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Resumen

En esta tesis se propone un enfoque sistemático para analizar y caracterizar la

evolución temporal de procesos no lineales variantes en el tiempo en sistemas

de potencia. Primero, un modelo para la caracterización de la amplitud y el

amortiguamiento de oscilaciones cuasi-estacionarias es propuesto. El método

combina análisis tiempo-frecuencia y conceptos de la teoría de sistemas

vibratorios para aproximar el comportamiento de oscilaciones no lineales

variantes en el tiempo mediante osciladores de dos grados de libertad.

Se presenta, a continuación, un nuevo marco analítico en la

caracterización y el modelado de la evolución temporal no lineal de las

oscilaciones y técnicas para la identificación del contenido modal de los más

dominantes componentes de movimiento son desarrolladas. Se obtienen

expresiones analíticas que proporcionan soluciones aproximadas a los atributos

instantáneos como frecuencia y amortiguamiento de las oscilaciones, y se ofrece

una interpretación física del modelo. El método propuesto proporciona también

un medio para la extracción de estructuras dinámicas en los procesos

oscilatorios.

Como un ejemplo, se utilizan datos de estabilidad transitoria y eventos

reales para examinar el potencial uso de técnicas en el análisis de series

temporales no lineales en la caracterización de la evolución en el tiempo de

oscilaciones no lineales y no estacionarias, y determinar la naturaleza y

propagación del sistema perturbado. El enfoque propuesto también es

comparado con técnicas convencionales y su eficiencia es completamente
demostrada.



Abstract

In this thesis, a systematic approach to analyze and characterize the temporal
evolution of nonlinear, time-varying processes in power systems is proposed.

First, a model for characterizing the amplitude and damping of cuasi-

stationary oscillations is proposed. The method combines time -frequency

analysis and concepts from vibration systems theory for approximating the

behavior of nonlinear, time-varying oscillations by second-order-degree-of-
freedom oscillators.

A new analytic framework in characterizing and modelling the nonUnear

temporal evolution of the oscillations is then presented and techniques for

identifying the modal content of the most dominant motion components are

developed. Analytic expressions are obtained that provide approximate
solutions to the instantaneous attributes as frequency and damping of the

oscillations, and a physical interpretation of the model is given. The proposed
method provides also a means for extracting dynamic structures in oscillatory

processes.

As an example, data from both transient stability and real events are

used to examine the potential usefulness of nonUnear time series analysis

techniques in characterizing the time evolution of nonlinear, non-stationary
oscillations and to determine the nature and propagation of the system
disturbance. The proposed approach is also compared with conventional

techniques and its efficiency is fuUy demonstrated.
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Chapterl

Introduction

This introductory chapter presents a brief description ofthe research work in this thesis.

The general introduction, the problem statement, the objectives and the study approach

are presented.

After a motivation to the study of instantaneous attributes in the dynamic behav

ior of system oscillations, a review of recent work is presented.

The objectives ofthe work, the main results, and the limitations ofthe study are

stated and the main contributions are then summarized.

The chapter concludes with an outline ofthe structure ofthe thesis.
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1.1 Background and motivation

The analysis and characterization of nonlinear, non-stationary power system

oscillations has attracted significant attention in recent years. Transient oscilla

tions triggered by the loss of major transmission and generation resources may

manifest highly complex spatial and temporal dynamics and involve a large

number of machines and take place over a great range of space and time scales

[1M2].

Understanding the dynamic mechanisms that govern the leading modes

of variabiüty of the observed oscillations, and how these modes may be influ-

enced by control or other changes, are questions of critical importance. Such fea

turesmay be obscured or distorted in the normal spectral analysis approach.

Recent experience with the analysis of inter-area disturbances shows that

many transient oscillations may manifest complex phenomena, including

nonlinear, time-varying behavior and mode interaction [3]-[5]. In large, loosely

interconnected power systems, the analysis and characterization of inter-area

oscillations from measured data is a formidable challenge.

Non-stationary behavior may result from the effects of sequential faults,

control actions, and changes in system topology and operating conditions. Suc

cessful analysis of complex dynamic events requires analysis approaches with

high levéis of sophistication including the abiüty to treat nonlinear and non

stationary data, increased time and frequency resolution, and ease of implemen

tation among other features.

Accurate tracking of system behavior allows repÜcaring the events lead

ing to the observed oscillations, and analyzing the system conditions, control

action or device on modal content.

Past studies have focused on identifying the causal mechanisms for insta-

biüty and analyzing the temporal and spatial variabiüty of measured data or

simulations. Among such procedures, the evolutionary spectrum, the continu

ous wavelet transform, empirical orthogonal analysis, and the Hilbert-Huang
2



technique have proved to be useful tools for analyzing and studying the time-

varying modal characteristics of complex systems subjected to large perturba

tions.

Of particle interest are applications where these techniques are used to

extract modal information on an on-line basis or for real-time control of system

behavior.

While some progress has been made, there are still some important issues

that need to be addressed before such approaches can be realized for on-line

monitoring and control of transient oscillations. Study experience with complex

systems, suggests that various levéis of refinement are required according to the

application [3]-[5].

This work aims addressing some of these issues with emphasis on the

analysis of nonlinear and non-stationary oscillations.

1.2 Problem statement

The detection of témpora changes in the dynamic behavior in nonlinear, non

stationary oscillatory processes is a problem of great theoretical and practical

importance.

Characterization of non-stationary behavior is required for both, detailed

understanding of the mechanisms leading to the instability, and addressing the

key questions of how the temporal oscillation modes evolve over time. The issue

of stationarity is particularly important in studying the system response to large

and abrupt changes in system topology or operating conditions, and in tracking

the system response to sequential faults.

Nonlinearity, on the other hand, causes the temporal modes to interact,

leading to frequency and amplitude modulation and to a phase relationship

known as quadratic phase coupling between the frequency components in

volved.

3



Detecting and identifying sources of nonlinearity and non-stationarity in

observed time series are difficult problems. The non-stationarity of the data fol

lowing the triggering event makes reliable estimates of the instantaneous fre

quency, damping and generator coherency of the observed oscillations difficult.

Traditional methods of time series analysis do not address the problem of non

stationary in power system oscillations, and often assume linearity of the proc

ess which makes them unsuitable for the study of transient power system proc

esses.

Because of the time-varying characteristics exhibited by the power system

processes, the investigation of system behavior should employ methodologies

that make proper use non-stationary approaches.

Besides the understanding of the temporal behavior of system oscilla

tions, nonlinear models should be developed to understand complex behavior

and enhance our ability of system prediction.

In what follows a critical review of methods for the analysis, modeling

and characterization of transient processes in power systems is presented, with

an emphasis on time-frequency methods of analysis of nonlinear, time-varying

series.

1 .3 A brief review of previous work

Time-frequency-energy analysis is a new field of research with a broad range of

appUcations such as image processing and biomedical signal analysis.

In the past decade, many approaches have been proposed for spectral

analysis of power system signáis. Commonly used spectral analysis methods are

based on linear analysis techniques. These include spectral estimation methods,

eigenrealization algorithms and MIMO state-space identification methods, [6],

[7], among other. These models are incapable of explaining important nonlinear

phenomena and may not provide useful information needed in the assessment

of transient signal dynamics.

4



In addition, most of the analysis techniques for system oscillations have

one major shortcoming: the lack of realizable approach for damping estimation.

Approaches such as Prony analysis and block processing techniques have

been successfully used to extract modal information from complex data set [8]-

[10]. As the number of measured signáis increases, however, accurate charac

terization of relevant modal behavior becomes difficult, especially in the pres

ence of noise [9].

Other application áreas include the analysis of generator coherency from

simulated data and the extraction of spatial dynamic patterns. Algorithms such

as those based on eigenvalue analysis [11] and principal component analysis

[12] have been used to identify generator coherent groups as well as to analyze

other aspects of system dynamic behavior.

In [13], a wide-area analysis method for generator coherency identifica

tion based on Fourier analysis was used for inter-area detection and generator

grouping. A major limitation of this approach is the assumption of stationarity

that makes it unsuitable for real-time applications, or appUcations involving

control or topology changes.

Over the last few years, several time-energy-frequency analysis tech

niques have been developed with the ability to characterize non-stationary be

havior. Among these emerging techniques, Hilbert .and wavelet analysis, and

higher order statistical techniques have been used to detect and quantify the

effect of nonlinear mode interaction on the time evolution of non-stationary

power system oscillations [3]-[5].

In [4], higher-order statistical (HOS) analysis techniques are used to study

the interplay between modal interaction and nonlinear behavior in a complex

system. HOS methods are mainly useful for the analysis of semi-stationary phe

nomena whose frequency components change slowly over time.

5



Also of interest is the approach of Levent et al. [14] who proposed a

method to extract modal properties as damping and frequency from nonlinear

transient signal

The proposed methods offer a powerful tool to analyzed sets of data ob

tained from simulations or measurements that supplements information on

conventional analysis techniques. Also the modal information obtained of the

analyzed signáis is physicaUy interpretable and provide meaningful insights

into the observed dynamics.

1 .4 Thesis objectives

Following the above problems, the objectives of this research are as fol

lows:

■ The development of an analytical framework based on time-energy-

frequency representations to model, analyze and characterize the tempo

ral dynamics of nonlinear and non-stationary oscülations in power sys

tems that will be compatible with the models employed by the electric

industry.

■ The development and testing of improved numerical approaches for ex

istingmethods to analyze complex oscillations.

■ The extensión of existing approaches to analyze spatio-temporal dynamic

patterns in transient processes.

■ To investígate the applicability of HHT in the analysis of transient proc

esses in power systems.

6



1.5 Research contributions

In this work, techniques to extract and characterize instantaneous attributes of

nonlinear and non-stationary power system oscillations are proposed.

The main original contributions of this thesis include the followings:

The development of a mathematic and computational approach for ex

tracting temporal information from nonlinear, time-varying processes. A

new dynamic framework based on output-only information of a multi-

ple-degree-of-freedom system is proposed to extract temporal modal in

formation.

■ The modification of standard EMD algorithms to allow demodulation of

the extracted temporal components. Based on a modified sifting tech

nique, temporal behavior is characterized in terms of mono-component

analytic functions that admit well-behaved Hilbert transforms

■ The extensión of current algorithms for damping estimation and intro

duction of new measures based on the notion of averaged instantaneous

damping. A simple model that combines splines with the log-decrement

technique is used to define average instantaneous damping.

■ The development and testing of altemative formulations for estimating

instantaneous frequency and the computation ofHilbert transforms.

The development of analytical approaches to estimate dynamic coher

ency from transient stability simulations.

The combination of these methods is a new direction in power system

research and has helped to gain new understanding in the variability of

power system processes onmidterm scales.

The results are also relevant to the identification of the critical period

of activity of temporalmodes and the development of corrective measures.

7



1 .6 Organization of the thesis

This thesis is organized in seven chapters and one appendix.

After this introductory chapter, Chapter 2 introduces time-energy-

frequency approaches for the analysis of temporal process.

Chapter 3 discusses different approach for the numerical implementation

of the Hilbert transform in power signáis for the estimation of instantaneous

attributes. These methods are: the time-domain approach, the frequency-domain

approach (Fourier method) and the convolution method. An application exam

ple is provided by determining the most viable approach.

Chapter 4 presents the analysis and identification of time-varying processes. A

systematic method to analyze and characterize the temporal evolution of

nonlinear, non-stationary process in power systems is developed. The method

combines the Hilbert-Huang transform and concepts from vibrating systems

theory and is used to approximate the dynamic behavior of quasi-stationary os

cillations.

Chapter 5 demonstrates the efficiency of proposed method by comparing

damping estimates with results obtained from conventional approaches. Alter-

native methods by computing instantaneous frequency are developed, and a

method by estimating instantaneous generator coherency is proposed.

Chapter 6 presents the application of the time-varying algorithm model

to the analysis of ínter-are oscillations. Conclusions and suggestions for future

work are presented in Chapter 7.

Appendix A describes the spline fitting technique used in this research.
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Chapter2

Generalized Hilbert-Huang
Transforms

The study of nonlinear, non-stationary power system processes has recently become the

subject of intense interest and investigation in power system stability studies. In prac

tice, the detection and characterization of temporal nonlinear oscillations in measured

data is greatly complicated by non-stationary variations in system dynamic behavior.

Several representations have been explored over the last few years to analyze

processes that are characterized by nonlinear and non-stationary characteristics.

This chapter presents a general review ofmodeling frameworks that explicitly ac

knowledge and incorpórate nonlinear and non-stationary behavior. A two-stage time-

frequency-energy (TFE) approach based on the Hilbert-Huang transform is first intro

duced that can be used to analyze temporal information. Variations to existing ap

proaches are suggested along with a review ofpresent limitations.

Numerical aspects associated with the use and interpretation of the proposed

technique are discussed. In addition, we discuss various issues which influence the effec

tiveness of several time-frequency representations.

The notation utilized throughout the dissertation is also summarized.
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2.1 The Hilbert-Huang technique

Recently, nonlinear and non-stationary analysis techniques based on the Hil

bert-Huang Transform (HHT) [1],[2] have been used to analyze data from

nonlinear and non-stationary processes. The HHT consists of two steps:

(a). The empirical mode decomposition of the signal into basis functions,

and

(b). The application of the Hilbert transform to the intrinsic functions

The cornerstone to the whole HHT procedure is the Empirical Mode De

composition (EMD) that separates a signal into amplitude and frequency

modulated signal components that admit well-behaved Hilbert transforms

[3],[4].

In the first step, the original system time histories x(t) are decomposed

into a finite number of intrinsic mode functions (IMFs) with time-variable am

plitudes and frequencies, through EMD. Once the original signal has been de

composed into intrinsic mode functions, the Hilbert transform can be applied to

each IMF to extractmodal features.

In the following sections we offer a critical review of this approach. En

hancements, extensions and generalizations to the techniques are suggested

along with an analysis of present limitations.

2.2.1 Empiricalmode decomposition

The empirical mode decomposition (EMD) technique is a systematic method for

numerically decomposing any time equally spaced time series, x(t) into its own

intrinsic mode functions, i.e. the IMFs.
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Definition 2.1 (Intrinsic Mode Function). An IMF is defined as a time se

ries which satisfies three critical requirements:

(a). In the whole data set, the number of extrema and the number of zero-

crossing must either be equal or differ at most by one.

(b). At any point, the mean valué of the envelope defined by the local máxima

and the envelope defined by the local minima is zero.

(c). The linear superposition of all IMFs should reconstruct the time series.

The extraction of IMFs out of time series requires a repeated sifting pro

cedure called empirical mode decomposition. EMD is briefly described as fol

lows:

1. Starting with the original signal x(t) , set r0(/) = x(t) , and } - 1 ,

2. Extract the ;th IMF using the following sifting procedure

a. Set \(t) = rj(t) and / = 1.

b. Identify all extrema of x(t) for \(t) by passing a natural

cubic spline through the localmáxima and minima.

c. Interpólate between máxima (minima) to obtain an enve

lope emax(0 {e^M-

d. Compute the running mean of the envelopes,

«m (0 = k»x,_,(0 + <-__„,., (')]/ 2 and subtract it from h,_,(t);

determine a new estimate hj(t) = hl_x(t)-m,_x(t), such that

emiBií (t)
=< h,(t) < emaXM (0 for all f . Set i = i + 1 .

The step 2(d) is then repeated until h,(t) satisfies a predetermined stop

ping criterion, and the first IMF component from the data is called c, (t) = h, (t)

3. Obtain an improved residue rj(t) = rJ_x(t)-cj(t). Repeat steps 2(a)

through 2(d) with /
= /' + 1 until the number of extremes in r (t) is

less than two.
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In this model, the upper and lower envelopes are derived by fitting a cu

bic spline through the local máxima and minima, respectively, with the added

requirement that the signed lies between these two envelopes. See Appendix A

for details about cubic splines.

This decomposition is mathematically expressed in the form:

*(0 = ¿cy(0 + r.(0 (2.1)
/=<

where the functions Cj(t) are nearly orthogonal and have zero local means, n is

the total number of IMFs and rn(t) is the non-oscillatory residual at the end of

the sifting process, which represent the trend component of the signal x(t) . The

algorithm does not impose a basis set on the data (does impose a predetermined

basis functionwhich makes it adaptive).

Each IMF is associated with a local time scale that can be ampUtude or

frequency modulated and even non-stationary, and involves only one mode of

oscülation, where the first component (IMF1) contain the highest frequency os

cillation; the frequency content then decrease with the increase in IMF and the

last component is the residue rn (t) .

The stopping criterion of the sifting process requires that the residue

rn(t) , becomes a monotonic function from which no more IMF can be extracted,

or can still be different from zero mean.

To guarantee that the IMFs retain sufficient physical sense, a criterion to

stop the sifting process is defined by calculating the standard deviation between

two successive siftings as

¿(W')-M'))2
SD = ^

-T

2Xh,w
(=0
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where SD is typically set between 0.2 and 0.3 [1]. The selection of an optimum

threshold valué is important, but difficult.

The sifting process serves two purposes: to sepárate out high-frequency,

small-amplitude waves, which are 'riding' atop, or superimposed on, larger

ampUtude, lower frequency waves, and to smooth out uneven amplitudes in the

IMF being extracted, i.e. to make the wave-profiles more symmetric about the

local zero-mean line.

The first purpose must be achieved for the Hilbert transform to give a

meaningful instantaneous frequency, while the second purpose must also be

achieved in case the neighboring wave ampUtudes have too large a disparity.

As pointed out in the Uterature, however, these goals are often conflicting

for non-stationary signáis, since riding waves may be transient in nature and/or

highly variable in amplitude, and smoothing out the uneven amplitudes via sift

ing can prevent faithful extraction of these waves.

Moreover, repetitive sifting causes smearing of TFE information across

different decomposition levéis and an intra-level smoothing of TFE information,

which is unlikely to reflect the intrinsic characteristics of the signal under analy

sis.

Physical insight into the nature of the EMD can be attained by seeing a

nonlinear and non-stationary signal, x(t), as composed of fast oscillations super

imposed on slow oscillations. A simple example is shown in Fig. 2.1 to ülustrate

this notion. Here, the original signal (blue thick Une) is seen as composed of a

slow oscillation given by the mean of two envelopes [■2max(0-emin(-0_ (dark bro

ken line) and a fast oscillation given by

h(t) = x(t)
-

mean(t)

where

'"i.x(t) = [emKÍ(t) + emÍB(t)]/2
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Once the slow oscillation has been identified, it is considered as new sig

nal onto which the same procedure is applied.

240

1200

Figure 2.1. First step ofthe sifting process applied to a real signal showing the upper and

lower envelopes and the instantaneous mean.

Other interpolation techniques such as trigonometric interpolation and

higher order spline fitting hold promise in the development of improved EMD.

2.2 The Hilbert transform and the analytic signal

2.2.1 The Hilbert transform

Once the EMD technique has been applied to decompose the input signal into a

set of IMFs and a residual signal, one may now analyze the components to ex

tract instantaneous ampUtude, phase and frequency information.

Suppose u(t) is a general measured or simulated signal. The Hilbert trans

form (HT) of u(t) is defined by [5]
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vW = H[u(tj\=-±-p r^ = íp r «w rf (2.2)
,*■■ J-"jj-t n *~>t-n

and the Hilbert inverse transform is given by

„(o=tf-[v(o]=-pr—^-i^r^*. (2.3)
;r ivij-t n +*°t-r¡

where the principal valué of the integral is used and
*
indicates the convolution

operator.

The integráis in (2.2) and (2.3) are improper integráis in the sense of the

Cauchy principal valué denoted byP ,
and they are represented in terms of con

volution notation as

v(t) = ±-*u(t) (2.4)
7a

«C) = --!-*v(0 (2.5)
tu

where \l(j¡t) is the kernel of the transformation. Equations (2.2) and (2.3) de

scribe a unique pair ( u(t) , H[u(t)] ) that contains temporal behavior.

2.2.2 The analytic signal

The real signal u(t) and its HT define an analytic signal, *F(f) , given by

¥(/) = u(t) + jv(t) = A(t)eM0 (2.6)

where A(t) and <p(t) are the instantaneous amplitude and phase of the analytic

signal z(t), and the imaginary part H[x(t)] is the Hilbert transform of x(í):

H[X(t)] =^p[^-drj (2.7)
n

J-° t - n

where the notation P indicates the Cauchy principal valué of the integral.
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Clearly,

u(t) = A(t)co$[<p(tj\

V(t) = A(t)sm[p(t)]

(2.8)

(2.9)

It is important to emphasize that both, the amplitude A(t), and phase

function (p(t), are single valued functions of time, and therefore can only be ap

plied to a simple oscülatory function. The combined appUcation of Hilbert

analysis and the EMD allows the study ofmore complex signal behavior.

Meaningful results are obtained from mono-component Hilbert trans

form. This is discussed further in Chapter 6.

2.2.3 Instantaneous time-frequency information

The analytic signal represents a local time-varying wave in the complex plañe

(u,v)and is a phasor that rotates about the Cartesian plañe (u,v), as shown in

Fig. 2.2.

Figure 2.2. A rotating phasor representing the analytic signal -*P(í) = «(/) +p(t) .
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The length of the rotating phasor A(t) , is named the instantaneous ampU

tude, defined as

A(t) = 4u\t)W(t) (2.10)

and the instantaneous phase is defined as the instantaneous angle

v(0
tp(t) = arctan

u(t)
(2.11)

in which, the instantaneous phases are obtained by unwrapping the phase an

gles <pj(t).

The rotating phasor and its instantaneous angular speed define the in

stantaneous angular frequency of the .analytic signal. Following Gabor [2], the

instantaneous frequency is defined as the phase velocity of any given phase:

ca(0 = ■?(') =
—

cit

Marctan
u(t)v(t)-v(t)ú(t)

u\t)W(t)

Therefore, the instantaneous frequency in cycles/s or Hertz can be calcu

lated by

F(t)^ =U(t) (2.13)
2n 2n

Techniques to compute the instantaneous frequency that avoid comput

ing the local time derivative are introduced in Chapter 5. Several practical pro

cedures for computing the Hilbert transform are given in Chapter 3.

2.2AMathematical challenges in Hilbert-Huang analysis

While the introduction of the EMD constitutes a conceptual advance in TEF

analysis for non-stationary and nonlinear signáis, it has several practical limita

tions that reduce its practical utility and may cause inaccuracies in depicting

signal dynamics.
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Numerical problems include:

• End swings caused by spline interpolation that result in large variations

in the envelope estimation. These large swings can eventuaüy propágate

into the data series and corrupt the whole signal, especiaUy the low fre

quency components, thus making the EMD ineffective.

Convergence problems in the sifting procedure,

■ Difficultywith intermittency and modulation, and

Distortion in the Hilbert transform, and

A number of analytical issues remain open for research and include:

Finding physical and mathematicalmeaning for the IMFs,

■

Determining the most appropriate interpolating schemes, and

■

Identifying criteria for stopping the sifting process.

Despite the aforementioned weaknesses, the HHT is finding increased

appUcation.

There have been several approaches to handling these issues. These in

clude the use of signal masking techniques, higher-order spline fits, the use of

trigonometric interpolation, bitting-off of the beginning and the end of a signal,

and decreasing sampling intervals, among other methods.

2.3 Use of signal masking techniques to improve EMD

The conventional EMD method introduced by Huang is based on a progressive

sifting process by extracting the IMFs, which requires that a local average of the

signal be defined [6].

As we remarked above, however, the IMFs may contain riding waves

which créate intermittency and modulation making physical interpretation of

20



mixed modes difficult. Further IMFs may be multi-harmonic functions and

therefore, the instantaneous frequencies extracted from them show irregularities

which raise difficulties in interpreting the signal.

2.3.1 Intermittency and intermodulation

The problem of intermittency prevents the use of EMD on many types of sig

náis. Intermittency occurs in any signal that is constantly changing and is usu-

aUy defined as erratic changes wave heights.

Following Huang [7], we refer to intermittency as a component at a par

ticular time scale either into existence or disappearing from a signal. This can

introduce mode mixing, that is, having different time or spatial scales mixed in

one IMF. In turn, this has the effect of producing additional spurious variations

in the IMFs and their associated instantaneous frequencies.

In the standard analysis procedure, the nonlinear and multi-component

signal is decomposed into a finite number of high-frequency and low-frequency

components (IMFs) by cubic spline interpolation to créate envelopes around the

signal and find the local average. If we knew the components a priori through

EMD method we would naturaUy define the local average to be the lowest fre

quency component.

Ui most practical modeling situations, however, the nonlinear, non

stationary temporal functions may include one or more modes whose associated

amplitudes and frequencies are modulated and coupled in time; these modes

are difficult to interpret in term of conventional modal analysis.

The need for improved descriptions of the EMD has led to the develop

ment of signed masking techniques.

2.3.2 Solution to mode mixing

A solution to the problem of mode mixing is to insert a sinusoidal masking sig

nal that prevents lower frequency components from being included in the IMF

obtained through traditional EMD method.
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This is accomplished as foUows [8]:

(i). Perform a Fast Fourier Transform (FFT) on the original signal

x(t), to estimate frequency components /,-/2,.--/„ in an IMF,

where /, </_ <...</„. The frequencies fx,f2,-,f„, are the station

ary equivalents of the possibly time-varying frequency compo

nents of x(t) .

(ii). Construct the masking signáis mask2, mask.,,..., maskn, where

maskk(t) = Mk sm\2.n(fk + fk_x)t], in which \fk\ is the magnitude of

fk obtained from the FFT spectrum. The valué of Mk is empirical.

(üi). Obtain two signáis c„(t)+=x(t) +mask„(t) and

c„(t)_ = x(t)-maskn(t) . Perform EMD (steps 1-2 from section 2.1.1)

on both signáis to obtain their first IMFs only, cx(t)+ and ct(t)_;

thenc,(0 = (c,(0++c-(0-)/2.

(iv). Obtain the residue, r_ (i) = x(t)
-

c, (t) .

(v). Perform steps A3-A4 iteratively using the other masking signáis

and replacing x(t) with the residue obtained, untü m-1 IMFs con

taining frequency components f2,f_ /„ are extracted. The final

residue rn (t)will contain the remaining component /, .

(vi). Compute the residue, r, (t) = x(t)
-

c, (/) .

(vü). If the residue, rx(t) , is above a threshold valué of error tolerance,

then repeat step (i) through (iü) on rx(t) , to obtain the next IMF

and a new residue.

By using a masking signal higher that the highest frequency component,

it is possible to sepárate two components whose frequencies are within a factor
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of 2 of each other. Further, this preprocessing technique decomposes the signal

into IMFs that have better-behaved Hilbert transforms.

In recent work by Senroy [8], the improved HHT, developed in [4], was

used to characterizing the time-frequency-magnitude response of a high-

temperature superconducting motor, in which its algorithm uses the FFT of a

time-varying waveform to genérate appropriate masking signáis. Other varia

tions to enhance empirical mode decomposition employing this approach are

described in [9] and [10].

Special techniques to deal with mode mixing are discussed in Chapter 6.

The masking signal method allows EMD to be used to sepárate compo

nents that are similar in frequency that would be inseparable with traditional

EMD techniques.

2.4 The Hilbert spectrum and instantaneous frequency

2.4.1 TheHilbert spectrum

After performing the Hübert transform on each IMF component, the original

data can be recovered as

x(t) = ±IMFJ (t) ^illtaj (.y,<D;(0d' 1 (2.14)

where 5R is the real part of the complex number. The time-frequency distribu

tion of the ampUtude is designated as the Hilbert spectrum H(ca,t), the term

a,(/)is a time-dependent expansión coefficient similar to the constant in the

Fourier expansión and aAi) is the instantaneous frequency at time r which

differs from the constant frequency co¡ in the Fourier
transform.

Equation (2.14) shows that a time series x(t) can be represented by a trip-

let [t,w(t),a(t)), i.e. an effective time-frequency distribution of the amplitude is

generated for the associated time series.
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2.4.2 Instantaneous complex phase and complexfrequency

The instantaneous phase of a signal may be derived from the instantaneous fre

quency using the integral [5]

cp(t)=[w(t)dt + cp_ (2.15)

This formula may be regarded as a solution of the first-order differential

equation given by

<¡>(t) = ca(t) = 27rf(t) (2.16)

The integral of the angular speed co(t) equals the angular distance <p(t)

and the integration constant cp0 is given by the .angular position of the phasor at

/ = 0 . In order to get a uniform exponential notation of the analytic signal, let us

define the instantaneous radial velocity of the phasor or instantaneous radial

frequency of Figure 2.2 as

«(') =
— (2-17)
A(t)

where a(t) is a measure of the relative speed of elongation of the radius vector

A(t); in others word, a(t) gives a measure of the radial velocity representing the

speed of change of the radius or amplitude of the phasor.

The solution of this differential equation enables us to write the instanta

neous ampUtude in the form

A(t) =AeÍm* (2-18)

and the analytic signal in a uniform exponential notation

T(0 =V^í>(',+M*' (2-19)

where A_elv° is a constant defining the notion of a complex amplitude at t
= 0 .
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The integrand in this formula defines the notion of the instantaneous

complex frequency

s(t) = a(t) + jw(t) (2.20)

Alternatively, we can define the instantaneous complex phase of the ana

lytic signal of the form [11]

<DC (0 = Ln\9(t)\ = Ln[A(t) +MO] (2.21)

Here, the capital L denotes the multibranch character of the logarithm of

a complex function. The time derívate of the complex phase yields the complex

frequency (2.20), since

-f(0 = *c(') =^+M0 =«(0 +M0 (2.22)
A(t)

Subsequent sections of this paper discuss briefly the use of altérnate

modeling approaches to characterize temporal behavior.

2.5 Generalized time-varying transformations

In spite of the wide appUcabüity of the time-frequency-energy representations

described in the preceding sections, numerous other techniques have been de

veloped as weU. The following is a summary of recent approaches existing in

the Uterature.

2.5.1 Projections in time-frequency: continuous time case

The orthogonal bases can also be computed with other techniques, in a rela

tively straightforward manner. Figure 2.3 gives a schematic representation in

which the EMD is replaced by other techniques. These can include wavelet de

composition, proper rotation, and empirical orthogonal analysis, among other

approaches.
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Care must be taken, however, in ensuring that the issues of non-

stationarity and non-linearity are addressed in the study of nonlinear phenom

ena.

Real power

signal

Ortogonal

decomposition

Hilbert

transform

Instantaneous

Attributes

Nonlinear

and

time-varying

Simple

oscillatory
modes

Dominant

mode

Amplitude

Phase

Frequency

Figure 2.3. Processing ofa signal to obtain its instantaneous attributes.

2.5.2 Wavelet projections

An altemative to the EMD is to use a wavelet projection to compute the basis.

Once the basis has been computed, Hilbert analysis can be used to determine

instantaneous parameters.

In practice, other projections could be used including both projections on

continuous and discrete time [12].

Projections in time-frequency- continuous time

Given a real-valued continuous-time signal x(t), consider a series of projection

operators PR which project x(i) into a time-frequency región _?;. These opera

tors need not be orthogonal but we assume that ^
°*

(PRjx)(t)
= x(t) for some

J_ . For /
= l,...,J0 define «/,(*) = (PRx)(t) and sJo(t)

=

(PRjtt¡x)(t) . Then

*(0 = ]f>,(') +M0 (2.23)

Such .an additive decomposition of x(t) is achieved by the empirical

mode decomposition technique or alternatively, wavelet decomposition.
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Discreto time wavelet decomposition

Analogous to decomposition anterior we consider projections of a real-valued

signal which attempt to produce monocomponent separation, only here we use

discrete-time methods. Assume we have sampled a continuous-time signal at

intervals Ai = 1 to get a vector of observations X-\X0,...,XN_X]T Assume also

we have a series of projection matrices Py, ,
which project a vector X into a par

ticular time-frequency región R¡ . These operators need not be orthogonal but

we shaU assume V
°+

P„ X = X for same particular J_ . For j = \,...,J_ define

D. = PR X and S. = P„ X. Then

X =%Dj+SJt (2.24)

Decomposition (2.24) is the discrete equivalent of (2.23). So we can de

compose the sampled signal into a linear combination of the contributions of X

in projected spaces. In the time-frequency plañe has been tiled ideaUy, each pro

jection wül contain at most one monocomponent signal for which the concept of

instantaneous frequency is weU defined.

2.5.3 Time-Varying VAEMA models

In this approach, a time-varying vector autoregressive moving average

(VARMA) model based method is proposed to calcúlate the instantaneous fre

quency of the IMFs obtained from the EMD. By representing the IMFs as a time

varying VARMA model and using a Kalman filter to estimate the time varying

model parameters [13], the instantaneous frequencies can be calculated accord

ing to the time varying parameters; the instantaneous frequencies and the enve

lopes derived from the cubic spline interpolation of the máxima of IMFs are then

used to yield the Hilbert spectrum.

The method can be summarized as foUows:
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(a). The state-space representation is through a time-varying vector auto

regressive (VARMA) model that consists of two equations: the meas

urement equation and the transition equation.

(b). The Kalman filter is used to estimate the time-varying parameters of

VARMA model; the goal is to minimize the difference between the ob

servation (the measurement equation) and the prediction based on the

previous observations (the prediction equations). The instantaneous

frequencies are obtained.

(c). The cubic spline interpolation and the instantaneous frequencies de

rived from VARMA model are then used by to yield an improved

Hilbert-Huang transform.

2.6 Other approaches

Several other approaches are being developed that expand on previous results.

These approaches are beyond the scope of this research and only summarized as

foUows: (1) the wavelet transform, (2) the Hilbert transform considering high

harmonics, (3) the global Hübert vibration decomposition (HVD) method, (4)

the High-order statistic (HOS), and (5) Wavelet-Hibert Huang transform among

other approaches.
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Chapter3

Numerical Computation of the

Hilbert Transform

Existing approaches to the numerical calculation of the Hilbert transform are based on

the computation of the analytic signal using the Fourier transform and are not well

adapted for estimation of instantaneous characteristics of a real signal producing nu

merical errors in the computing of instantaneous parameters in the initial and end data

points.

In this chapter, methods for the calculation of the Hilbert transform are devel

oped.

The present study presents and contrasts three methods for computing the Hil

bert transform of arbitrary signáis. These are: a time-domain approach, a freauency-

domain approach based on Fourier analysis and a convolution-based method.
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3.1 Frequency-domain approach (FFT-based method)

The Hilbert transform is usually computed in the frequency-domain through the

Fourier transform according to the convolution theorem. From our previous de

velopment in Chapter 2, the Hilbert transform can be considered to be the con

volution of h(t) = l/nt with u(t) such that

v(/) = »(/)*!
m

This representation of the Hilbert transform as a convolution leads to an

altemative way to compute the Hilbert transform in the frequency domain via

Fourier transform.

Assume that U(f) and V(f) are the Fourier transform of u(t) andv(í).

Then U(f) and V(f) are defined by [1]

U(f)= fmuity'mdt ; m = 2*f

V(f) = -Jsgn(f)U(f)

in which

sgn(co) = {- 1,0,-1} for -._{- oo,0, oo}

where / is caUed Fourier frequency with units 1/units of the independent vari

able and the signum function is defined by

sgn(/) =

1 for />0

0 for f = 0

-1 M /<0

Applying the Fourier transform to the convolution in the equation above,

we obtain the Hilbert transform in the frequency domain as

V(jca) = FT[v(t)] = FT[\l7tt\j(jca) = -jsgn(ca)U(jco) (3.1)

where FT denotes the Fourier transform.
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Let xk be a real signal; its HT xk can be computed using the fast Fourier

transform (FFT) techniques as

xk
= FFT-l[-jsgn(ca)FFT[xk^ (3.2)

where FFT is the fast Fourier transform, FFT~X is the inverse fast Fourier trans

form, co is the nth frequency of the discrete Fourier transform, and sgn is the

sign function.

Therefore the Hilbert transform is a -ni 2 phase shifter when observed

as a Unear system whose input is xk and output is xk .

In the present implementation, the Hilbert transfonn is computed using

the function hilbert in Matlab. This function is a 90-degree phase shift operator

and it does not change the amplitude of the original signal xk . Its operation can

be described in either as a convolution in the time-domain or frequency-domain.

This transform has a global character and henee is not well suited for

characterization of local signal parameters. Further, this approach is subject to

the problems that normaUy attend Fourier analysis, e.g. aliasing, end effects, etc.

Thus, for instance, the Gibbs' phenomenon makes the Hilbert-Huang transform

analysis inaecurate around the two data ends caused by discontinuity of each

IMF during the cubic spline process of local extreme [2].

3.2 Time-domain approach

Consider a real signal x(t) . Assume further that the signal x(t) has been sam

pled every At seconds to give the sequence xk =x(kAt), k = 1,2,3,. ..,« and that

the Hilbert transform signal x(k) can be computed.

If the signal x(t) is assumed to vary linearlywithin the sampling interval

[ At to nAt ], its Hilbert transform at time At can be written as [3]

xk=x(kAt)=^r^LdT
7T±> kAt-T

33



x * kAt-T Xk-2)6ikAt-T <*-»■* *A/ - _■

+ r»«iLd.+ r>"__í____r+...+ r ______dr)

*-2

(I
** i=l i=k+2

where

ü-1-" kAt - r

When jc(í) is linear during the sampling period, that is

we obtain

Y' - f
txi +(xi+x -xt)tlAt

(k
-

i)At
-

T

dr

(3.3)

/(/) = —L^-rfr (3.4)

ríe) l*4» *(r) , |<*+DA/ x(r)
7* - rfr+

,

'
dx (3.5)

•U-da- £A. -

r
*A' *Af-r

v ;

(3.6)

j xi+(xM-xi)(t-iAt)/At for iAt<tí(i + l)Al

[x, + (*,_,
-

x, )(t
-

¡At) /(-At) for (i -l)At<t< iAt

=

x, ln
'

+ (xi+x
-

xt )(-l + ik
- í) ln

*

) (3.8)
fc-í-1 fc-i-1

7(0 =
Io ^rVi)^T | &xk+(xM-xk)T/At^

=

xk-x_-xk+x (3.



"X,+(x,-_-X,)T/todTr(r) _
_ px

r +(xM -x,.)r>
*

(i - *)A. -

r

=xjn^-^ + (x/.1-x/)(l + (/-*)lni7A-l) (3.10)

Therefore, the Hilbert transform of xk is

^=^(l/,(/)+/r+¿/^)n '=1 í=*+2

^©^-r^r+c**. -^()(-i+(^-oin-^-))n
1=I /T-/-1 fc-Z-1

+ (**-. ~xk+x)

+ E(*>!^+(*M-*/)a+(í-*)ln^^))) (3.11)
i=*+2 '-« i-k

v '

The results given in [4] are

I™ =

x, ln-^i- +(xM -xt)(-l+(k-i)]n-t±j (3.12)
K l í fc— i— 1

/(O -y _ v

(3.13)

^ =*< ln]ZJZ¡+^ -^)HHi-k)ln-J--^-) (3.14)

We observe that 7,(/)and (3.8), I¡c) and (3.9) are exactly the same,

but /,{r)is different from (3.10). This equation does influence the result of the

Hilbert transform of a signal.
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3.3 Convolution-based method

In this method we consider complex sequences for which the real and imaginary

components of analytic signal can be related through a convolution. These Hil

bert transform relations are particularly useful in representing bandpass signáis

as complex signáis.

This method has not been used in power signáis applications.

Causai sequences

Any sequences can be expressed as the sum of an even sequence and an odd

sequence. SpecificaUy, with xe(n) and x0(n) denoting the even and odd parts of

x(ri) , then

x(ri) = xe(n) + x0(n) (3.15)

where

*» =

j[*(«) + *("«)] (3.16)

and

*» =^k«) "*(-")] (3.17)

Equations (3.15)-(3.17) apply to an arbitrary sequence whether or not it is

causal or whether or not it is real. However, if x(n) is causal, then it is possible

to recover x(n) from xe(n) and to recover x(n) for n * 0 from x0(ri) .

Hilbert transform relations for complex sequences

As the Fourier transform of a complex sequence cannot be zero for __ < 0 since it

is periodic, the requirementmust be changed for being zero in the second hatf of

each period. Thus, being x(n) a sequence whose Fourier transform isX(eJ<a), it is

required that

X(eJm) = 0, -ti<co<0 (3.18)
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If the time series x(ri) is complex, we can express it as

x(n) = xr(n) + jXl(n) (3.19)

where xr(n) and xt(n) are real sequences.

With Xr(eJa) and X^e*") denoting the Fourier transforms of the real se

quences xr(n) and xt(n), respectively, we obtain

X(e» ) = Xr(eJa) + JXt (eia ) (3.20)

in which is easily shown that

•*,(«'") = ^(eJa) +X'(e-Ja)] (3.21)

and

jX^) = ^[x(eJ°)-X\e-n] (3.22)

If X(elc°) is zero for -

n < co < 0
,
there is no overlap between the nonzero

portions of X(ej°') and X'(eJa). Thus X(eja) can be recovered from either

Xr(Ó or Xt(eJa) as

[0, -7T<CO<0.
^ '

and

[0, -7i<a<0.

From (3.23) and (3.24) it is possible to relate Xr(eJ<0) and X,(ela), di

rectly by

v , jes [-JXAeJm), 0<CO<7T,
Xl(e"°) = \ '\ (3.25)

\jX,(eJ°>), -n<co<Q,
K '
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or

Xt(eJa) = H(eJ")Xr(eJ") (3.26)

where

ui j<»\ ¡~J> Oúco<n,
H(e )=

.

,

'

(3.27)
[y, -i.skO.

v '

According to (3.25) and (3.26), x,(n) can be obtained by processing xr(n)

with a linear time-invariant discrete-time system with frequency response

H(ein) as is given by (3.27). Such system is called an ideal 90-degree phase
shifter or a Hübert transformer, whose frequency response has unity magnitude
and a phase angle of -n!2 for 0<co<n, and a phase angle of +nl2

ÍOT-71 <CO<Q .

From (3.26) it foUows that

Thus -xr(n) can also be obtained from x,(n) with a 90-degree phase

shifter.

In other words, the Hübert transformer is an aU-pass filter called quad-
rate filter, than produce a displacement ± 90-degree phase shifter in the input

signal. For negative frequency is +90-degree and for positive frequency is -90-

degree. The input and output signáis of the Hübert filter are named a pair of

quadrate signáis. The Hilbert filter can be analog or digital.

The transfer function of an ideal nonrealizable .analog Hilbert transformer

is

H(jf) = F[l/*t] = \H(jf)\e>«» =

-y sgn(/) (3.29)
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Therefore, the transfer function is given by

-7 for />0

H(jf) = \ 0 for f = 0 (3.30)

...
fi>r /<0

The magnitude |//(x/")| = 1, Vf and the phase function is

<p(f) = sxTf>[H(jf)] = -(x/2)sgn(f) (3.31)

TieHilbert transformer

The estímate Hilbert transformer of an analytic signal wiU be obtained by per

forming a filtering operation on the analytic signal itseU. The integral of Cauchy

given by equation (2.6) can be rewritten in the form of a convolution as

*,(«) = £*, (n-l)h(l) (3.32)
l=-L

where (3.32) is the desired Hübert transform of the imaginary part of a discrete-

time analytic signal. L indicate the order of the filter and its máximum order is

given by

L = Nimf-\ (3.33)

where Nimf indicates the total number of IMFs, including the residue r(t). The

filtering process eUminates the residue to avoid the mistake in the initial and

end data points of recording.

The filter with the desired features which has the impulse response h(ri)

oí a 90-degree phase shifter, corresponding to a frequency response given by

(3.25) is given by Oppenheimer and Schafer [5] as

/-(„) =
-L [je'mdco

- -í-
[ jeimdco (3.34)

or

h(n) =
2 sm2(m¡2)

^Q
n n

0 «-=0

(3.35)
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In this study L = 1 in (3.32) provided .an adequate amplitude response

•and perfect 90-degree phase response. Future research for decomposition of sig

náis should compare the above filter to other filters.

Other promising approaches are the use of Chebyshev filters.

Figure 3.1 show how a discrete-time Hilbert transformer system can be

used to form a complex analytic signal, which is simply a pair of real signáis.

xr(n) xr(n)

Hilbert transformer

x,(/i)

Complex

signal

x(n)

Figure 3.1. Block diagram representation ofthe creation ofa complex sequence whose

Fourier transfonn is one-sided.

In practice, one can implement the Hübert transform by using a finite im

pulse response approximation to h(n) . Such FIR filter designs can be obtained

either via the window method or the equiripple method.

3.4 Summary

Three different methods for computation of the Hilbert transform have been

presented and discussed. The approaches to the numerical calculation of the

Hübert transform are based on the computation of the analytic signal in nonUn

ear and non-stationary power system signáis and the comparison is made on the

instantaneous frequency of an osciUatory signal.
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The convolution method and the time-domain approach algorithm iden

tify the instantaneous attributes from a similar manner and the frequency-

domain approach algorithm differs from the others two methods.

As demonstrated in this study, convolution method is the most feasible

way to obtain reliable dynamic behaviour of the system, whose nonlinear and

non-stationary oscillations over aü the study period, require precise and accu

rate analysis to determine the instantaneous characteristics, mainly in the esti

mation of the instantaneous frequency. In this approach, filtering operation on

the analytic signal eliminates noise and fluctuations in the initial and end data

points and allows us to obtain a more accurate estimate of the instantaneous

frequency during the analysis of the dynamics of the system under study.
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Chapter4

Free Vibration .Analysis using the

Hilbert Transform

An accurate model of transient processes must capture dominant temporal features of

the observed system dynamics such as abrupt changes in modal content and to relate

these features to specific aspects of interest. This chapter discusses the development of

time-frequency representations of system behavior based on Hilbert analysis.

Methods for investigating the free response of time-varying linear systems are

developed. Classical vibration theory is combined with Hilbert analysis to construct a

multi-degree-of-freedom time-varying system identification framework that ís utilized to

extract modal properties. Use of these two approaches makes it possible to study spatio-

temporal behavior in an efficient manner. The method is constructive for dynamic analy

sis ofmeasure data and can be used to study quasistationary oscillations.

A systematic method for studying free oscillations of a class of system models,

based on Hilbert analysis, is first introduced. Then, the FREEVIB approach for estimat

ing nonlinear modal characteristics is discussed. The model serves as a foundation for

more efficient algorithms for modal estimation en Chapter 5.

Explicit approximate expressions for instantaneous parameters are obtained.

Techniques for extracting instantaneous parameters, estimating the modeling errors,

and minimizing numerical issues are all examined. Finally, issues concerning the im

plementation of the algorithms and numerical calculations are briefly discussed. A nu

merical example is used to illustrate the practical application ofthe proposed algorithm.
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4. 1 Extraction of modal information from time-varying linear models

4.1.1 Description ofdynamicModel

Linear, time-varying systems are frequently used to model systems that have

non-stationary properties and undergo low magnitude vibrations. These models

capture the instantaneous dynamical behavior of the system, and could be used

to assess the temporal condition of the system or to diagnose modal properties.

To interpret the physical meaning of the proposed technique let us con

sider the analysis of modal properties of a MDOF system by using output-only

response information. The equations of motion describing the natural vibration

of a viscously damped linear, time-varying múltiple degree-of-freedom (MDOF)

system can be written as [1]

[M(/0)...M(O]
dt2

x.(0

«.(0
+[at0)...Qtn)]jt +[K(f0)...K(O

*■(')'

X-.C)

= 0(4.1)

In equation (4.1), x(t) = [xx(t)...xn(t)J is an (nxl) displacement vector,

and M(/), C(/) and K(t) are the time-varying diagonal mass, damping and

stiffness matrices of dimensión (nxn), respectively.

The system is called a slowly-variant-system ií M(t) , C(t) .and K(t) are

aU slow variables of / compared with x(t) x(t), and i(t) [2], The vaUdity of this

assumption is studied further in Chapters 5 and 6.

If the system response x(t) is known, then the modal properties of the

MDOF system can be determined. It follows from arguments given in Chapter 2

that the system output x(t) can be decomposed into a series of time-varying

modes. More precisely, let the motion of the system be described by an n-

dimensional column vector x(t) = [jc, (t) x2 (t)
■■■

xn (t)f with components

Xi (t) =£ xv (t)
=£ Atj (t) cosífy (/)) , U = l,2,..7í) (4.2)
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in which __tf(f) cos(tp9(f)) is the time-dependent coefficient extracted for the /th

element of the displacement vector. The corresponding complex form of the

signal is

z(t) = xt(t) + H[x,(t)] = A, (.)exp(%,(0) (4.3)

where z(t) is the analytic signal, and //[jc,(0] is the Hilbert transform of jc,(.) .

We remark that this representation includes both, amplitude and frequency

modulation.

In practice, equation (4.2) could be obtained from empirical mode de

composition of measured or simulated data. A general approach to determining

the modal coefficients is to use Hübert analysis to estimate modal quantities

from knowledge of the solution jc(/) . The proposed approach involves viewing

instantaneous parameters as a measure of the best fit harmonic at each point of

the complex signal.

According to Bedrosian's theorem [3] the Hilbert transform of the prod

uct of two signáis f(t) and g(t) can be defined as

H[f(t)g(t)]= f(t)H[g(t)] (4.4)

if the Fourier spectra of f(t) and g(t) are non-overlapping in frequency space

and g(t) has a higher frequency content than f(t) -*, or both f(t) ana g(t) are

analytic.

Making use of this property in (4.2), one obtains

H[M(t)x(t)] =M(t)H[x(t)]

H[C(t)x(t)]= C(t)H[x(t)]

H[K(t)x(t)] = K(t)H[x(t)]

1 We can consider, equivalently, that f(t) is a high-pass signal and g(t) is a low-pass sig

nal
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or, equivalently

H[M(t)X(t)] =M(t)l(t) (4.5a)

H[C(t)x(t)] = C(t)t(t) (4.5b)

H[K(t)x(t)] = K(t)X(t) (4.5c)

Equation (4.5) implies that the coefficients, M(t), CQ) and K(t), do not

vary quickly over time. i.e, equation (4.3) is not suitable for the analysis of

abrupt changes in system behavior. This is confirmed in our numerical applica

tion of the method in Chapter 5.

Applying the Hilbert transform to (4.1), one obtains

M(t)x(t) +C(t)x(t) +K(t)x(t) = 0 (4.6)

Multiplying each term of equation (4.6) by j and adding it to the corre

sponding term of equation (4.1), a differential equation on the analytic signal is

obtained as

M(/)X(/) +C(/)X(0 +K(t)X(t) = 0 (4.7)

in which X(t) = [Xx(t),X2(t),...,X„(t)J is the analytic signal of the displacement

vector, and the /th element (which corresponds to the /th DOF) of the analytic

signal.. A mono-mode analytical function corresponding to each component can

be constructed using the Hilbert transform as

XM = tX.Á0 = ÍM0eMj(,) (4.8a)

in which

x,](t)
=

Al](t)coscpij(t) (4.8b)

Au(t) = rjx2(t) +x'(t) (4.8c)

45



g>„(t) = arctan
xv(t)

xÁt)

4 0)

and

4,(0 =
_*»(0**y(0 + *g(0*y(0

4(0

Using the .analytic signal from equations (4.8a)-(4.8f), we have

■*#(')=■*, (O

XiJ(t)
=

Xij(t)
4(0

4(0
M/(0

4(0
-<(0+y 240H(0+¿(0

4(0

where

nW_*w.__?___2zÍ_S__-
4 (0

= Im

4 "/

¿,(0

^(0

á„(í) = Im
■^(0
*,,(0

-2
4(0^(0

4(0

4(0
=

4(0 Re
^(0

^(0
+<(0

(4.8d)

(4.8e)

(4.8f)

(4.9)

(4.10)

(4.11a)

(4.11b)

(4.11c)

(4.11d)

The free vibration of the linear time-varying MDOF system in equation

(4.7) can be solved by substituting X(t) and X(/)of equations (4.9) and (4.10),

and using equations (4.8) and (4.11). Assuming the mass matrix to be known,
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equation (4.7) can be simpUfied and written in compact matrix notation for the

j th IMF of the analytic signal.

p;p;+p;p, =p; (4.12)

in which {-] ={cxc_--cl---cn}T \\kj = \kxk2---ki---knY and the diagonal matrix are

given by

»í
=

H_Xxj KjXxj -KjXy

K/X-j ~KXxj KjXy ~K)X_¡

tfjXij -"UjXuj tfjXtj -/f+ij*^/Mj

KjXn¡ KajX»_j

(4.13)

"í-

J.
2;

-

■*
\l

**
2/

~

Xy

X,¡-Xi-\) X,j-XMJ

X„J
-

X,-\¡

(4.14)

Y: = ix-mxKjXXj -m2h^X2j
-

-mfiX,
- -mnh»xj (4.15)

The coefficients h¡ and h™ in equations (4.13) and (4.15) are given as fol

lows:

(4.16)

(4.17)

The complex equation (4.12) can be separated into two equations accord

ing to the real and imaginary parts, and then the two parts can be assembled in

the foUowing matrix representation

A
hí =
"

A

/(O

/(O
+M,(0

hm =

v

"Á"{t)
-co\(f)

4(0
+j

ÁAt)co..(t)

4(0
;

.
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Re(P;) Re(P,*)

Im(P,c) Im(P*)

Determination of modal parameters involves finding n independent solu

tions for the above equation.

For an n-DOF linear time-varying system, equation (4.18) contains 2n

time-varying unknown parameters and 2n time-varying equations for each IMF

of the original signal. Therefore, each mode extracted from the original signal

can be used in equation (4.18) to solve for one set of identification results. This is

an important advantage of the proposed method in practical system identifica

tion as only one set of IMFs is required for solving aU the time-varying un

known system parameters.

Figure 4.1 gives a pictorial representation of the output-only modal iden

tification algorithm.

Linear

Time-varying

system

Modal

components

\ \ \
A(t) ü)(t) g(t)

Figure 4.1. Modal identification algorithm.

For a SDOF system, the identified results from equation (4.18) can be

simpUfied as [4]
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Output-only
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c(t) = -mr2Mtl+é(t^ (4.19)
l A(t) co(t))

where c(t) is the instantaneous damping function, and the instantaneous stiff

ness is given by

k(t) = m<o20(t) (4.20)

where a>_(t) is the instantaneous undamped natural frequency of the system. If

foUows immediately that,

co.,o2(0=M=^(0__M+24(o+i(o^(o
A(t) A\t) A(t)co(t)m

(4.21a)

co(t) = <p(t)
x(t)x(t)-x(t)x(t)

A\t)
= Im

A(t)

X(t)

X(t)

X(t)

X(t)

eb(t) = Im

X(t)
-2

A(t) = A(t)

(

Re
X(t)

X(t)

A(t)co(t)

A(t)

+ co2(t)

(4.21b)

(4.21c)

(4.21d)

(4.21e)

where A(t) and __■(/) are the instantaneous amplitude (or envelope) and fre

quency respectively of the vibration with their first and second derivatives Á(t),

A(t) and ó(t) . Both, A(t) and __•(/) are calculated as functions of time and can

therefore be related to aU temporal events during the measurement.

The processing steps are detaüed in the sections that foUow.

4.1.2 Damped system response

In the more general and interesting case, the ¿th modal response can be ex

pressed as
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x(t) = ?_IMF¡(t) =
¡=x

I4(0e-<2*<'"> cos(2^_,+¿) (4.22)

where __,(/) is the amplitude of the /th mode, $(/) is the phase lag, /,(/)is the

undamped natural frequency, fdl(t) = fl-J\-gl2 is the damped natural fre

quency, and g. is the damping ratio.

X(t) =

~*x+jyx~

x2+jy2
=

x„+jy„_

_4 c-2»íl/l'g.(2-t.l'+A)

¿ e-l*(*fn'gJO-'f^l+tn)

(4.23)

The original data can then be expressed as the real part of the sum of aü

of the IMF components, that is,

x(t) = 9. ZH,(t)e
(2-ríJ /,(/)«* f.l

(4.24)

.Several variations to the above model are avaüable in the literature. For

its importance and relation to this work, the FREEVIB method introduced by

Feldman wül be discussed in detaü.

4.2 The FREEVIB method

In this section, the FREEVIB method is applied to a SDOF oscülator and

compared with the standard approach based on log-decrement. First, the model

form of a Unear damped multiple-degree-of-freedom system is presented. Then,

the results are shown and compared with experimental data. The reader is

referred to [4] for a detaüed account of the FREEVIB methodology.

4.2.1 Description ofdynamicmodel

In the previous section we saw that the knowledge of the output of a lin

ear MDOF system aüowed us to deduce the time-varying modal properties of

the process. Here we extend this approach to deal with nonUnear systems.
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FoUowing the work of Worden and Tomlinson, consider a second degree-

of-freedom (SDOF) nonlinear system under free vibration

X + h(x)X + a)¡ (x)x = 0 (4.25)

where x,x, and x(t) are the acceleration, velocity and displacement,

respectively, of the oscilator, a0(t) is the undamped natural frequency and h_(t)

is the effective viscous damping characteristic. It is assumed that they are aU

slow variables of / compared with the response signal x(t) .

Using the definition of analytical signal yields

X(t) = x(t)-x(t) = A(t)e'vW (4.26)

in which

x(t) = A(t)cos(cp(t)) and x(t) = -iA(t)s\n(cp(t)) (4.27)

where A(t) is the instantaneous magnitude or envelope and <p(t) is the instan

taneous phase [4]. Thus,

¿(o=Mo-*2(o

cp(t) = arctan
ix(t)

(4.28)

(4.29)

and

Á(t)=x(t)m-mm=Ame
Jx2(t)-x2(t)

=
i(x(t)3c(t)-x(t)x(t))_

X(t)

X(t)

X(t)

X(t)

(4.30)

(4.31)
x2(t)-x2(t)

where co(t) is the instantaneous frequency.

Equations (4.25) and (4.26) are employed to genérate the first and two de

rivatives of the analytic signal
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X{f) = X{t)
A(f)

A(t)
+ ico(t)

X(t) = X(t)
A(t) ,_i „ . A(t)a(t) ....-^ - co(t)2 + 2/

w w
+ idrit)

A(t) A(t)

(4.31)

(4.32)

where the derivatives X(t) and X(i) are functions of A and co .

Coming back to the equation (4.25) and recalling the properties of the

Hübert transform, we have

H\x\=x and _7[¿c] = x

Using equation (4.4) yields

H[g(t)co_(t)x(t)] = g(t)co0(t)H[x(t)]= ff(0»o(0-?(0 (4.33)

H[wl(t)x(t)\= a>l(t)H[x(t)) = co¡(t)x(t) (4.34)

where in (4.23) the low-pass portion consist of two variables: g(t) and co0(t) .

Now, taking the Hilbert transform of (4.25), then multiplying each side of

the obtained new equation by / and adding to the corresponding sides of (4.25)

we can get a differential equation for the analytic signal of jc(/)

X + h(t)X + col(t)X = Q

or in quasi-linear form

X + h(A)X + co2Q (A)X = 0 (4.35)

Substitution of (4.21) and (4.24) into (4.25), results in

co2 +cal +h— + /1 2co— + co + co = 0. (4.36)

Separating out real and imaginary parts of equation (4.36), one may ob

tain the expressions for the instantaneous undamped natural frequency and the

instantaneous damping characteristic
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h(t) = -2--- (4.37)
A co

The corresponding effective damping ratio can then be easüy found as

g(t) = hB (t)lco0(t) (4.39)

In most practical appUcations, one starts with a measurement of the sys

tem response jc(/). AppUcation is then straightforward; the Hilbert transform

can then be computed using the various approaches in Chapter 3; the instanta

neous modal parameters are determined using (4.27) and (4.30).

Also, nonlinear effects can be accounted for as discussed in Chapter 5.
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Chapter5

Modal Identification via Hilbert

Analysis
Power systems contain nonlinear temporal evolution and time-varying processes that it

zs very difficult to identify with the conventional techniques. In most practical modeling

situations, many transient oscillations may manifest highly complex phenomena and its

analysis presents modal interaction that is particularly difficult to characterize because

ofthe large number ofpotential modes involved in the interaction and the time scales in

which they interact.

Inspired by models developed with the framework of vibration analysis, we de

scribe the behavior of the system assuming that the observed power signal can be ap

proximated by family of simple oscillatory functions with time-varying parameters.

With this characterization, an approach based on the FREEVIB method and a modified

Hilbert analysis is proposed for estimating modal parameters from measured data. This

approach improves the ability of the HHT to capture abrupt changes in the observed

data. It is shown that in addition to providing estimates oftime dependent mode shapes,

the analysis also provides a method to identify the modes with the most energy embedded

in the analyzed oscillations.

Analytical criteria to describe the energy relationships in the observed oscilla

tions are derived and a physical interpretation ofthe system modes is suggested. A sim

ple example illustrates the main idea ofthe proposed method.
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5.1 Identification of linear time-varying dynamical systems

5.1.1 Modal parameter identification

Our previous developments suggest that each IMF is nearly orthogonal to each

other and that each IMF can be considered to be a harmonic oscillator of vari

able amplitude and frequency [1]. Based on this notion, an efficient technique to

extract temporal modal behavior from the EMD of a signal is proposed.

The approach assumes that a nonlinear model is sought for a set of nearly

orthogonal time series. Since each IMF admits an unambiguous definition of

instantaneous frequency and amplitude through the Hilbert transform, the

above theory can be readüy applied.

Our HHT-based method is summarized in Figure 5.1. It consists of the

foUowing steps:

• Improved empiricalmode decomposition

• Temporal analysis of system behavior

• Feature reconstruction

Assume in order to introduce the nature of this model, that a signal

x(/)has been decomposed into a set of nearly orthogonal IMFs, IMF¡ , IMF2 .•■• ,

IMF_ through continuous time projections, i.e. empirical mode decomposition

of the signal. These components are then interpreted in terms of N independent

undamped oscülators

Xl(t) + 2gco0(t)xl +co2o(t)Xl=0 i = \,.,N

whose modal characteristics are to be determined.
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*(/) Empirical
mode

decomposition

Demodulation

IMF_

T
Hilbert

transform

'_, 4(>*yp"(")-

- A2(tk)e'^\

. Ax(tk)e'^r

Time

ic, + 2g.(t)w0 (t)x, + co? (0*, = 0

Mechanic

Oscillator

Modal
x2+2g2(t)co_2 (t)x2 + col, (0*2 = 0

*

x„ +2g„(t)co0r(t)xn + co2_n (t)x„ = 0

■U
g(A,co)

a>_(A,co)

<o(t,A.,...,A„,<p. <p„)

A(t,<p.,...,<p„)

Figure 5.1. Conceptual representation ofthe proposed analysis method.

The sections that follow provide information on the various steps in the

procedure.

5.1.2 Improved EMD

The basic idea to insert a masking signal, in this case a single sine tone, that pre

vents lower frequency components from being included in the IMF. Since the

56



masking signal is know, it can be removed from the IMF obtained through EMD

in the followingmanner.

1. Construct a masking signal, /(/) from the frequency information of

the original data, jc(/) .

2. Perfom EMD on x+(t) = x(t) + f(t) to obtain the IMF y+(t) . Simüarly

obtain y_(t) from jc_(/) = x(t)-f(t) .

3. Define the IMF as y(t) = (y+ (t) + y_ (t))/2

Figure 5.2 describes this algorithm.

—

GH
JC(f)

fit)

Masking

signal

First

Sifting

€H

©H
First

Sifting

EMD +~y(t)

Figure 5.2. Ilustrated proposed approach.

5.1.3 Natural damping estimation

Damping is a critical consideration in the analysis and design of power systems.

In this section, a technique to compute nonUnear damping in power signáis is

presented.

To buüd intuition about how the algorithm works consider a general sig

nal x(t). Once the individual IMFs are identified through EMD, the Hilbert

transform is appüed to each IMF independently to determine the local damping

and frequency. More precisely, assume that each IMF can be described by a sec-

ond-DOF system with nonlinear damping as

x(t) + 2gcoo(t)x + co2o(t)x = 0 (5.1)
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where jc(0 is the displacement of the fictitious mass, co0 is the undamped natu

ral frequency, and g is the dimensionless damping coefficient. The solution en-

taüs fitting a second-order model of the form (5.1) to the observed oscillation

y(t).

Applying the HT to (5.1) and combining the real and imaginary parts

yields a differential equation of the ith analytical signal [2]

z(t) + 2gcoo(t)z + co2o(t)z = 0 (5.2)

Letting

zk (i) = Ak (.>**« = At (t)e-"Me'n0) (5.3)

where the envelope Ak (t) and the phase cpk (t) are both slowly varying func

tions of time, Aj(t) is time-dependent amplitude that can be interpreted as the

source-related intensity, and .7(0 is an exponential factor characterizing the

time-dependent decay of the solution [3], it can be readüy proved that

¿*(0 = z„(0["»_(0->7_(0]

¿„ (0 =

z. (OK (0
" <o\ (0 "

2icak (t)ñk (t)
-

fjk (t) + rj2 (/)]

and

Ák(t)
= "'7„(0

Ak(t)

= -íiki0
Ak(t)

(5.5)

M)

Substituting (5.5) into (5.4) and separating out the real and imaginary

parts gives

2^0(/) = 2^(/)-
ók(t)

M0 (5.6)

< (0 = <»l (t) + ñk (t)
- f,2k (t) -

2gco0 (t)?jk (t)

where the instantaneous frequency is given by
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zk(t)x(t)-zk(t)zk(t)

z\(t)-z2k(t)

r.s lt\ ñ /•.■._ ____________-______________! /C7\
<»k (O =

9k (O =

__,__ ~2,__
(5-7)

Having determined the instantaneous amplitudes and phases, equation

(5.6) provides the natural damping and natural frequency of the k th IMF. In its

present form, however, these equations are sensitive to numerical errors caused

by the computation of instantaneous frequency. This issue is discussed in detaü

in section 5.3.

5.1.4 Instantaneous energy

Hübert analysis does not directly provide a measure of energy. In this section a

technique to compute the instantaneous energy based on the developed me

chanical model is proposed.

Consider the mass normalized equation ofmotion [4]

z + co2„z + fD(z,z) = 0 (5.8)

where con
= ~Jk/m is the natural frequency, and /c is the mass normalized

damping forcé, including both linear and nonlinear damping.

Assuming that nonUnear forces are relatively smaU, the free response can

be assumed to be a simple sinusoid with a time-varying ampUtude

z(t) = A(t)e'«n = A(t) sin (co_t + <f>) (5.9)

Differentiation of this relation with respect to time produces the foUow

ing dependence of the instantaneous parameters:

X(t) = A(t)cod cos(codt + <£)+A(t) sin (wdt + tp)

x(t) = -A(t) co2d sin (codt + ¿)+ cos (wdt + <f)A(t) cod + (5.10)

__(/) cod cos {codt + 0) + sin (codt + <^)-_(/)

If the damping is assumed to be small in comparison to the stiffness and

inertial forces, the response of the system can be written as
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x(t) * A(t)sin(cot + 0)

x(t) » A(t)eocos(cot + ¿) (5.11)

jc(0 * -A(t)tv2(t)sm(cot + <£)

The mass normalized instantaneous mechanical energy in the system is

e(t) = i kx2 (0 + X-mX2 (0 = X-co2x2 (t) + l-x2 (t) (5.12)

Substituting (5.12) into (5.9) and assuming that damping is small in com

parison to the stiffness and inertial forces2 it can be proved that

e(t) = ^co2A2(t) (5.13)

Equations (5.6) and (5.13) completely characterize the modal behavior of

each IMF.

The algorithm described in this section wül now be ülustrated for the

computation of damping of a nonUnear oscillator.

Based upon this discussion, we express the time evolution of each IMF in

the form of a simple time-varying osdllatory mode with different ampUtude

and frequency content and can have both amplitude and frequency modulation.

Using the same procedure as before, the Unear time-varying systems us

ing HHT are frequently used to model systems that have non-stationary proper

ties and undergo low magnitude vibrations.

5.2 Motivating example: a nonlinear Duffing oscillator

To further ülustrate the use of the method to identify nonlinear, non-stationary

characteristics, we consider the study of a nonlinear Duffing oscülator with cu

bic damping. The equation governing the motion for the oscülator is given by

2 In this case, the rate of change ofthe amplitude of oscillation is small, i.e. A(t) = 0 and

cod«co.
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^0+2^^) +^(0-.^«3(0 = «(0 (5.14)

where £ is the damping ratio, co „ is the natural frequency of the Duffing oscüla

tor and e is the spring stiffness. The presence of the cubic nonUnear restoring

forcé term jc3(0 in (5.14) represents a nonlinear hard spring.

Numerical data for the model was obtained by integrating the system

model (5.14) using a fourth-order Runge-Kutta method. Table 5.1 provides the

data used in our computations corresponding to the nonlinear model

^4_) + 10^)+l04^(0 + 5xl04x3(0 = 0
dt2 dt

with initial conditions jc0
= 0 and x0

= 200 . For numerical solutions to the

nonlinear equations, fourth and fifth order Runge-Kutta formulas were em

ployed. AU numerical results were obtained by usingMatlab.

Figure 5.3 shows the time evolution of the displacement and speed.

Table 5.1. Parameters ofthe Duffing oscillator.

Parameters Valué

Damping ratio £ = 0.05*-'

Natural frequency <y„=100rac//í = 15.91/_z

Spring sttifness e = 5



Displacement y't)

Figure 5.3. Duffing oscillator. Top- displacement. Bottom- velocity.

The model developed in the previous section was used to determine the

temporal behavior of the oscülator. Figure 5.4 shows the instantaneous ampli

tude, phase and frequency obtained using equations (4.28), (4.29) and (4.31).

As a further ülustration, Figure 5.4 shows the instantaneous attributes.

The results show that the method is capable of accurately representing the

nonlinear system dynamics. Examination of simulation results in Figure 5.4a

shows that the method accurately captures the envelope of the oscülation. Also

of interest, Figure 5.4b reveáis that the instantaneous phase increases almost

linearly with time indicating an essentially constant frequency. In turn the

analysis of instantaneous frequency in Figure 5.4c shows that the instantaneous

frequency reaches a steady state after a few seconds in cióse agreement with the

expected physical behavior.
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Figure 5.4. Instantaneous attributes. (a) amplitude or envelope, (b) phase, and

(c) frequency.

FinaUy, examination of Figure 5.5 shows that the instantaneous damping

fluctuates around the natural damping £ = 0.05í_1 As may be observed from

this figure, in steady state the instantaneous damping coincides with the natural

damping showing the accuracy of the model.
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Figure 5.6. Comparison between natural frequency and instantaneous frequency.

We return now to the problem of frequency estimation.

5.3 Frequency estimation

In Chapter 2, instantaneous frequency was defined as the derivative of the in

stantaneous phase. If jc(0 is a time-varying trace and H[x(t)] its Hilbert trans

form, the foUowing equation can be used to calcúlate the instantaneous fre

quency of a time-varying trace

' '

\ln) x2(t)r-y2(i) \ln) A2(t)
(5.15)

The computation of instantaneous frequency requires the evaluation of

two time derivatives and it is numericaüy sensitive to the effects of low-

ampUtudes áreas, A(t) , i.e. relative minima in the envelope. This results in spu

rious spikes which are physicaüy meaningful. Another problem that affects the

LSRmethod is the ringing effect caused by Gibbs' phenomenon.
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Altemative methods for the calculation of instantaneous frequency are

discussed below.

5.3.1 Central finite difference (CDF) of second order

Let /(O the instantaneous frequency of an analytic signal x¥(t) = u(t) + jv(t)

given by

2n 2n dr
J

2n dt[ \u(t))\
v '

where «(0 is a real signal and v(0 is its Hilbert transform.

By definition, the derivative of a function f(t) is given by

h-rO fj

Therefore, the derivative of the phase is

,»(.) = -Uto.*'
+7>*'>

(5.18)
2n t-a T

Assume that cpeC3[a,b], t-T, t + T e [a,b] as is given in [5], then

■w*+yn (5-i9)

Furthermore, these exists a number a - a(t) e [a,b] such that

^"ytW (5.20)

where i^ (p,r) =
■*--—- = 0(r2) is called the truncation error.
6

Proof. Taylor's series of second-order for <p(t + T) and cp(t-T) about / are

^(.+r) = ^(o+^0(í+^-0+^a+7'-o2+^(/+r-o3
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<p(t +T) = <p(t) + <p,(t)T +^T2 +£Í2Ú.t3 (5.21)

and

cp(t-T) = cp(t) + cpXt)(t-T-t) +^(t-T-t)2+^(t-T-t?

cp(t-T) = cp(t)-cp,(t)T +^-T2-^^-Ti (5.22)

After (5.22) is subtracted from (5.21), the result is

cp(t +T)-cp(t-T) = 2cp'(t)T+(pm{ai)+f{a2)Ti (5.23)

If cp e C3[a,b], then by intermedíate valué theorem exist a e [a,b] that

2cpm(a) = cp"'(ax) + <pm(a2)

This can be substituted into (5.23) and we obtain

cp(t + r)
-

?(/ - r) = 27y(0 +W^-F
and the terms rearranged to yield

y.(0__<___)zg___l___g[)r- (5.24)

The first term on the right side of (5.24) is the central finite difference of

second-order and the second term is the truncation error.

FinaUy we have equation (2.13)

m=^9Xt) = ^[9(t+T)-<p(t-T)) (5.25)
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To minimize the bias error and also to make the estimator more ro

bust in the presence of noise, additional neighboring points may be included

in the formula.

5.3.2 Central finite difference offourth order

Suppose that the valué of the third derivative <pm(a) does not change too rap-

idly; then the truncation error in (5.20) goes zero in the same manner as T2

which is expressed by using the notation 0(T2). When computer calculations

are used, it is not desirable to choose T too small. For this reason it is useful to

have a formula for approximating <p'(t) that has a truncation error of the order

0(T*) as can be observed in [5]

Assumethat <peC5[a,b], t-2T t-T.t,t + T t + 2T e[a,b], then

M) __

~

gg + 2T) + Ícp(t + T)
-

W -T) + cp(t - 2T)

Furthermore, there exists a number a - a(t) e [a,b] such that

T4 v
( 1

where ET(cp,T) = 0(T4) is the truncation error of four-order.

Proof. Taylor's series of four-order of cp(t + 2T) and cp(t-2T) about / are

cp(t + 2T) = cp(t) + cp'(t)(t + 2T
- 1) + £-£1 (/ + 2T - 1)2 + *2-£! (. + 2T - tf

+ ?Z«l(t + 2T-ty +^l(t + 2T-ty
4! 5!

0(t + 2T) = cp(t) +mOT +«^T2+«> 1* + l^M T< +2«0 r, (5 2g)

and
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<p(t-2T) = <p(t) +<pmt-2T-t) +^(t-2T-t)2+^(t-2T-ty
IV t \ V / \

+ 9_M(t.2T-ty+^l(t-2T-t)í
4! 5!

^-2T)^(t)-2(pXt)T^T2 -*£fr +I&M7* -™£P-T* (5.29)

After (5.29) is subtracted from (5.28), the result is

y(/+2r)-^-2r)-4^(0*r+^^r3 + 6V|(^)r5 (5.30)
Je *J>

In addition, differences between the Taylor's series of four-order of

cp(t+T) and <p(t-T) about / is given by

<p(t +T)-(p(t-T) = 2(p'(t)T +^P-T3 +^-MT5 (5.31)

Multiply the terms in (5.31) by 8 we get

8rt/+r)-8rt/-r) = i6^0r+^^r3+l^^r5 (5.32)

Subtract (5.30) to (5.32)

-<p(t + 2T) + S(p(t + T)-8<p(t-T) + (p(t-2T) = \2(p'(t)T+l6<P ^~64<p ^T5 (5.33)

If cpv (t) has one sign and if its magnitude does not changes rapidly, we

can find a valué a that Ues in [t-2T,t + 22"] so that

1 6(.
"

(or, )
- 64(3" (a2 ) = -4V (a)

This can be substituted into (5.33) and we obtain

-

cp(t + 2T) + icp(t +T)~&<P(t ~T) + cp(t -2T) = \ 2<p'(t)T -

4S<P ^
Ts

and the terms rearranged to yield
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,,t)_-9(t
+ 2T) + S<p(t +T)-$<p(t-T) + <p(t-2T)

|
cpv (á)

^
12T 30

The first term on the right side of (5.34) is the central finite difference of

four-order and the second term is the truncation error.

Finaüy we obtain equation (2.13)

F(0 =Y^9X0 =Y^[9(t-2T)-1i<p(t-T) + S<p(t +T)-<p(t + 2T)] (5.35)

The above equation is named centered five-point equation and requires

using another equation at the endpoints. By obtaining this equation is necessary

to use the Lagrange interpolation polynomial [6], which is given by

/(*) = Íf(x,)LnJ(x) +
(* ~

X°)(X
~

*■**
-

*_)-(*
~

**,)
f(n+x)(c)>

to (« + !)!

for some c = c(x)e [a,b] and Lni(x) is the ith Lagrange polynomial for / at

x0,x,,...,jc„,thus

fXx) = f f{Xj )Vn t (x) +
d[(x-x0)(x-xx)(x-x2)...(x-x„)] /("+0(c)

~S
' "'

dx (« + !)!

(jc-jc0)(jc-jc,)(x-x2)...(jc-jcn) ,in+2)M

(n+1)!
J Kh

so that

fXx) = fjf(x¡)L:Ax) +^^[(x-x0)(x-x.)(x-x2)...(x-xn)
í=o \n + iy.

+ (x-x0)(x-x2)(x-x,)...(x-x„) + (x-x0)(x-xi)(x-x3)...(x-x„) + ...

+ (x-xo)(x-Xl)(X-X2)...(x-x„_l)]+n"J'-0J;k {Xl~Xk)f™(c)
(n + \)\

lí x-Xj, j- 0,1,2,..., n , then we have
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Equation (5.36) is caUed equation of the n + l points, of course there is a

better approximation to the derivative if it takes a greater amount of points, but

this in turn implies a high cost computational due to the large number of as-

sessments to be carried out. It is enough to take 3 or 5 points.

To deduce the five-point equation at the endpoints consider

(jc-jc,)(jc-s2)(jc-jc3)(jc-s4)

(jc0 -jc,)(jc0 -jc2)(jc0 -jc3)(jc0 -jc4)

K_(x) =
-

(jc-jc0Xjc-jc2)(jc-s3)(s-jc4)

(jc, -jc0)(jc, -jc2)(jc, -jc3)(jc, -jc4)

(jc
-

jc0)(jc
-

jc,)(jc
-

jc3)(jc
-

jc4)

(jc2
-

JC0 )(jc2
-

JC, )(jc2
-

jc3 )(x2
-

xA )
'

_

(jc
-

x0)(x
-

jc,)(jc
-

jc2)(s
-

jc4)

(jc3
-

jc0)(x3
-

xx)(x3
-

x2)(x3
-

jc4)

(jc
-

jc0)(jc
-

jc,)(jc
-

jc2)(jc
-

x3)

¿4.3 (*)
=

(jc4
-

x0)(jc4 ~xx)(xi -jc2)(jc4 -jc3)

with xx =x0+h, x2 =x0+2h, x3=x0+3h, jc4
=

x0 + Ah , in other words jc0, jc,, jc2,

jc, and jc4 equaüy spaced, then

¿i.oW =

7 v 7} r, **-[(jc-jc2)(x-x3)(jc-jc4)
(jc0

-

jc, )(jc0
-

x2 )(x0
-

x3 )(x0
-

x4 )

+ (x
-

JC, )(jc
-

jc3 )(jc
-

jc4 ) + (jc
-

JC, )(jc
-

jc2 )(jc
-

x4 ) + (x
-

X, )(jc
-

jc2 )(jc
-

jc3 )],

L\x(x) =
- -[(jc-jc2)(jc-jc3)(jc-jc4)
(x,-x0 )(jc,

-

jc2 )(xx
-

x3 )(xx
-

jc4 )

+ (x
-

JC0 )(jc
-

JC3 )(jc
-

jc4 ) + (jc - jc0 )(jc
-

jc2 )( JC
-

x4 ) + (jc -

x0 )(jc
-

jc2 )(jc
-

jc3 )] ,
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Z-W =

(x, -x0)(x3 -xxXx3 -x2)(x3 -x4)
^^Xx-x,Xx-x4)

+ (x-x0)(x-x2)(x-x4) + (x-x0)(x-x,)(x-x4) + (x-x0Xx-x,)(x-x2)],
and

^W =

(*. -x0)(x4 -x,)(x4 -x2)(x4 -x3)
fc'-^-^Xx-x.)

+ (X-X0)(X-X2)(X-X3) + (X-X0)(X-X,)(X-X3) + (X-X0)(X-X,)(X-X2)],

so that

¿;°(*o) = "lÍ.' ¿<^*>4' ^(xe) =-|, ¿;,J(x0) =±,and ¿m(*0) =-¿
Therefore

^)--^^)+*J/h)-i/h).¿/fc,-¿M,+_I-ií_l.
so that

/'(«o) =—[- 25/(x0) + 48/(x0 + A) - 36/(x0 + 2A) + 16/(x0 + 3A)

-3/(x0+4A)]+*fe^ (5.37)

but also

£...W = -¿* «*W--¿- 4UW-¿- ^W--¿.-md íl,W-¿
then

f'(xQ+h) = -±f(Xo)-j-f(Xo +/0 + ¿/(x0 +2h)-±.f(x_ +3h)

1
y/ ,n fV(c,)h*

+—f(xn +4h)-J
K lJ

.-f(x0+4h)-
12/i

° '

20

Henee
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/'(*. +*) = ¿[-3/(*.)-10/(x0 +A)+18/(x, + 2A)-6/(x, +3h)

+ f(x0+4h)]-f (2C')A (5.38)

Now

L:°{X2) = Úh~- z<*'(*>)=-^' LM=o, z;3(x2)=A/and ¿;4(X2)=__i_

so

f'ix° +2h) =¿. /(*o)~l./(*0 +A)+á/(JC° +3/°~ ¿/(JC° +4A>+—^r~'
and henee

Ax. + 2A) = 7¿-|/(x0 ) - 8/(x0 + A) + 8/(x0 + 3*)
-

/(x0 + 4A)
12/i

'

+ /(x0+4A)]-/"(^)/'4 (5.39)

but

1 1 2 17 1

L\,Áx3) =—, i;,,(x3) =
—

, Z;2(x3) =
-—

, ¿;3(x3) =
— ,and Z;4(x3)-

—

ih 2A ih 6/i 4A

Therefore

/'(x0 + 3A) = ±/(*0)-f-i-/(x0 +h)-^-f(x0 + 2A)+^/(x0 +3A)
3/j 12/j 3A 6/j

1 ... ... fv(c3)h*
+— /(*o + 4h) -

J 3/
—

.

4AV
° '

20

and

Ax„ +3A) = -^-[4/(x0) + 6/(x0 +A)-8/(x0 + 2A) + 34/(x0 +3h)
12//

rC/„ M.4

+3/(x0+4A)]-/ {C^H (5.40)
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in addition

4fe.) = ¿- L'M
=

-Th' L'M=Í ¿¡W=-~'"ld i;(**)=fi

Therefore

/'(*. +4*) *-¿/<*,)-^/<*. +*)+f /(-<- +2*)-í/(*„ +3/1)

_^_./(l<+4,)____i__l,
12/j

°

5

and

/"(x0 + 4/0 = -J-[/"(x„) -

3/(x0 + h) + 4/(x0 + 2/í) -36/(x0 + 3/0
12/j

+25/(x0+4A)]-^^- (5-41)

But if in equation (5.38) is replecad x0 + h by x0, in (5.39) x0 + 2/j by x0 in

(5.40) x0 + 3A by x0, and in (5.41) x0 + 4A by x0, we have

f(Xo) __. J_[_25/(x0) + 48/(x0 + A) -36/(x0 + 2A) + 16/(x0 + 3A)

-3/(x0+4/0]+^^- (5-42)

Performing the change of variable
/ = x0 ,

and A = T in equation (5.42), and

employing this equation
at the initial and endpoint, we obtain the centered five-

point equation for
the instantaneous frequency

m __. ±_L[_ 25/(0 + 48/(/ ± T)
- 36/(í ± 2T) + 16/(/ ± 3T)

- 3f(t ± 4T)] (5.43)

5.3.3 Approximation using analytic signal

Inspired by a model developed by Barnes [7], an algorithm to compute the in

stantaneous frequency directly from the notion of instantaneous phase is now

developed.
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Mathematicaüy, instantaneous frequency is expressed as the derivative of

the phase which is given in equation (5.15). If a time interval the instantaneous

frequency is represented by only one valué, the average of the instantaneous

frequency is arguably the best valué use; the instantaneous frequency at any

point can vary greatly from this average.

FoUowing Barnes [7], we define the average instantaneous frequency

f.i-rTii) as me temporal average of instantaneous frequency in a time interval

from / to / + Jas

1
l+T

fT(t +T/2) =± ¡f(r)dr (5.44)

where r is a dummy variable of integration. Substitution of the definition given

above for /(/) into (5.15) yields

fT(t + T¡2) =
1 A<p(t)

_

1

2n A(/) 2-r

cp(t + T)-<p(t)

t +T-t 2n

cp(t + T)-cp(t)

fT(t + T/2) = -±-[<p(t + T)-<p(tj\
2nT

(5.45)

,v(/)
Replacing the definition of instantaneous phase cp(t) - arctan-1^ in equa

tion (5.45) we get

Mt + T/2) =
1

2nT
arctan-^ ^--arctan

u(t + T) u(t)

Applying the identity trigonometry arctan(__)-arctan(_.) = arctan

in (5.46) yields

(5.46)

A-B

l + AB

fT(t + T/2) = ¿arctan
v(t-.T)/u(t +T)-v(t)lu(t)

l + {v(t + T)/u(t +T)Xv(t)/u(t))

or
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fT (/ +T/2) = arctan
u(t)v(t +T)-u(t + T)v(t)

2nT
~

\ u(t)u(t + T) + v(/)v(/ + T)
(5.47)

and thus

fT(t + T/2) = arctan
2nT

u(t - T)v(t +T)~ u(t + T)v(t - T)

«(/ - T)u(t +T) + v(t + T)v(t - T)
(5.48)

This approximation is faster to compute that the instantaneous frequency

(5.35) because it avoids the two differentiations that the computation of instan

taneous frequency requires.

Table 5.2 summarizes the formula used in this work to compute instanta

neous frequency.

Table 5.2. Formulae for computation of instantaneous frequency.

Approach Formula

Standard

m
, ^-«¿f
2n) xl(t) + yl(t) 2n

xit^-yit)^
dt dt

A2(t)

Second

order

CFD

F(t) = ^-<p'(0 = -j^kit +T)- cp(t - T)\

Fourth

order

CFD

F(t) = ^<pV) = ^[<p(t-2T)-Z<p(t-T) + 1l<p(t +T)-<p(t + 2T)],and
2n 24m

f'(t) = ±^[-25f(t) + 48f(t±T)-36f(t±2T) + \6f(t±3T)-3f(t±4T)]

Barnes
fT (t +T/2) = arctan

u(t-T)v(t +T)-u(t + T)v(t
-

T)

2nT lu(t-T)u(t +T) + v(t +T)v(t-T)
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5.4 Estimation of damping using Log-decrement techniques

NonUnear damping plays a critical role in the long-term behavior of weakly

nonlinear systems.

5.4.1 Averaged instantaneous damping

Simulation results in previous sections suggest the need for an averaged instan

taneous damping that could be compared with weü established linear and sta

tionary techniques such as Prony analysis. More formaüy, based on the notion

of instantaneous frequency we defined an averaged instantaneous damping can

be defined as [8]

25a,0 =r"' f 2g(t)co0(t)t = T-1 [^ft =T^<--m
A(t)

A(t)

A_
(5.49)

An altemative approach to the computation of average instantaneous

damping from the combined application of the log-decrement technique .and

splines as discussed next.

5.4.2 Log-decrement techniques

The use of the log decrement method is a weü estabUshed technique for the es

timation of the modal properties of a Unear sdof system [9]. In this section, we

extend this approach to characterize instantaneous damping.

Consider a decaying transient signal. In the case of typical transient signal

where the amplitude __(/) decays exponentiaUy and the period T between the

consecutive cycles remains constant. The logarithmic decrement (8), damping

ratio (rj) , and the natural frequency (/) of the system are defined as [9]

S = -\n
A(tl)

, (5.50)
n A(tx+nT)

V '
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7=V^7F' (5-51)

f = \ (5.52)

where A(tx) is the modulus of the peak response at time /, and «is number of

cycles after t¡. If the system is linear, the same modal properties are obtained

irrespective of which cycle or how many cycles are used in the evaluation of the

above equations. For nonlinear systems, however, the arguments stated above

are no longer vaUd; the modal properties estimated using equations (5.50)-(5.52)

wül vary depending on the ampUtude at which these properties are estimated.

This is precisely the property that wiU be utilized to extract the instantaneous

damping from the transient signal.

Based on the use of splines, and the notion of nonUnear log-decrement, a

technique to estimate the average modal damping is proposed. Figure 5.7 we

offer a conceptual idea of the proposed technique. Let Al_1,Aí_l,A¡ and __,+,
be

the peak ampUtudes of the instantaneous damping determined using cubic

spline.

Using the logarithmic decrement, the averaged instantaneous damping,

gm , can be calculated as foUows

¿ ]tl|
4-2+4-1

4 + 4+i ,

(5.53)

where Al_2,Ai_X'AJ,AM, are the modulus of the peak response signal at time

/,_**,//-p /,»/,+! -respectively. It then foUows that the damping ratio, rjt, can be ap

proximated as

fr= iJS' ¡ (5-54)
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Further, the natural frequency /,, is given by

/ =

1

0.5(//+,+/,)-0.5(/j_,+/,_2)
(5.55)
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Figure 5.7. Nonlinear oscillatory signal.

The algorithm is simple to implement, and computational require

ments are smaU. Figure 5.8 provides a comparison between the log-

decrement approximation and the damping coefficient computed from equa

tion (5.6).
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Figure 5.8. Comparison between logarithmic decrement and damping coefficient.

Several other variations are possible using techniques such as autoregres

sive moving average. The above approach, however, is simple to implement,

and computational requirements are smaU.

5.5 Instantaneous coherency identification

5.5.1 Proposedmethod

TraditionaUy, generator coherency has been determined from the difference be

tween the corresponding inter-area oscülations, using a linearized power system

model or nonlinear time-domain simulations [10], [11]. An altemative approach

is to use the phase of the generator oscülations, instead of the actual swing

curves, to determine coherency.

The proposed approach consists of three steps:

1. Determine the dominant modes from oscülation signáis of each genera

tor.
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2. Compute the instantaneous phase of the dominant mode in each case.

3. Define the angular difference between instantaneous phase angles using

an appropriate metric.

In the first step, empirical mode decomposition is appUed to extract

meaningful modal components of complicated signáis arising out of nonlinear

and non-stationary power system oscülations. The domin-ant modes in each sig

nal can then be clearly identified on the basis of the energy distribution of the

intrinsicmode function (IMF) components.

The IMFs are orthogonal in nature, and are extracted in decreasing order

of their local frequency content. In other words, the first IMF extracted contains

the modes with highest local frequency content. If n IMFs are thus obtained

iteratively, the original signal is recoverable according to equation (2.1). The

relative importance of each IMF in capturing the modal information of the

original signal is computed as a ratio of its norm to the norm of the original sig

nal

n
I''10!* tsssx

p'=«
<5'56)

where \\\\ refers to the i2 norm of the signal, c,(/) is the;'th IMF .and x(/) is the

original signal. The IMF with the highest relative importance is referred to as the

dominant IMF.

Hilbert transform is appüed on the dominant IMF of each generator in

second step to obtain analytic signáis from which the instantaneous ampUtude,

phase and frequency can be computed. The EMD along with Hilbert transform

constitute the Hilbert-Huang transform, proposed to study nonlinear and non

stationary signáis. In power system, this technique has been appUed to study of

nonlinear oscülations [2].

In the third step, the instantaneous phase information is further utilized

to identify coherency between generators that have negligible phase difference.
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Henee, variation of generator coherency is interpreted as the instantaneous

phase-difference between the dominantmodes of generator oscillations.

Using equation (2.11), the instantaneous phase of any real signal x(/) can

be computed. Let the instantaneous phase of signal x,(/) be <p.(t), and that of

signal x2(/) be <p2(t) . The two signáis x,(/) and x2(/) are coherent at any instant

/,if

\9xit)-92(0\ = 2n7t, n = 0,1,2,... (5.57)

An instantaneous coherency index for two signáis may be defined as the

difference between their instantaneous phase angle.

In the next chapter, results of the .analysis of inter-area oscülations dem

ónstrate that is possible to extract coherency between different áreas using the

Hübert-Huang transform.
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Chapter6

Application to complex inter-area

oscillations

This chapter describes the application of the developed theory to the modeling,

simulation and analysis of nonlinear oscillations in power systems. Hilbert spectral

analysis is used to characterize and visualize the time evolution ofpower system oscilla

tory phenomena following large perturbations. Data from transient stability simulations

are used to examine the potential usefulness ofnonlinear time series analysis techniques

to characterize the temporal evolution of nonlinear, non-stationary oscillations and to

determine the nature and propagation ofthe system disturbance.

The viability of the technique is demonstrated on both, simulation- based tran

sient stability data. Attention is also focused on assessing the effect of coherency on sys

tem dynamic performance. Finally some concluding remarks are made.

A 68-bus, 16-machine power system is analyzed to examine the onset of nonlin

ear, non-stationary behavior. Examples of the developed procedures to characterize and

visualize spatio-temporal behavior and to estimate the instantaneous damping are pro

vided.

The results obtained from proposed approach are compared with conventional

time-domain analysis techniques and its efficiency is demonstrated. Challenges involved

in realistic modal analysis of large linear systems are emphasized and relationships with

other modern modal analysis techniques are discussed.
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The study demonstrates the feasibility of time-frequency analysis to characterize

signáis that are nonlinear and/or non-stationary in nature.

6.1 Outline of the study

6.1.1 System description

The test system under study is a 16-machine model of an NPCC system which is

a reduced order model of the New England/New York interconnection [1]. Fig

ure 6.1 shows a schematic representation of this system showing the main áreas

of concern for this study áreas and major transmission elements selected for

analysis. System parameters used for the simulations are based on data given in

[2].

For Ulustration purposes in the analysis of inter-area oscülations, the sys

tem is divided into five coherent machine groups.

These are:

Área 1: Machines 1-9

Área 2: Machines 10-13

Área 3: Machine 14

Área 4: Machine 15

Área 5: Machine 16
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Figure 6.1. Sixteen-machine NPCC system.

6.1.2 Test cases andmodeling considerations

Output data from transient stabüity simulations were considered to verify the

abüity of the method to extract the dominant features of complex oscülations.

Detaüed numerical simulations for the above contingency were per

formed to genérate the snapshots used in the POD method. The fault considered

to analyze system behavior is a three-phase fault at bus 52, cleared in 6 cycles by

removing the fault.

Figures 6.2 shows selected simulation results. Each recording is 20 s long.

The sampling time is 0.01 s.
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Figure 6.2. System response to a three phase fault at bus 52: (__) Speed deviations! (b) Tie-

line power flows.
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The dynamic data obtained from these simulations are used for Hilbert

analysis in the foUowing sections.

Before applying Hilbert analysis, some background information on the

small-signal characteristics is introduced. For direct comparison to proposed

method, we employ the algorithm used to.

6.1.3 Linear stability analysis

The overaU system smaU signal stabiUty analysis was performed using eigen

value calculation methodologies. To this end, a Unear model of the system of the

form x=_íx was developed .and the linear response was computed.

The first five electromechanical modes of oscülation of the system are

summarized in Table 6.1. Modal analysis results in Table 6.1 show four domi-

nant inter-area modes with frequencies of 0.39 Hz, 0.50 Hz, 0.64 Hz and 0.78 Hz

with damping ratios below 5% involving the exchange of swing energy between

áreas.

a) A critical inter-area mode at 0.3929 Hz involving the interaction

of generators in area-1 and area-4.

b) An 0.5028 Hz inter-area mode shown the interaction of genera

tors in area-3 and area-5,

c) The inter-area mode at 0.6427 Hz is present due to interaction

of generators in area-1 and area-2, and

d) The inter-area mode that exhibits a high frequency at 0.7873 Hz

is observed by the interaction of generators in area-3 and area-4.
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Table 6.1. The slowest oscillatory modes ofthe system.

Mode

description

Eigenvalue (*) Oscillation

pattern

Frequency

(Hz)

Damping
ratio (%)

Inter-area

mode 1

-0.0616±;2.4687 GS<*GX5 0.392 2.49

Inter-area

mode 2

-0.0693±;3. 1594 G14<->GI6 0.502 2.19

Inter-area

mode 3

-0.0531 ±y4.0388 G5<->G13 0.642 1.31

Inter-area

mode 4

-0.0809 ±;4.9471 G14<->G15 0.787 1.63

(*)Realpart (l/s) and Imaginarypart (rad/s)

Examination of the power spectra of the tie-line flows in Figure 6.3, re

veáis that the selected tie-lines have a strong participation in the critical inter-

area modes. Studies below are aimed at disclosing the temporal evolution of

these modes.

Discrete Fourier Transfonn Spectrum

08 1 12

Frequency (Hz)

Figure 6.3. Power spectra of tie-line power
flows.



Figure 6.4 gives the rotor modes shapes of the inter-area mode illustrating
the nature of energy exchange.

(c)

Figure 6.4. Mode shapes of inter-area modes. (a) inter-area mode 1, (b) inter-area mode 2, (c)
inter-area mode 3, and (d) inter-area mode 4.

6.2 Conventional HHT analysis of tie-line power flows

In the subsections that foUow conventional Hilbert analysis is used to character

ize the time evolution of the test signáis. In this approach, the conventional em

pirical mode decomposition algorithm in section 2.1.1 was utilized; the Hilbert

transform is computed using the FFT-based approach 3.

For comparison, each case is analyzed separately.

3 The Hilbert transform is computed using the matlab script hilbert
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6.2.1 Tie-lineflow between buses 1 and 2

This transmission Une interconnecting áreas 1 and 2 has a strong participation in

the three slowest inter-area modes (0.39 Hz, 0.50 Hz and 0.64 Hz) as shown in

Figure 6.3.

Using the proposed analysis, the tie-line signal is decomposed into five

non-stationary temporal modes and a trend.

Figure 6.5 shows the IMF components for the tie line signal extracted fol

lowing the standard procedure in Chapter 2. For this signal, appUcation of the

HHT in Figure 6.6 identifies two IMFs centered at 0.63 Hz and 0.37 Hz Visual

inspection of the 0.64 Hz component suggests some degree of mode mixing in

which a second mode modulates the 0.64 Hz IMF to produce an FM signal. The

analysis of the 0.37 Hz component suggests, on the other hand, mono

component behavior.

2 4 6 8 10 12 14 16 18 20

0.5, , 1 1 , 1 1 , 1 , 1

.0.5 1 i 1 1 1 1 1 1 1 i 1

2 4 6 8 10 12 14 16 18 20

0.1 1 , , 1 1 1 , 1 1 , 1

2 4 6 8 10 12 14 16 18 20

time (s)

Figure 6.5. Test power signalwith its four IMFs and residue component obtained through
the EMD method.
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Comparison with the power spectra in Figure 6.7 shows some discrep-

ancy in the frequencies extracted. In both cases, the techniques can not identify
the underlying modal components in the Fourier spectra.

6 8 10 12 14 16 18 20

0.5

-0.5

0.63 Hz

^^^y 2>__-______:_-_
£_„_ S\^rZ-*-~ te

*

—-:-***<^

IMF, IMF2 IMF3
\
0.37 Hz

, , ,

10 12

time (sec)

14 16 18 20

Figure 6.6. Hilbert spectral analysis of tie line flow 1-2. Instantaneous characteristics.

c) GlobalWavelet Spectrum

Figure 6.7. Wavelet spectra.
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6.2.2 Tie-line flow between buses 42 and 41

This transmission Une has a strong participation in the 0.50 Hz and 0.78 Hz in

ter-area modes 1 and 4.

Examination of the modal components in Figure 6.8 shows two distinct

stages in which IMFs 1 and 2 make a significant contribution to the observed

oscülation. During the initial stage, the system exhibits two dominant IMFs at

0.78 Hz and 0.39 Hz (lower panel). As may be observed from the plot, the de

gree of modulation of very smaU. As time progresses, the frequency of IMF 1

decreases to about 0.50 Hz; the degree of modulation is seen to increase. Analy

sis of the temporal amplitudes in the top panel indicates that the 0.39 Hz com

ponent decays rapidly indicating the transient nature of this oscülation. Also of

interest, wavelet analysis in Figure 6.9 indicates a dominant component at 0.50

Hz. Here, the presence of two frequency components is shown as variations in

the contour plot.

4 6 8 10 12 14 16 16 20

time (sec)

Figure 6.8. Hilbert spectral analysis of tie line flow 42-41. Instantaneous amplitude and

frequency.
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Time(s) Power (MW»)

Figure 6.9.Wavelet spectra.

6.2.3 Tie-line flow between buses 50 and 51

This transmission line has a strong participation in the 0.39 Hz and 0.50 Hz in

ter-area modes 1 and 2.

The analysis of the instantaneous ampUtude in Figure 6.10 shows two

nearly stationary modes centered at 0.50 Hz (dominant mode) and 0.34 Hz in

dose agreement with the Fourier results in Figure 6.3. Visual inspection of the

time evolution of the 0.50 Hz component indicates some degree of modulation.

Wavelet analysis in Figure 6.11 confirms these findings.

As shown, the estimation of instantaneous parameters is noisy in áreas of

low signal energy.
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Figure 6.10. Hilbert spectral analysis of tie-line 50-51. Top- Instantaneous ampUtude, Bot

tom- Instantaneous frequency.
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Figure 6.11.Wavelet spectra of tie-line 50-51.
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6.2.4 Tie-line flow between buses 8 and 9

This transmission Une has a strong participation in the three slowest inter-area

modes at 0.39 Hz, 0.50 Hz and 0.64 Hz. Simulation results shown in Figure 6.12

are very similar to those
of transmission line 50-51 as expected.
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Figure 6.12. Instantaneous attributes ofthe 8-9 power signal. Top- Intrinsic mode functions,
Middle' Instantaneous ampUtude, Bottom- Instantaneous frequency.

Next, the standard HHT and the masking-based method are compared.

6.3 Masking technique to improve the existing HHT

Based on our previous results, the masking signal technique was used to im

prove the conventional
HHT results.

For ülustration purposes, the tie-line signal 50-51 was selected for study.

In this analysis three different modeling approaches were developed and tested:

a) Conventional EMD with Fourier-based computation of the Hübert trans

form. This is the same modeling approach used in section 6.2

b) EMD with masking technique Fourier-based computation of the Hübert

transform
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c) EMD using masking technique and a convolution-based computation of
the Hilbert transform

Figure 6.13 compares the IMFs obtained using the conventional approach
and the masking signal technique. As may be observed from this plot, the con

ventional approach results in 3 IMFs and a trend while the masking approach
results in four IMFs and a trend.

Further, Figure 6.14 compares the instantaneous ampUtudes computed

using the various approaches above. Simulation results show that the EMD with

convolution-based Hilbert transform results in a smoother ampUtude represen
tation and reduces end-effects.
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Figure 6.13. IMFs of tie-line 50-51 through: (a) conventional EMD method. (b) masking
technique on EMD method.
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Figure 6.14. Instantaneous ampUtude of IMFs in test power signal through: (a) EMD

method with Fourier-based. (b) masking technique on EMD method comparison between

Fourier-based HT and convolution HT.
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In turn, the analysis of instantaneous frequency in Figure 6.15 confirms

that the convolution method results in improved frequency characterization es-

peciaUy in the middle part of the plot. This contrast with the results with the

conventional method in Figure 6.15a that show frequency modulation for IMF1

and increased end-effects. Again, the convolution-based method is found to per

form better that the FFT-based method by Senroy.

In Figure 6.15b the instantaneous frequency of IMF1 both convolution

and conventional approaches are most meaningful that the Fourier-based ap

proach, the fluctuations along of data recording have been demodulated. The

IMF2 with convolution method presents demodulation in frequency regarding

conventional method.

6.4 Damping identification

Much insight into the behavior of the temporal modes can be found by examin-

ing the instantaneous damping of critical modes. In this analysis two modeling

approaches are investigated:

• A conventional approach based on the standard EMD and use of equa

tion (2.95). We further assume that Áj(t) is a slowly varying function of

time and can be negUgible [3].

• The FREEVIB method in Chapter 4.

In aU cases, the signal chosen for study is the tie-Une power from bus 50

tobus 51.
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Figure 6.15. Instantaneous frequency of IMFs in test power signal through: (a) EMD

method with Fourier-based. (b) masking technique on EMD method comparison between
Fourier-based HT and convolution HT.
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6.4.1 Conventional approach

Figure 6.16 shows the instantaneous damping of IMFs 1 and 2 obtained using
conventional EMD. As observed in this plot, instantaneous damping exhibits

strong variations about a mean valué. The key point to emphasize is that instan
taneous damping identifies two critical stages in system behavior: an unstable

interval from 4 to 14 s and a stable interval from 14 to 19 s for both IMFs 1 and 2.
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Figure 6.16. Instantaneous damping ofthe 50-51 power signal.

Further ülustration of the abüity of the method to capture temporal be

havior is shown in Fig. 6.17 that compares damping obtained using the mask-

ing-based employing the conventional Hübert transform with that obtained us

ing FREEVIB. Compared with the FREEVIB method, the masking-based tech

nique can provide a smoother characterization of the true damping pattern.
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Figure 6.17. Comparison ofthe instantaneous damping ofthe 50-51 power signal.

Simüar results are obtained for other signáis and are not described here.

6.4.2 Instantaneous damping usingmasking technique

In this section we explore the use of the averaged damping technique to

characterize instantaneous damping. Figure 6.18 compares the damping esti

mates using the masking-based algorithm with the instantaneous-average ap

proach for the tie-Une 50-51 signal.

The instantaneous estimates are found to provide a very characterization

of damping. Comparison is found to be consistent with Prony analysis estimates

in Table 6.2 that suggests that mode dominantmodes are stable.
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Figure 6.18. Averaged damping ofdominants IMFs in test signal.

Table 6.2. Prony analysis for tie line 50-51 signal.

Mode Frequency

(Hz)

' Damping

/27t

Damping
Ratio

Relative

Energy

1 0.499431 0.010768 0.021555 1.000000

2 0.641810 0.008402 0.013090 0.998063

3 0.392111 0.009475 0.024158 0.330592

4 0.499338 -0.023080 -0.046171 0.005581



6.5 Coherency identification

A key feature of the proposed technique is its abüity to extract instantaneous

phase characteristics. Based on the algorithm proposed in Chapter 5, we next

explore the use of phase analysis to identify dynamic coherency.

Figure 6.19 shows the time evolution of the instantaneous phases ob

tained from the proposed algorithm whüst Figure 6.20 shows the instantaneous

phases referred to the center of inertia.

Comparison of this plot with the time evolution of the original signáis in

Figure 6.2a shows the correctness of the results.

10

time (s)

Figure 6.19. Instantaneous phase of 16 generators ofthe test system.
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Figure 6.20. Instantaneous phase of test system referring to inertia center.

6.6 Application to measured data

To further verify the abüity of the method to analyze complex temporal oscüla

tions, we considermeasured data from phasor measurement units (PMUs).

Two real power signáis are used to examine characteristics of quasi

stationary processes. These cases are:

Case 1. Active power signal ESA-MCD 230 kV line during the distur

bance by fault on TC in phase B.

Case 2. Active power signal from a real event in northernMéxico.
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Figures 6.21 and 6.22 show the instantaneous frequencies computed us

ing the different approaches. From this analysis and other simulations several

conclusions can be drawn:

• On comparison, the different approaches result in similar ap

proximations to system frequency for periods of the signal that ex

hibit quasi-stationary behavior

• Second and fourth order central finite difference approximations

provide better approximations to the instantaneous frequency, es-

peciaüy in regions in the signal with strong ampUtude variations

• The standard and Barnes approximations produce larger spikes

(positive and negative)

On comparison of the two curves it is seen that the several approaches

give similar results.

Whüe the conclusions may be difficult to generalize, these findings pro

vide basic insight into the non-stationary behavior of nonUnear and non

stationary oscülations and the accuracy of the proposed techniques.
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Figure 6.21. Case 1. Comparison of instantaneous frequency in IMFs.
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Figure 6.22. Case 2. Comparison of instantaneous frequency in IMFs.
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6.7 Concluding remarks

In this chapter, the practical appUcation of the proposed technique to the analy
sis of nonlinear and non-stationary oscülations has been demonstrated. The

methods are effective for detection of both, oscülatory and abrupt changes in

transient events of power systems. This permits direct comparison with conven

tional methods and its efficiency is demonstrated.

Significant improvement in the accuracy of the analytical procedure has

been noted by adding masking and other processing techniques. Additional

work is needed to further refine these methods.

Hübert-based techniques for coherency identification have good potential

for detection of dynamic patterns particularly in connection with protection ac

tions. The extensión of this approach to address modal coherency deserves fur

ther attention.

The use of time-controUed discrete switching control actions and wide-

area mode control based on the detection of critical stabiUty dampingmargins of

observed oscülations and the introduction of Freevib method considering high

harmonics for identification of nonlinear systems can be considered as future

work.
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Chapter7

Conclusions

7. 1 General conclusions

In this thesis, a new approach for the analysis and characterization of nonlinear,

non-stationary power system oscülations, based on an innóvate time-frequency-

energy approach has been proposed.

The techniques developed in this thesis aUow an in-depth analysis at the

dynamical behavior of the system and permit to detect both, oscülatory and

abrupt changes. Also, these approaches enable the systematic computation of

IMFs to extract significant temporal modal information and its appücation is

practical due to simpUcity of the algorithms used in real events and simulated

data. The proposed method has advantages over the conventional techniques

that only offer partial results in the analysis of complex oscülations.

In addition, this adaptive time-frequency-energy method offers the pos-

sibüity of appUcation for the analysis on-line of inter-area oscülations.

Others main conclusions obtained from this work are:

■ The appUcation of masking signal techniques on conventional EMD can

be used to solve the problem of mode mixing contained in the analyzed

signal and improves the conventional HHT results.
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■ For the numerical calculation of the Hilbert transform several techniques

are developed with the aim of eliminating numerical errors in the com

puting of instantaneous attributes in the initial and end data points.

■ The use of the log decrement method make it is possible to estimate the

averaged instantaneous damping of oscülatory phenomena.

■ An altemative approach to computing the generator coherency is to use

the phase of the generator oscillations, instead of the actual swing

curves. Here is appUed a new criteria to determine the dominant mode

of each generator.

7.2 Future work

The futures áreas of research identified in this thesis are:

The proposed method may be used into other áreas of analysis. Further

extensions and refinements are required for its on-line appUcation.

The introduction of Freevib method considering high harmonics for char

acterization of instantaneous attributes in nonlinear time-varying power

systems oscülations.

■ The quantitative modal information obtained of the proposed method

can be used to trigger control actions to stabüize the system, which are

based on the detection of critical stabiUty damping margins of oscülations

present in the dynamic system behavior.

The appUcation of generator coherency method in special protection sys

tem relying on wide-area measurements to improve system reUabüity

and healing capabüity.
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Appendix A

Interpolation by spline functions

Several procedures for fitting approximating polynomials to a set of tabular data

are presented in [1]. Problems can arise when a single high-degree polynomial is

fit to a large number of points. High-degree polynomials would obviously pass

through aU the data points themselves, but they can oscillate wildly between

data points due to round-off errors and overshoot. In such cases, lower-degree

polynomials can be fit to subsets of the data points. If the lower-degree polyno

mials are independent of each other, a piecewise approximation is obtained. An

altérnate approach is to fit a lower-degree polynomial to connect each pair of

data points and to require the set of lower-degree polynomials to be consistent

with each other in some sense. This type of polynomial is caUed a spline func

tion, or simply a spline.

Splines can be of any degree. Linear splines are simply straight line seg

ments connecting each pair of data points. Linear splines are independent of

each other from interval to interval. Linear splines yields first-order approximat

ing polynomials. The slopes (i.e., first derivatives) and curvatures (i.e., second

derivatives) are discontinuous at every data point. Quadratic splines yield sec

ond-order approximating polynomials. The slopes of the quadratic splines can

be forced to be continuous at each data point, but the curvatures (i.e., second

derivatives) are still discontinuous.
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Cubic spline

A cubic spline yields a third-degree polynomial connecting each pair of data

points. The slopes and curvatures of the cubic spline can be forced to be con

tinuous at each data point. In fact, these requirements are necessary to obtain

the additional conditions required to fit a cubic polynomial to two data points.

Higher-degree splines can be defined in a similar manner. However, cubic

splines have proven to be a good compromise between accuracy and complex

ity.

The ñame spline comes from the thin flexible rod, called a spline, used by

draftsmen to draw smooth curves through a series of discrete points. The spline

is placed over the points and either weighted or pinned at each point. Due to the

flexure properties of a flexible rod (typicaUy of rectangular cross section), the

slope and curvature of the rod are continuous at each point. A smooth curve is

then traced along the rod, yielding a spline curve.

Figure A.1 ülustrates the discrete x space and defines the indexing con

vertion. Títere are n + 1 total points, x, (i = l,2,...,n + l), «intervals, and m-1 in

terior grid points, x, (i = l,2,...,n). A cubic spline is to be fit to each interval.

Thus,

/ (x) =■
a, 4* b,x + ctx2 + d,x3 (i = l,2,...,n) (A.1)

defines the cubic spline in interval i,x, <x<xl+i (i-l,2,...,n). Since each cubic

spline has four coefficients and there are n cubic splines, there are 4n coeffi

cients to be determined. Thus, 4n boundary conditions, or constraints, must be

avaüable.

In the direct approach, the foUowing constraints are appUed.

1. The function valúes, f(x¡) = /, (/ - 1,2,..., rí), must be the same in the two

splines on either side of x, at aU of the n-l interior points. This con

straint yields 2(«-l) conditions.
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2. The first derivative of the two splines on either side of point x, must be

equal at aU of the n
- 1 interior points. This constraint yields (n

-

1) condi

tions.

3. The second derivative of the two splines on either side of point xt must

be equal at aU of the n-\ interior points. This constraint yields (w-1)

conditions.

4. The first and last spline must pass through the first (i.e., x¡ ) and last (i.e.,

xn+x) points. That is, fl(xl) = fx and fn(x„+l) = f„+l . This constraint yields 2

conditions.

5. The curvature [i.e., f"(x) ] must be specified at the first (i.e., x, ) and last

(i.e., x„+l) points. That is, f_\x,) = f" and fn"(x„+l ) = _C*. This constraint

yields 2 conditions.

Interval 1 Interval i-1 Interval i Interval n

■í^ 1 1 **

i-1 i i+1 '
n n+1 x

n + \ gridpoints, xi(i = l,2 n + 1)

n intervals, x, <x< xM (i — 1,2,..., n)

n cubic splines, f (x)(i = 1,2 n)

n-1 interior grid points, x,(i -2,3,...,n)

FigureA.1. Cubic spline.

When aU of the conditions given above are assembled, 4n Unear algebraic

equations are obtained for the 4n spline coefficients a1tbt,ct, and dt

(i = 1,2,..., n) . This set of equations can be solved by Gauss eUmination. However,

simpler approaches exist for determining cubic spline. The approach presented

by Chapra and Canale is foUowed below [2].
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From equation (A.1), it is obvious that the second derivative within each

interval, f,\x), is a linear function of x . The first-order Lagrange polynomial for
the second derivative f,\x) in the interval i,x¡ <L x í xM (i = 1,2,...,«), is given by

/{,) = £___?___ ,f"-x X~X>
f"

xi XM xM-x,

Integrating equation (A.2) twice yields expressions for f¡(x) and f(x)

(A.2)

%x),ÍJ2r^f^2l2-^fX
*,-*, (A.3)

f{r)-X3/6-x2xM/2 x3/6-x2xj2 ,. „ n' '

7-Z J.W+— ^-f^+Cx + D (A.4)
x¡+i x¡

Evaluating equation (A.4) at *,. and xM and combining the results to

eliminate the constants of integration C and D gives

■/*(*) =
_•■

~

Axl+X-Xy +^&-— (x-x,)3
6i.xM-x,)

_Jj f,Xxi+x-xt)

xM -xi 6

Ji+x Jí+x\X¡+i ~xt)

xm ~x, 6

6(*,+i-*,)

(xM-x)

(x-x,) (A.5)

Equation (A.5) is the desired cubic spline for increment i expressed in

terms of the two unknown second derivatives f* and /*

An expression for the second derivatives at the interior grid points,
/"(/ = 2,3,..,n), can be obtained by setting ./,_,(*,) = /,'(*,). An expression for

//(*) can be obtained by differentiating equation (A.5). Applying that expres

sion to intervals /-l and / and evaluating those results at x = x"t gives expres
sions for /_■(*,) and /'(*,) . Equating those expressions yields
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(*, -xi-x)fi"-x +2(xM -*H)/,'+(*w -*,)/;, ^L«-L-(_LJ^ (A.6)

Applying equation (A.6) at the n-1 interior points gives n-1 coupled

equations for the n + 1 second derivatives, // (i = l,2 n + 1) . Two more valúes

of /,* are required to cióse the system of equations.

The two additional conditions are obtained by specifying the valúes of

/,* and f"+i . Several approaches are avaüable for specifying these two valúes:

1. Specify f" and /„",, if they are know. Letting f"=0 and/or f"+t =0 speci

fies a natural spline.

2. Specify // and/or /„'+1 and use equation (A.2) to develop a relationship

between /,' and/or /„'+1 .and /,' f" and f2, etc. This requires the

evaluation of the constant of integration C .

3. Let /;=/; and /„;,=/;

4. Extrapólate /," .and /n"+1 from interior valúes of f"

The first approach, letting /,"= /n"+1 = 0 , is the most commonly employed

approach.

In actual analysis is used the command spline in MATLAB. This com

mand employs cubic spline interpolation where piecewise polynomials are the

models of choice for fitting to arbitrary data.
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