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Resumen

En esta tesis se propone un enfoque sistematico para analizar y caracterizar la
evolucién temporal de procesos no lineales variantes en el tiempo en sistemas
de potencia. Primero, un modelo para la caracterizaciéon de la amplitud y el
amortiguamiento de oscilaciones cuasi-estacionarias es propuesto. El método
combina analisis tiempo-frecuencia y conceptos de la teoria de sistemas
vibratorios para aproximar el comportamiento de oscilaciones no lineales
variantes en el tiempo mediante osciladores de dos grados de libertad.

Se presenta, a continuacién, un nuevo marco analitico en la
caracterizacion y el modelado de la evolucién temporal no lineal de las
oscilaciones y técnicas para la identificacién del contenido modal de los mas
dominantes componentes de movimiento son desarrolladas. Se obtienen
expresiones analiticas que proporcionan soluciones aproximadas a los atributos
instantaneos como frecuencia y amortiguamiento de las oscilaciones, y se ofrece
una interpretacion fisica del modelo. E1 método propuesto proporciona también
un medio para la extraccibn de estructuras dindmicas en los procesos
oscilatorios.

Como un ejemplo, se utilizan datos de estabilidad transitoria y eventos
reales para examinar el potencial uso de técnicas en el anilisis de series
temporales no lineales en la caracterizacién de la evolucién en el tiempo de
oscilaciones no lineales y no estacionarias, y determinar la naturaleza y
propagacién del sistema perturbado. El enfoque propuesto también es
comparado con técnicas convencionales y su eficiencia es completamente
demostrada.



Abstract

In this thesis, a systematic approach to analyze and characterize the temporal
evolution of nonlinear, time-varying processes in power systems is proposed.
First, a model for characterizing the amplitude and damping of cuasi-
stationary oscillations is proposed. The method combines time-frequency
analysis and concepts from vibration systems theory for approximating the
behavior of nonlinear, time-varying oscillations by second-order-degree-of-
freedom oscillators.

A new analytic framework in characterizing and modelling the nonlinear
temporal evolution of the oscillations is then presented and techniques for
identifying the modal content of the most dominant motion components are
developed. Analytic expressions are obtained that provide approximate
solutions to the instantaneous attributes as frequency and damping of the
oscillations, and a physical interpretation of the model is given. The proposed
method provides also a means for extracting dynamic structures in oscillatory
processes.

As an example, data from both transient stability and real events are
used to examine the potential usefulness of nonlinear time series analysis
techniques in characterizing the time evolution of nonlinear, non-stationary
oscillations and to determine the nature and propagation of the system
disturbance. The proposed approach is also compared with conventional
techniques and its efficiency is fully demonstrated.
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Chapterl
Introduction

This introductory chapter presents a brief description of the research work in this thesis.
The general introduction, the problem statement, the objectives and the study approach

are presented.

After a motivation to the study of instantaneous attributes in the dynamic behav-

ior of system oscillations, a review of recent work is presented.

The objectives of the work, the main results, and the limitations of the study are

stated and the main contributions are then summarized.

The chapter concludes with an outline of the structure of the thesis.



1.1 Background and motivation

The analysis and characterization of nonlinear, non-stationary power system
oscillations has attracted significant attention in recent years. Transient oscilla-
tions triggered by the loss of major transmission and generation resources may
manifest highly complex spatial and temporal dynamics and involve a large

number of machines and take place over a great range of space and time scales

[11[2].

Understanding the dynamic mechanisms that govern the leading modes
of variability of the observed oscillations, and how these modes may be influ-
enced by control or other changes, are questions of critical importance. Such fea-

tures may be obscured or distorted in the normal spectral analysis approach.

Recent experience with the analysis of inter-area disturbances shows that
many transient oscillations may manifest complex phenomena, including
nonlinear, time-varying behavior and mode interaction [3]-[5]. In large, loosely
interconnected power systems, the analysis and characterization of inter-area

oscillations from measured data is a formidable challenge.

Non-stationary behavior may result from the effects of sequential faults,
control actions, and changes in system topology and operating conditions. Suc-
cessful analysis of complex dynamic events requires analysis approaches with
high levels of sophistication including the ability to treat nonlinear and non-
stationary data, increased time and frequency resolution, and ease of implemen-

tation among other features.

Accurate tracking of system behavior allows replicating the events lead-
ing to the observed oscillations, and analyzing the system conditions, control

action or device on modal content.

Past studies have focused on identifying the causal mechanisms for insta-
bility and analyzing the temporal and spatial variability of measured data or
simulations. Among such procedures, the evolutionary spectrum, the continu-

ous wavelet transform, empirical orthogonal analysis, and the Hilbert-Huang
2



technique have proved to be useful tools for analyzing and studying the time-
varying modal characteristics of complex systems subjected to large perturba-

tions.

Of particle interest are applications where these techniques are used to
extract modal information on an on-line basis or for real-time control of system
behavior.

While some progress has been made, there are still some important issues
that need to be addressed before such approaches can be realized for on-line
monitoring and control of transient oscillations. Study experience with complex
systems, suggests that various levels of refinement are required according to the

application [3]-[5].

This work aims addressing some of these issues with emphasis on the

analysis of nonlinear and non-stationary oscillations.

1.2 Problem statement

The detection of temporal changes in the dynamic behavior in nonlinear, non-
stationary oscillatory processes is a problem of great theoretical and practical

importance.

Characterization of non-stationary behavior is required for both, detailed
understanding of the mechanisms leading to the instability, and addressing the
key questions of how the temporal oscillation modes evolve over time. The issue
of stationarity is particularly important in studying the system response to large
and abrupt changes in system topology or operating conditions, and in tracking

the system response to sequential faults.

Nonlinearity, on the other hand, causes the temporal modes to interact,
leading to frequency and amplitude modulation and to a phase relationship
known as quadratic phase coupling between the frequency components in-

volved.



Detecting and identifying sources of nonlinearity and non-stationarity in
observed time series are difficult problems. The non-stationarity of the data fol-
lowing the triggering event makes reliable estimates of the instantaneous fre-
quency, damping and generator coherency of the observed oscillations difficult.
Traditional methods of time series analysis do not address the problem of non-
stationary in power system oscillations, and often assume linearity of the proc-
ess which makes them unsuitable for the study of transient power system proc-

esses.

Because of the time-varying characteristics exhibited by the power system
processes, the investigation of system behavior should employ methodologies

that make proper use non-stationary approaches.

Besides the understanding of the temporal behavior of system oscilla-
tions, nonlinear models should be developed to understand complex behavior

and enhance our ability of system prediction.

In what follows a critical review of methods for the analysis, modeling
and characterization of transient processes in power systems is presented, with
an emphasis on time-frequency methods of analysis of nonlinear, time-varying

series.

1.3 A brief review of previous work

Time-frequency-energy analysis is a new field of research with a broad range of

applications such as image processing and biomedical signal analysis.

In the past decade, many approaches have been proposed for spectral
analysis of power system signals. Commonly used spectral analysis methods are
based on linear analysis techniques. These include spectral estimation methods,
eigenrealization algorithms and MIMO state-space identification methods, [6],
[7], among other. These models are incapable of explaining important nonlinear
phenomena and may not provide useful information needed in the assessment

of transient signal dynamics.



In addition, most of the analysis techniques for system oscillations have

one major shortcoming: the lack of realizable approach for damping estimation.

Approaches such as Prony analysis and block processing techniques have
been successfully used to extract modal information from complex data set [8]-
[10]. As the number of measured signals increases, however, accurate charac-
terization of relevant modal behavior becomes difficult, especially in the pres-

ence of noise [9].

Other application areas include the analysis of generator coherency from
simulated data and the extraction of spatial dynamic patterns. Algorithms such
as those based on eigenvalue analysis [11] and principal component analysis
[12] have been used to identify generator coherent groups as well as to analyze

other aspects of system dynamic behavior.

In [13], a wide-area analysis method for generator coherency identifica-
tion based on Fourier analysis was used for inter-area detection and generator
grouping. A major limitation of this approach is the assumption of stationarity
that makes it unsuitable for real-time applications, or applications involving

control or topology changes.

Over the last few years, several time-energy-frequency analysis tech-
niques have been developed with the ability to characterize non-stationary be-
havior. Among these emerging techniques, Hilbert and wavelet analysis, and
higher order statistical techniques have been used to detect and quantify the
effect of nonlinear mode interaction on the time evolution of non-stationary

power system oscillations [3]-[5].

In [4], higher-order statistical (HOS) analysis techniques are used to study
the interplay between modal interaction and nonlinear behavior in a complex
system. HOS methods are mainly useful for the analysis of semi-stationary phe-

nomena whose frequency components change slowly over time.



Also of interest is the approach of Levent et al. [14] who proposed a
method to extract modal properties as damping and frequency from nonlinear

transient signal

The proposed methods offer a powerful tool to analyzed sets of data ob-
tained from simulations or measurements that supplements information on
conventional analysis techniques. Also the modal information obtained of the
analyzed signals is physically interpretable and provide meaningful insights

into the observed dynamics.

1.4 Thesis objectives

Following the above problems, the objectives of this research are as fol-

lows:

» The development of an analytical framework based on time-energy-
frequency representations to model, analyze and characterize the tempo-
ral dynamics of nonlinear and non-stationary oscillations in power sys-
tems that will be compatible with the models employed by the electric
industry.

* The development and testing of improved numerical approaches for ex-

isting methods to analyze complex oscillations.

» The extension of existing approaches to analyze spatio-temporal dynamic

patterns in transient processes.

* To investigate the applicability of HHT in the analysis of transient proc-

esses in power systems.



1.5 Research contributions

In this work, techniques to extract and characterize instantaneous attributes of

nonlinear and non-stationary power system oscillations are proposed.
The main original contributions of this thesis include the followings:

The development of a mathematic and computational approach for ex-
tracting temporal information from nonlinear, time-varying processes. A
new dynamic framework based on output-only information of a multi-
ple-degree-of-freedom system is proposed to extract temporal modal in-

formation.

* The modification of standard EMD algorithms to allow demodulation of
the extracted temporal components. Based on a modified sifting tech-
nique, temporal behavior is characterized in terms of mono-component
analytic functions that admit well-behaved Hilbert transforms

= The extension of current algorithms for damping estimation and intro-
duction of new measures based on the notion of averaged instantaneous
damping. A simple model that combines splines with the log-decrement

technique is used to define average instantaneous damping.

* The development and testing of alternative formulations for estimating

instantaneous frequency and the computation of Hilbert transforms.

The development of analytical approaches to estimate dynamic coher-

ency from transient stability simulations.

The combination of these methods is a new direction in power system
research and has helped to gain new understanding in the variability of

power system processes on midterm scales.

The results are also relevant to the identification of the critical period

of activity of temporal modes and the development of corrective measures.



1.6 Organization of the thesis

This thesis is organized in seven chapters and one appendix.

After this introductory chapter, Chapter 2 introduces time-energy-

frequency approaches for the analysis of temporal process.

Chapter 3 discusses different approach for the numerical implementation
of the Hilbert transform in power signals for the estimation of instantaneous
attributes. These methods are: the time-domain approach, the frequency-domain
approach (Fourier method) and the convolution method. An application exam-

ple is provided by determining the most viable approach.

Chapter 4 presents the analysis and identification of time-varying processes. A
systematic method to analyze and characterize the temporal evolution of
nonlinear, non-stationary process in power systems is developed. The method
combines the Hilbert-Huang transform and concepts from vibrating systems
theory and is used to approximate the dynamic behavior of quasi-stationary os-
cillations.

Chapter 5 demonstrates the efficiency of proposed method by comparing
damping estimates with results obtained from conventional approaches. Alter-
native methods by computing instantaneous frequency are developed, and a

method by estimating instantaneous generator coherency is proposed.

Chapter 6 presents the application of the time-varying algorithm model
to the analysis of inter-are oscillations. Conclusions and suggestions for future

work are presented in Chapter 7.

Appendix A describes the spline fitting technique used in this research.
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Chapter?2

Generalized Hilbert-Huang
Transforms

The study of nonlinear, non-stationary power system processes has recently become the
subject of intense interest and investigation in power system stability studies. In prac-
tice, the detection and characterization of temporal nonlinear oscillations in measured

data is greatly complicated by non-stationary variations in system dynamic behavior.

Several representations have been explored over the last few years to analyze

processes that are characterized by nonlinear and non-stationary characteristics.

This chapter presents a general review of modeling frameworks that explicitly ac-
knowledge and incorporate nonlinear and non-stationary behavior. A two-stage time-
frequency-energy (TFE) approach based on the Hilbert-Huang transform is first intro-
duced that can be used to analyze temporal information. Variations to existing ap-

proaches are suggested along with a review of present limitations.

Numerical aspects associated with the use and interpretation of the proposed
technique are discussed. In addition, we discuss various issues which influence the effec-

tiveness of several time-frequency representations.

The notation utilized throughout the dissertation is also summarized.
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2.1 The Hilbert-Huang technique
Recently, nonlinear and non-stationary analysis techniques based on the Hil-
bert-Huang Transform (HHT) [1],[2] have been used to analyze data from

nonlinear and non-stationary processes. The HHT consists of two steps:

(a). The empirical mode decomposition of the signal into basis functions,

and
(b). The application of the Hilbert transform to the intrinsic functions

The cornerstone to the whole HHT procedure is the Empirical Mode De-
composition (EMD) that separates a signal into amplitude and frequency

modulated signal components that admit well-behaved Hilbert transforms

[3114].

In the first step, the original system time histories x(¢)are decomposed
into a finite number of intrinsic mode functions (IMFs) with time-variable am-
plitudes and frequencies, through EMD. Once the original signal has been de-
composed into intrinsic mode functions, the Hilbert transform can be applied to
each IMF to extract modal features.

In the following sections we offer a critical review of this approach. En-
hancements, extensions and generalizations to the techniques are suggested

along with an analysis of present limitations.

2.1.1 Empirical mode decomposition

The empirical mode decomposition (EMD) technique is a systematic method for
numerically decomposing any time equally spaced time series, x(t) into its own

intrinsic mode functions, i.e. the IMFs.
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Definition 2.1 (Intrinsic Mode Function). An IMF is defined as a time se-

ries which satisfies three critical requirements:

(a). In the whole data set, the number of extrema and the number of zero-
crossing must either be equal or differ at most by one.

(b). At any point, the mean value of the envelope defined by the local maxima
and the envelope defined by the local minima is zero.

(c). The linear superposition of all IMFs should reconstruct the time series.

The extraction of IMFs out of time series requires a repeated sifting pro-
cedure called empirical mode decomposition. EMD is briefly described as fol-

lows:

1. Starting with the original signal x(r), set 7,(f) =x(¢), and j=1.
2. Extract the jth IMF using the following sifting procedure
a. Set hy(t)=r() and i=1.

b. Identify all extrema of x(f) for h(t) by passing a natural

cubic spline through the local maxima and minima.

c. Interpolate between maxima (minima) to obtain an enve-
10pe emnx(t) (emin(t))'

d. Compute the running mean of the envelopes,
m,._l(t)=le,,mx’_l () + e, (t)J/2 and subtract it from &_(f);
determine a new estimate A (f)=h_(t)—m_(t), such that

()=<h(")<e,, () forall t.Set i=i+1.

emin,_ max,_,

The step 2(d) is then repeated until 4, (f)satisfies a predetermined stop-
ping criterion, and the first IMF component from the data is called ¢, (¢) = A,(¢)

3. Obtain an improved residue r,(¢)=r,_,(¢)—c,(f). Repeat steps 2(a)
through 2(d) with j=j+1 until the number of extremes in 7 (t)is

less than two.
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In this model, the upper and lower envelopes are derived by fitting a cu-
bic spline through the local maxima and minima, respectively, with the added
requirement that the signal lies between these two envelopes. See Appendix A

for details about cubic splines.

This decomposition is mathematically expressed in the form:

() = z":c (D) +7,(0) @.1)
j=l

where the functions c,(f) are nearly orthogonal and have zero local means, n is
the total number of IMFs and r,(¢) is the non-oscillatory residual at the end of
the sifting process, which represent the trend component of the signal x(f). The

algorithm does not impose a basis set on the data (does impose a predetermined
basis function which makes it adaptive).

Each IMF is associated with a local time scale that can be amplitude or
frequency modulated and even non-stationary, and involves only one mode of
oscillation, where the first component (IMF1) contain the highest frequency os-
cillation; the frequency content then decrease with the increase in IMF and the

last component is the residue r,(¢).

The stopping criterion of the sifting process requires that the residue

r,(t), becomes a monotonic function from which no more IMF can be extracted,

or can still be different from zero mean.

To guarantee that the IMFs retain sufficient physical sense, a criterion to
stop the sifting process is defined by calculating the standard deviation between

two successive siftings as

T

Z (hl(k-l) ®)—h, @ ))2

Sp="2
2 Mg @)
=0
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where SD is typically set between 0.2 and 0.3 [1]. The selection of an optimum
threshold value is important, but difficult.

The sifting process serves two purposes: to separate out high-frequency,
small-amplitude waves, which are ‘riding’ atop, or superimposed on, larger
amplitude, lower frequency waves, and to smooth out uneven amplitudes in the
IMF being extracted, i.e. to make the wave-profiles more symmetric about the

local zero-mean line.

The first purpose must be achieved for the Hilbert transform to give a
meaningful instantaneous frequency, while the second purpose must also be

achieved in case the neighboring wave amplitudes have too large a disparity.

As pointed out in the literature, however, these goals are often conflicting
for non-stationary signals, since riding waves may be transient in nature and/or
highly variable in amplitude, and smoothing out the uneven amplitudes via sift-

ing can prevent faithful extraction of these waves.

Moreover, repetitive sifting causes smearing of TFE information across
different decomposition levels and an intra-level smoothing of TFE information,
which is unlikely to reflect the intrinsic characteristics of the signal under analy-

sis.

Physical insight into the nature of the EMD can be attained by seeing a

nonlinear and non-stationary signal, x(f), as composed of fast oscillations super-

imposed on slow oscillations. A simple example is shown in Fig. 2.1 to illustrate
this notion. Here, the original signal (blue thick line) is seen as composed of a
slow oscillation given by the mean of two envelopes €1 (1), €0 (1)] (dark bro-

ken line) and a fast oscillation given by
h(t) = x(t) — mean(t)
where

1, (1) = [ (1) + €0in ()] 2
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Once the slow oscillation has been identified, it is considered as new sig-

nal onto which the same procedure is applied.

240

—— real signal
----- Upper envelope
.......... Lower envelope
LD Mean \alue
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N
=
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170 i 1 1 1 1
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Figure 2.1. First step of the sifting process applied to a real signal showing the upper and
lower envelopes and the instantaneous mean.

Other interpolation techniques such as trigonometric interpolation and

higher order spline fitting hold promise in the development of improved EMD.

2.2 The Hilbert transform and the analytic signal
2.2.1 The Hilbert transform
Once the EMD technique has been applied to decompose the input signal into a

set of IMFs and a residual signal, one may now analyze the components to ex-

tract instantaneous amplitude, phase and frequency information.

Suppose u(f)is a general measured or simulated signal. The Hilbert trans-
form (HT) of u(t)is defined by [5]
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W) = Hlu))=- P [ ;—(_ﬂ—:dn -1» w:‘f—”;dn 22)

and the Hilbert inverse transform is given by

u)= Hpol=P [, %dﬂ ———p w%dﬂ (2.3)

where the principal value of the integral is used and * indicates the convolution

operator.

The integrals in (2.2) and (2.3) are improper integrals in the sense of the
Cauchy principal value denoted by P, and they are represented in terms of con-

volution notation as
() = L u(t) (2.4)
m

u(t)= ——:; *v() (2.5)

where 1/(m) is the kernel of the transformation. Equations (2.2) and (2.3) de-

scribe a unique pair (u(r), H[u(#)]) that contains temporal behavior.

2.2.2 The analytic signal

The real signal u(f) and its HT define an analytic signal, ‘¥(¢), given by
V() = u(t) + jv(t) = A(t)e’*” (2.6)

where A(f) and ¢(f) are the instantaneous amplitude and phase of the analytic
signal z(t), and the imaginary part H[x(t)] is the Hilbert transform of x(%):

H[x(t)]=%P [ gdn 2.7)

where the notation P indicates the Cauchy principal value of the integral.
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Clearly,
u(t) = A(t) cos[p(r)] (2.8)
v(f) = A(t)sin[p(r)] 2.9

It is important to emphasize that both, the amplitude A(f), and phase
function ¢(t), are single valued functions of time, and therefore can only be ap-

plied to a simple oscillatory function. The combined application of Hilbert
analysis and the EMD allows the study of more complex signal behavior.

Meaningful results are obtained from mono-component Hilbert trans-
form. This is discussed further in Chapter 6.

2.2.3 Instantaneous time-frequency information

The analytic signal represents a local time-varying wave in the complex plane

(u,v)and is a phasor that rotates about the Cartesian plane(,v), as shown in

Fig. 2.2.
A V() %(t)
A(t)

o)

u(t)

Figure 2.2. A rotating phasor representing the analytic signal ¥(¢) = u(t) + jv(t).

18



The length of the rotating phasor A(f), is named the instantaneous ampli-
tude, defined as

A =u* () +v* () (2.10)

and the instantaneous phase is defined as the instantaneous angle

() = arctan[ E’;J 2.11)

in which, the instantaneous phases are obtained by unwrapping the phase an-
gles ¢, (1).

The rotating phasor and its instantaneous angular speed define the in-
stantaneous angular frequency of the analytic signal. Following Gabor [2], the

instantaneous frequency is defined as the phase velocity of any given phase:

d v(t) || u()v(e) —v(t)u(?)
o(t) = p(t) = dt[arctan( (t)ﬂ— OO (2.12)

Therefore, the instantaneous frequency in cycles/s or Hertz can be calcu-
lated by

FO=22 =) (2.13)

Techniques to compute the instantaneous frequency that avoid comput-
ing the local time derivative are introduced in Chapter 5. Several practical pro-

cedures for computing the Hilbert transform are given in Chapter 3.

2.2.4 Mathematical challenges in Hilbert-Huang analysis

While the introduction of the EMD constitutes a conceptual advance in TEF
analysis for non-stationary and nonlinear signals, it has several practical limita-
tions that reduce its practical utility and may cause inaccuracies in depicting

signal dynamics.
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Numerical problems include:

e End swings caused by spline interpolation that result in large variations
in the envelope estimation. These large swings can eventually propagate
into the data series and corrupt the whole signal, especially the low fre-
quency components, thus making the EMD ineffective.

Convergence problems in the sifting procedure,
* Difficulty with intermittency and modulation, and
Distortion in the Hilbert transform, and
A number of analytical issues remain open for research and include:
Finding physical and mathematical meaning for the IMFs,
* Determining the most appropriate interpolating schemes, and
* Identifying criteria for stopping the sifting process.

Despite the aforementioned weaknesses, the HHT is finding increased
application.

There have been several approaches to handling these issues. These in-
clude the use of signal masking techniques, higher-order spline fits, the use of
trigonometric interpolation, bitting-off of the beginning and the end of a signal,

and decreasing sampling intervals, among other methods.

2.3 Use of signal masking techniques to improve EMD

The conventional EMD method introduced by Huang is based on a progressive
sifting process by extracting the IMFs, which requires that a local average of the
signal be defined [6].

As we remarked above, however, the IMFs may contain riding waves
which create intermittency and modulation making physical interpretation of
20



mixed modes difficult. Further IMFs may be multi-harmonic functions and
therefore, the instantaneous frequencies extracted from them show irregularities

which raise difficulties in interpreting the signal.

2.3.1 Intermittency and intermodulation
The problem of intermittency prevents the use of EMD on many types of sig-
nals. Intermittency occurs in any signal that is constantly changing and is usu-

ally defined as erratic changes wave heights.

Following Huang [7], we refer to intermittency as a component at a par-
ticular time scale either into existence or disappearing from a signal. This can
introduce mode mixing, that is, having different time or spatial scales mixed in
one IMF. In turn, this has the effect of producing additional spurious variations

in the IMFs and their associated instantaneous frequencies.

In the standard analysis procedure, the nonlinear and multi-component
signal is decomposed into a finite number of high-frequency and low-frequency
components (IMFs) by cubic spline interpolation to create envelopes around the
signal and find the local average. If we knew the components a priori through
EMD method we would naturally define the local average to be the lowest fre-

quency component.

In most practical modeling situations, however, the nonlinear, non-
stationary temporal functions may include one or more modes whose associated
amplitudes and frequencies are modulated and coupled in time; these modes

are difficult to interpret in term of conventional modal analysis.

The need for improved descriptions of the EMD has led to the develop-
ment of signal masking techniques.

2.3.2 Solution to mode mixing

A solution to the problem of mode mixing is to insert a sinusoidal masking sig-
nal that prevents lower frequency components from being included in the IMF

obtained through traditional EMD method.
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This is accomplished as follows [8]:

(). Perform a Fast Fourier Transform (FFT) on the original signal
x(t), to estimate frequency components f,f,,...f, in an IMF,

where f, < f, <..< f,. The frequencies f,, f,,..., f,, are the station-
ary equivalents of the possibly time-varying frequency compo-

nents of x(¢).

(ii). Construct the masking signals mask,, mask;,..., mask,, where
mask, (f) = M, sin2z(f, + f,.,)t], in which |£,| is the magnitude of
/, obtained from the FFT spectrum. The value of M, is empirical.

(iii). Obtain two signals c, (1), = x(t) + mask, (t) and
c,(t)_ = x(t)—mask, (t) . Perform EMD (steps 1-2 from section 2.1.1)
on both signals to obtain their first IMFs only, ¢,(¢), and ¢(¢)_;
then c,(¢) = (c,(?), +¢,(1).)/2.

(iv). Obtain the residue, #(f) = x(t)—¢,(¢).

(v). Perform steps A3-A4 iteratively using the other masking signals

and replacing x(¢) with the residue obtained, until »—1IMFs con-
taining frequency components f,, f;,..., f, are extracted. The final

residue 7, (¢) will contain the remaining component f;.
(vi). Compute the residue, 7(f) = x(t)—c,(?) .

(vii). If the residue, #(t), is above a threshold value of error tolerance,
then repeat step (i) through (iii) on #(¢), to obtain the next IMF

and a new residue.

By using a masking signal higher that the highest frequency component,

it is possible to separate two components whose frequencies are within a factor

22



of 2 of each other. Further, this preprocessing technique decomposes the signal
into IMFs that have better-behaved Hilbert transforms.

In recent work by Senroy [8], the improved HHT, developed in [4], was
used to characterizing the time-frequency-magnitude response of a high-
temperature superconducting motor, in which its algorithm uses the FFT of a
time-varying waveform to generate appropriate masking signals. Other varia-
tions to enhance empirical mode decomposition employing this approach are
described in [9] and [10].

Special techniques to deal with mode mixing are discussed in Chapter 6.

The masking signal method allows EMD to be used to separate compo-
nents that are similar in frequency that would be inseparable with traditional
EMD techniques.

2.4 The Hilbert spectrum and instantaneous frequency
2.4.1 The Hilbert spectrum
After performing the Hilbert transform on each IMF component, the original

data can be recovered as

x(t) = 3 IMF, (1) =m{>":a, )" “’f“""} (2.14)
Jj=1 Jj=1

where R is the real part of the complex number. The time-frequency distribu-
tion of the amplitude is designated as the Hilbert spectrum H(w,?), the term

a,(r)is a time-dependent expansion coefficient similar to the constant in the
Fourier expansion and ,(¢) is the instantaneous frequency at time 7 which

differs from the constant frequency w, in the Fourier transform.

Equation (2.14) shows that a time series x(f) can be represented by a trip-
let {t,0(),a(r)}, i.e. an effective time-frequency distribution of the amplitude is

generated for the associated time series.
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2.4.2 Instantaneous complex phase and complex frequency
The instantaneous phase of a signal may be derived from the instantaneous fre-

quency using the integral [5]

()= [ot)dt+g, (2.15)

This formula may be regarded as a solution of the first-order differential

equation given by

p(0) = (1) =27/ (1) (2.16)

The integral of the angular speed w(f) equals the angular distance ¢(¢)
and the integration constant ¢, is given by the angular position of the phasor at
t=0. In order to get a uniform exponential notation of the analytic signal, let us
define the instantaneous radial velocity of the phasor or instantaneous radial

frequency of Figure 2.2 as
A@)
N=—= 2.17
altl=— o (2.17)

where a(f) is a measure of the relative speed of elongation of the radius vector
A(t); in others word, a(t) gives a measure of the radial velocity representing the

speed of change of the radius or amplitude of the phasor.

The solution of this differential equation enables us to write the instanta-

neous amplitude in the form

Alt) = A, (2.18)
and the analytic signal in a uniform exponential notation
B(1) = dye e OO (2.19)

where 4,e’” is a constant defining the notion of a complex amplitude at 1=0.

24



The integrand in this formula defines the notion of the instantaneous

complex frequency

s@)=a()+ jo(t) (2.20)

Alternatively, we can define the instantaneous complex phase of the ana-
lytic signal of the form [11]

D (1) = Ln[¥(0)] = Ln[A(O) + jo1)] (2.21)

Here, the capital L denotes the multibranch character of the logarithm of
a complex function. The time derivate of the complex phase yields the complex
frequency (2.20), since
A(r)

S(t)=d’c(1)=z(-t-)-+j¢(t)=a(t)+jw(t) 2.22)

Subsequent sections of this paper discuss briefly the use of alternate

modeling approaches to characterize temporal behavior.

2.5 Generalized time-varying transformations

In spite of the wide applicability of the time-frequency-energy representations
described in the preceding sections, numerous other techniques have been de-
veloped as well. The following is a summary of recent approaches existing in
the literature.

2.5.1 Projections in time-frequency: continuous time case

The orthogonal bases can also be computed with other techniques, in a rela-
tively straightforward manner. Figure 2.3 gives a schematic representation in
which the EMD is replaced by other techniques. These can include wavelet de-
composition, proper rotation, and empirical orthogonal analysis, among other

approaches.
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Care must be taken, however, in ensuring that the issues of non-
stationarity and non-linearity are addressed in the study of nonlinear phenom-

ena.

Real power Ortogonal Hilbert Instantaneous
signal decomposition transform Attributes

Amplitude
Nonlinear Simple

and oscillatory 3 Dominant

mode

-3 Phase

time-varying modes
Frequency

Figure 2.3. Processing of a signal to obtain its instantaneous attributes.

2.5.2 Wavelet projections

An alternative to the EMD is to use a wavelet projection to compute the basis.
Once the basis has been computed, Hilbert analysis can be used to determine

instantaneous parameters.

In practice, other projections could be used including both projections on

continuous and discrete time [12].

Projections in time-frequency: continuous time
Given a real-valued continuous-time signal x(f), consider a series of projection
operators P, which project x(f) into a time-frequency region R,. These opera-

Jo+l

tors need not be orthogonal but we assume that Z (Pp,;x)(t) = x(t) for some

J=1

J,.For j=1,..,J, define d (1) = (Pr, %)) and s, (f) = (P, x)(?). Then

x(t) = id ;) +s,, () (2.23)
Jj=1

Such an additive decomposition of x(f) is achieved by the empirical

mode decomposition technique or alternatively, wavelet decomposition.
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Discrete time wavelet decomposition

Analogous to decomposition anterior we consider projections of a real-valued
signal which attempt to produce monocomponent separation, only here we use
discrete-time methods. Assume we have sampled a continuous-time signal at

intervals Ar=1 to get a vector of observations X =[X,,.., X, ] Assume also

we have a series of projection matrices P, , which project a vector X into a par-
ticular time-frequency region R,. These operators need not be orthogonal but
we shall assume Zj‘:lPRjX =X for same particular J,. For j=1,..,J, define

D, =P, X and §, =P, _X.Then

Jo _
X= 2} D, +S8, (2.24)
j=

Decomposition (2.24) is the discrete equivalent of (2.23). So we can de-
compose the sampled signal into a linear combination of the contributions of X
in projected spaces. In the time-frequency plane has been tiled ideally, each pro-
jection will contain at most one monocomponent signal for which the concept of

instantaneous frequency is well defined.

2.5.3 Time-Varying VARMA models

In this approach, a time-varying vector autoregressive moving average
(VARMA) model based method is proposed to calculate the instantaneous fre-
quency of the IMFs obtained from the EMD. By representing the IMFs as a time
varying VARMA model and using a Kalman filter to estimate the time varying
model parameters [13], the instantaneous frequencies can be calculated accord-
ing to the time varying parameters; the instantaneous frequencies and the enve-
lopes derived from the cubic spline interpolation of the maxima of IMFs are then
used to yield the Hilbert spectrum.

The method can be summarized as follows:
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(a). The state-space representation is through a time-varying vector auto-
regressive (VARMA) model that consists of two equations: the meas-

urement equation and the transition equation.

(b). The Kalman filter is used to estimate the time-varying parameters of
VARMA model; the goal is to minimize the difference between the ob-
servation (the measurement equation) and the prediction based on the
previous observations (the prediction equations). The instantaneous

frequencies are obtained.

(c). The cubic spline interpolation and the instantaneous frequencies de-
rived from VARMA model are then used by to yield an improved
Hilbert-Huang transform.

2.6 Other approaches

Several other approaches are being developed that expand on previous results.
These approaches are beyond the scope of this research and only summarized as
follows: (1) the wavelet transform, (2) the Hilbert transform considering high
harmonics, (3) the global Hilbert vibration decomposition (HVD) method, (4)
the High-order statistic (HOS), and (5) Wavelet-Hibert Huang transform among
other approaches.
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Chapter3

Numerical Computation of the
Hilbert Transform

Existing approaches to the numerical calculation of the Hilbert transform are based on
the computation of the analytic signal using the Fourier transform and are not well
adapted for estimation of instantaneous characteristics of a real signal producing nu-
merical errors in the computing of instantaneous parameters in the initial and end data

points.

In this chapter, methods for the calculation of the Hilbert transform are devel-

oped.

The present study presents and contrasts three methods for computing the Hil-
bert transform of arbitrary signals. These are: a time-domain approach, a frequency-

domain approach based on Fourier analysis and a convolution-based method.
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3.1 Frequency-domain approach (FFT-based method)

The Hilbert transform is usually computed in the frequency-domain through the
Fourier transform according to the convolution theorem. From our previous de-
velopment in Chapter 2, the Hilbert transform can be considered to be the con-
volution of h(r) =1/m with u(f) such that

v(t)=u(t)* 7—2—

This representation of the Hilbert transform as a convolution leads to an
alternative way to compute the Hilbert transform in the frequency domain via

Fourier transform.
Assume that U(f) and V(f) are the Fourier transform of u(f) andv(¢).
Then U(f) and V(f) are defined by [1]
U(f) = [; u()e”®dt ; w=2nf
V(f)=-jsgn(NHU(Sf)
in which
sgn(o) = {~1,0,~1} for » e {~,0,0}

where f is called Fourier frequency with units 1/units of the independent vari-

able and the signum function is defined by

1 for f>0
sgn(f)=40 for f=0
-1 for f<0

Applying the Fourier transform to the convolution in the equation above,

we obtain the Hilbert transform in the frequency domain as

V(jo)=FT[v0)]= FT[i/=U (jo) = -jsgn(@)U(jo) (3.1)
where FT denotes the Fourier transform.
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Let x, be a real signal; its HT X, can be computed using the fast Fourier

transform (FFT) techniques as
%, = FFT™'[- jsgn(w)FFT[x, ]| (3.2)

where FFT is the fast Fourier transform, FFT'is the inverse fast Fourier trans-
form, @ is the nth frequency of the discrete Fourier transform, and sgn is the

sign function.

Therefore the Hilbert transform is a — /2 phase shifter when observed

as a linear system whose input is x, and outputis¥, .

In the present implementation, the Hilbert transform is computed using
the function hilbert in Matlab. This function is a 90-degree phase shift operator
and it does not change the amplitude of the original signal x, . Its operation can

be described in either as a convolution in the time-domain or frequency-domain.

This transform has a global character and hence is not well suited for
characterization of local signal parameters. Further, this approach is subject to
the problems that normally attend Fourier analysis, e.g. aliasing, end effects, etc.
Thus, for instance, the Gibbs’ phenomenon makes the Hilbert-Huang transform
analysis inaccurate around the two data ends caused by discontinuity of each

IMF during the cubic spline process of local extreme [2].

3.2 Time-domain approach

Consider a real signal x(#). Assume further that the signal x(f) has been sam-
pled every At seconds to give the sequence x, = x(kAt), k=1,23,..,n and that
the Hilbert transform signal x(k) can be computed.

If the signal x(r) is assumed to vary linearly within the sampling interval

[ At to nAt], its Hilbert transform at time Ar can be written as [3]

A A 1 par x(7)
=x(kAt)=— | ———d
ek Wvart
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( N x(r) d o J«-I)Ar___x(r) dr+lm __x(r) dr

kAt — k-2)A AL — T k=DA fAL — T
k+1) "
+L Nﬂdﬁr o _XT) dr+...+f~ X() ———dr)
kAt —T1 kDA fAf —T & kAL—T
15 O 3
=— +I0+ ) 1V
T ; k ,-;2 i )

where

o e x(7)
7= J(N kAt—rdT

1P = rN O gy IM)A’———X(Z.) dr
kDA kAL — & kAt-t

r — M x(7)
= -["-')A' kAt -7 a

When x(t) is linear during the sampling period, that is

| x4y X))@ -iAD/ A for iAt<t<(i+1)At
MO =10 4y = )—iA(=AD) for (i—D)At<t< it

we obtain

I’_(/) = f’ x, + (xi+l — xi)T/At dr
(k-DAt-7

=x,In o + (0 =%)(1+ (k= )l i
k-i—l —l—l

)

1 = X, +(x, —x,_, )T/Atdz'+ x, +(xp — %, )r/Ath
At

-7 -7

= Xget ~ X

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)
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I = _ff x, +(x,_, —x,)r/At dr
(i-k)At-1

=x, m“_"‘1 +(x,, -x,)(1+(i-k)|n"k'1)
i—-k k

i—

Therefore, the Hilbert transform of x, is

k=2 N
QI +L2+ Y 1)

i=k+2

0 Y (Y L A PR L

e k-i-1 k z—l))
+i{x,, — X )

N ._ . -_ -
+ 3 = —ara-pTE )
i=k+2 i-k i—-k

The results given in [4] are

19=x 1nkkft 1+(xi+l -x,)(-1+(k=i)ln
l-—

(e) _
I =%, -x,,

I” =x1n ! +(x,,
i—k—1

—x)(~1+(i—k)In

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

We observe that /" and (3.8), I” and (3.9) are exactly the same,

but /"is different from (3.10). This equation does influence the result of the

Hilbert transform of a signal.
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3.3 Convolution-based method

In this method we consider complex sequences for which the real and imaginary
components of analytic signal can be related through a convolution. These Hil-
bert transform relations are particularly useful in representing bandpass signals

as complex signals.
This method has not been used in power signals applications.

Causal sequences

Any sequences can be expressed as the sum of an even sequence and an odd
sequence. Specifically, with x,(n) and x,(n) denoting the even and odd parts of
x(n), then

x(n) = x,(n) +x, (n) (3.15)
where

x,(n) =%[x(n)+x(—n)] (3.16)
and

(1) =5 [x(m) = x(-n)] (3.17)

Equations (3.15)-(3.17) apply to an arbitrary sequence whether or not it is
causal or whether or not it is real. However, if x(n) is causal, then it is possible

to recover x(n) from x,(n) and to recover x(n) for n#0 from x,(n).

Hilbert transform relations for complex sequences

As the Fourier transform of a complex sequence cannot be zero for o <0 since it
is periodic, the requirement must be changed for being zero in the second half of
each period. Thus, being x(n) a sequence whose Fourier transform is X (e’*), it is

required that
X(@*)=0, -7<w<0 (3.18)
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If the time series x(n) is complex, we can express it as
x(n) = x,(n) + jx,(n) (3.19)

where x,(n) and x,(n) are real sequences.

With X, (e’”) and X,(e’®) denoting the Fourier transforms of the real se-

quences x,(n) and x,(n), respectively, we obtain

X (™) = X, () + jX, (') (3.20)
in which is easily shown that
X,@) =X+ X" @) (321)
and
X, (€)= %[X(e"") —X" () (3.22)

If X(e’”) is zero for —7 < w <0, there is no overlap between the nonzero
portions of X(e’”) and X'(e’*). Thus X(e’”) can be recovered from either

X, (e’®) or X,(e’”) as

; X, (e” <
X(e™) = {2 @), O0so<m, 629
0, -7<w<0.
and
2jX (e <
X(ejw)={ J i(e )a 0 w<7, (324)
0, -7<w<0.
From (3.23) and (3.24) it is possible to relate X,(e’”) and X,(e’*), di-
rectly by

-jX, (), O0<w<un,

3.25
JjX, (), -r<w<0, (3-25)

Xi(ejm)={
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or

X, () = H(e™)X, (') (3.26)
where
H(e) = -Jj, O0<w<nm, (3.27)
| j, -zr<w<o. '

According to (3.25) and (3.26), x,(n) can be obtained by processing x, (n)
with a linear time-invariant discrete-time system with frequency response
H(e’®) as is given by (3.27). Such system is called an ideal 90-degree phase
shifter or a Hilbert transformer, whose frequency response has unity magnitude
and a phase angle of —7/2 for 0<w<z, and a phase angle of +7z/2

for-7<w<0.
From (3.26) it follows that

1
H(e’™)

X (%)= X, () (3.28)

Thus -x,(n) can also be obtained from x,(n) with a 90-degree phase
shifter.

In other words, the Hilbert transformer is an all-pass filter called quad-
rate filter, than produce a displacement +90-degree phase shifter in the input
signal. For negative frequency is +90-degree and for positive frequency is -90-
degree. The input and output signals of the Hilbert filter are named a pair of
quadrate signals. The Hilbert filter can be analog or digital.

The transfer function of an ideal nonrealizable analog Hilbert transformer

H(jf) = Fl\/=t]=|H(jf)|e’*" = —jsgn() (3.29)
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Therefore, the transfer function is given by

-j for >0
HGN={0 for f=0 (3.30)
j for f<0
The magnitude |H(jf)|=1, Vf and the phase function is
o(f) = arg[H(jf)]= ~(x/2)sgn( /) (3.31)
The Hilbert transformer

The estimate Hilbert transformer of an analytic signal will be obtained by per-
forming a filtering operation on the analytic signal itself. The integral of Cauchy

given by equation (2.6) can be rewritten in the form of a convolution as

x,(n)= ZL: x,(n=Dh(l) (3.32)

I=-L

where (3.32) is the desired Hilbert transform of the imaginary part of a discrete-
time analytic signal. L indicate the order of the filter and its maximum order is

given by
L = Nimf -1 (3.33)

where Nimf indicates the total number of IMFs, including the residue r(f). The
filtering process eliminates the residue to avoid the mistake in the initial and

end data points of recording.

The filter with the desired features which has the impulse response h(n)

of a 90-degree phase shifter, corresponding to a frequency response given by
(3.25) is given by Oppenheimer and Schafer [5] as

1 . jon l . Jon
h(n) = o f” je'"dw at-r _[' je'"dw (3.34)
or
2 sin®(m/2)
=1, ,  "*0 (3.35)
0 n=0
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In this study L=1 in (3.32) provided an adequate amplitude response
and perfect 90-degree phase response. Future research for decomposition of sig-

nals should compare the above filter to other filters.
Other promising approaches are the use of Chebyshev filters.

Figure 3.1 show how a discrete-time Hilbert transformer system can be

used to form a complex analytic signal, which is simply a pair of real signals.

>
x,(n) x,(n)
§ ’ Complex
signal
—] Hilbert transformer - x(n)

x;(n)

Figure 3.1. Block diagram representation of the creation of a complex sequence whose
Fourier transform is one-sided.

In practice, one can implement the Hilbert transform by using a finite im-
pulse response approximation to /(#). Such FIR filter designs can be obtained

either via the window method or the equiripple method.

3.4 Summary

Three different methods for computation of the Hilbert transform have been
presented and discussed. The approaches to the numerical calculation of the
Hilbert transform are based on the computation of the analytic signal in nonlin-
ear and non-stationary power system signals and the comparison is made on the

instantaneous frequency of an oscillatory signal.
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The convolution method and the time-domain approach algorithm iden-
tify the instantaneous attributes from a similar manner and the frequency-
domain approach algorithm differs from the others two methods.

As demonstrated in this study, convolution method is the most feasible
way to obtain reliable dynamic behaviour of the system, whose nonlinear and
non-stationary oscillations over all the study period, require precise and accu-
rate analysis to determine the instantaneous characteristics, mainly in the esti-
mation of the instantaneous frequency. In this approach, filtering operation on
the analytic signal eliminates noise and fluctuations in the initial and end data
points and allows us to obtain a more accurate estimate of the instantaneous

frequency during the analysis of the dynamics of the system under study.
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Chapter4

Free Vibration Analysis using the
Hilbert Transform

An accurate model of transient processes must capture dominant temporal features of
the observed system dynamics such as abrupt changes in modal content and to relate
these features to specific aspects of interest. This chapter discusses the development of

time-frequency representations of system behavior based on Hilbert analysis.

Methods for investigating the free response of time-varying linear systems are
developed. Classical vibration theory is combined with Hilbert analysis to construct a
multi-degree-of-freedom time-varying system identification framework that is utilized to
extract modal properties. Use of these two approaches makes it possible to study spatio-
temporal behavior in an efficient manner. The method is constructive for dynamic analy-

sis of measure data and can be used to study quasi-stationary oscillations.

A systematic method for studying free oscillations of a class of system models,
based on Hilbert analysis, is first introduced. Then, the FREEVIB approach for estimat-
ing nonlinear modal characteristics is discussed. The model serves as a foundation for

more efficient algorithms for modal estimation en Chapter 5.

Explicit approximate expressions for instantaneous parameters are obtained.
Techniques for extracting instantaneous parameters, estimating the modeling errors,
and minimizing numerical issues are all examined. Finally, issues concerning the im-
plementation of the algorithms and numerical calculations are briefly discussed. A nu-

merical example is used to illustrate the practical application of the proposed algorithm.
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4.1 Extraction of modal information from time-varying linear models
4.1.1 Description of dynamic Model

Linear, time-varying systems are frequently used to model systems that have
non-stationary properties and undergo low magnitude vibrations. These models
capture the instantaneous dynamical behavior of the system, and could be used

to assess the temporal condition of the system or to diagnose modal properties.

To interpret the physical meaning of the proposed technique let us con-
sider the analysis of modal properties of a MDOF system by using output-only
response information. The equations of motion describing the natural vibration
of a viscously damped linear, time-varying multiple degree-of-freedom (MDOF)

system can be written as [1]

P x,() d x,(1) x, ()
[M@,).. M@ )| +[C(to)...C(t,,)]E b+, K@) ¢ [=041)

“x,0 x,0) x,0)

In equation (4.1), x(t)=[x,(t)...x,,(l)]T is an (nx1) displacement vector,
and M(r), C(r) and K(#) are the time-varying diagonal mass, damping and

stiffness matrices of dimension (nx n), respectively.

The system is called a slowly-variant-system if M(7), C(f) and K(¢) are
all slow variables of ¢+ compared with x(f) x(r), and %(f) [2]. The validity of this
assumption is studied further in Chapters 5 and 6.

If the system response x(f) is known, then the modal properties of the

MDOF system can be determined. It follows from arguments given in Chapter 2
that the system output x(f) can be decomposed into a series of time-varying

modes. More precisely, let the motion of the system be described by an n-

dimensional column vector x(f) = [x,() x,(f) - x,()] with components
5= 3%, (0= 3 4,()cos(p, (), (j=12,.n) @2)
J=1 j=1
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in which 4, (f)cos(p, (1)) is the time-dependent coefficient extracted for the ith
element of the displacement vector. The corresponding complex form of the
signal is

z(t) = x,() + H[x, (0] = 4, () explig, (1)) (4.3)

where z(t) is the analytic signal, and H[x,(f)] is the Hilbert transform of x, ().
We remark that this representation includes both, amplitude and frequency

modulation.

In practice, equation (4.2) could be obtained from empirical mode de-
composition of measured or simulated data. A general approach to determining
the modal coefficients is to use Hilbert analysis to estimate modal quantities

from knowledge of the solution x(t). The proposed approach involves viewing

instantaneous parameters as a measure of the best fit harmonic at each point of

the complex signal.

According to Bedrosian’s theorem [3] the Hilbert transform of the prod-
uct of two signals f(f) and g(f) can be defined as

H[f(ng®)= f)H[g®)] (4.4)

if the Fourier spectra of f(f) and g(f) are non-overlapping in frequency space
and g(¢) has a higher frequency content than f(¢)?, or both f(t) and g(¢) are
analytic.

Making use of this property in (4.2), one obtains
HM@)x(0)] =M H[x()]
H[C(O)x(t)]= C)H[x(1)]

HK@Ox(0)]=K©OH[x()]

1 We can consider, equivalently, that f(f) is a high-pass signal and g(f) is a low-pass sig-

nal
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or, equivalently

HM()x(0)]= M()%(r) (4.5a)
H[C)x(0)]= COX() (4.5b)
H[K@®)x()]= K@®)x(r) (4.5¢)

Equation (4.5) implies that the coefficients, M(f), C(f) and K(f), do not
vary quickly over time. i.e, equation (4.3) is not suitable for the analysis of
abrupt changes in system behavior. This is confirmed in our numerical applica-
tion of the method in Chapter 5.

Applying the Hilbert transform to (4.1), one obtains

M()X(t) + C(O)X(1) + K()X(£) =0 (4.6)

Multiplying each term of equation (4.6) by j and adding it to the corre-

sponding term of equation (4.1), a differential equation on the analytic signal is
obtained as

M@®X(@) +CO)X(1) + KX () = 0 @.7)

in which X(t) =[X,(#), X,(@),.... X, (0] is the analytic signal of the displacement
vector, and the ith element (which corresponds to the ith DOF) of the analytic

signal.. A mono-mode analytical function corresponding to each component can

be constructed using the Hilbert transform as

X,(0= 2){,, )= 12";,4,, ()’ (4.8a)

in which
x, (1) =4, (t)cosg, (1) (4.8b)
4,() =[x} O+ %} (1) (4.80)
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x, ()
o, = arctan[%J

x, (0%, ()~ %, (DF, (1)

wu(’)=¢y(t)= A,jz(t)

and

x, (0%, () +%, ()%, (¢)

4,0= 4,0

Using the analytic signal from equations (4.8a)-(4.8f), we have

4,0
4,0)

Xij(t)=le(t)[ +jwy(t):|

X,0=x, (t)[

4,0 7 4,0

where

A0 s j(Z——A” 00, , 5

0, () = ¢,y = 2 OHO-%,O%O _ Im[

A4

_x, (0%, +%, ()%, (0)

4,()

@, (1) = Im[X d (’)J _ 400,

X, 4,(1)

. X0 ,
A4,(t)=A4,(1)| Re X,0) +a, (1)

A(t =A ()R X, 0
,/()— = ,,() em

(4.8d)

(4.8¢)

(4.8f)

4.9)

(4.10)

(4.11a)

(4.11b)

(4.11c)

(4.11d)

The free vibration of the linear time-varying MDOF system in equation
(4.7) can be solved by substituting X(f) and X(¢)of equations (4.9) and (4.10),

and using equations (4.8) and (4.11). Assuming the mass matrix to be known,
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equation (4.7) can be simplified and written in compact matrix notation for the
J th IMF of the analytic signal.

P:B’ +P‘p! =P” (4.12)

in which g = ey ¢, e.f B = {kk,---k,--k,} and the diagonal matrix are

given by
-'f;‘le KX, =KX,
BXy -KX, KX, -KX,
l}_‘= e (4.13)
! }f_,X,j '}Lin-U ’iju —mleuu
L KJan"ﬁ-uX»-u_
-Xu X, =Xy,
X, -X, X;,-X
‘ v (4.14)
Pj - X/ -Xl-lj le’" i+ly
Xn _Xn—l]_
Pr=fmirX, -mhX, - -mi'X, - -mhX,] (415)
J 1711y 27°2j°%2) Lt/ B/} n"nj <" nj .
The coefficients 4; and 4] in equations (4.13) and (4.15) are given as fol-
lows:
A,
h="1"1tjw 4.16
=20 Jjo, ) (4.16)
A0 A (D, ()
B =|L=-wl) |+ j 21—+ a,0) (4.17)
’ L,,(t) 4 40

The complex equation (4.12) can be separated into two equations accord-
ing to the real and imaginary parts, and then the two parts can be assembled in

the following matrix representation
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Re(P{) Re(P/)|[B;| _[Re(P")
. e Boi = . (4.18)
Im(®7) Im(P)j(B;] [(Im(P")
Determination of modal parameters involves finding n independent solu-

tions for the above equation.

For an n-DOF linear time-varying system, equation (4.18) contains 2n
time-varying unknown parameters and 2» time-varying equations for each IMF
of the original signal. Therefore, each mode extracted from the original signal
can be used in equation (4.18) to solve for one set of identification results. This is
an important advantage of the proposed method in practical system identifica-
tion as only one set of IMFs is required for solving all the time-varying un-

known system parameters.

Figure 4.1 gives a pictorial representation of the output-only modal iden-
tification algorithm.

Output-only

Linear
Time-varying —
system a

Modal
components

TR

A o )

Figure 4.1. Modal identification algorithm.

For a SDOF system, the identified results from equation (4.18) can be
simplified as [4]



AQ) , o)
e(t) = m[2 e w(t)J (4.19)

where c(¢) is the instantaneous damping function, and the instantaneous stiff-
ness is given by
k() = map? (t) (4.20)

where o, () is the instantaneous undamped natural frequency of the system. If

follows immediately that,

2y KO _ 2o AW 40 4D
@;(0)==">=0(1) T +27; 50" el (4.21a)
_ oo _ XOXO - 2OF) _ . [ X()
o(f) = ¢(f) = 0 = Im[X(t)] (4.21b)
. x(t)x(t) + x(t)x(t) X
A@p) = e = A(HR [X( )J (4.21¢)
o) = Im[X @ )] _2 400 (4.21d)
X(0) A
YOG A(t)(Re[ ()} mz(t)] (4.21e)
X@®

where A(f) and o(t) are the instantaneous amplitude (or envelope) and fre-
quency respectively of the vibration with their first and second derivatives A(r),
A(t) and (). Both, A(r) and w(f)are calculated as functions of time and can

therefore be related to all temporal events during the measurement.
The processing steps are detailed in the sections that follow.

4.1.2 Damped system response

In the more general and interesting case, the ith modal response can be ex-

pressed as
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x(t) = iz:}IMF, () =[§ A,(t)e "I cos (2af, + ¢, )] 4.22)

where 4,(r)is the amplitude of the ith mode, #,(t) is the phase lag, f,(¢)is the
undamped natural frequency, f,(f)=f,\/1-¢?is the damped natural fre-

quency, and ¢, is the damping ratio.

X, + .]:yl Ale-2ﬂ€|f|'el(2ﬂfd|’+¢l)

x, + jy2 B Aze-ZNs’zfz'e](Z’fdzH'h)

X(t) = (4.23)

x" + jyn A”e'Z”:nfn’e/(zvdn”'ﬁl)

The original data can then be expressed as the real part of the sum of all

of the IMF components, that is,

) =% £H, 00 1 (24

Several variations to the above model are available in the literature. For
its importance and relation to this work, the FREEVIB method introduced by
Feldman will be discussed in detail.

4.2 The FREEVIB method

In this section, the FREEVIB method is applied to a SDOF oscillator and
compared with the standard approach based on log-decrement. First, the model
form of a linear damped multiple-degree-of-freedom system is presented. Then,
the results are shown and compared with experimental data. The reader is
referred to [4] for a detailed account of the FREEVIB methodology.

4.2.1 Description of dynamic model

In the previous section we saw that the knowledge of the output of a lin-
ear MDOF system allowed us to deduce the time-varying modal properties of

the process. Here we extend this approach to deal with nonlinear systems.
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Following the work of Worden and Tomlinson, consider a second degree-
of-freedom (SDOF) nonlinear system under free vibration

X+h(@)x+ ol (x)x=0 (4.25)

where x,x, and x(f) are the acceleration, velocity and displacement,
respectively, of the oscilator, w,(¢) is the undamped natural frequency and A, (¢)

is the effective viscous damping characteristic. It is assumed that they are all

slow variables of + compared with the response signal x(t).
Using the definition of analytical signal yields
X(@t)=x()-%() = A(1)e"" (4.26)
in which
x(t) = A(t)cos(p(t)) and X(r) = —iA(t)sin(p(t)) (4.27)

where A(r) is the instantaneous magnitude or envelope and ¢(f) is the instan-

taneous phase [4]. Thus,

A =X (1) -72(1) (4.28)

- —x()
o) = arctan( ) ) (4.29)
and
iy < XOHO-FOFO _ e [Xo)J m
® IO -7 @) R X s
- ieFe - 20F0) [ X
w(t) = (t) = 20 -0 Im[ ¥ (t)] (4.31)

where o(f) is the instantaneous frequency.

Equations (4.25) and (4.26) are employed to generate the first and two de-
rivatives of the analytic signal
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v — v 4O,

X(@t)= X(t)[A(t) + zw(t)] (4.31)
o = i AD _ e o AD) |
X(t)-X(t)[A(’) o) + 28 +uo(t)] (4.32)

where the derivatives X(f) and X(¢) are functions of 4 and w.

Coming back to the equation (4.25) and recalling the properties of the
Hilbert transform, we have

H[f]=% and H[s]=%

Using equation (4.4) yields
H[s(O)w,(0)x(0)]= s ()0, () H(D)] = s (), ()% (8) (4.33)
Hlo2(0)x(0)]= 02 O Hxt)]= w2 (0% (0) (4.34)

where in (4.23) the low-pass portion consist of two variables: ¢(f) and w,(f).

Now, taking the Hilbert transform of (4.25), then multiplying each side of
the obtained new equation by i and adding to the corresponding sides of (4.25)
we can get a differential equation for the analytic signal of x(¢)

X+hX+0l(t)X =0
or in quasi-linear form
X +h(A)X + w0 (A)X =0 (4.35)

Substitution of (4.21) and (4.24) into (4.25), results in
Xé—wz+wg+h£+t 2a)£+a)+a)) =0. (4.36)
A A A

Separating out real and imaginary parts of equation (4.36), one may ob-
tain the expressions for the instantaneous undamped natural frequency and the

instantaneous damping characteristic
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h(t)=- ‘2 = 'a‘)‘ (4.37)
A
o, (1) = 0’ —%+2%+j—z (4.38)

The corresponding effective damping ratio can then be easily found as
c(t)=h,(t) o,(f) (4.39)

In most practical applications, one starts with a measurement of the sys-

tem response x(t). Application is then straightforward; the Hilbert transform

can then be computed using the various approaches in Chapter 3; the instanta-

neous modal parameters are determined using (4.27) and (4.30).

Also, nonlinear effects can be accounted for as discussed in Chapter 5.
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Chapterb

Modal Identification via Hilbert
Analysis

Power systems contain nonlinear temporal evolution and time-varying processes that it
is very difficult to identify with the conventional techniques. In most practical modeling
situations, many transient oscillations may manifest highly complex phenomena and its
analysis presents modal interaction that is particularly difficult to characterize because
of the large number of potential modes involved in the interaction and the time scales in

which they interact.

Inspired by models developed with the framework of vibration analysis, we de-
scribe the behavior of the system assuming that the observed power signal can be ap-
proximated by family of simple oscillatory functions with time-varying parameters.
With this characterization, an approach based on the FREEVIB method and a modified
Hilbert analysis is proposed for estimating modal parameters from measured data. This
approach improves the ability of the HHT to capture abrupt changes in the observed
data. It is shown that in addition to providing estimates of time dependent mode shapes,
the analysis also provides a method to identify the modes with the most energy embedded

in the analyzed oscillations.

Analytical criteria to describe the energy relationships in the observed oscilla-
tions are derived and a physical interpretation of the system modes is suggested. A sim-

ple example illustrates the main idea of the proposed method.
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5.1 Identification of linear time-varying dynamical systems
5.1.1 Modal parameter identification

Our previous developments suggest that each IMF is nearly orthogonal to each
other and that each IMF can be considered to be a harmonic oscillator of vari-
able amplitude and frequency [1]. Based on this notion, an efficient technique to
extract temporal modal behavior from the EMD of a signal is proposed.

The approach assumes that a nonlinear model is sought for a set of nearly
orthogonal time series. Since each IMF admits an unambiguous definition of
instantaneous frequency and amplitude through the Hilbert transform, the
above theory can be readily applied.

Our HHT-based method is summarized in Figure 5.1. It consists of the

following steps:
¢ Improved empirical mode decomposition
e Temporal analysis of system behavior
¢ Feature reconstruction

Assume in order to introduce the nature of this model, that a signal

x(f) has been decomposed into a set of nearly orthogonal IMFs, IMF , IMF, .-,
IMF through continuous time projections, i.e. empirical mode decomposition

of the signal. These components are then interpreted in terms of N independent

undamped oscillators
x,()+260,()x, +02(H)x, =0 i=1,N

whose modal characteristics are to be determined.
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Figure 5.1. Conceptual representation of the proposed analysis method.

The sections that follow provide information on the various steps in the

procedure.

5.1.2 Improved EMD

The basic idea to insert a masking signal, in this case a single sine tone, that pre-

vents lower frequency components from being included in the IMF. Since the
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masking signal is know, it can be removed from the IMF obtained through EMD

in the following manner.

1. Construct a masking signal, f(f) from the frequency information of
the original data, x(¢).

2. Perfom EMD on x,(f) = x(f) + f(¢) to obtain the IMF y.(®). Similarly
obtain y_(#) from x_(t) = x(¢)- f(t).

3. Define the IMF as y(t) = (y, (t) + y_(1))/2.

Figure 5.2 describes this algorithm.

First
Sifting

EMD — y(t)

First
Sifting

Figure 5.2. Ilustrated proposed approach.
5.1.3 Natural damping estimation
Damping is a critical consideration in the analysis and design of power systems.

In this section, a technique to compute nonlinear damping in power signals is

presented.

To build intuition about how the algorithm works consider a general sig-
nal x(f). Once the individual IMFs are identified through EMD, the Hilbert
transform is applied to each IMF independently to determine the local damping
and frequency. More precisely, assume that each IMF can be described by a sec-
ond-DOF system with nonlinear damping as

x(t) + 2¢0,(t) X+ > (1) x =0 (5.1)
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where x(¢)is the displacement of the fictitious mass, @, is the undamped natu-
ral frequency, and ¢ is the dimensionless damping coefficient. The solution en-
tails fitting a second-order model of the form (5.1) to the observed oscillation
y(@).

Applying the HT to (5.1) and combining the real and imaginary parts
yields a differential equation of the ith analytical signal [2]

#(t) + 2co, ()2 + 02 (H)z = 0 (5.2)
Letting
z,(t) = A, (t)eiw:(') =A, (t)e-m(')elw.(') (5.3)

where the envelope 4,(f) and the phase ¢, (f) are both slowly varying func-
tions of time, A (t) is time-dependent amplitude that can be interpreted as the
source-related intensity, and 7(f)is an exponential factor characterizing the

time-dependent decay of the solution [3], it can be readily proved that

2,() =z, Oliw, () -7, ®)

. 2 . .. .2 (5'4)
£,(t) = 2, )i, () — 0} (1) 21, (1), () — 7, (O) + 72 (1)
and
A
A*—g; =1, ()
)ik() (5.5)
(s s
4, ) == @
Substituting (5.5) into (5.4) and separating out the real and imaginary
parts gives
: @, (1)
p) =27, () - ===
sw,(t) =2n,(1) 2,(0) 56)

,, (0) = @ (1) + 17, (1) =77 () = 26, ()7, (¢)
where the instantaneous frequency is given by

58



2, ()% (1) - 2, (DZ, ()
Z2()-Z2(1)

@, (1) = ¢, (1) = (5.7)

Having determined the instantaneous amplitudes and phases, equation
(5.6) provides the natural damping and natural frequency of the & th IMF. Inits
present form, however, these equations are sensitive to numerical errors caused
by the computation of instantaneous frequency. This issue is discussed in detail

in section 5.3.

5.1.4 Instantaneous energy

Hilbert analysis does not directly provide a measure of energy. In this section a
technique to compute the instantaneous energy based on the developed me-

chanical model is proposed.

Consider the mass normalized equation of motion [4]

Pvalz+ f,(2,2)=0 (5.8)

where w, =./k/m is the natural frequency, and f, is the mass normalized
damping force, including both linear and nonlinear damping.

Assuming that nonlinear forces are relatively small, the free response can

be assumed to be a simple sinusoid with a time-varying amplitude

z(r) = A(1)e'™® = A(t)sin(w,t + §) (5.9)

Differentiation of this relation with respect to time produces the follow-

ing dependence of the instantaneous parameters:

2(t) = A(t) 0, cos(w,t + ¢)+ A(t)sin (w,t + @)
x(t) = —A(t) ? sin (w,t + ¢)+ cos (w,t + §) A(t) 0, + (5.10)
A(t) o, cos(w,t + @) +sin(w,t + ¢) A(t)

If the damping is assumed to be small in comparison to the stiffness and

inertial forces, the response of the system can be written as
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x(t) = A(t)sin (ot + ¢)
x(f) = A(t)wcos (ot + ¢) (5.11)
i(1) = —A(t) @ (t)sin (wt + 9)

The mass normalized instantaneous mechanical energy in the system is

e(t) = %kxz(t) +%mx2(t) = %a)zxz(t) + %xz(t) (5.12)

Substituting (5.12) into (5.9) and assuming that damping is small in com-

parison to the stiffness and inertial forces? it can be proved that

e(t) = %waz(t) (5.13)

Equations (5.6) and (5.13) completely characterize the modal behavior of
each IMF.

The algorithm described in this section will now be illustrated for the

computation of damping of a nonlinear oscillator.

Based upon this discussion, we express the time evolution of each IMF in
the form of a simple time-varying oscillatory mode with different amplitude
and frequency content and can have both amplitude and frequency modulation.

Using the same procedure as before, the linear time-varying systems us-
ing HHT are frequently used to model systems that have non-stationary proper-

ties and undergo low magnitude vibrations.

5.2 Motivating example: a nonlinear Duffing oscillator

To further illustrate the use of the method to identify nonlinear, non-stationary
characteristics, we consider the study of a nonlinear Duffing oscillator with cu-

bic damping. The equation governing the motion for the oscillator is given by

2 In this case, the rate of change of the amplitude of oscillation is small, i.e. A(f) =0 and
w; =a.
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dzx(t)
d T2

dx()

+28w, —>+olx(t)+ ol e () = u(r) (5.14)

where ¢ is the damping ratio, , is the natural frequency of the Duffing oscilla-

tor and ¢ is the spring stiffness. The presence of the cubic nonlinear restoring

force term x’(¢) in (5.14) represents a nonlinear hard spring.

Numerical data for the model was obtained by integrating the system
model (5.14) using a fourth-order Runge-Kutta method. Table 5.1 provides the

data used in our computations corresponding to the nonlinear model

dzx(t)
dt’

dx()

+10—= = +10*x() +5x10°%° (1) =0

with initial conditions x, =0 and %, =200. For numerical solutions to the

nonlinear equations, fourth and fifth order Runge-Kutta formulas were em-

ployed. All numerical results were obtained by using Matlab.

Figure 5.3 shows the time evolution of the displacement and speed.

Table 5.1. Parameters of the Duffing oscillator.

Parameters Value

Damping ratio £=0.05s""

Natural frequency | @, =100rad/s=15.91Hz

Spring sttifness £=5
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Displacement y(t)

—

o o1 0.2 03 04 05 06 0.7 08

Velocity dy(ty/dt

0 0.1 0.2 03 0.4 0.5 0.6 0.7 08
time (s)

Figure 5.3. Duffing oscillator. 7op: displacement. Bottom: velocity.

The model developed in the previous section was used to determine the
temporal behavior of the oscillator. Figure 5.4 shows the instantaneous ampli-

tude, phase and frequency obtained using equations (4.28), (4.29) and (4.31).

As a further illustration, Figure 5.4 shows the instantaneous attributes.
The results show that the method is capable of accurately representing the
nonlinear system dynamics. Examination of simulation results in Figure 5.4a
shows that the method accurately captures the envelope of the oscillation. Also
of interest, Figure 5.4b reveals that the instantaneous phase increases almost
linearly with time indicating an essentially constant frequency. In turn the
analysis of instantaneous frequency in Figure 5.4c shows that the instantaneous
frequency reaches a steady state after a few seconds in close agreement with the

expected physical behavior.
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Figure 5.4. Instantaneous attributes. (a) amplitude or envelope, (b) phase, and

(c) frequency.

Finally, examination of Figure 5.5 shows that the instantaneous damping
fluctuates around the natural damping ¢=0.05s"" As may be observed from

this figure, in steady state the instantaneous damping coincides with the natural

damping showing the accuracy of the model.

63



40

e |nstantaneous frequency o (t)
== == = Natural frequency o, (t)

Frequency (Hz)

10 L L L L L . L
0 01 0.2 03 04 0.5 [X:] 0.7 08
time (s)

Figure 5.6. Comparison between natural frequency and instantaneous frequency.

We return now to the problem of frequency estimation.

5.3 Frequency estimation

In Chapter 2, instantaneous frequency was defined as the derivative of the in-
stantaneous phase. If x(¢) is a time-varying trace and H[x(f)] its Hilbert trans-
form, the following equation can be used to calculate the instantaneous fre-

quency of a time-varying trace

02D )0 POy EO
1@ =(—) : =(—) i dt_ (515)
27 x* () +y*(t) 2z A%

The computation of instantaneous frequency requires the evaluation of

two time derivatives and it is numerically sensitive to the effects of low-

amplitudes areas, A(t), i.e. relative minima in the envelope. This results in spu-

rious spikes which are physically meaningful. Another problem that affects the
LSR method is the ringing effect caused by Gibbs’ phenomenon.
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Alternative methods for the calculation of instantaneous frequency are

discussed below.

5.3.1 Central finite difference (CDF) of second order

Let f(s) the instantaneous frequency of an analytic signal W () =u(t)+ jv(t)
given by

o0 _14d ¥
0= =2 dt[ ()]‘2 dt[ tan(u(t)]] (516)

where u(t) is a real signal and v(¢) is its Hilbert transform.
By definition, the derivative of a function f(f) is given by
()= LimL G~ (%) (5.17)
h—0 h
Therefore, the derivative of the phase is
iy L g 9E+T)— ()
P = L= (5.18)

Assume that pe C?[a,b), t-T, t+T [a,8] as is given in [5], then

, t+T)—p@-T
o= % )2T¢( ) (5.19)
Furthermore, these exists a number a = () € [a,b] such that

(t+T)—p(t-T)

' @
1)~
70 2T

+E,(p,T) (5.20)

2_m
where E, (¢, T)=— z ¢6 () =O(T?) is called the truncation error.
Proof. Taylor’s series of second-order for ¢(t+T) and ¢(t—T) about ¢ are

ot+T) =qp(t)+¢'(t)(t+T—t)+%(t+T—t)2 +$(r+T—t)3
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o(t+T) = ¢(t)+¢(t)T+¢2(t)T2 "’;“')T’ (5.21)

and

;a(t—T)=¢;(t)+qp'(t)(t—T—t)+£"2('L)(t—T—t)2 +£§$t—)(t—T—t)3

o(t-T) = (t) - ¢(I)T+¢2(')T2 ? gf‘z)r’ (5.22)

After (5.22) is subtracted from (5.21), the result is

ot +T)-o(t~T) =2¢'(t)T+WT3 (5.23)

If p € C*[a,b), then by intermediate value theorem exist a e [a,] that

(- Ll o)

20"(@)= 9" () +9"(a,)

This can be substituted into (5.23) and we obtain

p(t+T)-pt-T)=2T¢'(t)+ 2—¢;(i)T’

and the terms rearranged to yield

¢l(t) — ¢(t +T)—¢(t_T) _ ¢M(a) T2

5.24
2T 6 (-24)

The first term on the right side of (5.24) is the central finite difference of

second-order and the second term is the truncation error.

Finally we have equation (2.13)

Fliy=o— ¢(t)——[¢(t+T) ~p(t-T)] (5.25)
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To minimize the bias error and also to make the estimator more ro-
bust in the presence of noise, additional neighboring points may be included
in the formula.

5.3.2 Central finite difference of fourth order

Suppose that the value of the third derivative ¢"(a) does not change too rap-
idly; then the truncation error in (5.20) goes zero in the same manner as T
which is expressed by using the notation O(7?). When computer calculations

are used, it is not desirable to choose T too small. For this reason it is useful to

have a formula for approximating ¢'(f) that has a truncation error of the order
O(T*) as can be observed in [5]

Assume that (oeC’[a,b], t=2T ¢-T, t, t+T t+2T e[a,b], then

_—ot+2T)+8p(t+T)—-8p(t—T)+ ot —2T)
12T

AQ) (5.26)

Furthermore, there exists a number « = a(t) € [a,b] such that

- T)-8¢(t—T)+p(t—2T
¢(t+2T)+8¢(t+1)2T pt-D+e(=2D) g o1T)  (527)

p'()=

T'p" (@)

ik O(T*) is the truncation error of four-order.

where E,(¢,T)=-
Proof. Taylor’s series of four-order of ¢(t+27T) and ¢(¢t—2T) about ¢ are

o(t+2T)= ¢(t)+¢'(t)(t+2T—t)+@(t+2T—t)2 +$(t+2T—1)3

+£%(t+2T—t)" +¢—V55L)(t+2T—z)’

" m w 14

3! 4 5!

and
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o(t-2T) =)+ @' (1)t —2T—t)+?(t—2T—t)z +@(t—2T—t)’

+#(x-2r—:)‘ +$(I—2T—t)’

[] m w 14
o(t—2T) = p(1) 20" (T + 4"’2'(’ )r2_ 8“’3'(’ ) 4 16"’4' O g _ 32"; ' Ors  (529)

After (5.29) is subtracted from (5.28), the result is

649" ()

s (5.30)

o(t +2T) - p(t - 2T) = 49" ()T + 16“;:(’ )3

In addition, differences between the Taylor’'s series of four-order of

@(t+T) and (¢ —T) about ¢ is given by

ot +T)-p(t-T) = 20'()T + 2"’;(’ )34 2¢’;(’ ) s (5.31)

Multiply the terms in (5.31) by 8 we get

m 14
80(t +T) —8p(t - T) = 16¢'(t)T + 16“; Ops 16“’5'(“') TS (5.32)

Subtract (5.30) to (5.32)

|4 14
— o(t+2T) + 80t + T) —8(t - T) + p(t—2T) = 12/ ()T + 32 ("")1;34‘” @) ps (533

If ¢"(¢) has one sign and if its magnitude does not changes rapidly, we
can find a value « that lies in [t—27,¢+2T] so that

169" () - 649" (,) = —48¢" (@)

This can be substituted into (5.33) and we obtain

14
—p(t+2T) +8¢(t +T)~8p(t ~T) + p(t —2T) = 126/ ()T - __48‘1"25“) T’

and the terms rearranged to yield
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—p(t+2T)+8p(t+T)—8p(t—-T)+o(t —2T) + ¢V(a)T4
12T 30

p'(n= (5.34)

The first term on the right side of (5.34) is the central finite difference of

four-order and the second term is the truncation error.
Finally we obtain equation (2.13)

1

= ——[(0(1—2T)—8¢(t —T)+8¢(t+T)—(p(t+2T)] (5.35)
24T

F(r)=%¢(r)

The above equation is named centered five-point equation and requires
using another equation at the endpoints. By obtaining this equation is necessary

to use the Lagrange interpolation polynomial [6], which is given by

1) =3, e, )+ EIEZRIER) ) o,

for some c=c(x)e[a,b] and L,;,(x) is the ith Lagrange polynomial for f at

XosXy5ees X, , thus

oy & , d[(x—xo)(x—xl)(x-xz)_"(x_x")] f(n+l)(c)
Fli= ; fOx)L,(x)+ > o

(x=x)(x=x)(x—X,)..(x~x,) £ ()

+
(n+1)!
so that
f(x)= Zo:f (x)L,,(x) +%Dl()c!)[(x—xo)(x—x. Hx—x;)(x—x,)

F(x=x)(x =%, )(x = X;). (X =%, )+ (X =2, )(x — X, )(x = X;)..(x = X,) +...

H;"=O.jatlt (xj -x;)

e 7 "

+(x=x) (=2 (X =%, ).(x =%, )]+

If x=x,, j=0,12,...,n, then we have
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n

JAI )]
f'x= Zf(x,)L.'..(x,) I (x,-x,) (5.36)

(n+1)! s=0. =k

Equation (5.36) is called equation of the n+1 points, of course there is a
better approximation to the derivative if it takes a greater amount of points, but
this in turn implies a high cost computational due to the large number of as-

sessments to be carried out. It is enough to take 3 or 5 points.
To deduce the five-point equation at the endpoints consider

40(x)= (x_xl)(x_xz)(x_xa)(x—x4)

(g =2, )(x = X,)(Xg = X3 )(x — X,) ’

L,,(x)= (e = %0 )(x = 2%, ) (X — X3 )(x — X,)

(e, = x6)(x, = X, )(x; = x3)(x; — %) ‘

L,,(x)= (3 = x0)(x = X, )(x = x3)(x — x,)

(3, = x0)(x; =%, )(x, — %3 )(x, — X,) ’

L ()= EmRE -0 -x)x-%)
* (x3 — X )(xs —X )(xs =X, )(x3 - x4)

L4,4 (x)= (>~ *o )(x — xl)(x — X, )(x - x3)

(3 = X)Xy = X,)(kg —X,)(xg = x3)

with x, =x,+h, x, =x,+2h, x, =x,+3h, x, =x, +4h, in other words x,, x,, x,,
x, and x, equally spaced, then
1

L;'o = (xo X% )(xo —-X )(xo = X3 )(xo - x4) [(x B )(x B Mo * )

+(x—x,)(x—x3)(x—x4)+(x—x,)(x—xz)(x—x4)+(x-xl)(x—xz)(x—x3)],

1

(x, = x0)(x; — x,)(%, — %3 )(x, — x,)

Lix)= [(x = x,)(x = %,)(x - x,)

+(x—x)(x =X )(x = X))+ (=X )(x = 1) (X = x,) + (x = %) (x = x,)(x = x,)],
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1
(%5 = %0)(x; = x,)(x; =X, )(x, — x,)

[ = x)(x = x,)(x - x,)

Li,(x)=

+(x—xo)(x—x2)(x-x4)+(x—xo)(x—x,)(x—x4) +(x—x0)(x—x,)(x—x2)],

and
’ = 1 — _ -
feal®) (g = x)(x, = x)(x, = x,)(x, - X;) [(x W= x)x=x)
+(x—xo)(x—xz)(x—x,)+(x—xo)(x—x,)(x—x,)+(x—xo)(x—x,)(x—x2)],
so that
C )= =2 eyt ey 3 4 R
L4.o(xo)‘ 2h La,l(xo) n L4,2(xo) " L4,3(xo)" 3’ and L4,4(xo) ah
Therefore
f'(xo)=—lzz—shf(xo)+%f(x.)—%f(xz)+§4;f(x3)— L fxy+ LM V“"°”"

so that

Fi(x;) —E[—25f(xo)+48f(x0 +h)-36f(x, +2h)+16 f(x, +3h)

=370, + 4 L 537)
but also
AN PRI A B TR ! -
Lio(x)= ah Ly, (x) oh L,,(x) " Lys(x)= 2h’ and L, ,(x,) = 12h

then

£t 4+ B) = = () == f(x, + By + = £ (x +20) =L f(x +3h)

2 4h” %" 6h” ° 2n° 7 2n° °
+— = (3 +4h) - . (CIW

Hence
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['(xo +h) = é;[—Bf(xo)—IOf(x0 +h)+18£(x, +2h) =6 f(x, +3h)

4
+ S+ 4L (zco)h (5.38)
Now
' 1 ; ; 2 , 1
Ld.o(xz)zm'l‘u(xz) 3 e Ly5(x,)=0, L43(x2)-3—h,and L44(x2)——m
so
’ h4
f(xo+2h)—12hf( )= f(xo e f(xo+3h) ﬁf(xo+4h)+f ()
and hence
f'(x, +2h) = i%[f(xo)_sf(xo +h)+8f(x, +3h)= f(x, +4h)
fy(cz)h4
+f G +AR]-T—2== (5.39)
but
L) ==, L () ==, L, (5) =—2, L) =L, and L] (x,) =~
4,0\"7"3 —3h’ 4,1 3 _zh’ 4,2\"*3) — 3h’ 4,3\"*3 6h’ 4,4 \""3 _4h

Therefore
f'(x, +3h) = f( %)+ f(xo +h)- f(xo 120+ % F(x, +3H)
__1_ _ f g (cs )h4
+ Y f(x, +4h) ———20 -
and
f'(x, +3h) = ﬁ[ﬁ (%) +61(xo +h) =8 (x, +2h) +34 £ (x, +3h)

+3f(xo+4h)]—% (5.40)
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in addition

L) = Lx) == L) =2, L) =, and L) =1

Therefore
f'(x, +4h) = f(xo)——-f(xo +h)+— f(xo +2h)—-f(xo +3h)

_25 S eon’
12hf( oAk 5

and

F(x, +4h)= I;—h[f(xo)—3 £y +H) + 81 (x, +2H) =36 £ (x, +3h)

JACAL)

+25f(x, +4h)]- :

(5.41)

But if in equation (5.38) is replecad x, +h by x,, in (5.39) x, +2h by x, in
(5.40) x, +3h by x,, and in (5.41) x, +4h by x,, we have

£'(x) =1—;Z[_25 F(x,) + 481 (x, + B) =36 1 (%, +2H) +16 £ (x, +3h)

3 1sp -4t + L (5.42)

Performing the change of variable ¢ =x,, and h=Tin equation (5.42), and

employing this equation at the initial and endpoint, we obtain the centered five-

point equation for the instantaneous frequency
)= ile_r[— 25 £(6) + 48 (1 £T) =36/ (t £ 2T) + 16 £(1 £ 3T) =3 f (¢ £4T)] (543)

5.3.3 Approximation using analytic signal

Inspired by a model developed by Barnes [7], an algorithm to compute the in-
stantaneous frequency directly from the notion of instantaneous phase is now

developed.
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Mathematically, instantaneous frequency is expressed as the derivative of
the phase which is given in equation (5.15). If a time interval the instantaneous
frequency is represented by only one value, the average of the instantaneous
frequency is arguably the best value use; the instantaneous frequency at any

point can vary greatly from this average.

Following Barnes [7], we define the average instantaneous frequency

fusr12) as the temporal average of instantaneous frequency in a time interval

fromt to t+T as

t+7‘

f,(t+T/2)-— j f(x)dr (5.44)

where 7 is a dummy variable of integration. Substitution of the definition given
above for f(¢) into (5.15) yields

F+T/) =220 _ 1 [¢(I+T)—¢(t)]=%[¢(t+T)—¢(t)}

27 A(t) 27| t+T—t T
Fe+ /D == lo+ 1) - p00)] (545)
Replacing the definition of instantaneous phase ¢(f) = arctan% in equa-
tion (5.45) we get
frt+T/2)= 27er |:arctan Zg : g — arctan %J (5.46)

Applying the identity trigonometry arctan(A)—arctan(B)=arctan[1f:£g]

in (5.46) yields

vt +T)/u(t +T) —v(t)/u(?) ]

_ 1
Jr@+T/2) =0 ama"[] +(W(e+ ) fu(t + T) v (1) /u(@))

or
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) _ 1 u(t)yv(t+T)—u(t +T)v(r)
fr@+T/2)= 2aT mta"[ u(®u(t +T) +v(t)v(t + T)J (5:47)

and thus

(5.48)

fr@+T/2)= 1 arctan[u(t_T)v(t+T)‘”(’+T)V(t—T)}
2T

u(t-Tu+T)+v(@+T)v(-T)

This approximation is faster to compute that the instantaneous frequency
(5.35) because it avoids the two differentiations that the computation of instan-

taneous frequency requires.

Table 5.2 summarizes the formula used in this work to compute instanta-
neous frequency.

Table 5.2. Formulae for computation of instantaneous frequency.

Approach Formula
Standard @) dx(t) @ dx(t)

f(t)=(LJx(tl czit }’§t1 dr =(_1_)x(tl a : () dt

27 X2+ Y2 () 27 A2
Second _1 _ 1 — ol —
e FO)=5-0')=7—lot+D-0(-7)]
CFD
Fourth e Y ooy _ _
o F()=5—9' ()= — [p(t—2T)-8¢(t = T) +8¢p(t + T) - p(¢ + 2T))], and
CFD 1
(0= iﬁ[—ZSf(t)+48f(tiT)—36f(ti2T)+16f(ti3T)—3f(ti4T)]
Barnes FaT/2)=—) arctan[u(t —T)v(t +T)—u(t + T)v(t —T)J
2T u(t-Tu@+T)+v(e+T)v(-T)
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5.4 Estimation of damping using Log-decrement techniques

Nonlinear damping plays a critical role in the long-term behavior of weakly
nonlinear systems.

5.4.1 Averaged instantaneous damping

Simulation results in previous sections suggest the need for an averaged instan-
taneous damping that could be compared with well established linear and sta-
tionary techniques such as Prony analysis. More formally, based on the notion
of instantaneous frequency we defined an averaged instantaneous damping can
be defined as [8]

— ) ()
260, =T | 26, ()t =T | =2t=T"In| == 5.49
g0, =T [ 26w, ()t =17 [ s n[ . } (5.49)
An alternative approach to the computation of average instantaneous
damping from the combined application of the log-decrement technique and

splines as discussed next.

5.4.2 Log-decrement techniques

The use of the log decrement method is a well established technique for the es-
timation of the modal properties of a linear sdof system [9]. In this section, we

extend this approach to characterize instantaneous damping.

Consider a decaying transient signal. In the case of typical transient signal
where the amplitude A(f) decays exponentially and the period 7 between the
consecutive cycles remains constant. The logarithmic decrement (§), damping

ratio (7), and the natural frequency (f) of the system are defined as [9]

§5=tip—A0)

, 5.50
n  A(t,+nT) k280
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20

n= _4\/7r2—+7’ (5.51)
f =% (5.52)

where A(#,) is the modulus of the peak response at time ¢, and nis number of
cycles after f,. If the system is linear, the same modal properties are obtained
irrespective of which cycle or how many cycles are used in the evaluation of the
above equations. For nonlinear systems, however, the arguments stated above
are no longer valid; the modal properties estimated using equations (5.50)~(5.52)
will vary depending on the amplitude at which these properties are estimated.
This is precisely the property that will be utilized to extract the instantaneous
damping from the transient signal.

Based on the use of splines, and the notion of nonlinear log-decrement, a
technique to estimate the average modal damping is proposed. Figure 5.7 we
offer a conceptual idea of the proposed technique. Let 4,,,4, ,,4, and 4,,, be
the peak amplitudes of the instantaneous damping determined using cubic

spline.

Using the logarithmic decrement, the averaged instantaneous damping,

¢, can be calculated as follows

A+ A
5 =In| 22t 4 | 5.53
: '{ A,+A.-+l] 553)

where 4,,,4,,,4,,4,,, are the modulus of the peak response signal at time
t .1, 151,51, respectively. It then follows that the damping ratio, #,, can be ap-

proximated as

25 (5.54)

" ran
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Further, the natural frequency f,, is given by

1

f=
0.5(t,, +1,)-0.5(,, +t,_,)
40 L
T,
30+ | el
zo =
§~ 10+
H
&
2 0
g
<
-10b
i+1
20+
Sl i-1 T
_40 1 1 1 1 1 1
0 1 2 3 4 5 6 7

time (s)

Figure 5.7. Nonlinear oscillatory signal.

(5.55)

The algorithm is simple to implement, and computational require-

ments are small. Figure 5.8 provides a comparison between the log-

decrement approximation and the damping coefficient computed from equa-

tion (5.6).
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Figure 5.8. Comparison between logarithmic decrement and damping coefficient.

Several other variations are possible using techniques such as autoregres-
sive moving average. The above approach, however, is simple to implement,

and computational requirements are small.

5.5 Instantaneous coherency identification

5.5.1 Proposed method

Traditionally, generator coherency has been determined from the difference be-
tween the corresponding inter-area oscillations, using a linearized power system
model or nonlinear time-domain simulations [10], [11]. An alternative approach
is to use the phase of the generator oscillations, instead of the actual swing

curves, to determine coherency.
The proposed approach consists of three steps:
1. Determine the dominant modes from oscillation signals of each genera-

tor.
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2. Compute the instantaneous phase of the dominant mode in each case.

3. Define the angular difference between instantaneous phase angles using
an appropriate metric.

In the first step, empirical mode decomposition is applied to extract
meaningful modal components of complicated signals arising out of nonlinear
and non-stationary power system oscillations. The dominant modes in each sig-
nal can then be clearly identified on the basis of the energy distribution of the

intrinsic mode function (IMF) components.

The IMFs are orthogonal in nature, and are extracted in decreasing order
of their local frequency content. In other words, the first IMF extracted contains
the modes with highest local frequency content. If n IMFs are thus obtained
iteratively, the original signal is recoverable according to equation (2.1). The
relative importance of each IMF in capturing the modal information of the
original signal is computed as a ratio of its norm to the norm of the original sig-
nal

e,

= 5.56
?= oo, 559

where ||| refers to the i norm of the signal, c,(f) is the jth IMF and x(¢) is the

original signal. The IMF with the highest relative importance is referred to as the
dominant IMF.

Hilbert transform is applied on the dominant IMF of each generator in
second step to obtain analytic signals from which the instantaneous amplitude,
phase and frequency can be computed. The EMD along with Hilbert transform
constitute the Hilbert-Huang transform, proposed to study nonlinear and non-
stationary signals. In power system, this technique has been applied to study of

nonlinear oscillations [2].

In the third step, the instantaneous phase information is further utilized

to identify coherency between generators that have negligible phase difference.
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Hence, variation of generator coherency is interpreted as the instantaneous

phase-difference between the dominant modes of generator oscillations.

Using equation (2.11), the instantaneous phase of any real signal x(f) can
be computed. Let the instantaneous phase of signal x,(f) be ¢,(¢), and that of

signal x,(f) be ¢,(r). The two signals x,(f) and x,() are coherent at any instant
t,if

|¢, ) -o, (t)| =2nr, n=0,1,2,... (5.57)

An instantaneous coherency index for two signals may be defined as the

difference between their instantaneous phase angle.

In the next chapter, results of the analysis of inter-area oscillations dem-
onstrate that is possible to extract coherency between different areas using the
Hilbert-Huang transform.
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Chapter6

Application to complex inter-area
oscillations

This chapter describes the application of the developed theory to the modeling,
simulation and analysis of nonlinear oscillations in power systems. Hilbert spectral
analysis is used to characterize and visualize the time evolution of power system oscilla-
tory phenomena following large perturbations. Data from transient stability simulations
are used to examine the potential usefulness of nonlinear time series analysis techniques
to characterize the temporal evolution of nonlinear, non-stationary oscillations and to

determine the nature and propagation of the system disturbance.

The viability of the technique is demonstrated on both, simulation- based tran-
sient stability data. Attention is also focused on assessing the effect of coherency on sys-

tem dynamic performance. Finally some concluding remarks are made.

A 68-bus, 16-machine power system is analyzed to examine the onset of nonlin-
ear, non-stationary behavior. Examples of the developed procedures to characterize and
visualize spatio-temporal behavior and to estimate the instantaneous damping are pro-
vided.

The results obtained from proposed approach are compared with conventional
time-domain analysis techniques and its efficiency is demonstrated. Challenges involved
in realistic modal analysis of large linear systems are emphasized and relationships with

other modern modal analysis techniques are discussed.
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The study demonstrates the feasibility of time-frequency analysis to characterize

signals that are nonlinear and/or non-stationary in nature.

6.1 Outline of the study
6.1.1 System description

The test system under study is a 16-machine model of an NPCC system which is
a reduced order model of the New England/New York interconnection [1]. Fig-
ure 6.1 shows a schematic representation of this system showing the main areas
of concern for this study areas and major transmission elements selected for

analysis. System parameters used for the simulations are based on data given in

12].

For illustration purposes in the analysis of inter-area oscillations, the sys-

tem is divided into five coherent machine groups.
These are:

Area 1: Machines 1-9

Area 2: Machines 10-13

Area 3: Machine 14

Area 4: Machine 15

Area 5: Machine 16
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Figure 6.1. Sixteen-machine NPCC system.

6.1.2 Test cases and modeling considerations

Output data from transient stability simulations were considered to verify the

ability of the method to extract the dominant features of complex oscillations.

Detailed numerical simulations for the above contingency were per-
formed to generate the snapshots used in the POD method. The fault considered
to analyze system behavior is a three-phase fault at bus 52, cleared in 6 cycles by

removing the fault.

Figures 6.2 shows selected simulation results. Each recording is 20 s long.

The sampling time is 0.01 s.
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Figure 6.2. System response to a three phase fault at bus 52: (a) Speed deviations; (b) Tie-
line power flows.



The dynamic data obtained from these simulations are used for Hilbert
analysis in the following sections.

Before applying Hilbert analysis, some background information on the
small-signal characteristics is introduced. For direct comparison to proposed

method, we employ the algorithm used to.

6.1.3 Linear stability analysis

The overall system small signal stability analysis was performed using eigen-
value calculation methodologies. To this end, a linear model of the system of the

form x=4x was developed and the linear response was computed.

The first five electromechanical modes of oscillation of the system are
summarized in Table 6.1. Modal analysis results in Table 6.1 show four domi-
nant inter-area modes with frequencies of 0.39 Hz, 0.50 Hz, 0.64 Hz and 0.78 Hz

with damping ratios below 5% involving the exchange of swing energy between

areas.

a) A critical inter-area mode at 0.3929 Hz involving the interaction
of generators in area-1 and area-4.

b) An 0.5028 Hz inter-area mode shown the interaction of genera-
tors in area-3 and area-5,

C) The inter-area mode at 0.6427 Hz is present due to interaction
of generators in area-1 and area-2, and

d) The inter-area mode that exhibits a high frequency at 0.7873 Hz

is observed by the interaction of generators in area-3 and area-4.
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Table 6.1. The slowest oscillatory modes of the system.

Mode Eigenvalue (%) Oscillation | Frequency | Damping
pattern ratio (%)
description (Hz)
Inter-area -0.0616+,2.4687 G, © G, 0.392 2.49
mode 1
Inter-area -0.06931,3.1594 | G, &G, 0.502 2.19
mode 2
Inter-area -0.0531+,4.0388 G, &G, 0.642 1.31
mode 3
Inter-area -0.08091,4.9471 | G, & G, 0.787 1.63
mode 4

(Y)Real part (1/s) and Imaginary part (rad/s)

Examination of the power spectra of the tie-line flows in Figure 6.3, re-

veals that the selected tie-lines have a strong participation in the critical inter-

area modes. Studies below are aimed at disclosing the temporal evolution of

these modes.
Discrete Fourier Transform Spectrum
50 1 1 1 | 1
= Tie-line 1-2
404 0.50 Hz Tie-line 42-41 |-
3 0.39 Hz ~+= Tie line 50-51
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Figure 6.3. Power spectra of tie-line power flows.
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Figure 6.4 gives the rotor modes shapes of the inter-area mode illustrating
the nature of energy exchange.

Figure 6.4. Mode shapes of inter-area modes. (a) inter-area mode 1, (b) inter-area mode 2, (c)
inter-area mode 3, and (d) inter-area mode 4.

6.2 Conventional HHT analysis of tie-line power flows

In the subsections that follow conventional Hilbert analysis is used to character-
ize the time evolution of the test signals. In this approach, the conventional em-
pirical mode decomposition algorithm in section 2.1.1 was utilized; the Hilbert
transform is computed using the FFT-based approach 3.

For comparison, each case is analyzed separately.

3 The Hilbert transform is computed using the matlab script Ailbert
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6.2.1 Tie-line flow between buses 1 and 2

This transmission line interconnecting areas 1 and 2 has a strong participation in
the three slowest inter-area modes (0.39 Hz, 0.50 Hz and 0.64 Hz) as shown in
Figure 6.3.

Using the proposed analysis, the tie-line signal is decomposed into five

non-stationary temporal modes and a trend.

Figure 6.5 shows the IMF components for the tie line signal extracted fol-
lowing the standard procedure in Chapter 2. For this signal, application of the
HHT in Figure 6.6 identifies two IMFs centered at 0.63 Hz and 0.37 Hz Visual
inspection of the 0.64 Hz component suggests some degree of mode mixing in
which a second mode modulates the 0.64 Hz IMF to produce an FM signal. The
analysis of the 0.37 Hz component suggests, on the other hand, mono-

component behavior.

?

2 4 6 8 10 12 14 16 18 20
-0.8 T T T T T T T T T
< *’-9__’_//—-——\/ _
1 - 6 1 L L L | L L
) 2 4 6 8 10 12 14 16 18 20

time (s)

Figure 6.5. Test power signal with its four IMFs and residue component obtained through
the EMD method.
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Comparison with the power spectra in Figure 6.7 shows some discrep-
ancy in the frequencies extracted. In both cases, the techniques can not identify
the underlying modal components in the Fourier spectra.

Amplitude (MW)

Frequency (Hz)

time (sec)

Figure 6.6. Hilbert spectral analysis of tie line flow 1-2. Instantaneous characteristics.

b) Wavelet Plowar Spscfnm c) Global Wavelet Spectrum
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Figure 6.7. Wavelet spectra.
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6.2.2 Tie-line flow between buses 42 and 41

This transmission line has a strong participation in the 0.50 Hz and 0.78 Hz in-
ter-area modes 1 and 4.

Examination of the modal components in Figure 6.8 shows two distinct
stages in which IMFs 1 and 2 make a significant contribution to the observed
oscillation. During the initial stage, the system exhibits two dominant IMFs at
0.78 Hz and 0.39 Hz (lower panel). As may be observed from the plot, the de-
gree of modulation of very small. As time progresses, the frequency of IMF 1
decreases to about 0.50 Hz; the degree of modulation is seen to increase. Analy-
sis of the temporal amplitudes in the top panel indicates that the 0.39 Hz com-
ponent decays rapidly indicating the transient nature of this oscillation. Also of
interest, wavelet analysis in Figure 6.9 indicates a dominant component at 0.50
Hz. Here, the presence of two frequency components is shown as variations in

the contour plot.

Amplitude (MW)

Frequency (Hz)

0 ‘2 4 6 8 10 12 14 16 18 20
time (sec)

Figure 6.8. Hilbert spectral analysis of tie line flow 42-41. Instantaneous amplitude and
frequency.
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b) Wavelet Plomr sm ¢) Global Wavelet Spectrum
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Figure 6.9. Wavelet spectra.

6.2.3 Tie-line flow between buses 50 and 51

This transmission line has a strong participation in the 0.39 Hz and 0.50 Hz in-

ter-area modes 1 and 2.

The analysis of the instantaneous amplitude in Figure 6.10 shows two
nearly stationary modes centered at 0.50 Hz (dominant mode) and 0.34 Hz in
close agreement with the Fourier results in Figure 6.3. Visual inspection of the

time evolution of the 0.50 Hz component indicates some degree of modulation.
Wavelet analysis in Figure 6.11 confirms these findings.

As shown, the estimation of instantaneous parameters is noisy in areas of

low signal energy.
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Figure 6.10. Hilbert spectral analysis of tie-line 50-51. Top: Instantaneous amplitude, Bot-
tom: Instantaneous frequency.
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Figure 6.11. Wavelet spectra of tie-line 50-51.

6.2.4 Tie-line flow between buses 8 and 9

This transmission line has a strong participation in the three slowest inter-area
modes at 0.39 Hz, 0.50 Hz and 0.64 Hz. Simulation results shown in Figure 6.12

are very similar to those of transmission line 50-51 as expected.
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Figure 6.12. Instantaneous attributes of the 8-9 power signal. Top: Intrinsic mode functions,
Middle: Instantaneous amplitude, Bottom: Instantaneous frequency.

Next, the standard HHT and the masking-based method are compared.

6.3 Masking technique to improve the existing HHT

Based on our previous results, the masking signal technique was used to im-

prove the conventional HHT results.

For illustration purposes, the tie-line signal 50-51 was selected for study.
In this analysis three different modeling approaches were developed and tested:

a) Conventional EMD with Fourier-based computation of the Hilbert trans-
form. This is the same modeling approach used in section 6.2

b) EMD with masking technique Fourier-based computation of the Hilbert

transform
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¢) EMD using masking technique and a convolution-based computation of
the Hilbert transform

Figure 6.13 compares the IMFs obtained using the conventional approach
and the masking signal technique. As may be observed from this plot, the con-
ventional approach results in 3 IMFs and a trend while the masking approach

results in four IMFs and a trend.

Further, Figure 6.14 compares the instantaneous amplitudes computed
using the various approaches above. Simulation results show that the EMD with
convolution-based Hilbert transform results in a smoother amplitude represen-

tation and reduces end-effects.
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In turn, the analysis of instantaneous frequency in Figure 6.15 confirms
that the convolution method results in improved frequency characterization es-
pecially in the middle part of the plot. This contrast with the results with the
conventional method in Figure 6.15a that show frequency modulation for IMF1
and increased end-effects. Again, the convolution-based method is found to per-
form better that the FFT-based method by Senroy.

In Figure 6.15b the instantaneous frequency of IMF1 both convolution
and conventional approaches are most meaningful that the Fourier-based ap-
proach, the fluctuations along of data recording have been demodulated. The
IMF2 with convolution method presents demodulation in frequency regarding

conventional method.

6.4 Damping identification

Much insight into the behavior of the temporal modes can be found by examin-
ing the instantaneous damping of critical modes. In this analysis two modeling

approaches are investigated:

e A conventional approach based on the standard EMD and use of equa-

tion (2.95). We further assume that A ;(®) is a slowly varying function of
time and can be negligible [3].

e The FREEVIB method in Chapter 4.

In all cases, the signal chosen for study is the tie-line power from bus 50
to bus 51.
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6.4.1 Conventional approach

Figure 6.16 shows the instantaneous damping of IMFs 1 and 2 obtained using
conventional EMD. As observed in this plot, instantaneous damping exhibits
strong variations about a mean value. The key point to emphasize is that instan-
taneous damping identifies two critical stages in system behavior: an unstable
interval from 4 to 14 s and a stable interval from 14 to 19 s for both IMFs 1 and 2.

L I L | | L L
)] 2 4 6 8 10 12 14 16 18
time (s)

Figure 6.16. Instantaneous damping of the 50-51 power signal.

Further illustration of the ability of the method to capture temporal be-
havior is shown in Fig. 6.17 that compares damping obtained using the mask-
ing-based employing the conventional Hilbert transform with that obtained us-
ing FREEVIB. Compared with the FREEVIB method, the masking-based tech-

nique can provide a smoother characterization of the true damping pattern.
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Figure 6.17. Comparison of the instantaneous damping of the 50-51 power signal.

Similar results are obtained for other signals and are not described here.

6.4.2 Instantaneous damping using masking technique

In this section we explore the use of the averaged damping technique to
characterize instantaneous damping. Figure 6.18 compares the damping esti-
mates using the masking-based algorithm with the instantaneous-average ap-
proach for the tie-line 50-51 signal.

The instantaneous estimates are found to provide a very characterization
of damping. Comparison is found to be consistent with Prony analysis estimates

in Table 6.2 that suggests that mode dominant modes are stable.
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Figure 6.18. Averaged damping of dominants IMF's in test signal.

Table 6.2. Prony analysis for tie line 50-51 signal.

Mode| Frequency Damping Damping Relative
(Hz) 2n Ratio Energy

1 0.499431 0.010768 0.021555 1.000000

2 0.641810 0.008402 0.013090 0.998063

3 0.392111 0.009475 0.024158 0.330592

4 0.499338 -0.023080 -0.046171 0.005581



6.5 Coherency identification

A key feature of the proposed technique is its ability to extract instantaneous
phase characteristics. Based on the algorithm proposed in Chapter 5, we next

explore the use of phase analysis to identify dynamic coherency.

Figure 6.19 shows the time evolution of the instantaneous phases ob-
tained from the proposed algorithm whilst Figure 6.20 shows the instantaneous

phases referred to the center of inertia.

Comparison of this plot with the time evolution of the original signals in
Figure 6.2a shows the correctness of the results.
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Figure 6.19. Instantaneous phase of 16 generators of the test system.
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Figure 6.20. Instantaneous phase of test system referring to inertia center.

6.6 Application to measured data

To further verify the ability of the method to analyze complex temporal oscilla-

tions, we consider measured data from phasor measurement units (PMUs).

Two real power signals are used to examine characteristics of quasi-

stationary processes. These cases are:

Case 1. Active power signal ESA-MCD 230 kV line during the distur-
bance by fault on TC in phase B.

Case 2. Active power signal from a real event in northern Mexico.
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Figures 6.21 and 6.22 show the instantaneous frequencies computed us-
ing the different approaches. From this analysis and other simulations several

conclusions can be drawn:

® On comparison, the different approaches result in similar ap-
proximations to system frequency for periods of the signal that ex-

hibit quasi-stationary behavior

* Second and fourth order central finite difference approximations
provide better approximations to the instantaneous frequency, es-

pecially in regions in the signal with strong amplitude variations

* The standard and Barnes approximations produce larger spikes

(positive and negative)

On comparison of the two curves it is seen that the several approaches

give similar results.

While the conclusions may be difficult to generalize, these findings pro-
vide basic insight into the non-stationary behavior of nonlinear and non-

stationary oscillations and the accuracy of the proposed techniques.
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6.7 Concluding remarks

In this chapter, the practical application of the proposed technique to the analy-
sis of nonlinear and non-stationary oscillations has been demonstrated. The
methods are effective for detection of both, oscillatory and abrupt changes in
transient events of power systems. This permits direct comparison with conven-

tional methods and its efficiency is demonstrated.

Significant improvement in the accuracy of the analytical procedure has
been noted by adding masking and other processing techniques. Additional
work is needed to further refine these methods.

Hilbert-based techniques for coherency identification have good potential
for detection of dynamic patterns particularly in connection with protection ac-
tions. The extension of this approach to address modal coherency deserves fur-

ther attention.

The use of time-controlled discrete switching control actions and wide-
area mode control based on the detection of critical stability damping margins of
observed oscillations and the introduction of Freevib method considering high
harmonics for identification of nonlinear systems can be considered as future

work.
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Chapter7
Conclusions

7.1 General conclusions

In this thesis, a new approach for the analysis and characterization of nonlinear,
non-stationary power system oscillations, based on an innovate time-frequency-

energy approach has been proposed.

The techniques developed in this thesis allow an in-depth analysis at the
dynamical behavior of the system and permit to detect both, oscillatory and
abrupt changes. Also, these approaches enable the systematic computation of
IMFs to extract significant temporal modal information and its application is
practical due to simplicity of the algorithms used in real events and simulated
data. The proposed method has advantages over the conventional techniques

that only offer partial results in the analysis of complex oscillations.

In addition, this adaptive time-frequency-energy method offers the pos-

sibility of application for the analysis on-line of inter-area oscillations.
Others main conclusions obtained from this work are:

* The application of masking signal techniques on conventional EMD can
be used to solve the problem of mode mixing contained in the analyzed

signal and improves the conventional HHT results.
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* For the numerical calculation of the Hilbert transform several techniques
are developed with the aim of eliminating numerical errors in the com-

puting of instantaneous attributes in the initial and end data points.

* The use of the log decrement method make it is possible to estimate the

averaged instantaneous damping of oscillatory phenomena.

* An alternative approach to computing the generator coherency is to use
the phase of the generator oscillations, instead of the actual swing
curves. Here is applied a new criteria to determine the dominant mode

of each generator.

7.2 Future work

The futures areas of research identified in this thesis are:

The proposed method may be used into other areas of analysis. Further

extensions and refinements are required for its on-line application.

The introduction of Freevib method considering high harmonics for char-
acterization of instantaneous attributes in nonlinear time-varying power

systems oscillations.

* The quantitative modal information obtained of the proposed method
can be used to trigger control actions to stabilize the system, which are
based on the detection of critical stability damping margins of oscillations

present in the dynamic system behavior.

The application of generator coherency method in special protection sys-
tem relying on wide-area measurements to improve system reliability
and healing capability.
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Appendix A
Interpolation by spline functions

Several procedures for fitting approximating polynomials to a set of tabular data
are presented in [1]. Problems can arise when a single high-degree polynomial is
fit to a large number of points. High-degree polynomials would obviously pass
through all the data points themselves, but they can oscillate wildly between
data points due to round-off errors and overshoot. In such cases, lower-degree
polynomials can be fit to subsets of the data points. If the lower-degree polyno-
mials are independent of each other, a piecewise approximation is obtained. An
alternate approach is to fit a lower-degree polynomial to connect each pair of
data points and to require the set of lower-degree polynomials to be consistent
with each other in some sense. This type of polynomial is called a spline func-

tion, or simply a spline.

Splines can be of any degree. Linear splines are simply straight line seg-
ments connecting each pair of data points. Linear splines are independent of
each other from interval to interval. Linear splines yields first-order approximat-
ing polynomials. The slopes (i.e., first derivatives) and curvatures (i.e., second
derivatives) are discontinuous at every data point. Quadratic splines yield sec-
ond-order approximating polynomials. The slopes of the quadratic splines can
be forced to be continuous at each data point, but the curvatures (i.e., second

derivatives) are still discontinuous.
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Cubic spline

A cubic spline yields a third-degree polynomial connecting each pair of data
points. The slopes and curvatures of the cubic spline can be forced to be con-
tinuous at each data point. In fact, these requirements are necessary to obtain
the additional conditions required to fit a cubic polynomial to two data points.
Higher-degree splines can be defined in a similar manner. However, cubic

splines have proven to be a good compromise between accuracy and complex-
ity.

The name spline comes from the thin flexible rod, called a spline, used by
draftsmen to draw smooth curves through a series of discrete points. The spline
is placed over the points and either weighted or pinned at each point. Due to the
flexure properties of a flexible rod (typically of rectangular cross section), the
slope and curvature of the rod are continuous at each point. A smooth curve is

then traced along the rod, yielding a spline curve.

Figure A.1 illustrates the discrete x space and defines the indexing con-

vection. There are n+1 total points, x, (i=12,..,n+1), nintervals, and n-1 in-
terior grid points, x; (i=12,..,n). A cubic spline is to be fit to each interval.

Thus,
f(x)=a,+bx+cx*+dx’ (i=12,...,n) (A1)

defines the cubic spline in interval i,x, <x<x,, (i=12,..,n). Since each cubic
spline has four coefficients and there are n cubic splines, there are 4n coeffi-
cients to be determined. Thus, 4n boundary conditions, or constraints, must be
available.

In the direct approach, the following constraints are applied.

1. The function values, f(x,)=f, (i=12,..,n), must be the same in the two
splines on either side of x, at all of the n-1 interior points. This con-
straint yields 2(n—1) conditions.
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. The first derivative of the two splines on either side of point x, must be
equal at all of the n-1 interior points. This constraint yields (n—1) condi-
tions.

. The second derivative of the two splines on either side of point x, must
be equal at all of the n-1 interior points. This constraint yields (n-1)
conditions.

. The first and last spline must pass through the first (i.e., x,) and last (i.e.,
x,, ) points. That is, f,(x,)=f, and f,(x,,,)= f,.,. This constraint yields 2
conditions.

. The curvature [i.e, f"(x)] must be specified at the first (i.e., x,) and last
(i.e., x,,) points. That is, f{x,)=f" and f)(x,,,)= f.,. This constraint
yields 2 conditions.

Interval 1 Interval i-1 Interval i Interval n

—— —— —— ——
| L/ [ | L/ | | >
T R I I { I | 0

1 2 i-1 i i+1 n n+1 X

n+1 grid points, x,(i=12,..,n+1)
n intervals, X; <x< Xii (l = 1,2,..., n)

n cubic splines, f(x)(i=1,2,...,n)

n-1 interior grid points, x,(i = 2,3,...,n)

Figure A.1. Cubic spline.

When all of the conditions given above are assembled, 4n linear algebraic

equations are obtained for the 4n spline coefficients a,,b,c,, and d,

(i=1,2,...,n). This set of equations can be solved by Gauss elimination. However,

simpler approaches exist for determining cubic spline. The approach presented

by Chapra and Canale is followed below [2].
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From equation (A.1), it is obvious that the second derivative within each
interval, fx), is a linear function of x. The first-order Lagrange polynomial for

the second derivative f£{x) in the interval Lx, Sx<x, (i=12,.,n),is given by

Sly=Z"Ten pn, X% o0 (A2)

X; =Xy X1 =X,

Integrating equation (A.2) twice yields expressions for f/(x) and fi(x)

fiey = XL2 X fr, ¥/2 ""’f“

(A3)
x xl+l i+
3/ 2 3 e _ 2
fx=X16 X502 oy, X6 ”'/Zf,;,+Cx+D (A4)
X, — i+l Xisg —X;

Evaluating equation (A.4) at x, and x,, and combining the results to

eliminate the constants of integration C and D gives

S =L ey

6( Xiay i) 6(xi+l —xi)

+[ f; _ f;'(xul - 'xi)-‘(xi+l _x)
Xyt X, 6

+[ j;+l _ f;:l(xml —xi)J(x_x’) (A5)
X — %, 6

Equation (A.5) is the desired cubic spline for increment i expressed in
terms of the two unknown second derivatives S and f

i+l

An expression for the second derivatives at the interior grid points,
S (i=23,..,n), can be obtained by setting f' (x,)= f/(x,). An expression for
i(x) can be obtained by differentiating equation (A.5). Applying that expres-
sion to intervals i—1 and i and evaluating those results at x = x; gives expres-

sions for f,(x,) and f/(x,). Equating those expressions yields
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f;+1_f;_6f;_f;—l (A.6)

X=X

(x, =2, )2+ 200 =X ) S+ (30 —x) f1 =6

W =%

Applying equation (A.6) at the n-1 interior points gives n—1 coupled
equations for the n+1 second derivatives, f" (i=1,2,...,n+1). Two more values

of f" are required to close the system of equations.

The two additional conditions are obtained by specifying the values of
S and f, . Several approaches are available for specifying these two values:

1. Specify f" and f,, if they are know. Letting f"=0 and/or f,, =0 speci-
fies a natural spline.

2. Specify f and/or f,, and use equation (A.2) to develop a relationship
between f and/or f,, and f f" and f;, etc. This requires the
evaluation of the constant of integration C.

3' Let -fl'= -fZ” and fn'-'i-l =fn”
4. Extrapolate f" and f,, from interior values of f;

The first approach, letting f"= f,', =0, is the most commonly employed
approach.

In actual analysis is used the command spline in MATLAB. This com-
mand employs cubic spline interpolation where piecewise polynomials are the

models of choice for fitting to arbitrary data.
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