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Resumen

Se presenta una técnica para construir equivalentes dinámicos a través de la preservación de los

modos electromecánicos. El sistema externo se reduce a unos pocos generadores ficticios y sus

parámetros son estimados bajo dos procesos de optimización diferentes, Algoritmos Genéticos (AG) y

Levenberg-Marquardt Esta técnica es capaz de preservar la estructura modal asociada al sistema de

estudio. Se realizan simulaciones en el tiempo para comparar las señales obtenidas, tanto del sistema

completo como del sistema reducido.

Al mismo tiempo, la aplicación de técnicas de Inteligencia Artificial como los son las Redes

Neuronales Artificiales (RNA) son empleadas para la resolver la difícil tarea de la construcción de

Equivalentes Dinámicos. El objetivo principal es crear Equivalentes Dinámicos Robustos apoyados

por una red neuronal artificial capaz de poder reproducir el voltaje en los nodos frontera. Esta

novedosa proposición para desarrollar Equivalentes Dinámicos Robustos evita el problema del cálculo

de los parámetros de los generadores equivalentes así como también la linealización del sistema de

potencia. Para construir Equivalentes Dinámicos Robustos se tomaron en cuenta diferentes

condiciones operativas y de igual forma se consideran sistemas de control como lo son los

estabilizadores de sistemas de potencia (PSS).
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Abstract

A methodology to construct dynamic equivalents through matching modes associated to internal

generators is presented. This technique is based on the classical methods where the electric power

system must be linearized for its analysis. The formulation is posed as an optimization problem with

an objective function based on eigenvalues' second order sensitivities. The external system is reduced

to a few fictitious generators, whose parameters are to be estimated by two different optimization

procedures, Genetic Algorithms (GA) and Levenberg-Marquardt. This method is able to preserve the

modal structure associated with the study system.

Furthermore, the application of Artificial Intelligence techniques such as Artificial Neural Networks

(ANN) is employed to solve the hard task of constructing Dynamic Equivalents. The main objective is

to créate Robust Dynamic Equivalents assisted by an ANN able to reproduce the complex voltage at

frontier buses. This novel proposition to develop Robust Dynamic Equivalents evades the problem to

compute the parameters for the equivalents generators as well as avoid the linearization of the power

system. To structure Robust Dynamic Equivalents different operation conditions are taken account in

addition to consider control systems for instance power system stabilizer (PSS).
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Chapter 1
INTRODUCTION

Everything should be made as simple as possible . . . but not simplerl
A. Einstein

1.1 Electricity: Historical Background.

Electric power has performed a worthy role to the progress and technological advances of the human

being over the last century. Edison Electric of New York founded the first direct current (DC) electric

power station in 1881. It was a limited system due to it could deliver power only a short distance from

generation. Thanks to the development of the transformer a few years later the first alternate-current

(AC) system was installed in Massachusetts in 1886 by Westinghouse. That was the beginning of the

AC transmission systems and this fact marked a pause for the following years to the construction of

the polyphase systems by Nicola Tesla. Through the years all countries have had the necessity to

structure an electric power grid thatwill be proficient to satisfy all their requirements.

Every one electric power system around the world differs from size, frequency range, generation,

transmission and load capacity mainly. However, all of them have the same structure and they are

comprised by three principal elements which are the generating units, transmission lines and

distribution systems; nowadays, control equipment has a valuable function and they also constitute a

part of whichever electric power system.

Generating units are the most important elements in every electric power systems. Electric power is

generated using synchronous machines, which are driven through turbines that can be steam,

hydraulic, wind, diesel, nuclear or internal combustión. The generator voltages are regularly in the

range of 11-35 kV. Usually, the generating stations are far away from consumers' centres. Transmission

lines are the connections among distribution systems and generating units. They interconnect all key

power generating units and most important load centres in the system. The transmission system is the

backbone of any electric power system and operates at the highest voltage levéis (commonly, 230 kV-

400 kV and above). Distribution system is the last constituent of the electric power system. The primary
distribution voltage is typically between 4.0 kV and 34.5 kV. Small industrial consumers are provided

by primary feeders at these voltage levéis; residential and commercial consumers are supplied by a

secondary distribution feeder where the voltage level is 120/240 volts. Figure 1.1 shows the basic

elements of a power system.
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Figure 1.1 Basic elements of a power system.

Constantly, the task to get a successful drive of any power system has been considered as a bulky

labour for electrical engineers; however they commit themselves to provide a good service to all the

consumers, which it must be reliable and stable. The customers must be supplied by electric energy

with frequency and voltage as constant parameters. Henee, these parameters have to be into certain

tolerance limits such that the clientele's devices can function in a proper manner;
i.e. the voltage drop

must not exceed ± 10% from its standard boundary, and the frequency must
not surpass 1 Hertz from

its nominal valué.
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1.2 Motivation.

The electric power system analysis have always been characterized to be a hard duty to face due to all

the issues that they represent, bearing in mind the complex topic that they signify. This challenging

task has been confronted by different ways and by many researchers worldwide. There are too many

notable, successful and important results achieved in this área but, in spite of everything there

continué a vast quantity of problems that are hardly difficult to solve employing recent advances in

numerical analysis and decisión support systems. Commonly, these troubles are summarised in the

following manner [1].

> Inappropriate model of the real world.

> Complexity and size of the problems which prohibit computation time.

> Solution methods employed by the human are not capable of being expressed in an algorithm

or mathematical form. They usually involve many rules of thumb.

> The operator decisions are based on fuzzy linguistics descriptions.

> Analysis of security related with voltage or angle is based on human experience judgment and

experience.

Owing to all the preceding drawbacks and the great computational innovations that have been

evolved for the human well-being, important mechanisms to develop modern techniques to solve

these kinds of problems have come up. Thus, for the last years researchers have done many efforts to

develop new approaches based on Artificial Intelligence in order to improve on speed, accuracy,

efficiency, and ability to handle stressed/ill-conditioned systems. The main branches in Artificial

Intelligence are Fuzzy Logic, Artificial Neural Networks, and Expert Systems.

These novel techniques but, in particular the Artificial Neural Networks, have been tested to solve

many problems obtaining outstanding solutions. Artificial Neural Networks are able to overeóme

many tasks such as classification, clustering, pattern recognition and forecasting among many other

applications corresponding to different áreas. From a dynamic power system standpoint, the

application of the AI methods has presented great results [1-9].

In this work the efficiency and feasibility of the Artificial Neural Networks (ANN) to predict events

and/or signal is proved to obtain Dynamic Equivalents. Owing to their great many potential

applications in power systems planning and operation, dynamic equivalents have attracted much

research attention worldwide over the last decades. Here-to-fore, the motivation to develop accurate,

low-order dynamic equivalent models has been aimed at reducing the very considerable computing

times associated with large-scale transient stability studies, multi-machine power systems. Several

methods have been published to advance this research issue but problems remain, particularly in the

área of robustness; in other words they have limitations such as the machine model order, many of

them do not include static excitation system, power system stabilizers (PSS) or merely the tested

system do not include flexible altérnate current transmission systems (FACTS) devices, and nowadays

-3-



Chapter 1 Introduction

almost the whole electric grids around the world comprise with one of these devices, so then, they

take a very important role to bear in mind. Above and beyond these restrictions, all these works have

been solved by classical techniques. Thus, these are the main motivations to construct a Dynamic

Equivalent that overtake the limitations that others can not do. Moreover, with the advent of market

forces in the electricity supply industry, and the ensuing confidential status given to all utility data,

network information exchange between neighbouring Utilities may be in the form of reduced

equivalent circuits. Henee, it becomes essential to develop a new generation of dynamic equivalents

that are robust and have self-learning capabilities.

1.3 Thesis's Structure.

This work is divided in three stages mainly. In the first one, chapter 2, is presented the power system

stability problem including its principal characteristics to can understand this issue and afterwards, a

large visión about Dynamic Equivalents is described.

In chapter 3, the Artificial Neural Networks (ANN) are explained. Firstly, the relation among the

human brain and the ANN is described and a brief classification of them is also depicted. Then, a

mathematical model that represents this approach is described. The main optimisation techniques

used for neural networks and their training algorithms are illustrated. Finally, several application

examples are depicted standing out the example related to electric power systems.

In the last stage, chapter 4, the most important proposition is made. In this chapter, the application of

Artificial Neural Networks to construct Dynamic Equivalents is described. It is presented in a detailed

manner how to foresee the complex voltage to developed Dynamic Equivalents supported by an

ANN. The obtained results show the feasibility, confidence and robustness of the proposed

methodology.

REFERENCES.

1. James A. Momoh and Mohamed E. El-Hawary, Electric Systems, Dynamic, and Stability with Artificial

Intelligence Applications. Marcel Dekker Inc., 2000.

2. Djukanovic M, Sobajic DJ, Pao YH., Artificial Neural Network Based Identification of Dynamic

Equivalents. Electric Power System Research, 1992; 24: pp. 39*48.

3. Ramírez B. Rogelio, Evaluación de la Estabilidad Transitoria en Sistemas Eléctricos de Potencia Mediante

Redes de Neuronas Artificiales, PhD Thesis, FIME, Universidad Autónoma de Nuevo León,

December, 1994.

4. Wehenkel L, Jacquemart Y., Use of Kohonen Feature Maps for the Analysis of Voltage Security
Related

Electrical Distance. Proceedings of ICANN'95, International Conference of Artificial Neural

Networks, October 1995: pp. 8.3.1-8.3.7.
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5. Chen Dingguo, Nonlinear Neural Control with Power Systems Applications, PhD Thesis, Oregon State

University, September, 1998.

6. Wilfert Hans-Helmut, VoigÜSnder Knut, Erlich Istvan, Dynamic Coherency Identification ofGenerators
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9. Tomonobu Senjyu, Shotaro Yamane, et. al, Improvement ofMulti-Machine Power System Stability with
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Chapter 2 Power System Stability and Dynamic Equivalents

facilities, loss of generation, or loss of a large load. The system response to such disturbances involves

large excursions of generator rotor angles, power flows, bus voltages, and other system variables. If

the resulting angular separation between two machines in the system remains within certain bounds,

the system maintains synchronism; if loss of synchronism because of transient stability occurs, it will

usually be evident within 2 or 3 seconds from the initial disturbance.

Thus transient stability is a highly non-linear, highly dimensional phenomenon that involves large

disturbances and topological changes [1,2].

2.1.1 Power Oscillations.

Two types of synchronizing oscillations are common in all interconnected AC power systems. The first

is associated with a single generator (or a plant of identical generators) acting against the system. The

second is more complex and involves many generators; one área of the power system osculating

against generators in other áreas of the power system. Local or plant modes of oscillations have natural

frequencies of about 1 to 2 Hz. Inter-area modes of oscillation have lower natural frequencies on the

order of 0.1 to 0.7 Hz. In small systems, inter-area oscillations generally have higher natural

frequencies than those of larger systems[2].

The total number of modes of synchronizing oscillations is equal to one less than the number of

interconnected generators. In a system having thousands of generators, there are thousands of

osculating modes. All of these must decay following the system disturbance. If any mode increases in

amplitude, the system's operators would have to take action to prevent either a local or a system-wide

collapse.

Power systems must be designed to be stable under a range of system loads and operating conditions.

Generally, if the operation of the system is constrained, those constraints should be due to the thermal

operating limits of the transmission system or loss of synchronism (transient instability) and not by

oscillatory instability [3].

To determine the nature of system oscillations, analysis of the following system characteristics is

required:

•

Frequency and damping of the system's synchronizing oscillation.

• Pattern of generators that take part in each mode of oscillation.

Generators that are able to have a controlling effect on the oscillations must be identified, and tools

must be provided to allow an efficient and robust design of oscillation damping controls[2].

On the other hand, for small signáis other two types of studies can be discussed, angle instability
and

voltage instability, which are associated to local modes and inter-area modes.
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If the system has an insufficient synchronizing and a damping torque it refers to as angle instability;

then if the electric network does not manage sufficient reactive power to support the load, a voltage

collapse could occur and that could lead to a voltage instability.

2.1.2 Swing Equation.

Bearing in mind the fact that the problem of stability derive from synchronous machines, it is

necessary to involve the solution of the siving equation for each machine of the system to obtain their

rotor's angle as a function of time. This is a differential equation governing the motion of machines.

P =P -P

where

S is the displacement rotor angle according to a reference.

M is the inertia constant of machine.

Pa is the acceleraring power.

Pm is the mechanical power.

Pe is the electrical power.

The most viable and common technique to solve the swing equation is the point-by-point solution. This

solution is basically a numerical technique where the accelerating power Pa is assumed constant

during a short period of time Ai , chosen for numerical integration, so that we can easily get the rotor

speed co and the rotor angle 8 by integrating the swing equation; once to get the rotor speed and

twice to obtain the rotor angle. This is only valid for the particular period of time under study.

Using this method we need to keep inmind some considerations [1,13]:

i. The mechanical power input remains constant during the complete study period

ii. The machine is represented by constant voltage after transient reactance

iii. Damping is ignored

iv. Constant flux linkages in each axis

v. No transient salieney exists, this means X'd =X

2.1.3 Single Machine and the Equal-Area Criterion.

To identify if the system is stable after a disturbance it is necessary to solve the swing equation. The

system is unstable if the angle of a machine or between any two machines tends to increase without

limit. By the same way, stipulating that the system is under disturbance effects, if the angle reach a

máximum valué and decrease afterwards, the system is stable. There is a simple and direct method for

determining the stability of the system, and it is not necessary any solution of the swing equation. This
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method is known as equal-area method. There are some assumptions for applying this method, which

basically are:

a. Constantmechanical power.

b. Classical machine model.

Take 8 into the swing equation, (which expresses the motion or swing of the rotor of the machine), as

shown in Fig. 2.1; in an unstable system, 8 increases indefinitely with time and the machine loses

synchronism. In a stable condition, 8 undergoes oscillations, which eventually disappear because of

damping[4]. From Fig. 2.1, it is clear that, for a stable system , d8/dt = 0 must be satisfied at some

time.

S-

s-

s~

Fig. 2.1 Stable and Unstable system.

Therefore the stability is checked by monitoring the rotor speed deviation — , which must be zero at

some moment, this means that:

)padS = 0 (2.2)

This condition requires that, for stability, the área under the graph of accelerating power Pa versus

8must be zero for some valué of 8 ; considering that M is constant and the damping is slight, the

positive (or accelerating) área under the graph must be identical to the negative (or decelerating) área

[4]. This is recognized as the equal-area method for stability. To get a better idea of this method we

may refer to Fig. 2.2.

Point fl, corresponding to 8a , is the initial steady-state operating point. At this position, the input

power to the machine, P¡0, is equal to the developed power Pe0 . When a sudden increase of the input

power occurs to P. , the accelerating power, Pa , becomes positive and the rotor
moves towards point

b. It is assumed that the machine is connected to a large power system and there is also a constant field

current which maintains the internal voltage \Eg\ constant. Thus, the
rotor accelerates and the power
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angle begins to increase, at point b, Pt =Pe and also 8 = 80[A\. At this moment, Pais negative and

8 finally reaches a máximum valué 81 or point c and then swings backwards b. Henee, the rotor

establishes to the point b, which is the last steady-state stable operating point, as shown in Fig. 2.2.

P=P„,,tsm8

50 5, 52

Fig. 2.2.Power angle characteristic.

For stability the equal-area method requires,

Área Ai = Área Ai

thatis,

A=Aj-A2=0

or, from equation 2.2, we have,

f« sin S)dS = ](PBaxúnS-Pi)d6 (2.3)

2.2 Load Models.

The importance of load modelling in power systems studies, such as transient stability studies is well

known. Stable operation of a power system depends on the ability to continuosly match the electrical

output of generating units to the electrical load on the system [13]. However, the major problem in the

evaluation of power system dynamic performance is not represented by the complexity in load model,

the main problem is posed by the difficulty in obtaining data.

For stability studies load representation is very common to be denoted by a load bus which represents

incandescent and flourescent lamps, heaters, air conditioner, ovens, refrigerators, motors, are furnaces

and so on. Induction motors constitute a major portion of the system load. The precise representation

of load is difficult to estimate. Eventhough the precise representation of load is known, there are many
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other factors like time (hour, day, season), weather conditions and the state of the economy that

prevent the load modelling in power systems. Henee, load representation in stability studies is based

on a considerable amount of simplifications.

The real and reactive power of load could be represented by a mathematical model. The load models

can be divided into two categories:

a) Static loads.

b) Dynamic loads.

2.2.1 Static Load Model.

A static load model expresses the characteristics of the load at any instant or time as algebraic

functions of the bus voltage magnitude and frecuency at that moment [14]. There are two different

ways of static load representation.

I. Polynomial representation.

In this case, typically both active and reactive power loads are represented by quadratic polynomials

given by

P = Pn

Q = Q0 K

tyy
V
\Ynj

fvy
\Jo J

+ a

v

+ ¿i
v
voy

+ a,

+ b,

(2.4)

where V0, P0 and Q, are normally taken as initial operating conditions. This representation is also

recognized as ZIP model, as it is constituted of a constant impedance (Z), constant current (I) and constant

power (P) components. The coefficients a0l2 and b0 , 2
are fractions of the constant power, constant

current and constant impedance components in the active power loads. A constraint is imposed:

a0 + a, + a2
= 1

b0 + b¡ + b2 = 1

This load representation in not appropriate for cases involving large voltage variations.

II. Exponential representation.

This load model has a voltage dependence of load characteristics and it has been represented by,

P = Pn

Q = Q,

fr/Y

v
V o j (2.5)
í t/ Y-*"-

v
\* o J
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The parameters of this model are the exponents a and b. Through these exponents the model

represents constant power, constant current or constant impedance characteristics, respectively.

For constant power model, the voltage is invariant and allows loads be represented with a stiff voltage

characteristic kFV * kQV * 0 . This model is frequently used in load-flow studies, but it is not

recommended for other analysis, for instance transient stability analysis, or where there are present

severe voltage drops. The kPV and kQY constants represent the voltage sensitivities, which are frequently

expressed in pu with respect to the given operating point.

The constant current model gives a load demand that varies linearly with voltage kpv * 1 . This is a

practical representation of the real power demand as a mixture of resistance and motor devices.

Finally, for constant impedance model, the load power changes proportionally to the voltage squared

kPi « kov * 2 . This model represents lighting loads but it does notmodel stiff loads satisfactorily.

2.2.2 Dynamic Load Model.

Generally, the dynamic load modelling is associated to the study of systems where there are large

concentrations of motors. Many studies as inter-area oscillations, voltage stability and long-term

stablity require dynamic loads to be modelled. Mainly, dynamic load modelling could be represented

as an induction motor.

The best way to get an induction motor model is to take into account only the dynamics of the rotor

inertia described by

^«¿[•W)-^ (-».)] (2*6)

where (on is the per unitmotor speed; H is the inertia constant and the per unitmechanical torque TM

is a function of com as

TM=Tm(Aa2m+Ba>m+C) (2.7)

where A, B, C are defined as constants. The per unit electrical torque TE is a function of the motor slip
S and is computed from the steady state equivalent circuit shown in Fig. 2.3. Also, if rotor flux
transients are to be included the model may be modified.

Rs Xs Xr

m AAAA_/V\/X.

X„

Fig. 2.3 Steady state equivalent circuit of an induction motor.
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2.3 Synchronous Machine Models.

Synchronous generators are the most important and principal sources of electric energy at any power

system. The power system stability problem is mainly related keeping to interconnected synchronous
machines in synchronism. However, power system dynamic problems are basically those of the

synchronous machines. There are many kinds of power system dynamics problems, like high
- or low

frequency oscillations, and large or small system disturbances. Owing to these problems, several

synchronous machine models were developed. Each model is given a number that gives you an idea

of the number of differential equations that are required to describe the model. The larger of the number

means the model complexity, in addition the time required to solve the differential equations depends

on the model complexity. It is assumed that all quantities are expressed in per unit [1, 4, 13].

Model6-(Ed,Éq,Éd,Eq,a>,8)
In this model the generator is represented by the subtransient emfs (electro-motive forces) Ed and E

behind the subtransient reactances Xd andX . The differential equations that describe this model are

given by

Td0Ed=Eq-Eq+Id(xd-Xd) (2.8)

rq0É'd=E'd-Ed-Iq{xq-X'q) (2.9)

Td0Éq=Ef-Eq+Id(xd-Xd) (2.10)

T'0K= -E<.-Iq(x«-X,) (2.11)

<¡> = i,(Pm-Pe-Do>)M
(2.12)

8 =

<v-cos (2.13)

As the first's two differential equations include the influence of the damper windings, the damping

coefficient in the swing equation needs only to quantify the mechanical damping because of windage

and friction; as this is frequently small, it could be neglected (ü « 0).

Model 5 -(Ed,E'q,Éq, cd,8)

In this model the effect of the rotor body eddy-currents in the q-axis are neglected, then Xq
=

Xq

and Ed = 0 . This is the classical 5 winding model with armature transformer emfs neglected. The

equations for this model are

Td0É:-K-K+iAx'd-K) (2-8)

T;0Éd=K-E:-Iq(Xq-Xq) (2.9)

Td0Éq=Ef-Eq+Id(xd-Xd) (2*10)

(¡) = ^P P Dco) i2-12)

S =

co-cos (2-13)
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This model has two equivalent rotor windings and time constant (rd0 , TdQ ) on the d-axis and three

armature reactances Xd,Xd,Xd. In the (/-axis there is one equivalent rotor winding, with a time

constant \Tq0 ), and two armature reactances \Xq ,Xq).

Model4-(Ed,Éq,tí),8)
In this model the damper winding effects of Model 6 are neglected, so then equations (2.8) and (2.9)

must be removed to get the model. Now, the generator is represented by the transient emfs Eq and Ed

behind the transient reactances X
d
and X . This synchronous generator model is usually considered

to be satisfactorily precise to analyse electromechanical dynamics. The principal disadvantage of this

model is that the equivalent damping coefficient that appears in the swing equation cannot be

calculated exactly.

Model3-(Éq,ú>,8)
This model is almost as Model 4 except that the d-axis transient emf Ed is assumed to remain constant.

Thus the equations for this model are given by

t;0é'_=e;-e;+i_(x;-x'_) (2.8)

* = UPm-Pe-Dco) (2.12)
M

S =

G)-ú)s (2.13)

Model 2 -(d), 8)
This is the well-known classical synchronous generator model. This model assumes that both the d-

axis armature current Id and the internal emf E
f
that represents the excitation voltage do not

fluctuate during the transient state. At this model, the generator is represented by the swing equation

and a constant emf E behind the transient reactance Xd . The equations for this model are

<¡> =UPm-Pe-Dm) (2.12)
M

6 =

a>-e>, (2.13)

This model is traditionally used in power system analysis and it also can be used for evaluating

generator behaviour during the first rotor swing.
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2.4 Dynamic Equivalents.

As power systems are being increasingly interconnected and due to their dimensión, for stability

studies it is impossible or not efficient to represent the entire system in detail. Simple equivalents that

model the transient behavior of distant generators in response to system changes are desirable [5].

For purpose of analysis, and to get a better sight to put up a reduced equivalent system the power

system network is divided into two parts, which are:

a) Internal or study system, is that subsystem where disturbances are to be applied and where the

response of machines is to be observed.

b) External system, is that área where detailed information on the system response is not required,

therefore it is desirable to represent the external system by equivalents.

In order to solve the dimensionality problem - one of the main troubles to solve transient stability in

power systems, which involve the data and the time to solve the system-, is suitable to put away the

external system and develop the transient stability study only for the internal system. In general, the

coupling among these systems cannot be omitted, because of the unión between them, which is strong

enough; henee, reliable results will not be obtained.

A good solution for the dimensión of the problem can be to find a technique to reduce the size of the

external system. This reduction needs to be in the way that the impact of the behavior between the

external system and the study system must be the same. On the reduced system will be possible to

simúlate a disturbance as if it was the external system, and reliable results should be obtained. A

reduced-order model for the external system that carries out these objectives is called a dynamic

equivalent system. The purpose of equivalents is to reduce computer storage, time requirements, and

the corresponding overwhelm analysis [6]. That is, dynamic or electromechanical equivalents are

reduced-order differential equation models, useful in operating systems due to the limitations of

memory capability, computation time and also the time to prepare information and analysis results.

Talking about dynamic equivalents it is necessary to define some important terms:

• Dynamic aggregation.

• Coherent groups.

The order of the differential system equations representing the dynamic part of the system can be

reduced by grouping units that are in parallel on the same bus, and replacing them by an equivalent

generating unit [7, 15], this is what it is called dynamic aggregation.

In contrast, coherent groups oí generating units for a given perturbation are defined as a group of

generators oscillating with the same angular speed, and terminal voltages in a constant complex ratio.

The main approaches used to derive power system dynamic equivalent for transient stability studies

may be classified in six groups [7]:

1. Empirically based simplifications.
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2. Methods based on linearization and modal analysis.

3. Methods based on coherency.

4. Modal-coherent equivalents.

5. Identification dynamic equivalents.

6. Dynamic equivalents obtained using singular perturbation theory.

The most used and important techniques are: the modal approach, the coherency approach and the

estimation approach [8-12, 15-18]. A brief description of these techniques will be useful to understand

them.

The modal approach studies the modes of the linearized system, in order to eliminate the less

significant ones for the contingency of concern [11, 16, 18].

The coherency methods are based on the existence of coherent groups of machines during transients,

their identifications and their aggregation. Coherency analysis is based on the generators' time of

response following a disturbance, like a network fault [5, 10, 15, 17].

Modal-coherent equivalent can be derived preserving not only the coherent groups of the original

system model, but also the modes of group-to-group oscillations. It is constructed only once for a

given utility and can be used in the transient stability study of any disturbance [11, 16].

System identification refers to the determination of the essential characteristics of a dynamic system

when observing the response of system variables to random system inputs, either natural or

intentional [8, 10, 12]. The major advantage of this technique is that information of the external system

is not required.

2.5 Method Based Upon Coherency.

The theory of coherency is originally applied to generator buses as a basis for reducing the number of

buses in the power grid. In this case, two buses are defined as coherent if the complex voltages

relations are constant over the time. In practice, it is common to say that two buses are coherent only

by examining their voltages angles; as a consequence two buses are considered coherent if their

angular difference is constant to a certain tolerance over the period of simulation [15, 17].

The overall procedure for forming coherency-based dynamic equivalents can be divided into five

fundamental steps:

i. Definition of the study área.

ii. Identification of coherent generators.

iii. Generator buses reduction.

iv. Load buses reduction.

v. Dynamic aggregation of generating unit models.

The next stride is to include a pithy clarification of each one of the above steps.

2.5.1 Definition of the Study Área.
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The study área defines that área of the network that will be retained in detail. Regularly, this área will

be specified by a list of buses that will not be eliminated and a list of generating units that will not be

aggregated [5, 11, 15, 17]. The study área does not necessarily need to be contiguous. An essential

point here is to consider the load model. If loads are modelled as constant impedances, the

requirements of the equivalency procedure are minimal. Henee, it is just necessary to retain only those

buses that are involved in switching operation and pass up aggregating generating units which are

cióse to the fault. On the other hand, if non-linear components will be taken in load models a

traditional technique to define the study área is needed; it is necessary to keep an área which

surrounds the fault to avoid reducing non-linear load buses that experience large voltage changes.

Another requisite to take into account non-linear loads is that the power system or network will be

subdivided into sub-areas, which are harshly coherent, and the tie lines among the sub-areas will be

retained.

2.5.2 Identification of Coherent Generators.

Two generator buses are defined as coherent if their angular difference is closely invariable within a

predefined tolerance over a certain period. It is necessary to consider the coherency of both internal

and terminal generator buses, because the first one forms the basis for the network reduction. The

coherent groups of generators can be defined by a specific fault oceurring inside an área but it is

essential to describe the fault type. In a few words, a procedure for identifying coherency for a single

fault will be described.

First, it is necessary to form a simple model of the power system that uses the following assumptions

[5,8,9,15,17]:

+ The coherent groups of generators are completely independent from the size of the

disturbance. For that reason, coherency could be determined by taking into consideration a

linearized system model.

-4- The amount of detail in the generating unit is independent of the coherent groups. Thus, a

classical synchronous machine model will be supposed and the excitation and turbine-

governor system will be ignored.

+ To reproduce the fault effect on the power system, the mechanical output will be pulsed to

attain the same accelerating power, üke if a fault would have existed.

Presently, a description of each assumption will be done. For the first assumption, the coherency

behavior of the generators does not change radically as the fault clearing time increased. The next

assumption is based on the fact that even though the amount of detail in the generating unit models

has a considerable consequence ahead on the swing curves, specially the damping, it does not affect

the most essential characteristics, such as natural frequencies and mode shapes. Finally, the third

assumption accepts that the generator accelerating powers are roughly constant during faults with

typical clearing time.
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The mechanical equation for the motion of a synchronous machine must be linearized with the real

power equations decoupled from the reactive power ones and the resultant equation must be:

~APG

APL

where

A represents incremental variables.

PG are the real power injections in internal generator buses.

PL are the real power injections in load buses.

8 are the angles in generator internal buses.

8 are the angles in load buses.

An integration technique will be used to get a time domain solution of the linearized swing equation.

The trapezoidal approach is perfect for this purpose, since it is not necessary a precise solution and

while the method is numerically stable, large step sizes can be used. Afterwards, a clustering

algorithm is used to estimate the swing curves that are obtained for the linear recreation and, in that

way, the coherent groups will be determined. The coherency analysis may well be applied to several

sets of swing curves for different faults to establish an equivalent that is suitable to a range of

disturbances.

2.5.3 Coherency Measures.

The final report on EPRI project RP904, entitled "Coherency Based Dynamic Equivalents For Transient

Stability Studies" [17], reported that some coherency measures which are based in the internal voltage

angle deviation, has presented high-quality results for dynamic equivalents. These two kinds of

measures are: the max-min measure and the RMS measure.

The RMS coherency measure is a criterion used for determining whether a unit should be added to an

existing group. If the approximate swing curves are clustered, the criterion for coherency is:

|A<y,(0-A¿t(0|<É- (2.15)

for all the samples of time t.

where:

l is the index for generator being clustered.

k is the index for reference generator for the group under consideration.

The RMS coherency measure evaluated over an infinite interval can be analytically related to

generator inertias, synchronizing torque coefficients of equivalent lines connecting internal generator
buses and the statistics of the system disturbance for step input disturbances [16].

dPGIdS

dPL/dS

dPG

dPLIide\[

AS

A0 (2.14)
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The max-min coherency measure is defined as:

max( x¡ (0)
-

min,. x¡ (0)

max, x¡(0)

max,. x¡ (0)
-

min,. x¡ (0)

max, x¡(0)

min«,y Yy

max, yto

max, Af ,.

-

min, Af,.

max, Af;

(2.16)

where

x^e.-e;

6¡ is the torque angle of machine i.

9* is the steady state valué of 9¡ .

Yy is the magnitude of transfer admittance between machines i and;.

rB and r, measure the degree of differences between the initial conditions.

r2 measures the degree of coupling among the machines relative to the coupling to the infinite bus.

r3 defines the similarity of the machines inertias.

There are differences (advantages/disadvantages) between the RMS and the max-min measures; some

of them will be described below.

> The coherent groups determined by the max-min coherency measure are dependent on a

disturbance location.

> The max-min coherency measure produces better results than the RMS coherency measure,

when they are compared for a short period of observation.

> The max-min coherency measure produces better results if the purpose is to get a dynamic

equivalent for a specific disturbance.

> The RMS coherency measure has been algebraically related to the parameters of the system

model and the statistics of the modal disturbance.

> The RMS coherency measure can determine the coherent groups without the necessity of

simulation, as it is required for the max-min coherency measure.

> The RMS coherency measure reflexes in a superior manner the total dynamic of the external

system than the max-min coherency measure.

2.5.4 The Zero Mean, Independent, Identically Distributed Disturbance (ZMIID).

This type of disturbance is commonly applied for constructing modal-coherent dynamic equivalents.

This kind of disturbance has several advantages than other types of disturbances. The disturbance is
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fundamentally the mean valué of a step on the mechanical input power; it has other characteristics

like the disturbance independency from all the other generator buses; it also is identically distributed,

therefore its ñame of ZMIID.

The main purpose of this technique is to establish a clear relationship between modal and coherency

analysis with the aim of developing an equivalent, that combines both approaches [11, 16]. This

equivalent is constructed by applying an RMS coherency measure, evaluated over an infinite interval

to identify coherent groups in face of the Zero Mean, Independent, Identically Distributed (ZMIID)

step input disturbance.

2.5.5 Modal-Coherent Equivalents.
The modal approach consists of creating a reduced linear model, by typical eigenvalue techniques,

which maintains a selected number of oscillation modes. The crucial part is the preliminary choice of

the rule of mode elimination, which should take into account the disturbances. The most important

advantages of the modal approach is that the equivalent need to be computed only once for any given

unit commitment, network configuration and load flow [18] and after that it may be used to study

many different system disturbances.

The most important advantage of this technique is that the appearance of the equivalent formed is a

reduced set of equivalent generators and lines, which can be used completely in transient stability

programs. As a result, the combination of these two approaches has some properties that are [18]:

1. The system eigenvalues will not be required in order to construct the equivalent.

2. The eigenvalues of the equivalent will closely approximate the system eigenvalues retained by

the modal equivalent based on the same disturbance and RMS coherency measure.

3. The equivalent wül be useful for studying any disturbance that might occur outside the

coherent groups aggregated to form the equivalent.

4. Power system component structure is retained and the equivalent can be used with existing

transient stability studies.

Henee, the modal-coherent technique has properties to construct attractive and robust equivalents

instead ofmodal or coherent equivalents.

2.6 Generator Buses Reduction.

A physical interpretation of the generator bus reduction will be described. To do this physical

interpretation the simple network given in Fig. 2.4a and complementary Figs. will be useful to

exemplify the course of action and a simple consideration will be taken. The generator terminal buses

1, 2 and 3 have been recognized as coherent and they are going to be substituted by a solé equivalent

bus 4 [15, 17].
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Step 1.

It is necessary to define the voltage V, in the equivalent network; it could be done by selecting the

voltage of an individual bus or an average voltage of the group; this is with the aim ofminimizing the

variation in the internal machine voltages which takes place in consequence of the machines being

transferred to the equivalent bus. All buses are linked via an ideal transformer with a complex turn

ratio to the equivalent bus. The turn ratio can be calculated as: 9"» = ryk IV, , where: Vk is the voltage on

busfc.

Under coherent circumstances, the ratio &k is invariable for each bus in the group and there is not

circulating power flow by any of the phase shifters. The purpose is that the phase shifters will not

affect on the voltages and currents of the network.

Fig. 2.4a Formation of coherent generator buses in original network.

Step 2.

Generally, the generator terminal buses are connected radially by a step-up transformer to the remains

of the power system. In spite of this, many times the low voltage bus may possibly have been

removed by mixing the transformer reactance with the generator internal reactance. After this

condition, some non-radial buses could be included inside the coherent group and a common branch

could tie them. (e.g., the branch between buses 2 and 3 in the Fig. 2.4b). The purpose in this second

stage is to identify this condition and to eliminare the intragroup branch by substituting it by an

equivalent shunt admittance. Let's consider the current flow in the branch between buses 2 and 3:

-'23
—

v 2 "3)^223 (2.17)

As V2 1 P3 is constant, the current could be expressed as a linear function of both P2 or f} . Therefore,

the effect of the branch can be substituted by a shunt admittance as it is shown in Fig. 2.4c.
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Step 3.

Fig. 2.4d gives you an idea of how are aggregated the equivalent bus, the load and shunt admittances

of coherent buses. It is important to keep in mind, that the generation and load do not suffer any

changes due to the transfer. As well, if a non-linear load representation is applied in such case the

constant MVA, constant current and constant impedance load components will be transferred

separately and maintained disconnected.

Fig. 2.4b Coherent generator buses are connected to an equivalent bus through ideal transformers with a complex ratio.

v2 V,

o-r,'K)r„ WW-

Fig. 2.4c Shunt admittances
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/VNA

s/vl/vy
/VTV\

\/\lA/
/N/N/N

• 3

Ó
Fig. 2.4d Generation, load and shunt admittances on original buses are transferred to the equivalent bus.

Step 4.

The original coherent buses are removed by a sequences of fusión of the original branch and the ideal

transformer (Fig. 2.4e). Let remark that when several original branches are linked to the eliminated

bus, like in bus 1, the ideal transformer must be combined with each of them.

Fig. 2.4e Original generator terminal buses removed by sequence fusión of ideal transformers with original branches.

The next step is not mandatory; it could be done optionally in order to acquire additional

simplification, with the exception that some accuracy will be lost.
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Step 5.

The phase shifts in ideal transformers are replaced by compensating shunt admittances. These shunt

admittances are calculated so that the power flow from buses at the ends of the branch are conserved.

This step has been helpful for introducing the equivalent inside transient stability programs, which do

not model phase shifters. The phase shifts, which are introduced into the equivalent lines, are directly

associated to the angle of the voltage V, ; henee depending on the selected valué of V, it will affect

the accuracy of any power system.

2.7 Dynamic Aggregation of Generating UnitModels.

The technique of forming a dynamic equivalent for a given group of generating units presumes just

that these units are coherent and connected to a common bus. Coherent generating units have the

same speed co and the same terminal voltage V, for the reason that they are connected to a common

bus because of network reduction [15, 17].

The efficient relations linking the mechanical and electrical output of an individual generating unit

and its speed co and terminal voltage V, , are represented by the block diagram in Fig. 2.5, where

these are considered as input variables.

co

Power

System
Stabilizer

Govemor

+ Turbine

Vs

Excitation

Synchronous
Machine

XD
Pg

Pa+JQo

Rotor

Dynamics

CO

s

Network

Model

Fig. 2.5 Generating unit model.

Definition of variables:

cd frequency deviation.

Pm total mechanical power in p.u.

Pg total active power output in p.u.

Qg total reactive power output in p.u.

V7 terminal voltage.

TT terminal current.

u power system stabilizer input signal.
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Vs power system stabilizer output.

8 angle of machine internal voltage.

The main purpose of the process is to specify the features of this equivalent model, given the model of

each individual unit. This is done by considering separately the rotor dynamics, the turbine-governor

model, the excitation system model, the synchronous machine model, and the power system stabilizer

model. The linear parameters of each equivalent model are numerically settled to get a minimal error

between its transfer function and the sum of the transfer functions of the individual units. The error to

be minimized is the total relative variation of the square magnitudes, for particular discrete

frequencies. The transfer functions to be approximated are indicated in the Table 2.1.

Table 2.1 Open-loop transfer functions to be approximated by the equivalent models

Open-Loop Transfer Function EquivalentModel

Rotor Dynamics

su*»/
/Aa)

Govemor +

Turbine

%
Excitation System +

Synchronous Machine

"y.
Power System Stabilizer

2.7.1 Aggregation Method.

2.7.1.1 Rotor Dynamics Aggregation.

First, the rotor dynamics will be considered, so the mechanical equation for one machine is given as

da.

2/7.
dt

- = Pu, ~ Pr, - D.ú)'

Mj j-.j (2.18)

where

cd is the speed deviation from the synchronous machine.

H is the inertia constant (generator + turbine).

Pm is the mechanical power.

Pc is the electromechanical power.

D is the damping constant.

j is the machine subscript.

Let us notice that all parameters are being referred to the same system base MVA. Under coherency

assumption, all machines of the group have the same speed deviation and for the equivalent is

possible to have

\dco.

bm)^ •*/»-*A-bAh (2.19)

Check that the equivalent inertia constant is the sum of the individual inertia constants and that the

equivalent-damping factor is the sum of the individual damping factors.
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2.7.1.2 Aggregation of the Synchronous Machine.

When both classical and detailed models are in a coherent group, the aggregation will be done

separately, so the classical models (not including the excitation control) are aggregated to form an

equivalent classical unit and the same process will be repeated for the detailed models creating an

equivalent detailed generating unit.

Assuming coherency, two considerations will be made:

■•> The difference of rotor angles between machines of a coherent group continúes constant.

•••> The terminal voltages are the same for each machine of the group, as they are linked in parallel

in the same bus after reducing the coherent buses.

Using these two assumptions, it is feasible to represent a dynamic equivalent as a two-axes model

with one field winding in the direct axis and one damping winding in the quadrature axis. This model

is represented by Fig. 2.6.

Vd

where:

X

\aq

d - axis q
- axis

Fig. 2.6 Two-axes model of the synchronous machine.

id is the direct axis of stator current component.

iq is the quadrature axis of stator current component.

Vd is the direct axis terminal voltage.

Vq is the quadrature axis terminal voltage.

Ría

Xu

Note: All valúes are per unit.

So then, the total electromagnetic power output in p.u. Pg of the coherent group is given by the next

equation:

^«•W.+W (2*20)

where the terminal voltage V and the stator current z for each machine are expressed in its own

reference axes, which are represented by d and q.

Due to the terminal voltage is common, the total electric power could be denoted by:

Pc=VQUQ+VDY.iD] (2.21)
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where the subscripts D and Q correspond to the components on an arbitrary pair of orthogonal axes.

In addition, the equivalent machine can be represented by a two-axes model, thus its electric power

output is:

P =V i +V i1
G

'

QlQ D lD (2.22)

with

o
(2.23)

0 Y¡x,(s)

(the symbol
*

indicates equivalent variables and parameters).

The aggregation of the synchronous machine will be done in two simple steps as follows:

•/ The first step only consists in calcúlate the position of the axes.

S On the second step the parameters of the equivalent model are adjusted independently for

each axis fitting the operational admittance.

2.7.1.3 Aggregation of the Excitation SystemModel.

For the excitation system model, the aggregated transfer function that will be approximated is a

biased sum of the transfer functions for the individual excitation systems. The weighting factor for an

individual excitation system depends on the parameters of the synchronous machine to which it is

connected, and on the parameters of the equivalent synchronous machine. The weighting factors

consider the fact that the field voltage of larger units has more influence on terminal voltage from the

coherent group than the field voltage from small units.

2.7.1.4 Aggregation of the Power System Stabilizer Model.

A power system stabilizer introduces an adjustment to the reference voltage of the excitation system.

It is noticed that coherent groups with generator that have different transfer functions, as steam or

hydro generating unit, or power systems stabilizer with not the same input signal, could not be

aggregated into a simple equivalent unit.

In view of the fact that the input signal m(s) for the entire power systems stabilizer must be equal in a

coherent group, the relation for the equivalent is:

AeDF(s)

u(s)

= G_(s)-G,(s) (2.24)

where

G,r(s) is the linear transfer function of the equivalent excitation system.

Gs(s) is the linear transfer function of the equivalent power system stabilizer.
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2.8 Load Buses Reduction.

At this stage, it is merely considered the reduction of buses which have constant impedance loads.

Some years ago, the most common techniques that had been applied considerably for reduction of

constant impedance loads for the purpose of solving load flow and transient stability were the Ward-

Hale or Gaussian elimination method and the REÍ (Radial, Equivalent and Independent nehvork) method [6].

Owing to the network that represents the original power system is certainly very sparse, the Ward-

Hale elimination technique reduces the number of buses, but there is not certainty that the number of

lines will be reduced too, and this is really significant since the overall computing time.

Nowadays, sparsity techniques have been applied successfully to the network reduction problem in

order to minimize the number of branches which are introduced into the equivalent network [6, 15]. In

this sparsity oriented reduction, it is necessary to identify the key buses which have propensity to be

buses which either have an important number of connections or buses that connect sub-areas that

have few connections to the rest of the system. The procedure which has been the most effective for

identifying key buses is based in the bus elimination order using a sparsity oriented scheme and

finishing the bus elimination when the number of terms in the equivalent admittance matrix begins

growing instead of decreasing.

rc

Subset

ofN <

nodes

(a)

Other

>• active

nodes

(b)

(c)

Fig. 2.7

(a) Original network showing group of nodes that will be converted into a REÍ equivalent.
(b) REÍ network connected to original network.

(c) Equivalent network after elimination of passive nodes.

To explain the basic idea of the REÍ technique it is helpful to add some diagrams (Fig. 2.7). Fig. 2.7a

shows a network at an operating point, which has been established previously, and a subset of N
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active nodes of the network with injections Si, Si,..., Sn (complex power injections) will be converted

into a REÍ equivalent. The first step is shown in Fig. 2.7b where a REÍ network is connected to the N

nodes. After the connection, the N nodes will be passive nodes. The REÍ network has one active node

R, with injection Sr, as well as the N connecting nodes.

The REÍ network has no specific internal structure but it is formed of passive linear elements and has

no connection to ground [6].

The injection Sr is equivalent to the algebraic sum of the N known injections S¡. On the REÍ network,

the real and reactive power losses must be zero and its connection must not change the electrical

conditions of the original network at the solution point. Henee, voltages V¡ from the original nodes

and the flows from the REÍ network into the connecting nodes must be the same as before. In view of

the fact that the internal nodes plus the N connecting nodes are passive, they can all be left out

without affecting the condition at remaining nodes of the original network. So, when the elimination

of the N connecting nodes from the REÍ network has been done, the shape of the modified network

(Fig. 2.7c) will be exactly the same as the original network at the operating point. Sr will substitute the

N power injections, thus the correlation between the powers input-output of the equivalent network

will be also the same as for the original network. It is always possible to créate a REÍ network that

satisfy the previous conditions. The REÍ equivalent design must be in the way so that the original

network does not suffer any changes and the network designmust always obey the Kirchhoff's Laws.

SYNOPSIS.

This chapter summarizes the key concepts to understand the stability problem in power systems,

such as power oscillations, equal-area criterion, load modelling and synchronous machine models are

presented. Additionally, are described the main reasons to develop a dynamic equivalent for any

electric grid, the most important methods to derive power system dynamic equivalents for transient

stablity studies and other main impressions about dynamic aggregation and load buses reduction.
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Chapter 3
ARTIFICIAL NEURAL NETWORKS

Man cannot make the principies, he can only discover them

T. Paine

3.1 Introduction.

The human brain is a network consisting of approximately 2.5 billion processors, named neurons,

which are the essential units of the nervous system. From a classical standpoint, a neuron is a simple

processing unit that receives and combines signáis from many other neurons via filamentary input

paths [1] called dendrites; if dendrites get together they will take the shape of a dendritic tree, and these

dendritic trees are linked to the soma, which is the main body of the nerve cell. The external periphery
of the cell is the membrane. There is another branchlike structure called axon and other structures called

synapses, which connect axons and dendrites from a neuron to those of another one. These synapses

can excite or inhibit travelling signáis between neurons. When synapses are excited above a certain

level, the threshold level, the neuron fires producing an output signal. This signal is sent to other

neurons through the synapses, and these neurons produce their own firing actions, Fig. 3.1.

Axon

Dendritic tree
Axon

hillock

Axonic

Membrane endin9

Fig. 3.1 Representation of a neuron.

Artificial neural nehvorks (ANNs) mimic the brain and they are modelled as its physical architecture.

ANNs consist of many interconnected neurons, or processing elements, with familiar characteristics,

such as input, synaptic strength, activation function, output and bias [1]. The processing of an artificial

neuron is characteristically constrained to a non-linear function, which is able to emulate the firing
action of a real neuron. Making use of the previous conceptions, a mathematical ANN model is

defined as a direct graph including the following properties [2]:

i. A state variable *■ is associated with each node i.

ii. A real-valued weight Wik is associated with each link (ik) between two nodes i and k.

iii. A real-valued bias v¡ is associated with each node i.
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iv. For each node i, a transfer function /[x^w^v^k -¿ i)] is defined, which determines the state of

the node as a function of its bias, the weight of its incoming links, and the states of the nodes

connected to it by these links.

Neurons and synapses are called nodes and links, respectively, and the bias is known as the activation

threshold. Regularly, the transfer function could be written as /lV twaxt
- v,), where f{%) is a

discontinuous step function. The fundamental features of neural networks may be divided into two

groups: the architecture and neurodynamics or functional properties. The architecture is the number of

artificial neurons in the network and their interconnectivity; it will define the network structure. The

neurodynamics of neural networks are how the neural network learns, recalls, associates, and

continuously compares new information with existing knowledge, how it classifies new information

and how it develops new classification if required. Collective and synergistic computation, robustness,

learning and asynchronous operation are some of the characteristics of ANNs [1].

3.2 Artificial Neural Network Classification.

There are two categories in which ANNs could be classified, and they are according to their structure

and learning algorithms. In terms of their structure, ANNs can be classified into two categories:

feedforward networks and recurrent networks. There are two types of learning algorithms: supervised

learning algorithm and unsupervised learning algorithm, also known as self-organizing. This learning

algorithm concerns the detection of unlabeled patterns of a given training set, there are no outputs

known a priori, and the basic scheme is to optimise some criterion. The purpose is to find out or to

classify features or irregularities in the training data without using external aid. Many problems that

require an algorithm to cluster, approximate and compress given information take advantage of these

unsupervised algorithms. The most common unsupervised learning algorithms are

Winner-takes-all learning algorithm.

Adaptive resonance theory (ART).

Hebbian learning.

Self-organising feature maps (SOFM).

Kohonen's SOFM.

An application of one of these unsupervised algorithms (Winner-takes-all), especially for data

compressing, is a learning vector quantizer (LVQ).

Conversely, supervised learning assumes that for every input the output is known a priori. There are

variants of the supervised algorithm, such as:

Competitive learning.

Cooperative learning.

Reinforced learning.

Error-correcting learning.

Markovian (stochastic) learning.
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The general idea about how the ANNs learn during supervised learning algorithm is in this way.

When an input is applied, the obtained output is compared with the desired or target output. From

this comparison, if they do not match, an error signal is generated and used to make parametric

adjustments of the neural network until the desired output becomes roughly equal to the target

output. These adjustments are made based on an optimisation algorithm.

There is a vast and mature field of numeric optimisation techniques; only the types of search methods

that are important for artificial neural networks are described in the following.

3.2.1 Newton's Method.

The method consists of an iterative technique for solving an equation of the form P(x) = 6 ,
however it

can be extended for the optimisation (minimization) of variable functions, as it is next described [3].

Let us consider the quadratic approximation of the function /(Ar)atX = Xj using the Taylor's series

expansión

f(X) = f(X() + Vf(T(X - X,) + l2(X
- x,)T *[J,]{X

-

xt) (3-1)

where [J ¡] = [J ]\x ¡
is the matrix of second partial derivatives (Hessian matrix) of /evaluated at a

point X¡ • By setting the partial derivatives of equation (3.1) to zero,

^ = 0 ;
= L2,...,« (3.2)

8xj

Equations (3.2) and (3.1) give rise to

Vf =Vfl+[J¡](X-Xi) = 0 (3.3)

if [J. ] is non-singular, Equations (3.3) can be solved to obtain an improved approximation (X = XM ) as

XM =X,-[J¡]'Wf¡ (3.4)

Since higher-order terms have been neglected in Eq. (3.1), Eq. (3.4) is to be used iteratively to find the

optimum solution X*

The sequence points X,,X2,...XM can be shown to converge with the actual solution X* from any

initial point X¡ sufficiently cióse to the solution X*, assuming that [Jx ] is non-singular. It can be seen

that Newton's method uses the second partial derivatives of the objective function (in the form of the

matrix [J ¡ ] ), henee it is a second-order method.

3.2.2 GradientMethod.

Contrary to the preceding method, this approach uses only the first derivatives of the objective

function in calculations. Gradient-based algorithms are the most common and important non-linear

local optimisation techniques [3]. The gradient is the vector at a point x that gives the (local) direction

of the greatest increase in" f(x) and is orthogonal to the contour of f(x) at x . For maximization, the
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search direction is just the gradient (named "steepest ascenf); for rninimization, the search direction is

the negative of the gradient ("steepest descení')

sk=-Vf(xk) (3.5)

In the steepest descent at the fc-th iteration, transition from point xk to another point xk+l can be

viewed as given by the following expression:

xk+l =xk + Ax" =xk +Áks" =xk -XkVf(xk) (3.6)

where

Ax* is the correction vector from xk to jc*+i

sk is the search direction; the direction of steepest descent

A* is the scalar that determines the step length in direction sk

The negative of the gradient gives the direction for rninimization but not the magnitude of the step to

be taken. It is assumed that the valué of f(x) is continuously reduced. Equation 3.6 must be applied

repetitively until the minimum is reached. At the mininium, the valué of the vector gradient will be

zero.

3.2.3 Levenberg-Marquardt Method.

This approach was proposed, independently, by Levenberg (1944) and Marquardt (1963), and is

designed specially for non-linear least squares [3, 13]. This method guarantees that the Hessian matrix

is positively defined and well-conditioned. This is done by modifying the Hessian matrix H(x) oí

f(x) on each step of the search. The process adds elements to the diagonal elements of H(x),

R(x) = [H(x)+j3l] (3.7)

where ji is a positive constant greatly adequate to have fí(x) positive definite when H(x) is not. To

ascertain the p valué to be used it is necessary to estimate the smallest eigenvalue (most negative) of

H(x) and make p > -min{a,}, where «, is an eigenvalue of H(x). Note that if p is great enough, ¡SI

can overpower H(x) and the minimization comes cióse to a steepest-descent search.

3.2.4 Simulated Annealing
- Based Global Search.

Simulated Annealing (SA) is a Monte Cario - stochastic - method for global optimisation where the

space is searched in a random rule to avoid finishing in local minima and has demonstrated to be

exceptionally useful in locating the global minimum of objective or cost functions derived from

complex non-linear systems. SA was first proposed by Kirkpatrick, Gelatt and Vecchi [11] in 1983 as a

combinatorial optimisation algorithm. The abstract notion of the process is ruled by the theory of

Markov chains, and the simulation is possible via the Metrópolis algorithm [12]. The central theory of

this method is how a solid-state material is heated up to a temperature waiting for reaching an
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amorphous liquid shape. After that, it is cooled gradually and according to a specific schedule, the

temperature decreases. If the initial temperature is high enough to ensure a sufficient random state,

and if the cooling is slow enough to ensure that thermal equilibrium is reached at each temperature,

then the atoms will arrange themselves in a pattern that closely resembles minimum global energy.

This combinatorial optimisation algorithm has a primary feature, a generation mechanism which

selects a solution ;' from the neighborhood S¡ of the solution i. The method does not require gradient

information, so it is appropriate for a wider variety of functions than the stochastic methods.

3.2.5 Genetic Algorithms.

Genetic algorithms (GA) are global (stochastic) optimisation algorithms based on the mechanics of

natural selection and natural genetics and were initially formulated by Holland (1975) [14, 16]. GA

originally operated on a binary level and are extremely similar to nature, where the information is

coded in four different bases ("A", "G", "C", "T") on the DNA. Genetic algorithms start with an initial

set of random solutions called population. Each individual in the population is named a chromosome,

representing a solution to the problem. A chromosome is a set of genotypes, which store the

characteristics of solutions. The chromosomes grow due to successive iterations labelled as generations.

The objective function (fitness measuring criterion) determines the suitability of each solution.

Founded on these valúes, some of them are selected for reproduction. Genetic operators are applied

on these (selected) parent chromosomes and new chromosomes (offspring) are generated. The

operators frequently employed in GA are selection/ reproduction, crossover, and mutation which are

used to genérate a new population. Some of the parents form offspring by rejecting others to keep the

population size constant. Fitter chromosomes have higher probabilities of being selected. After several

generations, the algorithm converge to the best chromosome, which hopefully represents the

optimum or sub optimum solution to the problem.

3.3 Feedforward Networks.

In this kind of ANNs neurons are usually clustered into layers. Signáis nm from the input layer

through the output layer due to unidirectional connections, the neurons being connected from one

layer to the next, but not to the same layer. The multi-layer feedforward nehvork is responsible for most

of the successful applications of neural networks [5] and is certainly the most commonly used neural

network. The best example of feedforward network is the multi-layer perceptrón (MLP) network.

However, there are many other types of feedforward networks as the learning vector quantization

(LVQ) network, the cerebellar model articulation control (CMAC) network and the group-method of data

handling (GMDH) network.

Other ANNs as Perceptrón and Adaline which were developed before and were the heart for the multi

layer perceptrón will be described in the following.
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3.3.1 Perceptrón Network.

This is the first arficial neural network model and was developed by Frank Rosenblatt [1,2,6,7,9,10] by

the end of the 50's. This ANN is able to learn and recognize simple patterns; moreover, it is capable of

separating many learning patterns into two classes. Its architecture is very simple. A perceptrón is a

linear gate, which consists of one exit neuron that can add up the entries, subtract the threshold and

send the result through a transfer function which is a unit step function. Fig. 3.2 illustrates the single

Perceptrón model.

Bias = 1

Lo = e

Nonlinearity

Fig. 3.2 Single Perceptrón model.

The decisión rule is +1 if the answer fits the pattern of one class or -1 if fits in other class. The output

valué must depend on the total entry, (which are the entries x- added up and multiplied by the

weights Wi), and the threshold valué 6 . It can be represented in a better way by the following

equations.

y=i

+ \\iYjwix¡>9
7=1

- lif ]>,.*,. <£
(3.8)

í=i

The technique to analyse the geometric reasoning for ANNs as perceptrón is to represent on a map the

"decisión regions" created inside the multidimensional space in the network. In these regions patterns

belonging to each class are visualized. The perceptrón separates the regions using a hyper plañe

which equation is determined by the weights and the given activation threshold. Figure 3.3 can help

to visualize the technique.

X2

• =Yes

O
= No

I I I I I I NI *

Fig. 3.3 Sample from two linearly separable classes.
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For a bidimensional example, the perceptrón network classifies data according to:

[Yes if vv,*, + w2x2 £ 0

[No otherwise

Therefore, it separates the space into two halves, as it is shown in Fig. 3.3. The perceptrón network

possesses a learning algorithm which is one from the supervised type. During the training, the

perceptrón must adjust the weight and the threshold valúes, in which most of the times it is

convenient to consider the threshold valué as a weight 9 = w0 .

Perceptrón Training Algorithm.

This learning procedure is described by five steps, which are summarized as follow.

•/ STEP 1. Initialise valúes.

Start with randomly chosen weight valúes w¡, and the threshold valué is taken as 9 =-Wo.

/ STEP 2. Set the input and output valúes.

Set the new input patterns x¡
=

(x\, ...,xn) and the target output d(t).

■S STEP 3. Calcúlate the actual output valué.

The output valué can be determined as follows:

2>.-(o**,(o-0
L ¿=i

(3.9)y(t)=f

where f(x) is the unit transfer function.

•/ STEP 4. Update weights using the iterative relationship. This will be done using the next

equation.

w, (t + 1) = w, (í) + a[d(t) - y(t)]xt (t) (3.10)

(0</<«-l)
where,

d(t) corresponds to the target output.

y(t) represents the actual output.

a corresponds to the gain factor or the learning rate.

The learning rate must be amid 0 and 1.0; it is adjusted to satisfy the quick learning requirement such

as the stability and the estimation weights. This process is repeated until the errors produced by each

pattern equal zero.
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STEP 5.

Repeat step 2-4.

3.3.2 Adaptive Linear Neuron or Element (ADALINE) Network.

Almost simultaneously to the perceptrón network, Adaline network was developed; BernardWidrow

was its designer. Its architecture is roughly the same as the perceptrón network. The basic difference

among them is concerning to the learning algorithm. Adaline network uses the "Widrow-Hoff Delta

rule", which is based on the error expression between the target output and the linear output obtained

before applying the transfer function. Another special feature that makes the difference between

Perceptrón and Adaline is the transfer function. For the Adaline network the common transfer

function is the sigmoid function. The main reasons motivating the use of an s-shaped sigmoid function

are that it is continuous, monotonically increasing, invertible, everywhere differentiable and

asymptotical; Fig. 3.4 depicts sigmoid function defined as

f(y) =
l + e~

(3.11)

Fig. 3.4 A sigmoid function.

An Adaline is a simple system that accomplishes classification by adjusting weights in order to reduce

the mean squared error (MSE) at every iteration [6]. This can be done using gradient descent. In other

words, the Adaline model compares the actual output R with the target output T; this is based on the

mean-squared learning algorithm where the weights are adjusted and the error function is

E = T R (3.12)

The main objective is to adjust the weights so that the MSE is reduced through the next equation:

a8x. (3.13)

where,

8 is an increment

íu-jis the weight vector.
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x is the input vector.

a is the learning rate.

An Adaline model is illustrated in Fig. 3.5; this model will be used to explain the Widrow-Hoff Delta

rule.

Xn

Xj

Wx

Xn XVn

R = wTx

Adjust weights

Adaptive

algorithm

E = T-R

Hardlim

f=sgn(»)

y
=

sgn(w'x)

Nonlinearity

Output
error

generator

where,

TEACHER

Fig. 3.5 Adaline model with Teacher.

x*
=

[xi, X2, . . . , xn ] is the input vector.

W]
= [w\, iV2, . . . , wn] is the inputweight vector.

R is the output of the neuron preceding the nonlinearity.

O is the output from the neuron following nonlinearity.

T is the target signal (this, along with the input signáis, produces the error or learning signal

used only during training).

E is the output error used during learning.

Adaline Training Algorithm.

For Adaline network the learning rule which is frequently used is the Widrow-Hoff Delta rule (a-

LMS). This algorithm is based on an approximate steepest descent procedure [1, 2, 5]. The or-LMS

algorithm estimates the MSE by using the squared error at each iteration. Subsequently, the learning

algorithm is described.

1. Assign random weight valúes.

2. Apply the selected input and the target output to the model.

3. Determine the error signal.

4. Adjust the weights based on equation (3.10) then, the error will be reduced by 1/n, where n is

the number of weights.

5. Repeat the procedure expecting the error to become zero.
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6. Repeat the procedure for the next set of inputs.

3.3.3 Recurrent Networks.

In these networks, the outputs of some neurons are feedback for the same neurons or they can also be

feedback for neurons on preceding layers. Therefore, signáis can run in both directions, forward and

backward. A special feature of this kind of networks is their dynamic memory; it means that their

outputs at a given moment reproduce the recurrent input in addition to previous inputs and outputs.

Some examples of recurrent networks are the Hopfield network, the Elman network and the Jordán

network.

3.3.4 Multi-Layer Perceptrón (MLP) Network.

The arising of multi-layer perceptrón (MLP) was mainly due to the limitations of the Perceptrón and

Adaline Networks to solve complex problems. An example of these problems is that Perceptrón or

Adaline networks cannot differentiate between two linearly separable sets of patterns such as the

solution to the Exclusive-OR function, as it is shown in Fig. 3.6.

'o

«-<►

No separating

hiperplane exists

Fig. 3.6 Exclusive-OR function.

Other comment against the Perceptrón and Adaline network is that for a different set of input patterns

a different network has to be trained. Thus, these are some of the main reasons to develop an ANN

that solve non-linear problems; this can be done connecting neural networks as Perceptrón and

Adaline in such a way that linear combinations are able to solve problems as an Exclusive-OR

function or the square doughnut problem, Fig. 3.7.

Ax2
"Square

doughnut
"

No

i es

No

►Xi

Fig. 3.7 Squared donut.

According to the limitations and the seriously limited capabilities of ANNs such as Perceptrón and

Adaline, the multi-layer Perceptrón (MLP) was developed with the purpose to overeóme these

limitations. Henee, the supervised learning algorithm for Perceptrón and Adaline must be renewed to
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be used in MLP. The learning algorithm made for MLP is the Back-Propagation (BP) learning algorithm

which was developed independently by Amari (1967, 1968), Bryson and Ho (1969), Werbos (1974) and

Parker (1985) [1, 2, 5, 9 ,10]. Fig. 3.8 shows the BP applied to a feedforward ANN.

Hidden

layer

Output

layer

Fig. 3.8 Feedforward MLP.

There are some interesting features about the MLP structure. From Figure 3.8, each circle represents

an artificial neuron. The transfer function of each one is generally the same for all the neurons. The

neuron's number usually differs for each layer and it has a high dependency with respect to the

problem which is going to be solved. A typical multi-layer perceptrón ANN contains from 3 to 4

layers taking into account the input layer. In Table 3.1 a feedforward artificial neural network is

defined with two layers of neurons.

Table 3.1 Feedforward ANN with two layers of neurons.

Layer Index Input Weights Weighted
Sum

Output Target

Output

Output

Middle

(hidden)

Input

°nJ = AynJ )

Xn

vv„

w,

^=S-»o, 0,-4yj r„

=1 W
Ji Xm

;=0 0»j
= s(y»j )

3.3.5 Back-Propagation Learning Algorithm.

As it is previously mentioned, the BP algorithm is one of the most frequently used supervised

learning algorithms for feedforward ANNs. The aim is to adjust the weights w, and w in such way

that the error function is minimized over the training set. The creation of this supervised learning

algorithm was a consequence of the drawbacks that the gradient-descent algorithm had demonstrated

to be capable of updating the weights of the hidden layers; this was due to the hidden layers have not
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available target valúes (desired outputs). BP is a gradient-descent-based learning procedure for

minimizing the sum of squared error criterion function in a feedforward-layered network of sigmoidal

units. A total procedure for updating the weights in feedforward ANNs applying the BP learning

algorithm is summarized underneath, this procedure is for a two-layer architecture [5].

A. Initialise all weights, wt and w *( .

B. Set the learning rate to a small positive valué.

C. Select an input pattern xk from the training set (preferably at random) and spread it through

the network.

D. Use the desired target d^ associated with xk and compute the output layer weight changes

Aw¡ , applying the next equation.

Awa
= w™ -w¡=-a^ = a (d ,

-

y, )/0 {net , )z , (3.14)

E. Employ the next equation to determine the hidden-layer weight changes Aw .

f'h(net J)xi (3.15)Aw
.,
= a __] {d, -y,) fii.net ,w/y)

.

'=1 J

F. Update all weights according to the next equation.

WT
= w¡ + Awij and wT

=

wCji + Awj¡ (3-16)

for the output and hidden layers, respectively.

G. Test of convergence, which could be done by checking some pre-selected function of the

output error to see if its magnitude is below some preset threshold. If convergence is met, stop;

otherwise, Wj¡
=

W¡t and W/y
=

w¡j , and go to step C. A convenient selection is the root-

mean-squared (RMS) error.

where,

1 = 1,2 L

j
= 0, 1, . . .

, J

a is the learning rate.

L is the 1-th output layer.

/ is the j-th hidden layer.

w, is the weight of the Z-th hidden unit associated with hidden signal z t
.

w is the weight of the;-th hidden unit associated with hidden signal x, .

w"m and wi represent the updated (new) and currentweight valúes.

d¡ is the Z-th component of target vector.
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y, is the Z-th component of unit (neuron) output.

net,
= V w¡j Zj , is the weighted sum for the Z-th output unit.

f n \

Zi=f» ¿,W9Xi =fÁnetj)
\ í=-0 /

/„ is the derivate of /„ with respect to net.

f0 is the activation function for each unit of the output layer.

fh is the activation function of the hidden units, usually a hyperbolic tangent or logistic

function.

3.4 Some examples related to ANNs.

Ex 1. At this stride some smooth examples concerning the application of ANNs are illustrated. The

first illustration (Fig. 3.9), corresponds to Perceptrón networks. For this simulation, eight patterns

which previously have been classified (circles or crosses) are distributed on the x -

y plañe. The

network must be robust enough to know how to divide the plañe into two sections. Afterwards,

another pattern is marked on the plañe and the network can recognize the type of input

corresponding (circle or cross). This is a peculiarity of ANNs; it could be said that the artificial neural

network possesses a memory system that can envisage the output to which the new pattern

corresponds, to distinguish this pattern it is marked as a triangle. This model is able to unravel many

learning patterns as the user settles into two classes and another pattern can be added to the plañe to

be identified.

There are four cases for the same example. It is observed in Fig. 3.9 (d) that the network is not capable

of finding a separable gap between them, so the pattern that will be marked after the training

procedure will never appear; this is a limitation for this Perceptrón network.

(b)
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o

+ ^y

+ o ^y

^y +

%y

-4-3-2-10123

(c) (d)

Fig. 3.9 Classified vectors by a perceptrón network.

Ex. 2 In the following an Adaline network is used. The application of this network will be used for

pattern recognition; to be more specific the Adaline will classify digits from 0 to 9, according to some

previous important information that has been settled by the programmer such as the number of

layers, the number of units per layer, the activation function for each layer or unit, the learning rate,

the error to finish training amongst others parameters. To identify digits, a diagonal matrix is used;

the following matrix endoses data which Adaline network distinguishes. For example, if data input

are [0 0 0 0 0 1 0 0 0 0] the Adaline can recognize to which number it refers to; it denotes number 5. If

the next matrix represents input patterns,

Input =

yes no

no yes

no no

no no

no no

no

no

no

no

no

no

no

no

no

no

no no

no no

yes no

no yes

no no

no

no

no

no

no

no

no

no

no

no

no no

no no

no no

no no

yes no

no yes

no no

no no

no no

no no

no

no

no

no

no

no

no

no

no

no

no

no

yes no

no yes

no no

no no

no no

no no

no no

no no

no no

no no

no no

no no

yes no

no yes

Thus, the answer given by the Adaline network is:
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If the input data arrange is changed, the results will be completely different, based on evident reasons.

Ex 3. For next case a back-propagation network with bias terms and momentum is used. Momentum is

a simple term that helps to accelerate the algorithm convergence and it is introduced in the weight

updating equation (Equation 3.10). This network will be used to predict the annual number of

sunspots (time-series forecasting). To get a general visión regarding to sunspots a concisely

description will be done.

Every 11 years the sun experiences a period of activity named solar máximum, followed by a period of

calm called the solar minimum. During the solar máximum, there are many sunspots, solar fiares, and

coronal mass ejections, all of which can affect Communications and weather here on Earth. One way to

track solar activity is by observing sunspots. Sunspots are relatively cool áreas that appear as dark

blemishes on the face of the sun. They are formed when magnetic field lines just below the sun's

surface are twisted and push through the solar photosphere. The twisted magnetic field above

sunspots are sites where solar fiares are observed to occur [8].

ANN will forecast the sunspots for 20 years (from 1960 to 1979). Input patterns will be annual number

of sunspots for the 280 subsequent years. The main characteristics for this network are: it has three

layers, in which the first one -

input layer
- contains thirty neurons or units, the second one has ten

neurons, the hidden layer and the final layer just holds one unit. The momentum is set up at 0.5 and
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the learning rate is 0.05. The transfer function used is a sigmoid function. The first weights valúes are

chosen randomly.

The results after the network has been trained for 320 epochs are the following (Table 3.2). The MSE

on training setwas 0.141.

Table 3.2 Sunspot forecast.

YEAR SUNSPOT PREDICTION

1960 0.572 0.532

1961 0.327 0.334

1962 0.258 0.158

1963 0.217 0.156

1964 0.143 0.236

1965 0.164 0.230

1966 0.298 0.263

1967 0.495 0.454

1968 0.545 0.615

1969 0.544 0.550

1970 0.540 0.474

1971 0.380 0.455

1972 0.390 0.270

1973 0.260 0.275

1974 0.245 0.211

1975 0.165 0.181

1976 0.153 0.128

1977 0.215 0.151

1978 0.489 0.316

1979 0.754 0.622

Ex. 4 In the next example, a cone is formed and the ANNs will attempt to simúlate it. The artificial

neural network that will be employed has the next characteristics:

*' It is a multi-layer feedforward network.

-/ It possesses one input layer with four elements.

•*/ It includes two hidden layers each one with 20 neurons.

•/ A tangent-sigmoid transfer function is used for the input and hidden layers.
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S A linear transfer function is applied for the single output layer, and

S The Levenberg-Marquardt algorithm is used for training the net.

Fig. 3.10 illustrates the cone reproduced by the ANN without training, and in Fig. 3.11 is presented the

resultant shape of the cone after it has been trained during 200 epochs and for a MSE equal to le-5.

Fig. 3.10 Cone without training. Fig. 3.11 Cone trained.

Ex 5. Other examples are employed to exemplify a multi-layer perceptrón network.

A 2-layer, feed-forward network is employed. The problem is made of one input variable X and one

target variable T, with data generated by sampling X at equal intervals and then generating target

data by computing sin (2*7t*X) and adding Gaussian noise. The network with linear outputs is trained

by minimizing a sum-of-squares error function using different optimisation algorithms. All examples

have one input unit, three hidden units and one output unit, a linear output unit activation function is

used, the hidden units are activated by a tangent-hyperbolic function and are trained for 500 epochs.

The first example, Figure 3.12(a) is trained using a scaled conjugated gradient optintiser. Figure 3.12(b)

and 3.12(c) are trained applying the quasi-Newton optimisation approach and the conjúgate gradient

optimisation method, respectively. All examples are trained with the same momentum and learning

rate, 0.5 and 0.05 correspondingly.

1 5
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Fig. 3.12 Plot results.

As it is noticed in the plot results, the ANN is competently trained for the main purpose not with

standing the optimisation approach applied.

Ex. 6 The next example studies the identification of a RLC circuit that is done using an ARX

(AutoRegressive, eXtra input) model structure; the RLC circuit is illustrated in Fig. 3.13.

CL

-nsaxT1

Ui■o ■■

Fig. 3.13 RLC circuit.

Where /,(/) and i2(t) are the current signáis, [/,(<) and U2(t) are the input signáis. The input signáis

are considered as a pseudorandom binary signal (PRBS), which is a periodic, deterministic, random

process that assumes only two valúes with white-noise-like properties. Fig. 3.14 shows a PBRS.

0123456789
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Fig. 3.14 A Pseudorandom binary signal.

The R, L, C elements are defined as

• R is the resistance valué in ohms, 1.5.

• L is the inductance valué in henries, 0.25.

• C is the capacitance valué in faradays, 0.5.

For this RLC circuit the state space variables are the loop current, /,(/) and the voltage in the

capacitance element, Vc(t) . The transfer functions for this RLC circuit from input 1 to output 1 and 2

are given by

45 + 5.333

1

s2 + 1.3335 + 8
,31~

-

4.S

52 +1.3335 + 8

and from input 2 to output 1 and 2

45

*(0 =

s2 +1.3335 + 8
(3.18)

-0.66675-45

y*
~

s2 +1.3335 + 8

The ARX archetype structure is a parametric model, in which the purpose is to obtain the coefficients

from the transfer functions. The parameters can be estimated applying a linear least squares technique

since the predictor error is linear in the parameters. The ARX model is depicted in Fig. 3.15, and is

described by

A(q)y(k) = B(qMk) + v(t) (3.19)

where A(q) and B(q) represents matrix polynomials in the time operator q, u(k) is the input vector, y(k)

is the output vector and v(t) is the noise signal.

The optimal ARX predictor is defined by [4]

y(k\ic
-

1) - B(q)u(k) + (1
-

A(q))y(k) (3.20)

which can be written as

y(k\k-\) = biu(k-l) + ... + bmu(k-m)-a]y(k-l)-...-amy(k-m) (3.21)

assuming that deg(A) = deg(B) = m.
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The ARX predictor presents a characteristic that makes it unique; it is always stable even if the ARX

model is unstable. This distinctive feature shows because the predictor does not possess feedback.

v(k)

Wr
-

•flfe)
1

Aq)

AK
—

►*

Fig. 3.15 ARX model.

An artificial neural network is trained with the objective of forecasting and obtaining the state space

variable valúes. The ANN structure consists of two signáis for the input layer, one hidden layer that

has three neurons and two signáis for the output layer. This ANN is a multi-layer feedforward

network that is trained for 1000 epochs as máximum, using the Levenberg-Marquardt optimisation

algorithm, a tangent-sigmoid transfer functions are used for the hidden layers, and linear transfer

functions are applied for the output layers. All data before been applied to the ANN are scaled; this is

zero mean and variance 1; this is done with the objective of not having a too dominating magnitude

from the largest signal. Besides, scaling data makes the algorithm training robust and leads to a faster

convergence. The ANN is trained for the first 500 samples in both inputs (PRBS) and output signal,

and the next 200 samples over the state space variable valúes (ix(t) , Vc (t) ) are predicted. The results are

illustrated in Fig. 3.17.

Hidden Layer

Fig. 3.16 ANN used for the RLC circuit example.
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Fig. 3.17 Comparison between output and prediction valúes.

SYNOPSIS.

In this chapter the foundations of artificial neural networks are reviewed, the mainly universal

category of them such as Perceptrón, Adaline and MLP and their corresponding training algorithms

are illustrated. It is confirmed that the best ANN that use supervised learning is the multi-layer

perceptrón network due to its capability for solving all the problems and sundry them where they

were showed off. Perceptrón and Adaline, primarily the first one, presented trouble for solving the

Ex.l described, so its limited capabilities are corroborated. It is also surveyed the principal optimiser

algorithms apply to artificial neural networks and their principal advantages and disadvantages

concerning each other. An example application for a RLC circuit is presented and it is the beginning
for the next chapter, where more applications are described.
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Chapter 4
MODAL AND NEURAL DYNAMIC EQUIVALENTS

Imagination is more important than knowledge.

A. Einstein

4.1 Introduction.

Researchers have made many proposals to construct dynamic equivalents based on identification,

modal analysis, empirical simplification, coherency or using singular perturbation theory just to

remark some of them. Actually, these methodologies are well known and have been analysed by

many people. The major techniques that have been most contemplated to solve dynamic equivalents

are: modal analysis, coherency and identification [1-14].

The central point of modal techniques is to represent sections of an unwieldy scale power system

model by equations which are easier to solve and have the peculiarity to be more computationally

manageable than the regular nonlinear differential/algebraic equations for transient stability studies.

Such approaches are based on a linearized versión of the power system dynamic model,

understanding that the total dynamic response is composed of elemental blocks, labelled as natural

modes.

The coherency procedure is applied to generator buses for reducing their number. The purpose is to

evalúate the best way in which those groups can be recognized. Generally, if the angular differences

of two generator buses are invariant over a certain period, with a predefined tolerance, these

generator buses are recognized as coherent. Normally, coherency measures are used to this intention,

and those that have offered high-quality results for dynamic equivalents are based on the internal

voltage angle deviation.

The identification technique relies on the determination of the essential characteristics of a dynamic

system by monitoring the response of system variables to random system inputs, either natural or

intentional. This technique is different from the others due to information of the external system is not

required so this could be seen as an advantage. The fundamental nature of identification approaches

consists of matching signáis from an actual system that is under random disturbances, with the same

signáis calculated on a reduced model of the system, and adjusting this one to reduce the difference.

For many years such approaches have been an important guidance for many authors so that many

other techniques, which are related to these ones have emerged to determine the problem such as

neural networks [17-20] and statistical approaches [15, 16].

In the following, a methodology based on modal analysis is described and proposed for reducing the

external system to a few generator nodes. The reduced model obtained, preserves the modal structure

of the study system.
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In this chapter two propositions are made to construct robust dynamic equivalents: (a) based on

preserving those electromechanical modes related with the studied system; (b) based on forecasting

voltages at frontier nodes through neural networks.

Robustness in this context means that the Dynamic Equivalent is able to reproduce, as cióse as

possible, results of the full system in face of different operating conditions and faults location.

4.2Modal Equivalent.

The dynamic equivalents main objective is to reduce the external system, preserving only the frontier

nodes. That is, those nodes of the external system linked with nodes of the system studied. At frontier

nodes, fictitious generators are located. Constraints are related to the loss of rninimum information on

electromechanical modes of the system studied [5].

4.2.1 Steady state.

First, the preservation of the steady state must be verified. In this work the option of eliminating all

nodes of the external system, except the frontier nodes, was taken. The complex power that should

inject the fictitious generators at such nodes is calculated by a load flow study. Therefore, the nodal

balance equation yields

£/>,y+/fe/+iV,=a,Vie/ (4.1)
JeJ

where I is the set of frontier nodes, / is the set of nodes linked to the ith frontier node, P¡¡ is the active

power flowing from ¿th to ;'th node, Pg- is the generation at the z'th node and PU is the load at the ith node.

The voltages of these nodes are adjusted to those valúes calculated in the steady state study. This

procedure has the advantage of avoiding the aggregation of generators, as in the classical equivalency

methods, Section 2.7.1.

4.2.2 Proposition.

The model of the equivalent generators located at the frontier nodes can be of any order. For the sake

of simplicity, a fourth order model is applied

dt
°

dS

dt

dt Tj

dE\ i f
, (4*2)

dt T
íl0

dE\ 1 r 1

V-r-f-'.-e. -*'->'.]

dE/n
_ 1_

dt T~ \rEM+K_(y^+v.-v,_]
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where S is the power angle position, co is the angular speed, H is the inertia constant, Eq and Ed are

the transient electro-motive forces (emfs), Id and Iq are the d-axis and q-axis armature currents, Efd is

the excitation voltage, T'd0 is the d-axis open-circuit time constant, T'q0 is the q-axis open-circuit time

constant, Xd is the d-axis synchronous reactance, X',, is the d-axis transient reactance, Xq is the q-

axis synchronous reactance and X'q is the q-axis transient reactance, Ka is the gain and Ta is the time

constant of the static excitation system.

As can be noticed, a static excitation system is included. The model parameters to be estimated are: (a)

inertia constant # ; (b) steady state and transient reactances Xdeqí,X'deq¡ , X í., X'geql ; (c) damping

factor D^,; (d) time constants, 7"rf0e9, ,T'g0 ¡ ,Ta; (e) gains Ka So that, ten parameters are associated

with each equivalent generator. They are estimated through an optimisation procedure. The full

multi-machine power system model linearized around the fcth equilibrium point is represented by the

state space equation

X = AkX + BkU,y = CkX (4.3)

where: x e Rn is the state space vector, u e Ri is the input signal vector, and x e Rp is the output

signal vector. Let us define Ar k
as the state space matrix of the corresponding linearized reduced

model around the /cu-, equilibrium point, when just generators of the studied system and some

fictitious generators -representing the external or reduced subsystem- are retained. Therefore, in this

work the dynamic equivalent is calculated solving the following minimization problem

min]T{A(Ak)-;i(Ark)} (4.4)
keK

where K is the set of operating conditions under study; A(Ak) is the set of electromechanical modes

with relevant contributions of generators of the studied system; this set is evaluated just once for each

operating condition. A(Ar , ) is the associated set of electromechanical modes of the reduced system;

this set is evaluated each time is required by the optimisation algorithm, in order to adjust the

equivalent generators' unknown parameters. That is, the proposition is based on matching, as cióse as

possible, the set of electromechanical modes related with the studied system evaluated for the full

system on different operating conditions A(Ak), with the corresponding set of electromechanical

modes for the reduced system through the minimisation process, the unknown parameters of the

equivalent generators are estimated, until Eq. (4.4) reaches a minimum.
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4.2.3 Levenberg
- Marquardt Algorithm.

To solve the problem posed in Eq. (4.4) several methods can be tried, but only two of them are

considered appropriate in this work: (a) the Levenberg-Marquardt Algorithm; (b) Genetic Algorithms.

Within the conventional optimisation methods, the Levenberg-Marquardt method was preferred due

to its robustness, although another one may be useful. The optimisation problem can be expressed as a

sum of squares

J(x)=[r(x)f[r(x)] (4.5)

where x is the vector of unknown parameters. To rninimize }(x) it is necessary to differentiate (4.5) and

equate to zero, itmust satisfy the non-linear equation

= -2[F(X)fr(x) = 0 (4.6)
.t-t

is the Jacobian matrix.

jt=.t

One method of solving (4.6) is based on the Taylor series approximation of r(x) around a nominal

point x° , i.e.

r(x) = r(x°) + F(x°)[X-x0] (4.7)

Substituting (4.7) into (4.6) it yields

[FT(x0)F(x0)][Z-x°l = FT(x0)r(x0)

[FT(xq)F(xq)][Axq+1] = FT(xq)r(x")

with update valúes xq+l -xq +Ax'+1 The iterations of (4.8) are continued until J(x) approaches the

minimum. The method of estimating & by solving (4.8) is also called the Gauss-Newton method.

According to the Levenberg-Marquardt algorithm [22], (4.8) may be solved by adding positive

numbers to the diagonal of the matrix FT (xq)F(xq) in case of oscillatory behaviour in convergence

and/or ill-conditioning of the matrix. So, (4.8) becomes

[FT(xq)F(xq) + aD]Ax"+l =FT(x")r(xq) (4.9)

where D is a diagonal matrix and the constant a > 0 . A small a gives a Newton' s step and a large a

gives a steepest descent step. We adjust a by comparing the actual reduction AJ(X) in the sum of

squares, to the reduction that would have occurred if the linear model

dJ(x)

dx

where F(x) = _i*£
dx
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r(x° +Ax) = r(x°) + F(x° )Ac (4.10)

had been precise.

A test for optimality of the point xq often carried out is: if
dJ(x")

<e , xq is optimum and henee

dx

stops the process. Smaller convergence valúes (e) result with the best estimation of the model

parameters' model.

4.2.4 Genetic Algorithm (GA)

Genetic algorithms are global, randomised search techniques based on the mechanics of natural

selection and natural genetics [23]. They were developed to allow computers to evolve solutions to

difficult problems, such as function optimisation and artificial intelligence. In a GA, solutions

represented by data structures called individuáis are evolved, and new population of individuáis are

created. Every individual is assigned a fitness measure that characterizes how it compares to other

individuáis in the same population. In general, the fittest individuáis of any population tend to

reproduce and survive to the next generation, thus improving successive generations. However,

inferior individuáis can, by chance, survive and also reproduce. Genetic algorithms have been shown

to solve linear and non-linear problems by exploring all regions of the state space and exponentially

exploiting promising áreas through mutation, crossover, and selection operations applied to

individuáis in the population [24]. During the course of an algorithm run, population with improved

solutions are evolved until a stopping criterion is met. Algorithms for function optimisation are

generally limited to convex regular functions. However, many functions are multi-modal,

discontinuous, and non-differentiable. Stochastic sampling methods have been used to optimise these

functions. Whereas traditional search techniques use characteristics of the problem to determine the

next sampling point (e.g., gradients, Hessians, linearity and continuity), stochastic search techniques

make no such assumptions. Instead, the next sampled point(s) is (are) determined based on stochastic

sampling/decisión rules rather than a set of deterministic decisión rules. Genetic algorithms have

been used to solve difficult problems with objective functions that do not possess nice properties such

as continuity, differentiability, satisfaction of the Lipschitz condition, etc. [25]. Selection procedure

may créate a new population for the next generation based on either all parents and offspring or part
of them. A sample space is characterized by two factors: size and ingredient (parent or offspring). The

regular sampling space contains all offspring but just part of parents. The enlarged sampling space

contains whole of parents and offspring. Sampling mechanism concerns the problem of how to select

individuáis from sampling space. Three basic approaches have been used to sampling individuáis:

stochastic, deterministic and mixed sampling. Selection probabilihj concerns how to determine selection

probability for each individual. In proportional selection procedure, the selection probability of an

individual is proportional to its fitness. This simple scheme exhibits some undesirable properties.

Scaling and ranking mechanisms are proposed to mitígate these problems. Genetic algorithms have
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proved to be a versatile and effective approach for solving optimisation problems. Nevertheless, there

are many situations in which the simple genetic algorithm does not perform particularly well, and

various methods of hybridisation have been proposed. For many optimisation problems there are

múltiple, equal, or unequal optimal solutions. A simple GA cannot maintain stable populatíons at

different optimal of such functions. In case of optimal solutions with equal fitness, sampling errors of

GA operators cause the population to converge to a single solution. However, in the case of unequal

optimal solutions, the population invariably converges to the global optimum. A simple GA with no

niching will converge to a single optimum. Whereas a modification of the GA process with niching

helps in maintaining subpopulation near the global and the local optimal.

The availability of altérnate solutions is of great practical utility. To achieve this objective, it is

essential to introduce a controlled competition among different solutions near every locally optimal

región. This would maintain stable subpopulation at such optimal regions. This could be

accomplished by incorporating the concepts of niche and species into the GA search process. For the

optimisation of the objective (4.4), a real-valued alphabet was employed in conjunction with the

selection, mutation and crossover operators. Initialisation of the population was done by generating

random strings with the search space.

4.2.5 Example.

A testing system having 68 nodes, 16 generators and 86 lines is used to show the applicability of the

proposed methodology, Fig. 4.1 [21].
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The subsystem on the right side of the dotted line is considered as the system under study.

Consequently, the subsystem on the left side is the external system. So, there are two frontier nodes (1

and 9) and three frontier lines (1-2, 1-27 and 9-8). Fig. 4.2 depicts an equivalent network including two

fictitious generators at nodes 1 and 9. Models including transient effects on d and q axes are

considered for all generators, which are equipped with static excitation systems, Eq. (4.2). For

simplicity, the gains Ka
= 50 and the time constants Ta = 0.02. Thus, the models' dimensión is n

= 80.

JU \f\,. uu tjyUl^ JN57 JN«

IL © ©

MM N10

0

©

Fig. 4.2 Reduced model.

0

To design robust dynamic equivalents, three operating conditions are taken into account. As an

example: (a) case 1, according to [21]. (b) Transmission lines 3-18 and 25-26 are out of service, case 2. (c)

Transmission lines 4-14, 16-17, and 25-26 are out of service, case 3.

Table 4.1 shows the main electromechanical modes for the full system associated with the three

operating cases taken as example. Employing the Levenberg-Marquardt algorithm, Table 4.2 exhibits

the estimated parameters for the fictitious generators, under the afore mentioned considerations.
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Table 4.1 Main modes associated with the study system under three operating cases.

Casel Case 2 Case 3

-0.6328 ±j 9.7121 -0.0578 ±j 6.1957 -0.1689 ±j 5.2650

-0.6552 ±j 9.6514 -0.1433 ±j 6.5962 -0.1019 ±j 6.6916

-0.7552 ±j 9.5476 -0.2555 ±j 7.4775 -0.2631 ±j 7.5026

-0.3968 ±j 8.4562 -0.4817 ± 7.6959 -0.4905 ±j 7.6875

-0.2632 ±j 8.0498 -0.2724 ±j 8.0581 -0.2938 ±j 8.0800

-0.3108 ±j 8.0446 -0.3283 ±j 8.3308 -0.3338 ±j 8.3386

-0.4764 ±j 7.6989 -0.7795 ±j 9.5381 -0.8119 ±j 9.5309

-0.0956 ±j 6.9659 -0.6498 ±j 9.6555 -0.6515 ±j 9.6569

-0.0826 ±j 6.5801 -0.6371 ±j 9.7269 -0.6464 ± 9.7301

Table 4.2 Estimated parameters for the equivalent generators

Generator Eq. 1 Generator Eq. 2

Xd_l = 0.1260 Xd_2 = 0.1394

X'd_l = 0.1063 X'd_2 = 0.0001

T'd0_l = 5.0132 T'd0_2 = 5.0149

Xq_l
= 0.0775 Xq_2

= 0.1014

X'q_l
= 0.0627 X'q_2

= 0.0285

T'q0_l
= 5.0143 T'q0_2

= 5.0094

Ka_l = 66.6833 Ka_2 = 66.6833

Hl =166.75 H2 = 166.75

Dl = 0.6667 D2 = 0.6668

Ta_l = 0.3334 Ta_2 = 0.3334

Fig. 4.3-4.4 depict a sample of angles, velocities, electrical power and voltages, comparing the

behaviour of the full and reduced system after a three-phase fault. To compare signáis, the following

RMS difference is employed

»- -Vfí.'fr" -s- }2<ft (4,11)

where S means any signal. For instance, Table 4.3 presents the angle, velocity and electrical power

errors for a three-phase fault at node 19 and the operating condition case 3.
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Table 4.3 RMS errors (fault at node 19, case 3)

8 (degrees) íí (rad/seg) Pe (pu)

2. 1742 0. 2021 0. 3849

2. 3979 0. 2199 0. 2738

2. 2887 0. 1868 0. 2371

3. 0174 0. 2394 0. 5273

2. 9488 0. 2351 0. 3903

3. 1237 0. 2438 0. 3464

2. 9928 0. 2277 0. 2590

2. 1260 0. 1818 0. 2876

4. 5027 0. 4043 0. 5421

From Table 4.3 can be deduced that generators 4, 6 and 9, Figs. 4.2 exhibit the larger angular position

deviation, respect to the full system, for that fault. Despite the modal equivalent is derived based on

linearized systems, the behaviour of the reduced network under non-linear simulations (transient

stability) can be judge as appropriate.

4.2.6 Including stabilizer.

Besides static exciters, generators are equipped with power system stabilizer of the type

y(s)= skT \ + sTx X + sT,

u(s) 1 + sT \ + sT2 \ + sT4

whose parameters are: k
= 0.1, T = 7.5, Tl = T3 = 0.045, T2 = T4 = 0.015. In this case, problem (4.4) is

solved by GA, with the estimated parameters for the fictitious generators showed in Table 4.4. Fig. 4.5

to 4.7 depict a sample of angles, velocities, electrical power and voltages, comparing the behaviour of

the full and reduced system after a three-phase fault, under different operating conditions and fault

locations. Table 4.5 shows an example of the RMS errors encountered in this case. Through the

analysis of figures and RMS errors, can be deduced that GA are able to obtain better results that those

showed in section 4.2.5. That is, the behaviour of the equivalent signáis is closer to that of the full ones;

in Fig. 4.6 should be noted the ordinates scale.
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Table 4.4 Estimated parameters for the equivalent generator

Generator Eq. 1 Generator Eq. 2

Xd_i = 1.0098 Xd_2 = 0.7515

X'd.i = 0.1500 X'd_2 = 0.0001

T'do_i = 6.2743 T'd0_2 = 5.4690

Xq_i
= 0.4522 Xq_2

= 1.4384

X'q_i
= 0.0388 Xq_2

= 0.1500

T'q(U
= 12.985 T'qoj

= 36.078

Hi = 1412.6 H2 = 390.53

Di = 5.4462 D2 = 0.4068

Ka_i = 254.47 Ka_2 = 513.38

Ta_i = 2.4782 Ta_2 = 1.8333
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Fig. 4.5 Electrical power Pe7 and Pe8. Case 1. Fault at node 5.
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Table 4.5 RMS errors (fault at node 5, case 3)

8 (degrees) Q (rad/seg) Pe (pu)

0.5471 0.0424 0.0707

0.5706 0.0328 0.0476

0.5465 0.0253 0.0432

0.5018 0.0148 0.0144

0.5023 0.0154 0.0123

0.5122 0.0177 0.0211

0.5078 0.0161 0.0146

0.4731 0.0245 0.0237

1.1487 0.1031 0.1198

From Table 4.5 can be deduced that generator 9, display the larger angular position deviation, respect

to the full system, for that fault.

4.3 Looking for a Neural Equivalent.

In this section, the possibility of predicting the terminal voltage through a neural net is explored. With

that purpose, a single machine infinite bus (SMIB) is employed, where the model of the synchronous

machine is third order (synchronous machine models are described at section 2.3) and it is equipped

with a static system excitation, including a flexible altérnate current transmission systems (FACTS)

device which has been selected to be a unified power flow controller (UPFC) embedded into the

transmission line [26], Fig. 4.8.

V, Xfc Vle

UPFC

Xbv /

f
Load

Pl +;'Ql

Fig. 4.8 Single machine infinite-bus.

In the following, the parameters and their valúes (expressed in per unit, except frequency) that are

established for this system are described.

Active power load. Pl
= 3;

Reactive power load. Ql
= 1.25;

Transformer Reactance. X(e = 0.015;

Transmission line Reactance. Xbv = 0.02;

Damping factor. D
= 0;

Inertia constant. H = 3.5;
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Machine synchronous reactance in d-axis. Xd
= 0.0525;

Machine synchronous reactance in q-axis. Xq
= 0.05;

Machine transient reactance in d-axis. X'd = 0.010;

Machine transient reactance in q-axis. X'q
= 0.05;

UPFC series reactance Xe = 0.005;

UPFC shunt reactance from XB = 0.005;

Time transient constant T'do = 5.0;

Excitation system parameters: Ka
= 25; Ta = 0.05;

Frequency. 60 Hertz

Initial conditions are taken from a steady-state power flow study.

Vt = 1.0456 + j 9.5857 e-2

Vte = 1.0337 + j 5.1728 e-2

VE = 1.0360 + j 5.2019 e-2

VB = 2.4565 e-3 - j 2.3272 e-2;

Vt is the terminal voltage.

Vte is the transformed terminal voltage.

VE is the voltage at the UPFC shunt source.

VB is the voltage at the UPFC series source.

With the purpose of training a NN able to reproduce the terminal voltage Vt, the system is perturbed

with 4 variations in the transmission line reactance. These disturbances are considered due to they

result the most convenient for our purposes. Fig. 4.9 and Fig. 4.10 show the angular position and the

rotor's angular velocity when these disturbances are applied.

0 45

Fig. 4.9 Rotor machine's performance when a transmission line reactance modification is simulated.
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Fig. 4.10 Angular velocity performance when a transmission line reactance disturbance is applied.

The first disturbance is applied at 0.5 seconds, the second one at 1.0 second and the others at 1.5 and

2.0 seconds, respectively. The total simulation time is 2.5 seconds. From this simulation, some valúes

are observed, such as the electric torque, Te; the terminal voltage Vt
r
+ jVt ,

; and the rotor angle

deviation, 8 These valúes are capturing and employing to train an ANN that possesses the following

features. It has two input layers, one hidden layer with two neurons that are activated with a sigmoid

function (tangent-hyperbolic function), and two output layers that have a linear activation function.

The input valúes are the electric torque Te, and the rotor angle deviation 8 The output valúes are the

terminal voltage, both real and imaginary valúes. This is done by reason of the ANN that is used in

not able to give high accuracy results employing the phase voltage as a complex number. The ANN is

trained with the Levenberg-Marquardt method, the weights from input to hidden layer and hidden to

output are initialised randomly and it is trained for 1000 epochs. Intentionally, all data are trained;

that is, the training is done for the complete simulation time. Afterwards, and having all data trained,

a prediction is done. This prediction consists in foreseeing the terminal voltage Vt, when another

disturbance perturbs the system. The infinite bus voltage drop, the transmission line reactance and the

load change. These results are exemplified in Fig. 4.11, Fig. 4.12 and Fig. 4.13, respectively. For these

disturbances, simulation time is for two second, the faults are applied at 0.5 second from starting time

and they are cleared at 0.5 seconds after applying the fault. Figs. 4.14a, 4.14b and 4.14c exhibit the

ability of ANN for solving the problem; that is, predict the terminal voltage. The prediction is

performed as the same way as it is done in example 6, section 3.4 from Chapter 3. It is important to

remark that for this prediction one of the past outputs and one of the past inputs are used for

determining the prediction so as the time delay is zero.

-68-



Chapter 4 Modal and Neural Dynamic Equivalents

0 2202

0.2202

02202

'

0 2202

¡ 0 2202

02202

i
—

í-"i
—

f
— 1— "p~ i"

—

r-
—

r
~

i
~

~1—
—

n
—

r
—

~f
—

~\— "*

376 9912

0.5 1 1,5

Time, s

Fig. 4.11a Rotor machine's performance when a load

variation disturbance is applied.

25

376.991 1

Fig. 4.11b Angular velocity performance when a load

variation is applied.

Fig. 4.12a Rotor machine's performance when a

transmission line reactance change is applied.
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o 0 216

Fig. 4.13a Rotor machine's performance when a load

variation is applied.

376 85

Fig. 4.13b Angular velocity performance when a load

variation is applied.

Figs. 14a, 14b and 14c are the relationship between the actual outputs that are taken from the transient

stability programme and the outputs that are obtained from the trained NN. The solid lines are the

transient stability programme outputs and the dash lines are the predicted ones.
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Fig. 4.14b Terminal voltage under transmission line reactance change.
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Even when the trouble to be solved is a high degree difficult one, due to the disturbance is different

from the one that is applied for predicting, the results demonstrated the capability and the high

accuracy results of this artificial neural network for forecasting the terminal voltage.

4.3.1 3 Machines Power System.

Next example is applied to a multi-machine power system, formed by 3 machines and 9 buses

depicted in Fig. 4.15. The principal target in this example is to forecast the Bus voltage at node 4 using

an artificial neural network. This one is trained in order to predict the complex voltage when the

power system is perturbed with different disturbances from the ones used to train the neural network.

€>

Load P,+;'Q, Load P5 + ;QS

4

©

Fig. 4.15 3 Machines 9 buses power system.

The power system shown in Fig. 4.15 has the following description. Generators are represented by a

fourrh order model with a static excitation system, Eq. (4.2). Table 4.6 shows the generator's

parameters used for this multi-machine system.

Table 4.6 Synchronous machine's parameters.

Machine

No.
Xj x\,

•T-l

1
dO *. **. V1

?o

H

1 0.1460 0.0608 8.96 0.0969 0.0569 0.100 23.64

2 0.8958 0.1198 6.00 0.8645 0.0969 0,535 6,4

3 1.3125 0.1813 5.89 1.2578 0.1500 0.600 3.01

At buses 5, 7 and 9 there are connected loads with the following valúes [27].
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Table 4.7 Active and reactive power loads.

\
LOAD (pu)

Active power

P

Reactive power

Q

Bus 5 0.90 /0.30

Bus 7 1.00 /0.35

Bus 9 1.25 ;0.50

The transmission lines parameters used for this multi-machine system are:

Table 4.8 Transmission lines parameters.

TRANSMISSION LINES PARAMETERS

From Bus No Tobus

No

Resistance (pu) Reactance (pu) Line charging

(P")

Tap

ratio

1 4 0.0 0.0576 0.0 1.0

4 5 0.017 0.092 0.158 1.0

5 6 0.039 0.17 0.358 1.0

3 6 0.0 0.0586 0.0 1.0

6 7 0.0119 0.1008 0.209 1.0

7 8 0.0085 0.072 0.149 1.0

2 8 0.0 0.0625 0.0 1.0

8 9 0.032 0.161 0.306 1.0

4 9 0.01 0.085 0.176 1.0

4.3.1.1 Artificial neural network description.

The neural network used for training and prediction purposes has the next characteristics. It is a

feedforward neural network that possesses 4 inputs, one hidden layer and 2 output layers. The hidden

layer has 3 neurons that are activated with sigmoid functions (tangent-hyperbolic functions) and the

output layers have a linear activation function. Before taking the decisión to train the elected neural

network, several arrays of neural networks were proved to solve the problem. That is, although other

arrays present clear results when they are trained for a specific disturbances, they do not offer good

answers when prediction is done for other fault different from the one that is used to train the neural

network. Some other arrays have the same difficulty to do the prediction; thus, the neural network

array that possesses the required and sufficient features to get optimum results is illustrated in Fig.

4.16.

The ANN is trained with the Levenberg-Marquardt method, the weights from input to hidden layer

and hidden to output layer are initialised randomly and it is trained for 1000 epochs; even when it is

trained for 1000 epochs, many times it is not necessary to wait until the algorithm reaches these

epochs number because most of the times it converges promptly.
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Input Layer

Hidden Layer

Output Layer

Fig. 4.16Artificial neural network used for training and prediction.

The prediction is done as in example 6, section 3.4, but it presents small differences. Now, the ARX

model is used is a MIMO (múltiple inputs
-

múltiple outputs) ARX system. This model has the same

distinctiveness attributes as the ARX model. As in the preceding example, it is important to mention

that for doing the prediction only 1 past input and 1 past output are used; so, the prediction time

delay is zero.

4.3.1.2 Training and predicting stage.

Initially, the system is perturbed with a three-phase fault at Bus 5. To simúlate this fault, a large

admittance is connected to ground. From 0 to 0.08s the system is in steady state, then at this time (0.08)

the fault is applied and it is cleared at 0.13s. As it is noticed, the fault is for 3 cycles, going the system

back to its original structure. The total time for this simulation is 4.0s. Figs. 4.17a, 4.17b and 4.17c show

the behaviour of the three synchronous machines velocities, angular positions and electrical torque.
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35

Fig. 4.17a Angular velocities under a three-phase fault at Bus Fig. 4.17b Rotor's machine under a three-phase fault at Bus

5. 5.
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Fig. 4.17c Electrical torque under a three-phase fault at node 5.

The input valúes for the ANN are taken as the power flows from Bus 4 to 5 and from Bus 4 to 9 under

the three-phase fault at node 5. Fig. 4.18 and 4.19 show the real and imaginary (active and reactive)

power flows behaviour under this contingency. Formerly, many other transient stability simulations

were done with the aim to obtain the best results able to train the neural network and this one offered

the appropriate results that we were seeking.
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Fig. 4.18a Active power flow from Bus 4 to 5 under a three-

phase fault at node 5.
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Fig. 4.18b Active power flow from Bus 4 to 9 under a

three-phase fault at node 5.
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Fig. 4.19a Reactive power flow from Bus 4 to 5 under a

three-phase fault at node 5.
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Fig. 4.19b Reactive power flow from Bus 4 to 9 under a

three-phase fault at node 5.

On purpose, all data are trained and it is done for the complete simulation time (4 seconds). After that

the prediction is done. Such prediction consists in foreseeing the voltage at Bus 4 when other

disturbances are applied. These other ones are: (1) a load variation at Bus 7 and (2) the line that

connect Bus 5 to Bus 6 is tripped. Permit us explain the load variation with more details. In this

disturbances, both the active and reactive powers that are connected at Bus 7 are reduced 35%.The

studied time is 4 seconds. Figs. 4.20 and Figs. 4.21 show the machine's performance under these other

disturbances.
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Fig. 4.20a Angular velocity performance when line 5-6 is

tripped.
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Fig. 4.20b Rotor machine performance when line 5-6 is

tripped.
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Fig. 4.21a Angular position performance when a load
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Fig. 4.21b Rotor machine's performance when a load

variation is presented at Bus 7.

Figs. 4.22 and 4.23 depict the comparison between the prediction done and the actual results; the

actual results are the simulation outputs from a transient stability programme. The dashed lines

represent the prediction results made by the artificial neural network and the solid lines represent the

simulation outputs.
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Fig. 4.22 Voltage behaviour at Bus 4 when a load variation is presented.

■77-



Chapter 4 Modal and Neural Dynamic Equivalents

Comparison Transient stability resultsísolid! & Predicted outputídashed)
1.2

1
a
<**.

g 08

—

E

106
CD

"re
tt

í 04
V>

zj

JO

Z 02
a»

ra

1
o

-0 2
0 0 5 1 1.5 2 2.5 3 3 5 4

time, seconds

Fig. 4.23 Voltage behaviour at Bus 4 when line 5-6 is tripped.

As it is noticed, the neural network used in this example present great closeness between real and

predicted valúes.

Section 4.3 and 4.3.1 show that a NN can be trained to predict some terminal voltages. The

appropriated performance of this signal is believed to be fundamental for good dynamic equivalent.

4.4 Application of ANN to develop Dynamic Equivalents.

The second stage of this application consists in replacing the second machine, Fig. 4.15, -including the

transformer and Bus 2- by a dynamic equivalent which it possesses only the same inertia as the

replaced one. The equivalent machine is represented by a second order model; this is done just for

simplicity. A neural network is employed to predict the complex voltage at node 8.

4.4.1 The Artificial Neural Network.

A feedforward neural network is used for determining the terminal voltage Vi . The neural network is

trained taking as input valúes the active and reactive (real and imaginary) power flows from several

disturbances. The input valúes are the active and reactive power flows from Buses 8-7 and 8-9 of some

faults applied to the complete system (Fig. 4.15), and the output valúes are considered as the complex

voltage at Bus 8; since this voltage is a complex number, so akin to others ANNs that have been

already trained, it is necessary to créate two neural networks, one to get the real valué and a second

one for the imaginary part. The training procedure for obtaining the real and the imaginary valúes is

done with the structure showed in Fig. 4.24.
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Input Layer

Hidden Layer Output Layer

O

Fig. 4.24 ANN structure.

This structure is selected after considering many other configurations and it presents the best results;

the hidden layer is activated by a sigmoid function (tangent-hyperbolic transfer function) while the

output layer is activated by a linear function. The training is done for 1000 epochs but, it always

converges before the epoch number is reached.

To get the greatest trained data, during the training algorithm some processes are done. Before the

data are trained all the valúes are scaled; this is done with the aim to remove the mean and scale all

signáis to the same variance, for this case the variance is taken as one and the mean is zero. If the data

are not scaled, the largest valúes tend to be dominant. After the training process finishes the data need

to be rescaled so, the network model can be used for any purpose.

As we already stated, the input valúes for training purposes are the active and reactive power flows

from Buses 8-7 and 8-9 from some disturbances applied to the complete system (Fig.4.15), and the

output valúes are considered as the complex voltage at Bus 8. The input valúes are obtained from a

transient stability simulation applying several disturbances to the system in the following manner.

The first disturbances consist in a variation of the line parameters; for this one (fault 1) the line

affected is the one which connects Bus 5 to Bus 6 and the total simulation time is ls; the change is

applied at 0.50s and it is never cleared.

Table 4.9 Transmission lines parameters for disturbances purposes.

TRANSMISSION LINES PARAMETERS

From Bus No To bus Resistance Reactance Line! charging Tap

No (PU) (pu) (PU) ratio

5 6 0.0 0.50 0.0 1.0

7 8 0.0 0.50 0,0 1.0

4 9 0.0 0.50 0.0 1.0

The same process is done for lines that connect Bus 7 to Bus 8 (fault 2), and the line that connect Bus 4

with Bus 9 (fault 3). Table 4.9 shows the modified transmission line parameters applied to get these
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three faults. Fig. 4.25, 4.26 and 4.27 are examples of these faults, and Fig. 4.28 and 4.29 illustrate some

of the input signáis that are used to train the neural network.

Fig. 4.25 Angular velocities under fault 1.

time, seconds

Fig. 4.26 Rotor machine's under fault 2.
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Fig. 4.27 Electrical torque under fault 3.

0,8

07

cu 0.6

E 0.5

0.4

0,3

0.2 -

01

0

-0.1

'
I

Active power flow

— Reactive power flow

.*i¿-_-;*.*jíi*.*;*.*-.*;*.*.*;*í.*;*.*.*;l i i

J i i i i i L
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

time, seconds

Fig. 4.28 Active and reactive power flow from Bus 8 to 7

under fault 1.

The subsequent disturbances are a variation of power load at Buses 5, 7 and 9. The disturbance is

performed turning up or down the power loads; for Bus 5 the variation is a decrement of load (both,

active and reactive) and like in all cases it is applied at 0.50s from the starting time; for Bus 7 power

load is increased; the third load variation which is done at Bus 9 is also an increment of active and

reactive power load at that Bus. Like in the former cases the load variations are never cleared and the

total simulation time is for ls.
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Fig. 4.29 Active and reactive power flow from Bus 8 to 9 under fault 2.

To be convinced that ANN is well trained, it is proved or validated. The validation is done

considering many different faults from the ones that are used to be trained. The procedure is almost

the same as in the training method but now, the disturbances are changed. In the validation, the most

important valúes that we need to check are the weights and also we verify that the input valúes that

are considered are the best ones. Figs. 4.30 depict one example of how the validation is done

considering a three phase fault at Bus 5.
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Fig. 4.30a Validation of the real part of voltage after training.

= 0.45
CL

•2 0.4
a
in

ra

ra

a>

? 0.3
3

Ul

ca

£ 0.25

re

tt

jf 0.2

□

>

*
015

ra

a.

>>

ra 0.1

'&
ra

■-

0 05

=)#
/• ■/•

— Validated signal
—-

Onginal signal

I I I

i i i i
05 1 15 2 2 5 3 3 5

time, seconds

Fig. 4.30b Validation of the imaginary part of voltage after

training

Afterwards the training and the validation is done, the main objective is completed. At this stage a

transient stability programme is executed. This transient stability study has some differences from a

normal study; in other words, the transient stability programme is combined with a neural network,

to can reach our main objective. Fig. 4.31.
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The power system configuration in Fig. 4.15 is replaced by the system in Fig. 4.32 and the forecast is

performed as it is described in Fig. 4.31.

The estimation is done employing an ARX model which is a MISO (múltiple inputs - single output)

ARX system. The voltage prediction at Bus 2 of the reduced system (Fig. 4.32) requires only 1 past

input and 1 past output, and the prediction time delay is zero.
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Fig. 4.31 Modified flow chart from a transient stability study.
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Fig. 4.32 3 Machines 9 buses reduced system.

Figs. 4.33, 4.34 and 4.35 depict the comparison between the prediction done and the actual results for

the machine 1, and Fig. 4.36 shows the comparison between the prediction done and the actual results

for the third machine; the actual results are the simulation outputs from a transient stability

programme employing the base data of the complete system (Fig. 4.15), and the predicted valúes are

obtained after the system has been reduced, substituting the second machine by an equivalent and an

ANN that is able to reproduced the complex voltage. The dashed lines represent the predicted results.
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Fig. 4.37 shows the predicted voltage at Bus 2 from the reduced system (Fig. 4.32) which is the central

purpose of this example. The dashed line represents the absolute voltage at Bus 2 from the reduced

system; this valué is forecasted during the transient stability study supported by the neural network,

and the solid line represents the absolute voltage at Bus 8 from the complete system.
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Fig. 4.37 Absolute voltage under a three phase fault.

In a similar manner, the reduced system is tested to prove the feasibility and certainty of the dynamic

equivalent, under other disturbances. A load is added at Bus 6, which active power is defined to be 0.2

pu when the reactive power is established at 0.05 pu. Figs 4.38 and 4.39 describe the behaviour of the

machine 1 of the reduced system under this disturbance, and Figs. 4.40 and 4.41 show the behaviour

of the third machine. The solid lines represent the output obtained from the transient stability study
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under this fault employing the data from the complete system, while the dashed lines correspond to

the behaviour of the reduced system under the same perturbation.
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The second fault used to corrobórate the warranty of the dynamic equivalent is the modification of the

line parameters from Bus 3 to Bus 8. Figs. 4.42-4.45 depict the behaviour among the reduced system

and the complete one.
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Fig. 4.42 Electrical torque from machine 1.
Fig. 4.43 Electrical torque from machine 3.
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Fig. 4.44 Angular velocity behaviour from machine 3. Fig. 4.45 Rotor machine's behaviour from machine 3.

4.4.2 New England multi-machine power system.

Similar to the former example, now the main objective is to foresee the complex bus voltage for the

frontier nodes by an ANN, under the nominal condition [21].

The power system shown in Fig. 4.1 represents the well-know 86-buses New England multi-machine

power system. The subsystem on the right of the dotted line is considered as the system under study.

So, the subsystem on the left is the external system. There are two frontier nodes (1 and 9) and three

frontier lines (1-2, 1-27 and 9-8). Fig. 4.46 depicts an equivalent electrical grid including two fictitious

generators at nodes 1 and 9 where the complex voltage is forecasted by an ANN.
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Fig. 4.46 New England 38 buses reduced multi-machine power system.

A feedforward neural network is used for predicting the complex voltage at frontier nodes. For each

one is necessary to créate two neural networks, one to get the real valué and a second one for the

imaginary part. The neural network is trained taking as input valúes the active and reactive (real and

imaginary) power flows from several different disturbances. The input valúes are the active and

reactive power flows from Buses 1-2 and 1-27 for the dynamic equivalent in node 1, and the

corresponding flows from buses 9-8 for the dynamic equivalent on bus 9; these signáis are taken from

some set of disturbances applied to the complete system (Fig.4.1). The output valúes are considered as

the complex voltage at Bus 1 and 9, respectively. The training procedure for obtaining the real and the

imaginary valúes is done with the structure showed in Fig. 4.47 and Fig. 4.48.

Input Layer

Output Layer

Fig. 4.47 Artificial Neural Network used for training purposes for the first equivalent.
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Layer

o
Output Layer

Fig. 4.48 Artificial Neural Network used for training purposes for the second equivalent.

These structures are selected after considering many other configurations and they present the best

results; the hidden layer is activated by a sigmoid function (tangent-hyperbolic transfer function)

while the output layer is activated by a linear function.

The ANN is trained with the Levenberg-Marquardt method, the weights from input to hidden layer

and hidden to output layer are initialised randomly and the training process is done for 1000 epochs

although, it always converges before the epoch number is reached.

To get the greatest trained data a previous process is done. Before training, the data set is scaled; this

is done with the aim to remove the mean and scale all signáis to the same variance. If the data are not

scaled, the largest valúes tend to be dominant. For this application the variance is taken as one and the

mean as zero. After the training process finishes the data need to be rescaled so, the network model

can be used for any purpose.

As we already stated, the input valúes for training purposes are the active and reactive power flows

from buses 1-2, 1-27 for the dynamic equivalent sited on bus 1, and from buses 9-8 for the dynamic

equivalent sited on bus 9. These signáis are obtained from different disturbances applied to the

complete system, and the output valúes are considered as the complex voltage at Bus 1 and 9,

respectively. The input valúes are obtained from a transient stability simulation applying several

disturbances to the system in the following manner. Some disturbances consist in the variation of the

parameters. Some other disturbances are variations of power load at buses 5, 7 and 9; such

disturbance is performed turning up or down the power loads. The total simulation time for each

disturbance is for ls. This process is done three times for different transmission lines and load buses; it

is important to remark that all the disturbances are applied to the subsystem on the right of the dotted

line from Fig. 4.1. After this stage, the trained set needs to be tested or validated to put on view the

training result so, it is possible to determine if the training was done in a proper manner. Figs. 4.49-

4.52 depict the validation of the trained signal under other disturbances different from the ones used

for training purposes.

Hiddei
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Fig. 4.49 Validation of the real part of voltage at bus 1 under Fig. 4.50 Validation of the real part of voltage at bus 9 under

a three phase fault al bus 12. a load variation at bus 3.
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Fig. 4.51 Validation of the imaginary part of voltage at bus 1

under a variation of parameters from lines 17-27.

Fig. 4.52 Validation of the imaginary part of voltage at bus

19 under three phase fault at bus 16.

Once the ANNs are trained and the input signal has been validated the reduced system is tested to

prove the feasibility and certainty of the dynamic equivalent.

The parameters used for the Dynamic Equivalents are taken as typical; however, the inertia constants

are obtained in the following way
N N
Jygen_ai gen _exl

2>, - 2>,1
j=\ M

I is the set of generators belonging to the external system.

Npnjq is the number of equivalent generators.

Ngen_ext is the number of generators in the external system.

This expression is used in order to preserve the momentum.

(4.18)
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Figs. 4.53-4.55 depict the behaviour of the reduced power system under a three phase fault at bus 4.

The actual results are the simulation outputs from a transient stability programme employing the base

data of the complete system (Fig. 4.1), and the predicted valúes are obtained after the system

reduction and the substitution of the dynamic equivalents supported by an ANN that is able to

reproduce the complex voltage. The dashed lines represent the predicted results.

The reduced system is tested to prove the feasibility and certainty of the dynamic equivalent in face of

other disturbances such as modification of the line parameters and load variations at strategic buses.

Figs. 4.56-4.60 show the performance of the reduced system under these circumstances. To make a

comparison among signáis, next RMS difference is computed

Error VfH*"
full

"
equi ydt (4.19)

where S denote any signal. Tables 4.10-4.12 show the RMS errors encountered for each specific case.

55

g 4.5

35
0.5 1

1 t t I

•/\.i ..yi ./a...i.„«,.

i

\¡-y : :

:^Í^

— reduced system

complete system

¡ ! ! i i

1.5 2 2 5

time, seconds

3.5

Fig. 4.53 Electrical torque from machine 8 under a 3 phase

fault at bus 4.
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Fig. 4.54 Electrical torque from machine 7 under a 3 phase

fault at bus 4.
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Fig. 4.55 Rotor machine's deviation machine 3 under a 3 phase fault at bus 4.

Table 4.10 RMS errors (three phase fault at Bus 4)

Machine No. 8 (degrees)
co (rad/s) Pe (pu)

¡ 1 2.6715 0.1119 0.0963

1 2 2.6571 0.1235 0.1012

3 2.7057 0.1245 0.1151

4 2.9934 0.1302 0.0782

5 3.1318 0.1413 0.0794

6 3.0983 0.1378 0.1027

7 3.0185 0.1322 0.0747

8 2.7537 0.1156 0.05%

9 2.9945 0.1326 0.1016
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Fig. 4.56 Electrical torque from machine 2 under a variation

of the parameters from line 3-18.

Fig. 4.57 Angular velocity from machine 5 under a variation

of the parameters from line 3-18.
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Fig. 4.58 Rotor machine's deviation from machine 4 under a variation of the parameters from line 3-18.

Table 4.11RMS errors (under a variation of the line parameters from line 3-18)

Machine no. S (degrees)
co (rad/s) Pe (pu)

1 0.1550 0.0047 0.0135

2 0.1913 0.0039 0.0020

3 0.1936 0.0041 0.0025

4 0.2036 0.0055 0.0030

5 0.2067 0.0059 0.0031

6 0.2063 0.0058 0.0039

7 0.2044 0.0055 0.0028

8 0.1953 0.0048 0.0022

9 0.2047 0.0059 0.0046
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Fig. 4.60 Angular velocity from machine 9 under a load

variation at bus 28.

Table 4.12 RMS errors (under a load variation at bus 28)

Machine no. 8 (degrees)
co (rad/s) Pe (pu)

1 0.0447 0.0016 0.0130

2 0.0373 0.0024 0.0024

3 0.0362 0.0021 0.0025

4 0.0370 0.0020 0.0014

5 0.0401 0.0023 0.0016

6 0.0389 0.0022 0.0020

7 0.0375 0.0020 0.0014

8 0.0308 0.0016 0.0009

9 0.0383 0.0023 0.0023

4.4.2.1 Looking for Robustness.

In order to exemplify the construction of Robust Dynamic Equivalents, three operation conditions are

considered. As a consequence the states are: (1) case a, as indicated by [21]; (2) case b, Transmission

lines 3-18 and 25-26, are out of service; (3) Transmission lines 4-14, 16-17 and 25-26 are out of line, case

c. As well, for the three cases generators are equipped with power system stabilizers (PSS) of the type

[28]

y(s)
_

skT 1 + sT, 1 + sT,

u(s) ~\ + sTl + sT2 l + sTt
(4.20)

whose parameters are: T= 7.5, Ti= T3=0.045, T2= T4=0.015, k=0.1

For creating Robust Dynamic Equivalents, the training route is done in the following manner. The

input and output valúes for training purposes are the same ones like in the previous example but, in
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this case the valúes are captured applying several disturbances to the system in the following manner.

The disturbances are considered variations of parameters from lines 4-5, 13-14, 16-24, 25-26 and 23-24,

and the other disturbances are obtained turning up or down the power loads at buses 3, 8, 20, 29 and

15. As soon as these signáis are found the ANN is trained with all of them for the three cases

mentioned above. Like in the former example the preparation of the data before and after training is

done. The following course of action is completed as in the earlier example.

The reduced system, Fig. 4.46, is tested to prove the feasibility, certainty and robustness of the

dynamic equivalent. Results are compared with those obtained for the full system.

The actual results are the outputs from a transient stability programme employing the base data of the

complete system (Fig. 4.1); the predicted valúes are obtained after the system reduction and the

substitution of the dynamic equivalents supported by an ANN that is able to reproduce the complex

voltage. The dashed lines represent the predicted results.

The reduced system is tested under several disturbances. These disturbances are modification of the

line parameters, load variations at strategic buses, and three phase faults. The disturbances applied

are: i) three-phase faults at buses 12, 15 and 27; ii) line parameters variation are done at lines 19-20, 17-

27 and 26-28; iii) load variation are applied at buses 4, 8 and 16. Fig. 4.61-4.63 shows the performance

of the reduced system under these circumstances, case a. Fig. 4.64 displays the behaviour of the tested

power system under these disturbances, case b and case c. Similar to the previous example a

comparison among signáis is computed. Tables 4.13-4.15 show the RMS errors encountered for all

cases under each corresponding fault.
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Table 4.13 RMS errors encountered for three phase fault conditions.

Three-

Phase

fault on

Bus

Machine

no.

Cásea Caseb Casec

a

(degrees)

co

(rad/s)

Pe

(PU)

s

(degrees) (rad/s)

Pe

(PU)

s

(degrees)

co

(rad/s)

Pe

(PU)

1 0.7856 0.0178 0.0337 0.8383 0.0281 0.0496 1.1932 0.0933 0.1653

'.
2 0.8233 0.0154 0.0217 0.7914 0.0159 0.0227 1.0688 0.0785 0.1174

12

3 0.8187 0.0136 0.0192 0.7841 0.0138 0.0201 0.9963 0.0522 0.0899

4 0.8065 0.0097 0.0063 0.7545 0.0089 0.0056 0.9130 0.0160 0.0134

5 0.8046 0.0099 0.0054 0.7517 0.0091 0.0047 0.9102 0.0172 0.0138

6 0.8118 0.0105 0.0087 0.7592 0.0095 0.0074 0.9209 0.0202 0.0240

7 0.8108 0.0100 0.0061 0.7580 0.0092 0.0053 0.9168 0.0175 0.0144

8 0.8157 0.0104 0.0062 0.8144 0.0143 0.0118 1.0335 0.0485 0.0442

9 0.8112 0.00% 0.0064 0.7533 0.0086 0.0049 0.9829 0.0325 0.0378

15

1

1 1.8533 0.0329 0.0524 2.0533 0.0391 0.0589 2.1003 0.1165 0.1864

2 1.8655 0.0274 0.0282 1.9520 0.0270 0.0254 1.9349 0.0920 0.1265

3 1.8631 0.0248 0.0259 1.9460 0.0247 0.0239 1.8769 0.0645 0.0988

4 1.8400 0.0199 0.0088 1.8823 0.0190 0.0068 1.7776 0.0281 0.0201

5 1.8355 0.0202 0.0085 1.8760 0.0192 0.0066 1.7723 0.0298 0.0206

6 1.8507 0.0212 0.0138 1.8928 0.0197 0.0097 1.7902 0.0338 0.0347

7 1.8489 0.0204 0.0091 1.8908 0.0193 0.0067 1.7846 0.0302 0.0214

8 1.8666 0.0238 0.0202 2.0197 0.0269 0.0208 1.9379 0.0699 0.0570

9 1.8534 0.0212 0.0192 1.8803 0.0189 0.0097 1.8875 0.0514 0.0536

27

1 1.3782 0.0298 0.0514 1.5935 0.0259 0.0366 1.6839 0.1370 0.2329

2 1.4052 0.0225 0.0219 1.5222 0.0204 0.0144 1.3289 0.0609 0.0751

3 1.4019 0.0204 0.0196 1.5174 0.0189 0.0136 1.2823 0.0451 0.0609

4 1.3819 0.0167 0.0088 1.4675 0.0151 0.0052 1.2059 0.0237 0.0175

5 1.3759 0.0169 0.0081 1.4614 0.0152 0.0050 1.2041 0.0250 0.0174

6 1.3893 0.0180 0.0136 1.4750 0.0156 0.0072 1.2181 0.0281 0.0275

7 1.3875 0.0172 0.0091 1.4734 0.0153 0.0051 1.2123 0.0254 0.0180

8 1.4108 0.0224 0.0293 1.5774 0.0210 0.0213 1.4445 0.0790 0.0740

9 1.3936 0.0187 0.0226 | 1.4662 0.0150 0.0078 1.3547 0.0565 0.0681

As it is noticed from the RMS errors depicted in Table 4.13, the feasibility and robustness from the

Dynamic Equivalent is corroborated. Even though the errors obtained for the rotor's machine

performance (angular deviation) which are 1 or 2 degrees for some cases, it is not a bad indicator

because the errors encountered for the electrical power and for the speed deviation are really minor.
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Table 4.14 RMS errors encountered for line variation faults.

Line

From-To

Machine

no.

Cásea Caseb Casec

s

(degrees)

co

(rad/s)

Pe

(PU)

s

(degrees)

co

(rad/s)

Pe

(PU)

5

(degrees)

0)

(rad/s)

Pe

(PU)

16-24

1 0.0320 0.0006 0.0129 0.0308 0.0015 0.0027 0.0652 0.0060 0.0098

2 0.0286 0.0002 0.0002 0.0256 0.0008 0.0008 0.0508 0.0042 0.0056

3 0.0288 0.0002 0.0002 0.0254 0.0007 0.0007 0.0457 0.0029 0.0044

4 0.0273 0.0001 0.0001 0.0235 0.0005 0.0002 0.0384 0.0011 0.0009

5 0.0277 0.0002 0.0001 0.0235 0.0005 0.0002 0.0383 0.0012 0.0009

6 0.0275 0.0002 0.0002 0.0239 0.0005 0.0003 0.0394 0.0014 0.0015

7 0.0277 0.0002 0.0001 0.0238 0.0005 0.0002 0.0388 0.0012 0.0009

8 0.0224 0.0003 0.0004 0.0285 0.0009 0.0010 0.0509 0.0035 0.0031

9 0.0255 0.0002 0.0003 0.0237 0.0005 0.0003 0.0464 0.0024 0.0027

19-20

1 0.0547 0.0018 0.0134 0.0094 0.0001 0.0002 0.0165 0.0007 0.0011

2 0.0245 0.0009 0.0010 0.0112 0.0001 0.0001 0.0139 0.0004 0.0004

3 0.0242 0.0007 0.0009 0.0107 0.0001 0.0001 0.0140 0.0003 0.0004

4 0.0228 0.0005 0.0005 0.0095 0.0001 0.0000 0.0138 0.0002 0.0001

5 0.0231 0.0006 0.0004 0.0093 0.0001 0.0000 0.0138 0.0002 0.0001

6 0.0232 0.0006 0.0006 0.0095 0.0001 0.0000 0.0139 0.0002 0.0002

7 0.0232 0.0006 0.0004 0.0094 0.0001 0.0000 0.0139 0.0002 0.0001

8 0.0221 0.0010 0.0014 0.0107 0.0001 0.0001 0.0169 0.0005 0.0004

9 0.0226 0.0007 0.0009 0.0094 0.0001 0.0000 0.0154 0.0004 0.0004

28-29

1 0.0224 0.0018 0.0135 0.0671 0.0012 0.0022 0.1004 0.0084 0.0142

2 0.0653 0.0007 0.0007 0.0665 0.0008 0.0005 0.0752 0.0035 0.0040

3 0.0654 0.0007 0.0005 0.0658 0.0008 0.0005 0.0728 0.0026 0.0034

4 0.0633 0.0006 0.0006 0.0628 0.0006 0.0002 0.0685 0.0014 0.0011

5 0.0635 0.0006 0.0004 0.0625 0.0006 0.0002 0.0685 0.0015 0.0011

6 0.0637 0.0006 0.0007 0.0631 0.0006 0.0003 0.0693 0.0017 0.0017

7 0.0638 0.0006 0.0005 0.0630 0.0006 0.0002 0.0689 0.0015 0.0011

8 0.0594 0.0010 0.0017 0.0674 0.0009 0.0011 0.0849 0.0049 0.0045

9 0.0617 0.0007 0.0014 1 0.0626 0.0006 0.0004 0.0782 0.0034 0.0040
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Fig. 4.70 Electrical torque from machine 7 under a 3 phase

fault at bus 27, case c.
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Fig. 4.72 Angular velocity from machine 9 under parameters

variation of line 26-28, case c.

Fig. 4.73 Angular velocity from machine 3 under a 3 phase

fault at bus 12, case c.
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From the statistics illustrated in Tables 4.14 and 4.15 once more the robustness, feasibility and

confídence of the Dynamic Equivalent is demonstrated. Despite of the RMS errors obtained under

these faults which are not as severe as a three phase fault, the information depicted is certainly

superior. In both Tables the RMS errors obtained diminished in a considerable mode in comparison

with Table 4.14. This is a warranty that the results have been achieved in an excellent way.

SYNOPSIS.

In this chapter mainly two methods to construct Dynamic Equivalents are proposed. The first

approach is based on a modal preservation, and the feasibly and successfully results show the

warranty of this proposed technique.

In the subsequent proposition the influence of novel techniques based on Artificial Intelligence such as

Artificial Neural Networks to construct Dynamic Equivalents is developed. This original approach

presents great results. The RMS error helps to compute the closeness of time solutions amid full and

reduced power system models. The acquired results depict the viability, robustness and confidence of

this new technique.
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Table 4.15 RMS errors encountered for load variation faults.

Load on

Bus

Machine

no.

Cásea Caseb Casec

s

(degrees)

CO

(rad/s)

Pe

(PU)

S

(degrees)

co

(rad/s)

Pe

(PU)

s

(degrees)

co

(rad/s)

Pe

(PU)

4

1 0.3587 0.0032 0.0133 0.4152 0.0045 0.0059 0.4941 0.0136 0.0211

2 0.3969 0.0035 0.0015 0.3937 0.0036 0.0018 0.4715 0.0085 0.0111

3 0.3974 0.0034 0.0014 0.3926 0.0035 0.0017 0.4688 0.0064 0.0086

4 0.3920 0.0031 0.0007 0.3772 0.0031 0.0007 0.4515 0.0040 0.0018

5 0.3909 0.0031 0.0007 0.3753 0.0031 0.0007 0.4491 0.0041 0.0018

6 0.3945 0.0031 0.0009 0.3794 0.0031 0.0010 0.4529 0.0043 0.0028

7 0.3941 0.0031 0.0007 0.3787 0.0031 0.0007 0.4525 0.0041 0.0018

8 0.3955 0.0031 0.0009 0.4076 0.0036 0.0020 0.4792 0.0086 0.0066

9 0.3937 0.0031 0.0013 0.3751 0.0031 0.0013 0.4731 0.0067 0.0063

8

1 0.3944 0.0038 0.0136 0.4482 0.0043 0.0051 0.5515 0.0159 0.0253

2 0.4342 0.0046 0.0029 0.4277 0.0048 0.0031 0.5435 0.0184 0.0266

3 0.4339 0.0044 0.0028 0.4256 0.0045 0.0030 0.5354 0.0125 0.0202

4 0.4260 0.0037 0.0012 0.4067 0.0037 0.0011 0.5128 0.0051 0.0034

5 0.4246 0.0038 0.0011 0.4047 0.0037 0.0010 0.5103 0.0054 0.0035

6 0.4288 0.0038 0.0016 0.4092 0.0037 0.0014 0.5147 0.0060 0.0059

7 0.4282 0.0038 0.0011 0.4084 0.0037 0.0010 0.5140 0.0054 0.0036

8 0.4308 0.0036 0.0012 0.4404 0.0038 0.0016 0.5347 0.0099 0.0079

9 0.4279 0.0037 0.0018 0.4043 0.0036 0.0017 0.5285 0.0074 0.0070

16

1 0.2486 0.0026 0.0134 0.2852 0.0025 0.0021 0.3875 0.0064 0.0081

2 0.2897 0.0024 0.0008 0.2688 0.0023 0.0007 0.3793 0.0043 0.0036

3 0.2904 0.0024 0.0008 0.2681 0.0023 0.0008 0.3776 0.0037 0.0030

4 0.2866 0.0022 0.0006 0.2572 0.0021 0.0004 0.3628 0.0031 0.0011

5 0.2859 0.0022 0.0005 0.2557 0.0021 0.0004 0.3606 0.0031 0.0011

6 0.2885 0.0023 0.0008 0.2588 0.0021 0.0005 0.3639 0.0032 0.0016

7 0.2883 0.0022 0.0006 0.2582 0.0021 0.0004 0.3636 0.0031 0.0011

8 0.2877 0.0023 0.0011 0.2805 0.0023 0.0009 0.3808 0.0049 0.0029

9 | 0.2874 0.0023 0.0011 0.2557 0.0021 0.0008 0.3764 0.0042 0.0032
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Conclusions

The use and application of novel techniques which are related to Intelligent Systems have emerged

due to the limitations that encompass classic methods in all áreas worldwide. These innovative

methods have the feature that they are able to adapt by themselves to the problem to be solved even

though the application does not posses an exact mathematical model.

In this work an application of one of these methods -Artificial Neural Networks- has been proposed to

solve one of the most difficult tasks inside the context of electric power systems, the Dynamic

Equivalents. It is presented a brief description that covers the main subjects related to power system

stability, and also the principal issues of Neural Networks are explained.

It is concluded that an effective way to construct Dynamic Equivalents is to reduce the complete

system merely to a few generators which are labeled as the study system and where the equivalent

generators are sited. The propositions have the great advantage of not require the aggregation

procedure necessary in classical methods of equivalency.

A model formulation to develop Dynamic Equivalents, where the main goal is to encounter the best

estimate parameters for the equivalents generators, is proposed. This technique is posed as an

optimization problem without constraints that can be solved by a variety of methods. The

minimization algorithms employed, Levenberg-Marquardt and Genetic Algorithms, are ones of the

most excellent owing to their robustness and promptly convergence. For all cases where these

algorithms are applied, they proved their great features obtaining excellent results. In this

methodology genetic algorithms proved to be effective due to the randomness starting point. Through

the diversity of operating conditions taken into account, robust dynamic equivalents result.

An improvement to the precedent strategy to calcúlate Dynamic Equivalents is the use of Artificial

Neural Networks. Supported by an Artificial Neural Network some signáis from the study system are

forecasted. The main advantage of this method is related with the use of typical parameters for the

equivalents generators. This technique aids to reduce the considerable computing time associated

with transient stability studies of large-scale acquiring outstanding results. A neural dynamic

equivalent that does not need assumptions ñor linear analysis, as is the case of múltiple previous

methods is proposed.

The incorporation of the power system stabilizers (PSS) to the tested electric power systems, results to

be very important because of Ihey help to verify the feasibility, certainty and robustness of the

Dynamic Equivalents. Such inclusión is really important due to it can be considered as an actual
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multi-machine power system. The RMS errors corrobórate these results. This proposed technique

incorporates the limitations that others methodologies can not overtake.

The Artificial Neural Networks attested their great qualities and their huge applications to power

systems. The strategies to encounter the right weights such as the preparación of the data set and the

validation of the Neural Network under different circumstances demónstrate that the chosen weights

are correct. The training procedure is an optimisation algorithm for finding a minimum based on an

iterative search algorithm, where the rninimum is located by taking a sequence of steps based on the

local information connected to the main condition. In this work owing to the achieved results, ANN

demónstrate to be a novel tool that can surpass at all the issues related to electric power systems,

reducing significantly the overwhelm computing time and cumbersome analysis. Is important to state

and to conclude that the input signáis chosen for the training process are simply local signáis, in other

words the power flows are data that can be measure in a real multi-machine power system. This is

another advantage to conclude that the Dynamic Equivalent really present robustness and

practicability.

Thanks to the excellent acquired results it can be held that the proposed technique is adequate for

obtaining Robust Dynamic Equivalents in a good manner reducing the considerable computing time

and weighty analysis that characterize the hard task of power systems, taking advantage of the

innovative techniques as Artificial Neural Networks.
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Main Contributions

In this dissertation there are two principal contributions, which are:

These two most important contributions are much related to the same issue.

The development of a technique to solve the one of the most difficult problems that encompasses

power systems as Dynamic Equivalents is proposed. This technique is proposed to estimate the

parameters of fictitious generators that represent dynamic equivalents of an external subsystem. This

methodology is proposed an optimisation problem employing different optimisation techniques such

as Genetic Algorithms and Levenberg-Marquardt Algorithm. The problem is based on preserve

closely those modes highly related with the dynamic of the study subsystem.

Besides, an innovative technique to solve Robust Dynamic Equivalents is proposed. This novel

proposition used a new generation of techniques called Artificial Intelligence. In this proposed

methodology the application of Artificial Neural Networks (ANN) is employed to solve the hard task

of constructing Robust Dynamic Equivalents. The main objective is to créate Robust Dynamic

Equivalents assisted by an ANN able to reproduce the complex voltage at frontier buses. This

proposition presents the advantage of avoiding the aggregation of generators, as in the classical

equivalency methods. A neural dynamic equivalent that does not need assumptions ñor linear

analysis, as is the case of múltiple previous methods is proposed.

For both cases, to confirm the accuracy of results, an RMS difference is applied to compare signáis and

the depicted Figs. showed the feasibility and robustness of these proposed techniques.
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Suggestions for further developments

Next a list of future work that can be done as an extensión of this dissertation are described.

1. The application of this proposed technique to a larger multi-machine power system such as the

Mexican electric grid.

2. To improve the base data manage from any multi-machine power system in order to develop

Dynamic Equivalents.

3. The application of the new generation of neural networks as the Hopfield nets which can be use

for the optimisation technique or the slf-organising feature maps (SOFM) and to improve the

training process applying neural networks that posses unsupervised learning capabilities.

4. The use of other local input signáis for the neural network. The current signal for each bus could be

an option.
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