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Abstract

Processor Array Synthesis for Loop Nests with

Non-Rectangular Iteration Spaces Using the Polytope Model

by

José Roberto Pérez Andrade

Doctor of Science in Computer Science, Information Technology Laboratory

Research Center for Advance Study from the National Polytechnic Institute, 2014

Dr. César Torres Huitzil, Thesis Director

Dr. Rene Armando Cumplido Parra, Co-Director

High-level synthesis methods are concerned with the translation of algorithmic specifications into

representation s at register transfer level or into a hardware description language. One of the

representations used for high-level synthesis is the polytope model, which provides an abstraction to

represent loop computatíons of an algorithmic specification as integer points inside of a polyhedron.

As a results, the polytope model is able to derive dedicated hardware parallel architectures in form

of processor arrays. Processor arrays consist of a set of processing elements connected in a regular

and local way, and able to exploit several levéis of parallelism. ln order to derive totally functional

processor arrays, besides of the processor array data-path, control schemes able to genérate the

processing elements activation signáis, and able to select the required operations are needed. Also,

external memory systems capable of providing data from an external source to the array and capable

of extracting data produced by the array are required.

Previous research works have focused on the generation of processor arrays able to deal with

a unique problem size, and for algorithms whose loop bounds form a rectangular shape. ln this

dissertation. a control scheme able to genérate the control signáis for algorithms with rectangular

and non-rectauglar loop bounds, and whose problem size is larger than a máximum valué provided

during synthesis time is proposed. This control scheme uses local and distributed modules in order to



orchestrate the computations of the processor array. On the other hand, also previous works assume

that the input data are available when the processor array requires them, and they assume that the

output data are extracted when they are produced. ln this sense, this dissertation also proposes

an external memory system built on four architectural cases which could occur using the polytope

model. These architectural cases are based on the use of a multi-clock domain approach, and on

the use of dual-port memories.

The proposed control scheme and memory system are ¡ntegrated into a hardware architecture

framework which was validated generating functional processor arrays for two cases of stud y: matrix-

matrix multiplication and Cholesky decomposition algorithms. Each generated processor array has

different design parameters, and different processor array sizes. All these processor arrays are targeted

for different FPGAs devices. Experimental results exhibit that there is a major impact on increasing

the size of the control on the operational frequencies than increasing the problem size that the

processor array can solve. Moreover, the external memory results show that the peak l/O bandwidth

produced by each of the four architectural cases exceeds the processor array l/O requirements. Also,

results demónstrate that one limitation for implementing the processor arrays (including data-path,

control and memory) is the amount of memory available inside the FPGAs. Furthermore, the results

suggest that solving larger problem sizes comes at the price of dedicating more FPGA silicon to

store data than to compute data. Finally, these processor arrays were evaluated with traditional

metrics such as acceleration, efficiency and relative load imbalance, showing that algorithms with

rectangular loop bounds and low latency operations have a major acceleration, a higher efficiency,

and a lower load imbalance than algorithms with non-rectangular loop bounds and high latency

hardware operations.
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Resumen

Síntesis de Arreglo de Procesadores para Ciclos Anidados con

Espacios de Iteración No-Rectangulares Usando el Modelo

del Politopo

por

José Roberto Pérez Andrade

Doctor en Ciencias en Computación, Laboratorio de Tecnologías de Información

Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional. 2014

Dr. César Torres Huitzil, Director de la Tesis

Dr. Rene Armando Cumplido Parra, Co-Director

Los métodos de síntesis de alto nivel (HLS por sus siglas en inglés) están enfocados a la transformación

de especificaciones algorítmicas en representaciones a nivel de transferencia de registro (RTL por

sus siglas en inglés) o en lenguajes de descripción de hardware. Entre las representaciones usadas

de HLS se encuentra el modelo del politopo, el cual provee una abstracción para representar los

cómputos anidados de una especificación algorítmica como puntos enteros de un poliedro. Como

resultado, el modelo del politopo es capaz de derivar arquitecturas paralelas de hardware dedicado en

forma de arreglo de procesadores. Un arreglo de procesadores consiste en un conjunto de elementos

de procesamiento conectados localmente y de manera regular, los cuales son capaces de explotar

distintos niveles de paralelismo. Con el propósito de derivar arreglos de procesadores totalmente

funcionales, ademas de producir la trayectoria de datos de dichos arreglos, es necesario crear esquemas

de control capaces de generar las señales de activación de los elementos de procesamiento, y capaces

de seleccionar de manera correcta las operaciones requeridas. Así mismo, sistemas de memoria

externos capaces de proveer los datos desde una fuente externa al arreglo de procesadores, y capaces

de extraer los datos generados por el arreglo son requeridos.

Trabajos de investigación previos se han enfocado en la generación de arreglos de procesadores

capaces de resolver un sólo tamaño de problema y en algoritmos cuyos ciclos anidados tienen formas
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rectangulares. En esta tesis, se propone un esquema de control capaz de generar las secuencias
de

activación para algoritmos cuyos ciclos anidados tengan formas rectangulares o no rectangulares,

y cuyo tamaño de problema no sea más grande que un valor máximo dado en tiempo de síntesis.

Este esquema de control se basa en el uso de módulos distribuidos y centralizados con el propósito

de orquestar los cómputos del arreglo de procesadores. Por otra parte, también en trabajos previos

se asume que los datos de entrada están siempre disponibles cuando el arreglo de procesadores los

requiere, y además se asume que los datos de salida son extraídos automáticamente cuando éstos son

producidos. En dicho sentido, en este trabajo de investigación se propone un sistema de memoria

externo construido a partir de cuatro casos arquitecturales que pueden ocurrir cuando el modelo del

politopo es usado. Dichos casos están basados en el uso de un enfoque de diseño de múltiples relojes

y en el uso memorias con puertos duales.

Tanto el esquema de control propuesto y sistema de memoria están integrados en una arquitectura

hardware que fue validada generando arregios de procesadores para dos casos de estudio: el algoritmo

de multiplicación de matrices y el algoritmo para la descomposición matricial de Cholesky. Cada

arreglo de procesadores tiene distintos parámetros de diseño y diferentes tamaños. Todos los

procesadores fueron sintetizados para diferentes dispositivos FPGAs. Resultados experimentales

muestran que las frecuencias de operación del esquema de control son mayormente afectadas cuando

el tamaño máximo de problema (para el cual el control puede generar las señales de activación) es

incrementado que cuando el tamaño del esquema de control se incrementa. Además, los resultados

del sistema externo de memoria muestran que el ancho de banda producido por cada uno de los

cuatro casos arquitecturales exceden los requerimientos de entrada/salida del arreglo de procesadores

También, los resultados experimentales muestran que una de limitación para la implementación de

los arreglos de procesadores (incluyendo trayectoria de datos, control y memoria} es la cantidad de

memoria disponible dentro del FPGA. Además, los resultados muestran que al resolver tamaños de

problema más grandes se dedica una mayor cantidad silicio para almacenar datos que para realizar

cómputos. Finalmente, los arreglos de procesadores fueron evaluados usando métricas tradicionales

como los son la aceleración, eficiencia y desequilibrio de carga relativo, mostrando que algoritmos
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cuyos cicfos anidados tienen formas rectangulares y operaciones de baja latencia en hardware tienen

una mayor aceleración, una eficiencia alta y un bajo desequilibrio de carga que en el caso de algoritmos

con formas no- rectangulares y alta latencia en hardware.



Nomenclature

Acronyms:

AGU Address Generator Unit

ASIC Application Specific Integrated Circuit

AST Abstract-Syntax Tree

BRAM Block Random Access Memory

C.C. Constant Cycle

CDFG Control-Data Flow Graph

CDMA Code División Múltiple Access

CLB Configurable Logic Blocks

CLooG Chuncky Loop Generator

CPU Central Processing Unit

DCN Data Come as it is Needed

DCT Discrete Cosine Transform

DG Dependence Graph

DLP Data Loop Parallelism

DMA Direct Memory Access

DoP Degree of Parallelism

DPRA Dynamic Piecewise Regular Algorithm

DSP Digital Signal Processor or Digital Signal Process ng

FF Flip-Flip

FF-T Flip-FlipT

FFT Fast Fourier Transform

FIFO First-ln First-Out



FIR Finite Impulse Response

FPGA Field Programmable Gate Array

FSM Finite State Machine

GALS Global ly-Asynchronous Locally-Synchronous

GPU Graphics Processing Unit

HLS High-Level Synthesis

HTG Hierarchical Task Graph

l/O Input/Output

ILP Instruction Level Parallelism

LDPC Low Density Parity Check

LLP Loop Level Parallelism

LLVM Low Level Virtual Machine

LPGS Local Parallel Global Serial

LSE Least-Square Estimation

L5GP Local Serial Global Parallel

LUT Look-Up Table

MAC Multiplicaron Accumulation

MatMul Matrix-Matrix Multiplicaron

MIMO Múltiple Input Múltiple Output

MLR Multiple-Parameter Linear Regression

OFDM Orthogonal Frequency División Multiplexing

PA Processing Array

PAR Place-and-Route

PE Processing Element

PIP Parametric Integer Programming

PISO Parallel Input Serial Output

PLA Piecewise Linear Algorithm

PPA Plpelíne of Processing Arrays

RDG Reduced Dependence Graph



RÍA Regular Iterative Algorithm

ROCCC Riverside Optimizing Compiler for Configurable Computing

RTL Register Transfer Level

SARE System of Affine Recurrence Equations

SIPO Serial Input Parallel Output

SoC System-on-Chip

SRAM Static Random Access Memory

SUIF Stanford University Intermedíate Format

SURE System of Uniform Recurrence Equations

TAGM Two-Address Generator Module

TE Transporting Element

VHDL Very High Speed Integrated Circuit Hardware Description Language

VLSI Very Large Scale Integration

WPPA Weakly Programmable Processor Arrays

WPPE Weakiy Programmable Processing Element



Symbols and Notation:

I Iteration space of the source polytope

J Iteration space of the target polytope

C'(I) Iteration dependent condition

f Index or iteration point of the source polytope

J Index or iteration point of the target polytope

<lj, Dependence vector

D Dependence matrix

T Transformation matrix

A 5chedu!er function

A„ Affine scheduler function

Xj Linear scheduler function

tí. Projection vector

'!> Allocation function

P Iteration Interval

T Time space

V Processor space

s Connection vector

/ Delay vector

X Tiling matrix

/. Loop matrix

SSpr, Strip Size of Índex />,,

. ,S',S';»| Strip Size of Índex p-¡

i SSp, Strip Size of Índex p0 or /i¡

• V, Rectangular processor space

} P„, Non-Rectangular processor space

i II
,

Control word



Nmase Largest problem size that can be solved with 11',.

TX(N) Executíon time of a sequential implementation for a problem of size N

TJN) Execution time of a parallel system with p processors for a problem of size N

SP(N) Acceleration of a parallel system with p processors for a problem of size N

E.(N) Efficiency of a parallel system with p processors for a problem of size N

L,(N) Load imbalance of a parallel system with p processors for a problem of size N

Lrp{N) Relative load imbalance of a parallel system with p processors for a problem of size ,'Y

W(N) Computational work of a problem of size N

\\\{N) Computational work of a i-th processor for problem of size N

Wmax(N) Máximum computational work of a processor for a problem of size N



1
Introduction

Research in hardware architecture of computer systems has always been a central interest of the

computer science and computer engineering communities. The investígation goals vary according to

the target application, the programmability of the systems, the environment on which the processors

will be working on, and many other factors. ln high-performance computing systems (HPC) the main

goal is focused on obtaining a high parallelism degree and high communication rates regardless the

computational resources neither the power consumed. On the other hand, in an embedded scenario,

a balance between power consumption and computational performance is desired.

ln fact, in last years, the trend to make a trade-off between computational performance and power

consumption has been increased. This is specially true in embedded and mobile scenarios, where

for example; a mobile phone that supports video playback has a strict power budget, but it still has

to meet certain performance criteria [20], Traditionally, these intensive computational performances

were met only by technoiogy advances like smaller transistor área, higher dock rates and other

improvements. However, problems like power dissipation and thermal constraints have emerged as

domínant design issues; forcing computer designers away from relying on increasing frequency to

1



2 1.1. Parallel Computing in Hardware Architectures

improve performance. Thus, using múltiple processing units for performing parallel computations

and completing a larger volume of work has been the current trend in order to improve performance,

specially in signa! processing applications [85].

1.1 Parallel Computing in Hardware Architectures

The field of parallel processing is concerned with architectural and algorithmic methods for enhancing

the performance or other attributes of computers through exploiting different forms of parallelism.

Nowadays, the main trend for achieving greater performance and increasing the comput3tional

efficiency is by exploiting different forms of parallelism such as instruction, data or loop level

parallelism. With instruction level parallelism (ILP), múltiple independen! instructions are executed in

a processor in the same dock cyde. ln data level parallelism (DLP) approach the same instruction is

performed on different pieces of data in parallel. Loop level parallelism (LLP) approach is one of the

popular parallelization methods in the scientific computing community. ln this form of parallelization,

independent iterations of the same loop are executed in parallel on different processors [85], The

most important opportunities for both parallelism and loca I ity-based optimizations come from loops

that access arrays. These loops tend to have limited dependences among access to array elements

and to access arrays in a regular pattern, allowing good data locality, which is important in hardware

implementations [6].

Several numeric kernels used in signal processing domain can be computed in forms of nested

loops, representing niches of opportunities for being implemented in hardware platforms exploiting

the loop level parallelism, ln fact. it is commonly accepted that at least an 80% of the execution

time is typically spent in computing nested loops, which represent the 20% of program codes [99],

These numeric kernels are required in order to build "complex" algorithms or electronic systems.

Algorithms such as matrix multiplication, matríx decomposition, convolution and system equations

solvers are used as base for building more complex systems For example, matrix multiplication is

required in some Fast Fourier Transform (FFT) algorithm implementations [92], while algorithms for
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MIMO (Múltiple Input Múltiple Output) systems require matrix decompositions such as Cholesky

or QR algorithms [82], [83] in order to meet the MIMO systems requirements. Also, other matrix

algorithms such as matrix-vector multiplication, LU decomposition, forward and back substitution.

as well as the previous algorithms mentioned are used for a wide variety of applications such as facial

feature extraction [67], solving equation systems in LDPC (Low Density Parity Check) codes [114],

autocorrelation of signáis in sensor arrays environments [42]. signatures for CDMA (Code-Division

Multiple-Access) Communications [60], detection techniques for OFDM (Orthogonal Frequency

División Multiplexing) for MIMO systems [83], classification and target tracking in wireless sensor

networks [70], adaptive filtering and two-dimensional finite impulse response (F1R) realization [89],

orthogonal matching pursuit for signal reconstruction in compressed sensing theory [122], least-square

estimation (LSE) and múltiple-parameter linear regression (MLR) [113], among other applications.

1.1.1 High-Level Synthesis

Traditional I y, the parallelism of the aforementioned numeric kernels has been exploited by using

digital signal processors (DSPs) which are optimized for performing in parallel the most common

used operations in signal processing applications like multiplication-accumulation (MAC) operation.

Also, highly specialized coprocessor units based on application specific integrated circuits (ASICs)

or field programmable gate arrays (FPGAs) platforms have been used for exploiting the LLP by

taking advantage of spatial computing paradigm [25], Independently ofthe technology employed,

computer designers are often directly responsible for crafting these highly specialized application-

specific architectures. Despite that these hand-made architectures expioit data and control flow

parallelism intrinsic in the algorithm, considerable effort and time are required to develop such

hardware implementations, The difficulty of designing these hardware architectures relies on:

• As a first step, hardware designers must understand the algorithm to be ¡mplemented into

hardware in order to find sources of parallelism.

• Then the designer should explore several ideas for different architectural schemes that

completely or partially exploits the algorithm data parallelism.
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• When the first architectural drafts are conceived, hardware designers must come up with control

mechanisms and memory systems in order to control, to feed and to extract data to/from the

hardware data-path. Also, designers should find a balance between hardware resources and

speed requirements.

• Finally, the designer must select one or some explored ideas that can be implemented into the

hardware architecture.

ln summary, these hardware architectures could be very complex to design in a hand-made

fashion, leading to spend much time for the design space exploration. Moreover, the design of these

parallel architectures by hand is cumbersome and error-prone. A hardware assisted approach to

automatically genérate dedicated hardware architectures might be benefícial for implementing loop-

based algorithms. High-level synthesis (HLS) methods are not error-prone and ailow a faster design

space exploration than in the case of hand-made architectures [44], Generally, HLS methods try to

extract automatically the parallelism presented in an algorithmic input specification, and at the same

time, they derive parallel hardware structures from this algorithmic input. The parallelism extraction

and derivation of the hardware structures are performed, by a synthesizer, at a high-level where

most of the information needed for deriving the hardware architectures is available. Similarly, in the

software context, a compiler is in charge of extracting the parallelism from a sequential program.

ln both contexts, the process of extracting the parallelism for parallel software or deriving hardware

modules is called automatic parallelization

High-level synthesis ¡s the process of automatic generation of hardware circuits from behavioral

descriptions. The target hardware circuit consists of a structural composition of data-path, control

and memory elements. The fundamental tasks in HLS methods are decomposed into hardware

modeling, scheduling, resource allocation and binding, and control generation [62], Several HLS

methods can be found in the literature, each of them using different hardware models and deriving

different kind of hardware architectures. Among these models are the control-data flow graphs

[CDFG) [90], the hierarchical task graphs (HTGs) [63], the Kahn process networks [5] and the
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polytope model [80]. Although some these HLS approaches use as algorithmic representaron loop-

based algorithms they do not offer any parallelization, since they genérate highly-pipelined mono-

processors in order to achieve a higher data throughput. However, the polytope model is able to

expose the loop level parallelism of sequential loop-based programs.

1.2 Automatic Parallelization on the Polytope Model

The polytope model is an intermedíate abstraction based on parametric integer linear algebra, integer

linear programming, affine array accesses, and transformation based on integer matrixes. Formaliy,

a polytope is defined as a geometric object whose volume is defined by an intersection of a finite

number of n — 1 sub-spaces that divide an n. dimensional space. The polytope can be expressed by a

system of inequalíties that defines each one of its faces. Applying the polytope model to a sequential

program, each one of these faces represents a lower or upper loop bound of a nested loop, while the

set of integer point belonging to the polytope represents an iteration from a loop program.

The polytope model is recognized as a parallelizing approach for transformíng loop programs

into parallel architectures with distributed memory. Methods and tools based on it have been used

in parallelizing compilers since some years ago for distributed memory parallel machines [80], Also,

this model provides an abstraction to represent loop nest computations and its data dependences

using integer points in a polytope. ln order to parailelize a loop nest, the polytope model finds data

dependences among different dynamic executions of the same statement to determine if they can

be executed on different processors simultaneously [6¡. Mainly, the polytope model targets counted

loops that manipúlate array access with affine indexes extracting the parallelism at loop-level (LLP)

Note that by using this model no overhead in discovering parallelism is introduced at run time due

to the polytope model is a static parallelization method. ln fact, compiler transformations can be

used to expose the parallelism implicit in the code of loop programs. For example, when parallelism

exists in an inner nest, the compiler can exchange the loop with the outermost loop, and thereby

maximizes the exploited parallelism [85].
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1.2.1 Processor Arrays

Besides of using the polytope model for automatic parallelization in compilers área, it ¡s actually used

for the synthesis of hardware architectures in form of processor arrays [23], [36], [44]. The concept of

processor arrays has its origin in systolic array designs. A systolic array is a locally connected parallel

architecture, whose structure is well-suited to the implementation of many loop-based algorithms in

scientific computation, signal and image processing, biological data analysis, etc. The term systolic

array was coined by Kung and Leíserson in 1978 to describe application specific VLSI architectures

that were regular, locally connected and massively parallel with simple processing elements (PEs)

[78]. The systolic array design differs from the conventional von Neumann computational model in

¡ts highly pipelined computation, since once a datum Ítem is brought out from the memory, it can

be used effectively in each PE while the datum is being pumped from a PE to another PE along the

array. This is especially appealing for a wide class of compute-bound computations, where múltiple

operations are performed on each data ítem in repetitive manner [76].

Processor arrays are often associated equally with systolic arrays, but the processor array term is

far beyond. The computational regularity of these loop-based algorithms is reflected in the processor

array, whose structure corresponds to several different potential levéis of parallelism that can be

exploited [64], Also, processor arrays are concerned on memory hierarchies and control schemes

needed to exploit fine-grain or coarse-grain parallelism level. Consequently a more complex design

than systolic arrays is required.

Furthermore, processor arrays assume the necessity of having less amount of processing elements

due to hardware constraints, a memory hierarchy for storing data in order to compute several problem

sizes, and control mechanisms for synchronizing the PEs activation and their computations. ln other

words, a processor array needs memory hierarchy and control mechanism which provide functionaiity

for solving size independent problems, contrary to the systolic arrays which are able to solve only a

particular problem size [64]
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1.2.2 Processor Array Design Methodology

The most common methodology used for automatic parallelization based on the polytope model for

the synthesis of processor arrays consists in a set of steps varying from authors [23], [36], [64]. This

methodology is shown in figure 1.1 and it consists of the next steps:

1. Specify the original program as a specific input representation by performing some traditional

compiler transformations such as single assignment, normalization, localization or broadcast

removal, sinking code, dead code elimination among others. The transformed input

representation is called source polytope.

2. Extract information like the dependence graph, the reduced dependence graph and the

computation domain from the source polytope.

3. Define a timing function, or scheduler that assigns a computation date to each task. A

scheduler that maps every task to the first possible time step atlowed by the dependences is

called free or greedy scheduler [28],

4. Define an allocation function that assigns the task to PE coordinates so as to avoid conflict,

i.e. no two tasks with the same computation time are assigned to the same PE [80]

5. Apply the scheduling and allocation functions to the source polytope in order to obtain the

target polytope which is a space-time representation of the original loop nest.

6. Obtain from the target polytope the systolic array, also called full-size processor array,

interconnection topology among PEs

For a parallel execution, the polytope that represents the original program is grouped into

time slices, i.e. a set of points that can be executed in parallel. The entire process of systolic

design in polytope model can be viewed as the application of a series of transformations to the

ínitial specification, until the description of the final array is obtained. ln order to perform these

transformations it is necessary to transform the original code by a space-time function which is
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Figure 1.1: Design flow methodology for deriving systolic arrays.

'epresented by a unimodular matrix. However, if the methodology shown in figure 1.1 is strictly

followed some problems are presented:

• The resulting full-size array would be able to solve a unique set of problem instances for a

specific size problem.

■ Memory management (data feeding for processor array and data recollection from processor

array) becomes difficult. This is because the resulting processor array is highly parallel, and it

usually requires several chunks of data in order to execute an algorithm and. at the same time,

the processor array produces several results that must be extracted from it

• The total number of PEs could be dependent on the problem size (size ofthe iteration space).

This leads to have several processor arrays that solve the same algorithm but for different sizes.

• The resulting processor array could be non-ímplementable in a hardware architecture. This is

because for large problem instances the processor array could require several PEs. Therefore,

área resources could be easily exceeded.
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• The PE percentage usage could be low because once a PE has finíshed ¡ts computations, it

will be no longer required during the rest of the algorithmic execution

One strategy that helps to deal with these situations is adding a transformation called partitioning.

This transformation has been studied in detail in compilers área [6] and it is wídely used in processor

array synthesis área [36], [65]. ln compiler área, partitioning is used to improve data locality through

better cache reuse on sequential processors, while in processor array synthesis área it is used to

virtualize the full-size array into a smaller array with a fixed number of processors.

The partitioning idea is to divide the computations into chunks such that the corresponding data

fits into cache [64]. Partitioning covers the iteration space of computations and divides the original

iteration space in several iteration spaces that are subsets ofthe original one, and then mapping

these subsets into a physical processor array. ln fact, these subsets can be viewed as a virtualization

of the logical processors whose functionality is mapped by a physical array prevíously given. Adding

to figure 1.1 the partitioning transformation, the methodology for the processor arrays generation in

the polytope model is shown in figure 1.2. The new steps consist of:

7. After space-time transformations, the target polytope space or time indexes can be partitioned.

This Índex partitioning leads to variable array sizes at compile time, preserving the topology

interconnection among PEs.

8. With the partitioned target polytope, it is generated a control scheme, a memory controller

and an abstract representation for the processor array topology. The control scheme would

indicate when a PE inside the processor array must be activated at certain time instant. The

memory controller would be able to feed and extract data to and from the processor array.

9. It is given a functionality for all the PEs in the abstract processor array representation according

to the algorithm that it is being treated.
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RDGandDG

Figure 1.2: Design flow methodology followed in the polytope model with partitioning. The

highlighted steps are where this research is focused.

1.3 Research Problem

1.3.1 Problem Description

By partitioning the computations, it emerges a situation that in a full-size processor array is not

present: the generation of activation signáis for the PEs reutilization. ln a full-size processor

array a PEs is activated one or more consecutively times, but once the PE stops, the PE remains

¡nactive during the rest of the algorithm computations On the other hand, in a processor array

generated by partitioning, an ¡nactive PE could be reused during an algorithm computation due to

the virtualization process from the full-size array to the physical array. Moreover, it could happen

that some computations are not mapped to all the PEs when a partition of the original computation
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is being executed, and consequently not all the PEs are activated during the partition computation.

Such characteristic occurs when the algorithms have non-rectangular loop bounds (concept explained

in Chapter 3) like in the case of QR, Cholesky and LU decomposition algorithms. This research

work pays special attention on algorithms with non-rectangular loop bounds and the control signáis

generation for such kind of algorithms.

Furthermore, in theory, a partitioned processor array is able to deal with several problem instances

of different problem sizes. However, in practice, some automatic synthesis tools based on the polytope

model, are only able to produce processor arrays (full-size or partitioned) able to deal with a unique

problem size. One goal of this research work is to derive processor arrays able to deal with several

problem instances of several problem sizes.

ln order to build complete functional processor arrays it is needed to provide data from an external

memory source, and at the same time, it is needed to extract data produced by the processor array

and put them into an external memory. Usually, in works covering the processor array synthesis, it is

assumed that data are available to the processor array when they are needed, but it is not specified

how these data are extracted from external sources. Same ¡deas apply for the data computed by

the processor array which must be recollected from the array. ln this sense, it is needed to provide

memory systems able to deal with the processor array data demands. The data feeding and data

extraction from/to external memories is another focus in this research work.

Finally, this dissertation is focused on seven loop-kernel algorithms which have different

characteristics: FIR filter, back and forward substitution, matrix-vector and matrix-matrix

multiplication, Cholesky and LU decomposition. Algorithms, like FIR filter, matrix-vector and matrix-

matrix multiplication, are widely employed by the HLS community since they are used for exemplifying

new synthesis approaches [23], [36], [65], [91]. On the other hand, since this research work is mainly

focused algorithms with non-rectangular loop bounds, algorithms like back and forward substitution,

and Cholesky and LU decomposition are included into the set of loop-kernel algorithms.
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1.3.2 Research Questions

ln this dissertation, the following questions are planned to be answered:

1. What are the advantages of using the polytope model for the generation of processor arrays?

2. What control schemes are needed in order to support non-rectangular iteration spaces and to

provide problem size ¡ndependency?

3. What memory schemes or hierarchies are able to provide and extract data from the processor

array in order to avoid bottleneck from memory?

4. What are the processor array sizes that have a PE utilization percentage above of 50% for the

seven selected loop-kernel algorithms generated by using the polytope model?

1.3.3 Hypothesis

The hypothesis stated in this research work is: "The polytope model, used for the generation

of processor arrays, is useful for the construction of control schemes and memory hierarchies which

preserve the local connections among PEs, and respect the massively parallel implementations needed

in digital signal processing systems based on matrix operations represented as nested loops"

1.3.4 Main Objective and Specific Objectives

The main goal of this research work is: "The design, implementation and validation of an archítectura

framework for supporting the generation of processor array hardware architectures for loop-based

digital signal processing algorithms that can be modeled as a polytope" The specific objectives of

this research work are:

1 To design processor array hardware architectures that support the transformations involved in

the polytope model {space-time mapping, partitioning,
control and memory system generation |
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2. To design a control scheme for non-rectangular iteration spaces independently of scheduler

used.

3. To design memory schemes able to support the parallel computations extracted by space-time

transformations.

4. To provide software tools required in the processor array generation process such as scheduler

generation, space-time transformations and automatic partitioning.

5. To provide a set of transformations for the proposed hardware architectures derived by using

the polytope model.

1.3.5 Contributions

The list of contributions in this research work are:

1. A novel and general architectural framework able to support space-time transformations in the

polytope model, consisting on a control scheme, a memory hierarchy and a processor array

data-path.

2. A general control scheme able to perform the selection of operations inside the PE and the

activation of PEs inside the processor array regardless of the iteration space shape.

3. A novel external memory system able to perform the data feeding to the processor array and

the data extraction from the processor array.

4. A set of software tools that belps in the transformation of sequential loop algorithms, used in

complex digital signal processing systems, into a processor array representation.

1.4 Summary

This chapter has stated the problem that it is addressed in this research. The main drawbacks during

the systolic hardware architectures design consist of:
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1. The complexity of designíng these hardware architectures in a hand-made fashion.

2. The cumbersomeness and error- proneness faced during the design.

3. The iimitation of the design space exploration, due to the time required during the design

process is high.

4. The resulting architectures are fixed to solve a unique problem size.

The polytope model could be used for converting a nested loop program to another versión that

can be executed in múltiple processors. Also, this model could be used for high-level synthesis of

processor arrays able to solve problem instances independent of the size problem, unlike architectures

based on systolic arrays which are size dependent. However, in order to derive these parallel

architectures, it is needed to:

1. Derive memory hierarchies able to provide data to the processor array, and at the same time,

extract data from the array.

2. Derive control schemes for the generation the control signáis needed to actívate, deactivate and

reactívate the PEs inside the processor array, as well as the selection of operations performed

during the execution of an algorithm

3. Derive mathematical expression that helps to créate the memory hierarchies and control

schemes.

Much of the information needed for generating these control schemes and memory hierarchies

can be extracted from a polytope that represents the sequential loop program, and from the data

dependencies presented ¡n the program.
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1.5 Document Organizaron

Chapter 2 is advocated to review the automatic parallelization works in the polytope model presented

in the literature. Section 2.1 begins with an introductory overview ofthe origin ofthe polytope model,

its uses for improving data locality and for parallelizing sequential code. Also, this section lists some

tools needed for automatic parallelization. A review of the scheduling, allocation and partitioning,

and some methodologies and automatic tools used within the context of the generation of processor

arrays are reviewed in section 2.2. A discussion ofthe related works is presented in section 2.3.

Chapter 3 provides the mathematical background involved in the polytope model. Basic

definitions (like iteration space, piecewise regular algorithms, data dependences) needed for modeling

source input specifications are presented in section 3.1. Section 3.2 defines the concepts of

unimodular transformations, scheduling, allocation and iteration interval which are needed for the

space-time transformation. The hardware synthesis for full-size and partitioned implementations is

explained in section 3.3.

The control scheme for supporting rectangular and non-rectangular iteration spaces is described

in Chapter 4. The motivation behind the control scheme and a description ofthe functionality desired

for the controller are presented in section 4.1. Each control component is described in section 4.2.

Section 4.3 shows mathematical expressions for calculating the number of logic elements that the

proposed control scheme requires. The generation of the control signáis for a case of study with a

non-rectangular iteration space is explained in section 4.4.

The memory system derived in internal and externa! memory is discussed in Chapter 5. The

memory hierarchy required by the processor arrays is shown in section 5.1. Section 5.2 briefty explains

the abstraction of the processor array internal memory, while section 5.3 describes the external

memory composed by four different architectural cases according to the space-time mapping. Also,

some mathematical expressions for calculating the number of logic element required by each memory
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architectural case are shown in section 5.4. The derivation of external memory as case of study is

shown in section 5.5

The results obtained in this research work are presented in Chapter 6. The technological platform

used for validating the control scheme and memory system is presented in section 6.1. The results

for the control scheme and memory system are presented in sections 6.2 and 6.3, respectively.

Besides, the implementation results of the architectural framework (¡ncluding the data-path, control

and memory) using two cases of study (matrix-matrix multiplication and the Cholesky decomposition

algorithms) and several processor arrays, derived by following the design methodology shown in figure

1.2, are shown in section 6.4. Section 6.5 explains three different metrics for evaluating the processor

arrays, and section 6.6 presents the evaluation of the ¡mplemented processor arrays as well as some

design exploration for other algorithms.

Finally, Chapter 7 revisits the contributions and research questions of this research work. Also

the conclusions derived from the results, and the possible directions as future work are presented.



2
Related Work

By reviewing the polytope model literature, it is possible to realize that there is a plethora of works

concerning several aspects ¡n automatic parallelization, either in compilers or processor array synthesis

áreas. Also, it is easy to realize that both themes are closely related. Topics like scheduling, allocation

and dat3 dependence analysis are required in both compilers and synthesis fields, while other topics

like code generation and control signal generation are exclusively used on compilers and synthesis

áreas, respectively. Figure 2.1 shows that synthesis and compiüng fields under the polytope model

share an origin and some topics.

ln the compilers side, several works cover aspects for automatic parallelization such as task

scheduling, task allocation, data locality ¡mprovement (memory access or patterns), code generation,

partitioning, etc. On the other side, in literature concerning about hardware synthesis based on

the polytope model, works focusing in automatic software tools, semi-automatic methodologies or

exploration works covering theoretical aspects in hardware generation can be found. Related works

about the control signáis generation, scheduling and allocating computations with or without resource

constraints can be found too. This chapter reviews some works present within the polytope model

17
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context, focusing on hardware generation. The first part of the chapter presents some of the works

that provide an historical overview concerning to the main developments made in loop parallelization

until reachíng the polytope model. Afterwards, some automatic parallelization tools that have been

developed in compilers área are presented. Works related to topics like scheduling, allocation and

partitioning are reviewed too. The second part resumes some processor array implementations either

by being generated in an automatic or semi-automatic way. Also, some main aspect concerning to

partitioning, control generation and external memory are addressed. Finally, the third part of this

chapter presents a literature discussion about the reviewed works.

Dependencias

Scheduling

Allocation and Partitioning

Control Generation

Serla lliatlon

Memory Generation

Dependencíes

Scheduling

Placemenl

Partitioning

Relndexlng Arrays

Improving LocaUly

Figure 2.1: Origins and works derived from the polytope model in compilers and synthesis áreas

including some representative authors in each fieid Image taken from [53].
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2.1 Automatic Parallelization in Compilers Área

2.1.1 Origins of Automatic Parallelization

The bases for automatic parallelization in both compilers and processor arrays áreas using the polytope

model were la id ¡n 1967 by Karp, Miller and Winograd in their seminal paper "The organization of

Computations for Uniform Recurrence Equations" [71]. ln this paper, they introduced the concept

of system of uniform recurrence equations (SURE), a mathematical representation of certain types

of algorithms without a notion of scheduling. The SURE models the structure of computations in

a specific, repetitive, and regular process. Mainly in their paper, Karp et al. studied and analyzed

three ¡deas: how the SUREs computations are organized, ¡f the valúes are well defined (computability

problem), and ¡f it is possible to compute these valúes in a faster way (scheduling problem). To

address these problems, they developed a theory based on linear programming and graph theory.

It took some time until Lamport ¡n [77] tackled the problem of loop parallelization by developing

the hyperplane method in 1974. This method parallelizes a loop nest ¡n such way that the outermost

loop is used for scanning the inner loops computations which are already parallelized. The hyperplane

method was the first attempt to parallelize code, but it works well only if some conditions are satisfied

For example, this method requires that inside the loop body there is not any input/output statement

neither any control instruction (if-else statement) should be placed inside of the loop body. Although

it is not explicitly mentioned, Lamport tackled a special case of SUREs: the "perfectly nested loops"

Essentially, a perfectly nested loop is a sequential program described as a set of loops which only

contains statements inside its inner loop, i.e. none statement is placed among loops.

The first automatic parallelization works took place due to theoretical advances like Bernstein

conditions [18], the hyperplane method [77] and the greatest common divisor test [13). ln late

eighties, Alien and Kennedy presented an automatic translator which takes as an input a sequential

FORTRAN code and transforms it to a High Performance FORTRAN code [9]. They developed the
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concept of loop carried and loop independent dependences and proposed one ofthe classic algorithms

used in the automatic parallelization field: the Alien-Kennedy algorithm. This algorithm uses loop

distribution for reducing the amount of sequential statements within a loop. Basically, the loop

distribution consists of grouping loop independent Instances that can be executed in parallel and

execute each group sequentially. This process is repeated for each one of the inner loops.

ln [112], Lam and Wolf propose a set of algorithms and modifícations to the hyperplane method

in order to parallelize a nested loop by using the unimodular transformations theory. The goal of

their work is to detect permutable loops, and to include in a single transformation simple loop

transformations like loop interchange, loop reversal and loop skewing. By appiying this unimodular

transformations the Lam-Wolf algorithm can expose fine-grain, medium-grain or coarse-grain levéis

of parallelism. These levéis of parallelism are extracted by appiying the unimodular transformation

on different levéis of the loop nest and in the case of medium-grain by using tiling.

ln [93], Pugh ¡mproves previous methods for performing loop parallelization by taking again ideas

oresented by Karp eí al. Previous works to [93] aimed at the parallelization for perfectly nested

loops, and they considered the statements inside of the loop body as a single block. However, the

mprovements proposed by Pugh include the support for non-uniform dependences and scheduling

for each statement in a non-perfectly nest loop, Le. without treating the set of statements as a

single block. The loop parallelization is performed by using integer programming techniques for

representing and evaluating dependences, and by using the Omega-Test (an algorithm designed for

dependency analysis).

Although there had been reported works that applied the polytope ideas (like in [9], [71], [77],

[93]. and [112]), it was not untll 1993 when the polytope model was named. ln [80] Lengauer provides

a walkthrough of the polytope model, including ¡ts use for compiling code of parallel architectures and

its potentially use for synthesis of processor arrays. By summarizing ideas shown ¡n several previous

works, it ¡s exemplihed that given an optimization criterion (like the minimization of processor units or
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the execution time) an optimal choice can be made automatically or with minimal human interaction.

Also, Lengauer recommends the polytope model as the basis for processor array synthesis and as an

ingredient in parallelizing compilers.

The contributions made by several authors within the automatic parallelization field leaded to

the development of several toois. Later some of these tools have been used for the generation of

processor arrays. The next subsection is dedicated to briefly describe these automatic parallelization

tools. It does not try to be exhaustive, but it tries to show that the polytope model has been used

for automatic parallelization since some years ago and It is still being as a parallelization tool In

compilers, e.g. the Graphite framework in GCC general- purpose compiler [109].

2.1.2 Automatic Parallelization Tools

Paul Feautrier developed an algorithm for obtaining a set of candídates of the lexicographic mínimum

(or máximum) in a set of integer points belonging to a parametric convex polyhedron [49]. Later,

this algorithm would origínate the development of a software library named Parametric Integer

Programming (PIP or PiPLib). The difference among other integer programming tools is that

in PipLib the polyhedron may be linearly dependent on integral parameters. This library has been

used in the context of loop parallelization [22], [58], data flow analysis in sequential programs [50]

and processor synthesis ¡n tools like PARO [65] and Compaan/Laura [73].

Another library widely used is the Polyhedral Library (PolyLib) [100] written on C. As PIP.

Polylib is able to opérate on objects like vectors, matrixes, lattices, polyhedra and unions of

polyhedra. Operations with sets, vectors and matrixes over polyhedra domains, countlng integer

points, transformations among different representations, and other functionalities are supported too.

It was first developed at IRISA, in Rennes, France, in connection with the ALPHA project. PolyLib

is used for processor array synthesis tools like PARO [65] and MMAlpha [36].
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Among the tools dedicated to the automatic parallelization is the LooPo project [4] elaborated by

Christian Lengauer eí. al. The purpose of this project is to develop a prototype implementation of

loop parallelization methods based on the polytope model. LooPo has been developed since 1994 in

the Passau University, Germany, and it has been put under the GNU license. Some research efforts

in LooPo include the capability of dealing with "while" loops, the code generation for multicore

processors (like modern CPUs and GPUs) and for code generation of low level virtual machine

(LLVM). During the devolvement of this project several master and doctoral dissertations have been

publlshed e.g. [59], [86], and [111].

The Chuncky Loop Generator (CLooG) presented in [14] by Bastoul is a tool for solving the

polyhedra scanning code generation problem with non-unitary steps ¡n a loop program. Instead

of performing a traditional space-time transformation, CLooG applies a new scanning order to the

source polytope by adding indexes in certain positions in order to change the original loop order.

CLooG is the result of Bastoul doctoral dissertation [15]. ln this doctoral dissertation, Bastou!

proposes some modifications to previous algorithms in order to improve data locality and program

performance. Theses ¡mprovements are realized by grouping data in a set of chunks that fits into

the size of cache memories. Also, similar to multidimensional scheduling functions developed by

Freautier, there are proposed the scattering functions for generation of scanning codes. This tool is

used in CLooG-VHDL synthesis tools [39].

PLuTo is another automatic parallelization tool available [22] which has been developed at the

Ohio University. This framework is able to transform C code into OpenMP parallel code, and to

perform locality optimizations for coarse-grained parallelization. Also. PLuTo is able to find good

transformations for improving communication among processors in muit iprocessor environment by

findmg permutable tilable loops. Similarly to CLooG, PLuTo is the result of a doctoral dissertation

[24] where a set of algorithms and heuristics used in the code optimization processes are described

The work developed by Uday W3S extended in the hardware synthesis context in [23] by developing

a semi-automatic methodology for generating processor arrays ¡mplemented in FPGAs
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2.2 Automatic Generation of Processor Arrays

As it was stated in previous sections, the Karp, Miller and Winograd paper [71] laid the basics

for automatic parallelization in compilers and processor arrays. ln the context of processor array

synthesis, the SURE ¡s useful as a behavioral description of the processor array and as an algorithmic

high-level specification. From the SURE, several kinds of loop representations like regular iterative

algorithms (RÍA) [95], system of affine recurrence equations (SARE), piecewise regular algorithms

(PRA) [106], piecewise linear algorithms (PLA) [108], dynamic piecewise regular algorithms (DPRA)

[64] or perfectly nested loop (in the compiler context) have been proposed. All these dasses of

algorithmic specifications define special cases of a SURE either with more restrictions or flexibility.

Note that the aforementioned automatic parallelization tools take as input the specification of a

sequential program and conven it into a parallel versión. Depending of the methodology, the tools

for processor arrays synthesis differ in the kind of input specification (sequentia! loop program or

a SURE). Furthermore, they differ in the high-level transformations (the scheduling, allocation and

partitioning methods) used for assigning a computation date and a place. This section is advocated

to summarize different works concerning these high-level transformations as well as methodologies

used within the polytope context. Also, some works concerning to the control signal generation and

the external memory generation are reviewed too. Finally, tools based on polytope model used in

hardware generation (even though some of them do not genérate processor arrays) are described.

2.2.1 High-Level Transformations

Among the transformations that have been focus of research in the generation of processors arrays are

the space-time mapping transformation (i.e. the computation of scheduling and allocation functions)

and the partitioning transformation. These high-level transformations are needed In order to derive

processor arrays using the polytope model, and consequenlty some knowledge of such transformations

is required. ln the following, a briefly review of related works concerning the computation of

scheduling and allocation functions as well as the partitioning transformation is preseted.
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2.2 1.1 Scheduling

A scheduler is a function which assigns integral time steps to all requrrence equations inside of a

SURE in such way that dependences are preserved, e'.e. it provides the execution order in which the

equations could be executed in parallel. Although in the literature there are several works deling

with the scheduling problem in different contexts, this review is only focused on the polytope model.

As previously mentioned, the Karp et al. paper [71] is one of the first works (if not the first)

tackling the scheduling problem. Other work is the one developed by Feautrier, which presents in

[51] an efficient algorithm for computing affine and piecewise affine schedules for dependence graphs

and affine systems of recurrence equations. ln an extensión of his previous work Feautrier gives in

[52] some evidence for the applicability of multidimensional polynomial schedulers. These methods

proposed by Feautrier are (mplemented in MMAlpha synthesis tool.

ln [28] Darte eí al. deals with the problem of finding optimal scheduling for uniform dependence

algorithms. This paper can be considered as an extensión of [71]. It introduces the concept of free

or greedy scheduler which is the optimal under the criterion of performing the operations as fast as

possible Another optimal algorithm for detecting fine or médium grain parallelism in nested loops

whose dependencies are described by an approximation of distance vectors is presented in [32]. The

term optimal is applied in the sense that this algorithm detects the maxímal number of parallel loops

that can be found. As well as Feautrier in [52], Darte and Vivien in [30] and [31] introduce the

concept of multidimensional schedules almost at the same time.

One of the first works concerning the scheduling problem specifically for processor array generation

15 presented by Thile in [107], ln this work, a method for scheduling and allocating piecewise regular

algorithms (PRA) onto processor arrays is presented based on previous scheduling approaches like in

[28] Concepts like iteration interval, linearly bounded lattice, and linear programming formulations

which serve as foundations in the PARO framework are presented too. Thile explores the problem

of scheduling with unlimited and limited amount of computational resources. Since the scheduling



2. Related Work 25

problem with a limited amount of computational resources is an NP-complete problem, Thile proposes

two branch-and-bound strategies for the integer linear programming formulation in order to avoid an

exponential complexity.

One recent work proposed by Darte et al. is presented in [27], ln this work authors propose

a conflict-free methodology for scheduling multidimensional partitioned arrays. This method is

called input/output serialization. However, they focus partially on the co-partitioned method (a

combinatíon of LSGP and LPGS partitioning approaches) due to some tasks are assumed to be

performed by a software host. ln their partitioning method they use shift register elements to store

and synchronize intermedíate data among processors.

An overview of different scheduling techniques used for automatic generation of array processors

is presented by Hannig in his doctoral dissertation [64]. Although the main contributions of his

dissertation are in the field of modeling the DPRAs and in the development of scheduling techniques

for incorporating local and global allocation for the DRPAs; his work also pays special attention in

overviewing scheduling, allocation and partitioning techniques for such algorithm class. Hannigs

work is helpful providing and overview of the current state of art ¡n the área of automatic generation

of processors array.

2.2.12 Allocation

Allocating a 5URE consists of assigning the equation instances (recurrences) to processors avoiding

that two instances with the same execution date are assigned to be executed in the same processor.

The techniques proposed for getting an allocation function have been either linear allocation

functions, called projection methods, as well as non-linear allocation functions, namely grouping

[29], instruction shifts and partitions. Of these functions, the last three are special cases of piecewise

linear allocations functions, where different linear allocation are applied to different regions of the

domain. It has been conjectured that the optimal allocation function is always piecewise linear, but

this has been not proved [41].
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The minimization of the number of processors is quite difficult since there are several criteria

determining the cost of a hardware implementation, such as the interconnection topology, the number

of registers and the necessary chip área required to implement the processors. ln [54], Fimmel and

Merker, obtain an allocation function using as objective criteria the chip área. First authors propose

an algorithm leading to a small number of processors. Then the algorithm is extended to include

the chip área necessary to implement the processor in silicon, This approach tends to be optimal if

the index space can be well approximated by parallelepipeds, but even ¡f not, the approach leads to

practical results.

Tayou et ai. in [41] tackles the problem of deriving space-optimal processor arrays from a

directed graph given an affine scheduler. They introduce an automatic allocation method based on

a preprocessing by reindexing the Index space. This reindexing leads a new Índex domaln which

allows the derivation of processor arrays using projection vectors. This method transforms an initíal

dependence graph into a new one that enables the projection method to minimíze the number

of processors along a number of directions. ln addition, this preprocessing allows to improve the

potential parallelism by projection of the initial domain. Authors daim that this method could be

used within the MMAlpha context.

2.2.1.3 Partitioning

Partitioning consists of decomposing the SURE computations into sub-blocks of fixed-size that

matches the target architecture characteristics for improving data locality or exploiting different

parallelism granularities. Partitioning is basically motivated by the simple fact that often, the size

of a computational problem exceeds the silicon resources (in form of functional or memory units)

of a fixed VLSI structure, like ASICs or FPGAs. ln the literature, there are different partitioning

approaches derived by different interpretation of the partitioning transformation. The local serial

global parallel (LSGP) approach consists of computing all partitlons in parallel using a sequential

processing element for their execution, The local parallel global serial (LPGS) consists of executing

all computations inside of a partition in parallel and traversing sequentially each partition.
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One of the first partitioning method called super-node partitioning is presented in [68]. This

method is based on a finding a matrix transformation able to schedule the execution order of each

partition and the execution order of the iteration instances inside of the partitions. Although it is

not proposed an algorithm for finding such matrix, it is shown how some imposed tile conditions are

translated to build the matrix.

fvloldovan and Fortes [88] present a technique for partitioning and mapping algorithms into VLSI

arrays. The partitioning is done such that no extra processor complexity is required. The approach

used to partition the problem is dividing the algorithm index space into bands and mapping these

bands ¡nto the processor space. Intermedíate data among bands is stored into first-in-first-out

(FIFO) memories. The partitioning and mapping technique developed throughout the paper consist

of heurística I ly finding a time-minimal function, generating a set of transformations, selecting a

valid transformation among the previous transformations, which requires the least number of bands,

mapping the algorithm indexes to processors and selecting a policy for scheduling the bands.

A partitioning approach able to divide affine dependence algorithms Is presented in [105] by Teich

and Thile. They propose the concept of partial localization for embedding intra-tile or inter-tiíe data

dependencies onto new variables. The major advantages of their work are avoiding the unnecessary

copy operations created by localization prior partitioning, and avoiding the freedom restrictions of

scheduling in early design phases of processor arrays. They suggest to do partitioning as a first step

in the automatic parallelization methodology using their partitioning approach.

Dutta et al. in [43] and [47] propose a scheduling methodology using partitioning as allocation

function. Such work is an example of how the searching of scheduling functions and partitioning

transformation used as allocation function could be gathered in an holistic approach. The scheduling

methodology proposed by Dutta eí al. allows the derivation of global and local controller mapped 3S

synchronous counters which genérate the time steps as specified by the space-time transformation.

Another methodology for partitioning perfectly nested loops programs with consideration of both
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affine and uniform dependences is presented also by Dutta et al. in [48]. ln this last paper a study

of the additional control overhead introduced by the paritioning approach is presented. Besides, an

extensión of their previous works is reported in [46], where a design a methodology for reducing the

hardware cost ofthe global controller and memory address generators by avoiding costly operations

(like complex multiplication and división) is also presented. These aforementioned ideas developed

by Dutta are implemented in the PARO tool [65].

2.2.2 Methodologies for Hardware Synthesis

One of the first works providing a formal definition for processor array is presented in [95] by

Rao. ln this work. he also provides a formal definition includlng the properties of regularity,

temporal and spaclal locality, and pipelined operation. Besides, he proposes the use of RIA as

an algorithmic input for the design ofthe arrays and provides some procedures for deriving processor

array implementations.

Lee and Kedem in [79] present a systematic method for synthesizing linear arrays implementations

from nested loops algorithms. This method uses linear functions for transformíng the original

sequential program of p-nested loops ¡nto a form suitable for parallel execution onto a linear array.

They propose using some criteria (like minimal execution time or smallest number of processors) ir

order to derive feasible mapping that satisfies both sequential and parallel programs. The method car.

be used to derive systolic implementations given the p-nested loop algorithm, or given a processing

element (with specific dat3 links. shift registers and other hardware components).

A design methodology for the systematic synthesis of processor array architectures is proposed by

Teich in [102], According to the author, such methodology is ¡mplemented in a synthesizer, and is

based on three transformations: localization. control generation and hardware matching. These three

transformations are applied to a sequential program until it meets the specification and requirements

of a target architecture. The final representation can be ¡nterpreted as a processor array specification.
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Uday et al. in [23] present a framework for mapping perfectly nested loops into processor arrays

¡mplemented in FPGAs. ln their framework, for control signal generation, they do not use linear

schedulers but multidimensional ones. Besides, for contraction of the control path they associate

each time dimensión of the multidimensional scheduler to two global controllers and each controller

maintains a time counter, and streams the activation signáis from a particular comer of the processor

array with a certain delay. Partitioning is supported by using multidimensional scheduler ín a LPGS

approach, but it lacks of information about any memory support (like FIFO elements) for the

partitioning approach used. Moreover, information about an external memory module in charge

of províding data is not mentioned in this work. This framework is proved by ¡mplementing the

matrix-matrix multiplication algorithm (MatMul).

One recent semi-automatic methodology for deriving sequential hardware with a high parallelism

level is proposed in [8] by Alias et al. This methodology relies on FloPoCo an open-source

tool for FPGA floating point arithmetic-core generation [33]. As input specification it takes a C

program and the amount of pipeline stages desired, producing VHDL code as result. The input

C program is changed by using some transformation within the polytope context like the loop

blocking transformation. Although in their work Alias ef al. obtain a scheduler function, space-

time transformations are no performed, thus the scheduling process gives only the computation order

considering the floating point operational latencies in order to avoid pipeline bubbles. ln other words,

this methodology improves data locality but it does not expose the loop level parallelism. This last

idea is enforced by the fact that they derive highly-pipeliened sequential processor. However, Alias

eí al. show that, from this sequential implementation, obtaining a parallel versión by replicating

the sequential processor is possible. Although it Is not explicitly mentioned, they describe similar

partitioning ideas already presented in [36] and [64] like affine and linear scheduling. The control

generated by their semi-automatíc methodology is composed by a single finite state machine (F5M)

that captures the whole loop nest execution sequence. Also, this control generates external memory

addresses for where the ¡nput/output data is stored.
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2.2.3 Control Generation

ln order to derive processor arrays, the generation of control signáis in charge of activating the

processing elements inside of the array is needed. Also, the selection of the operations performed

during the algorithm execution is required. Although there are several works for deriving the control

structures, these control modules are able to produce the control signáis for a specific problem size.

One of the first attempts for formalize the control signal generation was presented by Xue and

Lengauer in [121]. The basic idea consist of distinguish between different types of computations

specified by two kinds of SUREs. One SURE specifies data flow while the second one specifies

control flow Authors restrict themseives to shown the process of generating the control signáis, and

they do not transíate their ¡deas to hardware structures.

ln [61] Guillou eí al. propose the use of multidimensional schedulers for generating processor

arrays within the MMAlpha context. The main idea for generating the control signáis is to sean

convex unión of all time domains and to provide activation signal for each variable. One way for

achieving this scanning is by using a multidimensional counter, which assembles a set of counters

connected in a cascade fashion producing the time steps for each scheduler dimensión. However,

authors propose the implementation of such multidimensional counter like FSMs.

Bednara et a!. [17] propose a scheme for controiling the bounds of the space-time transformec

¡ndex space that introduces only two additional signáis that indicates the first and the last time step

that a PE will have to execute an operation. These two signáis are propagated locally to neighbor

PEs. Some of this ideas were used for the controller derived by PARO synthesis tool [65] like the

-ombination of global and control facilities. Also, within the PARO context, in [43] Dutta deveiops

a general methodology for control generation when different different partitioning techniques (LSGP,

LPGS, co-partitioning) are used. This methodology is based on generating specialized counters for

scanning the Index space given a space-time mapping and combining global and local control facilities

for decodmg the scanning codes.
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Besides of presenting a framework for the generation of processor arrays, Uday et al. in [23]

briefly describe a control scheme for generating the control signáis obtained from multidimensional

schedulers. For deriving the control, they associate each time dimensión of the multidimensional

scheduler to two global controllers. Each controller maintains a time counter and streams activation

signáis from a particular córner of the processor array with certain delay.

2.2.4 External Memory

One open problem that has been tried to be tackled is the external memory management needed in

order to feed data into and to extract data from the processor array. ln [56] Girbal et al. show how to

design a memory interface for multi-purpose accelerators combaining a direct memory access (DMA)

ordering predictability. ln this work, it is explained the synergy between a specíal unit called stream

and a proposed Stream Table (especial memory element) module which captures most short-distance

temporal reuses and increases the apparent bandwidth. They claim that such stream and Stream

Table form a generic témplate for efficiently interfacing multi-purpose loop-based accelerators with

the memory. However such assumption is left as a future work and not proof is provided.

ln his master thesis Dutta [43], besides of the control generation methodology, briefly discussed

two possible memory address generation schemes for external memories. Also, some mathematical

expressions for estimating the amount of external and internal memory are presented when the

co-partitioning approach is used. This work is within the matrix theory developed in the PARO

framework for deriving processor arrays. Also, within the PARO framework, Hannig eí al. in [65]

describes a scheme for the memory controller synthesis based on the use of counters, decoders,

address generators. and glue logic for interfacing the processor array to other components integrated

in a system-on-a-chip (SoC) environment. However, the input and output data Communications are

only proposed to be done either by functional simulation, by DMA, or by software running on a host

processor.
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Plesco ¡n [91] presents a hand-made solution for interfacing an external memory with a processor

array generated by MMAlpha tool as case of study. It is taken the MatMul algorithm for complex

numbers using a processor array of4x4 PEs. Plesco states that besides of the difficulty of designing a

memory architecture, it is needed to have some knowledge ofthe processor array data acces patterns

and enable an internal data reuse in order to obtain a good performace. Also, within the MMalpha

context, Derrien in [34] deals with memory aspects involved ¡n the generation processor array. ln his

work, Derrien proposes a methodology to derive a set of conflict free schedule for ¡nput/output data

pipelines along the processor array boundaries. These pipelined data are expressed as constraints of

the pipeline directions, and of the number of registers between processors. ln this work, he used the

multidimensional scheduler and the LSPG approach, taking as case of study the MatMul algorithm.

A common factor in these two works is the introduction of latency penalties or the implementation

of input/ouput serialization for external data.

A framework for hardware synthesis of memory address sequencers for synchronous dynamic

random-access memories (SDRAM) is presented by Bayliss and Constantinides in [16]. This work

is one of the first works using the polytope model for deriving memory interfaces for hardware

accelerators. More precisely, authors focused on appiying traditional loop transformations (like loop

interchange) on an augmented polytope representation. This new presentation includes the number

of SDRAM row words and the size of the SDRAM burst. Authors restrict themselves to the use of

unimodular transformations in order to avoid holes in the transformed iteration space. This framework

could be enclosed within the VHDL-CLooG tool since authors use this tool for the control generation

of the memory address sequencers [14], and consequently the memory sequencers generated are only

for high pipelined processors but not for processor arrays.

The generation of optimized remote accesses for loop accelerators generated by Altera C2H tool

is proposed in [7] by Alias eí al. in this work, loop tiling is applied on nested loop programs in order

to mcrease the granularity of DDR memory Communications. Repetitive remote memory accesses

are avoided by improving data reuse among tiles using local memories.
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2.2.5 Hardware Synthesis Tools

Although in the literature there are several works concerning the automatic generation of hardware,

only fewof them are in the scope ofthe polytope model. Thissubsection focuseson works, within the

polytope context, that automatic or semi-automatically genérate hardware putting special attention

to those works that generales processor arrays.

2.2.5.1 MMAlpha

MMAlpha is a programming environment originally developed by Patrice Quinton ef al. from an

IRISA research team [36], [61]. It ¡s based on the Alpha language, and built as a set of Mathematica

toolboxes [94], This language was originally developed as a functional data-parallel language for

an algorithmic description based on SUREs and targeted for the systolic architectures [110]. This

programming environment transforms an Alpha program to a VHDL specification, and to a C code

for simulation purpose. This VHDL code describes a processor array, thus MMAlpha is able to

genérate processor arrays from an algorithmic input.

The MMAlpha design flow consists of a front-end and a back-end. The front-end is in charge of

generating an intermedíate program in Alpha language with space-time notions {virtual architecture),

while the back-end purpose is the generation of a VHDL code from the space-time Alpha program.

Figure 2.2 shows the design flow followed by MMAlpha. First, the Alpha program is syntactícally and

semantically analyzed in order to convert the program to an internal representation (a polytope).

The next step is to obtain a scheduling function either linear [51] or multidimensional [52]. The

one-dimensional scheduling technique provides an execution date for each one of the variables

presented in the Alpha program by using an affine scheduling function. whereas the multidimensional

scheduling is used for providing an execution dateconsidering a temporal succession. ln the MMAlpha

environment, localization, i.e. removing long connections and putting all variables with the same

dimensionality, is optional and is placed after obt3¡ning a scheduler function. After localization the

space-time mapping is applied, providing time and space notions to the indexes of each variable ¡n
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the original Alpha program. If localization was not previously applied, then the variable mapped to

a signal after space-time mapping is broadcasted to other PEs.

f Alpha programming J

Parsing and Code Analysis

_

I Scheduling i

£ Localizaiion |

Space-Time Mapping

*

[virtual Architecture]

_ Hardware Mapping

_¿ Structure HDL Generation

03 I VHDL Generation I
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Figure 2.2: Design flow of the MMAlpha programming environment. Image taken from [36].

The virtual architecture is only an operational parallel description of the initial program, in fact

this virtual architecture is still a subset of Alpha program (called AlphaO). ln order to genérate

an architectural description, it is needed to obtain the PE internal description and to genérate the

control signáis at proper times. The hardware-mapping stage is in charge of performing such actions

The PE internal description is obtained from the virtual architecture. The control signal generation

consists of replacing linear equalities derived from the space-time mapping by the propagation of

simple control signáis to other PEs. The structured HDL generation consists of the re-use identical

processing elements present in AlphaO program. This re-use is accomplished by grouping PEs that

share the same behavior and región in the processor space, giving as result a modular AlphaD

program The final step is the generation of the VHDL code that is performed by a direct translation

of the AlphaD modules to VHDL modules.
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ln case of the processor array is not physically suitable of being implanted, MMAlpha uses the

aforementioned co-partítioning method proposed by Darte eí al. in [27]. ln the context of MMAlpha,

this means to include the functionality of o virtual processors into a single physical processor, and

adding at least u delay units in the internal PEs data-path for each variable of each physical processor.

Finally, the unique mention about external memory management is shown in [27] where they 3ssume

that this task is done by a software host.

MMAlpha has been targeted for solving linear equation systems using the Jacobi method [87],

string matching [36], and computing the score between a hidden Markov model and an observed

sequence [35]. Also traditional algorithms like the FIR filter [94], and MatMul algorithm [61] have

been targeted in this tool. One characteristic that these algorithms share is that their loop bounds

form rectangular shapes. ln fact, there are not shown cases where the design methodology followed

by this automatic tool has been used for generating processor arrays (full-size or partitioned) for

algorithms whose loop bounds form non-rectangular shapes (e.g. back substitution, Cholesky,

QR and LU decompositions algorithms). Moreover. although all processor arrays generated in a

full-size fashion are size-dependent. a processor arrays synthesized by MMAlpha using partitioning

transformation are unable to solve several problem size instances. If the problem size for which the

processor array was derived changes, it will be needed to regenérate the processor array controller,

and consequently to regenérate the whole array for the new problem size.

2.2.5.2 PARO

Another automatic tool for processor array generation is the PARO synthesis tool [65], This tool

has been developed mainly by Teich, Hannig, Dutta and other collaborators in Erlangen-Nuremberg

University in Germany. PARO Is able to map computational intensive nested loop programs into

parallel processor arrays architectures that are modeled in VHDL code. Recent efforts have focused

on the generation of assembly code for coarse-grained processor array architectures [74] for the

invasive computing paradigm [103]. As same as MMAlpha, PARO uses a special input specification

language called PAULA. This language models DPRAs, which are a generalizatíon of the SUREs.
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capable of handle run-time dependent conditions. PARO implements lattice functions, and it uses

external librarles (like PolyLib [100]) for performlng operations over polyhedral objects and several

linear programming solvers (like GLPK [1], CPLEX [2] and PIP [49]) required during the scheduling

process.

Figure 2.3: Design flow of the PARO framework. Image taken from [64],

The PARO design flow consists of a front-end and a back-end shown in figure figure 2.3. The

next design flow description is focused on the generation of VHDL code, since the PARO back-

end is able to genérate VHDL code or code for coarse-grained processor array architectures. The

PARO design (low starts with a PAULA program which describes a specific algorithmic functionality.

Transformations like reduction, dead code elimination, serialization and loop unrolling could be

applied automatically by PARO tool, whereas transformation like localization and loop perfectization

are performed in a seml-automatic way since they require user intervention in order to reduce code

redundancy introduced by PARO. Serialization and loop unrolling are helpful when processor arrays

for image processing filters are derived. Basically. serialization consists of ¡mposing an input or

output sequence for data that come in/out from/to the processor array. while loop unrolling consists

of expanding the loop kernet in a factor of n by the coping of n - 1 consecutive iterations. With
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the purpose of ensuring the correctness of the input specification before performing the space-time

mapping, PARO provides a simulator that reproduces the behavior of the PAULA program. Once it

has been ensured the input program functionality, PARO is able to extract the information needed to

perform the space-time transformation in form of a reduced dependence graph (RDG). This graph is

capable of representing the data dependences among statements inside of a loop nest, and if these

dependences are taken into account during the scheduling process, a finer parallelism grain could be

exploited.

The allocation methods supported by PARO are the projection, LSGP partitioning, LSGP

partitioning and co-partitíoning. ln PARO, the user is responsible for selecting any of these allocation

methods in order to obtain a scheduling function. Once the scheduler has been computed, PARO

performs the space-time transformation over the PAULA program. The binding transformation is

performed by assigning each node ofthe RDG to hardware functional units capable of performing the

node functionality. The processor array synthesis consists of three steps: synthesis of the processor

elements, generation ofthe control structure and derivation ofthe interconnection topology [64].

The hardware synthesis generates a register transfer level (RTL) description which is later translated

and optimized into VHDL code. Also, PARO is able to automatically genérate VHDL test-benches

in order to perform the verification ofthe processor array modeled in VHDL.

The controller generated by PARO uses combined global and local control facilities. All control

signáis that are common for all processor elements are generated by global control units and

propagated through the array, whereas local control is only necessary for signáis that differ among

the processor types [65]. One of the main assumptions in PARO framework is that external data

needed to feed the processor is inserted as it is needed, wíthout specifying any operational module

which completes such task. Although, the mathematical expressions developed by Dutta in [43] are

used for estimating the amount of internal memory (PE internal memory and FIFO memory), the

address generator for external memory presented seems to be left behind of the PARO project since

there is not information about any implementation concerning the external memory.
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Cases of study presented during the development of PARO tool include MatMul algorithm [43],

FIR filter [96], discrete cosine transform (DCT), and images filters like edge detection, bilateral

[44] and gaussian filters [65]. MatMul. FIR and edge detection algorithms are cases of study

that show how PARO could be used for generating partitioned arrays [65]. As the same case of

MMAlpha, algorithms targeted in PARO tool has the rectangular loop bound shape characteristic.

Although during the development of PARO, the mathematical theory for deriving processor arrays

from algorithms with non- rectangular loop bound shapes has been developed, cases of study where

partitioning transformations are applied to algorithms whose loop bounds are not rectangular (like

QR, Cholesky an LU decomposition algorithms) have been not shown. Moreover, processor arrays

derived by PARO are size dependent due to the assumption of fixed tile sizes [44], and they do not

use complex hardware operations used in matrix decompositional algorithm.

Finally, a special mentlon is required for a kind of hardware architecture that has been developed

for supporting polytope concepts within the PARO framework. ln [74], Kissler ef al. present a

class of massively parallel embedded processor architectures called weakly programmable processor

arrays (WPPAs). The basic building blocks in this a architecture are so-called weakly programmable

processing elements (WPPEs). These processing elements are called weakly programmable because

the limíted amount of instruction memory inside of them, and because of the optimized control

reduces the overhead. The instruction set of a WPPE ¡s also kept small and specific to instructions

commonly needed in digital signal processing domain. ln fact, each WPPE can be parameterized at

compile time to contain a predefined number of functional units or user-defined functional units.

2.2 5.3 PICO-NPA

PICO-NPA (Program-ln Chip-Out and Non-Programmable Accelerator) is a system to automatically

synthesize hardware co-processors from perfectly nested loop C programs [72]. The project was

developed in the HP Palo Alto research laboratory and now it is being commercialized by Synopsys

with the ñame of PICO Express [3]. This tool generates synthetizable
HDL code that defines several

RTL algorithmic specifications and HDL test-bench codes for each RTL specification.
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The PICO-NPA system has several steps for transforming a loop nest ¡nto an RTL architecture

(figure 2.4). The first step consists of extracting the array accesses and the data dependences. With

this information, the loop ¡terations are mapped to a fixed amount of processors specified by the user

via a spacewalker, while the ¡terations are mapped to dock cycles. ln other words, notion of allocation

and scheduling are applied to the input loop program. At this stage information like data-paths and

iteration intervals among computations are derived by PICO-NPA. The third stage is to change the

loop computation order by using transformations like loop tíling and space-time mapping. ln this

sense, the partitioning approach used is LSGP A fourth stage is based on appiying traditional loop

data dependence analysis and on selecting the tile shapes. Finally, in a fifth stage, the computations

are aliocated, bound and scheduled with the obtained iteration interval. It is important to emphasize

that PICO-NPA does not genérate one RTL specification, but several RTL specifications according

to área and timing constraínts specified by the user. The determinaron of the best possible solutions

is obtained by using the Pareto optimal frontier, leaving to the user the final election among a set

of possible implementations each one with different degree of parallelism.

Explore Range—

Loop Nest(C)-

Host

Interface

Code

eration Space =í Space-Tím'

Parallel Loor Nesl =>Hardware

JJPA Design

(VHDL]

Figure 2.4: PICO-NPA design system components. Image taken from [72].
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PICO is able to exploit four different levéis of parallelism: loop, instruction, inter-task and intra-

task. Besides, PICO is related to the automatic parallelization in the sense that It uses loop unrolling

coupled with software pipelining, loop tiling, techniques for load-store elimination, and scheduling

methods used for processor array synthesis. Basically, the PICO target architecture is built on three

hierarchical levéis. The first one consists of simple processing elements containing arithmetical units.

Each one of these PEs communicates to other PEs using a data storage structure called ShiftQ.

The second level consists of a set of PE locally Interconnected called processing array (PA). This PA

¡ncorporates local memories ¡n order to reduce the bandwidth needed in external memory accesses.

The third is made of a set of PAs connected by FIFO memories called pipeline of processing arrays

(PPA). At this final level, a controller is in charge of orchestratíng the operations of all PAs, while

an interface is used to communicate with a host computer. Data transfers from CPU to the PPA

are realized by specialized hardware units. It should be noted that a PA is similar to the processor

arrays ¡n the sense that a it is composed by simple processing elements interconeted between them

in a regular and local fashion. Unfortunatley, since PICO is a propietary technology, several details

are ommited.

2 2.5.4 CLooG- VHDL

CLooG-VHDL is a back-end of the chunky loop generator (CLooG) developed by Devos in Leiden

University, Netherlands [39], CLooG-VHDL uses some polytope and automatic parallelization

^oncepts in order to derive hardware accelerators which are not necessarily based on processor arrays.

The main purpose of this back-end is the generation of the controllers needed for enabling the actior

of statements inside of the loop program. The generation of data-path and its controllers is not fully

implemented and some parts are left to the user. Due to CLooG-VHDL uses the Bastoul's chunky

loop generator [14] it uses C code as algorithmic input specification. Figure 2.5 shows the extensión

of ClooG to CLooG-VHDL for hardware generation.
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Figure 2.5: Design flow of CLooG-VHDL back-end. Image taken from [39],

The controller generated by this semi-automatic back-end is constructed by using abstract-syntax

trees (ASTs) and multidimensional scheduler functions. Basically. the idea is creating sepárate

hardware for different loop statements if possible. The multidimensional scheduler allows to verify

which statement and loops instances can be executed in parallel. The control generated by CLooG-

VHDL is composed by F5Ms that model the abstract-syntax trees and the multidimensional scheduler

function. Each FSM corresponds to one dimensión of the scheduler vector. Some FSMs calcúlate

the loop bounds and their stride in function of some parameters and the surrounding loops, whereas

other FSMs are dedicated to enumérate the statements inside of a loop body. Together. these FSMs

genérate the activation signáis for each loop statement presented in a sequential program. Finally,

the construction of data-path for these monolithic processors is partially left to the user.

2.2.5.5 Compaan/Laura

Compaan/Laura is a tool chain developed in the University of Leiden, Netherlands [123], for mapping

nested loop applications written in Matlab ¡nto VHDL. This tool chain is composed by two different

tools: Compaan which is responsible for translating the sequential nested loop program into Kahn

process networks (KPN) and Laura which takes as input a KPN specification and generates the

VHDL code for such network. Early results of this tool [123] genérate a mono-processor based on

the statements inside of the loop nest. parallelizing the operations inside of the loops instead of

searching a new execution order of the loop instances. ln other words, Compaan/Laura focuses on

improving the performance by appiying pipelining techniques. However in [37], the Compaan/Laura

team uses the polytope (PolyLib library) for generating the control needed to manage the FIFO

elements that interconnect different monoprocessors derived by their tool chain.
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2 2.5.6 Other Works

Within the context of the Stanford University Intermedíate Format (SUIF) compiler system, it is

the Riverside Optimizing Compiler for Configurable Computing (ROCCC) which is able to synthesize

systolic arrays dependent of the problem size. ROCCC is proposed by Betul et al. in [26]. ROCCC

consists of a front-end in charge of appiying loop transformations like partial and full loop unrolling,

loop peeling, loop tiling, strip mining and loop fusión. A back-end is responsible for VHDL code

generation. Also, within the SUIF context is the DEFACTO tool for hardware synthesis proposed by

Díniz eí. al in [40]. DEFACTO performs compilíng transformations like constant propagation, dead

code eliminatlon, unroll and jam, loop permutation, and loop tiling in order to expose the parallelism

and the data reuse from a C-like input program required for producing VHDL behavioral code.

The single assignment C (SA-C) compiler is proposed by Najjar eí. al. This compiler takes a

single assiment C code in order to derive VHDL code targeted to FPGA platforms. The compiler uses

data dependence and control flow graphs in order to represent hierarchically the program structure.

Later. these graphs are translated to hardware structures by using compiler transformations like

constant folding. operator strength reduction, dead code elimination, loop unrolling, strip mining

and temporal common subexpression elimination. SA-C cases of study are limited to digital image

processing domain.

2.3 Literature Discussion

There are several works on automatic parallelization for compilers, using dependence analysis. loop

transformations and other formalisms. Problems like scheduling. allocation and partitioning are well

studied on compilers área for improving data locality [6]. On the processor array synthesis side, some

techniques applied on compilers área are used; other ones are taken from this área and modified

for deriving processor arrays; meanwhile other techniques are exclusively developed for high-level

synthesis. ln this section a discussion ofthe previously reviewed works is presented
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Table 2.1 summarizes some characteristics among five different works previously described. These

characteristics include the kind of hardware produced by the tool, the scheduling and partitioning

method supported, implementation style ofthe controller, external memory assumption, support for

floating point operations and rectangular loop bound shapes, among other characteristics. Although

CLooGVHDL uses the multidimensional scheduler technique, it is not included in table 2.1 due to

the scheduler is only used for improving data locality but not for generating processor arrays. ln

memory management row, the DCN term is short for "Data Come as it is Needed"

Table 2.2 shows a detailed comparison among the three most similar works related to this research.

This table specifies the kind of algorithm that each tool has been targeted, the kind of scheduling

and allocation technique supported by the tool and the control implementation style. Also, this table

shows the three main characteristics of this research compared against the related work: the support

for non-rectangular loop bound shape, problem size independency and external memory support.

Several automatic parallelization tools for compilers have been developed focusing on the

generation of new code for different parallel computer architectures, often with a strong focus on

the completeness of the depth and scope of parallelization achieved. However, a straightforward

appl ¡catión from parallelizing compiler techniques to hardware synthesis does not work [63]. Tools like

CLooG-VHDL [39], Compaan/Laura [123] and other methodologies [8] fall in this category, mainly

becasue the models used do not detect the loop carried dependences, and therefore the hardware

generated does not exploit existing parallelism through loop dependences but through implementing

highly pipelined processors. Besides, sometimes it is mandatory to fit compiler techniques to hardware

synthesis tools in order to accommodate them to hardware needs. For example, in hardware synthesis,

the control costs are not fixed and can vary significantly by little changes in the original program.

So. automatic hardware synthesis tools cannot be directly constructed from compilers due to its

special necessities, leading to a research topic with several challenges [64] such as the generation

of control schemes and external memory interfaces. Another disadvantage found during this review

is that automatic synthesis tools provide a hardware solution for problem instances of certain size.
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PARO MMAlpha Uday This

[65] [36] [23] work

Algorithms Supported

Matrix-Matrix Based / J / /

FIR and Convolution / / X /

Image Filtering / X X X

Matrix Decompositions X X X /

Scheduling Technique

Linear / X X /

Affine / X X X

Multidimensional X J / X

Allocation Technique

Projection / J X

LPGS / X / /

LSGP / / X X

Co-partitioning / X X X

Control Scheme Implementation

Centralized / X /

Distributed / / / /

Non-Rectangular Loop Bounds X X X /

Problem Size Independency X X X /

External Memory Scheme Support X x x /

Table 2.2: Comparison among automatic parallelization tools.

Although tools like PARO and MMAlpha produce partitioned processor array in different ways, they

lack of parametric support. If the problem size for which they were targeted changes, the activation

sequence changes too, and consequently a new processor array must be synthesized in order to

genérate a new activation sequence. ln this research work it is derived a general control scheme for

control signal generation problem able to provide a semi-independency from the problem size. and

able to support a maximal subset of problem sizes given some hardware parameters.

Another missing issue observed during this review is that all the automatic synthesis tools

report processor arr3ys implementations for algorithms whose loops bounds form rectangular shapes,

specially in the case of loop bound mapped to processor after space-time mapping. Algorithms
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like matrix multiplication, image filtering, FIR filter, string alignment are reported by PARO [65]

and MMAlpha [36] as cases of study that meet the rectangular shape characteristic. Although

PARO provides support for any kind of loop bound shape, it does not show cases of study for

full-size processor arrays implementations with such characteristic ñor partitioned processor arrays.

Algorithms like QR, LU and Cholesky decomposition, which are used in digital signal processing

domain, share the characteristic of having non-rectangular shapes formed by their loop bounds. ln

this research work. the generation of processor arrays, control schemes and memory system for such

algorithms in a partitioned way is tackled.

Moreover, from this literature review, the lacking of memory interfaces between processor array

and external memories comes out. ln almost all reviewed works, it is assumed that data comes

to the processor array as it is needed. It has been found few works that put some attention to

this problem. Although in [43] are briefly discussed two possible schemes for the external memory

address generation problem, it ¡s not ¡mplemented. Besides, although in [91] it is ¡mplemented

a hardware interface for a processor array which implements the MatMul algorithm, it is only a

specific implementation without any generalization for the other cases of study. This research aims

at solving the problem of generating the external memory interfaces for providing/extractíng the data

required /generated by processor arrays derived using the polytope model.

Finally, a large number of hardware designs without the formalism approach, have been proposed

For a wlde variety of algorithms, from linear algebra, graph theory, searching, sorting, digital signal

processing, etc. For example, the design ofthe hand-made systolic architecture presented by Qiang

et al. In [84] is made by the similar polytope's transformations performed in a visual way. Moreover ir

the digital signal processing domain, some algorithms are bullt over simpler algorithms such as matrix

multiplications, matrix decompositions, system equation solvers, convolutions, linear filters, [60], [67].

[82], [83], [114], [122]. This research explores the generation of processor array for accelerating basic

algorithms used in the digital signal processing domain with a mathematical formalism approach,

specially decompositional algorithms like QR. Cholesky and LU.



3
Mathematical Background

There is a rich mathematical background underlying the polytope model. Concepts like polytope,

piecewise regular algorithm, iteration space, scheduler, allocation, among other concepts are needed

to understand the synthesis process. This chapter presents the mathematical background required for

the processor array generation. The algorithmic specification required for generating the processor

arrays is introduced in section 3.1. Concepts like scheduling, allocation, iteration interval, and

space-time mapping are explained in section 3.2. Finally, the methods for obtaining the processing

element data-path, the interconnection topology and the how to interpret the partitioning process

are explained in section 3.3. Through this chapter two cases of study are developed concurrently:

the MatMul and the Cholesky decomposition algorithms. Although the MatMul algorithm has been

widely studíed, it is very used in the automatic synthesis research community as case of study

for exemplifying the modeling concepts. On the other side, the Cholesky decomposition has some

interesting characteristics that MatMul algorithm does not have such as complex hardware operations

and non-rectangular loop bound shape.

47
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3.1 Algorithmic Modeling

The polytope definition and its link with sequential nested loops programs are introduced in this

section. Later, an specific class of SURE is defined as well as definitions concerned with the piecewise

regular algorithm term. These definitions are taken from [24], [44], [64], [69] and [80].

3.1.1 Polytope Model

The polytope model provides an abstraction for modeling nested loops programs with regularity

restríctions on the loop indexes that represents sequential or parallel programs. It focuses on

techniques for optímizing numerical applications that use arrays as data structures and access them

with simple and regular patterns. More specifically, this model studies programs that have affine array

access with respect to surrounding loop indexes and programs that can be represented or transformed

as a set of perfectly loop nest [6]. With the appropriate transformations, the polytope model helps

to extract the loop level parallelism presented in a nested loop program. ln order to define what a

polytope is, it ¡s necessary to introduce some previous geometrical definitions.

Definition 3.1 An m-dimensional function f is affine if and only if it can be expressed in the

following form:

/(/) = .Al+ b (3.1)

where "/ = [í,, ... ,¡„]T and A S _"•'•■ ¡s a matrix with m rows and n columns and t> € %'" is an

m-dimensional vector. The domain is also a set of integers: / € Z"

ln other words, a function of one or more variables, Í0l i, i„ is affine if ¡t can be expressed as

a sum of constants, plus constant múltiples of the variables, Le b¡, + bji\ + b2t-2 + -■-■ + bmi„ where

lH]J)., b„ are constants. Affine functions are usually known as linear functions. although strictly

speaking linear functions do not have the b,¡ term.
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Definition 3.2 A set of vectors is an affine space if and only if it is closed under affine combinations,

i.e. if x and y are vectors in the space, all points lying on the line joining x and y belong to the

space.

A líne in a vector space of any dimensionality is a one-dímensional affine space. ln a three-

dimensional space, any two-dimensional plañe is an example of a two-dimensional affine subspace.

Definition 3.3 An affine hyperplane ¡s an n
- 1 dimensional affine sub-space of an n dimensional

space.

Definition 3.4 An affine half-space is any of the two parts into which an affine hyperplane divides

an affine space.

Definition 3.5 A polyhedron is an intersection of a finite number of half-spaces.

Each one of the half-spaces provides a polyhedron face. Henee, the set of affine inequalities,

each representing a face, can be used to compactly represent the polyhedron. A polyhedron can be

represented by a system of inequalities that defines a half-space following the next form:

(•1.1.1 'i + + <ll,Jn < b\

; (3.2)

Wm.l''i + • ■ + O-m.ñin < &m

Definition 3.6 A polytope is a bounded polyhedron defined as the integer solutions of a system of

affine inequalities:

1= {feZ" | At<b) (3.3}
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where A e Z'"y", feP, b€ Z'" The set of integer points within 2 is also known as iteration

space or computation domain.

A polytope models the loop bounds of a perfectly nested loop program, and each of these bounds

represents a half-space. These loop bound inequalities shown in the expression 3.2 form a polytope,

and each one of the loop ¡terations is an integral point inside of the polytope.

Example 3.1 The matrix-matrix multiplication (MatMul) algorithm is used through this chapter in

order to exemplify several concepts. The multiplication of two square matrixes is defined as C — A

X B where A, B and C G RÍVxA and its mathematical equation is shown in 3.4.

A'-l

C.J = Y. A<* * B--> I3-")
k-.Q

A traditional sequential loop algorithm in form of a pseudocode for multiplying two matrixes is

shown ¡n the next figure:

do i = 0; N-1

do) - 0. N-1

do k = 0, N-1

C(í,j) = C(i.j) + A(í.k) B(k.j),
enddo

enddo

enddo

Figure 3.1: Matrix-Matrix Multiplication pseudocode.

The system of inequalities that defines the polytope for the program shown in figure 3 ]

represented like expression 3.3 is:
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n-i y
0

(3.5)
0

N - 1

0

u

3.1.2 Piecewise Regular Algorithm

The SURE concept has originated several cases of recurrence equations, and each one of these cases

models different algorithm characteristics. This research work takes the piecewise regular algorithm

(PRA) as input specification of an algorithm because the PRA is a more general specification than

perfectly nested loop programs, and because it describes the case when conditíonal statements inside

of a loop nest are presented. A piecewise regular algorithm is a specific case of the piecewise linear

algorithm defined by Thile and Roychowdhury in [108] and it follows the next definition:

Definition 3.7 A piecewise regular algorithm consists of a set of N quantified equations

Si [/],.. .,Si[I],...,SN[I}. Each equation S([/] is defined for all í € Z, and is ofthe following form:

x, [pf] =F, („.,xj [Q/-4] >■■■) ¡f C¡ (/) (3.6)

where x,, x_ are affinely indexed variables. The indexing functions of the variables are defined by

the constant indexing identity matrices P¡. Q¡ and by the i-th constant integer dependence vector

dv of the corresponding dimensión. C¡(l) is called iteration dependent condition of an equation. F<

denotes arbitrary functions and the dots denote similar arguments. I ¡s an integral subset J C Z'

called iteration space of the PRA. The vector / represents an iteration point ¡di. The set of all

points PJ, fe (1C\C¡) is called the indexed space of variable ./',.

1 0 1)

-1 0 0

0 1 0

(1 -1 0

0 1) 1

(1 0 -
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Definition 3.8 An Índex space of a PRA is the subset J C Z" consisting of all index points defined

by expression 3.3. It is also known as iteration space or computation domain.

Definition 3.9 An index point or iteration point í is an Integral element that belongs to the índex

space Z.

A PRA may seem ¡dentical to perfectly nested loop programs, however there are some differences

between both terms. ln the case of loop programs, there is an explicit order of computations due

the lexicographic order of the loop bounds ¡terations. Also, dependence vectors can be flow-data

dependence, anti-dependence or output dependence but, they are always lexicographically positive.

On the other hand, in a PRA, the computation order ¡s implicit. ln order to calcúlate the left-hand

side of each equation, all the right-side arguments have to be computed. Besides, the dependence

vector can be seen as flow dependences since valúes are used after being computed, but they do not

have to be lexicographically positive. The main consequence is that a PRA might be not computable,

Le. a computation date for each Índex point I of the Índex space 1 respectíng the data dependences

might not exist. On the other hand, in a perfectly nested loop program, the worst computation date

could be the sequential order imposed by the lexicographical order of the inner loops. The following

example shows the MatMul algorithm described as a PRA.

Example 3.2 (MatMul) The MatMul piecewise regular algorithm is shown in figure 3.2. The

matrixes A and B are embedded into the iteration space by equations .4„,[i, 0, k] = A¡,k and by

B [0, i, k] - Bk ,. For purposes of explanation the quantified equations in the PRA are labeled,

and the variables .4,,,, B,„ and C„„, denote input and output variables. The MatMul index space is

already shown in expression 3.5.

Note that there are differences among the sequential code presented in figure 3.1 and the PRA

specification shown in figure 3.2. One of these differences
is the inclusión of several indexed variables

in the PRA because it is only allowed one access to an index variable at an iteration point, unlike

¡n a sequential loop program where several accesses to the same index point (or memory location)
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rqnOQ U[i,j,k] = Ai„[i.0.k] ¡f (J = U)

eqnQl x[i,j.k] = S,„[(U-J] if (. = 0)

eqnQ'2 Vl'J.k] = v\>J-l,k] if IJ > 0)

eqn03 x[ij,k] = ijj-l.j,*] if (i > 0)

e.qnOA w[i,j.k] = y[i,J,k]xx\i,j,k]
eqnOb z[i,j,k] = z[i,j,k-l]+w[i,j,k] if (*; > 0)

cqnOG Z{i,j,k¡ = W[i,j,k] if (i- = 0)

eqn07 C„.,,{:j.k] = :[i.j.k] if (i- = Ar -

1)

Figure 3.2: Matrix-Matrix Multiplication piecewise regular algorithm.

are allowed. ln compilers área, the one-time index point access property is called single assignment.

Another characteristic presented in a PRA ¡s the explicitness in which an external memory access,

reading or writing, is defined by a set of indexed variables {statements eqnOO. eqnOl and eqn07

in figure 3.2). This is particularly helpful when hardware is synthesized, since after the space-time

mapping each of these variables will indícate when a memory access must take place, and which

processing element must perform such access. This situation is explained in detail in section 3.3.1.2.

□

3.1.3 Data Dependences

Other concepts needed in the polytope framework are the data dependences, and graphs that describe

the dependences in a PRA.

Definition 3.10 A relation between two indexed variables x, and x} in a PRA is a dependence

relation x,-¡5ij if there is an index point .i:t\l], and an index point X-,[J] and a memory location M

such that:

1. Both .í:,[/| and .(■,[../] references read or write the memory location M.

2. x.,[f\ is to be executed before x_[j\ in the PRA.

3. During the execution of the PRA, the memory location M is no written in the time period

from the end of execution of x,\f\ to the beginning ofthe execution of x,\.f\.
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Since x,[í\ must be executed before Xj[J¡, we have / -< J, this mean that the índex point J

depends on i . The distance J — I ís denoted by the vector d.¡, of dimensionality equal to n. Theses

dependence vectors in a PRA can be put together in a matrix D, where each column defines a

dependence vector different of zero. Also, the dependences in a PRA can be represented by a graph

of dependence relations between Índex points called the data dependence graph or DG. The DG is

obtained from the partial order relation between the index points in the iteration space.

Definition 3.11 A dependence matrix is the set ofthe k non-zero dependence vectors d_, combined

in D = [lA.tfi ,,..., d1:,]. Each one of these vectors provides the distance between the number of

integral points that separates two consecutive variable accesses in the Índex space.

Definition 3.12 A dependence graph is a directed acyclic graph which describes the dependences

among the index points of a PRA. Let a PRA be given with alCff, a dependence graph has the

following properties:

1. For each iteration point /£l, there is one node.

2. There is an edge from the Índex point f to ./ (where /, .1 € X) ¡f any computation in the

index point ./ needs a result computed by index point 1.

Example 3.3 (MatMul continuation) ln the piecewise regular matrix-matrix multiplication

algorithm there are several dependences. However, most of these dependences are zero. The non-

zero dependences in this example are composed by the vectors d_y = [0, 1,0]', dxx = [1,0,0]'. and

,¡__ = [0.0, 1]' These vectors represent the dependences in the labeled statements eqn02. eqn03,

eqn05 in the PRA shown in figure 3.2. The matrix D in this case is:

0 l 0

1 0 0

0 0 1
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The dependence graph of the MatMul algorithm, wíth the index space bounded by N — 4 ¡s

shown in figure 3.3. Recall that each one ofthe vértices on this graph represents an iteration point

within the index space and the edges represent the relation between two iteration points.

m^^^m

Figure 3.3: MatMul dependence graph for N = 4.

Example 3.4 (Cholesky) Along with the MatMul example used through this chapter, the Cholesky

decomposition is also used in order to exemplify some concepts. The Cholesky decomposition

algorithm for a symmetric and positive-definite matrix W e CN*N consists of decomposing II'

in such way that W ~ L x L"1, where L € CNxN is a lower triangular matrix. Its form in a

picesewise regular algorithm is shown figure 3.4. Variable Wtll is an input variable where the matrix

W is stored and variable L„„, is an output variable where the resulting matrix L is stored. The

Cholesky Índex space Zcfiol ¡s:
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0 1

i ^

0

N - 1

0

JV — 1 J

-1 0 II

1 0 II

1 -1 0

II 1 0

(1 1 -1

II 0 1

eqnOQ z U.k] = W„{i,j,k] if (i = 0)

eqnOl z i.j.k] = w[i-í,j,k] if (> > 0)

erjn02 w i,j,k] = sqrt{z[i,j,k]) ¡f (j = i and k = i)

eqni)3 V U.k] = >•>[<, j,fc] if (j = i and A'- i)
eqn04 d <,i,k] = ü[i,j, A —

l] ¡f (k>j)
eqntíb w i,J,k] = z],,j.k]/á]i,j.k] if (j - i and A- > i)

eqr>\)6 u i.j.k] = dl'.J.k] if (j = i and A > i)

eqn07 h i.j.k] = w],.J.k] if (j = i and A > i)
eqnÜS b ij,k] = h\i,j-l,k ¡f Ü > i)

eqní)9 u i,j,k] = b[i.j,k] if (j > i and A = j)

eqnlO l i,3.k] = b[i,j.k] if fj > i and A1 — j)

eqnll c i.j.k] = d[i.j,k] ¡f (* > .í)

eqn\2 / i,j,k\ = b\i,3,k],tli,j,k] ¡f tí > i)

eqnl3 w ',l.k\ = z[i,j,k}-f\i.j,k] if ti > 0

egn.14 V i.j.k] = r]¡. j.k] if tí > ' 3ncJ k > j)

eqrúb l i.j.k] = c[i.j.k] if {J > ' anc1 ^ > i)

eqn 1 6 h i.j.k] = b[i.j,k] ¡f U > 0

eqnll L„»i i.j.k] = v[i.j,k] if (* = ¡V-1)

Figure 3.4: Piecewise regular algorithm for Cholesky decomposition.

The DG of Cholesky decomposition is shown in figure 3.5. Note that the índex space Ichni ¡s

non-rectangular as the index space Im„im„i due to some inequalities depend on other index points.

□

The size of the DG depends directly on the size of the iteration space, i.e. a large iteration space

leads to a large dependence graph. A condensed representation of the DG is the reduced dependence

graph (RDG). The size of the RDG depends exclusively on the number of indexed variables presented
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... í4=*4= ^S*

•-v^*

Figure 3.5; Cholesky decomposition dependence graph for N - 4.

in a PRA. Maínly. the RDG models dependences among the indexed variables inside of the iteration

points as well as dependences among ¡terations (as DGs). Several different definitions of RDGs

could be found in literature [95], [105]. This work focuses on Hannig's RDG definition [64] due to it

provides a more general definition than traditional approaches, including the modeling ofthe latency

operations.

Definition 3.13 A reduced dependence graph is directed graph which models data dependences

among the indexed variables as well as dependences among ¡terations. Let a PRA be given with

ICZ" The construction of a reduced dependence graph is as follows:

1. There is vértex v, € V in the RDG for each indexed variable x, on the left hand side of the

algorithm and for each constant within the algorithm.

2. Each vértex has associated a functionality (input, output, propagation or arithmetical function).

3. For each vértex with an arithmetical functionality has associated an operational latency tí;,.

4. For each indexed variable x,. Xj represented by the vertexes v,, vJT exists an edge (vj, v,)

weighted with the dependence vector d,,.
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Example 3.5 (MatMul continuation) Assume that the hardware operational iatencies for

MatMul algorithm are one time unit for both multiplication and addition. These Iatencies are

represented by u>Al and tu5, The edge weights different of zero are the represented by the vertexes

[eqnm,cqnm), {cqn02.eqnü2), (egn0i, eijnoa), {eqn03. eqn0?i} , {eqn06,eqn0¡i), and {eqn05<eqno5)-

The reduced dependence graph for this example is shown in figure 3.6. Here, the edge and vértex

whose weight is different of zero are indicated. Labels ¡ndicating the operational function of the

node are also shown.

Figure 3.6: Reduced dependence graph for MatMul algorithm.

□

Example 3.6 (Cholesky continuation) The RDG of Cholesky decomposition is shown in figure

3 7. Assume that the Iatencies for the basic operations are: 12 time units for división, 6 time

units for square root, 3 time units for multiplication and one time unit for subtraction. These

Iatencies are represented by w-,. w2. u>i2. and wt3, respectively The edge weights different of zero

are the represented by {rqnm. vqvM ). {cqn^eqnm), (eqnVi.cqvM). {tqnm,vqnm), {e.qnüfi.fíqn_),

(>qnu,rqn<n), (eqn07,eqnm) and {eqn^.eqnos).

D
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Figure 3.7: Cholesky reduced dependence graph.

3.2 Space-Time Transformation ¡n the Polytope Model

Contrary to a loop program, in a PRA there is not an explicitly execution order. A PRA requires

to establish a scheduling for their computations due the lack of an execution order. Besides, in

the processor array context, it is required to establish where the computation should be aliocated.

Together, scheduling and allocating a PRA could be performed by a space-time mapping represented

by a unimodular transformation matrix. This section provides the definitions, and background

concerning to the unimodular transformations in the polytope model. Also, the concepts of scheduler

and allocation functions, and iteration interval within this research work are defined. The last part

of this section explain the meaning of the space-time transformation in the context of the processor

array PRAs.

3.2.1 Unimodular Transformation

From the loop transformation point of view, the unimodular mapping is seen as a function composed

by a set of primitive transformations (loop reversal, loop permutation and loop skewing) that change

the ordering of ¡terations [6]. Basically, loop reversal consists of executing the ¡terations of a loop
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program in a reverse order; loop permutation is an interchange in the order between two or more loops;

and loop skewing rearranges the loop iterations such as all dependences are between ¡terations of

the outer loops, ln the PRA context, the unimodular transformation provides an execution order and

a location where the computation should be placed (loop reversal and loop permutation). Besides,

the shape of the index space and the data dependence directions are transformed ¡nto a new index

space with a different geometrical shape and different data dependence directions (loop skewing).

ln order to explain the space-time mapping, some previous definitions are presented.

Definition 3.14 A matrix T is unimodular if and only if:

det(T) = ±1 (3.7)

Definition 3.15 A unimodular transformation is a bijective function represented by a unimodular

matrix T. Let Z.JC Z" be two indexes spaces of dimensionality n. The unimodular transformation

maps each Índex point / G I to one index point J G J in the following way:

J = TI (3.8)

A unimodular transformation T is legal only if all data dependences are preserved. The loop

oound image of the Índex space 1 when appiying a transformation T can be put in a matrix form.

jsing the transformation matrix T and the matrix inequality which represents the polytope:

AI<b 1 AT-[J<¡¡

TÍ=J )
^

ÁJ<b

Since the bounds of the index space I are convex, the above matrix inequality also delimits a

new convex space. This space is the mínimum convex space which contains all the points ofthe

Índex space J whose anti-image belongs to the index space 1. The bounds of the index space ¿7

can be extracted from the inequality ÁJ < b. For computing the bounds ofthe index space J the

Founer-Motzkin elimination algorithm [19] could be used in order to solve the Inequalities system
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ÁJ < b. The Fourier-Motzkin algorithm soives the inequalities system by projecting each inequality

onto a reduced number of unknowns and then eliminating one by one each unknown. ln the processor

array context, the unimodular matrix can provide a time notion to one dimensión in a PRA index

space of dimensionalíty n, and space notion to the n
- 1 index space dimensions. Providing such

sense is possible ¡f unimodular matrix is constructed by scheduler and allocation functions. Next

subsections describe both concepts and how to put them together in the space-time mapping.

3.2.2 Scheduling Function

A scheduler is a timing function that assigns a computation date to each task. Depending on

the granularity desired, a scheduler function could asslgn a computation date to each one of the

index points in an Índex space (coarse granularity), or it could provide a computation date for the

computations inside of a index space {fine granularity). The general definition of a scheduler function

for a piecewise regular algorithm ¡s as follows:

Definition 3.16 A scheduler X is a function t : X -» Z such that for any iteration points I.

J € X : t(J) > t(l) íf J y I. ln other words, a scheduler is a timing function that assigns a

computation date to each task such as all dependencies are respected.

Definition 3.17 A scheduler function is called linear scheduler of a PRA with a dependence matrix

D if it ¡s in the following form:

t(í)= |v] V/Gl (3.9)

where X¡ is the linear schedule vector \t G Q1*" such that \¡d} ^ 1 for all dh G D.

The linear scheduler function concept is closely related to the dependence graph, because this

function is obtained by searching the longest path in the iteration space, and then trying to find a

rational vector which preserves all dependences minimizing the execution time. Usually, this search

is accomplished by using a linear program formulation. The use of floor function with the rational

scheduler vector eliminates the necessity of having an integer linear program formulation. For this
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research work, it has been selected the linear scheduling method proposed by Darte eí al. in [28].

due this method derives asymptotically scheduler functions equivalent to the best scheduler when

all operations of a PRA have an unitary delay. When this assumption is true, the linear scheduler

is as good as the fastest existíng scheduler. The closeness of the linear scheduler to optimality is

useful due to these schedulers are very easy to use in practice, and their simplicity results in a low

implementation overhead for control schemes. Geometrically, the linear scheduler produces a set of

time hyperplanes which consist of a set of index points that posses the same execution time, Le. each

hyperplane is executed sequentially while the Índex points that forms the hyperplane are executed in

parallel.

The concept of linear scheduling considers each iteration point as an atomic unit, i.e. all iteration

points require the same amount of time to be executed. However. in real-life applications this

assumption is not always true; specially in a hardware implementation where different arithmetic

operations are completed in different time uníts. This leads the idea of having an offset for each

operation ofthe iteration point. The kind of schedulers that take into account this idea are called

affine schedulers. An affine scheduler is defined as follows:

Definition 3.18 A scheduler function is called affine scheduler function of a RDG with a iteration

space X if it is in the following form;

/,(/) - I KJ+ t{v,)\ W G I (3.10)

where A„ is the affine schedule vector Xn € Qlx" and r(v,) e Q is the time displacement for the

start time of the RDG vértex v,.

Similar to the linear scheduler, the affine scheduler concept is related to the reduced dependence

graph because the affine scheduler takes into account the operational Iatencies attached to the

RDG. Also, as the same as the linear scheduler, an affine scheduler could be computed by a linear

programming formulation by using the RDG, the Iatencies of the operations, and the iteration space.
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It might happen that a linear and an affine scheduler lead to the same total execution time of a

PRA. ln the affine scheduler case, the concept of time hyperplanes is not longer used.

Example 3.7 (Cholesky continuation) Assume the linear scheduler function for Cholesky PRA is

A¡ = [1, 1, 1]' and the size of its iteration space Xc,,,,, is bounded by N = 4. Although the four

operations required in Cholesky algorithm have different Iatencies according to example 3.6, the most

cost-time operation ¡s taken as reference in order to know the time required for an iteration point

to complete its task. ln this example the most cost-time operation is the división which takes 12

time units. The total execution time required is given by the number of time hyperplanes, generated

by the scheduler function, that crosses the iteration space (argmax t{!)) multiplied by the most

cost-time operation. ln this case the total execution time is 120 time units. The sequential time

required in this case would be 240 time units. Figure 3.8 is a Gantt diagram showing the time

required for each computation inside of an iteration point and ¡ts execution date. It is important

to note that each iteration point that belongs to the same time hyperplane starts its computations

only when the previous time hyperplane has been completely computed. ln other words, there is not

allowed any overlapping between ¡terations.

Figure 3.8: Computation dates assigned to different operations when a linear scheduler is used.

Now, assume the affine scheduler A„ = (12.4,12]' with the affine part r{ví2) = 8 and

T(ui3) = H- Figure 3.9 is a Gantt diagram showing the scheduling of the computation within an

iteration point when the affine scheduler is used. Note that multiplication and subtraction operation

are shifted with respect of the same operations shown in figure 3.8 due to the affine part presented in
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the affine scheduler. When an affine scheduler is used, it is not needed to wait until all the iteration

points in a time hyperplane have totally finished their computations, but once all data are available

it is allowed to start new computations belonging to other time hyperplane. This characteristic leads

to decrease the total execution time, ln affine scheduler case, the total execution time is 90 time

units.

Figure 3.9: Computation dates assigned to different operations when an affine scheduler is used.

D

3.2.3 Allocation Function

The allocation function provides a place (processor) where all index points in an index space are

mapped. The general definition of an allocation function for a PRA is as follows:

Definition 3.19 An allocation <í' is a function s : X —

> Z""1 such that for any pair of iteration

points I, J G X : t(j) = t(J) => s(¡) ?í s(J), where t ¡s a scheduler function. ln other words

an allocation function specifies the spatial distribution of the computations in such way that two or

more computations dated at the same time instant do not take place in the same processor.

ln the processor array context. the allocation function could be obtained from different ways.

Some methodologies, like in PARO, include the allocation function when the scheduler is computed

or even they use a partitioning approach as allocation function for computing a scheduler. ln this

research the selection of an allocation function is after computing the scheduling (in order to respect

definition 3.19) and before appiying any partitioning technique. The selection of an allocation
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function ¡s done by reducing one dimensión a 11-dimensional index space using a projection vector

(7€ Z" as follows:

Definition 3.20 An allocation function 'I> for a PRA is a (n
—

1) x n matrix constructed from the

projection vector ü as follows:

0 0 ■■

u, -ttf_] 0 ■■■ 0

0 0 -u,-2 Ui
■■■ 0

(3.11)

\ u u —u„ u

where u = («1,1*2»' ■ ■

. un)1 G Z" and u¡ =¿ 0, 1 < i < n.

3.2.4 Iteration Interval

When the scheduling and allocation functions are used for deriving processor arrays. it is required to

establish a time interval between the execution of two successive computations on a same processor.

Such interval is called iteration interval and its definition is as follows:

Definition 3.21 An iteration interval P G Z of an aliocated and scheduled PRA is the number of

time instances between the evaluation of two consecutive instances of an indexed variable within the

same processing element. The iteration interval is given by the absolute valué of:

/>= Ua (3.12)

Obtainingthe valué of P could be accompfished in two different ways, if equation 3.12 is satisfied

The first possibility is by proposing a valué for P, and including it as a constraint into the scheduling

linear program formulation. The second possibility is to consider P as a variable in the linear program
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formulation. thus the iteration interval will be given as a result of the linear program. The first case

forces the linear program formulation to search a scheduler function given a desired iteration interval,

whereas the second case allows to the formulation to find a valué for P Such formulations could be

found in detail in [64].

Example 3.8 (Cholesky continuation) Although in example 3.7, the iteration interval is not

explicitly defined, in the linear scheduler case it is explicitly mentioned. As a result, when the

linear scheduler function A( = [1. 1, 1]' is used, the mínimum iteration interval found by the linear

programming formulation is P = 12 regardless ofthe used projection vector. This iteration interval

means that twelve time steps are needed in order to ensure that all the operations within the

same processing element are finished. On the other hand, in the case of the affine scheduler

A„ = [12.4,12]', the minimum iteration interval will depend on the used projection vector. If

the u - [1.0,0]' the iteration interval calculated by the linear program formulation will be P = 12,

but if ü = ¡0. 1.0]' then the interval will be P = 6. Recall that an affine scheduler does not need

to wait until all the operations within the same processing element have been completed. Finally, in

the linear and affine scheduler cases, the iteration interval could be relaxed to higher valúes in order

to fit a desired throughput by adding P as a constraint in the linear program formulation.

D

3.2.5 Space-Time Mapping

The parallelization based on the polytope model addresses the problem of finding a scheduler

function which generates a set of time affine hyperplanes, and selecting an allocation function

according to such scheduler. This problem can be formulated as an affine mapping that transforms a

piecewise regular algorithmic input specification {target polytope) ¡ntoan output specification (source

polytope) that contains the same points, but in a new coordínate system in which a dimensión is

strictly temporal and the others are strictly spatial [80]. The space-time mapping can be accomplished

Dy putting together the scheduler and allocation functions in the transformation matrix T:
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Definition 3.22 The transformation matrix T is called a space-time mapping if:

(3.13)

where A E Zlx" is the scheduler vector and (& £ gC"--1)*" is the allocation matrix.

Definition 3.23 The iteration space J of the target polytope is composed by:

J = {Je Z" | AT-XT< b) (3.14)

where J = [t p]1 is an index point of the target polytope with time and space notions.

The iteration space of the target polytope can be seen as an iteration space J divided into two

subspaces T and V which define a time space and a processor space, respectively. The indexed

points in the processor space represent the processing elements ¡n the processor array and the index

points in the time space are the parallel time steps needed for the PRA execution.

Definition 3.24 A time space T is a one dimensional space which maps the index space 1 of a

source polytope as follows:

r - {/. | / = A/a fe X) c Z,x" (3.15)

Definition 3.25 A processor space V is a n
— 1 dimensional space which maps the index space I

of a source polytope as follows:

V = {p\V= 1'ÍA fe X) C Z1""1'-" (3.16)

Example 3.9 (Cholesky continuation) Assume the same linear scheduler function and iteration

space as in example 3.7. Also, assume that the projection vector used is ü = [0,1, Oj' with an

iteration interval of P — 12. A possible unimodular transformation matrix T for space-time mapping
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r =

After appiying the Fourier-Motzkin algorithm to the source polytope iteration space XCho¡, the

target polytope index space Jcnn\ ¡s :

0
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Note that the target index space JChot ¡s formed by the indexes í, p0 and pi representing time

and processor spaces. Also, note the time space bounds 0 < r < 3(N
-

1) provide the amount of

time steps required to execute the Cholesky PRA. The interpretation of the new target Índex space

is that the index point [í.po-pi]' £ Jci„,i is executed in time í at processor point (p0,pi ). ln other

words. for each índex point (pa,pi) € Pchoi it is assigned a subset of index points of the source

iteration space Irw that will be executed according to the scheduler function which is represented

by índex / From compiling point of view, the target polytope is represented as a nested loop of

depth three, and the índex space is the Índex loop program where the outer loop is scanned by í,

the middle loop by p„ and the inner loop ¡s scanned by pj. Finally, taking into account the iteration

s
= 1 1) 0

*

(3.17)
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interval, each Índex point requires P time instances to execute all the operations within the processor

point (po.Pi). Le. each PE will take twelve dock cycles to compute a processor point.

Figure 3.10 presents how the computations are assigned for each Índex point (pu-Pi) denoted

as PE(p¡)f,}). The boxes indícate the computation done in an iteration point. Each one of these

operations (square root, división or multiplicatíon/subtraction) is shown in different colors. Some

idle times are added for square root and multiplícation/subtraction operations, due to it is necessary

to synchronize all operations to the división operation. From figure 3.10, it is important to note

that index points in the processor space start their computations only when the previous Índex points

have totally ended. Le. there is not overlapping. Also, note that each time unit is divided into time

instances (dock cycles) equal to the iteration interval P

Figure 3.10: Execution times for each operation in an Índex point.

Finally, the processor space can be represented in a form of DG. Figure 3.11 shows the two-

dimensional processor space Pchoi- Intuitively, this figure can be interpreted as an abstraction of the

processor array with a topology derived from space-time transformations.

D

The previous example shows how the space-time transformation gives to the PRA iteration space

notion of space and time. From the hardware design point of view, these notions provide an activation

sequence (given by A) for each index point ofthe processor space (given by <J>), and a time interval

between two successive computations (given by P). This information is useful when the processor
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Figure 3.11: Processor space of Cholesky decomposition when N=4.

array is designed because ¡t provides an activation pattern for each processing element inside the

processor array. Also, this activation pattern facilitates the processor array construction made by

synthesis tools. However, this is not all the information that such tools require, since it is also needed

to infer the processor array topology and the processing element data-path. Next section provides

the concepts needed for the construction of processor array interconnection and the PE data-path.

3.3 Processor Array Synthesis

From an algorithm represented in a piecewise regular form, the construction of the processor array

is possible. Information such as dependence vectors, reduced dependence graphs, scheduler and

projection functions are used in the derivation of the array interconnection topology, processing

element data-path and control structures. By analyzing some of these concepts it is possible to

determine if there exits a local connection among processing elements. If a connection exits, it

is required to know if the connection will be direct or delayed i.e if the interconnection requires

registers or not. Besides ofthe interconnection, deriving the processing element internal data-path

is required too. ln this section, the formalisms and ideas needed for synthesizing a processor array

from a PRA are described. The first part of this section describes how to construct a full-size

processor array dependent of the problem size Although this array is highly parallel, sometimes it is
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unsuitable of being ¡mplemented due to it exceeds the computational resources (like functional units

or input/output ports), and due to it is high data memory demanding. Furthermore, this full-size

array is not able to solve several problem instances, but it only solves an unique problem size. The

second part of this section explains how by partitioning the processor space it is possible to reduce

the memory demand, making the processor array independent of the problem size and setting the

processor array size at synthesis time.

3.3.1 Full-Síze Implementation

3.3.1.1 Processor Array Interconnection Topology

The PE Interconnections among other PEs are required in order to construct the processor array

topology. Such connections are obtained by using the allocation function and the data dependences

different of zero. Intuitively, for each data dependence vector dr, £ 0 in the PRA, a connection from

the indexed variable Sj to x, should be ¡nferred, i.e. the number of dependence vectors different of

zero provides the number of PE input/output ports. Forrnally, the interconnection can be modeled as

a connection vector s where each element s*,- G Z corresponds with a data dependence vector dp in

the PRA (indistinct ofthe vector valué). If s^ is different of zero, it indicates that a connection should

be placed between the indexed variables j and ?". If ,sj'? is equal to zero (despite that dependence

vector dj, is different of zero). it indicates that a internal PE feedback connection should be placed.

The elements of this vector could be obtained as follows:

sjj =*dj, (3.18)

where O is the allocation matrix obtained form the projection vector ii, and if1 ¡5 the k-th

dependence vector between two indexed variables. The ni dimensional s' vector is defined by:

¿=(sl]„s2ji,--- ,.s';i) (3.19)
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Besides ofthe PE interconnection, the amount of delay elements (registers) that should be placed

between the PEs interconnections must be determined. The amount of registers is obtained in a

similar way as the vector s*. Given an RDG, a delay vector f can be determined by using the start

times t(i\) for all vertexes, their operational Iatencies w„ their data dependence vector d and a

scheduler function. If the scheduler is linear, then the start times and the operational Iatencies are

set to zero. Similarly to s, the delay connection can be modeled as a vector f where each element

r£ G Z corresponds to the k-th dependence vector d\\ in the PRA. The valué of r£ indicates the

amount of time steps that the indexed variable x, must be stored. It could happen that a delay

element should be placed inside of the processor. The elements of the f can be obtained as follows:

r* = Xd^ + riv/i
-

r(v,) + wj (3.20)

where ü', is the operational latency of the indexed variable Xj and r(u¡) and r(u,) are the

computation start times of the indexed variables x.¡, and xu respectively.

r = {r>,,,%- ■-.,■;;;) (3.21)

3 3.1.2 Processor Element Data-Path

Due to the iteration dependent condition C'{1), not all the PEs require the same functional units

since they do not perform the entire PRA operations. Recall that one characteristic ofthe PRA is

that the whole algorithm is specified into different pieces, and each one of these pieces are defined by

C'(I). As a result ofthe space-time mapping, these pieces are assigned to different processor points

of the processor space P according to C'(I) of the target polytope. For example, after space-time

transformation, only some PEs will perform external l/O memory communication while other PEs

will perform a subset of the PRA operations. Therefore, P can be expressed as a disjoint unión of

several processor types V, C P where each set P, represents a different processor type.
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Taking into account the iteration dependent condition, the data-path for each processor type is

synthesized from the reduced dependence graph, since each one of the RDG nodes denotes a different

kind of functionality (input, output, propagation, and operational). The operational nodes are directly

bound to hardware functional units like adders, multipliers, dividers, etc. Some multiplexers are added

in case of there are several nodes corresponding to the same indexed variable. The control lines of

such multiplexers are inferred by the C (I) of each indexed variable. Nodes labeled as input or output

denote l/O ports from the processor array. These ports are in charge of receiving all data from an

external source and of sending data results to an external source. Nodes labeled as propagation are

not bound to functional units but to communication buses inside of the PE.

Example 3.10 (MatMul continuation) Following the MatMul example, assume the linear

scheduler function A¡ — [1.1.1], and the projection vector ü = ¡0,1,0]. As recapitularon, the

non-zero dependences in this example are composed by the vectors dyy — [0. 1.0]', dxx = [1,0,0]',

and d„ = [0, 0. l]r The size of the Índex space is bound to N = 5. Appiying the formula 3.18 and

3.20 to each one of the dependence vector d.¡, the connection and delay vector are in the following

form:

3 = (8__, 4, S3„) = (1,0,1)

r = {rlx,rlr,rlz) = (1,1,1)

These results should be interpreted as follows: each connection element rj'( in the vector f

indicates a direct connection between variables j and i. Similarly, each delay element ,s*, in the

vector s indicates the amount of time steps the indexed variable j should wait for the result of the

variable i. ln case of s_ an internal feedback connection should be placed with a latency equals to

r_y
— 1. Due to the space-time transformation, the data dependences dIT and d,. are orthogonal

to pn and p-¡ indexes, respectively; i.e. d,,. is propagated through p„ direction and d:::. through p¡

direction
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Figure 3.12: Full-size processor array for MatMult algorithm when N=5.

Figure 3.12 shows the processor array interconnection resulting from this example. The processing

elements are represented by a shaded square box. Some numbers inside of the PEs are added in

order to denote the four possible processor types. Note that the four PE types are enclosed in

dashed lines and their numbers are assigned in an arbitrary form. The internal data-path of the four

processing element types are shown in figure 3.13. Processing element types zero, one, two and

three correspond with figures 3. 13. a, 3. 13. b, 3.13. c and 3.13.d, respectively. The operational nodes

in MatMul RDG are bound to a multiplier and to an adder. ln the case of indexed variables y, and ;,

two multiplexers are added for the four processor types. and in the case of variable x a multiplexer is

added in for processor types zero and two. Another multiplexer is added in order to put out a final

datum denoted by variable C\,ul. The control signal for each multiplexer is generated by a predícate

extracted from the iteration dependent condition. The generation of such control signáis is in charge

of an Índex controller which maps the predicates shown in table 3.1. Processing element ports for

internal connections (inside of processor array) are denoted by x,„, z,n, xm,t and z0¡¡t. Ports for the

external connections (outside of processor array) are denoted by Ain, Büul and Cuu[. The PE ports

y,„ and yml are connected between them as a feedback connection indicated by .s^y. Note that the

four processor types have the same internal and external ports

a
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Index Controller
, | Index Controller

Figure 3.13: Four processing elements types for MatMul processor array.

Predicades Control Signáis

(j = o)
(j>0)

Control,, = 1

Control.) — 0

{¡ = 0)

(¡>0)

Control] = 1

Control. — 0

(k = 0)
(k>0)

Control^ = 1

Control-i = 0

(k > N-1) Control.;; = 1

Table 3.1: Activation table for the MatMul PE control signáis according to the iteration dependent
conditions.
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3.3.2 Partitioning of the Processor Space

The space-time transformation provides space and time notions to the indexes of the PRA source

polytope, i.e. it gives the PEs activation sequence as a function of the i-th time step that is being

executed. However, this space-time transformation leads to full-size problem dependent processor

arrays unsuitable of being implemented for large iteration spaces. Partitioning techniques help to

derive processor arrays independent of the problem size by using a fixed number of processors and

mapping the source polytope iteration space to a new processor space. Also, partitioning leads to

increment the PEs percentage. Partitioning consists of using congruent tiles for dividing the origina:

iteration space into several iteration spaces that are subsets of the original one. Approaches like LPGS

and LSGP are used in order to genérate scheduler functions [64]. LPGS approach refers to compute

¡n parallel the iteration points covered by a tile and execute the remaining tiles sequentially. On the

other hand, LSGP refers to execute the iteration points inside of the congruent tiles sequentially, but

computing the rest of tiles in parallel fashion. With the purpose of exemplifing the LSGP and LPGS

partitioning ideas the FIR filter is used in the following example.

Example 3.11 The FIR filter is described by the following equation:

Y (i) = £¿(j) U(i-j) W:(K iíT-1

where A' denotes the amount of filter taps, A(j) the filter coefficients, U(i) the filter inputs and

Y (i) the filter result. The FIR filter iteration space has a rectangular shape and it is defined as:

Zf¡r= {[i,j]' EÍ | 0< i£T- 1 A O^j^N-l}

The FIR dependence graph is shown in figure 3.14 when N - 8 and T = 8. ln this case, the

iteration space is partitioned in eight subsets grouped by the blue boxes. After appiying space-time

transformation with LSGP partitioning. the blue boxes are mapped as processing elements and each
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one of these PEs computes the iteration points which are inside of the blue boxes in a sequential

fashion. ln contrast. when LPGS approach is applied, each poínt inside ofthe blue boxes is mapped

to a PE, and these PEs work ¡n parallel while the blue boxes are processed sequentially

Figure 3.14: Partitioned iteration space for FIR filter. On the right size the LSGP and LPGS

approaches.

□

3.3.2.1 Partitioning as Allocation

The LPGS and LSGP could be obtained by a linear programming formulation using partitioning as

allocation method. Independently of the partitioning approach applied to a PRA, when partitioning

is used as allocation method it happens that:

• The iteration space X of an algorithm has to be decomposed ¡nto two spaces X, and X2, such

as X = X¡ + XX2, where X G Qnxn is called tiling matrix. The tiling matrix X defines the

tile shape and ¡ts size.

• The iteration space dimensionality is increased twice and all indexed variables have to be

embedded in higher dimensional iteration space.

• Additional variables have to be added in order to define intra-tile dependences.
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By themselves, the iteration space ofthe sets X\ and X2 do not provide a particular meaning, í.e.

it is not specified which one of the partitioning approaches (LPGS or LSGP) are used. It is only by

the interpretaron of the spaces X¡ and 12 when both acquire a specific meaning. If X\ denotes the

sequential scanning inside of a tile then a LSGP approach is inferred; but ¡f X, denotes the sequential

scanning of the tiles then a LPGS approach should be interpreted. ln both cases X2 denotes the

iteration space that could be executed in parallel. The LPGS and LSGP could be obtained by linear

programming formulation [64]. Besides of the operations Iatencies, and the dependences vector,

these both formulatíons require a loop matrix L = (I1J2, —Jn) £ ^"xn which ¡s composed of n

loop vectors /, G Z" This loop matrix determines the sequential scanning of X¡. Given a loop matrix,

the number of ways for a sequential scanning of Xy is 2"ti!. The 2" term is the number of the tile

corners from where a scheduler may start the computations, whereas the re! term is the number of

permutations of the rz loop vector [104]. Figure 3.15 shows the eíght different sequential scanning

order for a 2-dimensional iteration space. Moreover, when the m loop matrixes are explored, the

number of different scanning orders is given by k = m2*"1 As a result, exploring all scanning orders

demands solving k linear program formulations.

56 7 8

Figure 3.15: The eight different scanning order for a two-dimensional example.
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The maín difficulty of using linear programming formulation for obtaining LPGS or LSGP

schedulers is the number of possible loop matrixes that must be evaluated in order to derive a valid

scheduler. For example, it might happen that given a loop matrix L used in a linear programming

formulation the solution could be unbounded or unfeasible due the scanning order represented by the

matrix L does not respect the PRA data dependences. Although there are some pre-evaluation ways

for avoiding the unnecessary formulattons [64], they do not eliminate totally the need of evaluation.

ln this research work, the loop matrixes for partitioning the iteration space are not used. Instead of

loop matrixes, strip mining technique is used ín order to get the LPGS or LSGP behavior. Besides,

the partitioning is performed after space-time transformation instead of performing at the same

time partitioning and scheduling as in PARO framework. Using this approach avoids the need for

increasing the iteration space dimensíonality and consequentfy embedding the the indexed variables

in the higher iteration space. Besides, adding new indexed variables defining intra-tile dependences

is avoided.

3.3.2.2 Partitioning with Strip Mining

Strip mining is used to partition one dimensión ofthe iteration space into strips. From the processor

arrays point of view, strip mining consists of dividing all dimensions of V by constant strides, and

adding new dimensions for scanning them without the necessity of adding new indexes to the PRA.

From the compilers point of view, strip mining divides a single loop into two nested loops; the outer

loop steps between consecutive strips, and the inner loop traverses the original iteratlons within a

strip. This process could be repeated as many times as desired for each loop in combination of loop

Interchange [69¡. One dimensión of the processor space could be represented by the next inequality:

h < Vk < '/, (3.22)

where p¡¡ is the k-th index in the processor space, and í¿, and u*. are the lower affine bound

and upper affine bound, respectively. The bounds of p¿ after appiying strip mining are obtained by

appiying the next formula:
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_^-\
< tüepk < uk

(3.23)

max(lk, íiifipj < Pk < mw(uk!c)

where tüepk is the partitioning index whose incremental steps are SSpk+tile.Pk, pk is the original

Índex, SSpk is the size of the strip, and c = tüePk + SSpk
- 1. Using this expression for partitioning,

the strip boundaries are always parallel to the iteration space axes [69]. ln the case of a scheduled

PRA, strip mining is applied over the processor space ¡n order to derive a partitioned program versión.

The scanning sequence ofthe indexes is changed by the loop interchange transformation. Appiying

the correct sequence of strip mining and loop interchange the LSGP or LPGS approaches are derived,

If after appiying strip mining and loop permutation, the time index is left as the outer loop, a LSGP

approach is obtained. ln contrast, if the new indexes obtained after strip mining are left as the outer

loops a LPGS partitioning is obtained. The combination of loop interchange and strip mining is

called loop tiling transformation [55]. This dissertation is focused on LPGS partitioning approach.

Example 3.12 (MatMul continuation) Following the MatMul example and using the same

parameters (\¡ = [1, 1. 1], and u = [0. 1,0]), the target iteration space after space-time mapping is:
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Appiying strip mining over the processor space and performing the loop interchange

transformation, in order to genérate the LPGS approach, the new index space is a five dimensional

space whose index points are \tüep<l,tile.Pi , t,pa,P\] and with the iteration space defined as following:
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A geometrical interpretaron of the new partitioned index space is that the processor space is

divided into tiles. Each tile contains a subset of Índex points of the processor space. Due the new

indexes tüepa and tilepi are placed before the time space, the set of index points of the processor

space inside of a tile can be viewed as physical processors, meanwhíle the original processor space

can be ¡nterpreted as logical processors mapped to the physical processors. Figure 3.16 shows the

processor space partitioned when N = 8 and SSpa — SSp-\ = 4 (left size), and the partitioned array

of 4 x 4 PEs (right size). Note that the index points in the processor space are denoted by circles

whereas the PEs of the processor array are denoted by boxes. Also, note that it could happen that

tile size does not fit exactly in the processor space. ln this example, the scanning order of the tiles

is done from left to right direction. If a different scanning order is desired, the order to the indexes

tilep_ and tilepi should be changed by loop interchange transformation.

Full-Size Array Partitioned Array
(logical arrayl (physical arrayl

Figure 3.16: Partitioned MatMul processor space by strips of size four and its corresponding physical

processor array.

□
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Example 3.13 (Cholesky continuation) Contínuing the Cholesky example, figure 3.17 shows the

processor space partitioned when ¿V = 8 and SSp1 = SSpx = 4 (left size) and the partitioned array

of 4 x 4 PEs (right size). Similarly to the MatMul example, index points in the processor space are

denoted by circles and the PEs of the processor array are denoted by boxes. Note that there are

some tiles which are not "full" of index points of the processor space. ln such case, the PEs which

do not exíst in the tíle^ and tilepi dimensions should not be activated. Moreover, due the Cholesky

processor space is not rectangular there are empty tiles which should not be considered when f.ílf:m

and tüepi dimensions are scanned. ln fact, using strip mining leads to ignoring these empty tiles,

f'.e. they are not scanned.

Full-Size Array Partitioned Array
(logical array) (physical array)

Figure 3.17: Partitioned Cholesky processor space by strips of size four and its corresponding physical
processor array.

□
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3.3.2.3 Iteration Space of Partitioned Target Polytopes

The previous examples show how to derive the processor array topology, and the data-path for

different types of PEs given a set of data dependences, a scheduler, and an allocation functions.

The allocation function is responsible for binding the computations to processor elements and the

scheduler function provides the activation pattern of these processors. However, depending on the

resulting target polytope iteration space, the processing element activation pattern might be regular

or irregular, If the target polytope has a rectangular shape, the number of times that a PE is activated

will be the same for all the PEs inside of the array. Algorithms like MatMul, matrix-vector and FIR

füter are some examples of iteration space with rectangular shapes after space-time mapping. On

the other hand, if the target polytope iteration space is non-rectangular, the number of times that a

PE is activated will be different for each PEs inside of the array. Some examples of non-rectangular

iteration spaces are Back/Forward substitution, Cholesky, LU and QR algorithms.

ln addition, when partitioning is applied, providing the processor array PEs activation pattern

for non-rectangular iteration spaces is even more complex, because the number of time steps for

which a PE is activated will change while the tiles are being scanned. Besides, recall that when the

processor space ¡s partitioned, the original space V is divided into congruent tiles that are subsets

of the original space, and the PEs inside of a tile are viewed as physical processors, meanwhile the

original processor space is interpreted as logical array mapped to the physical PEs. ln the case of the

full-size array, the PEs are activated one o more consecutively times, but once a PE stops it remains

¡nactive during the rest of the processor array computations On the other hand, in a processor array

generated by partitioning, an inactive PE might be reused during an algorithm computation. Such

possibility is caused from the non-recatangularity of the processor space, since there are occasions

when a physical processor is mapping a non-existing processor index point of V (like in the Cholesky

example). The rectangular and non-rectangular iteration spaces, as well as the changing of the

number of the activation time steps should be kept in mind when the control scheme is derived from

the target polytope. More details are explained ¡n Chapter 4.
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Appiying strip mining over the processor space and performing the loop interchange

transformation, in order to genérate the LPGS approach, the new index space is a five dimensional

space whose index points are [tüem,tilep^:t,pa¡pi] and with the iteration space defined as following:
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A geometncal interpretation of the new partitioned Índex space is that the processor space is

divided into tiles. Each tile contains a subset of index points ofthe processor space. Due the new

indexes ti!epil and li!eP! are placed before the time space, the set of index points of the processor

space inside of a tile can be viewed as physical processors, meanwhile the original processor space

can be interpreted as logical processors mapped to the physical processors. Figure 3.16 shows the

processor space partitioned when N = 8 and SSp0 = SSp¡ = 4 (left size), and the partitioned array

of 4 x 4 PEs (right size). Note that the Índex points in the processor space are denoted by circles

whereas the PEs of the processor array are denoted by boxes. Also, note that it could happen that

tile size does not fit exactly in the processor space. ln this example, the scanning order of the tiles

is done from left to right direction. If a different scanning order is desired, the order to the indexes

tdcpa and tilcp¡ should be changed by loop interchange transformation.

Full-Size Array Partitioned Array
(logical array) (physical arrayl

Figure 3.16: Partitioned MatMul processor space by strips of size four and ¡ts corresponding physical

processor array.
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Example 3.13 (Cholesky continuation) Continuing the Cholesky example, figure 3.17 shows the

processor space partitioned when N = 8 and SSp-¡ — SSpi - 4 (left size) and the partitioned array

of 4 x 4 PEs (right size). Similarly to the MatMul example, index points in the processor space are

denoted by circles and the PEs of the processor array are denoted by boxes. Note that there are

some tiles which are not "full" of index points of the processor space. ln such case, the PEs which

do not exist in the ti.lcpi) and tile,,, dimensions should not be activated. Moreover, due the Cholesky

processor space is not rectangular there are empty tiles which should not be considered when tHepn

and tilepi dimensions are scanned. ln fact, using strip mining leads to ignoring these empty tiles,

i.e. they are not scanned.

Full-Size Array Partitioned Array
(logical array) (physical array)

Figure 3.17: Partitioned Cholesky processor space by strips of size four and its corresponding physical

processor array.

[i



3.3. Processor Array Synthesis

3.3.2.3 Iteration Space of Partitioned Target Polytopes

The previous examples show how to derive the processor array topology, and the data-path for

different types of PEs given a set of data dependences, a scheduler, and an allocation functions.

The allocation function is responsible for binding the computations to processor elements and the

scheduler function provides the activation pattern of these processors. However, depending on the

resulting target polytope iteration space, the processing element activation pattern might be regular

or irregular. If the target polytope has a rectangular shape, the number of times that a PE is activated

will be the same for all the PEs inside of the array. Algorithms like MatMul, matrix-vector and FIR

filter are some examples of iteration space with rectangular shapes after space-time mapping. On

the other hand, if the target polytope iteration space is non-rectangular, the number of times that a

PE is activated will be different for each PEs inside of the array. Some examples of non-rectangular

iteration spaces are Back/Forward substitution, Cholesky, LU and QR algorithms.

ln addition, when partitioning is applied, providing the processor array PEs activation pattern

for non-rectangular iteration spaces is even more complex, because the number of time steps for

which a PE Is activated will change while the tiles are being scanned. Besides, recall that when the

processor space is partitioned, the original space V is divided into congruent tiles that are subsets

of the original space, and the PEs inside of a tile are viewed as physical processors, meanwhile the

original processor space is interpreted as logical array mapped to the physical PEs. ln the case ofthe

full-size array, the PEs are activated one o more consecutively times, but once a PE stops it remains

¡nactive during the rest ofthe processor array computations. On the other hand. in a processor array

generated by partitioning, an ¡nactive PE might be reused during an algorithm computation. Such

possibility is caused from the non-recatangularity ofthe processor space, since there are occasions

when a physical processor is mapping a non-existing processor Índex point of V (like in the Cholesky

example). The rectangular and non-rectangular iteration spaces, as well as the changing of the

number of the activation time steps should be kept in mi'nd when the control scheme is derived from

the target polytope. More details are explained in Chapter 4.
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3.3.2.4 Intermedíate Memories

As a result of partitioning the processor space and using an LPGS approach, the usage of intermedíate

memories at the processor array borders is required. The purpose of these memories is to store data

produced by the PEs placed at the array borders while the tiles are being scanned. Later. during

the algorithm execution, the data stored in these memories will be used by the following tiles. The

implementation of these memories could be done either by FIFO memories, or by DMA schemes.

These intermedíate memories could be classified in two different types according to the temporal

locality concept. The two types of intermedíate memories are called intermedíate memory Ll and

L2; and their main difference consist of intermedíate memories Ll stores data that is likely to be used

¡n a shorter period of time than data stored in intermedíate memories L2. Details of these memories

are more explained in Chapter 5.

3.4 Summary

This section has covered the background required in the synthesis of processor arrays. Through

some examples, it has been exemplified the synthesis process taking as input a piecewise regular

algorithm until deriving an hardware architecture specification. Concepts like polytope, piecewise

regular algorithm, iteration space, scheduler, iteration interval, allocation, time and processor spaces,

and partitioning have been introduced. Also, it has been shown how to genérate the processing

elements and the interconnection of such PEs in order to construct the processor array by using

scheduler and allocation functions. By partitioning the processor space, it could be derived processor

arrays that are independent of the problem size. However. it emerges a situation that in a full-size

processor array is not present: the generation of activation signáis for the PEs reutilization. ln a

full-size processor array the PE could be activated one or more consecutively times, but once the PE

stops, the PE remains ¡nactive during the rest of the algorithm computations. On the other hand,

in a processor array generated by partitioning techniques, an ¡nactive PE could be reused during an

algorithm computation. ln this case, ¡t ¡s needed to genérate the control signáis that actívate the
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correct PEs at the proper time and select the operation that the PE should perform. The following

chapter ¡s advocated to describe a proposed solution for the control signal generation.



4
Control Scheme

Once the processor array data-path has been derived, the generation of the control signáis for enabling

the processor and selecting their operations at different time instants ¡s needed. Chapter three has

covered all concepts previous to the control generation stage, showing how from an input PRA

specification a parallel execution order for each index point of the iteration space could be derived.

Later using some algebraic expressions, the processor array interconnection topology is derived.

Basically, when a processor array is derived by using LPGS approach the PEs activation patter differs

from the full-size implementation. This chapter is focused on describing a hybrid controller, which

uses centralized and distributed modules, in charge of providing the control signáis for processor

arrays derived from the design methodology shown in figure 4.1. The controller described is able to

genérate control signáis for processor spaces which are rectangular and non- rectangular, and at the

same time it provides problem size independency. After describing the control scheme, a controller

for a Cholesky decomposition is presented as case of study in order to exemplify the control scheme

ideas

87
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RDG and DG

| Space-Time Transforman on |

Functional Fixad Processor Array

Figure 4.1: Design flow methodology followed in the polytope model, highlighting the control

generation.

4.1 Hybrid Control Scheme

The problem of generating the control signáis for processor arrays has been previously tackled in

different works using distributed, centralized or a combination of both control facilities [17], [23],

[43], [61], [102], [121]. Although these works tackle the problem of control signáis generation for

processor arrays, they are limited in two different aspects: the generation of controllers only for

a specific problem size, and for algorithms with rectangular iteration spaces. ln this section, the

motivation and some additional considerations for the control signal generation are presented.
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4.1.1 Motivation

As stated before. the problem of control signal generation for processor arrays has received much

attention from the synthesis community using different control models [102]. ln a centraüzed model,

all the control signáis are generated by a global controller whose control data are broadcast to the

entire processor array, like in MMAlpha synthesis tool [36], On the other hand, in a distributed

control model the control signáis are generated by specialized control units distributed exactly as the

processor array topology, like in PICO-NPA synthesis tool [72] and in the framework presented by

Uday et. al [23]. Also, intermedíate soluttons combining centraüzed and distributed control models

have been used like in PARO [65]. However, these works are limited to genérate controllers only for

a specific problem size, and consequently their arrays produced are able to solve only a particular

problem size. If the problem size for which the arrays were targeted changes, the activation sequence

changes too, and as a result a new processor array must be synthesized in order to genérate a new

activation sequence. This limitation is originated because loop bounds after space-time mapping are

statically determined due to the assumption of fixed tile sizes [44]. Therefore these loop bounds

are pre-calcuiated during synthesis time, facititating the control signal generation for a dedicated

processor array in form of counters modules. If the processor array is designed to solve a set of

problem sizes, the loop bounds after space-time mapping must be determined dynamically at run-

time.

ln addition to the loop bounds limitation, the aforementioned works have focused on showing

implementations for algorithms whose loop bounds form rectangular shapes. When full-size arrays

are derived, the control signal generation for these arrays is straightforward (independently of the

algorithm loop bound shape) since a PE could be activated one or more consecutively times, but

once the PE stops, it remains inactíve during the rest of the array computation. However, when

processor arrays using LPGS approach are derived, an ¡nactive PE could be reused when a different

tile is being scanned, resulting in a different activation pattern in different tile ¡terations. As explained

in subsection 3.3.2.3, depending on space-time mapping, the processing element activation pattern
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might be regular or irregular. If the target polytope has a rectangular shape, the number of times

that a PE is activated will be the same for all the PEs inside of the array. But, if the target polytope

iteration space is non- rectangular, the number of times that a PE is activated will be different for

each PE inside of the array. Furthermore, providing the processor array PEs activation pattern for

non- rectangular iteration spaces is more complex than in the case of rectangular iteration spaces,

because the number of time steps for which a PE is activated changes while the tiles are being

scanned. ln this sense, if the processor arrays are required to provide a support for non-rectangular

iteration spaces, irregular activation pattern must be considered.

Full-Size Array
(logical array)

Partitioned Array
(physical array)

Figure 4.2: Example of invalid mapping from the logical array to the physical array after tiling a

non-rectangular processor space. Invalid mapping is denoted by dashed boxes in right size figure.

Besides of the irregularity of the activation pattern in non-rectangular iteration spaces when

LPGS partitioning approach is used, it arises another problem which is not presented in rectangular

spaces: the correct mapping of processor space index points (logical array) to PEs in the partitioned

array (physical array). Figure 4.2 exemplifies this problem showing a non-rectangular processor space

grouped into sets of size 2x4 (left size), which are later mapped to a physical processor array of the

same size (right size). ln this figure, the solid box fine in the left size denotes the current tile, whereas

solid box unes and dashed box lines in right figure denote a valid mapping from the logical array to the
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physical array and an invalid mapping, respectively. ln a processor array generated by partitioning,

a PE might be or might be not activated during a tile iteration. Such possibility is caused from

the non-rectangularity of the processor space, because there are occasions when a physical processor

(right size of figure 4.2) tries to map a non-existing processor index point of logical array (left size

of figure 4,2). ln order to provide a correct processor space mapping to PEs, a run-time mechanism

for detecting when a PE maps correctly an iteration point / from the processor space V is required.

Together, supporting irregular activation patterns and the correct processor space mapping to PEs

must be considered for deriving processor arrays for algorithms with non-rectangular iteration spaces.

Also, generating the control signáis (according to the scheduling function and the iteration

interval), supporting the non-rectangular processor spaces, and the irregularity of activation patterns

should be kept in mind when the processor array control units are derived for algorithms with non-

rectangular iteration spaces. ln order to provide such support, including hardware modules able to

genérate the irregular activation pattern and capable of detecting when a valid mapping is occurrlng

during a tile iteration ¡s required. Additionally, ¡f ¡t is desired to provide a problem size independency

for these arrays, including the problem size as a parameter in the controller for calculating the loop

bounds at run time is required too. ln the following subsection, the description of a control scheme

for the processor array control signal generation taking into account the aforementioned requirements

is presented.

4.1.2 Control Scheme Description

The control scheme presented in this chapter is based on the combination of centraüzed and

distributed control facilities, called hybrid or intermedíate control model [43]. ln this hybrid model,

the most costly hardware and repetitive operations are placed in a central module in order to reduce

possible overhead introduced if such operations were placed in a distributed way. ln this sense,

the proposed centraüzed control module generates the scanning order of the tile and time indexes

obtained after appiying strip mining to the processor space P.
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The distributed part ofthe proposed control scheme is based on two variations ofthe distributed

control model. ln the literature, the first varíation is called distributed pre-stored control model, and

it consists of generating the control signáis for each PE by using pre-stored control data in form

of look-up-tables (LUTs), FSMs or dedicated counters with comparators, without the necessity of

communication among the control units. ln the second variation, the control units are in charge of

propagating the control signáis to their neighbors; and if it is required, these control units modify

such signáis before of their propagation. This last model is called propagation control model. The

proposed control scheme uses both variations in order to provide the activation pattern and a run-rime

mechanism for detecting valid mappings. Such support is given by intercommunicating locally the

control units, and by using counters, FSMs, and comparators for generating the activation pattern,

which respects the scheduler function A and the iteration interval P

Centraüzed Distributed

| Control Array

Figure 4.3: Processor array hybrid controller block diagram. Dashed line divides the centraüzed and

distributed modules.

Summarizíng the centraüzed and distributed control modules functionaüties, the key idea behind

the controller is having a centraüzed unit in charge of scanning the partitioned processor space P

(represented by the tile indexes), and generating the time index. Later, these indexes are decoded

¡n order to genérate an activation signal that is sent to the distributed control units. This activation

signal is propagated through the control units, which decide ¡f the signal should be sent to a neighbor

PEs in order to genérate the activation pattern. The propagation of this signal is done in time steps
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equals to the iteration interval P and respecting the scheduler obtained from linear programming

formulation. Figure 4.3 shows the block diagram of the control scheme dividing the centraüzed

and distributed parís, ln this diagram, the generation of the tile and time indexes (IndexBus),

and their decoding into an activation signal (ActivationBus) are performed by a sequence generator

and an activation-signal injector modules, respectively. A set of control cells, which form a control

array following the interconnection topology of the processor array, are in charge of propagating the

activation signal and generating the activation pattern. ln the following section, the description of

these hardware modules is presented.

4.2 Hybrid Control Architecture

4.2.1 Sequence Generator

The module ¡n charge of generating the tile and time indexes sequentially for scanning each partition

created by strip mining the processor space and generating the time steps inside such partition

is the sequence generator. At first glance, this module might be thought as a set of simple

counters connected in a cascade fashion. However, it is not true at all, because the bounds of

the target polytope after space-time mapping are affine functions of tile and time indexes. Besides,

the incremental steps of each counter are not necessarily unitary, since the indexes in charge of

scanning the processor space (tilepQ and tüep\) are incremented according to their respective strip

size parameters. As a result an straightforward approach for using counters can not be used. For

example, the bounds of r¿-dimens¡onal target polytope could have the following form:

, ¡tilepo -
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where tilep0 and tilepi are the indexes introduced after partitioning the processor space V,
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t is the time index scanning the time space T, and N is the problem size. Note that the loop

bound expressions are affine functions of the indexes tilepa and tilep¡. If the processor array is

supposed to provide support for a set of problem sizes, the JV parameter must be evaluated at

execution time, ln order to provide support for the set of problem sizes, adding combinational

logic for evaluating affine expressions is required. ln this sense, the sequence generator module is

composed by a set of counter-like sub-modules connected in a cascade fashion. Between each pair

of counters, a combinational logic (Max/Min sub-module) in charge of evaluating the máximum

and minimum expressions presented In the target polytope bounds is required. This sub-module has

adders, multipliers, combinational logic to evalúate floor and ceiling functions, and comparators for

máximum and minimum functions. ln case of loop bounds expressions contain división operation,

this could be carried out by a right shifter or by a fixed-point multipliers.

From the Max/Min sub-modules, the máximum and minimum expressions for the upper and lower

bounds of each tile and time indexes are obtained. The lower bound indicates the starting index

valué, whereas the upper bound detects when an index has reached the last valué. These minimum

expressions are helpful for initiaüzing the counter-like sub-modules whereas the máximum expressions

help to stop them. Besides of loading the lower Ümit (as initiaüzation valué), and stopping the count,

when the upper bound has been reached, the counter-like sub-modules ¡ncrement their count given

the strip size at time steps equal to the iteration interval P ln summary the counter-like sub-module

should:

1. Load an input Índex valué in order to start counting (lower bound from the a max function).

2. Know when to stop counting (upper bound from the min function).

3 Count at different incremental steps according to the strip size parameters SSpr, and SSp¡.

4 Enable the counting at time steps equals to the iteration interval P

5. Hold the counting until an inner counter has reached its máximum valué.
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The internal architecture of the counter-like sub-module ¡s shown in figure 4.4. This sub-module

has an asynchronous Load. Reset and Hold signáis. Aiso, the counter-üke sub-module has two inputs

for the lower and upper bounds, which comes from the Max/Min sub-module. The STEP parameter

indicates the counting incremental steps, f'.e. the size of the strips obtained by partitioning, and

its valué is set at synthesis time. The architecture of the counter-like sub-module consists of an

adder, two 2-1 multiplexers, a less-or-equal comparator unit, and a modulo unit. Since the counting

incremental steps are different to one, it is necessary to anticípate when a máximum valué is reached

in order to avoid an overflow, For example, suppose that the next valúes are present ¡n the counter

cell: STEP - 3, LowerLimit = 0, and UpperLimit — 10. The valid sequence of valúes is {0, 3, 6,

9}. Note that the UpperLimit valué is not reached exactly and it should be avoíded the possible

overflow to 12. The modulo unit is in charge of controling a multiplexer, which selects between the

actual count valué or the next count valué avoiding such overflow. ln case that STEP parameter is

a two-power múltiple, the modulo unit is replaced by a set of AND gates. Due to AND gates require

less hardware resources than a modulo unit, in the rest of this work there are only considered strip

sizes equal to a two-power múltiple, i.e. processor arrays whose size is a two-power múltiple.

UpperLimil

1

And

GatesSTEP

'

1

~Ki
hold oirl

'cl|(

Reset

Cik
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Figure 4.4: Counter-like sub-module internal architecture.
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For each non-processor index presented in the partitioned target polytope, a pair of a Max/Min

and counter-like sub-module is required. The advantage of using combinational logic in the Max/Min

sub-modules is that if the bounds of the partitioned processor space were changed (by altering the

scanning order or by a different space-time transformation T). only by changing the Max/Min

expression, the sequence generator is able to genérate the new tile and time indexes. Moreover,

by adding /i-pair of counter-like and Max/Min sub-modules the functionality of h non-processor

indexes can be achieved. Figure 4.5 presents the sequence generator architecture when h — 3. The

counter-like sub-modules labeled as Counter
_,

Counter [p and Counter2 genérate the tilepQ, tilepj.

and t indexes, respectively; with a word width of W„ for all these indexes. Note that the Hold

signal from the inner most counter is connected to a counter which establishes the iteration interval

P Also, note that the outer counter loads the LowerLimit valué when it ís necessary to compute

a new problem instance, therefore the Load signal is high-actíve only when a new computation is

required. The EndCount signal from this outer counter is high-active only when the generation of

the non-processor indexes has ended.

-o

^•J-'" R»"'

Figure 4.5: Counter-like sub-modules interconnection when h = 3. The combinational Max/Min

sub-modules are grey-shaded.

The FSMI¡: FSM1 and FSM2 presented in figure 4.5 are in charge of activating the Hold or Load

signal for Counter,, Countert, and Counter2 counter-like submodules, respectively Although it ¡s
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not explictly shown in figure 4.5, the transitions made by the three FSMs are done according to the

iteration interval P, therefore, each FSM includes a 7J-modulo counter. Basically, the functionality

of these FSMs ís activating their corresponding control signáis (Hold or Load) by knowing when

an inner counter has reached ¡ts last valué. For this purpose the FSMs use as input the EndCount

signáis from their inner counters. The transition diagram for the Mealy FSM¡, and Mealy FSM2 is

the same as shown in figure 4.6, whereas the transition diagram of the Mealy FSM} ¡s shown in

figure 4.7. Note that the "don't care" transitions are done according the iteration interval too.

lnputA= 1/Output =1

EnableCnt=1

lnputA=X /Output =0

EnableCnt = 0

Figure 4.6: Mealy finite state machine transition diagram in charge of activating Hold and Load

signáis for the Counterr¡ and Counter2 sub-modules, respectively.

InputA = 1 /„

InputB = x/0utP"'

InputA =

InputB =

. /Output =0
'
EnableCnt = 0

InputA = X /„

InputB = X/°utpV'

'InputA = X /„

'
CnahaT1

Figure 4.7: Mealy finite state machine transition diagram in charge of activating the Load signal for
the Counter¡ sub-module.
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4.2.2 Activation Signal Injector

The second element of the hybrid control is the activation-signal injector, This module is in charge

of selecting which PE, in the bottom row of the control array, must be activated when a new tile

¡s being scanned. This is accomplished by injecting an activation signal to the control array using

the ActivationBus. Also, an IndexBus composed by the indexes tilepo, tilepi, t, and the size of

the problem JV is injected to the control array. The reason for injecting the tile and time indexes

to the control array is that all PEs must know what tile iteration is being executed at a given time

and what is the size of the problem that is being solved. This is helpful for generating the irregular

activation patterns, and for detecting correct mappings from the processor space to PEs. Besides,

remember that these data provide the information needed for controlling the PEs in the processor

array data-path (see section 3.3.1.2). Figure 4.8 depicts the interconnection between the sequence

generator, the activation-signal injector and the processor array, showing only the IndexBus.

Sequence
Generator

tilePo
>

tilepl
>■

t

>

Activation

Injector

Index

Bus

7*"
f^f1 f

Processor Array

Figure 4.8: Injection of IndexBus to the processor array from the activation signal injector.

ln order to inject the activation signal (using the ActivationBus), and the tile and time indexes

(using the IndexBus) at the correct PE, it is needed to know which PE will be the first one to be

used Determining the first PE used in a tile iteration helps to start the processor array activation

pattern. The first PE activated, when a new tile iteration has started, is obtained by evaluating
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the expressions of the lower bounds of the processor space, i.e. pc and px indexes. Remember that

the bounds of processor space are affine functions of the indexes (tilepo, filep¡ and í), therefore

these index valúes are needed in order to evalúate the lower bounds expression of the processor

space. Intuitively, by performing such evaluation, it is possible to know the PE where the activation

signal should be injected. This leads to the ¡dea of having two sub-modules inside of the activation-

signal injector: a set of Max sub-modules in charge of mapping the lower bounds expression of the

processor space; and a W_ : SSpi decoder sub-module for decoding the p, index valué in order to

know the coordínate where the activation signal must be injected (bottom row of the control array).

The output width of the We : SSpi decoder sub-module is equal to the SSpi parameter. Figure

4.9 shows the activation-signal injector module internal architecture, where the combinational Max

sub-modules are highüghted. Similarly to the Max/Mín sub-modules in the sequence generator, by

changing the Max expression. the activation-signal injector is able to provide support for different

space-time mappings.

Sequence
Generator

tlleP0

MAX

pO

Lowpn MAXtilep1 Lowp1
W-:SSp,
Decoder

t

Processor Array

ActivationBus

Activation-Signal Injector

Figure 4.9: First approach for the activation-signal injector. For clarity purpose, it is only shown the

ActivationBus.

Although this first approach seems to be expensive in terms of combinational logic used, it

guarantees that the activation signal is placed at the correct PE at the first time instant of a

tile iteration. However, improving this first approach is possible depending on the space processor

bounds obtained after space-time transformation. Mainly these bounds depend on the transformation
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matrix T, the scanning order of the tiles, and the source polytope índex bounds. For example, it

might happen that the Max sub-module in charge of evaluating the p0 lower bound was eüminated;

because the lower valué of pQ index could be always the same as the tilep0 Índex valué, thus the p0

valué could be substituted by the tilep0 index valué. Figure 4.10 shows this possible modification

for the activation-signal injector internal architecture, where the combinational Max sub-module ¡s

highüghted. Finally, for injecting the index bus to the processor array, it is only needed to propágate

the tilepü, Htepi, t. and the problem size to the bottom row of the control array.

"Po ProcessorArray

ActivationBus

Activation -Sign al Injector

Figure 4.10: A possible second approach for the activation-signal injector. For clarity purpose, it is

only shown the ActivationBus.

4.2.3 Control Array

The last module of the hybrid approach is the control array which is composed by several control

cells that are replicated as many times as PEs has the processor array, following the interconnection

topology of the processor array data-path. The control array is in charge of generating the processor

array activation pattern (for rectangular and non-rectangular iteration spaces) using the IndexBus

and ActivationBus injected by the activation-signal injector module. The control cells are in charge

of circulating the activation signal. and the tile and time indexes through the control array. This data

circulation is performed by knowing the processor array activation pattern, and the correct mapping
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of the logical array to the PEs in the physical array, By discoveríng these two characteristics, the

control array is able of circufating the IndexBus correctly through the processor array, and generating

the correct activation pattern, independently of the piecewise regular algorithm and the space-time

transformation used.

ln a partitioned processor array obtained by strip mining the processor space, knowing when a PE

maps a valid index point of V is needed. This validation is performed while V is being scanned by the

tile indexes, and checking if all the PEs in the physical processor array map a processor space index

point that is inside of the processor space boundaríes, i.e. if logical processor p € V If a processor

space VT has a rectangular shape, then its boundaries depend only on the problem size JV; and ¡f

a processor space Pnr has non- rectangular shape, then its boundaríes depend on the problem size

and on processor space indexes (p0 or p¡ in the case of 7>„r e Z2). Therefore, with the purpose of

supporting the non-rectangular shapes ¡n a processor space, the control cell includes combinational

logic in charge of checking the boundaries of the processor space each time a new tile iteration has

started.

Furthermore, in the case of a full-size processor array, the activation pattern of a PE depends

only on the number of the Índex points in the source polytope that are mapped to an índex point in

the processor space V Erhart polynomials can be used to calcúlate such number [44]. If the Índex

space of the source polytope is only formed by constants valúes, then the number of Índex points of

the source polytope mapped to an index point p e V remains constant. However, if any boundary

of the source polytope is an affine function of the index space, the number of índex points mapped

is not constant, and it will depend on the index components of the índex space. These two cases are

maintained if the processor space is partitioned. The activation pattern provídes an ¡dea of how many

dock cycles the incoming activation signal must be kept activated inside of control cell. Thereby,

the control cell includes sequential logic for counting how many time steps the activation signal must

kept activated (according to the source polytope Índex points mapped to a PE), and combinational

logic for establishing the number of time steps each time a new tile iteration has started
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Figure 4.11: Generalizaron ofthe control cell architecture.

Figure 4.11 presents the general architecture ofthe control cell. Coarse Unes indícate the Input

IndexBus injected from the activation-signal injector, and the activation signal (Input ActivationBus)

coming from the control cell neighbors. The width of the Input ActivationBus ¡s equal to the half

of neighbors that a control has, ;'.e. it depends on the interconnection topology. The control cell

has an activation pattern generator, and a boundaries detector sub-module ¡n charge of generating

the activation pattern of a PE and for detecting the boundaries of the logical space processor,

respectively. These two sub-modules have combinational and sequential logic which depends on

the processor space, and the transformation matrix T: thus their internal architecture can be only

inferred after space-time mapping (see section 4.4). The activation pattern generator controls the

enable signal (PE.Enable) of the corresponding PE, and it stops a FSM. This FSM ¡s in charge of

enabling the activation pattern generator by combining the Input ActivationBus in a set of OR gates.

Similarly to the FSMs required by the sequence generator, the state transitions of this machine are

done according to the iteration interval P, thereby internal modulo counters are included for each

control cell. The boundaríes detector sub-module and some AND gates are in charge of deciding if
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the activation signal must be sent to any of neighboring PEs. Moreover, the control cells have a

set of registers for storing the indexes and the activation signal generated by the set of AND gates.

These registers are enabled by following at the same rate as the iteration interval and respecting the

scheduler. The FSM transition diagram of the control cell is shown in figure 4.12.

Stan - x. siop - o / Outpui = i

Figure 4.12: Mealy finite state transition diagram in charge of activating the activation patterr

generator inside of the control cell.

4.3 Number of Logic Elements

The number of logic elements (adders, multipliers, multiplexers, counters, etc.) required by the

sequence generator, the activation-signal injector, and the control array modules can be characterized

¡n terms of some parameters. Table 4.1 shows such characterization, where the strip mining

parameters SSpo and SSpi are the processor array size, h is the number of indexes generated by the

sequence generator, and q ¡s the number of data propagated through the control array. Parameters

c0, ..-,€,, are constant factors that depend directly on two algorithmic aspects: the iteration space of

the source polytope, and transformation matrix T Therefore, h, q and cDl ...,c9 parameters can be

set to fixed valúes when a space-time mapping determined by matrix T is used in a piecewise regular

algorithm,

Expressions shown in table 4.1 provide an idea of the minimum number of hardware elements

that the control scheme needs without taking into account the algorithm neither the transformation
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Number Sequence Signal Control Control

of Generator Injector Cell Array

Adders h-r-ca Ca Ca cs(55p0 x SSpi)
Multipliers C] c5

Multiplexers 2d+r,2 Ce

Comparators d + c-i d Cg c9(SSp0 x SSpx)
Counters 4 2 2(SSPo x SSp,) + 4

Registers h 9 <¡ <7(SSp0 x S5Pl)
I-Bit FFs 1 2 2(SSPoxSSPl) \

Table 4.1: Mínimum hardware resource utilization of the control architecture in terms of three

different parameters.

Number

of

Sequence Signal Control

Generator Injector Array

Control Scheme

Total

Adders

Multipliers

Multiplexers

Comparators
Counters

Registers
I-Bit FFs

0 2[SSp„ x SSp,)
2

8

6 2{SSp,,xSSp,)
4 2(SSp0 x SSp,)
3 4 4(SSpo x SSp,)
í 2(SSpa x SSp,)

2(SSp0 x SSp,) +6

2

8

2(SSp0 x SSp,) + 6

2(SSprj x SSv, ) + 4

4(SSprj x SSv,) + 7

2{SSpa x SSp,) + l

Table 4.2: Characterization of the hardware resource utilization of the control scheme for MatMul

when the vectors A¡ — [1, 1.1], u — [1.0. 0] are used.

matrix T, i.e. without considering the constant factors. Also, these expressions show that the

sequence generator and signal injector require a number of hardware elements linear, In terms of Ii

and q. However, after partitioning the processor space. the number of hardware elements is constant

regardless of the processor array size. On the other hand, although the number of hardware elements

that a control cell requires is constant, the number of elements needed for the control array grows

¡n a quadratic way depending directly on the processor array size. Moreover, note that the number

of registers required by the control array is proportional to the number of PEs in the array. This

characteristic allows to increase the control array size without decreasing the máximum operational

frequency due to none critical path is created when more control cell are interconnected. Table
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4.2 shows the number of hardware elements required for the control architecture when the MatMul

algorithm ¡s used with certain transformation matrix T, and consequently parameters h, q and

O), ...,Cg can be set to fixed valúes. Note that regardless of the processor array size, the number of

hardware elements required by the sequence generator and activation-signal injector remains constant.

4.4 Cholesky Decomposition Case of Study

The hybrid control scheme is designed for supporting different space-time mapping and interval

iterations. By changing some mathematical expressions (mapped to combinational logic) present in

each one ofthe three control modules, the generation ofthe correct activation pattern is possible.

Additionally, the control is able to deal with non-rectangular processor spaces in contrast to [36]

and [65]. With the purpose of exempÜfy these characteristics, in this section a case of study using

the Cholesky decomposition is presented. The case of study uses a scheduler function A, = [1 . 2. 3],

the projection vector u. = [1,0.0], the iteration interval P = 21, and strip sizes of SSpr, - 2 and

SSpi = 4, resulting in a processor array of 2 x 4 PEs.

The first step for deriving the mathematical expressions required by the different control modules,

is obtainlng the tile and time indexes, í.e. f.?7ep[), titepi and I. These indexes are obtained from the

space-time transformation and from partitioning the processor space. Thus, it is needed to construct

a unimodular matrix T for the space-time mapping, by using k¡ = [1, 2, 3] and Ü = [1. 0. 01:

1 2 3

0 1 ll

0 0 1

(4.1)

Later, appiying the Fourier-Motzkin algorithm for transforming the Cholesky PRA (see figure

3.4 in Chapter 3) using the matrix T, the bounds of the target polytope are obtained. After the

space-time mapping, the strip mining technique is used over the processor space. The lower and

upper bounds of the tile and time indexes indexes are presented in the following set of inequalities:
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0 < tilepo < A/ - 1

\tilepajss\ SSpi < tüepi < ¿y— 1 (4.2)

LowBound, < t < UpBoundt

where LowBound, = iiiílx (-itilep0 + 2a, 9{tílep0 + a) -

6(N
-

l).9t?.lep0
-

6{N
-

1)),

UpBcmndt = min (3(N
-

1) + Milepx + 3Í>T Uilep, + 3b, 3(A'
-

1) 4- 3tilepi), a = tilep0+SSp0-

1 and b — tilepi + SSpi — 1. According to the Fourier-Motzkín algorithm max and min functions

are used for lower and upper bounds, respectively. Similarly, if the bounds expressions have división

operations ceü and floor functions are used in order to avoid non-integer valúes in the lower and

upper bounds, in respective order.

ln order to genérate the tile and time Indexes, it is required to implement the bounds from

expression 4.2 to combinational logic in the Min/Max sub-modules. Since the size of the strips

in this case of study is a two-power múltiple valué known at compile time, they can simpüfy the

combination logic needed in the Min/Max sub-modules presented in the sequence generator. For

example. the división in the low bound of index tilep-¡ can be substituted with a constant right shift

Similar ¡mprovements could be performed on other expressions. The STEP parameters indicating

the counting ¡ntervals are filepa = 2, filep-¡ — 4 and t = 1. The internal arithmetic for implementing

the Min/Max sub-modules in this case of study is assumed to be 16-bits.

ln the case ofthe activation-signal injector, the approach shown in figure 4.9 could be used as

first attempt to inject the activation signal along with the index bus. However, this would lead to

implement complex lower bound expressions of the processor space. Besides, recall that these bounds

are affine functions of other indexes presented in the target polytope. ln this first approach the index

¡>¡ depends on ¡i„. Nevertheless. it is not necessary to evalúate the p0 lower bound, because this

bound is always equal to the titepo valué; thus the pü valué could be substituted by tilepo- Therefore,

there is only needed a combinational Max sub-module to implement the lower bounds expression of

/j, (equation 4.3). The división operation needed in equation 4.3 is performed by multiplying a 16-bit
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fixed valué which represen! the constant 1/3. This assumption does not add any error during the

computations of the p0 low bound due the truncation performed by the ce.il function.

LowBoundpa = max (1%] - tüepa,tüep0,tilepi) (4.3)

The We : SSp\ decoder sub-module decodes the pi index valué in order to genérate the activation

signal. The output width of this decoder ¡s equal to the valué of SSp] parameter, which in this case

¡s SSp, — 4. The true table of this decoder using 16-bit for decoding the LowBoundp¡¡ valué is

shown in table 4.3.

LowBmmdpu Input Activation Signal

0000000000000001

0000000000000010

0000000000000011

0000000000000100

0001

0010

0100

1000

Table 4.3: Truth table 16:4 decoder

The control cells require deriving the mathematical expressions for the activation pattern and the

boundaries detector. Since the source polytope boundaries in Cholesky PRA case are affine functions

of the index space, the number of dock cycles that the activation signal must be kept activated

inside of a PE is not constant. The activation pattern can be characterized as a function of the pa-th

row ofthe processor array and as function of tilepo index (equation 4.4).

MaxLifePíuP¡ < row, + tilepo (4.4)

Besides ofthe activation pattern, it is required to know when a physical processor maps a vaüd

logical processor. ln this case of study note that while the processor space is being scanned by the

tile indexes, there are PEs which are not used. These unused PEs are outside of the boundaries

mapped from the logical processor array to the physical one. Figure 4.13 shows a snapshot of the

logical array and the physical array when the last partition of the processor space is scanned. Also,

in this figure the problem size is N = 10. The border Unes ¡ndicate the boundaries of the logical
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array. Note that in this case the size ofthe processor space (logical array) does not fit exactly in the

physical array, thus some PEs in the physical array remains ¡nactive (dashed PEs).

Full Size Array
{logical array)

Partitioned Array
(physical arrayl

Figure 4.13: Activation of a full-size processor array and its mapping to physical array of size 2x4.

Invalid mapping is denoted by dashed boxes in right size figure.

It is possible to detect the PEs inside these boundaries when expression 4.5 and 4.6 are true.

Expression 4.5 checks PEs within the main diagonal, and expression 4.6 checks the number PEs

required for the problem size.

tilepo + p0 + 1 < tilep] + pi (4 5)

tilep, + Pi + 1< ¡V (4 6)

Together expressions 4.4, 4.5 and 4.6 provide enough information for keeping activated the PEs.

and for knowing how to route the indexes, and activation signal through the array. Figure 4.14 shows

the control cell internal architecture for this case of study. Due to the interconnection topology, the

control cell receives the activation signal from its lefter and lower neighbors (Inject,,,, and lnject..,i

signáis, respectively). The boundaries detector, the FSM and the AND gates are in charge of
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generating the activation signal for the upper (Ejected,,b signal) and righter (Ejectedri¡ signal) PE's

neighbors. The activation signal and the indexes must have some dock cycles of delay according

to the components r^
= 2 and r_

= 3 of vector r. This delay could be induced by activating

periodically the enable signáis from the registers following the iteration interval P and the scheduling

function. Figure 4.15 shows the interconnection ofthe control cells forming the control array for the

processor array of 2 x 4 PEs.

Figure 4.14: Internal control cell architecture for the Cholesky decomposition algorithm case of study.

Finally, table 4.4 shows the number of hardware elements required for the controller developed

in this case of study. Recall that for calculating the bounds of the Cholesky partitioned processor

space the división required in expression 4.3 is performed by multiplying the fixed constant valué of

1/3. Note that the interconnection of hardware elements in the sequence generator and activation-

signal injector modules is more prone to genérate larger critical-paths than the control array; since

the number of registers in the control array íncrease at the same rate as the other elements in the

control array. This characteristic helps to Íncrease the size ofthe processor array with a small impact

on the operational frequency.
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Figure 4.15: Interconnection of the control cells forming the control array for the Cholesky algorithrr

case of study.

Number Sequence Signal Control Control Scheme

of Generator Injector Array Total

Adders 14 7 32 53

Multipliers 8 8 16

Multiplexers 12 15 27

Comparators 9 15 16 40

Counters 4 16 20

Registers 3 4 32 39

I-Bit FFs 1 10 17

Table 4.4: Characterization of the hardware resource utilization of the control scheme for Cholesky

case of study
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4.5 Summary

Although there are works tacküng the problem of control generation signáis for processor arrays, they

are limited in the generation of controllers only for a specific problem size, and for algorithms with

rectangular iteration spaces. ln this chapter, a control scheme for generating the control signal for

processor arrays, independently ofthe iteration space shape has been presented. This control scheme

is able to provide the control signáis for a set of problem sizes without the need of regenerating the

controller. The proposed controller uses centraüzed and distributed functionaüties, placing the most

repetitive and expensíve hardware operations to central modules and using several registers in the

distributed modules. This helps to Íncrease the control array size, and thereby the processor array

size, with a minor impact in the dock frequency.

The main idea behind the controller is having a sequence generator module in charge of scanning

tile indexes and generating the time index. These indexes are decoded by the activation-signal

injector, which generates an activation signal that is sent to control array. The control array

circulates the activation signal and each control cell decides if the signal should be sent to its

neighbor, generating the activation pattern.
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External Memory

One important aspect involved during the processor array derivation is the processor data feeding

and the processor data extraction, i.e. the external memory aspects. The hybrid control scheme

described in last chapter ensures the correct activation of the processing elements within the processor

array, when the processor space is being scanned ¡n blocks (due to strip mining). Also, selecting

the correct operations during a time instant by inserting the index bus is provided by the control

scheme. However, the processor array data-path and the hybrid control are meaningless if data

are not provided from an externa! memory element. Once valid data are being produced by the

processor array, extracting the results either for storing them in externa! devices or for feeding other

components inside of a SoC is needed. ln this sense, this chapter is mainly focused on describing an

external memory interface in charge of inserting/extracting data to/from the processor array (figure

5.1). However, in order to explaín completely the design methodology followed by this dissertation

work, issues concerning about the processor array memory organization and the intermedíate memory

for data reuse are briefly and firstly explained.

113
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^~n

Figure 5.1: Design flow methodology followed in the polytope model, highlighting the memory

generation.

5.1 Memory Hierarchy

The internal registers placed inside of each PE. the intermedíate memory for data reuse, and the

external memory interface, could be organized in a memory hierarchy according to temporal and

spatial locality concepts. Temporal locality refers to data that is likely to be reused again within

a short period of time, while spatial locality refers to data nearby of the data recently accessed.

At the first level of the memory hierarchy, the registers derived from expressions 3.18 and 3.20 are

located (see Chapter 3). The next memory levéis are composed by intermedíate memory divided

in two different levéis according to data proxímity. At the inner intermediate level are memory
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elements in charge of storing data with major temporal locality, whereas in the intermedíate outer

level are memory elements responsible for storing data with less temporal locality. These two levéis

are called intermedíate memory level 1 and intermedíate memory level 2, respectively; and they can

be compared as traditional cache memories in the sense of their size and their locality. Finally,

the outer level is composed by the external memory system in charge of providing/extractíng data

to/from the processor array. The amount of external memory depends on the problem size that ¡t

is being solved, the size of the physical processor array, and the number of input/output variables

presented in the source polytope. Together the registers, intermedíate memory and externa! memory

conforms a memory hierarchy illustrated in figure 5.2.

EWernal

Memory

Figure 5.2: Processor array memory hierarchy.

5.2 Intermedíate Memory

Intermedíate memory is essential for the sake of guarantee the correct algorithmic functionality in

partitioned processor arrays. The purpose of this memory is to store intermediary results which have

been computed by the processor array for their subsequent usage. The generation of these memories

have been considered by previous works for different partitioning approaches. However, it is worth

to mention two aspects involved in the generation of such intermedíate memories: the size of these

memories and their corresponding control. This section is advocated to describe these two aspects;

particularly, the control divided ¡nto two cases: rectangular and non-rectactgular iteration spaces.
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5.2.1 Motivation

ln a full-size array implementation the usage of intermedíate memory ¡s not required since all temporal

valúes produced by the processor array are stored inside of PEs registers while the computations

are being performed. Also, the full-size processor array possesses all the internal memory required

for computations in the form of internal registers. However, when partitioning is applied using

LPGS approach, an intermedíate storage is required for storing data produced by the border PEs,

substituting the registers in full-size implementation. Using strip mining with a LPGS approach, the

processor space Índex points are grouped into subsets that are executed in parallel while each subset

¡s executed sequentially. This leads to the idea that tile indexes produce an scanning order for each

one of these subsets, and due to such processor space scanning order, some tiles are fírstly processed.

Figure 5.3 illustrates this last idea by showing a full-size processor array of 16 x 1Ü PEs mapped to

a physical array of 4 x 4 PEs. For this figure assume that each PE is activated sixteen consecutlve

times, and consequently, each PE produces sixteen data. Also, assume the scanning order is done

first form left to right (tüep-¡ index) and down to up (tilepo índex). Due to al! PEs produce sixteen

data (including the border PEs in the physical array), it should be placed a memory element for

each PE able to store the sixteen data produced by the border PEs placed in /i| direction. When a

different tile in the direction of pj index is scanned, data produced from the previous tile must be

reinserted to the processor array. ln this exampie, the memory elements placed in the pi direction

are denoted as intermedíate memory level 1. Similarly, a second intermedíate memory level between

the upper and lower processor array borders should be placed.

The intermedíate memory cou!d be ¡mplemented by using addressable memory or by using FIFO

memories ln the case of implementing the intermediate memory as addressable memory, some extra

logic for address calculation per each memory element should be added. ln this case, the address

calculation could be performed using address generation units (AGUs) and counters in order to sean

the memory locations while the processor array is doing its computations. From the implementation

point of view. this could be impractica!, since computing the addresses for each memory location
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Figure 5.3: Physical processor array of sixteen PEs and its connection among the two intermedíate

memory levéis.

involves n-bit control word operations per intermedíate memory module. On the other hand, using

FIFO memories, the overhead introduced by n-bít word operations could be reduced by using simple

FSMs with two states. Such FSMs would be in charge of generating the write and read signáis

required in FIFO's implementations. Moreover, the FIFO approach describes more naturally the

behavior of the data generated by the border PEs, since the first datum produced by a PE are the

first one consumed by the following PEs, i.e. the processor array data production/consumption is

done in a orderly manner [88]. ln the next subsection, more details of the intermedíate storage

¡mplemented as FIFO memories, called FIFO Ll and FIFO L2, are described.

5.2.2 Internal FIFOs

Independently of using FIFOs or addressable memory as intermedíate storage, the number of

memory locations required for each intermedíate memory must be determined firstly. ln general.

for rectangular or non-rectangular iteration spaces, the máximum number of memory locations ¡s
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related to the size of the problem being solved. For example, when a rectangular iteration space is

considered, the amount of data produced by each PE remains constant during the whole algorithm

execution, whereas in the non-rectangular case such amount varíes. However, in both cases, the

máximum number of memory locations is not larger than the size of the problem being solved.

Therefore, the problem size could be used as a parameter for calculating the memory size assuming

a worst case scenario. ln the case of FIFOs Ll, the number of memory locations is equal to the

amount of data produced by each PE, í.e. the problem size. If the example illustrated in figure 5.3

is continued, the number of memory locations required by FIFOs Ll ís sixteen. On the other hand,

the size of each FIFO L2 memory is estimated with the following equation:

™— [wH (51)

where Sizep,, is the size of the processor space in direction pa, SSpo is the size physical processor

array ¡n direction of po, and r 's tne amount of data produced by the border PEs. ln other words,

the size of the FIFO L2 is a function of the processor space and physical processor size ¡n the same

direction (p„ in this case), and a function of the data produced by the border PEs. ln the example

shown in figure 5.3 the size of such FIFOs L2 are 64. The design of the control of these FIFOs could

be divided into two different cases according to the iteration space shape after space-time mapping.

5.2.2.1 Rectangular Iteration Space

ln the case of rectangular shapes, the generation of the FIFOs write/read enable signáis is

straightforward. The writing signal, for both Ll and L2 FIFOs, is activated only when the border

PEs are producing data, í.e. when these PEs are activated by the control array. Therefore the

activation signal produced by the control cell for each border PE can be used as the FIFO write

enable signáis. On the other hand, the read enable signáis for Ll and L2 FIFOs are produced in

a slightly different way compared with the write enables. ln fact, two signáis are required in order

to enable the FIFO readings: the activation signal from left border PE and a signal which indicates

when the máximum valué of a tile index has been reached. This last signal. called EndCount, is
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already present in the sequence generator module described ¡n the last chapter. ln the case of FIFO

Ll the signal which indicates that the tdep\ Índex has reached its máximum valué comes from the

time counter, whereas for FIFO L2 the EndCount signal comes from the tilep¡ counter. Together,

the control array activation and the EndCount signáis are able to produce the read enable signáis

by activating a FSM. The transitions made by the FSM are done according to the iteration interval

P, consequently a P-modulo counter for enabling the FSM is added. Figure 5.4 ¡llustrat.es the idea

of the interconnection between two PEs placed on opposite array sides, and the control signáis for

write/read. One row of PEs ¡s only shown for purpose of clarity, but the interconnection idea can

be generalized for any row or column of PEs inside ofthe physical processor array i.e. any two FIFO

levéis. Signáis Activation PEn and Activation PEn are generated by the control cells corresponding

to the opposite processing elements PE„ and PEq, respectively. The EndCount signa! could be either

from the time or tilep\ counter, depending on the FIFO level, The FSM is activated at a rate equal

to the iteration interval by a P-module counter. Finally, figure 5.5 shows the transition diagram for

the Moore FSM in charge of generating the ReadEnable signal.

Oulcui FIFO mpul ^-

Figure 5.4: Interconnection of FIFO memory and its control at the processor array borders for

rectangular iteration spaces.
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Figure 5.5: Moore finite state machine transition diagram in charge of generating the FIFOs

ReadEnable signal for rectangular iteration spaces.

5.2.2.2 Non-Rectangular Iteration Space

ln the case of non-rectangular iteration spaces, the generation of the FIFOs read enable signal

must consider the number of consecutive times a PE is producing data that in future tile ¡terations

will be needed. Such number is represented by the ReadsAmount signal, which is related to the

concept of activation pattern presented in the control cell (see Chapter 4). Basically, this signal

and the activation pattern concept indícate the number of consecutive times a PE is activated,

and consequently the amount of data produced by the PE that should be read in further tiles, ln

addition, similarly to the rectangular case, the EndCount is also required for generating the read

enable signal, since it indicates when the FIFO reads must start. On the other hand, the FIFO

write signal is generated by using the EndCount and the activation signal Activation PE„. Write

and read enable signáis are produced by two different Moore FSMs shown in figures 5.6 and 5.7,

respectively. Like in rectangular iteration space case, the FSMs transitions are done at a rate equal

to the iteration interval. Therefore, P-modulo counter is used in order of generating the WriteEnable

and ReadEnable signáis according to the iteration interval P The ReadsAmount signal is generated

by another counter varying its máximum count during different tile ¡terations. Figure 5.8 shows the

interconnection of theses counters, the FSMs and a FIFO memory for one row of PEs.

5.3 External Memory

The derivation of the external memory scheme is closely related to the input and output variables

present in the PRA specification, and their corresponding iteration dependent condition C (J) after
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Figure 5.6: Moore Finite state machine transition diagram in charge of controlling the FIFOs

WriteEnable signal for non-rectangular iteration spaces.

Figure 5.7: Moore Finite state machine transition diagram in charge of controlling the FIFOs

ReadEnable signal for non-rectangular iteration spaces.
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Figure 5.8: Interconnection of FIFO memory and its control at the processor array borders for

non-rectangular iteration spaces.

space-time transformation. The transformed input and output variables can be ¡nterpreted as

a representation of external memory, with a specification of which PE will require a datum at

certain time instant. Essentially, after the space-time mapping, and depending on the variable

type, four different architectural cases could be derived. These four cases assemble a memory

system for inserting/extracting data to/from the processor array. ln this section each one of the

four architectural cases is explained. The first part of this section establishes the motivation and
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considerations presented for the generation of external memory interfaces, mainly focused on the

derivation of the number of external communication channels. The second part describes the four

cases with their corresponding proposed modular architectures. These architectures are scalable in

the sense of by replicating or eliminating the hardware modules, they can be adjusted in order to

support changes in the the processor array size, or changes in the iteration interval.

5.3.1 Motivation

Beyond of the fact that there are few attempts for deriving the external memory interfaces for

processor arrays using the polytope model, the processor array high data requirements must be

taken into account. Processor arrays are highly parallel under the assumption that all data needed

for performing their computations are always available. Similarly, if data produced by the array

are recollected without stalling the array computations, a high degree of parallelism could be

maintained. Thus, the design of memory systems capable of keeping busy the array without stalling

its computations is mandatory in order to preserve the processor array performance. Henee, the use

of múltiple communication channels for inserting and extracting data is required in order to prevent

the processor array performance degradation. ln this sense, having a highly parallel processor array

with an external memory interface able of proving or extracting only a partial amount of data is

worthless. since it limits parallelism originally provided by the processor array. An example of this

last situation is reported by Plesco in [91] where the total performance obtained by a 4 x 4 processor

array is limited by the use of two communication channels. Consequently, in order to avoid processor

array performance degradation múltiple communication channels between the memory system and

the processor array must be available.

The number of communication channels required for avoiding a processor array performance

degradation is related to three aspects; the iteration interval (P), the processor size (denoted by SSp,,

and SSpi), and the number of input/output variables presented in the algorithmic specification. As

mentioned in Chapter 3, the iteration interval defines the number of time steps between the evaluation
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of two consecutive instances of an indexed variable. Therefore, shorter valúes of P will lead to

íncrease the number of communication channels, while larger valúes will decrease the requirement of

communication channels. Similarly as the iteration interval, the processor array size impacts directly

on the number of communication channels (larger arrays lead to múltiple channels while smaller

arrays requires few channels). ln additíon, the number of input/output variables is also proportional

to the number of communication channels. Among theses three aspects, the input/output variables

after space-time mapping is the most important aspect to be taken into account when the external

memory is derived; because they dassify the communication channels into four possible architectural

cases taking into account the processor array size. Moreover, the assumption of P = 1 is equivalent

to the worst possible scenario for deriving the memory interface. The following subsection describes

the relation among the input/output variables after space-time mapping and the derivation of these

four architectural cases assuming the worst scenario (P = 1).

5.3.2 Architectural Memory Cases

As stated before, the input/output variables can be viewed as a specification ofthe external memory,

and they possess two characteristics that vary depending on the algorithm. The first characteristic

is that for each input/output variable, there is an iteration dependent condition C'[¡) responsible

for indicating the index points where the assignation must take place. The second characteristic is

a consequence of the first one, and it consists of one dimensión of the iteration vector / ¡s always

set to a constant valué due to the iteration dependent condition. Thereby only n
- 1 dimensions

ofthe n dimensional vector / are taken ¡nto account for all the input/output variables, ln fact, the

Índex variable of the missing dimensión is the same Índex variable present in C(í). Note that in

the case of input variables, the iteration condition checks if one iteration index is equal to zero and

for output variables the iteration condition checks if one iteration Índex is equal to the problem size

These two characteristics are useful when an external memory scheme is derived and they should be

kept in mind after space-time mapping. After space-time mapping, the iteration dependent condition

C'{I), and the iteration vector / are transformed to time or processor spaces, leading to two mapping
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possibilities with different number of communication channels:

1. Border mapping. It occurs when the index vector / of C'(l) ¡s transformed to processor

space, and one dimensión ofthe vector / in the input/output variable is mapped to the time

space. The number of communication channels in this mapping case is equal to SSpg, where

SSpx could be SSpQ or SSpi depending on the allocation function <í> used.

2. Broadcast mapping. It occurs when the index vector / ofC'(I) is transformed to time space,

and all dimensions of vector I in the input/output variable are mapped to the processor space.

ln this mapping case, the number of different communication channels is ¿'5/Jrj x SSpi.

For input variables, the first mapping possibility leads to introduce all data stored in external

memory from one of the processor array borders, and to extract all produced data from one border

in the case of output variables, ln contrast, the second possibility leads to introduce and extract

data from each PE inside of the processor array for input and output variables, respectively. From

the border and broadcast possibilities there are other two possible cases depending on the variable

type, í.e. if the variable is an input or output type combined with the border or broadcast mapping.

Basically, the combination of the two mapping possibilities with the two variable types determine four

possible architectural cases. Changing the space-time transformation leads to alter the classification

of the l/O variables ¡n any of the four cases. The four architectural cases are:

1. Input variable border mapping: the external data are inserted in the processor array borders

(figure 5.9.a).

2. Output variable border mapping: the data produced by the processor array Is placed in the

array borders (figure 5.9b).

3. Input variable broadcast mapping: the external data are inserted in each PE inside the

processor array regardless ofthe PE position (figure 5.9.c).

4. Output variable broadcast mapping the processor array data results are generated by each

PE inside of the processor (figure 5.9.d).
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(a) Input Border (b) Output Border

(c) Input Broadcast (d) Output Broadcast

Figure 5.9; Architectural cases according to the variable type and the mapping possibilities.

It should be noted that in the second architectural case (figure 5.9.b), the location of the data

results changes depending on the problem size. Recall that when the physical processor is derived,

the full-size implementation is ¡nterpreted as a logical processor whose PEs are mapped to a physical

(partitioned) implementation, and this mapping changes if the problem size is altered. Therefore, for

a partitioned array of size SSpx, there are SSp1 possible places in which data could be produced.

ln addition, the number of communication channels required in the border mappings (either for

input or output variables) is given by one ofthe processor array size parameters, i.e, SSp„ or SSp¡.

ln the other hand, in the broadcast mapping, the number of different communication channels seems

to change in a quadratic way as the processor array size ¡s altered. However all the communication
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Figure 5.10: Parallel memory accesses according to each architectural cases.

channels are not used at the same time when the broadcast mapping is derived, and consequently the

original number of channels (SSptl x SSpi) could be decreased. Figure 5.10 exemplifíes the number

of parallel external memory accesses required by the four memory cases as a function of the execution

time instants. ln these graphs, an N x <S processor array, and a problem size of 24 x 21 are assumed.

The x-axis represents time instants and the y-axis are the number of parallel memory accesses (reads

or writes) required at a time instant. Black unes denote the number of memory accesses and the

red dashed-lines denote when a new tile iteration has begun. It should be noted that the máximum

number of parallel memory accesses is equal to the processor array size in the four architectural
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cases. Also, in border mappings, the máximum number of memory accesses is maintained for some

time once it has been reached. Contrary, in the broadcast cases, when the máximum number of

parallel memory accesses has been reached, the number of memory accesses decreases at the next

time instant. Accordingly to these graphs, the máximum number of simultaneous external memory

accesses in the broadcast mappings depends on one of the processor array size parameters, like in

the border cases. This information is useful since ¡t reduces the communication channels originally

required by the broadcast cases. Next subsection describes the internal architecture for each one of

the four architectural cases.

5.3.3 External Memory Architectural Scheme

Independently of any of the four architectural cases, the memory scheme is composed by AGUs,

memory banks, registers working in seríal-input/parallel-output (SIPO) and parallel-input/seríal-

output (PISO) fashion. The selection of these architectural components, their interconnection,

and their internal architecture varíes depending on the variable types, the variable index vector

/, the transformation matrix T, and size of the processor array. ln the following subsections the

distribution of data among several memory banks, the AGU interna! architecture and the memory

scheme for each architectural case are explained. The memory scheme satisfies the constraint that

all data are required and produced by the processor array during each dock cycle respecting the

data dependences. Such constraint can be interpreted as the worst case scenario when the processor

array is derived, í.e. when P = ] . Also, it guarantees that high data demanding algorithms could be

supported by the memory scheme without introducing latency. Algorithms like FIR filter, MatMul

and matrix-vector multiplication fall inside this category due to their operations can be performed

in one dock cycle (P = 1). The impact of assuming P -

1 in the memory scheme is that external

data are distributed into different memory banks working in parallel and in a different dock domain

compared to the processor dock, ln contrast, for decompositional algorithms üke Cholesky, LU and

QR the use of memory banks and different dock domains could be relaxed because the operations

requíre several dock cycles to be completed (P > 1).
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5.3.3.1 Memory Banks

By following the assumption of P = 1 and taking into account the máximum number of reads/writes

shown in figure 5.10, several simultaneous memory accesses can be required, thus memories with

a high bandwidth are required too. ln order to overeóme such demand, data are stored into

different memory banks with a specific organization facilitating their parallel distribution. The data

organization takes into account the size of the strips (obtained after stríp mining the processor space)

and the number of memory banks used. For input/output variables represented as two-dimensional

structures, the data are Ünearized in a row-major or column-major order according to the design

necessities [6],

CU

(a) Column-Major Order (b) Row-Major Order

Figure 5.11: Column-major and row-major order cases for matrix data segmentation in different

blocks and data distribution of such blocks into different memory banks.

The main idea of the data organization is that a matrix of size N x N is partitioned into strips

of constant size SSp,- x N, where SSpx is the strip size parameter obtained when strip mining is

applied. At the same time, each strip is divided into blocks according to the number of memory

banks. The size of these blocks is given by an / factor. Figure 5.11 shows the data distribution

for a square matrix of size N x N in a row-major and column-major order. ln both figures, the

matrix is partitioned into three blocks of size SSp,.,,, and SSprmt. according to the data distribution.

Similarly, each partition ¡s divided into ni
- 1 memory banks by a factor of /ro¡ and frow called
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memory distribution factors. The number of memory banks (m) for storing a variable is related to

the size of the partitioned processor array. Larger processor arrays Íncrease the number of memory

banks. Note that the number of strips depends on the matrix size and on the strip size parameters.

Also note that a memory bank contains data from different blocks. Figure 5.12 illustrates how the

matrix is distributed into two memory banks in row-major and column-major order. Different blocks

are represented by different grey shades. The matrix elements are placed contiguously if they belong

to the same memory bank despite of they are in different blocks. The memory banks are labeled

from zero to m
— 1.

(a) Column-Major Order (b) Row-Major Order

Figure 5.12: Examples of data segmentation and distribution for two memory banks ¡n the column-

major and row-major order cases.

5.3.3.2 Address Generator Unit

The memory banks. required by the architectural cases for storing data, require modules in charge of

generating their memory addresses. Address generator units are responsible for such task and there

are at least as many AGUs as memory banks exist. An AGU contains a combinational module in

charge of generating the addresses following a mathematical formula. The formula parameters are in

function of the problem size, the indexes of the input/output variable after space-time transformation,

the tile Índex, the memory distribution factor /, and the corresponding memory bank id. The formula
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is expressed according to the linear order imposed by row-major or the column-major methods.

Formula 5.2 shows an exampie for the input variable A!n[i, 0, k] in the MatMul PRA using a column-

major order.

MemAddrAj = [N x [k + tüepx)\ + (i
-

tilepx)
-

[fro¡ x N {tilepx + MemBankA] (5.2)

where Men iAddressA
,
is the memory address for the j-th memory bank, i, k are the indexes

used for the A,„ variable, N is the problem size, MemBank} is the memory bank id, fcll, is the

memory factor distribution and tilep,,, is one tile Índex obtained after partitioning the processor

space. Depending on the allocation function <J>, the tilepx Índex could be defined a tilepo or tilep\,

Moreover, after space-time transformation the variable Indexes are mapped to time and processor

spaces. Similar formulas could be derived for other variables and order methods.

Although the AGUs function is the same regardless of the four architectural cases, its internal

architecture varíes according to the border and broadcast mapping possibilities. Basically, ín both

cases the address generator needs to sean ¡ts corresponding memory bank according to the scheduler

function ¡n order to respect the activation sequence imposed by the transformation matrix T Since in

the case of border mapping one of the indexes of the input/output variable is mapped to time space,

this index could be used for scanning a memory bank; and the remaining index (mapped to processor

space) could be tied to a constant valué depending on the position in the processor array border.

Therefore, the scanning of the memory bank can be achieved by using the time index valué generated

by the sequence generator module described in Chapter 4. On the other hand, in the case of the

broadcast mapping both variable indexes are mapped to processor space, being only possible to lie

one processor index to a constant valué (as in the border mapping case). Consequently, the remaining

processor index must be scanned by using counters. Figure 5.13 shows the AGU internal architecture

for border and broadcast mapping possibilities. Recall that the IndexBus contains information like

problem size. the tile and time indexes (see Chapter 4).
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(a) AGU for the Border case (b) AGU for the Broadcast case

Figure 5.13: The two possible AGUs architectures for border and broadcast mapping.

5.3.3.3 Input Variable Border Mapping

The first architectural case occurs when the space-time mapping indicates that the input variable

of the PRA is inserted in a processor array border. After the mapping, the indexes from vector /

ofthe input variable are mapped to time space and processor space. However, due to the iteration

dependent condition C'(I) one processor space dimensión is set to zero whereas the other dimensión

remains variable. This leads to the idea of placing the AGUs at the border of the constant dimensión,

and generating the remaining processor index. The generation of such index is achieved by using

several AGUs. ln the case of partitioned arrays the number of AGUs is equal to the processor array

size indícated by SSpx.

A first approach for data extraction is having a memory bank per each AGU. However, this leads

to impractical situations where several small memory banks are required. Besides, the distribution

of matrix data to these banks could result in a bottleneck problem. A possible solution of this

situation is assuming that it is possible to extract two data per memory port in a processor dock

cycle. This assumption requires two dock domains with different clock frequencies like a in globally-

asynchronous locally-synchronous approach (GALS) [101]. The external memory clock frequency

Clkmem is twice faster than the processor array clock frequency C!kJin. As a result of the GALS

approach, two AGUs per address port are required in order to genérate two different addresses in a
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processor cycle. The selection of the addresses generated by these two AGUs is accomplished by a

multiplexer and a control unit. The control unit is a single bit füp-flop T whose input is tied to T

working in the memory clock domain. The purpose of the flip-flop T is to interchange the multiplexer

output between the two AGUs. The interconnection of two AGUs, the multiplexer, and the flip-flop T

is called two-address generator module (TAGM). Figure 5.14 shows the TAGM internal architecture.

Two-Addreases Generator Module

Figure 5.14: Two-Address generator module in charge of generating two memory bank addresses in

one processor array clock cycle.

Another possible assumptíon for data extraction is the use of dual-port memories, leading to

íncrease twice the data extraction rate, and totalizing a 4x data rate compared with the one memory

bank approach. Moreover, regardless of the memory bank is multi-port or not, the memory bank

produces two data per memory port in a processor clock cycle, thereby at least one of these data

must be stored in one memory clock cycle. Besides, ¡t must be coupled both clock domains in

order to ensure the setup and hold timing from the memory dock domain to the processor clock

domain. Since data flow from the faster domain to the siower one, an interface from a faster to

a siower domain is needed. Such interfacing is performed by a SIPO interface which receives two

data extracted from the memory bank, and sends both data in the next processor clock cycle. This

SIPO interface consists of two-registers pairs controlled by the different clock domains. Each pair of

registers works on parallel with respect of the other pair. Figure 5.15 shows the interconnection of

the SIPO interface Finally, the interconnection of the TAGM, the dual-port memory bank and the
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SIPO is shown in figure 5.16. Note that in this case the extraction of four data from each memory

bank in one processor clock cycle is possible. Also. note that each SIPO output is connected to one

PE placed at the processor array border.

Output
Data

Memory

l. 1

J
D.I.,

%K.

k >z i~
Serial Input-Parallel Output

Figure 5.15: SIPO border module in charge of interfacing two data from the faster clock domain to

the siower one.
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Figure 5.16: Interconnection ofthe TAGM, dual-port memory and SIPO for the input border case.

5.3.3.4 Output Variable Border Mapping

The second architectural case occurs when the space-time mapping indicates that the output variable

of the PRA is extracted from a processor array border. Similarly to the input variable case, after

space-time transformation the C(l) indicates that one processor dimensión is set to a constant valué

(problem size) whereas the other dimensión remains variable. Therefore, the address generation is



134 5.3. External Memory

tackled in similar way as the input variable border case, where the processor index is generated by

replicating several AGUs at the processor array border. ln fact, if the GALS and dual-port memories

assumptions are used, the same TAGMs could be used in order to genérate the memory addresses

similarly to the input variable case. Since each TAGM produces two memory addresses in one

processor cycle, it is possible to ¡nsert two data produced by the array sharing the same input port.

The selection of the two inputs from the processor array Is done by a multiplexer and a flip-flop T

(like in TAGM) interconnected as shown in figure 5.17. This PISO module ¡s connected to one input

port ofthe memory bank. Figure 5.18 shows the interconnection ofthe TAGM, PISO and dual-port

memory for storing the data results from the processor border. Note that, in the same way as in the

input variable case, it is possible to recollect four data from the array in one processor clock cycle.

Output

MUX

D,U

°Z"[

/

Parallel Input-Sería I Output

Figure 5.17: PISO border module in charge of multiplexing two processor array inputs.

Although data produced by the processor array is recollected at the processor borders, it is not

necessarily produced by the border PEs in a partitioned processor array, This situation occurs when

the problem size does not fit exactly in the partitioned array, í.e. there is not a valid mapping from

the logical to physical processor. ln such case data are produced by inner PEs, and these data

must be sent to the processor array border. The localization of the column (or row) where the data

are produced is given by N mod SSpx, where A' is the problem size and SSp7, is the strip size

parameter. Consequently, if N unid SSp* = I) the output data are produced at the border PEs,

otherwise the output could be produced at any column/row of the processor array.
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Figure 5.18: Interconnection of the TAGM, dual-port memory and PISO for the output border case.

The sending of output data originated inside the array is accomplished by placing a layer of

transporting elements (TE) following the interconnection structure of the processor array. Figure

5.19 depicts the TE internal architecture, which consists of a multiplexer in charge of selecting

between the data results produced by the PE or the result produced by its previous neighbor. The

selection signal is the PE.Enable signal produced by the control cell from the control array (Chapter

4). The register stalls the multiplexer output one clock cycle, thus, data arrive to the array border

with a delay of N —

(N mod SSpx) dock cycles.

Dala,., >s Output
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X*

Data,

Sel, V\
ybik^

Transporting Element

Figure 5.19: Transporting element.
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5.3.3.5 Input Variable Broadcast Mapping

The third architectural case happens when the space-time mapping indicates that the input variable

of the PRA ¡s inserted in each PE of the processor array. After the mapping, the iteration dependent

condition C'{I) is mapped to time space while the indexes from vector / of the input variable are

mapped to processor space. ln this case the AGUs should sean one of the processor indexes (as

shown in figure 5.13) while the other index is generated by replicating the AGUs at one border of

the processor array. Therefore, a similar approach to the input variable border case could be used for

generating the memory bank addresses as well as for storing data in dual-port memory banks. Figure

5.20 shows the interconnection ofthe TAGM, the dual-port memory and the SIPOs interconnection.

However, note that there are four SIPO modules instead of two like in the case of input border case.

This is because in this architectural case it is required a different kind of storage-interface module

compared with the input border case.
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Figure 5.20: Interconnection of TAGM, dual-port memory and SIPO for the input broadcast case.

Contrary to the border case where data are fed continuously at each processor cycle (like a burst

mode). the broadcast case only requires a block of data each time a new tile is being scanned.

The size of this data block in the worst case scenario ¡s equal to the total number of PEs in the

physical array Le. SSp„ X SS])\ data. A first approach for inserting such amount of data to the

processor array is by sending directly each datum to its corresponding PE in a broadcast approach.

Unfortunately, this approach could decrease the máximum operational clock frequency, since there
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are inserted long communication unes across the processor array. Another possible way for sending

the data into the array is by díspatchíng the data block ¡n a pipeline fashion. However, the pipelined

way leads to synchronization problem, because data extracted from memory banks would not arrive

at the proper time at ¡ts corresponding PE, Le. the data arrival would not respect the scheduler

function. Such situation could be dealt by forwarding the extraction of the whole data block before

scanning the current tile, and by sending in advance the data to the PE where each datum is

required. Such forwarding requires sending all data contained ¡nto sub-blocks from one processor

border, and sending these sub-blocks simultaneously. Each time that a sub-block passes through a

pipeline stage. one datum of the sub-block is taken by a PE while the remaining data are sent to the

next pipeline stage. Therefore, for a processor array of size SSpa x SSpx ,
if the AGUs are placed ¡n

the p0 direction, then in the first pipeline stage SSpa data sub-blocks of size SSpi
— 1 are sent; in

the second pipeline stage one datum from the data sub-block of size SSp¡ - 1 is used, and SSpa

data sub-blocks of size SSp,
- 2 are sent, and so on until it is only sent a datum to the processor

array border. This approach calis for a high quantity of registers for storing the pipelined data at

each pipefining stage. ln fact, the set of such registers could be abstracted as an array of registers

where the number of registers is decreasing as data get further from the border. This array ¡s called

broadcast data array and it is shown in figure 5.21. Grey boxes represent the set of registers and the

numbers above the lines indícate the amount of data that it is being pipelined.

As consequence ofthe first pipeline stage, storing SSpx data extracted from a memory bank is

required. Figure 5.22 shows the internal architecture of the SIPO for the broadcast case. Note that

after SSpx processor clock cycles the SIPO is full and all data are ready to be sent to the broadcast

data array. Also, note that the number of processor cycles required to extract an entire data block

from m dual-port memory banks is /„„, = {SSpn x 55p,)/(4m). Therefore. the data extraction

from the memory bank should start /,„„ processor clock cycles before any tile is scanned, i.e. it is

introduced an initial latency before the processor array starts its computations.
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Figure 5.21: Broadcast data array for an 8 x 8 processor array. From the SIPO side to the other

border, the data bus ¡s being decreased.

5.3.3.6 Output Variable Broadcast Mapping

The final case occurs when the space-time mapping indicates that the output variable ofthe PRA is

extracted from each PE of the processor array. Like in the input variable broadcast case, after the

mapping, the iteration dependent condition C'(¡) is mapped to time space while the indexes from

vector / of the input variable are mapped to processor space. This case shares some similarities

compared to the input broadcast case. For instance, in both cases the concepts of data block,

pipeüning stages, and broadcast array appear too. However, in the output variable case since data

are produced by the PEs sending the data through the pipeline stages until data have reached the

array border is required. Note that in this case the number of registers is increased as data get closer

to the array border, therefore, if the AGUs are placed in the pu direction the total amount of data

which arrive to the border is SSpo x SSp¡ divided in SSp,-, sub-blocks. The PISO broadcast module

(figure 5.23) receives a data bus of a sub-block and it selects one datum to be stored in the memory

bank by using a n
— 1 multiplexer. The multiplexer selector signal is generated by a counter which

scans all data contained in the data sub-block.
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Figure 5.22: SIPO broadcast module ¡n charge of sending data to the processor array.

Finally, figure 5.24 shows the interconnection of the TAGM, the dual-port, and a two-PISO

modules placed together. Note that as the previous cases it is possible to store four data to the

memory bank ¡n one processor clock cycfe. Also, note that as in the case of the input broadcast

case, it ¡s required lend = (SSp0 x SSpi}/(4m) processor cycles to store an entire data block in m

dual-port memory banks.

The number of logic elements like counters, memories, adders and multiplexers required by

each memory architectural case can be characterized in terms of the processor array size. This

characterization Is useful for providing an idea of the number of computational elements required

by each architectural case independently of the implementation technology used. ln this sense, the

following section presents the characterization of the number of logic elements.
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Figure 5.23: SIPO broadcast module in charge of sending several data to the processor array.
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Figure 5.24: Interconnection of TAGM, dual-port memory and PISO for the output broadcast case.

5.4 Number of Logic Elements

The number of hardware elements required by each memory architectural case is shown in table 5.1

in terms of the processor array size (strip size parameters), and the constants Cn, c\. n and /„,. The

SSp,- and SSp,j terms refer to any one of the two strip size parameters (SSpQ or SSpi), co £| are

constant valúes which depend on the scheduler function, and giSSp^.SSp,,} is a function defined

as shown in equation 5.3. The use of multi-port memories is represented by n. while /,„ is the factor

for which the memory system is faster than the processor array.
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g(SSpxtSSpy) = SSpy í¿ i ) + (SSPí x SSp.,) (5.3)

The assignation of SSpx and SSpy variables to SSpo and SSpi parameters is done according to

the processor space direction where the AGUs are placed. If AGUs are placed ¡n p_ direction, then

SSpy = SSpo and SSpx = SSp¡\ and if the AGUs are placed in p¡ direction, then SSpx — SSpo

and SSpy — SSp\. Note that when the input border case is derived, the number of hardware

elements grows in a linear way with respect of the strip size parameters. The number of multiplexers

and registers in output border case changes at the same rate as the number of PEs in the processor

array is altered; but the number of registers for both broadcast cases increase in a cubic factor with

respect of the processor array size. Furthermore, if the assumptions of dual-port memory (n — 2)

and the memory clock frequency doubüng the processor array dock frequency (/„, = 2) are satisfied,

then the number of memory banks is decreased by a factor of four. Besides, if njm > SSpx then

any of the two memory assumptions could be relaxed until at least nfm = SSpT.

Number Input Output Input Output

of Border Border Broadcast Broadcast

Adders 6(SSpx) B(SSPx) 6(SSPx.) BíSSp.)

Multipliers 2(SSPx + co) 2(SSPx + ci) 2(SSp, + r2) 2 (SSp, + 1-,)

Multiplexers SSpJn (SSpoxSSpi) + {SSpx/ri SSp,

Counters SSPr 2(SSp,)

Registers 2(SSPx) SSpc, x SSPl (jiSSp... SSp^ g(SSp,.SSp,)
I-Bit FFs-T SSVx¡n SSpx/n
Memories SSpJ(nfm) SSp,/(nfm) SSpJ(nJm) SSp,/(n/„,)

Table 5.1: Hardware resource utilization for each memory architectural case.

5.5 Matrix-Matrix Multiplication Case of Study

The external memory system is designed to support different transformations and four different

architectural cases, ln the case of the AGUs, only by changing the mathematical expressions
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mapped to combinational logic different transformation matrixes could be supported. Besides ¡f the

transformation matrix is changed, it could be also altered the architectural case, and consequently

major changes in the memory system should be performed. With the purpose of exempüfy such

characteristics, this section presents as case of study the memory system for MatMul algorithm when

the scheduler function A,
—

[1. 1. 1), the projection vector ii. = [1,0,0], and P = 1 are used. The

size ofthe strips for this case are SSpQ — 8 and SSpi = 8 leading to a partitioned processor array

of 8 x 8 PEs. For this case of study, it Is assumed that the hybrid control is already generated and

that the memory banks are stored in a column-major order.

eqnOO !/['■.)■ ■] = A,a]i.i.k] if (j = 0)

eguOl x[i. J, í] = B,„[¡,fc,j] ¡f (i = 0)

a¡n02 »[M. ■] = ¡7t<.J-l.fc] ¡f (j > 0)

e<;n03 x[i, .h i] = x[i - 1. j. k] if (¿ > 0)
7X777.04 w{i,j, -\ = vlhj.k] x x[i,i,k]
e9n,05 z[i.j. c] = z[i,j,k-l] + w[i,j,k if (/,- > 0)

eijrtOf) z[í,j. '] = «Ái.j.k] if (* = 0)

«777.07 Cml[i.j, ■] = z\i.j,k] if (k =N- 1)

Figure 5.25: Matrix-Matrix Multiplication piecewise regular algorithm.

The MatMul PRA is shown in figure 5.25. The input variables are denoted by variables A,„ and

B,„ and the output variable is Coa.,. Recall that matrixes A and B used in the multiplication are

embedded into the iteration space by the equations A„,[i..j, k] = A,k and B,„[i.,j. k] = B^-_3. ln the

same way, the resulting matrix C is stored in variable O,,,,,, ln the case of variable A,„ the iteration

dependent condition indicates that a reading from the external memory is only done when /
- 0,

thus the index points for variable A,„ can be reduced to A,„[i.. 0. k]. Similarly variables B¡„ and C„„,

are reduced to B,„[ü.k.j] and Cout[í,j,N
-

1], respectively. After space-time transformation the

source polytope index space ¡s mapped as follows:

1 - Pa
-

/'i

/
=

Va

; Pl
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The space-time mapping indicates that the source polytope índex í ¡s mapped to time space

whereas indexes ; and k represent the processor space. The new Índex points for variables A,„,

B,n and Cou, are Axn[t
—

pa -pi,0.pi], B,„[0,pi,p0], and Cou([í
—

p0 ~Pi.Po- N
-

!]■ respectively.

Thereby variables A,,, and C,,„, are enclosed in the border mapping possibility and variable Bu, in

the broadcast mapping possibility. ln the case of variable Am it falls into the input variable border

mapping. Because of the use of a dual-port memory leads to have four memory data for each

processor clock cycle, in this case of study two memory banks are required. The AGUs are placed at

border p0 and repücated through the processor index pi. The formula mapped to the AGU is shown

in expression 5.4. Figure 5.26 shows the memory architecture for variable A,n.

Mem-AddrAj = [N x (p, + ti.lep-¡ )] + (¿
-

Pq
—

pi
-

tüep\ )
-

[fc0¡ x JV (tilepi + MemBnnk} )]

(5.4)

Dual Port RAM

Memory Bank 1

X

Dual Pon RAM

Memory Bank 0

| TAGMC | | TAGM, | | TAGM; | | TAGM3 |

Figure 5.26: Architectural border case for input variable A,„.
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Variable B,„ falls ¡nto the input variable broadcasting mapping. ln this case the AGUs are placed

at border pi and replicated through the index p0. The formula that is mapped to the AGU is shown

in expression 5.5. Figure 5.27 shows the memory architecture and the data array for variable Bin.

MemAddrB, = [JV x (p() + tilep0)] + (pi
-

tüep¡)
-

[f_¡ x N ((pj.
-

tilep^ + MemBank,)]

(5-5)

Figure 5.27: Architectural broadcast case for input variable B,„

Variable C„„, falls into the output variable border mapping. The AGUs are placed at pi and

replicated through the index p(l. The formula that is mapped to the AGU is shown in expression 5.6.

Figure 5.28 shows the memory architecture and the data array for variable Cout.

MemAddrC, = [N x (t.
-

po
-

pi
-

tüep0)\ + (pa
-

tüep0)
-

[U, * N (tilepo + MemBankA]

(5.6)

The integration of theses three memory architectural cases is shown in figure 5.29. Note that

the SIPOs on the left side correspond to the broadcast architectural case for input variable B,„, the

SIPOs from the bottom corresponds to the input variable A,„ and the PISOs of the right side are

from the output variable C,„,.
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Figure 5.28: Architectural border case for output variable C„„

| TAMGn| fTAMG, | | TAMG; |

á¡;

Figure 5.29: Memory system for MatMul algorithm comblnlng the input/output variable broadcast

and border cases.
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Finally, table 5.2 shows the number of hardware elements required by three memory architectural

cases. Note that the constants c0, c¡_, and c2 are set to zero valúes since the mapping of the scheduler

function (i = t - p0
— p\) does not require multiplícations. Also, note that the number of registers

required by the Variable Bin is major than the other variables since it falls ¡nto the broadcasting

mapping case.

Number Variable Variable Variable

of Am B,„ c„,„

Adders 48 48 48

Multipliers 16 16 16

Multiplexers 4 8

Counters 16

Registers 16 ■ ¡-,2 64

I-Bit FFs-T 4 4

Memories 2 2 2

Table 5.2: Characterization of the hardware resource utilization ofthe MatMul case of study.

5.6 Summary

Although there are several works concerning the inner levéis of the memory hierarchy, the problem

of feeding and extracting data from an external memory source has not received much attentíon.

There are few works concerning such problem, but limited to theoretical issues for synthesis and

rarely for practical implementations. ln this chapter it has been introduced an approach for four

possible architectural cases which could occurs during the space-time transformation. For each case.

a hardware architecture has been developed as possible solution to deal with these cases. By using

a case of study it has been show how to intégrate different architectural cases in a same design.

The proposed architectural memories cases are based on the use of a multi-clock domain approach

and the use of dual-port memory banks. Besides it assumes that the external data are required and

produced on each clock cycle respectíng the scheduler function. If the assumption is relaxed, then
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the use of memory banks or different clock domains is not longer needed. Maínly. this assumption

could be relaxed ¡f the operations performed by the processor array have high latency times. One

advantage of the architectural framework is its scalabiüty, due to only by replicating or eüminating

the modules it is possible to fit the design to different processor array sizes. Moreover, by eüminating

the use of multí-clock domains and/or replacing the dual-port memory by single ones, it is possible

to fit the memory system to smaller or siower processor arrays.



6
Results

This chapter presents the results obtained from the implementation of the control scheme, the

memory system and the integration of the processor array data-path with the controller and the

memory using the MatMul and Cholesky decomposition algorithm as cases of study. The first

section of this chapter, briefly describes the FPGA technology used for valídation of the control,

memory and integrated system. Later, the implementation results of the control scheme, presented

in Chapter 4, and a bríef comparison of these results against PARO and MMAlpha are presented ¡n

the second section. The third section is advocated to present implementation results of the memory

architectural cases developed in Chapter 5. The fourth section presents the implementation results

of the integration of data-path, control and memory using several configuratíons for two cases of

study. Also, section fourth presents the results using an embedded platform, and a comparison

against a soft-processor implementation. Finally, the expianation of three different metrics and its

appücation for evaluating the performance of several processor arrays are presented in the fifth and

sixth sections, respectively.

149
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6.1 Software Tools and Technological Platform

Before presenting the implementation results of the control, memory and the integration of the

processor array data-path, it is important to mention the software tools developed for obtaining the

scheduler vector and the target polytope, as well as the valídation platform used for implementing

the processor arrays. ln this section, these topics are briefly described.

6.1.1 Software Tools

Deriving the scheduler function, appiying the space-time mapping and obtaining the partitioned

versión of the PRA are required for deriving the processor array data-path, ¡ts control scheme and

¡ts external memory system. ln order to obtain the scheduler and the target polytope some software

tools were ¡mplemented. ln the case of scheduler function, a program written in C was developed.

This program takes as input the polytope specification (or iteration space) in form ofthe matrix A,

vector /) (see definition 3.6 in Chapter 3), a dependence matrix Dora reduced dependence graph

(RDG), and an iteration interval (P). If the input specification uses D, then a GLPK linear program

formulation for calculating a linear scheduler will be obtained by the C program; but if the input

specification uses a RDG instead of D, then the C program will produce a GLPK linear program

formulation for obtaining an affine scheduler function The linear programs are obtained following

the MIP formulations presented ¡n [64], and they are solved by using the GLPK solver [1].

Once the scheduler function has been computed, the user can propose an allocation function (<¡>)

from a projection vector (ti). With the scheduler vector and allocation matrix, the transformation

matrix T can be constructed (see definition 3.15 in Chapter 3). The space-time transformation

is performed by a program written in MATLAB, which performs the Fourier-Motzkin elimination

described in [19]. As input this program requires the matrix .4 and vector b and the índex vector /

of the source polytope, and the transformation matrix T As output, it produces the bounds of new

Index space of the target polytope in form of a set of inequality system.
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After the target polytope has been obtained, strip mining is applied over the processor space

indexes ¡n order to obtain a partitioned versión of the PRA. ln this sense, the processor index to be

partitioned needs to be the outer most index of the target polytope index vector J, i.e. an index

interchange must be performed. This interchange is accompüshed by using the loop permutation

transformation [6¡. The loop permutation is done by using the same MATLAB program for space-time

transformation, but changmg the space-time transformation matrix, for the correct loop permutation

matrix. With the partitioned versión of the PRA, the control, external memory system and the

processor array data-path could be derived. ln the next section, the target implementation platform

used for implementing the processor arrays is described.

6.1.2 FPGA Architecture Overview

The control scheme, the memory system and the processor arrays were ¡mplemented and validated

using FPGA technology. FPGAs are electronic devices that blend the benefits of both hardware

and software, since they implement circuits just like hardware, but FPGAs can be reprogrammed

to implement a wide range of tasks [66], such as cryptographic systems, digital signal processing

applications, software defined radio, low power embedded systems. Besides, FPGAs implement

computations spatially, computing múltiple operations in resources distributed across a silicon chip

¡n a parallel way. Also, FPGAs are suitable of being used as an intermedíate solution between

software and ASICs, or for a rapid prototyping platform of digital designs. ln fact, the FPGA regular

internal interconnection architecture assembles the regular connections present in the processor array

interconnection topology. Moreover, newer FPGAs allow the implementation of complex arithmetical

operations üke división, square root and trigonometric functions, as well as they include several small

distributed multi-port memories.

Conceptually, FPGAs consist of three main parts: a set of configuraba logic blocks (CLBs), a

programmable interconnection network and a set of l/O cells. A function to be implemented in

an FPGA is partitioned Into modules, each of which can be ¡mplemented in different CLBs, and
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then connected together using the programmable interconnection [21]. The internal architecture

of an FPGA varies according to the technology used for its physical implementation, and from the

manufacturen Technologically, the FPGAs could be fabricated in antifuse technology and/or in

memory-based technology. Usually manufacturers utilize look-up tables (LUTs) for implementing

functions ¡nto FPGAs. A K-input LUT (or K-LUT) is a memory-based module that realizes an

arbitrary K-var¡3ble function containing all the possible results of the arbitrary function for a given

set of 2a input valúes. The valúes of the function are stored in such a way that they can be retríeved

by the corresponding input valué. Therefore, a K-input LUT must provide a 2K cells for storing the

K-variable function. A K-LUT can implement up to 22h different functions. ln the current FPGA

technology, a K-LUT consists of a set of SRAM-cells for storing valúes, and a decoder that is used

to access the correct SRAM location and retrieve the result of the function, which corresponds to

the input combination [66], [98]. Several LUTs are usually grouped in large modules a long with

other functional elements such as flip-flops and multiplexers. The connection between LUTs and

other elements inside of such modules is done by using dedicated wires.

Newer FPGA devices include small dual-port memories [120], called Block RAMs (BRAMs),

and digital signal processing units (DSPs) in order to provide dedicated units for storing data and

performing MAC operations, respectively. ln addition, some FPGA manufacturers like Xilinx include

embedded hard-core processors as the IBM PowerPC within their FPGAs [119], or as ¡n the case

of Altera company, the ARM Cortex-A9 processor [10], [11]. As an alternative of such hard-core

processor, the manufacturers have developed processors total ly ¡mplemented ¡nto the FPGAs. taking

advantage of the knowledge about their FPGAs architecture. Examples of these soft-processors are

the Xilinx MicroBlaze [117] and the Altera Nios processor [12].

The results presented in this research work, are targeted for several Xilinx FPGA devices, focusing

on Virtex-6 and Spartan-6 famiües. These FPGAs families use LUTs which can be configured as

one 6-input LUT with one output, or as two 5-Ínput LUTs with sepárate outputs but common

logic inputs. Also, each LUT output can be registered using a flip-flop. ln total, four LUTs with
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their respective eight flip-flops form a slice a long with some multiplexers and carry logic. ln the

case of Virtex-6 family, each FPGA has dual-port BRAM for storing 36 Kbits, and each BRAM has

two completely independent ports; consequently a BRAM can be divided into two independent 18

Kbits BRAMs. Also, each FPGA of the Virtex-6 family, has dedicated multipliers and accumulators

modules called DSP48E1, which consist of a dedicated 25 x 18 bít two's complement multiplier

and a 48-bit accumulator. The multiplier can perform logic functions and barre! shiftíng operations

[120). On the other hand, the Spartan-6 family also has BRAM, and DSPs modules, but they are

smaller than their corresponding Virtex-6 modules, ln the case of Spartan-6 family, BRAM store

18 Kbits and they can be divided into two 9 Kbits BRAMs, whereas each dedicated multiplier and

accumulator module (DSP48A1) consists of a dedicated 18 x 18 bit two's complement multiplier

and a 48-bit accumulator [118].

6.1.3 Motivation of Using the FPGAs

Although one of the main advantage of using FPGAs as processor array implementation platform

is the rapid prototyping and valídation of complex digital system designs, there are other reasons

for which the implementation of processor arrays ¡n FPGA technology might be beneficial. One of

these reasons is that the loop-based algorithms require operations which can be computed by using

dedicated DPS blocks. One example is the MAC operation which is used in algorithms like MatMul,

FIR filter, and LU and Cholesky decomposition algorithms. The use of theses DSP blocks decrements

the number of LUTs configured for performing arithmetical functions and improves the speed of

digital signal applications. Also, with the use of the intellectual property cores designed by the

FPGA's manufactures, complex hardware operations like divisions [116], square- rootsor trigonometric

functions [115] can be realized using the dedicated DSP blocks and BRAM.

Another advantage of using FPGAs for implementing the processor arrays is that FPGAs have

several small memories (BRAMs) which can implement the functionality of dual-port or FIFO

memories. ln the case of the dual-por memories, they are required for storing the input and output
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matrixes in the external memory system, and for providing múltiple communication channels. On the

other hand, in the case of FIFO memories, they are required for storing intermedíate data produced by

the processor array, avoiding to perform several external memory accesses. Furthermore, the FPGA

has regular Internal interconnections among its computational elements (LUTs, DSPs and BRAM)

which assembles the regular PEs interconnections of the processor array. ln the following sections,

the implementation results using the FPGAs as prototyping platform are presented ¡n terms of the

number of slice LUTs, slice registers, BRAMs and DSPs.

6.2 Control Place and Route Results

Before introducing the control implementation results, it is important to mention a restriction brought

by the control word width used for the time and tile indexes. Although the control scheme described

in Chapter 4 provides theoretical independency of the problem size, there exists a restriction which

imposes a limit to the problem size that can be solved. Such restriction is related to the sequence

generator internal control arithmetic in charge of calculating the tile and time indexes while the

partitions are being scanned. As a result of arithmetic operations performed by the Max/Min sub-

modules, arithmetic overflows might occur. Despite of the sequence generator internal arithmetic

deals with such situation, there is a máximum valué for which the sequence generator is able to

produce the indexes without any overflow risk. Between the tile and time indexes, the time índex

/ ¡s the one which has the greatest valué, and therefore, the control bus width Wc must be set to

support it. The máximum valué of index / is the total execution time that a full-size implementation

requires to be completed, that is:

/,„„, = max(|A/| ./eI)-min(|X/1 ,/tl) + l (6.1)

where / and ./ are two index points of the iteration space Z, and A is the scheduler vector.

The control bus width is equal to \Yr = log3(ím„x). Since the iteration space X depends on the

problem size. writing mathematical expressions as function ofthe control word width VI,. ¡s possible.
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For example. in the cases of the MatMul and Cholesky algorithms when the scheduler function

X( = [1,1,1] is used, the máximum valué ofthe time index ¡s t,„n¡ =S(N
—

1)-Fl. Note that f ,„„.,. ¡s

the upper bound of the time Índex after space-time transformation. The largest problem size Ar,„UJ

that can be solved with a control word width of Wc bits for MatMul and Cholesky algorithms is:

Nmax =
-^—

^
+ 1 (6.2)

Equation 6.2 establishes a connection between the largest problem size and the control word

width required ¡n the control-path for solving problem instance of size Ar,„,,J-. For instance, with a

12-bit control word the sequence generator is able to genérate the tile and time indexes for matrixes

no larger than 1,365 x 1,365, í.e. the processor array could be able to deal with problems of size

equal 1,863,225 data. Also, note that by adding an extra bit to the control bus, the matrix size

that the control scheme is able to handle is increased twice Le. the amount of data is quadrupled.

Formulas 6.1 and 6.2 help to determínate the largest problem size for which the sequence generator is

able to produce the tile and time indexes given a scheduler function when the hybrid control scheme

is used. It is important to emphasize that the hybrid control scheme is independent of the problem

size in the sense that given a control word width IT,., it would be able to provide an activation

pattern for the PEs in a processor array of size StripSizepux StripSizepj for size of problems less than

A/m(Lr. ln this sense, the next subsection presents the hybrid control implementation results for a set

of configurations, changing the control array size and their control word width W¡¡.

6.2.1 Implementation Results

For purpose of valídation, the hybrid control scheme was modeled using VHDL Hardware Description

Language, placed and routed with Xilinx ISE 13.1, and targeted for a Virtex-6 XC6VCX240T FPGA

device. The PAR was done disabling the keep hierarchy option, and the optimization goal was

set to speed option. Besides, with the purpose of showing how different algorithms, space-time

mappings and iteration intervals affect the control scheme (in terms of FPGA resources and máximum

operational frequency), three different implementation sets, named Ctrlmpl 1. Ctrlmpl 2 and Ctrlmpl
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3. with different control array sizes are shown in this subsection. Each implementation set consists

of a controller developed for a different algorithm, using different space-time mappings and different

iteration ¡ntervals as shown in table 6.1. Furthermore, each set has different configurations with

different control word widths and different partitioning parameters, i.e. changing Wc, SSpo and

SSpi parameters.

Implementation

Code Ñame

Implemented Scheduler Projection Iteration

Algorithm Function Function Interval

Ctrlmpl 1

Ctrlmpl 2

Ctrlmpl 3

MatMul A, = [1,1,1] u = [1,0,0]' P = í

Cholesky A, = [l,2,3] £=[1,0,0]' P = \

Cholesky A, = [1, 1, 1] ü = [0, Ü, l]1 P = 21

Table 6.1: Description of the three control implementation sets with their respective design

parameters.

ln the first set, implementation Ctrlmpl 1 is the MatMul controller derived by using the design

parameters shown in table 6.1. PAR results summarized in terms of slice registers, slice LUTs,

occupied slices, and máximum operational frequency are shown in table 6.2. Note that for this set,

FPGA resources grow by a factor equal to or less than the control array size when the same Wc is

considered. However, the FPGA resources scale at different rate when the Wc is changed and the

same control array size is considered. Mainly, this is due to the logic required for calculating the

mathematical expressions placed ¡n the Max/Min sub-modules. Besides, ¡t should be noted that the

operational frequencies of the 8 x 8 control array are the fastest frequencies in contrast to the 4x4

and 2x2 control arrays. At first glance, it might seem that for small arrays the PAR algorithms, used

by the Xilinx ISE 13.1 for the Virtex-6 FPGA family, do not perform well compared against larger

arrays. However, a closer look at the routed and placed controllers. using the Xilinx PianAhead 13.1

software tool, reveáis that when the PAR algorithms place the distributed and centraüzed control

modules cióse to each other, but in a separated way (i.e. both modules are not mixed), faster

operational frequencies are achieved. For instance, in the case of control array with the slowest

frequency (2 x 2 control cells using a II', = 12), the PAR algorithm divides the control array into
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Array Word Size

Size (Bits)

Slice Slice Occupied Speed

Registers LUTs Slices (MHz)

2x2 8

2x2 9

2x2 10

2x2 11

2x2 12

220 344 137 97.80

256 394 176 96.46

281 482 197 86.13

311 526 200 88.99

457 740 273 81.73

4x4 8

4x4 9

4x4 10

4x4 11

4x4 12

471 745 293 101.45

539 853 358 100.75

607 1,146 409 92.55

670 1,240 432 9076

1,343 2,047 772 89.49

8x8 8

8x8 9

8x8 10

8x8 11

8x8 12

1,273 2,319 945 10606

1,456 2,508 963 101.81

1,649 3,730 1,316 9110

1,831 4,128 1,345 92.61

4,753 8,036 3.012 93.94

Table 6.2: Implementation Ctrlmpl 1 PAR results targeted for a XC6VCX240T FPGA device. The

number of slice registers, slice LUTs and slices available for this device is 301,440, 150,720 and

75,360, respectively.

two parts and places the centraüzed modules between the two parts of the divided control array.

Contrary, in the case of the control array with the highest frequency (8x8 control cells using a

We — 8), the centraüzed modules are separated from the control array. Mainly, this could be a

consequence of PAR algorithms use without any restriction the FPGA l/O ports.

The second control scheme implementation, called Ctrlmpl 2, was developed for the Cholesky

decomposition algorithm. ln this case, the algorithm and the scheduler function are altered with

respect of the Ctrlmpl 1 implementation as shown in table 6.1. Similarly to the MatMul control

results, table 6.3 summarizes the PAR results in terms of the number of slice registers, slice LUTs,

and máximum operational frequency. ln this implementation the scheduler function leads to complex

mathematical expressions for obtaining the lower and upper bounds of the tile and time indexes (as

shown expression 4.2 in Chapter 4). Since these expressions are mapped to combinational logic. the

Xilinx synthesis tool use the FPGA LUTs resources for mapping these expressions, and consequently
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Array Word Size

Size (Bits)

Slice Slice Occupied Speed

Registers LUTs Slices (MHz)

2x2 8

2x2 9

2x2 10

2x2 11

2x2 12

2x2 13

207 572 221 62.53

245 630 271 62.34

284 794 307 58.80

309 852 314 58.81

454 1,103 444 48.76

456 1,191 479 47.45

4x4 8

4x4 9

4x4 10

4x4 11

4x4 12

4x4 13

422 956 353 66,02

497 1.070 423 62.31

567 1,411 542 59.17

620 1,538 561 59.47

1,459 2,552 1,017 53.76

1,492 2,766 1,149 50.63

8x8 8

8x8 9

8x8 10

8x8 11

8x8 12

8x8 13

1,165 2,496 852 75.55

1.350 2,665 998 67.11

1,530 3,995 1.374 71.93

1,699 4,389 1,436 58.42

5,341 9,379 3.407 56.90

5,807 10,439 4,220 56.58

Table 6.3: Implementation Ctrlmpl 2 PAR results targeted for a XC6VCX240T FPGA device. The

number of slice registers, süce LUTs and slices available for this device is 301,440, 150,720 and

75,360, respectively.

the usage of slice LUTs is increased with respect of the slice LUTs required in implementation Ctrlmpl

1. Moreover, note that the máximum operational frequencies of configurations Ctrlmpl 1 are faster

than the frequencies of configurations Ctrlmpl 2. Mainly, this is due to the loop bounds expressions

required in implementation Ctrlmpl 2 are totally mapped to combinational logic and thereby, such

logic genérate the longest crítical path inside the sequence generator. Furthermore, note that table

6.3 includes control words of 13-blt, since in this case of Ctrlmpl 2.

Nr,,ax = ^—-i
+ 1 (6.3)

6

due to the restriction imposed by expression 6.2. ln fact, note that by using Wc bits the

implementation Ctrlmpl 1 is able to solve problem sizes of IV™,, but Ctrlmpl 2 implementation is

only able to solve problem sizes of A',,,,,,, /2. Additionally, the Operational frequencies
of configurations
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Array Word Size

Size (Bits)

Slice Slice Occupied Speed

Registers LUTs Slices (MHz)

tj

ro

uto

^

X

X

X

X

X

tO

tO

tO

tO

tO 336 477 195 101.78

379 561 238 93.11

408 605 271 88.44

440 660 267 97.95

473 819 392 87.95

4x4 8

4x4 9

4x4 10

4x4 11

4x4 12

882 1.174 453 108,66

1,006 1,357 602 88.30

1,176 1,463 586 86.95

1,281 1,623 611 83.84

1,391 2,038 940 72.77

8x8 8

8x8 9

8x8 10

8x8 11

8x8 12

3,273 4,207 1,718 103.90

3,496 4,913 2,006 92.45

4,224 5,188 2,069 97,96

4,639 5.770 2,210 90.00

5.093 7,404 3,163 91.21

Table 6.4: Implementation Ctrlmpl 3 PAR results targeted for a XC6VCX240T FPGA device. The

number of slice registers, slice LUTs and slices available for this device is 301,440, 150,720 and

75,360, respectively.

Ctrlmpl 2 for the 8x8 control array are the fastest frequencies in contrast to the 4x4 and 2 x 2

arrays. Here again a look into the processor arrays placed and routed into the FPGA reveáis the same

PAR pattern shown in the case of implementations Ctrlmpl 1. However, it is worth to mention that

in the case of 2 x 2 control arrays the PlanAhead software shows that the centraüzed part occupies

more FPGA resources than control array. Mainly, this is a consequence of the complex mathematical

expressions derived from the space-time mapping. which are mapped to the FPGA LUTs.

Finally, the Ctrlmpl 3 control implementation was also developed for the Cholesky decomposition

algorithm. However, in this case different space-time mapping and iteration interval were used (see

table 6.1). Similarly to the previous control implementations, table 6.4 summarizes the PAR results

in terms ofthe number of slice registers, slice LUTs, and máximum operational frequency. ln this

case, the space-time mapping leads to loop bounds expressions with a minor complexity than in

implementation Ctrlmpl 2. This is reflected in number of slice LUTs required by implementation
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Ctrlmpl 3, which is less than implementation Ctrlmpl 2. Also, ¡t should be noted that since

implementation Ctrlmpl 3 uses a different iteration interval than implementations Ctrlmpl 1 and

Ctrlmpl 2, the number of slice registers required by implementation Ctrlmpl 3 is greater than in

Ctrlmpl 1 and Ctrlmpl 2 implementations. Mainly, this is due the use of counters within each

control cell for generating the iteration interval. ln fact, the FPGA slice registers grow by a factor

almost equal to the control array size for the same Wc. Again, when the PAR algorithms place the

distributed and centraüzed modules cióse to each other, faster operational frequencies are achieved.

Examples of this behavior are obtained for the control arrays of size 2 x 2, 4 x 4 and 8x8 when

IF,. - 8. However, if the centraüzed module is enclosed by the distributed modules (control cells),

then siower frequencies should be expected; as in the case of the 4x4 control array with a Wc = 8

where the lowest frequency ofthe Ctrlmpl 3 control implementation is achieved.

Summarizing, these implementations with their respective configurations have shown that the

control scheme is able to support different space-time transformations with different iteration

intervals, and for non-rectangular iteration spaces. Also, the máximum operational frequencies not

always decrease when the control arrays are increased. ln fact the Xilinx PAR algorithms place the

control cells closer among other cells when larger control arrays are synthesized than in the case

of smaller control arrays; and in some cases these PAR algorithms place the centraüzed modules

inside the área occupied by the control array resulting in a degradation of the operational frequency.

Furthermore, It is worth to mention than in the case of implementations Ctrlmpl 1 and Ctrlmpl 2 the

faster and siower arrays are the 8 x 8 with Wc = 8 and 2 x 2 with Wc = 12, respectively; and that in

the case of Ctrlmpl 3 the same implementations of 8 x 8 with VI',- = 8 and 2x2 with Wr = 12 are

the second faster and third siower control implementations. ln addition, the same implementations

were targeted for a Virtex-4 XC4LX80 FPGA device with 4-LUTs in order to observe the behavior

of the operational frequencies. ln this case of the XC4LX80 device, the PAR algorithms lead to

higher operational frequencies in the case of the 4 x 1 control arrays and the siower frequencies for

the * x 8. This observation might suggest that 4-LUT PAR algorithms behaves better for control

arrays of 1 x I than other arrays; while the 6-LUT PAR algorithms behaves better for larger control



6. Results

arrays from the operational frequency 's point of view. However, such hypothesis requires a detailed

study and other experimental results targeted for different FPGAs (with different LUT technology)

in order to confirm it. Respecting to the FPGA resources, the use of iteration interval greater than

one (P > 1), leads to increment the number of counters inside of the control cells. This ¡ncrement is

reflected in the number of registers in implementation Ctrlmpl 3, which exhibits the major quantity

of slice registers in almost all the configurations. Finally, complex mathematical expressions obtained

after space-time mapping lead to Íncrease the quantity of slice LUTs in the control array, and to

degrade the máximum operational frequency. This degradation is due to complex expressions are

directly mapped to combinational logic without pípeüning their computations.

6.2.2 Comparison

For purpose of comparison against other works, the centraüzed and distributed components of the

control scheme were synthesized with Xilinx ISE 6.1 and targeted for a Virtex XCV800 FPGA device.

The number of slices after synthesis for the control generated by MMAlpha, PARO and the proposed

control scheme are shown in table 6.5 using the MatMul algorithm as a case of study. Synthesis

results are divided into centraüzed and distributed parts. Data for PARO and MMalpha are obtained

from [45] and [61], respectively. ln these two works the number of slices that their distributed control

units require for a single PE is reported.

Since the control generated by PARO is divided into local and global controller, the number of

slices for global controller is also considered [45]. ln the case of the proposed control scheme, three

different implementations targeted for Virtex XCV800 and Virtex-4 XC4LX200 are considered in table

6.5 with a 12-bit control word width. The Virtex XCV800 implementation is used for comparison

purpose against PARO and MMAlpha controllers, whereas the Vírtex-4 XC4LX200 implementations

are used for providing synthesis results for a more up to date FPGA device with the same 4-LUT

technology as the XCV800 device. Besides, in the case ofthe Virtex-4, one implementation does

not forcé the synthesizer to use the embedded DSP blocks while the other one uses the DSP blocks



162 6.3. External Memory Place and Route Results

Despite that a control cell targeted for the same device uses more slices than the controllers derived

by MMAlpha and PARO, the control cell ¡s able to deal with non-rectangular processor spaces as

well as it deals with subsets of problem instances no larger than Nmax¡ contrary to MMAlpha and

PARO controllers. Moreover, methods for deriving the processor array differ in the scheduling and

allocation technique used: multidimensional scheduling for MMAlpha, and the combination of affine

scheduling and tiling matrixes for PARO, ln contrast, the proposed control scheme, derived by the

design methodology followed in this dissertation, uses linear scheduling combined with strip mining.

The combination of both techniques allows to deal with non-rectangular spaces and it allows solving a

subset of problem instances instead of solving several instances of a unique problem size. ln addítion,

global controller generated by PARO requires 209 slices while the equivalent global controller ofthe

proposed hybrid control scheme (centraüzed modules) requires 179 slices. Moreover, if embedded

FPGA DSP blocks are used, the number of slices for a Virtex-4 is reduced in a factor of 3.

Control FPGA

Type Resources

MMalpha PARO Proposed Proposed Proposed

[61] [45] Control Control Control

Virtex Virtex Virtex Virtex 4 Virtex 4

xcv800 xcv800 xcv800 xc4lx200 xc4!x200

Distributed Slices

DSP blocks

65 12 86 58 22

6

Centraüzed Slices

DSP blocks

209 179 155 50

18

Table 6.5: Slices comparison among several control architectures for a single PE (distributed) and

the global controller (centraüzed).

6.3 External Memory Place and Route Results

This section presents the PAR results of implementing the four memory architectural cases using the

MatMul and Cholesky decomposition algorithms. By themselves, the architectural memory cases do

not impose a restriction to the processor array implementation as the control scheme does with the

II', parameter; but they follow a restriction imposed by the problem size.
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6.3.1 Implementation Results

The memory architectural cases were modeled and validated using VHDL Hardware Description

Language. Also, they were synthesized with Xilinx ISE 13.1, and targeted for a Virtex-6 XC6VCX240T

FPGA device. The algorithms used for the architectural cases validatíon were the MatMul and

Cholesky decomposition, For both algorithms the partitioning parameters are SSpa = 8 and

SSpi = 8 leading to a partitioned processor array of 8 x 8 PEs. Note that theses parameters

are the same shown as cases of study in Chapters 4 and 5.

The PAR results ofthe MatMul architectural cases for different problem sizes are shown in table

6.6. These architectural cases were derived by using the scheduler vector X, = [1. 1, 1], the projection

vector u — [1, 0. 0]', and the iteration interval P = 1. The PAR results show the amount of FPGA

resource utilization for a pair of input border, input broadcast, and output border modules (six

modules total) using a 32-bit word size, and different control word widths. Recall that according to

formula 6.2, the máximum problem size that a processor array is able to solve depends on the number

of bits in the control word. ln this sense the problem sizes of 86 x 86, 171 x 171 and 342 x 342

correspond to 8-bit, 9-bit, and 10-bit control words, respectively. Furthermore, table 6.6 shows the

PAR results for the MatMul processor arrays of 8 x 8 PEs. These processor arrays include the data-

path, the control scheme, and the broadcast data array required by the input broadcast case. The

processor array FIFOs were ímplemented using built-in FIFOs as in [65], Besides. each architectural

case has a pair of memory banks ¡mplemented by the FPGA's BRAMs in form of dual-port memories,

and the total size of each pair of memory bank corresponds to the the máximum problem size Nmax.

Although the results are presented for the FPGA BRAMs, it is important to emphasize that off-

chip DRAM could be used instead of built-in BRAMs, in order to allow the use of such BRAMs as

FIFO memories. The FPGA's DSP blocks are used for calculating the memories directions while the

processor array uses them for both the control and the data-path. Note that the memory assumption

of Clkmem > 2 x Clkim is achíevable since the processor array operational frequency is three times

siower than the worst case for any of the memory cases. Also, table 6.6 shows the theoretical peak
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Problem

Size

FPGA

Resource

Input Input Output
Border Broadcast Border

Processor

Array

86 x 86

Slices Registers
Slices LUTs

RAMB36E1

RAMB18E1

RF036E1

DSP48E1

516 2,199 221

301 1,002 437

8 8 8

0 0 0

0 0 0

16 16 16

24.075

20,916

0

0

8

192

Speed (MHz)
Bandwidth (GB/s)

296.64 251.82 319.79

9.49 8.06 10.23

56.48

5,42

171 x 171

Slices Registers
Slices LUTs

RAMB36E1

RAMB18E1

FIF036E1

DSP48E1

532 2,215 265

575 1,071 671

24 24 24

8 8 8

0 0 0

16 16 16

24,582

21,944

0

0

32

192

Speed (MHz)
Bandwidth (GB/s)

205.42 165.72 286.94

6.57 5.30 9.18

57.23

5.49

342 x 342

Slices Registers

Slices LUTs

RAMB36E1

RAMB18E1

FIF036E1

DSP48E1

536 2,219 297

1,249 1,725 1,402

98 98 98

16 16 16

0 0 0

16 16 16

25,209

25,050

0

0

128

192

Speed (MHz)
Bandwidth (GB/s)

165.70 132.83 193.38

5.30 4.24 6.19

55,31

5.31

Table 6.6: Place and route results for three memory architectural cases and three processor array

implementations for MatMul algorithm targeted for a XC6VCX240T FPGA device

bandwidth obtained by each architectural case, and the peak bandwidth required by the processor

array. For the three problem sizes, the processor array l/O bandwidths requirements are exceeded

by the total l/O bandwidth provided by the memory architectural cases due to the use of several

communication channels (eight channels per architectural case), ln the case ofthe implementation

for problem size of 342 x 342, the total l/O bandwidth provided is almost three times faster than the

l/O bandwidth required by the processor array. Such total l/O bandwidth is obtained by adding each

architectural case bandwidth as shown in table 6.6, and each one of these bandwidths is calculated

by multiplymg the word width times the amount of communication channels.
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A direct comparison with other works like PARO and MMAlpha is not possible, since authors

do not show results for memory implementations. However, a recently effort for implementing a

hand-made memory system for a MatMul processor array derived by MMAlpha tool was developed

by Plesco in [91]. ln this case, the input bandwidth required by a processor array of 4 x 4 PEs is

not satisfied by the Plesco's solution, since a CPU (PowerPC) is responsible for bringing the external

data by using two communication channels. ln this last case, the bandwidth required by the 4 x -i

array is 3.2 GB/s, while the input data transfer rate achieved is 32 MB/s due to latency in the

memory controller.

The PAR results for Cholesky architectural cases for different problem sizes and using the scheduler

vector X¡ — [1. 1. 1], projection vector ü = [0,0, 1]', and iteration interval P = 21 are shown in table

6.7. Similarly to 6.6, these results show the FPGA resource utilization for a pair of input border,

and output broadcast modules {four modules total) using a data word width of 32-bit, and different

control word widths. Also, table 6.7 shows the PAR results for the Choleksy processor array of

8x8 PEs. The square root and división operations required by the Cholesky decomposition are

¡mplemented using the Xilinxs IP cores, ln the case of división, the IP core uses BRAMs (in form

of RAMB18E1 modules) for each división module required in the array. As well as ¡n the MatMul

case, the processor array FIFOs were ¡mplemented by using the FPGA's BRAMs. It should be

noted that in MatMul and Cholesky architectural cases the number of DSP blocks are the same,

since the AGUs in both implementations contaín similar mathematical expressions for calculating

the memory addresses derived from the indexes after space-time mapping. Moreover, note that the

output broadcast case requires a small number of slice registers, because the PISO broadcast modules

needed in this architectural caseconsist of a unique 8-1 multiplexer per row/column ofthe array (eight

8-1 multiplexers in this implementation). Besides. the broadcast data array is not included as part of

the PAR results in the broadcast architectural case, but In the processor array. As a consequence of

the use of 8-1 multiplexers, the number of slice LUTs is increased in this architectural case. Similarly

to the MatMul, note that the memory assumption of Clkr,„.„, > 2 x Clkpa is 3lso achievable for

the Cholesky processor array. Furthermore, table 6.7 shows the peak bandwidth obtained by the
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Problem

Size

FPGA

Resource

Input Output

Border Broadcast

Processor

Array

85 x 85

Slices Registers

Slices LUTs

RAMB36E1

RAMB18E1

FIF036E1

DSP48E1

531 68

331 2,630

8 8

0 0

0 0

16 16

23,885

22,137

0

8

8

296

Speed (MHz)
Bandwidth (GB/s)

293.08 328.08

9-38 10.50

65.29

4.18

171 x 171

Slices Registers
Slices LUTs

RAMB36E1

RAMB18E1

FIF036E1

DSP48E1

529 84

608 2,906

24 24

8 8

0 0

16 16

24,314

24,080

0

8

32

296

Speed (MHz)
Bandwidth (GB/s)

200.20 310.46

6.41 9.39

64.24

4.11

342 x 342

Slices Registers

Slices LUTs

RAMB36E1

RAMB18E1

FIF036E1

DSP48E1

589 88

1,260 3,339

98 98

16 16

0 0

16 16

25,142

26,970

0

8

128

296

Speed (MHz)
Bandwidth (GB/s)

157.97 186.43

5.06 5.97

59.85

3.83

Table 6.7: Place and route results for three memory architectural cases and a processor array

implementation for Cholesky algorithm targeted for a XC6VCX240T FPGA device

two Cholesky architectural cases, and the peak bandwidth required by the processor array. ln the

last case, the peak bandwidth is calculated assuming that the Cholesky processor array requires new

data on each dock cycle. However, due to the iteration interval is set P = 21 the l/O requirements

of Cholesky processor array are fewer than the l/O bandwidth shown in table 6.7. Nevertheless the

memory architectural cases overeóme the Cholesky l/O data demands. ln summary, the four memory

architectural cases achieve the memory assumption of Clk.mem >2x Glkpa. Also. the PAR results

show that the broadcast memory cases require major amount of FPGA resources than the border

cases, as stated by expression presented in table 5.1
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ln previous sectíons, FPGA implementation results for both control scheme and memory architectural

cases were presented separately. ln this section, the cases of study developed in Chapters 4 and 5 are

presented as complete systems (data-path, control scheme and memory system). Figure 6.1 depicts

the block diagram of this integrated system, showing in different colors the two clock domains.

ln this integrated system the tile and time indexes are generated by the sequence generator, later

these indexes are decoded by the activation-signal injector and by the AGUs in order to genérate the

processor array activation sequence and the input memory addresses, respectively. Data extracted

from the input memory is inserted inside the processor array by the SIPO elements and at the same

time the activation signal is injected to the processor array. All intermedíate data produced by the

array are stored in the FIFO memories and reused without the need of accessing an external memory,

Once results are being produced by the processor array they are recollected by PISO registers and

they are stored in an output memory.

D Memory Clock Domain □ Processor Clock Domain

4
[_2

FIFOs

1NL
|DalaPalnAmr,|

Control Array |

iBroadcsiArrsyl

^T

^>
I «"I

[*ju]

T3:

—\

Figure 6.1: Block diagram for the integration of memory system, control and processor array data-

path
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It is important to emphasize that the integrated system is able to support different scheduler

functions by changing the mathematical expressions mapped to combinational logic in:

• The Max/Min sub-modules located in the sequence generator (control scheme).

• The Max sub-modules placed in the activation-signal injector (control scheme).

• The boundaries detector and the activation pattern generator sub-modules ín the control

control cells (control scheme).

• The AGU sub-modules required by each architectural case (external memory).

Besides, if the projection vector is also changed, by the correct selection of the memory

architectural cases, the support of different space-time transformations given the matrix T is possible.

Furthermore, similarly to PARO, the Integrated system supports the use of different iteration intervals

by using /'-modulo counters in the control scheme. Recall that the combination of the scheduler

function and the projection vector derive the transformation matrix T. i.e. the space-time mapping.

ln the next subsections, the PAR results for the integrated system implementing two cases of study

(MatMul and Cholesky) are presented targeted for different Virtex-6 FPGA devices (subsections 6.4.1

and 6.4.2). Also, the PAR results for an embedded platform using a Spartan-6 FPGA are presented

in subsection 6.4.3. All the PAR results were obtained using the Xilinx ISE 13.1 tool.

6.4.1 MatMul Results

For purpose of showing different aspects involved when processor arrays are ¡mplemented in FPGA

technology, the PAR results are grouped into two different sets and targeted for different FPGA

devices. The first set consists of the MatMul processor array including control, data-path and

memory system fully implemented in an FPGA, with the purpose of showing that the processor array

integration is possible with the current technology for a set of problem sizes. However, due to the

limited FPGA's memory, since they are not designed for storing large amount of data, the second set

of implementations consists of assuming the memory banks are placed outside of the FPGA, leaving
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ln previous sections, FPGA implementation results for both control scheme and memory architectural

cases were presented separately. ln this section, the cases of study developed ¡n Chapters 4 and 5 are

presented as complete systems (data-path, control scheme and memory system). Figure 6.1 depicts

the block diagram of this integrated system, showing in different colors the two clock domains.

ln this integrated system the tile and time indexes are generated by the sequence generator, later

these indexes are decoded by the activation-signal injector and by the AGUs in order to genérate the

processor array activation sequence and the input memory addresses, respectively. Data extracted

from the input memory is inserted inside the processor array by the SIPO elements and at the same

time the activation signal is injected to the processor array. All intermedíate data produced by the

array are stored in the FIFO memories and reused without the need of accessing an external memory.

Once results are being produced by the processor array they are recollected by PISO registers and

they are stored in an output memory.
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Figure 6.1: Block diagram for the integration of memory system, control and processor array data-

path.
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It is important to emphasize that the integrated system is able to support different scheduler

functions by changlng the mathematical expressions mapped to combinational logic in:

■ The Max/Min sub-modules located in the sequence generator (control scheme).

• The Max sub-modules placed in the activation-signal injector (control scheme).

• The boundaríes detector and the activation pattern generator sub-modules in the control

control cells (control scheme).

• The AGU sub-modules required by each architectural case (external memory).

Besides, if the projection vector is also changed, by the correct selection of the memory

architectural cases, the support of different space-time transformations given the matrix T is possible.

Furthermore, similarly to PARO, the integrated system supports the use of different iteration intervals

by using P-modulo counters in the control scheme. Recall that the combination of the scheduler

function and the projection vector derive the transformation matrix T, i.e. the space-time mapping.

ln the next subsections, the PAR results for the integrated system ¡mplementing two cases of study

(MatMul and Cholesky) are presented targeted for different Vírtex-6 FPGA devices (subsections 6.4.1

and 6.4.2) Also, the PAR results for an embedded platform using a Spartan-6 FPGA are presented

in subsection 6.4.3. All the PAR results were obtained using the Xilinx ISE 13.1 tool.

6.4.1 MatMul Results

For purpose of showing different aspects involved when processor arrays are ¡mplemented in FPGA

technology. the PAR results are grouped into two different sets and targeted for different FPGA

devices. The first set consists of the MatMul processor array including control, data-path and

memory system fully ¡mplemented in an FPGA, with the purpose of showing that the processor array

integration ¡s possible with the current technology for a set of problem sizes. However, due to the

limited FPGA's memory, since they are not designed for storing large amount of data, the second set

of implementations consists of assuming the memory banks are placed outside of the FPGA, leaving
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only the intermedíate memory inside the FPGA and allowing to solve a larger set of problem sizes

than in first the implementation set.

These two sets of implementations use the same configuration design parameters, í.e. the same

scheduler, projection, and iteration interval. The valúes of these parameters are X¡ = [1,1.1],

it = [1.0.0]', and P = 1; while the partitioning parameters (processor array size) vary for each

implementation. The data word width is 32-bit for all implementations. The control word varíes for

each implementation, mainly with the purpose of each implementation supports a different problem

size. Finally, the FIFOs required for the processor arrays were ¡mplemented by using the Xilinx's

IP-Core as shift registers and as built-in FIFOs for FIFOs Ll and FIFOs L2, respectively; whereas

memory banks were ¡mplemented using the FPGA's built-in BRAMs.

6.4.1.1 Place and Route

Table 6.8 shows the description ofthe first implementations set with their corresponding code ñames.

Th¡s set ¡s formed by three different MatMul processor array implementations. These implementations

use the partitioning parameters of SSp0 — 8 and SSpi = 8, leading to processor arrays of 8 x 8 PEs.

Note that these implementations differ in their control word width Wc, thus each implementation

leads to different Nmax valúes. Also, table 6.8 shows the type of memory banks, required by the

architectural cases, were ¡mplemented using the FPGAs BRAMs, f'.e. as on-chip memories. The

targeted FPGA device used for implementing the first set was a Virtex-6 XC6VCX240T

Implementation

Code Ñame

Processor Max. Prob. Control

Array Size Size (¿Vm«) Word ( 11'.)

MatMul-On-8x8-086

MatMul-On-8x8-171

MatMul-On-8x8-320

8 x 8 PEs 86 x 86 8-bit

8x8 PEs 171 x 171 9-bit

8 x 8 PEs 320 x 320 10-bit

Table 6.8: Description of the first MatMul implementation set with their respective parameters.

These implementations use the FPGA on-chip memories for storing the input and output matrixes.
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FPGA Resources

Resource Available

MatMul-On MatMul-On MatMul-On

8x8-086 8x8-171 8x8-320

Slice Registers 301,440

Slice LUTs 150,720

Slices 37,680

RAMB36E1 416

RAMB18E1 832

FIF036E1 416

DSP48E1 768

20,201 20,478 20,922

14,263 15,106 21,221

5,926 6,900 8,612

24 72 258

0 24 36

8 32 128

240 240 240

Max, Frequency {MHz} 5801 56.99 55.42

Table 6.9: Place and route results for the first MatMul implementation set for a XC6VCX240T FPGA

device. The second left-side column shows the number of FPGA available resources.

The first set of PAR results is shown in table 6.9 in terms ofthe slice registers, slice LUTs, slices,

DPS48E1 and BRAMs. Recall that BRAMs could be used as: FIFO elements (FIF036E1) or as

36 Kbit dual-port memories (RAMB32E1) or as two 18 Kbit dual-port memories (RAMB18E1).

Results exposed in table 6.9 show that at least an 80% of FPGA logic resources are unused.

However, the percentage ofthe FPGA memory resources used for implementations MatMul-On-8x8-

086 and MatMul-On-8x8-171 are 7% and 27%, respectively; showing an ¡ncrement of the FPGA

memory resources. ln fact, note that the number of BRAMs required for the MatMul-On-8x8-

171 implementation is almost four times the memory resources required by theMatMul-On-8x8-086

implementation due to the problem size grows in a quadratic way. Also, these results suggest that

an íS x S processor array system implementation varying the control word width to We = 10 is

possible from the FPGA logic resources point of view. However, the largest problem size supported

by ir, = 10 (Í.e. a problem size of 342 x 342) ís not fully achievable because the number of

BRAMs available in the XC6VCX240T FPGA device are exceeded. ln this sense, the number of

BRAMs available an FPGA device become a technological limitation. Thus. table 6.9 shows the

PAR results of a third implementation (MatMul-On-8x8-320), which ís able to solve problems of size

320 x 320 though the control is able to deal with a larger problem size (342 x 342). Implementation

MatMul-On-8x8-320 uses the 97% of the BRAMs available in the XC6VCX240T FPGA, whereas

the requirement of LUTs and registers resources do not exceed the 15%. At last, note that the
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operational frequencies degradation is 5% when the control word is increased from Wc — 8 to

Wc = 10, i.e. an increment of 25% in the word width.

The results shown in table 6.9 suggest that in order to solve larger problem sizes, selecting

an FPGA device with more BRAMs, reducing the data word width, placing the memory banks or

intermedíate memories outside of the FPGA are possible solutions to deal with the limitation of

FPGA memory elements. ln this sense, a second set of implementations, placing the memory banks

outside of the FPGA, was targeted for an FPGA device with a major number of BRAMs than the

XC6VCX240T FPGA device. Thus, the second implementation set was targeted for an XC6VSX475T

FPGA device 3nd it consists of twelve different implementations varying the control word (11*,.) and

the processor array size {SSpo and SSpi). Table 6.10 describes each implementation with their

respective ñame and parameters. ln this second set of implementations, it should be pointed out

that processor arrays are limíted only to square array sizes (í.e. SSpo = SSp¡), and to control words

whose Nmax valúes are totally supported by the BRAMs available in the selected FPGA.

Implementation

Code Ñame

Processor Max. Prob. Control

Array Size Size(A„„„) Word (H'()

MatMul-Off-2x2-086

MatMul-Off-2x2-171

MatMul-Off-2x2-342

MatMul-Off-2x2-683

2x2 PEs 86 x 86 8-bit

2 x 2 PEs 171 x 171 9-bit

2 x 2 PEs 342 x 342 10-bit

2 x 2 PEs 683 x 683 11-bit

MatMul-Off-4x4-086

MatMul-Off-4x4-171

MatMul-OfUx4.342

MatMul-Off-4x4-683

4 x 4 PEs 86 x 86 8-bit

4 x 4 PEs 171 x 171 9-bit

4x4 PEs 342 x 342 10-bit

4 x 4 PEs 683 x 683 11-bit

MatMul-Off-8x8-086

MatMul-Off-8x8-l 71

MatMul-Off8x8-342

MatMul-Off-8x8-683

8 x 8 PEs 86 x 86 8-bit

8 x 8 PEs 171 x 171 9-bit

8 x 8 PEs 342 x 342 10-bit

8 X 8 PEs 683 x 683 11-bit

Table 6.10: Description of the second MatMul implementation set with their respective parameters

These implementations assumes off-chip memories for storing the input and output matrixes.
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The PAR results for the second implementation set are shown in tables 6.11, 6.12 and 6.13 for

processor arrays of size 2 x 2, 4 x 4, and 8x8 PEs, respectively. ln the same way as previous PAR

results, these tables show the number of FPGA resources (slice registers, slice LUTs, slices, DPS48E1

and BRAMs) required by each implementation. Since this set does not implement memory banks,

the reported number of BRAMs are limited to implement the FIFO functionality (FIF036E1). When

comparing the number FPGA resources occupied among the different array processor sizes, it should

be noted that despite that the sizes are incremented in a factor of 4x, the number of slice registers

is incremented by an average factor of 3.4x, whereas the number of slice LUTs Ís incremented on an

average factor of 2.7x. The worst case, for slice registers and slice LUTs, is when implementations

MatMul-Off-4x4-086 and MatMul-Off-8x8-086 are compared, with an increment of 3.8x ¡n the case

of slice registers and 3.9x for slice LUTs.

Furthermore, note that incrementing the control word Wc has a major impact on the number of

slice registers and slice LUTs resources for small processor arrays than for larger arrays, as discussed

in subsection 6.2.1. ln general, the operational frequencies are above of 59 MHz. These relative

slow frequencies are originated from the control scheme, since the Max/Min sub-modules (placed

at the sequence generator) genérate the iongest critical path due to their combinational logic for

calculating the loop bound during execution time. Also, it should be noted that an outlier valué

in the operational frequency in the case ofthe MatMul-Off-4x4-342 implementation. Vlewing the

placed and routed processor arrays (using the Xilinx's PlanAhead), it is observed that the MatMul-

Off-4x4-342 critical path is physically the Iongest path ofthe MatMul arrays.

ln addition, ¡t should be noted from tables 6.11, 6.12 and 6.13 that the number of DSP blocks

|DSP36E1) for a same processor array size remains constant, since the DSP blocks are only required

in the processor array PEs and for the AGUs modules. Besides, note that the number of BRAMs

(FIF036E1) is variable for the same processor array size, but number of BRAMs remains constant

when the problem size has a same valué.
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FPGA Resources

Resource Available

MatMul-OfT MatMul-OfT MatMul-Off MatMul-Off

2x2-086 2x2-171 2x2-342 2x2-683

Slice Registers 595,200

Slice LUTs 297,600

Slices 74,400

FIF036E1 1,064

DSP48E1 2,016

1,406 1.475 1,730 2,539

1.351 1,769 2,748 4,969

560 722 1,021 2,124

8 32 128 512

24 24 24 24

Max. Frequency (MHz) 72.02 78.10 73,76 71 75

Table 6.11: Place and route results for the implementations of the 2 x 2 MatMul system for a

XC6VSX475T FPGA device. The second left-side column shows the number of FPGA available

resources.

FPGA Resources

Resource Available

MatMul-OfT MatMul-Off MatMul-Off MatMul-Off

4x4-086 4x4-171 4x4-342 4x4-683

Slice Registers 595,200

Slice LUTs 297.600

Slices 74.400

FIF036E1 1,064

DSP48E1 2,016

5,260 5,341 5,657 6,506

3,756 4,789 6,274 10,143

1,611 1,937 2,552 4,231

8 32 128 512

72 72 72 72

Max. Frequency (MHz) 78-00 75.41 59-10 69-17

Table 6.12: Place and route results for the implementations of the 4x4 MatMul system for a

XC6VSX475T FPGA device. The second left-side column shows the number of FPGA available

resources.

FPGA Resources

Resource Available

MatMul-Off MatMul-Off MatMul-Off MatMul-Off

8x8-086 8x8-171 8x8-342 8x8-683 :

Slice Registers 595,200

Slice LUTs 297.600

Slices 74,400

FIF036E1 1,064

DSP48E1 2,016

20,064 20,275 20,685 21,673

15,020 15,629 19,876 25.391

5,655 5,965 7,341 10,402

8 32 128 512

240 240 240 240

Max. Frequency (MHz) 73.88 74.70 65.26 63.64

Table 6.13: Place and route results for the implementations of the 8 x 8 MatMul system for a

XC6VSX475T FPGA device. The second left-side column shows the number of FPGA available

resources.
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171x171 342*342

Máximum Problem Size N

Figure 6.2: FPGA resource utilization percentage varying the máximum problem size (control word)
for implementations shown in table 6.13.

With the purpose of showing the FPGA resource utilization percentages, figure 6.2 exemplifíes

the FPGA utilization percentage for table 6.13, i.e. the processor arrays of 8 x 8 PEs varying the

control word. ln this figure, note that the number of BRAMs is duplicated when the máximum

problem size changes, while the number of DSPs remains constant. Also, note that the number of

slice registers and slice LUTs do not exceed the 10% of the FPGA resources. This suggests that

larger arrays could be implemented in FPGA technology considering only the FPGA computational

resources. However, increasing the processor array size would lead to Íncrease the interconnections

among PEs, and consequently the FPGA dedicated interconnection structure might be not enough

for mapping the processor array topology, leading to use the FPGA slices as interconnections. Similar

graphs for tables 6.11 and table 6.12 are omitted since their percentage ofthe required slice LUTs

and slice registers are low.
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Figure 6.3: Distribution of the FPGA resources for data of tables 6.11, 6.12 and 6.13. Data are

grouped according to the máximum problem size, and each member of a group corresponds to

different processor array size.

Figure 6.3 shows the FPGA resource distribution considering each implementation presented in

table 6.10. Each bar corresponds to a different processor array size, and each set of grouped bars

corresponds to the máximum problem size. This figure shows the percentage ofthe implementation

that is mapped to slice registers, slice LUTs, BRAMs and DSPs, Le. it considers each implementation

as a complete design (100%) and it assigns a unitary percentage valué for each FPGA resource.

The main purpose of this graphic is to show that increasing the máximum problem size leads to

increase the percentage that an implementation dedicates to memory resources instead of computing

elements such as slice LUTs or DSPs. It is important to emphasize that since this graphic assigns

a unitary weight for each FPGA resource, it is only an optimistic and general approxímation of

the FPGA resources distribution given a processor array. A more realistic silicon distribution would

assign a different weight for each FPGA resource according to its computational density or storage
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capacity in order to weight equitably the FPGA heterogeneous elements. Despíte of the limitation

of this general approxímation, the graphic helps to visualize the percentage that an implementation

dedícates to memory and computing resources. ln this sense, note that for the largest problem sizes,

the percentage that a processor array dedícales to store data is 93%, 85% and 66% for the 2x2,

4x4 and 8x8 processor arrays, respectively. Recall that these data correspond to the intermedíate

memories, i.e. FIFOs L2. The percentages that processor arrays dedícate to store data indícate

that for solving larger problem size, the FPGA resources are more dedicated to store data than for

performing computations; despite of FPGAs are mainly designed for performing computations rather

than for storing data, ln other words, although the FPGA has a large number of computational

elements ¡n form of LUTs, these elements are not totally used as in the case ofthe BRAMs when

larger problem sizes are solved. On the other hand, for the smallest problem size, the DSPs require

above of 45% of the processor array design. With respect of the slice registers and slice LUTs,

the highest percentages are achieved for implementation MatMul-Off-8x8-086 with 15% and 23%,

respectively; í.e. for smaller problem sizes.

6.4. 1.2 Comparison

A dírect comparison against other works is complex, but still possible in the case of PARO [64].

However, a comparison against MMAlpha is harder since in [61] authors show synthesis results for

the multiplication of two small non-square matrixes (resulting in a matrix of 10 x 4), and limiting

themselves to show only the number of slices required for a XCV800 FPGA device. The synthesis

results shown in [64] are targeted for a Virtex-ll 8000 FPGA device, implementing two 2x2 processor

arrays named as MatMul-PARO-2x2-100 and MatMul-PARO-2x2-6 for solving problems of size of

6x6 and 100 x 100, respectively. These implementations use a 16-bit integer arithmetic, and

they are able to solve only the problem size for which they were derived. It should be noted

that these results are targeted for an FPGA with a 4-LUT technology, while the results presented

in the previous subsection are targeted for a 6-LUT technology. Despite that this technological

difference, some comparisons could be done using implementation MatMul-Off-2x2-171. and using

a new implementation called MatMul-Off-2x2-6.
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FPGA

Resource

PARO (64]
XC2V8000

Proposed Approach

XC6VSX475T

MatMul-PARO MatMul-PARO

2x2-100 2x2-6

MatMul-Off MatMul-Off

2x2-171 2x2-6

Slice 4-LUTs

Slice 6-LUTs

Equivalent 6-LUTs

Equivalent 4-1 MUXs

1,736 829

578 276

868 415

1,769 967

1,769 967

1,769 967

Slice Registers

18 Kbits BRAMs

18 x 18 DSP Block

18 x 25 DSP Block

931 795

505 0

4 4

1,475 1,367

64 0

24 24

Operational Frequency (MHz)
Execution Time (cycles)
Matrix Problem Size

97 115

260,000 72

100 6

78 79

255,000 72

[1 171] [1 6]

Table 6.14: Comparison of two 2x2 MatMul processor arrays generated by PARO and by the

proposed processor arrays.

Table 6.14 shows the comparison of the synthesis results reported in [64] and the PAR results

ofthe proposed approach. Such comparison is in terms of LUTs, registers, BRAMs, multipliers,

operational frequency, and number of clock cycles to complete the multiplication of two matrixes

of different sizes. Since the LUTs for both cases are different, they are normalízed in terms of the

number of 4-1 multiplexers [98], and in terms of equivalent 6-LUTs [66]. It should be noted that the

results from [64] are límited to synthesis, due to the Virtex-ll 8000 FPGA device has only 168 BRAMs

(each storing 18 Kbits), makíng the PAR not possible. Although the processor arrays generated by

PARO require a smaller number of equivalent 4-1 multiplexers and 6-LUTs, it should be noted that

processor arrays MatMul-Off-2x2-171 and MatMul-Off-2x2-6 have a 32-bit data word. contrary to

PARO implementations of 16-bit. ln this sense, the number of equivalent 4-1 multiplexers and 6-LUTs

shown in table 6.14 could be halved in the case of the proposed implementations, resulting ¡n a similar

number of multiplexers and a 34% more of equivalent LUTs compared to PARO Implementations.

Furthermore. using a 32-bit data word for performing the PE's MAC operation requires three 18 x

25 DSP Blocks; while for computing the 16-bit MAC operation, one 18 x 18 DSP Block is required.
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Therefore, half of the 24 DSP Blocks required by the proposed arrays are used for computing the

MatMul operation, while the other 12 DSP Blocks are employed by the AGUs. With respect to

the number of slice registers, implementations MatMul-PARO-2x2~100 and MatMul~PARO-2x2-6

require fewer elements than the proposed arrays. Mainly, this is due to in the proposed processor

arrays, the control cells propágate more information (using the Index Bus) to the processor array

than the processor generated by PARO, where only single signáis are propagated through the array.

Recall that the Index Bus is a set of signáis composed by the tile and tíme indexes, and the problem

size, each composed of Wr bits.

Additionally, despite that the proposed processor arrays require more computational elements that

PARO implementations, it must be pointed out that the number of cycles required for multiplying

two matrixes of size 100 x 100, in the case ofthe proposed MatMul-Off-2x2-171 implementation is

5,000 cycles faster than the results reported in [64]. ln the case of MatMul-Off-2x2-6 and MatMul-

PARO-2x2-6 implementations both require the same number of clock cycles for multiplying two

matrixes of size 6x6. Besides, both proposed implementations are able to deal with problem sizes

within the rage of valúes instead of solving a unique problem size like the PARO processor arrays.

Finally, note that the proposed arrays have a minor operational frequency degradation if the problem

size is increased compared to the processor arrays derived by PARO.

6.4.2 Cholesky Results

ln the same way as in the MatMul case, the PAR results are grouped ¡nto two different sets and

targeted for the same FPGA devices. These two sets are named as third and fourth sets in order to

continué the previous count. The third set of implementations consists of three Cholesky processor

array including control, data-path and memory fully ¡mplemented in the FPGA, whereas the fourth

set of Implementations consists of assuming that memory banks are outside of the FPGA.



6. Results 179

These two sets use the same configuraron design parameters, i.e. the same scheduler, projection,

and iteration interval. The valúes of these parameters are A¡ = [1. 1. 1], u = [0,0,1]', and P = 21;

while the partitioning parameters vary for each implementation. The data word width is 32-bit and

the control word varíes for each implementation. The FIFOs required for the processor arrays were

¡mplemented by using the Xílinx's IP-Core as shift registers and as built-in FIFOs for FIFOs Ll and

FIFOs L2, respectively; whereas memory banks were ¡mplemented using the FPGA's built-in RAMs.

Finally, división and square root operations were ¡mplemented by us¡ng Xillnx's IP-Core.

6.4.2.1 Place and Route

Table 6.15 shows the description ofthe third implementations set. This set is formed by three different

Cholesky processor array implementations. Similarly to the first set of MatMul implementations, the

Cholesky implementations use the same partitioning parameters of SSpo — 8 and SSpi = 8 (an

8x8 processor array), and they differ in their control word width Wc (leading to different A',,,,,,.

valúes). Also, table 6.15 shows that the memory banks, required by the architectural cases, were

implemented using the FPGAs BRAMs. The targeted FPGA device used for implementing this set

was a Virtex-6 XC6VCX240T.

Implementation

Code Ñame

Processor Max. Prob. Control

Array Size Size (Ar,„„, ) Word (WJ

Chol-On-8x8-086

Chol-On-8x8-171

Chol-On-8x8-342

8 x 8 PEs 86 x 80 8-bit

8 x 8 PEs 171 x 171 9-bit

8 X 8 PEs 342 x 342 10-bit

Table 6.15: Description of the third Cholesky implementation set with their respective parameters.

These implementations use the FPGA on-chip memories for storing the input and output matrixes.

The third set of PAR results ¡s shown In table 6.16 in terms of the slice registers, slice LUTs, slices,

DPS48E1 and BRAMs. Again, recall that BRAMs could be used as FIF036E1, or as RAMB32E1

or as two RAMB18E1 memories. ln these PAR results, some RAMB18E1 modules are used for

implementing a divisor functionality. ln fact, the projection vector ¡7 = [0. 0. 1]' was chosen s¡nce it
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derivates processor arrays whose divisions and square root operations are only performed in the PEs

placed at the main diagonal of the array. ln other words, eight RAMB18E1 modules are dedicated

to implement the división operation while the remaining RAMB18E1 modules are dedicated to store

Input and output data.

FPGA Resources

Resource Available

Chol-On Chol-On Chol-On

8x8-086 8x8-171 8x8-342

Slice Registers 301,440

Slice LUTs 150,720

Slices 37.680

RAMB36E1 416

RAMB18E1 832

FIF036E1 416

DSP48E1 768

24,246 24,709 25.588

22,671 25.310 29,276

8,405 9,107 10.585

16 48 196

8 24 40

8 32 128

328 328 328

Max. Frequency (MHz) 66.19 64.28 64.77

Table 6.16: Place and route results for the third Cholesky implementation set for a XC6VCX240T

FPGA device. The second left-side column shows the number of FPGA available resources.

The results exposed in table 6.16 show that there is at least 80% of unused FPGA logic resources,

whereas the percentage of the FPGA memory resources used for implementations Chol-On-8x8-

086, Chol-On-8x8-171 and Chol-On-8x8-342 are 7%, 22% and 83%, respectively. Contrary to the

MatMul case, in the Cholesky decomposition the largest problem size supported by IV",. = 10 is totally

achievable, since the Cholesky algorithm requires a less number of memory banks than the MatMul

algorithm. Recall that according to the PRA specification, for computing the matrix decomposition

only one input matrix is required, whereas the multiplication requires two input matrixes; and in

both algorithms, the result is only one matrix. ln relation to the operational frequencies, note that

there is a degradation of 3% when the control word is increased from Wc = 8 to ll(. = 10, Le. an

increment of 25% in the word width.

Although the memory bank requirements for Cholesky implementations are less than in the case of

MatMul processor array, placing the memory banks outside ofthe FPGA is also helpful for supporting
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Implementation

Code Ñame

Processor Max. Prob. Control

Array Size Size (N,„„) Word (ll,,)

Chal-Off-2x2-086

Chol-Off-2x2-171

Chal-Off-2x2-342

Chol-Off-2x2-683

2 x 2 PEs 86 x 86 8-bit

2 x 2 PEs 171 x 171 9-bit

2 x 2 PEs 342 x 342 10-bit

2 x 2 PEs 683 x 683 11-bit

Chol-Off-4x4-086

Chol-Off-4x4-171

Chol-Off-4x4-342

Chol-Off-4x4-683

4 x 4 PEs 86 x 86 8-bit

4 x 4 PEs 171 x 171 9-bit

4 x 4 PEs 342 x 342 10-bit

4x4 PEs 683 x 683 11-bit

Chol-Off-8x8-086

Chol-Off.8x8.171

Chol-Off-8x8-342

Chol-Off-8x8-683

8 x 8 PEs 86 x 86 8-bit

8 x 8 PEs 171 x 171 9-bit

8 x 8 PEs 342 x 342 10-bit

8 x 8 PEs 683 x 683 11-bit

Table 6.17: Description of the fourth Cholesky implementation set with their respective parameters.

These implementations assumes off-chip memories for storing the input and output matrixes.

lager problem sizes. ln this sense and analogously to the second set of implementations, a fourth

set of Cholesky processor arrays was targeted for a Virtex-6 XC6VSX475T FPGA device placing the

memory banks outside of the FPGA. This fourth set consists of twelve different implementations

varying the control word (Wc) and the processor array size (SSpo and SSpi)- Table 6.17 describes

each implementation with its respective ñame and parameters.

The PAR results for the fourth implementation set are shown ¡n tables 6.18, 6.19 and 6.20 for

processor arrays of size 2 x 2, 4 x 4, and 8x8 PEs, respectively. ln the same way as previous PAR

results, these tables show the number of FPGA resources required by each implementation. As in

the case of the second implementation set, the fourth set does not implement memory banks. The

reported number of BRAMs are reported as FIF036E1 elements and as RAMB18E1. Recall that

in the case of Cholesky processor arrays the RAMB18E1 modules are dedicated to implement the

división operation.
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FPGA Resources

Resource Available

Chol-Off Chol-Off Chol-Off Chol-OfT II

2x2-086 2x2-171 2x2-342 2x2-683 ||
Slice Registers 595,200

Slice LUTs 297,600

Slices 74,400

FIF036E1 1,064

RAMB18E1 2,128

DSP48E1 2,016

2,835 2,912 3,176 3,990 1

3,504 3,911 4,908 7.112

1,260 1,545 1,735 2,124

8 32 128 512

2 2 2 2

46 46 46 46

Max. Frequency (MHz) 80.86 76-63 82.21 77.07

Table 6.18: Place and route results for the 2x2 Cholesky implementation set for a XC6VSX475T

FPGA device. The second left-side column shows the number of FPGA available resources.

FPGA Resources

Resource Available

Chol-Off Chol-Off Chol-Off Chol-Off

4x4-086 4x4-171 4x4-342 4x4-683

Slice Registers 595,200

Slice LUTs 297,600

Slices 74,400

FIF036E1 1,064

RAMB18E1 2,128

DSP48E1 2,016

7,864 7,996 8,411 9,316

8,050 8,863 10,334 14.155

3,052 3,372 3,863 5,811

8 32 128 512

4 4 4 4

116 116 116 116

Max. Frequency (MHz) 81.51 79.51 76.62 71.06

Table 6.19: Place and route results for the 4 x 4 Cholesky implementation set for a XC6VSX475T

FPGA device. The second left-side column shows the number of FPGA available resources.

FPGA Resources

Resource Available

Chol-Off Chol-Off Chol-Off Chol-Off

8x8-086 8x8-171 8x8-342 8x8-683

Slice Registers 595.200

Slice LUTs 297.600

Slices 74.400

FIF036E1 1,064

RAMB18E1 2,128

DSP48E1 2,016

24,246 24,677 25,548 26.803

22,360 24,375 27,469 34.256

8,534 9,374 10,182 13.326

8 32 128 512

8 8 8 8

328 328 328 328

Max. Frequency (MHz) 75.76 7365 72.92 68.86

Table 6.20; Place and route results for the 8 x 8 Cholesky implementation set for a XC6VSX475T

FPGA device The second left-side column shows the number of FPGA available resources.
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Note that in this set of implementations, the processor array size is also incremented by a factor

of 4x. However, the number of slices registers and slice LUTs are incremented by an average factor

of 2.8x and 2.4x, respectively. The major ¡ncrement is when implementations Chol-Off-4x4-086 and

Chol-Off-8x8-086 are compared, with an increment of 3x on the number of slíce registers and 2.7x in

the case of slice LUTs. Besides, note that the average increments in Cholesky implementations are

lower than in the case of MatMul implementations, whereas the major increment is exhibited in the

same case as the MatMul implementations, i.e. when Wc = 8 and the processor array ís increased

from 4 x 4 to 8 x 8 PEs. Also, similarly to the MatMul set, ¡ncrementing the control word Wc has

a major impact on the number of slice registers and slice LUTs resources for small processor arrays

than for lager arrays (see subsection 6.2.1).

ln the case of the operational frequencies, note that they are above of 68 MHz, and that these

frequencies are faster than ¡n the MatMult implementation. ln fact, for implementation Chol-Off-

4x4-086 the máximum operational frequency achieved is 81 MHz, resulting in the fastest processor

array ¡mplemented. One possible reason for achiving greater frequencies in the case of Cholesky

implementations might come from the use of specialized IP cores for división and square root

operations. It ¡s worth to mention that the Chol-Off-2x2-342 implementation is the fastest of

the 2 x 2 processor array, and that if the máximum problem size required to be solved is JV^.,. < 342

and there is not restriction about the FPGA resources, then Chol-Off-2x2-342 implementation should

be considered. Also, note that the number of BRAMs for each implementation corresponds to the

processor array size and the number of DSPs blocks remains constant for the same processor array

size. ln addition, as in the MatMul implementation sets, the number of BRAMs is variable for the

same processor array size, but it remains constant if the problem size is set to a fixed valué.

Figure 6.4 shows the FPGA resource utilization percentage for implementations shown in table

6.20. Similarly to the MatMul case {figure 6.2), the number of BRAMs is duplícated when the

máximum problem size is duplícated, while the number of DSPs remains constant. Also, the number

of slíce registers and slice LUTs do not exceed the 10% of the FPGA resources.
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171x171 342*342 683*6B3

Máximum Problem Size N

Figure 6.4; FPGA resource percentage utilization varying the máximum problem size (control word)
for implementations shown in table 6.20.

Finally, with the purpose of showing that increasing the máximum problem size leads to Íncrease

the percentage that an implementation dedicates to memory resources; figure 6.5 shows the

percentage ofthe implementation that is mapped to the FPGA resources consídering each Cholesky

implementation as a complete design. Recall that for this kind of graphic, a same weight is assigned

for each FPGA resource. Also, recall that each bar in figure 6.5 corresponds to a different processor

array size, and each set of grouped bars corresponds to the máximum problem size. Similarly to

figure 6.3 when the problem size of 683 x 683 is considered, the percentage that a processor array

dedicates to store intermedíate data is 89%, 79% and 59% for 2 x 2. 4 x 4 and 8x8 processor

arrays. respectively. On the other hand, for the smallest problem size, the DSPs require above of

47% of the processor array design. These percentages indícate that for solving larger problem size,

the FPGA resources are more dedicated to store data than for performing computations: whereas

for solving smaller problem sizes, the FPGA resources are more dedicate to perform computations
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Figure 6.5: Distribution of the FPGA resources for data of tables 6.18, 6.19 and 6.20. Data are

grouped according to the máximum problem size, and each member of a group corresponds to

different processor array size.

rather than for storing data. Also, note that the percentage of RAMB18E1 dedicated to perform the

división operation is low for the smallest array of 2 x 2 processor arrays, since these BRAMs are not

used for storing data but to performing computations.

6.4.3 Embedded Platform

The previous results have been targeted for two Virtex-6 FPGA devices. However, the processor array

derived can be targeted for smaller FPGA devices used in embedded platforms, where small problem

sizes are required to be solved, and where a balance between power consumption and computational

performance is desired. Processor arrays are capable of performing parallel computations and

completing a larger volume of work with a low power consumption. ln this sense, this section

presents the PAR results, speed-up, and power consumption per LUT for the two previous algorithms
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¡mplemented as processor arrays targeted for a Spartan-6 family. Mainly, the purpose of this section

is showing that the processors arrays, derived by the desing methodology, provide a balance between

power and acceleration compared to a sequential soft-processor (MicroBlaze) used in embedded

platforms for small problem sizes using the same FPGA technology for the implementation of both

sequential and parallel processors.

Implementation

Code Ñame

Implemented Processor Max. Prob.

Algorithm Array Size Size (N,„aI)

MatMul-Off-2x2-250

MatMul-Off-4x4-250

Chol-Off-2x2-342

MatMul 2x2 PEs 250 x 250

MatMul 4x4 PEs 250 x 250

Cholesky 2 x 2 PEs 180 x 180

Table 6.21: Description of the implementation set targeted for an embedded platform. These

implementations assume off-chip memories for storing the l/O matrixes, and a Wc = 11-bit.

The set of implementations, with their respective configurations is shown in table 6.21. This

fifth implementation set consists of three different processor arrays, implementing the MatMul and

Cholesky decomposition algorithms. The design parameters of the MatMul processor arrays are:

X, — [1,1.1], u — [1.0.0]', and P = 1; whereas for Choleksy array the design parameters are:

A, - [1, 1, 1], Ü = [0.0. 1]', and P = 21. Note that the iteration interval for these arrays is equal

to the most time expensive operation presented In each algorithm. The data word width is 32-bit

and the control li',. — 11 for the three implementations. The FIFOs required for the processor arrays

were implemented by using the Xilinxs IP-Core as shift registers and as built-in FIFOs for FIFOs

Ll and FIFOs L2, respectively. The memory banks required in the memory system are assumed to

be off-chip memories. The división and square root operations were ¡mplemented by using XNinx's

IP-Cores. Note that these parameters are the same configuration parameters used in subsection 6.4.1

and in subsection 6.4 2

The Fifth implementation set has been targeted for a Spartan-6 XC6SLX45 FPGA device that

is included in the Digilent Atlys Development Board [38]. This board includes a 128 MByte DDR2
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memory wíth a 16-bit data bus, which was used for storing the input and output matrixes. Also, for

comparison purpose, the MicroBlaze soft-processor has been used for implementing the same two

algorithms but ¡n a sequential fashion. The MicroBlaze implementation includes a 64-KB of local

memory without cache, and the AXI Bus for peripheral interconnections. The soft- processor was

used for computing the loop-kernels and for measuring their execution time including the external

memory accesses. The optimization compíling flag was placed in -03 in order to obtain the máximum

compilation effort.

FPGA Resources

Ñame Available

MatMul-Off MatMul-Off Chol-Off

2x2-250 4x4-250 2x2-180

MicroBlaze

Processor

Slice Regs 54,576

Slice LUTs 27.288

Block RAM 116

DSP48A1 58

1,702 5,770 3,207

2,312 7,607 8,523

116 116 60

16 42 26

3,703

3,782

42

3

Max. Frequency (MHz)
Power Consumption (W)

45.68 44,62 52.45

0398 0.756 0.334

97.75

0.973

Table 6.22: Place and Route results for a Microblaze and three processor arrays implementations

targeted for a XC6SLX45 FPGA device.

Table 6.22 summarizes the PAR results of the fifth implementation set and the MicroBlaze

implementation. Also, table 6.22 shows the operational frequency and the dynamic power

consumption estimated by the Xilinx's XPower Anatyzer using the máximum operational frequencies

obtained after PAR, setting the FPGA supply parameters as Vccint — 1.2, and Vqcaux — 2.5

Volts. Note that the operational frequency of the MatMul-Off-4x4-250 Implementation decreases

1% compared against the MatMul-Off-2x2-250 array implementation, desplte that the number of

PEs has been quadrupled. Although theoretically with a ll',. = 11 the processor arrays are able to

solve problem sizes no larger than 342 x 342, there Is again the memory limitation according to the

target device characteristics. ln the case of the selected XC6SLX45 FPGA device, the number of

BRAMs does not allow to solve problem size larger than 250 x 250 for the MatMul processor array

case, and 180 x 180 for the Cholesky array. ln the MatMul case, all the BRAMs are used for storing
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intermedíate data in FIFO memories. On the other hand, since the IP cores used in the Cholesky

array require BRAMs for implementing the división functionality, not all BRAMs are used for data

storing. Moreover, the three processor array implementations consume least power compared to the

MicroBlaze processor, since their power operational frequencies are almost 2x siower than in the

soft-processor. However, such operational frequency dísadvantage is overcame with the fact that the

processor arrays have at least 4x more processing elements than the MicroBlaze implementation, and

that the processor arrays do not stall their computations in order to access to the external memory;

thus a speed-up compared to the soft-processor ¡s achieved.

Metric

Ñame

MatMul-Off MatMul-Off Chol-Off

2x2-250 4x4-250 2x2-180

MicroBlaze

Processor

AVG Speed-Up

AVG. Improvement

mW/LUT

6,05 10-20 5.34

24,2 6.5 6.9

0,172 0.099 0.039

1

1

0.257

Table 6.23: Average speed-up and energy consumption per LUT of three processor arrays.

Table 6.23 shows the energy consumed by each LUT according to the PAR results shown in table

6.22, the average speed-up and the average improvement compared against the MicroBlaze. The

improvement is calculated by multiplying the speed-up, the usage of LUTs and the power consumed of

each array compared against the MicroBlaze soft-processor. ln order to calcúlate the speed-up some

considerations were made. Recall that the memory system tries to provide as many communication

channels as the processor array requires. ln the case of the MatMul processor arrays, three and six

32-bit communication channels are required for implementations MatMul-Off-2x2-250 and MatMul-

Off-4x4-250. respectively. ln contrast, two 32-bit communication channels are required for the

Chol-Off-2x2-180 implementation. Since the MicroBlaze experimental platform has only one 16-bit

communication channel, the speed-up results assume the use of the same one-half communication

channel. ln this sense, although the operational frequencies of the processor arrays are almost 2x

siower than the MicroBlaze frequency, an acceleration for the three arrays is achieved. Mainly this ¡s

a consequence of that the MicroBlaze processor dedicates more time for performing external memory



6. Results 189

accesses than the processor arrays. Recall that the processor arrays include a memory system which

is ín charge of the external memory accesses while the processor array is working, thus the memory

system does not stall the processor array computations.

Besides, note that the processor array implementations consume fewer power per LUT compared

against the MicroBlaze processor; therefore the processor arrays perform their operations in a more

power-efficíent way than the soft-processor. With the power per LUT metric (mW/LUT), a more

realistic measurement of the power required for performing computation and comparison against

a sequential processor implemented in the same technology can be achieved. ln addition, if the

speed-up, and usage of LUTs and the total power consumed by each implementation ís considered

a minimum improvement of 6.5x could be achieved.

2Q 40 60 8D 100 1Z0 140 160 1S0

Problem Size N

Figure 6.6: MatMul and Cholesky execution times for their processor arrays and their MicroBlaze

implementations.
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Figure 6.6 shows the time required for solving different problem sizes for the MatMul and Cholesky

algorithms implemented in processor arrays compared against their MicroBlaze implementations. The

y-axis represents the execution time in logarithmic scale, while the x-axis represents the problem size

N from lxl to 180x180. Note that the execution time achieved by each implementation is less

than the time required for their corresponding sequential implementation, despíte that the processor

arrays have siower clock frequencies. ln the case of implementation MatMul-Off-4x4-250 an order

of magnitude difference with respect of its sequential implementation is achieved when N = 80,

MicroBlaze MatMul 97 MHz h

'o 20 40 50 60 100 120 140 160 180

Problem Size N

Figure 6.7: MatMul and Cholesky throughput per power unit for their processor arrays and their

MicroBlaze implementations.

Finally. figure 6.7 shows the throughput per power unit achieved by the processor arrays

Implementations and their corresponding MicroBlaze implementations. The y-axis represents the

[MB/s]/W in logarithmic scale, while the x-axis represents the problem size Nmax from 1 x 1 to

180 x 180. ln this figure, note that the throughput achieved by the three arrays is similar since the
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amount of bytes delivered per second ¡s límited by the 16-bit communication channel available ¡n the

Atlys Board. Despite this limitation, when N = 180 implementation MatMul-Off-4x4-250 has an

improvement of 2.2x on the throughput per power unit compared against the other two processor array

implementations. However, ¡t should be noted that implementation MatMul-Off-4x4-250 has four

times more PEs than implementations MatMul-OfF-2x2-250 and Chol-Off-2x2-180. and consequently,

more communication channels. Nevertheless, the throughputs achieved by the three processor arrays

are greater than the throughput of their corresponding sequential implementation.

6.5 Evaluation Metrics

The processor arrays derived by the design methodology followed ¡n this research work could be

evaluated using traditional metrics used for parallel systems. Metrics such as the acceleration,

efficiency and load imbalance might provide an idea of the expected performance of an algorithm

targeted as a processor array before ¡ts implementation as an ASIC or into an FPGA. ln this sense,

this section presents a brief description of these metrics as an introduction to the the subsequent

section. It is important to emphasize that the metrics employed for the processor array evaluation

are relative, since they are calculated using a single processing element as a baseline instead of using

the best sequential implementation known [57]. Despite their apparent limitation, relative metrics

are useful for exploring the processor arrays scalabílity, henee they could be helpful for the exploration

of the design space. The following metrics are explained in [57], [75], [97] .

6.5.1 Acceleration

Usually, a way used to evalúate a sequential implementation is by measuring its execution time

expressed as a function of the problem size, denoted as X](A'). Similarly, a parallel system with p

processors can be evaluated in terms of its parallel execution time expressed as a function of the

problem size, denoted as TP(N). The relative acceleration expresses the execution time improvement

of a parallel system with respect of a sequential system. Relative acceleration ¡s denoted as:
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Additionally, there are two concepts closely related to the acceleration metric: the degree of

parallelism and parallelism profile. The degree of parallelism (DoP) determines the number of active

PEs of a parallel system at a certaín execution time, whereas the parallelism profile is an abstract

measure ofthe amount of data-parallelism at different time instants during the execution of a parallel

system [75]. ln other words, the parallelism profile shows all degrees of parallelism of a processor array

during the its execution. Figure 6.8 shows an example of a parallelism profile with eight PEs. The

average of the área under the parallelism profile line denotes the average parallelism or acceleration

during an elapsed time period. ln the example shown in figure 6.8, the average parallelism or

acceleration Ís equal to 3.8, and is represented as a dashed line.

Discrete Time

Figure 6.8: Example of a profile of parallelism.



6.5.2 Efficiency

The relative efficiency, or utilization percentage, is a measure of the fraction of time for which a

PE is usefully employed, i.e. it measures the cost-effectiveness of the computations. Formatly, it is

defined as the ratio of relative acceleration to the number of PEs. Only an ideal parallel system of

p PEs can deliver an efficiency equal to one. However, in practice the efficiency valúes are between

zero and one. Mathematically, relative efficiency is given by:

w-ím (6-5)

6.5.3 Relative Load Imbalance

Load imbalance refers to the overhead caused by poor distribution of the total computational work

as a function of the problem size among the PEs, which is denoted as W(N). ln an ideal scenario. an

evenly work balance for all the processor is desired, i.e. all the p processors doíng the same amount

of W(N)/p work. If there is an i-th processor for which the difference:

W(N)
LiiN) = W,(N)

- ^ÍT¿

P

is a non-zero valué, then the workload assigned to the processor has an imbalance equal to L,{!\T).

The processor with the highest imbalance determines the overall overhead of the parallel system.

However, by itself, the valué of the load imbalance lacks of a meaning, since it depends on the

computer architecture and other parallel overheads. ln fact, a same load imbalance valué in different

parallel systems may result in a different overhead. ln order to assess the impact of the load imbalance

on performance, the relative load imbalance metric is Introduced as:

Lr-('v)=i-¿S) (66)

where Wmax(N) = max(W0(N),Wi(N), ..., Wp-i(N)). Valúes of Lrp(N) cióse to zero denote

a small impact on performance, whereas valúes cióse to l — l/p denote a highly imbalanced workload
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distribution [97]. ln the context of processor arrays, relative load imbalance can measure the

computational work distribution due to the scheduler, and the tile shape (processor array size).

When the processor space fits exactly into the tile shape, the relative load imbalance is very cióse to

1 -

l/ji. Usually, this occurs when the processor space has a rectangular shape. On the other hand,

for processor arrays targeted for algorithms with non-rectangular shapes, the workload distribution is

usually imbalanced. Finally, the concept of a unitary amount of workload within the processor array

context, can be interpreted as an iteration point mapped to a PE.

6.6 Processor Arrays Evaluation

The metrics shown in previous section could be used for evaluating the processor arrays once they

have been ¡mplemented, or as a pre-evaluation manner in order to explore the design space and

providing an idea of the performance that should be expected given a set of design parameters. ln

general, these metrics evalúate a processor array as a function ofthe problem size, resulting in a great

amount of data if each problem size is evaluated independently. Calculating an average provides an

idea of how well a processor array behaves over a range of valúes when a specific metric is used.

Thus, the processor arrays are evaluated for a range of problem sizes, obtaining an average valué for

each metric. ln this sense, the harmonic mean is used for obtaining the average of the acceleration

and efficiency metrics. whereas the average for the imbalance is obtained by the geometríc mean.

The harmonic mean ¡s appropriate for obtaining the average over a set of rates valúes, while the

geometric mean is appropriate for normalízed numbers [81]. If there is a zero valué within the

evaluated range, the arithmetic mean is used.

Before presenting the evaluation metrics results, it Ís important to mention two possible

assumptions that can be made about the sequential PE used as baseline in the relative acceleration

and efficiency metrics. The first assumption consists of conceiving the sequential PE working like a

constant-cycle processor, where all the PE's operations require the same number of clock cycles to be

executed. The second assumption consists of thinking the sequential PE as a multi-cycle processor
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whose operations require different clock cycles to be executed, depending on the operational Iatencies.

ln the case of MatMul algorithm, the single PE ís thought as a constant-cycle due to only one-cycle

operations are required. ln contrast. in the case of Cholesky algorithm, both assumptions can be

made. If a constant-cycle PE ¡s assumed, then the number of clock cycles to complete an operation

will be the same as the iteration interval P On the other hand, if a multi-cycle PE ís assumed, the

number of clock cycles to complete an operation will differ according to the different operational

Iatencies of the división, square root and MAC operations.

ln the following subsections the relative metrics are applied over the processor arrays ¡mplemented

in section 6.4. Also, these metrics are used for pre-evaluating other possibles processor arrays targeted

for algorithm like LU, FIR filter, or Back/Forward substitution with different processor array sizes

and allocation functions.

6.6.1 Implemented Processor Arrays Evaluation

Table 6.24 shows the evaluation metric valúes for each processor array ofthe second implementation

set {see table 6.10). The second column of this table specifies the problem size range used for

obtaining the average of the metric. The abbrevíation C.C. refers to constant-cycle PE used as

baseline for calculating each metric. Although there are some arrays that theoretically support a

problem size of 683 x 683, their corresponding averages are limited to problem size of 500 x 500.

ln general, ¡t should be noted that metrics shown in table 6.24 tend to Improve ¡f the problem size

ranges are greater than the processor array size, í.e. metric valúes used for evaluating small processor

arrays for solving large problem sizes tend to be more stable than evaluations of larger arrays with

the selected problem size ranges. ln terms of the efficiency the 2x2 and 4x4 array implementations

are above of 60% PE utilization percentage, while in the case of the 8x8 arrays, the best efficiency

is 68% achieved by MatMul-Off-8x8-683 implementation. However, the acceleration achieved by

this last implementation is 44x with respect of the sequential PE. The relative load imbalance valúes

show that the processor arrays for MatMul are balanced, since they are cióse to zero.
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Implementation Problem

Code Ñame Size Range

Acceleration Efficiency Imbalance

C.C. C.C. C.C.

MatMul-Off-2x2-086 [1,
MatMul-0ff-2x2-171 [1, .

MatMul-Off-2x2-342 [1..
MatMul-Off-2x2-683 [1, .

..,86]

.,171]

-,342]

.,500]

3.40 085 0.045

3.63 0.90 0.027

3.78 0.94 0.015

3.84 0.96 0.011

MatMul-Off-4x4-086 [1,
MatMul-Off-4x4-171 [1,.
MatMul-Off-4x4-342 [1,.
MatM„l-Off-4x4-683 [1,.

..,86]

., 171]

.,342]

., 500]

9.69 0.60 0.112

11.73 0.73 0.068

13.33 0.83 0.040

13.99 0.87 0.029

MatMul-Off-8x8-086 [1.
MatMul-Off-8x8-171 [1
MatMul-Off-8x8-342 [1,.
MatMul-Off-8x8-683 [1, .

..,86]

171]
.. 342]

., 500]

19.97 0.31 0.205

29.16 0.45 0,130

39,02 0.60 0.078

44.02 0.68 0.059

Table 6.24: Evaluation metrics for the second implementation set corresponding to the MatMul

processor array. The average of the imbalance is obtained by the arithmetic mean.

Table 6.25 shows the evaluation metric valúes for each processor array of the fourth

implementation set corresponding to Cholesky decomposition algorithm (see table 6.17). The second

column of this t3ble specifies the problem size range used for obtaining the average of the metric.

The abbreviations C.C. and M.C. refer to the constant-cycle and multi-cyle PEs used as baseline,

respectively. Recall that Cholesky processor arrays assume that each PE requires 21 clock cycles

to compute an iteration point (due to the latency of división operation). Also, recall that square

root and MAC operations require ten and one clock cycles to be computed. ln this sense, note that

higher acceleration and efficiency valúes are achieved when the constant-cycle is used as baseline,

i e. when the single PE assumes 21 clock cycles to complete a loop iteration regardless of the

operation being executed. On the other hand, when the multi-cycle PE is assumed, the acceleration

and efficiency valúes are degraded. Mainly, this is due to the multi-cycle single PE lacks of idle times

compared against the constant-cycle PE, which assumes that all operations require 21 clock cycles to

be completed. Also, the difference among the metrics using the constant-cycle and multi-cycle PEs

indicates that a high percentage of time dedicated to perform the Cholesky operations is employed to
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realize the operations with the lower latency like square root and MAC operations. Both PE baselines

are useful for exploring different characteristics. If the constant-cycle PE is used as baseline, the

metric valúes can be viewed as a theoretical bound índicating the máximum performance which could

be achieved by using the design methodology followed in this research work. Besides by using the

constant-cyle PE, performance comparísons to other algorithms targeted as processor arrays can be

realízed. On the other hand when the multi-cycle PE is used as baseline, the metric valúes provide

a more realistic perspective.

Implementation Problem Size

Code Ñame Range

Acceleration Efficiency Imbalance

C.C. MC. C.C. M.C. C.C. MC.

Chol-0ff-2x2-086 [1 86]
Chol-Off-2x2-171 [1 171]
Chol-Off-2x2-342 [1 342]
Chol-Off-2x2-683 [1, ..., 500]

2.84 0.37 0.71 0.09 0.078 0,078

3.22 0.30 0.80 0.07 0 042 0.042

3.51 0.26 0.87 0.06 0.022 0,022

3,63 0,34 0,90 0,06 0,015 0,015

Chol-Off-4x4-086 [1, ...,86]
Chol-Off-4x4-171 [1, 171]
Chol-Off-4x4-342 [1 342]
Chol-Off-4x4-683 [1,...,500]

6.27 1.00 0,39 0.06 0.203 0,203

8.47 0.95 0.52 0.05 0.117 0.117

10.67 0.90 0.66 0.05 0.063 0.063

11.74 0.87 0.73 0.05 0.044 0.044

Chol-Off-8x8-086 [1 86]
Chol-Off-8x8-171 [1 171]
Chol-Off-8x8-342 [1 342]
Chol-Off-8x8-683 [1, ..., 500]

10,26 2.37 0.16 0.03 0.379 0.379

16.41 2,42 0.25 0.03 0.236 0.236

24.80 2.67 0-38 0.04 0.135 0.135

30.05 2.77 046 0.04 0.097 0.097

Table 6.25: Evaluation metrics for the fourth implementation set corresponding to Cholesky processor

array.

Using the constant-cycle PE data shown in table 6.25 as reference, note that the accelerations are

less than the accelerations achieved by the MatMul array. This is due to the Cholesky iteration space

(Xchoi) bas fewer index points than the MatMul iteration space (Xm^m,,,), and consequently a fewer

number of sequential steps. Recall that Tchd and Xvíqíaí.,; bave a non-rectangular and rectangular

shape, respectively. Similarly, the efficíencies achieved by Cholesky implementations are less, since

when the Cholesky processor space CPchoi.) is being scanned by the tile indexes, some PEs are not

activated due to its non-rectangular shape. These two observations suggest that ¡f the constant-cycle
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PE is used as baseline, a higher acceleration and a better efficiency should be expected for algorithms

with rectangular space than for algorithms with non-rectangular space. ln the case ofthe multi-cyle

PE used as baseline, smaller accelerations are achieved compared to the constant-cycle PE case, ln

fact accelerations above 2x are accomplished for the implementations of 8 x 8 PEs. This suggest

that larger arrays are required in order to achieve an acceleration in the case of Cholesky algorithm.

ln general, the Cholesky processor array effíciencies are below 10% due to the sequential PE lacks

of idle times compared against the PEs inside the processor arrays, and because there are few times

when all the PEs are in parallel performing divisions, square root and MAC operations.

(a) Constant-cycle PEs (b) Multi-cycle PEs

Figure 6.9: Cholesky profiles of parallelism for an 8 x 8 processor array and using the constant-cycle
and multi-cycle PEs as baseline.

For the purpose of visualizing the PEs idle times, figure 6.9 shows the parallelism profiles of two

8x8 processor arrays Both profiles show the time required for solving a problem size of 16 x 1G,

but each of them assume different operational Iatencies. ln figure 6.9.a, the same 21 clock cycles for

all operations are assumed, whereas in figure 6.9b Iatencies of 21. 10, and 1 clock cycles for división,

square root and MAC operations, respectively, are assumed. For both cases, the acceleration is

represented by a dashed-line. Note that both profiles have a similar shape forming three hílls. Each

hill corresponds to the three different tiles in which is divided Vchoi due to the partitioning. Also,
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note that the hills of the rigth-side profile are sparser than the hills of the left-side since many PEs

do not perform an operation at the same time, ln fact, in both cases, the máximum DoP is not

achieved, i.e. there are not time instants where the 64 PEs are used in parallel.

6.6.2 Design Space Exploration

As stated before, the relative metrics {acceleration, efficiency and load imbalance) can be used

for pre-evaluating possible processor arrays before their implementation, i.e. when the partitioned

versión ofthe PRA is obtained. Design parameters like the array sizes, array shapes and different

allocations functions could be changed in order to explore the behavior of the processor arrays. This

section presents a brief design space exploration for seven algorithms: MatMul, LU and Cholesky

decompositions. Back and Forward substitution, FIR filter, matrix-vector multiplication (MatVec).

These algorithms can be organized according to the number (dimensión) of nested loops, ln the case

of the two-dimensional algorithms, two different allocation matrixes were used as design parameters,

whereas for three-dimensional algorithms six different allocation matrixes were employed. The ñame

of these configurations with their respective allocation functions are shown in tables 6.26 and 6.27.

The scheduler function used for space-time mapping ¡s X¡ = [1, 1] in the case of two-dimensional

algorithms: whereas for three-dimensional arrays the scheduler is X, — [1, 1, 1].

Configuraron

Code Ñame

Projection Allocation

Vector Matrix

2-Ver-l

2-Ver-2

u = [ 1 0 ]
'

* = [ 0 1 ]

i¡= [() i ]' <I> = [ i 0 ]

Table 6.26: Allocation functions used for two-dimensional algorithms.

For each allocation matrix, several possible processor arrays with different number of PEs are

evaluated for a range of problem sizes of A'" = [0 500]. Recall that the number of PEs in a

processor array is determined by the strip size parameters (SSp,) and SSpi). ln the case of two-
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Configuration

Code Ñame

Projection Allocation

Vector Matrix

3-Ver-l

3-Ver-2

3-Ver-3

3-Ver-4

3-Ver-5

3-Ver-6

«-['••r-ISü]

-[-»]' -[Sí i]

«-[•'•]'-[! Si]

e_[ooi]- —[;;s]
Table 6.27: Allocation functions used for three-dimensional algorithms.

dimensional algorithms, one-dimensional arrays are derived; whereas for three-dimensional algorithms,

two-dimensional arrays are obtained. ln both cases, the strip size parameters are limited to múltiples

of power of two, with a máximum of SSp0 — 12S for one-dimensional arrays, and SSpa = SSpi = 32

for two-dimensional arrays. For example, in the LU case, two-dimensional processor arrays with 16

PEs can be derived from arrays with 1 x 16, 2 x 8, 4 x 4, 8 x 2 and 16 x 1 PEs; therefore the

shape of the processor array is also evaluated. Finally. since Back and Forward substitution have the

same loop kernel, iteration space, and operations, their results are identical; thus they are shown

in the same set named Back/Forward. Similarly, the loop kernel, iteration space and operations

are the same for the MatVec and the FIR filter, and consequently their results are referred as the

MatVec/FIR.
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6.6.2.1 One-Dimensional Arrays

ln the case of one-dimensional arrays, there are 16 possible arrays which can be evaluated with the

three different metrics. For the sake of simplicity, this subsection is restricted to discuss only the main

aspects involved during the design space exploration of these linear arrays. However, in Appendix

A the tables containing the complete evaluation of the two-dimensional algorithms can be found,

including metric evaluations using the sequential constant-cycle PE and multi-cycle PE as baseline.

Processors 2-Ver-l 2-Ver-2

001 PE

002 PE

004 PE

008 PE

016 PE

032 PE

064 PE

128 PE

1.0000 1.0000

1.9635 1.9635

3.7875 3.7875

7.0648 7.0648

12.4155 12.4155

19.8674 19.8674

28.1404 28.1404

35.1463 35.1463

Processors 2-Ver-l 2-Ver-2

001 PE

002 PE

004 PE

008 PE

016 PE

032 PE

064 PE

128 PE

1.0000 10000

1.9179 1.9354

3.5493 3.6325

6.1884 6.4528

9.8729 10.4927

14.0825 15.1413

17.9231 19.2190

20.7707 21.9027

(a) MatVec/FIR (b) Back/ Foward

Table 6.28: Acceleration for MatVec/FIR and Back/Foward processor arrays using the constant-cycle

PE as baseline.

ln tables 6.28.a and 6.28.b the relative accelerations for the MatVec/FIR and Back/Foward

processor arrays are presented. ln both cases the constant-cycle PE is used as baseline. Note that

MatVec/FIR processor arrays have a better acceleration than Back/Foward arrays. Mainly, this is due

to given the same problem size and same the scheduler function, the four algorithms complete their

computations in the same number of parallel steps. However, the number of sequential steps required

by MatVec/FIR algorithms is greater than Back/Foward algorithms sequential steps. Consequently,

a better acceleration is achieved by MatVec/FIR processor arrays.

Also, note that for MatVec/FIR processor arrays the acceleration achieved is the same regardless

of the allocation matrix used; unlike Back/Foward processor arrays where different acceleration
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valúes are obtained from different allocation matrixes. Finally, similar behaviors are obtained when

the MatVec/FIR and Back/Foward processor arrays are evaluated using the relative efficiency and

relative load imbalance metrics (see Appendix A).

6.6.2.2 Two-Dimensional Arrays

ln the case of two-dimensional arrays, there are 216 possible arrays which can be evaluated with the

three different metrics for each of three different algorithms (MatMul, Cholesky and LU). Again,

for the sake of simplicity, this subsection is also restricted to discuss only the main aspects involved

during the design space exploration. ln this sense, processor arrays of 32 and 64 PEs are used in order

to exemplify the Impact of changing the allocation function, and processor array shape. However, in

Appendix A the tables containing the complete evaluation of these algorithms can be found.

Table 6.29 shows the efficiency of several MatMul processor arrays derived by the six different

allocation matrixes. The efficiency achieved by these arrays is greater than 65%, and in some

cases cióse to 80%. Note that given a processor array of SSpo * SSpi PEs, the efficiency is the

same regardless of the allocation function. Mainly, this is because the MatMul iteration space is

rectangular, leading to a uniform distribution of the Índex points to the PEs. Also, it should be noted

that in the case of 64 PEs, the square processor array (8x8 PEs) has a better efficiency than some

other non-square arrays. Particularly, the 8x8 array has a better efficiency than 1 x 32 and 32 x 1

arrays. This tendency is also observed with other MatMul processor arrays (see Appendix A).

Figure 6.10 shows the efficiency as a function of the problem size JV for three different MatMul

processor arrays derived by using the configuraron 3-Ver-2. The harmonic mean of each line is

already shown in table 6.29. Note that these graphs have a sawtooth-like form. Recall that by

partitioning the processor space, several tiles containing the processor index points are created, and
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|| Processors | Array Size || 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6

32 PEs

01 x32

02 X 16

04 x08

08 x04

16 x02

32 xOl

0.6209 0.6209 0.6209 0.6209 0.6209 0.6209

0.7343 0.7343 0.7343 0.7343 0,7343 0,7343

0.7906 0.7906 0.7906 07906 0.7906 0.7906

0.7906 0.7906 0.7906 0.7906 0,7906 0.7906

0.7343 0.7343 0.7343 0.7343 0,7343 0.7343

0.6209 0.6209 0.6209 0.6209 0 6209 0.6209

64 PEs

02 x32

04 X 16

08x08

16x04

32 x 02

0.5728 0.5728 0.5728 0.5728 0.5728 0.5728

0,6598 0.6598 0,6598 0.6598 0.6598 0.6598

0.6878 0.6878 0.6878 0.6878 0.6878 0.6878

0.6598 06598 0.6598 0.6598 0.6598 0.6598

0.5728 0,5728 0.5728 0.5728 0.5728 0.5728

Table 6.29: Average relative efficiency for several MatMul processor arrays and different allocation

matrixes, when A*,n[U: = 500. The processor arrays are organízed according to the number of PEs.

50 100 150 200 250 300 350 400 450 500

Problem Size N

Figure 6.10: Efficiency of three MatMul processor arrays.
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some of these tiles do not fit exactly into the physical array. Consequently, some PEs in the

physical array remaín ¡nactive when a tile is being scanned {see figure 4.13), more precisely when N

mod SSpx / 0. ln this sense, the graphics cliffs represent when given a problem size all the tiles

fit exactly into the processor space, í.e. when Ar mod SSpx = 0.

From figure 6.10 note that although the 8 x 8 array has a greater number of PEs than the 16 x 2

array, both arrays have a similar efficiency. ln general, a better efficiency is achieved for processor

arrays whose form ¡s cióse to a square shape. This suggest that square processor arrays have a better

work distribution than non-square arrays. Table 6.30 shows the relative load imbalance for the same

processor arrays shown in table 6.29. Here, note that lower relative load imbalance are achieved for

processor arrays with a closer square shape. Like in table 6.29, changing the allocation function does

not change the relative load imbalance given a processor array.

|| Processors | Array Size || 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6

32 PEs

01 x 32

02 x 16

04 x 08

08 x 04

16 x 02

32 x 01

01045 0.1045 0.1045 0.1045 0.1045 0.1045

0.0644 0.0644 0.0644 0.0644 0.0644 0.0644

0.0453 00453 0.0453 0,0453 0.0453 0.0453

0.0453 0.0453 0.0453 0.0453 0.0453 0.0453

0.0644 0.0644 0.0644 0.0644 0.0644 0.0644

0.1045 0.1045 0.1045 0.1045 0-1045 0 1045

64 PEs

02 x 32

04 x 16

08 x 08

16 x 04

.¡2 x 02

0-1078 01078 0 1078 0.1078 0-1078 0 1078

00715 0.0715 0.0715 0.0715 00715 0.0715

00590 00590 0.0590 0.0590 0.0590 0.0590

0.0715 0.0715 0.0715 0.0715 0,0715 0.0715

01078 0.1078 0.1078 0 1078 0.1078 0 1078

Table 6.30: Average relative load imbalance for several MatMul processor arrays and different

allocation matrixes, when Nmax = 500. The processor arrays are organized according to the number

of PEs.

ln general, when using the relative load imbalance to measure the processor array work

distribution, zero valúes could be obtained. i.e. the processor arrays are perfectly balanced for

a certain problem sizes. Figure 6.11 depicts the relative work distribution for an 8 x 8 MatMul
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processor array for a range of problem sizes of [1 250]. Again, note that the graphic has a

sawtooth-líke form. Also, note that when N mod 8 = 0 the relative load imbalance is zero, since

all the loop ¡terations are mapped evenly to the PEs in the physical array.

Problem Size N

Figure 6.11: Relative load imbalance of an 8 x 8 MatMul processor array.

Table 6.31 shows the efficiency of several LU processor arrays changing the allocation function.

These results use a sequential constant-cycle PE as baseline. Contrary to the MaMul arrays, In

the case of LU given an array of size SSpo x S'S'pi, its efficiency changes if the allocation matrix is

changed too. ln fact. note that the efficiency results can be paired for the a same processor array. For

example, taking the 4 x 8 array as reference, the configurations 3-Ver-3 and 3-Ver-5 have the same

efficiency valué; despite that both functions come from different projection vectors. Similarly, the

efficiency for configurations 3-Ver-4 and 3-Ver-6 is the same. Mainly, this is a consequence ofthe LU

target polytope iteration space shape after space-time mapping, due to depending on the projection

vector u, the LU processor space (VLu) could be rectangular or non-rectangular, ln the case of
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Processors Array Size 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6

01 x 32 0.4181 0.4181 0.5124 0.4595 0-5124 0.4595

02 x 16 0.5476 0.5476 0,6284 0.5960 0.6284 0-5960

32 PEs
04x08 0.6269 0.6269 0.6923 0.6826 0.6923 0.6826

08x04 0.6269 0.6269 0.6826 0.6923 0.6826 0.6923

16 x02 0.5476 0.5476 0.5960 0.6284 0.5960 0.6284

32 xOl 0.4181 0.4181 0.4595 0.5124 0.4595 0.5124

02x32 0.3769 0.3769 0.4568 0.4125 0.4568 0.4125

04 X 16 0.4724 0.4724 0.5386 0.5167 0,5386 0.5167

64 PEs 08 x 08 0.5082 0.5082 0.5679 0.5679 0.5679 0.5679

16 x 04 0.4724 0.4724 0.5167 0.5386 0-5167 0.5386

32 x 02 0.3769 0.3769 0.4125 0.4568 0.4125 0.4568

Table 6.31: Average relative efficiency for several LU processor arrays and different allocation

matrixes, when -<Vmoj = 500. The processor arrays are organized according to the number of

PEs.

Ü = [1,0,0]', the resulting processor space after space-time mapping has a rectangular shape. On

the other hand, for projection vectors Ü = [0, 1.0]f and u = [0.0. 1]' the processor spaces obtained

are non-rectangular. The unique difference on u = [0, 1,0]* and u = [0,0, 1]' ¡s that by selecting

the allocation function, the same index of the source polytope is mapped to a different index of

Vuj. ln this last case, the outer most index of LU algorithm is mapped to the same processor index.

Furthermore, note that in the case of the 8x4 array, the efficiency for configurations 3-Ver-4 and

3-Ver-6 ¡s the same as the efficiency for configurations 3-Ver-3 and 3-Ver-5 of the 4x8 processor

arrays. Again, this is a consequence ofthe space-time mapping, since the outer loop index is mapped

to the same processor index, which is later partitioned with the same valué of SSpx.

Figures 6.12.a and 6.12.b show the relative efficiency and relative load imbalance, respectively, for

three different processor arrays of 4 x 8 PEs derived by three different configurations. Both graphics

show a range of problem sizes of [1 250]. Although the processor array derived from configuration

3-Ver-l (red color line) has a lower efficiency than the arrays derived from configurations 3-Ver-3 and

3-Ver-4. it tends to have lower relative load imbalance. Le. there isa more balanced work distribution

for 3-Ver-l than for configurations 3-Ver-3 and 3-Ver-4. Furthermore, note that the relative load



Problem Size N

(a) Efficiency

Problem Size N

(b) Load imbalance

Figure 6.12: Relative efficiency and relative load imbalance of three different processor array derived

by different allocation functions.

Problem Size N Problem Size N

Figure 6.13: Relative load imbalance of different processor array of size 2x8 and 8x2 derived by

different allocation functions.
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imbalance ofthe array obtained from configuraron 3-Ver-l does not have abrupt changes when the

problem size is increased compared to configurations 3-Ver-3 and 3-Ver-4. This suggest, that by

using projection vector u = [1, 0, ()]' LU processor arrays with a low load imbalance are obtained.

Figure 6.13 shows the relative load imbalance of six LU processor arrays of 2 x 8 PEs and 8x2

PEs obtained with the six different allocation functions. For purpose of clarity, the problem size

range is limíted to [50 250]. Again, the allocation function u = [1,0, 0]! leads to LU processor

arrays with the lower load imbalance. Note that by changing the processor array shape, the load

imbalance valúes are interchanged for the same projection vector. For example the load imbalance

of array 2x8 derived by configuraron 3-Ver-3 Ís the same as the load imbalance of the array 8x2

derived by configuraron 3-Ver-4.

Finally, as stated before, using the relative metrics prior to the processor array implementation is

helpful for the design space exploration. Addítionally, if the number of hardware resources required

by each configuration is taken ¡nto account, a design decisión considering the number of hardware

elements and the projected performance (using the acceleration, efficiency and load imbalance) could

be taken. Table 6.32 shows this big picture for an 8 x 8 Cholesky processor array. ln this table, the

implementation aspects required by each one of the three main components (data-path, the memory

and control) of a processor array system are shown in terms of the number of hardware elements

required by each main component. Also, the evaluation metrics using the constant-cycle PE are

shown. ln general, among the six configurations, the number of hardware elements required by the

control and memory are very similar. However, the number of dividers required by configurations

3-Ver-5 and 3-Ver-6 is 8x less than the number of dividers required by the other configurations.

This indicates that using the allocation matrixes for 3-Ver-5 and 3-Ver-6 configurations result in

a relatively low hardware cost The selection between these two configurations could be done by

choosing any of these metrics as decisión criterion. ln this sense, since acceleration and efficiency

are the same, the relative load imbalance could be used as the decisión criterion.
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3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6

Adders 64 64 64 64 64 64

Multipliers 64 64 64 64 64 64

Dividers 64 64 64 64 3 8

Square Roots 8 8 8 8 8 8

Adders 153 150 147 149 148 157

Multipliers 2 2 2 2 2 2

Control
Multiplexers 9 9 7 8 10 9

Counters 132 132 132 132 132 132

Registers 263 263 263 263 263 263

Shifters 7 4 8 7 6 4

Adders 96 96 96 96 96 96

Multipíiers 32 32 32 32 32 32

Memory
Multiplexers 68 68 72 72 68 68

Registers 68 68 72 72 68 68

Input Type Broadcast Broadcast Border Border Border Border

Output Type Border Border Border Border Broadcast Broadcast

Acceleration 28.47 28.47 28.885 28.885 30.056 30.056

Metrics Efficiency 44.49% 44.49% 45.13% 45.13% 46.96% 46.96%

Load Imbalance 0.119 0.079 0.119 0.119 0.079 0.119

Table 6.32: Information for the implementation of an 8 x 8 Cholesky processor array gathering the

metrics and the number of hardware elements required by the data-path, memory and control.

6.7 Summary

ln this chapter, the PAR results concerning the hybrid control scheme, the memory architectural

cases and several processor arrays implemented as a complete system were presented. The control

scheme was implemented for supporting MatMul and Cholesky decomposition algorithms for different

schedulers, allocation and iteration intervals. Mainly these two algorithms were selected with the

purpose of showing that the hybrid control scheme is able to support rectangular and non-rectangular

iteration spaces. Also, the PAR control results show that máximum operational frequencies do not

decrease significantly when the processor array is increased; however changing the control word IT,

has a major impact on the frequency degradation compared when the processor array is increased.

Although the proposed control scheme requires more FPGA resources than controllers generated
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by PARO and MMAlpha, the proposed solution is able to genérate the control signáis for several

problem sizes. without the need of having several controllers for each possible problem size.

The four memory architectural cases were implemented for supporting the MatMul and Cholesky

decomposition algorithms. Their PAR results show that the assumption made for the two clock

domains ¡s achievable, since the processor arrays clock frequencies are at least three times siower

than the worst case of any ofthe four architectural memory implementations. Besides, the theoretical

peak bandwidth obtained by the four architectural cases exceed the processor array l/O bandwidth

requirements, due to the use of the múltiple Communications channels. Furthermore, comparison

against a first attempt for implementing a memory system for MatMul processor array shows that

the proposed memory architectural cases deliver a large amount of data per clock clycle.

The PAR results of several processor arrays integratíng the processor array data-path, the hybrid

controller, and the memory system for MatMul and Cholesky algorithms were presented too. ln

general, implementation results of both algorithms indícate that one technological limitation for

Implementing a complete integrated processor arrays system into FPGAs Ís the number of BRAMs

available. However, if the memory banks required for storing the input and output matrixes are

placed as off-chip memories, solving larger problem sizes becomes possible with the current FPGA

technology, at the price of dedicating more silicon resources to storing data than to computing data.

Although in the case of two proposed MatMul processor arrays more FPGA resources are required

compared to the processor arrays derived by PARO, the proposed MatMul arrays are able to solve

a set of problem sizes without the need of generating several arrays for each problem size. ln fact,

for multiplying two matrixes of 100 x 1110, the arrays derived in this research are 5,000 clock cycles

faster than the array derived with the PARO methodology. ln addition, this research work Is one of

the first attempts for generating processor arrays for algorithms with non-rectangular iteration spaces

like the Cholesky decomposition algorithm. focusing on having processor arrays able to solve several

problem sizes.
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Besides, for purpose of comparison against a soft-processor implementation, the MatMul and

Cholesky processor arrays were implemented ln an embedded platform. The results of these

implementations show that an acceleration is achieved for both algorithms with a low power

consumption. ln fact, processor arrays use more efficiently the FPGA LUTs, and deliver a major

number of bits per power unit than the soft-processor implementation.

Finally, by using three different metrics, the processor arrays implemented were evaluated in

terms of their relative acceleration, relative efficiency and relative load imbalance. ln general, a

better efficiency (valúes cióse to one) are obtained for processor arrays which solve wider range of

problem sizes. For algorithms with rectangular iteration spaces, a major acceleration is achieved than

in the case of algorithms with non-rectangular iteration spaces. Besides, for processor arrays with a

square shape, the work distribution is more balanced than ¡n the case of non-square processor arrays.

Also, brief design space exploration was presented.
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Conclusions and Future Directions

This dissertation has reviewed the process of generating processor arrays, focusing on the generation

of a control scheme for algorithms with with non-rectangular iteration spaces, and the generation

of memory interfaces for inserting/extracting data to/from processor arrays. ln Chapter 1 the

hypothesis, objectives, research questions and contributions of this dissertation were presented.

The origins and an overview of the automatic synthesis tools within the polytope framework were

presented in Chapter 2. Chapter 3 presented the mathematical background and concepts required

for the generation of processor arrays. An hybrid control scheme able to genérate the activation

sequence for several problem sizes and able to deal with non-rectangular iteration spaces is presented

in Chapter 4. The internal memory for intermedíate storage, and external memory interface based

on four architectural cases is presented in Chapter 5. The PAR results for the control scheme and

memory architectural cases are presented in Chapter 6. Also, Chapter 6 included the PAR results for

the integration of two complete processor arrays (including data-path, control and memory) targeted

for two different FPGA families. The evaluation of these arrays using traditional metrics employed in

parallel computing was presented in Chapter 6 too. Finally, the conclusions and future work derived

from this research are presented in this last chapter.

213
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7.1 Conclusions

ln this section, the conclusions, the líst of contributions, and the list of research questions with their

corresponding answers are presented. Mainly, the conclusions derived from this research work can

be divided ¡nto three different parts: control scheme, external memory system, and processor array

systems.

Control Scheme: The control scheme Is able to genérate the control signáis for processor arrays

derived from loop-based algorithms with rectangular and non-rectangular iteration spaces by using the

MatMul and Cholesky decomposition algorithms as cases of study. Also, the control scheme supports

different iteration intervals, schedulers and allocations vectors, thus different space-time mappings

can be supported. Besides, it was shown that given a scheduler vector, the control scheme is able to

genérate the control signáis for a set of problem sizes no larger than an ¡\',„ai valué, unlíke previous

works where the controllers are able to genérate the control signáis for a unique problem size. The

use of distributed control cells allow the control signal generation for non-rectagular iteration spaces,

and for a set of problem sizes since each cell has the necessary information for activating ¡ts neighbors

according to valid mapping from the logical array to the physical array. Furthermore, FPGA's PAR

results show that the impact of increasing the size of the control array on the operational frequencies

Ís minor when the control word width is increased and that the FPGA resources scale at a similar

factor to the rate from which the control array size is changed.

External Memory System: The memory architectural cases endose the four different types of

l/O that can be derived after transforming a piecewise regular algorithm Each one of the memory

cases has a modular architecture allowing to add easily modules in order to provide support larger

processor arrays. These four architectural cases were implemented and validated for two different

algorithms with different l/O data requirements. Besides, these architectural cases are based on the

use of two clock domains, and based on the use dual-port memories. Similarly to the control scheme,

the four memory cases support different space-time mappings due to combinational logic ¡s in charge
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7.1 Conclusions

ln this section, the conclusions, the list of contributions, and the list of research questions with their

corresponding answers are presented. Mainly, the conclusions derived from this research work can

be divided ¡nto three different parts: control scheme, external memory system, and processor array

systems.

Control Scheme: The control scheme is able to genérate the control signáis for processor arrays

derived from loop-based algorithms with rectangular and non-rectangular iteration spaces by using the

MatMul and Cholesky decomposition algorithms as cases of study. Also, the control scheme supports

different iteration intervals, schedulers and allocations vectors, thus different space-time mappings

can be supported. Besides, it was shown that given a scheduler vector, the control scheme is able to

genérate the control signáis for a set of problem sizes no larger than an Nmax valué, unlike previous

works where the controllers are able to genérate the control signáis for a unique problem size. The

use of distributed control cells allow the control signal generation for non-rectagular iteration spaces,

and for a set of problem sizes since each cell has the necessary information for activating its neighbors

according to valid mapping from the logical array to the physical array. Furthermore, FPGA's PAR

results show that the impact of increasing the size of the control array on the operational frequencies

¡s minor when the control word width is increased and that the FPGA resources scale at a similar

factor to the rate from which the control array size ¡s changed.

External Memory System: The memory architectural cases endose the four different types of

l/O that can be derived after transforming a piecewise regular algorithm. Each one ofthe memory

cases has a modular architecture allowing to add easily modules in order to provide support larger

processor arrays. These four architectural cases were implemented and validated for two different

algorithms with different l/O data requirements. Besides. these architectural cases are based on the

use of two clock domains. and based on the use dual-port memories. Similarly to the control scheme,

Lhe four memory cases support different space-time mappings due to combinational logic is ¡n charge
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of calculating the memory banks addresses, and such calculation takes into account the indexes after

space-time transformation. Mainly, the FPGA's PAR results shows that the assumption of using two

clock domains (one twice faster than the other domain) ¡s technologically achievable. Also, the PAR

results show that the number of LUTs required by the broadcast cases are major than the number

of LUTs required by the border cases.

Processor Array: MatMul and Cholesky decomposition algorithms were used in order to genérate

different integrated processor array systems, which include control scheme, external memory system

and data-path. Since these processor arrays have the advantages of the control scheme and the

external memory system, they are able to provide support to algorithms with non-rectangular iteration

spaces, and the support for solving a set of problem sizes depending on the memory available on

the implementation platform. Besides, due to mathematical expressions obtained after space-time

transformations are mapped to combinational logic, which are included into the control scheme and

external memory system, the processor arrays are able to support different schedulers, allocators and

iteration intervals. Several processor arrays were evaluated using three different metrics and focusing

on changing the processor array size. When evaluating the processor arrays a major acceleration.

and a better efficiency (valúes cióse to one) should be expected for algorithms whose operations

have lower latency (clock cycles to be computed) and for algorithms with a major number of Índex

points (sequential steps). This Ís the case of the MatMul processor arrays where an acceleration is

obtained even for smaller arrays. On the other hand, for algorithms with a high operation latency (as

Cholesky) an acceleration should be expected only for larger processor arrays. Besides. when different

processor array shapes targeted for a same algorithm are analyzed, better acceleration, efficiency and

load imbalance valúes should be expected for square arrays than for non-square processor arrays.

FPGA PAR results indícate that the amount of memory (number of FPGA BRAMs) is a current

technological limitation for implementing complete integrated processor array systems into FPGAs.

Such limitation could be reduced if the memory banks are assumed to be off-chip memories or if the

data word width is reduced. However, solving larger problem sizes comes at the price of dedicating

more FPGA silicon to store data than to compute.
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7.1.1 Contributions

The list of contributions in this research work and a brief description of them is enumerated:

1. A novel and general architectural framework able to support space-time

transformations in the polytope model. consisting on a control scheme, a memory

hierarchy and a processor array data-path. The architectural framework has been

¡mplemented and validated by ¡ntegrating two processor array systems for two different cases

of study, including the processor array data-path, the control scheme and memory system.

The implementations of these two cases of study support different iteration spaces, different

schedulers and allocation functions (space-time mapping), and different iteration intervals.

2. A general control scheme able to perform the selection of operations inside the PE

and the activation of PEs inside the processor array regardless of the iteration space

shape. A control scheme has been validated for two different algorithms, and for different

space-time transformations. Also, this control scheme ís able to genérate the activation signáis

for algorithms with non-rectangular iteration spaces and able to deal with several problem sizes.

3. A novel external memory system able to perform the data feeding to the processor

array and the data extraction from the processor array. Four memory architectural

cases for feeding data to the processor array from external memory, and storing the data

results produced by the processor array have been implemented and validated.

4 A set of software tools that helps in the transformation of sequential loop

algorithms. used in complex digital signal processing systems, into a processor array

representation. The software tools for obtaining the linear and affine schedulers, and for

performing the space-time transformations were implemented in order to obtain a parallel

versión ofthe piecewise regular algorithm. From this parallel versión, it is possible to derive

the loop bounds mapped to the control scheme, to select the architectural cases, and to

construct the processor array data-path.
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7.1.2 Revísiting the Research Questions

The list ofthe research questions presented ¡n Chapter 1 is enumerated with their respective answers:

1. What are the advantages of using the polytope model for the generation of processor

arrays? The polytope model provides an abstraction for modeling the computations of loop-

based algorithms. Such abstraction facilities the data dependence analysis of the sequential

algorithms, and it allows the parallelization of the loop computations. By obtaining a

parallelized versión of the loop-based algorithm, ¡t is possible to derive the control structures

required for activating the PEs, and to derive the memory interfaces for inserting/extracting

data to/from the processor array. Furthermore, by using the scheduler and allocation functions,

which are required prior to parallelize the loop algorithm, the processor array data-path (PE

internal data-path and array interconnection topology) can be synthesized. Also, the use of

the polytope for modeling the loop-based computations allows the development of advanced

synthesis software based on software libraries required for extracting the data dependences, for

solving linear programming formulations, and for performing the space-time transformation.

2. What control schemes are needed in order to support non-rectangular iteration

spaces and to provide problem size independency? Control schemes combining

centraüzed and distributed facilities are required for supporting non-rectangular iteration spaces

and for providing problem size independency. ln both cases, the most expensive and repetitive

calculations are placed into central modules in order to avoid the overhead of placing them

into the distributed modules. However, each one of the distributed modules must has some

information (like the tile indexes and the problem size) in order to correctiy genérate the control

signáis for non-renctangular iteration spaces, and for providing problem size independency. For

non-rectangular iteration spaces, tile indexes and problem size provide the information that

helps to each distributed module to decide when a valid mapping exists from the processor

space (logical array) to the physical array. For providing problem size independency, the

centraüzed and distributed modules require to know the problem size that is being solved.
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3 What memory schemes or hierarchies are able to provide and extract data from the

processor array in order to avoid bottleneck problem from memory? External memory

interfaces with múltiple communication channels are required for deüvering/extracting data

to/from the processor array in order to avoid the bottleneck memory problem. Although these

communication channels could be implemented physically by the use of a single n-port memory,

this multi-port memory could be technologically unfeasible for larger processor arrays. ln this

sense, distributing the original data into different memory banks (similar to an interleaved

scheme) provides the required communication channels regardless ofthe processor array size.

However, in order to reduce the number of memory banks, the use different clock domains

becomes an attractlve solution in order to reduce the overhead of dividing and storing data ¡nto

different memory locations placed in different memory banks. Combining multi-port memory

facilities, working twice faster than the processor array, provide the communication channels

required by the processor array without stalling the processor array computations. Besides of

this external memory interface, memory elements for storing data that has been already read or

produced by the array (like FIFO elements) are required in order to avoid unnecessary externa;

memory accesses

4 What are the processor array sizes that have a PE utilization percentage above of

50% for the selected loop-kernel algorithms generated by using the polytope model?

Mainly. the utilization percentage (or efficiency) relies on three or two aspects depending on

the number of loops in the algorithm. For two-dimensional loops the relation between the

processor array size and the problem size to be solved, and the sequential processor used as

baseline are two aspects which impact on the efficiency. Additionally on these two aspects,

for three-dimensional loops the processor array shape is a third aspect to be considered. A

processor array with a high PE efficiency is derived if the problem size for which It was targeted

is much larger than the partitioned processor space. Also, the utilization percentage depends

on which sequential PE is used as baseline. Using the constant-cyle PE as baseline, higher

efficiencies are achieved compared to multi-cycle PE baseline. ln general, the loop algorithms
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easily achieve an utilization percentages above of 50% when the processor array size is larger

than the partitioned processor space and the constant-cycle PE is used as baseline. However,

if the multi-cycle PE is used as baseline, then utilization percentages no greater than 6% are

achieved. Additionally, in the case of three-dimensional algorithms when processor arrays have

a square shape a better efficiency is achieved compared to the case of rectangular processor

arrays, regardless ofthe sequential PE used as baseline.

7.2 Future Work

The research presented in this dissertation could be extended in several directions. One of them

consists of using strip mining technique for deriving processor arrays working in a LSGP or in a

hierarchical co-partitioning approach. Although there are works that genérate processor arrays with

these partitioning approaches, none of them supports solving several problem sizes. ln this sense,

a possible processor array using LSGP should implement an intermediate memory for each PE in

the array instead of having an intermediate memory for each processor array row or column. Also,

intermedíate registers among PEs should be placed ¡n order to respect the scheduler function.

Another issue concerning strip mining is the use non-unimodular transformations. Strip mining

could be only used for partitioning processor spaces when the space-time transformation comes

from a unimodular matrix. Although using non-unimodular matrixes for space-time mapping derives

Índex spaces which are not longer a polytope but a polyhedra, supporting such non-unimodular

matrixes could provide a more general framework for supporting any space-time transformation.

More precisely, using non-unimodular transformations would lead to use other kinds of schedulers,

like affine schedulers. Generally, these affine schedulers derive faster execution times than the linear

scheduler, thus, supporting non-unimodular transformation would lead to derive faster processor

arrays with highly pipelined PEs.
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ln relation to the control scheme, some ¡mprovements could be made in order to increase the

máximum operational frequency. Since the centraüzed Max/Min sub-modules map the complex

mathematical expressions for calculating the bounds of the ((-dimensional target polytope, they

genérate the Iongest critical path of the control scheme. One possible improvement is to apply

pipelining to these expressions in order to reduce such critical path. Intuitively, all the Max/Min

sub-modules should have the same number of pipeline stages, however a deeper analysis would be

required in order to prevent if some forwarding units would be required too. Furthermore, another

aspect that would require research is the use of memories for storing pre-generated sequences ¡nstated

of generating them in run-time execution. Using such approach is straightforward for processor arrays

dedicated to solve a unique problem size, since only one pre-generated sequence should be stored.

However, In order to solve several problem sizes, a mechanism for having a unique pre-generated

sequence and for reusing such sequence ís required. This would help to avoid the need of having

several sequences stored in memories, and consequently reducing the total amount of memory inside

the processor array.

With respect to the external memory, some ideas might be applied in order to hide the latency

due to the process of inserting input data into the different memory banks, i.e. reducing the overhead

introduced by dividing and storing data into different memory locations placed in different memory

banks. Mainly, these ¡mprovements consist of inserting data ¡nto the memory banks while the

processor array is performing the algorithm computations, without the need of waiting that the

matrixes are totally inserted into the memory banks. ln other words, storing the complete matrixes

into the memory banks is not required for starting the processor array computations, since the array

requires only a matrix data subset when a new tile is being scanned. Developing mechanisms for

inserting data ¡nto the memory banks while the processor array is working would be the next step in

order to enhance the external memory system, creating a new level ¡n the memory hierarchy.

Finally. an ¡nteresting aspect is the study and comparison of processor arrays derived by following

the polytope model and highly-pipelined mono- processors derived by modeling the loop nests as a
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polytope in terms of their acceleration, specifically for algorithms with high latency operations like

Cholesky and LU decomposition algorithms. Such study would help to determine for which algorithm

implemented, either as a processor array or higly-pípeüned mono- processor, a higher acceleration is

achieved.



A
Appendix

This appendix shows the mean valúes of relative acceleration, relative efficiency and relative load

imbalance metrics applied over a set of seven different nested loop algorithms: matrix-vector

multiplication (MatVec), finite impulse response (FIR) filter, back substitution, forward substitution,

matrix-matrix multiplication (MatMul), Cholesky decomposition and LU decomposition. These

algorithms can be organized according to the number of nested loops. For deriving the processor

arrays, the same scheduler function but different allocation matrixes were employed. ln the case

of two dimensional algorithms, two different allocation matrixes were used as design parameters,

whereas for three-dimensional algorithms six different allocation matrixes were employed. The ñame

of these configurations with their respective allocation function are shown in tables A.l and A.2.

The scheduler function used for space-time mapping is A = [1.1] in the case of two-dimensional

algorithms; whereas for three-dimensional arrays the scheduler is A = [1,1.1],

For each allocation matrix, several possible processor arrays with different number of PEs are

evaluated for a range of problem sizes of Ar — [0 500], ln the case of two-dimensional algorithms,

one-dimensional arrays are derived; whereas for three-dimensional algorithms, two-dimensional arrays

223
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Configuration Projection Allocation

Code Ñame Vector Matrix

2-Ver-l ,7=[l ü]' «•=[() 1 ]

2-Ver-2 S= [ 0 1 ]' *= [ 1 o 1

Table A.l: Allocation functions used for two-dimensional algorithms.

are obtained. ln both cases, the processor array sizes are limited to múltiples of power of two, with

a máximum of SSp,, — 128 for one-dimensional arrays and SSp¡, = SSp\ = 32 for two-dimensional

arrays. For example, in the LU case, two-dimensional processor arrays with 16 PEs can be derived

with arrays of 1 x 16. 2 x 8, 4 x 4, 8 x 2 and 16 x 1 PEs; therefore the shape of the processor array

is also evaluated.

Configuration

Code Ñame

Projection Allocation

Vector Matrix

3-Ver-l

3-Ver-2

3-Ver-3

3-Ver-4

3-Ver-5

3-Ver-6

,
,i . r i o o i

»-[oio] *=[0 0 ,j

r ii r 0 0 1 ]
»=[» i «1 *=[l 0 o|

r ,' , \ 1 0 0 1

a-[o o i] ■"=[„ i o]

r i' , r 0 1 01

"=[" ° '1 <p=|i o o]
Table A. 2. Allocation functions used for three-dimensional algorithms.
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Since Back and Forward substitution have the same loop kernel, the same iteration space,

and the same operations, their results are ídentical and they are shown in a same set named

Back/Forward. Similarly, since MatVec and FIR filter algorithms are similar, their results are referred

as the MatVec/FIR. Finally, in the case of Back/Forward, Cholesky an LU processor arrays, the

operational Iatencies used when multi-cycle PE is used as baseline are: 21 clock cycles for división,

10 clock cycles for square root and one clock cycle for MAC.

A.l Matrix and FIR Filter

Processors 2-Ver-l 2-Ver-2 [j
001 PE

002 PE

004 PE

008 PE

016 PE

032 PE

064 PE

128 PE

1.0000 1.0000

1.9635 1.9635

3.7875 3.7875

7.0648 7.0648

12.4155 12.4155

19.8674 19.8674

28.1404 28.1404

35.1463 35.1463

Table A.3: Average relative acceleration for several MatVec processor arrays and different allocation

matrixes, when Nmax = 500, and using the sequential constant-cycle PE as baseline.

Processors 2-Ver-l 2-Ver-2 |j
001 PE 1.0000 1.0000

002 PE 0-9817 0.9817

004 PE 0.9469 0.9469

008 PE 0.8831 0.8831

016 PE 0.7760 0.7760

032 PE 0.6209 0.6209

064 PE 0.4397 0,4397

128 PE 0.2746 0.2746

Table A. 4: Average relative efficiency for several MatVec processor arrays and different allocation

matrixes, when Nmax = 500, and using the sequential constant-cycle PE as baseline
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Processors 2-Ver-l 2-Ver-2 |
001 PE 0.0000 0.0000

002 PE 0.0061 0.0061

004 PE 0.0162 0.0162

008 PE 0.0331 0.0331

016 PE 0.0606 0.0606

032 PE 0.1045 0.1045

064 PE 0.1710 0.1710

128 PE 0.2643 0.2643

Table A. 5: Average relative load imbalance for several MatVec processor arrays and different

allocation matrixes, when N„„„. = 500, and using the sequential constant-cycle PE as baseline.
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A. 2 Back and Forward Substitution

Processors 2-Ver-l 2-Ver 2

001 PE 1.0000 1,0000

002 PE 1.9179 1,9354

004 PE 3.5493 3.6325

008 PE 6.1884 6.4528

016 PE 9.8729 10.4927

032 PE 14.0825 15.1413

064 PE 17.9231 19.2190

128 PE 20,7707 21.9027

Table A. 6: Average relative acceleration for several BackForward processor arrays and different

allocation matrixes, when Nmax — 500, and using the sequential constant-cycle PE as baseline.

Processors 2-Ver-l 2-Ver-2 ||
001 PE

002 PE

004 PE

008 PE

016 PE

032 PE

064 PE

128 PE

10000 1.0000

0.9589 0.9677

0.8873 0,9081

0.7735 0,8066

0.6171 0,6558

0.4401 0.4732

0.2800 0.3003

0-1623 0.1711

Table A.7: Average relative efficiency for several BackForward processor arrays and different

allocation matrixes, when iVmoi = 500, and using the sequential constant-cycle PE as baseline.
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Processors 2-Ver-l 2-Ver-2

001 PE 0.0000 0.0000

002 PE 0.0112 0.0112

004 PE 0.0296 0.0296

008 PE 0.0598 0.0598

016 PE 0.1079 0.1079

032 PE 0,1820 0.1820

064 PE 0.2890 0.2890

128 PE 0.4303 0,4303

Table A.8: Average relative load imbalance for several BackForward processor arrays and different

allocation matrixes, when Nmax = 500, and using the sequential constant-cycle PE as baseline.

Processors 2-Ver-l 2-Ver-2 ||
001 PE

002 PE

004 PE

008 PE

016 PE

032 PE

064 PE

128 PE

0.0599 0,0599

0.1169 0.1176

0.2228 0,2266

0.4075 0.4220

0.6972 0.7405

1.0850 1.1831

1.5110 1.6695

1.8921 2.0653

Table A. 9: Average relative aceleration for several BackForward processor arrays and different

allocation matrixes, when Nmax = 500, and using the sequential multi-cycle PE as baseline.

Processors 2-Ver-l 2-Ver-2 [|
001 PE 0.0599 0.0599

002 PE 0.0584 0.0588

004 PE 0,0557 0.0567

008 PE 0.0509 0.0528

016 PE 0.0436 0.0463

032 PE 0.0339 0.0370

064 PE 0.0236 0.0261

128 PE 0.0148 0 0161

Table A. 10' Average relative efficiency for several BackForward processor arrays and different

allocation matrixes, when .Yrr„„ = 500, and using the sequential multi-cycle PE as baseline.
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A.3 Matrix-Matrix Multiplication

Processors Array Size Ver 1 Ver 2 Ver 3 Ver 4 Ver 5 Ver b

1PE 01 x 01 1.0000 1.0000 1.0000 1.0000 1.0000 10000

2 PEs
01 x 02

02x01

1.9635 1.9635 1.9635 1.9635 1.9635 1-9635

1.9635 1.9635 1.9635 1.9635 1.9635 1.9635

4 PEs

01 x04

02 x02

04x01

3.7875 3.7875 3.7875 3.7875 3.7875 3.7875

3.8447 3.8447 3,8447 3.8447 3.8447 3.8447

3.7875 3.7875 3.7875 3.7875 3.7875 3.7875

8 PEs

01 x 08

02 x 04

04 x 02

OS x 01

7.0648 7.0648 7.0648 7.0648 7.0648 7.0648

7.3763 7.3763 7.3763 7.3763 7.3763 7.3763

7.3763 7.3763 7.3763 7.3763 7 3763 7.3763

7,0648 7.0648 7.0648 7.0648 7.0648 7,0648

16 PEs

01 x 16

02 x 08

04 x 04

08 x 02

16 x 01

12.4155 12.4155 12,4155 12.4155 12.4155 12.4155

13.6145 13.6145 13.6145 13.6145 13.6145 13.6145

13.9906 13.9906 13.9906 13.9906 13.9906 13.9906

13.6145 13,6145 13.6145 13.6145 13.6145 13.6145

12.4155 12.4155 12,4155 12.4155 12.4155 12.4155

32 PEs

01 x 32

02 X 16

04 x 08

08 x 04

16x02

32 x 01

19.8674 19,8674 19.8674 19.8674 19.8674 19.8674

23.4989 23.4989 23.4989 23.4989 23.4989 23.4989

25.2996 25.2996 25.2996 25.2996 25.2996 25.2996

25.2996 25.2996 25.2996 25.2996 25.2996 25.2996

23.4989 23.4989 23.4989 23.4989 23.4989 23 4989

19.8674 19,8674 19.8674 19.8674 19.8674 19.8674

64 PEs

02 x 32

04 X 16

08x08

16x04

32 x 02

36.6560 36.6560 36.6560 36.6560 36.6560 36.6560

42,2278 42.2278 42.2278 42.2278 42.2278 42.2278

44.0224 44.0224 44.0224 44,0224 44.0224 44 0224

42.2278 42.2278 42.2278 42.2278 42.2278 42.2278

36.6560 36.6560 36.6560 36 6560 36,6560 36 6560

128 PEs

04 x 32

08 x 16

16x08

32 x 04

62.9982 62.9982 62.9982 62.9982 62,9982 62 9982

69.4969 69.4969 69.4969 69.4969 69.4969 69.4969

69.4969 69.4969 69.4969 69.4969 69,4969 69.4969

62.9982 62,9982 62.9982 62 9982 62.9982 62 9982

256 PEs

08 X 32

16 x 16

32 X 08

96.9653 96.9653 96.9653 96.9653 96.9653 96 9653

101,4313 101.4313 101.4313 101.4313 101.4313 101.4313

96.9653 96.9653 96.9653 96.9653 96,9653 96.9653

512 PEs
16 x 32

,32 x 16

130,8061 130.8061 130.8061 130.8061 130.8061 130 8061

130-8061 130.8061 130.8061 130.8061 130.8061 130 8061

1024 PEs 32 x 32 156.6683 156.6683 156 6683 156-6683 156.6683 156.6683

Table A. 11: Average relative acceleration for several MatMul processor arrays and different allocation

matrixes, when Armí,rr = 500, and using the sequential constant-cycle PE as baseline.
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Processors Array Size | Ver 1 Ver 2 Ver 3 Ver 4 Ver 5 Ver 6 ]
1 PE 01 x 01 1.0000 1.0000 1,0000 1.0000 1.0000 1.0000

2 PEs
01 x 02

02 x 01

0.9817 0.9817 0.9817 0.9817 0.9817 0.9817

0.9817 0.9817 0.9817 0.9817 0.9817 0.9817

4 PEs

01 x 04

02 x 02

04x01

0,9469 09469 0.9469 0.9469 0.9469 0.9469

0.9612 0.9612 0.9612 0.9612 0.9612 0.9612

0.9469 0,9469 0.9469 0.9469 0.9469 0.9469

8 PEs

01 x 08

02 x 04

04 x 02

08 x 01

0,8831 0.8831 0.8831 0.8831 0.8831 0.8831

0.9220 0.9220 0.9220 0-9220 0.9220 0.9220

0.9220 0.9220 0.9220 0.9220 0.9220 0.9220

0-8831 0.8831 0.8831 0-8831 0.8831 0.8831

16 PEs

01 x 16

02 x 08

04 X04

08 x 02

16 xOl

0.7760 0.7760 0.7760 0.7760 0,7760 0.7760

0.8509 0.8509 0.8509 0-8509 0,8509 0,8509

0.8744 0.8744 0.8744 0.8744 0.8744 0.8744

0.8509 0.8509 0.8509 0.8509 0.8509 0.8509

0.7760 0.7760 0.7760 0.7760 0.7760 0.7760

32 PEs

01 x32

02 x 16

04 x 08

08 x04

16 x02

32 xOl

0.6209 0-6209 0.6209 0.6209 0,6209 0.6209

0.7343 0.7343 0.7343 0.7343 0.7343 0.7343

0.7906 0.7906 0.7906 0.7906 0.7906 0.7906

0.7906 0.7906 0.7906 0.7906 0.7906 0.7906

0.7343 0-7343 0.7343 0.7343 0.7343 0.7343

0.6209 06209 0.6209 0.6209 0.6209 0.6209

64 PEs

02 x 32

04 x 16

08 x 08

16 x 04

32 X 02

0.5728 0.5728 0.5728 0.5728 0.5728 0.5728

0.6598 0.6598 0.6598 0.6598 0.6598 0.6598

0.6878 0.6878 0.6878 0.6878 0.6878 0.6878

0.6598 0.6598 0.6598 0,6598 0.6598 0.6598

0.5728 0.5728 0.5728 0.5728 0.5728 0.5728

128 PEs

04 x32

08 x 16

10 x08

32 x 04

0.4922 0.4922 0.4922 0,4922 0,4922 0.4922

0.5429 0.5429 0.5429 0.5429 0.5429 0.5429

0.5429 0.5429 0,5429 0.5429 0-5429 0.5429

0.4922 0.4922 0 4922 0.4922 0,4922 0.4922

256 PEs

08 x .32

10 x 16

32 x 08

0.3788 0.3788 0.3788 0,3788 0.3788 0.3788

0.3962 0.3962 0.3962 0.3962 0.3962 0.3962

0.3788 0.3788 0.3788 0.3788 0.3788 0.3788

512 PEs
16 x32

32 x 16

0.2555 02555 0.2555 0.2555 0.2555 0.2555

0.2555 0.2555 0 2555 0.2555 0.2555 0.2555

1024 PEs 32 x .12 0.1530 01530 01530 0 1530 0-1530 0.1530

Table A. 12: Average relative efficiency for several MatMul processor arrays and different allocation

matrixes, when A",„„.r - 500, and using the sequential constant-cycle PE as baseline.
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| Processors | Array Size || Ver 1 Ver 2 Ver 3 Ver 4 Ver 5 Ver 6

1 PE 01 x 01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 PEs
01 x 02

02 x 01

0.0061 0.0061 0.0061 0,0061 0,0061 0.0061

0.0061 0.0061 0.0061 0.0061 0,0061 0-0061

4 PEs

01 x lll

02 x02

04 x 01

0,0162 0.0162 0.0162 0.0162 0.0162 0.0162

0.0114 0.0114 0.0114 0.0114 0.0114 0.0114

0.0162 0.0162 0.0162 0.0162 0.0162 0.0162

8 PEs

01 x08

02 x04

04 x02

08 x 01

0.0331 0.0331 0.0331 0.0331 0.0331 0.0331

0.0211 0.0211 0,0211 0.0211 0.0211 0,0211

0.0211 0.0211 0.0211 0.0211 0.0211 0 0211

0.0331 0.0331 0.0331 0.0331 0.0331 0.0331

16 PEs

01 x 16

02x08

04 x04

08 x 02

16 x 01

0.0606 0.0606 0.0606 0.0606 0-0606 0.0606

0.0374 0.0374 0.0374 0.0374 0.0374 0.0374

0.0296 0.0296 0.0296 0.0296 0.0296 0.0296

0.0374 0.0374 0.0374 0.0374 0.0374 0.0374

0.0606 0.0606 0.0606 0.0606 0.0606 0.0606

32 PEs

01 x 32

02 X 16

04 X 08

08x04

16 X02

32 x 01

0.1045 0.1045 0.1045 0.1045 0.1045 0.1045

0.0644 0.0644 0.0644 0.0644 0.0644 0.0644

0,0453 0,0453 0.0453 0.0453 0.0453 0.0453

0,0453 0.0453 0.0453 0.0453 0.0453 0.0453

0.0644 0.0644 0.0644 0.0644 0.0644 0.0644

0.1045 0.1045 0.1045 0.1045 0.1045 0.1045

64 PEs

02 x 32

04 x 16

08x08

16x04

32 x 02

0.1078 0.1078 0.1078 0.1078 0.1078 0.1078

0,0715 0.0715 0.0715 0.0715 0.0715 0.0715

0.0590 0.0590 0.0590 0.0590 0.0590 0-0590

0.0715 0.0715 0.0715 0.0715 0.0715 0.0715

0.1078 0.1078 0.1078 0-1078 0.1078 0.1078

128 PEs

04 X 32

08x16

16 x 08

32 x 04

0.1139 0.1139 0.1139 0.1139 0.1139 0.1139

0.0841 0.0841 0-0841 0.0841 0.0841 0,0841

0.0841 0,0841 0.0841 0.0841 0.0841 0.0841

0.1139 0.1139 0.1139 0.1139 0.1139 0.1139

256 PEs

08 x 32

16 x 16

32 x 08

0.1251 0.1251 0.1251 0.1251 0.1251 0.1251

0.1056 0.1056 0.1056 0.1056 0.1056 0 1056

0.1251 0.1251 0.1251 0.1251 0.1251 0.1251

512 PEs
16 x 32

32 x 16

0.1446 0.1446 0.1446 0.1446 0.1446 0,1446

0.1446 0-1446 0.1446 0.1446 0.1446 0.1446

1024 PEs 32 X 32 0.1769 0.1769 0.1769 0.1769 0.1769 0.1769

Table A. 13: Average relative load imbalance for several MatMul processor arrays and different

allocation matrixes, when Nmax = 500, and using the sequential constant-cycle PE as baseline.
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A.4 Cholesky Decomposition

Processors | Array Size || Ver 1 Ver 2 Ver 3 Ver 4 Ver 5 Ver 6 ||
1 PE 01 x 01 1.0000 1,0000 1.0000 1.0000 1.0000 1.0000

2 PEs
01 x 02

02 x 01

1.8909 1.8899 1.8909 1.9128 1.8923 1.9128

1.8899 1.8909 1.9128 1.8909 1.9128 1.8923

4 PEs

01 x 04

02 x 02

04 x 01

3.4106 3.4113 3.4106 3.5140 3.4194 3.5140

3.5788 3,5788 3 5875 3-5875 3.6314 3.6314

3.4113 3.4106 3.5140 3.4106 3.5140 3.4194

8 PEs

01 x 08

02 x 04

04 x02

08 xOl

5.7072 5.7251 5.7072 6.0229 5.7415 6.0229

6,3841 6.3778 6.4118 6,5126 6.4906 6.5948

6.3778 6.3841 6.5126 6.4118 6.5948 6.4906

5.7251 5.7072 6.0229 5.7072 6,0229 5.7415

16 PEs

01 x 16

02 x 08

04 x04

08 x02

16 x 01

8.6189 8-6883 8.6189 9.3028 8.7107 9,3028

10.5053 10.4925 10.5805 10.9418 10-7187 11.0895

11.3280 11.3280 11.4184 11.4184 11.7485 11.7485

10.4925 10,5053 10.9418 10.5805 11.0895 10.7187

8.6883 8.6189 9.3028 8.6189 9,3028 8.7107

32 PEs

01 x32

02 x 16

04 x08

08 x 04

16 x02

32 x 01

11-5895 11.7473 11.5895 12.6465 11.7692 12.6465

15.5232 15.5098 15.6879 16.4424 15.9167 16-6890

18.1492 18.0987 18.3825 18.6349 18.8344 19.1637

18.0987 18.1492 18.6349 18.3825 19.1637 18 8344

15.5098 15.5232 16,4424 15.6879 16.6890 15.9167

11.7473 11.5895 12.6465 11.5895 12.6465 117692

64 PEs

02 x 32

04 x 16

08 x 08

16 x04

32 . 02

20.4023 20.3959 20.6877 21.7168 21-0291 22.0816

25.9469 25.7873 26.4263 26.9662 26.9699 27.7323

28.4760 284760 28.8856 28.8856 30.0563 30.0563

25.7873 259469 26.9662 26.4263 27.7323 26.9699

20.3959 204023 21.7168 20.6877 22.0816 21.0291

128 PEs

04 x 32

08 x 16

16 x08

32 x 04

33.0013 32.6890 33.7808 34.3159 34.3829 35.3141

38.9640 38-7657 39.7351 39.9054 40.8485 41.3227

38.7657 38.9640 39.9054 39.7351 41.3227 40.8485

32.6890 330013 34.3159 33.7808 35.3141 34.3829

256 PEs

08 x 32

10 x 16

32 x 08

47.5968 47.1079 48.7525 48.6917 49.6857 50.2546

51.6255 51.6255 52.4269 52.4269 54.2695 54.2695

47.1079 47-5968 48.6917 48.7525 50.2546 49.6857

512 PEs
10 x 32

32 x 16

60.5799 602574 61.6864 61.4505 62.9234 631454

60.2574 60.5799 61.4505 61.6864 63.1454 62.9234

1024 PEs 32 x 32 69,4844 69 4844 70 2560 70.2560 71.6935 71.6935

Table A. 14: Average relative acceleration for several Cholesky processor arrays and different allocation

matrixes, when A',,,,,, - 500, and using the sequential constant-cycle PE as baseline.
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Processors Array Size |¡ 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6

1 PE 01 x 01 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 PEs
01 x02

02 x 01

0.9454 0.9449 0.9454 0.9564 0.9462 0.9564

0.9449 0.9454 0.9564 0.9454 0,9564 0.9462

4 PEs

01 x04

02 x 02

04x01

0.8526 0.8528 0.8526 0.8785 0.8549 0.8785

0.8947 0.8947 0.8969 0.8969 0.9078 0.9078

0.8528 0.8526 0.8785 0.8526 0.8785 0.8549

8 PEs

01 x 08

02 x 04

04 x02

08x01

0.7134 0.7156 0.7134 0.7529 0.7177 0.7529

0.7980 0.7972 0.8015 0.8141 0.8113 0.8243

0.7972 0.7980 0.8141 0.8015 0.8243 0.8113

0.7156 0.7134 0.7529 0.7134 0.7529 0.7177

16 PEs

01 x 16

02x08

04x04

08 x 02

16x01

0.5387 0.5430 0.5387 0.5814 0.5444 0.5814

0.6566 0.6558 0.6613 0.6839 0.6699 0.6931

0.7080 0.7080 0.7137 0.7137 0.7343 0.7343

0.6558 0.6566 0.6839 0.6613 0.6931 0.6699

0.5430 0.5387 0.5814 0.5387 0-5814 0.5444

32 PEs

01 x 32

02 X 16

04 x 08

08 x04

16 x 02

32 x 01

0.3622 0.3671 0.3622 0.3952 0.3678 0.3952

0.4851 0.4847 0.4902 0.5138 0.4974 0.5215

0.5672 0.5656 0.5745 0.5823 0.5886 0.5989

0.5656 0.5672 0.5823 0.5745 0.5989 0.5886

0.4847 0.4851 0.5138 0.4902 0.5215 0.4974

0.3671 0.3622 0.3952 0.3622 0.3952 0.3678

64 PEs

02 x 32

04 X 16

08x08

16x04

32x02

0.3188 0.3187 0.3232 0.3393 0.3286 0.3450

0.4054 0.4029 0.4129 0.4213 0.4214 0.4333

0.4449 0.4449 0.4513 0.4513 0.4696 0.4696

0.4029 0.4054 0.4213 0.4129 0.4333 0.4214

0.3187 0.3188 0.3393 0.3232 0.3450 0.3286

128 PEs

04 x 32

08 x 16

16 x08

32 x 04

0.2578 0.2554 0.2639 0.2681 0.2686 0.2759

0.3044 0.3029 0.3104 0.3118 0.3191 0.3228

0.3029 0.3044 0-3118 0.3104 0.3228 0.3191

0.2554 0.2578 0.2681 0-2639 0.2759 0.2686

256 PEs

08 x ,32

16 X 16

32 x 08

0.1859 0.1840 0.1904 0.1902 0.1941 0.1963

0.2017 0.2017 0.2048 0.2048 0.2120 0.2120

0.1840 0.1859 0.1902 0.1904 0.1963 0.1941

512 PEs
16x32

32 x 10

0.1183 0.1177 0.1205 0.1200 0.1229 0.1233

0.1177 0.1183 0.1200 0.1205 0.1233 0.1229

1024 PEs 32 x 32 00679 0.0679 0.0686 0.0686 0.0700 0.0700

Table A. 15: Average relative efficiency for several Cholesky processor arrays and different allocation

matrixes, when Nmax = 500, and using the sequential constant-cycle PE as baseline
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Processors Array Size |, 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6 ||
1 PE 01 x 01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 PEs
01 x 02

02x01

0.0155 0.0019 0.0155 0.0155 0.0019 0.0155

0.0019 0.0155 0.0155 0.0155 0.0155 0.0019

4 PEs

01 x 04

02x02

04 xOl

0.0409 0.0057 0.0409 0.0409 0.0057 0.0409

0.0291 0.0291 00291 0.0291 0.0291 0.0291

0.0057 0.0409 0.0409 0.0409 0.0409 0.0057

8 PEs

01 x 08

02 x 04

04 x 02

08 x 01

0.0817 0.0133 0.0817 0.0817 0.0133 0.0817

0.0525 0.0315 0.0525 0.0525 0.0315 0.0525

0.0315 0.0525 0.0525 0.0525 0.0525 0.0315

0.0133 0.0817 0.0817 0.0817 0.0817 0.0133

16 PEs

01 x 16

02 x 08

04 x 04

08 x 02

16x01

0.1454 0.0288 0.1454 0.1454 0.0288 0.1454

0.0913 0.0367 0.0913 0.0913 0.0367 0.0913

0.0733 0.0733 0.0733 0.0733 0.0733 0.0733

0.0367 0.0913 0.0913 0.0913 0.0913 00367

0.0288 0.1454 0.1454 0.1454 0.1454 0.0288

32 PEs

01 x 32

02 x 16

04 x 08

08 x 04

16 x 02

32 x 01

0.2400 0.0595 0.2400 0.2400 0.0595 0.2400

0.1530 0.0491 0.1530 0.1530 0.0491 0.1530

0.1090 0.0769 0.1090 0.1090 0.0769 0.1090

0.0769 0.1090 0.1090 0.1090 0.1090 0.0769

0.0491 0.1530 0.1530 0.1530 0.1530 0.0491

0.0595 0.2400 0.2400 0.2400 0.2400 0.0595

64 PEs

02 x 32

04 x 16

08 x 08

16 x 04

32 x 02

0.2457 0.0762 0.2457 0.2457 0.0762 0.2457

0.1673 0.0854 0.1673 0.1673 0.0854 0 1673

0.1404 0.1404 0.1404 0.1404 0.1404 0.1404

0.0854 0.1673 0.1673 0.1673 0.1673 0.0854

0.0762 0.2457 0.2457 0.2457 0.2457 0.0762

128 PEs

04 x 32

1)8 x 16

16 x OS

.12 ■ lll

0.2566 0.1071 0.2566 0.2566 0.1071 0.2566

0.1935 0.1466 0.1935 0.1935 0.1466 0.1935

0.1466 0.1935 0.1935 0.1935 0.1935 0.1466

0.1071 0.2566 0.2566 0.2566 0.2566 0.1071

256 PEs 16 x 1G

32 x 08

0.2769 0.1615 0.2769 0.2769 0.1615 0.2769

0.2392 0.2392 0.2392 0.2392 0.2392 0.2392

0.1615 0.2769 0.2769 0.2769 0.2769 0.1615

512 PEs
16 x ,32

32 x 1G

03134 02501 03134 0.3134 0.2501 0.3134

0.2501 0.3134 0.3134 0.3134 0.3134 0.2501

1024 PEs 32 x 32 0.3748 0.3748 0.3748 0.3748 0 3748 0.3748 |

Table A. 16: Average relative load imbalance for several Cholesky processor arrays and different

allocation matrixes, when Nmai — 500, and using the sequential constant-cycle PE as baseline
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Processors Array Size 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6

1PE 01 x 01 0.0645 0.0645 0.0645 0.0645 0.0645 0.0645

2 PEs
01 x 02

02 x 01

0.1245 0.1245 0.1245 0.1256 0.1246 0.1256

0.1245 0.1245 0.1256 0.1245 0.1256 0.1246

4 PEs

01 x04

02 X 02

04 x 01

0.2331 0.2331 0.2331 0.2384 0.2333 0.2384

0.2419 0.2419 0.2421 0.2421 0-2441 0.2441

0.2331 0.2331 0.2384 0.2331 0.2384 0.2333

8 PEs

01 x08

02 x 04

04 x 02

OS x 01

0.4131 0-4136 0.4131 0.4325 0-4142 0.4325

0.4518 0.4517 0.4523 0.4587 0-4561 0.4625

0.4517 0-4518 0.4587 0.4523 0.4625 0.4561

0.4136 0.4131 0.4325 0.4131 0.4325 0.4142

16 PEs

01 x 16

02 X08

04 x04

08 x02

16 x 01

0.6736 0.6768 0.6736 0.7269 0.6780 0.7269

0.7977 0.7981 0.7996 0.8288 0.8068 0.8357

0.8510 0.8510 0.8536 0.8536 0.8726 0.8726

0.7981 0.7977 0.8288 0.7996 0.8357 0 8068

0.6768 0.6736 0.7269 0.6736 0.7269 0 6780

32 PEs

01 X 32

02 x 16

04x08

08 x04

16 x02

32 x 01

0.9849 0.9967 0.9849 1.0937 0.9984 1.0937

1.2936 1.2970 1.2986 1.3839 1.3133 1.3956

1-4927 1.4925 1.5009 1.5323 1.5322 1.5656

1.4925 1.4927 1.5323 1.5009 1.5656 1.5322

1.2970 1.2936 1.3839 1.2986 1.3956 1.3133

0.9967 0.9849 1.0937 0.9849 1.0937 0.9984

64 PEs

02 x32

04 x 16

08x08

16x04

32 x 02

1.8791 1-8932 1.8895 2.0640 1.9208 2.0821

2-3976 2.3984 2.4188 2.5313 2.4674 2.5851

2.6440 2.6440 2.6676 2.6676 2 7773 2 7773

2.3984 2.3976 2.5313 2.4188 2.5851 2.4674

1.8932 1.8791 2.0640 1.8895 2 0821 1.9208

128 PEs

04x32

08 x 16

16 x 08

32 x 04

3.4432 3.4515 3.4871 3.7220 3.5624 3.8005

4.1802 4.1766 4.2393 4,3359 4.3862 4.5019

4.1766 4.1802 4.3359 4.2393 4.5019 4.3862

3.4515 3.4432 3.7220 3.4871 3.8005 3.5624

256 PEs

08 x 32

10 x 16

32 x08

5.8939 5.8837 6.0121 6.2439 6.1901 6.4654

6.6394 6.6394 6.7559 6.7559 7.1305 7.1305

5.8837 5.8939 6.2439 6.0121 6 4654 6,1901

512 PEs
16 x 32

32 x 16

9.1233 9.0989 9.3448 9.4699 9.7209 9,9192

9.0989 91233 9.4699 9.3448 9.9192 9.7209

1024 PEs 32 x 32 12.4939 12.4939 12.7792 12 7792 13.4351 13.4351

Table A. 17: Average relative acceleration for several Cholesky processor arrays and different allocation

matrixes, when Nmax = 500, and using the sequential multi-cycle PE as baseline.



A.4. Cholesky Decomposition

Processors Array Size | 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6 ||
1 PE 01 xOl 00645 0.0645 0.0645 0.0645 0.0645 0.0645

2 PEs
01 x02

02 xOl

0.0623 0.0623 0.0623 0.0628 0.0623 0.0628

0.0623 0.0623 0.0628 0.0623 0.0628 0.0623

4 PEs

01 X04

02 x02

04 xOl

0.0583 0.0583 0.0583 0.0596 0.0583 0.0596

0.0605 0.0605 0.0605 0.0605 0.0610 0.0610

0.0583 0.0583 0.0596 0.0583 0.0596 0.0583

8 PEs

01 x08

02 x 04

04 x02

08 x 01

0.0516 0.0517 0.0516 0.0541 0.0518 0.0541

0.0565 0.0565 0.0565 0.0573 0.0570 0.0578

0.0565 0.0565 0.0573 0.0565 0.0578 0.0570

0.0517 0.0516 0.0541 0.0516 0.0541 0.0518

16 PEs

01 x 16

02 x 08

04 x 04

08 x 02

16 xOl

0.0421 0.0423 0.0421 0.0454 0.0424 0.0454

0.0499 0.0499 0.0500 0.0518 0.0504 0.0522

0.0532 0.0532 0.0534 0.0534 0.0545 0.0545

0.0499 0.0499 0.0518 0.0500 0.0522 0.0504

0.0423 0.0421 0.0454 0.0421 0.0454 0.0424

32 PEs

01 x 32

02 x 16

04 x 08

08 x 04

16 x 02

32 x 01

0.0308 0.0311 0.0308 0.0342 0.0312 0.0342

0.0404 0.0405 0.0406 0.0432 0.0410 0.0436

0.0466 0.0466 0.0469 0.0479 0.0479 0.0489

0.0466 0.0466 0 0479 0.0469 0.0489 0.0479

0.0405 0.0404 0.0432 0.0406 0.0436 0.0410

0.0311 0.0308 0.0342 0.0308 0.0342 0.0312

64 PEs

02 x 32

04 x 16

08 xOS

16 x 04

32 < 02

0.0294 0.0296 0.0295 0.0323 0.0300 0.0325

0.0375 0.0375 0.0378 0.0396 0.0386 0.0404

0.0413 0.0413 0.0417 0.0417 0.0434 0.0434

0.0375 0.0375 0.0396 0.0378 0.0404 0.0386

0.0296 0.0294 0.0323 0.0295 0.0325 0.0300

128 PEs

04 x 32

OS x 16

16 x08

32 x 04

0.0269 0.0270 0.0272 0.0291 0.0278 0.0297

0.0327 0.0326 0.0331 0.0339 0.0343 0.0352

0.0326 0.0327 0.0339 0.0331 0.0352 0.0343

0.0270 0.0269 0.0291 0.0272 0.0297 0.0278

256 PEs

08 x 32

16 x 16

32x08

0.0230 00230 0.0235 0.0244 0.0242 0.0253

0.0259 0.0259 0.0264 0.0264 0.0279 0.0279

0.0230 0-0230 0.0244 0.0235 0.0253 0.0242

512 PEs
16 x 32

32 x 1G

0.0178 0.0178 0.0183 0.0185 0 0190 0.0194

00178 00178 0.0185 0.0183 0.0194 00190

1024 PEs '¡2 ■ 32 0.0122 0.0122 0.0125 0.0125 0.0131 0.0131

Table A.18: Average relative efficiency for several Cholesky processor arrays and different allocation

matrixes, when .Y,N„,. - 500, and using the sequential multi-cycle PE as baseline.
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A.5 LU Decomposition

| Processors | Array Size || 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6 ||

1 PE 01 x 01 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 PEs
01 x 02

02 x 01

1.9104 1.9104 1.9384 1.9349 1.9384 1.9349

1.9104 1.9104 1.9349 1.9384 1.9349 1.9384

4 PEs

01 x 04

02 x02

04 xOl

3.5119 3.5119 3.6547 3.6269 3.6547 3.6269

3.6347 3.6347 3.7518 3.7518 3.7518 3.7518

3-5119 3.5119 3.6269 3.6547 3.6269 3.6547

8 PEs

01 x08

02 x04

04 X02

08 xOl

6.0592 6.0592 6.5662 6.4177 6.5662 6.4177

6.6388 6.6388 7.0066 6.9649 7.0066 6.9649

6.6388 6.6388 6.9649 7.0066 6.9649 7.0066

6.0592 6.0592 6.4177 6.5662 6.4177 6.5662

16 PEs

01 x 16

02 x08

04 X04

08 x 02

16 x 01

9.5303 9.5303 10.9312 10.3436 10.9312 10.3436

11.3279 11.3279 12.3842 12.1209 12.3842 12.1209

11.9706 11.9706 12.9136 12.9136 12.9136 12.9136

11.3279 11.3279 12.1209 12.3842 12.1209 12.3842

9.5303 9.5303 10.3436 10.9312 10.3436 10.9312

32 PEs

01 x 32

02 x 16

04 x 08

08 x 04

16 x 02

32 x 01

13.3808 13-3808 16.3954 14.7048 16.3954 14.7048

17.5239 17.5239 20.1104 19.0736 20.1104 19.0736

20.0614 20.0614 22.1533 21.8434 22.1533 21.8434

20.0614 20.0614 21.8434 22.1533 21.8434 22.1533

17.5239 17.5239 19.0736 20.1104 19.0736 20.1104

13.3808 13.3808 14.7048 16.3954 14.7048 16-3954

64 PEs

02 x 32

04 x 16

08x08

16 x 04

32 x 02

24.1221 24.1221 29.2355 26.4007 29.2355 26.4007

30.2348 30.2348 34.4672 33.0678 34.4672 33.0678

32.5245 32.5245 36.3481 36.3481 36.3481 36.3481

30.2348 30.2348 33.0678 34.4672 33.0678 34.4672

24.1221 24.1221 26.4007 29.2355 26.4007 29.2355

128 PEs

04 x .32

08 x 16

10 x 08

32 x 04

40.3957 40.3957 47.6727 43.9532 47.6727 43.9532

47.2157 47.2157 53.0988 51.9756 53.0988 51.9756

47.2157 47.2157 51.9756 53.0988 51.9756 53.0988

40.3957 40.3957 43.9532 47 6727 43.9532 47.6727

256 PEs

08 x 32

16 x 16

32 x 08

60.6073 60.6073 68.7852 65.4399 68.7852 65.4399

64.9747 64.9747 72.0163 72.0163 72.0163 72.0163

60.6073 60.6073 65.4399 68.7852 65.4399 68 7852

512 PEs
16 x 32

32 x 16

79.8593 79.8593 87.2455 85-5267 87 2455 85.5267

79.8593 79-8593 85.5267 87.2455 85.5267 87.2455

1024 PEs 32 x 32 93.8045 93.8045 99.8135 99.8135 99 8135 99.8135

Table A.19: Average relative acceleration for several LU processor arrays and different allocation

matrixes, when Nrnax = 500. and using the sequential constant-cycle PE as baseline.
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Processors Array Size 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6 ||
1 PE 01 x 01 1,0000 1.0000 1.0000 1.0000 1.0000 1.0000

2 PEs
01 x 02

02 x 01

0.9552 0.9552 0.9692 0.9674 0.9692 0.9674

0.9552 0.9552 0.9674 0.9692 0.9674 0.9692

4 PEs

01 X 04

02 x02

04 xOl

0.8780 0.8780 0.9137 0.9067 0.9137 0.9067

0.9087 0.9087 0.9380 0.9380 0.9380 0.9380

0.8780 0.8780 0.9067 0.9137 0.9067 0.9137

8 PEs

01 x 08

02 x 04

04 x02

08 xOl

0.7574 0.7574 0.8208 0.8022 0.8208 0.8022

0.8299 0.8299 0.8758 0.8706 0.8758 0.8706

0.8299 0,8299 0.8706 0.8758 0.8706 0,8758

0.7574 0.7574 0.8022 0.8208 0.8022 0.8208

16 PEs

01 X 16

02x08

04 x 04

08 x-02

16 x 01

0.5956 0.5956 0.6832 0.6465 0.6832 0.6465

0.7080 0.7080 0.7740 0.7576 0.7740 0.7576

0.7482 0.7482 0.8071 0.8071 0.8071 0.8071

0.7080 0.7080 0.7576 0.7740 0.7576 0.7740

0.5956 0.5956 0.6465 0.6832 0.6465 0.6832

32 PEs

01 x 32

02 x 16

04 x08

08 x 04

16 x02

32x01

0.4181 0.4181 0.5124 0.4595 0.5124 0.4595

0.5476 0.5476 0.6284 0.5960 0.6284 0.5960

0.6269 0-6269 0.6923 0.6826 0.6923 0.6826

0.6269 0.6269 0.6826 0.6923 0.6826 0.6923

0.5476 0.5476 0.5960 0.6284 0.5960 0.6284

0.4181 0.4181 0.4595 0.5124 0.4595 0.5124

64 PEs

02 x32

04 x IG

08x08

16 x 04

32 x 02

0.3769 0.3769 0.4568 0.4125 0.4568 0.4125

0.4724 0.4724 0.5386 0.5167 0.5386 0.5167

0.5082 0.5082 0.5679 0.5679 0.5679 0.5679

0.4724 0.4724 0.5167 0.5386 0.5167 0.5386

0.3769 0.3769 0.4125 0.4568 0.4125 0.4568

128 PEs

04 x32

08 x IG

IG x 08

32 x 04

0.3156 0.3156 0.3724 0.3434 0.3724 0.3434

0.3689 0.3689 0.4148 0.4061 0.4148 0.4061

0.3689 0.3689 0.4061 0.4148 0.4061 0.4148

0.3156 0.3156 0.3434 0.3724 0.3434 0.3724

256 PEs

08 x32

16 x IG

32 x 08

0.2367 0.2367 0.2687 0.2556 0.2687 0.2556

0.2538 0.2538 0.2813 0.2813 0.2813 0.2813

0.2367 0.2367 0.2556 0.2687 0.2556 0.2687

512 PEs
16 X 32

32 x 16

0.1560 01560 0.1704 0.1670 0.1704 0.1670

0.1560 0.1560 0.1670 0.1704 0.1670 0.1704

1024 PEs 32 x 32 0.0916 0.0916 0-0975 0.0975 0.0975 0.0975

Table A. 20: Average relative efficiency for several LU processor arrays and different allocation

matrixes. when A',,,,,, = 500, and using the sequential constant-cycle PE as baseline
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Processors | Array Size 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6

1 PE 01 x 01 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

2 PEs
01 x 02

02 x 01

0.0087 0.0087 0.0087 0.0159 0.0087 0.0159

0.0087 0.0087 0.0159 0.0087 0.0159 0.0087

4 PEs

01 x 04

02x02

04 x 01

0.0232 0.0232 0.0232 0.0415 0.0232 00415

0.0171 0.0171 0.0230 0.0230 0.0230 0.0230

0.0232 0.0232 0.0415 0.0232 0.0415 0.0232

8 PEs

01 x08

02x04

04 x 02

08 x 01

0.0469 0.0469 0.0469 0.0824 0.0469 0.0824

0.0307 0.0307 0.0359 0.0475 0.0359 0.0475

0.0307 0.0307 0.0475 0.0359 0.0475 0.0359

0.0469 0.0469 0.0824 0.0469 0.0824 0.0469

16 PEs

01 x 16

02 X 08

04x04

08 x 02

16 x 01

0.0853 0.0853 0.0853 0.1462 0.0853 0.1462

0.0536 0.0536 0.0581 0.0873 0.0581 0.0873

0.0440 0.0440 0.0582 0.0582 0.0582 0.0582

0.0536 0.0536 0.0873 0.0581 0.0873 0.0581

0.0853 0.0853 0.1462 0.0853 0.1462 0.0853

32 PEs

01 x 32

02 x 16

04 X 08

08 x04

16 x 02

32 x 01

0.1452 0.1452 0.1452 0.2408 0.1452 0.2408

0.0910 0.0910 0.0947 0.1500 0.0947 0.1500

0.0657 0.0657 0.0781 0.0964 0.0781 0.0964

0.0657 0.0657 0.0964 0.0781 0.0964 0.0781

0.0910 0.0910 0.1500 0.0947 0.1500 0.0947

0.1452 0.1452 0.2408 0.1452 0.2408 0.1452

64 PEs

02 x 32

04 X 16

08 x 08

16 x 04

32 x 02

0.1500 0.1500 0.1527 0.2437 0.1527 0.2437

0.1017 0.1017 0.1120 0.1573 0.1120 0.1573

0.0871 0.0871 0.1128 0.1128 0.1128 0.1128

0.1017 0.1017 0.1573 0.1120 0.1573 0.1120

0.1500 0.1500 0.2437 0.1527 0.2437 0.1527

128 PEs

04 x 32

08 x 16

16x08

32 x04

0.1591 0.1591 0.1670 0.2492 0.1670 0.2492

0.1210 0.1210 0.1429 0.1708 0.1429 0.1708

0.1210 0.1210 0.1708 0.1429 0.1708 0.1429

0.1591 0.1591 0.2492 0.1670 0.2492 0.1670

256 PEs

08 x 32

16 x 16

32 x 08

0.1758 0.1758 0.1931 0.2596 0.1931 0.2596

0.1546 0.1546 0.1949 0.1949 0.1949 0.1949

01758 0.1758 0.2596 0.1931 0.2596 0 1931

512 PEs
16 x32

.12 x 16

0.2056 0.2056 0.2385 0.2786 0.2385 0.2786

0.2056 0.2056 0.2786 0.2385 0 2786 0 2385

1024 PEs 32 x .32 0.2560 0.2560 0.3116 0.3116 0 3116 0.3116

Table A. 21: Average relative load imbalance for several LU processor arrays and different allocation

matrixes. when JV„„ = 500, and using the sequential constant-cycle PE as baseline.
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Processors Array Size rj 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6 |]
1 PE 01 xOl 0.0574 0.0574 0.0574 0.0574 0.0574 0.0574

2 PEs
01 X02

02 x 01

0.1112 0.1112 0.1123 0.1122 0.1123 0.1122

0.1112 0.1112 0.1122 0.1123 0.1122 0.1123

4 PEs

01 x 04

02 x02

04 xOl

0.2092 0.2092 0.2151 0.2145 0.2151 0.2145

0.2147 0.2147 0.2197 0.2197 0.2197 0.2197

0.2092 0.2092 0.2145 0.2151 0.2145 0.2151

8 PEs

01 x08

02 x 04

04x02

08 x 01

0.3744 0.3744 0.3971 0.3937 0.3971 0.3937

0.4021 0.4021 0.4183 0.4175 0.4183 0.4175

0.4021 0.4021 0.4175 0.4183 0.4175 0.4183

0.3744 0.3744 0.3937 0.3971 0.3937 0.3971

16 PEs

01 x 16

02 x 08

04 x 04

08 x02

16x01

0.6200 0.6200 0.6896 0.6730 0.6896 0.6730

0.7139 0.7139 0.7640 0.7580 0.7640 0.7580

0.7462 0.7462 0.7925 0.7925 0.7925 0.7925

0.7139 0.7139 0-7580 0.7640 0.7580 0.7640

0.6200 0.6200 0.6730 0.6896 0.6730 0.6896

32 PEs

01 x32

02 x 16

04 x 08

08x04

16 x 02

32 x 01

0.9256 0.9256 1.0952 1.0323 1.0952 1.0323

1.1681 1.1681 1.3039 1.2738 1.3039 1.2738

1.3067 1.3067 1.4186 1.4109 1.4186 1.4109

1.3067 1.3067 1.4109 1.4186 1.4109 1.4186

1.1681 1.1681 1.2738 1.3039 1.2738 1.3039

0.9256 0.9256 1.0323 1.0952 1.0323 1.0952

64 PEs

02x32

04 x 16

08 x 08

IG x 04

32 x 02

1.7169 1.7169 2.0224 1.9115 2.0224 1.9115

2.0942 2.0942 2.3477 2.3018 2.3477 2.3018

2.2319 2.2319 2.4768 2.4768 2.4768 2.4768

2.0942 2.0942 2.3018 2.3477 2.3018 2.3477

1.7169 1.7169 1.9115 2.0224 1.9115 2.0224

128 PEs

04 x 32

08 x 16

16x08

32 x 04

3.0009 3.0009 3.4985 3.3315 3.4985 3.3315

3.4660 3.4660 3.9020 3.8556 3.9020 3.8556

3.4660 3.4660 3 8556 3.9020 3.8556 3.9020

3.0009 3.0009 3.3315 3.4985 3.3315 3.4985

256 PEs

08 x 32

16 x 10

32 x 08

4.7872 4.7872 5.4845 5.2940 5.4845 5.2940

5.1384 5.1384 5.8048 5.8048 5.8048 5.8048

4.7872 4.7872 5.2940 5.4845 5.2940 5.4845

512 PEs
16 x 32

32 x IG

6.7924 6.7924 7.6100 7.4789 7.6100 7.4789

6.7924 6.7924 7.4789 7.6100 7.4789 7.6100

1024 PEs .32 x 32 8.5435 8.5435 9.3733 9.3733 9.3733 9.3733

Table A.22: Average relative acceleration for several LU processor arrays and different allocation

matrixes, when NmnT = 500, and using the sequential multi-cycle PE as baseline.
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Processors Array Size 3-Ver-l 3-Ver-2 3-Ver-3 3-Ver-4 3-Ver-5 3-Ver-6

1 PE 01 xOl 0.0574 0.0574 0.0574 0.0574 0.0574 0.0574

2 PEs
01 x 02

02 xOl

0.0556 0.0556 0.0561 0.0561 0.0561 0.0561

0.0556 0.0556 0.0561 0.0561 0.0561 0.0561

4 PEs

01 x04

02 x02

04 xOl

0.0523 0.0523 0.0538 0.0536 0.0538 00536

0.0537 0.0537 0.0549 0.0549 0.0549 0.0549

0.0523 0.0523 0.0536 0.0538 0.0536 0.0538

8 PEs

01 x OS

02x04

04 x02

08 xOl

0-0468 0-0468 0.0496 0.0492 0.0496 0.0492

0.0503 0.0503 0.0523 0.0522 0.0523 0.0522

0.0503 0.0503 0.0522 0.0523 0.0522 0.0523

0.0468 0.0468 0.0492 0.0496 0.0492 0.0496

16 PEs

01 x 16

02x08

04 x04

08 x02

16 x 01

0.0387 0.0387 0.0431 0.0421 0.0431 0.0421

0.0446 0.0446 0.0477 0.0474 0-0477 0.0474

0.0466 0.0466 0.0495 0.0495 0.0495 0.0495

0.0446 0.0446 0.0474 0.0477 0.0474 0.0477

0.0387 0.0387 0.0421 0.0431 0.0421 0.0431

32 PEs

01 x 32

02 x 16

04 x 08

08x04

16 x 02

32 x 01

0.0289 0.0289 0.0342 0.0323 00342 0 0323

0.0365 0.0365 0.0407 0.0398 0.0407 0.0398

0.0408 0-0408 0.0443 0.0441 00443 0.0441

0.0408 0.0408 0.0441 0.0443 0.0441 0.0443

0.0365 0-0365 0.0398 0.0407 00398 0.0407

0.0289 0.0289 0.0323 0.0342 00323 0.0342

64 PEs

02 x 32

04 x IG

08 x 08

16 x 04

32 x 02

0.0268 0.0268 0.0316 0.0299 0.0316 0.0299

0.0327 0.0327 0.0367 0.0360 0.0367 0.0360

0.0349 0.0349 0.0387 0.0387 0.0387 0.0387

0.0327 0.0327 0.0360 0.0367 0.0360 0.0367

0.0268 0.0268 0.0299 0.0316 0.0299 0.0316

128 PEs

04 x 32

08 X 16

16 x OS

32 x 04

0.0234 0.0234 0.0273 0.0260 0.0273 0.0260

0.0271 0.0271 0.0305 0.0301 0.0305 0.0301

0.0271 0.0271 0.0301 0.0305 0.0301 0.0305

0.0234 0.0234 0.0260 0.0273 0.0260 0.0273

256 PEs

08 x 32

16 x IG

32 x 08

0.0187 0.0187 0.0214 0.0207 0 0214 0.0207

0.0201 0.0201 0.0227 0.0227 0 0227 0.0227

0.0187 0-0187 0.0207 0.0214 0 0207 0.0214

512 PEs
16x32

32 x 16

0.0133 0.0133 0.0149 0.0146 0.0149 0.0146

0.0133 0.0133 0.0146 0 0149 0.0146 0.0149

1024 PEs 32 x 32 0.0083 0.0083 0.0092 0.0092 0.0092 0.0092

Table A.23: Average relative efficiency for several LU processor arrays and different allocation

matrixes, when NmaT - 500, and using the sequential multi-cycle PE as baseline.
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