15

- e
il*-i._f& ﬂML._ L— -
wu- ol u.“. _._l.nlul..

. __-___ﬂ_

b
-t.“;
]
P

o

. B
el j!}

'

e
B .

SN g

| *4-" 5
i‘l
S
]

'
=

> }Ej‘..
7}

I""il
&
T

L]
-\_- _.,'

!q'- ___“-_

-
' he

-,,.i




X ({0R 000 l)



CINVESTAV

Centro de Investigacion y de Estudios Avanzados del IPN
Unidad Guadalajara

MODELADO MODULAR Y ADAPTABLE DE
SISTEMAS DE GESTION DE FLUJO DE

TRABAJO CINVESTAV

IPN
ADQUISICION
DE LIBROS

~ Tesis que presenta:
RAUL CAMPOS RODRIGUEZ

Para obtener el grado de:
MAESTRO EN CIENCIAS

En la esl?ecialid'ad de:
INGENIERIA ELECTRICA

Guadalajara, Jal. Octubre del 2002

CINVESTAV . P.N.

SECCION DE INFORMACION
Y DOCUMENTACION






CINVESTAV

Centro de Investigacion y de Estudios Avanzados del IPN
Unidad Guadalajara

MODULAR AND ADAPTIVE MODELING OF
WORKFLOW MANAGEMENT SYSTEMS

A thesis presented by
RAUL CAMPOS RODRIGUEZ

To obtain the degree of
MASTER OF SCIENCES

On the subject of
ELECTRICAL ENGINEERING

Guadalajara, Jal. October, 2002




MODELADO MODULAR Y ADAPTABLE DE
SISTEMAS DE GESTION DE FLUJO DE
TRABAJO

Tesis de Maestria en Ciencias
Ingenieria Eléctrica

Por:

Raul Campos Rodriguez

Ingeniero en Computacion
Universidad de Guadalajara

Becario de CONACYT, expediente No. 157967

Asesor de Tesis:
Dr. Luis Ernesto Lopez Mellado

CINVESTAY del IPN Unidad Guadalajara, Octubre del 2002



MODULAR AND ADAPTIVE MODELING OF
WORKFLOW MANAGEMENT SYSTEMS

Master of Sciences Thesis
In Electrical Engineering

By:

Raul Campos Rodriguez

Computer Engineer
Universidad de Guadalajara

Grant CONACYT no. 157967

Thesis Advisor:
Dr. Luis Ernesto Lopez Mellado

CINVESTAYV del IPN Unidad Guadalajara, October, 2002



Agradecimientos:

A mis padres y familiares
A mi asesor y companeros

Al colegio de profesores del CINVESTAV-GDL.

Al CONACYT.

Becario de CONACYT No. 157967



Contents

1 Introduction 1

2 Workflow Management Systems 5
2.1 Basic concepts on Workflow Management 6
2.2 Workflow Patterns 8

2.2.1 Basic Control Flow Patterns 8

2.2.2 Advanced Branching and Synchronization 9

2.2.3 Structural Patterns . 10

2.2.4 Multiple Instances Patterns 11

2.2.5 Temporal Relation Patterns 12

2.2.6 State-based Patterns 13

2.2.7 Cancellation Patterns 14

2.2.8 Inter-Workflow Synchronization patterns . 14

2.3 Conclusions 15
3 Modeling workflow processes 17
3.1 Basic Notions on Petri Nets 18
3.1.1 Preliminaries 18
3.1.2 Petri Net structure 18
3.1.3 Dynamics for Petri Nets 21
3.1.4 Petri Nets properties 23

3.2 Workflow Patterns as Workflow Nets 25
3.2.1 Workflow Patterns as Workflow Nets 27

3.3 Building Petri Net models for Workflow Management 34
3.3.1 Building live and bounded models for Workflow Management 39
3.3.2 An Application example 38

3.4 Conclusions 40
4 RW-Nets for Dynamic changes in Workflow Management Systems 43
4.1 The Dynamic change problem 44
4.2 Related work on Adaptive Workflow 45
4.3 RWNets to support dynamic change in Workflow 47
4.3.1 Colored Nets 47
4.3.2 Mobile Nets 49
4.3.3 Dynamic Nets . o1
4.3.4 RW-Nets o4
4.3.5 Using MRWfiNets o8

4.4 Graph Grammars and Petri Net Grammars 62

4.4.1 Graph Grammar 63



11 CONTENTS

4.4.2 Petri Net Grammar 65

4.4.3 Conclusions 67

5 Implementation of RW-Nets 69
5.1 Implementing dynamic changes 70
5.2 The Petri Net Kernel 70
5.3 A module for implementing RWNets 73

6 Conclusions 81



Chapter 1

Introduction

Nowadays the workflow concept is used to describe the sequences of operations or activities per-
formed into systems or organizations for obtaining a finished product or for providing a service;
furthermore, a workflow specification includes the management of resources during the sequences
execution. In general this concept is embedded into most of discrete event systems, namely manu-
facturing systems, computer supported collaborative systems, and logistic systems.

The term workflow itself has been widely used in this last kind of systems studied in management
sciences. Thus the term workflow management systems is a generic term to refer to the systems
that automate (or at least aids to) the activities into an hospital or the processes into a bank or
an enterprise. The commonly term used to design the activities is business processes and a set of

these processes is called workflow processes (WP).
Today, business enterprises must deal with global competition, reduce the cost of doing business,

and rapidly develop new services and products. To address these requirements enterprises must
constantly reconsider and optimize the way they do business and change their information systems
and applications to support evolving business processes. Workflow technology facilitates these by
providing methodologies and software to support:

e (i) business process modeling to capture business processes as workflow specifications,
e (ii) business process re-engineering to optimize specified processes, and

e (iii) workflow automation to generate workflow implementations from workflow specifications.

Workflow diagrams are an excellent tool for many types of projects: analyzing scenarios, design-
ing new process flows, documenting procedures for new employee training, documenting standard
operating procedures, or to support business process re-engineering. The results or solutions de-
picted by Workflow diagrams help to determine if automation can enhance or support an activity:.

Diagrams, with supporting documentation, are more concise to review than textual documents.
Describing complex procedures using text alone can yield very lengthy documents that allow for
conflicting interpretations by reviewers.

There exist many formal and informal modeling methods for the diagram construction of work-

flow process. For example, UML, State Charts, Graphs, Flow Diagrams, Case Activity Diagrams,
IDEF3, etc.



2 CHAPTER 1. INTRODUCTION

Petri Nets (PN) are extensively used in the modeling of workflow process (WP). There exist
several advantages for the using of PN in the modeling of WP:

e GRAPHICAL NATURE: the PN formalism, has a well-defined graphical nature, allowing a
more easy verification of structural conflicts, etc.

e FORMAL SEMANTICS: this reason for using a PN-based modeling of WP, is the fact that
business logic can be represented by a formal but also graphical language. The semantics of
the ordinary Petri net, and extensions (color, time, hierarchy) have a formal definition.

e FORMAL METHODS FOR THE PROPERTY ANALYSIS: this reason for using PN-based
modeling of WP, is that there exist a solid formal theory related to property analysis in PN;

e SEVERAL AUTOMATED TOOLS FOR SIMULATION, SCHEDULING, AND VERIFICA-
TION: there exist, in the PN world, several automated tools for the simulation, scheduling

and verification for PN.

Features of a Petri-net-based WFMS are most prominent in the design and analysis phase.
Once defined a WP as a PN then, there exist formal methods and techniques for the analysis of
properties.

During the selection process some of the leading WFMS are involved a list of generic selection
criteria: the standardization, the business processes representation in a natural manner, many
WFMS have restrictions with respect to the nesting and/or mixing of parallelism and alternative
routing. Moreover, most of the WFMS do not allow for the explicit modeling of states. There
exist some Petri-net-based WFMS that meet all of the functional requirements needed. Moreover,
formal semantics, state-based instead of event-based, and abundance of analysis techniques, are the
mainly features of a WFMS based on Petri nets.

This thesis deals with the modeling of Workflow Management Systems (WFMS) using Petri
Nets (PN). The problems regarding the modular construction and the dynamic modification of

models in WFMS are addressed.

First, it is presented how to construct Workflow Nets (WFNets), a sub class of Petri Nets for
each workflow pattern (WFPatterns) -a set of elementary models for the construction of complex
workflow processes-. In this construction of WFNets, the resulting models are sound -that is, they
have well properties, such as liveness and boundedness-.

For the construction of sound WFNets, it is proposed an incremental synthesis method that
avold the subsequent entire property analysis.

In order to support the dynamic change in the WFMS, it is proposed the Rewriting Nets
(RWNets) -a class of high level Petri Nets- that allow the in-line modification of WFNets models,

through the firing of its transitions. A formal definition for the RWNets is presented, and a
characterization of them in terms of graph transformations.



Finally, a software application -that allows to perform structural changes over a given WFNet-
is developed. This software application -developed over the Petri Net Kernel (PNK)-. allows to
implement a set of RWNets that perform structural changes over a given WFNet.

This thesis is organized as follows: Chapter 1 presents an overview of Workflow Management,
and its relevance in business today. Also, it presents some basic concepts and the workflow patterns.
Chapter 2 presents a relationship between Petri Nets and Workflow patterns. Then, this chapter
defines a Workflow Net for each workflow pattern. A Workflow Net is a special class of Petri Nets. In
the end of this chapter, a place-reiinement method for Petri Nets is adapted from the manufacturing
systems to the particular case of workflow management. Chapter 3 addresses the Dynamic change
problem in WFMS. An overview of this problem and the previous solutions proposed are presented.
RWNets -an extension for Dynamic Nets- are proposed in order to support such dynamic change.
Also, some similar topics between graph grammars and RWNets are highlighted. Chapter 4 presents
a practical implementation of RWNets. On it, some "rewriting” transitions are implemented as
Java classes over the Petri Net Kernel. Finally, some conclusions and future work are presented.



CHAPTER 1. INTRODUCTION



Chapter 2

Workflow Management Systems

In this chapter, an overview of Workflow Management -an area related to the automation of business
processes- and its importance in business today are prcsented. Also, it is presented basic concepts on
Workflow Management, such as tasks, conditions, routing, parallel and sequential activities, choices
and more, and how to make a business process model mixing these concepts. Finally, Workflow
patterns, a class of primitive forms to build complex workflow process models, are presented.



6 CHAPTER 2. WORKFLOW MANAGEMENT SYSTEMS

2.1 Basic concepts on Workflow Management

Workflow is defined as the automation of a business process, as a whole or in part, during which,
documents, information or tasks are passed from one participant to another for action, according
to a set of procedural rules [WFMC-TC-1011]. Workflow Management aims for the automation
of business process reducing costs and time, and increasing productivity and quality. Workflow
Management Coalition (WfMC) is an organization that has over 300 member organizations world-
wide, representing all aspects of workflow, from vendors to users, and from academicians to consul-
tants [http://www.wfmc.org/|. The WfMC has a press room |http://www.wfmc.org/pr/press.htm)|,
where the official WIMC documents are published.

Workflow is an important and a valuable technology. In 1998, Viewstar installation in Rev-
enue & Benefits Department of Lewisham Borough Council (London, England) has impacted their
operations in the first year in the following way:

e $5 (euro) million additional revenues

e Frau Investigation saves an additional $1.7 (euro) million through speedier processes and

cross checking capability

e $0.5 (euro) million savings on operational costs.

This 1s an example of how a correctly implemented workflow can impact the operations of an
organization [Workflow Handbook, 2001].

In other words, Workflow Management aims for automation of business process with the Min-
Max attribute: minimize costs and time, and maximize productivity and quality. Workflow Man-
agement uses many concepts presented on Computer Supported Cooperative Work, but it is not
limited to them.

When it is talked about business processes, it surges concepts such as tasks (in the rest we will
use task and activity indistinctly) , scheduling, paraliel and sequential activities, shared resources,
routing task, iterations, and so on. The next are some definitions taken from [WFMC-TC-1011]:

e Workflow. The automation of a business process, as a whole or in part, during which, docu-
ments, information or tasks are passed from one participant to another in order to perform
some action over them, according to a set of procedural rules.

e Workflow Management System. A system that defines, creates and manages the execution
of workflows through the use of software, running on one or more workflow engines, which
1s able to interpret the process definition, to interact with workflow participants and, when
required, to invoke the use of IT tools and applications.

e Activity. A description of a piece of work that forms one logical step within a process.
An activity may be a manual activity, which does not support computer automation, or
an automated activity. A workflow activity requires human and/or machine resource(s) to

support process execution; when a human resource is required, an activity is allocated to a
workflow participant.



2.1. BASIC CONCEPTS ON WORKFLOW MANAGEMENT 7

B A
A A £
e B

a) An activity b) AND-split ¢) AND-join
B A

A B A < > C
C B

d) Activities sequence e) OR-split f) OR-join
. B i
AND-split AND-join
A C E
D

g) Parallel routing

Figure 2.1: Workflow Concepts

e Process. A formalized view of a business process, represented as a coordinated (parallel
and /or serial) set of process activities that are connected in order to achieve a common goal.

e Parallel Routing. A segment of a process instance under enactment by a workflow man-
agement system, where two or more activity instances are executing in parallel within the
workflow, giving rise to multiple threads of control.

e AND-Split. A point within the workflow where a single thread of control splits into two
or more threads, which are executed in parallel, allowing multiple activities to be executed

simultaneously (see Parallel Routing).

e OR-Split. A point within the workflow where a single thread of control makes a decision
upon which branch to take when encountered with multiple alternative workflow branches.

e Transition. A point during the execution of a process instance where one activity completes
and the thread of control passes to another process instance, which it starts.

The concepts of Activity, parallel routing, AND-Split, and OR-Split are also well defined in Petri
Nets. With these concepts and others from [WFMC-TC-1011], it is possible to make a mapping
from Workflow concepts into Petri Nets. In Figure 2.1 it is shown some of these concepts. In the

next section, it is presented the Workflow Patterns, schemes to construct complex workflow process
models.



8 CHAPTER 2. WORKFLOW MANAGEMENT SYSTEMS

2.2 Workflow Patterns

In Workflow Management, some primitives called Workflow Patterns were developed for the con-
struction of complex workflow models, for the analysis of tools, for workflow requirements, and so
on. Workflow patterns can be found on the web page [http://tmitwww.tm.tue.nl/research/patterns/|.
They are divided into 6 basic groups: Basic Control, Advanced Branching and Synchronization,
Structural, Multiple Instances, State-based, and Cancellation workflow patterns. Also, in the liter-
ature is mentioned the Inter-Workflow Synchronization patterns. Here, it is analyzed these patterns
with the aim to represent them using Petri Nets concepts [Petri, 1962].

2.2.1 Basic Control Flow Patterns

Basic Control Flow Patterns capture elementary aspects of process control. Concepts such as
Sequence, Parallel split, Synchronization and Exclusive choice, are basic concepts that give form
to the more elemental workflow models. These concepts accommodate for further construction of

elaborated workflow patterns.
The first pattern is the simple sequence pattern. This pattern allow us to construct a causal

sequence of activities, when for example, before the execution of an activity it is necessary that
other activity must already be finished.

The Parallel Split pattern allows us to construct a pair of activities, or a sequence of them,
executing in parallel. A real example of such pattern, is presented when we need to send a parallel
request to a local server and to a remote one.

The Synchronization pattern can be seen as the complement of the Parallel Split pattern. At
this point, we wait for multiple subprocesses running in parallel to be finished before the next
activity starts.

The Exclusive Choice pattern allows to make a simple decision, i.e., at this point, it is possible
to choose between two or more alternatives. On the other hand, the Simple Merge pattern allows
us to perform the inverse situation, when it is waited one of many alternatives to be completed.

Definition 2.1 (Sequence) An activity in a workflow process is enabled after the completion of
another activity in the same process.

Definition 2.2 (Parallel Split) A point in the workflow process where a single thread of control
splits into multiple threads of control which can be executed in parallel is called Parallel Split. This
allows us to execute all the activities simultaneously or in any order.

Definition 2.3 (Synchronization) A point in the workflow process where multiple parallel sub-
processes or activities converge into one single thread of control, thus synchronizing multiple threads,
18 called Synchronization.

Definition 2.4 (Exclusive choice) A point in the workflow process where, based on a decision
or workflow control data, just one of several branches is chosen is called Ezclusive choice.

Definition 2.5 (Simple Merge) A point in the workflow process where two or more alternative
branches come together without synchronization is called Simple merge. In other words the merge
will be triggered after any of the incoming transitions are triggered.



2.2. WORKFLOW PATTERNS 9

A —> B > C

a) Sequence

A: zc

b) Parallel split ¢) Synchronization

B A

A XOR

o

- B

d) Exclusive choice e) Simple merge

Figure 2.2: Basic Control Flow Patterns

These basic concepts are depicted on Figure 2.2. The simple sequence pattern, Figure 2.2a is
iIsomorphic to the sequence of transitions in Petri Nets and have the same meaning. The parallel
split pattern, Figure 2.2b has its isomorphic net into Petri Nets too, and it is a transition with an
input place and two output places. The synchronization pattern is the inverse of the parallel split
pattern, and it has its equivalent net into Petri Nets, too, Figure 2.2c. Also, exclusive choice and
simple merge are complementary and they have also, their equivalent net in Petri Nets, Figure 2.2d
and Figure 2.2e.

The next is only a selection of the five groups of workflow patterns. For more information see
the Workflow Pattern home page given above.

2.2.2 Advanced Branching and Synchronization

Opposite Basic Control Flow Patterns, Advanced Branching and Synchronization patterns have
no-straightforward equivalent in Petri Nets. However it is possible to build an equivalent model in
Petr1 Nets using Basic Control Flow Patterns.

These patterns are involved in more complex situations in Workflow Management. For example,
a point in a Workflow process where it waits for the completion of one or several activities before
activating the next task. An example of a real situation is presented in a distributed search, where
many requests are send to different databases, and it is expected only one reply, the remaining
replays are ignored.

In this section, Discriminator and N-out-of-M Join patterns are presented. For more, visit the
Workflow Patterns home page given below.

Definition 2.6 (Discriminator) The discriminator is a point in a workflow process that waits
for a number of incoming branches (parallel activities) to complete before activating the subsequent



10 CHAPTER 2. WORKFLOW MANAGEMENT SYSTEMS

g

a) Discriminator

| N

M

b) N-out-of-M join

Figure 2.3: Advanced Patterns and Synchronization

activity. When one of these activities is completed, all the remaining branches are “ignored” Once
all incoming branches have been triggered, it resets itself, so that it can be triggered again.

Definition 2.7 (N out of M Join ) N-out-of-M Join is a point in a workflow process where M
parallel paths converge into one. The subsequent activity should be activated after N paths have been
completed. Completion of all remaining paths should be ignored. Simularly to the discriminator,
once all incoming branches have been “fired”, the join resets itself, so that it could be fired again.

Discriminator pattern ”waits” for the completion of a certain number of incoming branches,
then it enables the next activity while it “waits” for the remaining branches. When all of these
incoming branches are done, it goes to its final state. N out of M Join pattern could be understood
as a generalization of the Discriminator pattern. In this pattern, n of m incoming branches are
expected to be done before the enabling of the next activity, once again, the pattern waits for all
the remaining branches and then goes to its final state. There is a graphic representation of this
concepts on Figure 2.3.

2.2.3 Structural Patterns

Structural patterns are a special class of structures that can help us in some situations. For example,
the well known sentences WHILE-DO and GOTO are two special instructions in many programming
languages, that provide special control flow behavior. In Workflow Management, there exists some
elaborated control flow patterns. For example, in a Workflow Management System where is not
allowed a great-scale parallel execution of a certain task, it can be achieved using a WHILE-DO
cycle executing into it the maximum number of allowed parallel activities by the system.

Definition 2.8 (Arbitrary Cycles) A point in a workflow process where one or more activities
can be done repeatedly.



2.2. WORKFLOW PATTERNS 11

) y{ True i—" B _F

XOR
False|
a) Arbitrary Cicles
| A ]—b XOR)—P»| B 1 >|C~ ------ >

\ Cancel f

b) Implicit termination

Figure 2.4: Arbitrary Cycle and Implicit Termination Patterns

Definition 2.9 (Implicit Termination) A given subprocess should be terminated when there is
nothing else to be done. In other words, there are no active activities in the workflow and no other
activity can become active (and at the same time the workflow is not in deadlock).

Arbitrary Cycle pattern has a straightforward representation in Petri Nets. Implicit Termina-
tion pattern often is achieved transforming the original model into a model with only one termina-

tion node.

The patterns on this section are depicted in Figure 2.4.

2.2.4 Multiple Instances Patterns

This class of pattern is related to multiple instances of a certain task running in parallel. This
pattern by its own has no problem, but there are some variants of it: Multiple Instances with a
priori-known design-time knowledge, Multiple Instances with a priori Runtime Knowledge, Multiple
Instances with no a priori runtime knowledge, and Multiple Instances requiring synchronization.
The first case is when it is known, at design time, the number of copies of the task to be performed.
The second case is when the number of copies of the task is known at some stage in runtime. The
third case is when the number of copies of the task is known only after the execution of such task.
Finally, the last pattern is related to the complement of the three others, i.e., its synchronization
-a point in the workflow process, where these parallel activities are expected-.

In this work, it is explored only the third case, the Multiple Instances with no a priori runtime
knowledge pattern, and its synchronization. All of the other variants are a particular case of this
last one.

Definition 2.10 (MI with no a priori runtime knowledge and Synchronization) For one
case an activity is enabled multiple times. The number of instances of a given activity for a cer-

tain case 18 neither known during design time, nor at any stage during runtime, but it has to be



12 CHAPTER 2. WORKFLOW MANAGEMENT SYSTEMS

True

A =(XOR>

False]

o

Figure 2.5: Multi Instances Patterns

know before the creation of the activity. The Synchronization waits for the termination of the first

executed activity and all its copies running tn parallel before the execution of the next task.

This pattern fires one given task A, then it runs in parallel a certain number of copies of the
task, then it waits for its termination, and then it gives the control to the next task. These concepts
are depicted in Figure 2.5.

At first, the task A is executed, then in the Arbitrary Cycle pattern, the maximum number of
parallel copies allowed by the system are executed rcpeatedly until achieve the desired number of
copies of the task. Its synchronization is the complement case, it waits for the termination of the
first execution of the task, also it waits for all remaining tasks, and then it gives the control to the

next task.

2.2.5 Temporal Relation Patterns

A Temporal Relation Pattern is formed by a set of tasks temporally related. If sj, e, s2, and e
are the start and end points of task 1, and start and end points of task 2, respectively, then
the temporal relation between task 1 and task 2 can be condensed as follows: (1) before-start:
(81 > s2), (2) after-end (ez > e;), (3) before-end (es > s1), and meets (s3 = e;), where > is the
temporal relation "more-or-equal to” The next definition is for Temporal Relation patterns.

Definition 2.11 (Interleaved sequence) Two activities that have another interdependent time
relationship than simple sequencing. It might be that one activity has to start before the second
activity finishes, or that one activity has to end at exactly the same time as the second activity

ends.

These concepts are represented on Figure 2.6. This pattern can be achieved, in most cases,
transforming the model into an equivalent one that meets a particular temporal relationship. For
example, if it is possible to divide each task into a task with four stages: start, after-start, before-
end, and end, then it is possible to perform some temporal relations as as it is shown in Figures
2.6a, b, ¢, and d. There, one task can give the control to other task at its before-end stage in order
to star the other task, performing in this way, the condition that the second activity starts before
the first one ends.



2.2. WORKFLOW PATTERNS 13

S, > E

S —» E '
A AND
s, -»| E, , AND — E,

a) Before-Start S,2 S b) After-End E,2 E

=

S AND » E S » E

c) Before-End E, 2 S d) Meets S,=E

Figure 2.6: Temporal Relation Patterns

2.2.6 State-based Patterns

Deferred XOR-split pattern is the first pattern explored in this section. In its more simple case,

two alternatives are offered to the system, but only one is executed, after that, the other one is
withdrawn.

Definition 2.12 (Deferred Choice) A point in the workflow process where one of several branches
is chosen. In contrast to the XOR-split, the choice is not made explicitly (e.g. based on data or a
decision) but several alternatives are offered to the environment. However, in contrast to the AND-
split, only one of the alternatives is executed. This means that once the environment activates one
of the branches, the other ones are withdrawn. It is important to note that the choice is delayed

until the processing in one of the alternative branches is actually started, i.e. the choice time s as
late as possible.

Definition 2.13 (Interleaved Parallel Routing ) A set of activities is executed in an arbitrary
order: Fach activity in the set is executed; the order is decided at run-time and no two activities

are erecuted at the same time (i.e. no two activities are active in the same workflow instance at
the same time).

In State-based Patterns, the selection of an alternative in most of the cases is implicit rather
than explicit. In many Workflow Management Systems, it is necessary to offer to the System many
alternatives, then one is chosen and the others are withdrawn. This is the case of Deferred Choice

pattern. In the Interleaved Parallel Routing pattern, a set of activities is enabled, but only one is
executed at each time. Figure 2.7 shows these concepts.



14 CHAPTER 2. WORKFLOW MANAGEMENT SYSTEMS

~ viB L }
A —*@icit)@<‘ )@}» D |
e

a) Deferred XOR-split

b)Interleaved parallel routing

Figure 2.7: State Based Patterns

2.2.7 Cancellation Patterns

Cancellation Patterns are related to the cancellation of activities and cases currently in execution.
A case could be compounded by some activities in sequence or in parallel. So, if it i1s explored the
cancellation of activities, then it is possible in the major of cases, to perform a case that can be
cancelled completely, cancelling all of its individual activities. Below, the Cancel Activity pattern

and Cancel Case pattern definitions are presented.

Definition 2.14 (Cancel Activity) An enabled activity is disabled, i.e. a thread waiting for the

execution of an activity is removed.
Definition 2.15 (Cancel Case) A case, 1.e., workflow instance, is removed completely.

Workflow Management is case based, i.e., there is a Workflow instances for each case in the
Workflow Management System. Accordingly to it, when it is used the Cancel Case pattern over a
certain workflow instances, it has the same effect as if such instance is removed from the system.

The fact that Workflow Management is case based is explained afterwards, when it is explored
the translation of Workflow Management concepts into Petri Nets concepts, in the next chapter.

Figure 2.8a shows the Cancel Activity pattern, and Figure 2.8b shows the Cancel Case pattern.

2.2.8 Inter-Workflow Synchronization patterns

The Inter-Workflow Synchronization patterns deal with the coordination between two independent
workflow instances, i.e., the enabling of activities is not more dependable on the workflow in which
this activity is present, but it depends on the synchronization between workflows. In this section
we present the Message Coordination pattern and the Bulk Message Sending pattern.



2.3. CONCLUSIONS 15

A |—»(XOR)—»| B [—» C [P

Cancel B

a) Cancel Activity

Start Case A » End

%, o

Cancel Case A

b) Cancel Case

Figure 2.8: Cancellation Patterns

Definition 2.16 (Messaging coordination) A sender issues a request and at the “sending” end
a response is anticipated for that request by a subsequent receiver associated with the sender.

Definition 2.17 (Bulk message sending) Multiple instances of message senders of the same
type execute concurrently. This allows to capture business situations where notifications of the
same type are sent to several external stakeholders. The number of multiple message instances may

be known a priori at design time or runtime, or may only be determined during runtime.

The first pattern in this section, the Messaging coordination pattern, is a simple message proto-
col "send-wait”, i.e., sending a request and waiting a response. In Figure 2.9, a Workflow instance
sends a request, on its activity A, to other workflow instance, on its activity J, and then it waits for
a response before it activates the task D. On the other hand, it is performed the request-response
protocol, 1.e., receiving a request and sending a response.

The Bulk message sending pattern deals with the case of one sender and many receivers, i.e., a
kind of "message group” or a broadcast to a selected group of elements. In Figure 2.10 is depicted
an Internal Workflow instance sending a ”bulk message” to many stakeholders.

2.3 Conclusions

In this chapter it was reviewed most concepts on Workflow Management. Also, it was presented
the Workflow patterns, a class of primitive schemes that meet many basic concepts of Workflow
Management and that they allow us to build more complex schemes for more elaborated situations
in Workflow Management. Workflow patterns are classified into different groups that have similar
structure and semantic. The next chapter is related to the Workflow modelling using Petri Nets.



16

CHAPTER 2. WORKFLOW MANAGEMENT SYSTEMS

e e —

Workflow A Workflow B

Figure 2.9: Inter Workflow Synchronization Pattern

External Workflow n

Internal Worktlow

Figure 2.10: Inter Workflow Message Bulk Pattern



Chapter 3

Modeling workflow processes

This chapter presents the relationship between Workflow Management concepts and Petri Net
concepts. First, basic concepts on Petri Nets are presented: Petri Net structure, Marking for Petri
Nets, Dynamics for Petri Nets and Petri Net properties. Then Workflow patterns are translated
into Workflow Nets, a subclass of Petri Nets that meets these patterns. Finally, a place-refinement

method for Petri Nets is adapted from the workflow manufacturing systems to the particular case
of workflow management.

17



18 CHAPTER 3. MODELING WORKFLOW PROCESSES

3.1 Basic Notions on Petri Nets

Petri Nets were first presented by |[Petri, 1962|. It is one of the most popular formal models for
concurrent systems, used for both theoreticians and practitioners [Desel, 1995|. Petri nets are
useful in Workflow modeling, [Aalst, 1997], [Badouel, 1998|. In this section it is presented the basic

concepts on Petri Nets and some of their properties. For more see [Lopez, 1997].

3.1.1 Preliminaries

Before presenting Petri Nets, it is given some preliminary notions related to multisets. A multiset
over a set P is a function i : P — N. A Multiset /¢ is finite iff u(z) # 0 for a finite number of
elements r € P. A multiset p is empty iff u(x) = 0 for all x € P The set of finite multiset over P is
denoted u(P). We write x € p iff u(x) # 0. The sum of two multisets py, 11 € p(P) is the multiset
i = po P py, such that pu(x) = po(x) + p(x). The difference of two multisets pg, 1, € p(P) is the
multiset © = po\py, such that pu(x) = py(x) — py(x), if po(x) > p(x), 0 in other case. For two
multisets u, 1’ € u(P), we write u C 1/ iff u(x) < p/(z) for all x € P.

3.1.2 Petri Net structure

A Petri Net is a bipartite directed graph having two classes of nodes: places and transitions. These
nodes are bridged by directed edges that always join different kind of nodes, i.e., an edge joins
either a place to a transition or a transition to a place. Graphically, the places are represented by
circles, transitions by rectangles (or bars), directed edges by arrows. A Petri Net typifies a dynamic
behavior aided with "tokens” depicted as small dots into the places. When a place contains a
"token” it is said that this place is a "marked” place. For Petri Nets, it will be distinguished two
class of places: private and public places.

In the next, Nm will be used as a set of public places, w as an infinite set of private places, and
Nm, = Nm + w. Also, L will be used as a infinite set of labels, such that A € L. The X label is
called the "invisible” label. The formal definition for Petri Net structure is as follows, and it was
taken from [Asperti, 1996].

Definition 3.1 (Generalized Marked Petri Net) A generalized marked Petri Net (MPTNet),
or net system, is a pair (N, y), where N, called the net structure, is a bipartite directed graph
defined by a 3-tuple N = (T,0-,04), where T is a finite set of transitions, 0; : T — u(Nmy),i =
—.+ are the pre and post functions, respectively, and py € u(Nmy,), is called the initial marking.

For at €T, it is often written t = c> p, where ¢ = 0_(t), and p = 0,(t), or simply, t = (c,p).
Commonly, a net is expressed as a list of transitions t; = c¢; > p; (see the example below). Also et
denotes 0_(t), and te denotes 04+(t). Moreover ot is often called the input places of t (or the pre
set of t), and te 1s often called the output places of t (or the post set of t).

Any p € p(Nmy,), is called a marking. Also, Nm,(N) denotes the places of Nm,, used in N,
i.e., {T € Nmy|2z" € (0-U04),n € N}. For axz € Nmy(N), ze denotes {t € T|s € 0_(t)}, and
oz denotes {t € T'|s € 0+(t)}.

A MPT Net represents the flow relations between tasks (transitions), and the set of its precon-
ditions (0—) and its post conditions (04 ). A transition in a M PT Net can fire consuming ” tokens”



3.1. BASIC NOTIONS ON PETRI NETS 19

P,
e
tZ ) t3 -
_ P,
> >
t4 tS

Figure 3.1: A Marked Petri Net

as it is indicated by the pre set function 0_, and produces "tokens” as it is indicated by the port
set function .. When a transition fires it is said that the net is in execution. The set of marked
places at the beginning of the net execution represent its initial state.

Example 3.1 (A MPTNet) Consider the next net. Let N = (t; = {p1,pa} > {p2,p5},t2 =
{p2} > {ps},ta = {ps} > {pe},ts = {p3} > {m}.ts = {pe} > {pa}), and p = {p1,pa}. Then
(N,u) € MPT Nets is the net depicted on Figure 3.1. The net have 6 places: pi,...,pe (the ovals
in the figure) and 5 transitions: ti,...,1s., (the rectangles). The places have a label above them,
that each one represents its name. Also, the transitions have their label name at their basis. When

a transition is horizontal, it has its label name at its right side. The arrows from a place to a
transition represent the set of pre conditions for such transition. The arrows from a transition to
a place represent the post set for such transition. The places p; and ps are initially marked by L.
The transition t; have the set {p1,ps} as its pre of conditions and the set {p2,ps} as its post of
conditions. Finally Nmy,(N) = {p1,...,p6}.

The notion of a directed path between two nodes in PT Nets is very similar as a directed path
between two nodes in directed graphs. For example, on Figure 3.1, it could be seen that there is a
path between nodes p; and t3, since there are some nodes and some edges that connect them. If
it has a path from z to y, and a path from y to 2z, then it is quite natural to think that there is a
path from z and z. The formal definition for paths in Petri Nets is below.

Definition 3.2 (Paths, Connectedness) Let N = (T,0_,0,) € PT'Nets. A path in N is de-
fined recurswvely as follows:

a) Vt € T,Vu € 0_(t),Yv € 0+(t), there are paths, u — t,t — v, respectively.

b) Ift - yAy — z, then x — 2.

N is weakly connected, or connected, iff Vx,y € Nmy ,(N)UT, there is a path x — y or y — x.
N is strongly connected, iff Vx,y € Nm,(N)UT, there are paths t — y and y — .

Now, it is defined the isomorphism for Petri Nets. Isomorphism determines when two Petri
Nets have ”similar” structure and initial marking, and accordingly ”similar” behavior. Two Petri
Net diagrams that represent the same Petri Net may look quite different. Often, it is important to
determine when two diagrams of Petri Nets are in fact the same Petri Net. Intuitively, two Petri
Nets are isomorphic if each one can be redrawn to obtain the other. Isomorphism maps places to



20 CHAPTER 5. MODELING WORKFLOW PROCESSES

u
2 4 A
1'2 _ 1'4
tl tz l3 [4
48/ u3 ll4
I I,
p1 p4

Figure 3.2: Two isomorphic Petri Nets

places and transitions to transitions, preserving the flow relation between them. The next is the
formal definition for isomorphism in Petri Nets.

Definition 3.3 (Isomorphism for MPTNets) Let (N, u),(N’,u') € MPT Nets, such that N =
(T,0-,04+) and N' = (T",08_,0.). Then the two nets (N,u) and (N, ') are isomorphic, denoted
(N,p) = (N, 1), iff there exist a pair isomorphism (fi, fp), ft : T — T" and fp : w — w such that

0,0 ft = (ldNm + fp) 0 0i, t = —,+, and (idym + fp) (1) = 4.

Private places are the only ones relevant for isomorphism, i.e., in order to two nets could be
isomorphic it is necessary that they have the same number of private places. Also, it is necessary
that the nets have the same number of transitions. Finally, it is necessary that the nets have similar
flow relation between their transitions and their private places. For example, the two nets depicted
in the Figure 3.2 are isomorphic, since there exist the pair isomorphism (f: T - T",g9: w — w)
where: f(pi) =w;,1=1,...,4,and g(t;) =r;,7=1,...,4.

Once defined the Petri Nets, it is possible to define a special composition between two Petri
Net models. The ”juxtaposed composition” between two nets is depicted in the Figure 3.3, that is
the juxtaposed composition of two nets like the net on Figure 3.1. The composition is performed
merging the public places p; and p4 in both nets. All other places, are new places in the compound
net. Note that, in this class of composition, the transitions are always new in the compound net.
The next definition of net composition is also in [Buscemi, 2001].

Definition 3.4 (The juxtaposed composition for Petri Nets) Let (N, yg),(N', uy) € MPT Nets
such that N = (T,0-,04), and N' = (T",0_,0)). The parallel jurtaposed composition, denoted

by ®, of (N, ug) and (N', uy) merges public places that have the same name preserving the private
ones. Formally it is defined as: (N,ug) ® (N',pug) = (T +T',0_ + 0,0+ + 0), o + 1p), of
w(N)Nw(N'") = @, where w(N) are the local places of N. This product is also called the “coproduct
without synchronization” Note that if w(N) Nw(N') # @, it is always possible to perform an o
renaming to achieve it.

The next example explain the Juxtaposed composition of two nets.

Example 3.2 (The composition of two nets) Let (N,u),(N'y') € MPT Nets, such that N =
(t1 = {p1,Pa} > {p2,ps},t2 = {p2} > {p3},ta = {ps} > {p6}.t3 = {p3} > {p1},t5 = {ps} > {Pa}), and



3.1. BASIC NOTIONS ON PETRI NETS 21

pi |
] 3 - |
« e et
- | [ :
()

Figure 3.3: The Juxtaposed Composition of two Nets

p={p1,pa}; N' = (t}{p1,pa} > {p2,ps}, t5 = {p2} > {p3}, ty = {ps} > {pe}, t3 = {p3} > {m}, 15 =
{pe} > {ps}), and ¢/ = 0. The private places of N and N' are, w(N) = {p2,p3,ps,ps}, and
w(N') = {p2,p3,ps,p6}. Then N N' =

((t1 = {p1,Pa} &> {p2,ps}. ta = {p2} > {p3}.ta = {ps} > {pe},t3 = {p3} > {p1},t5s = {p6} > {Pa},

ty = {p1,pa} & {p2,Ps}, 8y = {Pa} > {p3},ty = {ps} > {ps},t3 = {p3} > {m},ts = {ps} >
{Ps}),{r1,pa}),

is the net of the Figure 3.3. As it is shown, the nets are merged by the places p1 and p4; all other
places are new ones in NQN'. Also, in this composition, the transitions are always new in N Q N’

The marking in N @ N' is ' = u+ ' = {pl, pd}.

3.1.3 Dynamics for Petri Nets

The evolution of a M PT Net is produced by the "firing” of its transitions. The tokens in the net
are moved from a place to another one by the firing of net transitions. When the conditions in the
pre set of a transitions are satisfied by the current net marking, then 1t is said that such transition
Is enabled. When a transition is enabled, then it is possible to fire such transition. Now, when a
transition is fired, then the actual marking is modified, producing a new marking.

Definition 3.5 (Transition enabling) Let (N,u) be a MPTNet, such that N = (T,0-,04).
Lett € T, t is enabled at u, denoted (N, u)(t), iff 0_(t) C pu.

Given a net transition, if there are at least so many marks in its input places as it is indicated
by the function d_ it is said that such transition is enabled. As an example of enabled transition
see the Figure 3.4. The transition ¢ is enabled, since 0 — (t) = {pl,p2} C {2p1,p2} = u. The figure
also shows the new marking produced by the firing of t.

Remark 1 For any (N,u) € MPT Net it is possitle to associate a transition labeling function
l : T — L such that it assigns a label for each transition on the net. The nets with a function I
are often called Labeled nets (see the definition below). Given a (N,u) € MPT Net, it is possible
to assume, without lost of generality, that such net is a Labeled Net, using the X\ — label function
-that 1s, the transition labeling function that assigns the inuvisible label )\ to each transition- | over
it. Thas 1s only for convenience on the next definition.

The firing of a transition, considered instantaneous, produce a change of marking. The change
in the marking of a net system by the firing of a transition is represented by the next relation.



22 CHAPTER 3. MODELING WORKFLOW PROCESSES

P, P, P,
pz pZ
t
a) Transition t enabled b) The net afte firing t

Figure 3.4: Transition Enabling

Definition 3.6 (Firing Rule) The firing rule for a labeled M PT Net, denoted, _[_)_C LMPTNetsx
L x LMPTNets, is the smallest substitutive relation satisfying V(N, p)|(N,un) is a MPTNet and

VieT,
(N, w)[t) = (N, w)[L(£)) (N, p\O-(t) + 04+ (2))-
where l(t) is the label-function | over (N.,pu).

When a transition is fired, a new marking is produced. If this new marking enables other
transitions, then it is possible to fire them and, consistently, to produce new markings. If this
mechanism is done repeatedly, it is possible to get a ”Firing Sequence” as the concatenation of
firing of transitions that enable other transitions, and so on. The formal definition is given below.

Definition 3.7 (Firing sequence) Let (N,u) be a MPTNet. A sequence o € T™ s called firing
sequence of (N, u) iff for some n € N, there erist markings py, ..., 4, € W(Nmy,), and transitions
t1,....tn € T such thato =t,....,tn, and forall0 <i < mn,(N,u;)[ti+1), and p; 1 = (;\0-(ti+1))+
Ot (tiz1), and pu = pgy. It is denoted (N, p)|o)(N, uy,).

In a similar way, the markings achieved by the firing of transitions can be grouped to form a
set of "Reachable Markings”, i.e., the markings reached by the transition firing. This represent the

possible state of the system.

Definition 3.8 (Reachable markings) Let (N,u) be a MPT' Net. The set of reachable mark-
ings, denoted by [N, u), is defined as:

(N, p) = {1 € W(Nmy,)|(30: 0 € T* : (N, po)[0) (N, 1))}

A subclass of Petri Nets very reviewed is Free-Choice Petri Nets [Desel, 1995|. In such nets,
every pair transitions have the next property in its pre set: either, they have a disjoint set of places
or they have the same set of places. The Figure 3.1 is an example of a Free-Choice Petri Net, since
all transitions have no places in common in its pre sets. The importance of Free-Choice Petri Nets
is that they have a polynomial proof of liveness [Desel, 1995, rather than no polynomial proof of
liveness in the general case of Petri Nets [Petri, 1962]. The formal definition for Free-Choice Petri
Net is as follows.



3.1. BASIC NOTIONS ON PETRI NETS 23

Definition 3.9 (Free-choice LPTN) Let (N,u) be a MPT Net, such that N = (T,0-,04), then
N is a free-choice net (FCNet) iff Vt,u € T, either 0_(t) N 0_(u) = @ or 0_(t) = 0—(u).

The next theorem, called Commoner’s Theorem, characterize the liveness for a F'C Net.

Theorem 1 (Commoner’s Theorem) A FCNet is lie iff every proper siphon includes an ini-

tially marked trap

Proof. See [Desel, 1995|. =

Generalized Petri Nets have no determinism, i.e., given a net and two enabled transitions in it,
if these transitions have common places in their pre sets, and the firing of one of these transitions
disqualify the other one, then there is no mechanism to decide which one of these transitions must
be fired. An extension to Generalized Petri Nets is performed by adding a special function [ called
transition labeling function. This function puts a label to each transition in the net, in such way
that a labeled transition is enabled if and only if it is enabled as in Generalized Petri Nets and
at the same time there is an input signal in the system with the same name as its label. Using
this mechanism, it is possible to avoid the no determinism problem. Of course it is necessary an
external agent making the decision. The formal defirition is the next.

Definition 3.10 (Labeled Petri Net) A MPT Net (N, p), together with a functionl : T — L,
where N = (T,0-,04), is called a Label Marked Petri Net (LMPTNet).

Definition 3.11 (Transition enabling for MLPTNets) Let ((N,u),l) be a LM PT Net, where
N = (T,0-,04), lett € T, t is enabled at u, denoted (N,u)(t) iff t is enabled in the sens of
MPT Nets and at the same time there is an input signal in the system with the same name as its
label.

As an illustration of these concepts, see the Figure 3.5. The Figure 3.5a shows a enabled
transition ¢ in the sens of Generalized Petri Nets. Now, in order to ¢t be enabled in Labeled Nets,
1t 1s only necessary that the input signal T is present in the system at this time. If it is assumed
the input signal T, then it is possible to fire t and the new marking for the net is shown in Figure
3.0b. Now, however the input signal T is present in the system, it becomes irrelevant, since the
transition ¢ now is not enabled in the sens of M PT Nets.

3.1.4 Petri Nets properties

There are some structural properties in discrete event systems that meet the Petri Nets. Two
of these properties are liveness and boundedness. Liveness property is related to the absence of
deadlocks and the total system lode. When, in the Petri Net evolution is reached a marking that
enables no transitions, it is said that the net system is in deadlock. The liveness property is deals
with the absence of deadlocks.

Definition 3.12 (Liveness) Let (N, u) be a MPTNet, such that N = (T,0_,0,.), N is live iff
Vi € [N, p),Vt € T,3u' € [N, ) such that (N, i/)[t).



24 CHAPTER 3. MODELING WORKFLOW PROCESSES

P, P, P, P,
T T
pz p4 pz
2
t t
a) Transition t enabled and b) The net afte firing t, the input

the input signal T is present signal T have no relevance

Figure 3.5: Labeled Petri Net

A Petri Net often represents a discrete event system. The markings represent the possible states
of such system. Often, the discrete event systems have a finite number of states. Then, Petri Nets
that represent a finite discrete event system must have a finite set of reachable markings. So, given
a Petri Net, it is interesting that the net has a finite number of tokens in each place, giving as
consequence a finite set of possible states in the net. When it occurs, the net is called bounded, in
other case, the net is called unbounded.

Definition 3.13 (Boundedness) Let (N, ) be a MPT Net, then (N, pg) is bounded iff [N, )
is finite.

The next theorem, called the ”S-Invariant” theorem, characterize the boundedness on a Petri
Net.

Theorem 2 (S-Invariant theorem) Let (IV,uy) be a MPT Net, then (N,uy) is bounded iff

(N, o) has a positive s-invariant.
Proof. See [Lopez, 1997]. =

Definition 3.14 (Soundness) Let (N, yy) be a MPTNet. Then (N, pg) s sound iff it is live and
bounded .

In Petri Nets there is a variety of subclasses of nets. A Safe Net, also called a Binary Net, has
a special property: every place in the net has always either, no tokens or one token. It is easy to
see that a Safe Net is also a bounded net.

Definition 3.15 (Safeness) A (N, pn,) € MPT Nets is safe iff Vu € [N, uy) and Vs € Nmy,,
p(s) < 1.

Example 3.3 (Petri Net properties) Consider the net depicted in Figure 3.6 as an illustration
of these concepts: the transition t1 is enabled at u = {p;}, since O_(t1) C u. The sequence titots is
a firing sequence of (N, ) since there exist markings u = {p1}, uy = {p2}, o = {p3}, us = {ps} and
transitions ty,t2,t3 such that: (N, u)[t1) (N, py)[t2) (N, uo)(ts)(N, ug). The markings pu, piy, fio, fta
form part of the set of reachable markings of (N, ). It is easy to see that the net is also safe, live
and bounded.



3.2. WORKFLOW PATTERNS AS WORKFLOW NETS 25

pl pz B p3
@ o
t t
l t, ' . t,
OO @
p(, tS pj [4 p4
Figure 3.6: Simple Petri Net
No_acc No_app
existing ; I:
‘.Q—’_ ok dpprove
: chk_acc "
o= SATN et ok_req /
sales Chk_customer ()
request Bo_teg release

Figure 3.7: A Workflow Net

3.2 Workflow Patterns as Workflow Nets

Petri Nets are successfully used in Workflow Management for the modelling of business processes
[Aalst, 1997]. In this section, it is presented a mapping from Workflow patterns into Petri Nets. In
many cases, the translation is straightforward; in other cases the translation results more complex.
First, it is presented Workflow Nets, a subclass of Petri Nets that meets the workflow patterns.
Then, it is presented the Workflow patterns as Workflow Nets.

Workflow Nets was presented by [Aalst, 1997|, and it was used in many works related to Work-
flow: [Aalst, 1998], [Aalst, 1999], [Aalst, 2000 WP 50|, [Badouel, 1998]. Figure 3.7 shows an exam-
ple of Workflow Nets. Workflow Management is case based, i.e., there is an individual instance of
a Workflow process for each real case in the system. In other words, for example, if in a certain
moment there are two clients that make the same request, then there are two copies of the same
Workflow process to attend such cases.

A Workflow Net is a kind of "causal” net, i.e., it has a "flow” from one initial place, that has
no inputs, to one final place, that has no outputs. A Workflow Net has two special states, initial
state and final state. In the initial state, it is marked only the initial place, which denotes the case



26 CHAPTER 3. MODELING WORKFLOW PROCESSES

creation. On the other hand, in the final state it is marked only the final place, which denotes de
case termination.

Also, in a Workflow Net, the flow of markings is from the initial place to the final place. In
the Figure 3.7 it is shown a place labeled with ”i” and a place labeled with 70" those places
represent the initial place and the final place, respectively. Also some other concepts of Workflow
Management are shown: the transitions with input signals "existing” and "not” that result in a
simple choice from its common input place. Also, the output place "0” is in fact, a simple merge
point. It is easy to see that the net is safe. The formal definition of Workflow Nets is as follows:

Definition 3.16 (Workflow Nets) Let (N,u) be a MPTNet and t be a ”fresh” name not in
Nmy,(N)UT Then (N,pu) is a Workflow Net (W F Net), iff:

Case creation: N contains an tnput place i € Nmy(N) such that i = O,

Case completion: N contains an output place o € Nmy,(N) such that oe = &, and

Connectedness: N' = (T U{t},0-U{(t,0)},0+ U{(¢,7)}) is strongly connected.

The input place for a Workflow Net often will be represented by i, and its output place by o.
Also, the START state denotes the marking u = {i}, i.e., the marking with one token in the input
place i, and no tokens in all other places. The END state denotes the marking p = {o}, i.e., the
marking with one token in the output place o, and no tokens in all other places.

In Workflow Management, there are some desired properties for Workflow process models.
Some of these properties are: safeness, proper completion, absence of deadlock and absence of
dead transitions, etc. The safeness property has been defined in Petri Net, and it is necessary
since Workflow Management is case based. The proper completion property for a workflow net, is
related to only one "token” in its output place, and no tokens in all remaining places. The absence
of deadlock property has the meaning that for every possible state in the net it is possible to reach
the END state. The absence of dead tasks it is explained by itself.

Definition 3.17 (Soundness of WFNets) Let (N,u) be a WF Net, then (N, u) is sound iff:
safeness: (N, [i]) is safe,
proper completion: Vs € (N, {i}),0 € s = s = {o},
absence of deadlock: Vs € [N, {i}),o € [N,{s}), and

absence of dead tasks: (N,{i}) contains no dead transitions.

Definition 3.18 (Workflow process definition) A workflow process definition is a sound W FNet.
The set of all workflow process definitions is denoted WV .

In order to prove some properties, it is necessary to work with a modified Workflow Net. Such
modification is made adding a new transition to a workflow net that connects its output place to
its input place in this direction, i.e., this new transition moves the ”tokens” from the output place
to the input place. Using this modified workflow net it is easy to proof the soundness for a given
Workflow Net, as it is shown in [Aalst, 1998]|. The formal definition for the modified workflow net
is below.

Definition 3.19 (Underlying PTNet) Let (N,u) € W. Let (N, u) be a MPTNet, such that
N = (T,0-,0;), where: T = T U {t*} and - = 8_ U {(t*,0)}, and 0y = 0, U {(t*,7)}. Then



3.2. WORKFLOW PATTERNS AS WORKFLOW NETS 27

(N, p) is called the underlying MPT Net of the Workflow process definition (N, ). That is, the
underlaying PTNet for a Workflow process definition is the Workflow Net with a transition that
joins its output place to its input place in this order.

The proof of soundness of a Workflow Net use the notion of underlying Workflow Net and the
properties of liveness and safeness for Petri Nets. The soundness of a W F Net has an easy proof,

as the next theorem shows.

Theorem 3 (Characterization of soundness) Let (N,{i}) be a WF Net, then (N,{i}) is sound
iff: (N,{i}) is live and safe.

Proof. See [Aalst, 1998| =

Now, it is presented the translation from Workflow patterns to Workflow Nets. In many cases,
this translation is straightforward, in many others the translation is more complex. Moreover, there
exist cases, such as Case Cancelation pattern, that are very tricky in Petri Nets.

3.2.1 Workflow Patterns as Workflow Nets

Workflow patterns have an equivalence in Workflow Nets. A Workflow model could be formed
using many workflow patterns connected in sequence or in parallel, as it will show later.

In this section, it is presented some equivalent Workflow Nets for such patterns. Also it is shown
that all Workflow Net proposed are live and bounded.

Remark 2 Note that all of the proofs of soundness for all Workflow Nets are given respect to their
underlying MPTNet. Also, they are used the Commoner’s Theorem and the s-invariant Theorem,
reviewed in the previous section, for proving of liveness and boundedness, respectively.

Basic Control Flow Patterns

The Basic Control Flow patterns have a direct representation in Petri Nets. The Figure 3.8 shows
the Basic Control Flow patterns as Workflow Nets. The Parallel split and the Synchronization
patterns are presented in Figure 3.8a in its initial state, i.e., only place ”i” is marked. The ”Split”
transition with two output places starts the transitions Task A and Task B, that run in parallel.
The ”Join™ transition waits Task A and Task B end, then the synchronization take place, and the
final state is reached. The Exclusive Choice and Simple Merge patterns are presented in Figure
3.8b, once again, in its initial state. Either, Task A or Task B could be fired consuming the token
into the place ”1” i.e., an exclusive choice is made between Task A and Task B. Then the final
state could be reached by the fire of them. Finally, the Simple Sequence pattern is depicted in
Figure 3.8c. The 1-length simple sequence is represented by the transition Task A with an input

place ”1” and output place "0” that are the initial and final places too. The soundness proof for
these Workflow Nets is omitted due to its simplicity.



28 CHAPTER 3. MODELING WORKFLOW PROCESSES

! —_— 0
@ e
Split Join
task B
a) AND-splitand AND-join
1 0 i 0
@O =0
task A
task B
b) OR-split and OR-join ¢) An activity

Figure 3.8: Basic Control Flow Patterns Nets

Advanced Branching and Synchronization patterns

Figure 3.9 shows the N-out-of-M join pattern as a Workflow Net. This net meets the particular
case of 2-of-3 join. On it, ”3” parallel transitions (tasks) are activated, and then, the place ”p”
waits for ”2” of these ”3” parallel transitions to be completed before the firing of the next activity;
in the next step, all remaining tasks are “removed” by the action of the, "flush” transitions in its

input place, enabled at this stage..

Note that there are no certainness of what transitions are completed and what are not, but it
1s sure that ”2” of these ”3” transitions are completed before the next activity starts. Also, note
that there is a "flush” transition for any task from 1 to 3, (¢1’,¢2',t3’). Such transitions are used
to cancel any remaining task, after that ”2” of these ”3” are completed. The formal definition for

this Workflow Net is as follows.

Definition 3.20 (N-out-of-M Join ) WFNet on Figure 3.9 shows a point (the place p) waiting
for 2 of 8 incoming branches; once 2 of such branches are completed, the next activity is started,
i.e., a token 1s delivered into its input place; at this stage, other activity can take place. Finally, in
the next step, the all remained branches are take off. This net meets the particular case of 2-of-3
join. Note that the transitions t1',t2', and t3' are ”flush” transitions for the tasks t1,t2, and t3

respectively.

Proposition 4 The 2-out-of-2 Join Workflow Net depicted in Figure 3.9 is live and there are no
forgotten tokens on it.



3.2. WORKFLOW PATTERNS AS WORKFLOW NETS 29

Figure 3.10: The Arbitrary Cycle Pattern Net

Proof. a)Liveness: Let I = (4313131414); I is a positive t-invariant of the net, then the net is

live.
b)No forgotten tokens. This property means that at the stage where the net has finished, then no

other activity is performed on it. It is achieved allowing that all remaining task could be canceled.
Figure 3.9 shows a place p' that has enough token:s to cancel all remaining task that have not
finished at the stage where " N” of these " M” are completed. So, if all the transitions that cancel
the remaining tasks are considered autonomous, then they fires immediately, and no tokens are

forgot. ®

Structural patterns

The Figure 3.10 shows the Arbitrary Cycle pattern as a Workflow Net. The transition ”Task A”
can be done repeatedly until the transition with input signal ”False” is fired. So the END state can
be reached. This pattern meets the situation when an activity or a set of them must be repeatedly

executed.

Definition 3.21 (Arbitrary Cycle) The WFNet on the Figure3.10 shows a task that can be
repeatedly done while the input signal "true” is on. It ends when the input signal "false” is on
(Note that it is considered true and false input signals in mutual exclusion).



30 CHAPTER 3. MODELING WORKFLOW PROCESSES

PO-~O-L

: task A o

() task A

task A

Figure 3.11: The Multi Instances Pattern Net

Proposition 5 The Arbitrary Cycle Workflow Net is live and bounded.

Proof. a)Liveness: the underlying M PT Net is a FCNet and every proper siphon includes an
initially marked tramp, so the system is live.

b)Boundedness: let I = (111); I is a positive s-invariant of the underlying M PT Net, so the
system is bounded. =

Definition 3.22 (Implicit Termination) The Implicit Termination pattern is a property of mark-
ings that workflow patterns must have, rather than a structure that can be translated to Petri Nets
concepts, 1i.e., given a Workflow pattern it is desirable that finishes where there are nothing else
to be done. Then, this desirable property can be achieved transforming any pattern into a pattern
with only one END point, in this way when it reaches the END state, it is possible to know that
there are nothing else to be done in the workflow process. In fact, Workflow Nets already have this

desirable property.

Multiple Instances patterns

Figure 3.11 shows the Multiple Instances patterns as a Workflow Net, where the maximum number
of copies of a Task-A is known at design time. Also, Figure 3.11 shows transitions with labels from
1 to n, where n is the maximum number of copies of a Task-A. Also it shows the synchronization
for each branch from 1 to n. The Workflow Net operates as follows: in a certain moment, any of
the i-labeled transitions, for i from 1 to n, can be fired activating its respective branch. When the
branch ends, the synchronization takes place, and the END state is reached. In this way, when
the maximum number for a Task-A is known at design time, it is always possible to choose the
appropriate labeled transition. However there are some points to consider: When the maximum
number of copies of a Task-A is too big, then it is possible to transform it into an iterative repetition
of a small number of copies of Task-A using the Arbitrary Cycle pattern. In this way, when the
maximum number of copies of a Task-A is greater than the maximum number of copies allowed by
a certain Workflow Management system, it is possible to simulate this pattern performing a fewer



3.2. WORKFLOW PATTERNS AS WORKFLOW NETS 31

Figure 3.12: The Temporal Relation Pattern Net

number of parallel activities repeatedly. Of course, in this way, the maximum number of copies of

a certain Task-A is not really in parallel.

Definition 3.23 (Multiple Instances and Synchronization) In the WFNet depicted in Fig-
ure 3.11 one of several branches can be chosen. If the transition with input signal i is chosen, then
i copies of the task A are executed, 1 < i < n. Finally, the synchronization takes place for all
of these branches (1,...,n). This pattern meets the case when the number of copies of a task A is

n-bounded and it is known at design time.
Proposition 6 The Multiple Instance and Synchronization Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying M PT Net is a FCNet and since every proper siphon
includes an initially marked tramp the system is live.

b)Boundedness: let I = (111...111); [ is a positive s-invariant of the underlying M PT Net.
Note that |I| = n(n + 1) + 4, where n is the maximum number of copies of the activity A. =

Temporal Relation patterns

Temporal Relation patterns make a relationship between two tasks other than sequential or parallel
ones. As an example, the temporal order relation S9 > S; means that the activity with start point
S92 must starts after or at the same time than the activity with start point S;. This have no
information about exactly “when” the activity with start point S must starts, but it must starts
at the same time or later than the activity with start point S; does. Since the change of markings in
generalized Petri Nets is considered discrete, and the time is continuous, the major representation
of this pattern in Petri Nets is very stiff. However, if it is possible to split each activity into its
main milestones, then it is possible to perform complex interleaved relation between them. As
another example of temporal relationship between tasks, Figure 3.12 shows the temporal relation
"before-start”, Sy > 57, as a Workflow Net, where two tasks are divided into two major milestones:
Start and End points, S and E respectively. In the Workflow Net, two branches are fired in parallel,
one for the Activity-1 and other for the Activity-2. The branch for the Activity-1 could continue
without difficult, but the branch for the Activity-2 must waits to the Activity-1 starts before it
starts.



32 CHAPTER 3. MODELING WORKFLOW PROCESSES

Y
a) Deferred XOR-Split

b) Interleaved parallel routing

Figure 3.13: The Deferred XOR-Split and Interleaved Paralle Routing Pattern Nets

Definition 3.24 (Interleaved Sequence) In the WFENet of Figure 3.12, two branches are shown.:
the upper one for the Actwity-1 and lower one for the Activity-2. The temporal relation is Sp > S4,
that is, the Activity-2 must starts after or at the same time than Activity-1 starts. In a stmilar
way, it is possible to construct any other “discrete” temporal relation.

Proposition 7 The Interleave Sequence Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying M PT Net is a FFCNet and since every proper siphon
includes an initially marked tramp the system is live.

b)Boundedness: Let I = (1111111111); I is a positive s-invariant of the underlying M PT Net.
||

State-based patterns

Figure 3.13 shows the Deferred XOR-split and the Interleaved parallel routing patterns as Workflow
Nets. In the Deferred XOR-split pattern, as in Exclusive Choice pattern, one of several branches
is chosen, but in contrast with it, all possible branches are active before the selection, then when
one is chosen, the others are cancelled. In this way, the selection is implicit rather than explicit, as
in Exclusive Choice pattern. The END state is reached after it.

In the Interleaved parallel routing pattern, a set of activities is executed in an arbitrary order;
such order 1s decided at runtime and no two activities are executed at the same time. This suggest



3.2. WORKFLOW PATTERNS AS WORKFLOW NETS 33

us a mutual exclusion between the set of tasks. Figure 3.13b shows the equivalent Workflow Net for
this pattern: a set of transitions have a shared input place that allows the progress of one activity
at a time; once the active activity finishes, then the resource is released, and another activity can
be executed. When all tasks have been executed, then it is possible to reach the END state. Note
that the execution order could be decided at runtime, since each transition have an associated input

label.

Definition 3.25 (Deferred XOR-split) In the net of the Figure 3.13a there are two transitions
(X and Y) waiting for an input signal. X and Y transitions are enabled, but only one will be chosen,

the other one will be withdrawn.

Proposition 8 The Deferred XOR-split Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying M PT Net is a FFCNet and since every proper siphon

includes an initially marked tramp the system is live.
b)Boundedness: let I = (1111); I is a positive s-invariant of the underlying M PT Net. =

Definition 3.26 (Interleaved Parallel Routing) In the net of the Figure 3.13b there are n
tasks that can be executed in arbitrary order. When all of these tasks are done, the workflow net

reaches its END state.

Proposition 9 The Interleaved Parallel Routing Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying M PT Net is a FCNet and since every proper siphon
includes an initially marked tramp the system is live.
b)Boundedness: let I = (111...111); I is a positive s-invariant of the underlying M PT Net.

Note that |[I|=3n+2. =

Cancellation patterns

Cancellation patterns are related to the cases when some tasks currently in execution must be
abruptly cancelled, i.e., for some external conditions it is necessary the cancellation of these tasks.
As in Implicit Termination pattern, this change must be in the task state rather than in its structure.
But in this case, any reachable state must be mapped into its final state despite there exist active
tasks in the workflow net.

The modelling of these patterns will be addressed in the next chapter titled Dynamic Change
within Workflow Management, where the dynamic structural change will be explored.

Inter-Workflow Synchronization patterns

Figure 3.14 shows the Message Coordination pattern as a Workflow Net. As it is shown, the
“sender” sends a message to the "receiver” firing its ”"snd” transition, then it waits the response of
the “receiver” The transition “rcv” in the "sender” waits the “receiver” response and then it can
be fired to reach the END state. This Workflow Net meets the message coordination behavior. Of
course, in both sides, at the "sender” side and at the "receiver” side it is possible to perform many
other tasks. Note that it is no important the connection and disconnection dynamic between the
client and the server, but only the message coordination behavior.



34 CHAPTER 3. MODELING WORKFLOW PROCESSES

"] Lo—{l-0—F

LEY

O OO

rcv | ~ack

Sender ~ Medium Receiver

Figure 3.14: The Message Coordination Pattern Net

Definition 3.27 (Messaging Coordination) Figure 3.14 shows three parts: a sender, a recetver
and, a medium. Two transitions in the sender do the work: the transition “snd” put a message on
the medium and the transition “rcv” waits for acknowledge. When the transition "rcv” fires, other

task can take place.

Proposition 10 The Message Coordination Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying M PT' Net is a FFCNet and since every proper siphon
includes an initially marked tramp the system is live.

b)Boundedness: let [ = (1111111); [ is a positive s-invariant of the underlying M PT Net. ®

Up to here Workflow Nets were developed for some Workflow patterns. Now, when it is necessary
to build a complex business process model, often it is constructed in an incremental way. In some
cases, it is constructed small models for the difterent processes, and then such models are mixed. In
other cases it is more convenient to construct a general model, and then refine it by the application
of some rules or techniques, in order to reduce the complexity of the modelling job. The convenient
way depends on the particular situation.

In the next section, a refinement method for top-down place-refinement construction of Petri
Net models is adapted from [Zhou, 1992] to the case of workflow models, in order to avoid the
property analysis in the final net.

3.3 Building Petri Net models for Workflow Management

Synthesis methods construct nets systematically such that the desired properties are guaranteed
avoiding the analysis process in the final nets. Two kinds of approaches, top-down (refinement of
nodes by sub-nets) and bottom-up (fusion of nodes or paths) have been studied in synthesis methods

(Jeng and DiCesare, 1992) (Jeng, 1992, (Koh, 1991]. Intuitively, it is clear that the modelling of
large concurrent systems demands some kind of modularization to break down the complexity. In



3.3. BUILDING PETRI NET MODELS FOR WORKFLOW MANAGEMENT 39

task A

Figure 3.15: The Simple Activity Pattern Net

true

Figure 3.16: The First Step Refinement

this section, it is presented an adaptation of the place refinement method in [Zhou, 1992| to the
case of Workflow Nets.

3.3.1 Building live and bounded models for Workflow Management

The place refinement in Petri Nets is a good method for the construction of complex models
(Zhou, 1992|. Moreover, it is desired to define some place refinement rules that guarantee good
properties in the final refined model. In this way, starting with a simple model, it is possible to
construct complex models applying these refinement rules avoiding subsequent analysis.

For example, the Figure 3.15 shows the Workflow Net for the Simple Activity pattern. Now,
1t 1s possible to perform a replacement to the place “0” substituting it by a subnet, as the Figure
3.16 shows. In this particular case, the final net can perform an Activity A, then it can repeatedly
do a certain activity. Finally it can reach its END state.

Intuitively, this refinement rule works as follows: as Figure 3.16 shows, this refinement method
replaces a place p in a PTNet by a new PTNet that have an input and an output place. Then the
input and output edges for the place p become the input and output edges for the new PTNet.
The formal definition is as follows.

Definition 3.28 (p-replacement) Let (N,u) be a MPT Net, and (N',@) € W  such that N =
(T,0-,04+), and N' = (T",0_,0.), and i’ and o' are the input and output places of N’ respectively.
A p-replacement p — N' where p € Nm(N), is the MPT Net (N, u),where N = (T,0_,0,.) is
defined as follow:

T=TUT
O_(t)\np+no. ifteT andnpe d_(t), n € N
0_(t)=<¢ 0_(t), ifteT andnp & O_(t), for anyn € N
o (t), ifteT



36 CHAPTER 3. MODELING WORKFLOW PROCESSES

< ) task A

true task A

Figure 3.17: The Second Step Refinement

i 0+ (t)\np+ni’ ifteT andnp € 0.(t), n €N
-04(t) = ¢ 04(t), tft €T andnp & 04(t) , for anyn € N
al-i-(t):' th gd"

The next theorem characterizes the liveness and soundness on the application of the definition
of p-replacement over a net. Intuitively, this theorem means that, given a sound net, if this p-
replacement is applied over it using a sound net in the replacement, then the resulting net is always
a sound net. The theorem says also, that the inverse case is hold.

Theorem 11 (Soundness characterization of p-replacement) Let (N, u) be a MPT Net, let
(N',2) € W. Let (N, i) be the net that results of the p-replacement over (N, i) using (N, fi). Then
(N, i) is live and bounded iff (N, i) is live and bounded.

Proof. Sketch: Since every (N',u') € W is live and bounded, then the soundness condition
imposed to the net used in the replacement is hold by this p-replacement. Using the result in
[Zhou, 1992] the results follow. =

Figure 3.17 shows the next step in the refinement of the net in Figure 3.16. The overall
refinement is as follows: The Figure 3.15 shows the net which the refinement process was started.
Then the place labeled with "0” was replaced by the Arbitrary Cycle pattern. Figure 3.16. Then
the place labeled with ”p” was replaced by the Multiple Instances with Synchronization pattern.
Figure 3.17.

In this way, the final net, in fact a sound Workflow Net, has the next semantic: after the firing
of the Activity A, it is possible to fire repeatedly i-parallel Activity A, where 1 < ¢ < n. Such



3.3. BUILDING PETRI NET MODELS FOR WORKFLOW MANAGEMENT 37

L D
a) The workflow net N b) The workflow net N’

¢) The sequential composition of N and N’

Figure 3.18: The Sequential Composition of two workflow nets

final net meets the semantic for the Multiple Instances without prior runtime knowledge and its
Synchronization pattern (see the Workflow Patterns section, in the previous chapter).
Another two common operations between nets, that result in a kind of refinement, are the

sequential composition and the parallel composition of flow nets. They formal definitions are given
below.

Definition 3.29 (Sequential Composition of nets) Let (N,{i}),(N'.{@}) € W, where o is
the final place of N and i' 1s the vmitial place of N’

Then the sequential composition of (N,{t}) and (N',{?'}), denoted (N,{i}) @ (N'.{2}), is the
juztaposed composition of (N,{i}) and (N, {i}) merging the place o in N with the place i in N’
formally, (N ® N’,{i}), where o and " are only ones public places in N and N’ respectively, and
0=1t.

Example 3.4 (The sequential composition of two nets) As an example of the sequential com-

position of nets, see the net depicted in Figure 3.18. Figures 3.18a and b, shows two workflow nets.
Finally, Figure 3.18c shows the compound net.

Definition 3.30 (The Parallel Composition of nets) Let (N, {:}),(N'.{7'}) € W, where 1
and o is the wnitial and final places of N, respectively, and, i' and o' are the initial and final
places of N'. respectively.

The Parallel Composition of (N,{i}) and (N'.{i'}), denoted (N, {i}) ® (N'.{i'}), is the juzta-
posed composition of (N,{1}) and (N'.{t'}) merging the places i and i’ in N and N' respectively,
and merging the places o and o' in N and N', respectively; formally (N ® N’,{2i}), where i and o
are public places in N, i' and o' are public places in N' and, i =i and o = o



38 CHAPTER 3. MODELING WORKFLOW PROCESSES

Figure 3.19: The Parallel Composition of workflow nets

Example 3.5 (The parallel composition of two nets) As an example of the parallel compo-
sition of nets, see the net depicted in Figure 3.19. This net is the compound net resulting of the
parallel composition of nets depicted in Figures 3.18a and b.

The next section uses the place refinement method in a more complex application example.

3.3.2 An Application example

As an example of the refinement method in the previous section, this section presents the case of
FBN Sports Equipment Company in Luxemburg, a sport and athletic equipment sales company.

MODELLING BUSINESS PROCESSES IN A SPORT EQUIPMENT COMPANY

Process specification. The FBN Sport Equipment Company in Luxemburg manufactures
a complete range of sports and athletic equipment. All of its sales are made by Purchase Orders.
Since the company receives 80 of its sales orders by mail and fax, it has been determined to have
an image scanner in the mail room as in order to enhance the workflow system. The mail room is
the point where the workflow starts, and it revises all mails and faxes to the company. The next
processes are the way each department take for performing its activities.

Process 3.1 (The mail room activities) The mail room performs the next activities:

If the documents are a sales order:

all documents go to Sales, Finance and Manufacturing in parallel
If the documents are invoices for payment:

the documents go to Finance
If the documents are addressed to the President:

the documents go directly to the President Sccretary:

the Secretary sorts mail for immediate response by President;

If the document is sales leads go to Vice President Sales:
Product inquiries go to Customer Support
If the documents are payments: the documents go to Finance;



3.3. BUILDING PETRI NET MODELS FOR WORKFLOW MANAGEMENT 39

Process 3.2 (At the Finance Department) The Finance Department performs the next activ-
itres:

If the documents are for a sales order:
then check if sales order is from an existing customer:
if an existing customer
then check account limits:
if Account limit OK
then release to Manufacturing
else refer to next manager level:
if sales order approved
then release to Manufacturing;
else decline sales order

route to Sales Representative and to Manufacturing;
else // if not an existing customer
then request credit check:
if credit check OK
then release to manufacturing
else decline sales order

Route to sales representative and to Manufacturing

Process 3.3 (At the Manufacturing Deparment.) The Manufacturing department performs
the next activities:

If sales order is released and can be shipped
1. prepare product order
2. 1ssue shipping instructions and prepare forms
3. notify sales, finance and customer service on ship date
4. adjust inventory levels.
If sales order is not released
place sales order into suspend mode.
If sales order is released but lack of product:
Then notify sales representative of partial ship plan
Freeze parts and stock for 24 hours
Suspend order for 24 hours
When the sales order is released and the partial shipment program has been approved by
the customer then Manufacturing will:
Build and ship to the partial program
Notify Finance on shipping
Expedite missing parts from suppliers
Suspend the sales order until the parts arrive
Complete the sales order

Issue notification to Finance, Sales and Customer Service
Each different department performs a different set of activities. In this company processes

start at the Mail Room. The Mail Room checks all incoming messages and deliver them to its
respectively department for its processing.

The refinement process for the Mail Room Department starts with the Simple Activity pattern,
Figure 3.15. The Mail Room’s process shows four different classes of incoming messages: sales
order messages, invoices for payment messages, messages addressed to the President, and payments



40 CHAPTER 3. MODELING WORKFLOW PROCESSES

sales
|
| } - - {
|| ' |1
"’ S, . < \
INVOICES \
/ = — X
. . , | i | .& ) o [\
| o 1 | / | -~ , —ad \H H\ 0| — O
~ ' e . . - «-x 7N o i
. | 4 ) . 3 \ > - » .
. = -‘*-H g'ﬂx."‘x. z prCSlden[ = J i,"' | ' g
N | Sl R TG - Y '!, | _
\‘\__ \\ﬂ, | / P—.‘HX .—"'HH X
1\ ~ H | _ ____HL .r- ESR—— P /

1‘. b h"‘-—...___ -

_ _
S, e,
' payment -

Figure 3.20: The First Step Refinement at the Mails Room

messages. So, the central place replaced by the Simple Choice pattern with four branches, one for
each different class of incoming messages. This is shown in the Figure 3.20.

Now, if the incoming message is a sales order, the process indicates that the document must
goes to Sales, Finance and Manufacturing departments in parallel. So, the next step is to replace
the place “sales” on the Figure 3.20 with the 3-AND-Split pattern and its Synchronization, as
shows the Figure 3.21. The rest of the refinement process for this department could be build in a
similar way.

At the Finance department, using this refinement method, it is possible to construct a Workflow
net like as the net depicted in in Figure 3.7. This workflow net is the one net used in the introduction
to the section: Workflow Patterns as Workflow Nets.

The previous example was fetched from [WfMC-TC-1016].

3.4 Conclusions

In this chapter, basic notions on Petri Nets were presented. Also Workflow patterns are translated
to Workflow Nets -a special class of Petri Nets-. Soine Workflow patterns have a straightforward
representation into Petri Nets concepts. Others have a more elaborated construction.

Also a synthesis method for the gradual construction of elaborated workflow schemes was pre-
sented. The synthesis methods allow to construct complex workflow schemes without the subse-
quent analysis.

Unfortunately, there are some important aspects in Workflow Management that have no direct
equivalence into Petri Nets concepts. One of these concepts is the dynamic change problem. In this
problem, some Workflow schemes must change their structure in a controlled way. These concepts
are not allowed on the traditional Petri Nets formalism. However, there are some extensions for
Petri Nets that allow to support successfully this dynamic change problem. The next chapter is



3.4. CONCLUSIONS

finance

Invoices

manufacturing

O

president

O

payment

@,

Figure 3.21: The Second Setp Refinement at the Mails Room

related on such class of problem and a proposed solution.

41



42

CHAPTER 3. MODELING WORKFLOW PROCESSES



Chapter 4

RW-Nets for Dynamic changes in
Workflow Management Systems

This chapter addresses the Dynamic change problem in Workflow Management Systems. An
overview of approaches for workflow changes is presented. Dynamic nets from [Buscemi, 2001],
and [Asperti, 1996 are introduced, and how they support the dynamic change is shown Finally,
Rewriting Nets -an extension of Dynamic Nets- are proposed as modeling formalism to support the
modifying mechanisms to cope with the dynamic change problem.

43



44CHAPTER 4. RW-NETS FOR DYNAMIC CHANGES IN WORKFLOW MANAGEMENT SYSTEMS

4.1 The Dynamic change problem

Business processes are subject to unexpected changes: market changes, customer changes, new
business strategies, etc., usually result into a dynamic change.

The dynamic change is an important issue within Workflow Management systems. Several works
on the matter point out that this problem is difficult to solve [Agostini, 1998], [Aalst, 2000 IS],
|Ellis, 1995], [Casati, 1996], [Han, 1998].

In these systems, can mainly occur two kind of changes [Ellis, 1995|, [Aalst, 2000 WP 50| :

e 1) Ad-hoc changes, and

e 2) Evolutionary changes.

Ad-hoc changes occur on individual cases or on a selected group of them, while evolutionary
changes have structural impact, i.e., an evolution change into the workflow process affects all new
cases from certain moment forth. This change is commonly the result of a new business strategy,
reengineering efforts or a permanent alteration of external conditions. A workflow process definition
resulting from an evolutionary change is often called a new “version” of a workflow process.

A wide known classification of dynamic change within workflow management is depicted on
Figure 4.1. As it is shown, the dynamic change can be as follows:

e "Extend”: a refinement of an actual task in the workflow process; Figure 4.2a shows the
extension (or refinement) of an activity A into two activities A1 and AZ2.

e "Replace”: a substitution of an existing task by a new one in the workflow process; Figure
4.2b shows the replacement of an activity A by an activity B; and

e "Re-order”: a new causal order in the actual set of tasks over the workflow process; Figure
4.2c shows two sequential activities A and B, that must change its sequential relationship.

On the other hand, the change can be as follows:

e ”Individual”: the change affects only one case or a selected group of them, or

e ”Structural”’: the change aftects overall workflow process structure, and all new cases that

arrive to the system.

On the ”Individual” branch, there exist the next two cases:

e Entry-time: the time of the change is determined;

e On-the-fly: the time of the change is not determined; it may occur at any stage in the process.

On the ”Structural” branch, there exist the next cases:

e Restart: a workflow process actually in execution must be abruptly restarted;

e Version: a new version for an existing workflow process must be present in the system, and



4.2. RELATED WORK ON ADAPTIVE WORKFLOW 45

Entry-time
Extend Individual On-the-fly
Replace >Change< Restart
Re-order Structural < Version
Transfer

Figure 4.1: Change Classification

e Transfer: all possible states (or activities) in the actual workflow process must be present
in the next version of such workflow process; Figure 4.2d shows an activity A that must be
present in the next version of the workflow process.

Since in this work Petri Nets are used as modelling formalism of workflow systems, the dynamic
change problem can be reduced to the problem depicted on the Figure 4.3; it shows two Petri nets
called Workflow process definition; the change from the workflow process on the left to the workflow
process on the right, and reciprocally, is the goal to achieve in this chapter.

It outcomes obvious that it is necessary to explore the flexibility on Petri Nets. Such flexibility
on Petri Nets has been explored in previous works [Buscemi, 2001], [Asperti, 1996|. In these works,
it was proposed a taxonomy of High Level Petri Nets that increase its flexibility lessening its
restrictions.

4.2 Related work on Adaptive Workflow

In (Badouel, 1998|, a class of high level Petri nets called Reconfigurable nets was presented. These
nets can change its structure dynamically by the rewriting of some of their components. Basically,
a Reconfigurable net is a Petri Net with a set of modification rules over its places. A modification
rule is a function that maps places to places and it works as follows: the places to be mapped must
be places in use on the current net and its image must be ”invisible places” for the system at the
time of the change. This High level nets can be used to change the "flow” in a workflow process
definition.

In [Casati, 1996|, an approach to the dynamic workflow change based on primitives of evo-
lution was presented. First, a formal definition of a Workflow process is provided. Then some
transformation primitives, like a programming-style, of a given workflow are given.

In [Aalst, 2001 WP 51|, the concept of dynamic change within workflow, its variations and
flavors were presented. Both, ad-hoc and evolutionary changes are undercover in the workflow.
The presented approach uses the notion of ”versions” of workflow -a property that allows to a new
workflow process definition to have all states present on the old workflow version-. The goal in this
work is to determine when is possible to migrate cases from an old workflow process version to a
new one.

In [Aalst, 1999 UGA|, ”generic process models” -a kind of process model, based on Petri nets,
that can be ”instantiated” with a ”specific” process model in a certain moment- was presented.



46CHAPTER 4. RW-NETS FOR DYNAMIC CHANGES IN WORKFLOW MANAGEMENT SYSTEMS

From other From other From other From other
activity activity activity activity

' l Replacement l
A Illllllllllllllllll’ B

= 1 |

J Refinement
A illllllllllllllllll>

|

P - P -

To other To other To other To other
activity activity activity activity
a) A step refinement b) A replacement
From other From other From other From other
activity activity activity activity
: 1 4
B
A Reord B 1 Transfer {
corder A ERERERURENRERRNESD
l (11100 IIIIIIIIIIIII’ l > A
5| A ¢
‘ | ' 5
To other To other To other l
activity activity activity To other
activity
¢) A reorder of activities d) A transfer of the activity A

Figure 4.2: Concepts on Dynamic Change

The "dynamic changes” were supported ”instantiating” the same ”generic process model” with
many -finite- "specific’ process model.

In [Aalst, 2000 WP 50|, an approach based on inheritance, a concept of Object Oriented Pro-
graming, applied to Petri nets was presented. Two mechanisms of inheritance: protocol inheri-
tance and projection inheritance were explored. Using this notions was possible to decide when
one workflow process is a “subclass” to another workflow process, based on these two inheritance
mechanisms. A set of ”well-defined” transformation rules was also presented, to migrate from one
workflow process to a new one using a rule transformation and , preserving inheritance was possible.
Using branching bisimilarity, it is possible to divide workflow process into equivalence classes of
inheritance.

In [Jiang, 2001|, a Colored Petri Net with changeable structure was presented. Two mechanisms
for the structural change: change-by-modification and change-by-composition, were suggested
The first one was related to the net structure changing by the modification of some net structure
elements, while the second one was related to the net structure changing by the composition of the
current net to another net.



4.3. RWNETS TO SUPPORT DYNAMIC CHANGE IN WORKFLOW 47

% change | P,
hi ?
preparc_STP. | ; , prepare_ship
S

2 p2
snd_goods ——

S é snd_goods | [ snd_bill
R
snd_bill i
W,

P,

Q. d

| chanﬁe record_ship

S
4

record_ship

s

Figure 4.3: The Dynamic Change Problem

4.3 RWNets to support dynamic change in Workflow

In order to support the dynamic change within Workflow Management, it was necessary to increase
the flexibility in Petri Nets. There are some works related on. For example in [Asperti, 1996 and
Buscemi, 2001] a hierarchy of nets that increase the flexibility in Petri Nets were suggested. Mobile
Nets (also called Reconfigurable Nets), a class of nets that have an additional feature: the post of

a transition can be delivered to different sets of places was suggested. Dynamic Nets -a class of
high level nets that can increase its structure during the firing of a transition- were also presented.

In this thesis some of these concepts are hold and extend, in order to support the dynamic
change in Workflow Management.

4.3.1 Colored Nets

Colored Petri Nets (CPN) were proposed by K. Jensen in 1981 for the modeling of very large
systems [Jensen,1981]. CPN models have a high level of abstraction and they are very condensed.

In CPN, the tokens into the places could be individually identified, i.e., each token has a
symbolic identity. This identity is called the ”color” of the token . Also, in CPN, a transition could
be able to fire respect to a specific color or set of them. The colored tokens travel across the net
by the action of the transitions, transforming them into other colored tokens.

The main concepts on CPN are illustrated in Figure 4.4. It represents the Dinners 3-Philosophers
problem.

In short, a number n of philosophers are sat at a round table. At the right and left hands of
each philosopher there is a fork. When a philosopher wants to eat, then he takes the forks at his
right and left hands and then he goes to the eating room. When the philosopher finishes to eat,
then he gives back the forks. Then, other philosopher can eat.

The colored net have three places: one place for philosophers, one place for forks, and one place
for the eating room. Also, there are two transitions in the net: one transition for when a philosopher



48CHAPTER 4. RW-NETS FOR DYNAMIC CHANGES IN WORKFLOW MANAGEMENT SYSTEMS

phil
fork _ 1 7

3 2 3.1 2B

u+v u,F,v

. )eating u.F.v

Figure 4.4: The Dinners Philosophers Problem Colored Net

wants to eat and accordingly goes to dining room and other transition for when a philosopher ends
to eat. The net shows the case when the number of philosophers is three.

As it is shown, the tokens are tuple of names. Also, the edges are labeled with a tuple of names.
For example, the tuple "u,F,v”’ in an edge means that such tuple could be "instantiated” with any
tuple with length three.

The firing of a transition in these nets occurs when a value is given to the edge label in the pre
set of a transition. This assignation of values defines a function from the edge labels to the color
names into the places; such function is called a ”binding” function. For example, in Figure 4.4, it
is possible to fire the upper transition with the "binding” function b: v — 1,v — 2, FF — A. Now,
in order to get the post set as result of the firing of this transition, is applied this binding function
to its post set. In this particular case, the colored token "1, A, 2" is gotten into the "eating” place,
meaning that the philosopher A is now eating. Since the problem is reduced to the case of three
philosophers, any other philosopher can go to eat at this moment, as it was expected. At this state,
the lower transition could be fired to return to the initial state.!

Definition 4.1 (Colour Set) The set of colored tokens Cp over a set P is defined as the set of
finite sequences over P, that is:

CP — {’UO:---avn‘Ui = P:O S. 2 S n,n < N}

It will be used @, ranging over Cp. The length of a tuple v € Cp, is defined as |v| = |vg, ..., vn| =
n + 1, and the selection of the i-th element is m;(V) = v;,0 < i < n.

For a vy, ...,v, =0 € Cp, (0] denotes the set {vy, ...,un} rather than multiset..

!Note: the edge label "u + v” in the pre set of the upper transition means that there are two edges between
the "fork™ place and this transition: one edge with the "u” label and one edge with the v label. This is only for
notation conveniences.



4.3. RWNETS TO SUPPORT DYNAMIC CHANGE IN WORKFLOW 49

Definition 4.2 (Coloured Net) A Colored Net (CNet) is a bipartite graph with two classes of
nodes: places and transitions, represented by a tuple N = (T,0_,0,), where T is a finite set of
transitions, 8,,0_ : T — u(Nmy, x Cnm) are the pre and post functions. Also, 0_(t), is often
called the pre set of t, and 0, (t) is often called the post set of t.

Definition 4.3 (Marked CNet) A pair (N, uy), where N is a CNet, and pg € p(Nmy, X Cnm)
is called a Marked CNet (MCNet). The element g is called the initial marking.

Definition 4.4 (Bounded names, Binding) The set of bounded names for a p' € u(Nmy, X
Cnm) ts denoted:

re(p') = U{(Z]|3p: (p,Z) € &)

A binding for ' is a function b : re(i/) — Nm. It is defined ' (b) = {(p, b(C)|(p,¢) € u')}, where
b(C = o, ..., Un) = b(vg), ..., b(vy).

Definition 4.5 (Transition enabling) Let (N,u) be a MCNet. Lett € T, it is said that t is
enabled at p under the binding b, denoted (N, u)[t)y iff there exist a binding b : rc(0-(t)) — Nm,
such that 0_(t) (b) C p.

Remark 3 A Labeled CNet can be obtained associating a transition labeling function ! : T — L
to any MCNet (N,u) as in MPT Net.

Definition 4.6 (Firing Rule) The firing rule for a labeled MCNet, | ), C MCNets x L X

MCNets, 1s the smallest substitutive relation generated by:

(N, @) [t)e = (N, ), [1(t))s, (N, \O-(2) (b) + 04 (t) (b))

where b is a binding for O_(t).

Example 4.1 (A Colored Net) As example consider the next net: N = { fork(u+v), phil(u, F,v)} >
{eating(u, F,v)}, {eating(u, F,v)} &> { fork(u+v), phil(u, F,v)}, and puy = { fork(1+2+3), phil(1, A, 2+
2,B,3+3,C,1)}, then (N,py) € MCNets is the net on Figure 4.4.

In this section was explained the major concepts on Colored Nets. For further details see
[Jensen,1981]

4.3.2 Mobile Nets

Mobile Nets, also called Reconfigurable Nets, are a generalization of Colored Nets. In them, the
post set of a transition could be delivered to difterent set of places, i.e., the post set of a transition
is "mobile” or reconfigurable. It is achieved using the colored tokens in the pre set of a transition
for determining where the post set must be delivered. For example, on Figure 4.5a, it is shown a
transition with input places "ready” and "job” and where its output place must be determined
in order to the colored tokens linked to its pre set. In this case, Figure 4.5b shows the firing of
the “mobile” transition using the binding b : (ptr,typ — pl,c), (file,typ — f2,c), producing as
consequence that the place "pl” receives a colored token ” f2” The net depicted on the Figure
4.5a and b meets partially the behavior for a printer spooler [Forunet, 1995].



S0CHAPTER 4. RW-NETS FOR DYNAMIC CHANGES IN WORKFLOW MANAGEMENT SYSTEMS

ready

file fl fl
- » ptr > PO

job

file,typ ¢t

a) A Mobile Net with a mobile transition t

ready

ptr,typ
p2,bn pl
file fl fl
v (B0

job

file,typ ¢

b) The Mobile Net after the firing transition t with the binding:
b:{ (ptr,typ = pl,c), (file,typ — f2,c) }

Figure 4.5: The Partial Printer Spooler Mobile Net

Definition 4.7 (Mobile Net) A Mobile Net (MNet) is a bipartite graph with two classes of nodes:
places and transitions, represented by a tuple N = (T,0_,04), where T is a finite set of transitions,
O : T — u(Nmy, x Cnm), and 0+ : T — pu(Nmy x Cnm, ) are the pre and post functions,
respectively. Remember that: Cnm, = CNmuw- Also, 0 — (t) is often called the pre set of t, and
0 + (t) is often called the post set of t.

Definition 4.8 (Marked MNet) A pair (N,pu), where N = (T,0-,04+) is a MNet, and p €
w(Nm, x Cnm. ) is a Marked M Net (MMNet).

As it is shown, the pre set of a transition in Mobile Nets has the same form as the pre set of a
transition in Colored Nets. Accordingly, the notion of binding and enabling transition are the same
for both Colored Nets and Mobile Nets. However, in Mobile Nets the binding is applied to both
elements p and ¢ for each pair (p,c) € 9(t), for any transition ¢, rather than in Colored Nets, where
a binding b is applied only to the color element ¢ of each pair (p,¢) in the post set of a transition.
This is exactly the point where the post function of a transition in Mobile Nets could be delivered
to different set of places, that is, since the binding function is applied to both elements in the pair
(p, ), then it is possible that the binding function replace the element p, meaning that the place
that must receive the post set of the transition was changed. That is the meaning post set of a
transition in Mobile Nets is mobile rather than static, as in Colored Nets. The formal definition is

below.

Definition 4.9 (Substituting u ((b)) for Mobile Net) Let b be a binding as in Colored Nets.



4.3. RWNETS TO SUPPORT DYNAMIC CHANGE IN WORKFLOW o1

For p € w(Nmy, x Cnm,), let p{((b)) = {(bu(p),b,(¢)|(p,c) € u)}, where b, = b+ id,, and
bu(C = vo,...,vn) = by(v0), ...y bw(vn). The id,, function is the identity function over w.

Definition 4.10 (Transition enabling) Let (N,u) be a MMNet. Lett € T, then t is enabled
at p under a binding b, denoted (N, u)[t)y iff there exist a binding b : rc(0-(t)) — Nm,,, such that

0—(t) (b) C p.

Remark 4 A Labeled M Net can be obtained associating a transition labeling function | : T — L,
to any MM Nets (N,u) as in MPT Nets.

Definition 4.11 (Firing Rule) The firing rule for a labeled MNet, | ), C MLNet x L X

ML.Net, s the smallest substitutive relation generated by:

(N ) [the = (N, ), [L(E))s, (N, p\O-(2) (b) + 0+ (t) ((b)))

where b is a binding for 0_(t).

Despite the feature of Mobile Nets to deliver the post set of a transition to a different set of
places, Mobile Nets have a static structure, i.e., given a Mobile Net, it is possible to obtain an
equivalent Colored Net in a simple way. In fact, Colored Nets and Mobile Nets are just compact
representations of Petri Nets.

In the next section, Dynamic Nets -a class of High Level Nets that can increase its places and
transitions in every firing of its transitions- are presented.

4.3.3 Dynamic Nets

Dynamic Nets can increase their places and transitions during the firing of a transition. It is
achieved allowing to the pre set of a transition to be a net, rather than solely a set of places.

The pre set of a transition in Dynamic nets has the same form as the pre set of a transition
in Mobile Nets. So, the enabling of a transition and the binding function have the same meaning.
But now, the post set of a transition could be a new net definition.

Intuitively, given a enabled transition ¢, when it fires, the binding function is applied to its post
set, in order to produce the new parametric net. The binding function, maybe, replace several
place names; if these place names are public places in both nets, the current net and the new one,
then they must be merged.

Obviously, at this stage, the colored tokens linked to the pre set of the transition have been
removed; then the nets are merged using the juxtaposed composition of nets defined in the Chapter
2.

As an example, Figure 4.6a shows a net that has a transition that has a new net as post
set (see the transition t ). Figure 4.6b, also shows this net after the firing of such a transition.
Now the net structure changes. On Figure 4.6a, the transition is fired using the binding function
b:(u— a),(v— b). Finally, using the Juxtaposed Composition, the final net looks as the one

depicted in Figure 4.6b.
The formal definitions for Dynamic Nets are given below.



02CHAPTER 4. RW-NETS FOR DYNAMIC CHANGES IN WORKFLOW MANAGEMENT SYSTEMS

LR LR

O

SO0

u u
u d i
u

OO O @

u u u u u u
C — P )——D‘—H )
u+v u d u
¢ Yu Su
l u d Y 1

b) The system after the firing of t with b:{(u,a),(v,c)}

Figure 4.6: A Dynamic Net

Definition 4.12 (Marked Dynamic Nets) Let M DNets be the set defined recursively as fol-

lows:
a) A MPT Net s a MDNet.

b)The pair (N,u) such that N = (T,0-,04), where T is a finite set of transitions, 0_ : T —
(Nmy, xCpnm) s the pre function, O+ : T — M DNets is the post function, and u € u(NmyXCnm,,)
is a MDNet.

Given at € T, 0_(t) is often called the pre set of t, and 0. (t) is often called the post set oft.

Definition 4.13 (Subnet in Dynamic Nets) Let (N,u) be a MDNet. Then a MDNet (N', i)
is a subnet of (N, u), denoted (N', ') C (N, ), if T' C T, 8 C O_|r, ' C u, and recursively
O, (t') CO4(t') forallt' €T

As the definition of M DNets shows, the pre set of transitions in Dynamic Nets has a similar
form as in Colored Nets, but now the post set of a transition could be a new definition of a M DNets.,
with new places and new transitions.

The notion of isomorphism for Dynamic Nets, is a generalization of the isomorphism for
MPT Nets, since the post set of a transition in Dynamic Nets is a generalization of the post
set of a transition in M PT Nets. The definition of isomorphism for M DNets is given below.

Remark 5 Given two functions g and h, the disjoint coproduct of them, denoted g + h, is the
function defined by both g or h. For example, 1f g : (u — 1),(v — 2), and h : (w — 3), then
g+h:(u—1),(v—2),(w—3).



4.3. RWNETS TO SUPPORT DYNAMIC CHANGE IN WORKFLOW 03

Definition 4.14 (Isomorphism for MDNets) Let (N,u),(N’,i') be two M DNets, such that
N = (T,0-,04), and N' = (T',0_,0,). Then (N,u), and (N',y') are isomorphic up to a —
converstion, denoted (N, ) = (N', ') if, there exist a pair of isomorphisms (fy : T — T, fp: w —
w), such that:

a) (1dnm + fp X 1dNm + fp)(ﬂ) =,

b)Vt € T, 0" o fi(t) = (dNm + fp X tdym) 0 O-(t), and

c) Recursively, 0,(t) = &, (fi(t)), Vte T

Note that the private places in nets are only ones relevant for isomorphism, as in Petri Nets.

Definition 4.15 (Transition enabling) Let (N,u) be a MDNet. Lett € T, t is enabled at
p under a binding b, denoted (N, u)(t)y iff there is a binding b : rc(0-(t)) — Nm,, such that
0-(t) (b) € u.

The enabling of a transition in this class of nets, is the same as in Colored Nets. But now,
the binding function is used also to define the new net in the post set of a transition. The formal
definition is given below

Definition 4.16 (Sustitution for DNets) Let b be a binding as in Colored Nets. For a MDNet
(Y, ), such thatY = (T,0_,04), it is defined:

(Y, 1) ({(0))) = (T, 02 : (Vt € T : 8_(t) ((b))), 0% : (Vt € T : recursively, 8, (t) (((b))))), (b))

that is, (Y, ) (((b))) denotes the net after applying the substitution ((b)) as in Mobile Nets, for
both the pre set of all transitions in 'Y and the marking u, and recursively applying this renaming,
understand (((b))), to the post set of all transitions in'Y

Remark 6 A Labeled Dynamic Net can be obtained associating a transition labeling function [ :
T — L to any MDNet (N,pu), as in MPT Nets.

Definition 4.17 (Firing Rule) The firing rule for a Labeled M DN et
L x MDNets s the smallest substitutive relation generated by:

(N, 1)[t)e = (N, ), [L(t))s, (N, u\O-(2) (b)) ® O4(2) (({D))))

where b is a binding for 0_(t). It is denoted (N, p)([t)s(N', 1), where (N, 1) = (N, p\0-(t) (b)) ®
04 (t) (({b)))). The operation ® is the jurtaposed composition of nets defined in Chapter 2.

[ Y». € MDNets x

A M LDNet allow to modify the structure of a net; however the change is always incremental;
thus successive changes grow the size of the model. Moreover, when a transition is fired, all the
transitions in its post set are always new. So, for example, it is no possible to "rewrite” a pair of
sequential transitions in such way that they have a parallel relationship.

So it is necessary a more general mechanism that allows to "rewrite” in some way a part of the
system structure, preserving some important information, such as, transition, edges, places, causal
relationships, etc.

One evident way is to generalize the pre set of a transition in such way that it allows to consume
a subnet of the current net structure and to produce a new subnet, in the parametric order of the
consumed subnet. In this way, it 1s possible to define a rewriting mechanism for Petri Nets that
preserves the structure, increases 1t, and reduces it.



S54CHAPTER 4. RW-NETS FOR DYNAMIC CHANGES IN WORKFLOW MANAGEMENT SYSTEMS

t]
. <§ t
t2
t3 P, P,
54 é tl'
S
t4 . ) !
s 3

Figure 4.7: A Rewriting Net

4.3.4 RW-Nets

Dynamic Nets offer some flexibility for Petri Nets. However, they have some constraints. For exam-
ple, it is not possible to obtain the parallel representation of a given pair of sequential transitions.

Dynamic Nets generalize the pre set of a transition; following this approach, Figure 4.7 shows
a transition, in which, the pre set is a net, rather than a set of places. This transition could
”consume” a subnet -in this particular case, four transitions in sequence-, and then produce a new
“parametric”’ net, where the two central transitions are executed in parallel.

In the rest of this section Rewriting Nets are presented, a class of High Level Nets that rewrite
part of its structure at the firing of its transition.

Definition 4.18 (Marked Rewrite Nets) Let M RW Nets be the set defined recursively as fol-

lows:

a) A MDNet is a MRW Net,

b) The pair (N.u), such that N = (T,0-,0+), where T is a finite set of transitions, 0_, 04 :
T — MRW Nets are pre and post functions, respectively, and n € MRW Net is a MRW Net.
Given at € T, 0_(t) is often called the pre set of t, and 04 (t) is often called the post set of t.

Definition 4.19 (Subnet in MRWNets) Let (N,u) € MRW Nets, such that N = (T,0_,0,.).
The pair (N', ') € MRW Nets, where N' = (T",0_,0!.), is a subnet of (N, p), denoted (N', ') C

(N, ), iff:
T'CT, 3 CO-|r, 0) C 0|1, and recursively p’ C pu, 3(t') C 0;i(t'),i = —,+, V' € T"

Since both, the pre and post set of a transition in RW Nets, the element could be nets, then in

order to two RW Nets be isomorphic, it 1s necessary that they have a isomorphic structure at the
top level and at all of their subsequent levels.



4.3. RWNETS TO SUPPORT DYNAMIC CHANGE IN WORKFLOW 00

-~ &
ey

2 /98 o\[/2 @
e e JL e e
5V NI\ 57 |\5 e

a) A MRW Net

PN/ 2. ? I
O 0 O O
()

SRS

b) A Subnet of the above net

Figure 4.8: The Subnet concept in RWNets

For example, Figure 4.8b shows a RW Net that is subnet of the RW Net depicted in Figure
4.8a.

In RW Nets there exist transitions that can rewrite part of the current net structure. In order
to a transition be enabled in RWNets, it is necessary that there exist a matching <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>