5r = F = 0 and the purely real case

corresponds to Sc = F = 0 .

The last observations lead to the next important definition.

Definition 2.3 [12]. The mixed structured singular valué, /¿m[M] °f a matrix

M e Cnxn with respect to a block structure A is defined as

""M =

min{*[A]:det[I+MA3=0}
(2'34)

A€XM

With nM[M] = 0 if no A G XM solves det[I + MA] = 0.

The mixed SSV has the next some important properties:

Sr = 0, Sc = 0, F= l-»pM[M] = a[M] (2.35)

5r = 0,5c = l, F = 0-»/xM[M]=p[M] (2.36)

Sr = 1, 5C = 0, F = 0 -> /.M[M] = pR[M] (2.37)

Note from equation (2.35) that Mm[M] reduces to the máximum singular

valué, and in property (2.36) that /¿m[M] is the complex spectral radius.

Finally, /^[M] can be considered as a generalization of &[M] and Pk[M]. The

following sequence of inequalities holds

2-15



Pk[M]<Mm[M]<ct[M] (2.38)

It is necessary to define new subsets

Qk = {A G XM: fff G [-1,1], SfSf = 1,AfA? = ImJ (2.39)

UM = {UGQM:UU* = In} (2.40)

D =
diagfii Bv°i VSe,d_\m% dPlmF\: )

Di G Ck'xkí, D ■ = D* > 0, Dy G Cr'xri, Dy
= D* > 0, d- G E, d£ > 0 )

(2.41)

GM = íd¿a^Gl G^t"g:! (2-42)
l G¿ = G*G(C^xkJ J

These subsets lead to the consideration of the next properties

a) For all A G XM> Q G QM, then QA G XM, AQ G XM with (7[QA] <

¿f[A], ¿f[AQ] < a[A\.

b) For all A G XM, U G UM, then UA G XM, AU G XM with a[UA] =

ff[A],a[AU] = o[A].

c) /iM[QM] = ^m[MQ] S aím[M] for all M G Cnxn and Q G QM.

d) a*m[UM] = Mm[MU] = aím[M] for all M G Cnxn and U e UM.

The above properties show that Mm[M] is not necessary invariant to

matrices in Qk which may not to be unitary, since the real parameters are

not restricted to be on the boundary of the allowable set. Then, the following

upper and lower bounds are derived

maxpE[QM] < nM[M] < inf ^[DMD"1] (2.43)

The lower bound is not necessarily a continuous function, while the upper
bound is semicontinuous. From equation (2.43), the upper bound can be

reformulated:

maxpK[QM] < nM[M] < inf min {/?: M*DM - /?2D < 0} (2.44)

Note however that (2.44) does not use the phase information that is

present in the real perturbations, and henee this upper bound is frequently
conservative for mixed problems. Then, the next upper bound was proposed
in the literature [12].

M*DM+7[GM-M*G]-£2D<0 (2.45)
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where D = D2 E D and G = DGD E GM. Minimizing (2.44) over (3 and the D, G

scaling matrices, it is possible to derive the next theorem.

Theorem 2.5 (Mixed fiM[M] upper bound) [12]. Let M G Cnxn and A G XM.

Then

uM[M]< inf min{0:M*DM+y[GM-M*G]-/?2D<O} (2.46)
™L J

D6D,GeGM 0S/.6IR
^

The upper bound in equation can be interpreted in terms of covering the real

parameter uncertainty with complex or disk uncertainty, but now G leads to

use off-axis disks. This can be shown in Fig. 2.11.

-J -J

Centered disk Off axis disk

Figure 2.11. Covering real parameters with disks.

Let M G <Cnxn partitioned as

M =
Mu

M21

Mi2

M22
(2.47)

and suppose there are two block structures, XMl and XM_which are compatible
with Mn and M22, respectively. The perturbation M — A is divided in two

parts and shown in Fig. 2.12. Define a third block structure XM as

Xm —

Ai 0

0 A2J iAíGSXm^A.GBXM3 (2.48)

then the LFT F£[M, A2] is well posed for all A2 G SXM2 ifand only if /uM&2[M] <

Theorem 2.6 (Main loop theorem) [12]. Let M G

•m [M] < P if and or.

íiM&1[F£[M,A22]]</?.

n
and 0 < p G E. Then

iuM[M] < p if and only if ¡xm^ [M22] < p and for all A2 G XM_, &[A2] < ^ it has

2-17



y*_

ya_

zfM]

U*_

UA2

Figure. 2.12. Structure M-A divided in At and A2.

It should be noticed that that if A2 G 5XM_ then max ¿_Ma [F£[M,A2]] < 1.

Az6BXm2
j

This last theorem forms the basis for all uses of /_ in linear systems

robustness analysis.

This statement can be rewritten in the more useful form

pM[M] < 1 «-» LM [M22] < 1, and max ¡uM [F_[M, A2]] < ll
V

-1

A2G_(Xm2
-* )

2.7 Robust stability and robust performance with fi

The analysis presented in section 2.5 assumes unstructured uncertainty, and

it was implicitly considered that ||A(s)||oo < 1 in frequency domain. In the

definition ofthe SSV, there is a general structure that considers ||A(s)||oo < 1

as a special case, but this must be defined formally to provide conditions for

robust stability and performance compared with the Km.

The SSV can be used to quantify robustness margins for an LTI with linear

fractional uncertainty, and not being necessarily a norm, since it does not

satisfy the triangle inequality. Nevertheless, the SSV satisfies a scaling

property, and so it is possible to define the ju-norm

HíiA[M(s)]|L := sup U¿[M\j(x)]] (2.49)
wei

Define M(XM) that denotes the set of all real-rational, proper, stable, block

diagonal transfer matrices, with block structure like XM:

M(XM) = {AE -R-H^. A(Jco) G XM for all ú)El) (2.50)

The expression (2.50) is to cover dynamical systems due to the unmodeled

dynamics in the uncertainty. The following theorems are based in equation

(2.31), A G J&íoo partitioned and the main loop theorem.
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Theorem 2.7 (Robust stabiUty with ¡u) [12]. Suppose that M(s) E JUCn and

P E E, P > 0. Then for all A-_ = M(XMl) with HAJL < /?, the perturbed closed-

loop system is well-posed and stable if and only if

HmaJMuC-sHL ■■= supMmaJMhO'íd)] < |
újER

Note that ifAi is normalized, that is HA-JU < 1 then

UmaJMuCs)]^ := sup liM&.[M_._.(J(ü)] < 1

(2.51)

(2.52)
o-eE

Theorem 2.8 (Robust performance withj-:) [12]. Assume that M(s) G JHKm

and/? E R, p> 0. Then for all Ax = M(XMJ with HAJ» < p, the perturbed

closed-loop system is well-posed, stable and ||Fu[M(s),A1(s)]||0o: =

sup ct[Fu [MOw), Ax 0'w)]] <^ ifand only if||^M[M(s)] || o» •= supfiM[M(j(ü)] <~.
0-6R P <_)6_.

Simüar results can be derived for the last theorem if HA-JI,» < 1. The robust

performance against robust stability with ¡u can be shown in Fig 2.13.

yA2
&->(s)

"A2

ytXl

Ai 00
11lA_

M(s)

Figure 2.13. Robust performance against robust stability.

2.8 Model uncertainty representation in this dissertation

In this section, a general framework for power system robustness analysis is

introduced that extends existing approaches to the study of mixed and

complex uncertainty.

The analysis focuses on two main aspects:

1) Improving the discontinuity of the lower bound for the real SSV in

large power systems by introducing small amounts of additional

complex uncertainty.
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2) Developing a general framework based on LFTs to represent the

structured uncertainty of power systems for robust stability. This

framework can be extended and generalized to design robust MIMO

decentralized controllers.

2.8.1 Replacing real uncertainty with real+complex uncertainty
Much of the earlier numerical work with uncertain power system models has

been based on the mixed structured singular valué. The computation burden

of the algorithms that compute \i, however, is an exponential function of the

number of uncertainties thus limiting the size of the uncertainty matrix that

can be analyzed. A usual solution is to compute lower and upper bounds on

fi, assuming that little information is lost [12]. This is the approach adopted
in this research.

In the case of purely real uncertainty problems, u is not necessarily a

continuous function [17-18]. These discontinuities can cause problems in the

convergence of the lower bound mixed-¿_ algorithm. A practical method to

avoid the discontinuity of fi[M] is to add small amounts of complex

uncertainty into the uncertainty model, in order to improve the convergence

properties ofthe lower bound of \i [27]. This procedure is shown in Fig. 2.14

where a represents a scaling factor.

UA«

AE

yAR

M

a

UA_
kC

a

Am +«2Afl

uAk + uAc
M

y** + y*r

y¿c

Figure 2.14. Replacing real uncertainty with real+complex uncertainty.

2.9 A general framework proposed for power systems to avoid the

discontinuity of the lower upper bound of the SSV

The SSV is defined based on the structured uncertainty representation and

is a generalization ofthe singular valué and the spectral radius: full complex
block and a single complex/real scalar block.

In general, the use of the SSV for power systems has focused in two

categories: refining the bounds by reducing the gaps between the upper and
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lower bounds to achieve high accuracy, and reducing the computational

burden due to the number of uncertain parameters.

The use ofthe SSV for power systems was proposed in [20-21] to evalúate

the robust stability; in general it was developed a general framework which

takes into account non-linear parameter variations from a set of operating

conditions. Based on the last references in [22-24] was proposed an extended

framework for large power systems. In [25] a frequency sweep test to

evalúate the real spectral radius was proposed. Furthermore, this method

incorporated a skew \i problem for power systems.

Drawing on the above review, this dissertation proposes a new framework

for power systems which takes into account a percent of complex uncertainty

to avoid the discontinuity of the lower upper bound of the SSV

Consider, to introduce these ideas, a MIMO non-linear system in state

form with the change in operating conditions. The dynamic equation for the

linearized power system model is given by

x(t) = A[p]x(fc) (2.53)

in which, the valué of each varying element, [óy], ofthe state representation
(2.53) depends on a set of uncertain parameters p

=

_p_.,p2, —,pm]T and can

be expressed as [a[j] = /¡y[p] where pk takes valúes in a known range p£"n <

pfc
< Pfc"1* for k = 1, ...,m. As shown in Refs. [20-24], each element [a¿;] can be

conveniently expressed in terms ofthe uncertain parameters, pk, as:

Sr Sr

Klw =

K-]0 + Xk'.lfcP* + X_«íy]kkPfc. ifSr = 1

fc=l k=l

sr sr sr sr

K]0 + Z^fcPfc + Z^fcfcpfc +Z Z K]fc£P*P.<if5;*

Ki

fc=i fc=i fc=ií=fc+i

> 1

(2.54)

In practice, it is desirable to normalize the range of the uncertain

parameters such that the allowable range for each parameter lies in the

interval [—1,1]. This can be accomplished in the analysis framework as

follows

pk
=

ak + bk8rk = ok[l + rkSrk], |ff¿| < 1 (2.55)
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where -1 < Srk < 1, ak
= \ [p?in + p^*], ¿k = ±[Pr* - pf1 and rfc

=

| Pfc "Pfc ]

_vfax+pfin^
Based on the above normalized parameters, the varying

parameters, [a¿y][A], can be written as

sr sr

[a£;]o +YjjhAfi + Yj[aij]kk[SÍ]2,ifSr = 1

[dij][A] =
k=í k=l

Sr Sr Sr Sr

K']0 + lN]fc^ + Z^]^[5fer]2 +Z I _aís]klSlSl,MSr>X
fc=l fc=l k=lí=k+l

(2.56)

It may be noted finally that equation (2.56) can be rewritten in matrix form

as*

Sj-

A[A] =

A0 +£ Afcff£ +£ Akfe[5kr]2, if Sr = 1

fc=l k=i

sr sr sr sr

A0 + ^Ak5kr*+^Akk[5fcn2 +^ Y, AkiSrkS[,ifSr>l
fc=i k=l fc=l¡=k+i

(2.57)

where A0 = [a£y]oJAk
= [aij]k,Ákk

=

[atj]kk and Ák£ = [a£y]fcf Then, in terms

the singular valué decomposition, which is a factorization of a real or

complex matrix, (2.57) can be rewritten

A[A] =

A0 + LT

Sr Sr

£Ak[ffkI]+^Akk[S£l]2
k=l k=l

R,ifSr = 1

An + LT ^Ak[5kI] + ^Akk[52I]*f^ £ Afc-tffífffl]
fc=l fc=l fc=l i=k+l

R,ifSr > 1

(2.58)

where LT and R are matrices of 0's and l's, respectively. In addition, A0 = A0,

Ak = LrAkR, Akk = LTAkkR and Akí = LrAk£R.

With this representation of A[p], (2.53) can be defined in an LFT form for

robust stability as shown in Fig. 2.15 for Sr = 1 and Sr > 1, respectively.

Here, 2 is given by
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-11 -12

_a21 ■=,22

and represents the LFT for the matrix A [A] with respect to A

diag^.-.ffsj

X

Vs

M
___l

yA

A

u__

Figure 2.15. LFT form of x(t) = A[A]x(t).

It follows that the LFT form of x(t) = A[A]x(t) for Sr = 1 is given in Fig
2.16. A similar procedure can be used for Sr > 1. The details are omitted.

Ya

1
,1/s—

'
rx Ar, .

LT I

! ^r
! Aii Ai

.

/frI

1—. fff I 1
"a

Fig. 2.16. LFT form of x(t) = A[A]x(t) for Sr = 1.

The key idea is to notice that the transfer matrix M(s) from y__ to u¿ can be

computed as:

M(s) = S22 + S21il[l-ÍH11] S12 (2.59)
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and

x = Enx+Suu4
Z = £*21X + ¿22UA

w = Az

(2.60)

(2.61)

where

R

0

A-, A

0

I

11

0

o

Now the M(s)
-

A(s) framework of x(t) = A[A]x(t) for Sr = 1 have been

prepared to introduce small levéis of complex uncertainty into the

uncertainty model. Fig. 2.14 represents this idea for power systems.

Assessment of robust stability is then straightforward:

1. For a set of independent parameters described by p
= \p_.,p2, --,Pm\T

genérate a range of operating scenarios. In general, p in power

systems may describe uncertainty in a tie-line reactance, loads, etc.

This means that for each operating condition of a power system, a load

flow simulation must be computed and the associated linearized

power system model represented by (2.53) must be obtained.

2. Compute coefficients of approximating polynomials for each varying
element of (2.54), using the least square minimization technique.

3. Genérate the M(s) — A(s) framework associated with the state

representation x(t) = A[A]x(t) for Sr = 1 or Sr > 1. Créate matrices

Hn, S12, H21, and Ela using equation (2.60).

4. Define a percent of complex uncertainty, cx2 into the M(s) — A(s)
framework of x(t) = A[A]x(t) for Sr = 1 or Sr > 1 as indicated in Fig.
2.14. A general representation can be described in Fig. 2.17 with a

percent of complex uncertainty for Sr = 1.

5. Compute the SSV to determine the robust stability of power system.

2.10 Conclusions

The basic configuration of feedback systems with uncertainty considered in

this chapter is a theory which leads to the concept of robust stability and

robust performance. The small gain theorem plays an essential rule to derive
these criterions. Nevertheless, the necessity of a formal mathematical
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analysis to describe the differences between the complex and mixed SSV

have been necessary to derive basic analytical limitations.

In this chapter has been shown how parametric uncertainties can be

incorporated in a non-conservative uncertainty description. The main

advantage of this approach is that not only stability but also performance

can be guaranteed for the perturbed plant. In addition, a general framework

based on the SSV which includes a percent of complex uncertainty have been

proposed in this chapter to study the robust stability of large power systems.

Vs

17

Ai.

Ya SU

sn

sn

5fi

R

"#♦ ua

A

Fig. 2.17. LFT form of x(t) = A[A]x(t) with a percent of complex uncertainty

for5r = 1.
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Chapter 3

Interaction Measures for MIMO

Decentralized and Hierarchical

Control Configurations
This chapter examines the problem of loop interaction in decentralized

MIMO control systems. Emphasis is placed upon the theory of interaction

measures for decentralized controllers to quantify looop interaction in

frequency domain as well as to select the most suitable input-output

pairings while minimizing computational demand.

First, a review of scalar interaction measures is introduced and the concept

of phase of the relative gain array for single-input single-output systems is

proposed. Then, the concept of the block relative gain is introduced to

determine the most suitable input-output pairings for block decentralized

(wide-area) MIMO controllers to achieve good performance. In addition, the

block relative gain for non-square block input-output pairings is defined to

describe diferent types of power system control configurations. Unlike

previous research, control structure is not limited to basic control control

structures, namely fully decentralized or fully decentralized configurations.

In summary, the main contribution ofthis chapter is twofold: the use ofthe

block relative gain array for power systems to select múltiple -input multiple-

output pairings for wide-area damping controllers and the development of

new measures of interaction that account for more realistic operating

conditions and control structures. Discussion is limited to linear time

invariant and stable systems.
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3.1 Introduction

Decentralized control systems are widely used in industrial plants and

process industries for MIMO systems. It is well known that the interactions

among loops can lead to tuning and stability problems. Furthermore, control

system design involves input-output selection," that is, decisions on the

number, and the placement of controllers.

Due to the combinatorial nature of the selection problem, several

systematic methods have been proposed in the literature to satisfy

requirements on the controlled variables. Essentially, the issue is to select

suitable input variables to be manipulated by the controller and suitable

output variables to be supplied to the controller.

The use of the RGA as interaction measure in frequency domain was

developed to choose the selection of loop pairings in chemical processes to

design decentralized controls, by assuming that the control has a PI

feedback. The RGA, however, is a conservative and empirical method due to

the fact that it uses knowledge of the steady-state process gain with integral

feedback [1-4]. More recently, the DRGA was proposed to improve the

pairing capabilities of the steady state RGA in cases where the RGA changes

substantially with frequency [5].

In [6-7] the relative interaction array (RÍA) was introduced, which defines

the interaction on individual control loops. In a paralle effort, a new

interaction measure was proposed using the concept of dynamic information

and a complete configuration in the feedback to any control [8]. It was

demonstrated that the GDRG includes the RGA as special case. In general,

the RGA, and subsequent methodologies, are transfer functions and they

provide similar empirical information [9-11].

In [12] a procedure for a new interaction measure and sensitivity of the

process nodes was formulated. Then, the design procedure was developed on

the dyadic expansión. Thus for instance, in [13] a graphical interpretation
was proposed between the SVD and the RGA. However, it is necessary to

analyze the singular vectors and their rotation matrices while the RGA is

invariant of scaling; the issue of scaling is significant in determining the

SVD of a matrix.

The non-diagonal elements of the transfer function were considered as

complex uncertainties using the SSV in [14-17] to propose an interaction

measure, but it is possible to modify this criterion using the skewed SSV.

These methods express constraints on the closed loop transfer matrix and
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sufficient stability conditions. Nevertheless, this tecnique quantifies the size

of interaction measure and not internal loops.

The block relative gain (BRG) concept and its properties were originally

proposed in [18] to extend criteria to determine of the most suitable input-

output pairings from single-input single-output (SISO) to MIMO

configurations. In addition in [19-21] a formal analysis of the BRG to avoid

conjectures for pairing of variables was suggested. Finally, in [22-24] was

proposed the dynamic BRG for control configurations under dynamic

feedback control to avoid the concept of perfect control. In conclusión, this

review emphasizes the importance of developing techniques to assess the

potential for adverse interactions between control loops.

3.2 General linear representation

To introduce the proposed model, consider the linear multivariable system

x(t) = Ax(t) + Bu(t)*x(t0) = x0 (3.1)

y(t) = Cx(t) + Du(t)

where x(t) G En is the vector of system states, x(t0) is the initial condition of

the system, u(t) G EPu is the system input, and y(t) G E'-'y is the system

output, A G Enxn, B G Enxp; C G E"xn, D G Rqxp are state, input, output

matrices, respectively.

The corresponding frequency response G(/tu) G Cqxp oí the transfer matrix

from u(s) to y(s) is defined as

y(s) = [C(sl
- A)-^ + D]u(s) = G(s)u(s) (3.2)

where u(s) and y(s) are in the frequency domain.

Assume in (3.2) that G(Ja)) E Cqxq, which makes the above expression a

square transfer matrix function and can be written as:

y(s) = G(s)u(s) = [5í/(s)]u(s) i,j = 1 q (3.3)

where gtj(.s) is the open loop gain from the jth input to ith output.

From the above equations, consider the q x q transfer function

matrix G(s) = [^(s)] and the corresponding q x q compensator matrix

K(s) = [ku(s)] i = 1, ...,q of a one-degree of freedom control configuration as

shown in Fig. 3.1.
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Figure 3.1. Feedback control configuration for SISO controllers.

Therefore, the closed-loop system function can be written as:

y(s) = [[I + G(5)K(s)]"1G(s)K(5)]r(s) = H(s)r(s) (3.4)

where H(s) = [htj] i,j = 1, ...,q.

3.3 Interaction measures for SISO integral control configurations

Assume to introduce the more general ideas that follow, that uk = 0 V k =£ j,
i.e. the loops are open and the effect of u;* on the ith output y* is considered.

This gives the steady state gain between the jth input to ith output in the

open loop, denoted by #íy(0). In an analogous manner, in the case of closed

loop regulation let yk = 0 V k ■£ i, i.e. all the outputs are constant except the

ith output, and assume perfect control in all other channels. This steady
state gain is denoted by #;y(0) and is the gain between the ith output to the

jth input, where all the loops except the ith output are under perfect control.

A perfect control in steady state means zero output offset and this is

achieved with an stable integral feedback control evaluated at s = 0', this

idea can be illustrated from equation (3.4) by noting that [fc¿*(s)] =

diag
- i = 1, ...,q, where

- denotes - at s = 0. Then, the steady state
Lsls=o-l s<s=0 s

diagonal controlled gain is

H¡(0) = [[l + G(0)Kí(0)]"1G(0)Kí(0)] = [h[j] i = 1 q (3.5)

where Hl(0) denotes the closed-loop system function at s = 0 with the y*
—

u*

loop open and Kl(0) represents the diagonal matrix of controllers with

kuís) = 0. Henee, using (3.5), the controlled gain can be written as:

5ü(0) =Mí(0)=-^r-i- (3.6)

Then, in general, the relative gain Xtj, for a given input u¡ and output y* is

defined as the ratio between the uncontrolled gain and the controlled gain as
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Extensions to the multivariate case are discussed below. Here after, the

static gain, A*y(0), is simply written as A*y.

Definition 3.1 [4]. The RGA A of an q x q matrix G is also a q xq matrix

defined by:

A := [A¡;] = G O [G-1]7 (3.8)

where O denotes element-byelement multiplication (the Schur product).

The following properties can be easily derived from the above definition:

1. The DRGA is independent of input and output scaling, i.e. A[DA] =

A[A] andA[AD] = A [A].

2. A unity valué A¡y(0) = 1 implies that u¡ affects y- without interacting

with other control loops, i.e. the system is completely decoupled.

3. The RGA can be used to measure diagonal dominance with the next

intuitive quantity called the RGA-number

RGAn = I?=1|A¿£(0)
-

1| + Ej=1|A¿y(0)| i = 1,2 q (3.9)

4. A depends on plant model only and not on the controller, this is due to

the static definition.

5. At least one eingenvalue and one singular valué ofthe RGA is equal to

1.

6. In practical applications, it is recommended to avoid pairings with

negative steady-state RGA elements to avoid significant degradation
in performance. This means that if A*y(0) < 0 then #*y(s) has an odd

number ofRHP-poles RHP and RHP-zeros [2].

For a set of SISO decentralized controllers it is desired that the pairing

y¿(0)
—

iíy(0) results in A*;(0) = 1, and that RGA-number is small or zero to

avoid interactions. Thus, when the relative gain of a particular loop

approaches to one, closing the other loops has no significant effect on the

open loop gain of the aforementioned loop. Henee, the interaction among

both loops will be less significant but it is very possible that the degradation
in performance occurs. The steady state RGA can result in erroneous pairing
assessments in the following cases:
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1. The RGA changes substantially with frequency.

2. The RGA near the natural frequency of a loop differs substantiaUy
from the steady state RGA.

The above considerations lead to the DRGA, A(/o>) G <Lqxq expressed as:

A(s) = G(s) O [G-H-s)]7- (3.10)

By replacing s = jco in equation (3.6), the elements of DRGA can be plotted

versus frequency. The pairing should be such that, over the frequency range

of interest, the magnitude of the diagonal elements is cióse to one and the

magnitude of the off diagonal elements is small [5]. The DRGA of the

uncontrolled gain is shown in Fig 3.2 that it is given by the elements of the

MIMO system. Figure 3.3 shows a schematic diagram ofthe controlled gain

and represents the elements of the inverse transpose matrix of the

multivariable system.
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Figure 3.2. Uncontrolled gain, ¿.¿y(s), for yt{s)
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Insight into the nature of the proposed model can be obtained by rewriting

(3.7) in the form

from which it follows that

dytís)

diij.s)

3y¡M

ui_=0,k*j

[dlljr.S) yit=o,k*i

= gijís)

= §ij.s)

(3.11)

(3.12)

W =

9y¡(*)

dujís)

3y¡W

aujxis)

uk=o.k*j _ gijjs)

yk=o,k*i

(3.13)

It should be emphasized that that equations (3.11) and (3.12) represent the

uncontrolled gain and the controlled gain with integral feedback control

evaluated at s = 0, respectively. Furthermore, (3.11) and (3.12) are functions

in the frequency domain.

Based on Fig. 3.3 for an arbitrary pairing scheme with kü(s) whithout

perfect control, and focusing on the y¿(s)
—

Uj{s) loop the next expression can

be obtained

yi (s) = gtj (s)uj (s)
-

Y.ql=u*j du (s) ku (s)yt (s) (3.14)

Succesively using equation (3.13) to express all the outputs in terms of Uy,

the transmittance between the control action u;* and its own output can be

written as

ylis) = [gij(s) + a£y(s)]uy(s) (3.15)

from which, the perturbations caused by u; on other loops is

Vk(s) = dkj(s)Uj(s), Vfc (3.16)

Structurally, a^is) represents the additional dynamics in the y¿(s) —

u;(s)
loop resulting from other control loops, a^is) can be defined as the absolute

interaction. These concepts can be schematically illustrated in Fig. 3.4.

From the above analysis, a relative interaction can be defined as:

(3.17)
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The above equation can be interpreted as the ratio of the absolute
interaction and the uncontrolled gain. Iin literature the uncontrolled gain is

often referred to, as the interaction -free gain [6-7].

When substituted back in equation (3.10), gives

Vi 00 = 9íj{s)[1 + 0o(s)]uy(5) (3.18)

dijis)

•

Absolute interaction

Uj{s)
dijis)

\ y.00
'O *■

Uncontrolled gain

du{s)
yfcOO,/-* *

Cross-interaction

Fig. 3.4. Pairing scheme for yi(s) -

Uj(s).

Using (3.17), with a perfect control described by ku(s) = -I .results in
sl<-=n

4>íj(s) =
A¡;*(5)

(3.19)

where A£y(s) is the element ofthe corresponding RGA and d>£y(s) represents
the RÍA [6]. From the definition of RGA follows that

♦ría (-5) =

G(s)®[G-1(s)]'

Notice that the división in (3.20) is defined element by element.

(3.20)

In this research, the following RIA-number of frequency domain is

proposed

RIAn = £P=i
Xít(Jw)

-1 (3.21)

This approach is similar to the RGA-number in (3.9). However, the RGA-
number takes into account non-diagonal elements of the RGA, but this is an
unrealistic definition due the number of combinations of feedback
decentralized controllers for the controlled gain [l]. For diagonal elements of
the RGA are only necessary diagonal feedback controllers.
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In order to ülustrate the number of combinations of feedback decentralized

controUers for the RGA consider a system described by G(s) G _*2Jf¿x2

Clearly, only two possible combinations can be developed for the inputouput

pairings. This means that diagonal and non-diagonal elements of the

controUed gains of RGA do not have relations and they are represented in

Fig. 3.5 and Fig. 3.6, respectively. In addition, diagonal and non-diagonal

controUers are defined as £.=i ku = -\ and £y=1 fc,É = 7 , respectively.
Slj=0 .

¡
s,s=0

)*i

r_(s)

r2(s)

Fig. 3.5. Pairing scheme for An(s) and A22(_s).

ri(s)

r2ís)

Fig. 3.6. Pairing scheme for A12(s) and A21(s).
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To choose the best candidate of several pairing sets represented by i.

control alternatives with minimum interaction, the criteria is adopted

min[[RIAn]1,...,[RIAn]m] r¡
= l,...,m (3.22)

Compared to existing criteria, this last expression is an altemative to

quantify the interaction of several sets of decentralized controllers.

3.4 Interaction measures for SISO general control configurations

At this point, the definitions of interaction measures have been expressed

by feedback integral controllers at steady state. In the more general case,

the transfer function from y* to u; in the £/th loop for the open-loop and

closed-loop in frequency domain without assuming perfect control can be

rewritten as

rlilÍs) =

3y¡W

au,-*)

ayj(s)

uk=o.krtj _ gj¡(s) / r

9ijis)

J^bk=<>,k*i

Note that equation (3.23) describes the ratio of a SISO system. This

expression is called GDRG and ,g*y(s) describes the diagonal and non-

diagonal elements of a controlled gain without a perfect control [8].

Formally, the diagonal elements of GDRG can be expressed as

J_W-gg (3.24)

where

'M-ágsás (3*25)

From the above equation, the controlled gain, gu(s), can be represented in

Fig 3.7. Note that ku(.s) is not a perfect control.

The next observations about GDRG, RGA and RÍA can be made:

1. The overall interaction measure using the GDRG-number is described

by

GDRGn0'<u)=2?=1|f¡¡gg-l| (3.26)

Equation (3.26) was proposed originally in [27] and derived from

equation (3.9) in the literature [2].
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2. The GDRG is different for positive and negative feedback. However,

the RGA and RÍA are the same for negative and positive feedbacks.

3. Equation (3.25) is different for cascade SISO control configurations

and was developed in [27].

u¡{s) yd*)

r_(s)
^

-* fcti
u_(s)

►

•

•

•

G(s)

yiO)

X

+s ._
•

•

•

r,(s)
_/~

y* kqq

•

•

•

w-jC-0
>

•

•

y*0)

"^

Fig 3.7. Controlled gain, gu(s), for y£(s)
-

u;(s).

Following these ideas, this section proposes to rewrite the expressions for

the DRGA, RÍA, and GDRG in a cartesian and polar form to describe the

angle of each interaction measure. More formally, assume that

A-yO'oO = Re[Av O'aO] + / * Im[A¡;*O0] = |Ay (/*>)W** (3.27)

4HjUai)
= Re[0yO'w)] +j * Im[0£y(/aO] = \<Ptj(Jo>)\eJB*1' (3.28)

A¿yO'co) = Re[l¿yO'oO] + / * Im[A£yO'a>)] = \XtJ0<ú)\e,% (3.29)

-■ n -i Im[Ai;*(;a*)] , lm[0*;(.t**)] , _, ImpyO'aO]
where 0A.. = tan

x
— ',, -4, 0ci).. = tan

1
-

\' ,. ..

and ftr. = tan
1

- M-
A'7 Re[A*;0)]' fu Re[0¡;*Oo*)] *t/ RepyOw)]

represent the angle of the RGA, RÍA and GDRG, respectively. On the other

hand, the modulus of equations (3.27), (3.28) and (3.29) are given by

hÑ<¿)\ = J(Re[Ai,(/ftO]) + (HWa))])'

|0¿/O"w)| = J(Re[0í;f»]) + (lm[0£y(/")])'

|Áv(/ü>)| = J(Re[A£y0w)])2 + (lm[A£yO'^)])2
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Expressions (3.27), (3.28) and (3.29) define the cartesian and polar form of

the DRGA, RÍA and GDRG. In general, it is possible to plot the magnitude
and phase of the above expressions. Unfortunately, all these interaction

measures are for SISO input-output pairings. This means that only SISO

input-output pairings can be considered for decentralized controllers.

In the sections that follow, formal criteria to select the most suitable

MIMO input-output pairings for WADCs or MIMO control devices in power

systems are proposed and developed. This framework, based on the BRG,

generalizes the concept of interaction to MIMO channels in frecuency
domain. First, some background theory is introduced.

3.5 Definition of the BRG

Let the transfer function G(s) G Ji7í^q be partitioned as follows:

(3.30)yiOO] „ [Gii 00 Gi2(s)i ruiOO

y200.l Lg21(s) g22(s)JLu2(s).

where Gn(s) G RH£xr\ G12(s) G JiJ{^q~ri) G2i(s) G JlK^'ri)xri , G22(s) G

JHK^'1"1
~Vl

and JUí___ represents the real rational subspace of lKo_. Each

block of transfer functions are described by

yi(s)

y200

YtOO

""iOO"

Gn00 Gi2(s)' ü200

G.iOO G22(s).

.ütOO.

Gii00 Gi2(s)-G1T(s)

G2i00 G22(s)-"G2T(s)

GTi(s) GT2(s)-GTT(s).

UiOO

Ü2(s)

ÜT(5).

K(5) =

Kn00
0

0

o o

oK22(s)-

0 ...KTT(s)

where

G1200 = [ Gi2(s)-GiT(s)], G2i(s) =
G2100

K22(s) =

GT1(s)J
K22(s) -

Kn(s)
0

> G22(s) =

0

0

K22(s)

G22(s)

GT2(s)

(3.31)

(3.32)

G2T(s)

GTT(s).

0 - KTT(s)J
and, T represents a set of T non-overlapping square subsystems.

To introduce the proposed approach, consider a decentralized control

structure in which the first rx outputs yi(s) are interconnected with the first

r_ inputs Ui(s) and the last (q
-

r-,) outputs y2(s) are interconnected with the
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last (q
—

r-J inputs to u2(s). Figure 3.8 illustrated the corresponding block

diagram representation.

ur(s)

^^\
Kn(s)

K22(s)

u(s)

S>
Gn(s) | G12(5)

LG21(s) I G22(s)

y(s)

í>

Figure. 3.8. General block decentralized configuration.

Based on this model, it is possible to represent various types of control

strategies. These include as particular cases (Refer to Fig. 3.9):

• Centralized control. This type of design takes into accounts all the

available (i. e. measured) power system signáis (Fig. 3.10, with

switches uBD11, ... ,uBDln closed). In general, this configuration is

unsuitable for power systems due to the cost of remote technologies.

In the case of a failure of the central supervisor, control is lost over

all áreas.

• Fully decentralized control. This control structure takes into

account local signáis and uses SISO controllers for each loop of the

transfer function (Fig. 3.10, with switches uL1,...,uLrr_ closed). In

general this control strategy is widely used in most system

controllers [26-29].

• Quasi-decentralized control. This representation uses a combination

of local and remote signáis (Fig. 3.10, with switches uL1,...,uLm and

u01 closed). The main characteristic can be a SISO configuration for

each local control loop of the transfer function, but most signáis
used for control are collected and processed locally [30].

• Block decentralized control structure. This configuration considers a

set of input and output signáis from remote locations (SISO or

MIMO configuration), in which each WADC is assigned to a specific
área or áreas (Fig. 3.10, with switches uBD11, ... ,uBDln and

uBDmv —>uBDmn closed). A block decentralized control is a control structure

that lies between a fully decentralized structure and a fully centralized one

[31-35].

• Hierarchical control. This configuration consists of two or more

levéis [36-37, 42]. A two-level control scheme comprehends local
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controllers in a first level and a central controller in a second level

(Fig. 3.10, with switches uLi, ...,uLm and uBD11, ...,uBDln closed).

X X

X X

X X

X X

X X

X X

X

X X X

X X X

X X X

XXXX

XXXX

XXXX

XXXX

o b) c) d)

Figure. 3.9. Schematic illustration of control structures: a) fully
decentralized control, b) and c) block decentralized control, c) centralized

control.

The left-BRG array for the pairing yi(s)
—

Ui(s) is defined as the ratio of

the open block gain to the apparent block gain in the same loop when all

other control loops are closed [18],

[>-(s)]ii =
3y_00 I

auiW'u2=o

ayiWI

du-_(s)
y2=0

-1

= Gn(5)[G-100]ii (3.33)

where yx(s)
—

Ui(s) are related trough the Schur complement of G22(s) in

G00,

[G-Hs)]!! = [GnOO
- G^G^OOG.iCs)]"1

From the above equation, the uncontrolled block gain and the controlled

block gain of the BRG for the pairing yx(s)
-

ux(s) can be described in Fig.
3.11 and 3.12. Note that, in the proposed formulation, the input-output

pairings are MIMO channels. This means that the BRG describes the

interaction of a MIMO transfer function under a block perfect control in

steady state.

It follows readily that the concept of a block perfect control in steady state

can be defined by

[K^s)] = diag \ -\
*

5's=o
1

3-14
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• • •

«BOU UBD ln
J

WADC-

uBDml
, UBDmn

¿MGen/FACTS

-O—"-{"Gen/FACTS |-

d
Local Control {-/

"Ll¡^MGen/FACTS

_r

c
Local Control ^2^iGen/FACTSh-

Power

system

¿Ql

Figure. 3.10. General control structure for power systems.

In a similar manner, the right-BRG can be calculated as [X(_0]u =

[G-1(5)]nGii(s). Furthermore, G(s) G 3ZH%?q can be partitioned into T

diagonal blocks or a set of T non-overlapping square subsystems such that

G££(s) G XH2xri,i = 1,2 T that gives ___J=ír_ = q.

u_(s) y_C0

Figure 3.11. Uncontrolled block gain, Gu(s), for yt(s)
—

ux(s).
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r_(»)

i>

rT(s)

^

1 ••• 1

1 ■•• 1

uiOO

u2(_)

í.

:>

>_
1 •■•

11

1 ■" 1

uT(s)

í>

G(s)

y_M

y2(5)

í>

i>

yT00

^>

Figure 3.12. Controlled block gain, [G (s)]n, for yx(s)
-

Ui(s).

In general, the transfer function evaluated at s = ¡oí is represented as

G(/o0 or simply G G Cqxq. The following properties of the proposed left and

right-BRG can be easily verified:

• [Xla is independent of scaling of Wyy, for all i,j = 1,2, ... , T,y ■£ i.

• The individual elements ofthe BRG are defined by Pu. For diagonal
elements of [J,]n, /?££ = Yí=i^ik- I***1 addition, /?i£ are independent of

scaling.

• Consider the scaled matrix Gs = SiGS^ where Sx and S2 are real,

diagonal input and output scaling matrices, respectively, and

assume that they are partitioned as follows

[Su 0 1

,s2 =
S2i 0 1

L o Si2. L 0 s22.
Si =

with Sn, S21 G Cr--Xr-- and Si2, S22 G C^-riMi-n) . As a consequence,

[*■ Jn = Siu-\lii-**n

Pfj is independent of input scaling, but dependent on output scaling.
If G is non-singular by assumption, G-1 and thus [G_1]££ exists. Thus,

[A] ££ exists, but is rank deficient due to rank deficiency of G££.
If G is block triangular implies that the corresponding [X]u = Ir. for all

i = l,2,...,T.

If [X]ü = Ir¡ for all i = 1,2, ...,T does not imply that G is block

triangular.
If one ofthe pairs, {G^G^C^Cñ1} and {G^Gj^G^Gñ1} Ue in the nuil

space of each other then [21]u =

Iri. Similarly, if one of the pairs,
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< max
miiZh (3.36)

{G2i,GJ"i1G12G¿'21} and {G2iGñ1,G12G2"21} lie in the nuil space of each

other, [A.] 22 = Ir2-

It is well known that the gain of a multivariable system depends on the

input direction. Then, the gain of yx
-

ux in the direction of v be ||Guv||2,

||v||2 = 1. Similarly, the gain ofthis loop in the direction ofw, when all other

loops are closed be HtG'^nW^, ||w||2 = 1.

Proposition 3.1 [20]. The worst case gain mismatch between G1X and [G]ia
is bounded as follows,

«Wu < max ¡Mj (3.35)
Hv||2=l ll[G]uw||2

Hw||2=l

-r-
— < max ——-—

__Wii ||v||2=l IIGiiv||2

Hw||2 = l

where o and a represent the largest and smallest singular valué of [2\.B]n.

The above proposition means that ifthe conditions ¿x[_V]ii » 1 and ff[A.]n «

1 are met, then the gain of yx
-

ux changes considerably due to the closure of

all other loops. If ff[2Vlii « 1 and £[2\.]n « 1, the change in gain may still be

large. In general, ifthe largest singular valué of BRG is far from the identity

matrix, the system has large interactions, but the converse is not true. Note

from Eq. (3.33) that if [AJn G Clxl then the BRG is the scalar representation
ofthe RGA.

The BRG analysis evidences the same limitations of closed-loop that the

standard RGA analysis due to the perfect control [13]; these limitations

make necessary to evalúate the interaction of the closed-loop transfer

function using the information of each dynamic block decentralized

controller as discussed below. In the literature the block GDRG is sometimes

called the dynamic BRG [22-24]. Unfortunaly, this definition should be used

for [A.(s)]n at s = jco due to the integral block feedback. In general, this

dessertation proposes the use ofthe block GDRG to design WADCs in power

systems.

3.6 Proposed block GDRG method for control configuration selection

Consider the input-ouput yx(s)
-

ux(s) pair shown in Fig. 3.13. Then, from

equation (3.5) with block controllers

HHs) = [[I + G(s)K1(5)]"1G(s)K1(5)]
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and using the Shur complement, the controlled block gain for yi(s)
— ux(s) is

given by

.-i.

[G(s)]n = Gn(s)
-

Gi2(5)K22(5)(l + G22(s)K22(s)) G21(s)

Henee, the right-block GDRG for y-_
—

ux can be expressed as:

[Us)]lx =
3Vi{s)\

auiW'u2=0

ayiWI
i-i

<5"lC-5)ly2= 0
= G11(s)[g-1(5)]11 (3.37)

Ms)

->
r2(s)

rT(s)

&T=

> K22(s)
u2(s)

í>

v> ¡Xjj^S)
üT(s)

p

G(5)

*(*)

y200

FrC-O

■>

Figure 3.13. Controlled block gain, [G(s)] ,
for y_.(.s)

—

Ui(s).

Consider now the following proposition:

Proposition 3.2. The worst case gain mismatch between Gn and [g] is

bounded as follows,

*[*]« *
11 iivii_=i puHl.

"w||2=l

< max

#]u n'viir=i iighvii2

Hw||2 = l

(3.38)

(3.39)

Proof: From (3.38), using (3.39)

l!ffil&=5W'Ji'[[e-1MlJ*íS[«'^
w ,

= 1
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It follows from the above proposition that the system is weakly interacting,

if o[X\ and a[X] ,
are cióse to the identity matrix.

The use of the RGA analysis for power systems in previus researches have

suggested that if the interaction among control loops is strong, the

generators of the system would have a large participation in the overall

process interaction. On the other hand, if the interaction is not different

from the identity matrix, the feedback system could not guarantee a good

performance [27, 43]. Similar conclusions can be made for the BRG and the

block GDRG.

In what follows, the BRG is defined for non-square block decentralized

controllers and its application to select the most suitable control

configuration is discussed.

3.7 Interaction measures for non-square systems

For square systems, the closed-loop gain is defined as the gain between y£

and u£ when all other outputs are under perfect control, i.e. yk are held

constant for all k =£ i. Generally, it is not possible to keep all other outputs,

yk, under perfect control at all time if G(s) contains dead-time and/or RHP

zeros. In addition, interaction measures applicable to non-square block

decentralized controllers emerge as a necessity of geographic, physic and

cost limitations of the power system. This section presents analysis tools to

generalize the concept of interaction and computational algorithms for

decentralized controllers.

Assume a non-square system with more outputs than inputs {q > p)', as a

result, it is not possible to keep all outputs at their set points. Therefore, the

sense of perfect control in the definition of the closed-loop gain should be

modified. A controller K is designed such that the steady-state offsets are

minimized in the sense of least-square. In general, for a non-square system,

G, the non-square relative gain (NRG) is defined as [38]:

dyjls)

dUjl.S)

"fc.fc*; _

W =

IM
- bijMbUs)

yk,k*l

Thus, the non-square relative gain array at s = jco is described as

AnO) = G(/o>) O [G+ (/*>)]* (3.40)
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where + represents the Moore-Penrose pseudo-inverse and * the Hermitian.

The next theorem clarines the use of these concepts.

Theorem 3.1 [39]. Let A G <Cmxn

• If A G <C£xn, then A+ = AH(AAH)~1 and AA+ = I.

• If A G C™xn, then A+ = (AAH)-XAH and A+A = I.

The fundamental differences between the RGA and NRG are described by
the next properties

• The sum of the elements in each column of the NRG is always equal
to unity.

• The sum of the elements in each row of the NRG fails between zero

and unity.

The above properties suggest that it is not possible to keep all outputs

perfect for a non-square system, the row sum of the NRG being less than

unity seems to indicate the deviation from perfect control for each output. In

addition, similar to the RGA, the NRG is invariant under input scaling.

Nevertheless, the NRG is variant under output scaling and it is important to

express mathematically that if G(y'&0 is a square, then AN{Jco) = Aíjco).

Consider the open loop transfer function matrix of a non-square plant,

G(s) G RH*xq with the partition developed in (3.29) and Gu(s) G 32Jf¿lX<?1

Gi2(s)G32^lX1?2, G21(s)G^^2Xí?1 and G22(s) G JKJH^2*"2 This type of

partition suggest two cases:

• If G(s) has more outputs than inputs, then its diagonal blocks must

either be square or have more outputs than inputs.

• If G(s) has more inputs that outputs, its diagonal blocks must have

the number of inputs greater than or equal to the number of outputs.

The following expression will be written to define a general equation of the

BRG for non-squares systems [40] :

W»]u =

where

3yiM|

9"iWu2=o.

3yi(s)|

a"iC*5)ly2=0
= Gn(s)[G+(s)]11 (3.41)
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ay_(s)l
= Gn(s)

ayi(s)

•3"l(*S)'y2=0J

du¡.(s)\U2=0

= [G+(s)]u = [Gu(s)
- G1200[G2200]

+

G2i00]+

Note that equation (3.41) reduces to (3.33) when the system is square.

Therefore, for a system with more outputs than inputs Gn G €_]\xqi where qx

denotes the rank ofa complex matrix pi x qx, then rank [A.]n = r.

In general the following properties hold:

• The desired valué for the BRG for non-square systems using the SVD

will be 1.0 because the ideal BRG is the identity matrix. This can be

expressed as ff[X]u = 1.

• The desired valué for the diagonal elements and eigenvalues of the

[A._1]n for Gn G C^x<?1 will be 1.0 because the ideal [A._1]n = I

• For Gn G C^xt?1 the ideal [A_1]n will be Gn(s)[G+(s)]u. Nevertheless

the inverse BRG will always be singular. This means that

Gn(s)[G+(s)]n will only have eigenvalues of 0 and 1.0.

Finally, the block GDRG for non-square decentralized control structures is

given by

_*00ln =
3yi(s)|

n [aui(s)lU2=0

3yi(s)|

dU_X_S)\y2__Q
= Gn(s)[G+(s)]ii (3.42)

where

[G+(s)]n
= [H1^ = [GnOO

- G12(s)K22(s)(l + G22(s)K22(s)) 1G2i(s)]
+

3.8 ¡u interaction measure

A key objective of an interaction measure should be to indicate under what

conditions the stability of the diagonal blocks will guarantee that of the

complete system [14]. Based on this idea, this section gives essential

conditions to extend the fi interaction to the skewed ¡u interaction.

Consider the control system shown in Fig. 3.1 for the q xq plant, G(s), can

be approximated by block-diagonal plant, G(s), if the off-diagonal blocks are

sufficiently small. Furthermore, it is that for sufficiently cióse plants, G(s)
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and G(s), a block-diagonal controller, K(s), can be designed to make the

feedback loop around G(s) stable with the assurance that the feedback loop

around G(s) will be stable as well. For this case, Fig. 3.14 represents the

control system modified including G(s).

Then, the problem is to design a controller K(s), for the system G(s) such

that the block-diagonal, the closed-loop system with the transfer matrix

function

-i-

H(s) = [l + G(s)K(s)] G(s)K00 (3.43)

is stable in-f = 0. An interaction measure expresses the constraints imposed

on the choice ofthe closed-loop transfer matrix, H(s), for the block-diagonal

system which guarantees that the closed-loop system H(s) is stable in *? = 1.

It is necessary to define the following equation:

E(s) = [G(s)-G(5)][G(s)]
-i

(3.44)

ir. i

r(s)

¿O
kn 0 0

0 0

.
0 0 k„r

KO)

^

GO)
-

G(s)

0 012
... Sin

■92i 0 :;■ g2„

9,i\9m'" 0

5n 0 0

0 0

0 0 gnn

G(5)

y{s)

o-

Fig. 3.14. Block representation of interactions as additive uncertainty.

Theorem 3.2 [15]. Assume that G(s) and H(s) are stable. Then the closed-

loop system, H(s), is stable if and only if

N[0,det[l + EOOH(s)]] = 0 (3.45)

where N[k, v(s) ] denotes the net number of clockwise encirclements of the

point [k, 0 ] by the image ofthe Nyquist JD contour under v(s).

3-22



Equation (3.45) denotes the importance ofthe matrix E(s). This leads to

next theorem that defines an interaction measure.

Theorem 3.3 [ll]. Assume G(s) and H(s) are stable. Then H(s) is stable if

||HO'üO || < infHDEO'üOD-^IVo. (3.46)

The next expression is derived from theorem 3.3

n[V(jo>)] S infatDEO'úOD"1] (3.47)

Note that ¡u is the complex structured singular valué and D G D is the set of

all regional matrices with same block-diagonal structure as G(s)H(s).

However, the limitation associated with the result of the last theorem is that

u gives equal preference to all the loops, but this can be modified using the

skew SSV. Then, this dissertation proposes the use of the skew SSV to

evalúate the interaction ofthe linear systems.

For a system M, with a set of perturbations, the definition of skew p is the

smallest SSV of a subset of perturbations that destabilizes the system M

with the remainder ofthe perturbation being of fixed range [18-19].

Given a set of allowable perturbations,

'M
=

Uv = diag [s[lk. 5jrIv S[lkl 5$^, Acm. _*£_])
( :S¡eR,8f GC,<1¡GCm-xm' j

(3.48)

and a secondary set ofperturbations with structure M defined by

z_ =
(Af = diag [snkl 8SrlkSr,SÍ\kl #c Irje.A$__ AcmF\)

"

[ :5,rGl, Sf G <C, Acmi G Cm-Xm- j
(3.49)

where 2j¡_ is restricted to the unit ball

BZñ = {AfeZ„.ó[Af<l]}
The composite perturbations are defined as

WM#
= {A = diag[Af,Av]}

or
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Note that YM and Z„ define a mixed uncertainty. Furthermore, the last

specifications allow the skewed SSV definition:

Definition 3.2 [39]. The skewed SSV ps[M] of a matrix M G Cnxn with

respect to a block structure A G WM ¡a is defined as:

*M =

min {a[Av].det[I+MA]=0}
(3-50)

aeWM,M

with jUs[M] = 0 if no A G WMÑ solves det[I + MA] = 0.

Details of the interaction measure based on the skewed SSV are ommited,

but it is only necessary to change E(s) into a set fixed range of perturbations

described by equations (3.48) and (3.49).

3.9 Geometric measures of modal controllability and observability

From equation (3.1), let the eigenvalues of the matrix A (i = 1, ...,n) be

distinct and let the corresponding matrices of the right and the left

eigenvectors be written as E = [e1( ...,en] and F = [f1( ...,fn], respectively; the

eigenvectors e£ and f£ are assumed to be normalized and orthogonal.

Geometric measures of controllability, mci, and observability, mo£,

associated with the i -mode are defined as [44]:

mc£(/C) = cos(a(f£,bk))=¿|i¡ (3.51)

mol(l) = cos(e(cJ,ei))=^ (3.52)

where bk and c¡ represent the kth column of B and the ith row of C,

respectively. |z| and ||z|| are the modulus and Euclidean norm of z. Finally,

a(f*,bfc) and d(c[,e_) represent the geometrical angle between the input
vector i and the kth. left eigenvector, and the geometrical angle between the

output vector / and the kth right eigenvector, respectively. These expressions
lead to the joint controllability/observability measures

mcoi{k, l) = mci(k)moi{í) (3.53)
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3.10 Selection of the most suitable input-output pairings for MIMO

systems

The notion of interaction measures has been used for some time in designing

and locating power system controllers [43, 45]. In [27], a decentralized

method to mitigate adverse interaction between controllers and

electromechanical oscillations based on the notion of a dynamic RGA was

proposed. More recently, the RGA in [28, 29] was used to evalúate the

capability, control structure and the bifurcation subsystems of a /rsynthesis

power system stabilizer design. References [31, 32] examine the use of

various analytical methods to select signáis for FACTS devices and lócate

controllers.

A more recent and interesting development, has the use of DRGA-based

techniques to obtain suitable inputs for FACTS and high-voltage direct

current (HVDC) devices in wide-area control schemes [33]. In most cases, the

selection of the input-output variables for the design of WADCs has been

based on single-input single-output models.

Unfortunaly, all these methods only have described SISO configurations of

the supplementary devices in power systems. Nevertheless, WAMS

technology gives the opportunity to design WADCs which could have MIMO

signáis. Then, this section concludes with an original method to select the

most suitable input-output pairings for MIMO control configurations in

power systems. This method can be described as follows:

1. On the basis of small-signal stability analysis identify suitable input-

output signáis pairings using the geometric measures of

controllability mci and observability moi associated with the mode "i"

described by (3.51) and (3.52). For the purposes tie-line currents, /£_y,
and the speed deviations of generators, o»*, can be selected, but it is

possible to include other type of signáis as active power, voltage angle

difference, etc.

2. Based on the candidate sets information in 1, compute the largest

singular valué of [iV(s)]££ using Eq. (3.41) for the selected input-output

pairing sets of WADCs. This ensures a better coordination among

controllers. To obtain a good performance among controls, select the

last two set of controllers that exhibit máximum interaction using the

properties of the BRG. It should be emphasized, however, that the

BRG does not represent the true interaction and it is necessary to

compute and compare the closed loop interaction using the block

GDRG described in equations (3.37) and (3.42).
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3. Design a supplementary MIMO controller to compute the block GDRG

and evalúate the closed-loop interaction of the two selected candidate

sets of controllers using (14); choose the candidate set with máximum

interaction since this results in good performance. If it is necessary to

add another set of controllers, then, absorb each designed set into the

nominal linear system to avoid re-tuning of controllers. In general, it

is necessary to return to step-1.

3.11 Conclusions

In this chapter, the theory of interaction measures to choose input-output

pairings in frequency domain for large power systems has been introduced.

Extensions and generalizations to the existing theory to design WADCs in

power systems based on the notion of the BRG have been proposed and

proved to be more efficient than current design methodologies. Following

these ideas, a rigorous review of interaction measures that leads to new

concepts that still remain to be analyzed in a deeper way in power systems

has been presented.

Of note, the issue of control desing was omitted. This stage is crucial to

compute the block GDRG. The following chapter examines the use of control

techiques in the context of power system applications.
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Chapter 4

Synthesis of Robust Linear

Controllers

This chapter examines the problem of synthesis of robust linear controllers for

uncertain MIMO systems. The different synthesis techniques are critically

compared in terms of accuracy, applicability to realistic power system models,

and computational cost.

The chapter begins with _*£«, control and mixed 7í2 /"Ha, theory using classic

methods and linear matrix inequality (LMI) techniques. Then, the D-K and

D-G-K iteration for complex and real uncertainty are introduced and

compared. Advantages and limitations are pointed out in the context of this

dissertation.

Based on these ideas, a basic control structure to study the effects of latency
in power systems is introduced. Finally, a general method to design wide-area

damping controller devices and hierarchical control configurations in large

power systems is suggested.
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4.1 Introduction

The use of the máximum singular valué as a norm on unstructured

uncertainty overcomes the limitations of classical gain and phase margins in

MIMO systems. Oftentimes uncertainty may be highly structured in real

systems. Neglecting this effect may lead to very conservative results [l].

Furthermore, the uncertainty can be expressed as complex uncertainty and

real uncertainty.

The SSV was introduced to study structured and unstructured uncertainty

[2-4]. Complex perturbations are used to represent uncertainties associated

with unmodeled dynamics and parametric uncertainties. These

representations, however, can be conservative due to the influence of real

parametric perturbations and scaling matrices to approximate the complex

SSV.

The use ofthe D-K iteration has been considered and implemented in several

researches in recent years to design robust controllers for complex

uncertainties [5-9]. In addition, the complex uncertainty in D-K iteration is

taken as complex uncertainty, even with real parametric uncertainties,

rendering the standard complex D-K synthesis technique inadequate. This

approach, referred to as /¿-synthesis with D-K iteration attempts to find a /r

optimal controller, but during the synthesis process it is possible that some

requirements as K_o are not met, and the method may not be convergent due

to real parametric uncertainties.

For models which incorpórate real parametric uncertainties the D-G-K

iteration was developed as a consequence of the mixed SSV [10-11].

Unfortunately, the computational burden is increased and analytical

expressions are more complex. The similarities between D-K and D-G-K

iteration are obvious. However, there is one notable difference: the

determination of scaling matrices; in particular the fitting of scaling matrices

that forces to fit the phase and magnitude. Furthermore, the D-G-K iteration

needs innerouter and spectral factorizations [12-13].

Some researchers have also considered rearranging the D-G-K iteration! the

method proposed was the /rK iteration, which lost some of the guaranteed

convergence properties of D-G-K iteration, but with good results [14-16].

Essentially, the /rK iteration only requires that scaling matrices are fitted in

magnitude and uses a scalar transfer function to compénsate the real

uncertainty which is not considered in the D-K iteration. An altemative

methodology to design controllers is the use of LMI techniques [20]. These

techniques may be difficult to analyze, in particular when incorporated into

larger feedback systems where the computational burden is limited due to

LMI expressions.
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Experience shows that it is most suitable to design WADCs using the mixed

2*2 /•*■*£» which mitígate inter-area oscillations with a good performance and

incorpórate MIMO control configurations [18-19]. In addition, the use ofthe

SSV in power system has been proposed in recent work for the design of robust

controllers, but using only the D-K iteration [24-28].

4.2 Control synthesis on H^ and 1£2l'K_t_

The Ha. technique based on Ricatti equations to design supplementary
controllers in power systems was introduced. This type of method, despite
unstructured uncertainty in some plants, can guarantee robust performance
and robust stability. The applications of Jía, based on Ricatti equations to

complex power system models from various limitations resulting from pole-
zero cancelations of the plant and the controller. A mixed sensitivity

formulation, such as Fig. 4.1, fails to provide a solution when the augmented

plant has invariant zeros either at infinity or on the imaginary axes.

In Fig. 4.1, W-lCs), and W2(s) represent weighting functions. Of relevance,

some basic specifications in time domain, such as settling time, peak overshoot

cannot be formulated in a Ricatti based design.

In general, the standard Ka, problem is described as follows. Given a real

rational transfer matrix J(s), called the plant, and a space Ks of real rational

transfer matrices K(s), called the controller space, characterize and compute
an optimal solution K(s) G Ks to the following optimization

min|lF,[J(í),K(s)]|L

subject to K(s) stabilizes J(s) internally

K(s) G 3CS

(4.1)

The objective function is the Jfoo-norm of the closed loop performances
channel described in Fig. 4.2 and the plant J(s) has a state-space

representation of the form

x(t)

z(t)

y(t)

A

Ci

c2

Bi B2l x(t)

Du D12 w(t)

D2i D22J u(t)

(4.2)

This can be written by

Ks):

rA B-i B2 1

Ci

Lc2
Dn D12

D2i D22.

(4.3)
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where x(t0) = x0, x(t) G Rn is the state, u(t) G EP» the control, y(t) G M9* the

measured output, w(t) G Rr*> the exogenous input, z(t) G Rs* the regulated
output and the matrix A is stable. Similarly, K(s) has a state-space

representation given by:

where xK(t) G

xK(0

u(t)

AK BKirxK(t)l

CK DKJ[y(t)J

K(s):
B_

D_

(4.4)

(4.5)

r +

K(s) -i. G(s) ¿-

Wi(s)-*-|
W2(s)*^J

-

z

Fig. 4.1. Standard mixed sensitivity feedback configuration.

z

<

JU.
«

•i—i

vv

y

—» K(s.
u

Figure 4.2. Synthesis framework.

The solution ofthe optimization problem (4.1) is not unique except in the

scalar case [17]. Generally speaking, there are no analytic solution formulae
for the solutions. In practical design, it is usually sufficient to find a stabilizing
controller K(s) such that the .f^-norm ofthe closed-loop transfer function is

less than a given positive number

min||F£[j00,K00]|L<y

subject to K(s) stabilizes J(s) internally

K(s) 6 Xs

(4.6)

where y > y0. This is called the K_<, suboptimal problem.

4-4



The valué of y starts from a relatively large number to ensure the existence

of a suboptimal solution based on Ricatti equations, but y may approach an

optimal solution. It should, however, be pointed out here that when y is

approaching its minimum valué y0 ,
the problem would become more and more

ill-conditioned numerically.

The following assumptions are necessary for the K«, synthesis process.

A.1 (A,BJ is controllable and (A, Bx) is observable;

(A, B2) is stabilizable and (A, B2) is detectable;

D12 = [°] and Di2 = [0 I];

A.2

A.3

A.4

A.5

I

A —

jcol B2

Ci Di2

A -

jcol Bi

C2 D21

has full column rank for all co'.

has full column rank for all co.

Some remarks are in order here:

Remark 1. A.1 and A.2 are required for the existence ofa stabilizing K(s).

Remark 2. A.2 assumes that the matrices Di2 and D2i are in normalized forms

and the system J(s) is thus so called a normalized system. The case in which

those two matrices are of full rank but no necessarily in the normalized forms

is discussed in [13].

The K___ synthesis can be formulated as a convex optimization problem

involving LMIs as a counterpart of the usual K_,_ Ricatti equations. One way
of simultaneously tuning the K___ -performance and transient behavior is to

combine the K«, and pole-placement objectives. For example, the step

response of a second-order system with poles A = t,a)n ± jo¡)d is fully
characterized in terms of the undamped natural frequency con

= |X|, the

damping ratio £, and the damped natural frequency (od. This means that

satisfactory time response and closed-loop damping can be achieved by forcing
the closed-loop poles into a suitable subregión of the left-half plañe as shown

in Fig. 4.3. In addition, it is desirable to obtain a controller on K2/K<__.

specifications and suitable subregión ofthe left-half plañe [20].

In general, K2/K<_r_, control design has three objectives: the Ka, performance,
the K2 norm, and the closed-loop poles into a suitable región. Then, the

configuration of multiobjective damping controller for power systems can be

described in a block diagram as shown in Fig. 4.4.
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Figure 4.3. Región for the closed-loop poles into suitable subregión.

>W3(s)—

>W ("} O
vv2 V-V

i 1

^Q^K(s)-■-^GW-íóip-WiCs)^]
- z2

Figure 4.4. Multiobjective damping controller block diagram.

Assume a general control structure as that described in Fig. 4.5. The output

channel zM G MSz«> is associated with the performance while the channel

z2(t) G MSz2 is associated with the linear quadratic Gaussian (LQG) aspects

{K2 performance).

Consider the linear dynamic system,

¿(Ol A Bx B2

Zoo(0 Ci Du Di2

z2(0 c2 D2i D22

y(0 Lc3 D31 D32

x(t)

w(t)

u(t)

(4.7)

This can be written by

Ks):

rA Bi B2]
Ci

c2

lc3

Du

D2i

D31

Di2

D22

D32.

(4.8)

where K(s) has a representation given by Eq. (4.4).
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Zoo
«1

|<s)
w

_Z2
*

<

y

—» K(5)
u

Figure 4.5. Synthesis framework on K2/Ka

Let

xc¡(0

w(t)J

be the corresponding closed-loop state-space equations. Then, the three design

objectives can be expressed as follows:

• Ka, performance: the closed-loop RMS gain from w(s) to Zoo(s) does not

exceed y if and only if there exist a positive definitive symmetricmatrix

Xo_ such that

¿ci(t) [Ac¡ Bc¡]
Zoo(0 = Ceil Den

z2(0 ■Cc/2 Dci2J

ApjXoo + \a_Aci Bc£ ■XooCc£i

Ki -I D^i

Cc¡l*-*oo Deil -y2 1 J

<0

K2 performance: the K2 norm ofthe closed-loop transfer function from

w(s) to z2(s) does not exceed v ifand only if Dc£2 = 0 and there exist two

symmetric matrices X2 and Q such that

A. ,X_ + X2A££lC¡A2

Bc¡

Bc£

-I
<0

Q

2*"c¡2%.CT

Cc¡2X2

x2
>0

Trace[Q ] < v2

Pole placement: the closed-loop poles lie in the LMI región

2) = {zG(C:L + Mz + Mrz} < 0
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where M and L = V are fixed real matrices. The matrix-value function

/D(z) = L + Mz + MTz is called the characteristic function ofthe región

T>. In the above equation L = LT = [£*,*] and M = [9J.Í7] ifand only if there

exists a positive definite symmetric matrix Xpo£ satisfying

[£í;*Xpo* + SDlyAc,Xpoi + SRyXpojAÍ, ] < 0

These three sets of conditions add up to a nonconvex optimization problem

with variables Q, K, X»,, X2 and Xpo£. For tractability in the LMI framework,

it is necessary a single Lyapunov matrix with X = X«, = X2 = Xpo£ that

enforces all three objectives. Find matrices M, N, R = RT and S = ST to factorize

Xas

X = X-_X2\ Xi = [mT 0J,x2
= [_ nTJ

and introducing the change of controller variables:

9IK = NAKMT + NBKC3R + SB2CKMr + S[A + B2DKC3]R

S8K = NBK + SB2DK

CK = CKMT + DKC3R

the inequality constraints on X are readily turned into LMI constraints in the

variables R, S, Q, 9IK, 9JK> G-k and DK. In general, the following suboptimal LMI

formulation ofmulti-objective synthesis problem can be expressed as

minimize oc y2 + PTrace[Q] over R, S, Q, 2IK* 93K- ®k* Dk and y2 satisfying:

AR + RAT + B2<EK + <EkB¡ 9l£ + A + B2DkC3 B,+B2DkD31 [CaR + D12CK]r

2lK + [A + B2DKC3]T ATS + SA + »KC3 + CjSBj; SB_+BKD31 Cf + C£D&Df2

[B1+B2DKD31]T [SBj+BkD,!]7 -I [Du + Di2DKD31f

CjR + Dt-jCK Cí + D^DkCj Du+D12DkD31 -y-*i

< 0

(4.9)

Q c2r + d226:k c2 + d22dkc3

[C2R + D226:K]r R I

[C2 + D22DkC3]t i s

>0 (4.10)

*y[

m¡
RAr + [B2<ZKY

AR + B2GJK A + B2DKC2

<ttK SA + ÍBKC2
+

''[[A + B.DkC,]7" [SA + »KC2]r
<0 (4.11)
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Trace [Q] < vg (4.12)

Y2 < Yo

D21 + D22DkD31 = O

(4.13)

(4.14)

Given optimal solutions of this LMI problem, the closed-loop Ka, and K2

performances are bounded by

ITJLSY"

HT2||2 < VTrace[Q*]

(4.15)

(4.16)

where T» and T2 denote the closed-loop transfer functions from w to z^, and

z2, respectively.

Fig. 4.6 gives a conceptual overview of K2/Ka, of a multimachine power

system in which generator y has a local controller that is to be designed, K(s).

Here, G7, Exc;, Aco7, AVreí. and AVn. represent the jth generator, the jth exciter,

the jth relative rotor speed, the jth voltage reference and the jth noise signal

to satisfy necessary conditions for Km controller synthesis, respectively. Note

that the subscript A represents the incremental variables of the linearized

model.

1(5)

Z2 -

áV,

W3(s)

W2{s)

Wi(s)

refj

O—* Exc,

Wn¡

/T\+__Aw-/ Electric

power

system

1} w

K(s)

Figure 4.6. Schematic synthesis framework on K2/Ka, of a multimachine

power system for the /th generator.
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Practical application of the K2/Ka, technique in large power systems

requires a reduced-order model of the nominal model due to high number of

generators and the LMI formulation. In general, this method achieves good
results for SISO and MIMO controllers which can be WADCs and local

supplementary controllers [18-19]. Furthermore, it is easy to include

unstructured uncertainty to describe unmodelled dynamics. Although, this

usually leads to conservativeness ofthe control design.

4.3 fí-synthesis

A controller based on K2/K„, specifications can have analytical limitations to

represent structured uncertainty. Nevertheless with the use of SSV. where

the uncertainty can be represented with complex or real parameters, it is

possible to extend this type of representation to obtain a robust controller. In

addition, this controller can have robust properties but the computational
burden is increased due to scaling matrices of the SSV In general, the

synthesis of controllers which are optimal with respect to a performance
criterion expressed in terms ofa SSV is called p-synthesis [12-13].

Let a finite dimensional LTI dynamical system described by the following
state space representation:

x(t)

y&)

zit)

y(0

A Bi E$2 B3

Ci Dn Di2 Di3

C2 D2i D22 D23

C3 D3i D32 D33

x(t)

uA(t)

w{t)

u(t)

(4.17)

and

P(s):

rA Bi B2 B31

Ci Du D12 D13

c2 D21 D22 D23

LC3 D31 D32 D33J

(4.18)

where x(ü0) = x0, x(t) G Rn is the state, u(t) G MPu the control input, y(t) G Rqy

the control output, w(t) G RTw the exogenous input, z(t) G RSz the regulated

output, uA(t) G <CduA the uncertainty input, and yA(t) G Rey* the uncertainty

output. Assume that the matrix A is stable, and the input uA(t) is described

as

uA(t) = AyA(t) (4.19)

The representation given in (4.17) is defined for the open-loop system

augmented by weighting functions for performance and controllers. The open-

loop system in frequency domain can be described in Fig. 4.7 with a LFT, and
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the uncertainty A can be absorbed to derive the synthesis framework

represented in Fig. 4.2.

Ya
j -ACs). . uA

Hs)
<

z I *
1

w

y •K(sj- u

Figure 4.7. Open-loop system.

Reordering equation (4.18) can be expressed as

P(s) =
[A B

B3|
C

c3

Du D12

D21 D22.

(4.20)

where

B = [B! B2]; C = Du =
Dn Di2

D2i D22
D12 =

Di3

D23

D21 = [D3i D32]; D22 = D33

In particular, the representation in (4.20) expresses a general form to the

control synthesis problem. Then to ensure robust stability and robust

performance a stabilizing controller K(s) is required, such that

suppA[F*[P0'ü>),K(/co)]]<l (4.21)
íoeM

That is, the design objective is to find a stabilizing controller K(s), such that

for all perturbation HAHo. < 1, the closed-loop system will be stable and then

will satisfy

HFjF-tPtsXKWLAUL^l

This is shown in Fig. 4.8 and formally can be expressed as:

min suppa[F£[P0'w),K0'co)]] < 1

K(s)63Cs ü>eE

(4.22)

(4.23)
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The problem proposed in (4.23) is not yet fully solved and it is shown in Fig.

3.8. However, a reasonable approach is to use the upper bound of SSV

obtained by scaling and applying Ka,. Finally, the condition in (4.21) is subject

to the internal stability ofthe nominal system.

y¿

Hs)

"A

■»
« W

3

»

t
K(sj

ij

Figure 4.8. General framework for p-synthesis.

Fig. 4.9 shows a schematic diagram on p-synthesis framework for a

supplementary local controller of a multimachine power system for the y'th

generator. Note that the structured uncertainty, A, is taken into account.

Ya

Figure 4.9. p-synthesis framework for a supplementary local controller.

4-12



Generally, three algorithms to obtain a solution to the problem ofp-synthesis

have been developed and tested in the literature [5-16]: the D-K iteration for

complex structured uncertainties, the D-G-K iteration for mixed structured

uncertainties and the p-K iteration, which uses a scalar approximation to

compénsate the real uncertainty which is not considered in the D-K iteration.

These algorithms are briefly summarized in the next subsections.

4.3.1 Complex /i design

In this subsection, the D-K iteration is presented in order to solve the problem
of synthesis to achieve the best robust performance with complex structured

uncertainty [12-13]. In the literature, sometimes the D-K iteration is called

the standard fisynthesis framework [2, 7].It is assumed that transfer

functions have perfect state space minimal realization [12-13].

The approach to design p optimal controller corresponding to (4.21) is

derived as:

K{s) = arg min supAiA[F,[P(/aO,K(/<u)]] (4.24)
K(S)£XS __,_:]__

Note that (4.24) uses the complex SSV. Unfortunately, the above equation is

not tractable since p cannot be directly computed. Henee, using the upper

bound of the complex SSV is possible to express

K(s) = arg min sup inf fCT[D(co)F£[PO'aj),KO'w)]D-1(^)]l (4.25)
K(.s)EXs ajgR D(-j)ED L J

One approach is alternatively minimize (4.25). That is, K{s) or D(co) are held

constant while one of them is calculated. This can be expressed as

a. For a fixed scaling transfer function D(s),

K(s) =arg min ||F£[D(s)P(s)D"1(s),K(s)]||oo represents a standard K„,

control.

b. For a fixed K(s), D(co) =arg min {afDCco^PO'wXKO'co^D-1^)]} can

D(í**)eD

be minimized at each frequency as a convex optimization problem.

The resulting D(co) can be fit with a stable minimum phase, rational transfer

function with stable inverse, such that

D{s)A{s) = A{s)D{s) (4.26)

It follows from the above considerations a process optimization by an

iterative approach, referred as D-K iteration and shown in Fig. 4.10 and 4.11.

Details ofthis process are summarized in the following steps:
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1. Given a system P{s), let i = 1, D£(co) = I, \/(xi.

2. Fit a stable minimum phase transfer function matrix D£(s) to the

pointwise scaling D£(co).

3. Construct a state space model for the described system in Fig. 4.4:

P.is) = [Df J]P(.)
orHs) o

0 I

4. Solve an Ka, to minimize

Kí(5)=argKmmJ|F£[P£(5),K£(s)]||c

(4.27)

(4.28)

5. Compute the new scalings D£+i (co) from the complex p upper bound

problem

D£+i (co) = arg min {a[D£+i(co)F£[POVo),K£0'w)]D^+\(co)]} (4.29)

pointwise across frequency co.

6. Compare D£(co) with the previous D£+i(co). Stop if they are cióse.

Otherwise let ¿ = i + 1 and repeat from 2.

Notice that the D-K iteration may not converge in some cases, but many

designs have shown that this approach works very well. The result controller

can be very conservative due to the complex uncertainties. However, the

elements of D can be allowed to take any nonzero complex valúes and do not

change the valué ofthe upper bound, min {cf[D(co)F£ [P(7co), K£0'áJ)]D-:1(co)]},
D(c<.)eD

that is, the phase is freedom.

Piis)

y¿ i

D_(s)
<—

<—

«—

PCs)
*

*

«

Drx(*s)
! 'Ja

7 *

* I

<
i w

l

<—i—1

i

Ki{s)
y u

Figure 4.10. K£(s)-step in D-K iteration.
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AO'w)

y¿

Dí+i(co) *—

«—

«—

P(/o))
«—

-*—

«—

D-+:i (co)

■*_

<
"ú

z
c
w

«
1

KíO'w)
y u

Figure 4.11. D£+i(co)-step in D-K iteration.

The design of supplementary controllers based on p-synthesis has been

discussed in recent work to design local supplementary controllers in power

systems, but only using the D-K iteration [24-27]. In [28] was implemented a

centralized controller for a 7-bus, 5 machine system. Note that these

implementations have been based on polynomial framework described in [21-

23].

4.3.2 Mixed fi synthesis

For the design problems which arise with real and complex perturbations,
there is a corresponding D-G-K iteration procedure proposed in [2]. Using this

approach, the mixed upper bound can be written as

Pm[M] < inf min {/.: M*DM + /[GM - M*G] - /?2D < 0}M

dgd,gggm o</?erc
r J r

The above expression can be rewritten for the controller synthesis problem as

K(s) = argmin sup inf inf {/? (co):r(co) < 1} (4.30)
K(s)E_Cs ^k D(í_-)eD,G(_j)eGM 0S/?(a*)eK

where

T(co) = a
D(ü*)F*[P(;.j),K(y_.)]D-**(-_>)

/_(__)
-;G(co) [I + G2(co)]~

For fixed K{s) the problem of finding D(co), G(co) and Pia)) is the mixed u

upper bound problem across frequency. For fixed D(s), G(s) and p{s) transfer

matrices then the problem of finding K(s) will be reduced to a standard Ka,

problem. The last analysis leads to the D-G-K iteration for mixed p. In general,
this method is summarized in the following steps:
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1. Given a system P(s), let i = 1, D£(co) = I, G£(co) = O and P- = 1, Veo.

2. Fit transfer function matrices D£(s) and G£(s) to the pointwise scalings

D£(co) and /G£(co), so that D£(/co) approximates D£(co) and G£(/c<j)

approximates )G£(co). Replace D£(s) and G£(s) with appropriate factors

so that D£(s), Df*($), Gh,{s) and G£(s)Gh.(s) are all stable, where Gh.(s)

is a spectral factor satisfying [I + G£(s)G£r(—s)]"1 = Ghl(s)Gj_.(_—s).

Augment D£(s) and Gh.(s) with identity matrices, and G£(s) with a zero

matrix, of appropriate dimensions so that D£(s), G£(_0, Gh.(s) are

compatible with P(s). Form the state space system

Pdg-00 = [D£(s)P(s)D£-1(5) -/?*G£(s)]Gh.(s) (4.31)

3. Find the Ka, optimal controller K£(s):

K.M =
ar*? K^&Jl^t^W'KíWlL (4-32)

4. Compute the máximum upper bound P¡+1 as

fí*+1=sup inf inf {/?(co):r(co)<l} (4.33)

where T(co) is given by

^D(_J)F¡[PO-j),Ki(;'<i))]D-1(a>)
T(co) = a

PÍO))
-yG(co) [I + G2(co)]~ (4.34)

5. Calcúlate the new scalings D£+i (co) and Gi+X{ju>) solving the

minimization problem

D£+1(co),G£+i(co) = arg inf o

D¡+1(_j)eD,G*+1(c*..eGM

yG£+i(co))[I + Gf+1(co)]4

Pi+1(_J)F£[POa)),K¡Ot_)]Dr)11(_,)

/-7+l

(4.35)

pointwise across frequency.

6. Compare D£+i(co) and G£+i (co) with the previous estimates D£(co) and

G£(co). Stop if they are cióse. Otherwise let i = i + 1, and repeat from 2.

Some remarks are necessary about the D-G-K iteration

• It is necessary a spectral factor in step 2 which implies that

[I + G-OOGK-s)]-1 = Ghl(s)Glt(-s).
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• The determination of scaling matrices in step 5, D¿+i(co) and Gi+i(co)
are not the scaling matrices from the Pk in step 4.

• It must be fitted the phase and magnitude in scaling matrices.

In general, the principal stages of D-G-K iteration can be shown in Fig. 4.12

and 4.13.

Pdg*0)

0<¡yXPu

yA, A
D*(s)

'<ry

*—

«—

<—

Pis.
t

t

«
'

x>T\s, —

_

z i
^

/~Y_
w

-O— <f—

K¡(_S)
y

r
u

Fig. 4.12. K£(s)-step in D-G-K iteration.

The D-G-K iteration for controller synthesis with mixed perturbation sets A

provides a method which it is better that the D-K iteration. However, the D-

G-K iteration is more complicated that the corresponding D-K iteration for

complex perturbations. In essential, the fitting of scaling matrices are more

complex due to the fact that the phase and magnitude must be fitted.

For large power systems the D-G-K iteration is impractical, even for small

systems, since the iterations may converge slowly. This is an open problem

that warrants further investigation,

In [14], the p-K iteration was proposed as an altemative between mixed and

complex p iteration. Whereas the D-G-K iteration is a direct upper bound

minimization, the p-K iteration is an indirect upper bound. That is, the p-K

iteration does not have the structure of the SSV upper bound described by

[I + G£(s)G£r(-5)]"1 = Gh.{s)Gl.{-s)). The structured of the p-K iteration is

constructed by applying two scaling to the original system (s), that is, it will

be constructed a system PDr(s) with a D(s) scaling such that

atFjPDrO'ci-'XKO'üO]] approximates the complex p upper bound and a T(s)

scaling to shift from complex to mixed p.
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Fig. 4.13. D£+i(co), G£+i (co) step in D-G-K iteration.

The p -K iteration procedure can be summarized as follows:

1. Given the augmented system P(s), let y0(s) = 1, D0(s) = I, express

PDr (5) in the form

PDro00
=

Yo(*5)IyA '

O I
D0(s)P(s)Do1(s) = r0(s)D0(s)P(s)Do1(5)

(4.36)

r0(s)D0(s)P(5)Do1(*s) = Hs)

2. Compute the Ka, optimal controller K0(s)
= K-_{s) a, nd i = 1.

K£(s) = arg min ||F£[P(s),K£(s)]||00
K¡(.S. 65CS

(4.37)

3. Compute the mixed and complex p upper bounds pc[F£[PO'co),K£0'c»>)]],

pM[F£ [P(/o)), K*(/c*->)]] where the scalingmatrices D£(co) are found solving
the minimizations

D£(co) = arg min {ff[D*(co)F*[PO'w)*K£(>)]Df l(fl))]l Vod > O (4.38)
D*(_j)eD

4. Compute Pí(cú) given by:
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ffr
y hhIfiIUJu.XKiíJu)]] i

h (439)
PiK }

~

Mc[F|[PÜ«).K|Ü«)l] Y|-»C/«)

5. Fit, in magnitude, a stable minimum phase transfer function matrix

D£(s) to D£(co) so that D£0'w) approximates D£(co) across frequency co.

Augmented D£(s) with a unity matrix of appropriate size such that

D£(s) is compatible with P(s).

6. Determine an upper bound for the constant a_ G [0; 1] according to

ar(i)) =
i^-Ui(.a>)),ífPi{co)>0 (4 40)aA(ú)
ll, ifPiíco)<0

where ^¡(.U)) is given by

! (*).-( N^^HIL ^J. (4 41)SlV

\ff[Fí[D¡0aj)P0ü))Df10'<>j)-Kí0í*J)]]|Y¡-i(;íü)| / fc<«)

7. Choose a constant a£ = k inf^ á£(co) where k G [0; 1] and compute for all

Oi-

r.(«)-(i-«JlY^0")l^^ggg_a <442)

8. Construct

ÍYl(-S)IyA 0

PDrt(s)
=

^J
D£(s)P(s)Df1(s) = r£(s)D£(s)P(s)Df1(s)

(4.43)

9. Compute the Ka, optimal controller:

K£+i(s) = arg min ||F£[P(s),Kí+1(5)]|L (4.44)

10. Compute the mixed and complex p upper bounds

pc[F*[P0'6J),Ki+i(/'ü0]], pM[Fl[PO'£**0*Kl+iO'w)]] where the scaling

matrices D£+i (co) are found solving the minimizations

D£+i (co) = arg min {fftDt+tC^F^PO'^.KtC/wMDrAC^D.Vctí > 0

d*(_j) eD

(4.45)

11. Compute /?£+i(co) given by:

PMW
-

^F0Uo_l__,+1üa>)]]y_Uo>)
^^
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12. If supJ/?i+1(co)| > sup^ |Piico) | return to 7 and reduce k. Otherwise let

i = i + 1.

13. Compare Dí+1(s) and y£(s) with the previous scalings D£(s) and y£_i(s).
Stop if they are cióse and supJ/Sj+itco)! « 0. Otherwise repeat from step
5.

The K£(s) and D£+i(co),y£(co)-step of p-K iteration can be shown in Fig. 4.14

and 4.15.
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Fig. 4.14. K£(s)-step in p-K iteration.
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Fig. 4.15. D£+1(co),y£(co)-step in p-K iteration.

An adverse limitation of a synthetized p controller is its high-order obtained
due to the interpolation theory in each element during the synthesis process!
henee it is necessary to find a reduced-order controller. It is well known the

notion of balanced realization and balanced truncation model reduction to

obtain a low-order controller, in general, these topics can be seen in [12].
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Another limitation is the lack of global convergence, but the synthesis process

generally works well.

4.4 Comparison of synthesis techniques

Table 4.1 compares the main characteristics of the synthesis techniques

described in this chapter in terms of the uncertainty model adopted, the

computational implementation and the resulting reduced-order model. In

general, Km and K2 /Ka, can have unstructured uncertainty in some plants.
On the other hand, p-synthesis can have unstructured and structured

uncertainty.

The third column describes the implementation of each technique for large

power systems. It should be emphasized that the D-G-K iteration method is

impractical for large power systems, even with a single perturbation

parameter due to the number of generators in some networks. Finally, the

fourth column gives a short description of each necessary reduced-order model

for the nominal model and the obtained controller after synthesis process. Of

particular interest, there does not exist a reduced-order model in literature of

power systems, for the p-synthesis framework, which takes into account the

real perturbation. The D-K iteration has been implemented, but a reduced-

order model with uncertainty may reduce computational costs.

Table 4.1.

Comparison ofthe synthesis techniques

Technique

Jfoo based on

Riccati

equations

K__, based on LMI

technique

K2 /Woo based on

LMI technique

¡i synthesis based

on D-K iteration

H synthesis based

on D-G-K iteration

ft -synthesis based

on n -K iteration

Uncertainty model

Unstructured

uncertainty

Unstructured

uncertainty

Unstructured

uncertainty

Unstructured and

structured

uncertainty

Unstructured and

structured

uncertainty

Unstructured and

structured

Computational

implementation

For large power

systems

For large power

systems 1

For large power

systems

For large power

systems with one

parameter

Impractical for large

power systems

Practical for large

power systems

Reduced-order

model

For the obtained

controller

For the nominal

model and the

obtained controller

For the nominal

model and the

obtained controller

For the obtained

controller

For the obtained

controller

For the obtained

controller
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In summary, the above table open new topics that must be resolved for large

power systems with structured uncertainty. A model reduction with

structured uncertainty could provide a framework in large power systems to

use the D-G-K, the p-K. On the other hand, a model reduction also may be

interpreted as state order reduction for multi-dimensional systems.

4.5 Effect of communication time-delays

This section gives an introduction to investigate the feasibility of WADCs

under the communication time-delays. Long time-delay may be a detriment to

wide área damping stability, and such time-delays may degrade system

robustness [29].

Time-delays are caused by the following factors [30]:

• Transducer delays

• Window size of the discrete Fourier transform (DFT)

• Processing time of PMU

• Data size of the PMU output

• Multiplexing and transitions

• Communication link involved

• Data processing and synchronizations

The total time-delays for different Communications link, from the instant of

data measured by the PMUs to the instant that the control signáis arrive at

control locations, are shown in Table 4.2 [31].

Time-delays are usually modeled by a first-order Padé approximation [32].

This approximation gives good phase approximation, but the time response

presents a response at t = 0. A strictly proper second order approximation

presented a slightly better approximation for larger time-delays in tests

carried out in [33].

The transfer function is given by

e~sT m gd(s) = 6+^sT)2 (4.47)

where T is the time-delay.

From (4.47) the state-space representation is
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where xd(t), ud(t) and yd(t) represent the delay state vector, the input vector

and the output vector, respectively.

Fig 4.16 represents the effect ofthe time-delays for a WADC, where udl and

ydq
are the inputs and outputs of equation (4.47). Furthermore, Toutp

represents the time used for control signal calculations and transmission from

the controller to control sites, and Tinp the time used for measurement

processing, synchronization and transmission from PMUs to the centralized

controller.

Table 4.2.

Time-delays for different Communications links

Communication link Associated delay
(milliseconds)

Fiber-optic cables 1-10

Microwave links 100-150

Power line (PLC) 150-350

Telephone lines 200-300

Satellite link 10-100

Internet 100-1000

WADC

( \__ g-sT0ut1 g_S^í.7ipiy^C5/

•

•

•

•

•

•

g-sToutp e~sTinpq
ydv (•*■■>

ud. (s)

%0)

Fig 4.16. WADC with time-delays.
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4.6 A general method to design wide-area damping controllers

In this section a general method is proposed to design WADC devices and

hierarchical control configurations in large power systems based on analytical

experience in Table 4.1. In light ofthe above discussion, the K2 /Ka, technique

to design MIMO controllers has been adopted. The analysis method includes

five main steps:

Step-l) Small-signal analysis. In this step, modal analyses are conducted

to determine the frequencies and damping ratios of all low-frequency

electromechanical oscillations as well as to identify the critical inter-area

modes.

Step -2) Robust stability analysis using the complex and mixed SSV.

Obtain the framework to compute the SSV and check the robust stability

of power system [3-5]. In this step, it is possible to include into the real

parameter uncertainty a percent of complex uncertainty. In general, the

expressions of sections 2.8 and 2.9 are used to study robust stability.

Step-3) Input-output pairings for MIMO and hierarchical control

configurations. From small-signal stability analysis identify the most

suitable input-output signáis pairings using the method described in

section 3.10. It should be emphasized that it is necessary to compute the

closed loop interaction using the block GDRG. Then, a MIMO or SISO

control device must be designed to evalúate the closed-loop interaction.

Step-4) Design of a WADC or block decentralized controller. Design a

supplementary MIMO controller with the K2 /Ka, technique using the tie-

line currents, A/£_,*, and the speed deviations of generators, Aco£. Fig. 4.17

represents this idea for a multimachine power system. If it is necessary to

add another controller, then, absorb each designed control into the nominal

linear system to avoid re-retuning of controllers. In general, it is necessary

to return to step-l.

Step -5)Evalúate controlperformance under transient conditions. To verify

the effect of controllers on the power system, perform non-linear time

simulations under different scenarios.

4-24



Ks)

z2_

—

Z2m

AV,ref,,

W3n(s)

W2n(s)

Wln(s)

o—» Exc,,

W3m(s)>m

W2m(s)-m

Wlm(s)Lm

y..

y
-

r

AV, <*/m

O—» Exc,,

A/
¿n-Jn

AüJ,

A<_„

+ " +

Electric

power

system

•i/¡,_-;,.

K(s)

w

Fig. 4.17. General framework ofa supplementary MIMO controller using
line currents and speed deviations of generators.

4-25



4.7 Conclusions

In this chapter, a rigorously analytical approach to design WADCs with
hierarchical control configurations has been proposed. First, the theory of
synthesis of controllers to design robust controllers in power systems has been
reviewed. Generally, the p-K iteration and the D-K iteration can be viewed
hke a first synthesis approximation where parametric uncertainties have
been taken account to solve the problem of p-synthesis. Unfortunately, the
problem is very complex for large power systems due to the scaling matrices.
In addition, the size of power system lead to numerical limitations that are

necessary to research in a deeper way.

Nevertheless, even with these limitations it is possible to design robust
MIMO decentralized controllers using LMI techniques to damp
electromechanical oscillations. In general, the proposed method provides the
possibility to design different types of control configurations.
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Chapter 5

Applications
This chapter examines the application of the general method proposed in

chapter 4 to damp electromechanical oscillations: the robustness analysis and

the input-output pairings to design block decentralized and a hierarchical

control configurations. These original contributions for power systems are

evaluated in the Mexican interconnected system.

First, eigenanalys is performed to identify the critical system modes. Then,
the robust analysis framework is used to compute the SSV A block relative

gain approach is utiUzed to determine the best input-output pairing forMIMO

system control. LMI techniques are finaUy employed to design WADCs. In

general, this systematic method allows better coordination of control

capabilities. and the use of interaction measures allows to help in the choice

of control location and structure.

Two basic control structures are investigated and used to benchmark the

proposed control structure: a block decentralized control structure, and a

hierarchical control structure.

Application studies on a realistic test power system show that hierarchical

and block decentralized control structures using remote measurements from

phasor measurement units are very effective to damp both, local and inter-

area modes.

The effects of latency, uncertainty in system behavior, and interactions

among controllers are investigated in detail. Detailed nonlinear time

simulations are conducted to verify the efficiency of the proposed design

methodologies.
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5.1 Application to a large test system

A 5-area, 189-bus model ofthe Mexican interconnected system (MIS) is used

to illustrate the proposed general method. A simplified schematic diagram of

this system lllustrating the location of geographical áreas representing

regional systems and major interfaces of concern is shown in Fig. 5.1. System

studies are based on a system model that includes representations of the

northern, northeastern, western, central, southeastern and peninsular áreas

ofthe system.

The basic characteristics of this system are described in previous work [l,

2].

Fig. 5.1. Simplified geographical representation ofthe MIS showing the

location ofmajor generators and transmission paths.

5.2 Modeling considerations

The base case scenario for the MIS includes two Static VAR Compensators
(SVCs) at the 400 kV substations TMD and GUZ. These locations provide ideal

voltage regulation which are the primary function of the SVCs. For the
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purposes ofthis study, the loads are represented by constant impedance. Each

generator is represented by a fourth-order model equipped with a static

exciter. The linearized state-space model of the power system representation
has 249 states.

In order to compute the M(s) — A(s) framework described in Chapter 2 for

the evaluation ofthe robust stability without controllers, loads at buses GUZ-

400 and MTY- 115 are considered as uncertain parameters and varied from 10

MW and 300 MW to 400 MW and 600 MW, respectively. At this operating

change, the system is dominated by the plant modes.

As the operating conditions change, the state space matrices ofthe linearized

power system also change. The peak of p-1 provides assessment of the

máximum aUowable valué of aU varying parameters, which are

simultaneously increased form their mid-point valúes. As discussed before,
the robustness of a power system will not be robustly stable for a given

operating range if p > 1. From the robustness analysis described by p, two

control schemes are proposed and compared in this work to damp
electromechanical oscülations for the MIS.

Case study !■ Block decentralized control.

From the nominal model and its eigenvalue analysis, a pair of block

decentralized controllers is proposed as a first control altemative foUowing
the approach in Chapter 3. Then, the peak ofthe BRG is evaluated, which is

represented by ||[A.(s)]¡¡||oo> to describe interactions among control loops. If block

pairings have strong interaction in a specific range of frequency each control

cannot be designed independently. For this option it was enough to design two

WADCs based on LMI techniques without hierarchical configuration for

electromechanical modes. Finally, the performance of controllers were

evaluated by time domain simulation in order to verify the design
effectiveness in the non-linear system.

Case study2 Hierarchical control configuration.

This control configuration takes into account the same nominal model

described for the Case 1. This case implements a hierarchical control

configuration with a previous study of block pairings for non-square MIMO

controllers to damp inter-area modes. For local modes PSSs are designed.
Detaüed non-linear time simulations are computed to verify the design
effectiveness.

Finally, in order to compare Cases 1 and 2, small signal analyses, non-linear

time simulations, the SSV and latency analyses are computed to compare the

improved damping of modes with WADCs.
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5.3 Case 1: Design of block decentralized controllers

5.3.1 Small-signal analysis

Conventional eigenanalysis was first performed on the linear system

representation in order to precisely identify the nature of oscillatory behavior.

Once the estimated stability was computed, uncertainty analysis was used to

estimate robust stability as well as to design system controllers.

The 5-area test system exhibits three major inter-area modes. In addition,

three local modes of interest to damp with local controUers, but for this case

the main purpose will be to damp inter-area modes. Table 5.1 summarizes the

main characteristics of these modes. Based on system-wide information, the

use ofWADCs at critical machines is investigated.

Table 5.1.

Slowest inter-area electromechanicalmodes oftheMIS.

Base case with no controllers

Mode Eigenvalue
Freq.
(Hz)

Damp.
Factor

Swing pattern

Inter-area

mode 1
-.0769 ±j2.6975 0.42 0.028

Northeastern system vs

southeastern system

Inter-area

mode 2
-.1916 +J3.6439 0.58 0.052

Northern system vs.

Northeastern system

Inter-area

mode 3
-.1338 +J4.8535 0.77 0.027

Western system and

southeastern system

Local

mode 4
-.1926 +J6.4254 1.02 0.030 Southeastern system

Local

mode 5
-.2636 ±j7.0585 1.12 0.037 Southeastern system

Local

mode 6
-.2536 ±j7.7506 1.23 0.032 Northeastern system

5.3.2 Robust stability analysis using the complex and mixed SSV

As indicated previously, a case with two parameter variation, in which load

at buses GUZ-400 [0.1-4 p. u.], and MTY-115 [3-6 p. u.] are allowed to vary

simultaneously is chosen to illustrate the robust design techniques. This case

is chosen to illustrate worst-case parameter combinations or uncertainties

occurring simultaneously at different locations in the system.

The upper bound of the complex and mixed SSV are plotted in Fig. 5.2 as a

function of frequency, for the frequency range associated with the inter-area

modes of concern. The lower bound of the mixed SSV is zero, which is

associated with puré real uncertainties. Note that the proximity ofthe lower

bound and upper bound of the complex SSV implies that the calculation of p
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is very accurate in this case. In addition, the peaks for the complex and mixed
case are 2.7766 at frequency 0.4341 and 1.3813 at frequency 0.4501,

respectively. This means that there are two types of perturbation matrices A

such that HAHoo = ——— for the complex case and ||A||oo = ——— for the real puré
2.7766 1.3813

case, which can be constructed to destabilize the system, due to fact that p >

1. Robust stability analysis results three dominant modes of oscillation at 0.42

Hz, 0.58 Hz, 0.77 Hz, and 1.23 Hz associated with major inter-area and local

modes.

Of note, simulation results in Fig. 5.2 shows that the system does not have

robust stability with complex (dotted line) and mixed SSV (solid line). The

dimensions ofthe perturbations matrices are:

A := {diag[¿»ÍI417x417,52cI278x278]: 8[, 5f 6 C}

A := {diag[5ÍI417x417,5JI278><278]: S{, 52r G R)

for the complex and real case, respectively. In addition, Fig. 5.3 represents the

LFT form of x(t) = A[_Y|x(t).

Complex SSV

Mixed SSV

Frequency (Hz)

Fig. 5.2. Complex and mixed SSV ofthe MIS without controllers.

Figure 5.4 shows the results ofthe upper bound and the lower bound ofthe

mixed SSV without and with 1% and 4% of complex uncertainty; the
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differences are imperceptible for the upper bounds with and without 1%.

Nevertheless, the lower bounds of the mixed SSV with a percent of complex

uncertainty (dotted line) are not zero.

From Fig. 5.4 the lower bound and the upper bound are cióse with 4%

percent of complex uncertainty near the inter-area and local mode at 0.4501

Hz and 1.3504 Hz, respectively, which means that the accuracy is good.

"A

Fig. 5.3. LFT form of x(t) = A[A]x(t).

The dimensión ofthe perturbations matrix for the mixed case with 1% and

4% of complex uncertainty is given by

A := {díag^ I417x417, 02 1278X278* "1 U17X417* '■•'2 **278x278]: °\ ■ S2 EM.Ó"--., S2 6 CJ

With this representation ofthe perturbation, the differential equation x(t) =

Ax(t) and the uncertainty, A, can be represented as in Fig. 5.5. Finally, the

peak of the p-plot over oc2 from oc= 0 % to oc= 4 %, which represents the

percent of complex uncertainty, is listed in Table 5.2. The upper bound is

always larger than 1. However, for the particular cases oc2= 1 % and oc2=

1.25 % (oc= 10 % and oc= 11.18 %) the lower bound suffer of a discontinuity
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near inter-area mode at 0.4501 Hz. In general the p lower bound test with a

percent complex uncertainty is a good approximation to approximate the SSV.

To summarize, the system without controllers does not have robust stability
for the uncertainty range considered in the analysis using the complex and

mixed SSV. Controllers are then designed to meet robust stability at each of

the operating scenarios.

Mixed SSV (4%)
Mixed SSV (1%)

Mixed SSV

Frequency (Hz)

Fig. 5.4. Mixed SSV without and with 1% and 4% of complex uncertainty.

Table 5.2.

MixedSSVwith a percent ofcom_plex uncertaint}
oc2 Upper bound Lower bound

0.0000% 1.3813 0.0000

0.0625% 1.3831 1.2246

0.2500 % 1.3870 1.3147

0.5600 % 1.3917 1.3305

0. 7500 % 1.3950 1.3430

1.0000 % 1.3966 0.3616

1.2500 % 1.4000 0.4289

1.5600 % 1.4068 1.3546

2.2500 % 1.4167 1.3663

3.0600% 1.4283 1.3795

4.0000 % 1.4415 1.3942
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5.3.3 Controllability and observability analysis

Table 5.3 shows selected control sites and input signáis to the WADCs. The

analysis of controllability and observability measures in Table 5.2 indicates

that machines in the southwestern (MPU) and northern (MTY, HUÍ,CRB)

systems are expected to enhance damping of both, inter-area modes 1 and 2

at 0.42 Hz and 0.58 Hz, respectively.

Inter-area mode 2 is of little interest here because it has a low joint
controllability/observability measure. Machines in the southwestern and
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western systems, on the other hand, are the most efficient machines for

damping inter-area mode 3 at 0.77 Hz.

From this analysis, seven sets of input-output pairings are proposed to

allocate two MIMO WADCs. For this particular case, each MIMO control only
has two-input two-output channels from PMUs to generators.

Table 5.3.

Geometricmeasures ofcontrollability and observability

Mode
Máximum

mci

Máximum

■""oí

Inter-area

mode 1

GenMPi/{0.1667E-4),
GenMTYi (0.2735E-4),
GenMT\4 (0.4035E-4),

Gten/._/_(0.2026E-4),
Genera (0.2996E-4)

Iguz4-alt4 (0. 1333), lacm-mu (0.1329),
Ihunlaj4 (0. 1276), Ilaj4-guz4 (0.1319),

Iprd4-alt4 (0.0753)

Inter-area

mode 2

G-ensrc.(0.2973E-4),
GenMTY, (0.2785E-4),

Gtefl_mv(0.4741E-4),

Gtenv.í/.(0.2734E-4),
Gtencw_»(0.4139E-4)

IGUZ4ALT4 (0.1152), IcUZ4HUI4 (0.1165),
IHUI4LAJ4 (0.1099), ¡LAJ4GUZ4 (0.1138),
Ires2-arc2 (0.1207), Iarcinuli (0.1149),
Imtyi3-fali (0.1244). Imty¡3-mtyii (0.1244),
¡PRD4-ALT4 (0.0680), IARC2ARC1 (0.1191)

Inter-area

Mode 3

Genc/_.(0.1416E-4),

G-eflA*7Y/(0.3628E-4),

G*e___;¿A-'(0.2948E-4),

Gfefl_.¿/-(0.3579E-4),

fiten_í__v(0.3268E-4),
GenMAD (0.2437E-4)

Impu4-mndc (0.0647), Imndcmnd4 (0.0625),
Ichuju.4 (0.0786), Ijuictmd4 (0.0787),
Ijuic-jun (0.0787), Itmd4-pbdcX0.0770),
Ipbdcpbd4 (0.0755), Itmd4-tecci (0.0774),
Itbc4-tecci (0.0755), Itec4 tecc2 (0.0788),
Itecc2-top4 (0.0788), Ipbd4-tex2 (0.0767),

ISNB4TOP4 (0.0772)

Local
GencARi (0.4869E-4)

Imez2-zap2 (0. 1142), Imez2-car2 (0. 1053),
IZAP2ARC1 (0.1094), ICAR2CAR1 (0.1057)

*>cari (0.0030)

Local
Qenuavt (0.6709E-4)

ITEM4-TMD2 (0. 1010)

Mode 5
•i_*.cl*i(0.0014)

Local
Ge__*/_f/(l.l230E-4)

Iaeri-ribi (0.1118), Iaer2-rib2 (0. 1055),
IHUI4AER2 (0.1311)

Mode 6

<úRIB_ (0.0032)

5.3.4 BRG analysis for the proposed candidate sets

Fig. 5.6 shows the largest singular valúes ofthe BRG for the sets described

in Table 5.4. In each case, the horizontal axis represents the frequency given
in Hz and the vertical axis is the magnitude of the largest singular valúes of

BRG described by a[X]u.
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Thus, for instance, the set 1 represents the inputs-outputs from Iguz4-alt4'

Ilaj4-guz4 to GenMTY4'GencRB and the inputs-outputs from Impu-mndc-Imndc-
mnd2 to Gencm-GenMPÜr the corresponding BRG is described by ó\V__.\ and

¿r[_\.]22, respectively. Examination of these results shows that the sets 1 and 2

are the most suitable block input-output pairings because they have strong

interaction near inter-area modes which is located at 42 Hz.

Sets 3 to 7, on the other hand, have low interactions but these input-output

pairings can have a degradation in the performance which is an undesirable

characteristic when damping inter-area oscillations, but it is necessary to

study the closed-loop interaction without integral feedback. Furthermore,
local modes present a strong interaction of the described set 1 by the BRG

analysis,' these frequency characteristics must be considered if local modes are

being modified by means of supplementary local controllers.

Setl

«-Mu

a[X]22

0 0.2 04 06 08 1 12 14 16

0 02 0 4 06 0.9 1 12 14 16 0 02 04 06 08 1 12

Set 6

Fig. 5.6. Frequency response ofthe BRG for the candidate sets.
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Table 5.4.

Peak ofthe BRGfor the candidate sets ofWADCs

Set No.
Output signáis from WADC

tou
Input signáis toWADCs P(*)]«IL

Setl
Genwm-GencRB IGUZ4ALT4

'

ILAJ4-QVZ4 13.22

GencHrGenMPu IMPU4-MNDC - IMNDCMND4 2.64

Set 2
Genmr4 -GencRB IGUZ4ALT4 'ILAJ4-GUZ4 59.19

Gencm-GensLP IMPU4MNDC - ITOP4SNB4 9.67

Set 3
GenMTYi -GenMTY4 IGUZ4ALT4 - IGUZ4-HUN 1.86

GencHrGemíPu ICHI4JU14 - IJUITMD4 2.04

Set 4
Gemmi -Gemm-4 IPRD4ALT4 - IGUZ4ALT4 1.94

GencHrGenMPu IMPU4-MNDC - IMNDCMND4 2.65

Set 5
GenMzo -GenMTY4 IPRD4ALT4 -IGUZ4ALT4 1.97

GencHrGenMPu IMPU4-MNDC - IMNDCMND4 2.65

Set 6
GenMZD- GencRB IGUZ4ALT4 - ILGV2LAJ4 5.60

GencHi-GenMPu IMPU4MNDC - IMNDCMND4 2.64

Set 7
Gensuxr GemtzN IGUZ4-ALT4 — ILGV2LAJ4 10.07

Gencm -Gennipu IMPU4MNDC - IMNDCMND4 3.21

5.3.5 Design of block decentralized controllers

The weighting functions used in the design ofthe WADCs ofthe sets 1 and

2, are given in Table 5.5. As discussed in the introductory section of the

chapter, the test system has 249 states originally. To apply the synthesis

process the system is reduced first to a 12-order model by the method of

balanced reduction.

Following the optimization and synthesis procedure, the order of the first

controller was reduced using a balanced realization and was absorbed in the

transfer function of the full-order nominal model. A similar process was

adopted for the design ofthe second controller for the set 1. Column 5 in Table

5.5 shows the size of the reduced-order model (in parenthesis) for each

synthesis process and the size of each reduced-order controller.

Table 5.5.

Weighting functions for the sets 1 and2 ofWADCs

Set No. W_(s) W2(s) W3(s)
Reduced-order

model

Setl (s + 20)/(. ls + 100) 1E-2 100/(s + 10) (12)9

1 10 ll/(s + 10) (17)7

Set 2 (s + 20)/(. ls + 100) 1E-2 100/(s + 10) (12)9

1 10 ll/(s + 10) (18)8
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5.3.6 Assess control loop interaction using the magnitude ofthe block

GDRG for the designed damping controllers

Fig 5.7 shows the largest singular valúes of the block GDRG for the sets 1

and 2 where the differences for inter-area modes are imperceptible. Table 5.6

identifies the set 1 as the most suitable option to damp the inter-area

oscillations with good performance. Nevertheless note that the peaks, which

are represented by ÍÁ(s)l I and [^(s)],, are near to local mode
Jll II oo II

L J¿¿ II 00

frequencies. This condition must be considered in the local controllers design.

Table 5.6.

Peak ofthe block GDRGfor the candidate sets ofWADCs

Set No.
Output signáis from

WADCtou
Input signáis toWADC [*(*)]«

00

Setl GenMTi'4 -GencRB ¡GUZ4-ALT4
"

ILAJ4-GUZ4 271.83

GencHrGenMPu IMPU4-MNDC — ¡MNDC-MND4 9.97

Set 2 Geninm-GencRB IGUZ4ALT4
"

ILAJ4-GUZ4 270.68

Gencm
-

GensLP IMPU4-MNDC — IT0P4-SNB4 9.88

CQ

"D 30

01

"§ 20

J_J
'c
m__ 10

Frequency response zoom in

Setla[I]u

Setier[A]__

Set2¿f[A]n
Set 2 <?[*]„

0.6 0 8

Frequency (Hz)

Fig. 5.7. Frequency response ofthe block GDRG for the sets 1 and 2.
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5.3.7 Control performance under transient conditions

Detailed transient stability studies were performed to verify and compare

the effect of WADCs on system dynamic performance under large
disturbances. Cases of interest included three-phase faults applied at buses

CHI4 ana LAJ4 in the southeastern and northwestern systems, respectively.

These contingency scenarios are found to stimulate major inter-area modes.

Fig 5.8 shows the system response following a three-phase stub fault with and

without WADCs for each set on bus CHI4. Note that the set 2 is the most

suitable option for this type of supplementary controllers since the damping
characteristic is notorious while the set 1 presents a performance degradation
in terms ofdamping the power oscillation. Furthermore, for purposes ofclarity

Fig. 5.9 represents the control configuration for the set 1.

Simüar conclusions can be drawn from the analysis of Fig. 5.10. Both options

show a good damping characteristic with the set 1 being a sUghtly better

option. In general, the sets 1 and 2 demónstrate similar performance under

both, steady-state and transient conditions.

Set 2
Without controllers

With set 1

With set 2

time (s)

Fig. 5.8. Bus voltage magnitude at 400-kV bus CHI4 for the sets 1 and 2.
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Fig. 5.10. Bus voltage magnitude at 400-kV bus LAJ4 for the sets 1 and 2.
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Table 5.7 compares the electromechanical modes of the system with and

without WADCs. Aminor adverse interaction with mode 2 can be observed for

the set 2 but this is of little practical importance. On the other hand; the

evaluation of the mixed SSV with and without controllers is shown in Fig.

5.11. In general, in terms ofthe robustness, the best option is given by the set

2, but it is possible to choose the set 1.

Table 5. 7.

Comparison ofsystem performance with and without control action

Mode Control option Eigenvalue Freq. (Hz) Damp. Factor

Inter-area

Mode 1

Without controllers -.0769±j2.6975 0.42 0.028

With set 1 -.2861±j2.4756 0.39 0.114

With set 2 -.2944±j2.5822 0.41 0.113

Inter-area

Mode 2

Without controllers -.1916±j3.6439 0.58 0.052

With set 1 -.2161±j3.6250 0.57 0.059

With set 2 -.1918+J3.6484 0.58 0.052

Without controllers -.1338±j4.8535 0.77 0.027
Inter-area

Mode 3
With set 1 -.5429+J4.7536 0.75 0.113

With set 2 -.5630±j4.4320 0.70 0.126

12

1

</>

C

3

O 08
JQ

*_.

0)
Q.

O- 06

04

02

Without controllers

With set 1

With set 2

0.2 04 1.206 08 1

Frequency (Hz)

Fig. 5.11. Mixed SSV without and with controllers.
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5.4 Design of a hierarchical control configuration (Case 2)

In order to make an effective comparison between the configuration of the

last section and a hierarchical control configuration using the BRG analysis
in this section, the following procedure is followed. Two WADCs are designed
for the MIS using the same nominal model described in last section, then the

modal and SSV analysis are omitted, but the first controller configuration

WADCi has three input signáis and two output signáis.

The second controller configuration WADC2 has only two input signáis and

two output signáis.

5.4.2 BRG analysis for the proposed candidate sets

The candidate sets for the selection of input-output signáis using the BRG

analysis is shown in Table 5.8. As mentioned before, the magnitude of line

currents are chosen as the input signáis to the WADC since enables

substantial damping for all operating conditions. Furthermore, Table 5.8 list

the peak ofthe BRG in the fourth column. For example, it can be seen that for

the first WADC of the set 1, the current magnitude in lines Itop4-snb4, Iguz4-

alt4 and Ilaj4-guz4 are the most suitable signáis to damp electromechanical

oscillations with strong interaction. For the second WADC of the set 1, the

current magnitudes are given by Impu-mnd and Imnd-mnd4- In general, from

Table 5.8 the most suitable options are given by the sets 1 and 2.

Table 5.8.

Peak ofthe BRGfor the case 2 ofthe candidate sets ofWADCs

Set No.
Output signáis from

WADCtou Input signáis toWADCs ll[*(s)]tíll.

Setl
GenjwTY4 -GencRB ITOP4-SNB4

"

¡GUZ4-ALT4
"

ILAJ4-GUZ 6.53

GencHrGenMPu IMPU4-MNDC — IMNDC-MND4 3.26

Set 2
GenMTY4 -GencRB ¡RES2-ARC2 'IGUZ4-ALT4

"

ILAJ4-GUZ 6.06

Gencm'GensLP IMPU4-MNDC - ITOP4SNB4 9.45

Set 3
GenMTYi -GenMTY4 ¡RES2ARC2

'

IGUZ4ALT4 — IGUZ4-HUI4 1.79

Gencm-GenMPu ICH14-JU14 - IjUlC-TMD4 2.04

Set 4
Gencm-GentAPU IMPU4-MNDC

'

IMNDC-MND4 'ICHI4JUI4 2.67

Genium -GenixiTY-i IPRD4-ALT4 — IGUZ4-ALT4 1.93

Set 5
GencHrGenMPu ¡MPU4-MNDC

'

IMNDC-MND4 'IjUIC-TMDJ 2.46

GenMZD -GenixíTYj IpRD4ALT4 — IGUZ4-ALT4 1.93

Set 6
GenMZD- GencRB IRES2ARC2

'

IGUZ4-ALT4 - ILGV2-LAJ4 4.94

GencwGenMPu ¡MPU4-MNDC — IMNDC-MND4 2.99

Set 7
GensLM- GenixiZN ITOP4-SNB4 - IGUZ4-ALT4 - ILGV2-LAJ4 6.38

GencHrGenMPu IMPU4-MNDC - IMNDC-MND4 3.06

Figure 5.12 shows the frequency response ofthe BRG analysis for system

where the resonance peaks confirm that the best options are obtained for the
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sets 1 and 2. Nevertheless, the set 7 is a more suitable option for local modes

due to the fact the resonances peak ofthe BRG is near local frequencies.

Setl

0 02 04 06 08 1 12 14 16 0 02 04 06 OS 1 12 14 16

Frequencv(Hz) Frequency (Hz)

Fig. 5.12. BRG for the case 2 ofthe candidate sets.

5.4.2 Design of block decentralized controllers and evaluation ofthe

performance under transient conditions

The weighting functions of block decentralized controllers are described in

Table 5.9. The MIMO controllers can be approximated by a lower order state

space representation given in the fifth column of Table 5.9 where it is shown

the size ofthe reduced-order model in parenthesis.

Fig 5.13 shows the largest singular valúes ofthe block GDRG for the sets 1

and 2 ofthe case 2, where the differences for inter-area modes are clear. The

set 1 is the most suitable option to damp the inter-area oscillations with good

performance due to the high interactions among control loops.
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Table 5.9.

Weighting functions for the case 2 ofthe sets 1 and2

Set No. WiCs) W2(s) W3(s)
JReduced-order

model

Setl (s + 20)/(. ls + 100) 1E-2 100/(s + 10) (14) 10

1 10 ll/(s+ 10) (16)9

Set 2 (s + 20)/(. ls + 100) 1E-1 100/(s + 10) (15)8

3 5.3 . 1/0 + 10) (19)7

Frequency (Hz)

Fig. 5.13. Frequency response ofthe block GDRG for the sets 1 and 2 ofthe

case 2.

At this point, itmust be noticed that the developed control configuration only
has WADCs to damp inter-area oscillations. In general, Table 5.10 shows the

modes oftheMIS with controllers and without non-square WADCs for the sets

1 and 2, where the best option is the set 1. Note that for mode 2, the set 2

shows an undesirable damping. This means that the interaction of frequency
domain affects both the stability and the damping performance ofthe set 2. In

general, the most suitable input-output signáis is given by the set 1. Moreover,

simulations are carried out to evalúate the performance of the designed
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controller corresponding to some fault scenarios in the MIS. Figure 5.14 and

5.15 show the transient conditions of the sets 1 and 2, where the set 2 does

not have a good damping, as was observed from linear analysis.

Table 5.10.

Comparison ofsystem performance with and without WADCs

Mode Control option Eigenvalue Freq. (Hz) Damp. factor

Inter- Without controllers -.0769±j2.6975 0.42 0.028

area With set 1

With set 2

-.2985±j2.4846

-.2957±j2.6608

0.39

0.42

0.119

Mode 1 0.110

Inter- Without controllers .1916±j3.6439 0.58 0.052

area With set 1 -.2716±j3.6645 0.58

0.58

0.073

Mode 2 With set 2 .1644+J3.6759 0.044

Inter- Without controllers .1338±j4.8535 0.77 0.027

area With set 1 -.5622±j4.6880 0.74 0.119

Mode 3 With set 2 -.2921±j4.9864 0.79 0.058

Local

Mode 4

Without controllers .1926±j6.4254 1.02 0.030

With set 1 -.2998+J6.8417 1.08 0.043

With set 2 .3115±j6.9678 1.10 0.044

Local
Without controllers -.2636+J7.0585 1.12 0.037

With set 1 .3767±j7.7809 1.23 0.048

With set 2 -.4278+J7.5332 1.19 0.056

Local

Mode 6

Without controllers -.2536±j7.7506 1.23 0.032

With set 1 -.2561±j7.7436 1.23 0.033

With set 2 *.3738±j7.5947 1.20 0.049

Without controllers

With set 1

With set 2 V

■ft**** ^'"h^ * m*

Fig.

time (s)

5.14. Bus voltage magnitude at 400-kV bus CHI4íor the non-square

MIMO WADCs ofthe sets 1 and 2.
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Fig. 5.15. Bus voltage magnitude at 400-kV bus LAJ4 for the non-square

MIMO WADCs of the sets 1 and 2.

Adding damping to local modes can be achieved by means of placing PSSs to

increase power system performance. Incorporation of this type of controllers

leads to a hierarchical control configuration. Table 11 describes input-output

signáis for PSSs and Fig. 5.16 shows the hierarchical configuration. Details of

the coordination of local PSSs are omitted but can be find in [10- ll].

As a comparison, Fig. 5.17 and 5.18 show the test cases for the sets 1 and 2

with and without hierarchical control configuration. From this case, it is

shown that the set 1 is the best control hierarchical configuration. The same

results can be confirmed in Table 5.12 where the eigenvalue analysis of the

system was carried out to verify the stability of the MIS. Furthermore, the

mixed SSV, described by Fig. 5.19, confirms the robust stability ofthe system.

Table 5.11.

Input-output signáis for PSSs ofsets 1 and2

Set No. Input-output signáis

o)LGV
•

GenLGv

ü)slp
-

GensLP

Setl (úrib
-

GenRiB

mcam
'

GencARi

(údi.0
'

GenDBO

Set 2

cúSLP
-

GensLP

^MTti
' GenMTY4

(iirRB
-

GencRB
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Table 5.12.

Comparison ofsystem performance with andwithout WADCs andPSSs

Mode Control option Eigenvalue Freq. 0Hz)
Damp.
factor

Inter-

area

Without controllers

With set 1

With set 2

-.0769±j2.6975

:.3575±j2.4627"
.3753±j2.6487

0.42

0.39

0.028

0.143

Mode 1 0.42 0.140

Inter- Without controllers .1916±j3.6439 0.58 0.052

area With set 1 .2818±j3.6498 0.58 0.077

Mode 2 With set 2 -.2343±j3.660 0.58 0.063

Inter- Without controllers .1338±j4.8535 0.77 0.027

area With set 1 .7533±j4.8719 0.77 0.152

Mode 3 With set 2 .3033±j4.9912 0.79 0.060

Without controllers -.1926±j6.4254 1.02 0.030

Local With set 1 -1.3061±j6.9586 1.10 0.184

Mode 4 With set 2 -.2773±j6.2376 0.99 0.044

Without controllers -.2636+J7.0585 1.12 0.037

Local With set 1 -.7520±j8.6882 1.38 0.086

Mode 5 With set 2 -.4054±j7.7643 1.23 0.052

Without controllers -.2536±j7.7506 1.23 0.032

Local With set 1 -.9544±j8.4562 1.34 0.112

Mode 6 With set 2 -.3901±j7.6033 1.21 0.051

•'rcm 1+Cl"

-Ó
.
Ooncm h—

I 1 PSSg., (■■—
•

Power

system

'.\rx-DC.v.\T>4

Fig. 5.16. Hierarchical control configuration for the set 1.
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Fig 5.17. Bus voltage magnitude at 400-kV bus CHI4iox the non-square

MIMO WADCs and PSSs ofthe sets 1 and 2.
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Fig 5.18. Bus voltage magnitude at 400-kV bus Z_4t/4for the non-square

MIMO WADCs and PSSs ofthe sets 1 and 2.
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Fig. 5.19. Mixed SSV without and with controllers.

5.5 Comparison of the block decentralized configuration versus the

hierarchical control configuration

As a general comparison, non-linear simulations are performed, to test the

efficacy of the designed control configurations: block decentralized and

hierarchical configuration. Fig. 5.20 and 5.21 show the results for the two

proposed control configurations, it is clear that the MIS under the hierarchical

configuration presents most satisfactory damping. In general, these non-

linear simulations provide clear evidence that the WADCs obtained using LMI

techniques provides excellent damping.

To further validate the robust stability of the designed control

configurations, the upper bound of the mixed SSV is computed on the linear

system. The dimensions of the perturbations matrices are given by •=

{diag[Sil417x417,S_¡l278x278]:Sl, S2 £ R). Fig. 5.22 shows the upper bounds of

the p analysis for the MIS under three scenarios: the dotted line belongs to

case without controllers and the thin line belongs to the set 1 case 1 and the

thick line to the hierarchical configuration. It is clear that the system achieves

robust stability with controllers and the results are consistent with the non-

linear simulations.
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In general, it can be concluded that the proposed configurations can provide
sufficient damping to the MIS and has satisfactory robustness against
different operations conditions. Finally, these results confirm the vaUdation

of the systematic methodology.

Without controllers

Set 1 without PSSs

Set 1 with PSSs

time (s)

Fig 5.20. Bus voltage magnitude at 400-kV bus CHI4íox the block

decentralized and hierarchical configuration ofthe set 1.
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time (s)

Fig 5.21. Bus voltage magnitude at 400-kV bus LAJ4 for the block

decentralized and hierarchical configuration ofthe set 1.
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Fig 5.22. Mixed SSV for the block decentralized and hierarchical control

configuration ofthe set 1.

5.6 Effect of communication time-delays

To evalúate the performance ofthe designed controUers with time-delays in

different fault scenarios, non-Unear time simulations are computed. Three

types of faults are simulated in the MIS. The responses under time-delays, 30,

50 and 100 ms, are given in Fig. 5.23, 5.24 and 5.25. It can be seen that the

damping effect of hierarchical configuration does not achieve a satisfactory

performance in lOOms.

In general, the degradation of inter-area modes is sever. From these results,

with the increased dependence on controls to maintain power system stability

and security, significant new requirements are necessary on communication

networks in terms of service quaüty and reUabüity for the MIS.
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Fig 5.23. Bus voltage magnitude at 400-kV bus CHI4 for the hierarchical

configuration ofthe set 1 with different time-delays.

Time-delay = 0 ms

Time-delay = 30 ms

Time-delay = 50 ms

Time-delay = 100 ms

Fig 5.24. Bus voltage magnitude at 400-kV bus LAJ4ior the hierarchical

configuration ofthe set 1 with different time-delays.
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Fig 5.25. Bus voltage magnitude at 400-kV bus LGV4 ior the hierarchical

configuration ofthe set 1 with different time-delays.

5.7 Conclusions

In this chapter, a general method to find suitable input-output variable

pairings for block decentralized controllers of large interconnected power

systems based on the BRG and the block GDRG methods is proposed. The

research extends existing theory to the case of WADCs with MIMO

characteristics. In addition, the incorporation of WADCs or block

decentralized controllers offers better coordination among controllers and

performance under transient conditions. Simulation results show that the

proposed technique yields in better small and large signal performance than

conventional controllers and suggests the importance of investigating control

interactions in the design ofWADC controllers.

The results are promising but they also show that the use of linear,

continuous methods to design a controller, although very powerful, requires

considerable tuning, testing and further development in the nonlinear,

discontinuous real world. Furthermore, in order to transmit wide-area signáis

for use in controls, fast and reliable communication systems are required.
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Chapter 6

General Conclusions and

Suggestions

This chapter gives the main conclusions with their respective original
contributions. Finally, suggestions are given for future researches.

6.1 General conclusions

Very often, real-Ufe systems are subject to parametric uncertainties by
unknown parameters and measurement noise. At present, a valuable topic is
the implementation of efficiently computational algorithms for large power

systems to describe the structured uncertainty. Investigations of power

system dynamic behavior typically involve numerous uncertain parameters
from a vast number of generators and FACTS devices. On the other hand, the

performance of a power system is described by their slow inter-area

electromechanical eigenvalues. Then, the design of a controller to increase

system damping is fundamental for a good performance.

In the last decade, phasor measurement unit (PMU) devices have offered

wide-area measurement system (WAMS) by which large power systems can

be stabilized by block decentralized controllers, quasi-decentralized
controllers and centralized controllers. This new type of technology captures
the dynamic information in near real time and resolution. Then, WAMS gives
the opportunity to design múltiple -input multiple-output (MIMO) WADCs to

damp electromechanical oscillations for a good operation of power systems. In

addition to the múltiple measurement signáis from a WAMS, there is usually
a large amount of local available signáis from generators to damp local modes.
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In the literature classic control methods has been proved for small power

systems to design PSSs: the conventional root-locus and multi-variable root

locus. However, the robustness is not directly considered in the design

approach and, some occasions, the system might not be operating under a

nominal point. In real power systems the problem is more complex due to size

of the network.

To address the above problem in this research, a design procedure based on

the structural singular valué (SSV), the block relative gain (BRG)

methodology and the joint controllability-observability to choose the most

suitable input-output parings in MIMO wide-area damping controllers

(WADCs) has been proposed. To design the block decentralized controllers the

linear matrix inequality (LMI) techniques for block decentralized controllers

and hierarchical control configurations have been applied. It should be

pointed out that the implementation of the designed controllers in this

document based on a balanced reduced-order model has been implemented.

On the other hand, the extra information provided by the structured

uncertainty has established a clear framework with the SSV technique which

has included a percent of complex uncertainty into the parameters.

Nevertheless, the computational burden has been increased due to high
dimensional of block matrices, but the results are promising for futures

researches.

A similar argument holds for the BRG which has given a new general

perspective for interacting control loops in MIMO controls. In addition, the

BRG technique generalizes the described concept by the classic definition of

the RGA. The developed theory is then used to define the block GDRG which

opens new concepts in the theory of interaction measures. Finally, non-linear

simulation results confirm the efficacy of the proposed systematic method.

The following advantages and contributions ofthis dissertation are:

• A systematic method is derived to design MIMO WADCs in power

systems to damp electromechanical modes which take into account the

most sensitivity global signáis.

• The implementation and use ofthe BRG to describe interactions among

MIMO controllers for large power systems. The BRG generalizes the

concept ofthe relative gain array (RGA) analysis.

• A general framework based on the SSV is developed to evalúate the

robust stability in power systems, which includes a percent of complex

uncertainty to avoid the discontinuity of the lower bound of the mixed

SSV.
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A sequential method is proposed which takes into account hierarchical

and block decentralized configurations.

A rigorous review ofthe theory of interaction measures to describe new

ideas in power systems.

6.2 Suggestions for future works

This desertion has considered a systematic method to design WADCs taking
into account MIMO interactions though the BRG analysis. In addition, the

use of the complex and mixed SSV has been used to evalúate the robust

stabüity of large power systems. Nevertheless, the next aspects require
further investigation:

• A method which takes into account the time-delays for the MIMO

signáis in WADCs to explore the interactions of control loops.

• A modal analysis method to select the most suitable múltiple input-

output signáis to design WADCs.

• There are instances where it is appropriate to represent parameter

uncertainties into a sector of the Nyquist plot. This sector can be

described by 29 < n. This means that the Nyquist plot can lie in a sector

ofthe unit-disk and this idea would result in significant computational

savings in comparison with the direct approach described by the

standard SSV

• It is a necessity to explore conditions to characterize phase uncertainty

in multivariable systems, but also to provide a practical computational

method for large power systems. In general, a method that uses

uncertainty phase information in robustness analysis, such as bounds

on the phase of the uncertain dynamics blocks, and a criterion for

stabüity analysis of time-delay systems

• Development of efficient algorithms for the upper bound and the lower

bound of the skew SSV in large power systems. This problem in large

networks can preset due to the fact that some problems are re-scaled in

the analysis of performance: The physical uncertainties have a fixed

range and the performance block is allowed to vary to determine the

point where the system could become unstable. Finally, the

incorporation of phase uncertainty into the algorithm of the skew SSV

to describe the communication time-delay.
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• Development of an efficient algorithm to compute a model reduction

method for uncertain systems. This model reduction could provide a

framework in large power systems to implement the D-G-K, the p-K
and the standard D-K iteration. On the other hand, model reduction

also may interpreted as state order reduction for multi-dimensional

systems.

• A method to compute solutions ofthe structured "Ko_ -problem with time

delays.

• Efficient computation of a general framework for the standard D-K

iteration including the structured K_,_ -problem for large power systems.
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