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Resumen

Esta tesis presenta una técnica de reducción de orden de modelos (MOR, por sus siglas

en inglés) basada en descomposición en valores singulares (SVD) y enfocada al análisis de

transitorios electromagnéticos. El método propuesto adopta inicialmente la aproximación

racional de una función dependiente de la frecuencia, expresada como un conjunto de

fracciones parciales, obtenida a través de vector fitting (VF) para un rango amplio de

frecuencias. Subsecuentemente, la metodología propuesta aplica un truncamiento basado en

SVD a la aproximación obtenida por VF en bajas frecuencias, resultando en una

aproximación de orden reducido para bajas frecuencias. Para el rango de altas frecuencias, el

truncamiento basado en SVD es aplicado al error obtenido al comparar la aproximación

original de VF y la aproximación de orden reducido para bajas frecuencias. Finalmente, las

aproximaciones resultantes son conjuntadas para la solución de transitorios

electromagnéticos. El modelo de orden reducido obtenido logra disminuir el uso de recursos

computacionales, comparado con el sistema original dado por VF, sin perder precisión. Se

presentan dos ejemplos ilustrativos se presentan para validar el método propuesto.
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Abstract

This thesis presents a model order reduction (MOR) technique, based on singular valué

decomposition (SVD), aimed to electromagnetic transient (EMT) analysis. The proposed

method initially adopts a rational approximation of a frequency-dependent function,

expressed as a set of partial fractions and obtained by the vector fitting (VF) software tool for

a wide frequency range. Subsequently, the method applies SVD-based truncation to the

approximation given by VF in the low-frequency (LF) range, resulting in a LF reduced-order

approximation. Then, the SVD-based truncation is applied to the error obtained by comparing

the VF function and the LF approximation in the high-frequency (HF) range. Finally, the

resultant LF and HF reduced-order approximations are assembled for EMT solution. The

obtained reduced-order model achieves computational savings compared to the original full-

size system given by VF without losing accuracy. Two illustrative examples are presented to

validate the proposed method.
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1 Introduction

1 Introduction

1.1 Use of rational approximations for electromagnetic transient (EMT)

analysis

Rational approximations, represented by a set of partial fractions, are commonly used

for the modeling and simulation of electrical networks and/or individual elements such as

transmission lines and transformers [1-4]. The fact that a rational approximation can be

expressed as a state-space formulation makes attractive to employ model order reduction

(MOR) techniques to optimize the dimensions of the state-space system of the model under

analysis.

Due to different dynamics involved in an electrical phenomenon, wide-band models that

cover from few Hertz to several thousands of Hertz are employed. In fact, most of the

existent MOR techniques consider by default a wide frequency range [4]. However, there are

cases in which a narrow frequency bandwidth has the most impact on the phenomenon under

analysis. Recently, frequency-domain MOR methods have been developed to represent a

system via a reduced-order model accurate within a specific frequency bandwidth [5-8].

Therefore, a rational approximation can be obtained for EMT analysis and reduced either to

represent wide frequency-range phenomena or to focus on specific frequency-range via a

subset of poles.

1.2 Problem statement

Conventional rational fitting software tools have as input an arbitrary range of

frequencies pre-specified by the user. Also, the order of the rational approximation is

typically adjusted by a trial-error procedure to comply with an acceptable approximation

error. There have been some proposals on the order of rational approximation for a given

approximation error [9,10]; however, rigorously speaking, no precise criterion exists.

Moreover, traditional fitting methods are prompted to genérate out-of-band poles for which

an elimination scheme is required; otherwise, a spurious oscillatory phenomenon may appear

in the EMT simulation [11].
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1 Introduction

1.3 Thesis objective

This thesis proposes a practical and effective MOR technique based on direct application

of singular valué decomposition (SVD) and valid on an arbitrarily wide frequency bandwidth.

The proposed method has as starting system the set of poles (equivalently, partial fractions)

obtained by the vector fitting (VF) [1] software tool, and obtains two subsets of poles, via

SVD truncation, corresponding to low- and high-frequency sub-bands. The two subsets of

poles (alternatively, partial fractions) are then assembled for EMT simulation in the form of

state-space realizations.
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2 Vector Fitting and state space realization

2 Vector fitting and state-space

realizations

2.1 Description of VF

VF is a numerical tool aimed to approximate, via rational functions, calculated or

measured frequency response of a given network. VF is widely used, mainly in the power

systems área, due to its accuracy and robustness [1,11,12]. A brief description of VF is

presented in this section.

A rational (scalar) function approximation of order n can be expressed as the sum of

partial fractions:

f(s) = t-^- + d + sh. (2.1)
k=xs-pk

where c__ and p¡. are residues and poles, respectively; d and h represent real constant terms.

The problem is to estimate (c¡_, Pk, d, h) in (2.1). To achieve this, (2.1) is evaluated using

N frequency samples within a given frequency bandwidth and the resulting system is solved

as a linear problem in two steps as described next.

Stepl. Pole identification

An arbitrary set of poles ak is initially proposed, and/(s) is multiplied by an unknown

function <.(_■), leading to

"

c

a(s)f(s)=Y—^+d+sh. (2.2)

In addition, the unknown function a(s) is represented by a rational approximation ofthe

type

<j(s)=Y—-"-r-fl. (2.3)

3



2 Vector Fitting and state space realization

The function a(s) is required to satisfy the condition that the poles of both a(s) and

o(s)f(s) are the same. Multiplying (2.3) byf[s) and matching with (2.2) results in:

í n í N
~

Y-^+d+sh = y^v+i
¿—I

Q —n *—> r—n

\k = X S~ar. i V"=l
S ak J

f(s),

or, in compact form

(af)/h(s)=a„ (s)f(s).

Also, (2.4) can be rewritten as [1]

(2.4)

(2.5)

í a v fn ~

\

Y^=-+d+sh - Y-^
*—> r— n i—l c_.i

U=i S-*. V k=\
S ük J

f(s)=f(s). (2.6)

Then, evaluating (2.6) for a specific frequency point /, we obtain

AfX = b, ,

where:

4 =

i

_s,-a.'

1
1, s.,

~f(st)

s-a,

'

-f(St)

s, -aN

'

s, -aN

(2.7)

(2.8a)

x = [c,, ••*, cN, d, h. c,, ■■*. cNf

where T denotes transposed.

b,=f(s,).

(2.8b)

(2.8c)

Evaluating (2.8a) and (2.8c) for N points results in the following over-determined linear

matrix equation:

Ax=b. (2.9)

Finally, (2.9) is solved as a least squares problem.
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2 Vector Fitting and state space realization

Each term within parenthesis in (2.4) can be expressed as:

n.l n

(°-f)r„(s)
=h^ , crf„(s)=^ (2.10)

_-l t=l

From (2.10) we obtain the following expression for /(i)

n+l

/(')=
a (s)

=H^ (2-U)

**H

It can be noticed in (2.1 1) that the poles of/(s) correspond to the zeros of Of,i(s). Henee,

solving (2.9) provides a set of zeros of oj.,(s), and according to (2.1 1), the new set of poles

corresponding to f(s) are obtained. It is noted that solution of (2.9) can produce unstable

poles; this problem is solved in practical implementations by inverting the sign of the real

part ofthe unstable poles [1].

Step2. Residue identification

After calculating the poles of /(_•), its corresponding zeros are calculated as the

eigenvalues of

H = A-bc' (2.12)

where A is a diagonal matrix containing the arbitrary starting poles, b represents a column

vector consisting of "ones", and cT is a row vector composed by the residues of a/..(s).

The outlined procedure has been generalized and implemented into the VF software tool

for the case of a frequency-dependent matrix F(s).

5



2 Vector Fitting and state space realization

2.2 Matrix rational approximations and state-space realizations

In the general multi-input multi-output (MIMO) case, a transfer function evaluated for a

given bandwidth is assumed to be available as a frequency-dependent matrix F(s).

Based on the theory presented in section 2. 1 for a scalar function, F(s), of size mxm

can be readily approximated via VF with all of its elements sharing a common set of poles

[1, 13]. The resultant rational approximation, assumed of order n, can be expressed as a state-

space formulation as follows [13]:

x = Ax + Bu

v = Cx + Du
(2.13)

The state-space system, as in (2.13), can be used for EMT simulation or for MOR

purposes. Matrices A, B, C and D, for the multiphase case, are structured as follows:

A = diag {p,, p2, ■■•■ p,„ p„ p2, •••- p„, ■■; p„ p2, ••*, p,,}, (2.14a)

B =

1 1 ••• 1 0 0 ■•• 0 ••• 0 0 — 0

0 0*01 1 — 1 •■■ 00*0

o o o o o ••• o 1 1

(2.14b)

r

X.X. 1 CX.X,2
■■

CX. ,11 CI2! Cl.2._
'

CX.2.n
■

c..«.l CX.,„.2
■ ■■

CX,„,

C2.1.1 C2.l,2
■■

C2. .11 C22l C\ i r

' '

C2.2.n
' ■

C2.,,,.X C2,„.2
"

C2.,ll.n

Cm.X,X c
, .

*

■".1.2

■■ c
ni. .n

c ,,
ni 2 1 Cm r r

■

c
.

111,1,11

■■

c
iii,m. \ nx.in.2

■■

c
iii, iii, n

, (2.14c)

D =

du dul
■■■

diM

¿2.1 d12
■■■

d2m

d„, d„_ ■■■ d
m,\ m,l ni,m

(2.14d)
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2 Vector Fitting and state space realization

In (2.14), A, B, C, and D are of dimensions (mxn)x(mxn), (mxn)xm, mx(mxn), and mxm,

respectively. Expression (2.14a) shows that, for matrix A, the common set of poles is

repeated m times. Similarly, a row vector containing m "ones" is repeated in matrix B, as

shown in (2.14b). Also, in (2.14c) c/,;,< represents the (f'Ih, /h) element of the residue matrix

corresponding to the k{h pole.

Based on (2.14), the matrix structure for the scalar case becomes:

A = diag {/?-, p2, ••*. /?,,}, (2.15a)

B = [\, 1, ••*, lf (2.15b)

C = [cr c2, •■*. c„], (2.15c)

and D represents a constant term.

2.3 Conclusions

The fundamentáis of the VF software tool have been presented. Also, it has been stated

that VF can approximate both scalar functions and frequency-dependent matrices. Finally, the

conversión of rational approximations to state-space formulation is outlined.

7



3 SVD applied to a fitted function in a specific frequency range

3 SVD APPLIED TO A FITTED FUNCTION IN A

SPECIFIC FREQUENCY RANGE

In this Chapter, the proposed SVD-based MOR technique, applied to a rational

approximation in a specific frequency bandwidth, is described [14].

3.1 Solution scheme for single-phase case

The proposed SVD-based MOR method considers an initial nth order rational

approximation /vf, obtained via VF, ofa frequency-dependent function f(s) for the frequency

range Q. The approximation /vf can be expressed for the single-phase case as

kTxS-pk

Removing the contribution of the constant term d, (3. 1 ) can be written as

h =U~d = t_

(3.1)

~s-pk
(3.2)

Evaluation of (3.2) for the frequency range Q. with /V frequency samples gives

where

h =Mx,

M =

*1
-

Px

1

s,-p2

1

.sj
-

/. , si~Pi

1 1

1

*l
-

Pn

1

*7
~

P„

sN -P. s„- p2 sN
-

p„

(3.3)

(3.4)

= [c„ c2, ••*. c„f (3.5)
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3 SVD applied to a fitted function in a specific frequency range

Note that complex poles and residues come in conjúgate pairs (conjúgate denoted by *),

i.e., for two consecutive complex partial fractions k and k+\:

where:

Pk
~

Pk+X ' Ck Ck+\ >

Pk-Pt+JPk, Ck=Ck+JCk

(3.6)

(3.7)

To preserve the conjugacy, vector x in (3.5) is separated into real and imaginary parts, as

indicated in (3.8). Matrix M is rearranged into a matrix M\ with M,k and Mlk+Í representing

the (/, k) and (/, k+\) elements ofM', respectively, as shown in (3.9).

<"=[<■ I ' 3 ' 1 * -n-l ' Si-I J (3.8)

M'lk=—^— +—l—, M,í+I=—
í L-, l = \,2,~-,N, k = l,2.-,n. (3.9)

^-P* í/-P_ J;-P* si~Pk

Next, matrix M' is separated into its real and imaginary parts, resulting in

H=MRxH

where:

H

MH

"Re{«}"

Im{«}
'

ReJM'}

Im{M'j

(3.10)

(3.11)

(3.12)

9



3 SVD applied to a fitted function in a specific frequency range

To simplify notation, M and x will be used hereafter instead of MR and xR respectively.

To account for a partial frequency bandwidth, either low-frequency (LF) or high-frequency

(HF), a diagonal weighting matrix W, with major effect on the specific frequency range, is

applied to (3.10), resulting in

v =WH=WMx. (3.13)

SVD is applied to the product WM of (3.13), yielding

v^UI.V'x. (3.14)

Alternatively, system (3.14) can be expressed as

ZVrx = g, (3.15)

where:

g
= UTv. (3.16)

The singular valúes in __ represent dynamics of the weighted matrix M. In this thesis, the

Matlab® software [15] has been used to calcúlate the SVD decomposition providing I as

diagonal matrix with the magnitude of the singular valúes ordered decreasingly. Then, the

system (3.15) is truncated by selecting the r most significant singular valúes of the diagonal

matrix I, with r < n, and taking the corresponding r rows of VT; this results in

ZVrx =

gr (3.17)

The solution vector x of (3.17) is obtained by using the Matlab® backslash operator
'

V

[15]. This results in a sparse vector a where the nonzero positions indicate the r partial

fractions that are extracted from (3.2) to form the reduced-order system for the partial

frequency bandwidth.

After application of SVD, as described above, the following reduced-order system is

obtained:

hr=f_^^. (3.18)
*-i s

~

Pk

10



3 SVD applied to a fitted function in a specific frequency range

Note that the poles of (3.18) are a subset of the original (stable) poles given by VF, thus

keeping stability properties. The accuracy of the obtained reduced-order system is bounded

by the initial approximation error by VF.

3.2 Solution scheme for multiphase case

In the multiphase case, we assume a frequency-dependent matrix function F(s) of

dimensions mxm, and its corresponding matrix approximation of order n, provided by VF

and assuming a common set of poles, given by [13,16]:

F(s) = fj-^ + D, (3.19)

where C¿ represents anmxm residue matrix corresponding to pole k.

Removing the contribution of the constant term D in (3.19), results in

Q = F-D =Y-^~. (3.20)

To apply the SVD-based truncation to the multiphase case requires an especial matrix

arrangement, as described next.

The direct transmission matrix D is arranged in row format, yielding

D = [du, ..,,,
•■*. dUn, d2l, d22, ••*. d2m, ••*, _/_,„ dm2, ■•*, dmJ, (3.21)

where d¡j represents the (i ,f ) element of the D matrix. As for matrix F,

'
~

L/l I J\2 Jim J2\ J22 Jim Jn,\ Jn,2 Jim,,}' \->'¿¿l

Expression (3.22) shows that the elements of matrix function F(s) have been arranged in

column format for the /V frequency samples, i.e., f¡j denotes the (i , /h) element of the F

matrix function evaluated for N frequencies and arranged as column. The resulting

dimensions of D and F are (mxm) x 1 and (mxm) x N, respectively.

A typical column evaluation in (3.22), based on (3.20), for a single frequency point

yields

11



3 SVD applied to a fitted function in a specific frequency range

/u-^É-^-. -■ = ./ = 1, 2, -,m, (3.23)
k-xs-pk

Note that evaluation of (3.23) implies the use of the set of poles only once, instead of m

times. This evaluation also implies that residue matrix C of (2. 14c) be arranged as

■-"i.i.i

_CX.X.n Cl.2.,i Cl.n,.n C2.\.n C2.2.n C2.n,.n
""

Cm.\.n Cn,.2.n (~m.m.n
_

resulting in dimensions of nx(mxm).

Based on (3.21) to (3.24), evaluation of (3.20) for /V frequency samples in a given

frequency range Q, provides the system

Q = Mx, (3.25)

where M G C"x" and Q G CWx(mxm)

It is mentioned that matrix M in (3.25) has the same structure as in the single-phase case.

Finally, (3.25) is separated into real and imaginary parts, weighted, and truncated via SVD,

similarly to the single-phase case.

It is mentioned that altemative rational approximation techniques, such as Bode-based

method, can be used within the proposed SVD-based MOR method.

3.3 Conclusions

The SVD-based MOR method applied to a specific frequency bandwidth for the single-

and multiphase cases has been presented. The presented SVD-based method can be applied to

a function (or matrix) when a specific frequency bandwidth phenomenon is under interest,

e.g., overvoltages, switching, lightning, etc.

C2.1.l C2.2.l

CJ, ,
■■

C2,„.2
•

* *

cm

■ ■

cm

x.x

1.2

.2.1

e_.i,_ -» ,

(3.24)
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4 SVD-based MOR technique and time-domain response

4 SVD-BASED MOR TECHNIQUE AND

TIME-DOMAIN RESPONSE

In Chapter 3, the SVD technique is applied to a rational approximation in a specific

frequency bandwidth to obtain a reduced-order system, amenable to EMT simulation. This

Chapter describes the application of SVD to a rational approximation by partitioning a wide

frequency range in two regions.

4.1 General steps

The complete time-domain response of the SVD-based MOR system can be achieved by

following the next steps, where two small sets of poles are used for illustration purposes.

Step 1. A low-frequency approximation, /LF, for range QLf is obtained by applying the

SVD-based MOR method to the original approximation given by VF, f(s), as described in

Chapter 3 and as illustrated in Fig. 4.1. It is assumed that the/LF approximation involves the

following sets of poles and residues, respectively:

p_JF
= {ai, a2, cl,}, CLF

—

i*- 1' C2' C3/ (4.1)

<- CO

Fig. 4.1 . Illustration oí/Lf approximation and £hf error

13



4 SVD-based MOR technique and time-domain response

Step 2. The error (£hf) between the/(s) and/jj-* approximations, evaluated in range í^hf,

is calculated and approximated via rational functions, see Fig. 4.1. This is justified a) by the

assumption of obtaining a good LF approximation of f(s) and b) to obtain an appropriate

interfacing of poles and zeros from LF to HF.

Step 3. The SVD-based MOR method is applied to £Hf from step 2 obtaining the

following sets of poles and residues:

PEH,={a2- «•%. aA- «.}* C£HF={C2> C\' C4> Cs}* (4-2)

Note that/LF and £hf approximations share some poles, i.e., «2 and a__.

Step 4. The unshared poles from /?lf are included into pE ,
thus forming a new single set

of poles. This yields approximation/LF.HF, having the following sets of poles and residues:

PlF+HF
=

\aX' a2' **%> <34' -*%j»

CLF+HF
=

\CX ' C2' C3' C4> **•.*>) >

where:

Note that, in (4.3), the shared poles are not repeated and its corresponding residues are

added up.

Step 5. The fast dynamics ranging from t0 to .sw (sw denotes switching time) are

calculated by using the/LF+HF approximation, Fig. 4.3.

Step 6. The time-domain response from fsw to tf is calculated by using the /lf

approximation, Fig. 4.3.

Based on steps 5 and 6, the time-domain response is simulated using /Lf+wf first, then a

set of initial conditions have to be obtained for the starting simulation of /Lf at t = tsw.

Computation of initial conditions is presented section 4.3. Also, it is noted that the /lf+hf

approximation involves more poles than the £hf approximation; however, the /lf+hf

approximation is only used while the fast dynamics last. Several experiments show that few

poles, e.g., one to five, are unshared; thus, the dimensions of /lf+hf are not substantially

14
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increased compared to/E__. An interesting feature of the procedure above is that the

simulation oí/u*- can utilize a time-step larger than the one used for /lf+hf simulation. A

flowchart ofthe outlined procedure is presented in Fig. 4.2.

CxObtain /LF in QLf

Pxjf
=W a2< <h\ CXJF

~

i"*. > C2' C3)

Calcúlate £Hf ¡n 0Hf

Apply SVD to £HF

PEHF={ai> <h' üa. as] CEHF— \C2' C3> *-4* Cf,)

Obtain/LF+HF

°LF+HF
—

\ax ' **%' *%' a<ri a5Í CLF+HF
~

\C1 ' e2' C3' C4' C5 )

Compute the transient

(t„ to tm) USÍng/LF+HF

Switch from /lf+hf ío/lf to complete
the total simulation time, tf.

' t

í End
J

Fig. 4.2. Flowchart of general steps
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4.2 Discretization ofODEs

Due to /lf+hf and/LF are obtained from an original rational approximation given by VF,

they can be expressed as linear time-invariant (LTI) systems in the state-space domain,

generically represented by

where time has been discretized as t = t0, t\, ... , í/,with tk = kAt.

Rearranging (4.6), results in

( At Y f.AtY At

.

2 )
"■

y 2
.

2

(4.5)

x = Ax + Bu

y
= Cx + du

The trapezoidal rule of integration applied to (4.5) results in [17]:

•Vi =xk +y[-4(*t +Vi ) + Biuk +«_+i)]- (4-6)

I-— A k+i = I +— A xM+
—

B(uk +«,.,), (4.7)

where I represents an identity matrix of appropriate dimensions.

Equation (4.7) can be expressed in compact form as

£**+i =Mxk+Bduar, (4.8)

where

L = l-^A, M=l + ^A, B,=AlB, u =^^
2 2 2

From (4.8), x&+\ is obtained as

xM=L-l(Mxk+BduJ, (4.9)

From (4.5) the time-domain output is given by

Jm =c**+i +<%+!* (4*'°)

16



4 SVD-based MOR technique and time-domain response

The time-domain simulation starts with the approximation /Lf+hf expressed as the state-

space system (4.5) and discretized as in (4.9)-(4.10), and runs until a predetermined

simulation time .sw, Fig. 4.3.

Fig. 4.3 System configuration of time-domain simulation of/lf+hf and /lf approximations

4.3 Computation of initial conditions

The change from simulating the response of the /lf+hf system to the simulation oí/lf at

time / = tsw (corresponding to time-step k+\) is achieved by using an appropriate set of initial

conditions for the/LF approximation.

To obtain the appropriate set of initial conditions for/LF, consider the numerical solution

of the /lf+hf system at time tsw, represented as the state vector Xk+i and its corresponding

output yk+ ]
as given by (4.11). For illustration purposes, only five states are included in

(4.11).

17
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,
LF+HF

„
LF+HF

X<x
LF+HF

LF+HF
_ rLF+HF , j

JV«: + I
~~

CLF+HF**/t + l +«»J.+|, (4.11)

In addition, the state vector and the output for the/LF approximation at rsw are expressed

as:

xLF■*2

X?

yZ CLFXkrl+d"k+X' (4.12)

where, for illustration purposes, only three states are assumed. Note that the constant term d

in (4.1 1) and (4.12) is the same due to its effect has been removed in (3.2).

I F+HF I F

At t = fJH, output yk+i equals the output of the/LF system y^- , noting that p__F

represents a subset of /?lf+hf- Then, based on (4.4) and (4.10), the initial condition state

LF LF+HF

vector for/LF is given by xk+] which is obtained as a subset of xk+l ; this is represented by

~*r
LF+HF

xY =

LF+HF

x2

X?
LF+HF

X-,
*: + !

(4.13)

This direct transition is due to the assumption of having fitted the error function £hf,

yielding a direct relation between elements of subsets clf and clf+hf, as shown in (4.4). Thus,

LF

the time-domain response is carried on using the /lf approximation with xk+í from (4.13) as

initial conditions at t,w.

18



4 SVD-based MOR technique and time-domain response

4.4 Computation of rms error

The rms error of the time-domain output given by the SVD-based MOR method, taking

as reference the full-size system initially obtained by VF, is calculated in this thesis with:

[(^vf-^svd)2*J

(-T-,
' (4-14)

where _yVF corresponds to the time-domain response achieved with VF and _ySvD is the output

obtained by using the SVD-based MOR method.

4.5 Conclusions

In this Chapter, the general MOR methodology based on SVD has been presented. It has

been shown that a direct transition between the simulation of LF and HF reduced-order

approximations is achieved by fitting the function error between the original function and the

/lF function.
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5 Case studies

In this Chapter, the SVD-based MOR method, described in Chapters 3 and 4, is validated

by using two illustrative examples (single- and three-phase systems). Also, its accuracy and

computational features are shown. All time-domain responses, CPU times, and errors

obtained with the proposed method are compared with the original full-order approximation

computed by VF All the results presented in this Chapter have been obtained using 1000

frequency samples. An Intel® Core 2 Dúo, CPU E6750 @ 2.66 GHz, 2 GB RAM computer

has been utilized.

5.1 Case study 1: single-phase network

5.1.1 Network description

As first example, the single-phase network presented in Fig. 5.1 is adopted. The network

consists of seven identical single-phase overhead transmission lines and two underground

cables (UC) buried at lm which have the same geometry, Fig. 5.2. All the parameters of the

overhead lines, underground cables, loads, source, and input impedance are given in Table

5.1

L0

u(t>Q
'

R'

1 UCl 2

Fig. 5.1. Single-phase network for case study 1 .
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Fig. 5.2. Underground cable configuration.

Table 5.1. Network parameters, case study 1 .

Symbol Valué Description

Overhead lines

li 10 km Length

h 15m Height

^ 1 cm Conductor radius

8.9954xl0~5í2/m DC resistance

Undergrounc cables

lc 5 km Length

r\ 1.95 cm Radius 1

n 3.77 cm Radius 2

rs 3.79 cm Radius 3

rA 4.25 cm Radius 4

Pc 3.365xlO"8Q-m Conductivity

Ees 2.85 Relative permittivity

Ps 1.7 18x1 0"8 Q-m Conductivity

Ei-« 2.51 Relative permittivity

Loads

R 100 Q Resistance

L 0.1 H Inductance

Source and Input Impedance

Ro 0.01 Q Resistance

U 0.0002 H Inductance

Rx 800 Q Resistance
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5.1.2 Rational approximation by VF

The driving-point admittance seen from the left terminal of UC1 (bus 1) is calculated as

shown in Appendix A and evaluated for the frequency range Q. = {10Hz, 1MHz}. The

analytical evaluation of the driving-point admittance is presented in Fig. 5.3 as a continuous

trace; the dashed trace in Fig. 5.3 shows the approximation obtained via VF for the complete

frequency range Q, using an order of n = 70 and an RMS error of 4.059xl0"4 Due to the

good accuracy of the VF approximation, the difference with the original driving-point

admittance curve cannot be observed in Fig. 5.3.

10' 10' 10" 10^ 10 10

Frequency (Hz)

Fig. 5.3. Single-phase driving-point admittance and approximation obtained by VF.

5.1.3 SVD-based MOR method applied to Olf and £1Hf ranges

The proposed SVD-based MOR method is applied to both the approximated input-

admittance and the error function £Hf in the frequency ranges: Qlf = { 10 Hz, 10 kHz} and

Qhf = {1 kHz, 1 MHz}, respectively. The singular valúes resulting from the application of

the proposed technique in QLf and í2Hf are presented in Figs. 5.4(a) and 5.4(b), respectively.

Based on the obtained singular valúes, orders of rLF = 10 and rm = 37 are chosen for the

rational approximations /lf and £Hf, respectively. Singular valué result of additional tests, are

shown in Table 5.2. The resultant /LF approximation with rLF
= 10 is presented in Fig. 5.5(a)

as a dashed trace and compared with the approximation by VF.

As discussed in Chapter 3, the SVD-based MOR is expected to produce unshared poles

between the/LF approximation and the approximation ofthe error function £Hf- For this case

study, only one unshared pole has been added to £Hf, and the new residues are computed as
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in (4.4), resulting in/LF+HF. The obtained /Lf+hf approximation with aif+hf = 38 is shown in

Fig. 5.5(b) and compared with the approximation by VF.

10'

10"

10'

10

10"

10'

10"

10

10"

10"'

10

*
1 1 1

***

**

*

*

*

*

*

•

I 1 1 J 1 1 ,

10 20 30 40

Singular Valúes

(a)

**_

****

***********************

10 20 30 40

Singular Valúes

(b)

50

50

60 70

60 70

Fig. 5.4. Singular valúes obtained when applying SVD-based method (a) to rational

approximation of Fig. 5.3 in range QLf and (b) to £Hf in range QHf

Table 5.2. Singular valué ratios for £Hf and/Lp approximations.

Is a, la. •"hk er, /a,rHF 1

8 3.712xl0"3 29 2.016xl0~2

10 2.273x1 0"4 37 1.686x1 0"2
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10 10

10 10

Frequency (Hz)

(a)

10 10"

Frequency (Hz)

(b)

10 10"

-

Original
•-SVDHF+LF

■VF

10" 10°

Fig. 5.5. Approximation of driving-point admittance using the SVD-based MOR method (a)

/lf, order 10, and (b) /lf+hf, order 38.

5.1.4 Time-domain response

The network of Fig. 5.1 is employed to simúlate a transient response. The time-domain

response is obtained using an integration time-step of 1 p.s for the full- and reduced-order

approximations for the complete observation time of 30 ms. The time-domain input, applied

at t = 0 s, is assumed as the following voltage source (with <y0=377 rad/s):

u(t) = sm(co0t ) + 0.3 sin(3<ay + k 1 3) + 0. 1 sin(5¿y()í) + 0. 1 sin(7ú-y) + 0.05 sin(l 5co0t ) .
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For this case study, the complete simulation time is divided in two time subwindows, i.e.,

a) íi = {0< t<tsw) andb)/2= [tm <f<0.03 s}, with tsw = 6x1 0'4 s. In a), the/LF+HF 38lh order

approximation is used, while in b), the/LF 10lh order approximation is employed. In contrast,

the /vf 70lh order approximation by VF is simulated as the full-order system (taken as

reference) for the complete observation time.

Fig. 5.6(a) shows the simulated transient currents obtained with both the full- and the

SVD-based MOR systems for the complete observation time. Fig. 5.6(b) presents the first 0.5

ms noting that a good agreement between the two responses is observed.

0.015

0.01

<c 0.005

a_>
=-

O 0

-0.005

-0.01

■ Full order

Reduced Order

0.005 0.01 0.015

Time (s)

0.02 0.025 0.03

(a)

■ - Reduced Order

0.5 1.5 2 2.5 3

Time (s)

(b)

3.5 4.5 5

x 10"*

Fig. 5.6. (a) Transient waveforms by the full-order approximation given by VF and by the SVD-based

MOR method, (b) cióse up.
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Table 5.3 presents further experimental results using several reduction orders of /lf and

£hf. The results in Table 5.3 have been obtained assuming fixed LF and HF ranges. Also, in

Table 5.3 rLF, rTm .
and r*.F.HF correspond to orders for the/LF, £hf, and /lf+hf approximations,

respectively.

The rms errors and CPU times obtained by using the full-order approximation given by

VF and the reduced-order system by the proposed SVD-based method are also shown in

Table 5.3. Table 5.3 shows that the rms error given by the proposed method is less than 1%

for all cases. Table 5.3 also shows that the CPU time by the full-order simulation is about

seven times larger than the required by the SVD-based MOR model.

To further validate the proposed SVD-based MOR method, the last two rows of Table

5.3 present the results obtained when applying the SVD-MOR and balanced realization (BR)

methods to the complete frequency range. It can be observed that the full-order 70th

approximation originally given by VF has been reduced to order 38 with good accuracy by

both methods; however, the CPU times are not comparable to the one given by the proposed

SVD-based MOR method. Note that the CPU time employed by the BR method is even

longer than the CPU time required by the full-order approximation due to BR method yields

full state matrix A corresponding to the reduced-order system, instead of a diagonal matrix A,

thus impacting the CPU time. Also, it is noted that the order of the reduced system is the

same along the simulation by the SVD and BR methods applied to the complete frequency

range.

Table 5.3. RMS error in the output and CPU time for different SVD-based MOR

approximations.

If rE If+hf «nm CPU Time (s)

VF 70 0.24989

SVD-based

MOR

8 29 30 0.0035988 0.035013

8 37 38 0.0032849 0.035214

10 29 30 0.0017640 0.037957

10 37 38 0.0016252 0.038328

SVD 38 0.0014021 0.134550

BR 38 3.87X10""5 0.586100
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An advantage of the proposed method is that further computational savings, without

losing too much accuracy, can be achieved by using a larger time-step when simulating /lf

for t > r,„. Table 5.4 shows the erm_ and CPU times when using 1 ps and 5 ps time-steps for

the simulation of /lf+hf and/LF, respectively. Comparison of Tables 5.3 and 5.4 shows that

the CPU time required when using different integration time-steps is about four times less

than the employed when using a single time-step.

Table 5.4. RMS error in the output and CPU time for different SVD-based MOR

approximations when using two different time integration steps.

If If+HF

A. = lps/5ps

en„s CPU Time (s)

SVD-based

MOR

8 30 0.0037119 0.0076016

8 38 0.0033015 0.0080847

10 30 0.0032125 0.0084115

10 38 0.0030235 0.0087659

5.2 Case study 2: three-phase network

5.2.1 Network description

In this case study, we apply the SVD-based MOR to a modified versión of the 66 kV

three-phase network taken from [18] and depicted in Fig. 5.7. The network consists of ten

overhead lines and one underground cable of 30 km long, which has been added to the

original network and located next to the source. The overhead line lengths and load

parameters are given in Tables 5.5 and 5.6.

Table 5.5. Overhead line lengths.

Ñame Length (Km) Ñame Length (Km)

TL1 400 TL6 400

TL2 200 TL7 400

TL3 30 TL8 500

TL4 40 TL9 400

TL5 400 TL10 400
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Table 5.6. Load parameters.

Ñame Resistance (Í2) Inductance (mH) Ñame Resistance (Q) Inductance (mH)

Ll 350 50 L6 250 10

L2 250 50 L7 250 10

L3 350 50 L8 350 10

L4 250 50 L9 250 10

L5 250 50 LIO 250 10

0-VAr/VYvV -| UC M TL'

W~^n~V[ m

L7

TLS U-I TL8 "L-l—I TL10

1

Fig. 5.7. Network configuration of three-phase network, case study 2 [18].

5.2.2 Rational approximation by VF and SVD-based MOR method applied to ííLf and

Ohf ranges

For this case study, the driving-point admittance is calculated (see Appendix B for

details) and fitted via VF within the complete frequency range assumed as Q = {1 Hz to 5

kHz}. VF yields a passive full-order approximation of the driving-point admittance, shown

in Fig. 5.8(a) with an RMS approximation error of 7.31 lxlO"5 and order of 148. It is

important to mention that the number of state variables for multiphase systems is different of

the order approximation. For this case study, the number of state variables of the full-order

approximation is 444. Next, the proposed SVD-based method is applied to the driving-point

admittance and to the error function £Hf in the ranges: üLf
=

{ 1 Hz to 1 kHz} and QHf = { 10

Hz to 5 kHz}, respectively. Based on the obtained singular valúes, orders of rLF
= 35 and rHF

= 118 are chosen for/LF and £Hf, respectively. The corresponding singular valué ratios are:

035/0-1 = 6.488xl0"6 and o\\%l<J\ = 1.560xl0"3. Five unshared poles result from the

comparison of the truncated systems /LF and £Hf- Therefore, the/LF+HF approximation results

in an order of 123. The resultant /LF and/LF+HF approximations (both, as a dashed trace) are
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presented in Figs. 5.8(b) and 5.8(c), respectively, and compared with the original full-order

approximations by VF (continuous trace).

10"

10"

10'

10'

10

Frequency (Hz)

(a)

10'

Frequency (Hz)

(b)

10'

Frequency (Hz)

(c)

10*

10°

Original

SVD HF+LF

10°

Fig. 5.8. Approximation of driving-point admittance using (a) VF, order 1 48, and SVD-based

MOR method (b)/LF, order 35, and (c)/lf+hf, order 123.
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5.2.3 Time-domain response

The transient simulated in this case study is obtained by applying at t = 0 s the following

three-phase balanced voltage input to the network of Fig. 5.7 (showing only the valué for

phase a):

ua (t)
= 66x 103[sin(<y(/) + 0.3 sin(3¿y(/) + 0. 1 sm(5ay) + 0. 1 sin(7 co_,t) +0.05 sin(l 5coQt)],

The computation of the transient, using a time-step of Ips, begins with the simulation of

the 123th /lf+hf approximation for the time subwindows t < tsw, with tsw = 0.01 s; afterwards,

the/LF approximation is used to compute the time-domain response for the time subwindow

0.01 < t < 0.03 s. The transient currents by the full- and reduced-order approximations are

presented in Fig. 5.9 showing a good agreement.

4000

2000

S 0
E_
L.

_3

O

-2000

- Full Order

- Reduced Order

$$os?^^^

-4000.
0.005 0.01 0.015

Time (s)

0.02

Phase a •

Phase *

Phase c

0.025 0.03

4000

2000

-4000

(a)

(b)

— Full Order

• - Reduced Order

x10"

Fig. 5.9. (a) Transient waveforms by the full-order approximation given by VF and by the

SVD-based MOR approximation, (b) cióse up.
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Similarly to the single-phase case study, Table 5.7 presents different orders of

approximations for the assumed QLf and QHf ranges. It should be mentioned that in some

cases a non-passive approximation has resulted; this has been alleviated by using the

passivity enforcement routine of VF

The corresponding results of the single-phase case study, Table 5.3, are presented in

Table 5.7 for the three-phase case study. Table 5.7 shows that the CPU times obtained by the

proposed method are about half the required by the full-order approximation; also, the RMS

error by the former is about 1%. Similar to the single-phase case, the CPU times by the SVD-

based MOR method in Table 5.7 can be further reduced for smaller t.w and/or larger time

integration step when using/LF.

The last two rows of Table 5.7 present the rms errors in the output transient waveforms

and the CPU times, obtained by applying SVD and BR to the complete frequency range íl It

can be observed in Fig. 5.7 that a large reduction is not achieved; from order 148 to order 139

and from 148 to 123 by application of SVD and BR to the complete frequency range,

respectively. The CPU time by the 139th order system by the SVD method is comparable to

the one given by VF for this case study. On the other hand, the BR method yields rms errors

comparable to the ones given by the SVD-based MOR technique; however, the CPU time by

the former is larger than the obtained by the proposed method due to BR produces a full state

matrix A.

Table 5.7. RMS error in the output and CPU time for different SVD-based MOR

approximations.

^LF rHF+LF em (phase a) CPU time (s)

VF 148 1.1569

SVD-based

MOR

29 102 107 0.05991 0.4850

31 118 121 0.03590 0.5474

33 110 117 0.04975 0.5554

35 118 123 0.01574 0.5861

SVD 139 0.02784 1.0951

BR 123 0.03450 2.6537
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5.3 Conclusions

The proposed SVD-based MOR method has been validated using two different networks; the

obtained results have been compared with those obtained by VF, SVD and BR considering the

complete frequency range. An important feature of the proposed method is that it can use

different time-steps to simúlate the total time-domain response, achieving further computational

savings while preserving accuracy.
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6 Conclusions

6.1 Conclusions

A simple and effective SVD-based MOR technique covering a wide frequency range has

been proposed and validated in this thesis. The proposed method has been applied to a single-

phase network and to a three-phase network.

The obtained time-domain results show that the resultant reduced-order models

reproduce with good accuracy the original response of a system, which is the main objective

of MOR techniques. Since the proposed method adopts subsets of the poles given by VF, the

resultant approximation retains stability properties. Also, the reduced-order model obtained

by the proposed method achieves computational savings when compared to a full-order

model typically obtained by VF The performance of the proposed method also has been

compared with BR and SVD-based MOR applied to the complete frequency range, showing

computational superiority.

A specific application of the proposed method is MOR of a system for a narrow

bandwidth aimed to analyze the system's response in that bandwidth, e.g., overvoltages,

switching, lightning, DC analysis, and so on.

6.2 Future work

• To obtain an optimal time to switch between /Lh and/LF+HF, tm to minimize CPU time.

• To develop a criterion for optimal order of the LF and HF approximations.

6.3 Publications

[1] E. Medina and A. Ramirez, "SVD-based reduced-order rational approximation on specific

frequency bandwidth," accepted in the 2015 North American Power Symposium (NAPS),

paper NAPS-1 131.

[2] E. Medina and A. Ramirez, "SVD-based reduced-order rational approximation for EMT

analysis," submittedfor publication. IEEE Trans. Power Del., paper TPWRD-00783-2015.
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Appendix a

Network equivalent, case study 1

To calcúlate the driving-point admittance of case study 1, all overhead lines and

underground cables are represented by their two-port network models as shown in Fig. 6.1

[19].

J
B

k

A-B A-B

Fig. A. 1 Line/cable admittance two-port network representation.

where:

a = y; cothoo, (A.l)

B = Yc csch(yl), (A.2)

Yc and y, given in (A.3) and (A.4), represent characteristic admittance and propagation

function respectively; / represents the length.

K=^ (A*3)

y
= y[ZY (A.4)

Based on the above mentioned line/cable representation and load admittances, the nodal

admittance matrix (YBus) is calculated as

/ = Y V' '
nus

y ■

where

/ = [/_ OOOOOOOO of

V=[V V2 V, V4 V, Vh V7 V8 K- vjr

(A.5)

(A.6)

(A.7)
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Y =

'bus

Y Y
¡X\ 'X2

Y Y
.21 '22,

(A.8)

The driving point admittance is obtained as

"
*M1 **I2*22 '21 ' (A.9)

where:

*^i -[Auc],

Yi2=[~Buc OOOOOOOO],

Y =YT-*
21 'ni

(A.10)

(A.II)

(A.12)

\C + A

-B

0

0

0

o

o

o

o
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o

o

o

o

o

o

~BUC

AVC+2A + YI

-B

-B

O

0

O

0

o

o

-B

3A + Y,

O

-B

-B

0

O

O

o

-B

O

¿A + Y,

O

O

-B

-B

O

O

o

-B

0

A

O

O

O

0

O

O

-B

0

O

A

0

O

0 0
"

0 0

0 0

0 0

-B -B

0 0

0 0

A 0

0 A

(A.13)

In (A.10) to (A.13), Auc and Buc correspond to the UC parameters while A and B are

the parameters ofthe ten identical overhead lines parameters.
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Appendix b

Network equivalent, case study 2

The computation of the three-phase driving-point admittance of the network shown in

Fig. 5.7, is carried out similarly to the single-phase case. For the three-phase case, the two-

port network model of the overhead lines and underground cables involve matrices of

dimensions 3x3, represented by

A = Yccoth(yl), (B.l)

B = Y_ csch(//), (B.2)

where Yc and y are calculated as shown in (B.3) and (B.4) respectively.

Yt=Z'[yfZY (B.3)

y
= yfZY (B.4)

Similarly to the single-phase case, the nodal admittance matrix (Ybus) is given by

I = YIIUSV. (B.5)

where

/=[/. 0 0 0 0 0 0 0 0 0 0 Of (B.6)

v=\y, V2 V, V4 Vs V6 V7 V, V9 V10 Vu Vj (B.7)

Y =

'bus

Y Y
'XX *M2

Y Y
.-■21 **22,

(B.8)

Elements of (B.8) are given by

Yn =[**]. (B-9>

Yi2=[-Buc OOOOOOOOOO], (B.10)

Y2l=Y,L (B.II)
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