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Resumen

Las características modales electromecánicas de los sistemas de potencia pro

porcionan información crítica para estimar la confiabilidad en la operación y la

seguridad del sistema. El monitoreo continuo de la evolución temporal de la

respuesta del sistema permite detectar condiciones que vulneran la estabilidad

dinámica de la red, así como las etapas críticas para su análisis y control. La ex

tracción de estas propiedades a partir de mediciones ambiente, es un problema

difícil que necesita mayor investigación.

En esta tesis, se propone un método novedoso basado en el análisis lineal

estocástico, que extiende los métodos existentes de análisis lineal a un ambiente

probabilístico. El método propuesto es particularmente útil para la estimación

de las características modales a partir de la respuesta del sistema a la excitación

aleatoria de las cargas, proporcionando observabilidad completa del sistema. A

si mismo, el marco teórico propuesto permite complementar la información

proporcionada por las técnicas de estimación basadas en mediciones, así como

la ubicación óptima de sensores para el monitoreo de las variables que contienen

mayor cantidad de información.

En esta tesis, se desarrolla primero, un modelo lineal del sistema de po

tencia que incorpora explícitamente el comportamiento aleatorio de la carga. A

continuación, se proponen, técnicas para determinar la distribución de la res

puesta del sistema.

A partir de este modelo se identifican los modos y las excitaciones que

contribuyen de manera dominante en el comportamiento dinámico del sistema.

Se identifica, asimismo, la distribución espacial de los modos.

La metodología propuesta se aplica a modelos realistas de sistemas de

potencia y los resultados obtenidos se comparan con otros métodos convencio

nales de análisis.



Abstract

Power system's modal electromechanical properties provide critical information

for assessing operational reliability and security of interconnected power grids. By

tracking the evolving dynamics of the underlying modal properties, the onset of

system instability can be determined and the critical stages for analysis and control

can be identified. Extraction ofmodal properties from ambient operation, however,

is very challenging issue.

In this thesis, a novel analytical framework based on linear stochastic

analysis that extends the existing linear analysis methods to the stochastic setting,

is proposed. The method is especially well suited to estimate modal properties

from measured, ambient system response to random load variations and provides

full observability of system dynamics. As a result, the developed framework can be

used to supplement information to measurement-based modal estimation

techniques as well as to place sensors.

A multi-machine linear power system model with a stochastic forcing term

that explicitly accounts for random load behavior is first developed. Techniques to

determine the distribution of the system response are then introduced. Using this

framework, the modes that domínate the system dynamic behavior and the forcing

functions that contribute most to this response are directly calculated. Further, the

spatial distribution of the modes is identified.

The proposed methodology is tested on realistic power system models and

the results are compared with those obtained from conventional analysis methods.
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Chapter 1

Introduction

JDris introductory chapter presents a briefdescription ofthe research work contained in the the

sis.

The background and motivations are explained as well as the statement to the problem

that is attached in this document.

Further, a concise review ofthe previous work related to the topics treated in this thesis

is presented. Also, the pursued objectives, the obtained results and the limitation ofthe approach

are then stated.

Moreover, the main contributions are summarized.

The last part ofthe chapter is an outline ofthe general structure ofthe thesis.



1.1 Background and motivation.

The stability of power system oscillations, inherent to large interconnected sys

tems, is one of the most important power industry concerns. Consequently,

great effort has been made by many researchers to understand and control such

complex phenomena [1],[2].

In this pursuit, mathematical models have played an important role, and

one basic tool used to analyzed power system oscillatory behavior has been the

concept of oscillatorymodes [3], [4].

Of special interest are the fundamental electromechanical oscillation

modes that underlie system behavior. They can be of two types: local and inter-

area. Inter-area oscillations are the main concern in power systems dynamic se

curity studies [3], [4].

Inter-area modes, involve groups of generators exchanging energy

through the transmission system. Modal properties such as modal frequency,

modal damping and shape provide critical information for improved operation

al reliability of power grids and can be used to place and design controllers [5].

If these slow modes, in the range of 0.1 to 2 Hz, are not sufficiently damped, un

stable operation may occur, potentially leading to uncontrolled separation of the

system into islands and consequently blackouts [6]. As a result of the critical

characteristics of the physical phenomena that inter-area modes describe, the

primary aim of dynamic security studies is to extract and characterize the key

dynamic properties of these oscillations. Two main approaches are found to this

purpose: modal-based and measurement-based approaches.

Model-based approaches assume that an accurate non-linear model of the

power system is available and that this can be linearized around an operating

condition of interest. As a consequence, the modal properties are obtained by

using linear system concepts; this method is referred to as modal system analy

sis or small signal stability analysis [3], [4]. Probabilistic extensions of modal

analysis also exist, and they account for uncertainty in model [7].
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Measurement-based approaches do not require an analytic model of the

grid. Instead, signal-processing techniques are implemented to conduct modal

estimation by using data collected from wide-area monitoring systems [8],[9].

These measurement-based techniques are classified according to the system re

sponse that they are able to analyze, and two main categories are found in pow

er systems literature: the first group embodies the analysis of measurements

from transient operations, i.e., the response of a power system after a fault has

occurred or a large disturbed [4] has been initiated. The second group estimates

electromechanical modes from measurements describing the ambient system

response, i.e., when there are continuous random changes occurring in the sys

tem, and that these changes provide a small excitation to the electromechanical

dynamics [10].

Modal identification techniques when applied to ambient data present a

main advantage over other existent modal identification methods using probing

signáis [11]: they work in a non-intrusive manner [12]. However, depending on

the distribution of system sensors, they can provide a limited perspective of

large system dynamic behavior [13].

In this thesis, a novel analytical framework based on linear stochastic

analysis that extends the existing linear analysis methods to the stochastic set

ting, is proposed. A key advantage of this approach is its ability to provide full

observability of the system. As a result, the proposed analytical framework can

be used to describe inherent properties of the system that cannot be obtained

from conventional measurement-basedmodal estimation techniques.

The model is especially well suited to analyzing the system response to

random load and generation variations and can be used to identify the trans

mission and generation elements that contribute most to the oscillations as well

as to extract key modal information.

3



1 .2 Problem statement

Ambient conditions (ambient noise) [8], [10]-[17].is a widely used term in power

systems literature and usually refers to the observed low-amplitude stochastic

time series resulting from random load variations.

It assumes that, in absence of large disturbances such as fault, generator

trip or load trip, the dynamic system behavior, over a time span of few minutes,

is forced by small-amplitude varying-load processes, varying generation effects,

system switching effects [14]. In practice, however, it is commonly accepted that

load variations are the primary excitation to the system [10]-[17].

The principal assumption adopted for the analysis of ambient operation

conditions in power systems, is that in the range of electromechanical oscilla

tions, the composite load changes exhibit uncorrelated or puré white noise be

havior [14],[16]-[20].

Probabilistic and statistical analyses play an important role to understand

stochastic behavior of power systems [21]-[27]. The statistical analysis of the

ambient response provides information about the most likely critical modes that

domínate the system response. Also, the participation of an individual machine

or groups of machines in one particular mode can be determined through these

methods. These inherent properties of the system are of vital importance in se

curity assessment and with the current ambient analysis techniques, an exten

sive number of estimations and the corresponding statistical analysis of them

needs to be performed.

In power system monitoring, it is highly desirable to identify the poten

tially harmful oscillations before they occur, rather than when the oscillation

modes are already excited [13],[28]. To attain this objective, previous knowledge

about modal observability is needed. More precisely, a statistical approach to

determine in which system measurement an oscillatory mode is more visible

(observable) is a theoretical problem of practical interest [29]. This will optimize

4



the placement of measurement units for monitoring critical modes from ambient

data .

Understanding the effects of stochastically excited disturbances on sys

tem dynamic behavior provides valuable information that could be used to de

termine the impact that forcing functions representing random load or genera

tion variations such as renewable generation has on the power system response

[32]-[33]. This, in turn, allows the detection of the spatial distribution of the criti

cal stochastic perturbations that should be constantly monitored.

In this research, an analytical framework based on linear stochastic sys

tems theory [34], [35] is proposed to estimate power system electromechanical

dynamics under ambient operating conditions. With this approach, the modes

that domínate the system response, and the forcing functions that contribute

most to this response can be directly estimated.

1 .3 A brief review of previous work

Recently there has been intensive research on stochastic analysis of the ambient

power system response to random load variations. The idea behind this research

is that the parameters of the process generating a time series can be described by

a low-amplitude stochastic excitation [15]-[19]. The description and understand

ing of variability in the observed system response is a central question in power

system stability analysis. A variety of research based on Monte Cario simulation

analysis has been proposed for power systems transient stability analysis con

sidering uncertainties; much of this research, however, has been focused on the

analysis of the system response to disturbances and changes in operating point

conditions [20]-[26]. These approaches combine deterministic simulation tech

niques with stochastic analysis to compute the probability that the power sys

tem will have a stable operating [14].

Only a handful of work addresses the identification of the most influen-

tial sources of variability [30],[31]. These methodologies are used to reduce the

5



number of simulations required to approximate results obtained by convention

al analysis techniques [20]-[26].

This thesis focuses on the study of the power systems response to ambi

ent perturbations; the approach adopted is based on research developed in the

field of atmospheric science and control theory. [34], [35]. Through this formula

tion the stochastically maintained variance of the perturbations, the structures

that domínate system response, the modes of deterministic dynamics, and the

forcing functions that contribute most to the statisticaüy stationary response can

be estimated.

Asymptotic properties of linear randomly excited models originally de

veloped for linear stochastic systems are extended and generalized to study the

system response to random inputs. The methodology proposed is general and

could be expanded to assess the combined effect of random load and generator

variations on system response.

1 .4 Thesis objectives

1) The development of a new analytic framework to estimate the predomi

nant electromechanical modes of the system response under ambient op

erating conditions.

2) The development of an analytical methodology to assess the effects of

stochastically excited disturbances on system dynamic behavior. Using

this framework, the modes that dominates the system response, and the

forcing functions that contribute most to this response are directly calcu

lated.

3) The identification of transmission and generation elements that contrib

ute most to the observed oscillations.
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4) The extensión and generalization of existing analysis techniques
to study

the statisticaüy stationary response and the initial forcing conducive to

instability of the system.

1.5 Research contributions

The following issues constitute original contributions:

1) The development of a rigorous linear statistical
framework for ana

lyzing power systems subject to small random load and generation

variations, along with performance and sample diagnostic.

2) The development of a linear model with a stochastic forcing term that

explicitly accounts for small-random load behavior. The main ad

vantage of this framework is linearity, and automatic
identification of

key system modal parameters.

3) The identification of predominant electromechanical modes of the

system response under ambient operating conditions.

4) The determination of the forcing functions associated with dominant

ambient system behavior.

5) The detection of the most energetic oscillation modes that are pre

sented in the ambient power system response.

1 .6 Organization of the thesis

The thesis is structured as follows:

Chapter 2 provides a general overview of previous research developed in

the field of ambient-mode estimation. Ambient operating conditions are briefly

contextualized within the field of power system dynamics.

Chapter 3 discusses theory involved in the study of stochastically driven

linear systems. Modal response expressions are generalized to the case of ran-
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dom excitation. The statistics that describe this stochastic response are derived,

and basic concepts used to interpret these moments are reviewed.

Chapter 4 introduces a new methodology used for the direct mode shape

identification of the modes that dominate the system response of a white noise

driven linear system.

Chapter 5 develops an analytical methodology based on the decomposi

tion of system response energy to identify the stochastic forcing functions that

most contribute to the response of a linear dynamical system.

Chapter 6 develops a new flexible approach to performing state-space

analysis of a simplified multi-machine power system that explicitly accounts for

random load behavior.

The application of the novel model-based approach developed through

Chapters 4-6 is presented in Chapter 7. Results obtained show the feasibüity of

the proposed methodology to understand power system dynamic behavior as a

result of stochastically excited load disturbances.

Finally, some concluding remarks and suggestions for future research are

presented in Chapter 8.

Additional information used to develop the proposed methodology and

further material describing POD analysis and stochastic numerical integration

are presented in the Appendix.
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Chapter 2

Ambient Analysis of Measured

Data

This chapter examines the application ofmeasurement-based identification methods to estimate

electromechanical modal properties. First, the notion of power system ambient mode identifica-

tions is introduced in the context ofthis research and a structure for information sources in the

identification process is reviewed.

Then, a brief review ofmethods used to estimate modal properties from measured data is

presented including the use of ambient analysis of power system data followed by a review of

signal processing methods for small-signal analysis.

The chapter concludes with a brief review of linear power system models for system iden

tification.
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2.1 Ambient operation

Ambient oscülations are the result of complex random variations and interac

tions between many system components. Measurements from the system during

ambient operation show that there is always a constant level of ambient noise

present in the data in the bandwidth of electromechanical dynamics [1].

A common and reasonable assumption in most cases is that the excitation

is primarüy caused by changes in the system load. Over a time span of a few

minutes, load changes are seen as primarüy random and Gaussian. Nonetheless,

generation and system switching effects are primarüy planned and therefore

deterministic; thus, these variations are not significant in a time interval of sev

eral minutes [2].

Assuming that the stochastically excited load variations are white, i.e.,

independent sources of uncertainty are considered, and stationary over an anal

ysis window, it is possible to estimate the electromechanical modal frequencies

and damping from the spectral content of the ambient noise [3].

Analyzing and estimating power-system electromechanical dynamic ef

fects are a challenging problem because of various factors [3].

1) The system is nonlinear, high order, and time varying,

2) It contains many electromechanical modes of oscülation cióse in

frequency.

3) It is primarüy stochastic in nature, especiaüy over a given time in

terval

Additionally, since the load cannot be measured everywhere in the sys

tem and is constantly changing, the input is assumed to be unknown or white.
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Knowledge about dynamic processes in power systems can be obtained

from a number of information sources including known and unknown dynam

ics. Figure 2.1 shows a conceptual view of the problem of process identification

ülustrating the various known and unknown dynamics and the output data [3].

The key point to emphasize is that the response of the power system contains

information about the power system's electromechanical model properties and

can be used for stabüity monitoring. Discussion of this representation is de

ferred to section 2.4.

unknowndynamics

_' unknown topologycal changes

s knownlopologycal changes

knowndynamics

Figure 2.1. A structure for information sources in process identification [3]

2.2Measurement-based methods system analysis

In recent years, several methods to characterized modal behavior have been de

veloped. Most of this research focuses on measurement-based analysis methods

that can be broadly classified into two categories: Ringdown analysis (Transient

analysis), and ambient analysis [3], [4].

Figure 2.2 provides a taxonomy of existing measurement-based ap

proaches to system identification [4] Showing the nature of the intended contri

bution.

16



Powe r System Analysis -

Measnreraent-based

techniques

AmbientOpetation

I

WithoutProbing

I

With Piobrof

Parametric

Recursive

+LS

-LMS

-R3LS

Non Recursive

Non-Parametric

-SpectralMethods

-Welch

-FFT

+HOS

-Bispectrum _■ Bicoherence

-Tiíspectrum
-Ba 5is FunctionDecomposition
-PCA

Time Domain

+YW

-AR

-AR+KF

-IP

-ARMA

+Sub**pace
-CVA

-N4SID

-MOESP

Frequencv-Domam

-SOFR

-YWS

-FDD

Svstem Identification

with Known Input

Transiera Operation

Par-metric

-Waveiets

-HHT

Non-Paramenic

-FDPS.

-STFT

I

FiquencyDomain

•Prony -z-lD

-MP -MD

-ERA

-HTLS

Figure 2.2.Baaic overview of methods for system identification

As this research concerns ambient analysis, identification methods based

on transient responses are out of the scope of this work; However, as way to

give a complete description of Figure 2.2 ,
these methods are briefly mentioned

in the Appendix, section A.

2.3 Brief review of ambient analysis methods

Approaches to the statistical characterization of system variability are of ongo

ing interest. Ambient response can be observed in all system variables

(e.g.,voltages, currents, powers, and frequency), even under quasisteady-state

operation. Information about system transfer functions, and, consequently, sys

tem modes, are contained in the spectrum of ambient responses.
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In this sense, non-parametric spectral-estimation methods have been used

to estimate electromechanical mode properties due to their robustness and sim

plicity. Perhaps, the most widely used non-parametric method is the Welch per

iodogram spectrum [5],[6], which provides an estimate of a signal's strength as a

function of frequency, and can be used to estimate mode shapes. Other non

parametric methods are reviewed in [3] and include higher order spectral meth

ods and basis function decomposition methods such as principal component

analysis and its variants.

Non-parametric methods, however, do not provide direct numerical es

timates of modal properties, which limits their usefulness. This has led to the

development of parametric methods with the abüity to estimate the amplitude

and frequency of the observed oscülations.

Following [4] (see Figure 2.2), there are two basic types of parametric

mode-estimation algorithms: block processing and recursive. In block-

processing algorithms, the modes are estimated from a window of data. For

each new window of data, a new estimate is calculated. A limitation of these

approaches is the amount of data that is required for an accurate estimate of

modal dynamics. A new mode estimate can be calculated as often as required;

but, each calculation requires several minutes of the most recent data.

The first application of block processing used the Yule-Walker algorithm

to estimate modes using an Autoregressive (AR) model [2]. The method was

then extended to the over-determined modified Yule-Walker method (YW) [7]

to estimate an Autoregressive Moving Average (ARMA) model [8]. Extensions

to the case of múltiple signáis are discussed in [9].

Block processing methods using subspace methods CVA (Canonical Var-

iate Algorithm) and N4SID (Numerical algorithm for Subspace state-space sys

tem identification) were first introduced in [10], [11]. A variation of the YW ap

proach that estimates the autocorrelation function using a frequency-domain
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calculation is introduced in [12] and is termed the Yule-Walker-Spectrum (YWS)

method.

In [12], the YW, YWS, and N4SID algorithms are compared. Along these

lines, another frequency domain method is the Frequency Domain Decomposi

tion (FDD) method described in [14], which decomposes the signáis estimated

power spectrum.

For recursive methods (refer to Figure 2.2), the estimated modes are up

dated for each new arriving data. The new estimate is obtained using a combi

nation of the new data point and the previous mode estimate. A forgetting fac

tor is employed to discount information based on previous data; as a result, new

data is weighted more in each calculation.

Simüar to the block-processing methods, all recursive methods tested to

date require many minutes of data to converge to a steady-state solution. Pub

lished results include the Least-Mean Squares (LMS) method [15] and the Regu

larized Robust Recursive Least Squares (R3LS) method [16],[17].

The R3LS method described in [17] offers several advances to previous

algorithms. First, it accommodates an Autoregressive Moving Average Exoge

nous (ARMAX) model to account for ambient noise as well as a known input,

which can enhance performance during probing. Second, it has a robust objec

tive function to reduce the impact of missing or outlier data; and third, it can

incorpórate a-priori knowledge of the modes. The full impact of these advances

is the subject of current and future research.

There are other approaches to ambient analysis for electromechanical

mode identification that have been applied to simulated and measured data.

These include hybrid analysis techniques based on the combined application of

linear statistical analysis techniques and the random decrement method, blind

source separation [18] and Kalman füter-based approaches [19] among others.
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In a departure from previous work, this thesis addresses the problem of

system identification from a model-based perspective. The use of model-based

ambient identification techniques provides an altemative view to the problem of

ambient identification that can provide additional insight into the nature of sys

tem response to random inputs.

2.4 Linear power system models

The effects of random forcing on system behavior can be estimated using a line

arized power system representation. Following Trudnowski et ai. [12], the under

lying assumption is that small motions of the power system can be described by

a set of ordinary dÜferential equations of the form

i=Ax(_) + Fí#(.) + F_u_(f)

y
= Cx(í) +D«í(0 + D_u_ (/) + j_(.)

where c_%f) is a hypothetical random vector perturbing the system, vector x(0

contains all system states including generator angles and speeds, and t is time.

Control actions that can be described as smooth functions of the state x(t)

are embedded in the system A matrix; all other actions are represented by the

exogenous input vector U£.(.). These include set-point changes, low-level prob

ing signáis (e.g., a low-level probing signal into a DC converter [13]), and load

pulses that are applied to examine system dynamics as suggested in Figure 2.1.

Measurable signáis are represented by y(í) which contains measurement

noise t\i(t) that includes effects from instruments, communication channels, re

cording systems, and similar devices. In general, measurement noise has a rela

tively small amplitude when quality instrumentation is employed. Changes

which are breaker actuated may produce system topology changes that alter the

system A matrix to various degrees.

The assumption for £,(t) is that it is a vector of small-amplitude random

perturbations typically conceptualized as noise-produced load switching. It has
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been hypothesized that the load switching is primarüy integrated stationary

Gaussian white noise with each element of £ independent [11]. This assumption

is certainly open to more research.

In this dissertation a simplified versión of model (2.1) is adopted; due the

generator model (classical-generator model) implemented in this work, and be-

cause no probing signáis are used, the term ue in (2.1) is not taken into account.

Furthermore, no changes in network topology are considered and the measure

ment noise is negligible. From these assumptions, the linear power system mod

el adopted is mathematicaüy described by :

i = Ai(f) + ftí(0
(22)

y
= Ci(.) +Díí(0

the conceptual representation of this model corresponds to the elements inside

the blue chart in Figure 2.1.

In the following, mathematical expressions to describe the response of

system (2.2) in a statistical sense are developed.
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Chapter 3

Linear Stochastic Forcing Model

of SystemMotion

Modal analysis is one ofthe most effective techniques to extract modal information from

linear power system models. This chapter presents a review ofthe theory involved in the

study ofstochastically forced linear systems (uncorrelated white noise). In this approach,

modal response expressions are generalized to the case of random excitation. The concept

of statistical steady state ofthe moments ofa stochastic process is discussed and analytic

expressions for the covariance function and Ihe ensemble average energy function ofthe

state and output responses ofa linear stochastic state space model are derived.

Properties of linear stochastic systems are discussed, and a complete proof of the

main results used in this research is provided. Various other extensions to this analysis

are briefly discussed, and references are providedforfurther detail.

The notation utilized throughout the dissertation is also summarized.
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3.1 Linear dynamical system with stochastic forcing

To introduce the adopted model, consider a linear dynamical system with sto

chastic forcing of the form [1],[2]

i(_) = A__(/) +Fí(í)
(3.!)

y(0 = Cx(.) + D£(.)

where x is an «-dimensional vector representing the state of the system, ¿If) is a

/«-dimensional vector representing a stochastic forcing (random process), y is

the /--dimensional vector of outputs ( vector ofmeasurements).

Matrix A represents the deterministic dynamics, and matrix F represents

the spatial distribution of the forcing vector. For simplicity it is assumed that the

state matrix A is time independent and asymptotically stable, i.e., aü the eigen

values of the state matrix have negative real parts.

In physical models, vector <£(.) represents uncertainties or stochastic ef

fects perturbing the system (3.1). More formally, vector ¿ff) is modeled as a sto

chastic process evolving probabüistically or more precisely, represented by

time-dependent random variables [3], [4].

We assume that, £ is represented by a sequence of uncorrelated samples

(white noise) with zero mean and unit variance [1], i.e.,

(í(')) = °
. v (3*2)

($ (fa)¿, (/*.)) = 8vS(tm-tn)

where angle brackets denote an ensemble average, Smn is the delta Kronecker

function used to denote independence between the /-th andy'-th elements of <K0/

and 5 is the delta Dirac function (see Appendix, section B.l ) used to denote no

correlation in time [4].
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3.2 Modal response

Much insight into the nature of stochastic behavior can be obtained from linear

analysis of the stochastic linear model. Let the solution of (3.1) with a determin

istic initial condition x(/0)=Xo, be expressed as

i(t) = eK'x(jo)+\'aeH'-r\(r)dr
Dctciministic

forcing
(3.3)

from which the output response can be readily determined as

y(')=c

where ris the lead time [1].

Ar

e x(/.) + jV('-r,$(r)¿r] + D¡;(.) (3.4)

The first term on the right-hand side (rhs) represents the effect of the ini

tial conditions, and it vanishes for a stable system; the second term, represents

the influence of random noise forcing on system behavior.

It foUows that, when aü the eigenvalues of the deterministic dynamics in

A are negative, the first term tends to zero as / —> oo, and the system state re

sponse is described by

x(0=feA('"r^(r)c/rJ°
(3.5)

Under these assumption, (3.4) becomes

[jV^y(0 = C I eM,-%(T)dr
(3.6)

Figure 3.1 ülustrates the state response of a stochastic forcing linear sys

tem such as that expressed in (3.1). This response is composed of the transient

and stochastic forced responses. For a stable system, the transient response de

cays after a few time constants [5], and as t
—» oo, the forced response becomes

predominant.
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Clearly, the random response, x and y, are linearly dependent on ¿&Í), and

consequently are also Gaussian distributed. As a result, both signáis are fully

characterized by their first two moments [3].

lh*^44#fffH4#«#!
i

!
'

Transient

Response

Stochastic Forcing Response

■

1 1. 1 1, 1

Í-» OO

2r 3r 4r 5r

Figure 3.1.Dynamical response ofa linear stochastic system

3.3 First and second moments of the state and output responses

The first moment of the state and output responses are the ensemble average of

the x(.) and y(t) vectors respectively, and they are defined by

77_'(.) = (x(.)), (3.7)

rjy'(t) = {y(t)}, (3.8)

where rjx'(t) and rjy'(t) are time dependent vectors of appropriate dimensions.

When they are used to describe the state and output responses in (3.5)

and (3.6), it can be demonstrated that rj_.'(t) and r]y'(t), satisfy

lim77_'(/) = «,*=lim(x(/)) = 0,

lim /?/(.) = 77/= lim (y(0) = O .

(3.9)

(3.10)
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These results follow from the linearity of the expected valué and the di

rect substitution of the statistics of the forcing (3.2) when the integráis on the rhs

of (3.5) and (3.6) take the form of Riemann integráis [3].

The second order central moment of the state response x, which is a vec

tor-valued stochastic process, is given by the «x« matrix, R_(

Rx'(0=(x(')x(')*), (3-U)

Simüarly, the vector of observations, Ry' is given by

R/(0=(y(Oy(')*), (3*12)

where Ry' is an r xr matrix.

Definitions (3.11) and (3.12) are called the covariance matrices of vectors

x(r) and y(/), respectively [3]. Another important concept to understand is that of

the second central moment O, which is defined in terms of Rf and rj' (the covari

ance of decentralized vectors x(/) and y(t) and ensemble average of a general

multidimensional stochastic process) [3]. From previous results, we have

C_'(.) = ((x(.)->7_'(0)(x(0-V('))*) (3 13)
= R_'(.)-/7*W(0*

and

C.J (ñ = /ívííl - nJ (tWívíñ - n.,' fñ\'\
(3.14)

C.
'

(0 = ((y(0
- Tjy' (t))(y(t)

- r,y' (/))'
= Ry'(t)-TJy'(t)r1yl(t)'

In this work, both matrices C' and R' are called covariance matrices [9];

the düference between them is that C' is formulated in terms of decentralized

vectors, i.e., x(t)-r¡y(t) and y(t)-r\y(t), and R'is defined in terms of x(t) and y(/).

It follows from (3.9), that when /
—•>

oo, C*00 simplifies to

C =lim(x(0x(f)>limR,'
^

and
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C."=lim(y(.)y(0*) = limR'' „,«l-*m \ I <->»

(3.16)

From (3.15) and (3.16) the equality between R' and C (when / —* oo), is

evident; for this reason C' and R' are used indistinctly.

Through the body of the text, the definition of covariance matrix is wide

ly used; the study of matrices C„°° and Cy00 wül play an important role in the de

velopment of the theory addressed in this work. Specifically, eigenanalysis of

C_°° and Cy°° allows to find the structures that represent an ordered decomposi

tion of the responses x and y to the response of the system to the stochastic forc

ing, usually referred to as empirical orthogonal functions (EOFs) [1],[6].

Another important definition related to the covariance matrix is that giv

en by the transient ensemble energy, Ef. In its most basic form (following refer

ences [1],[2]) Ex' and Ey are given by

*'« = (|*(0f) (3.17)

*'»-***) (3.18)

where II ■ II denotes the L2-norm.

The meaning of these definitions is intuitively clear and easy to under

stand; in a statistical sense, they determine what magnitude of fluctuation can

be expected over a period of time. As a side result, when the transient response

of the system (3.1) vanishes- .—»«■>, they can be used to measure the level of ex

citation of responses x(/) and y(0-

For large valúes of time, we can write

EY =^\x(t)t) = trace(a)
^

^=lim(|y(0|2> = /rflce(C)
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These results follow from the fact that the elements in the main diagonal

of the matrix C_°° are of the form

Cx-x, =(xi'xi)fori = l,...,n (3.21)

where x¡ is the i-th elment of the vector x(í). A similar interpretation can be made

for the ensemble average energy of the output response, E™

3.4 Ensemble and statisticall steady state concepts

The analytic results presented in subsequent sections represent the behavior of

the system in a probabüistic sense; this means that they wül describe the statisti

cal behavior of the system when an infinite number of outputs are under study

(see law of the large numbers [3]).

Figure 3.2 displays a set of synthetic signáis (\,2,..._N) obtained from re

peated experiments, e.g., múltiple numerical solutions of the system (3.1) at dif

ferent forcing inputs. This set of responses is said to conform an ensemble, and

this ensemble is statisticaüy characterized by the theoretical results R', C tj',

and Ef . when the number of experiments N tends to infinity.

Figure 3.2. Statistical ensemble
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In the previous section definitions of the first and second moments (Rf, O

77'), and also the definition of Ef where given. Because they describe the behavior

of stochastic processes, they are time dependent matrices, vectors and scalars

functions respectively.

In our analysis, especial emphasis was focused on the interpretation of R',

O
, 77', and Ef when t —*■ w, i.e., when the transient response of system (3.1) van-

ishes. In this condition, the statistics (Rf, Cf tj', and Ef ) of the responses x(t) and

y(0 are said to reach an statisticaüy steady state condition, and definitions (3.9)-

(3.10), (3.15)-(3.16) and (3.19)-(3.20) become time independent (this time inde-

pendency wül be formally demonstrated in later sections).

The notion of a statisticaüy steady state must not be confused with the

concept of a steady state condition reached in a deterministic linear system.

Since the forcing term £[t) is randomly changing for every time, it provides a

constant random excitation of the dynamics of (3.1) even if the statisticaüy

steady state is reached. This can be seen from equations (3.5) and (3.6), which

explicitly show the dependency of x and y on the stochastic process <f.

Figure 3.3 is used to explain the notion of the statistical steady state of a

linear system from the practical point of view of múltiple experiments. Let us

choose a general instant of time, say tk , and let the corresponding valué of x at

that time instant be denoted as x(tk). If this procedure is repeated at each exper

iment (1,2,. ..fl) conforming the ensemble (see Figure 3.2) , then a random varia

ble Xk ={x1(**a)- x2(tk),. .
., ^(tk)} can be defined (the upper-index of x correspond to

the experiment number).

Furthermore, a statistical analysis of the random variable Xk (e.g., mean

and variance,) for each time tk in the range [0 7] will yield discrete valúes for

77 '(tk) and Ef(tk) and the time evolution of tj' and Ef can be obtained by plotting

{Tj'(t,), Tj'(t2),... } and { Ef(t,), Ef(t2),... } respectively.
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In Figure 3.3 there exists a transient behavior of rj' and Ef in / e[0 íí_'=5t],

after that rj' and Ef adopt constant valúes, or the same the system reaches an

statistical steady state condition.

jt (t)- Experiment 1

* (í)- Experiment 2

JjW^aIWm^

l*xi\Mx¿ArWj\¡fxixf_x_¡W

x (I)
-
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n'if)

x'(Il)

. 1 lUÚ .

fffxr*~r

£'(()
lt

m=M^

N: h

o íSJf=5r

¿-*oo

Statistical Steady State

Figure 3.3. Statistical steady state.

The study developed in this thesis is focused on the dynamics of system

(3.1) when it reaches a statistical steady state condition. This assumption and

that of modeling Qf) as uncorrelated white noise, allow for analytical solutions

that help to understand the response of physical systems to stochastic forcing

and to obtain global information withmúltiple applications.
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3.5 Analytical development of the covariance function

The principal motivation for studying C°° is to compute the mode shapes associ

ated with the modes with strong presence in the dynamical response of system

(3.1) (see Chapter 4). Clearly, when the system is excited by an stochastic forc

ing, it is of vital importance in power systems [6]; in the more general case,

however, the study of C" provides insight into the patterns of oscülation of the

responses x and y of a linear system.

3.5.1 Statistical steady state covariance ofthe state response

In this section, a practical form of computing C_°° and its interpretation is pro

vided. The major result is that Cx"" can be obtained by solving a Lyapunov equa

tion of the form [2]

AC," +Ct'A' = -FF" (3.22)

Several observations can be made about this result. From linear systems

theory [7], matrix A is directly linked with the dynamics of linear systems; mod

al analysis characterizes the natural system response (modes and mode shapes)

and the modal parameters e.g. damping a frequency of oscillation can be known

from their study.

The other component, F, represents the spatial distribution of the stochas

tic forcing. Thus, matrix Cx°° depends on the inherent dynamics of (3.1) and the

spatial distribution of the forcing t_%f). Consequently, C/3 provides information of

how the distribution of a spatial pattern of stochastic forcings (now considered

to have equal level of energy) excites certain modes of the system.

Lyapunov equations (3.22) play an essential role in control theory. Effi

cient ways to solve these equations exist in the literature (e.g. [8]). The proce

dure followed in this work to derive (3.22) is that described in references [1],[2].

Reference [9] shows an altemative form of analysis, with a nice interpretation of

the ideal white noise phenomena and it can be reviewed to enrich the study.

Proofof (3.22):
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Proof of equation (3.22) begins with the direct substitution of (3.5) in

(3.11). This yields

R.' =/(fo'/"-r->FÍ(r»,)C/r„)(£í(r„)-F''eA"('-r"^r„^, (3.23)

Rearranging terms inside brackets results in

Rx' =¡l¡y{l-r')F(z(T»)Z(dT„)')YHeA"{'-z")dTmdT,,, (3.24)

FinaUy, combing equations (3.24) and (3.2), it is easily seen that

Rx' = |0'{/(r™
- Tn)eA{-T-)FFHeAH{'-T")drmdu . (3.25)

At this point, it is necessary to make use of the properties of the delta

function (impulse function) S(t) to simplify (3.25) [4],[5]. In this regard, these

properties are briefly reviewed in the Appendix, section B.l, where special at

tention should be paid to results (B.1.12)-(B.1.13).

Define the function, cp(rm ,t„)

cp(xm,rn) = /C""^V"^ (3.26)

An altemative form of the internal integral with respect to rm in (3.25) is

j/(r" -^)9(r-,rn)dTm = <p(rm,tn)\t^n

= eA('*-r")FF"(?A"('~r")

where use has been made of (B.l. 12), and r„ has been treated as a constant pa

rameter.

Substituting (3.27) into (3.25), yields

Kf =\y('-'")FFHeK"('-7")T„. (3.28)

This is the time-dependent expression of the covariance matrix of the

state response. In practice, altérnate forms that avoid the computation of the

integral in (3.28) are preferred.
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In what follows, an altemative expression that describes R/°
= Cx00 is de

rived. Taking the derivative of (3.28), gives

-Rx' = *- f
'

e^FF" eA"{l-n)dTrx =±- f p(rm ,r_ )| dx,
, (3.29)

dt dt¡° dt¡° "«.=*-

where use has been made of definition (3.26).

A useful result that can be used to compute the derivative of the integral

in the rhs of (3.29) is the so-called Leibniz integration rule [10], defined in its

general form in the Appendix, section B.2

By applying the Leibniz rule to (3.29), one has that

■^R,'=-^(fV(r_.,r-.)| du\ = cp(rm,m)\ +\'^f^L^T„ (3.30)

in which

^r""r")L,,^, - **<w)FFV*twJ
= FF" (3.31)

and

dcp(Vm,Tn)\rm=u
= AeA(,-r.)FF/_ gA"(,-r„) +^A^H^" (l-r.)¿H ,3 32)

dt

where use has been made of the result (B.3.2).

Inserting now (3.31)-(3.32) into (3.30), gives

^-Rx' = \(¡'/{'-^FFHeA"{-T"]dTn ) + (jV^'FFV"^"^ )A" + FF" (3.33)

where from (3.28) it is evident that (3.33) can be simplified to ,

— Rx' = ARx' + Rx'A" + FF" (3.34)
dt

Eq. (3.35) represents a differential equation of the form (3.28), and is use

ful under the assumption of asymptotic stabüity of the system (3.1). It immedi

ately follows that the limit Rr" =lim,^oo Rr' exists
and satisfies
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—Rx"=0. (3.36)
dt

Finally making use of the condition (3.36) in (3.34) and because of (3.15),

(3.34) turns into (3.22) and the proof is complete.

3.5.2 Statistical steady state covariance ofthe output response

The covariance matrix Cy°° of the output response can be computed from

knowledge of the valué of Cx" (3.22). In terms of these matrices, the output co

variance matrix can be written as

<V = CCx"C" + DQD" (3 37)

in which, C and D are the matrices of the set of algebraic equations that combine

the state variables into the output variables of the system (3.1), and matrix Q

corresponds to the covariance of the input vector £

Proofo/(3.37):

The proof of (3.37) is obtained by direct substitution of (3.6) into (3.12).

Thus,

R.
'
= CCx'C" + CR'xíD" + DR'íxC" +DR'#D" (3 38)

where Cf was defined in (3.11) and R'^ is the covariance matrix of the input

vector £(.).

Here, the appearance of cross-correlation terms (to see cross-correlation

definition see [3]) of vectors x and £{t), deserves special attention. The cross-

covariance of the vectors involved is denoted as R'x¿ ,
and can be computed as

R'„.=(R'f_)" ={x(.)í(0") (3.39)

and by the direct substitution of (3.5) into (3.39), turns into
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R^=fV('-r)F(£(.)£(r))..T
= |o'-5(r-OeA('"r)Fí/r
= 0

(3.40)

where result (B.l. 13) has been used for the correlation of Qf) and Qr).

Let now (3.38) be rewritten as

R.
'
=CCx'c" +DQD" (3 41)

where use has been made of (3.2) for the correlation of Qf) to get R&^Q.

By taking the limit of expression (3.41) when / —♦ oo, and from (3.15) then

expression (3.37) is easily derived and the proof is complete.

3.6 Ensemble average energy function

The results of the preceding paragraphs wül be used in subsequent sections to

develop a procedure to identify the stochastic forcing terms that excite the most,

some outputs or a group of them in the system (3.1). The identification criteria is

basically formulated based on a ratio of ensemble average energies.

3.6.1 Ensemble average energy ofthe system state response

Following references [1],[2], the expressions that describe the transient ensemble

energy behavior of the state response can be easily derived. The main results is

the following Lyapunov equation,

A/,Bx"+Bxc0A = -I, (3.42)

An altemative form of (3.19) given in terms of the solution of (3.42) for

Bx°° and the matrix F, E^, is

EY=trace(FHBYF). (3.43)

Proofof (3.42)

37



With reference to the original definition of £x°° in (3.17), substitution of

(3.5) into this equation gives

£.=^eM-MFÍ(rn)í/í)-(|;eA(-)FÍ(r„Vr„^ (3.44)

Rearranging terms and simplifying, one has that

Ef =/(jo'£í(r_.)* F'eA^'-V{'-")F^(rm)dTndrm)j\ . (3.45)

An appropriate form of (3.45) is needed to make use of the statistics of «f,

given in (3.2). Expansión of the matrix product inside brackets (see Appendix,

section B.4), results in

m m

__' = [[ ^¡^.(4' (_tm) ^j(Xi.yWi_t(tM,Tn)dTmdTn° °
' '

(3.46)
m

■= j J 5j ^Xm ~Xn. V" (Tm >
Xn )dtmdtn

where £, is the i-th element of <f and y/y is the y-th element of the matrix y/ . de

fined as

y/(rm,u) = fV^V^F . (3.47)

Eq. (3.46) is similar to (3.25). Therefore, from property (B.l.12) , £_' can be

rewritten as

Ef =trace\\ fpi»(r_-,r_)| u )

= traceÍFH []'/"
^e*"^drM (3.48)

= trace(FHBfF)

where the time dependent matrix B„' has been defined as

Bx'=jy''('-rV('-r")r_. (3.49)

Result (3.48) describes the transient behavior of the ensemble average of

the state response; as can be seen the time dependency is given by the matrix Bf.
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When system (3.1) reaches a statistical steady state condition, Bx' becomes a con

stant matrix, and it satisfies the condition B_°°

—Bx° =0. (3.50)
dt

v

Thus the derivative of Bfmay be found to be

d
n i d f A((-r_) a"(--i*_) ,

d t< x

—Bx =— \ e
v

'e
v

'ar_ =— xi/(jm ,Tn)\ Tm

dt c/.J° dt3°r '—"

/ggjv

=

a(í'0V(TmMr.=JT' ) ■ ^(r""r")L=r.=, +Íj^M ,„.JT"

in which

and

V,(rm,rn)|r,=_=eA('-V('-')=I (3.52)

yr(«.,c.)| = AV"('-r")eA('-r") + /'O-V^A (3.53)

where use has been made of; (B.2.1), (B.3.2), and the definition of y/given in

(3.47). So that the time evolution of Bf, is written in its differential form as

—Bx' = A"B*' + Bx'A + 1 . (3.54)
dt

'

Consequently, result (3.42) and (3.43), become evident.

3.6.2 Ensemble average energy ofthe system output response

Simüar results to those presented in the previous section are developed here for

ensemble average energy of the observations vector, y. In this case, the solution

of the Lyapunov equation is sought of the form

A"B/ +B/-A = -CrC, (3.55)

The solution for the ensemble average energy, Ef" is given by

Ey" = /race(F"B. "F) + trace(DHQD) . (3.56)
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This last expression differs from (3.43) because a second term has been

added; it represents the direct effect of the stochastic forcing terms on the

amount of energy of the output vector.

Proofof (3.55) and (3.56)

Most of the developments used in the previous section are used in this

derivation. From definitions (3.18) and (3.6) it is found that in its general form,

Ey can be expressed as

Ef =(x(0,C/,Cx(0> + (x(/)'c',DÍ(0) + (^(0*D/'Cx(0> + (í(/),D//DÍ(0) . (3.57)

An expansión of the matrix product of second term on the rhs yields

(■f(/)'C"DÍ(/)> = (£(.)D*"Cx(.))'

=£¿¿ {$ (*■•)£ (0)*fr->*» <3-58)
' j

m

= £Z ($ (r- )% (0) <*' (r" )*-
I

=Z Í' ^í7" ~0 r** (Tm )rfT*" = °
i

In the procedure above, results; (B.l.13), (B.4.1), and the auxüar matrix, $

(.(i-m) = FteA,('"r")C"D, (3.59)

have been used.

Thus, (3.57) is rewritten as

Ef =(x(.)*C"Cx(.)) + (£(0*D"D£(.)), (3.60)

and from (3.2) and (B.4.1), it can be easily proved that

(<?(.)'D"D<f(/)) = /race(D"QD) . (3.61)

The first term in the rhs of (3.60) can be rewritten as
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m

(x(í)*C"Cx(í)) = J fX (í- (f- )* $ (r. )) <9» (tb.r. )drmdr»
_

= J' J'X<5(T" -r™)ft,(rm,r„)c.r_ (3.62)
i

m

in which,

6>(r_-,r„) = F e "-^"Ce^'^'F. (3.63)

Then

(x(r)*C"Cx(.)) = traceU" íjV"'"^"^'-'"^^) . (3.64)

As it was done in (3.49), the time dependent part of (3.64) is isolated and

defined by By'

B/ = ¡y«-r")CHCeA°-T-)dT» . (3.65)

Therefore, in analogy wit (3.50), a statistical steady state condition is

reached when

—By =0 (3.66)
dt

Following the same procedure as in (3.51)-(3.53), the time evolution of B/,

can be expressed as

—Bf = A"B; + BfA +C"C . (3.67)
dt

v '

where Bf" satisfies (3.55).

From results (3.58), (3.61) and (3.55), in a statistical steady state condition

the ensemble average energy of the output vector is given by (3.56). This com

pletes the proof of the above statement.
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Chapter 4

Extraction of Dominant Spatial
Structures

Electromechanical oscillations are inherent to large interconnected power systems.

Much recent effort has been devoted to estimating the electromechanical modes ofoscilla

tion from measured (simulated) data. Mode shapes, in particular, provide important

information on the participation of an individual machine or a group of machines in a

particular mode and can be associated with the observability of the mode in the electro

mechanical states. In a multimachine system, the electromechanical mode shapes can be

used to determine coherent groupings ofmachines.

In this section, a new analytic methodology for the direct mode shape identifica

tion of the modes that domínate the response of a stochastically driven linear system is

suggested. The procedure described combines the advantages of the statistical steady

state covariance matrix and the Proper Orthogonal Decomposition (POD) method to

extract mode shapes and modal coordinates from the random response of a linear sto

chastically forced model ofthe system.
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4.1 POMs interpreted as mode shapes

The Proper Orthogonal Decomposition (POD) method is an optimal technique

to extract a set of basis functions or modes, which capture spatial correlations in

the system response. These modes wül be referred to as POD modes.

In what follows, a flexible analytical framework is proposed to identify a

set of POD modes that accurately describe spatial correlations in the response of

a linear stochastically forced system. The reader is referred to Appendix C for a

detailed treatment of the POD method.

To introduce the proposed framework, let x¡(t) be the continuous versión

of xí . From linear systems theory, x¡(t) can be decomposed in terms of its POD

modes as

»(0"»2>'Wwj (4.1)
.=1

Equation (4,1) shows that, for each x¡(t) i=l,2,..., the spatial distribution is

described by the vector w and the time dependency is given by the coefficient

mit).

In analogy with conventional linear analysis, POMs can be interpreted as

mode shapes while a(t) provides the temporal amplitude evolution of the POD

modes [1].

4.2 Statistical steady state covariance matrix and POD analysis

Proper orthogonal decomposition analysis is taken as the point of departure for

the analysis of ambient system response. Let to this end, the dynamic behavior

of the power system be approximated by the linear time-invariant model

x(/) = Ax(.) + F<f(.)
(4 2.

y(0 = Cx(0 +Df(.)
V • '

where the coefficients ofthe linear model have the usual interpretation (re

fer to Chapter 3).



The solution of x(t) is given by

x(t)=¡y-%x)dx

and

y(t) = c[¡'y-%(x)dT + m,(t).

(4.3)

(4.4)

Under an statistical steady state condition, the covariance matrix of x(t)

and y(.) can be defined as

and

respectively.

Cx-=limfeA('-r")FFV''('-r")r_
t ■

>x- Jo

Cy" =CCx"Cw + dqd"

(4.5)

(4.6)

The expression on the rhs of (4.5) is referred to as the controllability

Grammian.

It is easy to demónstrate that when the number of samples building x¡

z'=l,2,...,« in (C.1.4) tends to infinity, Le., N—* oo, then (C.l.11) converges to C_°° or

Cy°° when the spatio-temporal phenomena under study are the state response

x(í) and the vector ofmeasurements y(t) respectively.

As a proof let Cs (see Appendix, section C.l) be rewritten as

1 T

Cs=—XXT
N

1 .

—

Xl Xl

N

1 .

Xl Xn

N

N

-X/i Xl

N

-Xn Xn



—

5>(f_)*,(h)
tv *=1

~Yx_(f_)_a(fc)
JV t=l

—

Y_Xx(tk)Xn(tk)
JV t_l

1
—y».(&)x_(_o
JV J_l

(4.7)

It follows that, from the law of the large numbers [2]:

1
*

—

£*(f„)*/(fc) -»(-*<(.)"x.(0) whenAf-> oo. (4.8)

This means that the sampling mean tends to the expected valué of the

product of the continuous functions x,(í) and x¡(t). More formally, when _V—» oo,

(4.7) can be rewritten as

limCí=lim—XXr
_*->* A*->o_ tf

:Cx.

(x,(0*xi(r)) ... (x,(r)*x„(0)

(x_(0*xi(/))
••■ (x»(r)*x.(/))

(4.9)

POD analysis allows to find the POM's w,i, Wa,...¿rVjm from the linear ex

pression

Cx^Wx =A*y/x (4.10)

In an analogous manner, the corresponding POM's wyU Wy2,,,.,Wj,n for y(t)

can be obtained from

Cy^'Wy = AyWy (4.11)

In both cases, the predominant spatial structure describing the stochastic

forcing responses x and y are those right eigenvectors corresponding to the lead

ing POV's of Cf0 and C/° respectively. As a consequence, the mode shape of

the mode that dominates the randomly excited response of (4.2) is given by the

valúes of vectors w_, and wy2 which are associated to the state and output re

sponses respectively.
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The application of these criteria are described in subsequent chapters.
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Chapter5

Dominant Stochastic Forcing

Functions

Power systems are continuously subject to random perturbations. Many recent studies

have suggested that random load variations can act to stochastically forcé the power sys

tem and excite the system electromechanical modes.

In this Chapter, a methodology based on the concept of Stochastic Optimals

(SO's) for the identification ofthe stochastic forcing functions that contribute most to

the response ofa linear dynamical system is suggested.

The analytic approach presented here is formulated for a statistical steady state

condition, and focuses on the decomposition of the ensemble average energy in terms of

components of energy uniquely associated with each stochastic forcing function.

The identification procedures are well suited to perform analysis of system ob

servability during random operating condition. Such an approach helps to identify the

elements and operating conditions that contribute the most to the observed system re

sponse.
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5.1 Ensemble average energy decomposition

Before presenting details of the proposed framework, some basic definitions for

a stochastically driving linear system are introduced. A new analytic approach

used to identify the forcing functions that contribute most to the dynamical re

sponse of this white-noise excited linear system is then developed.

Consider the ensemble average energy definitions for Ef and Ey [1],[2]

£.'(0=(|x«|f)

and

for vectors x and y respectively.

Expressions (5.1)-(5.2) can be used as a measure of the energy level of the

dynamical response of the system and depending on the use of the definition

(5.1) or (5.2), this concept of energy can be interpreted in two ways: the energy

of the state response vector and the energy of the vector of measurements.

Let (5.1) be expanded as

&'(0 = (a(0*«(í)) + (a(0*»(0>+... + («.(0'«i(0) (5 3)

It is easily seen that Ef represents the sum of the individual energies of

the elements making up the state vector x. Consequently, Ef is considered to

assess the global energy of the linear system response. Similarly for Ef, one has

that

Ef(t) = (yx(t)y>(0) + (y<(')'y2(t)) + - + {yr(t)'yr(')) (54)

estimates the total energy of the output state vector, and is considered also as a

measure of the total amount of energy in the system.

The objective of this chapter is the formulation of a methodology that de-

composes Ef (Ef° =lim _x Ex') in energy contributions associated with the indi-
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vidual elements of the forcing vector function £,, i.e., find an analytic expression

of the form:

Ex" =SxX+Sx2+--- + Sxm. (5.5)

where the coefficient Sxi , measure the fraction of growth attributable to the forc

ing function §.

This decomposition can be be extended to Eyx as

Ey" =SyX +Sy2+--- + Syin (5.6)

where Syi , measures the contribution of the energy to the output vector due to

the stochastic perturbation §¡.

It should be emphasized that this procedure is a particular result valid for

a linear system driven by delta-uncorrelated white noise.

5.2 Stochastic optimals

As pointed out in previous sections, the covariance matrix, Cx" depends on the

dynamics of the system, given by the linear modes of A, and on the structures

and magnitudes of the forcing functions buüding the matrix F [1],[2]. This idea

can be extended to the ensemble average energy and becomes evident from the

definition, Ef°

m

Ex" = trace (f"Bx°°f) = JVB/'f- . (5.7)
i=X

where Bf° satisfies the equation

AffB_"+B_",A=-I. (5.8)

In an effort to understand this double dependency, the concept of sto

chastic optimals (SO's) is introduced in this work [1],[2] and will be used as an

important tool to determine the most important random excitations in a linear

representation of a physical system.
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More formally, the SO's (fso-i, fso-2, . . ., f_0-„} are n orthonormal vectors that

constitute a reference frame (SO's reference frame), entirely defined by the dynam

ical characteristics of a general linear representation model. The elements of the

set {fso-i, fso-2, . .

., fso-n} keep a hierarchical relation between them, determining

different directions of growth. Specifically, fso.i is said to be associated to the

spatial distribution that allows the optimal growth of a one particular perturba

tion ¿fr and fso-2with the second most optimal growth and so forth.

5.2.1 Mathematical definition of stochastic optimals

The mathematical concept of SO's is formulated trough an optimization prob

lem that consists in the computation of the ensemble average energy of a con

ceptual linear system with a spatial the forcing distribution given by the SO's

vectors.

For convenience of notation, we can write the system representation as

x(í) = Ax(.) + F^„(í) (5.9)

where £__ is an «-dimensional vector (delta uncorrelated white noise) and FJO is

the spatial distribution of the forcing matrix composed by the columns f__x-i,

I_ox-2, • •

-, hox-n-

This is formulated in this research as an optimization problem as ex

plained below.

Optimization problem:.

Given the model (5.9), find a set of «-dimensional normalized vectors,

[Ísox-l, isox-2, ■■■, fsox-n) that maximize, Emso.x , i.e., if

n

ET's0-x = trace\¥soHBxtF.,r, I = ^f__r-;WBx'Jf-_x-* . (5.10)
i=X

then

Maximize £*«>-_ . (5.11)
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Subject to

fsox-,Hfsox-, = 1 . (5.12)

The optimal solution of this optimization problem is developed in Ap

pendix B.5. It is is probed that the solution is given in terms of the eigenvalue

problem

Dx tsox — Aso tsox . [O.JLOj

Use of result (5.13) in (5.10) gives

n

lL so-x
= ) Asox-i tsox-i tsox-i

1 (5*14)

= 2^ Aso-,.
1=1

It can be seen that the sum of the eigenvalues of Bx°° determines, in an sta

tistical sense, the energy of the state response of (5.10). Also from (5.14) the Xsox.¡

can be interpreted as the valué of energy in .E00*,.* due the i-th element of Q0, i.e.,

for the state representation

x(f) = Ax(-)+f*-.x-,£„-,(/), (5.15)

and for, £°°«,.x

K so-x = Asox-i . (y.íO)

Also, from the definition ofBf in Chapter 3, one has that

„
» .. f' A" (r-r.) A(r-r») ,_- 17\

Bx =hmj e
y

'eK 'x„ . (5.17)

It is seen that Bf is a Hermitian matrix, and therefore, its eigenvectors

conform an orthonormal basis with positive and real eigenvalues [3].

From expression (5.13) it can be established the hierarchical nature of the

SO's. After sorting the eigenvalues as A.Í0X_* > Xsox.2> ... > X
sox.„ it is observed that

the respective vectors {f__x-i, f__x-2/ •■*, f__x-«} can be ranked according to the level

of energy computed in (5.16); the eigenvectors corresponding to the greatest ei-
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genvalues of matrix Bx°° represent spatial pattems for the stochastic forcing

functions that optimize the level of excitation of the state response.

Figure 5.1 displays the relation between Xsox., and E °°jo.x in expressions

(5.15)-(5.16).

$(ty i.sox—I
•M +

tL sox—l — Ásax—i

Figure 5.1. Conceptual representation of stochastic optimals.

5.2.2 State response energy decomposition, SO's approach

Each column of a general spatial distribution matrix F can be expressed as a lin

ear combination of the orthonormal basis {fJ0x.i, f__x-2,. . ., f__-n}, namely

í = y__t'fe (5.18)
*=i

Substituting (5.18) into (5.7) gives

&-«£
í n

W-1

( i

/ Ctxffsox-j Bx" / üxk' fi

n n n

—

/ ./ ,/ ,Qxj Ctxk fsox-j Bx fsox-k

' 1 k

(5.19)

n n n

Qxj Qxk tsox-j tsox-kÁsox-k

• I k

Noting now that the elements of the set {fJ0.i, f___2,..., f_0-n}, are orthonor

mal, (5.19) can be rewritten as

Ex* = ¿,¿,\axk' ) hox-k , (5.20)

Further, defining
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Sxi=^(axkj Ásox-k, ¿==1,2,...*,^ (5.21)

then, expression (5.5) becomes evident.

Physically, the coefficients a\ in (5.21)correspond to the projection of the

vector f onto f__x.* ,
and Xsox.k is the corresponding eigenvalue of fsox-k. The ex

tent of energy to which one input contributes to the ensemble average energy of

the state response, is determined by the projection of f, onto the SO's {f__x-i, f__x-2,

••./ *jax-*il*

If the projection is large in the direction of the SO's corresponding to the

greatest eigenvalues {ksox.\, Xsox.2,..., Xsox.„}, then the effect of <f,(.) onto Ex" will be

predominant. This idea is explained schematically in Fig. 5.2 for a 3-dimensional

linear system. Here, the width of the lines is used to distinguish between the

distinct levéis of growth of the perturbation in the düferent directions.

Iiur-l

Ásox-}

fy

Jr*

: af
•

Ásox-2

fsox-2

Ásox—3

fsox-3 ..-*''
ai

«2

Figure 5.2. Decomposition ofan arbitrary spatial distribution

5.2.3 Output response energy decomposition, SO's approach

A simüar analysis to that developed for the state energy can be used to study

the way that stochastic functions excite the output response of the system. The

objective is to decouple ensemble average energy corresponding to the output

vector, in terms of the energy contribution of each input.
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The analytical study is based on the same assumption of capturing the

spatial and dynamical dependency of the output energy and its relationship

with the set of inputs that perturbed the linear system.

Let the equation defining the ensemble of average energy of the output

vector, Eym be rewritten as

Éy" = trace{FHBy"F) + trace(DHQD) . (5.22)
p ~, TTT , Spatial Dependency
Spatial and Dynamical

r- r s

Dependency

It can be seen that Ef? is constituted by two terms: the first term on the

rhs represents the spatial and dynamical dependency. The second terms cap

tures spatial dependency. Simüar conclusions to those performed for the input-

to-state relation about the meaning of SO's concept can be made for the first

term on the rhs of (5.22).

The second term in the rhs of (5.22) can be easily decoupled in compo

nents uniquely associated to a single input. As result of the independency of the

components of £(t), the /-th element in the main diagonal of the matrix DHQD

defined as dy.¡, measures the partial contribution of energy attributable to the z-th

input &(t).

Then the coefficient that measures the whole output energy caused by

<f,(í) wül be defined as

?.,=¿[(a/)2 + dy-,. (5.23)

where Xsoy._ can be obtained from the eigensolution of the linear expression

Dy Xsoy = Ásoytsoy (5.24^

and the term ayk' is a coefficient to be determined associated to the decomposi
tion of f, as a linear combination of the SO's {£soy-i, f_o>-2, ..., fSOy-n)', ayf satisfies

n

f, =Yayk'fsoy-k for i = 1,2 p .

(5.25)
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Several remarks are in order here. The first term on the rhs of (5.23) can be

interpreted as follows.

• The extent to which a single input contributes to the ensemble av

erage energy of the output response, is determined by the projec

tion Of f , OntO the SO'S [fsoy-h íSOy-2, ■ ■

•/ fsoy-n],

• If this projection is large in the direction of SO's corresponding to

greatest eigenvalues {Xsoy.i, Xsoy.2,..., Xsoy.„} then the effect of ¿£t) on

to Ey
°°

wül be predominant.

Furthermore, dy.¡ should be interpreted carefully when numerical simula

tions are performed. For the case of uncorrelated white noise excitation, dy.¡ is

formaüy defined as

é-, = S(0)d,i for i = 1, 2, . . . ,p. (5.26)

where í/„ represents the i-i element of matrix D-TD. In addition, the impulse

function ¿(0) sets the coefficient d¡.y to an infinite valué, which is physically

meaningless. However, when numerical approximations for ¿(0) are adopted,

this coefficient can be used as a measure of energy.

In general, the fraction of energy that only depends of the forcing func

tions, can be measured according to the valué of áu.

Further research need to be performed to developed a general expression

like (5.23) that jointly accounts for the state-dependent and input-dependent

energy terms. Based on numerical simulations, dt.y can be described as a func

tion of Ai"1 , being Ai the time-step integration of certain model under study.

To avoid these difficulties and because this research focuses on the study

of the dynamical behavior of the system under randomly excited load changes,

this thesis will focus on the state-dependent energy term
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Ey" =trace(FHBy'F), (5*27)

Spatial and Dynamical
Dependency

and its associated decomposition

E,m =trace(FHBy"F) = fjs,-y, (5.28)
'

y
' 1=1

Spatial and Dynamical
Dependency

with
"

r 2

iSJyi = 2_. ( a>k ) -Ík>**-* (5.29)

5.3 Modal energy components

The objective of this approach is to decompose the energy of the state response

in terms of energy components associated to the modes that are part of this re

sponse. Our principal objective is to find an expression similar to (5.3) and (5.5),

where the coefficients resulting from the decomposition are expected to measure

the presence of certain mode in the state response of the system, i.e.

Ex" = Sxx-x + Su-x +■■■ + _>__-x , (5.30)

In this representation, the coefficient s\¡ represent the amount of energy

measuring the excitation level of the i-th linear mode. As wül be demonstrated,

this expression results from neglecting the mode-interaction energy terms re

sulting in the computation of Ef. However, these neglected terms can be direct

ly measured and they are small enough to be ignored.

Proofof (5.30)

Let x(t) to be rewritten in terms of dyadic expansión of e
'

, (B.4.2). Then,

x(.) = J'¿e*('-l)v,w,rF^(T„)í/r„. (5.31)
/=1

Direct substitution of expression (5.31) into the definition Ex™, yields
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£xx = lim ( . (5.32)

Rearranging terms of (5.32) results in

&"=lim¿¿(f7^(r,0V(w/)Vv^
i = l 7=1 \ /

Also, from the result (B.4.2)

Ex' = lirn¿¿^}'}'<5(r" " Tn,)eÁ1'{"r"V'{'^)dxndxn, (5.34)
'"**

;=1 y=l

with

rjo-x =trace\FT {xv,T\ v-V-w/FJ.

Further, from (B.1.12), (5.34) tums into

Ex-^imj^Yrjoj'/'^V'^dxn .

"*"

/=1 j=X

By solving the integral in the rhs of (5.36) yields

'■-ssss-^'-^)-
And, in an statistical stationary condition

i=i j=i lAi+Ájl i=x j=x

where the coefficient ^has been defined as

W'J=~7-Í
(li'+rlj)

(5.35)

(5.36)

(5.37)

(5.38)

(5.39)
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Expression (5.38) can be decomposed into energy components associated

with a single mode, and energy contributions resulting from the pairwise mode

interaction. More precisely,

Ex" = Yjr-u-x + 2 reall£ ¿ xj/,¡-x 1 . (5.40)
*=1 [ ;=1 j=l+ 1 j

where use has been made of the property

y/v-x
=

\¡/¡i-x => i¿/,,-x + y/ji-x
= 2 real {xf/tj-x} (5.41)

Now, by assuming that most of the energy is described by the first term

in the rhs of (5.40), Ex00 can be approximated by

Ex" «j^y/n-x . (5.42)
;=1

Under this assumption and noting that sx¡=y/u the proof of (5.30) is

straightforward.

Additional information can be extracted from the definitions of y and tj.

Let sx¡ be a modal energy component of interest, this component can be ex

pressed as

"=-(TJI)'
(5'43)

As can be seen in the equation above, the numerator is uniquely linked

with a single mode. Here, the coefficient tj can be used to describe the effect of

the stochastic forcing functions in a particular modal energy component (e.g. the

greatest modal energy component). To show this, let tj to be decomposed as:

tjn-x =fxT(w,T)'w,Tfx +f2r(w/)'w,rf2 + ... + fmr(w*r)'w,rfm, (5.44)
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where it is evident that each term is uniquely associated with the stochastic forc

ing functions §(í)i, <£{/)i and £ff)m , respectively. The sub-index i denotes the i-th

single mode involved in the decomposition.

A generaüzation of (5.40) to the case of output quantities can be made,

and the procedure results in a relation of the form

Ey = SlX-y + Stt-y H h Sxn-y

where

TJ„-y
üU-y -—.

—

;
r

(xl +a)

with

iju-y
= traaceÍFT (w,r )' v,*CrCv.,w/f) . (5.47)

The düference between expression (5.47) and definition (5.35) lies in the

central term CrC that is part of the definition of r¡y. Equations (5.45)-(5.47) have a

simüar interpretation to that provided by (5.42)-(5.44), but these equations are

appUed to measurement quantities.
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Chapter 6

Power SystemModel

A new and flexible approach to performing state-space analysis of multimachine power

system dynamics that explicitly accounts for random load behavior is described.

The fundamental feature ofthe approach is that system dynamic behavior is rep

resented by a set of non-linear stochastic differential algebraic system equations

(SDAE). For purposes of clarity and visualization, a classical synchronous machine

model is adopted; loads are characterized as a stochastic process and included in the

above representation. This model is then used to obtain a linear stochastic state space

representation.

Typical instantaneous state variables are given in terms of the state response of

the linear SDE power system model and the forcing terms modeling random load chang

es. Techniques to identify the generation and transmission elements that contribute the

most of the observed behavior are developed and methods to characterize modal behavior

are proposed.



6. 1 Power system DAE model

A large class of physical systems, including the quasistationary dynamics of the

large electric power systems can be modeled by a parameter dependent differ

ential-algebraic [1] system of the form:

x = /(x,y,u) u 2m

0 = g(x,y)
V

In this representation, the dynamic state variables x and the instantane

ous state variables y are assumed to describe a two-scale dynamic process. More

precisely, the dynamic variables x have their associated dynamics explicitly

modeled by/ and the dynamics of the instantaneous variables y is assumed to

be so fast that the constrains g =0 are always satisfied. The variables u are pa

rameters which are assumed to have no dynamics in the model (6.1).

This representation extends previous work using single-machine infinite-

bus models to the multimachine case.

For the electric power system, typical dynamic state variables are the time

dependent valúes of generator flux-linkages and rotor phases, control states,

and load dynamic variables. Typical network instantaneous variables are the

load-flow variables, (bus voltages and angles), so that the power balance equa

tions or the load-flow equations typically form the set of constrains g
= 0 [1]

Generator dynamic equations

To introduce the model, assume that each generator is represented by a classical

synchronous machine model; it has a constant voltage behind the transient reac

tance and the differential equations describing the dynamic behavior of the i-th

generator are given by [1]

8, = eoo (co,
-

cus ) i = \,...,n

2H, .

^ E.V,sm(Sj-a) _

,
,

,
.

coi=Tml --Ka (cúi -co*), i = \,...,n
cus X'di
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In the equations above S is the angular rotor position in electrical rad, co is

the rotor angle velocity in electrical rad/s, Tm is the mechanical power input in

pu, X'd, is the transient reactance in pu, E is the internal voltage machine in pu, V

denotes the bus voltage where the machine is connected, Kd is the damping co

efficient, and « is the total number of generators.

Figure 6.1 shows the structure of the adopted multi-machine model [1].

iY¡¡ ixb+2

f

I" « .<*
_^v^___L___.

Pu*JQu

/*■_
_TY-Y-V\_

e.m
'u.*iQu

1 " + !#<-

2 " + 2«_-«-

i=y^v

nb ».

-i_.,+ye*_

■-__.+M.

_P__ ±Q__

Figure 6.1. Structure-preserving model with constant voltage behind reactance

6.2 Algebraic equations

With reference to Figure 6.1, consider an «-bus transmission network with m

generators and nb loads.

For the nodes l,..,nb the power balance equations can be written as [2],[3]

nb

#,+/?_=£ ViVkY,k cos(<9, - 9k - a* ), i = 1, . . . , n, (6.4)
*=i

nb

QL,+QG,=YJViVkY,ksm(ei-ek-a,k), i = \,...,n. (6.5)
*=i

where Pa and QCl are given by the following relations,

(6.6)
EjVjSÍn(Sj-0j) .

, , „ „

R¡,= Y. —

,
/ = _,...,« and Pa = 0, i = n + \,...,nb

X'jj
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_ Ei EíV, cos(Sj — x9j) . , , _ . , /íl rt\
Qp<=

—

-^
—— i = \,...,m and Qa=0, i = m + \ nb . (6./)

X dj X dj

In equations (6.4)-(6.5), Y and a are the magnitude and phase of the ele

ments of 7buS; Pi and PG are the load and generation active power, and Qi and Qg

are the reactive components related to demand and generation. It is assumed

that each component of active a reactive power can be decomposed in two quan

tities, one modeled as a constant impedance load and the other one as an inde

pendent function of time that perturb the valué of the load demand, i.e

ñi=P°u +&i(t),i = \,...,nb,

Qu=Q\>+&,(t),i = \,...,nb.

Figure 6.2 ülustrates the nature of the adopted model.

(6.8)

(6.9)

©^
© ©

»■/_*

Figure 6.2. Active and reactive power at typical bus i including a classical generator model.

Combining this model with (6.4)-(6.5), the following algebraic equations

are obtained

P°l, + <f« +Ibi =Y/,VkYik cos(0i -Qk "O*)» ' =1 nb>
k=X

nb

Q°ü+¿;qí+Qg, =Y/iVkY,ksm(0i -0k -a,k), i = \,...,nb.

(6.10)

(6.11)

It follows that in (6.10) and (6.11), the elements PLI° and Q_/> can be con

verted to admittances as, [1]

yL,
-(Pu'-jQu) . . ,

.i ■*=—■■■ Y*"—
-■ i=l,---,nb. (6.12)

By adding these terms to the diagonal elements of the JF__s matrix, then a

modified admittance matrix l"b_s is defined,
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Y 'bm = Ybus + diag[yLx
■■■

ytui>], (6.13)

From which it follows that (6.10) and (6.11) can be rewritten as,

POü+4h+PG,=YiV,VkY',kCos(a-0k-a',k), i = \,...,nb, (6.14)
*=i

nb

e^+&/+^/=£KK*r/*sin(6.-6_-a^X i = \,.--,nb. (6.15)

where Y and the magnitude and phase of the modüied admittance matrix _"(,__.

As in (6.4)-(6.5) relations (6.6)-(6.7) also must be satisfied for equations (6.14)-

(6.15).

6.3 Power system SDAE model

Let the state vector be composed of the rotor angle and speed deviations, S and

<yas xT=[S\,... ,5„ oíx,...,con\. Defining/ ~[fs fm], according to equation (6.2) the i-

th element of the vector/, is given by,

/_-, =c__(í_t -<_>.), / = _,...,«,
(616)

Using this formulation, and making use of equation (6.3), the i-th element

of the vector/, can be written as,

r.
(Os ( E¡V,ún(5j-0i) j. i Y\ . ic-xrr,

fu-i =——\Tm,
—

Kd,((0i-(0s)\, 7 = 1 m. (6.17)
2/7; \ X di )

To complete the model, the input vector, is defined by u
T

=[Tm¡,.. .,Tmn\.

The instantaneous variables and the constant voltage behind reactance of

generators, define the vector yT=[V,,...,Vnb+m 0\ ,...,6„b\ where V„b=E\,...,V„b+m=Em;

the nonlinear dynamic model can be written in compact notation as

x = /(x,y,u). (6.18)

Now for the constrain equations, if the vector field g is defined as

gT=[gp go\, from (6.10) and (6.11), then the /-th element of gP and gQ respectively,

are written as
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gf., =J^V,VkY',kCos(0,-0k-a',k) -&,-]+,,, i = l,...,nb, (6.19)
*=i

nb

gQ-i=Y_V,VkY,kSÍn(0,-0k-a',k)-fr,-QG,, í = l nb . (6.20)

where relations (6.6)-(6.7) must be satisfied.

The independent term ¿f=[&,&], being fr
r

=[ fr.¡,..., £_>-m] and E,q=\£,q-

i,..., <fe.m], explicitly models the effect of random load perturbations in the pow

er system model.

Combining the above equations yields the set of stochastic differential al

gebraic (SDAE) power system model

x=/(x,y,u) ,_ 2„b+n
R. Í6R« (62i)

0 = g(x,y,<f)

We now describe a procedure used to find a linear model, which approx

imate (6.21) in a región near an operating point.

6.4 Power system linear SDE model

Let x0 to be the initial state vector, yo the initial instantaneous variables, uo and fy

the input vectors corresponding to the equilibrium point. Use of these assump

tions in (6.21) yields,

xo=/(xo,yo,uo) = 0

0 = g(xo,yo,£o)
K • ]

Letting, xo+Ax, yo+Ay,u+Au, f0+A¿; , where the term A denotes small devia

tion, the new states must satisfy,

xo +Ax= /"(xo + Ax,yo +Ay,uo +Au)

0 = g(xo + Ax,yo + Ay,£o + A£)

from which the nonlinear function can be expressed in terms of Taylor's series

expansión,
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xo +Ax = /(xo,yo,uo) +
—Ax +—Ay +—Au

* * du

(6.24)

0 = g(xo,y.,£o)+^Ax + *!-Ay+í§A£dx dy di;

where second order terms involving powers of Ax, Ay , Au and A£ have been ne

glected.

From equation (6.22) then expression (6.24) is rewritten as,

Ax = Dx/Ax + __VAy + _JVAu (6.25)

0 = DxgAx + DygAy + DigA£ (6.26)

where

ft/=^£R2tó" Dyf=^eR2"x2ng af=^sR2'"""
5x <3y 5u

Dxg=^-e R2nb'2"
, Dy, =& 6 R2"4*2"4 and ft, =~ e K2"4*2"4

ax Sy S<f

Equation (6.25)-(6.26) represent the DAE linear model of the power sys

tem.

Combining expressions (6.25) and (6.26), it is possible to find a reduced

linear representation of the form

Ax = AAx + B„Au + BfA£ (6.27)

Equation (6.27) can be obtained by solving (6.26) for y, and then substi

tute this result into (6.25). This gives

A = Dx/ + D,f(Dygy' Dxg e R2""2" , B_ = £V e IR2"*™ and B{ = (D,*)"' D4s e JR2"x2m (6.28)

Since we are using a classical generator model, in (6.3) the mechanical

power input is constant, and then Bu= 0. For this particular case, (6.27) simplifies

to

Ax = AAx + BíA£, (6.29)
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This expression is a first attempt to evalúate the dynamic performance
of

power systems due the natural variabüity of load demand.

6.5 Generalized vector of instantaneous variables

Eq. (6.29) represents the linear SDE power system model. Straightforward anal

ysis shows that network variables such as active and reactive power flow, gen

erated power, phase and magnitude of voltages, frequency, which are measures

that are constantly monitored to ensure the secure operation of the system can

be included in the linear representation.

As an example, let the nonlinear model of the active power flow between

nodes m and « be defined as [4]

Pm = Re{Smn} = Re\Vmeje" /_»*] . (6.30)

Figure 6.3 shows and schematic representation of a line transmission

model. In terms of the variables of the network. the current Im„ can be expressed

as

Imn = Il + 1,0= ymn (Vm —Vn)+ ymoVm , (6.31)

Non - Tap Side

\"

a-X

y~« y

y~.=y,la Tap Side

X-a

y.o= y,

Figure 6.3. Line model used for the computation of the active power flow through a trans

mission line.

By combining expressions (6.30)-(6.31), Pmn turns into,

Pm»(Vm,Vn.0m,0«) = VY ymn COS(«,„n ) + Vrr,2y.,n COS(«0 )
- VmV. COS(&*

~

0n) . (6.32)
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As it can be seen, Pnm is a non-linear function in terms of the power flow varia

bles Vm,Vn,6m and 0„ ,
which are elements of the vector y. So then Pmn and many

other quantities that can be considered as measures extracted from the grid

could be generalized as a y-dependent nonlinear function, /.(y).

Furthermore, by linearizing «(y) over an operating point, an incremental

expression can be found, i.e.,

Ah = DyhAy, (6.33)

where Dy* is the jacobian of the vector function h with respect to y.

Solving (6.26) for Ay, results in

Ay = (Dy, r1 DxgAx + (Dy, )"' D_gA£ . (6.34)

If this result is substituted back in (6.33), then a general linear expression

for the small signal representation of the functions modeling measured quanti

ties in the grid, is obtained as

Ah = Dyk (Dyg )"'DxgAx + Dyk (Dyg )"' DigAS, , (6.35)

where depending on the instantaneous variable of interest the valué of the ma

trix Dyn wül change, whüe the elements Dvg , Dxg and D^ remain unchanged, e.g.,

for the magnitude and angle of the bus voltages Dyh will be the identity matrix.

For the case of active power flow (6.32), one can show that

A*=— (6.36)
dy

In order to simplify notation, the prefix A on the incremental quantities

(e.g., Ax, Ay, Au and Aif) will be omitted in subsequent sections.
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Chapter 7

Application

This chapter discusses the application of the developed procedures to examine the effect

of random load excitation on system behavior.

As a first example, the simplified 189-bus 46-machine model of the Mexican

power grid is used to estimate the electromechanical modes ofthe system under ambient

operating conditions. The results obtained from the linear stochastic formulation are

compared with those obtained from the application ofa measurement-based Blind Source

Separation (BSS) technique and linear analysis of the state-space representation of the

system.

As a second case, advantages of linear analysis over non-linear analysis are pre

sented based on a simple illustrative example.

The well known, two-area four machine benchmark system is used to verify the

ability of the proposed analytic results to predict, in a statistical sense, the effect of the

stochastic driving functions on system dynamic behavior.

Finally, a theoretical estimation of the most important forcing functions and a

modal energy study for the 189-bus 46-machine model is implemented.



7.1 Outline of the studies

The theory developed in previous sections is applied to the test power systems

using a classical representation [1],[2].

The specific objectives of the numerical simulations are:

1. Mode shape computation for dominant modes and comparison be

tween model-based and measurement-based techniques. For this pur

pose, and by using a realistic test power system model, múltiple linear

simulations are performed. Blind source separation, a signal pro

cessing technique [4], is applied to simulation data (state system re

sponse) and the numerical results are compared with the analytic re

sult obtained from the eigenvectors of the state state-response covari

ance matrix (Chapter 4) .

2. A comparison between linear and non-linear models is performed for

a single-machine-infinite-bus representation. In this illustrative exam

ple is underlying simplicity that a linear framework gives to the study
of power systems operating under ambient conditions.

3. Validate theoretical results used to identify the most important sto

chastic forcing functions (Chapter 5,sec 5.2). Several simulations are

developed, and for each experiment, energy ratios representing the

individual effect of certain stochastic forcing function on system be

havior are computed. The mean valué of these results are compared
with the theoretical ratios obtained based on the proposed framework.

4. Extract information of practical interest for power system monitoring
from a linear stochastic representation of a test power system. The

theory developed for the identification of predominant stochastic forc

ing functions and the decomposition of the modal energy (Chapter 5,

sec. 5.2 and 5.3 ).are used to describe the characteristics of the power

system under ambient operating conditions .
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7.2 Mode shape identification

In this section the developed procedures are used to extract the mode shape of

189-bus model of a realistic test power system [3]. For the purpose of this analy

sis, 1 % a stochastic perturbation of both, active and reactive load is used to ex

cite the system.

Comparisons are provided with other analysis methods.

7.2.2 Small signal analysis ofthe system

For reference and comparison, linear analysis [2] is used to identify the major

characteristics of the inter-area modes of interest. Table 7.1 summarizes the five

slowest modes of the system obtained using a conventional small-signal stabüity

program .

Table 7.1. Slowest modes ofthe system

Inter-Area Mode Eigenvalue Frequency (Hz) Damping %

1
-0.0627 + 2.5 106i 0.3996 2.4947

2
-0.0592 + 3.5372Í

0.5630
1.6735

3
-0.0627 + 2.5 106i

0.7098 1.3868

4
-0.0592 + 3.5372Í

0.9164 1.3076

5
-0.0619 + 4.4600Í

0.9898 0.9414

The corresponding speed-based mode shapes are displayed in Figure 7.1. For

Ulustrative purposes, the real part is used to indicate the phase angle.

In section 4.2 the state response x(t) was expressed in terms of their re

spective POD modes. Associated with each of these modes, a mode shape (spa

tial pattern) given by the corresponding POM was obtained.
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^=0.39958 Hz
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o.
1-24

1S-1X >0.S6297 Hz

___
■ ■■■____

' ■ ■ ■ ■ 1

Figure 7.1. Linear mode shape ofthe 189-bus 46-machine model

To clarify the relationship with the statistical modes, we rewrite Cx°° (refer

to Appendix C, and Chapter 4) in terms of sub-matrices C¡¿° CsJ" C_>/° , CuT

Here,

x = [a) Sf

and S is a vector of relative angles

S = [Si-Sx ■■■ Sn-Sxf

Similarly, the vector of speed machines co is defined as

ca = [oa
■■■ a>n]

(7.1)

(7.2)

(7.3)
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Further,

Cx" =
SS i-, Sat

toS \-> toa

(7.4)

To extract the mode shape corresponding to a set of signáis { co\, co2, ...

co„} constituting the vector co, a modal analysis of matrix Cwa*00 ( Sec. 4.2 ) was

performed.

Figure 7.2 shows the spectral energy of the POD decomposition of the

signáis { «ai, co 2, ... oj„}. As shown in this plot, the first five modes account for

about 47.4414% (see Appendix, section C.3) of the total variance (global state-

energy). Note worthüy, the most important mode accounts for about 14% of the

total energy (see Table 7.1).

w

|47.4414 %|

llllllllll
"O 5 10 15 20 25 30 35 40 45 50

PODMode

Figure 7.2. Energy captured by the POD modes

Theoretical mode shapes resulting from POD analysis are displayed in

Figure 2.1. It is noted that, although, POM 1 and POM 2 have opposite signs,

from the eigenvector properties we can see that they are practically the same,

i.e., they identify an oscillation between the same groups of machines and they
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are most likely associated with the linear mode shapes corresponding to the
two

slowest modes at 0.39 Hz and 0.56 Hz in Figure 7.1.

Table 7.2. Energy captured by the POD modes (Figure 7.2)

POD MODE Aefc /2¿¡A,¡

1 13.5731 %

2
11.4424%

3
9.4977 %

4
7.7785 %

5
5.1497%

"a1

i

0.5

0

r
,~24

Machine

13-34

POM2

1 37-p(2

3-46

| o

I

Figure 7.3. Mode shape ofthe five most important POD modes

Of particular note, in Figure 7.3 POM 1 and POM 2 capture an oscilla

tion involving machines 32 and 33 swinging against machines
25 to 31 in cióse
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agreement with the second slowest linear mode at 0.56297 Hz. in Figure 7.1. Fur

thermore, coherent machine groups 1-24, 37-42 and 43-46, identified in Figure

7.3, are a common feature observed for the linear modes at/ =0.39958 Hz and

/=0.56297Hz (see Figure 7.1).

From this graphical description of Figure 7.3, it can be concluded that the

linear modes with the highest presence in the system response are the modes at

/=0.39958 Hz and /=0.56297Hz. This result will be numerically validated in sec

tion 7.5.

In turn, POM 3 can be associated with a mean valué different from zero

or a tendency of the signáis { o¡\, co
_,
... co„}. For practical purposes the other

POD modes are neglected.

For vaüdation, a Blind source separation (BSS) method [4], a measure

ment-based method, is used to extract and identify modal responses and mode

shapes from simulation data and the results obtained are compared graphically

with the analytic result obtained from POD analysis.

The input data used by BSS is composed of the samples of the speed sig

náis obtained from linear stochastic integration of the linear model defined by

expressions (6.29) and (6.35) in Chapter 6. For this numerical procedure, the im-

pUcit Euler scheme (see Appendix D) is used to obtain the state response and

after that buüd the data matrix,

Q = [f_i fi2 ••■

Q»]. (7.5)

where each column of Q, ,is an _V-dimensional vector of the form

co,=[cox(tx) ú)(ti)
■■■ ú)(ín)]t ,i = \,2,...,n. (7.6)

For purposes of comparison, the data in Figure 7.4 is presented as it was

obtained from the numerical simulations. Keeping this in mind, results Exp-

1,2,3,4,5,7,8,9,10 exhibit the same pattern of oscillation as those obtained from

POM 1, except Exp-6 that exhibits a dÜferent pattern as a result of the stochastic

nature of the experiment.
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Figure 7.4. Mode shapes comparison between P0M1 and Sobi-1 7*=100s and A/=212

For the specific case of mode shapes, a possible application of the results

derived in Chapter 5 is that, they could be used to be compared with mode

shapes estimated by multi-signal approaches such as those in [6]-[8] when they

are applied to real data. This comparison could be used to establish if a spatial

distribution of measured units accurately captures the global system behavior

predicted from analytic methods.
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7.3 Power system response to random load variations

As a second example, a simple case study with a single-machine infinite bus sys

tem is used to discuss some basic properties related with the nature of the dy

namic behavior of the system following random load perturbations.

In this analysis, the non-linear and linear responses of the system are

compared and the practical issues associated with linear stochastic analysis are

highlighted.

Since in this thesis stochastic linear and nonlinear models are used (refer

to Chapter 6), suitable numerical methods must be used to simúlate the solution

of the resulting stochastic differential systems. A handful of work have been

developed in the área of non-linear stochastic numerical integration for power

systems [9]- [11].

In our analysis, the approach introduced in reference [9] by Keyou et al,

which deals with the integration of a set of SDAEs, is adopted. In the case of lin

ear SDEs, integration can be performed in a simpler manner by using an implicit

Euler scheme [5].

7.3.2 Illustrative example- single machine infinite-bus system

A simple single-machine-infinite-bus (SMIB) power system model is used

to gain insight into the response of the system to ambient perturbations. The

system data was taken from reference [9]. This system has one generator with a

classical representation and one infinite bus with fixed bus voltage magnitude

and angle. There are three nodes in this system, a PQ node, a PV node and a

slack node for power flow context.

vze v,z.q

_._
Pm X. X,

*

Xa LP n Injmitebus

Figure 7.5. Single machine infinite bus system
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A single line diagram of the system is shown in Figure 7.5

As it was pointed out earlier, the non-linear behavior of the system can be

described by a set of SDAEs as shown in Sec. 6.3, and for the case under study is

described in detail in [9]. On the other hand, the linear behavior is described by

a set of linear SDEs (see Sec. 6.4).

In general, the models under study in this thesis can adopt the following

standard structures:

[x = f(x,y)
Non-linear Model {

'

Linear Model

\Q = g(x,y)-.Q$

Although the theory developed in this research was based on linear anal

ysis, under the assumption of small ambient perturbations, it is expected that

this theory can be applied to some extent to the non-linear case.

For the power system of Figure 7.5, ambient perturbations were modeled

as 0.05 % of random variation of the active and reactive load demand at the PQ

node. More precisely, the standard deviation of the stochastic processes £•• and

¿?e was given by XP and XQ , respectively, with X =5xl0-4 P and Q are the corre

sponding schedules valúes of active and reactive power demand.

Results from the non-linear and linear simulations of the SMIB-case are

displayed in Figure 7.6. It can be observed that, because the relative small valué

of X the linear model describes accurately the system response to ambient per

turbations, i.ev for the SIMB, linear analysis accurately describes the dynamical

behavior of the system under ambient conditions.

For this small size illustrative example more important than accuracy of

the linear and non-linear responses is the interpretation of these responses and

the flexibility gained from linear framework.

x = Ax + B¿;

y
= Cx + D£
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Figure 7.6. Generator state response __í=0.001s. T=5 s.
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Figure 7.7. PQ algebraic variables Aí=0.001s. T=5 s
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As emphasized in previous research [9], the algebraic variables (9 and V)

behave as very fast variables. The deviations caused by random load chances

£propágate into the algebraic variables almost instantaneously. Figure 7.7 dis

plays the dynamic behavior of the magnitude (V) and angle (0) at the load node.

In sharp contrast, the speed variables (speed and angle of the generators)

behave as relatively slow variables. This fact is easily seen in Figure 7.6 where

the time evolution of the dynamical states (¿>and co) is shown.

As discussed in previous sections, linear analysis allows the decomposi

tion of the algebraic quantities in terms of state-dependent and input-dependent

components, i.e,

y= Cx + Df (7.7)
State-dependent l„p,„^endenl

Response Response

The corresponding term of Cx is shown in solid line in Figure 7.7. As

seen in this plot, this state-dependent component captures the osciüatory behav

ior inherent to the dynamic characteristics of system. Therefore, basic infor

mation such as linear mode presence can be obtained from it. By contrast, the

term Df accounts for the noisy behavior of switching loads and it provides the

fast behavior observed in the time evolution of the algebraic variables.

7.4 Two-area, four generator system

The power system used in this case of study is the two-area four-generator sys

tem in [2]. Operating conditions and system parameters are given in [2] for the

classical system representation.

A single line diagram of the system is shown in Figure 7.8. The test sys

tem consists of two áreas interconnected through a radial transmission system.

Each área has two generators. For P4 and Puthe active load is modeled as in sec

tion 6.2. Thus, the corresponding portion of load used for modeling stochastic
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ambient variations is a zero-mean white noise process with a standard deviation

given by 1% of the corresponding nominal active power demand at node 4 and

14 respectively.

Gl

G2

G2

P*,Q* Pl4,Ql4

J G3

G4

Figure 7.8. Single line diagram of two-area test system

The reactive load power Q4 and Qn also have a stochastic time-dependent

fraction of load representing ambient variations, this reactive power is modeled

as a zero-mean white noise with standard deviation given by 1% of the corre

sponding nominal reactive power demand at nodes 4 and 14.

7A.l Problem Description

For this particular case of study, four different stochastic forcing functions are

used to drive the system dynamics; these functions are denoted as fr*- fg4

and fr\4- fgi4. The numerical sub-index denotes the location of the perturbations

(see Figure 7.8).

From previous theory the state ensemble average energy can be decom

posed as

E x
= SxX*Sx2 + Sxi + Sx4 . (7.8)

Two different y-output variables are of interest in this example: the pow

er flow variables (Vi and 9¡ ) and the set of active power flows through transmis-
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sion lines between all the possible pairwise combinations of buses i and /,(?#)• It

follows that the energy associated to the power flow variables E°° ,j-vg can be de

composed as:

E"y-ve = Sxy-ve+Siy-ve + Siy-ve+Sty-ve . (7.9)

Simüarly, for E°°y-p¡j

E^y-Pij = Sxy-Pij + Sly-Pij + Sly-Pij + S*y-Pij . (7.10)

Instead of directly calculating the valúes of the coefficients on the rhs of

the energy expressions, this example focuses on the fraction of the ensemble av

erage energy E° uniquely associated to random variations of load at nodes 4 and

14 respectively.

For E°x define the ratios:

_ Sx\ + SxT, , Sx2 + Sx4
/r, 1 1 \

fax = and Rxnx =
, (7.11)

SxX + Sxl + Sx} + Sx4 SxX + Sx2 + Sil + Sx4

that represent the theoretical mean valué of these portions of energy.

For E^y-vg ,

the portions of energy associated with the forcing functions

fr4- fa and fr\t- £¡2i4, given by

SyX-V» + Sy-s-VB Sy2-VB + Sy4-V0
Ruy- ye = and RxAy = . (7.12)

SyX-VB + Sy2-V0 + Syi-ve + Syi-VB SyX-VB + Sy2-VB + Syj-re + Sy4-ye

respectively.

Simüarly, for the ensemble average energy E°° __>■?!) , we can write

r,
SyX-Ptí + Sy3-ñj Sy2-P,J + Sy4-P,j

Rx4y-¡'ij= and _?i4. -. ,y
=

. (7.13)
SyX-Pij + Sy2-Pij + Syi-Pij + Sy4-Pij SyX-Pij + Sy2-Pij + Sy)-rij + Sy4-P,j

where coefficients Sxi-Sx4 and S^-S^ are as defined in Chapter4.

The theoretical numerical valúes of Rix-r\\x, Riy-vg-ruy- vg and _?4¡/.

píj -Rvxxj- píj are displayed in Table 7.3
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Table 7.3. Theoretical ratios

Ratios Valúes

lUx 0.3033

^u* 0.6967

R*y-V0
0.3053

RlAy-Vd
0.6947

R*y-Pij 0.3229

Rl4y-Pij 0.6771

7.4.2 Numerical procedure and results

An extensive number of numerical simulations (Nt) have been performed to as

sess results Rix-Ri4x, Riy-vg-Rxiy-vg and Rty-Pi¡ -Ruy- píj in Table 7.1 Based on the prin

cipie of superposition for linear systems, three different groups of simulations

were conducted

1) Computation of the energy ET of the power system under statisti

caüy steady state conditions when the system was driven by the

full-set of forcing functions [fr\,fr2 ,Zq\,%qi}- For demonstrative

purposes, comparative results from one single linear and non-

linear simulation are shown in Figure 7.9 through Figure 7.11

2) Simüar to the previous case but now considering that the system

was perturbed by { fr¡_ fg4 }; the energy computed in that case in

denoted as E4.

3) Simüarly, when the system was forced by { fru ¿fQi4 }; the energy

computed in this case is denoted as E¡4.
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Figure 7.9. State Response ofthe two-area test system Aí=0.01s. T=S s
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Figure 7.10. Illustrative power flow variables ofthe two-area test system Aí=0.01s. T=5 s.
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Figure 7.11. Ilustrativo active power flow ofthe two-area test system A/=0.01s. T=S s.

Results Et*, Ef and E,4k obtained from the k-th numerical simulation are

used to estimate the ratios R¿ = Ef/E? and Ruk = Euk/ ES ior each of the

k=l,2,...,_V,. simulations performed. Thus, the statistical sample mean and vari

ance of these Nt. results are used to validate results, Rix-Rux , R<xy-vg-Ri4y- vg and

R4y-Pij -R,4y- Píj.

— *

Numerical /f*i4_
Theoretical Rn.

Figure 7.12. Energy ratios /f-u*/fi4_ Af=0.01s T=300 s.
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Data collected from simulations is graphically displayed as histograms in

Figure 7.14, Figure 7.13 and Figure 7.12. The mean and standard deviation of the

estimated ratios Rk4x-Rk\4x, Rk4y-ve-Rkuy- vg and Rhy-Pij -Rkuy- p¡¡ for k=l,2,...,7V, have

been included.

Figure 7.12 shows the distribution of ratios Rk4x-Rkux (k=l,2,...,Nt) respec

tively; the data was obtained from Ni =5000 simulations. As can be seen in this

Figure, the peak of data is near to the theoretical results R4X-R\4X (Table 7.3) and

the data spread from 0.2 to 0.4 for _?*4_ and from 0.5-0.9 for Rk\4x . Moreover, the

mean valué of data is cióse to the theoretical valúes _?4,-_?i4_.

*

Numérica) Rkny. ve
Theoretical Ruy ve

Figure 7.13. Energy ratios B*rva-Buy ve A/=0.01s T=300 s.

Simüar results are obtained for the ratios Rk4y-vg-Rk,4y- vg (k=l,2,...,N, )

where data is symmetrically distributed around the theoretical results R4yv^-Ri4y-

vg, see Figure 7.13

In Figure 7.14 is observed an important difference between the mean val

ué of of the numerical (Rk4y-p¡j, Rkx4y-pi¡ k=l,2,...,Nt) and the theoretical (R4y-p,) , Ri4y.

píj) ratios however for both cases the data is distributed around the theoretical

ratios.
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Figure 7.14. Energy ratios R*rP_yRurpy AH).01s T=300 s.

Table 7.4. Statistics of numerical results 5000 Experiments AM).01

Theoretical

ratio

mean variance Standard

deviation

Rax 0.3033 0.3024 0.0067 0.0820

Rito 0.6967 0.7184 0.0156 0.1250

R4y-V8
0.3053 0.3039

0.0068 0.0827

R\4y-V0
0.6947 0.7171

0.0158 0.1257

IUy-Pij 0.3229 0.3024 0.0056 0.0748

R\4y-Pij 0.6771 0.3024 0.0129 0.1136

More research about the convergence of numerical results to the theoreti

cal ones needs to be performed, e.g., further analytic research about the proba

bility density function describing the energy ratios Rx and Ry would be of vital

importance to accurately measure the effect of stochastic small-load variations in

the power system dynamical response.

However, for practical purposes, results presented in this example

demónstrate that theory developed for the identification of predominant sto

chastic forcing functions converge to the expected valué of all the possible ratios
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Rx and Ry ; thus, the stochastic optimals procedure can be used in a more realistic

power system model to gain insight into the effect of load perturbations to the

dynamic behavior of the system.

7.5 Application to a 46-Machine, 189-bus test system

A more realistic power system model is analyzed in this case of study. Details of

the system characteristics and base case condition are given in [3]. For this ex

ample, it is assumed that stochastic ambient variations of load are modeled as

white noise processes whit a standard deviation given by 1% of the correspond

ing nominal active and reactive power demand. There exist 91 loads spread all

over the grid, and 46 classical model generators.

Figure 7.15 . State response ofthe 46-machine 189-bus test system Afr=0.01s. T=5 s.

For illustrative purposes, Figure 7.15 gives the complete system state re

sponse to the stochastic excitation already described. Furthermore, some illus

trative algebraic variables (V ,eaná P¡j) are also displayed in Figure 7.16 and

Figure 7.17 ; the corresponding modal content of these responses is shown in
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solid line in each of the cases. As can be seen in these figures, for small-

amplitude noise excitation the linear model accurately described the power sys

tem dynamic behavior.

0.01 r

Non-linear Linear ***********" L. Dynamics

Figure 7.16 . Illustrative power flow variables ofthe 46-machine 189-bus test sys

tem At=0Ms. T=5s.

With the aim of make a compact representation of data, loads have been

labeled according to its appearance in a standard bus data matrix used in power

flow studies, e.g., Px has been associated to the active power load at the node 47

and its respective part modeling stochastically forced variations has been denot

ed as fr-\(t) and so on.

Figure 7.18 shows the spatial pattern of the active and reactive nominal

load at different busses. Table 7.6 displays the eleven most important loads with

their corresponding labels and the associated physical node to which they are

connected.

91



0.4

-0.4

-O.S

- Non-linear Linear x^^mm
___. Dynamics

_l l l l l _l l_

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Time (s)

Figure 7.17 . Illustrative active power flow ofthe 46-machine 189-bus test system Aí=0.01s.
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Figure 7.18 Intensity level ofthe stochastic forcing functions

Furthermore, in order to know the spatial distributions f, that allow the highest

growth of perturbation, the power system under study is excited by a set of forc-
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ing functions { 4*p-u--->p-9\ • ?q-\ i-i ¿Íq-9i}. which has the property of being com

posed by white noise processes whit the same intensity (Homogeneous excita

tion). Results are displayed in Figure 7.19 and Table 7.6

Table 7.5. Largest load demand valúes (Figure 7.18)

Ranking Load

Label

*Physical
Node

¿/-(pu)

1 30 96 0.0741

2 5 51 0.0624

3 33 103 0.062

4 37 109 0.0584

5 27 93 0.0562

6 38 111 0.0556

7 51 131 0.0527

8 21 83 0.0504

9 47 125 0.0480

10 50 129 0.0465

11 **86 180 0.0455

*Bus data

** Predominant Stochastic Forcing func

tion

Ranking Load

Label

*Physical
Node

Afi(pu)

1 30 96 0.0270

2 5 51 0.0205

3 33 103 0.0204

4 37 109 0.0192

5 27 93 0.0185

6 21 83 0.0166

7 50 129 0.0155

8 51 131 0.0154

9 **86 180 0.0152

10 24 87 0.0149

11 47 125 0.0140

*Bus data

** Predominant Stochastic Forc-

ing function

40 50 60

Stochastic forcing

0.025

0.02

% 0.015

I

0.005

0

| Reactive Pot ir variations

l-ll I-I.. ■ I I III.I.I..I..
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Figure 7.19 Effect of spatial distribution ofthe stochastic forcing functions on energy dis

tribution
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Figure 7.19 suggest that fP.S6 and íq-só for £p-86 and <*q-_6 respectively, have

the large components in direction of the most important stochastic optimals

see section 5.2); therefore, changes of load at this node, have a major impact on

system dynamic behavior.

Table 7.6. Most important stochastic forcing functions (Homogeneous excitation).

Figure 7.19

Position gf 'Physical Energyipxi) Posilion -fe 'Physical Energy(pu)
Node Node

1 86 180 0.0239

2 53 135 0.0108

3 66 152 0.0077

4 84 178 0.0075

5 61 147 0.0074

6 83 176 0.0072

7 67 153 0.007

8 63 149 0.007

9 82 175 0.007

10 64 150 0.0069

1 86 180 0.0991

2 81 174 0.0279

3 82 175 0.0278

4 83 176 0.027

5 84 178 0.0249

6 53 135 0.0198

7 72 162 0.0195

8 65 151 0.0166

9 74 164 0.0164

10 64 150 0.0158

Derived from the study previously presented, it is observed that pertur

bations associated with active power variations have a higher impact on system

dynamic response than the reactive components. In turn, Table 7.6 shows that

the energy associated with ¿jp*6 is almost 2.4 higher than the energy impulse by

¿Íq-86. Furthermore, functions labeled by 53-86 drive most of the state response

energy.

7.5.1 Predominant stochastic forcingfunctions

The combined effect of size and spatial distribution of load perturbations is as-

sessed in this section; these two properties have been computed separately in

the previous subsection. The distribution of the state response energy according

to the functions driving the system is displayed in Figure 7.20.

As a result of the characteristics of vectors fp.__(, and íq-sh (see Figure 7.20),

It can be observed that the forcing functions associated with ¿fp-86- £q-86 impulse
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account for 50% of the total energy. Figure 7.21 shows a histogram that groups

data from 100 linear simulations; here, Ru represents the theoretical ratio of the

energy that is driving by ¿f-86- £q-86, and therefore, these results are concentrated

near to Rsa = 0.5060.

0.014

0.012

0.01

a o.ooi

0.006

0.004

0.002

0

-i r- -i i 1 1

_B Reactive Povfcr variations

I - ■ I- lU.
10 20 30 40 50 60 70 «0 90 100

St_c__itic foicing

Figure 7.20 Combined effect of intensity level and spatial distribution ofthe stochastic forc

ing functions on energy distribution

I

rB6= 0.5060.

Energy rano

Figure 7.21 Numerical assessment ofthe energy forced by £_*._.-£ q-só A/=0.01s. T=300 s.
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In Figure 7.19 it is observed that according to their location, <*p-86(r)-¿;c_-86(f),

are the most important active and reactive forcing functions respectively, alt

hough they are not the functions with the highest intensity (see Figure 7.18-

Furthermore, in order to know the spatial distributions f, that allow the

highest growth of perturbation, the power system under study is excited by a

set of forcing functions { £V/,--*..p-9/ , <fe./ ,...., £* Q.9¡}, which has the property of

being composed by white noise processes whit the same intensity (Homogene

ous excitation). Results are displayed in Figure 7.19 and Table 7.6

Table 7.5), their particular spatial distributions fp-86 and fo-86 allow them to

significantly impulse the dynamical state response of the model under study.

Table 7.7. Most important stochastic forcing functions (Figure 7.20)

Position ¿jP 'Physical Energy(pxi) Position %Q 'Physical Energyipu)
Node Node

l 86 180 0.0133

2 5 51 0.0025

3 47 125 0.0015

4 50 129 0.0014

5 21 83 0.0013

6 30 96 0.0011

7 33 103 0.0008

8 34 105 0.0007

9 45 122 0.0007

10 27 93 0.0007

1 86 180 0.4927

2 5 51 0.0544

3 4 50 0.0319

4 38 111 0.0269

5 50 129 0.0247

6 44 120 0.0171

7 34 105 0.0143

8 45 122 0.0137

9 82 175 0.0131

10 51 131 0.0125

According to the results presented in this section, critical stochastic forc

ing functions can be found.

7.5.2 Modal components ofenergy (global perspective)

In section 5.3 a methodology was proposed to decompose the ensemble average

energy of the state and output responses in terms of modal components.

In the following, this methodology was implemented to determine the

dominant modes of the ambient response of the 189-bus, 46-machine test sys

tem, when 1 % of stochastic perturbation of both, active and reactive load is

used to excite the system.
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Based on expression (5.7) (see Chapter 5), Figure 7.22 shows the modal

components of energy as a function of the mode frequencies. There, it is ob

served that the three slowest linear modes at ^=0.3996 Hz, /=0.5630 Hz and

/=0.7098 Hz, captures 83.92 % of the system energy.
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|
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0.2
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Electromechanical Modes

83.92 %

'TI *■*_.%-> __»;««<......
0 0.5 1 1.5 2 2.S 3 3.5

Frequency (Hz)

Figure 7.22 Modal Energy Decomposition

Table 7.8. The five most energetic modes

Eigenvalue Frequency

(Hz)

Energy (pu)

¿1 0.3996 0.4782

x2 0.5630 0.2072

x3 0.7098 0.1538

h 1.0310 0.0271

x_ 0.9898 0.0168

These results, validate that presented in Section 7.2, where it was graph

ically demonstrated that the speed-based mode shapes associated to the domi

nant modes of the system response, present characteristic features observed in

the mode shapes associated to the two slowest linear modes (X* and X2).

This study also demonstrates that from the perspective of modal energy

components, the three inter-area modes (XI, X2, and X3) are the most energetic

modes that underlie system response.
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7.5.3 Modal components ofenergy (localperspective) observability index

Consider a vector of observations y, for example, active power flows at major

transmission lines. For the model under study, 169 transmission lines, 37 power

transformers and 46 machine transformers are included in the line data of the

system. All of these elements are considered as paths of power transfer; howev

er for practical purposes only the 169 power flows through the 169 transmission

lines can be used to be monitored by wide área measurement systems.

The methodology used to give an index of modal observabüity consists,

basically, of decomposing the total ensemble energy (see section 5.3) of certain

set of measurements in elemental contributions (individual measurements);

each individual energy term is decomposed in modal energy terms. The data

collected through this brute forced method is sorted in categories uniquely asso

ciated to a single mode. Thus, it is possible to make an individual mode analysis

to detect the measurements where certain mode has the strong level of energy.

This methodology is described in Figure 7.23.

£."=(y^(í)}+(y>»)+...+(>V)

Observability índices

J i

SÁX-yX
SÁX- .1 JAI-. 1

+
+ +

Sil-yl
Sr.2 **3 Sá 1-y 1

+
+ +

+
+ +

Sin-rrr,
_/.„ yx*

SXn-yr,

Figure 7.23 Proposed observability Índices

The following figures present the results obtained from this approach; re

sults are compared with results obtained from modal observability índices in

reference [12].
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Figure 7.26Modal energy decomposition mode 3

power flow

Based on Figure 7.24 and Figure 7.25 , it is known that mode 1 and mode

2 present almost the same pattern of energy distribution. However, the total en

ergy associated to mode 1 is higher than the total energy of the mode 2 (see Ta

ble 7.9).

From Figure 7.24 and Table 7.9 it is evident that the power flow where is

mode 1 is most observable is the active power flow between nodes 182-86 (label

43 in Figure 7.24). For the case of mode 2, it is observed that the power flow be

tween nodes 181-174 (label 158 in Figure 7.25 ) is a suitable option for monitor

ing this linear mode of frequency 0.5630 Hz; in contrast to other power flows in

this particular case Mode 2 has a stronger presence than Mode 1 i.e, the swing

phenomena associate to Mode 2 is not corrupted by swings associate to the

Mode 1, which is a desirable characteristic for the optimal monitoring of Mode

2.
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Although for the ensemble average state energy ,
mode 2 presents a high

er level of excitation than mode 3, for the case of power flow observations, Mode

3 seems to be more observable than mode 1 and mode 2, this fact is deduced

from the total level of energy of the modes displayed at the bottom of Table 7.9.

In Figure 7.26 it is seen that the energy distribution of mode 3 presents a

dense concentration in the lines labeled as 1-25. This fact gives the high level of

energy to this mode with respect to the rest of the linear modes.

Table 7.9. Power flow energy-observability
Mode I Mode 2 Mode 3

L ne Line Line

Ranking label From To Energy label From To Energy label From To Energy

1 43 182 86 0.0185 43 182 86 0.0058 80 110 113 0.0062

2 21 75 86 0.0166 21 75 86 0.0055 82 113 102 0.0057

3 44 182 185 0.0062 •192 181 180 0.0033 19 64 78 0.0049

4 46 184 182 0.0038 158 181 174 0.0033 103 127 130 0.0047

5 45 185 184 0.0038 44 182 185 0.0019 12 69 64 0.0047

6 *207 185 186 0.0033 46 184 182 0.0012 104 130 89 0.0047

7 163 185 159 0.0024 45 185 184 0.0012 10 53 69 0.0046

8 23 75 77 0.0019 163 185 159 0.001 1 8 51 55 0.0044

9 22 75 84 0.0017 153 164 171 0.001 9 53 55 0.0044

10 167 159 166 0.0012 •240 180 33 0.001 25 89 78 0.0042

••Total 0.0891 ••Total 0.0467 ••Total 0.0894

•Transformer data

•*
Total computed whit 256 active power flows not showing in the Table

These examples Alústrate the abüity of the proposed modal analysis

framework to assess the extent and distribution of modal energy.
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Chapter 8

General Conclusions

TTifs chapter summarizes the main results ofthis thesis and identifies opportuni

ties for future research.

104



8.1 Conclusions

The work described in this thesis, presents a new analytical approach to as

sessing the effect of stochastically excited small disturbances, on system dynam

ic behavior. Across the different examples the consistency of results obtained

from the proposed methodology was demonstrated:

-The mode shape extracted from POD analysis for the predominant mode in the

system response identifies both, the swing patterns as well as the machines most

involved in the oscillations under ambient operating conditions. The analytic

result obtained from the proposed model-based approach was compared whit

results obtained from a measure-based method applied to simulation data. Re

sults show the feasibility of the proposed method.

-The energy-based theory developed in this dissertation aüows to directly esti

mate the energy associated to the dominant linear modes that underlie the sys

tem behavior. These results are in concordance with results obtained from POD

analysis. In both cases, it is concluded that inter-area modes predominantly un

derlie the oscülatory dynamics of the system response to stochastically excited

load disturbances.

-The spatial distribution of the stochastic forcing functions plays an important

role in determining the influence of stochastic perturbations in the variance of

system dynamic behavior. The concept of stochastic optimals and the proposed

methodology used to find the prevalent randomly behaved perturbations, pro

vide valuable information to find and understand hidden system characteristics

such as high level of energy associated to one single input. However, further

research is needed to establish physical interpretation of these results.

As was presented in section 7.5, an energy-based observability index is

proposed. Results are comparable with observability índices that have been de

veloped for linear system representations in the field of control theory.

105



8.2 Future work

Derived from previously discussed theory, suggestions for future áreas of re

search are listed as follow:

In order to make the actual formulation compatible with widely adopted ap

proaches rely in structure preserving model, an analytic structure-preserving

framework for realistic power system models is needed.

-The inclusión of SDE continuous models to describe more general sources of

random excitation, such as intermittent power generation, is a problem of prac

tical interest that requires further analytical research.

The identification of predominant forcing functions modeled as SDE, can be

considered as a direction of future research to formúlate model input reduction

techniques that aüows a comprehensive analysis of realistic power systems that

includes countless sources of uncertainty.
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AppendixA

Ringdown Analysis

Ringdown algorithms use transient (large disturbance) system responses

to estimate modal parameters require existence of transient responses in the sys

tem, which makes their application difficult in continuous (near real-time) mode

estimation.

Prony analysis[l]-[ll] is a classical approach to modal identification

based on the (parametric) frequency domain representation ofmeasured signáis.

Other ringdown analysis algorithms have been successfully applied to power-

system data. These include the Minimal Realization algorithm first introduced

in [12], the Eigenvalue Realization Algorithm (ERA) [13], the Matrix-Pencil

method and the Hankel Total Least Squares (HTLS) In frequency-domain

there are two linear methods that have been used, these are: frequency-domain

identification and [14] z-transform identüication [15].

The methods mentioned above, are considered as linear approaches.

However, there also exist methods that recognize that power systems transient

responses are inherently non-linear, these include methods in the frequency

domain such as: frequency domain pattern recognition (FDPR)[16], the short

time Fourier transform (STFT) [17], and in recent times the digital Taylor Fourier

transform (DTFT) [18]



There also exist another group of non-linear parametric methods

that determines instantaneous valúes of frequency and damping, and ex

ample of techniques composed this group are Hilbert Analysis [19] and

Wavelets [20].
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Appendix B

Supplementary Definitions and

Derivations

B.1 Unit function impulse

a) Definition of the Unit Function Impulse [1]

_>(/) = lim&(t) for í*0

0, \t\>e
&(t) = for t * 0

Te W>£

(B.l.l)

(B.1.2)

&(/)

J_
2e

-e s

FigureA 1.1 Definition ofthe impulse function

This definition implies that

\ 8(t-x)dx =

This function also satisfies [1]

1, ÍX<t<t2

0, tx>tort>t2
(B.1.3)

¿>(í) = 0 for í5¿0 (B.1.4)
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\™J(t)dt = \. (B.l.5)

b) Multiplication ofa Function by an Impulse [1]

Since the impulse 5 (i) exists only at t=0 and the valué of a general deter

ministic function tp(t) at t=0 is tp(0), then

<p(t)S(t) = <p(0)8(t)- (B-l*6)

Simüarly, if d(t) is multiplied by and impulse^/-T) (impulse located at t=T), then

cp(t)5(t-T) = <p(T)d(t-T). (B.l.7)

Provided (p(t) is continuous at t=T.

c) Sampling Property ofthe Unit Impulse Function [1]

From (B.1.6) and (B.1.5) it follows that

r<p(t)dW = <p(0)- (B.1.8)
J-OC

From (B.1.7) and (B.1.5) it follows that

\y(t)5(t-T)dt = <p(T). (B.1.9)

In these definitions is assumed that the function (p(t) is continuous at the in

stant where the impulse is located.

d) Important definitions particular case of ito-integrals (undefined cases) [2]

Integráis involving delta functions, it frequently occurs in the study of

stochastic differential equations that the argument of the delta function is equal

either the upper or the lower limit of the integral, that is, we find integráis like

h=\"f(t)8(t-tx)dt. (B.l. 10)

or
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h = \n _f(t)5(t-t2)dt. (B.l. 11)

and various conventions can be made concerning the valué of such integráis. In

reference [4] is proved that

Ix = \n f(tx)dt. (B.1.12)
i IX

or

/2=0. (B.1.13)

Corresponding to counting all the weight of a delta function at a lower limit of

an integral, and none of the weight at the upper limit.

B.2 Leibniz integration rule

The Leibniz rule for differentiating an integral [3], in its general form is written

as

Kj-;;;;^o*) = {wyw.
-

fw&w)} +Cn*2* ' (B21)

although it is seldom ií ever used in such generality. Usually, either the limits

are constants, or the integrand is independent of time t. Frequent cases are

stt«*)-TO.i{r«-*^)-r2^. í*2-2»

B.3 Exponential function

The term eAl can be formally defined by the convergent power series as [4],

eA'=I + /A + -.2A2+*** (B.3.1)

From this result the term A*eA (,l)
also can be expanded as
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aV'm»a' I + (t-s<)A»+t^L(A»)2+
)̂

I + (í_í-)A"+ÍÍZíí.(A")2+...)A« (B.3.2)

*. /"('-*V

where is demonstrated that AweA"("s')=eA"(' s)A"

B.4 Expansión of ¿fy/g

Having a «-dimensional vector £and a matrix ^ of dimensions n*n, then the

product t;y/4 can be expanded as

íV^ZE^w (B.4.1)

where $ is the Í-/A element of the vector -f ,i.e. £=[ £1 £2 ... fr ]T and % is the ij-th

element of the matrix y/.

Let matrix y/ be written in terms of their column components y/t as

y/=[ y/\ yn ... y/„ ] . Expansión of the product ¿fV<£ yields

4 y/% = (4 y/x
■•• 4 yr»]

and (B.4.1) is obtained.

= 4^4V* + • • • + 4«4'vn (B.4.2)

B.5 Optimization problem

Given (5.9), find a set of n-dimensional normalized vectors,

[fsox-i, fsox-2, •■., fro_-**} that maximize, ¿"V, , i.e.,

If,

f« = /race(FM"B„wE-<* ) = ¿fJM_,wB/f•*•»-■ . (B.4.3)
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Then

Subject to

Maximize E'^-x.

\sox-l f.rox-l = 1 .

(B.4.4)

(B.4.5)

By using the Laplace Multipliers [5] the optimization problem without

restrictions can be recast as

max / \sox-\ tfx tsox-i — y Ásox-i I tsox-i lsox-¡ — 1 I

Further, by defining the functions

(B.4.6)

í^l{lsox-\9tsox-2i*..ilsox-n) —

/ tsox-i ox \sox-i (B.4.7)

and

(_,2\\sox-X ,\sox-2 ,...,lsox-n)
— 7 Abo-i I lsox-i lsox-l

— 11 (B.4.8)

Then the objective function is now redefined in terms of (B.4.7)-(B.4.8) is

rewritten as

¿J(f.!***:-1 ,fsox-2,...,fsox-n) = (_,x(fsox-X,fsox-2,...,fsox-n)
—

£2(__<_r-l ,fsox-2 ,...,fsox-n_) (D.4../)

To find the optimal f_0-i is needed to derívate the objective function with respect

to the vector of interest, thus

d „ d d

r=—
—

o
—-—

£*•
utsox-i Ctlsox-i Ulsox-i

(B.4.10)

From result (B.4.2) in is easily proved that
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f —
_ f "RT

-!_, ; lsox-i JD» Isox-i

Ulsox-i Uísox-i

dfsox-, j=\ *=*

d

Ulsox-i

/ ./ .1 sox-iu jk\ sox-i

=\ k=\

¿(f'-* )2 ^ + 2¿ ¿ (f'-* )*% (f**»-, )
;=i y=i *=m

v ' v '

(B.4.11)

where 6,*° isy'/Mh element of B^00 and fJSo-tis they'-th element of vector f_0.,and the

symmetry of the matrix B„°° has been exploited. Since the derivative of the objec

tive function (scalar function) is with respect to a vector, it results in a vector,

then the /-th component of this result is found to be,

Ul sox-l

It follows easily that,

(t'sox-, )2 bi, + 2¿(f>„_.y0 (f-^.- )
J=X
1*1

= 2¿(_>V'~-.) (B.4.12)
_=i

'

Ulsox-i

C = 2B"fsox- (B.4.13)

The second derivative in the rhs of (B.4. 10) can be obtained following a

similar procedure. Straightforward analysis leads to

dfsc

"

Ql
— 2.Ásox-i\sox- (B.4.14)

Finally substituting (B.4.13)-(B.4.14) in (B.4.10) the i-th general vector sat

isfies

JB tsox-i — Asox-itso (B.4. 15)

and the complete solution of (B.4.6) is composed by the set of eigenvectors of

sr

B.6 Dyadic expansión of the exponential function

From the basic theory of linear algebra the following identifies are well known

AV = VA. (B.4.16)
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And

WA =WA. (B.4.17)

Where the matrices V=col[vi,V2,...,vn],W=row[wiT,W2T,...,wnT]=V1 are the

matrices containing the right and left eigenvectors of matrix A respectively, and

A=diag[A.*,X.2,....,A.*i] contains the eigenvalues of A in its main diagonal. Matrix A

can be factorized as

A = VAW. (B.4.18)

Furthermore A and eAl can be written as dyadic expansión of left and

right eigenvectors [6]:

A=[Vl ... Vn]

X

X,

wi

w.

= [X\X ... X,Vn]

Wl

Wn

(B.4.19)

and

= ^/_v<w*'
i=X

eA'=I + /A + -í2A2+...

= I + í(VAW) +-r (VA2W) + ...

= VW + VAW +-t
2

(VA2W) + ...

=X v-wr +X_w,W +Yi-t2x2v,W + .

■=i 1=1 1=1 2

= ¿(i+u+-rA2+...)v,w/

(B.4.20)

=¿y'v,w,7
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Appendix C

Brief Review on Proper Orthogonal

Decomposition

C. 1 Proper orthogonal decomposition

The proper orthogonal decomposition (POD) provides a basis for the modal de

composition of an ensemble of functions, such as data obtained from measure

ments of observed phenomena. The most striking of its properties is optimality:

POD provides the most efficient way of capturing the dominant components of

an infinite-dimensional process with only finitely few modes [l]-[5]

More precisely, assume that u(x,tj), j=l,2,...,N denotes a sequence of ob

servations on some domain x e íl where jc is a vector of spatial variables, and

tj is the time at which the observations are made. The POD procedure deter

mines empirical orthogonal functions (EOFs), y>¡(x) (.=l,2,...,oo), such that the

projection onto the first EOF's (a low order representation)[l],[2].

p

u(x,tJ) = Yja,(t)y?,(x). (C.l.l)
;=1

is optimal in the sense that the average least squares truncation error, e

/ll ' lf\
* = /L(x,/,)- Ja-(O^x) ) P<N (C.1.2)

is minimized. In (C.1.2) II II denotes the __2-norm and <•> represents the ensemble

average symbol. Also, in (C.l.l) the time-dependent coefficients may be inter

preted as modal coordinates.

The discrete versión of u(x,t¡) can be defined as matrix data that captures its spa

tio-temporal characteristics, let X be defined as
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X=[xi X2 •••

x„]. (C.1.3)

where each column of X, x„ is an A-dimensional vector of the form

Xi=[u(x,,tx) u(xi,t2) ■■■ u(xí,ín)] ,i = \,2,...,n. (C.1.4)

The vector x, can be interpreted as sequence of observations at times t\,...,tN

made at the x¡ location.

Furthermore, the discrete versión of (C.1.2) can be recast as

e =—^ X, -^ÚM^i p<N (C.l.5)
n ¡=x || *=i ¡

where <pk is the discrete versión of the continuous function cpéf) and a# is a coef

ficient to be determined from write x, as a linear combination of the EOF's, i.e.,

N

xí =^a,k<pic , (C.l.6)
t=i

in addition, in (C.1.2) the ensemble average operator have been substituted by

the sample mean. It can be demonstrated that the optimal solution of (C.l.5)

converges to a linear equation of the form [1],[2].

Cc<p = Xeof<p (C.l.7)

where Cc is an _Vx_Vmatrix defined as

Cc=-XrX (C.1.8)
n

The eigenvectors cp of Cr are the empirical orthogonal functions (EOF's),

and they represent an ordered decomposition of the data matrix X, which in an

statistical sense allows to characterize the variation present in the data set

trough a group of uncorrelated variables which are ordered so that the first few

retain most of the variation present in all the original variables. In this way, the

most important EOF's, are that eigenvectors of Cc corresponding to the greatest

eigenvalues A/, and they can conform a reduced basis ( (pxcpi ... (pp) p<n that op

timally spans the space generated by {xi,X2,...,x_}..
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C.2 The method of snapshots

The method of snapshots is a procedure that is appropriate to follow when the

number of samples in x- is much greater than the number of spatial locations

where they are taken
, i.e., for N» n. This approach reduces the computational

burden from an N-dimensional eigenvalue problem to an n-dimensional one.

Under the assumption of linear independence of the vectors of the set

{xi,X2,...,x„} each EOF can be expressed as linear combination of the columns of

X,thus

n

(px =Yjw"x> i=l,2,...,n, (C.1.9)
i

and by substituting this expression into (C.l.7), a new eigenvalue problem can

be formulated [1],[2] as a solution of (C.1.5), and it is expressed as

C.w = /lw, (C.1.10)

where Cs is an n -<n matrix defined as

Cs = -xxT (C.l.ll)
N

v '

and their eigenvectors w, are the Proper Orthogonal Modes (POMs) and the as

sociated eigenvalues X are the Proper Orthogonal Valúes (POVs).As was men

tioned for the EOF's the POMs associated to the components that most captures

the variation of the matrix data X are those eigenvectors associated to the great

est eigenvalues POVs.

C.3 Energy relations

Following reference [1] ,-
the energy of a vector sequence x, buüding an N*n ma

trix is defined by the Frobernious norm

£(C) = ¿¿||x,||2=¿A- (C.1.12)
/=i y=i 4=1

Defining the total energy as E
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E = 5> (C.1.13)
*=i

The energy of an eigenvalue, Ai can be expressed as Ei

(X/E)x\00% (C.l. 14)
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AppendixD

Numerical Integration of

Stochastic Differential Equations

D. 1 Numerical integration of stochastic differential equations

The study of power systems under ambient operating conditions take in

to account phenomena that is stochastic in nature. Therefore, models formulated

for this purpose differ from the deterministic models commonly used, and spe

cial features of them must be carefully interpreted, a vast number of references

can be found that explain the theory involved in the solution of the so called

stochastic düferential equations (SDE) [l]-[4]

In this section a brief description of one of the múltiple schemes to SDE

solution is reviewed, this with the aim of make a clear exposition of the numeri

cal validation of the theoretical results developed in this research.

D. 2 Implicit euler scheme

The simplest implicit scheme solution of stochastic differential equations is the

Euler scheme, it has a wide range of step sizes suitable for the approximation of

stochastic dynamical systems, in particular those involving vastly different time

scales [1].

Consider a stochastic differential equation of the form

dx = f(x)dt + adW (C.1.15)
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Where f(x) is a deterministic nonlinear function and the term adW, the

diffusion term that represents the stochastic part of model (C.l. 15), the solution

of it can be obtained by using the discrete recursive formula [1]

Xn+X = Xn + hfn*X + «nAWn (C. 1 .16)

In (C.l. 16) to=0<h=At<...<tk=kAt<...<T=NAt is the discretized versión of the con

tinuous interval of time re [0 T\; thus, Xn+i=x(tn+i), Xn=x(tn), fn+i=f(tn+i), and AW» are

increments of a standard Wiener process, for detaüs in the formulation of

(C.1.15)-(C.1.16) the reader can consult references [1]- [5].

For multi-dimensional linear stochastic differential systems, (C.l. 15) takes the

form given by

dx = Axdt + FdW (C.1.17)

Being x an n-dimensional vector and dW an m-dimensional standardWinner

process [l], A and F are matrices of appropriate dimensions. From (C.l. 16) it

follows that for the multidimensional linear case,

XnrX =X. + hAXn.X + CCnAWr, (C.l. 18)

and solving for X„+\, then

Xn*\ =(I-hA)',(Xr,+ar,AWr,) (C.l. 19)

For numerical validation of the analytical results developed in this thesis, the

implicit Euler scheme is widely used in Chapter 7.
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