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RESUMEN

Esta tesis presenta una técnica de reducciéon de orden de modelos (MOR, por sus siglas
en inglés) basada en descomposicion en valores singulares (SVD) y enfocada al analisis de
transitorios electromagnéticos. El método propuesto adopta inicialmente la aproximacion
racional de una funcion dependiente de la frecuencia, expresada como un conjunto de
fracciones parciales, obtenida a través de vector fitting (VF) para un rango amplio de
frecuencias. Subsecuentemente, la metodologia propuesta aplica un truncamiento basado en
SVD a la aproximacion obtenida por VF en bajas frecuencias, resultando en una
aproximacion de orden reducido para bajas frecuencias. Para el rango de altas frecuencias, el
truncamiento basado en SVD es aplicado al error obtenido al comparar la aproximacion
original de VF y la aproximacion de orden reducido para bajas frecuencias. Finalmente, las
aproximaciones resultantes son conjuntadas para la solucion de transitorios
electromagnéticos. El modelo de orden reducido obtenido logra disminuir el uso de recursos
computacionales, comparado con el sistema original dado por VF, sin perder precision. Se
presentan dos ejemplos 1lustrativos se presentan para validar el método propuesto.
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ABSTRACT

This thesis presents a model order reduction (MOR) technique, based on singular value
decomposition (SVD), aimed to electromagnetic transient (EMT) analysis. The proposed
method 1nitially adopts a rational approximation of a frequency-dependent function,
expressed as a set of partial fractions and obtained by the vector fitting (VF) software tool for
a wide frequency range. Subsequently, the method applies SVD-based truncation to the
approximation given by VF in the low-frequency (LF) range, resulting in a LF reduced-order
approximation. Then, the SVD-based truncation is applied to the error obtained by comparing
the VF function and the LF approximation in the high-frequency (HF) range. Finally, the
resultant LF and HF reduced-order approximations are assembled for EMT solution. The
obtained reduced-order model achieves computational savings compared to the original full-
size system given by VF without losing accuracy. Two illustrative examples are presented to
validate the proposed method.
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1 Introduction

1 INTRODUCTION

1.1 Use of rational approximations for electromagnetic transient (EMT)
analysis

Rational approximations, represented by a set of partial fractions, are commonly used
for the modeling and simulation of electrical networks and/or individual elements such as
transmission lines and transformers [1-4]. The fact that a rational approximation can be
expressed as a state-space formulation makes attractive to employ model order reduction
(MOR) techniques to optimize the dimensions of the state-space system of the model under
analysis.

Due to different dynamics involved in an electrical phenomenon, wide-band models that
cover from few Hertz to several thousands of Hertz are employed. In fact, most of the
existent MOR techniques consider by default a wide frequency range [4]. However, there are
cases in which a narrow frequency bandwidth has the most impact on the phenomenon under
analysis. Recently, frequency-domain MOR methods have been developed to represent a
system via a reduced-order model accurate within a specific frequency bandwidth [5-8].
Therefore, a rational approximation can be obtained for EMT analysis and reduced either to
represent wide frequency-range phenomena or to focus on specific frequency-range via a
subset of poles.

1.2 Problem statement

Conventional rational fitting software tools have as input an arbitrary range of
frequencies pre-specified by the user. Also, the order of the rational approximation is
typically adjusted by a trial-error procedure to comply with an acceptable approximation
error. There have been some proposals on the order of rational approximation for a given
approximation error [9,10]; however, rigorously speaking, no precise criterion exists.
Moreover, traditional fitting methods are prompted to generate out-of-band poles for which

an elimination scheme 1s required; otherwise, a spurious oscillatory phenomenon may appear
in the EMT simulation [11].
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1.3 Thesis objective

This thesis proposes a practical and effective MOR technique based on direct application
of singular value decomposition (SVD) and valid on an arbitrarily wide frequency bandwidth.
The proposed method has as starting system the set of poles (equivalently, partial fractions)
obtained by the vector fitting (VF) [1] software tool, and obtains two subsets of poles, via
SVD truncation, corresponding to low- and high-frequency sub-bands. The two subsets of

poles (alternatively, partial fractions) are then assembled for EMT simulation in the form of
state-space realizations.



2 Vector Fitting and state space realization

2 VECTOR FITTING AND STATE-SPACE
REALIZATIONS

2.1 Description of VF

VF 1s a numerical tool aimed to approximate, via rational functions, calculated or
measured frequency response of a given network. VF 1s widely used, mainly in the power
systems area, due to its accuracy and robustness [1,11,12]. A brief description of VF 1is
presented in this section.

A rational (scalar) function approximation of order n can be expressed as the sum of
partial fractions:

n

C

fls)= Ak —+d+sh, (2.1)
- =] S_pk

where ¢, and p; are residues and poles, respectively; d and 4 represent real constant terms.

The problem is to estimate (¢, pr, d, h) in (2.1). To achieve this, (2.1) 1s evaluated using
N frequency samples within a given frequency bandwidth and the resulting system 1s solved
as a linear problem 1n two steps as described next.

Stepl. Pole identification

An arbitrary set of poles a, 1s initially proposed, and f(s) 1s multiplied by an unknown

function o(s), leading to

1

o(s)f(s)=) —+d+sh (2.2)

k=l

In addition, the unknown function a(s) 1s represented by a rational approximation of the
type

o(s)= o], (2.3)
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The function o(s) 1s required to satisfy the condition that the poles of both o(s) and

o(s)f(s) are the same. Multiplying (2.3) by f(s) and matching with (2.2) results in:

or, in compact form

n

—

> %t h\— 5
Qe td+sh = ) —=

Also, (2.4) can be rewritten as [1]

/H

z,

\ k=1

C

5~

+d+sh

S0,

1=l

N\ £ n o~ \

k.

) k=1 574

+1 f(s),

/

(o f)_m (s)=0,(s) f(s).

f($)=f(s).

Then, evaluating (2.6) for a specific frequency point /, we obtain

Ax=b,
where:
| _
Af — l l 1, S‘. v "f(Sf) :
54 5 —Qy 5, —4q,
x:[CI, » Cp da h1 E]! EN]T
where 7T denotes transposed.
b, = f(s,).

—f(s,) |

S, —dy

(2.4)

(2.5)

(2.6)

(2.7)

(2.8a)

(2.8b)

(2.8¢)

Evaluating (2.8a) and (2.8c) for N points results in the following over-determined linear

matrix equation:

Ax=b.

Finally, (2.9) i1s solved as a least squares problem.

(2.9)
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Each term within parenthesis in (2.4) can be expressed as:

(f)(8)=hE=, F o L) (2.10)

f(s)=—-L—=h* (2.11)

It can be noticed in (2.11) that the poles of f(s) correspond to the zeros of ap/(s). Hence,
solving (2.9) provides a set of zeros of ay;(s), and according to (2.11), the new set of poles
corresponding to f(s) are obtained. It is noted that solution of (2.9) can produce unstable
poles; this problem 1s solved in practical implementations by inverting the sign of the real
part of the unstable poles [1].

Step2. Residue identification

After calculating the poles of f(s), its corresponding zeros are calculated as the
eigenvalues of

H=A-b¢' (2.12)

where A 1s a diagonal matrix containing the arbitrary starting poles, b represents a column

$ D ¢ b = S :
vector consisting of “ones”, and ¢’ 1s a row vector composed by the residues of ap/(s).

The outlined procedure has been generalized and implemented into the VF software tool
for the case of a frequency-dependent matrix F(s).
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2.2 Matrix rational approximations and state-space realizations

In the general multi-input multi-output (MIMO) case, a transfer function evaluated for a
given bandwidth 1s assumed to be available as a frequency-dependent matrix F(s).

Based on the theory presented in section 2.1 for a scalar function, F(s), of size m X m
can be readily approximated via VF with all of its elements sharing a common set of poles

[1, 13]. The resultant rational approximation, assumed of order n, can be expressed as a state-
space formulation as follows [13]:

X =Ax+ Bu
(2.13)
vyv=Cx+ Du

The state-space system, as in (2.13), can be used for EMT simulation or for MOR
purposes. Matrices A, B, C and D, for the multiphase case, are structured as follows:

Azdlag {pl’ p'.!’ T pn’ pl’ pl’ . pn’ s pl’ p?’ T prf}’(2'14a)
11 1 0 0 0 0 0 ol
l |
g |¥ ¥ e R 1 4 8 =R (2.14b)
00 - 000 - 0 ] 1
] Cian Gz Cian G211 G222 77 Gan tand  Clin.2 l.m.n
C C Ch C": C’:l ¢5 55 T C""n P 1] 2.m,2 S C""mn
C - 2.1 Z:I.Z 2.0 22T T2 22y RNTIN ...: il _.: ; , (214C)
_Cm_l.] Cm.l.Z T Cm,l.n CmEI Cm.ﬂ 2 Cm,ln . mon | mom,2 mnn
i dl 1 dI.E l.m
dj | d"" 2 2.m
D=| 7 N (2.14d)
dm.l dru.?. m.m




2 Vector Fitting and state space realization

In (2.14), A, B, C, and D are of dimensions (mxn)x(mxn), (mxn)xm, mx(mxn), and mxm,
respectively. Expression (2.14a) shows that, for matrix A, the common set of poles 1is
repeated m times. Similarly, a row vector containing m “ones” is repeated in matrix B, as
shown 1n (2.14b). Also, in (2.14c) ¢;; represents the (z'"‘, j‘h) element of the residue matrix
corresponding to the k" pole.

Based on (2.14), the matrix structure for the scalar case becomes:

A =diag {p,, Pas Y%, pn}, (2.15a)
B=[1, 1, -, 1] (2.15b)
C:[c,, Cay " cn], (2.15c¢)

and D represents a constant term.

2.3 Conclusions

The fundamentals of the VF software tool have been presented. Also, it has been stated
that VF can approximate both scalar functions and frequency-dependent matrices. Finally, the
conversion of rational approximations to state-space formulation is outlined.
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3 SVD APPLIED TO A FITTED FUNCTION IN A
SPECIFIC FREQUENCY RANGE

In this Chapter, the proposed SVD-based MOR technique, applied to a rational
approximation 1n a specific frequency bandwidth, is described [14].

3.1 Solution scheme for single-phase case

The proposed SVD-based MOR method considers an initial nth order rational
approximation fyg, obtained via VF, of a frequency-dependent function f{(s) for the frequency
range 2. The approximation fyr can be expressed for the single-phase case as

P~ F ——¢i (3.1)

h=fe—d=Y —— (3.2)

Evaluation of (3.2) for the frequency range €2 with N frequency samples gives

h= Mx, (3.3)
where
] 1 |
5|_P| Sl—pE Sl_pn
I | ]
M = SE o P| SQ - p‘l SZ o p:f ’ (34)
l l |
Sy TP ST P Sv = P _
x=[c, ¢, . ¢] (3.5)
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Note that complex poles and residues come in conjugate pairs (conjugate denoted by *),
1.€., for two consecutive complex partial fractions k and k+1:

pk = pk.p.]! C,L— :C;H.p (36)
where:

P =Pt P> € =€t G (3.7)

To preserve the conjugacy, vector x in (3.5) is separated into real and imaginary parts, as

indicated 1n (3.8). Matrix M is rearranged into a matrix M’ with M,'_k and M, ., representing

the (/, k) and (/, k+1) elements of M’, respectively, as shown in (3.9).

: . * T
R | .F i r : ! I
x _[Cl 9 CI, 631 C31. .l.- C C I] (3-8)

n—|? 11—

M!“k= : + : ey Mg = Y J —, [=12,--,N, k=12,---,n. (3.9)
S —Px S~ Py S —Pv S~ P

Next, matrix M’ is separated into its real and imaginary parts, resulting 1n

H=M"x" (3.10)
where:
I = -Re{h}- (3.11)
Im{h} | |
-Re{M'}_
M*" = . (3.12)
Im{M |}
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To simplify notation, M and x will be used hereafter instead of M* and x* respectively.
To account for a partial frequency bandwidth, either low-frequency (LF) or high-frequency
(HF), a diagonal weighting matrix W, with major effect on the specific frequency range, is
applied to (3.10), resulting in

v=WH = WMbx. (3.13)

SVD 1s applied to the product WM of (3.13), yielding

v=UZV"x. (3.14)

Alternatively, system (3.14) can be expressed as

PVix=p, (3:12)
where:

g=U"w (3.16)

The singular values 1n X represent dynamics of the weighted matrix M. In this thesis, the
Matlab® software [15] has been used to calculate the SVD decomposition providing X as
diagonal matrix with the magnitude of the singular values ordered decreasingly. Then, the
system (3.15) is truncated by selecting the r most significant singular values of the diagonal
matrix X, with r < n, and taking the corresponding r rows of V'; this results in

EVix=g (3.17)

The solution vector x of (3.17) 1s obtained by using the Matlab® backslash operator ‘\’
[15]. This results in a sparse vector x where the nonzero positions indicate the r partial
fractions that are extracted from (3.2) to form the reduced-order system for the partial

frequency bandwidth.

After application of SVD, as described above, the following reduced-order system is

obtained:

h = .. (3.18)

10
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Note that the poles of (3.18) are a subset of the original (stable) poles given by VF, thus
keeping stability properties. The accuracy of the obtained reduced-order system is bounded
by the imtial approximation error by VF.

3.2 Solution scheme for multiphase case

In the multiphase case, we assume a frequency-dependent matrix function F(s) of
dimensions m X m, and its corresponding matrix approximation of order n, provided by VF
and assuming a common set of poles, given by [13,16]:

n Ck

k=1 3~ Py

Fiz)l= + D, (3.19)

where C; represents an m X m residue matrix corresponding to pole k.

Removing the contribution of the constant term D in (3.19), results in

Q=F—D=i—c‘u

k=1 3 — Py

(3.20)

To apply the SVD-based truncation to the multiphase case requires an especial matrix
arrangement, as described next.
The direct transmission matrix D 1s arranged 1n row format, yielding

D=[d, d, - d_., d, dy - d d ., d, - d_ ] 321

lm? 2m? ? ml? mm

where d;; represents the (i, /) element of the D matrix. As for matrix F,

' :[ﬁl -fi'.'{ f]m fl] f22 .f?_n;- Y -fnrl ﬁn? f:"""]’ (3'22)

Expression (3.22) shows that the elements of matrix function F(s) have been arranged 1n
column format for the N frequency samples, i.e., f;; denotes the (i, /) element of the F
matrix function evaluated for N frequencies and arranged as column. The resulting

dimensions of D and F are (mxm) x1 and (mxm) X N, respectively.

A typical column evaluation in (3.22), based on (3.20), for a single frequency point

yields

11
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C .
fo—d =) — i=j=12m, (3.23)

Note that evaluation of (3.23) implies the use of the set of poles only once, instead of m
times. This evaluation also implies that residue matrix C of (2.14c) be arranged as

w® 6 @ » ¥ w & B & 8 @ [ BN

Ciaa G Cimi G Gaog Caml Caiii ‘Gl —_—
- .8 @ » L " 8. ¢ e y . e

C . Cl.l.l ('I.Z.:' (’l,m.l CE.I.J CE.Z.J C?_.m.l Cm,l.! Cm.ll‘ Cm.m.l 3 24
— - . " . ™ # " . . b ( - )
- o - - ] & ] [ ] ]

C C & & @ » & @ @ L] " & @

L 1.1.n 2o Cl.m.n CE.I.H c’ll.rr 2om.n C’m,l.n m.2.n m.n.n

resulting in dimensions of nx(mxm).

Based on (3.21) to (3.24), evaluation of (3.20) for N frequency samples in a given
frequency range €2, provides the system

O = Mx, (3.25)

where M € C**" and Q € CV"™"

[t 1s mentioned that matrix M in (3.25) has the same structure as in the single-phase case.
Finally, (3.25) is separated into real and imaginary parts, weighted, and truncated via SVD,

similarly to the single-phase case.

It is mentioned that alternative rational approximation techniques, such as Bode-based
method, can be used within the proposed SVD-based MOR method.

3.3 Conclusions

The SVD-based MOR method applied to a specific frequency bandwidth for the single-
and multiphase cases has been presented. The presented SVD-based method can be applied to
a function (or matrix) when a specific frequency bandwidth phenomenon 1s under interest,

e.g., overvoltages, switching, lightning, etc.

12
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4 SVD-BASED MOR TECHNIQUE AND
TIME-DOMAIN RESPONSE

In Chapter 3, the SVD technique is applied to a rational approximation in a specific
frequency bandwidth to obtain a reduced-order system, amenable to EMT simulation. This
Chapter describes the application of SVD to a rational approximation by partitioning a wide
frequency range in two regions.

4.1 General steps

The complete time-domain response of the SVD-based MOR system can be achieved by
following the next steps, where two small sets of poles are used for illustration purposes.

Step 1. A low-frequency approximation, fir, for range Q¢ is obtained by applying the
SVD-based MOR method to the original approximation given by VF, f(s), as described in
Chapter 3 and as illustrated in Fig. 4.1. It is assumed that the fir approximation involves the
following sets of poles and residues, respectively:

pLF={al’ a,, a3}, CLFZ{CP kP CB} (4.1)

Q.. D

Fig. 4.1. Illustration of fi r approximation and Ey error

13
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Step 2. The error (Exr) between the f(s) and fir approximations, evaluated in range Qyr,
1s calculated and approximated via rational functions, see Fig. 4.1. This is justified a) by the
assumption of obtaining a good LF approximation of f(s) and b) to obtain an appropriate
interfacing of poles and zeros from LF to HF.

Step 3. The SVD-based MOR method is applied to Eyr from step 2 obtaining the
following sets of poles and residues:

P, {8 @ B, B Co =100 s M ) (4.2)

Note that fi r and Eyr approximations share some poles, i.e., a; and as.

Step 4. The unshared poles from pr are included into Pe,. » thus forming a new single set

of poles. This yields approximation f; g,yr, having the following sets of poles and residues:

pLF+HF={aI’ d,, 4y, d,, as}=

" n

CLF+HF={C:= Crs  G3s  Cy, CS}’

(4.3)

where:

"

& =0, +,, U =0y i (4.4)

Note that, in (4.3), the shared poles are not repeated and its corresponding residues are
added up.

Step 5. The fast dynamics ranging from ¢, to f, (sw denotes switching time) are

calculated by using the f; r.yr approximation, Fig. 4.3.

Step 6. The time-domain response from f, to fr 1S calculated by using the fir
approximation, Fig. 4.3.

Based on steps 5 and 6, the time-domain response is simulated using fi g.yr first, then a
set of initial conditions have to be obtained for the starting simulation of fi g at t = t,,.
Computation of initial conditions is presented section 4.3. Also, 1t 1s noted that the fi piur
approximation involves more poles than the Eyr approximation; however, the firiur
approximation is only used while the fast dynamics last. Several experiments show that few
poles, e.g., one to five, are unshared; thus, the dimensions of firsur are not substantially

14
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increased compared to fEHF' An nteresting feature of the procedure above is that the

simulation of fir can utilize a time-step larger than the one used for fig.ur simulation. A
flowchart of the outlined procedure is presented in Fig. 4.2.

Obtainfu: In QLF

pLF:{al" i, a3} CLFZ{CI’ Cys C}}

Calculate Eypin Qur

Apply SVD to Eyr

Compute the transient
(rf) (o [.u‘w) USiﬂgfLFmF

Switch from fi r.ur to fir to complete
the total simulation time, #.

End

Fig. 4.2. Flowchart of general steps

15
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4.2 Discretization of ODEs

Due to fir+urF and fi g are obtained from an original rational approximation given by VF,

they can be expressed as linear time-invariant (LTI) systems in the state-space domain,
generically represented by

X=Ax+ Bu (4.5)
y=Cx+du |
The trapezoidal rule of integration applied to (4.5) results in [17]:
At
X, =X +7|:A(.xk +X,, )+ B(u, +u,,,)|. (4.6)
where time has been discretized as t = ¢, ¢4, ... , ty ,with t, = kAt.
Rearranging (4.6), results in
(At Al At
I Alx, =|1+—A|x, +—B(u, +u.,), (4.7)
. 2 r S 2
where I represents an identity matrix of appropriate dimensions.
Equation (4.7) can be expressed in compact form as
ka+| — M‘xk s Brfum*’ (48)
where
! At
L=] A A, M=1+—A, B =AiB, u, = A T W
2 2 2
From (4.8), x4 1S obtained as
'xk+l = L_l (Mxk £ Bﬂ'umf )’ (4'9)
From (4.5) the time-domain output 1s given by
Yiwt = CXyy AUy, (4.10)
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4 SVD-based MOR technique and time-domain response

The time-domain simulation starts with the approximation f; r,ur expressed as the state-

space system (4.5) and discretized as in (4.9)-(4.10), and runs until a predetermined
simulation time t,,, Fig. 4.3

y(1)

'
Use fupsr—p————— Usefir ——————"

|
|
} |
; |
|
|
|
|

2 SW f
Fig. 4.3 System configuration of time-domain simulation of fj r,yr and f; r approximations

4.3 Computation of initial conditions

The change from simulating the response of the fi rynr System to the simulation of fi g at
time ¢ = ¢y, (corresponding to time-step k+1) 1s achieved by using an appropriate set of initial

conditions for the fi r approximation.

To obtain the appropriate set of initial conditions for fi g, consider the numerical solution

; LF+HF 3 :
of the fLr+nr System at time ¢, represented as the state vector x, .. and its corresponding

output y,frHF as given by (4.11). For illustration purposes, only five states are included in

(4.11).
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4 SVD-based MOR technique and time-domain response

LF+HF _ | _LF+HF LF+HF _ LF+HF
Al T X Vit = ClpmpXis AU, (4.11)

e, 8 Kk +1

In addition, the state vector and the output for the fir approximation at ¢, are expressed
as:

X,
LF | _LF LF LF
X1 = | %2 Yiel = CLEX k4] +d“k+l‘ (4.12)
LF
X
= 3 Jk+1

where, for illustration purposes, only three states are assumed. Note that the constant term d

in (4.11) and (4.12) 1s the same due to its effect has been removed in (3.2).

LF+HF LF .
At t = t,,, output yk+1+ equals the output of the fig systemy,, , noting that pir

represents a subset of ppg.ur. Then, based on (4.4) and (4.10), the initial condition state

LF LF+HF

vector for f g 1s given by X, which is obtained as a subset of X,,, "~ ; this is represented by

LF " LF+HF |

A X !
LF LF+HF

xF L= X (4.13)
LF LF+HF

.x':g -x'; ’

L. = e e &2 Jk+|

This direct transition is due to the assumption of having fitted the error function Eyr,
yielding a direct relation between elements of subsets c¢pr and ¢pr.nr, as shown in (4.4). Thus,

; . : ; ‘ ; : ) LF
the time-domain response is carried on using the fi g approximation with X, , from (4.13) as

initial conditions at ¢,,,.
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4 SVD-based MOR technique and time-domain response

4.4 Computation of rms error

The rms error of the time-domain output given by the SVD-based MOR method, taking
as reference the full-size system initially obtained by VF, is calculated in this thesis with:

; (4.14)

where yye corresponds to the time-domain response achieved with VF and ysyp 1s the output
obtained by using the SVD-based MOR method.

4.5 Conclusions

In this Chapter, the general MOR methodology based on SVD has been presented. It has
been shown that a direct transition between the simulation of LF and HF reduced-order
approximations 1s achieved by fitting the function error between the original function and the

fLr function.
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5 Case studies

S5 CASE STUDIES

In this Chapter, the SVD-based MOR method, described in Chapters 3 and 4, is validated
by using two illustrative examples (single- and three-phase systems). Also, its accuracy and
computational features are shown. All time-domain responses, CPU times, and errors
obtained with the proposed method are compared with the original full-order approximation
computed by VF All the results presented in this Chapter have been obtained using 1000
frequency samples. An Intel® Core 2 Duo, CPU E6750 @ 2.66 GHz, 2 GB RAM computer
has been utilized.

S.1 Case study 1: single-phase network

S.1.1 Network description

As first example, the single-phase network presented in Fig. 5.1 is adopted. The network
consists of seven identical single-phase overhead transmission lines and two underground
cables (UC) buried at Im which have the same geometry, Fig. 5.2. All the parameters of the
overhead lines, underground cables, loads, source, and input impedance are given in Table

2.1

R, R
I

i
1 ycr 2 TLA UC2 ¢ /

10

L

Fig. 5.1. Single-phase network for case study 1.
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5 Case studies

Fig. 5.2. Underground cable configuration.

Table 5.1. Network parameters, case study 1.

Symboq Value Description

, Overhead lines
[, 10 km Length
h 15 m | Height
Fe | cm | Conductor radius

8.9954x10” Q/m|  DC resistance
Underground cables
I, 5km Length
r 1.95 cm | Radius 1 |
ry 3.77 cm | Radius 2
r3 3.79 cm Radius 3
ra 4.25 cm | Radius 4
Pe | 3.365x107° Q-m Conductivity
Ees | 2.8 | Relative permittivity
p. | 1.718x10°Q-m |  Conductivity
" 2.51 Relative permittivity
) Loads
R | 100 Q Resistance
L 0.1 H Inductance
Source and Input Impedance

R, 0.01 Q Resistance
L. | 0.0002H Inductance
R, * 800 € Resistance

21



Magnitude

5 Case studies

S5.1.2 Rational approximation by VF

The driving-point admittance seen from the left terminal of UCI (bus 1) is calculated as
shown 1n Appendix A and evaluated for the frequency range = {10Hz, 1MHz}. The
analytical evaluation of the driving-point admittance is presented in Fig. 5.3 as a continuous
trace; the dashed trace in Fig. 5.3 shows the approximation obtained via VF for the complete
frequency range Q, using an order of n = 70 and an RMS error of 4.059x10™ Due to the
good accuracy of the VF approximation, the difference with the original driving-point
admittance curve cannot be observed in Fig. 5.3.

0

10 ¢ PR S——— e e
- -———OngmalF
: - - -VF
£
10 F -3
10°F '
E "
-3
10 T X A T T ; g aoio A can g Bl ; . AR ) 2 e a2 il : ) ez il B3
10’ 10° 10° 10° 10° 10
Frequency (Hz)

Fig. 5.3. Single-phase driving-point admittance and approximation obtained by VF.

5.1.3 SVD-based MOR method applied to {; r and Qur ranges

The proposed SVD-based MOR method 1s applied to both the approximated input-
admittance and the error function Eyr in the frequency ranges: Qg = {10 Hz, 10 kHz} and
Qur = {1 kHz, 1 MHz}, respectively. The singular values resulting from the application of
the proposed technique in Q r and Qyr are presented in Figs. 5.4(a) and 5.4(b), respectively.
Based on the obtained singular values, orders of rig = 10 and ryr = 37 are chosen for the
rational approximations fir and Eyg, respectively. Singular value result of additional tests, are
shown in Table 5.2. The resultant fi r approximation with r g = 10 1s presented 1n Fig. 5.5(a)
as a dashed trace and compared with the approximation by VF.

As discussed in Chapter 3, the SVD-based MOR is expected to produce unshared poles
between the fir approximation and the approximation of the error function Eyr. For this case
study, only one unshared pole has been added to Eyr, and the new residues are computed as
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In (4.4), resulting in fir,yr. The obtained f gy approximation with rigyr = 38 is shown in
Fig. 5.5(b) and compared with the approximation by VF.

10

e
***
o e H
10 * h
3
.*.
107 - . )
.-....-
® %
104}_ ill.I.i.l..ll...il..i.-li....-....-.......... _
d 1)
@
10‘“ | | 1 | | 1 @
0) 10 20 30 40 50 60 70
Singular Values
(a)
10 g_ﬂf-y- T 1 1 | 1 1
i * ¥
10 - ***H.* E
: **#aﬁ-#
- AN e e e
i A - K
10_ : *##*#-ﬂ-*#..l-..i.II........ . "
"'-oo... :
107 L *:
107 I
1 = i | | | | |
v 0 10 20 30 40 50 60 70
Singular Values
(b)

Fig. 5.4. Singular values obtained when applying SVD-based method (a) to rational

approximation of Fig. 5.3 in range 2, r and (b) to Eyr In range Qur

Table 5.2. Singular value ratios for Eyr and f g approximations.

ILF UfLF / 0, £ 0. /JI
8 13.712x1073 | 29 [ 2.016x1072 |
10 | 2.273%107* | 37 | 1.686x1072
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Fig. 5.5. Approximation of driving-point admittance using the SVD-based MOR method (a)
fLF! order 10, and (b)fLF+HF, order 38.

5.1.4 Time-domain response

The network of Fig. 5.1 is employed to simulate a transient response. The time-domain
response is obtained using an integration time-step of 1 ps for the full- and reduced-order
approximations for the complete observation time of 30 ms. The time-domain input, applied
at r = 0 s, is assumed as the following voltage source (with w¢=377 rad/s):

u(t) = sin(ayt) +0.3sin(3aw,t + 7/ 3) +0.1sin(Sewyt) +0.1sin(7 ayr) +0.05 sin(15a,1 )
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For this case study, the complete simulation time is divided in two time subwindows, 1.e.,
a1 ={0<r<t,}and b) rr= {1, <t <0.03 s}, with 1, = 6107 s. In a), the fLE+HF 38" order
approximation is used, while in b), the fir 10" order approximation is employed. In contrast,

the fug 70" order approximation by VF is simulated as the full-order system (taken as
reference) for the complete observation time.

Fig. 5.6(a) shows the simulated transient currents obtained with both the full- and the
SVD-based MOR systems for the complete observation time. Fig. 5.6(b) presents the first 0.5
ms noting that a good agreement between the two responses is observed.

0.04 E ; , . T

Full order

: - = = = Reduced Order
0.03. =

0.02|—i -

0.01

Current (A)

-0.01 +

-0.02 |- _

'0‘030 0.005 0.01 0.015 0.02 0.025 0.03

Time (s)

(a)
0.015 | | 4 | | ! 1 T T

0.01

0.005; x

Current (A)

Full order
- = = = Reduced Order

-0.005 |

2 5 0.5 1 1.5 2 2.5 8 3.5 4 4.5 5

Time (s) x 107
(b)

Fig. 5.6. (a) Transient waveforms by the full-order approximation given by VF and by the SVD-based
MOR method, (b) close up.
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Table 5.3 presents further experimental results using several reduction orders of fi ¢ and

Ewr. The results in Table 5.3 have been obtained assuming fixed LF and HF ranges. Also, in
Table 5.3 rp,r,

a Ly

and ryg.ur correspond to orders for the fir, Enr, and fig.yF approximations,

respectively.

The rms errors and CPU times obtained by using the full-order approximation given by
VF and the reduced-order system by the proposed SVD-based method are also shown in
Table 5.3. Table 5.3 shows that the rms error given by the proposed method is less than 1%
for all cases. Table 5.3 also shows that the CPU time by the full-order simulation is about
seven times larger than the required by the SVD:-based MOR model.

To further validate the proposed SVD-based MOR method, the last two rows of Table
5.3 present the results obtained when applying the SVD-MOR and balanced realization (BR)
methods to the complete frequency range. It can be observed that the full-order 70th
approximation originally given by VF has been reduced to order 38 with good accuracy by
both methods; however, the CPU times are not comparable to the one given by the proposed
SVD-based MOR method. Note that the CPU time employed by the BR method 1s even
longer than the CPU time required by the full-order approximation due to BR method yields
full state matrix A corresponding to the reduced-order system, instead of a diagonal matrix A,
thus impacting the CPU time. Also, it is noted that the order of the reduced system is the
same along the simulation by the SVD and BR methods applied to the complete frequency
range.

Table 5.3. RMS error in the output and CPU time for different SVD-based MOR

approximations.

hel "6y | TLrsnF E s CPU Time (s)
VF 70 | 0.24989
'8 129 ] 30 [0.0035988] 0.035013
SVD-based| 8 | 37 | 38 |0.0032849| 0.035214
MOR [10[29| 30 [0.0017640] 0.037957
10| 37 | 38 [0.0016252] 0.038328
SVD | 38 0.0014021| 0.134550
BR | 38 3.87x10° |  0.586100
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An advantage of the proposed method is that further computational sayings, without
losing too much accuracy, can be achieved by using a larger time-step when simulating fi ¢
for t > t,,.. Table 5.4 shows the e,,,; and CPU times when using 1 pus and 5 pus time-steps for
the simulation of f r.ur and fLr, respectively. Comparison of Tables 5.3 and 5.4 shows that
the CPU time required when using different integration time-steps is about four times less
than the employed when using a single time-step.

Table 5.4. RMS error in the output and CPU time for different SVD-based MOR
approximations when using two different time integration steps.

Al = ]'J.S/SHS
he | N '
LF LE+HF 5 CPU Time (S) |

Fims

8 | 30 [0.0037119] 0.0076016

— —

SVD-based| 8 | 38 [0.0033015| 0.0080847
MOR [10] 30 [0.0032125] 0.0084115

r

10 38 10.0030235| 0.0087659

5.2 Case study 2: three-phase network

5.2.1 Network description

In this case study, we apply the SVD-based MOR to a modified version of the 66 kV
three-phase network taken from [18] and depicted in Fig. 5.7. The network consists of ten
overhead lines and one underground cable of 30 km long, which has been added to the
original network and located next to the source. The overhead line lengths and load

parameters are given in Tables 5.5 and 5.6.

Table 5.5. Overhead line lengths.

Name | Length (Km) |Name | Length (Km)
TL1 | 400 TL6 | 400 |
TL2 | 200 TL7 | 400

 TL3 30 TL8 | 500

| TL4 40 TLO | 400
TLS5 400 TL10 400
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Table 5.6. Load parameters.

Name | Resistance (£2) | Inductance (FnH) Name | Resistance (fl_) | Inductance (mH)_
L1 | 350 50 | L6 | 250 | 10 |
L2 | 250 | so | L7 | 250 | 0
L3 | 350 | 50 L8| 350 | 10
L4 ' 250 | 50 L9 250 | 10
L5 250 | 50 | LIO 250 | 10

H

(P e M W e Wows Woms Wws W

Fig. 5.7. Network configuration of three-phase network, case study 2 [18].

5.2.2 Rational approximation by VF and SVD-based MOR method applied to O r and
QHF ranges

For this case study, the driving-point admittance is calculated (see Appendix B for
details) and fitted via VF within the complete frequency range assumed as €2 = {1 Hz to 5
kHz}. VF yields a passive full-order approximation of the driving-point admittance, shown
in Fig. 5.8(a) with an RMS approximation error of 7.311x10™ and order of 148. It is
important to mention that the number of state variables for multiphase systems is different of
the order approximation. For this case study, the number of state variables of the full-order
approximation is 444. Next, the proposed SVD-based method is applied to the driving-point
admittance and to the error function Eyg in the ranges: Qi g = {1 Hz to 1 kHz} and Qur = { 10
Hz to 5 kHz}, respectively. Based on the obtained singular values, orders of rir = 35 and ryr
— 118 are chosen for fir and Eyr, respectively. The corresponding singular value ratios are:

Oxs/O] = 6.488x10°° and oy ig/o = 1.560x107°. Five unshared poles result from the

comparison of the truncated systems fir and Eur. Therefore, the f_r+ur approximation results
in an order of 123. The resultant fir and fir.ur approximations (both, as a dashed trace) are
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presented in Figs. 5.8(b) and 5.8(c), respectively, and compared with the original full-order
approximations by VF (continuous trace).
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Fig. 5.8. Approximation of driving-point admittance using (a) VF, order 148, and SVD-based

MOR method (b) fir, order 35, and (¢) fir+ur, order 123.
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5.2.3 Time-domain response

The transient simulated in this case study is obtained by applying at t = 0 s the following

three-phase balanced voltage input to the network of Fig. 5.7 (showing only the value for
phase a):

u, (1) = 66x10°[sin(wy) +0.3sin(3ewyr) +0.1sin(5a,t) +0.1sin(7a@,t) +0.05sin(15a,1)],

The computation of the transient, using a time-step of 1us, begins with the simulation of
the 123th fi rsur approximation for the time subwindows 7 < t,,, with t,, = 0.01 s; afterwards,
the fLr approximation is used to compute the time-domain response for the time subwindow
0.01 <1 <0.03 s. The transient currents by the full- and reduced-order approximations are
presented in Fig. 5.9 showing a good agreement.

4000 | : 1 | r
: —— Full Order
: - = = Reduced Order
20001 ; -
<
= oMo OO PR PR OOy
8 Phase g e
-2000 Phase b -
: Phase ¢
-40000 0.005 0.01 0.015 0.02 0.025 0.03
| Time (s)
(a)
4000l | l | I | | 1 | |
Full Order
- = = Reduced Order
2000 3

-
|
|
O

Phase a
-2000 - Phase b —— |
Phase ¢
e 0.5 5 1.5 2 2.5 3 35 4 45 5
Time (s) -
(b)

Fig. 5.9. (a) Transient waveforms by the full-order approximation given by VF and by the
SVD-based MOR approximation, (b) close up.
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Similarly to the single-phase case study, Table 5.7 presents different orders of
approximations for the assumed Q;r and Qur ranges. It should be mentioned that in some

cases a non-passive approximation has resulted; this has been alleviated by using the
passivity enforcement routine of VF

The corresponding results of the single-phase case study, Table 5.3, are presented in
Table 5.7 for the three-phase case study. Table 5.7 shows that the CPU times obtained by the
proposed method are about half the required by the full-order approximation; also, the RMS
error by the former is about 1%. Similar to the single-phase case, the CPU times by the SVD-

based MOR method in Table 5.7 can be further reduced for smaller ¢,, and/or larger time
integration step when using f| .

The last two rows of Table 5.7 present the rms errors in the output transient waveforms
and the CPU times, obtained by applying SVD and BR to the complete frequency range Q. It
can be observed in Fig. 5.7 that a large reduction is not achieved; from order 148 to order 139
and from 148 to 123 by application of SVD and BR to the complete frequency range,
respectively. The CPU time by the 139th order system by the SVD method is comparable to
the one given by VF for this case study. On the other hand, the BR method yields rms errors
comparable to the ones given by the SVD-based MOR technique; however, the CPU time by
the former 1s larger than the obtained by the proposed method due to BR produces a full state
matrix A.

Table 5.7. RMS error in the output and CPU time for different SVD-based MOR
approximations.

re | Te, | Tarser | €, (phase a) | CPU time (s)
VF 148 1.1569
29 [102] 107 | 0.05991 0.4850
SVD-based | 31 | 118 ] 121 | 0.03590 0.5474
MOR [33[110] 117 | 0.04975 0.5554
35 [ 118 ] 123 |  0.01574 0.5861
SVD | 139 0.02784 1.0951
BR | 123 . 0.03450 2.6537
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5.3 Conclusions

The proposed SVD-based MOR method has been validated using two different networks; the
obtained results have been compared with those obtained by VF, SVD and BR considering the
complete frequency range. An important feature of the proposed method is that it can use

different time-steps to simulate the total time-domain response, achieving further computational
savings while preserving accuracy.
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6 CONCLUSIONS

6.1 Conclusions

A simple and efftective SVD-based MOR technique covering a wide frequency range has
been proposed and validated in this thesis. The proposed method has been applied to a single-
phase network and to a three-phase network.

The obtained time-domain results show that the resultant reduced-order models
reproduce with good accuracy the original response of a system, which is the main objective
of MOR techniques. Since the proposed method adopts subsets of the poles given by VF, the
resultant approximation retains stability properties. Also, the reduced-order model obtained
by the proposed method achieves computational savings when compared to a full-order
model typically obtained by VF The performance of the proposed method also has been
compared with BR and SVD-based MOR applied to the complete frequency range, showing
computational superiority.

A specific application of the proposed method i1s MOR of a system for a narrow
bandwidth aimed to analyze the system’s response in that bandwidth, e.g., overvoltages,
switching, lightning, DC analysis, and so on.

6.2 Future work

e To obtain an optimal time to switch between f; 4 and fir+uF, 75w to minimize CPU time.

e To develop a criterion for optimal order of the LF and HF approximations.

6.3 Publications
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APPENDIX A

Network equivalent, case study 1

To calculate the driving-point admittance of case study 1, all overhead lines and

underground cables are represented by their two-port network models as shown in Fig. 6.1
[19].

Fig. A.1 Line/cable admittance two-port network representation.

where:
A=Y coth(yl), (A.1)

B =Y csch(yl), (A.2)

Y. and vy, given in (A.3) and (A.4), represent characteristic admittance and propagation
function respectively; / represents the length.

Y
Y o e Al
'JZ" (A.3)

y =IZY (A.4)

Based on the above mentioned line/cable representation and load admittances, the nodal

admittance matrix (Ygzys) 1S calculated as

['=Yp,V. (A.5)

where
I=[ 0 0 000 O0O0O0 O (A.6)
v=v, V, V, V, Vi V, V, W% V Vl{}]T (A.7)
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The driving point admittance is obtained as
H =Y, _szz_zlyzn (A.9)
where:
Y =1Aycl; (A.10)
Y,=[-B,. 0 0 0 0 0 O O O], (A.11)
Y, =Y. (A.12)
A, +A -B 0 0 0 0 0 0 0
-B A.+A+Y -4 0 0 0O O O O
0 -8, A +2A+Y —B -B O 0 0 O
0 0 ~-B 3A+Y 0 -B -B 0 O
Y,=| O 0 -B 0 3A+Y 0 0 -B -B|. (A.13)
0 0 0 —B 0 A 0 0 O
0 0 0 —-B 0 0 A O O
0 0 0 0 -B 0O 0 A 0O
0 0 0 0 -B O 0 0 A

In (A.10) to (A.13), Ayc and Byc correspond to the UC parameters while A and B are
the parameters of the ten identical overhead lines parameters.
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APPENDIX B

Network equivalent, case study 2

The computation of the three-phase driving-point admittance of the network shown in
Fig. 5.7, 1s carried out similarly to the single-phase case. For the three-phase case, the two-

port network model of the overhead lines and underground cables involve matrices of
dimensions 3x3, represented by

A=Y coth(yl), (B.1)

B =Y csch(yl), (B.2)

where Y. and vy are calculated as shown in (B.3) and (B.4) respectively.

Yy =z7'Jzy (B.3)
y =NZ¥ (B.4)

Similarly to the single-phase case, the nodal admittance matrix (Yays) 1S given by

[ =¥ V. (B.5)
where
I=(/. 0 000O0OOOOOO0 0] (B.6)
V=, V, , V, V, V, V; ¥, V, V, V; V,I (B.7)
¥oiw = G . (B.8)
¥ Bl

Elements of (B.8) are given by
Y, =[Ay]; (B.9)
Y,=[-B,, O O O O O O O O O O], (B.10)
¥ =¥, (B.11)
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(T1rd) ASAA-"A=H
SB PaIB[No[BO S1 3sed aseyd-2a1y) ay) 10] doueniwpe jutod SUIALIp ) ‘Ajjeur]

'SJUDWIDY SB ,SOIIZ, AJUO 3UIUIRIUOD ‘¢ X¢ SUOISUWIP JO X1NeW B SI () 19yMm

A+ "q- 0 0 0 0 O 0 0 0O «

g- A+'V+V O a- O O O O O O O

O O A+'Y O O 3 O O O O O

O q- O A+Vv+V¥ O O - O O O O

0 O O O A+V O O - O O O

(119l O O q- O O A+V+YV q- O O O O |[=°4

O O O q- O q- A+ V+vV+V O q- O O
0 0 0 0 q- O 0 A+ V+V q- 0 O

O O O O O O q- qg- A+ V+V+Y q- O

O O O O O O O O g- A+V+V  g-
e 0 O O 0 O O 0 O q- v+'v
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