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Chapter 1

Introduction

Nowadays the workflow concept is used to describe the sequences of operations or activities per

formed into systems or organizations for obtaining a finished product or for providing a service;

furthermore, a workflow specification includes the management of resources during the sequences

execution. In general this concept is embedded into most of discrete event systems, namely manu

facturing systems, computer supported collaborative systems, and logistic systems.

The term workflow itself has been widely used in this last kind of systems studied in management

sciences. Thus the term workflow management systems is a generic term to refer to the systems

that automate (or at least aids to) the activities into an hospital or the processes into a bank or

an enterprise. The commonly term used to design the activities is business processes and a set of

these processes is called workflow processes (WP).

Today, business enterprises must deal with global competition, reduce the cost of doing business,

and rapidly develop new services and produets. To address these requirements enterprises must

constantly reconsider and optimize the way they do business and change their information systems

and applications to support evolving business processes. Workflow technology facilitates these by

providing methodologies and software to support:

• (i) business process modeling to capture business processes as workflow specifications,

• (ii) business process re-engineering to optimize specified processes, and

• (iii) workflow automation to genérate workflow implementations from workflow specifications.

Workflow diagrams are an excellent tool for many types of projects: analyzing scenarios, design

ing new process flows, documenting procedures for new employee training, documenting standard

operating procedures, or to support business process re-engineering. The results or solutions de

picted by Workflow diagrams help to determine if automation can enhance or support an activity.

Diagrams, with supporting documentation, are more concise to review than textual documents.

Describing complex procedures using text alone can yield very lengthy documents that allow for

conflicting interpretations by reviewers.

There exist many formal and informal modeling methods for the diagram construction of work

flow process. For example, UML, State Charts, Graphs, Flow Diagrams, Case Activity Diagrams,

IDEF3, etc.

1



2 CHAPTER 1. INTRODUCTION

Petri Nets (PN) are extensively used in the modeling of workflow process (WP). There exist

several advantages for the using of PN in the modeling of WP:

• GRAPHICAL NATURE: the PN formalism, has a well-defined graphical nature, allowing a

more easy verification of structural conflicts, etc.

• FORMAL SEMANTICS: this reason for using a PN-based modeling ofWP, is the fact that

business logic can be represented by a formal but also graphical language. The semantics of

the ordinary Petri net, and extensions (color, time, hierarchy) have a formal definition.

• FORMAL METHODS FOR THE PROPERTY ANALYSIS: this reason for using PN-based

modeling of WP, is that there exist a solid formal theory related to property analysis in PN;

• SEVERAL AUTOMATED TOOLS FOR SIMULATION, SCHEDULING, AND VERIFICA

TION: there exist, in the PN world, several automated tools for the simulation, scheduling

and verification for PN.

Features of a Petri-net-based WFMS are most prominent in the design and analysis phase.

Once defined a WP as a PN then, there exist formal methods and techniques for the analysis of

properties.

During the selection process some of the leading WFMS are involved a list of generic selection

criteria: the standardization, the business processes representation in a natural manner, many

WFMS have restrictions with respect to the nesting and/or mixing of parallelism and altemative

routing. Moreover, most of the WFMS do not allow for the explicit modeling of states. There

exist some Petri-net-based WFMS that meet all of the functional requirements needed. Moreover,

formal semantics, state-based instead of event-based, and abundance of analysis techniques, are the

mainly features of a WFMS based on Petri nets.

This thesis deals with the modeling of Workflow Management Systems (WFMS) using Petri

Nets (PN). The problems regarding the modular construction and the dynamic modification of

models in WFMS are addressed.

First, it is presented how to construct Workflow Nets (WFNets), a sub class of Petri Nets for

each workflow pattern (WFPatterns) -a set of elementary models for the construction of complex

workflow processes-. In this construction of WFNets, the resulting models are sound -that is, they

have well properties, such as liveness and boundedness-.

For the construction of sound WFNets, it is proposed an incremental synthesis method that

avoid the subsequent entire property analysis.

In order to support the dynamic change in the WFMS, it is proposed the Rewriting Nets

(RWNets) -a class of high level Petri Nets- that allow the in-line modification of WFNets models,

through the firing of its transitions. A formal definition for the RWNets is presented, and a

characterization of them in terms of graph transformations.
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Finally, a software application -that allows to perform structural changes over a given WFNet-

is developed. This software application -developed over the Petri Net Kernel (PNK)-. allows to

implement a set of RWNets that perform structural changes over a given WFNet.

This thesis is organized as follows: Chapter 1 presents an overview of Workflow Management,

and its relevance in business today. Also, it presents some basic concepts and the workflow patterns.

Chapter 2 presents a relationship between Petri Nets and Workflow patterns. Then, this chapter

defines aWorkflow Net for each workflow pattern. A Workflow Net is a special class of Petri Nets. In

the end of this chapter, a place-refinement method for Petri Nets is adapted from the manufacturing

systems to the particular case of workflow management. Chapter 3 addresses the Dynamic change

problem in WFMS. An overview of this problem and the previous solutions proposed are presented.

RWNets -an extensión for Dynamic Nets- are proposed in order to support such dynamic change.

Also, some similar topics between graph grammars and RWNets are highlighted. Chapter 4 presents

a practical implementation of RWNets. On it, some "rewriting" transitions are implemented as

Java classes over the Petri Net Kernel. Finally, some conclusions and future work are presented.
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Chapter 2

Workflow Management Systems

In this chapter, an overview of WorkflowManagement -an área related to the automation of business

processes- and its importance in business today are presented. Also, it is presented basic concepts on

Workflow Management, such as tasks, conditions, routing, parallel and sequential activities, choices

and more, and how to make a business process model mixing these concepts. Finally, Workflow

patterns, a class of primitive forms to build complex workflow process models, are presented.

5



6 CHAPTER 2. WORKFLOW MANAGEMENT SYSTEMS

2.1 Basic concepts on Workflow Management

Workflow is defined as the automation of a business process, as a whole or in part, during which,

documents, information or tasks are passed from one participant to another for action, according

to a set of procedural rules [WFMC-TC-1011]. Workflow Management aims for the automation

of business process reducing costs and time, and increasing productivity and quality. Workflow

Management Coalition (WfMC) is an organization that has over 300 member organizations world

wide, representing all aspects of workflow, from vendors to users, and from academicians to consul-

tants [http://www.wfmc.org/]. The WfMC has a press room [http://www.wfmc.org/pr/press.htm],

where the official WfMC documents are published.

Workflow is an important and a valuable technology. In 1998, Viewstar installation in Rev-

enue & Benefits Department of Lewisham Borough Council (London, England) has impacted their

operations in the first year in the following way:

• $5 (euro) million additional revenues

• Frau Investigation saves an additional $1.7 (euro) million through speedier processes and

cross checking capability

• $0.5 (euro) million savings on operational costs.

This is an example of how a correctly implemented workflow can impact the operations of an

organization [Workflow Handbook, 2001].

In other words, Workflow Management aims for automation of business process with the Min-

Max attribute: minimize costs and time, and maximize productivity and quality. Workflow Man

agement uses many concepts presented on Computer Supported Cooperative Work, but it is not

limited to them.

When it is talked about business processes, it surges concepts such as tasks (in the rest we will

use task and activity indistinctly) , scheduling, parallel and sequential activities, shared resources,

routing task, iterations, and so on. The next are some definitions taken from [WFMC-TC-1011]:

• Workflow. The automation of a business process, as a whole or in part, during which, docu

ments, information or tasks are passed from one participant to another in order to perform

some action over them, according to a set of procedural rules.

• Workflow Management System. A system that defines, creates and manages the execution

of workflows through the use of software, running on one or more workflow engines, which

is able to interpret the process definition, to interact with workflow participants and, when

required, to invoke the use of IT tools and applications.

• Activity. A description of a piece of work that forms one logical step within a process.

An activity may be a manual activity, which does not support computer automation, or

an automated activity. A workflow activity requires human and/or machine resource(s) to

support process execution; when a human resource is required, an activity is allocated to a

workflow participant.
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Figure 2.1: Workflow Concepts

Process. A formalized view of a business process, represented as a coordinated (parallel

and/or serial) set of process activities that are connected in order to achieve a common goal.

Parallel Routing. A segment of a process instance under enactment by a workflow man

agement system, where two or more activity instances are executing in parallel within the

workflow, giving rise to múltiple threads of control.

AND-Split. A point within the workflow where a single thread of control splits into two

or more threads, which are executed in parallel, allowing múltiple activities to be executed

simultaneously (see Parallel Routing).

OR-Split. A point within the workflow where a single thread of control makes a decisión

upon which branch to take when encountered with múltiple altemative workflow branches.

Transition. A point during the execution of a process instance where one activity completes

and the thread of control passes to another process instance, which it starts.

The concepts of Activity, parallel routing, AND-Split, and OR-Split are also well defined in Petri

Nets. With these concepts and others from [WFMC-TC-1011], it is possible to make a mapping

from Workflow concepts into Petri Nets. In Figure 2.1 it is shown some of these concepts. In the

next section, it is presented the Workflow Patterns, schemes to construct complex workflow process

models.
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2.2 Workflow Patterns

In Workflow Management, some primitives called Workflow Patterns were developed for the con

struction of complex workflow models, for the analysis of tools, for workflow requirements, and so

on. Workflow patterns can be found on the web page [http://tmitwww.tm.tue.nl/research/patterns/]

They are divided into 6 basic groups: Basic Control, Advanced Branching and Synchronization,

Structural, Múltiple Instances, State-based, and Cancellation workflow patterns. Also, in the liter

ature is mentioned the ínter-Workflow Synchronization patterns. Here, it is analyzed these patterns

with the aim to represent them using Petri Nets concepts [Petri, 1962].

2.2.1 Basic Control Flow Patterns

Basic Control Flow Patterns capture elementary aspects of process control. Concepts such as

Sequence, Parallel split, Synchronization and Exclusive choice, are basic concepts that give form

to the more elemental workflow models. These concepts accommodate for further construction of

elaborated workflow patterns.

The first pattern is the simple sequence pattern. This pattern allow us to construct a causal

sequence of activities, when for example, before the execution of an activity it is necessary that

other activity must already be finished.

The Parallel Split pattern allows us to construct a pair of activities, or a sequence of them,

executing in parallel. A real example of such pattern, is presented when we need to send a parallel

request to a local server and to a remote one.

The Synchronization pattern can be seen as the complement of the Parallel Split pattern. At

this point, we wait for múltiple subprocesses running in parallel to be finished before the next

activity starts.

The Exclusive Choice pattern allows to make a simple decisión, i.e., at this point, it is possible

to choose between two or more alternatives. On the other hand, the Simple Merge pattern allows

us to perform the inverse situation, when it is waited one of many alternatives to be completed.

Definition 2.1 (Sequence) An activity in a workflow process is enabled after the completion of

another activity in the same process.

Definition 2.2 (Parallel Split) A point in the workflow process where a single thread of control

splits into múltiple threads of control which can be executed in parallel is called Parallel Split. This

allows us to execute all the activities simultaneously or in any order.

Definition 2.3 (Synchronization) A point in the workflow process where múltiple parallel sub

processes or activities converge into one single thread of control, thus synchronizing múltiple threads,

is called Synchronization.

Definition 2.4 (Exclusive choice) A point in the workflow process where, based on a decisión

or workflow control data, just one of several branches is chosen is called Exclusive choice.

Definition 2.5 (Simple Merge) A point in the workflow process where two or more altemative

branches come together without synchronization is called Simple merge. In other words the merge

will be triggered after any of the incoming transitions are triggered.
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Figure 2.2: Basic Control Flow Patterns

These basic concepts are depicted on Figure 2.2. The simple sequence pattern, Figure 2.2a is

isomorphic to the sequence of transitions in Petri Nets and have the same meaning. The parallel

split pattern, Figure 2.2b has its isomorphic net into Petri Nets too, and it is a transition with an

input place and two output places. The synchronization pattern is the inverse of the parallel split

pattern, and it has its equivalent net into Petri Nets, too, Figure 2.2c. Also, exclusive choice and

simple merge are complementary and they have also, their equivalent net in Petri Nets, Figure 2.2d

and Figure 2.2e.

The next is only a selection of the five groups of workflow patterns. For more information see

the Workflow Pattern home page given above.

2.2.2 Advanced Branching and Synchronization

Opposite Basic Control Flow Patterns, Advanced Branching and Synchronization patterns have

no-straightforward equivalent in Petri Nets. However it is possible to build an equivalent model in

Petri Nets using Basic Control Flow Patterns.

These patterns are involved in more complex situations in Workflow Management. For example,

a point in a Workflow process where it waits for the completion of one or several activities before

activating the next task. An example of a real situation is presented in a distributed search, where

many requests are send to different databases, and it is expected only one reply, the remaining

replays are ignored.

In this section, Discriminator and N-out-of-M Join patterns are presented. For more, visit the

Workflow Patterns home page given below.

Definition 2.6 (Discriminator) The discriminator is a point in a workflow process that waits

for a number of incoming branches (parallel activities) to complete before activating the subsequent
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a) Discriminator

b) N-out-of-M join

Figure 2.3: Advanced Patterns and Synchronization

activity. When one of these activities is completed, all the remaining branches are "ignored" Once

all incoming branches have been triggered, it resets itself, so that it can be triggered again.

Definition 2.7 (N out of M Join ) N-out-of-M Join is a point in a workflow process where M

parallel paths converge into one. The subsequent activity should be activated after N paths have been

completed. Completion of all remaining paths should be ignored. Similarly to the discriminator,

once all incoming branches have been "fired", the join resets itself, so that it could be fired again.

Discriminator pattern "waits" for the completion of a certain number of incoming branches,

then it enables the next activity while it "waits" for the remaining branches. When all of these

incoming branches are done, it goes to its final state. N out of M Join pattern could be understood

as a generalization of the Discriminator pattern. In this pattern, n of m incoming branches are

expected to be done before the enabling of the next activity, once again, the pattern waits for all

the remaining branches and then goes to its final state. There is a graphic representation of this

concepts on Figure 2.3.

2.2.3 Structural Patterns

Structural patterns are a special class of structures that can help us in some situations. For example,

the well known sentencesWHILE-DO and GOTO are two special instructions in many programming

languages, that provide special control flow behavior. In Workflow Management, there exists some

elaborated control flow patterns. For example, in a Workflow Management System where is not

allowed a great-scale parallel execution of a certain task, it can be achieved using a WHILE-DO

cycle executing into it the máximum number of allowed parallel activities by the system.

Definition 2.8 (Arbitrary Cycles) A point in a workflow process where one or more activities

can be done repeatedly.
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Cancel

b) Implicit termination

Figure 2.4: Arbitrary Cycle and Implicit Termination Patterns

Definition 2.9 (Implicit Termination) A given subprocess should be terminated when there is

nothing else to be done. In other words, there are no active activities in the workflow and no other

activity can become active (and at the same time the workflow is not in deadlock).

Arbitrary Cycle pattern has a straightforward representation in Petri Nets. Implicit Termina

tion pattern often is achieved transforming the original model into a model with only one termina

tion node.

The patterns on this section are depicted in Figure 2.4.

2.2.4 Múltiple Instances Patterns

This class of pattern is related to múltiple instances of a certain task running in parallel. This

pattern by its own has no problem, but there are some variants of it: Múltiple Instances with a

priori-known design-time knowledge, Múltiple Instances with a priori Runtime Knowledge, Múltiple

Instances with no a priori runtime knowledge, and Múltiple Instances requiring synchronization.

The first case is when it is known, at design time, the number of copies of the task to be performed.

The second case is when the number of copies of the task is known at some stage in runtime. The

third case is when the number of copies of the task is known only after the execution of such task.

Finally, the last pattern is related to the complement of the three others, i.e., its synchronization

-a point in the workflow process, where these parallel activities are expected-.

In this work, it is explored only the third case, the Múltiple Instances with no a priori runtime

knowledge pattern, and its synchronization. All of the other variants are a particular case of this

last one.

Definition 2.10 (MI with no a priori runtime knowledge and Synchronization) For one

case an activity is enabled múltiple times. The number of instances of a given activity for a cer

tain case is neither known during design time, ñor at any stage during runtime, but it has to be
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Figure 2.5: Multi Instances Patterns

know before the creation of the activity. The Synchronization waits for the termination of the first

executed activity and all its copies running in parallel before the execution of the next task.

This pattern fires one given task A, then it runs in parallel a certain number of copies of the

task, then it waits for its termination, and then it gives the control to the next task. These concepts

are depicted in Figure 2.5.

At first, the task A is executed, then in the Arbitrary Cycle pattern, the máximum number of

parallel copies allowed by the system are executed rcpeatedly until achieve the desired number of

copies of the task. Its synchronization is the complement case, it waits for the termination of the

first execution of the task, also it waits for all remaining tasks, and then it gives the control to the

next task.

2.2.5 Temporal Relation Patterns

A Temporal Relation Pattern is formed by a set of tasks temporally related. If si,ei,s_, and e2

axe the start and end points of task_l, .and start and end points of task_2, respectively, then

the temporal relation between task_l and task_2 can be condensed as follows: (1) before-start:

(si > s_), (2) after-end [e.2 > ei), (3) before-end (e_ > s\), and meets (s2 = e_), where > is the

temporal relation "more-or-equal to" The next definition is for Temporal Relation patterns.

Definition 2.11 (Interleaved sequence) Two activities that have another interdependent time

relationship than simple sequencing. It might be that one activity has to start before the second

activity finishes, or that one activity has to end at exactly the same time as the second activity

ends.

These concepts are represented on Figure 2.6. This pattern can be achieved, in most cases,

transforming the model into an equivalent one that meets a particular temporal relationship. For

example, if it is possible to divide each task into a task with four stages: start, after-start, before-

end, and end, then it is possible to perform some temporal relations as as it is shown in Figures

2.6a, b, c, and d. There, one task can give the control to other task at its before-end stage in order

to star the other task, performing in this way, the condition that the second activity starts before

the first one ends.
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Figure 2.6: Temporal Relation Patterns

2.2.6 State-based Patterns

Deferred XOR-split pattern is the first pattern explored in this section. In its more simple case,

two alternatives are offered to the system, but only one is executed, after that, the other one is

withdrawn.

Definition 2.12 (Deferred Choice) A point in the workflow process where one of several branches

is chosen. In contrast to the XOR-split, the choice is not made explicitly (e.g. based on data or a

decisión) but several alternatives are offered to the environment. However, in contrast to the AND-

split, only one of the alternatives is executed. This means that once the environment activates one

of the branches, the other ones are withdrawn. It is important to note that the choice is delayed

until the processing in one of the altemative branches is actually started, i.e. the choice time is as

late as possible.

Definition 2.13 (Interleaved Parallel Routing ) A set of activities is executed in an arbitrary

order: Each activity in the set is executed; the order is decided at run-time and no two activities

are executed at the same time (i.e. no two activities are active in the same workflow instance at

the same time).

In State-based Patterns, the selection of an altemative in most of the cases is implicit rather

than explicit. In many Workflow Management Systems, it is necessary to offer to the System many

alternatives, then one is chosen and the others are withdrawn. This is the case of Deferred Choice

pattern. In the Interleaved Parallel Routing pattern, a set of activities is enabled, but only one is

executed at each time. Figure 2.7 shows these concepts.
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a) Deferred XOR-split

b)Interleaved parallel routing

Figure 2.7: State Based Patterns

2.2.7 Cancellation Patterns

Cancellation Patterns are related to the cancellation of activities and cases currently in execution.

A case could be compounded by some activities in sequence or in parallel. So, if it is explored the

cancellation of activities, then it is possible in the major of cases, to perform a case that can be

cancelled completely, cancelling all of its individual activities. Below, the Cancel Activity pattern

and Cancel Case pattern definitions are presented.

Definition 2.14 (Cancel Activity) An enabled activity is disabled, i.e. a thread waiting for the

execution of an activity is removed.

Definition 2.15 (Cancel Case) A case, i.e., workflow instance, is removed completely.

Workflow Management is case based, i.e., there is a Workflow instances for each case in the

Workflow Management System. Accordingly to it, when it is used the Cancel Case pattern over a

certain workflow instances, it has the same effect as if such instance is removed from the system.

The fact that Workflow Management is case based is explained afterwards, when it is explored

the translation of Workflow Management concepts into Petri Nets concepts, in the next chapter.

Figure 2.8a shows the Cancel Activity pattern, and Figure 2.8b shows the Cancel Case pattern.

2.2.8 ínter-Workflow Synchronization patterns

The ínter-Workflow Synchronization patterns deal with the coordination between two independent

workflow instances, i.e., the enabling of activities is not more dependable on the workflow in which

this activity is present, but it depends on the synchronization between workflows. In this section

we present the Message Coordination pattern and the Bulk Message Sending pattern.



2.3. CONCLUSIONS 15

► B

Cancel B

a) Cancel Activity

Case A

Cancel Case A

End

b) Cancel Case

Figure 2.8: Cancellation Patterns

Definition 2.16 (Messaging coordination) A sender issues a request and at the 'sending'' end

a response is anticipated for that request by a subsequent receiver associated with the sender.

Definition 2.17 (Bulk message sending) Múltiple instances of message senders of the same

type execute concurrently. This allows to capture business situations where notifications of the

same type are sent to several external stakeholders. The number ofmúltiple message instances may

be known a priori at design time or runtime, or may only be determined during runtime.

The first pattern in this section, the Messaging coordination pattern, is a simple message proto

col "send-wait", i.e., sending a request and waiting a response. In Figure 2.9, a Workflow instance

sends a request, on its activity A, to other workflow instance, on its activity J, and then it waits for

a response before it activates the task D. On the other hand, it is performed the request-response

protocol, i.e., receiving a request and sending a response.

The Bulk message sending pattern deals with the case of one sender and many receivers, i.e., a

kind of "message group" or a broadcast to a selected group of elements. In Figure 2.10 is depicted

an Interna! Workflow instance sending a "bulk message" to many stakeholders.

2.3 Conclusions

In this chapter it was reviewed most concepts on Workflow Management. Also, it was presented

the Workflow patterns, a class of primitive schemes that meet many basic concepts of Workflow

Management and that they allow us to build more complex schemes for more elaborated situations

in Workflow Management. Workflow patterns are classified into different groups that have similar

structure and semantic. The next chapter is related to the Workflow modelling using Petri Nets.
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Workflow A Workflow B

Figure 2.9: ínter Workflow Synchronization Pattern
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Figure 2.10: ínter Workflow Message Bulk Pattern



Chapter 3

Modeling workflow processes

This chapter presents the relationship between Workflow Management concepts and Petri Net

concepts. First, basic concepts on Petri Nets are presented: Petri Net structure, Marking for Petri

Nets, Dynamics for Petri Nets and Petri Net properties. Then Workflow patterns are translated

into Workflow Nets, a subclass of Petri Nets that meets these patterns. Finally, a place-refinement

method for Petri Nets is adapted from the workflow manufacturing systems to the particular case

of workflow management.

17
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3.1 Basic Notions on Petri Nets

Petri Nets were first presented by [Petri, 1962]. It is one of the most popular formal models for

concurrent systems, used for both theoreticians and practitioners [Desel, 1995]. Petri nets are

useful in Workflow modeling, [Aalst, 1997], [Badouel, 1998]. In this section it is presented the basic

concepts on Petri Nets and some of their properties. For more see [López, 1997].

3.1.1 Preliminciries

Before presenting Petri Nets, it is given some preliminary notions related to multisets. A multiset

over a set P is a function fi : P —> N. A Multiset ¡i is finite iff fi(x) ^ 0 for a finite number of

elements x £ P. A multiset fi is empty iff fi(x) — 0 for all x E P The set of finite multiset over P is

denoted fi(P). We write x e fi iff fi(x) **¿ 0. The sum of two multisets fi0, /íj £ f¿(P) is the multiset

p,
= /¿o0Mi> such that fi(x) = fi0(x) + (¿i(x). The difference of two multisets fi_,fi\ •= Aí(*P) i*3 **•*"--

multiset p,
= /¿oVi* such that M3-) — t^oi1)

~

MiO*-*)* i1 f*o(x) ^ Mií-2-)* 0 'n other case. For two

multisets /i, pf 6 ^(f), we write fi C // iff ¿¿(-r) < /i'(x) for all x £ P.

3.1.2 Petri Net structure

A Petri Net is a bipartite directed graph having two classes of nodes: places and transitions. These

nodes are bridged by directed edges that always join different kind of nodes, i.e., an edge joins

either a place to a transition or a transition to a place. Graphically, the places are represented by

circles, transitions by rectangles (or bars), directed edges by arrows. A Petri Net typifies a dynamic

behavior aided with "tokens" depicted as small dots into the places. When a place contains a

"token" it is said that this place is a "marked" place. For Petri Nets, it will be distinguished two

class of places: private and public places.

In the next, Nm will be used as a set of public places, u. as an infinite set of private places, and

Nm_ = Nm 4- lj. Also, L will be used as a infinite set of labels, such that X e L. The A label is

called the "invisible" label. The formal definition for Petri Net structure is as follows, and it was

taken from [Asperti, 1996].

Definition 3.1 (Generalized Marked Petri Net) A generalized marked Petri Net (MPTNet),
or net system, is a pair (N,fi0), where N, called the net structure, is a bipartite directed graph

defined by a 3-tuple N — (T,d~,d+), where T is a finite set of transitions, di :T
—» ^(Nm^yi —

— .+ are the pre and post functions, respectively, and p,0 € /-(TVm^), is called the initial marking.

For a t .T, it is often written t = ct>p, where c = d-(t), and p — d+(t), or simply, t = (c,p).

Commonly, a net is expressed as a list of transitions ti = c¿ \> pi (see the example below). Also »t

denotes d-(t), and .• denotes d+(t). Moreover »t is often called the input places of t (or the pre

set oft), and £• is often called the output places of t (or the post set oft).

Any fi e fi^Nm^), is called a marking. Also, NmUJ(N) denotes the places ofNm^ used in N,

i.e., {x 6 Nmu\xn G (d- U d+),n G N}. For a x € Nm_(N), xo denotes {t € T\s £ £>_(*)}• and

•x denotes {t e T\s £ <?+(-)}.

A MPTNet represents the flow relations between tasks (transitions), and the set of its precon
ditions (<?_) and its post conditions (<£■+). A transition in a MPTNet can fire consuming "tokens",
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Figure 3.1: A Marked Petri Net

as it is indicated by the pre set function d-, and produces "tokens" as it is indicated by the port

set function d+. When a transition fires it is said that the net is in execution. The set of marked

places at the beginning of the net execution represent its initial state.

Example 3.1 (A MPTNet) Consider the next net. Let N = (t_ = {pi,p_} > {p2-P5}-*2 =

{p_} > {p_},U = {p5} > {pe},t3 = {P3J > {P\},t5 = {pe} > {pa}), and fi
= {pi,p4}. Then

(N,p) £ MPTNets is the net depicted on Figure 3.1. The net have 6 places: p\,...,p_ (the ováis

in the figure) and 5 transitions: ti,...,ts_., (the rectangles). The places have a label above them,

that each one represents its ñame. Also, the transitions have their label ñame at their basis. When

a transition is horizontal, it has its label ñame at its right side. The arrows from a place to a

transition represent the set of pre conditions for such transition. The arrows from a transition to

a place represent the post set for such transition. The places p\ and p\ are initially marked by u.

The transition t\ have the set {pi,p_} as its pre of conditions and the set {p2,Ps} as its post of

conditions. Finally Nm.¡JJ(N) = {pi,...,P6}-

The notion of a directed path between two nodes in PTNets is very similar as a directed path

between two nodes in directed graphs. For example, on Figure 3.1, it could be seen that there is a

path between nodes p\ and Í3, since there are some nodes and some edges that connect them. If

it has a path from x to y, and a path from y to z, then it is quite natural to think that there is a

path from x and z. The formal definition for paths in Petri Nets is below.

Definition 3.2 (Paths, Connectedness) Let N = (T,d-,d+) 6 PTNets. A path in N is de

fined recursively as follows:

a) Vi £ T,Vu € d_(.),Vt> £ d+(t), there are paths, u —> t,t
—* v, respectively.

b)Ifx—>yAy—>z, then x —> z.

N is weakly connected, or connected, iffVx,y £ NmUJ(N) U T, there is a path x
—

>
y ory—rx.

N is strongly connected, iff\/x,y £ Nmu)(N) UT, there are paths x
—> y and y

—

* x.

Now, it is defined the isomorphism for Petri Nets. Isomorphism determines when two Petri

Nets have "similar" structure and initial marking, and accordingly "similar" behavior. Two Petri

Net diagrams that represent the same Petri Net may look quite different. Often, it is important to

determine when two diagrams of Petri Nets are in fact the same Petri Net. Intuitively, two Petri

Nets are isomorphic if each one can be redrawn to obtain the other. Isomorphism maps places to
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p' P4 ^O^
u,

Figure 3.2: Two isomorphic Petri Nets

places and transitions to transitions, preserving the flow relation between them. The next is the

formal definition for isomorphism in Petri Nets.

Definition 3.3 (Isomorphism for MPTNets) Let(N,fi),(N',fi') £ MPTNets, such thatN =

(T,d-,d+) and N' = {T' ,&_,&+). Then the two nets (N,fi) and (N',fi') are isomorphic, denoted

(N, fi) = (TV', pf), iff there exist a pair isomorphism (ft, fp), ft 'T —* T' and fp : lj
—*■ lj such that

d-oft- {idNm + fP) o di, i = -. +, and (idNm + fP)(fi) = f¿ ■

Private places are the only ones relevant for isomorphism, i.e., in order to two nets could be

isomorphic it is necessary that they have the same number of private places. Also, it is necessary

that the nets have the same number of transitions. Finally, it is necessary that the nets have similar

flow relation between their transitions and their private places. For example, the two nets depicted

in the Figure 3.2 are isomorphic, since there exist the pair isomorphism (/ : T —> T',g :(_-—> lj)

where: /(p¿) = u¿, i = 1,...,4, and g(tj) = rj: j
= 1,...,4.

Once defined the Petri Nets, it is possible to define a special composition between two Petri

Net models. The "juxtaposed composition" between two nets is depicted in the Figure 3.3, that is

the juxtaposed composition of two nets like the net on Figure 3.1. The composition is performed

merging the public places p\ and p_ in both nets. All other places, are new places in the compound

net. Note that, in this class of composition, the transitions are always new in the compound net.

The next definition of net composition is also in [Buscemi, 2001].

Definition 3.4 (The juxtaposed composition for Petri Nets) Let(N,fiQ),(N',py) £ MPTNets

such that N = (T,d-,d+), and N' = {T1 ,&_,&+). The parallel juxtaposed composition, denoted

by <g), of (N,fi0) and (N',p'q) merges public places that have the same ñame preserving the private

ones. Formally it is defined as: (N,p0) ® (N',fi'0) = ((T + V ,&_ + #_.,&*. + &+),fiQ + pf_), if

Lj(N)nLj(N') = 0, where lj(N) are the local places ofN. This product is also called the "coproduct

without synchronization" Note that if lj(N) (Ilj(N') ^ 0, it is always possible to perform an a

renaming to achieve it.

The next example explain the Juxtaposed composition of two nets.

Example 3.2 (The composition of two nets) Let (N,u),(N'pf) £ MPTNets, such that N =

(h = {pi,P.} > {P2,Pñ},t2 = {P2} > {ps},Í4 = {p5} > {pe},Í3 = {P3> > {Pi}Xs = {pe} > {pa}) ,
and

/e>^x
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Figure 3.3: The Juxtaposed Composition of two Nets

M = _Pl.P*}. N' = (¿'-.{Pl-M > {P2.MA = ÍP2> > {P3},t\ = {p5} > {P6},?_ ■= {p3} > {Pl},¿5 =

{p6} t> {p.}), and fi' = 0. The private places of N and N' are, lj(N) = {p2,P3*P5*P6}* and

ü.{N') = {P2,P3,Ps,Pe}- ThenN®N' =

((*1 = {Pl*P4/ > {P2,Ps},Í2 = {P2} > {P3}*¿4 = ÍP5} > {P&)M = {P3> > {Pl},*5 = {P&} > {Pi},

t_
= {Pi,P4} > {p_,P_)A = {P'2} > {P'3}A = {Ps) > {Pe)A = iÚ) > ÍPi},*b = {Pe) >

{P4»,{Pl,P4}),

is the net of the Figure 3.3. As it is shown, the nets are merged by the places p\ and p_; all other

places are new ones in N®N' Also, in this composition, the transitions are always new in N®N'

The marking in N ® N' is p" = p + fJ — {pl,p4}.

3.1.3 DynEunics for Petri Nets

The evolution of a MPTNet is produced by the "firing" of its transitions. The tokens in the net

are moved from a place to another one by the firing of net transitions. When the conditions in the

pre set of a transitions are satisfied by the current net marking, then it is said that such transition

is enabled. When a transition is enabled, then it is possible to fire such transition. Now, when a

transition is fired, then the actual marking is modified, producing a new marking.

Definition 3.5 (Transition enabling) Let (N,p) be a MPTNet, such that N = (T,d-,d+).

Let t £ T, t is enabled at fi, denoted (N,fi)[t), iff d-(t) C fi.

Given a net transition, if there are at least so many marks in its input places as it is indicated

by the function d- it is said that such transition is enabled. As an example of enabled transition

see the Figure 3.4. The transition t is enabled, since d—(t) = {pl,p2} C {2pl,p2} = fi. The figure

also shows the new marking produced by the firing of t.

Remark 1 For any (N, p) £ MPTNet ít is possible to associate a transition labeling function

l : T —* L such that it assigns a label for each transition on the net. The nets with a function l

are often called Labeled nets (see the definition below). Given a (N,p) £ MPTNet, it is possible

to assume, without lost of generality, that such net is a Labeled Net, using the X — label function

-that is, the transition labeling function that assigns the invisible label X to each transition- l over

it. This is only for convenience on the next definition.

The firing of a transition, considered instantaneous, produce a change of marking. The change
in the marking of a net system by the firing of a transition is represented by the next relation.
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a) Transition t enabled b) The net afte firing t

Figure 3.4: Transition Enabling

Definition 3.6 (Firing Rule) The firing rule for a labeledMPTNet, denoted, _[_)_ C LMPTNetsx

L x LMPTNets, is the smallest substitutive relation satisfying V(N,p)\(N,p) is a MPTNet and

Ví£T,

(N,fi)[t) => (N,u)[l(t))(N,p\d-(t) + d+(t)).

where l(t) is the label-function l over (N.,p).

When a transition is fired, a new marking is produced. If this new marking enables other

transitions, then it is possible to fire them and, consistently, to produce new markings. If this

mechanism is done repeatedly, it is possible to get a "Firing Sequence" as the concatenation of

firing of transitions that enable other transitions, and so on. The formal definition is given below.

Definition 3.7 (Firing sequence) Let (N, fi) be a MPTNet. A sequence a _T* is called firing

sequence of (N.fi) iff for some n £ N, there exist markings p0,...,fin £ ^(Nm^), and transitions

t\,...,tn £ T such thata = £-.,...,£„, and for all 0 < i < n, (N,uJ)[ti+i), and pi+l = (,u¿\<5L(í¿+i))-l-

d+(ti+i), and p = p0. It is denoted (N,fi)[cr)(N,pn).

In a similar way, the markings achieved by the firing of transitions can be grouped to form a

set of "Reachable Markings", i.e., the markings reached by the transition firing. This represent the

possible state of the system.

Definition 3.8 (Reachable markings) Let (N,fi) be a MPTNet. The set of reachable mark

ings, denoted by [N,p), is defined as:

[N,u) = {fi' £ p(NmuJ)\(3a : a £ T* : (N, p0){a)(N, p'))}

A subclass of Petri Nets very reviewed is Free-Choice Petri Nets [Desel, 1995]. In such nets,

every pair transitions have the next property in its pre set: either, they have a disjoint set of places

or they have the same set of places. The Figure 3.1 is an example of a Free-Choice Petri Net, since

all transitions have no places in common in its pre sets. The importance of Free-Choice Petri Nets

is that they have a polynomial proof of liveness [Desel, 1995], rather than no polynomial proof of

liveness in the general case of Petri Nets [Petri, 1962]. The formal definition for Free-Choice Petri

Net is as follows.
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Definition 3.9 (Free-choice LPTN) Let(N,p) be aMPTNet, such that N = (T,d-,d+), then

N is a free-choice net (FCNet) iffVt,u £ T, either d-(t) íl d-(u) = 0 or d-(t) = d-(u).

The next theorem, called Commoner's Theorem, characterize the liveness for a FCNet.

Theorem 1 (Commoner's Theorem) A FCNet is live iff every proper siphon includes an ini

tially marked trap

Proof. See [Desel, 1995]. ■

Generalized Petri Nets have no determinism, i.e., given a net and two enabled transitions in it,

if these transitions have common places in their pre sets, and the firing of one of these transitions

disqualify the other one, then there is no mechanism to decide which one of these transitions must

be fired. An extensión to Generalized Petri Nets is performed by adding a special function / called

transition labeling function. This function puts a label to each transition in the net, in such way

that a labeled transition is enabled if and only if it is enabled as in Generalized Petri Nets and

at the same time there is an input signal in the system with the same ñame as its label. Using

this mechanism, it is possible to avoid the no determinism problem. Of course it is necessary an

external agent making the decisión. The formal definition is the next.

Definition 3.10 (Labeled Petri Net) A MPTNet (N,u), together with a function l : T -> L,

where N=(T,d-,d+), is called a Label Marked Petri Net (LMPTNet).

Definition 3.11 (Transition enabling for MLPTNets) Let((N,p),l) be a LMPTNet, where

N = (T,d-,d+), let t £ T, t is enabled at p, denoted (N,fi)[t) iff t is enabled in the sens of

MPTNets and at the same time there is an input signal in the system with the same ñame as its

label.

As an illustration of these concepts, see the Figure 3.5. The Figure 3.5a shows a enabled

transition t in the sens of Generalized Petri Nets. Now, in order to t be enabled in Labeled Nets,

it is only necessary that the input signal T is present in the system at this time. If it is assumed

the input signal T, then it is possible to fire t and the new marking for the net is shown in Figure

3.5b. Now, however the input signal T is present in the system, it becomes irrelevant, since the

transition t now is not enabled in the sens ofMPTNets.

3.1.4 Petri Nets properties

There are some structural properties in discrete event systems that meet the Petri Nets. Two

of these properties are liveness and boundedness. Liveness property is related to the absence of

deadlocks and the total system lode. When, in the Petri Net evolution is reached a marking that

enables no transitions, it is said that the net system is in deadlock. The liveness property is deals

with the absence of deadlocks.

Definition 3.12 (Liveness) Let (N,p0) be a MPTNet, such that N = (T,d-,d+), N is live iff

V/z £ [N,uo),Vt £ T,3pf £ [N,u) such that (N,p')[t).
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P, P3 P. P3

a) Transition t enabled and b) The net afte firing t, the input
the input signal T is present signal T have no relevance

Figure 3.5: Labeled Petri Net

A Petri Net often represents a discrete event system. The markings represent the possible states

of such system. Often, the discrete event systems have a finite number of states. Then, Petri Nets

that represent a finite discrete event system must have a finite set of reachable markings. So, given

a Petri Net, it is interesting that the net has a finite number of tokens in each place, giving as

consequence a finite set of possible states in the net. When it occurs, the net is called bounded, in

other case, the net is called unbounded.

Definition 3.13 (Boundedness) Let (N,p0) be a MPTNet, then (N,fi0) is bounded iff[N,p0)
is finite.

The next theorem, called the "S-Invariant" theorem, characterize the boundedness on a Petri

Net.

Theorem 2 (S-Inv.ariant theorem) Let (N,p0) be a MPTNet, then (N,p0) is bounded iff

(N,Pq) has a positive s-invariant.

Proof. See [López, 1997]. ■

Definition 3.14 (Soundness) Let (N,p0) be a MPTNet. Then (N,p0) is sound iff it is live and

bounded .

In Petri Nets there is a variety of subclasses of nets. A Safe Net, also called a Binary Net, has

a special property: every place in the net has always either, no tokens or one token. It is easy to

see that a Safe Net is also a bounded net.

Definition 3.15 (Safeness) A {N,p0) £ MPTNets is safe iffVp. £ [N,p0) and Vs £ Nm_,

p(s) < 1.

Example 3.3 (Petri Net properties) Consider the net depicted in Figure 3.6 as an illustration

of these concepts: the transition t\ is enabled at p — {p\), since d-(h) C p. The sequence ¿1.2*3 is

a firing sequence of(N,u) since there exist markings p = {pi},/^ = {p2}>At2 = {P3}iM3 = ÍPs} and

transitions h,t2,t_ such that: (N,p)[ti)(N,p1)[t2){N,fi_)[t3)(N,p3). The markings p,Px,p_,p_

form part of the set of reachable markings of [N,p). It is easy to see that the net is also safe, live

and bounded.
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P, P2 P3

Pa t5
P5 t4
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Figure 3.6: Simple Petri Net

No_acc No_app

Figure 3.7: A Workflow Net

3.2 Workflow Patterns as Workflow Nets

Petri Nets are successfully used in Workflow Management for the modelling of business processes

[Aalst, 1997]. In this section, it is presented a mapping from Workflow patterns into Petri Nets. In

many cases, the translation is straightforward; in other cases the translation results more complex.

First, it is presented Workflow Nets, a subclass of Petri Nets that meets the workflow patterns.

Then, it is presented the Workflow patterns as Workflow Nets.

Workflow Nets was presented by [Aalst, 1997], and it was used in many works related to Work

flow: [Aalst, 1998], [Aalst, 1999], [Aalst, 2000 WP 50], [Badouel, 1998]. Figure 3.7 shows an exam

ple of Workflow Nets. Workflow Management is case based, i.e., there is an individual instance of

a Workflow process for each real case in the system. In other words, for example, if in a certain

moment there are two clients that make the same request, then there are two copies of the same

Workflow process to attend such cases.

A Workflow Net is a kind of "causal" net, i.e., it has a "flow" from one initial place, that has

no inputs, to one final place, that has no outputs. A Workflow Net has two special states, initial

state and final state. In the initial state, it is marked only the initial place, which denotes the case
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creation. On the other hand, in the final state it is marked only the final place, which denotes de

case termination.

Also, in a Workflow Net, the flow of markings is from the initial place to the final place. In

the Figure 3.7 it is shown a place labeled with "i" and a place labeled with "o" those places

represent the initial place and the final place, respectively. Also some other concepts of Workflow

Management are shown: the transitions with input signáis "existing" and "not" that result in a

simple choice from its common input place. Also, the output place "o" is in fact, a simple merge

point. It is easy to see that the net is safe. The formal definition of Workflow Nets is as follows:

Definition 3.16 (Workflow Nets) Let (N,p) be a MPTNet and i be a "fresh" ñame not in

Nm_(N)UT Then {N,fi) is a Workflow Net (WFNet), iff:

Case creation: N contains an input place i £ Nm^N) such that »i — 0,

Case completion: N contains an output place o £ Nm_,(N) such that o» — 0, and

Connectedness: N' = (TU {t},d- U {(i, o)},d+ U {(i, i)}) is strongly connected.

The input place for a Workflow Net often will be represented by i, and its output place by o.

Also, the START state denotes the marking p= {i}, i.e., the marking with one token in the input

place i, and no tokens in all other places. The END state denotes the marking p = {o}, i.e., the

marking with one token in the output place o, and no tokens in all other places.

In Workflow Management, there are some desired properties for Workflow process models.

Some of these properties are: safeness, proper completion, absence of deadlock and absence of

dead transitions, etc. The safeness property has been defined in Petri Net, and it is necessary

since Workflow Management is case based. The proper completion property for a workflow net, is

related to only one "token" in its output place, and no tokens in all remaining places. The absence

of deadlock property has the meaning that for every possible state in the net it is possible to reach

the END state. The absence of dead tasks it is explained by itself.

Definition 3.17 (Soundness ofWFNets) Let (N,p) be a WFNet, then {N,p) is sound iff:

safeness: (N, [i]) is safe,

proper completion: Vs £ [N, {i}) ,o £ s => s = {o},
absence of deadlock: Vs £ [N, {i}) ,

o £ [N, {s}), and

absence of dead tasks: (N, {i}) contains no dead transitions.

Definition 3.18 (Workflow process definition) A workflow process definition is a soundWFNet.

The set of all workflow process definitions is denoted W.

In order to prove some properties, it is necessary to work with a modified Workflow Net. Such

modification is made adding a new transition to a workflow net that connects its output place to

its input place in this direction, i.e., this new transition moves the "tokens" from the output place

to the input place. Using this modified workflow net it is easy to proof the soundness for a given

Workflow Net, as it is shown in [Aalst, 1998]. The formal definition for the modified workflow net

is below.

Definition 3.19 (Underlying PTNet) Let (N,p) £ W. Let (Ñ,p) be a MPTNet, such that

Ñ = (f,B-,B+), where: f = T U {t*} and <9_ = 8- U {(i*,o)}. and 8+ = 8+ U {(**,.)}. Then
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(TV, p) is called the underlying MPTNet of the Workflow process definition (N,p). That is, the

underlaying PTNet for a Workflow process definition is the Workflow Net with a transition that

joins its output place to its input place in this order.

The proof of soundness of a Workflow Net use the notion of underlying Workflow Net and the

properties of liveness and safeness for Petri Nets. The soundness of a WFNet has an easy proof,

as the next theorem shows.

Theorem 3 (Characterization of soundness) Let (N, {.}) be a WFNet, then (N, {i}) is sound

iff: (Ñ, {i}) is live and safe.

Proof. See [Aalst, 1998] ■

Now, it is presented the translation from Workflow patterns to Workflow Nets. In many cases,

this translation is straightforward, in many others the translation is more complex. Moreover, there

exist cases, such as Case Cancelation pattern, that are very tricky in Petri Nets.

3.2.1 Workflow Patterns as Workflow Nets

Workflow patterns have an equivalence in Workflow Nets. A Workflow model could be formed

using many workflow patterns connected in sequence or in parallel, as it will show later.

In this section, it is presented some equivalent Workflow Nets for such patterns. Also it is shown

that all Workflow Net proposed are live and bounded.

Remark 2 Note that all of the proofs of soundness for all Workflow Nets are given respect to their

underlying MPTNet. Also, they are used the Commoner's Theorem and the s-invariant Theorem,

reviewed in the previous section, for proving of liveness and boundedness, respectively.

Basic Control Flow Patterns

The Basic Control Flow patterns have a direct representation in Petri Nets. The Figure 3.8 shows

the Basic Control Flow patterns as Workflow Nets. The Parallel split and the Synchronization

patterns are presented in Figure 3.8a in its initial state, i.e., only place "i" is marked. The "Split"

transition with two output places starts the transitions Task A and Task B, that run in parallel.

The "Join" transition waits Task A and Task B end, then the synchronization take place, and the

final state is reached. The Exclusive Choice and Simple Merge patterns are presented in Figure

3.8b, once again, in its initial state. Either, Task A or Task B could be fired consuming the token

into the place "i" i.e., an exclusive choice is made between Task A and Task B. Then the final

state could be reached by the fire of them. Finally, the Simple Sequence pattern is depicted in

Figure 3.8c. The 1-length simple sequence is represented by the transition Task A with an input

place "i" and output place "o" that are the initial and final places too. The soundness proof for

these Workflow Nets is omitted due to its simplicity.
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task B

a) AND-split and AND-join

task B

b) OR-split and OR-join

task A

c) An activity

Figure 3.8: Basic Control Flow Patterns Nets

Advanced Branching and Synchronization patterns

Figure 3.9 shows the N-out-of-M join pattern as a Workflow Net. This net meets the particular

case of 2-of-3 join. On it, "3" parallel transitions (tasks) are activated, and then, the place "p"

waits for "2" of these "3" parallel transitions to be completed before the firing of the next activity;

in the next step, all remaining tasks are "removed" by the action of the, "flush" transitions in its

input place, enabled at this stage..

Note that there are no certainness of what transitions are completed and what are not, but it

is sure that "2" of these "3" transitions are completed before the next activity starts. Also, note

that there is a "flush" transition for any task from 1 to 3, (íl',í2',í3')- Such transitions are used

to cancel any remaining task, after that "2" of these "3" are completed. The formal definition for

this Workflow Net is as follows.

Definition 3.20 (N-out-of-M Join ) WFNet on Figure 3.9 shows a point (the place p) waiting

for 2 of 3 incoming branches; once 2 of such branches are completed, the next activity is started,

i.e., a token is delivered into its input place; at this stage, other activity can take place. Finally, in

the next step, the all remained branches are take off. This net meets the particular case of 2-of-3

join. Note that the transitions tl',t2', and í3' are "flush" transitions for the tasks íl,í2, and í3

respectively.

Proposition 4 The 2-out-of-2 Join Workflow Net depicted in Figure 3.9 is live and there are no

forgotten tokens on it.
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Figure 3.9: The 2-out-Of-3 Pattern Net

true

Figure 3.10: The Arbitrary Cycle Pattern Net

Proof. a)Liveness: Let I — (4313131414); I is a positive t-invariant of the net, then the net is

live.

b)No forgotten tokens. This property means that at the stage where the net has finished, then no

other activity is performed on it. It is achieved allowing that all remaining task could be canceled.

Figure 3.9 shows a place p' that has enough tokena to cancel all remaining task that have not

finished at the stage where "N" of these "M" are completed. So, if all the transitions that cancel

the remaining tasks are considered autonomous, then they fires immediately, and no tokens are

forgot. ■

Structural patterns

The Figure 3.10 shows the Arbitrary Cycle pattern as a Workflow Net. The transition "Task A"

can be done repeatedly until the transition with input signal "False" is fired. So the END state can

be reached. This pattern meets the situation when an activity or a set of them must be repeatedly

executed.

Definition 3.21 (Arbitrary Cycle) The WFNet on the Figure3.10 shows a task that can be

repeatedly done while the input signal "true" is on. It ends when the input signal "false" is on

(Note that it is considered true and false input signáis in mutual exclusión).
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task A

Figure 3.11: The Multi Instances Pattern Net

Proposition 5 The Arbitrary Cycle Workflow Net is live and bounded.

Proof. a)Liveness: the underlying MPTNet is a FCNet and every proper siphon includes an

initially marked tramp, so the system is live.

b)Boundedness: let I = (111); / is a positive s- invariant of the underlying MPTNet, so the

system is bounded. ■

Definition 3.22 (Implicit Termination) The Implicit Termination pattern is a property ofmark

ings that workflow patterns must have, rather than a structure that can be translated to Petri Nets

concepts, i. e.
, given a Workflow pattern it is desirable that finishes where there are nothing else

to be done. Then. this desirable property can be achieved transforming any pattern into a pattern

with only one END point, in this way when it reaches the END state, it is possible to know that

there are nothing else to be done in the workflow process. In fact, Workflow Nets already have this

desirable property.

Múltiple Instances patterns

Figure 3.11 shows the Múltiple Instances patterns as a Workflow Net, where the máximum number

of copies of a Task-A is known at design time. Also, Figure 3.11 shows transitions with labels from

1 to n, where n is the máximum number of copies of a Task-A. Also it shows the synchronization

for each branch from 1 to n. The Workflow Net operates as follows: in a certain moment, any of

the i-labeled transitions, for i from 1 to n, can be fired activating its respective branch. When the

branch ends, the synchronization takes place, and the END state is reached. In this way, when

the máximum number for a Task-A is known at design time, it is always possible to choose the

appropriate labeled transition. However there are some points to consider: When the máximum

number of copies of a Task-A is too big, then it is possible to transform it into an iterative repetition

of a small number of copies of Task-A using the Arbitrary Cycle pattern. In this way, when the

máximum number of copies of a Task-A is greater than the máximum number of copies allowed by

a certain Workflow Management system, it is possible to simúlate this pattern performing a fewer
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i

S2

Figure 3.12: The Temporal Relation Pattern Net

number of parallel activities repeatedly. Of course, in this way, the máximum number of copies of

a certain Task-A is not really in parallel.

Definition 3.23 (Múltiple Instances and Synchronization) In the WFNet depicted in Fig

ure 3.11 one of several branches can be chosen. If the transition with input signal i is chosen, then

i copies of the task A are executed, 1 < i < n. Finally, the synchronization takes place for all

of these branches (l, ...,n). This pattern meets the case when the number of copies of a task A is

n-bounded and it is known at design time.

Proposition 6 The Múltiple Instance and Synchronization Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying MPTNet is a FCNet and since every proper siphon

includes an initially marked tramp the system is live.

b)Boundedness: let / = (111. ..111); l is a positive s-invariant of the underlying MPTNet.

Note that \I\ = n(n + 1) + 4, where n is the máximum number of copies of the activity A. ■

Temporal Relation patterns

Temporal Relation patterns make a relationship between two tasks other than sequential or parallel

ones. As an example, the temporal order relation 52 > S\ means that the activity with start point

52 must starts after or at the same time than the activity with start point Si. This have no

information about exactly "when" the activity with start point 52 must starts, but it must starts

at the same time or later than the activity with start point S\ does. Since the change ofmarkings in

generalized Petri Nets is considered discrete, and the time is continuous, the major representation

of this pattern in Petri Nets is very stiff. However, if it is possible to split each activity into its

main milestones, then it is possible to perform complex interleaved relation between them. As

another example of temporal relationship between tasks, Figure 3.12 shows the temporal relation

"before-start", 52 > Si, as a Workflow Net, where two tasks are divided into two major milestones:

Start and End points, 5 and E respectively. In the Workflow Net, two branches are fired in parallel,

one for the Activity- 1 and other for the Activity-2. The branch for the Activity-1 could continué

without difficult, but the branch for the Activity-2 must waits to the Activity-1 starts before it

starts.

&
E2
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Y

a) Deferred XOR-Split

Z W

b) Interleaved parallel routing

Figure 3.13: The Deferred XOR-Split and Interleaved Paralle Routing Pattern Nets

Definition 3.24 (Interleaved Sequence) In the WFNet of Figure 3.12, two branches are shown:

the upper one for the Activity-1 and lower one for the Activity-2. The temporal relation is Sb > Sa,

that is, the Activity-2 must starts after or at the same time than Activity-1 starts. In a similar

way, it ís possible to construct any other "discrete
"

temporal relation.

Proposition 7 The Interleave Sequence Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying MPTNet is a FCNet and since every proper siphon

includes an initially marked tramp the system is live.

b)Boundedness: Let / = (llllllllll); i" is a positive s-invariant of the underlying MPTNet.

u

State-based patterns

Figure 3.13 shows the Deferred XOR-split and the Interleaved parallel routing patterns as Workflow

Nets. In the Deferred XOR-split pattern, as in Exclusive Choice pattern, one of several branches

is chosen, but in contrast with it, all possible branches are active before the selection, then when

one is chosen, the others are cancelled. In this way, the selection is implicit rather than explicit, as

in Exclusive Choice pattern. The END state is reached after it.

In the Interleaved parallel routing pattern, a set of activities is executed in an arbitrary order;

such order is decided at runtime and no two activities are executed at the same time. This suggest
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us a mutual exclusión between the set of tasks. Figure 3.13b shows the equivalent Workflow Net for

this pattern: a set of transitions have a shared input place that allows the progress of one activity

at a time; once the active activity finishes, then the resource is released, and another activity can

be executed. When all tasks have been executed, then it is possible to reach the END state. Note

that the execution order could be decided at runtime, since each transition have an associated input

label.

Definition 3.25 (Deferred XOR-split) In the net ofthe Figure 3.13a there are two transitions

(X and Y) waiting for an input signal. X and Y transitions are enabled, but only one will be chosen,

the other one will be withdrawn.

Proposition 8 The Deferred XOR-split Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying MPTNet is a FCNet and since every proper siphon

includes an initially marked tramp the system is live.

b)Boundedness: let I = (1111); / is a positive s-invariant of the underlying MPTNet. ■

Definition 3.26 (Interleaved Parallel Routing) In the net of the Figure 3.13b there are n

tasks that can be executed in arbitrary order. When all of these tasks are done, the workflow net

reaches its END state.

Proposition 9 The Interleaved Parallel Routing Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying MPTNet is a FCNet and since every proper siphon

includes an initially marked tramp the system is live.

b)Boundedness: let / = (111. ..111); I is a positive s-invariant of the underlying MPTNet.

Note that \I\ = 3n + 2. ■

Cancellation patterns

Cancellation patterns are related to the cases when some tasks currently in execution must be

abruptly cancelled, i.e., for some external conditions it is necessary the cancellation of these tasks.

As in Implicit Termination pattern, this change must be in the task state rather than in its structure.

But in this case, any reachable state must be mapped into its final state despite there exist active

tasks in the workflow net.

The modelling of these patterns will be addressed in the next chapter titled Dynamic Change

within Workflow Management, where the dynamic structural change will be explored.

ínter-Workflow Synchronization patterns

Figure 3.14 shows the Message Coordination pattern as a Workflow Net. As it is shown, the

"sender" sends a message to the "receiver" firing its "snd" transition, then it waits the response of

the "receiver" The transition "rev" in the "sender" waits the "receiver" response and then it can

be fired to reach the END state. This Workflow Net meets the message coordination behavior. Of

course, in both sides, at the "sender" side and at the "receiver" side it is possible to perform many

other tasks. Note that it is no important the connection and disconnection dynamic between the

client and the server, but only the message coordination behavior.
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Sender Receiver

Figure 3.14: The Message Coordination Pattern Net

Definition 3.27 (Messaging Coordination) Figure 3.14 shows three parts: a sender, a receiver

and, a médium. Two transitions in the sender do the work: the transition "snd" put a message on

the médium and the transition "rev'' waits for acknowledge. When the transition "rev" fires, other

task can take place.

Proposition 10 The Message Coordination Workflow Net is live and bounded.

Proof. a)Liveness: since the underlying MPTNet is a FCNet and since every proper siphon

includes an initially marked tramp the system is live.

b)Boundedness: let / = (Illllll); / is a positive s-invariant of the underlying MPTNet. ■

Up to hereWorkflow Nets were developed for someWorkflow patterns. Now, when it is necessary

to build a complex business process model, often it is constructed in an incremental way. In some

cases, it is constructed small models for the different processes, and then such models are mixed. In

other cases it is more convenient to construct a general model, and then refine it by the application

of some rules or techniques, in order to reduce the complexity of the modelling job. The convenient

way depends on the particular situation.

In the next section, a refinement method for top-down place-refinement construction of Petri

Net models is adapted from [Zhou, 1992] to the case of workflow models, in order to avoid the

property analysis in the final net.

3.3 Building Petri Net models for Workflow Management

Synthesis methods construct nets systematically such that the desired properties are guaranteed

avoiding the analysis process in the final nets. Two kinds of approaches, top-down (refinement of

nodes by sub-nets) and bottom-up (fusión of nodes or paths) have been studied in synthesis methods

(Jeng and DiCesare, 1992) [Jeng, 1992], [Koh, 1991]. Intuitively, it is clear that the modelling of

large concurrent systems demands some kind of modularization to break down the complexity. In



3.3. BUILDING PETRI NET MODELS FOR WORKFLOWMANAGEMENT 35

task A

Figure 3.15: The Simple Activity Pattern Net

true

Figure 3.16: The First Step Refinement

this section, it is presented an adaptation of the place refinement method in [Zhou, 1992] to the

case of Workflow Nets.

3.3.1 Building live and bounded models for Workflow Mcuiagement

The place refinement in Petri Nets is a good method for the construction of complex models

[Zhou, 1992]. Moreover, it is desired to define some place refinement rules that guarantee good

properties in the final refined model. In this way, starting with a simple model, it is possible to

construct complex models applying these refinement rules avoiding subsequent analysis.

For example, the Figure 3.15 shows the Workflow Net for the Simple Activity pattern. Now,

it is possible to perform a replacement to the place "o" substituting it by a subnet, as the Figure

3.16 shows. In this particular case, the final net can perform an Activity A, then it can repeatedly

do a certain activity. Finally it can reach its END state.

Intuitively, this refinement rule works as follows: as Figure 3.16 shows, this refinement method

replaces a place p in a PTNet by a new PTNet that have an input and an output place. Then the

input. and output edges for the place p become the input and output edges for the new PTNet.

The formal definition is as follows.

Definition 3.28 (p-replacement) Let (N,p) be a MPTNet, and (N',0) £ W such that N =

(T,8-,8+), and N' = (T" , d'_ , d'+) , and i' ando' are the input and output places ofN' respectively.

A p-replacement p
- N' where p £ Nm_,(N), is the MPTNet (Ñ,p),where Ñ - (f,8-,8+) is

defined as follow:

-T = TüT'

d-(t)\np + no' . ifteT and np £ d-{t), n £ N

d-(t) = { d-(t), ifteT and np i 8-{t), for am/ n £ N

&_{t), ifteT
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Figure 3.17: The Second Step Refinement

Í
¿)+(.) \np + ni' ifteT and np £ 8+(t), n £ N

d+(t), ifteT and np <£ 8+{t) , for anyneN

&+{t), ifteT

The next theorem characterizes the liveness and soundness on the application of the definition

of p-replacement over a net. Intuitively, this theorem means that, given a sound net, if this p-

replacement is applied over it using a sound net in the replacement, then the resulting net is always

a sound net. The theorem says also, that the inverse case is hold.

Theorem 11 (Soundness characterization of p-replacement) Let{N,p) be a MPTNet, let

(N',0) £ W. Let (TV,/.) be the net that results ofthe p-replacement over (TV, /lí) using (TV, p). Then

(TV, p) is live and bounded iff (TV, fi) is live and bounded.

Proof. Sketch: Since every (N',p') £ W is live and bounded, then the soundness condition

imposed to the net used in the replacement is hold by this p-replacement. Using the result in

[Zhou, 1992] the results follow. ■

Figure 3.17 shows the next step in the refinement of the net in Figure 3.16. The overall

refinement is as follows: The Figure 3.15 shows the net which the refinement process was started.

Then the place labeled with "o" was replaced by the Arbitrary Cycle pattern. Figure 3.16. Then

the place labeled with "p" was replaced by the Múltiple Instances with Synchronization pattern.

Figure 3.17.

In this way, the final net, in fact a sound Workflow Net, has the next semantic: after the firing
of the Activity A, it is possible to fire repeatedly i-parallel Activity A, where 1 < i < n. Such
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a) The workflow net N

C D

b) The workflow net N'

c) The sequential composition of N and N'

Figure 3.18: The Sequential Composition of two workflow nets

final net meets the semantic for the Múltiple Instances without prior runtime knowledge and its

Synchronization pattern (see the Workflow Patterns section, in the previous chapter).

Another two common operations between nets, that result in a kind of refinement, are the

sequential composition and the parallel composition of flow nets. They formal definitions are given

below.

Definition 3.29 (Sequential Composition of nets) Let (TV, {¿}),(TV', {0}) £ W, where o is

the final place of N and i' is the initial place of TV'

Then the sequential composition of(N,{i}) and (N',{i'}), denoted (TV, {i}) ® (TV', {0}), is the

juxtaposed composition of (TV, {i}) and (TV', {i}) merging the place o in TV with the place i' in TV'

formally, (TV ® TV', {i}), where o and i' are only ones public places in TV and TV' respectively, and

o = i'.

Ex.ample 3.4 (The sequential composition of two nets) As an example ofthe sequential com

position of nets, see the net depicted in Figure 3.18. Figures 3.18a and b, shows two workflow nets.

Finally, Figure 3.18c shows the compound net.

Definition 3.30 (The Parallel Composition of nets) Let (TV, {*•}), (TV', {i')) £ W, where i

and o is the initial and final places of N , respectively, and, i' and o' are the initial and final

places of TV', respectively.

The Parallel Composition of (TV, {i}) and (TV', {i'}), denoted (TV, {i}) 0 (TV', {i'}), is the juxta

posed composition of (TV, {i}) and (TV', {i'}) merging the places i and i' m N and TV' respectively,

and merging the places o and o' m TV and TV', respectively; formally (TV cg» TV', {2¿}), where i and o

are public places in N, i' and o' are public places in TV' and, i = i' and o = o'
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Figure 3.19: The Parallel Composition of workflow nets

Example 3.5 (The parallel composition of two nets) As an example of the parallel compo

sition of nets, see the net depicted in Figure 3.19. This net is the compound net resulting of the

parallel composition of nets depicted in Figures 3.18a and b.

The next section uses the place refinement method in a more complex application example.

3.3.2 An Application example

As an example of the refinement method in the previous section, this section presents the case of

FBN Sports Equipment Company in Luxemburg, a sport and athletic equipment sales company.

MODELLING BUSINESS PROCESSES IN A SPORT EQUIPMENT COMPANY

Process specification. The FBN Sport Equipment Company in Luxemburg manufactures

a complete range of sports and athletic equipment. All of its sales are made by Purchase Orders.

Since the company receives 80 of its sales orders by mail and fax, it has been determined to have

an image scanner in the mail room as in order to enhance the workflow system. The mail room is

the point where the workflow starts, and it revises all mails and faxes to the company. The next

processes are the way each department take for performing its activities.

Process 3.1 (The mail room activities) The mail room performs the next activities:

If the documents are a sales_order:
all documents go to Sales, Finance and Manufacturing in parallel

If the documents are invoices for payment:

the documents go to Finance

If the documents are addressed to the President:

the documents go directly to the President Secretary;
the Secretary sorts mail for immediate response by President;

If the document is sales leads go to Vice President Sales;
Product inquiries go to Customer Support
If the documents are payments: the documents go to Finance;
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Process 3.2 (At the Finance Department) The Finance Department performs the next activ

ities:

If the documents are for a sales_order:
then check if sales_order is from an existing customer:

if an existing customer

then check account limits:

if Account limit. OK

then reléase to Manufacturing
else refer to next manager level:

if sales
_

order approved
then reléase to Manufacturing;
else decline sales_order
route to Sales Representative and to Manufacturing;

else // if not an existing customer

then request credit check:

if credit _check OK

then reléase to manufacturing
else decline sales

_

order

Route to sales representative and to Manufacturing

Process 3.3 (At the Manufacturing Deparment.) The Manufacturing department performs

the next activities:

If sales_order is released and can be shipped
1. prepare product order

2. issue shipping instructions and prepare forms

3. notify sales, finance and customer service on ship date

4. adjust inventory levéis.

If sales
_

order is not released

place sales
_

order into suspend mode.

If sales_order is released but lack of product:
Then notify sales representative of partial ship plan
Freeze parts and stock for 24 hours

Suspend order for 24 hours

When the sales order is released and the partial shipment program has been approved by
the customer then Manufacturing will:

Build and ship to the partial program

Notify Finance on shipping

Expedite missing parts from suppliers

Suspend the sales_order until the parts arrive

Complete the sales_order
Issue notification to Finance, Sales and Customer Service

Each different department performs a different set of activities. In this company processes

start at the Mail Room. The Mail Room checks all incoming messages and deliver them to its

respectively department for its processing.
The refinement process for the Mail Room Department starts with the Simple Activity pattern,

Figure 3.15. The Mail Room's process shows four different classes of incoming messages: sales

order messages, invoices for payment messages, messages addressed to the President, and payments
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sales

s e
2

president
:

Figure 3.20: The First Step Refinement at the Mails Room

messages. So, the central place replaced by the Simple Choice pattern with four branches, one for

each different class of incoming messages. This is shown in the Figure 3.20.

Now, if the incoming message is a sales order, the process indicates that the document must

goes to Sales, Finance and Manufacturing departments in parallel. So, the next step is to replace

the place "sales" on the Figure 3.20 with the 3-AND-Split pattern and its Synchronization, as

shows the Figure 3.21. The rest of the refinement process for this department could be build in a

similar way.

At the Finance department, using this refinement method, it is possible to construct a Workflow

net like as the net depicted in in Figure 3.7. This workflow net is the one net used in the introduction

to the section: Workflow Patterns as Workflow Nets.

The previous example was fetched from [WfMC-TC-1016].

3.4 Conclusions

In this chapter, basic notions on Petri Nets were presented. Also Workflow patterns are translated

to Workflow Nets -a special class of Petri Nets-. Some Workflow patterns have a straightforward

representation into Petri Nets concepts. Others have a more elaborated construction.

Also a synthesis method for the gradual construction of elaborated workflow schemes was pre

sented. The synthesis methods allow to construct complex workflow schemes without the subse-

quent analysis.

Unfortunately, there are some important aspects in Workflow Management that have no direct

equivalence into Petri Nets concepts. One of these concepts is the dynamic change problem. In this

problem, some Workflow schemes must change their structure in a controlled way. These concepts

are not allowed on the traditional Petri Nets formalism. However, there are some extensions for

Petri Nets that allow to support successfully this dynamic change problem. The next chapter is
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Figure 3.21: The Second Setp Refinement at the Mails Room

related on such class of problem and a proposed solution.
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Chapter 4

RW-Nets for Dynamic changes in

Workflow Management Systems

This chapter addresses the Dynamic change problem in Workflow Management Systems. An

overview of approaches for workflow changes is presented. Dynamic nets from [Buscemi, 2001],

and [Asperti, 1996] are introduced, and how they support the dynamic change is shown Finally,

Rewriting Nets -an extensión of Dynamic Nets- are proposed as modeling formalism to support the

modifying mechanisms to cope with the dynamic change problem.

43
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4.1 The Dynamic change problem

Business processes are subject to unexpected changes: market changes, customer changes, new

business strategies, etc., usually result into a dynamic change.

The dynamic change is an important issue within Workflow Management systems. Several works

on the matter point out that this problem is difficult to solve [Agostini, 1998], [Aalst, 2000 IS],

[Ellis, 1995], [Casati, 1996], [Han, 1998].

In these systems. can mainly occur two kind of changes [Ellis, 1995], [Aalst, 2000 WP 50] :

• 1) Ad-hoc changes, and

• 2) Evolutionary changes.

Ad-hoc changes occur on individual cases or on a selected group of them, while evolutionary

changes have structural impact, i.e., an evolution change into the workflow process affects all new

cases from certain moment forth. This change is commonly the result of a new business strategy,

reengineering efforts or a permanent alteration of external conditions. A workflow process definition

resulting from an evolutionary change is often called a new "versión" of a workflow process.

A wide known classification of dynamic change within workflow management is depicted on

Figure 4.1. As it is shown, the dynamic change can be as follows:

• "Extend": a refinement of an actual task in the workflow process; Figure 4.2a shows the

extensión (or refinement) of an activity A into two activities Al and A2.

•
"

Replace" : a substitution of an existing task by a new one in the workflow process; Figure

4.2b shows the replacement of an activity A by an activity B; and

• "Re-order' : a new causal order in the actual set of tasks over the workflow process; Figure

4.2c shows two sequential activities A and B, that must change its sequential relationship.

On the other hand, the change can be as follows:

• "Individual": the change affects only one case or a selected group of them, or

• "Structural": the change affects overall workflow process structure, and all new cases that

arrive to the system.

On the "Individual" branch, there exist the next two cases:

• Entry-time: the time of the change is determined;

• On-the-fly: the time of the change is not determined; it may occur at any stage in the process.

On the "Structural" branch, there exist the next cases:

• Restart: a workflow process actually in execution must be abruptly restarted;

• Versión: a new versión for an existing workflow process must be present in the system, and
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Extend

Replace

Re-order

Figure 4.1: Change Classification

• Transfer: all possible states (or activities) in the actual workflow process must be present

in the next versión of such workflow process; Figure 4.2d shows an activity A that must be

present in the next versión of the workflow process.

Since in this work Petri Nets are used as modelling formalism of workflow systems, the dynamic

change problem can be reduced to the problem depicted on the Figure 4.3; it shows two Petri nets

called Workflow process definition; the change from the workflow process on the left to the workflow

process on the right, and reciprocally, is the goal to achieve in this chapter.

It outcomes obvious that it is necessary to explore the flexibility on Petri Nets. Such flexibility

on Petri Nets has been explored in previous works [Buscemi, 2001], [Asperti, 1996]. In these works,

it was proposed a taxonomy of High Level Petri Nets that increase its flexibility lessening its

restrictions.

4.2 Related work on Adaptive Workflow

In [Badouel, 1998], a class of high level Petri nets called Reconfigurable nets was presented. These

nets can change its structure dynamically by the rewriting of some of their components. Basically,

a Reconfigurable net is a Petri Net with a set of modification rules over its places. A modification

rule is a function that maps places to places and it works as follows: the places to be mapped must

be places in use on the current net and its image must be "invisible places" for the system at the

time of the change. This High level nets can be used to change the
"

flow" in a workflow process

definition.

In [Casati, 1996], an approach to the dynamic workflow change based on primitives of evo

lution was presented. First, a formal definition of a Workflow process is provided. Then some

transformation primitives, like a programming-style, of a given workflow are given.

In [Aalst, 2001 WP 51], the concept of dynamic change within workflow, its variations and

flavors were presented. Both, ad-hoc and evolutionary changes are undercover in the workflow.

The presented approach uses the notion of "versions" of workflow -a property that allows to a new

workflow process definition to have all states present on the oíd workflow versión-. The goal in this

work is to determine when is possible to migrate cases from an oíd workflow process versión to a

new one.

In [Aalst, 1999 UGA], "generic process models" -a kind of process model, based on Petri nets,

that can be "instantiated" with a "specific" process model in a certain moment- was presented.

Change

Entry-time

ndividual
'

-On-the-fly

Restart

Structural <X -Versión

Transfer
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Figure 4.2: Concepts on Dynamic Change

The "dynamic changes" were supported "instantiating" the same "generic process model" with

many -finite- "specific" process model.

In [Aalst, 2000 WP 50], an approach based on inheritance, a concept of Object Oriented Pro-

graming, applied to Petri nets was presented. Two mechanisms of inheritance: protocol inheri

tance and projection inheritance were explored. Using this notions was possible to decide when

one workflow process is a "subclass" to another workflow process, based on these two inheritance

mechanisms. A set of
"

well-defined" transformation rules was also presented, to migrate from one

workflow process to a new one using a rule transformation and , preserving inheritance was possible.

Using branching bisimilarity, it is possible to divide workflow process into equivalence classes of

inheritance.

In [Jiang, 2001], a Colored Petri Net with changeable structure was presented. Two mechanisms

for the structural change: change-by-modification and change-by-composition, were suggested

The first one was related to the net structure changing by the modification of some net structure

elements, while the second one was related to the net structure changing by the composition of the

current net to another net.
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prepare_ship c

snd_goods

snd bilí t

record_ship

snd bilí

Figure 4.3: The Dynamic Change Problem

4.3 RWNets to support dynamic change in Workflow

In order to support the dynamic change within Workflow Management, it was necessary to increase

the flexibility in Petri Nets. There are some works related on. For example in [Asperti, 1996] and

[Buscemi, 2001] a hierarchy of nets that increase the flexibility in Petri Nets were suggested. Mobile

Nets (also called Reconfigurable Nets), a class of nets that have an additional feature: the post of

a transition can be delivered to different sets of places was suggested. Dynamic Nets -a class of

high level nets that can increase its structure during the firing of a transition- were also presented.

In this thesis some of these concepts are hold and extend, in order to support the dynamic

change in Workflow Management.

4.3.1 Colored Nets

Colored Petri Nets (CPN) were proposed by K. Jensen in 1981 for the modeling of very large

systems [Jensen, 1981]. CPN models have a high level of abstraction and they are very condensed.

In CPN, the tokens into the places could be individually identified, i.e., each token has a

symbolic identity. This identity is called the "color" ofthe token . Also, in CPN, a transition could

be able to fire respect to a specific color or set of them. The colored tokens travel across the net

by the action of the transitions, transforming them into other colored tokens.

The main concepts on CPN are illustrated in Figure 4.4. It represents the Dinners 3-Philosophers

problem.

In short, a number n of philosophers are sat at a round table. At the right and left hands of

each philosopher there is a fork. When a philosopher wants to eat, then he takes the forks at his

right and left hands and then he goes to the eating room. When the philosopher finishes to eat,

then he gives back the forks. Then, other philosopher can eat.

The colored net have three places: one place for philosophers, one place for forks, and one place

for the eating room. Also, there are two transitions in the net: one transition for when a philosopher
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fork

u,F,v

Figure 4.4: The Dinners Philosophers Problem Colored Net

wants to eat and accordingly goes to dining room and other transition for when a philosopher ends

to eat. The net shows the case when the number of philosophers is three.

As it is shown, the tokens are tupie of ñames. Also, the edges are labeled with a tupie of ñames.

For example, the tupie "u,F,v" in an edge means that such tupie could be "instantiated" with any

tupie with length three.

The firing of a transition in these nets occurs when a valué is given to the edge label in the pre

set of a transition. This assignation of valúes defines a function from the edge labels to the color

ñames into the places; such function is called a "binding" function. For example, in Figure 4.4, it

is possible to fire the upper transition with the "binding" function b : u
—> l,v

—* 2,F
—» A. Now,

in order to get the post set as result of the firing of this transition, is applied this binding function

to its post set. In this particular case, the colored token "1, A, 2" is gotten into the "eating" place,

meaning that the philosopher A is now eating. Since the problem is reduced to the case of three

philosophers, any other philosopher can go to eat at this moment, as it was expected. At this state,

the lower transition could be fired to return to the initial state.1

Definition 4.1 (Colour Set) The set of colored tokens Cp over a set P is defined as the set of

finite sequences over P, that is:

Cp = {vo,...,vn\vi G P,0 < i < n,n G N}

It will be used ü,v ranging over Cp. The length of a tupie v G Cp, is defined as \v\ = \v_, ...,vn\ =

n + 1, and the selection of the i-th element is ttí(v) = f¿,0 < i < n.

For a vq, —,vn
= v G Cp, [v] denotes the set {v_, ...,vn) rather than multiset..

'Note* the edge label "u + v" in the pre set of the upper transition means that there are two edges between

the "fork" place and this transition: one edge with the "u" label and one edge with the 'V* label. This is only for

notation conveniences.
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Definition 4.2 (Coloured Net) A Colored Net (CNet) is a bipartite graph with two classes of

nodes: places and transitions, represented by a tupie N = (T, 8-,8+), where T is a finite set of

transitions, 8+,8- : T —* p(Nmu x Cixjm) are the pre and post functions. Also, 8-{t), is often

called the pre set of t, and 8+{t) is often called the post set oft.

Definition 4.3 (Marked CNet) 44 pair (N,p0), where N is a CNet, and p0 G p(NmUJ x Cn™)

is called a Marked CNet (MCNet). The element p0 is called the initial marking.

Definition 4.4 (Bounded ñames, Binding) The set of bounded ñames for a p' G p(Nm_ X

Cr.m) ¿s denoted:

rc{p') = l){[x]\3p : {p,x) £ fi')

A binding for p' is a function b : rc(p') —■» Nm. It is defined p'(b) = {(p,b(c)\(p,c) G p')}, where

b{c= v0,...,vn) = b(vo),...,b(vn).

Definition 4.5 (Transition enabling) Let (N,p) be a MCNet. Let t G T, it is said that t is

enabled at p under the binding b, denoted (TV, p)[t)b iff there exist a binding b : rc(8-(t)) —> Nm,

such that d-(t) (b) C p.

Remark 3 A Labeled CNet can be obtained associating a transition labeling function l : T —* L

to any MCNet (N,p) as in MPTNet.

Definition 4.6 (Firing Rule) The firing rule for a labeled MCNet, _[_)b_ Q MCNets x Lx

MCNets, is the smallest substitutive relation generated by:

(N,p)[t)b => (N,u),[l(t))b,(N,u\d-(t) (b) + d+(t) (b))

where b is a binding for 8- (t) .

Example 4.1 (A Colored Net) As example consider the next net: TV = {fork(u+v),phil(u, F, v)} O

{eating(u,F,v)},{eating(u,F,v)} x> {fork{u+v),phil{u,F,v)), andpQ — {fork(l+2+3),phil(l,A,2-r-

2, £?, 3 + 3, C, 1)}, then (N,p0) G MCNets is the net on Figure 4.4.

In this section was explained the major concepts on Colored Nets. For further details see

[Jensen, 1981]

4.3.2 Mobile Nets

Mobile Nets, also called Reconfigurable Nets, are a generalization of Colored Nets. In them, the

post set of a transition could be delivered to different set of places, i.e., the post set of a transition

is "mobile" or reconfigurable. It is achieved using the colored tokens in the pre set of a transition

for determining where the post set must be delivered. For example, on Figure 4.5a, it is shown a

transition with input places "ready" and "job" and where its output place must be determined

in order to the colored tokens linked to its pre set. In this case, Figure 4.5b shows the firing of

the "mobile" transition using the binding b : (ptr,typ —» pl,c),(file,typ —» /2,c), producing as

consequence that the place "pl" receives a colored token "/2" The net depicted on the Figure

4.5a and b meets partially the behavior for a printer spooler [Forunet, 1995].
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a) A Mobile Net with a mobile transition t

b) The Mobile Net after the firing transition t with the binding:

b:{ (ptr.typ -» pl,c) , (file.typ -. f2,c) }

Figure 4.5: The Partial Printer Spooler Mobile Net

Definition 4.7 (Mobile Net) A Mobile Net (MNet) is a bipartite graph with two classes of nodes:

places and transitions, represented by a tupie TV = (T,8-,d+), where T is a finite set of transitions,

8- : T —> p{Nm¡JJ x C/vm). and 8+ : T —> p(Nmu) x CVmu,) are the pre and post functions,

respectively. Remember that: Cp.m^, = C/vmu.* Also, 8 — (í) is often called the pre set oft, and

8 + (t) is often called the post set oft.

Definition 4.8 (Marked MNet) A pair (N,p), where TV = (T,cL,<9+) is a MNet, and p0 G

p(Nm^ x CWJ is a Marked MNet (MMNet).

As it is shown, the pre set of a transition in Mobile Nets has the same form as the pre set of a

transition in Colored Nets. Accordingly, the notion of binding and enabling transition are the same

for both Colored Nets and Mobile Nets. However, in Mobile Nets the binding is applied to both

elements p and c for each pair (p, c) G 8(t), for any transition t, rather than in Colored Nets, where

a binding b is applied only to the color element c of each pair (p, c) in the post set of a transition.

This is exactly the point where the post function of a transition in Mobile Nets could be delivered

to different set of places, that is, since the binding function is applied to both elements in the pair

(p,c), then it is possible that the binding function replace the element p, meaning that the place

that must receive the post set of the transition was changed. That is the meaning post set of a

transition in Mobile Nets is mobile rather than static, as in Colored Nets. The formal definition is

below.

Definition 4.9 (Substituting p((b)) for Mobile Net) Let b be a binding as in Colored Nets.
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For p g p(Nm_ x CNm_), let p((b)) = {(6w(p),6u,(c)|(p,c) G p)}, where b_, = b + id^, and

b<_,(c = vq, ..., vn) — bw(vo),...,b_(vn). The id_, function is the identity function over lj.

Definition 4.10 (Transition enabling) Let {N,p) be a MMNet. Let t G T, then t is enabled

at p under a binding b, denoted (N,p)[t)_ iff there exist a binding b : rc{8-{t))
— *■ Nmu, such that

8-(t)(b)Cp.

Remark 4 A Labeled MNet can be obtained associating a transition labeling function l :T —> L,

to any MMNets (TV,/.) as m MPTNets.

Definition 4.11 (Firing Rule) The firing rule for a labeled MNet, _[_)&_ Q MLNet x L x

AILYSet. ts the smalltst substitutive relation generated by:

(N,p)[t)b ==> (N,p),[l(t))b,(N,p\d.(t) (b) + 8+(t) ((b)))

where b is a binding for 8- (t) .

Despite the feature of Mobile Nets to deliver the post set of a transition to a different set of

places, Mobile Nets have a static structure, i.e., given a Mobile Net, it is possible to obtain an

equivalent Colored Net in a simple way. In fact, Colored Nets and Mobile Nets are just compact

representations of Petri Nets.

In the next section, Dynamic Nets -a class of High Level Nets that can increase its places and

transitions in every firing of its transitions- are presented.

4.3.3 Dyncunic Nets

Dyn.amic Nets can increase their places and transitions during the firing of a transition. It is

achieved allowing to the pre set of a transition to be a net, rather than solely a set of places.

The pre set of a transition in Dynamic nets has the same form as the pre set of a transition

in Mobile Nets. So, the enabling of a transition and the binding function have the same meaning.

But now, the post set of a transition could be a new net definition.

Intuitively, given a enabled transition t, when it fires, the binding function is applied to its post

set, in order to produce the new parametric net. The binding function, maybe, replace several

place ñames; if these place ñames are public places in both nets, the current net and the new one,

then they must be merged.

Obviously, at this stage, the colored tokens linked to the pre set of the transition have been

removed; then the nets are merged using the juxtaposed composition of nets defined in the Chapter

2.

As an example, Figure 4.6a shows a net that has a transition that has a new net as post

set (see the transition t ). Figure 4.6b, also shows this net after the firing of such a transition.

Now the net structure changes. On Figure 4.6a, the transition is fired using the binding function

6 : («
—» a), (v

—

■ b). Finally, using the Juxtaposed Composition, the final net looks as the one

depicted in Figure 4.6b.

The formal definitions for Dynamic Nets are given below.
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a) The system with a dynamic transition t

b) The system after the firing of t with b: { (u,a),(v,c) }

Figure 4.6: A Dynamic Net

Definition 4.12 (M-arked Dynamic Nets) Let MDNets be the set defined recursively as fol

lows:

a) A MPTNet is a MDNet.

b)The pair (TV, p) such that TV = (T,d-,8+), where T is a finite set of transitions, 8- : T —■>

{Nm_,xCNm) is the pre function, 8+ : T —* MDNets is the post function, and p G piNm^xCNm^)

is a MDNet.

Given at £T, 8-{t) is often called the pre set oft, and 8+{t) is often called the post set oft.

Definition 4.13 (Subnet in Dynamic Nets) Let (N,p) be a MDNet. Then a MDNet (N\pf)
is a subnet of (N,p), denoted {N',p') C (N,p), iffT'CT,8'_C 8-\t', p' Q p, and recursively

&+{t) C 8+{t') for all tf G T

As the definition of MDNets shows, the pre set of transitions in Dynamic Nets has a similar

form as in Colored Nets, but now the post set of a transition could be a new definition of aMDNets,

with new places and new transitions.

The notion of isomorphism for Dynamic Nets, is a generalization of the isomorphism for

MPTNets, since the post set of a transition in Dynamic Nets is a generalization of the post

set of a transition in MPTNets. The definition of isomorphism for MDNets is given below.

RemEirk 5 Given two functions g and h, the disjoint coproduct of them, denoted g + h, is the

function defined by both g or h. For example, if g : (u —> l),(v -* 2), and h : (w —> 3), then

g + h:(u^l),(v-+2)Aw-*3).
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Definition 4.14 (Isomorphism for MDNets) Let (TV,//), (TV',//) be two MDNets, such that

N = (T,8-,8+), and TV' = {T, &_,&+). Then (N,p), and (TV', p') are isomorphic up to a -

conversión, denoted (N,p) = (N',p') if, there exist a pair of isomorphisms (ft :T
—» T',/p : lj

—»

lj), such that:

a) {idNm + fpx idNm -r fP)(p) = p',

b) Vi G T, dL ° ft(t) - {idNm + fP x idNm) ° 8-(t), and

c) Recursively, d+{t) £ &+(ft{t)), Vi G T

Note that the private places in nets are only ones relevant for isomorphism, as in Petri Nets.

Definition 4.15 (Transition enabling) Let (TV, p) be a MDNet. Let t G T, t is enabled at

p under a binding b, denoted (N,p)[t)b iff there is a binding b : rc(8-(t))
—> Nm_, such that

Mt) W c n.

The enabling of a transition in this class of nets, is the same as in Colored Nets. But now,

the binding function is used also to define the new net in the post set of a transition. The formal

definition is given below

Definition 4.16 (Sustitution for DNets) Let b be a binding as in Colored Nets. For a MDNet

(Y,p), such that Y = (T,8-,8+), it is defined:

(Y,p) (((b))) = {(T,&_ : (Vi € Ti MO «*»),*+ - (Vi € T : recursively, 8+{t) («&»»),/*«&»)

that is, (Y,p) {{(o))) denotes the net after applying the substitution {(b)) as in Mobile Nets, for

both the pre set of all transitions in Y and the marking p, and recursively applying this renaming,

understand (((b))), to the post set of all transitions in Y

Rem.ark 6 A Labeled Dynamic Net can be obtained associating a transition labeling function l :

T -* L to any MDNet (TV,//), as in MPTNets,

Definition 4.17 (Firing Rule) The firing rule for a Labeled MDNet _[_)b_ __

MDNets x

L x MDNets is the smallest substitutive relation generated by:

(N,p)[t)b=*(N,p),[l(t))b,(N,p\d-(t)(b))®d+(t)(((b))))

where b is a binding for 8- (t). It is denoted (TV, p)[t)b(N' , p!) , where (TV',//') = (N,p\d-(t) (6))®

8+(t) (((&)))). The operation <g> is the juxtaposed composition of nets defined in Chapter 2.

A MLDNet allow to modify the structure of a net; however the change is always incremental;

thus successive changes grow the size of the model. Moreover, when a transition is fired, all the

transitions in its post set are always new. So, for example, it is no possible to "rewrite" a pair of

sequential transitions in such way that they have a parallel relationship.

So it is necessary a more general mechanism that allows to
"

rewrite" in some way a part of the

system structure, preserving some important information, such as, transition, edges, places, causal

relationships, etc.

One evident way is to generalize the pre set of a transition in such way that it allows to consume

a subnet of the current net structure and to produce a new subnet, in the parametric order of the

consumed subnet. In this way, it is possible to define a rewriting mechanism for Petri Nets that

preserves the structure, increases it, and reduces it.
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Ü

Figure 4.7: A Rewriting Net

4.3.4 RW-Nets

Dynamic Nets offer some flexibility for Petri Nets. However, they have some constraints. For exam

ple, it is not possible to obtain the parallel representation of a given pair of sequential transitions.

Dynamic Nets generalize the pre set of a transition; following this approach, Figure 4.7 shows

a transition, in which, the pre set is a net, rather than a set of places. This transition could

"consume" a subnet -in this particular case, four transitions in sequence-, and then produce a new

"parametric" net, where the two central transitions are executed in parallel.

In the rest of this section Rewriting Nets are presented, a class of High Level Nets that rewrite

part of its structure at the firing of its transition.

Definition 4.18 (Marked Rewrite Nets) Let MRWNets be the set defined recursively as fol

lows:

a) A MDNet is a MRWNet,

b) The pair f.V./¿). such that TV = (T,8-,d+), where T is a finite set of transitions, 8-, 8+ :

T —> MRWNets are pre and post functions, respectively, and p G MRWNet is a MRWNet.

Given a t G T, 8-(t) is often called the pre set oft, and 8+(t) is often called the post set oft.

Definition 4.19 (Subnet in MRWNets) Let (TV,//) G MRWNets, such that TV = (T,8-,8+).

The pair (TV',//') G MRWNets, where TV' = (T',8'_,8'+), is a subnet of (TV,//), denoted (TV',//') C

(TV,//), iff:

T CT, <9_. C 3_|t-, d'+ C 8+\T', and recursively //' C p, ^(f.') C 8l{t'),i = -,+, Vi' G T

Since both, the pre and post set of a transition in -_WTVeís, the element could be nets, then in

order to two RWNets be isomorphic, it is necessary that they have a isomorphic structure at the

top level and at all of their subsequent levéis.
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a) A MRWNet

b) A Subnet of the above net

Figure 4.8: The Subnet concept in RWNets

For example, Figure 4.8b shows a RWNet that is subnet of the RWNet depicted in Figure

4.8a.

In RWNets there exist transitions that can rewrite part of the current net structure. In order

to a transition be enabled in RWNets, it is necessary that there exist a matching for its pre set on

the current net. The matching between the pre set of a transition and a given subnet requires an

isomorphism test as performed in many cases in graph rewriting [Blostein, 1996]. A definition of

isomorphism for RWNets is given below.

Definition 4.20 (Isomorphism por MRWNets) Let (TV,//), (TV',//') G MRWNets, where TV =

(T,d-,d+) and TV' = {T,&_,&+); then they are isomorphic, denoted (TV,//) __ (TV',//') iff:

There exist a pair (/, : T -» T',g : MRWNets -* MRWNets), such that, 8¡ o / = g o dhi =

—.+, and recursively // = pl , and 8¡ o /(i) 3 8i(t),i = —,•+■ for all t G T.

Note that this definition of isomorphism defines a "family" of isomorphisms rather than a single

isomorphism.

Figure 4.9 shows two isomorphic RWNets. Remember that, it is known that the two nets in

the pre set of the two transitions t and r in Figure 4.9 are isomorphic (see Figure 3.2). So this
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a) The MRWNet N

a) The MRWNet N"

Figure 4.9: Two Isomorphic RWNets

isomorphism in RWNets is quite natural.

Definition 4.21 (Bounded subnet, binding) Let (TV,//) G MRWNet, where TV = (T,d-,d+).

Let t G T. a matching (or binding) for 8-(t) G MRWNets is a function b : MRWNet —>

MRWNet such that d-(t) Sí 6(¿L (t)). The net d-(t) is called a bounded net.

Once given a matching for the pre set of a transition, the next step is to apply the "family"

of isomorphisms defined by such matching to the post set of such transition, in order to get the

parametric subnet that must be added to the current net. The next definition is related to the

application of this "family" of isomorphisms to a given RWNet.

Definition 4.22 (Substitution for MRWNets) Let b be a binding inMRWNets. Let(((f,g)))
be the family of isomorphisms defined by b. For a (X,u) G MRWNets, (X,p) ((((b)))) denotes

(X,p)(((f,g))), i.e., the application of the family of isomorphisms (((/,<?))) to (X,p).

Now, it is defined the concept of transition enabling in Rewriting Nets. As an intuitive example,

the nets depicted in Figure 4.10 show the firing of a transition in MRWNet. It works as follows:

Figure 4.10a shows a transition in MRWNets. Figure 4.10b shows an ordinary Petri Net, and

Figure 4.10c shows the Petri Net resulting of the firing of the "Rewriting Transition" over the

ordinary Petri Net.
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a) A transition in MRWNets b) A Petri Net N

c) The Petri Net N after the application of the transition in a)

Figure 4.10: The Firing in RWNets

Intuitively, a transition in Rewriting Nets is enabled if there exist a subnet on the current net

that matches its pre set in an isomorphic way. Then, all elements -places, edges, and transitions-

that are present in the pre set but are not in the post set, must be removed from the current net;

also, all elements -places, edges, and transitions- that are present in the post set but are not in the

pre set must be added to the current net. It is easy to see that all these elements that are present

in both, the pre set and the post set, must be preserved in the current net. The firing rule, defined

later, states how the firing of a transition changes the net structure.

Other example, is shown in Figure 4.11; it is the same Petri Net of the Figure 4.10b, but now

after applying the "Rewriting Transition" on Figure 4.10a, that produces a non-sound workflow

net.

Definition 4.23 (Transition enabling) Let (TV,//) G RWNets, such that TV = (T,d-,d+). Let

t €:T, such that <9_ (i) = (TV',//'), then t is enabled at //, under binding b, denoted (N,p)[t)b iff

there exist a binding b : 8-(t)
—► MRWNets, such that b(N',p') C p.

Remark 7 A Labeled Rewriting Net can be obtained by associating a transition labeling function

l-.T-.Lfor any (TV,//) G MRWNets, as in MPTNets.
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Figure 4.11: A no sound WFNet by the wrong application of a rewriting rule

Definition 4.24 (Firing Rule) The firing rule for a LabeledMRWNet,
_ {_)__ C MRWNet x

L x MRWNet, is the smallest substitutive relation generated by:

(N,p)[t)b =¡> (TV,//), [l(t))b, (TV„u\(Mt) <«(&»» \8+(t) <(«&»») ® (M<) ((«&)»> \M*) «((*>»»))

where bisa binding for 8- (i). It is denoted (N,p)[t)b{N,p'), where //' = p\{8-(t) ((((b)))) \8+(t) ((((b))))®

(¿Mi) ««&)))) \0_(i) <«(&)»))

Definition 4.25 (Sound "rewriting" transition) Let (TV,//) G MRWNets, such that TV -

(T,d-,8+). Let t G T, then t is called sound iff: t produces a sound net //' whenever p is sound.

Intuitively, each "rewriting" transition i, defines a partial correspondence between elements

in its pre set into elements in its post set. Such partial relation determines which elements

places, transitions, and ares- must be deleted, and which ones must be created. For example, the

"rewriting" transition on Figure 4.7 determines that the place s3 must be deleted, and that the

transitions i' and i" must be created.

Definition 4.26 (Marked Rewriting Workflow Nets) LetMRWflNets C MRWNets be the

set defined as follows:

a) //(TV,//) G W, then, (TV,//) G MRWflNets.

b) The pair (TV,//), such that TV = (T,8~,d+), where T is a finite set of transitions, 8-, 8+ :

T —> MRWflNets are pre and post sets, and // G MRWflNets is a MRWflNets.

Using Rewriting Workflow Nets, it is possible to support structural changes over a Workflow

process definition. Moreover, it is possible to define Rewriting Workflow Nets that preserve sound

ness through the firing of its transitions. This is presented in the next section.

4.3.5 Using MRWflNets

In this section, it is presented how to use MRWNets in order to support the dynamic changes

enunciated in the introduction to this Chapter.
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Figure 4.12: The Extend Rewriting Transition

For example, "Extend" change was the first dynamic change presented, Figure 4.2a. Also,

"Extend" was defined as: a kind of refinement on the actual set of activities. The next is the case

for the "Extend" dynamic change.

Case 12 ("Extend" dynamic change ) Given a current inactive task A in a workflow process,

with its causal relationships, pre conditions, and post conditions, it is necessary to refine ít into two

sub tasks Al and A2, preserving its causal relationship, pre conditions and post conditions, and

adding a causal relationship from Al to A2.

Solution 13 ("Extend" rewriting transition) In agreement with the previous case, it is possi

ble to determine the next topics: the inactive task A, could be represented as a Petri Net transition

with no tokens in its input places; each of its pre conditions and post conditions must be represented

as a Petri Net place. The preservation of its causal relationship, pre conditions, and post condi

tions, at the refinement, means that its pre conditions must be the pre conditions of the task Al,

and that its post conditions must be the post conditions of the task A2. The addition of a causal

relationship from Al to A2 means that the end of the task Al activates the task 2.

Using this information, the rewriting transition that solves this dynamic change is depicted in

Figure 4.12.

Figure 4.13a shows a workflow net. The rewriting transition depicted in Figure 4.12 is not

already enabled. However, Figure 4.13b shows a marking evolution of the workflow net. Now, the

rewriting transition is already enabled. Finally, Figure 4.13c shows the net after the application of

the rewriting transition. Note that all properties required for this dynamic change are satisfied.

The next all, are the remaining changes depicted in Figure 4.2 and their solution as rewriting

transitions.

Case 14 ("Replace" dynamic change) Replace has the meaning of the substitution of a task

by another one

Solution 15 ("Replace" rewriting transition) Figure 4-14 shows a ''generic'' rewriting tran

sition that interchanges any workflow pattern by another one. Of course, in any particular situation,

this "generic" rewriting transition must be defined in detail.
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a t3

b) A marking evolution of N

t2 t3

b) The net N after apply the "extend" rewriting transition

Figure 4.13: The structural change produced by the "extend" rewriting transition

Case 16 ("Re-order" dynamic change) Re-order has the meaning of a new causal order be

tween the current set of tasks.

Solution 17 ("Re-order" rewriting transition) See Figure 4-15.

Case 18 ("RestEirt" dynamic changes) Restart means that the current workflow process must

be abruptly restarted.

Solution 19 ("Restart" rewriting transition) See Figure 4-16.

Case 20 ("Versión" dynamic change) Versión means that the current workflow process must

be readapted into a new business re-engineering rule, such as a refinement of tasks, a reordering of

tasks, etc.

Solution 21 ("Versión" rewriting transition) This dynamic change could be achieved using

one of the other rewriting transitions presented. Only, it is necessary to understand the sens of
"

Versión" in each particular scenario; for example, in a particular situation,
"

Versión" could means

'■

'congruent to top", i.e., all task in the actual workflow process must be congruent in its new versión

-that is, if in the current workflow process there exist the task A, then it is non congruent that in

the new versión of the workflow process exists the undo-task A-. Any way, the "Versión" dynamic

change depend on the particular situation.

Case 22 ("Transfer" dynamic change) Transfer means that all cases present in the current

workflow process must be present in the new workflow process versión.
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Figure 4.14: The Pattern-by-Pattern Rewriting Net

i

Figure 4.15: The 2-Interchange-Transition Rewriting Net

Solution 23 ("Transfer" rewriting transition) See Figure 4-17.

As another example, the next case combines some dynamic changes previously mentioned. Some

Rewriting transitions give solution to this particular dynamic workflow change.

Case 24 (Other alternatives and Re-Ordering tasks) Suppose the next scenario: In a work

flow process definition is necessary that there exist the possibility of new flow of activities for some

ones already on the system. Also, it is necessary to change the order between existing sequential

activities.

Solution 25 Suppose the next net: TV = (A = {i} o {sl},_? = {sl} > {s2),C = {s2} t>

{s3},D = {s3} O {o}),// = {/}. Now, if it is necessary that this net meets the first condition given

above, then it is necessary to add the next rule (or "rewriting" transition) to the net:

Let t' = ({u}, {v}) > TV' where TV' G W C W, and i' = u,of = v, where i' , and o' are the input

place and output place of TV' respectively.

This transition works in the following way: given o pair of places u, and v on the actual net,

it rewrites them into a Workflow process definition that has the place u as its input place and the

place v as its output place. Since the places u, and v are present in both the pre set and post set of
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Figure 4.16: The Reset Case Rewriting Net
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Figure 4.17: A rewriting transition with the transfer condition

the transition, then, this transitions "pastes" a new flow of activities between the places u andv.

In this way, the net can perform an altemative "flow-of-work" between any pair of places.

Now, let t" = (A = {u} > {v},B = {v} \> {w}) > (B = {u} > {v),A = {v} > {w}), then it is

easy to see that t" performs a reorder between two transitions A and B. So, the net (TVU {í',í"},//)

meets the problem mentioned above, and it is depicted in Figure 4-18. This net is closed in VV, i.e.,

if TV G VV, then any new net produced by the "rewriting" transitions will be ever in W.

4.4 Graph Grammars and Petri Net Grammars

In this section some concepts on Graph Grammar are presented. An apparent relationship between

graph grammar and RWNets is suggested. Moreover, since [Corradini, 1995] suggests graph gram

mars as a generalization for Petri Nets, it is natural to place some concepts in graph grammars into

Rewriting Nets. In short, this section aims to glimpses a suitable relationship between Rewriting

Nets and Graph Grammars, and then take advantage of them.
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Figure 4.18: The RWNet solution for the given planted problem

4.4.1 Graph Gramm.ar

It is well know that graphs are an expressive and versatile mathematical tool. In many practical

situations, nodes represents static elements, but there are many others practical situations when

the vertexes must be dynamic entities. So, it is desirable some ways for the graph manipulation. In

many cases this manipulations is implicit, embedded in a software program, for example. However,

explicit graph manipulations through well defined graph rewriting rules offers some advantages and

allows interesting properties analysis [Blostein, 1996]. The explicit graph manipulation is called

graph rewriting and it is useful in many research áreas [Blostein, 1996].

In general there exist two approaches for Graph Transformation: the double-pushout (DPO)

approach and the single-pushout (SPO) approach [Corradini, 1997].

Definition 4.27 (lebeled graph) Given two fixed alphabets Qy and fig for node and edge labels,

respectively, a labeled graph, overfly andüs, is a tupie G = (Gy,GE,8G,8G,lvG,leG), where Gy

is a set of nodes, Ge is a set of edges, 8_, 8G : Ge —

* Gy are the source and target functions, and

lvG : Gy —* fi-/ and leG : Ge —* ¡Je are the node and edge labeling functions, respectively.

Definition 4.28 (graph morphism) Given two graphs G and G' a graph morphism f : G —» G'

is a pair f = (fv : Gy —* Gy, Je '■ Ge —* G'E) offunctions which preserve source, target, and labels,

i.e., fyo8G = 8G' o fE, fvodG = 82' o fE, lvG' ofv= lvG
,
and leG' o fE = leG If both fy and

fs are bijections, the f is an isomorphism. If there exist an isomorphism f : G —> H, we write

G = H; also [G] — {H\G = H). An automorphism of a graph G is an isomorphism <¡> : G —* G; if

ó -*¿ ido, we say that <p is non-trivial.
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Figure 4.19: A Cliente/Server System Graph Grammar

Definition 4.29 (Graph productions) A graph production is an element p : (L «— K A R),
where L, K, and R are graphs, called left-hand, interface, and right-side of the p production. The

elements l : K —+ L, and r : K —■> R are graph morphisms; p is the ñame of the graph production.

Suppose, without lose of generality, that in a production p : (L <— K JJ R) morphisms / and r

are inclusions. Then, intuitively, the production could be interpreted as follows: all elements in K

must be preserved; all elements in L which are not present in K must be deleted, and all elements

in R which are not present in K must be created.

L T

Definition 4.30 (span-isomorphic productions) Given two productions p : (L «— K —> R)
V r'

and j/ : (Ll <— K' —» R') a span-isomorphism r : p
—*■ p' is a tupie of isomorphisms r =

(4>L : L —> L', 4>K : K —» K'
, <pR : R —> R') such that <j)L o l = l' o <pK and (¡>R o r = r' o tpK.

Definition 4.31 (Graph Grammar) A Graph Grammar is a pair Q = Up : L <— K -X R)peP,Go
where the first component is a finite set of production ñames over P, and Go is a graph, called the

start graph.

Definition 4.32 (pushout and pushout complement) Given a category C and two arrows b :

A —► B, and c: A—> C inC, a triple (D,g : B —» D, f : C —> D) is called a pushout of (b, c) if

• g ob
= f o c, and

• for all objects D' and arrows g' : B --> D' and f'-.C^D' with g' o b = f o c, there exist a

unique arrow h : D —> D' such that h o g
= g' and ho f = f
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Figure 4.20: Direct Derivation as double-pushout construction

For more concepts on category theory see [Lañe, 1971].

Ir
Definition 4.33 (direct derivation) Given a graph G, a graph production p : (L <— K —* R),

and a match m : L —♦ G, a direct derivation from G to H using p, based on m, exist iff the diagram

in Figure 4-20 can be constructed, requiring that both squares be pushouts in Graph. In this case,

D is called the context graph, and we write G ■=■> H, m short G =^=> H.

I r

Given a production p : (L <— K —> R) and a graph G, it is possible to apply p over G, if there

exist an occurrence of L in G, i.e., a morphism m : L —> G, called a match. Ifp is applicable to G

through m, then it is produced the graph H, as shown Figure 4.20, it is denoted G =4- H.

Example 4.2 (A Graph Grammar) As an example of a graph grammar, letC/S = ({REQ,SER,REL},Gi

be the graph grammar on Figure 4-19> then C/S is the graph grammar for a Client/Server system.

This graph grammar works in the following way:

In this case, a client could perform an internal activity when it decides to make an asynchronous

request to the server. This is represented by the production REQ depicted in Figure 4- 19a.

Now, if the client make a request to the server and the server is idle, then the connection between

them take place. This is represented by the production SER depicted in Figure 4- 19c.

If it is the east when the communication between the client and the server must be done, then

connection is released. This is represented by the production REL depicted in Figure 4- 19b.

Finally the Figure 4-19d shows the start graph: a client performing an internal activity and the

server in the idle state.

Finally, there exist many interesting results of the algebraic approach of the graph transfor

mation, such as: independence and parallelism of productions, amalgamation and distributions of

direct derivations, etc. For more see [Corradini, 1997]

4.4.2 Petri Net Grammar

Now, in this section it is defined Petri Net Grammar, a special case in Rewriting Nets. Basically,

a Petri Net Grammar is a simple restriction in Rewriting Nets that allow to transitions rewrites at

most ordinary Petri Nets. It is very similar to the case of Graph Rewriting, with some finesses.

In general, a graph rewriting rule r is applicable over a graph G iff there exist a match for its

lest-side graph; then the graph transformation could take place.

On the other hand, a "rewriting" transition i in RWNets is enabled iff there exist a match for

its pre set, which may includes a marking -i.e., a certain state on the system-; then the Petri Net

transformation could take place. The formal definition for a Petri Net grammar is given below.
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a) The WK transformation rule

N >[]< N U{s}

^s

Where (sleN.such that:

1. The place s is not an isolated place in N U(s).

2. The place s is a nonnegative linearly dependent place

inN U|s).

b) The \|/s transformation rule

N jQc. N U{t}

Where (t)eN.such that:

I . The transition t is not an isolated transition in N ^(t).

2. The transition l is a nonnegative linearly dependent place

in N *-4t).

c) The V|/_ transformation rule

Figure 4.21: A Petri Net Grammar

Definition 4.34 (Petri Net Grammar) Let (TV,//) be a MRWNets, where TV = (T,<9_,¿>+).

Then (TV, //) is a Petri Net grammar (PTGrammar) ifffor all t G T, -9¿(í) is a MPTNet, / = -,+,

and p is a MPTNets.

Definition 4.35 (Isomorphic Rewriting Transition) Let (TV,//) G MRWNets, where TV =

(T 8-, 8+)- Let t.t' e T Then, t and t' are isomorphic, denoted t = i'
, iff there exist a parí of

isomorphisms f : 8-{t) -> 8-{t), and g : 8+ (i) -> 8+ (i').

As in graph grammars, where a pair of span-isomorphic production determines that they pro

duce a similar transformation over a graph model, in RWNets, a pari of isomorphic rewriting

transitions determines that it rewrites the Petri net model in a similar way.
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Intuitively, in both cases, graph grammars and RWNets, it is possible to remove one of these

isomorphic rewriting elements, giving a more light model of the system with a similar behavior.

Figure 4.21 shows three rewriting transitions. Such rules are called: ipA,ips,ir>T> respectively.

Given a MPTNet (.V,/tX such that TV = (T,d-,d+), then they works as follows:

• The ipA rule transforms a set of transitions, places, and ares -as it is shown in its pre set-,

into the net of its post set. It is easy to see that no places and no transitions are missed after

to apply this rewriting transition. Moreover, a new place and a new transition are added. It

is depicted in Figure 4.21a.

• The vjs rule adds a new place s into a given net and then conneets it in such way that this

place becomes a nonnegative linearly dependent place. Moreover, the new place s is not an

isolated place in the compounded net. This rule is depicted in Figure 4.21b.

• The -07* rule is quite similar to the %ps one, in the way that the ybT rule add a new transition i

to a given net and then connect it to the net such way that i becomes a nonnegative linearly

dependent transition. Also, the new transition i is not an isolated transition. This rule is

depicted in Figure 4.21c.

The last three rewriting transitions are so important since it is proved that this rules, using

the loop net -Petri Net with one place and one transition and a loop between them- as a start net,

produce the set of all well-formed Free-Choice Petri Nets! [Desel, 1995].

Since the Petri Net grammar ({V'yi-V's-V'T.-Mo)- where p_ is the loop net, produce all well-

formed Free-Choice nets, it is easy to see that these three rewriting transitions are sound.

As an application example for Petri Net grammar, look the next grammar:

({P -by
— P, Restart, Cancel, tpA,ips,ipT},p0)

If it is constrained the P —

by
— P to rewrite only workflow nets that are Free Choice Nets and

Po be the loop net, then we have a Petri Net grammar that produce all well-formed workflow nets

that are FC Nets. This is easy to see since the V'^V's- an(*- i'T are yet mentioned, they are closed

under the set of all FC Nets, and the P —

by
— P rewriting rule was constrained to FC Nets. The

Restart and Cancel rewriting rules does not perform any change in the net structure, but they

perform a change on the net markings. Then, we starting with the loop net /z0 we could construct

any well-formed free choice workflow net that could change any workflow subnet by other workflow

net at any time. Also, this net could transfer any reachable marking into both the START state

or the END state.

For the Dynamic Change in Workflow Management, it is possible to construct a Petri Net

grammar that meets the specific class of dynamic change.

A similar approach of Petri Net Grammars was studied in [Padberg, 1998] and [Padberg, 1998 LNCS],

4.4.3 Conclusions

Dynamic Nets proposed by [Buscemi, 2001] and [Asperti, 1996] allow a degree of flexibility. Despite

this flexibility, Dynamic Nets have some restrictions: for example, given two sequential transitions,

it is no possible to perform its parallel representation. Rewriting Nets represent an extensión for
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Dynamic Nets. Rewriting Workflow Nets describe a framework for the dynamic change within

Workflow Management, using Petri Nets.



Chapter 5

Implementation of RW-Nets

This chapter introduces the implementation of some rewriting transitions applicable over all Petri

Nets, whenever there exist a match for its pre set; a module integrating a set these rewriting

transitions is built into Petri Net Kernel (PNK) -a software tool that allows to construct Petri

net software tools-. First, an overview of PNK is presented, then the main features of the set of

rewriting transitions is described, through their application over a workflow net.

69
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5.1 Implementing dynamic changes

A workflow model expressed as an ordinary PN is the core of a software implementing workflow

management system (WFMS). The aim of this chapter is to demónstrate that the use of RWNets

provide dynamic change capabilities to a PN based WFMS.

For this propose, an software implementation over Petri Net Kernel (PNK) was developed in

order to perform structural changes over Petri Nets, using RWNets concepts.

Several rewriting transitions were implemented as Java classes:

• cancel-case rewriting transition: this transition transform any reachable marking into the

END state by a given workflow net.

• reset-case rewriting transition: this transition transform any reachable marking into the

START state by a given workflow net.

• pattern by pattern rewriting transition: this transition replace a workflow pattern by another

one.

• interchange two transitions: this transitions interchange two sequential transitions.

• sequence to parallel rewriting transition: this transition transform two sequential transitions

into a pair of parallel ones.

• parallel to sequence rewriting transition: this transition transform two parallel transitions

into a pair of sequential ones.

Before to describe the module for these rewriting transitions implementation, an overview of

the PNK is presented.

5.2 The Petri Net Kernel

The PNK provides an framework for the construction of Petri Net tools [Kindler, 2001], and is

divided into the next main modules: the PNK Kernel, the PNK Application Control, the PNK net

element extensions, and the PNK exceptions, Figure 5.1. The next section explores some of these

modules.

The PNK uses the PNML language -a language for the description of petri nets based on

XML- [Weber, 2002], that provides a generic interchange mechanism between Petri Net software

applications.

The PNK provides a graphical net editor, that allows to construct a net, dragging and dropping

places and transitions; also it allows to the user to save, to open and to modify files containing

nets. Figure 5.2 shows a window of the PNK editor in which is depicted a workflow net.

The PNK also provides a net simulator, that allows two operation modes: it works with or

without the user interaction. Figure 5.3 shows the case where the net simulator interacts with

the user. In this case, the PNK simulator requests to the user for the selection of one emphasized

transition. Of course, the set of emphasized transitions are the enabled transitions in the current

marking.
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Figure 5.3: The PNK Simulator

The PNK Kernel is the core of the PNK. It provides a complete set of Java classes that meet

the major concepts of Petri Net It has mainly the next Java classes:

• Net : This class provides a complete description for a Petri Net. It offers methods to access

their ares, places and transition.

public final class Net extends Graph {

public Vector getArcsQ

public Vector getPlacesQ

public Vector getTransitions()

public FiringRule getFiringRuleQ

} // class Net

• Are: This class describes an are in Petri Nets. When it is created a new are it register itself

into the net passed as constructora parameter. It is possible to assign an inscription, or

weight, to a certain are. Also, it is possible to know the source and target nodes for a given

are, etc.

public class Are extends Edge {

public Arc(Net net, Node source, Node target, Object initiator)

public Inscription getInscription()

public Place getPlace()

public Transition getTransition()

/// METHODS INHERITED FROM class Edge:

public Node getSource()

public Node getTarget()

} // class Are
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Figure 5.4: The RW-Nets implementation

» Place: This class describes a place in Petri Nets. When it is created a new place, it register

itself into the net passed as constructor's parameter. It is possible to know the actual marking

for a place, the input and output edges, etc.

public final class Place extends Node

public Place(Net net, String ñame, Object initiator)

public void delete(Object initiator)

public Marking getMarkingQ

public void setMarkingAsInitial()

} // class Place

» Transition : This class describes a transition in Petri Nets. As in the place class, when it

is created a new place, it register itself into the net passed as constructor's parameter. It is

possible to know the input and output edges of a transition, etc.

public final class Transition extends Node {

public Transition (Net net, String ñame, Object initiator)

public void delete(Object initiator)

public Mode getMode()

} // class Transition

5.3 A module for implementing RWNets

The software developed in this work is mainly divide into: the set of rewriting transitions, the

substitution for RWNets, and the Firing rule for RWNets, Figure 5.4.
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Figure 5.5: The PNK Subnet application

• The set of rewriting transitions: this set of rewriting transitions were introduced at the

beginning of this chapter, and were implemented as Java classes.

• The substitution for RWNets: this function implements the Substitution for RWNets defini

tion (see the RWNets section in the previous chapter) . Note that this function implementation

is a simplified versión of the original definition, since the rewriting transitions implemented

in this section rewrite only ordinary Petri Nets.

• The Firing Rule for RWNets: this function implements the Firing Rule definition for RWNets

(see the RWNets section in the previous chapter); in short, this function makes the structural

changes after the firing of a transition in RWNets.

Also, as an auxiliary application, it was developed the Subnet Application. This application

allows the user to select the subnet of the current net in which the user wants to work, Figure 5.5.

The PNK Subnet application requests the user for the selection of one emphasized object, then

it keeps the subnet selected by the user -simulating in this way, the matching for the pre set of a

rewriting transition-.

The set of transformation rules that allows to perform structural changes over a Petri Net, are

implemented as follows:

Problem 26 (Cancel Case) This problem deals with the cancellation of a workflow case, i.e.,

one workflow instance currently executed must be abruptly finished. Figure 5. 6 shows a rewriting

transition that meets this problem. As it is shown, in a symbolic way, any marking on the net is

mapped to its END state.
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Figure 5.6: The Cancel Case Rewriting Rule

Solution 27 (Cancel Case Rewriting Rule) CancelRule.java: This Java class sends any reach

able marking over the actual net to its END state, i.e., the marking with one token in its output

place "o'' Figure 5.7 shows the effect produced by the application of this rule over the net on the

PNK editor of the Figure 5.2. As it is shown, the workflow net was "canceled"

Problem 28 (Reset Case) This problem deals with the re-initialization of a workflow case, i.e.,

one workflow process currently executed must be abruptly restarted. Figure 4-16 shows a rewriting

transition that meets this problem. As it is shown, in a symbolic way, any making on the net is

mapped to its START state.

Solution 29 (Reset Case Rewriting Rule) ResetRule.java: This Java class sends any reach

able marking over the actual net to its START state, i.e., the marking with one token in its input

place "i" Figure 5.8 shows the effect produced by the application of this rule over the net on the

PNK editor ofthe Figure 5.2. As it is shown, the workflow net was "restarted"

Problem 30 (Pattern by Pattern) This problem deals with the replacement of a Workflow pat

tern by another one. Figure 4-14 shows a rewriting transition that meets this problem. As it

is shown, a certain workflow pattern, on the pre set of the transition, is be changed by another

workflow pattern, on the post set of the transition.

Solution 31 (PatternByPatternRule) PatternByPatternRule.java: This java class replace a

certain Workflow pattern present in the actual net by another one elected by the user. Figure 5.9

shows the effect produced by the application of this rule over the net on the PNK editor of the Figure

5.2. As it is shown, a Simple Activity pattern has been changed by the XOR-Split pattern.

Problem 32 (Interchange two Transition) This problem deals with the change of order be

tween two sequential transitions. Figure 4-15 shows a rewriting transition that meets this problem.

As it is shown, two sequential transitions are changed by the same two activities but in inverse

order.
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Solution 33 (Interchange2Transitions) Interchange2Transitions.java: This java class inter-

changes two sequential activities, i.e., if it is given two sequential activities A
—* B, after apply this

rewriting transition these transitions must have the new sequential relation B
—> A. Figure 5.10

shows the effect produced by this rule over the net on the PNK editor of the Figure 5.2. As it is

shown, transitions t2 and t4 have now an inverse order.

Problem 34 (Sequence to Parallel) This problem deals with the change of two sequential tran

sitions for its parallel execution. Figure 5.11 shows a rewriting transition that meets this problem.

As it is shown, two sequential transitions are changed into its parallel representation.

Solution 35 (SequenceToParallelRule) SequenceToParallel.java: This java class performs the

next action: given two sequential transitions, it performs its parallel representation. Figure 5.12

shows the effect produced by the application of this rule over the net on the PNK editor of the Figure

5.2. As it is shown. the transitions t.2 and tj have now a parallel relationship.

Problem 36 (Parallel to Sequence) This problem deals with the change of two parallel transi

tions into its sequential execution. Figure 5.13 shows a rewriting transition that meets this problem.

As it is shown, two parallel transitions are changed into its sequential representation.

Solution 37 (ParallelToSequenceRule ) ParallelToSequence.java: This java class, obviously,

performs the sequential representation for two given parallel ones. Figure 5.14 shows the effect

produced by by the application of this rule over the net on the PNK editor of the Figure 5.12. As

it is shown, transitions t2 and t4 have now a sequential relation.
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Chapter 6

Conclusions

This thesis addressed the problems of modular modeling and dynamic change in workflow manage

ment systems (WFMS). For the first problem, synthesis method for the incremental construction

of complex workflow models, expressed as workflow nets (WFN), a subclass of Petri nets, was pro

posed. In order to cope with the dynamic change problem, it was proposed Rewriting nets (RWN),

an extensión to dynamic nets that allows structural changes on WFN models.

This adaptive synthesis method allows to build progressively sound WFN models avoiding the

analysis of properties of large and complex final models. The method is suitable for the initial

definition of a WFMS and it is easy to handle since it is based on the successive composition of

WFN models that equivalent to well known workflow patterns.

The strategy of the synthesis method is based on the refinement of places; this strategy may be

complemented with refinement of transitions, yielding a more complete method for the construction

of complex workflow models.

Regarding the dynamic change problem, it has been shown that RWN supports the ability

of a WFMS for on-line adapting of its internal WFN model. Thus modifications issued from

environmental changes, new strategies, or process reengineering can be easily implemented by

means of a set of rewriting rules that act as a graph grammar on the current WFN model. This

has been illustrated through an implementation of a reconfigurable WFMS; the prototype built

into PNK shows that the core of a WFMS based on a WFN model can be modified during the

execution.

In this work the workflow model and the set rewriting rules (expressed as RWNets) are separately

handled; however it could be interesting to consider the case in which both model and rules are

specified using RWNets. On the other hand, we feel that the relationship between RWNets and

graph grammars should be more deeply studied exploiting existing results for this last class of

formalisms.
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