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Abstract

This thesis presents two methodologies for analyzing electromagnetic transients in

multiconductor transmission systems. The first one is based on the method of Characteristics

from the Partial Differential Equations Theory. The second one is based on state-space

realizations and on traveling wave concepts.

Firstly, a Characteristics-based model for single-phase lines with frequency independent

parameters and corona effect that was developed in [32], is extended here to include the

frequency dependence of line parameters. This is achieved by taking as basis the Telegrapher's

equations modified by Radulet, et. al. [11], which include the frequency dependence by means of

a convolution term. Recursive convolutions are combined with Characteristics to incorpórate this

term into the new model. The results obtained with it agree weil with experimental results.

Secondly, the Characteristics model with frequency dependence and without corona is extended

to multiconductor line (cable) cases. This extensión permits accounting for distributed sources,

like those produced by radiated electromagnetic (EM) fields. It is shown that in these cases, the

new model is more convenient and accurate than conventional representations based on EMTP

[34]. The extended model can as weil be applied to long homogeneous lines excited by lumped

sources. In these cases it is computationally less efficient than recent traveling wave based

models [39, 41, 44, 45]. Nevertheless, its pre-processing is much simpler and its simulation

results are remarkably cióse to the ones obtained through the Numerical Laplace Transform

(NLT) method.

Finally, the problem of producing time domain models for non-uniform multiconductor lines is

approached. Such a model is attained by adopting a frequency domain methodology proposed in

[38] and by applying state-space realization methods and recursive convolutions. The resulting

model is benchmarked against NLT and field tests.
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Resumen

Esta tesis presenta dos metodologías para analizar transitorios electromagnéticos en sistemas de

transmisión multiconductores. El primero está basado en el método de las Características de la

Teoría de Ecuaciones Diferenciales Parciales. El segundo está basado en realizaciones de

espacio-estado y conceptos de ondas viajeras.

Primeramente, un modelo basado en Características para línea monofásica con parámetros

independendientes de la frecuencia y efecto corona que fue desarrollado en [32], es extendido

aquí para incluir la dependencia frecuencial de los parámetros de línea. Esto es logrado tomando

como base las ecuaciones del Telegrafista modificadas por Radulet, et. al. [1 1], el cual incluye la

dependencia frecuencial por medio de un término de convolución. Convoluciones recursivas son

combinadas con Características para incorporar este término dentro del nuevo modelo. Los

resultados obtenidos con esto concuerdan bien con resultados experimentales.

Después, el modelo de Características con dependencia frecuencial y sin corona es extendido al

caso multiconductor de líneas (cables). Esta extensión permite incluir fuentes distribuidas, como

las producidas por campos electromagnéticos (EM) radiados. Se muestra que en estos casos, el

nuevo modelo es más conveniente y exacto que representaciones convencionales basadas en

EMTP [34]. El modelo extendido puede también ser aplicado a líneas homogéneas largas

excitadas por fuentes concentradas. En estos casos es computacionalmente menos eficiente que

recientes modelos basados en ondas viajeras [39, 41, 44, 45]. Sin embargo, su pre-procesamiento

es mucho más simple y los resultados de su simulación son remarcablemente cercanos a los

obtenidos a través del método de la Transformada Numérica de Laplace (TNL).

Finalmente, el problema de producir modelos en el dominio del tiempo para líneas

multiconductoras no-uniformes es abordado. Tal modelo es obtenido adoptando una metodología

en el dominio de la frecuencia propuesta en [38] y aplicando métodos de realizaciones de

espacio-estado y convoluciones recursivas. El modelo resultante se compara con la TNL y

pruebas de campo.
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I Introduction

1.1 Electromagnetic transient analysis of power systems

The reliability of electric power systems depends, to a large extent, on an accurate design of

transmission system elements such as overhead lines, underground cables, protections, etc. An

important issue of system design is the analysis of electromagnetic transient performance.

Traditionally, transient analysis was developed having in mind basically the problems of

insulation design and of establishing withstand parameters. As the transient analysis become

more accurate, it is possible to design less expensive and more reliable power systems. The costs

of over-insulation of power systems often are very considerable. Apart from the insulation design

problem, recently power system specialists have realized the importance of transient analysis

tools in the testing of protection ,
control and measurement equipment.

The transient response of an electric system can be determined in principie from the system itself.

This approach, however, has severe drawbacks. Firstly, it is very expensive to take out of service

one of such systems. Secondly, for technical and economic reasons, transient excitations would

have to be sealed down; but, since there are many non-linear effects, the system's response

obtained may not be representative of full scale phenomena. Thirdly, there are múltiple examples

of perturbations that are neither reproducible ñor controllable with experimental setups; for

example, lightning stroke occurrences. Because of these limitations, mathematical modeling of

power systems has been gaining importance to its actual status as an essential complement to

physical tests.

Caículated transient waveforms have been used for sometime to do off-line tests of electronic

instruments. Recently, electronic devices reproducing these caículated transients in real time are

being employed by equipment manufacturers and by power Utilities to do open-loop on line
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testing. A very active área of research at present time is the development of digital real time

simulators that are capable of testing electronic equipment in a closed-loop fashion.

1.2 Transmission line modeling for transient analysis

Transmission lines (and cables) are important constituents of power systems. The importance of

their modeling for transient studies stems from the fact that lines often are taken as modeling

elements. Early line models were based on the lossiess case, for which the line equations are just

a form of the Wave Equation. D'Alembert solution to the latter, in terms of traveling waves, is

weil known and is the basis for the weil known model by Bergeron and for its circuital

representation by two Norton equivalents [19]. A considerable amount of effort has been placed

for the last 30 years to extend this basic model to the lossy multiconductor line case.

Two of the first works on single-phase lines that considered the frequency dependence of the line

parameters are by Budner in 1970 [7] and by Snelson in 1972 [8]. Their models are based on the

relation of voltages and currents at the two ends of the line; i. e., a two-port network in the

frequency domain. The two-port parameters relating input/output voltages and currents are

functions of frequency and usually are referred to as weighting functions (WFs). Due to the

symmetry of the problem, when using the nodal representation only two of the four functions are

different. These functions .are highly oscillatory in the frequency domain and their proper

representation in the time domain requires a large number of samples. In addition, the WFs time

domain images present a large number of spikes and must be truncated, in order to perform

numeric convolution processes. The solution of the propagation line equations was carried out by

the above mentioned authors in time domain using long convolutions between the WFs and the

corresponding voltages and currents.

For the passing from the single-phase to the multiconductor line case there are two possible

approaches. One is called "The Phase Domain" and consists in dealing with electromagnetic

couplings among the line conductors. The other is "The Modal Domain" which consists in

obtaining n-decoupled systems equivalent to a single system of «-coupled conductors. This

decoupling is attained by means of two modal transformation matrices which can be placed into a

mutually orthogonal relationship [4].
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In 1975 Semlyen and Dabuleanu proposed a method to solve convolutions in a recursive manner

[10]. This method is applicable when one of the convolving functions is an exponential.

Recursive convolution decreases computation time substantially. In their work, Semlyen and

Dabuleanu applied recursive convolution and modal techniques to multiconductor transmission

lines by considering real and constant modal transformation matrices.

In 1982 J. Martí proposed a model in which the termináis of the line are considered connected to

a network that represents the characteristic impedance of the line for an entire range of

frequencies [13]. Now, one of the WFs is zero and the other presents an initial spike only, thus

reducing considerably the calculations required for the convolution. The characteristic impedance

and the propagation function were synthesized by rational functions whose poles and zeros were

obtained from a technique based on the graphical method by Bode. Martí' s original model

considered real and constant transformation matrices. In the cases of asymmetric, unbalanced or

multicircuit transmission systems, however, the transformation matrices are highly dependent of

frequency. This dependence should be taken into account ifmore accurate results are desired.

In 1988 L. Martí proposed a technique to take into account the frequency dependence of the

transformation matrices [21]. In addition to the characteristic admittance and the propagation

function, the transformation matrices must be synthesized by rational functions. This method was

implemented for underground cables and, apparently, its extensión to overhead lines had not been

possible.

Gustavsen and Semlyen [44] in 1997 proposed a hybrid model that separated the propagation

matrix in two parts to obtain smooth functions in the frequency. Additionally, these authors

applied a technique called Vector Fitting (VF) in which all the elements of each column of the

matrix are adjusted using the same poles. This reduced the number of calculations in the

numerical evaluation of convolutions.

In 1997 Castellanos and J. Martí proposed a model in the phase domain denominated Z-Line [41].

In this model the line is formed of ideal line segments and losses and frequency dependent blocks

are inserted between these segments. The frequency dependent part is synthesized with rational

functions. In this work, an open issue is that of determining the optimum number of segments in

3



which a line is to be subdivided. In addition, these authors reported the appearance of numerical

oscillations due to line subdivisión.

A proposal to develop a line model in the phase domain was made by Nguyen, et. al, in 1997

[42]. In this model, the characteristic admittance and the propagation function matrices are

synthesized in the phase domain. The problem here was that the elements of these matrices are

highly oscillatory functions. This was solved by multiplying by -1 all the non-diagonal elements

and, in addition, a single delay factor was extracted from all the elements in the propagation

matrix.

Based on an idempotent decomposition technique proposed by Wedepohl [15], J. Martí and

Castellanos proposed in 1995 a method in which all the modal delays could be decoupled and

extracted from a line's propagation matrix [35]. In 1997 Marcano and J. Martí fully developed

the idempotent model [39,43]. In 1999 Morched, et. al, combined the idempotent delay

decoupling technique with VF into what is called nowadays as 'The Universal Line Model" [45].

The universal or idempotent line model practically solves the problem of modeling in the time

domain multiconductor lines that are homogeneous, linear and excited by lumped sources.

Another important phenomenon, however, that some researchers have introduced in their line

models is the "Corona Effect" In many cases, corona can produce more distortion on

propagating waves of voltage and current than the one due to linear dispersión or "Skin Effect"

The variation of the line capacitance with respect to the line voltage, and even to its rate of

change, results in a mathematical non-linear problem.

In 1955 Wagner and Lloyd carried out, using the first digital computers available, a study of

corona effect in the propagation of waves in single-phase lines [2]. Finite differences were used

to intégrate the Telegrapher's equations. Stafford, et. al, in 1965 also proposed a program of the

same type [6]. In the results of these two works the problem of numerical oscillations caused by

the spatial discretization of the line equations was apparent. In 1983 Gary, et. al, adopted the

Telegrapher's equations for single-phase lines as modified by Radulet, et. al These authors

added to these equations the non-linearity caused by corona. They solved the Telegrapher's

modified equations in the time domain through conventional finite difference methods and long

convolutions. The resulting line model required excessive computational resources [16]. In 1986
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Semlyen and Wei-Gang proposed a multiconductor line model with corona effect using state-

variable techniques along with Bergeron's method [18]. In this model, conventional modal

analysis was used. This, however, is appropriate only for linear system analysis.

Carneiro, et. al., developed a model of lines with corona that was based on Bergeron's method

[25,29]. In their work, the problem of numerical oscillations caused by the spatial discretization

of the line was documented thoroughly. Noda and Ametani proposed in 1996 a model based on

digital signal processing techniques that allows variable time steps. In this model, corona

branches are introduced between sections of frequency dependent transmission lines. The

problem of numerical oscillations appears also in this model [36]. In 1995 Naredo [32]

introduced a finite difference method based on the Theory of Characteristics of Partial

Differential Equations (PDEs) [9]. This model was applied successfully to single-phase lines with

corona effect and without linear dispersión. It eliminated the numerical oscillations problem

which appears even in recent models [48]. In addition, it was shown that the model is able to deal

properly with múltiple wave reflections in transmission lines [33]. The method of Characteristics

appears, at present, as very promising for handling non-linear and non-uniform line problems.

In most transient analysis studies, lines are assumed as uniform and discontinuities are considered

lumped. Recent experimental and simulation results show, however, that non-uniformities can be

important. Examples of non-uniform lines (NULs) are: overhead lines with sagging conductors,

lines entering substations, lines crossing rivers and vertical conductors. Several approaches have

been proposed recently for handling NULs. Menemenlis and Chun in 1982 proposed one based

on traveling waves and Bewley's Lattice Diagram for single-phase lossiess line [14]. There are

also two models of single-phase lines in which parameter variations are approximated by

exponentials in a piecewise manner. One was proposed in 1994 by Oufi, et. al., and was

developed in the frequency domain [30]. The other was proposed in 1997, by Nguyen, et. al., and

was in the time domain [40]. A non-uniform model was proposed by Ishii, et. al, in 1991 and

applied to transmission towers. In this model, each section of the tower is represented by a

frequency dependent line followed by a constant resistance shunted with a constant inductance

[26]. The problem of this model is that some of the parameters must be taken from

measurements.
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Alternative models based on finite difference methods are used to solve the partial differential

equations of the non-uniform line disregarding the frequency dependence of the parameters. One

of these models was described in 1999 by Gutiérrez, et. al, in which the method of

Characteristics was used [46]. The other model, which is based on discretizing directly the line

equations by finite differences, was proposed in 1996 by Correia de Barros and Almeida [38].

Mamis and Koksal in 2001 described a single-phase model in the frequency domain that

represents the transmission line as a two-port network, whose transfer matrix is obtained from the

multiplication of the chain matrices of the lines sub-segments [49].

1.3 Issues requiring further development

Time domain line models based on traveling wave concepts can be considered at present well-

established and permit simulating line sections that are homogeneous, linear and excited by

lumped sources. There .are many cases in practice, however, that require line subdivisión;

examples are: non-uniform lines [38,46], lines affected by corona (non-linear propagation) [2,23],

lines affected by radiated fields [48] and uniform lines with múltiple transpositions.

Most models being proposed for line subdivisión are prone to numeric oscillations. The method

of Characteristics solves this problem. It has been applied to single-phase lines with corona, but

still has to be extended to include frequency dependence and multiconductor effects.

As for multiconductor NULs, there are two approaches that seem very promising. One is based

on Characteristics and the other is based on synthesizing two-port relationships in the frequency

domain and on applying recursive convolutions to produce a time domain model.

1.4 Problem statement, methodology and scope

A methodology is required for producing time domain models of lines that are affected by corona

and linear dispersión and that are free of numeric oscillations, at least for the single-phase case.

Also, a methodology to produce time domain models of multiconductor lines that are excited by

distributed sources is required. Finally, a methodology for producing time domain models of

NULs including frequency dependent and multiconductor effects is highly desirable.

6



In this thesis, the method of Characteristics of PDEs Theory is adopted first to produce a time

domain model for single-phase lines affected by corona and by linear dispersión. Then, this

model is extended and adapted for dealing with uniform lines that are multiconductor and

frequency dependent when the excitation is by a distributed source. It is shown that this extended

model handles highly asymmetric overhead lines and underground cables at least as effectively as

the idempotent/uni versal line model. Finally, the problem of lines that are non-uniform,

multiconductor and frequency dependent is approached employing the methodology of frequency

domain synthesis and recursive convolutions for producing a time domain model.
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II Single-phase lines

WITH FREQUENCY

DEPENDENCE AND

CORONA EFFECTS

2.1 Introduction

Frequency variations of line parameters provoke progressive distortion and attenuation of

transient waves during their propagation along transmission lines. This phenomenon is known as

linear dispersión or skin effect. If only this effect is considered, a very accurate calculation of

wave shapes can be obtained using frequency domain methods such as Fourier and Laplace

transforms. On the other hand, when high voltage levéis are considered, the occurrence of corona

discharge produces changes in the instantaneous valúes of the line capacitance and conductance

parameters. When corona takes place, the line capacitances become functions of voltage and this

introduces non-linear features in the propagation phenomenon. Therefore, for solving accurately

this non-linearity, time domain methods are preferable. A problem often encountered in the

numerical solution of the non-linear PDEs representing a line is the appearance of numerical

oscillations due to discretizations [2, 6, 18, 25, 29, 36, 48]. This numerical problem has been

solved in [32] with the method of Characteristics from the PDE Theory [9]. Further advantages of

this method are that it allows using large integration steps and that it can be extended to the

multiconductor line case without resorting to conventional linear modal analysis.

In this chapter the method of Characteristics, based on a line model proposed by Radulet, et. al

[11], is combined with a technique proposed here for synthesizing line transient parameters. This

permits solving the complete problem of electromagnetic transients in single-phase overhead

lines considering both, linear dispersión and corona effect.

8



2.2 Overview of the method of Characteristics

For a line whose parameters are considered independent of frequency, the Telegrapher's

equations can be represented as follows using matrix notation [32]:

d
u + A—

u + Bu = 0,
dt dx

(2.1)

where, for an overhead single-phase line:

A =u =

0 1/C

l/L 0
and B =

0 0

0 R/L
(2.2)

In (2.2) v = v(x,t) and i = i(x,t) are the line voltage and current, respectively; L, C and R are the

inductance, capacitance and resistance line parameters in per unit length (p.u.l.), respectively.

The eigenvalues of A are:

*u=±
1

LC
(2.3a, b)

where the plus sign for X\ corresponds to the velocity of a wave traveling in the forward direction

and the minus sign for X2 to a backward wave velocity. These eigenvalues are real and distinct

implying that system (2.1) is hyperbolic [9]. A left eigenvector matrix for A is as follows:

Efe/r
~

1 z„

1 -z_
(2.4)

where ZK - -JL/C is denominated the "wave impedance" [32]. Pre-multiplication of system

(2.1) by matrix E¡efi, followed by further algebraic manipulations, yields:

T,
+ x<

dx

and

Yt+Á> dx

v + Z,

v-Z.

[dt

dt

+ A,
dx

+ /L

dx

i +X,Ri = 0

i + Á2Ri = 0

(2.5a)

(2.5b)

If (2.5a) and (2.5b) are restricted to the following curves referred to as "characteristics":

___.-+
¡

dt

"

LC
(2.6a, b)
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the terms inside parenthesis in (2.5a) and (2.5b) represent total derivatives; henee (2.5a) and

(2.5b) become the following ordinary differential equations:

dv + Zwdi + Ridx = 0 (2.7a)

and

dv-Zwdi + Ridx = 0 (2.7b)

The fact that system (2.1) is hyperbolic guarantees that every point in the x-t plañe is crossed only

by one characteristic belonging to the family of solutions to (2.6a) and another one belonging to

the family of solutions to (2.6b). Therefore, the characteristics curves obtained from (2.6a) and

(2.6b) can be taken as a coordinate system in which equations (2.7a) and (2.7b) are equivalent to

system (2.1) [9].

For their solution, (2.7a) and (2.7b) are discretized in space (^-coordínate) and time (í-coordinate)

as shown in Fig. 2.1. Applying central differences, (2.7a) and (2.7b) yields:

(vG -vE)+Zw{iG -iE)+fR{iG +iE)=0 (2.8a)

and

(vG-vf)-Zw(/G-/f)-^4c+^)=0 (2.8b)

Equations (2.8a) and (2.8b) give the solution for the variables v and i at point G of Fig. 2.1. Thus,

voltages and currents for the internal nodes of the discretization mesh of Fig. 2.1 at time t+At can

be caículated from their known valúes at the previous time t. For a point at one of the line ends,

only one characteristic insides on it thus providing a single equation of the type (2.8a) or (2.8b).

The other equation needed to extend the solution to the corresponding point at the time t+At has

to be obtained from the line boundary conditions.

1

/

t

G

At

E F

f-Ax^

>

Fig. 2.1 Discretization mesh
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2.3 Single-phase line with skin effect

When a wave propagates along a lossy line, its spectral components travel with different speeds

and attenuations producing the distortion of the original waveshape. In overhead lines this is due

to skin effect in the conductors and in the ground plañe [11]. A model that considers this has been

proposed by Radulet, et. al, and is given by the following equations [11]:

^ + Lo^- + l'¡r'(t-x)i(x)dz = 0 (2.9a)
dx dt dtJ0

and

^- +Co~ + ^\g'(t-T)v(T)dT = 0, (2.9b)
dx dt dt J0

where L0 and C„ are the geometric inductance and capacitance of the line, respectively; r'(t) and

g'(t) are the transient longitudinal resistance and transient shunt conductance parameters,

respectively. Usually, in the case of overhead transmission lines, one can neglect g'it); from here

on, it will thus be omitted. The parameter r'(t) is defined as the p.u.l. voltage drop at the

periphery of the line conductor that appears after the injection of a current unit step i = u(t) [11]:

,/ ,
dv

r'(t) =
- —

dx

t>0 (2.10)

i=u(t)

This function is positive, monotonically decreasing and has the following limits [11]:

lim r'(t) = Rdc and lim r'(t) = °° (2.11a, b)
t->o

In [16] r'(t) is obtained analytically in terms of Bessel functions and of the complementary error

function. These analytical expressions, however, are restricted to specific line geometry and do

not permit accounting for the discontinuity of r'(t) at t = 0. The method proposed as follows is

applicable to any line geometry and deals with the discontinuity at t = 0 by including a term

consisting in the convolution of the current with Dirac's impulse function.

2.3.1 Transient resistance in frequency domain

In [16] the transient resistance is obtained effectively from analytical expressions which are valid

only for single-phase lines consisting of a cylindrical conductor and flat ground plañe. A
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frequency domain methodology to synthesize r'(í) which is valid for any line configuration is

developed as follows.

In the frequency domain, the first of the Telegrapher's equations is:

dV

where:

= [sL(s) +R(s)]¡(s), (2.12a)
dx

L(s) = L0 + Lc(s) + Lg(s) and R(s) = Rc(s) + Rg(s).

Lg(s) and Rg(s) are the inductance and resistance parameters due to ground, respectively; Lc(s)

and Rds) are the conductor's internal inductance and resistance parameters, respectively.

Applying Laplace transform to (2.9a) one obtains:

-^- = [sL0+sR'(s)]l(s) (2.13)
dx

Expressions (2.12a) and (2.13) should be equivalent; therefore:

ZJs) + Zc(s)
R>(s) = _il___ _____ (2.14)

s

where:

Zg(s) = Rg(s) + sLg(s) and Zc(s) = Rc(s) + sLc(s).

For an overhead line Zg(s) and Zc(s) can be determined at different frequencies by using the

concept of complex depth of images as described in [12]. With these valúes, it is possible to

synthesize a linear network with constant parameters R and C [3] which approximates R'(s). This

network corresponds to a rational function of the type:

rrsj = ___-+£____+*_ (2.15)
s /=1 s + p,

where _V is the order of the fit. Applying Laplace initial and final valué theorems to (2.15):

limr'(t) = limsR'(s) = k0 and limr'(t )= lim sR'( s ) = °° (2.16a, b)
1-X» i->0 l-»0 !->■»

Expressions (2.16a) and (2.16b) coincide with (2.11a) and (2.11b), provided k0 = Rdc. Extracting

the term that contains Rdc from (2.15), the remaining function to be sinthesized is:

H( s ) =R>(s)-tjL=£ ______

+ jt_ (2.17)
S | = l s+p,
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2.3.2 Transient resistance rational fitting

Both, the transient resistance R'(s) and function H(s) of (2.17) are non-rational functions that can

be approximated by rational ones. A fitting method developed by J. Martí [13] is based on

adapting Bode's asymptotic plots. Poles and zeros obtained through this method are real and the

fit has the form:

H(S)4S-Z^-Z>\-{;-Z"\, (2.18)
{s-Piis-p2y-{s-pn)

where the zi terms and the p¡ terms (with / = l,...,N) are real zeros and real poles, respectively.

Another possibility is to use Padé's method which consists in considering the following

expression:

H(Jj=fl"jV"'+g|'+g° <2-i9>
bNs +--- + b¡s + l

Then (2.19) is evaluated at a certain number of frequencies to form an over-determined system of

linear equations whose unknowns are the 2-V+l coefficients. The solution of this system of

equations generally yields complex poles and complex zeros. When real poles and zeros are

desired, a method proposed for Kuznetsov and Schutt-Ainé can be applied [37]. In both, standard

Padé and Kuznetsov methods, an over-determined system of equations of the following form is

obtained:

Mx =
y (2.20)

System (2.20), finally, can be solved by least squares or by singular valué decomposition [22].

When the frequency range of interest for a fit spans several decades, as usually is the case in

electromagnetic transients computation, (2.20) can easily lead to an extremely ill-conditioned

matrix M. To avoid this numerical problem, the procedure proposed by Silveira, et. al., can be

used [31]. This method is based on dividing the complete range of frequencies Q = [Q.„ún Qmax]

in a number of non-overlapping sub-ranges Qj, Q2, ..., Qw, in such form that their unión is Q.

Low order local approximations can thus be performed at each sub-range and then be

incorporated into a global approximation scheme.
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Recently, a very powerful method for approximating non-rational functions of frequency by

means of rational functions has been introduced by Semlyen and Gustavsen. This method,

referred to as Vector Fitting (VF), is very effective even if the original function presents several

spikes [44]. The fitting methods of J. Martí, Padé, Silveira-Kuznetsov and VF are applied as

follows in the synthesis of the H(s) function for the line described by Fig. 2.2. This figure

provides the plots of the fittings along with the original non-rational function H(s). It is clear

from Fig. 2.2 that Padé's method overweights higher frequency data yielding a poor accuracy at

low frequencies. The number of real poles obtained with Martí's technique is 13. A 14th order

approximation has been used for Padé's method. In the case of Silveira-Kuznetsov s method with

local approximations, 13 real poles have been used and the frequency range has been divided in 6

sections. The fitting of H(s) has been done with VF using 8 real poles and a rms error of 1.5xlO"8.

The curves obtained with Silveira-Kuznetsov and VF methods are not shown in Fig. 2.2 since

their differences with the original function are not distinguishable by eye.

In the previous example, VF has produced both the lowest order approximation (8 poles) and the

lowest rms overall error. Lowering the approximation order is important for increasing the

computational efficiency of transient simulations. In the past, the author of this thesis has applied

a model order reduction technique based on balanced realizations [22]. Nevertheless, the most

recent experience with VF is that it produces similar model orders and much less overall error.

Frequency (Hz)

Fig. 2.2 Fitting of H(s) for single-phase line example
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2.4 Numerical convolution

The method of Characteristics described in section 2.2 can be extended to solve equations (2.9a)

and (2.9b) for lines with frequency dependent parameters. This however requires a method to

compute numerically the convolution terms. Such method is described as follows.

The time domain equivalent of (2. 15) is:

r'(t) = k0u(t) + fíkle-p>t+k„S(t) (2.21)
7=1

On introducing (2.21) in (2.9a), and after solving the convolutions corresponding to the step and

the Dirac's delta terms, one obtains:

^ +D^ + Rcdi + V = 0 (2.22a)
dx dt

where:

D = L0 + k„ (2.22b)

and

ü = |- '¡fíkle'"(-T>i(%)d% (2.22c)
<"

o '=1

Since g'(t) is neglected, expression (2.9b) becomes:

^- +Co^ = 0 (2.22d)
dx dt

Expression (2.22c) involves the exponential terms of r(t) only; therefore, the recursive

convolution method of Semlyen and Dabuleanu can be applied in its evaluation [10]. An

alternative technique to implement this method is described next. In the Laplace domain, the

convolution term in (2.22c) can be expressed as follows:

W =^+- + VN, (2.23a)

with:

%=
—— I; 1=1,.. .,N. (2.23b)
s + p¡

On rearranging equation (2.23b) and converting it to time domain:

dw,-yL + pl^¡=kli; l=l,...,N. (2.24)
dt
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where the \|// terms correspond to the inverse Laplace transforms of the *¥¡ ones. Equation (2.24)

can be approximated by finite differences as follows:

Vf m + l

Ai

1 + p,At

V i,m

At

+ V-+1 1=1,.. .,N. (2.25)

where the sub-indexes m and m+l correspond to samples at times mAt and (m+l)At, respectively.

Finally, the total convolution term \jr,„+i is obtained as follows:

n N
At

¥m+l
= __>f,m+l = __.

, ^ A,

NI z=il + P/A/ Aí

+ Vm+1 (2.26)

The method of Characteristics now is applied to (2.22a) and (2.22d), the following system of

equations is thus obtained:

dx
2 -

—

- +
/l,2

_

1

dt VDC

dv + Zwdi + Rcdidx + d-fcc = 0

(2.27a)

(2.27b)

and

dv -

Zwdi + Rcd idx + Odx = 0 (2.27c)

where O is the term that groups the convolutions due to r(t). A discretized versión of f> would

simply be:

«m+i=(vra+,-¥m)/Ar (2.27d)

The numerical solution scheme for (2.27a)-(2.27c) is practically the same as for the one in section

2.2, except for the terms involving O which are readily incorporated by means of (2.25), (2.26)

and (2.27d).

The previously described method of Characteristics, which includes convolutions, is applied now

in the simulation of a linear double ramp wave (lV/10|xs/90|xs) being injected into the line

described by Fig. 2.2. Figure 2.3 shows the simulated waveforms at various distances from the

injection point. These waveforms are caículated also by means of the frequency domain method

known as the Numerical Laplace Transform (NLT) [17]. One can observe in this figure the very

cióse agreement between the two sets of plots. It should be mentioned that, for the numerical

method of Characteristics, the line function H(s) used is the one with 8 poles that was obtained in

the previous section with the VF technique.
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Fig. 2.3 Resulting voltage waveforms along the single-phase line example

2.5 Single-phase lines with corona and skin effects

When a line conductor voltage reaches certain critical valué (vcr„), the electric field in the

neighborhood becomes higher than the dielectric strength of the air and ionization is produced

around the conductor. In this way, the ionized región presents storage and movement of charges.

This phenomenon, known as corona effect, causes the line capacitance becoming a function of

voltage and perhaps also of the time derivatives of this voltage [23]. A model of corona based on

the physical microscopic processes would be very complicated and impractical for transient

analysis of transmission lines. An example of this type of models has been developed by Abdel-

Salam [20]. For transient analysis it is common to use models based on macroscopic descriptions

of the corona phenomenon; for instance models based on voltage-charge curves (q-v curves) [16].

For these models in which the corona capacitance is only function of the voltage, Ccor =f(v), will

be referred to hereafter as static models. On the other hand, when the corona capacitance is

expressed as a function of voltage and its derivatives, Ccor = f(v, d v/d t, ...), it is said that the

model is dynamic [23].
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Corona models based on the q-v curves can be classified as piecewise linear, parabolic, dynamic,

etc. In the former ones the q-v curves are approximated by straight lines. In the parabolic models,

the corona capacitance is approximated by a generalized parábola. Dynamic models take into

account the fact that the corona charge depends on the voltage and on its rate of change. The

following parabolic model have been proposed by Gary, et. al. [23]. Since this model is derived

from a large amount of experimental data, it is adopted here for representing the corona

capacitance Ccor-

r =

nP-

v<vcnf, dv/dt >0

v>vcr„, dv/dt >0

dv/dt <0

(2.28)

In this model, vcrU is obtained by means of the well-known formula by Peek [32], rc is the

conductor radius in centimeters and (i is a parameter that depends on the number of the bundle

conductors and on the voltage polarity. For a single conductor with positive voltage polarity [32]:

P
-

0.22 rc + 1.2 (2.29)

Equations (2.27a)-(2.27c) are applicable to describing wave propagation including corona. One

has to bear in mind that now A and Zw are functions of voltage; that is:

X
-

—
- +

Al,2

1

dt ^JDC(v)
and

ZJv) = 4d7Qv)

where D is the inductance defined by (2.22b).

(2.30)

(2.31)

For linear lines, the characteristics are straight lines with constant slopes. This is the case for the

example provided in section 2.4. It now follows from (2.30) that, for non-linear lines, the

characteristics generally are curves which depend on the solution of the line PDEs. Since these

two PDEs constitute a hyperbolic system, the corresponding characteristics still provides a

solution coordínate system [9], albeit a distorted one. The straight implementation of (2.27b),

(2.27c), (2.30) and (2.31) using finite differences would thus result in a highly irregular

discretization mesh in the x-t plañe. A more convenient finite differences implementation which

produces a regular discretization mesh is described in [32]. It consists in prescribing fixed valúes
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for Ax and Ai in such manner that the Courant-Friedrichs-Lewy (CFL) condition always be

satisfied [27]:

Ax/At = l/VDC (2.32)

The characteristics then are forced to coincide with the mesh nodes by applying interpolations.

The details ofthe method are given in [32].

Equations (2.27b), (2.27c), (2.30) and (2.31) are now applied, along with the regular mesh finite

difference method, in the simulation of a field experiment conducted by Wagner, et. al [1]. This

experiment consisted in the injection of an almost double exponential impulse

(1560kV/0.35u,s/6|xs) at the beginning of a short line section with a corona inception voltage at

400kV. For simulation purposes, it is assumed that the line is a single-phase one. In addition, the

following data are used: conductor radius rc = 2.54 cm, conductor médium height h = 20.72 m,

conductor material in aluminum, earth resistivity pg
= 100 Q-m, line length l = 2185.4 m, line

termination R¡oad = 400 Q.

Figure 2.4a shows the experimental measurements by Wagner, et. al. [1], Fig. 2.4b shows the

simulation results obtained here. The latter figure shows the effect of corona on the traveling

impulse both, with and without frequency dependence considerations. The simulation without

frequency dependence had been accomplished and reported previously in [32]. The comparison

between 2.4a and 2.4b shows that the inclusión of frequency dependence yields results that are

closer to the measured valúes. There are, however, still noticeable differences between simulated

and experimental results. They are attributed here mostly to the following factors:

a) In the simulation corona is represented by a static model instead of by a dynamic model.

b) For the real line, the conductor height varies between towers from 15.24m to 26.2m.

c) The real multiconductor system is formed by two horizontal three-phase lines and their

respective ground wires; while the simulated is assumed as a single-phase line.

d) The simulation considered a cylindrical conductor and, since the earth resistivity was not

reported in [1], it is assumed here as 100 Q-m.

Concerning item b), it implies that the simulation excluded non-uniform line effects as weil as the

fact that corona inception voltage is affected by changes of the conductor height.
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Fig. 2.5 a) Gary's model simulation waveforms, and b) Characteristics' simulation waveforms
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A second application example for the method proposed here is the reproduction of simulations by

Gary, et. al. [16]. Assume a uniform single-phase transmission line, 10 km long, conformed by a

cylindrical conductor with 1.32 cm radius, located 12 m above a ground plañe with a 100 Q-m

resistivity. The line is terminated with a 450 Q resistance and, at the other end, a

(1 120kV/0.524|xs/10.9|xs) double exponential impulse is injected. The critical voltage for this line

is assumed at 320 kV. Figure 2.5a shows the results obtained by Gary, et. al., in [16]. Notice that

wave tails are not provided. Figure 2.5b shows the results obtained with the simulation method

proposed here. Notice the coincidence of the wave fronts in both simulations.

2.6 Remarks

A method for calculating electromagnetic transients in overhead transmission lines taking into

account linear and non-linear dispersión has been presented. The propagation equations with

transient parameters and non-linear effects have been solved by means of the method of

Characteristics. This method eliminates the numerical oscillations usually encountered in

methods using other spatial discretization techniques. The method further can be extended to

multiconductor and to non-quasi-linear line cases. The frequency dependence of line parameters

has been ineluded by means of a convolution procedure based in a synthesized rational function.

The non-linear characteristic due to corona effect is ineluded by means of an iterative process in

the finite difference solution of the transmission line equations. The method has been validated

by comparison with experimental results and it has been shown that the proposed model correctly

prediets the main properties of the waveforms.
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III Multiconductor

LINEAR LINEMODELING IN

TIME DOMAIN INCLUDING

FREQUENCY DEPENDENCE

EFFECT

3.1 Introduction

Over the last 30 years, considerable efforts have been devoted by various specialists towards the

development of a time domain full frequency dependent multiconductor line model. The

following references provide only a very partial list of these efforts: [7, 8, 10, 13, 21, 41, 42, 44,

45, 36]. An idempotent decomposition method introduced by Wedepohl [15] has served as basis

for a recent traveling wave type model. This new model has succeeded in effectively decoupling

modal travel delays [35, 39, 43, 45].

Apart from traveling wave methods, one can use finite differences to produce a multiconductor

line model, that is in time domain and include full frequency dependent effects. Traveling wave

methods are perhaps more effective for producing long homogeneous line section models. There

are cases, however, in which lines have to be subdivided and, thus, a finite difference based

model could be more convenient. A few examples of these cases are: 1) lines excited by

distributed sources, 2) underground cables with múltiple cross-bondings, 3) non-uniform lines

and 4) lines with distributed non-linearities as corona.

A new finite differences line model is presented in this chapter. It is based on the multiconductor

line equations by Radulet, et. al [11], as weil as on the method of Characteristics of PDE theory

[9]. The advantages ofthis model with respect to traveling wave type models are stressed here for

cases in which lines have to be subdivided. The new model is applied to a case consisting in a

distribution line being excited by an externally radiated electromagnetic (EM) field. The new

model is also applicable to long homogeneous sections of line or cable, although for this case the

model is computationally less efficient than traveling wave models. Two additional application

cases involving long line sections are provided here. One consists in a transient on a highly

asymmetric overhead line. The other consists in the transient simulation of an underground cable.
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3.2 Telegrapher's equations for lines with frequency dependent parameters

For a n-phase transmission line or cable, the modified Telegrapher's equations proposed by

Radulet, et. al, can be expressed as follows [11]:

|V+L(,|Í+|-Jr'fí-t)i(T)í/T = 0 (3.1a)
dx dt dt

J

v

and

^ +Cü^ + l\g'(t-xMx)dT = 0 (3.1b)
dx dt dt

where L0 is the geometric inductances matrix of the line, C0 is its matrix of geometric

capacitances [12], r'(t) is its matrix of transient series resistances and g'(t) is its matrix of

transient shunt conductances. All these matrices are of dimensión nxn. As in the case of single-

phase overhead lines, matrix g'(r) usually is neglected. Since this does not imply any loss of

generality, instead of (3.1b) the following expression is hereafter used:

f- +Co^-0 (3.1c)
dx dt

In a similar fashion as for single-phase lines, r'(t) has the following limits:

limr,(t) = diag{RdcX,Rdc2,-Rdcn} and limr'(t) = (^)nxn (3.2a, b)
t—*» t—>o

where Rdcq,q= 1,2, ...,n, is the direct current resistance of the q-th conductor, and (°°)„xn is an

nxn square matrix whose elements are infinite. By following essentially the same procedure as in

section 2.3.1, one can arrive at the following relationship between R'(s), the Laplace domain

image of r'(í), and Zg(s) and Zc(s), the Laplace domain matrices of earth and of conductor

impedances, respectively [12].

R'(S) = -[zg(s) + Zc(s)] (3.3)

Each one of the elements of R'(s) is a non-rational function of s and, in addition, R'(s) is

symmetric. Since lines are made of good conductors and the earth usually is a bad conductor, it is

expected that the Zg(s) term of (3.3) dominates upon Zc(s). In addition, all the elements in Zg(s)

result from the same skin effect on the earth. These two considerations suggest that all the
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different elements of R'(X) can be fitted with rational functions using the same set of poles. In

this author's experience, this has always been the case; therefore:

R'(_-)__-k„+k_+]_~1— k, (3.4)
s ,=ls- p,

where N is the order of the fit, k„ is the matrix of residues of R'(s) at _

=
°°, k_ is its residues

matrix at s = 0 and k/ (/ = l,...,N) is its residues matrix at s = p¡ [3]. Notice from (3.4) and (3.2a)

that:

k0=diag{Rdci,Rdc¿,-RdcJ. (3.5)

Consider next the time domain image of (3.4):

rt(t) = k0ult) + lLmm3(t) + fle»kl (3.6)

On applying (3.6) in (3.1a), one obtains:

___-: ___* ___

'

^ +D^ + k0i +f h(t-T)i(-z)di = 0, (3.7)
dx dt dtJ0

where

__(. )-!>"% (3-8>
1=2

and

D = L0+k_. (3.9)

Expressions (3.1c) and (3.7) constitute the basis ofthe line model proposed in this chapter.

3.3 Transmission line equations and Characteristics

A multiconductor line model based on Characteristics has been already developed in [28] for the

frequency independent line case. The method of Characteristics of PDE Theory is applied next to

(3.1c) and (3.7) for a full frequency dependent model of multiconductor lines. Consider the

following form of (3.7):

^ +D^ + koi + O = 0, (3.10)
dx dt

where

ft =

dt
t3 = |-j,hrí-T)Í(T)í/T.
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Equations (3.1c) and (3.10) can be grouped as:

-

u + A—

u + Bu+f = 0,
dt dx

(3.11)

where:

u = A =

0 c;1
D_1 0

B =

0 0

0 D'k
and f =

D"l0

Note the similarity between (2.1) and (3.11). The latter is a lst order hyperbolic system provided

A has real eigenvalues and 2n linearly independent eigenvectors; that is, A is similar to a real

diagonal matrix. The proof of this being always the case is given in [28].

Matrix products DC„ and C„D also are always diagonalizable [28]. Let T„ and T, be the matrices

that diagonalize these products as follows:

and

t;'dc0tv=a

Tr'C„DT=A

(3.12a)

(3.12b)

Tv can be interpreted as a matrix of column modes of voltage for a line with the following

constant parameters:

L =D-L„+k- C = C„ and R
-

0 .

Similarly, T, would be the matrix of current mode columns for this line. The nonzero elements of

diagonal A are positive and equal to the square inverses of the corresponding modal propagation

velocities. The following modal quantities are next defined:

v = Tvvm and i = T,im

From (3.13a) and (3.13b), in modal domain (3.1c) and (3.10) become:

and

where:

^ +D^ + Coim+T;'« = 0

_____-_r dv", _ft
dx

°

dt
'

D = t;'dt,

C =T"'C T

K -

— 1
,.

K - 1 : .

(3.13a, b)

(3.14a)

(3.14b)

(3.15a)

(3.15b)

(3.15c)
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It can be shown that D and C„ are diagonal, and further [28]:

A = DC„=CÜD

Two additional diagonal matrices are defined as:

r = VXir = VDTíc?
and

Z =,DC
•.-i

(3.16)

(3.17a)

(3.17b)

where T is the modal velocities matrix and Zw is the modal wave impedances matrix.

To apply the method of Characteristics in a straightforward manner, (3.1c) and (3.10) are first left

multiplied by Y :

and

r^ + zw^+rEoiffl+rr;4>=0

dt dx

Note that the following identity has been used in (3.18b):

rz^C;1

(3.18a)

(3.18b)

(3.19)

Then, adding and subtracting (3.18b) to (3.18a):

í!+rÍK+z-ot ox
/

^+r|-^ + rE„i_+rr,;10 = o

and

dt dx vm-zí|-r|-|i,., -nu„; rr.'o- o

(3.20a)

(3.20b)

Expression (3.20a) contains n equations ofthe following form:

dt^'dx
,
d a^

W+Y/SWm^+Y/S^^0' '=1.-^. (3-21a)
q=\ q=\

where y¡ and Zw¡ denote the respective /-th diagonal elements of rand Zw; Jcolq and Tv¡

represent the respective elements of í_0 and T~' at row / and at column q; finally, im /, vm¡ and (p;

denote the /-th elements of the respective vectors im, vm and O. On the other hand, expression

(3.20b) has n equations of the form:
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L., -YiZW-.. -Y/SO, =°! ' = 1--«- ^3-21b>

"7=1 <?='

Next, equations of the form (3.21a) are restricted to the corresponding characteristic curves of the

x-t plañe defined by:

y,=dx/dt; 1=1 n. (3.22)

Equation (3.21a) becomes thus:

dvmJ +ZwJdimJ +Y/AÉW-* +Y,*5_rvJ_-, =0; /= 1,...,«. (3.23)

9=1 9=1

As for equations (3.21b), these also are restricted to their corresponding characteristics curves

defined by:

y,=-dx/dt; l=l,...,n, (3.24)

thus becoming:

dvmJ -ZwJdimJ -Y/A__ k~okimq -Y,dtÍX¿3, =»; /=l,-,n. (3.25)
9=1 9=1

Expressions (3.22)-(3.25) provide 4n ordinary differential equations (ODEs) that are equivalent

to the 2/i PDEs provided by (3.1c) and (3.10).

3.4 Numerical solution of line equations

The Characteristics based finite difference method of section 2.4 is extended now to the

frequency dependent and multiconductor line case represented by (3.22)-(3.25). Figure 3.1

illustrates a predetermined regular mesh in the x-t plañe. As in the single-phase line case, Ai is

determined from the Nyquist frequency and Ax must comply the CFL condition [27]. In the

multiconductor case, however, there are n conditions or positive velocities; i.e. n positive

characteristics passing through each (x, t) point. See for instance point G in Fig. 3.1. Clearly, Ax

must be chosen as:

Ax = ymaxAt, (3.26)

with ymax=max{yu---,yn).

dt~y'd~xK'~Z"J dt
Y'

dx
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Suppose that line solutions are known at points E\ and F\ of Fig. 3.1 and that are to be extended

to point G along the n positive and n negative characteristics. On applying central differences to

(3.23) and (3.25):

fe -vi)+Z_,te, -^K^lUC +4)+^ÍX'>? +<')=0 (3.27a)
2mmU

VJII \"l,t/ "1,11/ ^

9=1
Z

9=1

and

te, -:<,)- zj- -i^-^i^M, ^J-^ítjM +<< )=o (3.27b)
Z

9=1
Z

9=1

with Ax, = Y/Ai and with / = l,...,n. Expressions (3.27a) and (3.27b) provide 2n equations for the

2n unknowns vmtU ..., vmn, iml, ..., imn. However, an issue that still has to be addressed is the one

of evaluating convolution term ■&. Consider the vector ■& of dimensión nxl corresponding to the

partial derivative ofthe convolution in (3.10) expressed as follows:

6fO-fV(r) (3.28a)
dt

with

t

v|/fí) = fhfí-T)i('T/)í/T (3.28b)

In the frequency domain, (3.28b) becomes:

}¥(s) = U(s)l(s), (3.28c)

where:

H(s) = X—
—

k/ (3.28d)
;=i s-p,

is the Laplace image of (3.8a). Let *P(s) of (3.28c) be decomposed as:

Y = T,+ +TN, (3.29)

with:

s-p¡
*F,=—

—

k,I; /=1,...,/V (3.30)

On passing (3.30) to the time domain:

d
—

V,-p,Vi=k,i; 1=1,.. .,N (3.31)
at

and on applying finite differences to (3.31):

Ví,ffl+i=-
—t-m\-r:}Vi,m+K^m+i |; /=i,...,/v (3.32)
l-p,At{At )
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The term \|/,,m+i in (3.32) represents the /-th numerical convolution at t = (m+l)Aí. The total

convolution for (3.28b) is:

Vm+1
= a

At

,=1 l-p,At At
¥,,m + Mm+l

Finally, (3.28a) is approximated numerically as:

^^¿^'-^

(3.33)

(3.34)

3.5 Application examples

Fig. 3.1 Discretization mesh

The previously proposed characteristics based line model is intended for the simulation of cases

where lines have to be subdivided. Nevertheless, this model is applicable to long lines as weil.

The validation of this model is conducted next by applying it to three test cases. The first one

corresponds to an overhead line excited by a distributed source. The second one involves a highly

asymmetric overhead line. The third one is an underground transmission cable system. Cases two

and three correspond to long line applications and their results are validated by means of the NLT

technique. Case one requires line subdivisión and is validated by means of the EMTP.
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A) Illuminated distribution line

Figure 3.2 shows the geometry of a distribution line that is to be excited by EM field determined

by the electric field intensity equal to a uniform linear double ramp [l(V/m)/10u.s/90n.s]

propagating in the -y direction. At end A, each conductor is grounded through a resistance R¡oad =

400 Q and at end B the three conductors are left open.

Fig. 3.2 Configuration for illuminated transmission line

To obtain the voltage waveforms at ends A and B through the Characteristics model, the

following two terms should be added, respectively, to (3.1c) and (3.9) [5]:

and

a
h

i =-C —¡Eincdy
01

o

v,=fjBf<*

(3.36a)

(3.36b)

In equations (3.36a) and (3.36b) h is the corresponding conductor height above ground, _3-mc is

the incident magnetic flux density in the z direction and Eymc is the electrical field intensity in the

y direction (being equal to zero in this application). To obtain the voltage waveforms using

EMTP, the line is subdivided and equivalent sources are inserted between sections. Details of this

are given in [34].

Figures 3.3a and 3.3b provide the voltage waveforms caículated for the central conductor at ends

A and B, respectively. Both, the EMTP (Martí Setup) and the Characteristics model were used

and, for both methods, the line was subdivided in 20 sections of length Ax = 500 m. The shift

between Characteristics and EMTP shown in Fig. 3.3b is decreased when in the latter the line is

subdivided in a larger number of sections. Further experiments showed that decreasing Ax in

EMTP results in waveforms closer with those of Characteristics.
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Fig. 3.3 Voltages induced at the ends ofthe central phase for illuminated distribution line
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B) Highly asymmetric overhead line

Figure 3.4 depicts the transversal geometry of a highly asymmetric transmission system. It

consists of two 100 km long transmission lines that run parallel 80 m apart one from the other.

The first line is a double circuit vertical one, the second line is a single circuit horizontal one. The

ground is considered homogeneous with resistivity pg
= 100 Q-m. At one extreme of this system

(the sending end) conductor 1 is excited with a unit voltage step, while conductors 2 to 9 are

grounded. At the receiving end, 100 km away, all the conductors are open. Figure 3.5 shows three

waveforms at the receiving end as caículated with both, the time domain model proposed here

and the NLT method. The NLT results were obtained considering 1024 samples along the

observation time t0ts = 20 ms. As for the Characteristics results, the line was divided in 35

sections of length Ax = 2857.1 m. Figures 3.5a and 3.5b provide the voltage at the receiving end

for conductors 1 and 6. In these two cases the agreement between the proposed model and the

NLT method is remarkable. Figure 3.5c corresponds to conductor 9 of the unenergized line which

is 80 m apart. Here, the difference between the two results are more noticeable; nevertheless, if

one considers the high asymmetry of this case, the similarity attained can be deemed satisfactory.

20.8m

- • •

"7k- IO 04

—

-r 20 O-

30^- O 6

62.5m51.4m 38.7m 26m

/// // / ///
100 Ohm-m ground resistivity

° ° Phase conductor:

_ _ 4j_.84cn_r__ious

0.4m
Ground wire, 1 .75cm radious

length=100 km
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1
16m 'I

O o

-i

9

O

lOm Mm 22m

-777 777 777
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Fig. 3.4 Configuration for highly asymmetric overhead line
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Fig. 3.5 Open circuit voltages at the receiving end for highly asymmetric overhead line
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34



C) Long underground cable system

Figure 3.6 provides the transversal geometry of an underground transmission system, along with

the electrical properties of the earth, of its conducting and of its insulating layers. The system

consists of three single core coaxial cables and is 10 km long. At the sending end, core conductor

number 1 is to be excited with a voltage unit step while the other cores and sheaths are grounded.

At the receiving end all the cores and the sheaths are open ended. Mention is made here as to the

fact that this test case is adopted from [45]. Figures 3.7a-3.7b show the voltage waveforms at the

receiving end for conductors 1, 3 and 6, respectively. All these results were obtained both, with

the Characteristics model and with the NLT method. In all these cases, the differences are not

noticeable by the eye. For the simulation with the method of Characteristics the line was divided

in 16 sections of length Ax = 625 m.

*s.g=2.51

7K-7—7-7

"g=100[Ohm-m]
7-7-7

lm

r.=1.950e-2[m]

r_=3.775e-2 [m]

r3=3.797e-2 [m]

r4=4.250e-2[m]

í>c=3.36_e-8[Ohm-m]

P =1.718e-8[0___-m]
*c-s=2 85

.51

Fig. 3.6 Configuration for underground cable system

■7-7-7-

length=10_m

3

OJm

35



a)

0.01

0.0O5-

"o

-0.005 -

-0.01

b)

-0.005

-0.01

-0.015

C)
c W x 10"

Fig. 3.7 Open circuit voltages at the receiving end for underground cable system

a) core conductor 1
, b) core conductor 3 and c) sheath conductor 6



3.6 Remarks

The multiconductor line model developed in [28], that is based on the method of Characteristics,

has been extended here into a full frequency dependent line model. Other full frequency line

models, based on traveling wave concepts have been recently developed [41, 43, 45]. Compared

to these, the one of Characteristics one has two advantages. The first is that it only requires the

identification and synthesis of one symmetric matrix; that is, the transient resistance matrix R7(s).

The second is that it only requires one matrix-vector convolution per simulation time step.

Traveling wave models, on the other hand, require the identification and synthesis of two

matrices; namely, the characteristic admittance symmetric matrix Y. = ^/(YZ)_1Y and the non-

symmetric propagation matrix H = exp{-VyZí). The synthesis of the H matrix further requires

the identification of n modal delays. In addition to this, traveling wave models must perform

three matrix-vector convolutions at each simulation time step.

The main advantage of traveling wave models perhaps is that they do not require spatial

subdivisions for those cases of long homogeneous line sections. Therefore, the Characteristics

line model is computationally more efficient, only for study cases in which lines have to be

discretized. This is the case of the first application example provided here. Examples 2 and 3

show that, in spite of its lower numerical efficiency, the proposed model is applicable to cases of

long homogeneous line sections providing a remarkable accuracy.
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IV Modeling of non

uniform TRANSMISSION

LINES FOR TTMEDOMAIN

SIMULATIONOFELECTROMAGNETIC

TRANSIENTS

4.1 Introduction

A few examples of non-uniform lines (NULs) in power systems are: overhead lines with sagging

conductors, lines crossing rivers, lines entering substations and tail metallic structures striken by

lightning. Most methods being proposed in the specialized literature deal with lossiess, single-

phase lines where a particular variation of the line parameters is assumed. A more general

modeling methodology is therefore required.

In this chapter a more general methodology for NUL modeling is presented. Although the method

of Characteristics used in the previous two chapters provides an adequate basis for this undertake,

it was deemed that a change of approach was strategically advantageous. One strong reason is the

availability of a frequency domain model for NULs developed by Semlyen which could be

converted to time domain (TD) with a reasonable amount of effort. Another strong reason is that

extending the method of Characteristics to multiconductor NUL is perhaps a PhD topic by itself.

A third reason is that the frequency domain and TD methods will provide an invaluable support

for this extensión of the method of Characteristics.

The methodology of frequency domain synthesis and time domain recursive convolutions is thus

adopted here. The result methodology can be applied to multiconductor lines with frequency

dependent parameters. The models can also be used for representation of any geometrical

configuration, such as towers. In addition, the models can be interfaced with the existing time

domain programs, for instance the EMTP
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4.2 Terminal relations in frequency domain for NUL

-►h
forward wave

B
H -Mc

x=0

backward wave

Fig. 4.1 Notation and reference directions for NUL

In the frequency domain, expression (4.1) represents the relation between voltages and currents at

the two ends of the single-phase or the multiconductor line of Fig. 4.1 [38]:

(4.1)

where the ABCD matrix defines the relation voltage/current between the two ends of the line and

is numerically caículated by solving,

V 'A B~ V ~KV w„: 'AF wFv wBv~
-1

V

Js. C D Jr. wFi wm_ A__ JVfí WBi. Jr.

d 'Hx) Bíxj
'

0 Z(x) 'Hx) B(x) 'HO) B[0)

~dx Qx) Ux) Y(x) 0 Qx) Uxl QO) W)
=1

_-_>l (4.2)

In (4.2) / is the identity matrix, n is the number of phases and Z and Y are the impedance and the

admittance matrices of the line caículated analytically or obtained from measurement. If Z and Y

are caículated analytically, the ABCD matrix is obtained by chain multiplicaron of matrices for

line segments. In the present work the concept of complex depth is used to calcúlate parameters

of lines and towers [12], [50].

Equation (4.1) contains the modal (eigenvalue/eigenvector) decomposition of the ABCD matrix.

This gives the following relation between the forward (F) and the backward (B) waves and the

propagation functions Af, Ab in the forward and the backward directions:

(4.3)

Equation (4.3) relates variables of the traveling wave formulation. The transformation to phase

domain quantities, valid for both ends of the line, is given by

'UF,S~

_UB.S_

=

Af

A__

UF,R

_UB,R
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Wr., W,'

Fv Bv

we. w.
(4.4)

Bi

The relation between the forward and the backward propagation functions is

Afl=A7! (4.5)

The following inverse transformation matrix for (4.4) is defined:

W'Fv W'Fi

Wflv "Bi

w_„ wtFv Bv

wF¡ WBi

-I

(4.6)

Definitions for the characteristic admittances in the forward and the backward directions for (4.4)

are,

YCF=WFíWF¡ (4.7a)

and

Yc,b=WbíW¿ (4.7b)

The backward propagation functions for the symmetrical line (Fig. 4.6), the river crossing line

(Fig. 4.13) and the vertical structure (Fig. 4.9) applications presented in this chapter are shown in

Figs. 4.2 to 4.5. Fig. 4.2 corresponds to the symmetrical line. Figs. 4.3 and 4.4 correspond to the

river crossing line. Fig. 4.3 shows the impact of ground resistivity on the propagation function.

The graphs of Fig. 4.4 are the same as those of Fig. 4.3a when plotted in a linear horizontal scale.

Fig. 4.5 corresponds to the vertical structure line.

10' 10 10 10 10 10 10

Frequency (Hz)

Fig. 4.2 Modal backward propagation functions for the three-phase symmetrical line of Fig. 4.6
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Fig. 4.3 Modal backward propagation functions for the three-phase river crossing. a) p, = 10 .Q-m, b) p, = lOOOQ-m
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Fig. 4.5 Backward propagation function for the single-phase vertical structure

43 Time domain model forNUL

The following provides the derivation of the time domain model in the forward direction (see Fig.

4.1). An analogous procedure can also be applied for the backward direction.

Eliminating uB from (4.4) and using (4.7b) yield:

Yc,BVr ~ÍR
= {wBiWB1WFv -Wf¡)uFiR (4.8)

Substituting (4.3) into (4.8) gives

Yc,bVr-ír=TfAbufs (4.9)

where

TF=WBlW¡lWFv-WFi (4.10)

and, from (4.4) and (4.6),

»f,s=KvvS+WfJs (4.H)

Thus, (4.9) represents the "Norton-type" relation between the receiving end voltages and currents

needed in the calculation of transients. A next step is to approximate the parameters Yc,b, Tf, Ab,

wFv ,
and wFi , by rational functions and to use state-space realizations to solve (4.9) and (4.1 1) in

the time domain [44]. For this solution, the corresponding expression for the terminal conditions

of the line (node R in Fig. 4.1) must be taken into account together with numerical solution of the

state-space approximations. As mentioned earlier, similar equations are derived for the backward

direction and used for the sending end.
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4.4 Applications

In this section, three applications of the model described above are presented. Also, comparisons

with the results obtained from other methods are shown.

A) Symmetrical three-phase line

Fig. 4.6 shows the configuration of a flat three-phase NUL consisting of seven equal segments.

Each segment at the length of 312.2 m and the máximum height of 26.2 m at the tower and the

minimum height of 15.24 m at the mid-span. Each phase consists of one conductor with the

radius of r = 2.54 cm. The ground resistivity is assumed to be 100 __-m. The configuration of the

line in Fig. 4.6 is similar to the one used in [1] for measurements of voltage and current

propagating along the line.

2185.4 m

sx^ xw xw

Fig. 4.6 Symmetrical, flat, three-phase NUL

Three identical voltage waveforms reported in [1] are simultaneously injected in all phases at the

sending end when the receiving end is open. The sending end voltage and the corresponding

receiving end voltage are shown in Fig. 4.7, which illustrates both the experimental [1] and the

simulation results. The simulation result is obtained based on the proposed time domain (TD)

model. In addition to the comparison with the experimental results [1], the TD model is also

validated by comparing the result with those obtained from a frequency domain methodology

using the Numerical Laplace Transform (NLT) [17], Fig. 4.8a. In the comparison with NLT, a

voltage wave v(t) = K(e~t/K -e~r/t' ) is applied using the same terminal conditions as in the

preceding case, with K = -1.0017 V, t0 = 0.205 |¿s and h = 1182 |xs. Figs. 4.7 and 4.8a

demónstrate that the results obtained from the TD model closely agree with the measurement

results and are almost identical to those obtained from the NLT approach. The reason for the

fluctuation in the voltage waveform is discussed in Section 4.5.
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In Fig. 4.8a the results obtained with the proposed TD approach and the NLT method are

compared with those obtained with the method of Characteristics. Fig. 4.8a shows that there

exists a significant difference between the traces obtained with full representation of frequency

dependence, i.e. NLT and TD, and the one with frequency independent parameters using the

method of Characteristics [46]. Fig. 4.8a shows that the representation of the frequency

dependence of the line parameters is important in the case of not very short NULs. When the line

is simulated with frequency dependent and uniform parameters, the resulting curve is cióse to the

experimental one, only the wave crest ripple is not reproduced. This is shown in Fig. 4.8b.

1 experimental sending end

2 experimental receiving end

TD receiving end

2 3

Time (s) x10"

Fig. 4.7 Time domain simulation and experimental results for the line ofFig. 4.6

B) Vertical structure

The vertical structure, Fig. 4.9, examined in this example is the one introduced in [14]. The

structure is used to represent a tower. It has a circular cross-section with radius of 0.7 m. In this

application the equations given in [50] are used to calcúlate the characteristic impedance. The

selected radius results in a valué for the characteristic impedance at the top of the tower equal to

that obtained from Zf = 50 + 35-7* used in [14], [30], [38]. The ground resistivity is assumed to

be 30 Q-m.

44



1

1 i r
-- ■

i

0.8
■

)ltage

(V)
o O) " // / ■

>0.4

I /0.2

-

sending end
— Charact receiving end

LT receiving end
- - TD receiving end

e"> ' '

2 3

Time (s)

a)

x10

1

T
- .......

, ,

/ 1

0.9

0.8 2

0.7
-

ct0.6 / / / -

Q)

«0.5

o

>0.4

-

0.3 -I v
•

0 2 -//
NLT uniform

0.1

'
• i

— 1 experimental sending end
— 2 experimental receiving end

•

1 ]

2 3

Time (s)

b)

x10

Fig. 4.8 Simulations for the line of Fig. 4.6

a) Characteristics, TD and NLT, b) NLT without considering non-uniform effects



lf» -,
»250Q

-pl,ÍRf
- eOO

Fig. 4.9 Vertical structure

The lightning stroke in Fig. 4.9 is modeled as a double-exponential Norton current source given

by i(t) = K(e~"K -e~'"' ) with K = 62 kA, t0 = 17.63 ^s and tx = 0.0316 jas [30], [38]. A more

advanced model of the lightning stroke is given in [47]. The voltage and the current at the top of

the structure are shown in Figs. 4.10 and 4.11 respectively. The voltage at the bottom is shown in

Fig. 4.12. The results from Figs. 4.10 to 4.12 agree with those reported in [30]. In contrast to the

longer NUL of Fig. 4.8, the results obtained with TD and the method of Characteristics are very

cióse. This is due to the fact that frequency dependence in the case of short lines does not have a

significant effect.

0.2 0.4 0.6 0.8

Time (s)

Fig. 4.10 Voltage at the top of vertical structure
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Fig. 4.11 Current at the top of vertical structure
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Fig. 4.12 Voltage at the bottom of vertical structure
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C) River crossing

Another example of a strongly non-uniform line is a river crossing, e.g. the configuration

presented in Fig. 4.13. The three-phase line is formed by parallel conductors with 2.54 cm radius

and 10 m horizontal separation; the resistivity of the water is assumed to be 10 .Q-m.

230.4 m

r

28 m

4-

f 600 1 4

Fig. 4.13 Profile of river crossing

The sending end is at the elevation of 28 m. A unit step voltage is applied to the conductors at the

sending end when the receiving end is open. The voltage waveform resulting from the simulation

based on the TD method is presented in Fig. 4.14. Fig. 4.14 also shows the results obtained based

on the NLT method. Fig. 4.14 shows that the TD method presents oscillations in the waveform

resulting from the simulation. The frequency of these oscillations is closely related with the

máximum frequency, /,-_*, used to calcúlate the line parameters. Further explanation regarding the

oscillations is given in Section 4.5.

1.5

Time (s) X10

Fig. 4.14 Voltage at the receiving end phases 1 and 3 for the line of Fig. 4.13
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4.5 Discussion of results

Figure 4.2 shows that modal backward propagation functions 1 and 2 present a spike at the

fundamental frequency f„=c/2l related to the length of the line /, and the light velocity c.

Further analysis of data corresponding to this figure shows that the three functions present thus

spikes at frequencies harmonically related to/0.

These spikes transíate into superimposed small fluctuations in time domain as can be seen in the

results presented in Figs. 4.7 and 4.8 for the symmetrical line of Fig. 4.6. In this application f0 __

480.46 kHz corresponding to the frequency of fluctuations shown in Figs. 4.7 and 4.8. Fig. 4.2

shows that only the first spike is of considerable magnitude.

Fig. 4.3 shows the propagation function for the river crossing line of Fig. 4.13. Increasing non-

uniformity by asymmetry results in larger magnitudes of the spikes (as compared to those of Fig.

4.2) as shown in Fig. 4.3. An analogous remark is that a smaller ground resistivity increases the

magnitudes of the spikes (see Fig. 4.3).

To compute transients in time domain, the range of frequencies must be finite. Frequency

truncation can introduce spurious oscillations or even instability in the time domain simulations

when the spikes, in frequencies higher than fmax, are of considerable magnitude. This

phenomenon represents Gibbs oscillations that can be diminished in a frequency domain

program, e.g. NLT, by using windows to smooth the effect of truncation. In this thesis the

trapezoidal rule (TR) is initially used to discretize the state-space realizations mentioned above.

However, depending on the non-uniformity and ground resistivity, the backward Euler method

(BE) is used to act as a filter in time domain simulations instead of TR to eliminate the spurious

oscillations like those shown in Fig. 4.14. Using BE effectively damps out the natural oscillations

due to the frequency truncation as described in Appendix A. Using the above feature, the

simulation for the river crossing line is repeated by using BE and the results are shown in Fig.

4.15 in which the spurious oscillations (Fig. 4.14) are not present in the TD results.
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Fig. 4.15 Voltage at the receiving end phases 1 and 3 for the line of Fig. 4.13 using BE

4.6 Remarks

The topic of NULs started receiving due attention recently. Criteria for including NUL effects, as

weil as for combining these with the frequency dependent ones, are not ready yet. This chapter

introduces and develops a time domain methodology to compute electromagnetic transients in

single-phase and multiconductor NULs including frequency dependent effects. The term NUL

encompasses line geometries where the line parameters have longitudinal variations, e.g. lines

crossing rivers, lines entering substations, and vertical tower structures. The proposed

formulation is based on the concept of travelling waves and takes into account the frequency

dependence of the line parameters. The model is used to compute electromagnetic transients for

three different non-uniform geometries and its accuracy is demonstrated by comparing the results

with those obtained from the method of Characteristics and measurement results reported by

other investigators. A salient feature of the methodology is that it can be readily ineluded in time

domain simulation packages, e. g. the EMTP.
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V Conclusions

5.1 Summary of results

This thesis deals with advanced modeling techniques for transmission lines. Although the focus is

on power lines, it is suggested that the techniques developed here are applicable to electronic and

communication line problems. The line analysis problem has been attacked from two

complementary approaches. The first is a time domain based one which uses the theory of

Characteristics of PDEs. The second is a frequency domain based which produces a time domain

model.

An existing Characteristics based model for single-phase lines with corona, developed in [32],

has been extended to include frequency dependence (or linear dispersión) effects. The resulting

model has provided simulations closer to experiments than others proposed elsewhere. Since the

method of Characteristics eliminates numerical oscillations, the new model is able to handle

multipeak waveforms and múltiple reflections [33].

The above mentioned method of Characteristics has also been extended for handling

multiconductor lines with frequency dependent parameters and excited by a distributed source.

The resulting model requires to synthesize only one matrix function compared with two required

by traveling wave based models. This has the advantage that the number of convolutions is

decreased substantially. It has been shown through an application example that the new model is

more accurate and convenient than the standard way of dealing with illuminated lines consisting

in the use of EMTP J. Marti" s line model [34]. For cases of long homogeneous lines that do not

require spatial subdivisión, the new model is computationally less efficient than traveling wave

models; nevertheless, the model synthesis still is simpler and the attained results are remarkably

accurate. The new model has been benchmarked against the NLT method in two applications that

might be considered pathological. One involves a long and highly asymmetrical overhead line.

The other consists in a long underground cable. The new model requires line subdivisions; the
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required subsection lengths have resulted surprisingly longer than expected, in the order of Ax =

625-2857 m. This range should be compared with the ones required by an akin model, the Z-

cable model [51], where Ax = 100 m is a typical figure.

As for the case of non-uniform multiconductor lines including frequency dependent effects, the

method of Characteristics is adequate. However, it has been deemed more convenient to attack

this problem first from another complementary angle. A frequency domain model previously

developed by Semlyen and published as a discussion to [38], has been adopted here as basis for

the synthesis of a time domain model for such lines. This model, like the one based on

Characteristics, has the added advantage of permitting its direct incorporation into the EMTP.

The TD model here proposed constitutes a valuable tool for both, the further development of a

Characteristics based NUL model and the establishment of guidelines to include non-uniform

effects in line analysis.

5.2 Recommendations for further developments

The following is a list of projects recommended as continuation of the work reported in this

thesis.

1) Multiconductor lines with corona and skin effects.

Most of the existing models for multiconductor lines with corona are based on standard

linear modal analysis; however, corona is a non-linear phenomenon. The theory of

Characteristics permits dealing with multiconductor lines affected by corona in a

mathematically rigorous manner. This topic might weil be by itself a Ph. D. project. An

additional development is the inclusión of frequency dependent effects.

2) Analysis of multitransposed lines.

The multiconductor model of chapter 3, for dealing with distributed sources, can be

adopted for analyzing multitransposed lines and cables. In these applications,
the resulting

adaptation seems to offer more accuracy and numerical efficiency than traveling wave

models.
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3) Non-uniform multiconductor line model.

To develop a model based on Characteristics that be able handle non-uniform

multiconductor lines. Such a model would be a highly convenient complement of the

model proposed in chapter 4. These two models would be valuable for providing a better

understanding of NULs.

53



References

[1] C. F. Wagner, I. W. Gross, B. L. Lloyd, "High-Voltage Impulse Test on Transmission

Lines", AIEE Trans., vol. 73, pt. HI-A, pp. 196-210, April 1954.

[2] C. F. Wagner, B. L. Lloyd, "Effects of Corona on Traveling Waves", AIEE Trans., pp.

858-872, June 1955.

[3] M. E. Van Valkenburg, "Introduction to Modern Network Synthesis", John Wiley &

Sons, Inc., 1960.

[4] L. M. Wedepohl, "Application ofMatrix Methods to the Solution of Travelling Wave

Phenomena in Polyphase Systems", Proc. IEE, vol. 110, no. 12, pp. 2200-2212, December

1963.

[5] C. D. Taylor, R. S. Satterwhite, C. W. Harrison, "The Response ofa Terminated Two-

Wire Transmission Line Excited by a Nonuniform Electromagnetic Field", IEEE Trans. on

Antenna and Propagation, vol. AP-13, 1965.

[6] E. M. Stafford, D. J. Evans and N. G. Hingorani, "Calculation ofTravelling Waves on

Transmission Systems by Finite Differences", Proc. IEE, vol. 112, no. 5, pp. 941-948,

May 1965.

[7] A. Budner, "Introduction of Frequency Dependent Line Parameters into an

Electromagnetic Transients Program" IEEE Trans. Power Apparatus and Systems, vol.

PAS-89, pp. 88-97, January 1970.

[8] J. K. Snelson, "Propagation of Travelling Waves on Transmission Lines-Frequency

Dependent Parameters" ,
IEEE Trans. Power Apparatus and Systems, vol. PAS-91, pp.

85-91, January/February 1972.

[9] G. B. Whitham, "Linear and Nonlinear Waves", John Wiley & Sons, U. S. A. 1974.

[10] A. Semlyen, A. Dabuleanu, "Fast and Accurate Switching Transient Calculations on

Transmission Lines with Ground Return Using Recursive Convolutions" IEEE Trans.

Power Apparatus and Systems, vol. PAS-94, pp. 561-571, March/April 1975.

[11] R. Radulet, Al. Timotin, A. Tugulea, A. Nica, "The Transient Response ofthe Electric

lines Based on the Equations with Transient Line-Parameters" ,
Rev. Roum. Sci. Techn.,

vol. 23, no. l,pp. 3-19, 1978.

54



[12] A. Deri, G. Tevan, A. Semlyen, and A. Castanheira, "The Complex Ground Return

Plañe: A SimplifiedModel for Homogeneous andMulti-layer Earth Return", IEEE Trans.

Power Apparatus and Systems, vol. PAS-100, no. 8, pp. 3686-3693, August 1981.

[13] J. R. Martí, 'Accurate Modelling of Frecuency-Dependent Transmission Lines in

Electromagnetic Transient Simulations", IEEE Trans. Power Apparatus and Systems, vol.

PAS-101, no. 1, pp. 147-157, January 1982.

[14] C. Menemenlis and Z. T. Chun, "Wave Propagation on Nonuniform Lines", IEEE

Trans. Power Apparatus and Systems, vol. PAS-101, no. 4, pp. 833-839, April 1982.

[15] L.M. Wedepohl, "Theory of Natural Modes in Multiconductor Transmission Lines"

Lecture Notes for Course ELEC-552, The University of British Columbia,1982.

[16] C. Gary, A. Timotin, D. Cristescu, "Prediction of Surge Propagation Influenced by
Corona and Skin Effect", IEE Proc, vol. 130, no. 5, pp. 264-272, July 1983.

[17] L.M. Wedepohl, "Power System Transients: Errors Incurred in the Numerical Inversión

of the Laplace Transform" Proc. of the Twenty-Sixth Midwest Symposium on Circuits

and Systems, pp. 174-178, August 1983.

[18] A. Semlyen, Huang Wei-Gang, "Corona Modelling for the Calculation ofTransients on

Transmission Lines", IEEE Trans. on Power Delivery, vol. PWRD-1, no. 3, pp. 228-239,

July 1986.

[19] H. W. Dommel, "Electromagnetic Transients Program ReferenceManual (EMTP Theory

Book)", Prepared for Bonneville Power Administration, P. O. Box 3621, Portland, Oregon

97208, U.S.A., 1986.

[20] M. Abdel-Salam, E. Keith Stanek, "Mathematical-Physical Model of Corona from

Surges on High-Voltage Lines", IEEE Trans. on Industry Applications, vol. IA-23, no. 3,

pp. 481-489, May/June 1987.

[21] L. Martí, "Simulation of Transients in Underground Cables with Frequency-Dependent

Modal TransformationMatrices", IEEE Trans. on Power Delivery, vol. 3, no. 3, pp. 1099-

11 10, July 1988.

[22] R. E. Skelton, "Dynamic System Control: Linear System Analysis and Synthesis" Ed.

John Wiley and Sons, U. S. A., 1988.

[23] C. Gary, D. Cristescu, G. Dragan, "Distorsión and Attenuation of Travelling Waves

Caused by Transient Corona" CIGRE Report, Study Committee 33: Overvoltages and

Insulation Coordination, 1989.

[24] J. R. Marti and J. Lin, "Suppression of Numerical Oscillations in the EMTP", IEEE

Trans. Power Systems, vol. 4, no. 2, pp. 739-747, May 1989.

55



[25] S. Carneiro, J. R. Martí, "Evaluation of Corona and Line Models in Electromagnetic
Transient Simulations", IEEE Trans. on Power Delivery, vol. 6, no. 1, pp. 334-341,

January 1991.

[26] M. Ishii, T. Kawamura, T. Kouno, E. Ohsaki, K. Murotani, and T. Higuchi,

"Multistory Transmission Tower Model for Lightning Surge Analysis", IEEE Trans.

Power Delivery, vol. 6, no. 3, pp. 1327-1335, July 1991.

[27] W. F. Ames, "Numerical Methods for Partial Differential Equations", Academic Press

Inc, Third Ed., USA, 1992.

[28] J. L. Naredo, P. Moreno, A. Soudack and J. R. Martí, "Frequency Independent

Representation of Transmission Lines for Transient Analysis Through the Method of
Characteristics", Proc. of The Athens Power Tech. 1993, NTUA IEEE/PES Joint

International Power Conference 1993, Athens, Greece, vol. 1, pp. 28-32, September 5-8

1993.

[29] S. Carneiro, H. W. Dommel, J. R. Martí, H. M. Barros, "An Efficient Procedure for
the Implementation of Corona Models in Electromagnetic Transients Programs" Paper
93SM 401-0 PWRD, IEEE Trans. on Power Delivery, vol. 9, no. 4, April 1994.

[30] E. A. Oufi, A. S. Alfuhaid, and M. M. Saied, "Transient Analysis of Lossiess Single-

phase Nonuniform Transmission Lines", IEEE Trans. Power Delivery, vol. 9, no. 3, pp.
1694-1700, July 1994.

[31] L. Silveira, M. Elfadel, J. White, M. Chilukuri and K. Kundert, "Efficient Frequency-
Domain Modeling and Circuit Simulation of Transmission Lines", IEEE Trans. on

Components, Packaging and Manufacturing Technology-Part B, vol. 17, no. 4, pp. 505-

513, November 1994.

[32] J.L. Naredo, A.C. Soudack, J.R. Martí, "Simulation of Transients on Transmission

Lines with Corona via the Method ofCharacteristics" ,
IEE Proc. Gener. Transm. Distrib.,

vol. 142, no.1, pp. 81-87, January 1995.

[33] J. L. Naredo, P. Moreno Villalobos, A. C. Soudack, J. R. Martí, "Travelling Waves on

Single Phase Lines Including Corona and Reflection Effects", ISHV-95 Conference

Record, Subject 6, Paper 6789, Graz, Austria, August/September 1995.

[34] A. Xémard, Ph. Baratón and F. Boutet, "Modelling with EMTP of Overhead Lines

Illuminated by an External Electromagnetic Field" Proc. of the International Conference

on Power Systems Transients, pp. 39-44, Lisbon, Portugal, September 1995.

[35] F. Castellanos and J. R. Martí, "Phase Domain Multiphase Transmission Line Models",

Proc. of the International Conference on Power Systems Transients, pp. 17-22, Lisbon,

Portugal, September 1995.

[36] T. Noda, N. Nagaoka and A. Ametani, "Phase Domain Modeling of Frequency-

Dependent Transmission Lines by Means of an ARMA Model", IEEE Trans. on Power

Delivery, vol. 11, no. 1, pp. 401-41 1, January 1996.

56



[37] D. B. Kuznetsov and J. E. Schutt-Ainé, "Optimal Transient Simulation ofTransmission

Lines" IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications,
vol. 43, no. 2, pp. 110-121, February 1996.

[38] M. T. Correia de Barros, M. E. Almeida, "Computation of Electromagnetic Transients

on Nonuniform Transmission Lines" IEEE Trans. Power Delivery, vol. 11, no. 2, pp.

1082-1091, April 1996.

[39] F. J. Marcano, "Modeling of Transmission Lines Using Idempotent Decomposition",
MASc. Thesis, Department of Electrical Engineering, The University of British

Columbia, Vancouver, Canadá, August 1996.

[40] H. V. Nguyen, H. W. Dommel, and J. R. Martí, "Modelling of Single-phase

Nonuniform Transmission Lines in Electromagnetic Transient Simulations", IEEE Trans.

Power Delivery, vol. 12, no. 2, pp. 916-921, April 1997.

[41] F. Castellanos and J. R. Martí, "Full Frequency-Dependent Phase-Domain

Transmission Line Model", IEEE Trans. on Power Systems, vol. 12, no. 3, pp. 1331-1339,

August 1997.

[42] H. V. Nguyen, H. W. Dommel and J. R. Martí, "Direct Phase-Domain Modelling of

Frequency-Dependent Overhead Transmission Lines" IEEE Trans. on Power Delivery,
vol. 12, no. 3, pp. 1335-1342, July 1997.

[43] F. J. Marcano and J. R. Martí, "Idempotent Line Model: Case Studies", Proc. of the

International Conference on Power Systems Transients, pp. .Seattle, Washington, June

1997.

[44] B. Gustavsen and A. Semlyen, "Combined Phase Domain and Modal Domain

Calculation of Transmission Line Transients Based on Vector Fitting", IEEE Trans.

Power Delivery, vol. 13, no. 2, pp. 596-604, April 1998

[45] A. Morched, B. Gustavsen and M. Tartibi, "A Universal Model for Accurate

Calculation ofElectromagnetic Transients on Overhead Lines and Underground Cables",

IEEE Trans. on Power Delivery, vol. 14, no. 3, pp. 1032-1037, July 1999.

[46] J. A. Gutiérrez, J. L. Naredo, L. Guardado, and P. Moreno, "Transient Analysis of

Nonuniform Transmission Lines through the Method of Characteristics", Proc. of the

ISH-99, 11* International Symposium on High Voltage Engineering, vol. 2, topic B,

London, U. K., August 23-27, 1999.

[47] V. Shostak, W. Janischewskyj, and A. M. Hussein, "Expanding the Modified

Transmission Line Model to Account for Reflections within the Continuosly Growing

Lightning Return Stroke Channel" IEEE Power Engineering Society Summer Meeting

2000, vol. 4, pp. 2589-2602.

57



[48] C. A. Nucci, S. Guerrieri, M. T. Correia de Barros and F. Rachidi, "Influence of
Corona on the Voltajes Induced by Nearby Lightning on Overhead Distribution Lines",

IEEE Trans. on Power Delivery, vol. 15, no. 4, pp. 1265-1273, October 2000.

[49] M. S. Mamis and M. Koksal, "Lightning Surge Analysis using Nonuniform, Single-phase
Line Model", IEE Proc. Gener. Transm. Distrib., vol. 148, no. 1, pp. 85-90, January 2001.

[50] J. A. Gutiérrez, P. Moreno, J. L. Naredo, and L. Guardado, "Non Uniform Line Tower

Model for Transient Studies", Proc. of the International Conference on Power Systems

Transients, pp. 535-540, Rio de Janeiro, Brazil, June 2001.

[51] T. C. Yu and J. R. Martí, "zCable Model for Frequency Dependent Modelling of Cable

Transmission Systems" Proc. of the International Conference on Power Systems

Transients, pp. 55-60, Rio de Janeiro, Brazil, June 2001.

58



Appendix a

Damping Properties
of Backward Euler

Integration Rule

The damping effect of the Backward Euler (BE) method is described in [24]. Here a simple

example is shown for illustration. Consider the homogeneous ODE with the natural frequency (O

X = y'cax

and its analytical solution (with initial valué x = i)

x = ejm'

(A.l)

(A.2)

The solution given by (A.2) represents a circle in the complex plañe and corresponds to an

undamped solution in the time domain. Applying BE to (A.l) results in the following expression:

x-xold =jüihx (A.3)

where h is the time step. The following continuous solution is assumed for the recursion (A.3):

x
- est (A.4)

Substituting (A.4) in (A.3), such that xold = es('~h) the parameter s is obtained as:

s = -log(l-j(x)h)/h (A.5)

Similarly, using trapezoidal integration method (TR) to solve (A.l), the parameter s becomes:

s = --log
h

l-jwh/2s
l + j(0h/2

(A.6)

The analytical solution in the time domain is compared with those obtained from BE and TR in

Fig. A.l taking 1.5 periods and using N = 5 and N = 15 steps per period. In Fig. A.l, the discrete

solution of (A.2) is presented by points corresponding to N steps and the continuous solution

joining these discrete points is added for clarity.
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N = 5

Time (s)

Fig. A.l Example for damping, time domain

150

150

Fig. A.l shows that the damping introduced by BE is significant even when a larger number of

time steps is used. TR has no damping effect in terms of the magnitude of oscillations and the

discretization error is visible only in the frequency of the oscillations.
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Appendix b

Resumen Extendido

Introducción

La confiabilidad de los sistemas de transmisión de energía eléctrica depende en gran medida de la

precisión de los métodos de el análisis y diseño de los elementos que lo conforman. Las líneas y

los cables de transmisión son elementos muy importantes de dichos sistemas. Esta tesis, por

tanto, se aboca al desarrollo de modelos que permitan simular o reproducir el comportamiento

transitorio de las líneas y los cables.

Los primeros modelos se basaron en el caso de líneas sin pérdidas, para las cuales sus ecuaciones

descriptivas corresponden a la ecuación clásica de onda. La solución de D'Alembert a esta

última, en términos de ondas viajeras, es bien conocida y constituye la base para el método de

Bergeron y el modelo circuital tipo Norton para una línea ideal. En los últimos 30 años se han

dedicado esfuerzos considerables para extender este modelo básico al caso de líneas

multiconductoras que incluya pérdidas. Recientemente se ha desarrollado un modelo de línea

basado en la teoría de matrices idempotentes [15]. Este modelo, a veces denominado "universal"

[45], prácticamente resuelve el problema del modelado de líneas que sean multiconductoras,

lineales, homogéneas y excitadas por fuentes concentradas.

Existen muchos casos en la práctica en que se requiere efectuar la subdivisión de una línea (o

cable) para su análisis; entre ellos: 1) cuando la línea es no uniforme, 2) cuando es no lineal,

como con la ocurrencia de efecto Corona, 3) cuando está excitada por una fuente distribuida

debida a un campo electromagnético radiado y 4) cuando una línea homogénea tiene

transposiciones múltiples y muy cercanas. Ejemplo de este último son los cables subterráneos con

transposición de pantallas (cross-bonded). En todos estos casos, un modelo de línea basado en

diferencias finitas puede ser más ventajoso que los usuales basados en ondas viajeras.
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En esta tesis se reporta la construcción de tres modelos de línea. El primero que permite simular

transitorios en líneas monofásicas considerando efectos Skin y Corona; es decir, con dispersiones

lineal y no lineal. El segundo modelo permite simular líneas polifásicas considerando parámetros

dependientes de la frecuencia y excitaciones por medio de fuentes distribuidas. El tercer modelo

permite analizar transitorios en líneas polifásicas con parámetros dependientes de la frecuencia

así como de la distancia; o sea, líneas no uniformes.

Líneas monofásicas con efectos corona y dependencia frecuencial

Por una parte el efecto Skin, tanto en el plano de tierra como en los conductores, provoca el

fenómeno de dispersión lineal en una línea de transmisión. Por otra, el efecto Corona produce

dispersión no lineal. Cuando el fenómeno Corona ocurre, el parámetro capacitancia de línea se

convierte en una función de la tensión (o voltaje), y esto produce características no lineales en la

propagación. Por tanto, los métodos del dominio del tiempo son considerados los más adecuados

para analizar líneas con Corona; además, se debe recurrir a la discretización espacial de las líneas

bajo estudio.

Un problema comúnmente encontrado en la solución numérica de las ecuaciones diferenciales

parciales (EDPs) no lineales que describen a una línea es el de la aparición de oscilaciones

artificiales [2]. Este problema de tipo numérico ha sido resuelto en [32] mediante el método de

las Características de la teoría de EDPs. En esta tesis se adopta el método de las Características,

junto con las siguientes ecuaciones de línea propuestas por Radulet, et. al., [11], para desarrollar

un modelo de línea monofásica que incluya efectos Corona y de dependencia frecuencial (o de

dispersión lineal).

^ + Lo^ + ~\r'(t-T)i(x)dT = 0 (la)
dx dt dtJQ

y

^ +c^ = o, (Ib)
dx dt

En estas ecuaciones se incluye los efectos frecuenciales mediante el término de convolución de la

corriente con la función r'(t) denominada resistencia transitoria. En cuanto al efecto Corona, éste

se incorpora expresando al parámetro C de (Ib) como una función del voltaje de la línea. La

siguiente expresión ha sido propuesta por Gary, et. al, [23]. Debido a que ésta se obtuvo
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mediante una gran cantidad de datos experimentales, es la elegida aquí para representar el efecto

Corona.

C =

C

( \P'1
v

>

v<v<nl, dv/dt >0

v> vcril, dv/dt >0

dv/a/<o

(2a)

En esta expresión vcri, representa al voltaje de incepción de Corona cuyo valor se determina

mediante la muy conocida fórmula de Peek [23], C0 es la capacitancia geométrica o de línea

ideal, rc representa el radio del conductor en centímetros y /? es un parámetro que depende de la

polaridad del voltaje. Para una polaridad positiva:

P = 0.22 rc + 1.2 (2b)

Para obtener r(t), su imagen en el dominio de Laplace R'(s) es primero relacionada de la

siguiente forma con los parámetros convencionales de línea Zg(s) y Zc(s), impedancia de tierra e

impedancia de conductor, respectivamente:

ZJs) + Zc(s)
l?(s) = -> E—í (3)

Dado que Zg(s) y Zc(s) están definidos mediante funciones trascendentales, R'(s) es aproximada

aquí mediante una función racional de la siguiente forma:

R,

k-w-^+e
k,

s+ p,

■ + k_ (4)

donde /?C(_ es el parámetro de resistencia de la línea a frecuencia cero, p¡ es el Z-ésimo polo de la

función, k¡ es el Z-ésimo residuo de la función en el polo correspondiente y k„ es el residuo en s =

°°. Posteriormente se obtiene la siguiente expresión para f(t) al aplicar la transformada inversa de

Laplace a (4):

r'(t) = Re4u(t) + Jdk¡e-'"'+k„h(t) (5)
í=i

El siguiente paso ahora es incorporar (5) en la ecuación (la), obteniéndose:

+ D— + R ,/ + 0 = 0
dx dt

cd1 (6a)

donde:
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D = L„ + k„ (6b)

y

d = — \fmkte<"s'-%)i(x)dz (6c)

Posteriormente, considerando que (6a) y (Ib) conforman un sistema hiperbólico de EDPs [9], se

les aplica el método de las Características. Se obtiene la siguiente Ecuación Diferencial Ordinaria

(EDO):

dv + Zwdi + Rcdidx + $dx = 0, (7a)

donde:

ZW=4IJC (7b)

Esta ecuación es equivalente a (6a) y a (Ib), siempre y cuando la propagación en la línea

obedezca a la siguiente EDO:

dx l ._ .

— =

+~r=- (7c)
dt 4dc

En forma similar, también se obtiene la siguiente ecuación:

dv -

Zwdi + Rcd idx + frdx = 0 (7d)

equivalente a (6a) y (Ib) cuando la propagación en la línea obedece a:

dx l
(7e)

dt VDC

Finalmente, las ecuaciones (7a), (7c), (7d) y (7e) se resuelven numéricamente mediante

diferencias centrales. La incorporación en el esquema de solución numérica de O, dado por (6c),

se efectúa con el método de la Convolución Recursiva [10]. Tras su discretización, las

expresiones (7a), (7c), (7d), (7e), (2a) y (6c) constituyen un modelo digital para la simulación de

transitorios en líneas monofásicas incluyendo efectos de dependencia frecuencial y Corona.

El modelo antes descrito se aplica con éxito a varios casos de estudio previamente reportados en

la literatura especializada. Quizá el más importante es el de un experimento de campo efectuado

por Wagner, et. al., sobre una línea de 2182 m de longitud. La figura 2.4a de la tesis muestra las

formas de onda de un impulso registradas en varios puntos a lo largo de la línea. La figura 2.4b

muestra las correspondientes formas de onda obtenidas mediante el modelo descrito. De la

comparación de estas dos figuras puede verse que las simulaciones que incluyen tanto Corona
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como dependencia frecuencial se acercan más a las formas de onda medidas que las simulaciones

que solo consideran efecto Corona.

Líneas multiconductoras con efectos de dependencia frecuencial

Para el caso de líneas polifásicas, las ecuaciones (la) y (Ib) pueden generalizarse de la siguiente

forma:

— +Lo^ + -JrYr-T)i(T)íZT = 0 (8a)
dx dt dt

*

donde ahora v e i representan los respectivos vectores de voltajes y corrientes en los conductores

de la línea, L0 y C0 las respectivas matrices de parámetros de inductancias y capacitancias

geométricas o de línea ideal y r'(t) la matriz de impedancias transitorias de la línea. Al igual que

para la línea monofásica R'(s), la imagen en el dominio de Laplace de r'(t), se relaciona de la

siguiente forma con las matrices Zg(s) y Zc(s), de impedancias de tierra y de conductores,

respectivamente.

R'(s) = -[zg(s) + Zc(s)] (9)

Los elementos de esta matriz R'fs) pueden aproximarse mediante un conjunto de funciones

racionales cuyos polos son comunes. Por tanto, la síntesis racional tiene la siguiente forma:

R'(s) = -Rcd+k„+t——

k, (10)
s /-li" Pi

donde R^ es la matriz diagonal de resistencias en corriente directa de los conductores de la línea,

p¡ es el Z-esimo polo de las aproximaciones racionales de los elementos de R'(_V, k; es la matriz

de residuos de Rfs) en s = p¡ y k„ es su residuo en s = °°. La aproximación racional anterior se

realiza mediante la técnica denominada Vector Fitting [44]. En el dominio del tiempo, R'(s) se

expresa como:

r>(t) = kau(t) +k~¿(t) + 2.ep"kl (11)
i=i

La expresión (11) se incluye en (8a), dando como resultado:
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^. +D^ + k„i + fl-0, (12)
dx dt

donde

ü =

j\h(t-T)\(T)dX.
Así pues, las expresiones (8b) y (12) representan el modelo de línea con dependencia frecuencial

que aquí se transforma a un nuevo sistema de EDOs mediante el método de las Características.

En el dominio "modal", estas EDOs incluyen expresiones del tipo:

n n

<tvmJ+Zwldiml +yldtJZ^olqimq +yldtYJT;}ftq =0; l=l,...,n. (13a)

9=1 9=1

y

dvml -ZwldimJ -Y,*SW«* "Y/*._X¿e_ =0; 1= l,...,n. (13b)

9=1 9=1

Finalmente, las ecuaciones (13a) y (13b) se discretizan mediante diferencias finitas para resolver

el problema de propagación de ondas de voltaje y corriente a lo largo de la línea. Las expresiones

discretizadas se combinan con el esquema de convolución recursiva para la inclusión de la

dependencia frecuencial.

En el caso de líneas excitadas por un campo extemo, deben incluirse en (8b) y (12) los

respectivos términos:

h—Co¡-t]KCdy (14a>

y

vs=|-fBfrfy (14b)

El proceso de incorporación de dichos términos a las ecuaciones de propagación es en forma

directa.

El modelo con Características y convolución recursiva se valida con tres ejemplos. El primero

consiste en una línea excitada por un campo extemo, el segundo se refiere a una línea altamente

asimétrica y el tercero consiste en un sistema de cables subterráneos. En el primer ejemplo se

hace hincapié en la ventaja del método propuesto sobre aquellos basados en ondas viajeras.

Adicionalmente los ejemplos dos y tres, que corresponden al caso de líneas homogéneas largas

excitadas con fuentes concentradas, arrojan resultados con una precisión muy alta comparados

con los de la Transformada Numérica de Laplace.
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Modelado de líneas de transmisión no-uniformes para simular transitorios

electromagnéticos en el dominio del tiempo

Algunos ejemplos de líneas no-uniformes (LNUs) en sistemas de potencia son: líneas aéreas con

catenaria, líneas que cruzan sobre ríos, líneas que entran a subestaciones y estructuras metálicas

tales como torres de transmisión. Aquí se adopta una metodología basada en síntesis en el

dominio de la frecuencia y convoluciones recursivas para simular transitorios en LNUs. El

modelo resultante puede ser aplicado a líneas multiconductoras con dependencia frecuencial.

El modelo propuesto tiene su base en la siguiente ecuación:

V "a _t V Xv wBv' "AF

_'JJ C D Jr. X wBi_ A.J
wFv wBv

wF¡ wBi

■lr

(15)

La expresión (15) representa la relación de las variables voltaje/corriente en los extremos de una

línea. La matriz ABCD se calcula a partir de la EDO:

d Hx) B(x) 0 Z(x) Hx) B(x) 'HO) B(0)

dx Qx) Ux) Y(x) 0 _Qx) Ux)_ QO) UO)
=1.

7n<2n (16)

Adicionalmente, la expresión (15) describe una transformación de similaridad de la matriz

ABCD. A partir de lo anterior, se definen las relaciones de voltajes y corrientes en el dominio

modal como:

AB

lF,S

lB,S

lF,R

lB,R

(17)

Con base a las relaciones (15) y (17), se puede derivar un modelo en términos de ondas viajeras.

Dicho modelo está expresado para el extremo receptor como:

Yc,BvR Ír -Tph-BUF,S (18)

La correspondiente relación para el extremo emisor se define en forma similar a (18). Cabe

mencionar que la propagación en una línea no-uniforme es la misma en las dos direcciones; sin

embargo, la admitancia característica vista desde los dos extremos en general es distinta.
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A partir del modelo expresado en (18), los parámetros de propagación y admitancias en cada

extremo de la línea son sintetizados a través de funciones racionales. Esto permite incorporarlos

en realizaciones de espacio-estado. Dichas realizaciones se incorporan en el dominio del tiempo a

través de esquemas de convolución recursiva.

El modelo obtenido se aplica en tres casos de LNUs. El primero consiste en una línea simétrica

de la cual se tienen resultados experimentales. La simulación con el modelo propuesto reproduce

en forma correcta las principales características de las formas de onda experimentales. Aquí se

hace la comparación con el método de las Características sin la inclusión de dependencia

frecuencial de los parámetros. Para la línea en cuestión se hace notar la diferencia de incluir dicha

dependencia. El segundo ejemplo consiste de una estructura vertical. Esta estructura ha sido

tomada por varios investigadores para validar sus modelos de LNU. Aquí se compara el modelo

propuesto con el de Características. Para este ejemplo de línea, se hace notar que la inclusión de

la dependencia frecuencia no es muy importante. Como tercer ejemplo se tiene un caso con

características fuertemente no-uniformes. Aquí se tuvieron problemas de oscilaciones los cuales

fueron resueltos al aplicar al modelo un esquema de integración distinto (Euler) al utilizado en los

otros ejemplos (Regla Trapezoidal).

Conclusiones

En esta tesis se ha reportado el desarrollo de algunas técnicas y modelos para analizar líneas de

transmisión. Aunque el enfoque es en líneas de transmisión de energía, se propone que los

desarrollos de la tesis podrían ser de utilidad para la solución de problemas de líneas en

electrónica y comunicaciones. Se han desarrollado tres modelos de línea.

Para el primero se ha partido de un modelo previamente propuesto en [32] para analizar líneas

con efecto Corona, el cual está basado en el método de las Características de la teoría de las

EDPs. Este modelo previo ha sido extendido para incluir efectos de variación frecuencial de los

parámetros de línea. El modelo extendido ha sido validado a través de resultados experimentales

reportados porWagner y sus coautores [2].

El segundo modelo desarrollado en la tesis permite simular transitorios en líneas polifásicas

considerando que los parámetros de línea son funciones de la frecuencia y que la excitación
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puede ser debida a una fuente distribuida. Dado que este segundo modelo también ha sido basado

en el método de las Características, el problema de oscilaciones numéricas no se presenta.

Adicionalmente, para el caso de líneas homogéneas largas excitadas con fuentes concentradas

arroja resultados con una precisión muy alta.

Finalmente, el tercer modelo presentado en la tesis ha permitido analizar transitorios en líneas no

uniformes; es decir aquellas en que, además de la dependencia frecuencial, los parámetros varían

con la distancia. Aunque el método de las Características ofrece una base adecuada, aquí se ha

utilizado otro enfoque complementario. Éste consiste en primero sintetizar los parámetros de dos

puertos de línea en el dominio de la frecuencia y luego aplicar técnicas de ajuste racional y de

convolución recursiva para generar un modelo del dominio del tiempo. El modelo resultante ha

permitido simular exitosamente casos de líneas que son polifásicas y con parámetros

dependientes de la frecuencia y no uniformes. El interés por las líneas no uniformes es nuevo en

el ámbito de los sistemas de potencia. Por tanto, todavía no hay criterios para decidir cuando es

importante incluir efectos no uniformes en estudios prácticos. Indudablemente, el tercer modelo

aquí propuesto facilitará el establecimiento de dichos criterios.
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