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Resumen

El trabajo en esta tesis desarrolla y analiza un método para generar modelos no

lineales de orden reducido de modelos físicos de sistemas de potencia, los

cuales están descritos por ecuaciones algebraicas y diferenciales (DAEs). El

método combina la técnica de la descomposición ortogonal propia (POD) y

conceptos de la teoría de realización balanceada y puede ser usado para obtener

modelos lineales y no lineales de orden reducido de modelos de sistemas de

gran dimensión.

La aproximación de rango-reducido para los gramianos de controlabilidad

y observabilidad se obtiene usando el método de un rango-menor de imágenes.

Los modelos no lineales de orden reducido son entonces construidos mediante

la proyección de las ecuaciones del movimiento del sistema, las cuales

describen el comportamiento dinámico de interés sobre el espacio de más

energía de las eiginfunciones dadas por la POD. El modelo de orden reducido

es entonces usado para el estudio del comportamiento del sistema ante grandes

y pequeñas perturbaciones.

Este método permite preservar el comportamiento dinámico del modelo

original así como su pasividad y estabilidad. La técnica aunque desarrollada

para procesos de sistemas de potencia, es suficientemente general para ser

aplicada a cualquier proceso que es descrito por ecuaciones algebraicas-

diferenciales similares.

El análisis detallado de pequeña y gran señal son desarrollados para

comprobar la validez del análisis y valorar el impacto de los controles del

sistema sobre el comportamiento del mismo. Los resultados de simulaciones

con el de modelos de orden reducido demuestran concordancias buenas con la

información de estado estable y transitorio usando modelos convencionales,

con un orden de reducción de la magnitud del tiempo de cómputo.



Abstract

The work in this thesis develops and analyzes a method for generating

reduced order nonlinear models from physically-based power system models

described by differential-algebraic equations (DAEs). The technique combines

the proper orthogonal decomposition (POD) technique and concepts from

balanced realization theory and can be used to obtain linear and nonlinear

reduced order models from large-scale system models.

Using the method of snapshots a low-rank, reduced-range approximation

to the controllability and observability grammians is obtained. Reduced order

nonlinear models are then constructed by projection of the equations of motion

of the system, which describe the dynamic behavior of interest, onto the space

of the most energized POD eigenfunctions. The reduced-order model is then

used to study system behavior following small and large perturbations.

This method enables the reduced model to retain the dynamic behavior of

the original system, as well as its passivity and stability. The technique, though

developed for power system processes, is general enough to be applied to any

process that is described by similar differential-algebraic equations.

Detailed small and large signal analyses are performed to check the

validity of the analysis and to assess the impact of system controllers on system

behavior. Simulation results with the reduced order models demónstrate good

agreement with steady state and transient information using conventional

models, with an order ofmagnitude reduction in computation time.
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Chapter 1

Introduction

77j¿s introductory chapter presents an outline of the research work in this thesis, and

defines concepts linked to reduction ofthe nonlinear models ofthe dimensión large. The

general introduction, the problem statement, the objectives and the study approach are

presented.

The chapter concludes with an outline ofthe structure ofthe thesis.

1.1 Background and Motivation

The basic motivation for reduced-order system approximation is the need for

simplified models of dynamical systems, which capture the main features of the

original complex model. This need arises from limited computational, accuracy,

and storage capabilities. The simplified model is then used in place of the

original complex model, for either simulation or control [1].

Power system phenomena involve a complicated interaction between the

dynamics of synchronous machines and system controllers. Realistic models of

power grids arising from planning problems often consist of hundreds of

coupled differential equations. Thus, for instance, the complexity of power

system models, measured in terms of the number of coupled first-order

differential equations, may reach the tens or hundreds of thousands. Therefore,

simulation of the full model is not feasible or computationally demanding.

Consequently, an appropriate simplification of this model is necessary,

resulting in simulation with reduced computational complexity.

Power system dynamic motion involves a large number of modes and

takes place over a great range of time and length scales.
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Deriving from these large-scale representations, an accurate reduced-order

model (ROM) is a challenging problem. To be useful, ROMs must preserve

network structure, to maintain the same dynamic than the original system, and

must preserve the inputs and outputs to allow for the design of controllers.

Recently, the problem of nonlinear analysis of stressed power systems has

received considerable attention owing to the need to accurately describe and

predict the system response to various loading conditions. However, a number

of issues remain with these methods, including the dimensionality of the

problem, the amount of information provided by the models, and the

generation of reduced models for systems with many inputs and many outputs

such as those encountered in wide-area stability analysis.

This thesis focuses on the extraction and characterization of nonlinear

behavior from system models described by a set of differential-algebraic

equations.

Methods to produce accurate reduced-order models are discussed and

techniques to extract modal information from the derived ROMs are presented.

The methods are constructive for the study of high-dimensional systems and

for their application to nonlinear analysis methodologies such as normal form

analysis.

1.2 Problem statement

Realistic models in power systems are quite complex systems of nonlinear

differential equations. It is therefore of central importance in power system

stability studies to determine cost-efficient reduced-order representations of

large-scale systems that accurately describing the behavior of the underlying

physical system.

Construction of low-dimensional models of various system

representations by reduction of the governing differential equations has

attracted significant attention in recent years. Due to the high dimensionality of

the differential equations that govern dynamic power system phenomena, it is

not feasible to use analytical models to solve these equations.

2



Low-dimensional models offer a compact description of the system

dynamics, and they are potentially useful in designing, simulating, and testing

control systems. Reduced-order models are particularly useful for analyzing

systems with uncertain parameters and for proving stability properties in

complex, high-dimensional systems.

At present, considerable research effort is concerned with feedback control

design for applications described by linear models. For general systems, new

methods are needed for deriving low-dimensional representations that allow

the study of specific characteristics of concern.

Recently, reduced-order modeling techniques, such as those based on

proper orthogonal decomposition and Galerkin projection have come to

interest. The solution of such problems is challenging owing to large

computational requirements of the method and the accuracy of the required

representation.

Reduced-order models should offer the following characteristics [1]:

1. The approximation error should be small

2. System properties, like stability and passivity should be preserved,

3. The proceduremust be computationally efficient

The ROM must be compatible with analytic methods for the analysis and

control of nonlinear dynamic systems and have rigorous guarantees of quality

and global error bounds on the resulting reduced model.

These issues are addressed in this work.

1.3 A BriefReview of Previous Work

Many modeling reduction techniques have been proposed in the literature.

These include Krylov projection methods, proper orthogonal decomposition,

Fourier reduction methods, and approximate balance truncations, among

others. In what follows, we provide a brief overview of approaches for

constructing ROMs in the context of this work.
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There have been notable recent attempts to systematically introduce

nonlinear ideas to the power system community. Among them, the POD

method (also called empirical orthogonal function analysis) has been shown to

be capable of representing complicated phenomena with a handful of degrees

of freedom [4].

The development of mathematically rigorous order reduction techniques

for DAE models such as those encountered in power system applications is an

open problem. Proper orthogonal decomposition provides a systematic way for

producing reduced-order models from DAE systems [6] and can be used to

design system controllers.

The POD technique has been successfully applied to fluid dynamical,

thermal processes, signal processing and other engineering and physical

problems. However, only a handful of work exists in the área of oscillatory

analysis of transient processes in power systems. Bikash and Nina [3]

considered the method for identification of coherent generator groups in large

interconnected power system. Messina and Vittal [2] explored the applications

of the proper orthogonal decomposition to extract dynamic information from

wide-area measurements. Current nonlinear reduction methods are, in general,

mostly suited to small systems with little nonlinearity.

More recently, these techniques have gained wide popularity in

applications related to data analysis and reduced-order modeling of various

physical processes or models. Applications, for example, to unsteady fluid flow,

turbulence, aerospace, optimal control, structural dynamics, microstructural

design, solution of stochastic partial differential equations, heat transfer and

non-destructive testing and system identification have been reported [2], [3].

Another área of interest has been in simulating and analytically approximating

control systems.

This prior research forms a basis of understanding that is essential for

proper interpretation of the results from the high-fidelity simulation methods

surveyed here. Many of the algorithms in the literature genérate features that

do not fully satisfy the requirements for accurate analysis of complex systems.

This research is motivated by the limitations of a wide-variety of techniques

4



proposed in the literature to deal with high-dimensional problems, the

limitations of these techniques is that only are designed for the linear analysis

while the method proposed allows us to work with nonlinear problems.

Based on this literature review, it is clear that new analytical techniques

are needed to overeóme the deficiencies of existing methods. The method

proposed here is a step in this direction and makes an effort at closing the gaps

mentioned above.

1.4 Thesis Objectives

The primary objective of this research is the development of efficient reduced-

order models for large, nonlinear dynamical systems. A second direction of this

thesis is to derive techniques to extract nonlinear modal information from the

nonlinear ROM. The primary applications of interest are nonlinear phenomena

and the analysis and design of system controllers.

Following the above problems, the specific objectives of this research are:

1. The development of a framework for model reduction of large DAE

systems. In addition, to develop a systematic analysis method based on

proper orthogonal decomposition and projection methods, to genérate

nonlinear reduced-order system representations that preserve stability

and passivity properties.

2. The analysis of data-driven ROMs and its application to the analysis of

wide-area system stability.

3. To extend existing approaches to include the representation of network

controllers.

4. To evalúate the practical application of the method under linear and

nonlinear operating conditions.

5. To address numerical issues associated with the application of these

methods.

5



1.5 Contributions

The primary contributions of this work are as follows:

1. The development of mathematically rigorous order reduction techniques for

high dimensional power system models that can be represented by a set of

differential and algebraic equations. To the best of our knowledge, this work

represents the first analytical application of these techniques to power

systems.

2. The generalization of existing approaches to account for network structure

.and the inclusión of algebraic constraints in the reduction process.

3. The evaluation of altemative formulations based on singular valué

decomposition of the observation matrix.

4. The derivation of analytical criteria to characterize general mode-state

relationships, and the extraction ofmodal properties.

1.6 Organization ofthe Thesis

The organization of this thesis is as follows:

Chapter 2 outlines the proper orthogonal decomposition technique and

singular valué decomposition methods, together with a description of the

numerical aspects for proper orthogonal decomposition.

Chapter 3 describes the algorithm proposed for model reductions. General

finite dimensión approximation methods, together with the ideas behind POD

reduced basis functions are discussed.

Chapter 4 introduces the nature of the adopted system model.

In Chapter 5, the modal properties of the linear ROM are examined with

emphasis on the characterization of mode shapes and state-mode relationships.

6



Chapter 6 discusses the practical application of the developed

methodologies presented in earlier chapters to the study of a practical power

system.

Finally, some concluding remarks and suggestions for future research are

presented in Chapter 7.
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Chapter 2

The Proper Orthogonal Decomposition
Method

The proper orthogonal decomposition (POD) is a multivariate statistical method that

aims at obtaining a compact representation of the data. Given a set of snapshots or

observations of a system, a linear algorithm produces a series of empirical basis

functions which are guaranteed to be optimal for the description ofthe system snapshots

provided. This method may serve for two purposes, namely order reduction by

projecting high-dimensional data into lower-dimensional space and feature extraction

by revealing relevant but unexpected, structure hidden in the data.

The key idea of the POD is to reduce a large number of interdependent variables

to a much smaller number of uncorrelated variables while retaining as much as possible

of the variation in the original variables. When combined wit other techniques, proper

orthogonal decomposition analysis allows model reduction and simplification.

In this chapter, we give an overview ofthe POD method in the context of discrete

time formulations. Foundations are discussed, and several variations are outlined along

with their respective capabilities. First, some mathematical preliminaries are covered

following by a discussion of altemative approaches to compute the optimal basis

functions. The proper orthogonal decomposition projection approach for building a

reduced order model (ROM) will be presented in Chapter 3, along with ideas for

extensión ofthe methodology to allow construction ofROMs based on data generated

from measurements.
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2.1 Theoretical Development: The General Framework

2.1.1 Linear Expansión

Proper orthogonal decomposition (POD) is an optimal technique of finding a

basis that spans an ensemble of data, collected from an experiment or a

numerical simulation of a dynamical system. The mathematical formulation of

the POD presented here closely follows that in the reference [1], [2].

Let u(x, tj ) , j
= 1, ■ ■ ■

,
N

, denote a sequence of observations on some domain

x e Q where x is a vector of spatial variables, and t, [0,T]is the time at which

the observations are made. The POD procedure determines empirical

orthogonal functions (EOFs), <pt(x),i = \,..sa (a linear basis), such that the

projection onto the first p EOFs (a low order representation)

ü(x,tj) = £fl/(/MW ■ J = l-,N (2.1)

is optimal in the sense that the average least squares truncation error, et

ej=\

p

"(*>',) -2>,(íM(*)
■=i

,P<N (2.2)

is minimized, where <.> denotes ensemble average, |/|=</,/>1/2and |.|

denotes the
__2

norm over íl . The a¡ 's are time dependent coefficients of the

decomposition to be determined so that (2.1) results in a máximum for (2.2).

These special orthogonal functions are called the proper orthogonal modes

(POMs) of the reduced basis for the function «(jc,/,) .

Following [3] assume that the field is decomposed into a mean

valué fi(x,tj), and a fluctuating part ü~(x,tj)

u(x,tJ)
=

M(x,tJ) + ú(x,tJ) (2.3)

More formally, let L2 denote the space of square integrable functions. It

follows that, a normalized basis function <p is optimal if the average projection

of u onto <p is maximized, i.e. [2]

9



max(|(_.(x(/.)50)| ) subject to \\<d =1 (2.4)

where the inner product is defined as <U,V >=£„0 UkV¡_ =VHU, and

¡^1 =<(p,<p>=<pT(p=Yá<p)
7=1

The optimization problem can be recast in the form of a constrained

optimization problem where the function to be maximized is given by: [l]1

J[<p] = (| (M(x>tj),<P) l2)-¿(|M|2 "O (2-5)

where A is a Lagrange multiplier.

2.1.2 Autocorrelation Function

A necessary condition for the extremum of (2.5) is that the Gateaux derivative

vanishes for all variations <p+ Si//el2 ([0,1]), 5 e 5R . This can be expressed as

— \a> + Sw 1 = 0
, V^el2(íí) (2.6)

<5-0

From Eqn. (2.4) and for real functions n,<p and \y , we have that

—

[^ + ety]j =0 = — [({u,<p + S<p){<p + S<p.u)-¿(<p + S<p,<p + S<p))\ =
cío eto (2-7)

2 Re [ (w, <p){<p, u)) - X (<p, y/)\

where use has been made of the inner product properties.

Using the commutativity of the averaging operator and spatial integral the

quantity in brackets can be written as

(ü, y/){(p, u) - X {fp, y/) = ( f u(x)y/
"

(x)dx [ y/(x')u(x')dx'\ - A [ q>(x)y/\x)dx

~

I ("Wf (x)dx [i//(x')u(x')dx' - Xq>(x) w' (x)dx = 0

'Given a function to maximize, f(P) , subject to the constraint g(P) = o
,
the Lagrange function

can be defined as F(P, -y) = f(P) - Xg(P) .
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Since the function y/ can be chosen arbitrarily the basis functions must

satisfy:

jn(u(x.tj)u(x\t/)}p(x')dx'= X<p(x) (2.8)

Equation (2.8) has a finite number of orthogonal solutions <p¡(x) (the

proper orthogonal modes) with corresponding real and positive eigenvalues Xj .

Therefore, the optimal POD basis is composed of the eigenfunctions {<Pj } of the

integral equation (2.8), whose kernel is the averaged autocorrelation function

R(x,x') = ±-fdu(x,tJ)u(x',tJ) (2.9)

In practice the observations that form the data are only available at

discrete spatial grid points herein called snapshots. In this case, the kernel

R(x,x')is replaced with

R(x,x') =

R(xux,) ■■■

R(x_,x„)

R(x„,x¡)
■■■

R(xn,xn)

where n indicates the number ofmeasurement positions, and

1 i

R(xi,xj)
=— J_u(xi,tk)u(xtk) , i,j = l,...,n (2.10)

_V****1

In other words, the optimal basis is given by the eigenfunctions q>i of

(2.10) whose kernel is the autocorrelation function R(x,^') = (u(x_tj)u(x',tj)) .

2.1.3 Discrete-Time Decomposition

Observed time series are usually recorded in discrete form even though the

underlying process itself is continuous. In this case, the snapshots are vectors

rather than functions.

Following Holmes et al. [3], the integral time-average can be approximated

by a sum over the set of sampled data points. In this case, the vectors
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u,(x,/7)=x, =[«(*,, í.),k(x,,/2) u(xx,tN)]T , j = l,...,n (2.11)

represent a set of snapshots obtained from the observed data at n locations

The set of data can then be written as the N*n-dimension ensemble matrix,

X = [x, ---xj^

u(xut.)
■■■

u(xn,t.)

u(xvtN)
■■■

u(x„,tN)

(2.12)

where each column corresponds to the response at a specific time.

Typically, n * N . so X is generally rectangular. Under these assumptions,

the actual integral (2.8) can be written as Gq> = X<p, where

G,1=\lNY.Uu(xl,tk)u(xj,tt). Assuming the EOFs to be of the form <p, =__\llw'l\, ,

where h-; is a coefficient to be determined, and substituting this expression into

(2.8), the problem of minimizing (2.2) can be recast as the problem of finding

the largest eigenvalue of the linear equation

C<p = A<p (2.13)

where C is the autocorrelation (covariance) matrix defined as

1 T 1
C = —XrX = —

N N

T T

T T

Xn X. xn x2

T

X2Xn

T

rx rx

1
"

=

Tr 5- (X<
"

-^- ) (X'
"

■//— ) (2ll4)

The resulting covariance matrix C, is a real, symmetric (Ctj
= C„ ) positive

and semi-definite matrix. The resulting POD modes are fully orthogonal, and

are assumed to be normalized (pt , i
= !,...,«, i.e

T \S9 ' = Í

12



Using standard linear algebra techniques the covariance matrix can be

expressed in the form

C = UAV7 (2.15)

where Uand Vare the matrices of right and left eigenvectors and

A = diag[Al Aj
••■ 4,].

The eigenvalues computed from (2.15) are real an non-negative and can be

ordered such that X.>X_> __An__0. The eigenvectors of C are called proper

orthogonal modes (POMs), and the associated eigenvalues are called the proper

orthogonal valúes (POVs).

2.2 The Method of Snapshots

The method of snapshots is based on the fact that the data vectors u, and the

POD modes span the same linear space [3]. We choose the eigenfunctions q> to

be a linear combination of the snapshots:

P/=I>,'X/ (2.16)
m

where the coefficients wí are to be determined such that umaximizes

1 xr *.»*.
max

— >
v N*~í<<p,<p>

(2.17)

These / functions are assembled into an m*N matrix, <p , known as the

modal matrix. In matrix form equation (2.16) becomes

<D = XW (2.18)

where

<D =

"t t t t" "t f t t" "t t t t"

9x 9i
•■

<Pi

y y *r .

;X =
1 2

*

/

V V V V

;W =

wx

i

M>_
■■■

W,

•ir * v

13



and

w =

h'i V
"i w22

.< K.

, ..., vv =

w,

w-

w.

Substitution of (2.16) into the eigenvalue valué problem (2.13) results in

cf>('x, *k$y,x_ (2.19)
/=i

where Cv=(\/N)(u„Uj). This can be written as the eigenvalue problem of

dimensión N

where

CW = AW

w = [w, w2
••• wj

(2.20)

and A is a diagonal matrix storing the eigenvalues X. of the correlation matrix

C.

In words, the first-order necessary optimality condition for (p to provide a

máximum in (2.17) is given by (2.13). This completes the construction of the

orthogonal set {<p¡ <p_
■•■ <pn}.

Once the modes are found using these equations, the flow field can be

reconstructed using a linear combination of the modes

«*(*) = _£ o* (0P*(*) (2.21)
*=i

for some ak (t) e 5R 2, where the ak(t) are the time-varying amplitudes of the POD

modes <pk (x) .

The truncated POD of u is

2
The extensión to the complex case is discussed in Chapter 4.
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uk(x) = tak(t)(pk(x) + R
*=*.

(2.22)

where p is the number of dominant modes, and R is an error term. Once the

relevant eigenmodes have been computed, the temporal behavior of each mode

is evaluated as the inner product of the eigenmode (the POD mode <pk ) and the

original data. To ensure uniqueness of the solution, the normalization condition

of < q}j,<pi > =1 is imposed \\</>\\ = 1 . The temporal coefficients are then expressed as

«.-W"
Wt-9i,

(2.23)

Note that the temporal modes are uncorrelated in time, i.e.

(aJ(t),ak(t))
=

SjkXJ, where SJk =1 for j
= k,0else, and that the system (2.22) is

optimal in the sense thatminimizes the error function

*,>)=! k(.)-X>,(Op,(o

We remark that no conditions are imposed on the data set: the data can be

a sample of a stationary process or a sample of a non-stationary process.

2.3 Energy Relationships

The use of the POD method leads naturally to a discussion of truncation

criteria. Several techniques to derived truncated expansión have been proposed

in the literature. Here we choose to reduce the residual terms such that the

mean square valué

R = 0
m

\i=X J

(2.24)

be as small as possible.

Among the POD eigenvalues obtained, the most significant eigenmodes

contain most of the energy of the dynamics and correspond to the largest

15



eigenvalues. Let the total energy be expressed as the sum of the energy of every

eigenvalue

£ = !!.,^ (225)

The associated percentage of total energy contributed by each mode can

be expressed as

Ek = -A— (2.26)

Thus, for instance, we can select the order p of the reduced basis <p such

that the predetermined level of the total energy E of the snapshot ensemble is

captured. The p -dominant eigenfunctions are then obtained as

Y" X

for the smallest integerp , were £ is an appropriate energy level.

2.4 The Singular Valué Decomposition

The POD method may also be formulated as a singular valué problem in terms

of the observation matrix. Let A be a real rnxn matrix. The singular valué

decomposition theorem states that A can be decomposed into the following

form:

A = UEVr (2.28)

where U = co/[u, u2
••■

um]is an m x m orthonormal matrix (\JT *=U_1), E is

an rnxn pseudo-diagonal and semi-positive definite matrix with diagonal

entries containing the singular valúes, and V = col[\. v2
•■■

vj is an nxn

orthonormal matrix (Vr = V"1). The columns of U and V are called left and

right singular vectors for A . The diagonal entries of E, that is the Iu =

ait can

be arranged to be non-negative and in order of decreasing magnitude

16



<7,
>

(T_ _.

• • • >
<rm __ O . The decomposition (2.28) is called the SVD of the matrix

A.

Theorem 2.1 The largest singular valué of a matrix A is equal to its induced 2-

norm: crt
= ||A||_ , in addition, every matrix A with entries in C has a SVD.

2.4.1 Properties ofthe SVD

Assume that in (2.28) err>0, while <rr+l=0; the matrices U, E,V are

partitioned compatibly in two blocks, the first having r columns:

U = [U, Uj 2 =

"2J

eR™ and V = [V, V2] (2.29)

=i- >0, I2=0eR("-fW,"-r)

where U,,U2 have r,n-r columns and V15V2 have r,m-r columns,

respectively.

It can be readily proved that:

1. Rank A = r

2. The four fundamental spaces associated with A are:

span col A
=

span col U, , ker A" = span col U2

span col A* =

span col V, , ker A =
span col V2

3. Dyadic decomposition. Matrix A can be decomposed as a sum of r

outer produets of rank one:

A = I_r,(u,vf)
/=i

4. The orthogonal projection onto the span of the columns of A is U,Uj

5. The orthogonal projection onto the kernel of A* is I„
- U.Uj = U2U2 .

17



6. The orthogonal projection onto the span of the columns of A" is V,V,"

7. The orthogonal projection onto the kernel of A is I„
-

V,V," = V2V_ .

8. The Frobenius norm of A is A
_.

= Ja, + ai + ■ • • + az
II llf V i * '

2A.1 Relation to the Eigenvalue Problem

An interesting interpretation of the POD modes can be obtained from the

singular valué analysis of the response matrix X .

Using the notation in section 2.1 let the response matrix X be given by

X =

"(-..-'.) ••■ u(xn,tx)

u(xx,tN)
■■■ u(x„,tN)

(2.30)

where the columns correspond to a response at time.

It then follows from (2.28) that the SVD of the response matrix X may be

written as

X = ULV7 (2.31)

In terms of the notation above for SVD, it can be seen directly from (2.15)

that the correlation matrix defined previously is given by

xxr =(UEV)(U2:V)7' = UE2U7 (2.32)

and

XTX = (USVf (USV) = VE2 V7 (2.33)

Henee (2.32) becomes

"4

xrxu = u
J.

= U (2.34)
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From (2.32)-(2.34), the singular valúes of X are the square roots of the

eigenvalues of XX
r

or XrX . In addition, the left and right eigenvectors of X are

the eigenvectors of XXr and XrX, respectively.

The POMs, defined as the eigenvectors of the sample correlation matrix

Care thus equal to the left singular vectors of X. the POVs, defined as the

eigenvalues of matrix C are the squares of the singular valúes divided by the

number of samples N

The k first empirical eigenfunctions are obtained of the relations of the

energy, as follows:

k

-■■=-— xl00<(%) (2.35)

where a, is the ith singular valué, and (%) is the percentage of captured

energy.
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Chapter 3

Model Reduction using Proper

Orthogonal Decomposition
Nonlinear model reduction is emerging as an issue of strategic importance to the

analysis of large power system models. Solving the differential algebraic equations

(DAEs) simultaneously in simulation and control applications can pose a numerical

challenge. Other motivations for model reduction arefor storage and retrieval ofoptimal

control trajectories, insight into the model structure, and analysis of dynamic degrees of

freedom.

This chapter describes an approach based on proper orthogonal decomposition for

model reduction of nonlinear dynamic systems that can be expressed in an explicit state

space form. A method for producing reduced-order models of nonlinear systems

described by DAE models based on proper orthogonal decomposition is presented. This

approach makes use of the proper orthogonal decomposition and is well suited for

applications that require large-scale model reduction.

Based on this theoretical framework, a new algorithm for model reduction is

proposed. The analysis procedure begins with the introduction ofthe perturbation model

that enables the representation of higher order nonlinear effects. First, the system

equations are expanded in a truncated series around a given operating condition. Then,

a set of basis functions is obtained by genefating a set of observations through

simulations of the nonlinear process. Using the computed eigenfunctions as basis

functions in a truncated series representation ofthe system model, a nonlinear reduced-

order model is obtained. The model can be used to estimate nonlinear system response,

or be used as an auxiliary technique to other nonlinear analysis methods such as the

method of normal forms.
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3.1 Background

Power system dynamical models are often large and complex, requiring a great

deal of computational resources. High- dimensional models are not amenable to

dynamic analysis and controller design. A challenging problem is that of

determining a ROM that preserves physical aspects of interest.

In this chapter, a mathematical modeling approach for obtaining Iow-

order models for the power system is presented that retains the input-output

properties of the system. The method relies on proper orthogonal

decomposition of measured data and can be used to study linear and nonlinear

behavior.

Consider a general high dimensional system, E , described by an implicit

mixed set of differential and algebraic equations (DAEs) of the form:

i = f(x,y,u)
0 = g(x,y) (3.1)

E = h(x,y,u)

In the preceding equation ueR" is the input or excitation vector, xeR",

is the state vector, g e Kp is the vector of algebraic constraints; and EeR' is

the vector of outputs or observations. The output function h, can be linear or

nonlinear, depending on the system model and the outputs of interest.

Model reduction techniques seek to produce a similar system (the

reduced order system)

S:

x = f(x,y,u)
o = g(i,y) (32)

E = h(i,y,u)

of order k much smaller than the original order , but for which the outputs E

and É are approximately equal for inputs of interest u .

Figure 3.1 illustrates the concept of reduced-order-modeling from

computational power system dynamics models whilst Fig. 3.2 shows the input-
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output representation. Starting from a physical model of the system, the goal is

to construct a reduced-order system representation that can be used for

simulation or control.

If possible the input-out mapping should be preserved as discussed in our

numerical application of the method. The complexity n of such system is

measured by the number of internal variables involved (assumed finite); that is,

n is the size of x = [x, x2
•••

xn ]* 3. This idea will be explored further in the

next subsection.

It will be demonstrated in the sequel that a projection procedure

employing basis functions which are computed from the proper orthogonal

decomposition of the full system response can efficiently reduce the infinite-

dimensional systems to finite-dimensional dynamical models while

maintaining high-fidelity .and reducing system complexity.

Physical/Artificial System"] | + | [ Data

Simulation

Control

Figure 3.1. Pictorial representation ofthe concept of reduced-order modeling.

3

Given a vector or matrix with real entries, the superscript
* denotes its transpose. If the entries are complex, the same

superscript denotes conjugation with transposition.
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-*

->

£:■

-x = f(x,y,u)

o = g(*,y)

->

E = h(x,y,u)

Figure 3.2. Explicit finite-dimensional dynamical system.

We now formalize the notion of the dynamical system £ .

3.1.1 Problem Statement

Following the above definitions, the problem can be stated as follows. Given a

nonlinear dynamical system £ = (f,g,h) with ueU, xeX, yeY, heH find

a reduced order system ¿ = (f,g,hj, u e U, yeY, and X = jx : T -» R* }, where

k < n
,
T is a transformation matrix; such that (some of or all) the following

conditions are satisfied:

1. The approximation error is small, and there exists a global error bound.

2. Stability and passivity are preserved.

3. The procedure is computationally stable and efficient.

Over the last few years, several altérnate analytical approaches to the

determination of reduced-order system representations have been proposed.

The following sections describe a general approach based on proper orthogonal

analysis for systematically obtaining reduced-order system representations.

3.2 Reduced-Order Dynamic Modeling

3.2.1 Projection onto Optimal Basis

The central idea of POD is to determine a family of subspaces, of increasing

(finite) dimensión, that optimally span the data, in the sense that the error in the

projection onto each subspace is minimized. In what follows a brief

mathematical development is given and the method is outlined.

Consider a dynamic system described by the nonlinear plant equation

(3.1). The projection-based approach is based on a special linear change of
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variables x = Tx derived from empirical orthogonal function analysis of the

observation matrix. See Chapter 2.

Consider that nonsingular left and right transformation matrices are

partitioned as

'x>

X =
, T-'=[S T-J T =

w
where ieR\ xeR""*, S,WeR

nxk

Since W'S ■ I4/ it follows that

n = SW* e R" (3.3)

is an oblique projection onto the k -dimensional subspace spanned by the

columns S along the kernel of W*

Using the transform x = Tx , (3.1) may be represented by the following

system of DAEs:

and

x = Tf(T-1x,y,u)

0 = g(T-'x,y)

E = h(T-1x,y,u)

(3.4)

(3.5)

(3.6)

As discussed in our introductory section, the objective of model reduction

is to replace the nonlinear system (3.4)-(3.6) by an equivalent system

i(0=w*f(si(4y,«(/))
0 = g(Si(.),y,) (3.7)

E = h(Si(0,y,u)

where x(/) is a k ( k« n ) vector of dominant states.

Several different approaches exist for defining the basis T Before

proceeding with the development of the method, the nature of the nonlinear

system model is reviewed.
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3.3 Nonlinear System Representation

A key issue in the proposed formulation is that we must have a representation

of the nonlinear part that can be efficiently stored and evaluated [5]. Such a

representation can be viewed as an extensión to linearization theory to the

nonlinear model of the power system. In the succeeding sections we explore the

use of linearized models to genérate a projection-based ROM.

3.3.1 DAE Model

Consider a general nonlinear system containing quadratic and higher-

order nonlinearities. For clarity of illustration we assume that the system model

can be expressed in compact form as

[0 = g(Si(4y,)

This model lends itself to physically-based power system formulations

and is general enough to allow the study of various physical systems.

Expanding in a Taylor series around the origin gives [3]

^Ax, +.-. + ^Axn+^Ay, +..-+ **-
dx. dx„ dy. dyp

p

+ ^Aul+- + ^Aum+- (3.9)
du. dum

fia =//(x0>yo-Uo)

Equation (3.9) can be written in a more convenient form using the

Kronecker product of two matrices [4], this is:

|Ax, ••* Ax„ ]T <8> [Ax, ••■ AxnJ -[Ax2
■■■

Ax,.Axn
■•■

z_x„/\x,
••■ Ax^J

We start by defining the following theorem.

Theorem 3.1. Let A, B, C, D, G, H, R be matrices of dimensión px-q , sxt , rxl ,

qxs, txu, pxq and jxí respectively. Then,

(a®b)®c = a®(b®c)
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(a+h)®(b+r)=a®b+a®r+h®b+h®r

(a + h)®(b+r)=a®b+a®r+h®b+h®r

(a®bXd®g)=ad®bg

b®a = ujx/,(a®b)u?x,

Making use of the Kronecker produc identifies given by Theorem 3.1, we

can approximate (3.1) up to second order terms as

Ax = A,Ax + A,Ay + A„Au +H^Ax 8 Ax)+H„(Ax 9 Ay)

+H„ (Ax9 Au)+ Hyx (Ay 8 Ax)+ Hw (Ay 9Ay)+H^ (Ay 9 Au) (3.10)

+ H„ (Au 9 Ax)+ Huy (Au 9Ay)+ HBU (Au 9 Au)

where

//m=I^(AxJ2+... + I-^^Ax1Ax_+-.--.||^AxnAx1"'

2 dx2
V "

2ctc.cb._
' '

2ax„5x,

+ .- + i^(Axn)2

"*

2&,¿fc
' *

2dxxdyp
'*"

2dxndy]

1 d2fio

2dxndy.
+ - + -^£-AxnAyp

H =IÍ_A_AxAM +... + Ij?!^Ax1AMm+*** + --^^Ax_AMl
"

2dx,du.
' '

2dxxdum
' m

2ax_5w,

+ ... + i_52^AxnA«m
2 dx„dumn tn

H ■=1^5-Av1Ax1+*** + ^^/^AjlAx„+*** + -^2^Av Ax,

+ ... +
1 __________

Ay,Ax„
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H.„, = -l8^(Ayl)2+--.+ l-^AylAyp+...+ l-p^AypAy
2 dy 2 dy.dyi*-v>

2 dy.dyp"SX

+ •■■ +

1 d2fl0
2 dy)

M

1 82f,o ... A.. , .1 52/,o ... ... ,

1 d2fl0
Hyui

2 dyxdux
Ajv, Aw, H— +

2dy.dum
AyxAum+- +

2 dypdu.
AypAu.

+ H.IJV^A ^
2 3y_dwm

p m

H.... =
1 ¿7,0
2 St^cbc,

Am.Ax, +••• +
i ¿7,0 ... .„ , .

i a2/»
2 du,dxn

Au.Ax„ +■■■ +

2 dumdx.
A"mAx,

+ ••• +

1 37o
2 5w„ax„

Aw„Ax_

"^
2 du.dy

1 a2/'°
A«lAy1-.- + i^^AM,Ay;,+... + i^-A«<_A>'1

2 duxdy 2dumdyx

+ ■■■ +

1 d2f,o

2dumdyp
A«»4ym -^ p

r/.„4Í4W
2 a«r

+ 3- -AA- Am, Am„ + • • • + -AA AmmAm,
2duxdum

M1-"**»

2dumdux

+ ••• +

1 37.
2 S«

(A»J2

Further, linearization of the constraint equations assuming that all

motions are small [2], results in the following equations:

3gdx
+
5gdy

=Q
dx dx dy dx

(3.11)

Solving (3.11) for dy yields

dy = -
dg

dy

n-i

3g

ex
dx (3.12)

or, for incremental changes,

Ay = -B-BxAx (3.13)

27



where

B -<*

B.-*
dx

provided that the inverse of exist, the no singularity of this equation
3g

.3y.

depend of the network variables. A measurement is the stress of the system, i.e.,

this implicate that program of power flow no converge and therefore this

matrix is singular.

Noting that

Ay 8 Ay = (-B^B, 9 -B;'BX \Ax 9 Ax) = C„ (Ax 9 Ax)

Ax 9 Ay = (l„x„ 8 -B^B, \Ax 9 Ax) = Cxy (Ax 8 Ax)

Ay 8 Ax = (-B;'B, 8 Inx„ \\x 9 Ax) = C^ (Ax 8 Ax)

Ay 8 Au = (-B^B, 8 Imxm )(Ax 8 Au) = C^ (Ax 8 Au)

Au 8 Ay = (lmxm 8 -B^'B, \\u 8 Ax) = Cuy (Au 8 Ax)

and substituting these expressions into (3.10) yields the perturbed model

^ = (a,-a,b;,b.)^+a,Au+(hjb+hjvcJ9í+hjbcjb)(ax®Ax)+
(H„ +H^ )(Ax 8 Au)+ (H„ + HuyC„, )(Au 8 Ax) + Huu (Au 8 Au)

or, equivalently,

Ax = AxcAx + AÜCAu + Hxlc(Ax8Ax)+Hx„c(Ax8Au) +

HMC(Au8Ax)+Hullc(Au8Au)

and

Ay = B^Ax (3.15)
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where:

A.-A.-A^'B,

"uc
= Au

H«c = Hxx + HVCV +H^C^

"■xue
=

"xu
"*" "yu^yu

H«c =H*« +HI0,C1(„
H = H

UUC UU

B,_
= -B;*B,

Analogous results to those described above, can be shown to hold for

higher-order representations. Subsequent transformation of this description to

the reduced-order form is described below.

3.3.2 Projection-Based ROM Generation

Consider the system model (3.14)-(3.15). Let now the linear transformation

x = Tx be introduced. Substitution of this expression into (3.14) yields the

transformed system

AÍ = AxcAi + AucAu +H„c(Ai 8Ax)+ H,„c(Ai 8 Au) +

H_(Au8Ax)+HUHC(Au8Au)

Ay = B^Ai (3.17)

where

A„_ = TAXCT

"■uc
~

*"uc

B =B T"1
yx yx

h^-thJt-^t-1)
H^-ThJt^iJ
H^TH^I^T"1)
H = TH

.and use has been made of the identifies
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(Ax 8 Ax) = (t_1Ax 8 T'1Ax) = (t_i 8 T"1 )(Ax 8 Ax)

(Ax 8 Au) = (T-'Ax 8 ImAu) = (t_1 8 Im )(Ax 8 Au)

(Au 8 Ax) = (lmAu 8 T_1Ai)= (lm 8 T'1 )(Au 8 Ax)

The result is a ROM that contains fewer states than the original system. As

discussed below, the number of states that can be truncated depends on the

system itself and on the accuracy that is required for system behavior.

It should be emphasized that the methodology presented here is general

and can be extended to accommodate higher dimensional systems.

It remains to choose the transformation matrix T such that the reduction is

optimal.

3.4 Development ofLow-Order Model

As discussed in Chapter 2, proper orthogonal decomposition is used to obtain a

reduced dynamical model of the systems. The POD technique selects an

orthogonal set of spatial modes that is optimal in terms of retained kinetic

energy.

A step-by-step algorithm used to obtain the reduced-order representation

is presented here.

1. For a given fault scenario, determine the time trajectories of the

system states. Build the observation matrix xeR""", i.e.,

x = [x, x2
•■■ xj

,(01
x, = eR", i = l,...,N.

through numerical solution of the full system model.
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2. Find an optimal low-dimensional linear subspace of the state space.

More formally, we seek a set of orthonormal basis vectors

n

u7eR", j = l,...,N, such that x, =X^.'U>- f = l»-.-»N/ thatis,
>i

r

í- _.

Xi. /í/v

[x, ■'■ XA/]=[«1 U*.
I

i u

/«I ^nW
.

- uu = i„

where

x = U 2Vr

The u; are sometimes referred to as empirical eigenfunctions or

principal directions of the "cloud" of data {x, } .

3. The snapshots reconstructed from only k empirical eigenfunctions,
k

X'=Z?0.uy> * = !,•••,#, this is

;=i

[i, ••• ij = [u, 'k.

Y\\
"'

Y\n

YkX YkN

eR"', k<N

In order to determine the appropriate number of modes to be used in the

reduced order system calcúlate the percentage of total energy captured

in the first k modes:

I".
-*■=■■— xl00<(%)
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where cr, is the i th singular valué, and (%) is the percentage of captured

energy, normally is 99.99%. Project the data back onto the physical states

to give the time history of each state. The subspace constructed using the

corresponding k singular vectors are optimal in approximating the data

set.

4. Once the modes are calculated and the number of modes to be used is

determined, the dynamics of the original system is projected onto the

low-dimensional subspace, using the transformation

S =W = Ut eR"x*

WS = I,

where W is the transformation matrix that has the empirical

eigenfunctions of the greater energy.

5. Obtain the nonlinear ROM using the theory in section 3.3.2. Denote

T_1=[W T.l T =

T2

as the tr.ansformation matrix.

Given explicit expressions for the nonlinear terms, the power series

expansions in (3.14) are obtained in a straightforward manner. The nonlinear

state-space model now takes the form

A¿ = W'AIC(WAx + T,Ax)+WAacAu +W'H^Jw 8 wXAi 8Ai)+

(W 8 T, XAx 8 Ax)+ (T, 8wXaí 8 Ai)+ (T, 8 T, XAx 8 Ax)]+

WHJ(W8ImxmXAi8Au)-f (T, 8I_XAx8 Au)]+ (3.18)

W*HJ(lMxa ®wXAu8Ai)+(lmxm 8T,XAu8Ax)]+

WHI/uc(Au8Au)

Ay = B^WAi + B^T,Ax (3.19)

Neglecting the terms in Ax, we have
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Ax = Á„Ax + ÁucAu + Hx,c(Ax8Ax)+H,uc(Ax8Au) +

Hutc(Au8Ax)+Huuc(Au8Au)

Ay = B„Ai (3.21)

Henee, we have

Ax = WAx

l =W'A_

B_,=B„W

Hat =W'Hm(W®W)

H =W"H (\V8I )

H =W*H (i 8W)

u W*H
WUC UMC

This is the basic model used in this research. It is worth noting that the

model is general and could be used to accommodate for more complex system

representations.

We remark that, in this model, the original physical variables are

represented as a linear combination of the ROM states, i.e.

xk
—

¿_wk,xk

This allows to relate the ROM solution to the physical states as discussed

in Chapter 6.

The flowchart in Fig. 3.3 illustrates the proposed procedure. Generation of

nonlinear ROMs is broken down into four major steps as discussed above:

1. The derivation of an analytical model of the power system

2. The generation of the POD basis functions,

3. The extraction ofmodal properties, and

33



4. The computation of the nonlinear ROM

Chapter 4 describes the power system model used in the procedure.

Transient Analysis

x = f(x,y,u,0
o = g(x,y)

■"

x(t) =
x2(t_)

xAh)

xx (0 •• • x_{tN)~
• x2{tN)

■ x„{tN)_

Power

System

x2(t2) ■■

xM ••

i*

Small-Signal Stability
Extraction of Empirical

Eigenfunctions
Ax = AxcAx + AucAu +H^Ax8Ax) .

Ay = B„Ax x =Wx

' t

Ax ■= A JCAx + ÁucAu +H„e (Ai8Ax)

Ay^B^Ai

Figure 3.3. Block diagram ofthe ROM generation algorithm.
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Chapter 4

Power SystemModeling andAnalysis
The study of systems governed by a set of differential-algebraic equations with periodic

coefficients is of great importance in diverse branches of science and engineering.

Dynamic models described by an implicit mixed set of differential and algebraic

equations (DAEs) arise when modeling physical system processes.

In this chapter, a modeling framework based on perturbation theory is proposed

for analyzing the nonlinear behavior of power systems modeled as differential-algebraic

systems. An advanced nonlinear linear model ofthe power system is first developed that

allows detailed evaluation ofthe impact ofmachine controls on system behavior, as well

as the identification of reduced-order system representations. The method makes use of

perturbation theory and enables detailed representation of machines and their

controllers and the transmission system. Only the second-order nonlinear effect is

retained in the analysis.

On the basis ofthis model, normal form theory is used to study nonlinear power

system behavior following large disturbances. The technique uses a series of

observations ofa system to build a linear basis for approximating system behavior. The

approach is general enough to include the representation of various controllers and can

be used in conjunction with efficient techniques for the analysis of complex systems.

The theory and analysis methods can be easily generalized to other types of

nonlinear systems and higher-dimensional representations.

36



4.1 The Adopted Power System Formulation

Power system phenomena involve a complicated interaction between the

dynamics of synchronous machines and system controllers. In this section, a

general, nonlinear dynamic model of the power system is proposed which

preserves network structure and load characteristics.

The power system is her seen as constituted of the dynamic models of

synchronous machines and their controllers interacting through the steady-state

representation of the network. In this model, each machine is represented by a

d-q model and a simple excitation system; loads are treated as constant

impedances but the model is general and could be used to accommodate more

complex system representations.

For dynamic stability analysis, both machine stator and network transients

are neglected. This has the advantage of simplifying the algebraic theory very

significantly. As a consequence, the entire interconnected power system can be

represented by a set of differential equations together with a set of algebraic

equations of the form

x = f(x,y,u) , xeRn,ueRm,yeR"

0 = g(x,y)
(4<1)

where x is the vector of state variables, y is the vector of algebraic variables,

and u is the input vector.

Several representations to obtain the above system model have been

proposed in the literature. In the succeeding sections, a systematic technique to

build the state representation is introduced. Based on this representation, a

second-order system representation is derived for the analysis of nonlinear

system behavior.

4.1.1 Generator Dynamic Equations

We assume that each synchronous generator is represented using the two-axis

model and a static excitation system. In this representation, machine saturation

is neglected.
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For clarity of illustration, we assume that each generator is represented by

a fourth-order d-q axis model. Generalizations to this model are discussed in

the derivation of the model.

The differential equations describing the dynamic behavior of the ith

generator and the excitation system are given by Eqs. (4.2)-(4.6) [1].

A block diagram of the excitation system model is shown in Fig. 4.1.

Rotor swing

2/7, da
rmi a

di 1dx

-Dt(a>,-oft) i = \,....ng

.,. ¿¡ ~P»l E,dlldi E\ilq> \X\> X'diPdJqi
^j.

—'- =
a>0 (a>,-a>s) i = l,...,ng (4.3)

Static excitation system

tJ^^-E^+K^^-V) i = l,...,ng (4.4)

Internal voltage equations

Td0ld^ = -E\-{Xd¡-X'di)ld^Efdl i = \,...,ng (4.5)

T\m^ = -E'dl+{Xqi-rql)lql i = l,...,ng (4.6)

In the equations above, S is the angular position of the rotor in electrical

rad, co . is the rotor angle velocity in electrical rad/s, Pm is the mechanical input

power un pu, and ng is the number of the generators, The other symbols have

the usual meaning.
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Figure 4.1. Exciter model

Let x = [x gl xg2
• • •

x^ f , be the vector of dynamic states, where

Xgk
=

P qk
& dk

***
fdk °k ■*^* J (4.7)

The partial state space representation can then be written as

x = f0(x,I(,_?,V,u) (4.8)

where f0 represents an m-dimensional vector field in the theory of dynamical

systems.

4.1.2 Algebraic Equations

Consider a general network with n nodes and ng generators. In this model, the

network is represented by a quasi-stationary model and loads are treated as

voltage-dependent functions.

Figure 4.2 depicts the general nature of the adopted system model whilst

Fig. 4.3 shows a schematic diagram of the interface generator-network

equations.
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(/(/1+y/ííy^=/G/^=/D/+y/G/

R„ jx
rr*h_

i

Pu{V,)+ jQLi{V,)

• i

/' m + \ •-

• Network •

•

i=rNv
•

m n m-

'Lm+X V m+l )+ 7-*-_m+l V m+1 /

r*(y.hjQu.{y.)

1
PjKhJQM

1

Figure 4.2. Interconnection of synchronous machine dynamic circuit and the rest of

the network.

«^^
.i \¡t+ji¥y 2)=iDt+ji&

[E'Ax'^X +JE'qiV[S' l] <±> (Vdi +JVqy^ = Vie» =

VDI+jVQI

Figure 4.3. Synchronous machine two-axis model circuit,, i
= l,...,ng

With reference to Fig. 4.2, the interface generator-network and load-

network equations are:

Load flow mismatches at generation buses

k=X (4.9)

i = l,...,ng

Load flow mismatches at load buses

Pu(K)+JQu{V,)~ ÍV,VkYlkeM-e>-^ i = ng + l,...,n (4.10)
j.=i
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The corresponding algebraic machine equations are:

o=v^^{Rsi+jx'diiidi+jiqy^
- [E'di +(x<qi -X'di ]lql + JE'qt y(í,_fl for

i = l,...,ng

(4.11)

Equations (4.1) through (4.11) describe system behavior and are used in

this research to derive analytical reduced-order representations of the system.

Techniques to east these equations in the nonlinear state space form (4.1) are

discussed below.

4.2 Transmission NetworkModel

4.2.1 Interface Generator-Network Equations

In order to express the machine equations in network coordinates, we multiply

-/U-f|
(4.11) by e

v '
The d- and q-axis components of stator voltage can be written

as

and

E'd-V¡M<Sl-0i)-RJdl+^\l^ =0 i = \,...,ng

E'^cosfa-Oj-RJ^-X'*!* =0 i = l,... ,ng

Defining

Jd-q,i

Rs,
-

X'q

X'di Rsi

equations (4.10) and (4.11) can be rewritten as

d-q, i ^d-q.^
E<d-VMSi-9.)
Fq¡-V, cos{St -et)

i = \,...,ng

(4.12)

(4.13)

(4.14)

Thus,
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I¡/.íil=h,(x/^/,^) = h/(x/,vJ / = !,..., ng (4.15)

where

h/(x,)^%0() = [zrf_íl,]-,

y, "(ka)

Edi-vMSi-o>)
,i = l,...,ng

4.2.2 Transmission Network Equations

Solving (4.9) for the real and imaginary components yields

UKM*, -0i)+IgiKcos{Sl -0,)+PAK)

-fdVlVkYlkcos{ei-ek-aik) = 0

k=X

idy, cos^ -0,)-/„k, úL\(st -ot)+Qu(K)

-fíViVkYiksin(0l-0k-aa¡) = O

k=\

for i = 1, . . . ,ng . Similarly,

PuiViVtyyj* cos(0, -0k-atk) = O

k=X

Qu{V,)-Yy,VkYik sin(0, -0k-aik) = O

k=X

for i = ng + l,...,n.

(4.16)

(4.17)

(4.18)

(4.19)

Note that, in this model, loads can be represented at generator and load

buses.

Collecting real and imaginary components we have:

Real Power Equations

/^sinfó -0l)+IqiV¡cos{Si -0,)+Pu{K)

-fJVtVkYlkcos{0¡-0k-alk) = O i = \,...,ng
(4.20)

k=\
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PLi{Vi)-£vtVkYtkcos(0i-0k-aik) = Q i = ng + l,...,n (4.21)
k=X

Reactive Power Equations

IdiV, cosió, -0,)-Iq,K sinfo -0,)+ Qu{Vt)

-fdV¡VkYlksm{0,-0k-alk) = O i = \,...,ng
(4.22)

*=i

QLl{V,)-YVlVkY,ksm(0l-0k-aik) = O i = ng + \,...,n (4.23)
k=X

These equations allow us to obtain the nonlinear power system model as

described in successive sections of this chapter.

4.3 Power System DAE Model

The overall system model is obtained by combining the machines equations

(4.2)-(4.6) with the network representation. Let to this end, the state vector be

defined as

x = [__'_, E'dX Efdx Sx o. ••■

E'qng E\g Efdng Sng o>ng]T

The corresponding current injections can be expressed in vector form as

*d-q
=

"d-q, l
'"

'■d-q.ng]

*d-q,k
=

Vdk *qk\

and

v = [v> - v„g v„g+1
- vj

Vk-lK eJ

where, \d_q k
is the current vector in d and q axis of the stator circuit of the fcth

generator; \k is the voltage vector in the /.th bus; uk is the excitation of the fcth

generator.
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The input vector is:

U = IU. ■• ung]

U*
=

[Pmk 'rifle J

Combining the system equations (4.2) through (4.21) results in the DAE

system

¿ = f0(x,Irf.(?,V>u) (4.24)

ld_q=h(x,\) (4.25)

0 = g0(x,I„_?,v) (4.26)

Substituting the Equation (4.25) into (4.24) and (4.26), we obtain

x = f(x,V,u) (4.27)

0 = g(x,v) (4.28)

The proposed method allows for the detailed representation of the

dynamics of machines, FACTS devices and load characteristics in a systematic

manner. The nonlinear nature of this model makes it very difficult to find

general analytical solutions. Conventional ways of analyzing nonlinear system

behavior either rely on linear analysis or are based on detailed simulation of the

nonlinear model (4.27)-(4.28).

For systems of the form (4.27), (4.28), the fundamental task of qualitative

analysis reduces to determining a truncated model that approximates system

behavior around a given operating condition.

4.4 Second-Order System Representation

Assuming that f (x) is continuous and can be expanded, the Taylor power series

expansión up to order 2 of Eqn. (4.27) about a stable equilibrium point results in
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where:

Ax = AJtAx + AGAVG+A1/Au + Hxr(Ax®Ax) + HxG(Ax<8)AVG)
+ Hxu(Ax9Au)+Hax(A\G ® Ax)+H^AV,, ® AVG)

(42g)
+ HGl/ (AVG ®Au)+H^ (Au 9 Ax) + H„G (Au 9 AVG )
+ Huu(Au®Au)

0 = BxAx + BGAVG+B¿AV¿

0 = CGAVG+C¿AV¿

Ax = [Ax, Ax2 Ax3 Ax4 Ax5j

Axx=[AE'qX - AE'qJ

Ax^A^,, - A/T^J

Ax3=[AEfdl •■■ AEfdng]T

Ax4=[a<., - ASj

Ax5=[A©. ••• Aa>ng]T

AVg=[a0, - A0ng AVX
- AVJ

av¿=[a0,9*,g+l - A0„ A^+,

B_ =
"dg, 5g»g~|

dx
_

BG =

"5g,

_5VG

5g»/

5VG_

B_ =
"3g, 5gn/

5V_.

AK„r

n-T

(4.30)

(4.31)
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cG =
5g*.g+l

.
3VG

ag."

5VG_

cL =
5gn«+i

L sv,

3g„"

5V¿.

Further, the constraint (algebraic equations) (4.30 and 4.31) are related as

follows

AV¿=CG¿AVG

AVG=BxGAx
(4.32)

where

C = --C'C

b_g =-(BG+B¿CG¿) Bx

Substituting (4.32) in (4.29), leads to

Ax = AxcAx + A^Au +H^Ax® Ax)+H;cuc(Ax® Au) +

Hiac(Au®Ax) + H„HC(Au®Au)
(4.33)

In Eqn. 4.33, matrices HxliC, H^ and Huu are zero for the classic and

detailed model. Therefore, Eqn. (4.33) can be written alternatively as

Ax = AxcAx + AucAu + H„. (Ax ® Ax) (4.34)

AVG

AV,

B_G

*~gl"xg

Ax (4.35)

Equations (4.34) and (4.35) constitute the analytical model used in this

research.
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Chapter 5

Modal Analysis ofthe Linear ROM

In the previous chapter, a general second-order representation of the power system was

developed. In this chapter the properties of the POD-based reduced order dynamical

model for the power system are investigated with emphasis on the ability ofthe model to

capture key modal properties ofthefull system representation.

Measures are introduced that provide information about the relative

controllability and observability of the linear ROM. Also, measures providing the

participation ofeach generator and load to the modal oscillation can be calculated.

First, the nature of the power system model is examined. A discussion is then

given on the relationship between states and modes.

The method can also be extended to consider higher-order nonlinearities, which

may arise from stressed operating conditions.

5.1 State-Space Realizations ofthe System Model

Based on the nonlinear model in Chapter 4, a second-order normal form

procedure is considered here that allows the study of large DAE models.

In the discussion that follows, we assume that system behavior can be

represented by a DAE model [3], of the form

x = f(x,V,u) (5.1)

0 = g(x,v) (5.2)
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where x e R" is state vector of the system, u e Rm is the vector of inputs, and

VeR' is the vector of algebraic variables.

For clarity of illustration, let the vector of voltage pseudo states be

partitioned in the form

V =

where

v0-fo -

0m K - vj

v_ = [0,m+l 0nb "m+l vj

represent the bus terminal voltages at the generator and load buses.

Expanding (5.1) into a second-order series expansión and using the

notation in Chapter 4 the systemmodel is then written as

Ax = A,Ax + AGAVG + A„Au +H„ (Ax ® Ax)+ HxG (Ax ® AVG )
+ HXB(Ax® Au)+HGx(AVG ®AxJ+H^fAVc ® AVg)
+H^ (AVG ®Au)+ H^ (Au ® Ax)+ HuG (Au ® AVG )
+ HUÜ(Au®Au)

(5.3)

and

0 = BfAx + BGAVG+B¿AV¿ (5.4)

0 = CGAVG+C¿AV¿ (5.5)

where matrices BX,BG,B¿,CG and CL are the Jacobian matrices of the

augmented system defined as

5g„,
B,=

_%
dx

BG =
"5g,

_5VG

dx

dg

dVr.

"R
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B_ =
Sg,

[syL

cG =
5g»g+i

_5VG

c_ =
5g„g+,

dg»g

sv_.

Sg^
5V.

-i?

2£l
5V¿

The set of equations (5.4) and (5.5) may be rewritten in the form

BG B¿ AVG

AV,

B_

0
Ax

Solving (5.4) .and (5.5) forAV¿ and AVG yields

AVi=-C-i'CGAVG=CGiAVG

AVG = -(BG +B.Qj-'B.Ax = B^Ax

(5.6)

(5.7)

The existence of the inverses of the matrices given by the equations (5.6)

and (5.7) determines the stress level of the network. Substituting (5.6) and (5.7)

in (5.3), leads to

Ai = AxcAx + A„cAu + H„c(Ax ® Ax)+ Hxac(Ax ® Au) +

HliIC(Au®Ax)+Hauc(Au®Au)
(5.8)

Here Hxuc, HKC and Huu are zero for the classic and fifth-order model: In

this case, the system model (5.8) reduces to

Ax = AxcAx + AucAu +H^ (Ax ® Ax) (5.9)

Equations (5.9) and (5.6), (5.7) describe system behavior.

The goal is to obtain a ROM that preserves modal characteristics and

input-output characteristics. Let, to this end, WeR"1' be the transformation

matrix, such that W'W = I¿, where the asterisk denotes complex conjugation

and IA is the kth order identity matrix. The corresponding projection matrix is
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Ax = WAi

Substitution of (5.10) into (5.9) and rearranging yields

AÍ = W*AxcWAx +WAucAu +WH„C (W ®WXAx ® Ax)

or equivalently,

and

Ai = ÁxcAi + ÁucAu +H^ (Ax ® Ax)

(5.10)

(5.11)

AVG=BxGWAÍ = BxGAÍ (5.12)

where

<±V¿ = C^B^WAi = CGiBxGAi = C^Ai (5.13)

A_C=WAXCW

*™uc
=
" ABC

Hxtc=WHxxc(W®W)

and W* is the inverse matrix W

Remark 5.1. Matrices B^ and Cx¿ give a description of the way in which

variations in the states appears on the bus voltage deviations.

Further simplification can be obtained by noting that the nonlinear term in

Eq. (5.11), can be represented by its Carleman representation

Hxxc(Ai®Ai) =
Ax H^.Ax

Ai'H^Ai

= Ax

H
xrl

H
xxk

Ax (5.14)

where HaieRw and Ai e R* The functions Hra e R*x* may be though of as

a second-order corrections to system behavior and contain information on

modal interaction involving the primary (linear) modes.
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The system model contains 2w differential equations, 2m algebraic

equations for the generation buses, and 2(nb-m) algebraic equations for the

load buses, for a classical system representation. A number of properties of the

proposed model that are relevant to the subsequent analysis will now be

presented.

5.2 Modal Analysis of the linear ROM

Let Ai = «pz be a transformation that eliminates the cross-coupling between the

state variables, consider a new state vector i
,
where <j> is the modal matrix of

Substituting the above expression for Ai in the equations (5.11-5.13), we

have

i = \¡/Áxc(pz + \¡»ÁaeAu + yH^ (<¡> ® «¿Xz ® z)

Upon simplification,

i = Az + vÁÜCAu +H^ (z ® z) (5.15)

where

í- T * T
_ T~\f

v
= ki v2

-

v* J

(5.16)

(5.17)

cund matrix A is a diagonal matrix with the eigenvalues Xx,X2,...,Xk as diagonal

elements. We assume that \¡/ and <p are normalized such that,

V9
= I*. V

= 9"'

Application of this transformation to the nonlinear part
in (5.15) yields

H«ca(¿®z) = Z'

H
XJ-A1

H
XXfxJc

z = z

<Í>H\AmVHx

VHkAHkVHk

(5.18)
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where Am is a diagonal matrix with the eigenvalues XHIX,XHÍ2,...,XHlk as

diagonal elements.

These equations have the same structure for nonlinear analysis.

5.3 Mode Shape, Sensitivity, and Participation Factor

5.3.1 Mode Shape and Eigenvectors

In the previous section, we expressed the system response in terms of the state

vectors Ai and z
, namely

Ai(. ) = mi(t)
= l<p. <p2

••

VkFV)

z(/)=vAi(í)
= |y, w2

■-

v*M0

The variables Ax,,Ax2,...,Axk are the original state variables chosen to

represent the dynamic performance of the reduced system. The variables

zx,z2,...,zk are the transformed state variables such that each variable is

associated with only one mode. In other words, the transformed variables z are

directly related to the modes.

The right eigenvector gives the mode shape, i.e., the relative activity of the

state variables when a particular mode is excited. For example, the degree of

activity of the state variable xk in the ¿th mode is given by the element <pk, of the

right eigenvector <p, .

The magnitudes of the elements of cp, give the extents of the activities of

the k state variables in the ith mode, and the angles of the elements give phase

displacements of the state variables with regard to the mode.

The left eigenvector y, identifies which combination of the original state

variables displays only the ith mode. Thus the fcth element of the right

eigenvector <p, measures the activity of the variable xk in the ith mode, and the
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fcth element of the left eigenvector y, weighs the contribution of this activity to

the ¿th mode.

5.3.2 Eigenvalue Sensitivity

Let us now examine the sensitivity of eigenvalues to the elements of the state

matrix. Consider the equation that follows [2]:

Áxc9,=i,<p, (5.21)

Differentiating with respect to akj (the element of Axc in the kth row and

;th column) yields

A A

5AX. ,. i 5©, dX, » j dm.
—

^<p, + Axc
-^- = —-y.+X,

—VJ-
"\ l| XC +\ ** T/ [ r*.

da^ dakj dakJ dakj

Premultiplying by \¡/,, and noting that $,§, =1 and v,(AX(. -X,lj=0, in

dk.
addition all elements of ——

are zero, except for the element in the fcth row

fakJ

and ;'th column which is equal to 1. Henee we see that the above equation

simplifies to

j¿T
=Mm (5-22)

Equation (5.22) shows that the sensitivity of the eigenvalue X. to the

element a» oí the state matrix is equal to the product of the left eigenvector

element y/lk and the right eigenvector element pJt .

5.3.3 Participation Factor

Following Verghese et al. [1], the relative participation of state k in mode i can

be determined via the participation factor.

Let the participation matrix (P), which combines the right and left

eigenvectors, which is a measure of the association between the state variables

and the modes, be defined as
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a Ia a

P = [P, P2 h] (5.23)

with

P,=

'K' 9\.W.\

'

hi
:=

9i,¥a

A

9k,Wik
_

(5.24)

where q>u is denotes the ftth entry of the right eigenvector <¡>,, and i//¡k is denotes

the kth entry of the left eigenvector y, .

The element Pk¡ = 9kii//ik is termed the participation factor [2]. It is a

measure of the relative participation of the fcth state variable in the ¿th mode

and vice versa. In addition, the participation factor Pki is actually equal to the

sensitivity of the eigenvalue X, to the diagonal element att of the state matrix

A
rr

Pki^
dX,

da
kk

(5.25)

5.4 Controllability and Observability Formulation

Let the system model (5.15) be rewritten in the form

i = Az + H»ÁucAu +H^a (¿ ® i)

or more explicitly,

z = Ai + yAucAu + z*

ÍhAhiVhi

^H2AH2WH2

,<Í>HkAHkVHkJ

with

AVG = BxG<pz
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AV£ = CxLyi

These equations may be rewritten as

z = Áz +M.Au + z* 9//2AH2V//2
(5.26)

^HkAHk^Hk

AVG=MoGz (5.27)

AV¿=M0¿z (5.28)

Referring to Equation (5.26), it is clear that if the ¿th row of matrix Mc is

zero, the inputs have no effect on the ¿th mode. In such a case, the ¿th mode is

said to be uncontrollable.

From Equations (5.27) and (5.28), it is seen that the ¿th column of matrices

M^ and M0¿ determines whether or not the variable z, contributes to the

formation of the outputs. If the column is zero, then the corresponding mode is

unobservable. This explains why some poorly damped modes are sometimes

not detected by observing the transient response of a few monitored quantities.

Based on the above model, controllability and observability measures are

defined for the linear ROM as follows.

Definition 5.1. Consider the system model (5.26)-(5.27). The kxm matrix

Mc __ <¡/Auc is defined as the mode controllability matrix.

Definition 5.2. The 2mxk matrix MoG =BxG<j> and the 2(nb-m)xk matrix

Moi = Cx¿<p are defined as the observability matrices.

These measures are the counterpart of the controllability and observability

matrices used in conventional linear formulations.

In the sequel, a computer algorithm to determine controllability measures

is discussed.
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5.5 Numerical Algorithm

Based on the above theoretical framework, the actual calculation of the relevant

modal quantities now is accomplished by performing the following algorithm.

1. Determine the most energetic modes using the POD approach in section

3.4. These modes are related to the physical state space variables through

the transformation

Ax = WAi = W<¡>z = <pz (5.29)

where <p gives the modes with the most energy.

2. Compute modal controllability and observability matrices. Let the system

behavior be expressed in the form z = \¡/W*Ax = xj/Ax. Matrix \j/, identifies

that combination of the original state variables displays only the ¿th mode,

i.e., the kú\ element of the y, weighs the contribution of the activity of the

variable xk to ¿th mode of greater energy.

3. Compute the matrix of participation factors, P

9x\Vx\ 9\2W2\

9ix¥x2 9-aw-a.

9„x¥xn 9n2V~2n

4. Calcúlate the observability matrix. For the generation and load buses, the

matrix is used that provide the reduced model, because the outputs do not

lose their physical meaning, which provides us a direct relation with the

modes of greater energy and of this form we can see how observable is a

mode anywhere of the network of the system.

Mtf-Brff (5.31)

M0¿=Cxi(p (5.32)

5. Determine the controllability matrix.

9xkVkx

9~2kVk2

9nk¥kn

(5.30)
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M,=VÁ„C (5.33)

In interpreting of the expression given by Equation 5.33, is important to

emphasize that the controllability matrix, provides us a direct relation of the

modes with the excitations of the system, this indicates to us of so controllable

is a mode from the inputs of the system.

5.6 Modal Solutions

Further insight into the nature of the proposed model can be obtained from

modal analysis of the system model (5.15).

Let the ROM representation be given by

x = Axcx + AucAu + íí^ (x ® x) (5.34)

The transformation i = <¡>z , transforms the ROM into the modal form

i = Az + ykucAu +H^ (z ® z) (5.35)

Neglecting higher order terms and assuming a solution to Eqn. (5.35) of

the form

kt) = ehK (5.36)

we can obtain mode-state relationships.

Modal solutions (5.34) are then transformed back into the original physical

domain by using the inverse transformation

*"*
(5.37)

x = Wi

Combining (5.36) and (5.37) yields

x(/) = W<pí(.) =W(peA'í0 (5.38)

where W<¡> denotes is the transformation matrix mapping i(t) to x(/).

58



Remark 5.1. At any instant t, Eqn. (5.38) enables the time evolution of the

physical states, x(t), to be expressed as a linear combination of the system

oscillation modes .

Remark 5.2. The effect of system modes on the network variables can be then

obtained from Eqns. (5.12) and (5.13).

Note that no information is lost in the reconstruction process, since the

sum of all individual contributions gives back the original time series.

5.7 Reduced-Order Model Validation

In this section, we examine the accuracy and efficiency of the low-dimensional

dynamical model obtained from the projection procedure.

Let x be an approximation of Ax in a space of dimensión n, i.e.,

i = WAi

x = WÁXCW'i + WA„CAu +WH„C (W ®W* \x 9 x)

i = Axcx + AucAu +Hm (x ® x) (5.39)

AVG=BxGW*x = BxGi (5.40)

AV¿=Cx¿Wx = Cx¿i (5.41)

The system of DAEs of above, has advantage of that state variables x, has

the same physical meaning that of state variables Ax of the original system, in

addition, it preserves the same dynamic behavior. The validation consists of

comparing the results of the model reduced with those of this model.
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Chapter 6

Application
77i¿s chapter describes the application of the proposed technique to the analysis and

characterization of nonlinear behavior in a test power system. The performance of the

proposed technique is tested on a 16-machine, 68 bus test power system. In particular,

the developed technique is used to analyze the influence of the modes with the greatest

energy in the dynamic behavior ofthe system.

Several case studies are presented and discussed to in which both conventional

eigenanalysis and reduction techniques are used to analyze the ability of nonlinear

ROMs to capture system behavior following large perturbations.

The main interest is focused on determining ROMs for stressed operating

conditions and large-signal perturbations. Numerical issues associated with the

application ofthe technique are also discussed.

The accuracy and efficiency ofthe reduction method is quantified by comparing the

reduced-order system simulations with those from commercial stability software.

Detailed dynamic simulations demónstrate that reduced-order models yield accurate

predictions over a wide range ofoperating scenarios.

6.1 Outline ofthe Study

The proposed method was tested on the NPCC system of test system has 68

buses, 16 generators and 86 transmission lines shown in Fig. 6.1. The base case

condition in the analysis is essentially that given in Ref. [1].
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Figure 6.1. Single line diagram 16 generator system, 68 buses and 86 lines.

Two system representations are considered in the analysis:

1. A classical system representation, and

2. A detailed system representation.

6.2 Classical System Representation

6.2.1 Modeling Considerations

The classical system representation has 32 states. For this model, the state vector

and input vectors is of the original unreduced system are

= [SX ■■■

SX6 cox
■■■

u = [Tmx ■■■ TmUJ

co,J
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The dynamic behavior of the system is described by the following

differential-algebraic equations of motion:

fX = f(x'y'U>
(6.1)

0 = g(x,y)

with initial conditions x(o)=x0. The Equation 6.1 represent a system of 32

differential equations with 136 algebraic equations, this is the reason by that no

represent in the text.

The goal is to represent the dynamic behavior of the system by a low-order

nonlinear ROM of the form

Ai = AxcAi + AucAu + Hxxc(Ai*2iAi)
-

.
(6-2)

Ay = B,xAx

A ■

A A

where Ax is the reduced state vector and the matrices Axc, Hxxe are the linear

and second-order approximations in the ROM, respectively; matrix B^ is a

linear approximation that relationship the algebraic variables of the system with

the reduced state vector.

6.2.2 Application to Transient Stability Data

To verify the ability of the method to determine accurate ROMs, we consider

output data from transient stability simulations. To this end, several

perturbations were conducted including small and large signal perturbations.

Figure 6.2 shows the system response to a three-phase fault at bus 28. This

fault is seen to excite an oscillation in which machines Gen 14 and Gen 15 swing,

mainly, in opposition to machine Gen 16. The other machines have a minor

contribution to the observed oscillation.

As pointed out in Chapter 3, the accuracy of the technique is improved

when the mean valué is removed from the original signáis; this also makes the
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model more efficient. In the developed model, this is accomplished by referring

the system behavior to the inertia center. Figure 6.3 shows system behavior in

the center of angle formulation (COI).

xio-" Angular speed

Figure 6.2. Dynamic behavior ofthe angular speed to a three-phase fault at bus 28.

Angle referred to the center of inertia

Figure 6.3. Dynamic behavior of the angle referred to the inertia center for a three-

phase fault at bus 28.
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Here, solid lines represent the time evolution of the original model while

broken lines correspond to the time evolution of the ROM with an energy

percentage of 99.99%. See Fig. 6.4. In addition in all simulations, the signáis that

represent the time evolution of the original model (solid lines) are overlapping

to the signáis that represent the time evolution of the ROM (broken lines).

x10 Angular speed

dJ

Jj

n ■

'
>i >\

-2

i!i
ai

iu Af AA

1

^ / v

i '

\J

Gen 14

Gen 15

Gen 16

Gen 14

Genis

Gen 16

6 10 12

Seconds

14 16 18

Figure 6.4. Dynamic behavior of the rotor angle position of the original model and

ofthe ROM.

One the objectives of referring the rotor .angle deviations to the center of

inertia and to remove the direct current component of each one of the signáis is

because the proper orthogonal decomposition (POD), is more efficient for

signáis than do not have direct component, i.e., that the energy percentage is

approximately a 99.99% in the majority of the cases.

6.2.3 Construction of Snapshots

The technique in Chapter 4 was applied to determine fault-dependent nonlinear

ROMs. In all cases, the criteria adopted to extract 99.99% of the total energy.
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Following the general approach described in Chapter 3, the observation

matrix was obtained from the snapshots of the simulated data, i.e.

x(o=[8,(o ... 816(.) «.(o ... »l6(or

where <ai (t) = [®, (/, ) e>, (t2 )
■■■

eo, (tN )], for /' = 1,2,.. .,16, and N is the number of

snapshots. In the present simulations, proper orthogonal decomposition is

carried out on 2000 snapshots. The snapshots are equally spaced.

Application of the proposed technique results in a second-order

representation characterized by 23 states. Figure 6.5 shows the spectra of

selected signáis computed to capture 99.99 % of the signáis' energy.

Here, the horizontal axis shows the number of singular valúes required to

attain 99.99 % of the average total energy while the vertical axis shows the

energy captured by each singular valué. Singular valúes 1 through 5 are seen to

capture nearly 99% of the total energy. Singular valué 1 has the largest

participation with about 89% of the energy.

10 15

Singular Valúes

20

Figure 6.5. Energy percentage of each singular valué ofthe ROM.
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6.2.4 Reduced-Order Simulations

To verify the ability of the method to extract the dominant features of complex

oscillations, detailed numerical simulations for the original system model and

the reduced-order representation were conducted. The equations that describe

the original model and the ROM are given in the Chapter 5.

Examination of system results in Figure 6.6 through Figure 6.11 shows that

the ROM accurately approximates system behavior for the entire time window.

Again, we emphasize that the formulation of the center of inertia provides a

more accurate system description thus giving confidence to the adopted model.

In all cases the nonlinear ROM is seen to accurately describe system

behavior thus giving confidence to the proposed model.

Figure 6.6. Dynamic behavior of the angle of the generators given by the original

model and the ROM.
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x 10"* Angular Speed

Figure 6.7. Dynamic behavior of the angular speed of the generators given by the

original model and the ROM.
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Figure 6.8. Dynamic behavior of the voltage magnitude in the generation buses,

given by the original model and the ROM.



Angle in the generation buses

Figure 6.9. Dynamic behavior of the angle in the generation buses, given by the

original model and the ROM.

x 10
3

Voltage in the load buses

Figure 6.10. Dynamic behavior ofthe voltage magnitude in the load buses 40-42, 50

and 52, given by the original model and the ROM.



Angle in the load buses

Figure 6.11. Dynamic behavior of the angle in the load buses 40-42, 50 and 52,

given by the original model and the ROM.

6.2.5 Physical Interpretation ofthe POMs

Proper orthogonal modes have a similar interpretation to linear modes. Table

6.1 shows the eigenvalues associated with the POMs. A key feature of the model

is its ability to preserve the eigenvalues of the linear model.

Further insight into the nature of these modes can be gleaned from

frequency spectra of the ROM. Let Ax = <pz be a transformation that eliminates

the cross-coupling between the state variables. Application of this

transformation to (6.2) yields the uncoupled model

í = Áz + vÁ_cAu + HxtcA(z<_.i) (63)

Neglecting second-order terms yields the linear ROM

z = Az (6.4)

where A = diag [i, X_ ■■■ i^J.
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The linear system given in (6.4) has a solution of the form that follows

Ax = WAi = Vi$eki_ (6.5)

where z0
= z(o), while that original model has a solution of the form

Ax = ípe^zo (6.6)

Figure 6.12 and Figure 6.13 shows the results of the Eqns 6.5 and 6.6. Solid

lines represent the time evolution of the original model while broken lines

correspond to the time evolution of the ROM. Again, results are in good

agreement showing the correctness of the analysis.

Table 6.1. Eigenvalues ofthe original model and ofthe ROM

OriginalModel Reduced OrderModel

Eigenvalues Frequency Eigenvalues Frequency
- 0.9961 ±j\ 1.9186 1.8969 -1.0021 + 711.9083 1.8951

-1.5648 + 79.5818 1.5250 -1.1 530±79.5072 1.5131

-1.2032 ±y8.6381 1.3748 -0.7341±78.6653 1.3791

-1.1 747 ±y8.0243 1.2771 -1.4769±77.9856 1.2709

-1.0662 ±76.8932 1.0971 -1.3493 ±77.0376 1.1201

-0.2941 ±77.3 139 1.1640 -0.3740±77. 1663 1.1406

-0.0945 ±74.9457 0.7871 -0.0911 ±74.9430 0.7867

-0.7961 ±74.3 153 0.6868 -0.7934±74.3 105 0.6860

-0.3083 ±72.7079 0.4310 -0.3095 ±72.7081 0.4310

-0.1 965 ±73.5507 0.5651 -0.1 971 ±73.5508 0.5651

-0.6745 0 -0.6910 0

-0.0000 0 -0.0005 0

-0.9785 ±79.9523 1.5840 -0.2146 0

-1.3377 ±79.7723 1.5553

-1.3900±;7. 1441 1.1370

-1.4826 ±78. 1129 1.2912

-1.1726±78.2010 1.3052

71



Angle
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Figure 6.12. Dynamic behavior of the angle of the generators, given by the

Equations 6.5 and 6.6

x -io'0 Angular Speed
2.5 1 , , 1 1
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Figure 6.13. Dynamic behavior ofthe angular speed ofthe generators, given by the

Equations 6.5 and 6.6.
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6.2.6 Modal Properties

Based on the linear ROM, detailed studies were conducted to evalúate the

ability of the method to extract modal properties. Discussion will be limited to

modes 8-10. i.e., with associated eigenvalues -0.7934 ±74.3 105,

-0.3095 ±72.7081 and -0.1971 ±73.5508 (refer to Table 6.1):

• Mode -0.7934 ±74.3 105

Reduced Model

90 0.005

Complete Model

90 0.005

Gen 12

Figure 6.14. Mode shape indicates that is an inter-area mode, because the generators
12 and 13 oscillate against ofthe rest ofthe system.

• Mode -0.3095 ±72.7081

Reduced Model

90 0.003

Complete Model

90 0.003

180

Gen 15

270

Figure 6.15. Mode shape indicates that is an inter-area mode because the generators
14 and 15 oscillate against ofthe rest ofthe system.
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Mode -0.1971 ±73.5508

Reduced Model

Gen 14 g0 0 005

120 ><rj^/ir---^ 60

210

Gen 16

Complete Model

Gen 14^. 90 0.005

270 270

Figure 6.16. Mode shape indicates that is an inter-area mode because the generator
14 oscil lates against ofthe generator 16.

Also of interest, Tables 6.2 and 6.3 compare the controllability and

observability of the ROM with that of the original system model. Results are

seen to be consistentwith the full system representation

Note that in this analysis, the original model is described by

Ax = A^Ax + AucAu+H„ (Ax 9 Ax)

AVc=B,GAx

AV¿=C,¿Ax

(6.7)

The complete model is a model that has the same dimensión that the

original model, but which only conserves the eigenvalues of the reduced model

and the rest is zero. For details see the chapter 5, the equation that describes the

complete model is

x = A;tci + AucAu + Hxtc(i®i)

AVG=B,GW"x = BxGx

AVi=CJt¿Wx = CJ[¿x

(6.8)
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The reduced order model is described by

Ax = k„Aí + AucAu +ÚmÍAx9 Ax)

AVG=BiGAx (6.9)

AV¿=C,¿Ai

In interpreting these results we remark that the original model is a global

dynamic equivalent of the system, while the complete model and the ROM are

dynamic models that model a specific disturbance of the system; this is the

reason why the full system model and the ROM are more precise that the

original model.

Table 6.2. The modes and their respective generators by means ofwhich are more

controllable

Mode
Reduced model Complete model Original model

Generators Generators Generators

-1.0021 ±71 1.9083 11,10,1 11,10,1 11,10,12

-1.1 530 ±79.5072 4,5,7 4,5,7 8,1,7

-0.7341 ±78.6653 11,4,10 11,4,10 10,1,8

-1.4769 ±77.9856 3,2,4 3,2,4 5,6,7

-1.3493 ±77.0376 3,2,4 3,2,4 9,5,6

-0.3740 ±77. 1663 10,11,8 10,11,8 12,13,10

-0.0911 ±74.9430 15,14,16 15,14,16 15,14,16

-0.7934 + 74.3105 10,4,5 10,4,5 7,5,6

-0.3095 ±72.7081 10,8,11 10,8,11 15,7,6

-0.1971 ±73.5508 10,16,14 10,16,14 16,14,7
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Table 6.3. The modes and their respective buses of generation and load where are

more observable.

Mode Reduced model Original model

Generation buses Load buses Generation buses Load buses

-1.0021 ±71 1.9083 63,64,62 32,33,51,34,38 63,62,64 32,33,51,34,38

-1.1530±79.5072 56,53,60 19,20,25,2,29 60,53,59 25,2,3,26,27

-0.7341 ±78.6653 56,53,60 19,25,2,20,29 53,62,60 25,2,3,31,38

-1.4769 ±77.9856 56,55,61 20,19,29,28,10 57,59,56 20,23,22,19,21

-1.3493 ±77.0376 61,54,55 29,28,10,11,12 61,57,56 29,28,20,19,26

-0.3740 ±77. 1663 64,65,62 33,32,38 64,62,65 33,32,36

-0.0911 ±74.9430 67,66,68 42,41,40,52,48 67,66,68 42,41,40,52,48

-0.7934 ±74.3 105 57,59,56 20,19,23,22,21 57,59,56 20,19,23,22,21

-0.3095 ±72.7081 67,66,57 42,41,20,19,23 67,66,57 42,41,20,23,19

-0.1971 ±73.5508 66,68,57 41,52,50,40,20 66,68,57 41,52,50,40,20

6.3 Detailed System Representation

For this study, each machine was represented by a fourth-order system model

and equipped with a first-order excitation system. The overall state model has

80 differential equations, 136 algebraic equations.

Defining

x = [E'qX ■•■

FqU E'di
-

E'dX6 Efdx
•••

Em Sx
-

SX6 mx
- aj

and

U =

\Fm\
"

-'mió *re/l
' ' '

"re/16 i

The nonlinear system model can be east in the form (6.1).
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6.3.1 Nonlinear ROM

Using the proposed technique the system is reduced to a 26nd-order system

representation.

Figure 6.17 shows the energy spectrum obtained to capture 99.99% of the

signal's energy. Note that in this case, the POD technique captures, essentially,

26 singular valúes of a total of 80 singular valúes.

15

Singular Valúes

Figure 6.17. Energy percentage of each singular valué ofthe ROM

Figure 6.18 through Figure 6.22 shows the system response to the same

contingency condition in section 6.2. For the purposes of comparison, the same

energy criterion is adopted in both set of simulations.

Simulation result show that the ROM is able to capture the essential

system behavior. While no directly discussed in the work, the efficiency of the

method increases as the order of the model increases. In these plots, the solid

lines indicate the original system response while the dashed
lines indicate the

ROM response.
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Figure 6.18. Dynamic behavior ofthe angle ofthe generators, given by el original
model and the ROM.
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Figure 6.19. Dynamic behavior ofthe angular speed ofthe generators, given by the

original model and the ROM.



Efd

0.25

0.2

0.15

0.1

0.05-

-0.05

-0.1

t-
1 ! 1 1

A
I l \

r \ \i o \

-l \\

--
-^

i ^css?» - -^"
-_ / V

1 \ a> -t Y

\ VCV_.rr

-*^¿^^tjSto.*i--WK^'_¥i**-3»^Eal«-- 52-' .-="_r.:;

/•*
\ *v

-_*-> _r

> -

V /

-1 1 'l 1 1 1 1 1

5 6

Seconds

7 8

Figure 6.20. Dynamic behavior of the voltage Efd , given by the original model and

the ROM.

■ ier Eqp

15

10-

\

/
\

/'

i \

' '\ \ \\
/r-y ^rr'^hr*r\/ i ,\ Y>\_ v* v

\¡
i IX //

I

5 6

Seconds

10

Figure 6.21. Dynamic behavior ofthe voltage E'q , given by the original model and

the ROM.



Edp
-i

——

i 1 1 r

Figure 6.22. Dynamic behavior of the voltage E'd , given by the original model and

the ROM.

Proper orthogonal modes have a similar interpretation to linear modes.

Table 6.4 shows the eigenvalues associated with the POMs. This is for an energy

percentage of the 99.99% of the snapshots.

Table 6.4. Eigenvalues ofthe ROM.

Number Eigenvalue Frequency Number Eigenvalue Frequency

1 -1.2764 ±9.7851 1.5573 9 -0.2749 ±72.6653 0.4242

2 -1.8783 ±78.6989 1.3845 10 -0.0363 ±71 .3546 0.2156

3 -7.5025 0 11 -1.2994 ±70.6 109 0.0972

4 -0.8894 ±77.2466 1.1533 12 -1.1864 0

5 -1.0384 ±76.3237 1.0064 13 -0.0009 0

6 -0.5151 ±74.5070 0.7173 14 -0.3234 0

7 -0.2452 ±73.5069 0.5581 15 -0.2624 ±70.3390 0.0540

8 -0.8545 ±73.1333 0.4987
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Also of interest, the linear system given in (6.4) has a solution of the form

that follows

Ax =WAi -Wfz-je"

where z0
= z(o), while that original model has a solution of the form

Ax = (pZfjg^

Figure 6.23 and Figure 6.24 shows simulation results corresponding to

Eqns. 6.5 and 6.6. Solid lines represent the time evolution of the original model

while broken lines correspond to the time evolution of the ROM.

Angle

Figure 6.23. Dynamic behavior of the angle of the generators, given by the

Equations 6.5 and 6.6.
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x 10* Angular Speed

Figure 6.24. Dynamic behavior ofthe angular speed ofthe generators, given by the

Equations 6.S and 6.6.

6.3.2 Modal Properties

Based on the linear ROM, detailed studies were conducted to evalúate the

ability of the method to extract modal properties. Discussion will be limited to

mode -0.2749 ±72.6653

Reduced Model

90 0.004

210

Gen 15
3*3° ..
Gen 14

Complete Model

90 0.004

.-■
-- 0 180

270 270

Figure 6.25. Mode shape indicate that is an inter-area mode, because the generators

14 and 15 oscillates against ofthe rest ofthe system
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Tables 6.5 and 6.6 compare the controllability and observability of the

ROM with that of the complete system model.

Table 6.5. The modes and their respective generators by means ofwhich are more
controllable.

Mode Reduced model Complete model

Generators Generators

-1.2764 ±9.7851 13,14,1 13,14,1

-1.8783 ±78.6989 14,10,2 14,10,2

-0.8894 ±77.2466 13,12,14 13,12,14

-1.03 84 ±76.3237 13,8,1 13,8,1

-0.5 151 ±74.5070 8,1,14 8,1,14

-0.2452 ±73.5069 14,13,12 14,13,12

-0.8545 ±73.1333 8,1,13 8,1,13

-0.2749 ±72.6653 13,12,8 13,12,8

-0.0363 ±71 .3546 8,14,13 8,14,13

-1.2994 ±70.6109 1,2,8 1,2,8

-0.2624 ±70.3390 1,8,2 1,8,2

Table 6.6. The modes and their respective buses of generation and load where they
are more observables.

Mode Reduced model Complete model

Generation buses Load buses Generation buses Load buses

-1.2764 ±9.7851 63,64,65 32,33,37,51,34 63,64,65 32,33,37,51,34

-1.8783 ±78.6989 63,55,53 32,33,37,51,36 63,55,53 32,33,37,51,36

-0.8894 ±77.2466 55,63,54 10,11,12,37,13 55,63,54 10,11,12,37,13

-1.0384 ±76.3237 61,55,65 29,20,28,37,13 61,55,65 29,20,28,37,13

-0.5151 ±74.5070 57,59,58 20,19,22,23,21 57,59,58 20,19,22,23,21

-0.2452 + 73.5069 66,68,67 41,52,50,40,49 66,68,67 41,52,50,40,49

-0.8545 ±73.1333 57,59,56 20,19,23,22,21 57,59,56 20,19,23,22,21

-0.2749 ±72.6653 67,66,65 42,41,20,37,9 67,66,65 42,41,20,37,9

-0.0363 ±71 .3546 68,67,66 52,42,50,41,37 68,67,66 52,42,50,41,37

-1.2994 ±70.6109 63,65,64 37,32,36,33,20 63,65,64 37,32,36,33,20

-0.2624 ±70.3390 67,68,66 42,52,41,50,49 63,62,57 33,32,38,46,31

83



As may be observed from this Table, controllability Índices of the ROM are

in good agreement with those of the full system models. Other results, not

included in the chapter, show the proposed mode accurately capture other

modal characteristics.

6.4 Summary of Results

In this chapter a number of illustrative case studies were given in which the

modeling approach of previous chapters was applied to a test system.

Detailed simulation results show that POD-based projections can produce

accurate reduced-order models. Because the extracted nonlinear ROM preserves

the input-output characteristics, the model have the potential to be applied for

control design.

Study results suggest that the analytical formulation becomes more

efficient as the size of the model becomes larger. This issue is particularly

relevant for assessing the accuracy of the method utilized in the paper and

deserves further exploration.
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Chapter 7

Conclusions

7.1 General Conclusions

The work developed in this thesis, presents a new framework for dynamic

characterization of nonlinear systems described by differential-algebraic

equations based on a singular valué decomposition based projection framework.

A new algorithm has been presented for the reduced order model problem

that preserves network structure and input-output characteristics. Using this

approach, one can develop a modeling and simulation technique that retains the

algebraic nature of the algebraic equations and input-output characteristics.

Other potential applications include its use in conjunction with other

analysis techniques, such as normal form theory. Because the model preserves

nonlinear characteristics, information about nonlinear interactions is retained

which makes it useful for investigation of nonlinear aspects in complex systems.

This área needs further study.

A key advantage of the proposed technique is its ability to retain the inputs

and outputs of interest, thus allowing the design of system controllers. The use

of this reduced nonlinear model allows, in general, for a smaller range of

operation. This should be verified in practical applications involving large-scale

systems.
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An important research focus of this study was an examination of the

accuracy of the model using energy concepts. Detailed simulation studies

suggest that the proposed method is accurate, and feasible for the study and

generation of reduced-order dynamic equivalents.

7.2 Future Work

The future áreas of research identified in this work are:

1. The extensión of the proposed technique to design system controllers.

2. The development of an analysis framework for analysis of nonlinear

effects in system behavior based on normal form theory.

3. The generalization of the proposed technique to incorpórate the effect of

flexible ac system controllers.

4. The optimization of numerical procedures to derive the nonlinear ROMs.
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