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Resumen

El trabajo en esta tesis desarrolla y analiza un método para generar modelos no
lineales de orden reducido de modelos fisicos de sistemas de potencia, los
cuales estan descritos por ecuaciones algebraicas y diferenciales (DAEs). El
método combina la técnica de la descomposicion ortogonal propia (POD) y
conceptos de la teoria de realizacion balanceada y puede ser usado para obtener
modelos lineales y no lineales de orden reducido de modelos de sistemas de

gran dimension.

La aproximacion de rango-reducido para los gramianos de controlabilidad
y observabilidad se obtiene usando el método de un rango-menor de imagenes.
Los modelos no lineales de orden reducido son entonces construidos mediante
la proyeccion de las ecuaciones del movimiento del sistema, las cuales
describen el comportamiento dinamico de interés sobre el espacio de mas
energia de las eiginfunciones dadas por la POD. El modelo de orden reducido
es entonces usado para el estudio del comportamiento del sistema ante grandes

y pequenas perturbaciones.

Este metodo permite preservar el comportamiento dinamico del modelo
original asi como su pasividad y estabilidad. La técnica aunque desarrollada
para procesos de sistemas de potencia, es suficientemente general para ser
aplicada a cualquier proceso que es descrito por ecuaciones algebraicas-

diferenciales similares.

El analisis detallado de pequefia y gran senal son desarrollados para
comprobar la validez del analisis y valorar el impacto de los controles del
sistema sobre el comportamiento del mismo. Los resultados de simulaciones
con el de modelos de orden reducido demuestran concordancias buenas con la
informacion de estado estable y transitorio usando modelos convencionales,

con un orden de reduccion de la magnitud del tiempo de computo.



Abstract

The work in this thesis develops and analyzes a method for generating
reduced order nonlinear models from physically-based power system models
described by differential-algebraic equations (DAEs). The technique combines
the proper orthogonal decomposition (POD) technique and concepts from
balanced realization theory and can be used to obtain linear and nonlinear

reduced order models from large-scale system models.

Using the method of snapshots a low-rank, reduced-range approximation
to the controllability and observability grammians is obtained. Reduced order
nonlinear models are then constructed by projection of the equations of motion
of the system, which describe the dynamic behavior of interest, onto the space
of the most energized POD eigenfunctions. The reduced-order model is then

used to study system behavior following small and large perturbations.

This method enables the reduced model to retain the dynamic behavior of
the original system, as well as its passivity and stability. The technique, though
developed for power system processes, is general enough to be applied to any

process that is described by similar differential-algebraic equations.

Detailed small and large signal analyses are performed to check the
validity of the analysis and to assess the impact of system controllers on system
behavior. Simulation results with the reduced order models demonstrate good
agreement with steady state and transient information using conventional

models, with an order of magnitude reduction in computation time.
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Chapter 1
Introduction

This introductory chapter presents an outline of the research work in this thesis, and
defines concepts linked to reduction of the nonlinear models of the dimension large. The
general introduction, the problem statement, the objectives and the study approach are

presented.

The chapter concludes with an outline of the structure of the thesis.

1.1 Background and Motivation

The basic motivation for reduced-order system approximation is the need for
simplified models of dynamical systems, which capture the main features of the
original complex model. This need arises from limited computational, accuracy,
and storage capabilities. The simplified model is then used in place of the

original complex model, for either simulation or control [1].

Power system phenomena involve a complicated interaction between the
dynamics of synchronous machines and system controllers. Realistic models of
power grids arising from planning problems often consist of hundreds of
coupled differential equations. Thus, for instance, the complexity of power
system models, measured in terms of the number of coupled first-order
differential equations, may reach the tens or hundreds of thousands. Therefore,
simulation of the full model is not feasible or computationally demanding.
Consequently, an appropriate simplification of this model is necessary,

resulting in simulation with reduced computational complexity.

Power system dynamic motion involves a large number of modes and

takes place over a great range of time and length scales.



Deriving from these large-scale representations, an accurate reduced-order
model (ROM) is a challenging problem. To be useful, ROMs must preserve
network structure, to maintain the same dynamic than the original system, and

must preserve the inputs and outputs to allow for the design of controllers.

Recently, the problem of nonlinear analysis of stressed power systems has
received considerable attention owing to the need to accurately describe and
predict the system response to various loading conditions. However, a number
of issues remain with these methods, including the dimensionality of the
problem, the amount of information provided by the models, and the
generation of reduced models for systems with many inputs and many outputs

such as those encountered in wide-area stability analysis.

This thesis focuses on the extraction and characterization of nonlinear
behavior from system models described by a set of differential-algebraic

equations.

Methods to produce accurate reduced-order models are discussed and
techniques to extract modal information from the derived ROMs are presented.
The methods are constructive for the study of high-dimensional systems and
for their application to nonlinear analysis methodologies such as normal form

analysis.

1.2 Problem statement

Realistic models in power systems are quite complex systems of nonlinear
differential equations. It is therefore of central importance in power system
stability studies to determine cost-efficient reduced-order representations of
large-scale systems that accurately describing the behavior of the underlying

physical system.

Construction of low-dimensional models of various system
representations by reduction of the governing differential equations has
attracted significant attention in recent years. Due to the high dimensionality of
the differential equations that govern dynamic power system phenomena, it is

not feasible to use analytical models to solve these equations.



Low-dimensional models offer a compact description of the system
dynamics, and they are potentially useful in designing, simulating, and testing
control systems. Reduced-order models are particularly useful for analyzing
systems with uncertain parameters and for proving stability properties in

complex, high-dimensional systems.

At present, considerable research effort is concerned with feedback control
design for applications described by linear models. For general systems, new
methods are needed for deriving low-dimensional representations that allow

the study of specific characteristics of concern.

Recently, reduced-order modeling techniques, such as those based on
proper orthogonal decomposition and Galerkin projection have come to
interest. The solution of such problems is challenging owing to large
computational requirements of the method and the accuracy of the required

representation.

Reduced-order models should offer the following characteristics [1]:

1. The approximation error should be small

2. System properties, like stability and passivity should be preserved,
3. The procedure must be computationally efficient

The ROM must be compatible with analytic methods for the analysis and
control of nonlinear dynamic systems and have rigorous guarantees of quality

and global error bounds on the resulting reduced model.

These i1ssues are addressed in this work.

1.3 A Brief Review of Previous Work

Many modeling reduction techniques have been proposed in the literature.
These include Krylov projection methods, proper orthogonal decomposition,
Fourier reduction methods, and approximate balance truncations, among
others. In what follows, we provide a brief overview of approaches for

constructing ROMs in the context of this work.



There have been notable recent attempts to systematically introduce
nonlinear ideas to the power system community. Among them, the POD
method (also called empirical orthogonal function analysis) has been shown to
be capable of representing complicated phenomena with a handful of degrees

of freedom [4].

The development of mathematically rigorous order reduction techniques
for DAE models such as those encountered in power system applications is an
open problem. Proper orthogonal decomposition provides a systematic way for
producing reduced-order models from DAE systems [6] and can be used to

design system controllers.

The POD technique has been successfully applied to fluid dynamical,
thermal processes, signal processing and other engineering and physical
problems. However, only a handful of work exists in the area of oscillatory
analysis of transient processes in power systems. Bikash and Nina [3]
considered the method for identification of coherent generator groups in large
interconnected power system. Messina and Vittal [2] explored the applications
of the proper orthogonal decomposition to extract dynamic information from
wide-area measurements. Current nonlinear reduction methods are, in general,

mostly suited to small systems with little nonlinearity.

More recently, these techniques have gained wide popularity in
applications related to data analysis and reduced-order modeling of various
physical processes or models. Applications, for example, to unsteady fluid flow,
turbulence, aerospace, optimal control, structural dynamics, microstructural
design, solution of stochastic partial differential equations, heat transfer and
non-destructive testing and system identification have been reported [2], [3].
Another area of interest has been in simulating and analytically approximating

control system:s.

This prior research forms a basis of understanding that is essential for
proper interpretation of the results from the high-fidelity simulation methods
surveyed here. Many of the algorithms in the literature generate features that
do not fully satisfy the requirements for accurate analysis of complex systems.

This research is motivated by the limitations of a wide-variety of techniques



proposed in the literature to deal with high-dimensional problems, the
limitations of these techniques is that only are designed for the linear analysis

while the method proposed allows us to work with nonlinear problems.

Based on this literature review, it is clear that new analytical techniques
are needed to overcome the deficiencies of existing methods. The method
proposed here is a step in this direction and makes an effort at closing the gaps

mentioned above.

1.4 Thesis Objectives

The primary objective of this research is the development of efficient reduced-
order models for large, nonlinear dynamical systems. A second direction of this
thesis is to derive techniques to extract nonlinear modal information from the
nonlinear ROM. The primary applications of interest are nonlinear phenomena

and the analysis and design of system controllers.
Following the above problems, the specific objectives of this research are:

1. The development of a framework for model reduction of large DAE
systems. In addition, to develop a systematic analysis method based on
proper orthogonal decomposition and projection methods, to generate
nonlinear reduced-order system representations that preserve stability

and passivity properties.

2. The analysis of data-driven ROMs and its application to the analysis of

wide-area system stability.

3. To extend existing approaches to include the representation of network

controllers.

4. To evaluate the practical application of the method under linear and

nonlinear operating conditions.

5. To address numerical issues associated with the application of these

methods.



1.5 Contributions

The primary contributions of this work are as follows:

1. The development of mathematically rigorous order reduction techniques for
high dimensional power system models that can be represented by a set of
differential and algebraic equations. To the best of our knowledge, this work
represents the first analytical application of these techniques to power

system:s.

2. The generalization of existing approaches to account for network structure

and the inclusion of algebraic constraints in the reduction process.

3. The evaluation of alternative formulations based on singular value

decomposition of the observation matrix.

4. The derivation of analytical criteria to characterize general mode-state

relationships, and the extraction of modal properties.

1.6 Organization of the Thesis
The organization of this thesis is as follows:

Chapter 2 outlines the proper orthogonal decomposition technique and
singular value decomposition methods, together with a description of the

numerical aspects for proper orthogonal decomposition.

Chapter 3 describes the algorithm proposed for model reductions. General
finite dimension approximation methods, together with the ideas behind POD

reduced basis functions are discussed.
Chapter 4 introduces the nature of the adopted system model.

In Chapter 5, the modal properties of the linear ROM are examined with

emphasis on the characterization of mode shapes and state-mode relationships.



Chapter 6 discusses the practical application of the developed

methodologies presented in earlier chapters to the study of a practical power

system.

Finally, some concluding remarks and suggestions for future research are

presented in Chapter 7.
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Chapter 2

The Proper Orthogonal Decomposition
Method

The proper orthogonal decomposition (POD) is a multivariate statistical method that

aims at obtaining a compact representation of the data. Given a set of snapshots or
observations of a system, a linear algorithm produces a series of empirical basis
functions which are guaranteed to be optimal for the description of the system snapshots
provided. This method may serve for two purposes, namely order reduction by
projecting high-dimensional data into lower-dimensional space and feature extraction

by revealing relevant but unexpected, structure hidden in the data.

The key idea of the POD is to reduce a large number of interdependent variables
to a much smaller number of uncorrelated variables while retaining as much as possible
of the variation in the original variables. When combined wit other techniques, proper

orthogonal decomposition analysis allows model reduction and simplification.

In this chapter, we give an overview of the POD method in the context of discrete
time formulations. Foundations are discussed, and several variations are outlined along
with their respective capabilities. First, some mathematical preliminaries are covered
following by a discussion of alternative approaches to compute the optimal basis
functions. The proper orthogonal decomposition projection approach for building a
reduced order model (ROM) will be presented in Chapter 3, along with ideas for
extension of the methodology to allow construction of ROMs based on data generated

from measurements.



2.1 Theoretical Development: The General Framework

2.1.1 Linear Expansion

Proper orthogonal decomposition (POD) is an optimal technique of finding a
basis that spans an ensemble of data, collected from an experiment or a
numerical simulation of a dynamical system. The mathematical formulation of

the POD presented here closely follows that in the reference [1], [2].

Letu(x,t;), j=1,---,N, denote a sequence of observations on some domain
x € Q where x is a vector of spatial variables, and ¢,[0,7]is the time at which

the observations are made. The POD procedure determines empirical

orthogonal functions (EOFs), ¢,(x),i=1,.0 (a linear basis), such that the

projection onto the first p EOFs (a low order representation)

u(x,t,) = Za,. Oe,(x), j=1,..,N (2.1)

is optimal in the sense that the average least squares truncation error, ¢,

& =<u(x’tj)_§ai(t)¢’i(x) > , PSN (2.2)

fl=<f.f>"and [|

denotes the L, norm over Q. The g,’s are time dependent coefficients of the

is minimized, where <.> denotes ensemble average,

decomposition to be determined so that (2.1) results in a maximum for (2.2).
These special orthogonal functions are called the proper orthogonal modes
(POMs) of the reduced basis for the function u(x,t¢,).

Following [3] assume that the field is decomposed into a mean

value u(x,t;), and a fluctuating part u(x,¢,)

u(x,t,) = p(x,t,) +u(x,t,) (2.3)

More formally, let L* denote the space of square integrable functions. It

follows that, a normalized basis function ¢ is optimal if the average projection

of uonto ¢ is maximized, i.e. [2]



max(| (#(x,t,),¢)|*) subjectto |p| =1 (2.4)

pell

where the inner product is defined as <U,V >=}_, U,V, =V"U, and

o' =<p.p>=0"p=) ¢

J=1

The optimization problem can be recast in the form of a constrained

optimization problem where the function to be maximized is given by: [1]

Jip)= (| @x.t,).0) )= Ae| -1 (2.5)
where A is a Lagrange multiplier.

2.1.2 Autocorrelation Function

A necessary condition for the extremum of (2.5) is that the Gateaux derivative

vanishes for all variations ¢ +dyeL*([0,1]), 6 € R. This can be expressed as

-:‘:—;[mayf] =0 , Vyel(Q) (2.6)

0=0

From Eqn. (2.4) and for real functions x,¢ and y, we have that

%[w Y] =0= :]_5 (. 0+ 50) o+ 6p,u)- 2(p + 59,0+ 0) |-

(2.7)
2Re| (1,0)(p.u) - (o)

where use has been made of the inner product properties.

Using the commutativity of the averaging operator and spatial integral the

quantity in brackets can be written as

(o) - 2(pw)={ fuCow ds [y o)) - 2 f ooy (o)
= [| fucow s [y ae - dgpto) |y (e =0

'Given a function to maximize, f(P), subject to the constraint g(P)=0, the Lagrange function
can be defined as F(P,4) = f(P)- Ag(P) .
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Since the function ¢ can be chosen arbitrarily the basis functions must

satisfy:
_L<u(x,t Du(x',t)) p(x')dx'= Ap(x) (2.8)

Equation (2.8) has a finite number of orthogonal solutions ¢,(x) (the
proper orthogonal modes) with corresponding real and positive eigenvalues 4, .

Therefore, the optimal POD basis is composed of the eigenfunctions {¢,} of the
integral equation (2.8), whose kernel is the averaged autocorrelation function

iu(x, t yu(x',t)) (2.9)

RKix.x' )= %
i=|

In practice the observations that form the data are only available at
discrete spatial grid points herein called snapshots. In this case, the kernel

R(x,x')is replaced with

R(xlsxl) R(xlaxn)
R(x,x') = : r :
R(x,,x;) - R(x,,x,)

where n indicates the number of measurement positions, and

1 XN -
R(x;,x;)= sz_lu(x,.,tk u(x ,t,),i,j=1,..,n (2.10)

In other words, the optimal basis is given by the eigenfunctions ¢, of

(2.10) whose kernel is the autocorrelation function R(x,x") = <u(x,t Du(x't, )>.

2.1.3 Discrete-Time Decomposition

Observed time series are usually recorded in discrete form even though the

underlying process itself is continuous. In this case, the snapshots are vectors

rather than functions.

Following Holmes et al. [3], the integral time-average can be approximated

by a sum over the set of sampled data points. In this case, the vectors

11



u_,(x,tj)=xj=[u(xl,rl),u(x,,tz),...,u(x,,tN)]T , Jj=li,n (2.11)

represent a set of snapshots obtained from the observed data at »n locations

5 P —

The set of data can then be written as the Nxn-dimension ensemble matrix,

u(x,t) - u(%,h)
X=[xx]=| °: .-'. (2.12)

u(x;,ty) - u(x,,ty)
where each column corresponds to the response at a specific time.

Typically, n# N. so X is generally rectangular. Under these assumptions,

the actual integral (28) <can be  written as Gg=1¢, where
G, =l/NXl u(x,,t)u(x,,t,). Assuming the EOFs to be of the form ¢ =3 wx,,
where w; is a coefficient to be determined, and substituting this expression into

(2.8), the problem of minimizing (2.2) can be recast as the problem of finding

the largest eigenvalue of the linear equation
Cop=A¢ (2.13)

where Cis the autocorrelation (covariance) matrix defined as

xlTxl xITxZ > s xlTxn
| | xTx xTx oo xTx 1 )
oI, i L 2 V2 |t s . - o 514
N N E E . E Ng( I #mean) ( j ﬂmﬂm)( )

The resulting covariance matrix C, is a real, symmetric (C;, =C ;) positive

and semi-definite matrix. The resulting POD modes are fully orthogonal, and

are assumed to be normalized ¢, ,i=1,...,n,i.e

5, i=j
/ S :

12



Using standard linear algebra techniques the covariance matrix can be

expressed in the form
C=UAV’ (2.15)

where Uand Vare the matrices of right and left eigenvectors and

A=diag[4 4, - 4]

The eigenvalues computed from (2.15) are real an non-negative and can be

ordered such that 4, 24,2 2 4,20. The eigenvectors of C are called proper

orthogonal modes (POMs), and the associated eigenvalues are called the proper
orthogonal values (POVs).

2.2 The Method of Snapshots

The method of snapshots is based on the fact that the data vectors u; and the
POD modes span the same linear space [3]. We choose the eigenfunctions ¢ to

be a linear combination of the snapshots:
¢’I — zw:xi (2.16)

where the coefficients w; are to be determined such that u maximizes

max li |x}.,qa

2.1
P N j=1 <(0,¢’> ( 7)

These | functions are assembled into an mxN matrix, ¢, known as the

modal matrix. In matrix form equation (2.16) becomes

O =XW (2.18)
where
T T 1T TT T TT T 1
P=lg, 0, - @ X=|x x, - 5 [;W=|lw w, - W
VN R B R 2R N TN

13



and

! 2 N
W W) W)
l 2 N
1 W, 2 W, N | W
w — J w — . ! 7 w — "
1 2 N
Wy Wy Wy

Substitution of (2.16) into the eigenvalue value problem (2.13) results in

ci w'x, =;wa;xf (2.19)
i=]

i=]

where C, =(1/N)(u,,u;). This can be written as the eigenvalue problem of

dimension N
CW = AW (2.20)

where
w=lw, w, - w]

n

and Ais a diagonal matrix storing the eigenvalues A, of the correlation matrix

C.

In words, the first-order necessary optimality condition for ¢ to provide a

maximum in (2.17) is given by (2.13). This completes the construction of the
orthogonal set {p, @, - @,}.

Once the modes are found using these equations, the flow field can be

reconstructed using a linear combination of the modes
u, (x) = ) a, (1) g, (x) (2.21)
k=l

for some a, (t) € R 2, where the g, (r) are the time-varying amplitudes of the POD

modes ¢, (x).

The truncated POD of u is

* The extension to the complex case is discussed in Chapter 4.

14



u,(x) = 20,09, (x) + R 222

where p is the number of dominant modes, and Ris an error term. Once the

relevant eigenmodes have been computed, the temporal behavior of each mode

is evaluated as the inner product of the eigenmode (the POD mode ¢, ) and the

original data. To ensure uniqueness of the solution, the normalization condition

of < ¢,,¢, >=1is imposed |p|=1. The temporal coefficients are then expressed as

_{x,0,)
a, = %9” o) (2.23)

Note that the temporal modes are uncorrelated in time, 1.e.
(a,(t),a,(t))=6,A,, where 6, =1 for j=k,0else, and that the system (2.22) is

optimal in the sense that minimizes the error function

u(t)-Y a,(O)p,(t)

1 j=l1

£, (@)=

P
/=

We remark that no conditions are imposed on the data set: the data can be

a sample of a stationary process or a sample of a non-stationary process.

2.3 Energy Relationships

The use of the POD method leads naturally to a discussion of truncation
criteria. Several techniques to derived truncated expansion have been proposed

in the literature. Here we choose to reduce the residual terms such that the

mean square value

~ (2.24)

be as small as possible.

Among the POD eigenvalues obtained, the most significant eigenmodes

contain most of the energy of the dynamics and correspond to the largest

15



eigenvalues. Let the total energy be expressed as the sum of the energy of every

eigenvalue
E=3%.4 (2.25)

The associated percentage of total energy contributed by each mode can

be expressed as

/?’k
. (2.26)
A

E, =
Z j=1""J

Thus, for instance, we can select the order p of the reduced basis ¢ such

that the predetermined level of the total energy E of the snapshot ensemble is

captured. The p-dominant eigenfunctions are then obtained as

p 21
= ﬂ: >E (2.27)

=1 J

for the smallest integer p, were E is an appropriate energy level.

2.4 The Singular Value Decomposition

The POD method may also be formulated as a singular value problem in terms
of the observation matrix. Let A be a real mxn matrix. The singular value
decomposition theorem states that A can be decomposed into the following

form:
A=UXV’ (2.28)

where U=col[u, u, --- wu,]is an mxmorthonormal matrix (U' =U™), I is

an mxn pseudo-diagonal and semi-positive definite matrix with diagonal

entries containing the singular values, and V =col[v, v, -+ v,]isan nxn

orthonormal matrix (V' =V™). The columns of U and V are called left and

right singular vectors for A. The diagonal entries of X, that is the 2,

I

=@,, can

be arranged to be non-negative and in order of decreasing magnitude

16



0,20,220, 20. The decomposition (2.28) is called the SVD of the matrix
A.

Theorem 2.1 The largest singular value of a matrix A is equal to its induced 2-

norm: o, = |A|,, in addition, every matrix A with entries in C has a SVD.

2.4.1 Properties of the SVD

Assume that in (2.28) o, >0, while o,,=0; the matrices U,X,V are
partitioned compatibly in two blocks, the first having » columns:

u=[u, U,l z:[z' ]GR"’”" and V=[V, V,] (2.29)

2

£ = - >0, I, =0¢eROXm)

where U,,U, have r,n-r columns and V,,V, have r,m-r columns,

respectively.
It can be readily proved that:
1. Rank A=r
2. The four fundamental spaces associated with A are:

span col A =spancolU,, ker A =spancol U,

span col A" =span col V,, ker A =span col V,

3. Dyadic decomposition. Matrix A can be decomposed as a sum of r

outer products of rank one:
& T
A=ZQ@WJ
i=]

4. The orthogonal projection onto the span of the columns of A is U,U; .

5. The orthogonal projection onto the kernel of A" is I, - U, U, = U,U,.

17



6. The orthogonal projection onto the span of the columns of A" is V|V,

7. The orthogonal projection onto the kernel of A is I, -V, V, =V,V,.

8. The Frobenius norm of A is [A|_ =./o} + 02+ + 07}

2.4.2 Relation to the Eigenvalue Problem

An interesting interpretation of the POD modes can be obtained from the

singular value analysis of the response matrix X.

Using the notation in section 2.1 let the response matrix X be given by

u(x;,t) o u(x,,t)
X = : E (2.30)

u(xy,ty) o ulx,,ty)

where the columns correspond to a response at time.

[t then follows from (2.28) that the SVD of the response matrix X may be

written as
X=UzV’ (2.31)

In terms of the notation above for SVD, it can be seen directly from (2.15)

that the correlation matrix defined previously is given by

XX" =(UZV)(ULV) =Uz?U’ (2.32)
and

X"X=(UZV) (UZV)=VE*V’ (2.33)

Hence (2.32) becomes

2
X'XU=U 4 . =U 72 (2.34)

18



From (2.32)-(2.34), the singular values of X are the square roots of the
eigenvalues of XX' or X" X. In addition, the left and right eigenvectors of X are

the eigenvectors of XX’ and X'X, respectively.

The POMs, defined as the eigenvectors of the sample correlation matrix
Care thus equal to the left singular vectors of X. the POVs, defined as the

eigenvalues of matrix C are the squares of the singular values divided by the

number of samples N

The k first empirical eigenfunctions are obtained of the relations of the

energy, as follows:

il x100 < (%) (2.35)

where o, is the ith singular value, and (%) is the percentage of captured

energy.
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Chapter 3

Model Reduction using Proper
Orthogonal Decomposition

Nonlinear model reduction is emerging as an issue of strategic importance to the
analysis of large power system models. Solving the differential algebraic equations
(DAEs) simultaneously in simulation and control applications can pose a numerical
challenge. Other motivations for model reduction are for storage and retrieval of optimal

control trajectories, insight into the model structure, and analysis of dynamic degrees of
freedom.

This chapter describes an approach based on proper orthogonal decomposition for
model reduction of nonlinear dynamic systems that can be expressed in an explicit state
space form. A method for producing reduced-order models of nonlinear systems
described by DAE models based on proper orthogonal decomposition is presented. This
approach makes use of the proper orthogonal decomposition and 1s well suited for

applications that require large-scale model reduction.

Based on this theoretical framework, a new algorithm for model reduction is
proposed. The analysis procedure begins with the introduction of the perturbation model
that enables the representation of higher order nonlinear effects. First, the system
equations are expanded in a truncated series around a given operating condition. Then,
a set of basis functions is obtained by generating a set of observations through
simulations of the nonlinear process. Using the computed eigenfunctions as basis
functions in a truncated series representation of the system model, a nonlinear reduced-
order model is obtained. The model can be used to estimate nonlinear system response,

or be used as an auxiliary technique to other nonlinear analysis methods such as the

method of normal forms.
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3.1 Background

Power system dynamical models are often large and complex, requiring a great
deal of computational resources. High- dimensional models are not amenable to
dynamic analysis and controller design. A challenging problem is that of

determining a ROM that preserves physical aspects of interest.

In this chapter, a mathematical modeling approach for obtaining low-
order models for the power system is presented that retains the input-output
properties of the system. The method relies on proper orthogonal
decomposition of measured data and can be used to study linear and nonlinear

behavior.

Consider a general high dimensional system, X, described by an implicit

mixed set of differential and algebraic equations (DAEs) of the form:

x =f(x,y,u)
r:40=g(x,y) (3.1)
E =h(x,y,u)

In the preceding equation u € R” is the input or excitation vector, xe R”,

is the state vector, g e R’ is the vector of algebraic constraints; and Ee R” is

the vector of outputs or observations. The output function h, can be linear or

nonlinear, depending on the system model and the outputs of interest.

Model reduction techniques seek to produce a similar system (the

reduced order system)

f (i,y,u)
g(x,y) (3.2)
=h(x,y,u)

-~

X
2 :<0
E

of order k much smaller than the original order , but for which the outputs E

and E are approximately equal for inputs of interest u.

Figure 3.1 illustrates the concept of reduced-order-modeling from

computational power system dynamics models whilst Fig. 3.2 shows the input-
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output representation. Starting from a physical model of the system, the goal is
to construct a reduced-order system representation that can be used for

simulation or control.

If possible the input-out mapping should be preserved as discussed in our
numerical application of the method. The complexity n of such system is

measured by the number of internal variables involved (assumed finite); that is,

n is the size of x=[x, x, -+ x, | 3 This idea will be explored further in the

next subsection.

It will be demonstrated in the sequel that a projection procedure
employing basis functions which are computed from the proper orthogonal
decomposition of the full system response can efficiently reduce the infinite-
dimensional systems to finite-dimensional dynamical models while

maintaining high-fidelity and reducing system complexity.

[_ﬁhysical/Aniﬁcial System I-Data I

y - ODEs < discretization PDEs

Model Reduction

Simulation

Y. *| Reduced # of ODEs

Control

Figure 3.1. Pictorial representation of the concept of reduced-order modeling.

* Given a vector or matrix with real entries, the superscript * denotes its transpose. If the entries are complex, the same
superscript denotes conjugation with transposition.
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Figure 3.2. Explicit finite-dimensional dynamical system.

We now formalize the notion of the dynamical system X.

3.1.1 Problem Statement

Following the above definitions, the problem can be stated as follows. Given a
nonlinear dynamical system X =(f,g,h) with ue U, xe X, yeY, heH find

a reduced order system ¥ = (f,é,ﬁ), uelU, yeY, and X = {i . T > R* }, where
k<n, 1 is a transformation matrix; such that (some of or all) the following

conditions are satisfied:
1. The approximation error is small, and there exists a global error bound.
2. Stability and passivity are preserved.
3. The procedure is computationally stable and efficient.

Over the last few years, several alternate analytical approaches to the
determination of reduced-order system representations have been proposed.
The following sections describe a general approach based on proper orthogonal

analysis for systematically obtaining reduced-order system representations.

3.2 Reduced-Order Dynamic Modeling

3.2.1 Projection onto Optimal Basis

The central idea of POD is to determine a family of subspaces, of increasing
(finite) dimension, that optimally span the data, in the sense that the error in the
projection onto each subspace is minimized. In what follows a brief

mathematical development is given and the method is outlined.

Consider a dynamic system described by the nonlinear plant equation
(3.1). The projection-based approach is based on a special linear change of
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variables x =Tx derived from empirical orthogonal function analysis of the

observation matrix. See Chapter 2.

Consider that nonsingular left and right transformation matrices are

partitioned as

>

B} \"A . "
x=(__,} T =[S T,], T=|:T'] where xe R*, XeR"™*, S, WeR™
A 2

Since W'S =1, , it follows that

IM=SW eR"™ (3.3)

is an oblique projection onto the k-dimensional subspace spanned by the

columns S along the kernel of W’

Using the transform x=Tx, (3.1) may be represented by the following
system of DAEs:

x = Tf(T"'x,y,u) (3.4)
0=¢g(T"'xy) (3.5)

and
E =h(T"'x,y,u) (3.6)

As discussed in our introductory section, the objective of model reduction

is to replace the nonlinear system (3.4)-(3.6) by an equivalent system

X(r) = WE(Sx(r),y,u(r))
= g(Sx(r).y.) (3.7)

where x(t) is a k (k << n) vector of dominant states.

Several different approaches exist for defining the basis T Before
proceeding with the development of the method, the nature of the nonlinear

system model is reviewed.
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3.3 Nonlinear System Representation

A key issue in the proposed formulation is that we must have a representation
of the nonlinear part that can be efficiently stored and evaluated [5]. Such a
representation can be viewed as an extension to linearization theory to the
nonlinear model of the power system. In the succeeding sections we explore the

use of linearized models to generate a projection-based ROM.

3.3.1 DAE Model

Consider a general nonlinear system containing quadratic and higher-
order nonlinearities. For clarity of illustration we assume that the system model

can be expressed in compact form as

d i
§.13 t)= WE(Sx(),y,u(r)) 38)

0 =g(Sx(r).y.)

This model lends itself to physically-based power system formulations

and is general enough to allow the study of various physical systems.

Expanding in a Taylor series around the origin gives [3]

2 Ax, +---+aﬁ° Ax, +6f}0 Ay, +---+ L

X, = fio + Ay
0 axl axn aJ}l a.yp ’
+aﬂ° Aul+---+aﬁ° Au_ +-- (3.9)
aul aum

Jio = f:(xo:YO:“o)

Equation (3.9) can be written in a more convenient form using the

Kronecker product of two matrices [4], this is:
[Axl Ax"]T ®[Ax, Axn]T =[Ax12 o AxAx, o AX Ax, - ij]r

We start by defining the following theorem.

Theorem 3.1. Let A, B, C, D, G, H, R be matrices of dimension pxq, sxt, rxlI,

gxs, txu, pxq and sxt respectively. Then,

(A®B)®C=A®(BRC)
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(A+H)®(B+R)=A®B+A®R+H®B+H®R
(A+H)®(B+R)=A®B+A®R+H®B+H®R

(A®B)YD®G)= AD®BG

B®A=U, , (A®B)U

SXp gxt

Making use of the Kronecker produc identities given by Theorem 3.1, we

can approximate (3.1) up to second order terms as

Ax = A Ax+A Ay + A, Au+H_(Ax® Ax)+ H_, (Ax ® Ay)

+H,, (Ax® Au)+H  (Ay ® Ax)+ H  (Ay ® Ay)+H , (Ay ® Au) (3.10)

+H, (Au® Ax)+H,, (Au® Ay)+H,, (Au ® Au)

where
1 62 f 2 1 *f 1 8°f,
H O(Ax, ) +---+ 0 Ax,Ax, +--+ 2 Ax, Ax
+ e+ —\Ax

YT s 2
xyi 2 axlayl 1 yl axlayp 1 2 axnayl
2
+ +1 9 Jio Ax,Ay,
2 0x,0),
1 8 f 1 0 f 1 0% fio
H_ = — Ax Au, +---+ — Ax, Ay, +--+— Ax, Au
) ox 0w, 2 ox,0u, ox, Ou, ‘
.
+ .-+ 1 ~ O Ju Ax Au,,
2 Ox, ou,
4 2 o> f 1 8%f,
Hm =1 9 Jia Ay, Ax; + +1 Jio AR +--<+ Jio Aypr,
2 aylaxl 2 aylaxn 2 ay;::raxl
2
4 +1 9 Jio Ay ,Ax,
2 0y ,0x,
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2 2 2
Hyy:—lafio(ﬁl)z-'- '+1 af;o AylAyp-l- +1 a‘fm AypAy!
2 oy 2\, 2 0y,
1 9% F,
+eoe f2° (Ayﬁ,)z
2 oy,
62 ‘ 2 . 2
. -l Ju Ay, Au, + +1 0" Ji AyIAu,,”+---+l 0" Jio Ay ,Au,
2 0y,0u, 2 0y,0u,, 2 Oy ,0u,
2
AL Ju Ay, Au,
2 0y ,0u,

2 Ou,ox, 2 Ou,0x, 2 Ou,, ox,
2
. 0" Juo Au_Ax,
2 0u, ox,
2 2 2
H, A= L 0/ Au, Ay, + +l 0" Jio AuAy, + -+ + L 0"/ Au, Ay,
2 Ou, 0y, 2 Ou,0y, 2 0u, 0y,
2
Y. 0" Ju Au, Ay,
2 0u,,0y,
2 2 2
H_ = L f;’( u ) + +1 0" i Au,Au, + +1 0"t Au_Au,
2 Ou, 2 Ouou,, 2 0u, Ou,
1 8° f, )
+-o0 4 —(Au
2 Ou; (4, )

Further, linearization of the constraint equations assuming that all

motions are small [2], results in the following equations:

6gdx+5gdy_0
ox dx Oy dx

Solving (3.11) for dy yields
<)

or, for incremental changes,

Ay =-B'B,Ax

(3.11)

(3.12)

(3.13)
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where

provided that the inverse of [25] exist, the no singularity of this equation

depend of the network variables. A measurement is the stress of the system, i.e.,
this implicate that program of power flow no converge and therefore this

matrix is singular.
Noting that

Ay ® Ay = (-B;'B, ®-B}'B, JAx® Ax) = C, (Ax ® Ax)
Ax® Ay =(I,,, ®-B;'B, JAx® Ax) = C_ (Ax ® Ax)

Ay ® Ax = (-B}'B, ®1I,,, JAx® Ax) = C,, (Ax ® Ax)

nxn

Ay ® Au=(-B;'B, ®I,,, JAx®Au)=C,, (Ax ® Au)

mxm

mxm

Au® Ay =(I,,, ®-B'B, JAu® Ax)=C,, (Au® Ax)

and substituting these expressions into (3.10) yields the perturbed model

Ax=(A,-A BB, JAx+A,Au+(H_+H,C, +H,C, JAx® Ax)+

Xy Xy

H,,+H,C, JAx®Au)+(H, +H,C, JAu®Ax)+H,, (Au ® Au)

or, equivalently,

Ax=A_Ax+A_ Au+H_ (Ax®Ax)+H__(Ax® Au)+ (3.1
H, (Au®Ax)+H,, (Au® Au) |
and
Ay =B Ax (3.15)
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where:

]
A,=A,-AB B,
AHC = AH
H,=H,+H C +H,KC,k
HIHC = HIH + H_}WMC_}M
H,=H,+H C,k
HHHC = HHH
-1
B,=-B B,
Analogous results to those described above, can be shown to hold for
higher-order representations. Subsequent transformation of this description to

the reduced-order form is described below.

3.3.2 Projection-Based ROM Generation

Consider the system model (3.14)-(3.15). Let now the linear transformation
x =Tx be introduced. Substitution of this expression into (3.14) yields the

transformed system

Ax=A _Ax+A Au+H_ (Ax®Ax)+H
H_(Au®Ax)+H__ (Au® Au)

.. (AX ® Au)+

(3.16)

Ay = B_AX (3.17)

where

and use has been made of the identities
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(Ax® Ax) = (T"'AX® T™'Ax)= (T ® T )(Ax ® Ax)
(Ax® Au) = (T"Ax®1,Au)= (T ®I, (AX ® Au)
(Au®Ax)= (I, Au®T"'Ax)= (I, ® T JAu ® Ax)

The result is a ROM that contains fewer states than the original system. As
discussed below, the number of states that can be truncated depends on the

system itself and on the accuracy that is required for system behavior.

It should be emphasized that the methodology presented here is general

and can be extended to accommodate higher dimensional systems.
[t remains to choose the transformation matrix T such that the reduction is

optimal.

3.4 Development of Low-Order Model

As discussed in Chapter 2, proper orthogonal decomposition is used to obtain a
reduced dynamical model of the systems. The POD technique selects an
orthogonal set of spatial modes that is optimal in terms of retained kinetic

energy.

A step-by-step algorithm used to obtain the reduced-order representation

is presented here.

1. For a given fault scenario, determine the time trajectories of the

system states. Build the observation matrix x e R™", i.e.,

x=[xl X, v XN]

X (ti )

x,=| : |eR”, i=1...,N.

)

through numerical solution of the full system model.
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2. Find an optimal low-dimensional linear subspace of the state space.

More formally, we seek a set of orthonormal basis vectors

u €R”, j=1,..,N, suchthat x, =Zyﬂu1, i=1,...,N, thatis,

j=1

Yu "t VN
x, - xy]=w, - w]: . |, UU=I,
\—  — \e— —
. ’ ynl ynN
where
x=UXV’
r=xv’

The u, are sometimes referred to as empirical eigenfunctions or

principal directions of the “cloud” of data {x, }.

3. The snapshots reconstructed from only k& empirical eigenfunctions,

k
X, =) y,u,, i=1...,N,thisis
j=1

I——A—\
T T
X, - x,]=[w, - wu]: . | eR™, k<N
\_Y_J' ‘—,_-J
X . Y i VN
=XV’

In order to determine the appropriate number of modes to be used in the
reduced order system calculate the percentage of total energy captured

in the first £ modes:
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where o, is the i th singular value, and (%) is the percentage of captured

energy, normally is 99.99%. Project the data back onto the physical states
to give the time history of each state. The subspace constructed using the
corresponding k singular vectors are optimal in approximating the data

set.

4. Once the modes are calculated and the number of modes to be used is
determined, the dynamics of the original system is projected onto the

low-dimensional subspace, using the transformation

S=W=U, eR™
W'S=1,

where W is the transformation matrix that has the empirical

eigenfunctions of the greater energy.

5. Obtain the nonlinear ROM using the theory in section 3.3.2. Denote

T' =W T] T=[‘::]

as the transformation matrix.

Given explicit expressions for the nonlinear terms, the power series
expansions in (3.14) are obtained in a straightforward manner. The nonlinear

state-space model now takes the form

AXx =W A_(WAX+TAX)+ W' A _Au+ W H_[(W® W)Ax ® Ax)+
(W ®T, YAx ® AX)+ (T, ® W)AX ® Ax)+ (T, ® T, AX ® AX )|+
WH_|[(W®I__YAXx®Au)+(T, @I NAX ® Au)+ (3.18)
WH,_[I_ @W)YAu®Ax)+(I,, 6 ®T JAu® AX)|+
W'H,_ (Au® Au)

Uuc

mxm

Ay =B, WAX + B TAX (3.19)

Neglecting the terms in AXx, we have
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Ax=A_Ax+A_Au+H_ (AXx®AX)+H__ (AX® Au)+

i ﬁ (3.20)
H,_(Au®Ax)+H__(Au® Au)

Ay =B _Ax (3.21)

Hence, we have

Ax = WAX
A_=WA W

A, =WaA,
B,=B, W
H_=WH_(W®W)
H =WH_(W®I)
H =WH_(, ®W)
H =WH

This is the basic model used in this research. It is worth noting that the
model is general and could be used to accommodate for more complex system

representations.

We remark that, in this model, the original physical variables are

represented as a linear combination of the ROM states, i.e.

h -~
X, = _le,gxk
J'=

This allows to relate the ROM solution to the physical states as discussed
in Chapter 6.

The flowchart in Fig. 3.3 illustrates the proposed procedure. Generation of

nonlinear ROMs is broken down into four major steps as discussed above:
1. The derivation of an analytical model of the power system
2. The generation of the POD basis functions,

3. The extraction of modal properties, and
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4. The computation of the nonlinear ROM

Chapter 4 describes the power system model used in the procedure.

Transient Analysis

X = f(x,y,u,r)
0= g(x,y)

]

[

Power
System

|

xl(tl) xl(tz)
x(t)= xZ:(tl) xzf’z)

xn.(tl) Xn t’z)

' Lxl(tN) |

xZ(fN)

xn(}N)

Small-Signal Stability

Ay =B _Ax

Ax=A_Ax+A Au+H_(Ax®Ax)|l¢——— |

1

Ax=A_Ax+A, Au+H_ (A% ® A%)

Extraction of Empirical
Eigenfunctions

x = Wx

e

Figure 3.3. Block diagram of the ROM generation algorithm.
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Chapter 4
Power System Modeling and Analysis

The study of systems governed by a set of differential-algebraic equations with periodic
coefficients 1s of great importance in diverse branches of science and engineering.
Dynamic models described by an implicit mixed set of differential and algebraic

equations (DAEs) arise when modeling physical system processes.

In this chapter, a modeling framework based on perturbation theory is proposed
for analyzing the nonlinear behavior of power systems modeled as differential-algebraic
systems. An advanced nonlinear linear model of the power system is first developed that
allows detailed evaluation of the impact of machine controls on system behavior, as well
as the identification of reduced-order system representations. The method makes use of
perturbation theory and enables detailed representation of machines and their
controllers and the transmission system. Only the second-order nonlinear effect is

retained in the analysis.

On the basis of this model, normal form theory is used to study nonlinear power
system behavior following large disturbances. The technique uses a series of
observations of a system to build a linear basis for approximating system behavior. The
approach is general enough to include the representation of various controllers and can

be used in conjunction with efficient techniques for the analysis of complex systems.

The theory and analysis methods can be easily generalized to other types of

nonlinear systems and higher-dimensional representations.
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4.1 The Adopted Power System Formulation

Power system phenomena involve a complicated interaction between the
dynamics of synchronous machines and system controllers. In this section, a
general, nonlinear dynamic model of the power system is proposed which

preserves network structure and load characteristics.

The power system is her seen as constituted of the dynamic models of
synchronous machines and their controllers interacting through the steady-state
representation of the network. In this model, each machine is represented by a
d-q model and a simple excitation system; loads are treated as constant
impedances but the model is general and could be used to accommodate more

complex system representations.

For dynamic stability analysis, both machine stator and network transients
are neglected. This has the advantage of simplifying the algebraic theory very
significantly. As a consequence, the entire interconnected power system can be
represented by a set of differential equations together with a set of algebraic

equations of the form

i:f(x,y,u) , xXeR",ueR"” ,yeR”

4.1
0= g(X, Y) ( )

where x is the vector of state variables, y is the vector of algebraic variables,

and u is the input vector.

Several representations to obtain the above system model have been
proposed in the literature. In the succeeding sections, a systematic technique to
build the state representation is introduced. Based on this representation, a
second-order system representation is derived for the analysis of nonlinear

system behavior.

4.1.1 Generator Dynamic Equations

We assume that each synchronous generator is represented using the two-axis
model and a static excitation system. In this representation, machine saturation

is neglected.
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For clarity of illustration, we assume that each generator is represented by
a fourth-order d-q axis model. Generalizations to this model are discussed in

the derivation of the model.

The differential equations describing the dynamic behavior of the ith
generator and the excitation system are given by Egs. (4.2)-(4.6) [1].

A block diagram of the excitation system model is shown in Fig. 4.1.

Rotor swing
2H do, | | , :
o a =~ P Eala= Byl (=X)Ll o
-D(w -w,) i=1,...,ng
- o, -0,) i=1,...,ng (4.3)
dt
Static excitation system
dE . ‘
I, df’ =—E,+K, V., -V,) i=l..,ng (4.4)
Internal voltage equations
i dE'fﬂ ' i -
I" 4o, dr =_Eqi_(Xdi_de)Id:+Efdf i=1,...,ng (4.5)
! dE' i i f .
1" o, dtd =—Ed,.+(qu—qu)qu i=1,....,ng (4.6)

In the equations above, ¢ is the angular position of the rotor in electrical

rad, . is the rotor angle velocity in electrical rad/s, P, is the mechanical input
power un pu, and ng is the number of the generators, The other symbols have

the usual meaning.
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Figure 4.1. Exciter model

Let x= [x o Ea ™ Eee ]T, be the vector of dynamic states, where
Xok = [E'qk Ex Eu o mk]:r (4.7)

The partial state space representation can then be written as

x=f, (x, Lgas V,u) (4.8)

where f, represents an m-dimensional vector field in the theory of dynamical

systems.

4.1.2 Algebraic Equations

Consider a general network with n nodes and ng generators. In this model, the

network is represented by a quasi-stationary model and loads are treated as

voltage-dependent functions.

Figure 4.2 depicts the general nature of the adopted system model whilst

Fig. 4.3 shows a schematic diagram of the interface generator-network

equations.
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> ] m+1 e—
SEEIN
® Network ® P (V +1 )+ jQLm+l (Vm+l )

Lm+1\" m

—e m ne *

P, (Vm)+ jO, (Vm) Py (Vn)+jQLn (Vn)

Figure 4.2. Interconnection of synchronous machine dynamic circuit and the rest of
the network.

Figure 4.3. Synchronous machine two-axis model circuit,, i =1,...,ng .

With reference to Fig. 4.2, the interface generator-network and load-

network equations are:

Load flow mismatches at generation buses

Ve (I, - jI, )e"‘(ﬁ"z] +P,(V)+ 0, (V)= ZVV ¥, e/l

; (4.9)
F =L, NNE
Load flow mismatches at load buses
P,(V)+ QL WV,)= SVV, Y,/ ) i=ng+l,..,n (4.10)
k=1

40



The corresponding algebraic machine equations are:

0=Ve + (Rsi + JX' 4 )(Idf + ji, }j(ﬁj"%)

—[E'dj+(X 'q, -X', )Iqi + jE'q,V(éj-E) for (4.11)
i=1,...,ng

Equations (4.1) through (4.11) describe system behavior and are used in
this research to derive analytical reduced-order representations of the system.
Techniques to cast these equations in the nonlinear state space form (4.1) are

discussed below.

4.2 Transmission Network Model

4.2.1 Interface Generator-Network Equations

In order to express the machine equations in network coordinates, we multiply

i F
(4.11) by e j( 2J The d- and g-axis components of stator voltage can be written

ds

E',-V,sin(8,-6,)-R,1,+X',1,=0 i=1,...,ng (4.12)

gi *qi
and

E.—Y, cos(d, -9,.)—R I -X . 1,=0 i=1l..,ng (4.13)

sIqi

Defining

7 _ Rsr - & 'qi
a X'di R '

Ay

equations (4.10) and (4.11) can be rewritten as

I, 1 E,-V Sin(5f _9:') G
Id—q,r e [lq;] = [Zd_q,f} [E'q; _V;‘ COS((SI. B 9') I = 1,. ..s NG (414)

Thus,
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I, =h(x,.7,8)=hx,V,) i=1,...ng (4.15)

d—q,i

where

_ l E 4=V, Sin(§r -9:) .
h;‘(xjrl/ne,-) = [Zd—q,i]— |:E'qj—V; cos((sj _9‘;) o I = 1,...,’18‘

‘_If = (V,,Qj)

4.2.2 Transmission Network Equations

Solving (4.9) for the real and imaginary components yields

IdiV: Sin(‘sf _91)"' Iq:'V:‘ COS(JI' _9.')"' PL:‘ (V:)

- i VV.Y,cos(6, -6, —a,)=0 (£.16)
P
1,V,cos(5,-6,)-1V,sin(5,-6,)+0,,)
~N VWY, sin(6, -6, e, )=0 &17)
P
for i =1,...,ng . Similarly,
P, (V)= Y VV,Y, cos(6, -6, —at,) =0 (4.18)
P
0, V.)- kiV‘V" Y, sin(6, -6, —a, )=0 (4.19)
:

Toiol 8 L .

Note that, in this model, loads can be represented at generator and load

buses.

Collecting real and imaginary components we have:

Real Power Equations

Idef Sin(‘sf —9,)+ Iq:V: COS(é‘i _91’)+PL1' (V:)
: | (4.20)
k=1
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P, (m)-Zkam cos(d -6, —a,)=0 i=ng+l,...,n (4.21)
k=1

Reactive Power Equations

Ide: COS(5J _ef)_lqui Sin(fsf _6i)+ Qu (VI)

: | (4.22)
---Z:VJ,.VJ,(YHIr sin(, -0, -, )=0 i=1,...,ng
k=1
0, (V,.)-ZKV,,Y,.,, sin(@, -0, —a, )=0 i=ng+1,...,n (4.23)
k=1

These equations allow us to obtain the nonlinear power system model as

described in successive sections of this chapter.

4.3 Power System DAE Model

The overall system model is obtained by combining the machines equations
(4.2)-(4.6) with the network representation. Let to this end, the state vector be

defined as
x=|E', E, Eu 6 o - E, Eu Egg 6,

qgng ng ng

The corresponding current injections can be expressed in vector form as

Id_q = [Id-q,l o Id-q.ﬂg ]T

Id—q,k = []cﬂr qu ]T

and
v - [‘—]l VMg Vngﬂ Vw ]T
Vk = [Vk o, ]T

where, I, , is the current vector in d and q axis of the stator circuit of the kth

generator; V, is the voltage vector in the kth bus; u, is the excitation of the kth

generator.
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The input vector is:

uk = [P mk Vrefk ]T

Combining the system equations (4.2) through (4.21) results in the DAE

system
x=1,(x,1,_,V,u) (4.24)

I, =h(x,V) (4.25)

0=g,(xI,,V) (4.26)

Substituting the Equation (4.25) into (4.24) and (4.26), we obtain
x=f (x, Vv, u) (4.27)
0=g(x,V) (4.28)

The proposed method allows for the detailed representation of the
dynamics of machines, FACTS devices and load characteristics in a systematic
manner. The nonlinear nature of this model makes it very difficult to find
general analytical solutions. Conventional ways of analyzing nonlinear system

behavior either rely on linear analysis or are based on detailed simulation of the
nonlinear model (4.27)-(4.28).

For systems of the form (4.27), (4.28), the fundamental task of qualitative
analysis reduces to determining a truncated model that approximates system

behavior around a given operating condition.

4.4 Second-Order System Representation

Assuming that f(x) is continuous and can be expanded, the Taylor power series

expansion up to order 2 of Eqn. (4.27) about a stable equilibrium point results in
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Ax = A Ax+A,AV, + A, Au+H_ (Ax® Ax)+ H ; (Ax® AV,
+H,, (Ax®Au)+H,, (AV, ® Ax)+ H,, (AV, ® AV,

+H,, (AV, ® Au)+ H,, (Au® Ax)+ H,; (Au® AV,
+H,, (Au® Au)

0=B Ax+B_AV, +B, AV,
0=C_AV, +C,AV,
where:

Ax =[Ax, Ax, Ax, Ax, Ax|

Ax, =[aE", - AR, T
Ax, =[aE',, - AR, [
Ax,=[AE,, - AE, [
Ax, =|As, - AS, [
ax, <[p0 - Ao, T
AV, =[a8, - a6, AV, - AV, [
AV, =[A6,., -~ 86, AV, - AV,[
,
B, = [aai' as;g]
B =[6gl ' g"&T
¢ | av, OV
B =[6g, ag_"g]T
" lav, oV,

(4.29)

(4.30)

(4.31)
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T
CG =|:ag_m_‘g+l ag"]

oV, oV,

B agngH agn '
= 2 F8
ov, v,

Further, the constraint (algebraic equations) (4.30 and 4.31) are related as

follows
AV, =C, AV
F Lo (4.32)
AV, =B .Ax
where
Co = _CZICG
B, =—(B; +B,C;, ) B,
Substituting (4.32) in (4.29), leads to
Ax=A_Ax+A_ _Au+H__(Ax®Ax)+H__ (Ax® Au)+ 433)

H_(Au®Ax)+H__ (Au® Au)

uuc

In Eqn. 4.33, matrices H H,_ and H  are zero for the classic and

xuc’

detailed model. Therefore, Eqn. (4.33) can be written alternatively as

Ax=A_Ax+A, Au+H__(Ax® Ax) (4.34)

\% B
AVo |_| P |ax (4.35)
AVL CGLBxG

Equations (4.34) and (4.35) constitute the analytical model used in this

research.
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Chapter 5
Modal Analysis of the Linear ROM

In the previous chapter, a general second-order representation of the power system was
developed. In this chapter the properties of the POD-based reduced order dynamical
model for the power system are investigated with emphasis on the ability of the model to

capture key modal properties of the full system representation.

Measures are introduced that provide information about the relative
controllability and observability of the linear ROM. Also, measures providing the

participation of each generator and load to the modal oscillation can be calculated.

First, the nature of the power system model is examined. A discussion is then

given on the relationship between states and modes.

The method can also be extended to consider higher-order nonlinearities, which

may arise from stressed operating conditions.

5.1 State-Space Realizations of the System Model

Based on the nonlinear model in Chapter 4, a second-order normal form

procedure is considered here that allows the study of large DAE models.

In the discussion that follows, we assume that system behavior can be

represented by a DAE model [3], of the form
x =f(x,V,u) (5.1)

0= g(x,V) (5.2)
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wherex € R” is state vector of the system, ue R™ is the vector of inputs, and

V e R’ is the vector of algebraic variables.

For clarity of illustration, let the vector of voltage pseudo states be

partitioned in the form

V- ["]
\f
where
V. =16 0 V Al
Vo=l0mi = O Ve = Vil

represent the bus terminal voltages at the generator and load buses.

Expanding (5.1) into a second-order series expansion and using the

notation in Chapter 4 the system model is then written as

Ax = A _Ax + AGAVG +A Au+H_ (AX & AX)*' H,; (AX ® AVG )
+H (Ax X Au)+ H, (AVG ® A")+ H; (A‘_’a ® AVG )

B — (5.3)
+H,, (AV, ® Au)+ H,, (Au® Ax)+ H,; (Au® AV, )
+H_ (Au® Au)
and
0=B.Ax+B_AV_ +B,AV, (5.4)
0=C_.AV, +C,AV, (5.5)

where matrices B_,B.,B,,C., and C, are the Jacobian matrices of the

augmented system defined as

a T
Bx =[agl e gng]
ox ox
I
B | %8 .. O8x
v | av, OV,
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oV, oV,

C _ agng+l agn '
6 = — —
AV, oV,

C _ agngﬂ agn !
y = — —
A A

The set of equations (5.4) and (5.5) may be rewritten in the form

[0]= O A‘ZG ML Ax
0] |[C;, C, AV, | |0
Solving (5.4) and (5.5) forAV, and AV, yields

AV, =-C;'C,AV, =C_, AV, (5.6)

AV, =—(B. +B,C., ) 'B.,Ax=B__Ax (5.7)

The existence of the inverses of the matrices given by the equations (5.6)
and (5.7) determines the stress level of the network. Substituting (5.6) and (5.7)
in (5.3), leads to

Ax=A_Ax+A _Au+H_ (Ax® Ax)+H
H_(Au®Ax)+H,__ (Au® Au)

(Ax ® Au)+

Xuc

(5.8)

uuc

Here H_, H_ and H  are zero for the classic and fifth-order model: In

xuc ’/

this case, the system model (5.8) reduces to

Ax=A_Ax+A_ Au+H__ (Ax® Ax) (5.9)

Equations (5.9) and (5.6), (5.7) describe system behavior.

The goal is to obtain a ROM that preserves modal characteristics and
input-output characteristics. Let, to this end, W € R™ be the transformation

matrix, such that W' W =1I,, where the asterisk denotes complex conjugation

and I, is the kth order identity matrix. The corresponding projection matrix is
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Ax = WAX (5.10)
Substitution of (5.10) into (5.9) and rearranging yields

AX = W'A _WAX+W'A Au+W'H_ (W® W)Ak ® Ak)

or equivalently,
Ax = A _AX+A, Au+H_ (A% ® A%) (5.11)
and
AV, =B__WAx =B _.Ax (5.12)
AV, =C,B_WAx=C_B_Ax=C_Ax (5.13)
where
A_=WA_W
A, =WA,
H_=WH_(W®W)

and W is the inverse matrix W

A N

Remark 5.1. Matrices B, ; and C,, give a description of the way in which

variations in the states appears on the bus voltage deviations.

Further simplification can be obtained by noting that the nonlinear term in

Eqg. (5.11), can be represented by its Carleman representation

AXH _ AX [1‘1
H_ (Ax®AX)= 5 =AX'| ¢ |AX (5.14)

where H_ e R** and Axe R* The functions H_, € R** may be though of as

a second-order corrections to system behavior and contain information on

modal interaction involving the primary (linear) modes.
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The system model contains 2m differential equations, 2m algebraic

equations for the generation buses, and 2(nb-m) algebraic equations for the

load buses, for a classical system representation. A number of properties of the
proposed model that are relevant to the subsequent analysis will now be

presented.

5.2 Modal Analysis of the linear ROM

Let Ax = @z be a transformation that eliminates the cross-coupling between the

state variables, consider a new state vector z, where ¢ is the modal matrix of

-~

A
Substituting the above expression for Ax in the equations (5.11-5.13), we
have
z=VA,¢i+VA, Au+yH, ($®¢)z®2)
Upon simplification,
2=Az+yA _Au+H_,(z®2) (5.15)
where
o=[o, @ - @] (5.16)
v=lo W o W 5.17)

~

and matrix A is a diagonal matrix with the eigenvalues AsAy,..., A, as diagonal

elements. We assume that y and ¢ are normalized such that,

A A A n_l

vo=1, y=0

Application of this transformation to the nonlinear part in (5.15) yields

A o

H.er G’HIAHI\I’HI
I:Ix.rcf\ (i X i) = i' Z = i‘ Z (5'18)

Hx.rA.k (‘i}HkAHk‘i’Hk
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A A

where A, is a diagonal matrix with the eigenvalues A4, ,,4, ,,...,44, aS

diagonal elements.

These equations have the same structure for nonlinear analysis.

5.3 Mode Shape, Sensitivity, and Participation Factor

5.3.1 Mode Shape and Eigenvectors

In the previous section, we expressed the system response in terms of the state

vectors Ax and z, namely

AX(¢)= z(r)

=[‘T’1 ¢, - (BkE(t)

(5.19)

o . (5.20)
=y, ¥, - b, A%(0)
The variables Ax,,Ax,,...,Ax, are the original state variables chosen to

represent the dynamic performance of the reduced system. The variables

z,,2,,...,z, are the transformed state variables such that each variable is

associated with only one mode. In other words, the transformed variables z are

directly related to the modes.

The right eigenvector gives the mode shape, i.e., the relative activity of the
state variables when a particular mode is excited. For example, the degree of

activity of the state variable x, in the ith mode is given by the element ¢,, of the

right eigenvector @,

The magnitudes of the elements of ¢, give the extents of the activities of

the k state variables in the ith mode, and the angles of the elements give phase

displacements of the state variables with regard to the mode.

The left eigenvector y, identifies which combination of the original state

variables displays only the ith mode. Thus the kth element of the right

eigenvector ¢, measures the activity of the variable x, in the ith mode, and the
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kth element of the left eigenvector y, weighs the contribution of this activity to
the ith mode.

5.3.2 Eigenvalue Sensitivity

Let us now examine the sensitivity of eigenvalues to the elements of the state

matrix. Consider the equation that follows [2]:

A,

Axc‘?’r = 2’:;?; (5'21)

Differentiating with respect to g, (the element of ;\xc in the kth row and

jth column) yields

A, A

OA . A (p“. A A q)“
"”(p,+Ax 0 : __6 : (p,.+2..a J

C I
aa,g. aa,g aa,g.

Premultiplying by y,, and noting that y,¢, =1 and \'i}j(im —/1,.1)=0, in
oA .

addition all elements of are zero, except for the element in the kth row

and jth column which is equal to 1. Hence we see that the above equation

simplifies to

oL . .
=Vi®ji (D.22)

oa,,

A,

Equation (5.22) shows that the sensitivity of the eigenvalue 4, to the

element a,, of the state matrix is equal to the product of the left eigenvector

element y, and the right eigenvector element ¢, .

5.3.3 Participation Factor

Following Verghese et al. [1], the relative participation of state k in mode i can

be determined via the participation factor.

Let the participation matrix (f’), which combines the right and left
eigenvectors, which is a measure of the association between the state variables

and the modes, be defined as
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P=[p, B, - P] (5.23)

with
AR
i’; - Pz; - ¢’21‘Wl’2 (5‘24)
ﬁk, ékil/;ik

where ¢,, is denotes the kth entry of the right eigenvector ¢,, and y, is denotes

the kth entry of the left eigenvector v, .

~

The element P, =¢,y, is termed the participation factor [2]. It is a
measure of the relative participation of the kth state variable in the ith mode

and vice versa. In addition, the participation factor P, is actually equal to the

sensitivity of the eigenvalue /i to the diagonal element a,, of the state matrix

A

A

XC

p =0 (5.25)

5.4 Controllability and Observability Formulation

Let the system model (5.15) be rewritten in the form
z=Az+VA Au+H_,(2®%)

or more explicitly,

A

O AV

A

2=AZ+YA Au+z’ (P“A':‘”{'}”z z
@AV
with
AV. =B ¢z
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AVL = CxL E’i

These equations may be rewritten as

QA iV

~A

z=A2+M Au+32’ “’Hzxfﬂ"m : (5.26)
O AV

AV, =M 2 (5.27)

AV, =M , 7 (5.28)

Referring to Equation (5.26), it is clear that if the ith row of matrix IC’I: is

zero, the inputs have no effect on the ith mode. In such a case, the ith mode is

said to be uncontrollable.

From Equations (5.27) and (5.28), it is seen that the ith column of matrices

1\7106 and IﬁaL determines whether or not the variable z, contributes to the

/

formation of the outputs. If the column is zero, then the corresponding mode is
unobservable. This explains why some poorly damped modes are sometimes

not detected by observing the transient response of a few monitored quantities.

Based on the above model, controllability and observability measures are
defined for the linear ROM as follows.

Definition 5.1. Consider the system model (5.26)-(5.27). The kxm matrix
M, = VA . is defined as the mode controllability matrix.

Definition 5.2. The 2mxk matrix M G = ﬁxG(’f) and the 2(nb —m)x k matrix

-~

M, = éxLé are defined as the observability matrices.

These measures are the counterpart of the controllability and observability

matrices used in conventional linear formulations.

In the sequel, a computer algorithm to determine controllability measures

i1s discussed.
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5.5 Numerical Algorithm

Based on the above theoretical framework, the actual calculation of the relevant

modal quantities now is accomplished by performing the following algorithm.

1.

Determine the most energetic modes using the POD approach in section

3.4. These modes are related to the physical state space variables through

the transformation

Ax = WAX = Woz = ¢z (5.29)

where ¢ gives the modes with the most energy.

2.

Compute modal controllability and observability matrices. Let the system

behavior be expressed in the form z = yW Ax = yAx. Matrix vy, identifies

that combination of the original state variables displays only the ith mode,
i.e., the kth element of the y, weighs the contribution of the activity of the

variable x, to ith mode of greater energy.

. Compute the matrix of participation factors, P

Pnwvn Pn¥a - OGuV¥i
P-— (321:712 (5’22://22 4_92.!::/7!:2 (5.30)
@nlv/ln 6}12'172:: "t (-b-nk E;kn

Calculate the observability matrix. For the generation and load buses, the
matrix is used that provide the reduced model, because the outputs do not
lose their physical meaning, which provides us a direct relation with the
modes of greater energy and of this form we can see how observable is a

mode anywhere of the network of the system.

MOG — BxG(P (5.31)

M, =C,9 (5.32)

. Determine the controllability matrix.
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M, =yA, (5.33)

In interpreting of the expression given by Equation 5.33, is important to
emphasize that the controllability matrix, provides us a direct relation of the

modes with the excitations of the system, this indicates to us of so controllable

1s a mode from the inputs of the system.

5.6 Modal Solutions

Further insight into the nature of the proposed model can be obtained from

modal analysis of the system model (5.15).
Let the ROM representation be given by
x=A_X+A _Au+H_ (x®X) (5.34)
The transformation x = ¢z, transforms the ROM into the modal form
z=Az+yA, Au+H,_,(2®2) (5.35)

Neglecting higher order terms and assuming a solution to Eqn. (5.35) of

the form
2()=eMz, (5.36)
we can obtain mode-state relationships.

Modal solutions (5.34) are then transformed back into the original physical

domain by using the inverse transformation

X = (Z

D
x = WX (5:37)
Combining (5.36) and (5.37) yields
x(t) = Woz(t) = WoeV'z, (5.38)

where W¢ denotes is the transformation matrix mapping z(t) to x(¢).
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Remark 5.1. At any instant ¢, Eqn. (5.38) enables the time evolution of the

physical states, x(t), to be expressed as a linear combination of the system

oscillation modes .

Remark 5.2. The effect of system modes on the network variables can be then
obtained from Eqns. (5.12) and (5.13).

Note that no information is lost in the reconstruction process, since the

sum of all individual contributions gives back the original time series.

5.7 Reduced-Order Model Validation

In this section, we examine the accuracy and efficiency of the low-dimensional

dynamical model obtained from the projection procedure.

Let x be an approximation of Ax in a space of dimension n, i.e.,
x = WAX

x=WA_W'x+ WA, Au+WH,_ (W @ W' [x®X)

x=A_Xx+A _Au+H_ (x®x) (5.39)
AV, =B_W'x=B_.X (5.40)
AV, =C_,W'x=C,Xx (5.41)

The system of DAEs of above, has advantage of that state variables x, has
the same physical meaning that of state variables Ax of the original system, in
addition, it preserves the same dynamic behavior. The validation consists of

comparing the results of the model reduced with those of this model.
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Chapter 6
Application

This chapter describes the application of the proposed technique to the analysis and
characterization of nonlinear behavior in a test power system. The performance of the
proposed technique is tested on a 16-machine, 68 bus test power system. In particular,
the developed technique is used to analyze the influence of the modes with the greatest

energy in the dynamic behavior of the system.

Several case studies are presented and discussed to in which both conventional
eigenanalysis and reduction techniques are used to analyze the ability of nonlinear

ROMs to capture system behavior following large perturbations.

The main interest is focused on determining ROMSs for stressed operating
conditions and large-signal perturbations. Numerical 1ssues associated with the

application of the technique are also discussed.

The accuracy and efficiency of the reduction method is quantified by comparing the
reduced-order system simulations with those from commercial stability software.

Detailed dynamic simulations demonstrate that reduced-order models yield accurate

predictions over a wide range of operating scenarios.

6.1 Outline of the Study

The proposed method was tested on the NPCC system of test system has 68

buses, 16 generators and 86 transmission lines shown in Fig. 6.1. The base case

condition in the analysis is essentially that given in Ref. [1].
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Figure 6.1. Single line diagram 16 generator system, 68 buses and 86 lines.

Two system representations are considered in the analysis:
1. A classical system representation, and

2. A detailed system representation.

6.2 Classical System Representation

6.2.1 Modeling Considerations

The classical system representation has 32 states. For this model, the state vector

and input vectors is of the original unreduced system are

J‘=[‘f"1 O @y e |
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The dynamic behavior of the system is described by the following

differential-algebraic equations of motion:

d
o X= f(x,y, u) (6.1)
0= g(x,y)

with initial conditions x(0)=x,. The Equation 6.1 represent a system of 32

differential equations with 136 algebraic equations, this is the reason by that no

represent in the text.

The goal is to represent the dynamic behavior of the system by a low-order
nonlinear ROM of the form

AX=A_AX+A_Au+H_ (AX ® A%) e

A A

where Ax is the reduced state vector and the matrices A, H__ are the linear

xc ¥

A

and second-order approximations in the ROM, respectively; matrix B, is a

linear approximation that relationship the algebraic variables of the system with

the reduced state vector.

6.2.2 Application to Transient Stability Data

To verify the ability of the method to determine accurate ROMs, we consider
output data from transient stability simulations. To this end, several

perturbations were conducted including small and large signal perturbations.

Figure 6.2 shows the system response to a three-phase fault at bus 28. This
fault is seen to excite an oscillation in which machines Gen 14 and Gen 15 swing,
mainly, in opposition to machine Gen 16. The other machines have a minor

contribution to the observed oscillation.

As pointed out in Chapter 3, the accuracy of the technique is improved

when the mean value is removed from the original signals; this also makes the
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model more efficient. In the developed model, this is accomplished by referring

the system behavior to the inertia center. Figure 6.3 shows system behavior in
the center of angle formulation (COI).

x 10 Angular speed

T I | ] T T T I T T

-
N
w
-
on
)
~
o
(e

10
Seconds

Figure 6.2. Dynamic behavior of the angular speed to a three-phase fault at bus 28.

Angle referred to the center of inertia

| | | | |

16 18

Figure 6.3. Dynamic behavior of the angle referred to the inertia center for a three-
phase fault at bus 28.
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Here, solid lines represent the time evolution of the original model while

broken lines correspond to the time evolution of the ROM with an energy

percentage of 99.99%. See Fig. 6.4. In addition in all simulations, the signals that

represent the time evolution of the original model (solid lines) are overlapping

to the signals that represent the time evolution of the ROM (broken lines).

x 10 Angular speed
3 Gen 14
6l |
z Gen 15
!)l‘\ Gen 16
) \. Gen 14
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\H lf t\\ / ] l‘.! /! } / 3 A / ‘\_} / \‘j i =
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Figure 6.4. Dynamic behavior of the rotor angle position of the original model and

of the ROM.

One the objectives of referring the rotor angle deviations to the center of
inertia and to remove the direct current component of each one of the signals is
because the proper orthogonal decomposition (POD), is more efficient for

signals than do not have direct component, i.e., that the energy percentage is

approximately a 99.99% in the majority of the cases.

6.2.3 Construction of Snapshots

The technique in Chapter 4 was applied to determine fault-dependent nonlinear
ROMs. In all cases, the criteria adopted to extract 99.99% of the total energy.



Following the general approach described in Chapter 3, the observation

matrix was obtained from the snapshots of the simulated data, i.e.

x(’)=[51(t) 51«3(“) ml(t) mls(t)]T

where o, (1) = [a),. (t,) ot,) - o/, )], for i =1,2,...,16, and N is the number of

snapshots. In the present simulations, proper orthogonal decomposition is

carried out on 2000 snapshots. The snapshots are equally spaced.

Application of the proposed technique results in a second-order
representation characterized by 23 states. Figure 6.5 shows the spectra of
selected signals computed to capture 99.99 % of the signals’ energy.

Here, the horizontal axis shows the number of singular values required to
attain 99.99 % of the average total energy while the vertical axis shows the
energy captured by each singular value. Singular values 1 through 5 are seen to
capture nearly 99% of the total energy. Singular value 1 has the largest
participation with about 89% of the energy.
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Figure 6.5. Energy percentage of each singular value of the ROM.
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6.2.4 Reduced-Order Simulations

To verify the ability of the method to extract the dominant features of complex
oscillations, detailed numerical simulations for the original system model and
the reduced-order representation were conducted. The equations that describe

the original model and the ROM are given in the Chapter 5.

Examination of system results in Figure 6.6 through Figure 6.11 shows that
the ROM accurately approximates system behavior for the entire time window.
Again, we emphasize that the formulation of the center of inertia provides a

more accurate system description thus giving confidence to the adopted model.

In all cases the nonlinear ROM is seen to accurately describe system

behavior thus giving confidence to the proposed model.

Delta

| | | 1 ! 1 i 1 |

Degrees

Seconds

Figure 6.6. Dynamic behavior of the angle of the generators given by the original
model and the ROM.
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x 10~ Angular Speed
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Figure 6.7. Dynamic behavior of the angular speed of the generators given by the
original model and the ROM.

x 10~ Voltage in the generation buses

N

Figure 6.8. Dynamic behavior of the voltage magnitude in the generation buses,
given by the original model and the ROM.
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Angle in the generation buses

Figure 6.9. Dynamic behavior of the angle in the generation buses, given by the
original model and the ROM.

x 10~ Voltage in the load buses
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Figure 6.10. Dynamic behavior of the voltage magnitude in the load buses 40-42, 50
and 52, given by the original model and the ROM.
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Angle in the load buses

Figure 6.11. Dynamic behavior of the angle in the load buses 40-42, 50 and 52,
given by the original model and the ROM.

6.2.5 Physical Interpretation of the POMs

Proper orthogonal modes have a similar interpretation to linear modes. Table
6.1 shows the eigenvalues associated with the POMs. A key feature of the model

is its ability to preserve the eigenvalues of the linear model.

Further insight into the nature of these modes can be gleaned from

frequency spectra of the ROM. Let Ax = @z be a transformation that eliminates
the cross-coupling between the state variables. Application of this

transformation to (6.2) yields the uncoupled model
z=Az+yA _Au+H_,(2®1%) (6.3)
Neglecting second-order terms yields the linear ROM

> = A% (6.4)

where /i=diagqu j,z jﬂl
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The linear system given in (6.4) has a solution of the form that follows
2, (1)=2 e
Ax = WAX = We™ - (6.5)
where z, = z(0), while that original model has a solution of the form
Ax = ge™'z, (6.6)

Figure 6.12 and Figure 6.13 shows the results of the Eqns 6.5 and 6.6. Solid
lines represent the time evolution of the original model while broken lines
correspond to the time evolution of the ROM. Again, results are in good

agreement showing the correctness of the analysis.

Table 6.1. Eigenvalues of the original model and of the ROM
Original Model Reduced Order Model

Eigenvalues |Frequency
-1.0021+ ;11.9083 | 1.8951

~1.1530+ j9.5072 | 1.5131
~0.7341+ j8.6653 | 1.3791
~1.4769+ j7.9856 | 1.2709
~1.3493+ j7.0376 | 1.1201
~0.3740+ j7.1663 | 1.1406
~0.0911+ j4.9430 | 0.7867

Eigenvalues |Frequency
—0.9961+ j11.9186 | 1.8969

~1.5648+ j9.5818 | 1.5250
~1.2032+ j8.6381 | 13748
~1.1747+ j8.0243 | 1.2771
~1.0662+ j6.8932 | 1.0971
| —0.2941+;7.3139 | 1.1640
~0.0945+ j4.9457 | 0.7871

~0.7961+ j4.3153 -0.7934+ j4.3105 | 0.6860
-0.3083+ j2.7079 -0.3095+ j2.7081 | 0.4310

[ —0.1965+ /3.5507 -0.1971+ j3.5508 | 0.5651

| -0.6745 -0.6910 0 |

I 0.0000 0 —0.0005 0
~0.9785+ j9.9523 | 1.5840 02146 0

~1.3377+ 9.7723 | 15553

~1.3900+ j7.1441 1.1370
~1.4826+ j8.1129 | 1.2912

~1.1726 + j8.2010 | 1.3052
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Figure 6.12. Dynamic behavior of the angle of the generators, given by the

x 10"

Equations 6.5 and 6.6

Angular Speed
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Seconds

Figure 6.13. Dynamic behavior of the angular speed of the generators, given by the

Equations 6.5 and 6.6.
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6.2.6 Modal Properties

Based on the linear ROM, detailed studies were conducted to evaluate the
ability of the method to extract modal properties. Discussion will be limited to

modes 8-10. ie, with associated eigenvalues -0.7934% j4.3105,

—-0.3095+ ;2.7081 and -0.1971% j3.5508 (refer to Table 6.1):

e Mode -0.7934+ j4.3105

Reduced Model Complete Model

Figure 6.14. Mode shape indicates that is an inter-area mode, because the generators
12 and 13 oscillate against of the rest of the system.

e Mode —0.3095+ j2.7081

Reduced Model Complete Model
90 0.003 90 0.003
120 — 7 60 20— 60
g Gen 14— 1
- .002 7 0.002 .
Gen 14-51 Uy - _qOOg —_Gen 15 \ .00
150, ' | Ko 30 150/ '
- 0.001 h
¥ " '1 [ |
180 - - - -} - - -j‘o 180|- - - -1~ - --r--3
210 /330 210"
240 b 300 240 S 300
270 270

Figure 6.1S5. Mode shape indicates that is an inter-area mode because the generators
14 and 15 oscillate against of the rest of the system.
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e Mode —0.1971+ j3.5508

Reduced Model Complete Model
Gen 14 Gen 14 90 0.005
120~ 120 —__60
150 150, x 0.0025 x\ao
180|- - - - - 180!- - - - - - :‘-__-: R TR—— 0
\ S o S
210\, 210 | 30
Gen 16— Gen 16\u : S
™ = R\‘f\k_/ﬂ;
240 — 240 ‘ 300

Figure 6.16. Mode shape indicates that is an inter-area mode because the generator
14 oscillates against of the generator 16.

Also of interest, Tables 6.2 and 6.3 compare the controllability and
observability of the ROM with that of the original system model. Results are

seen to be consistent with the full system representation

Note that in this analysis, the original model is described by

Ax=A_Ax+A Au+H__ (Ax® Ax)
AV, =B _.Ax (6.7)
AV, =C_, Ax

The complete model is a model that has the same dimension that the
original model, but which only conserves the eigenvalues of the reduced model

and the rest is zero. For details see the chapter 5, the equation that describes the

complete model is

AV, = ﬁ Gw‘i = ﬁxGi (68)
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The reduced order model is described by

= A, Ak +A Au+H_ (A% ® A%)
. =B_.AX (6.9)
L= C.xLAi

>

A

<

>

In interpreting these results we remark that the original model is a global
dynamic equivalent of the system, while the complete model and the ROM are
dynamic models that model a specific disturbance of the system; this is the

reason why the full system model and the ROM are more precise that the

original model.

Table 6.2. The modes and their respective generators by means of which are more
controllable

8

_1.1530 + j9.5072 4,5,7

b Reduced model | Complete model | Original model
—1.0021% j11.9083 | 11,10,1 11,10,1 11,10,12

1,7

~0.7341+ j8.6653 | 11,410 10,1,8

_1.4769 + j7.9856 324
3,2,4

9,9,0

—1.3493 % ;7.0376 3,2,4

—0.3740 + j7.1663 10,11,8 1253,10—
—0.0911+ j4.9430 15,14,16 15,14,16 15,14,16
~0.7934 + j4.3105 10,4,5 __10,4,5 7,5,6
~0.3095 + 15081 10,8,11 10,8,11 15,7,6

| —0.1971 j3550_8 | 10,16,14 10,16,14 16,14,7
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Table 6.3. The modes and their respective buses of generation and load where are
more observable.

Mode | B Reduced model Original model
Generation buses Generation buses| Load buses
~1.0021+ j11.9083 | 63,64,62

11530+ ,9.5072 | 56,5360 | 192025229 | 605359 | 25232627

~0.7341+ j8.6653 | 56,5360 | 192522029 | 53.62.60 | 25233138

~14769+ j79856 | 56,5561  |20,19.29.28.10|  57.59.56  |20,23,22,19.21]

13493+ j7.0376 | 61,5455 |2928.10,11,12| 61,5756  |29,28,20,19.26

_0.3740+ j7.1663 | 64.65.62 33,32,38 33,32,36

-0.0911+j4.9430 | 67,66,68  |42,41,40,52,48 42,41,40,52,48

~0.7934+ j43105 |  57.59.56  |20,19.23.22.21 57,59,56  [20,19,23,22,21

~0.3095 + j2.7081 67,66,57  |42,4120,1923| 67,66,57  |42,41,20,23,19

—-0.1971 % ;3.5508 66,68,57 41,52,50,40,20 66,68,57 41,52,50,40,20

6.3 Detailed System Representation

For this study, each machine was represented by a fourth-order system model
and equipped with a first-order excitation system. The overall state model has

80 differential equations, 136 algebraic equations.

Defining

P ' ' ' ]T
x=[E¢;,-1 quﬁ Edl Edlﬁ Efdl Efdlﬁ 51 O @ttt @y
and
u= [Tml T Tmlﬁ Vrefl o Vreflﬁr

The nonlinear system model can be cast in the form (6.1).
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6.3.1 Nonlinear ROM

Using the proposed technique the system is reduced to a 26"-order system

representation.

Figure 6.17 shows the energy spectrum obtained to capture 99.99% of the

signal’s energy. Note that in this case, the POD technique captures, essentially,
26 singular values of a total of 80 singular values.

Energy Percentage
.
o
|

10 -
0 — I._.--___-—.-I— . c— c— — — i —— a— ——— cp—
0 5 10 15 20 25 30
Singular Values

Figure 6.17. Energy percentage of each singular value of the ROM

Figure 6.18 through Figure 6.22 shows the system response to the same
contingency condition in section 6.2. For the purposes of comparison, the same

energy criterion is adopted in both set of simulations.

Simulation result show that the ROM is able to capture the essential
system behavior. While no directly discussed in the work, the efficiency of the
method increases as the order of the model increases. In these plots, the solid
lines indicate the original system response while the dashed lines indicate the

ROM response.
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P.U.

Angle referred to the center of inertia
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Seconds

Figure 6.18. Dynamic behavior of the angle of the generators, given by el original
model and the ROM.

x 10~ Angular speed

] I J | I I 1 1 I )

Seconds

Figure 6.19. Dynamic behavior of the angular speed of the generators, given by the
original model and the ROM.
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Figure 6.20. Dynamic behavior of the voltage E ;, , given by the original model and

the ROM.
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10

Figure 6.21. Dynamic behavior of the voltage E',, given by the original model and

the ROM.

(&



-0.01+

¥
20.03+ J/

0.04 -

0.05 T

| | | | |

1 2 3 4 5 6 7
Seconds

10

Figure 6.22. Dynamic behavior of the voltage E',, given by the original model and

the ROM.

Proper orthogonal modes have a similar interpretation to linear modes.

Table 6.4 shows the eigenvalues associated with the POMs. This is for an energy

percentage of the 99.99% of the snapshots.

Table 6.4. Eigenvalues of the ROM.

Eigenvalue _| Frequency

1 -1.2764 +9.7851 _ —0.2749 % j2.6653
2 —1.8783 % j8.6989 | 1.3845 0.2156

3 ~7.5025 0 0.0972

4 | -0.8894%,72466 | 11533 | 12 0

5 [ -10384263237 | 10064 | 13 ~0.0009 0

6 -0.5151+ j4.5070 | 0.7173 14 ~0.3234 0

7 | -0245212 j3§6—9 . 0.5581 15 —-0.2624 £ j0.3390 0.0540

_3 - -0.8545 j3.1?3; 0.4987 o
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Also of interest, the linear system given in (6.4) has a solution of the form
that follows

A

z (1) = Eme’i’*‘
Ax = WAX = W¢z e
where z, = z(0), while that original model has a solution of the form
Ax = @z e

Figure 6.23 and Figure 6.24 shows simulation results corresponding to
Eqns. 6.5 and 6.6. Solid lines represent the time evolution of the original model

while broken lines correspond to the time evolution of the ROM.

Angle

Degrees

Figure 6.23. Dynamic behavior of the angle of the generators, given by the
Equations 6.5 and 6.6.
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Figure 6.24. Dynamic behavior of the angular speed of the generators, given by the
Equations 6.5 and 6.6.

6.3.2 Modal Properties

Based on the linear ROM, detailed studies were conducted to evaluate the
ability of the method to extract modal properties. Discussion will be limited to
mode —0.2749 + j2.6653

Reduced Model Complete Model
90 0.004 90 0.004

120 60

Figure 6.25. Mode shape indicate that is an inter-area mode, because the generators
14 and 15 oscillates against of the rest of the system
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Tables 6.5 and 6.6 compare the controllability and observability of the
ROM with that of the complete system model.

Table 6.5. The modes and their respective generators by means of which are more

8,1,14
14,13,12
8,1,13
13,12,8
8,14,13
1,2,8
1,8,2

~0.5151+ j4.5070 8,1,14
—0.2452 + j3.5069 14,13,12

811
~0.2749 + j2.6653 13,12,8
~0.0363 + j1.3546 8,14,13
~1.2994 + j0.6109 1,2,8

~0.2624 + j0.3390 1,8,2

controllable.

e
Generators
F.z7§4i9.7351

~1.8783 + j8.6989 14,10,2
[ —0.8894 + j7.2466
E1.0384:t j6.3237
8L | 814
141312
8113

Table 6.6. The modes and their respective buses of generation and load where they
are more observables.

Mode Reduced model Complete model

Generation buses Generation buses
—-1.2764+9.7851 63,64,65 32,33,37,51,34 63,64,65 32,33,37,51,34

—] -3733_i J8.6989 63,55,53 32,33,37,51,36 63,095,093 32,33,37,51,36
—0.8894 £ ;7.2466 99,63,54 10,11,12,37,13 35,63,54 10,11,12,37,13

—1.0384 + j6.3237 | 61,55,65 29,20,28,37,13 61,55,65 29,20,28,37,13
-0.5151%j4.5070 | 57,5958  [20,19,22,2321| 57,5958  [20,19,22,23,21
-0.2452+ j3.5069 | 66,68,67  |41,5250,4049|  66,68,67  |41,52,50,40,49
-0.8545+,3.1333 | 57,5956 |20,19232221| 57,5956  |20,19,23,22,21
02749+ j2.6653 | 67,6665 | 424120379 | 67,6665 | 42,41,2037,9
-0.0363+j1.3546 | 68,67,66 5242504137  68,67,66  |52,42,50,41,37]

12994+ j0.6109 | 636564  |37,32,363320] 636564  |37,32,36,33,20
—02624%j0.3390 | 67,6866  |4252415049] 636257  |3332,38,46,31
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As may be observed from this Table, controllability indices of the ROM are
in good agreement with those of the full system models. Other results, not
included in the chapter, show the proposed mode accurately capture other

modal characteristics.

6.4 Summary of Results

In this chapter a number of illustrative case studies were given in which the

modeling approach of previous chapters was applied to a test system.

Detailed simulation results show that POD-based projections can produce
accurate reduced-order models. Because the extracted nonlinear ROM preserves
the input-output characteristics, the model have the potential to be applied for
control design.

Study results suggest that the analytical formulation becomes more
efficient as the size of the model becomes larger. This issue is particularly
relevant for assessing the accuracy of the method utilized in the paper and

deserves further exploration.
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Chapter 7
Conclusions

7.1 General Conclusions

The work developed in this thesis, presents a new framework for dynamic
characterization of nonlinear systems described by differential-algebraic

equations based on a singular value decomposition based projection framework.

A new algorithm has been presented for the reduced order model problem
that preserves network structure and input-output characteristics. Using this
approach, one can develop a modeling and simulation technique that retains the

algebraic nature of the algebraic equations and input-output characteristics.

Other potential applications include its use in conjunction with other
analysis techniques, such as normal form theory. Because the model preserves
nonlinear characteristics, information about nonlinear interactions is retained
which makes it useful for investigation of nonlinear aspects in complex systems.

This area needs further study.

A key advantage of the proposed technique is its ability to retain the inputs
and outputs of interest, thus allowing the design of system controllers. The use
of this reduced nonlinear model allows, in general, for a smaller range of
operation. This should be verified in practical applications involving large-scale

system:s.
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An important research focus of this study was an examination of the
accuracy of the model using energy concepts. Detailed simulation studies
suggest that the proposed method is accurate, and feasible for the study and

generation of reduced-order dynamic equivalents.

7.2 Future Work

The future areas of research identified in this work are:

1. The extension of the proposed technique to design system controllers.

2. The development of an analysis framework for analysis of nonlinear

effects in system behavior based on normal form theory.

3. The generalization of the proposed technique to incorporate the effect of

flexible ac system controllers.

4. The optimization of numerical procedures to derive the nonlinear ROMs.
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