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Resumen:

Este trabajo se divide en 2 partes. La primera es el análisis matemático de series de tiempo
auto-similares. Los estimadores clásicos para la media y varianza de una muestra, o sus

estadísticas, comúnmente llevan a cálculos polarízacos cuando las observaciones de dicha

muestra están correlacionadas. Para proponer estimadores no polarizados para estas

estadísticas, se propone un conjunto de funciones ortonormales (de tipo wavelet). A través del

análisis de muestras mediante ese conjunto de funciones se obtienen estimaciones no

polarizadas de la media, varianza y el parámetro de Hurst (//) de seríes de tiempo. Uno de los

principales resultados de este trabajo consiste en la clarificación acerca de estimador basado

en la varianza de las series agregadas: varios autores afirman que el estimador es polarizado y
recomiendan no usarlo más que para obtener una estimación burda el índice de auto-similitud

(H). En este trabajo se muestra que esto es debido a una mala interpretación de un problema
mal planteado, es decir, para estimar el parámetro H es necesario obtener las respectivas
varianzas de las series agregadas, pero éstas a su vez dependen del valor de H. Se plantea una

alternativa a este problema, de la cual se deriva un estimador no polarizado, con varianza

mínima, basado en wavelets. La segunda parte de este trabajo consiste en el desarrollo de una

metodología para el análisis estadístico y el modelado de las características de una

comunicación VoIP (Voice over Internet Protocol), tales como el retardo de los paquetes y su

pérdida en la red. Para este propósito, las ecuaciones de análisis presentadas en la primera

parte se usan en combinación con otros modelos estadísticos como los procesos discretos de

Markov (para capturar el comportamiento en ráfaga de las pérdidas de paquetes), el factor R

del modelo E de la ITU-T, y la distribución de Cauchy (para describir la natura dd jitter). La

referencia de máxima calidad de servicio (QoS) es la voz PCM 64kbps 8bits/muestra, tal

como en la red telefónica pública conmutada (RTPC). Los resultados de este trabajo sirven

para incrementar la calidad de servicio percibida con presencia de deteriorios, mediante el

ajuste adaptivo de algunos parámetros como el tiempo entre salida de paquetes, la

redundancia y el tamaño del buffer de recepción. Los análisis y metodologías propuestos se
verifican mediante simulaciones.
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Summary:

This work is divided in two parts. The first one consists ofthe mathematical analysis of self-

similar time series. For that, a set of orthonormal functions (wavelet-type) is proposed. Such

analysis allows the unbiased estimation of the mean, variance, and Hurst index (H) of those

series, differently from the classic estimators, which are biased always except for the case

where there is no correlation. One of the main results is the clarification about the variance-

based H estimator. Several works affirm that this estimator is biased and they recommend not

to use it, but in this work it is explained that this is a misinterpretation of an ill conditioned

problem: to estimate H it is needed to calcúlate the variances of the aggregated series, but

these also depend on H. A solution to this ill conditioned problem is proposed, leading to an

unbiased, minimal variance waveled-based method. The second part of this work consists of

the development of a methodology for 1) the statistical modeling of the characteristics of a

VoIP communication, such as packet delay and loss, and for 2) the optimization of the

Quality of Service (QoS) by setting adaptively the adjustable parameters, such as: the packet

inter-departure time, the level and type of redundancy and the de-jitter buffer size. The

reference of "máximum possible QoS" is the 64kbps 8-bit/sample PCM voice codification

(either mu-law or A-law) with zero delay and loss, similarly to the Public Switched

Telephone Network service. The proposed methodology estimates the probabilities of loss

and the delay from the last n packets and sets the mentioned adjustable parameters in order to

achieve the máximum QoS, measured using the E-model's R factor, for the reception of the

following packet (e.g., packet n+1). The proposed estimator considers that packet loss can be

modeled using two-state discrete-time Markov chains, and that the packet delay is correlated

so that it can be predicted using a linear predictor. An estimation of the impairment of the

Quality of Service when using two different codifications, i.e., one type for the normal

information and other type for the redundant data, is proposed. The proposed methodology is

verified by simulation and measurements.
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Abstract

This work is divided in two parts. The first one consists of the mathematical analysis of self-

similar time seríes. The classical estimators for the sample mean and variance, or their statistics,

commonly lead to biased calculations when the observations of the sample under study are

correlated. In order to propose unbiased estimators for these statistics, a set of orthonormal

functions (wavelet-type) is proposed. Through the analysis of samples by means ofthe proposed

orthonormal basis, unbiased estimation ofthe mean, variance, and Hurst index (H) ofthose seríes

is achieved. One of the main results of this work is the clarification about the variance-based H

estimator: several authors affirm that this estimator is biased and they recommend not to use it

but to provide a rough estimation ofthe self-similarity index. In this work it is explained that this

is a misinterpretation ofan ill-conditioned problem, i.e., to estimate H it is needed to calcúlate the

variances ofthe aggregated series, but it is shown that these also depend on H. A solution to this

problem is proposed, leading to an unbiased, minimal variance waveled-based method. The

second part ofthis work consists ofthe development ofamethodology for the statistical analysis

andmodeling ofthe characteristics ofa Voice over InternetProtocol (VoIP) communication, such

as packet delay and loss. For that purpose, the analysis equations in the first part ofthis work are

used in combination with other statistical models such as the discrete Markov processes (to

capture the bursty behavior of packet losses), the E-model's R factor (to estimate the perceived

Quality ofService, or QoS, ofa VoIP cali), and the Cauchy distribution function (to describe the

nature ofthe packet delay jitter). The reference corresponding to the defined máximum possible

QoS is the 64kbps 8bit/sample Pulse Code Modulation (PCM) voice codification (either ji-law

or .4-law) with zero delay and loss, similarly to the Public Switched Telephone Network service.

The results ofthis work can be used to increase the perceivedQoS, in the presence of impairments,

by setting adaptively some adjustable parameters, such as: the packet inter-departure time, the

level and type of redundancy, and the de-jitter buffer size. The proposed analyses and

methodologies are verified by simulations and measurements.

Abstract 3



Introduction

In the past decades, the self-similar processes and long range dependence (LRD), also named long

memory, have been applied to the study and modeling ofmany natural and man-made complex

phenomena. These kinds of processes have been particularly attractive in the pursuit of optimal

design and configuration of network Communications.

The published work of Leland et al in 1993 demonstrated that Ethernet traffic is statistically

self-similar and that the commonly used models are unable to capture that fractal behavior;

highlighting that a burstiness and LRD are present when H > 0.5 [1], [2]. Since then, researchers

have been studying extensively long memory processes and their impact on network performance,

e.g., Karagiannis et al stated that the identification ofLRD is not trivial and that not all scenarios

in modern networks present LRD characteristics, e.g., traffic in the Internet backbone is more

likely to be Poisson type instead ofLRD [3].

Many researchers have also addressed their studies to determine if network traffic is

sufficiently modeled by self-similar processes or a more general model is needed, e.g., one that

considers multiscaling or multifractality [4], [5], [6]. The advantage ofthe capability to model

complex systems with self-similar processes is that the correlation structure is defined by a single

parameter: the Hurst index (//).

Unlike other statistics, the Hurst index, although it is mathematically well defined, cannot be

estimated unambiguously from real world samples. Several methods have been developed then in

order to estimate it. Examples of classical estimators are those based on R/S statistic [7] (and its

unbiased versión [8]), detrended fluctuation analysis (DFA) [8], [9], máximum likelihood (ML)

[10], aggregated variance (VAR) [8], wavelet analysis [11], [12], etc. In [13], Clegg developed

an empirical comparison of estimators for data in raw form and corrupted. An important

observation is that the estimation ofthe Hurst index may differ from one estimator to another, and

the selection of the most adequate estimator is a difficult task. This selection depends greatly on

how well the data sample meets the assumptions the estimator is based on. However, through

analytical and empirical studies it has been discovered that the estimators that have the best

performance in bias and standard deviation, and, consequently, in mean squared error (MSE), are

Whittle ML and the wavelet-based estimator proposed by Veitch and Abry in [1 1]. From these

two estimators, the wavelet-based is computationally simpler and faster [1 1], [7].

In addition to the Hurst index, other statistical characteristics are needed to describe the

phenomenon under study. The most common are the first and second order statistics, i.e., mean,

variance, and correlation. The classical estimators of these characteristics have been proposed
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decades ago, e.g., Kenney and Keeping demonstrated in 1939 that the classical variance estimator

is unbiased for independent and identically distributed Gaussian observations [14], [15].

Confidence interval is also given for these estimations, e.g., P[R 6 (—3/vW, 3/VÑ)] w 99%

(where X is the sample mean estimated from a sample of size N) for a standardized white noise

process. This confidence interval is narrower as the sample size increases.

It has been claimed that most processes satisfy those common assumptions [ 1 6] . As it has been

expressed, however, other authors (Leland et al [1], [2], Taqqu et al [5], Tsybakov et al [17],

Veitch and Abry [11], and many others) conclude that traffic characteristics present correlation

and that the estimation of these statistics (including confidence interval) with the classical

estimators (which do not consider correlation) may lead to estimation errors and, consequently,

to wrong decisions or ¡naccurate models, especially when data presents accentuated LRD.

Several estimators of the Hurst index have been proposed, but many of them do not consider

the effect of correlation on the estimation of first and second order statistics, thus applying

incorrectly the classical formulae. Particularly, it has been claimed that the aggregated variance

method can only be used as a heuristic method, and that the Variance-Plot (see definition in

Section 1 . 1 .4), also named Variance-time Plot, can only be used to check whether the time series

is self-similar or not and, if so, to obtain a crude guess for the Hurst index [18 pp. 44]. Section

3.6 clarifies this point, demonstrating that the Variance-Plot can be estimated efficiently and that

the estimation ofthe Hurst index from it is actually unbiased and has minimum variance (similarly

to the wavelet-based estimator).

The importance of self-similar stochastic processes in communication networks is due to its

random and complex nature. It is the result of the convergence of information and media

transmission (data, voice, and video) through the same communication channel. As there are a

very high (and increasing) number of nodes (i.e., devices) connected to the network, and these

are being added in a random, decentralized manner, the network is asymmetric and also

practically random in both its topology and its usage. Additionally, the service provided by the

Internet is generally a "best effort" type, which means that the nodes, with some exceptions, e.g.

[19], [20], do not differentiate between traffic types and there is neither resource reservation ñor

prioritization.

Congestión, due to the high demand of network resources, is a cause ofthe impairment ofthe

Quality of Service, which consists of delay problems (i.e., the delay and its variation, namely the

delay jitter, are higher) and packet loss. For time-critical Communications, such as Voice over

Internet Protocol (VoIP), end-to-end delay and packet loss can have high impact on quality of

service [21]. A set of techniques are implemented in order to reduce the impairment ofthe time-

critical Communications. Múltiple packet transmission (MPT) and forward error correction

(FEC) are used to reduce packet losses, at the expense ofbandwidth and delay. Many codification

Introduction 5



schemes ofthe redundant information on later packets have been proposed in the literature [22].

The automatic repeat request (ARQ) technique, the correction scheme ofthe transmission control

protocol (TCP), is generally not suitable for real-time applications, which have a tighter delay

tolerance than usual. Also, the presence of a de-jitter buffer at the receiver helps compensating

the packet delay variation, and even packet reordering, at the expense ofadditional delay and cost.

After all, a de-jitter buffer is a memory buffer and its size depends, among other factors, on the

delay variation.

This document is organized as follows: theoretical basis is presented In Chapter 0, including

the definitions related to probability, self-similar processes, discrete Markov processes, and

quality of VoIP. Chapter 2 describes wavelet-based analysis and synthesis of self-similar time

series, and formulae regarding the variance ofthe aggregated series and the wavelet components,

which are used throughout the next chapters. Chapter 3 explains how the mean and variance of

discrete self-similar processes are distributed. It clari fies also a spread misinterpretation of the

popular Variance-Plot, settling that it does not underestimates the Hurst index by itself, but that

it can be used to estimate it without bias and with minimal variance. In Chapter 4 the E-model

and the R-factor are described [23], as weU as the improvements achieved by using FEC and two

different voice codees in the same flow. Also, algorithms to genérate artificial series of loss and

delay are presented. In Chapter 5, the performance ofthe estimators ofthe Hurst index, the mean

and variance of second-order self-similar processes as well as the synthesis of Gaussian- and

Cauchy-distributed time seríes are evaluated. Artificial and real world time series are used for that

purpose. Chapter 0 summarizes the work.
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Objectives

This work is motivated by the mentioned importance ofthe self-similar processes in many áreas,

especially in the analysis and modeling of Internet traffic, and by the fact that there are still some

misunderstandings and bad practices thatmust be overeóme. The main objectives are summarized

as follows:

• To provide a mathematical basis for the analysis of time series, particularly those

corresponding to discrete self-similar processes and discrete Markov processes.

• Based on the mathematical definitions, to derive additional formulae regarding the

statistics of those series, such as the Hurst index, the mean, variance, correlation, and

distribution.

• To describe a VoIP communication channel, and to identify several applications of the

presented mathematical concepts to improve the quality ofthe communication.

• To evalúate the performance ofthe proposed estimators and improvements using artificial

and real worid time series.

Objectives 7



1 Theoretical Basis

1.1 Self-similarity

Self-similarity describes the phenomenon where certain properties are preserved irrespective of

scaling in space ortime. Deterministic self-similarity is clearly exemplified by popular figures as

Sierpinski's triangle orKoch's snow flake. This form of self-similarity is named scale invariance,

and makes different scales ofthe same object undistinguishable. Stochastic self-similarity is not

that obvious; it refers to how statistical properties ofa stochastic process are preserved under time

expansión. Stochastic self-similarity is defined for continuous and discrete time stochastic

processes.

Self-similarity (either continuous or discrete time) is tightly related to short- and long-range

dependencies (SRD and LRD, respectively). The degree ofself-similarity is defined and measured

through the so named Hurst index H (0 < H < 1). It is known that processes with H < 0.5 are

SRD, and processes with H > 0.5 are LRD. IfH = 0.5, neither SRD ñor LRD are present. E.g.,

the commonly used white Gaussian noise (WGN) has always H = 0.5 and does not present any

dependency.

Processes with LRD are also named long-memory, as current and future realizations of these

are strongly correlated. The dividing line between SRD and LRD processes is not ambiguous: for

LRD processes the auto-covariance function is not absolutely convergent (i.e., the sum is not

finite), while it is for SRD processes. This work refers only to stochastic discrete time self-

similarity.

1.1.1 Internet traffic is self-similar

Although created by man and machine, the complexity of Internet traffic is such that in many

ways it requires treatment as a natural phenomenon. Even if each atomic component of the

network is well understood, the whole is so complex that it must be measured and its emergent

properties "discovered" [1]. For more than a decade, network researchers have been heavily using

self-similar and LRD models, as these seem to capture the bursty behavior of many network

characteristics [1], [24]. Despite of its widespread use, LRD analysis is hindered by our difficulty

in actually identifying dependence and estimating its parameters unambiguously [3]. Authors

have been researching about the estimation of the statistical parameters characterizing self-

Chapter 1 : Theoretical Basis 8



sánbrify and LRD. for both off-line and real-time estimation. and varióos estimators have been

proposed ín fe pursuit of higher accuracy and efficiency [1 1], [131, [25], [26], [27].

The discovery of LRD in packet data was followed by detailing evidence for multi-fractal

behavior ofTCP/IP traffic in WANs. However, in teros ofnetworking physical mechanisms for

such behavior have never been convmcingly -Icrnonstrated. It has been shown that the ""evidence''

tor multi-fractal behavior of aggregated traffic is actually weak in many ways. Veitch et al state

that "pseudo scaling" is often confused with trae scaling, due to shortcomings in the statistical

tools [28].

Sdf-simüarity describes the phenomenawhere certain properties are preserved irrespeet ive of

scaling in space or time, ft can be defined as follows:

Definition I: A real valued continuous rime stochastic process {Y.t),
—oo < t < oo} is said to

be self-similar if for any constara a > 0, there exists 0 < H < 1. called index of self-similarity

orHurst parameter. such that Y{at')~-aHY(Jty, Va > 0; t 6 R,where the symbol ~ means equality

in the sense of finite-dimensional distributions.

1.1.2 Set^iirafliiüj and Long Range Dependence

A common definition of LRD [1 1] is the slow, power-like decrease at large lag of the auto

covariancefunction (ACV) of a stochastic process Xt, given by:

vjr(fc)~<*r|J(cr<i-«>- a 6 (0,1) (1)

Equivalently, it can be defined as the power-law divergence at the origin of its spectrum:

fx(v)~Cf\v\-«; v - 0 (2)

Each of these definitions includes two parameters: (a, cy ) at (a, c¡r) respectively, which are

related as:

Cf
= 2(2-.)-°cvr(a) sin[(l

- a>r/2] (3)

where f is the Euler function.

The parameter a is related to the Hurst exponent as:

1.1.3 Discrete Time Self-similarity

When considering discrete stochastic time series the definition of self-similarity is given in terms

ofthe aggregated processes. Let {X_; t £ N} be a discrete time series derived from a self-similar

Chapter I: Theoretical Basis 9



process with stationaiy increments (ff-SSSI); then, others series can be obtained by aggregation.

The new aggregated time series is a sequence given by (5):

X(m) = {X¡rm);keN} (5)

where each termXp is defined as:

km

i=(k-l)m+l

and where m represents the aggregation level. That is, each new time series is obtained by

partitioning the original time series into non-overlapping blocks of size rn and then averaging

each block to obtain its respective valúes.

Let^ be a covariance stationary discrete time series withmean px = 0, variance a_\ and ACV

yx(fc), and JQ its aggregated series. Then it is said that Xt is self-similar, //-ss, ifthe following

(7) holds [29]:

X^~m"-Í-Xt (7)

where ~ means equality in distribution.

The definition ofdiscrete self-similarity (7) has important implications; some of them are [5]:

i. Zero mean

E{Xt) = E(xim)) = 0 (8)

ii. Power law ofthe qth order moments:

E[{4m))q]=Tn«»-»B[ÍXty] (9)

iii. Power law ofthe qth order absolute moments:

E(\x™\q) = m«»-»EQXt\<>) (10)

Many estimators are based on these properties, per example, the classical variance estimator

is based on (10) for 0 = 2.

1.1.4 Second-order Discrete Time Self-similarity

A second-order definition of self-similarity is derived from (9) with q
= 2. The variance and

covariance ofthe aggregated time series are defined, respectively, by (1 1) and (12) [17], i.e :

var{x™) = m2H-ívar(XJ (11)

and

2

Y_\m\k) = -y [(íc + 1)2H - 2k2H + (k
- l)2H];fc > 0 (12)

The normalized ACV, also named correlation coefficient, is then:

Chapter 1 : Theoretical Basis 10



PxW = 1¿LW = l[(k + l)2" - 2kw + (t
- l)2"]; * > O (13)

ax 2

Ifa discrete time series Xc satisfies these conditions, it is called second-order self-similar with

Hurst index H (W-SOSS).

It is widely known that W-SOSS processes with H > 0.5 present LRD and, in this case, the

sum of their ACV function diverges (see Section 2.4). Note also that the mean of an W-SOSS

process is not necessarily zero.

The plot log [var í JQ Jl vs. log(m) is usually known as Variance-Plot. It is a straight line

of slope 2H
— 2 for self-similar processes. This plot is the basis ofthe variance-based estimator

of the Hurst index. It has been "shown" in the literature that the variance-based estimator

underestimates the Hurst index and that the variance-based estimator throws a coarse estimation

of the trae Hurst index. Section 3.6 demonstrates that this is a consequence of inadequate

implementations of this estimator, i.e., the aggregated variance is estimated with the classical

formula [25], which is not correct if there exists correlation. An apparent solution is to use the

proposed unbiased estimator, but that leads to an ill-conditioned problem: the Hurst index is

needed to estimate the variance and vice versa. The solution fbr this situation is also described.

1 .1 .5 Wavelet Decomposition and the Logscale Diagram

The wavelet decomposition transforms a signal Xt into a sum of orthogonal components as

follows:

/ 2-

Jft = 22djr0'k)^-*(£) °4)

j=i k=l

where each function if>jj_{t) is derived from a basis function </>0(0* namely the mother wavelet,

by scaling and displacement, i.e.,

xpJJr(t) = 2-Íip0(2-it-V <15>

and coefficients dx(j, Jc) is the valué at time k of scale j. computed as a inner product between

the signal Xt and the wavelet function ^>¿*(t):

dx(J.k) = (X(t).rpiJc(t)) (16)

The statistic S2(j) is then defined from these coefficients as:

S.0) = E\dx<J.)\2 (17)

which, for an W-SOSS process, is related to the Hurst index as:

SzO) = c/C2>(2ií-1> (18)
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where the quantity CfC, related to the power ofthe process, is considered a constant.

The plot log2 S2 (/) vs* j forms the widely known LogscaleDiagram (LD-Diagram) described

by Veitch et al [1 1]. The LD-Diagram ofan W-SOSS process is a straight line of slope 2W - 1.

To obtain an unbiased estimation ofthe Hurst index from a real world time series based on the

LD-Diagram, it is also necessary to subtract the bias that results from averaging the logarithms

ofthe variances, i.e.,

E[\og2[S2(j)]} m £{log2[520)]}
-

§j (19)

where §¡ is the estimated bias [11]:

§j
=

¥(n,*/2)/ln(2)
-

log2(nj/2) (20)

and nj is the number ofcoefficients
available at each octave.

The LD-Diagram of an ideal second-order self-similar time series is a straight line; for real

world traces, in general, it is not. Then a linear regression, per example, can be applied in order

to estimate the Hurst index. Ifthe LD-Diagram cannot be adequatelymodeledwith a linearmodel,

then either the time series is not self-similar, i.e., the Hurst parameter is not an adequate statistic,

or the scaling behavior should be described with more than one scaling parameter, i.e., a single

Hurst parameter is insufficient across the spectrum, and a multi-fractal phenomenon occurs [26]

[18].

Note that even when the time series under study is not self-similar, the LD-Diagram can show

whether or not it presents LRD.

1.1.6 Classical Hurst Index Estimators

In this sections, the mathematical basis for several widely used Hurst index estimator is

described.

1.1. 6. 1 R/S Estimator

Let Yt be the partial sum ofXt: Yt = £¡=i _¥*. Then, the R/S statistic is defined as:

fw-sfelaa^-y15)-»^-^)] (21)

where S2(_l) is the variance ofXt and / is called lag.

If Xt is self-similar, then the R/S statistic is related to the Hurst parameter as expressed by

(22):

E{j(0}~dH;l ^oo (22)

The slope ofthe line that best fits the log-log plot of E ff (Oj vs* <■ is the estimation ofW.
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1.1.6.2 AMEstimator

The absolute moment of aggregation level m is defined as:

N/M

AMW> = ^£ \x™
- £ {x<m)}| (23)

k=l

The definition of discrete self-similarity (7) implies that

J4M(m)~mH-1;m->oo (24)

Then, the slope (s) of the line that best fits the log-log plot ofAM(m) vs. m and the Hurst

parameter estimation (fí) are related as (25) expresses:

fí = s + 1 (25)

1.1.6.3 Variance-BasedEstimator

The definition ofsecond-order self-similarity ( 1 1 ) is the basis ofthe aggregated variance estimator

(VAR), which consists of calculating the variance at many aggregation levéis, i.e. a set of valúes

for m, then applying a linear regression to the log(var{X^m^}) vs. log(m) plot.

It is known that the classical variance-based estimator underestimates W, particularly for those

traces with theoretical W greater than 0.5. Then, it has been claimed that this estimator is useful

only to obtain a fast-coarse approximation of the real Hurst parameter and, possibly, to check

whether or not the time series under study is W-SOSS [18].

/. /. 6.4 Periodogram-basedEstimator

The periodogram-based estimator (PER) considers the power-law behavior ofthe spectral density

function of self-similar processes, as expressed by (26). An estimation of W can be obtained by

computing a linear model from the log-log plot of the spectral density vs. frequency with the

lowest frequencies.

The estimation of the Hurst parameter (fí) and the slope of the linear model (i) are related as

expressed by:

/? =^ (26)
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1.1.6.5 MAVAR Estimator

The modified Allan's variance is defined by the ITU-T [27] as:

g/(T) =
2n%2(-V-3n+l)5" <27)

where Sn is:

Aí-3n+l n+j-l

(28)$n-
/_, ¿__

Xi-x-m
—

2Jt'.+n + Xt

j=l [ É=l

n = 1,2,3, ...,
-

,
t = nr0 and t0 is the sampling period.

The modified variance is related to the Hurst parameter as expressed by (29):

o-f(T)~fcr2W-4 (29)

Then, the modified Alian variance-based (MAVAR) estimation can be calculated by applying

a linear regression to the log-log plot of a_\ (t) vs t. W is related to the slope í? as expressed by

(30):

/? = |+2 (30)

/. /. 6. 6 Local Whittle Estimator

Whittle estimator has its basis on (31):

rt it

Q(J¡)= j^^dv+ j log(f(v,r,))dv (31)

where r¡ is a vector of parameters, I(v) is the periodogram and f(v,r¡) is the spectral density

function.

A more simple way ofestimating W is known as localWhittle (LWHI) estimator, whose basis

is:

f(v)~G(H)vl-2H;v^Q (32)

For this spectral density, the analog of (31) is:

M

*<*•*> =ñl(S&*+í°3Gv¡~2H) (33>

l=í
v 1

'

N 1 M

M must satisfy M < - and - + - -* 0 as Ai -» oo.
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An estimation of G function is:

^^tM (34)

Then, the estimation i? is the valué that minimizes the function R(H) defined as:

M

R(H) = log(e)-(2H-l)M-íYJl°9Vj (35)

;=i

1.1.6. 7 Wavelet-based Estimator

This estimator (WAV) is based on the estimation of the wavelet spectrum: the LD-Diagram

described in section 2.1, i.e., log2[E\dx(j/)\2] vs. /. The statistic E\dx(j,-)\2 is an exponential

function ofa [11]:

E\dxQr)\2 = 2iacfC (36)

The parameter a is estimated then as the slope ofthe LD-Diagram and it is related to the Hurst

index as expressed by (4).

The statistic E\dx(j,-)\2 is estimated as:

E\dx(jr)\2 = 2Ívar(C^-gj (37)

where the time series C^¡'lt are estimated from Xt as defined by (79) and its variance is estimated

as (127). g¡ is the bias described by (20) [11].

1.2 Inverse Cumulative Distribution Function Transformation

The inverse cumulative distribution function (ICDF) transformation produces a time series Yt with

cumulative distribution function (CDF) FY(y) from a random time series Xt with CDF Fx(x) by

applying the following sample-to-sample formula:

Vt
= F7\Fxíx_í) (38)

IfXt is uniformly distributed between 0 and 1, as Fx(xt) = xt, then (38) simplifies to:

yt
= Fy\xt) (39)
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1.2.1 Gaussian and Cauchy Distributions

The CDF function of a Gaussian RV is defined by the mean (fi) and variance (a2) of the

distribution:

X

Fx(x) = —==e -2^-cU (40)
J os2n

In the absence ofa closed form for (40), numerical approximations are used to estimate it.

A Cauchy RV has the probability density function (PDF):

1

L ■

(*~c)2j
<41>

res

where c, the location parameter, defines the location of the peak of the distribution and s, the

scale parameter, specifies the half-width at half-maximum. A standardized Cauchy RV has c = 0

and 5 = 1. An approximated standardization for a Cauchy RV is:

Xw.d-s-'ÍX^-c) (42)

The inverse of (42) produces a Cauchy distributed sample of certain location and scale

parameters from a standardized Cauchy sample, i.e.,

*(<-,■■) ~*s*(o,i) + c (43)

Unlike a Gaussian RV, there exist closed forms for the CDF and ICDF ofa Cauchy RV, which

are:

11 fx
-

cs11 fX
—

C\

hW =

2
+
ñ
arctan \~T~) (44)

fx1(p) = c + s-tan[ir(p-i)] (45)

1.3 Finite-state Discrete Markov Processes

Finite-state discrete Markov processes (also called discrete Markov chains, commonly) are used

for the modeling of packets receptions and losses. Consecutive received packets form a gap and

consecutive packet losses form a burst. According to the definition of burst used in this work,

there are not lost packets within a gap and there are not received packets within a burst. A second

(and slightly different) definition is used by other authors [30], which considers gaps as the

longest sequence of packets beginning and ending with a loss or the start or end of reception,

where the sequences of consecutive received packets are greater than or equal to certain valué

(('min) >n length (measured in packets). Similarly, these authors define the burst as the longest
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sequence of packets beginning and ending with a loss, where the sequences of consecutive

received packets are less than certain valué (Gmin) in length. Other two quantities need to be

defined to describe the packet loss rate (PLR): the gap and burst densities, defined as the percent

of received/loss packets within a gap/burst.

The first definition is used in this work in order to compare the two studied models (two- and

four-state) easily. Also, this definition helps avoiding the usage of gap and burst densities. Note

that the second definition converges to the first by setting Gm¡n = 1 and, consequently, both

densities are equal to 100%. Both definitions include also the burst and gap durations, defined as

the timestamp of the end packet minus the timestamp of the beginning packet plus the duration

of the end packet (expressed commonly in milliseconds) of the current gap or burst. These

durations can be computed from the gap length and burst length distributions, but they are not

used directly in the estimation ofthe E-model's R factor.

Previous works on error and loss modeling date from about five decades ago. These works

address the distribution of bit errors on telephone channels [30]. These models are also applied

on loss modeling for Internet Protocol (IP) networks. Although the losses in IP networks are more

common to occur at packet level, instead of bit level, these are correlated due to the time-

correlated occupancy of the network. Consecutive packet receptions and losses (respectively

named gap and burst) occur in such way that their respective length follow geometric-type

distribution [31] [32]. Bernoulli models are not well suited to this modeling because although

they can produce geometric distributions for gap and burst lengths, losses in real networks seem

to be correlated, instead of independent. I.e., the probability that a packet is lost (or received)

depends on whether or not the previous packet was lost.

At small time scales, i.e. a few seconds or minutes, a two-state Markov process can reproduce

the geometric type phenomenon for the homogeneous case, i.e., the PLR is the same (or almost)

through certain short time interval, but a non-homogeneous behavior becomes noticeable at larger

scales and, in this case, the two-state Markov process is insufficient, thus a more general model

is necessary. The four-state Markov process seems to capture or simúlate better this widely known

non-homogeneous behavior of the characteristics of network traffic. The four-state model

approach allows us to represent and simúlate those periods with low and high PLR that altérnate

in sequence according to certain probability.

1.3.1 Matrix Representation of the Steady State

Let 5 = Si,S2,...,Sm be them states ofan m-state Markov process and let p¡7* be the probability

ofthe process to pass from the state 5* to the state S¡, i.e., py = P(X¿ = x* |A'¡_:1 = *■_!). Having

the Markov property means that, given the present state, future states are independent of the past
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states, i.e., P(Jfn+1 = xn+1\Xn = xn,Xn__ = xn_-_, ... ) = P(Xn+1 = xn+1\Xn = xn). The

Markov processes used in this work also are time-homogeneous, which means that the

probabilities of transition between states are constant over time, i.e., P(Xn+1 = xn+1\Xn = xn) =

P(Xn = xn|Xn_! = xn-i).

All states communicate (are reachable from) each other, which makes the states diagram

irreducible. Also, the states diagram is aperiodic, i.e., state S1* can be reached from itself in any

number of steps (n = 1,2,3, ...).

The probabilities of transitions between states can be represented by a transition matrix. The

elements ofthe one-stepmxm transition matrix T are Ty
=

py . To obtain the n-step transition

matrix it is necessary to multiply the matrix itself n times [33], i.e.,

-____ = TJ1 (46)

As the number of steps (n) increases, the probability ofthe matrix to be in the state S¿ from an

initial state depends less on this one. i.e., as n tends to oo, the matrix T¡_ converges to amatrix with

the next form:

So = Hm Xn =
n—>oo

Sl s2

Sl s2

Sl s2

(47)

such that

si + s2 +
- + sm

= 1 (48)

In (47) and (48), s¡ represents the named steady probability of state 5¡. The steady-state

transition matrix £- can be obtained then by solving (48) and (49) [34]:

ST = S (49)

where5=[Si s2 ... sm].

Assuming that the states diagram is irreducible and aperiodic, the matrix T¡,_ is well defined

and unique.

1.3. 1. 1 NumericalApproximation

Obtaining analytical expressions for the elements of 7^_ (i.e., Sj, s2...) can be difficult when the

number of states is large. In this case, a numerical approximation is more suitable, which is

described as follows:

Let T be a m x m transition matrix, which has a unique steady-state solution, and let

{0*¡. v.); i = 1, ... , m} be its pairs of eigenvalues and eigenvectors (i.e., Tv- = A-Vj), such that

A* > Aj for i < j. This matrix T can be decomposed into the special form
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T = PDP-1 (50)

where P is a matrix composed ofthe eigenvectors ofT, D is the diagonal matrix constructed from

the corresponding eigenvalues and P-1 is the inverse of P. Then T__ can be calculated easily as

£, = ££"£-*- (51)

As all elements ofthe diagonal ofthe matrix D are lower than 1 except D1#1 (which is equal to

1), then

7^ = PD'P-1 = PD'P"1 (52)

where the only non-zero element ofD' is D'ltl = 1.

This method is also useful when obtaining short-term approximations, i.e., T¡_ = PDnP~1 for

small n.

1.3.2 Two-state Discrete Markov Process

The two-state Markov process states diagram is shown in Figure 1 . State Sx represents packet loss

and S2, packet reception. Two substitutions (pu = 1 —

p12 and p22
= 1 —

p21) aremade in order

to represent the states diagramwith the lowest number ofparameters. The steady-state probability

of state S_, i.e., the probability for this process to be in the state St in a random point in time,

namely the PLR is given by (53) [35]:

Pn

Vn + Vn
(53)

and clearly s2 = 1 —

s__.

1-PI2

Figure 1. Two-state Markov process states diagram. White and shady circles represent correct

and erroneous states, respectively.

The burst and gap length distributions (fb(k) and fg(k), respectively) can be expressed in

terms ofp12 and p2_, as expressed by (54) and (55):

/¡-(fc) =Pi2(l-Pi2)k-1 (54)

fg(k) =p2i(l-p2i)k-1 (55)

which have also respective means E{fb(k)} = í/pi2 and E[fg(k)) = l/p2i- It is easy to proof

(54), as Z?=1/b(fc) - 1 and fb(k + 1) = fb(k)
■

(1
-

p21); and similarly for (55).

Chapter 1 : Theoretical Basis 19



133 Four-state Discrete Markov Process

The four-state Markov process states diagram is shown in Figure 2. Missing arrows indicate
zero

probability. States St and S3 (shady circles) represent packet losses (erroneous); S2 and 54 (white

circles), packet reception (correct).

Six parameters (P21.P12.P43.P34.P23-P32 ■= (0.1)) are necessary to define all the transition

probabilities.Without loss ofgenerality, probabilities oftransitions between correct states, as well

as transitions between erroneous ones, have been set to zero.

The four steady-state probabilities ofthis process are:

1

Sl
=

1+Eu
■ P12P23

,
P12P23P34

P21 Vz\P?i P21P32P43

(56)

s2
=

1 I
P21 ■ P23

|
P23P34

P12 P32 P32P43

(57)

■«3
=

l ,
P34

,
P32 . P21P32

P43 P23 P12P23

(58)

«4
=

1 ,
P43

,
P32P43

,
P21P32P43

P34 P23P34 P12P23P34

(59)

r

low losses

A

~\r

high losses

^v

l-p,_ 1 "P43

Figure 2. Four-state Markov process states diagram. Only two types of transitions between

different states are allowed: from correct to erroneous and from erroneous to correct.

The probability ofthe process to be either in S__ or in 53, i.e., the PLR, is then:
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r = sl + ss (60)

The average burst length (b) is calculated as the quotient of the probability of loss and the

probability of transition from a lossless state to a loss state (61), that is:

S =
* + *

- - (61)
■S2(P21+P23) + S4(P43)

Similarly, the average gap length is:

q = Í62)
5l(Pl2) + S3(P3A + P32)

It is also easy to proof that the transitions from error state to correct state and vice versa have

equal probability, i.e. s2(p2_ + p^) + s4(p43) ■ s_(pu) + s3(p_n + P32).

The distribution ofthe burst length can be derived the following the next procedure:

Let fb(k) denote the probability that the burst length is Jt; Cj(lc), the probability that the burst

length is k or greater and the fcth transmission is from state S__ and C3(b), the probability that the

burst length is Hr or greater and fc1* transmission is from state S¿ and Cfc(fc), the probability that

the burst length is fc or greater such that C„(fc) = Cx(fc) + C3(fc) and /»(*) = Cb(k)
-

Cb(k +

1). Clearly Cb(k) = EJL*/»(0- Abo, as transitions between states Sx and Sj have zero

probability, C^fc + 1) ^(fc)(1-p-u) = Ci(l)fl
- Pu)* *** C3(* + 1) = C3(fc)(l

-

p^
—

pjj) = C3(l)(l
—

p^
— p***-*.)* Then to calcúlate /¿(fc) it is necessary to obtain C-t(l) and

C3(l), whose respective valúes are Ct(X) = s2p21/[s2(P2i + P23) + ■■■■4P43] «nd C3(í) =

(S2P23 + SaPasVIsiÍPzi + P23) + -S4P43]

As the minimum burst length is 1, C„(l) = C_(l) + C3(l) = 1. Then, the distribution ofthe

burst length is:

/*(*) = C1(l)Qx(k) + G-;(l)GJ(*) (63)

*-*ere <?,(*) = (1
- p.2)*-1 - (1 - PuJ* = Pi2(l

~ Pi*)*-1 «nd fcW = (1
-

Pm
-

Pj-0*-1 - (1 - P34
~ P32)* = 0»J4 + Pn)(l

~

Pm
~ Pn)*-1 As expressed by (63), /»(*) is

the sum of two geometric series with respective rates 1 —

p12 and 1 —D34 —p32; this implies that

/j, (fc) is a decreasing function of fc, i.e., bursts of greater length have lower probabilities than

shorter ones.

A similar procedure can be foUowed to obtain the gap length distribution (/j(k)), which is:

/*(*) = C2(l)Q2(fc) + C4(l)<?4(fc) (64)

who« C2(l) = (s_pl2 + s3p32)/Is1p12 + ^(p» + p^)], C4(l) = (s-jPmVIsíPu -I- s3(p3_. +

Pa*)] , <?2(*) = (1
-

P21
~ Pa)*-1 ~ (1 " P21

~ P23)* = (P21 + P23XI
-

P21
~ P23)*"1

•nd Q4(fc) = (1 - p43)*-1 - (1 - p43)* = p43(l
- p*,)*-1. Also note that C2(l) + 0,(1) =

1.
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Note that, although the resulting equations correspond to the four-state model ofFigure 2, this

procedure can be applied for any finite-stateMarkov process, which consists of finding firstly the

cumulative density functions (CDF), i.e., C*,(fc) and Cg(k).

1.4 Network PerformanceMetrics

The analysis and statistical study of time series, that represent network characteristics, are often

used for the design ofCommunications systems. These studies are used for the design and testing

ofcommunication improvements.

Also, the Quality of Service (QoS) of network communication can be estimated or predicted

from these measurements. There are two main issues that must be conducted in order to obtain

data samples: 1) configuration of the measurement setting, e.g., phones, gatekeepers, traffic

monitors and network interfaces, and 2) the design and realization ofthe measurement protocols.

Additionally to all this work, there is also certain amount of time necessary to capture a data

sample ofcertain size, e.g., the duration ofan Internet cali. Artificial data generators are then used

in order to gather a large volume of data without conducting the mentioned issues and saving a

lot of effort and time. The artificia] time series must produce time series that are representative,

in the statistical sense, ofthe characteristics ofthe communication systems, e.g., their distribution

or correlation structure.

1.5 Real-time Transport Protocol

The Real-time Transport Protocol (RTP) header format is shown in Table 1 [36].
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2bit offset

0 V P X CC M PT Sequence number

32 Timestamp

64 SSRC ID

96
CSRC IDs

96+32(CC) Profile-specific extensión header ID Extensión header length

128+32(CC)

Table 1 : RTP header format.

The fields in this header are as follows
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• Versión (V): 2-bits. This field identifies the versión ofRTP. The versión defined by

this specification is two (2). (The valué 1 is used by the first draft versión ofRTP and

the valué 0 is used by the protocol initially implemented in the "vat" audio tool.)

• Padding (P): 1 bit. Ifthe padding bit is set, the packet contains one or more additional

padding octets at the end which are not part of the payload. The last octet of the

padding contains a count of how many padding octets should be ignored (itself

included). Padding may be needed by some encryption algorithms with fixed block

sizes or for carrying several RTP packets in a lower-layer protocol data unit.

• Extensión (X): 1 bit. Ifthe extensión bit is set, the fixed header MUST be followed by

exactly one header extensión.

• Contributors count (CC): 4 bits. The CSRC count contains the number of CSRC

identifiers that follow the fixed header.

• Marker (JM): 1 bit. Used at the application level and defined by a profile. If it is set, it

means that the current data has some special relevance for the application.

• Payload type (PT): 7 bits. Indicates the format of the payload and determines its

interpretation by the application.

• Sequence number: 1 6 bits. The sequence number increments by one for each RTP data

packet sent, andmay be used by the receiver to detect packet loss and to restore packet

sequence.

• Timestamp: 32 bits. The timestamp reflects the sampling instant of the first octet in

the RTP data packet. The sampling instant must be derived from a clock that

increments monotonically and linearly in time to allow synchronization and jitter

calculations.

• Synchronization source (SSRC): 32 bits.

1.6 VoIP System Components

Figure 3 represents the source terminal diagram from a typical VoIP system [30]. The shown

blocks have a direct effect on perceived speech and voiceband application quality.
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Figure 3: Source terminal diagram and reference points

The A/D converter of the source terminal transforms the voice waveform into its digital

versión. In order to reduce the quantization error, a non-uniform quantification (either -4-law or

p-law) is appUed in its internal quantization block. The source encoding consists ofcompressing

the digital signal in order to reduce redundancy and improve bandwidth utilization. The channel

coding is a viable method to reduce information rate by increasing reliability. This goal is

achieved by adding redundancy to the information so that it is more distinguishable at the output

ofthe channel (receiver).

The voice packetization protocols use a sequence number field in the transmit packet stream

tomaintain temporal integrity ofvoice, allowing the receiver to detect lost packets and to properly

reproduce silence intervals during playout. The packetized voice stream traverse to lower layers,

i.e., RTP, UDP, etc., and it is sent asynchronously into the network.

The main impairment due to the source terminal is named source terminal delay, which is

defined as the sum of all delays of the system components belonging to the source, i.e., those

between the mouth reference point and the terminal output reference point, more specifically, it

is defined as the interval defined by the time that a signal enters the mouth reference point and

the time that the first bit of the cotTespondence encoded, packetized signal exits the terminal

output reference point. The source terminal delay variation (A5n) is defined as the time reference

between the first bit of a packet emission at the terminal output reference point and the ideal

periodic reference time. For the first packet in a flow, the ideal periodic reference time is set equal

to the emission time. Subsequent packet emissions are compared to this periodic reference as:

AS„ = tn
~

tn (65)

where t„ is the emission time ofthe nth packet ofthe ideal periodic reference stream. Note that

this delay variation ASn tends to be more significant as time passes due to the undesired effects
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of source frequency offset. This variation should be noted and removed as a measurement error,

when possible.

Encoders and decoders process sequences of speech samples known as frames. The encoder

does not start processing the speech frame until all corresponding samples have been collected.

I.e., there is an unavoidable delay before the encoder produce an encoded output, equal to the

frame length, before the encoding process can begin. Another delay, defined in [37] is named

look-ahead, and it corresponds to the time for the encoder to take a preprocessing into the speech

frame, in order to determine how to carry out an efficient compression. For an efficient use of

processor resources, the time required to process an input frame is assumed to be the same as the

frame size (f, in time units). The delay through an encoder/decoder pair (De¡__) ¡s sometimes

assumed to be then [37]:

De/d
= 2f + l (66)

In EP networks, the additional delay due to the packetized frame traversing to the IP layer

should not exceed the frame size. Otherwise, an output buffer of variable length would be

necessary at the output of the encoder and some frames could be also discarded, impairing the

quality of the communication unnecessarily. Then, the máximum delay attributable to

encoder/decoder processing in IP-based systems operating in real-time must be [37]:

De/d = 3f + l (67)

Ifmúltiple frames are packetized into a single IP packet, e.g., an IP packet carrying 40ttls of

voice containing four lOms-G.729 frames, further delay is added to the speech signal. This delay

will be at least the duration of one extra voice frame at the encoder. Then the minimum delay

attributable to encoder processing is [37]:

De/d
= (K + l)f + l (68)

where K i s the number of frames per IP packet.

Similarly to the time necessary to start encoding a speech frame, a packet cannot be delivered

to die IP layer until all speech frames, corresponding to that packet, are encoded. And the

delivering time for each frame should not exceed its own duration (again, to avoid discarding

packets and unnecessary impairments). Then, the máximum delay attributable to encoder/decoder

processing in IP-based systems operating in real-time with múltiple packets per frame is [37]:

De/__ = (2K + l_,f + l (69)

Figure 4 exempl ifies the delay due to the collection, encoding and delivering of a 3-frames

packet into the IP layer. The máximum attributable delay is shown at the bottom ofthis figure.

Note that the look-ahead and processing ofthe kth frame are carried out simultaneously with the

collection of speech samples for the (fc + l)th frame.
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Collection ofspeech samples for frame #1

Look-ahead for fíame #1

w

Processing of speech samples for frame #1

Collection ofspeech samples for frame #2

w

Look-ahead for frame #2

Processing of speech samples for frame #2

I H *l H Collection of speech samples for frame #3

h "H Look-ahead for frame #3

Figure 4: Example ofencoder-related delay ofthree frames delivered to IP layer

Figure 5 represents the destination terminal diagram of a typical VoIP system [30]. The

components and the positions ofmeasurement points are indicated. The input bit stream, that

contains the asynchronous voice packets, arrives at the terminal input reference point. Then it

passes through the lower layers and then through the IP and RTP/UDP blocks. After that, the

sequence ofvoice datagrams is passed to the de-jitter buffer, which performs very important tasks,

in the sense of QoS, in order to reconstruct the digitized voice waveform. At this point, voice

stream is already impaired because of the packet delay and loss due to the traversed network.

Additional impairments occur by the additional delay ofthe remaining blocks and the additional

loss caused by the discarding of highly delayed packets, compared to de-jitter buffer timeout,

which is desirable optimized [38].

Terminal input reference point

Physical Lower

.^. RTP/UDP

De-jitter^ , . .^ _

D/A

«««^ _ _^ De-packetization _ _> Decoder _ _>

buffer ^converter

*•> Waveform

_ _^ Continuous digital

....,.*■► Asynchronous packets

Receive electrical reference pointJ
tío

Ear reference point

Figure 5: Destination terminal diagram and reference points
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Figure 6 shows the process through which IP packet impairments and parameters (transfer

delay, jitter and packet loss and errors) can be mapped to application layer performance in terms

of overall loss and delay.

Delay Loss

Threshold
Overall impairments

at aoolication laver

/ De-jitter
RTP i

hntT--r j

/ / Error
UDP /

1 / / checking

IP parameters/ Delay Low High Loss/errors

impairments . Delay ~

Figure 6: Mapping IP packet performance to application layer.

The input digital signal that carries the speech frames arrives at the receiver from the physical

and lower layers. As this packet traverse to higher layers, the speech information is processed and

impairments are removed, ifpossible. Note that some forms of impairments map into other, e.g.,

delay jitter is reduced at the expense ofan increase in delay and highly delayed packets transíate

into packet loss. At the bottom ofthe figure, packets arrivewith various impairments due to source

terminal and network, or never arrive (lost). The arriving packets are processed and impairments

are removed as possible as they move up to upper protocols. Some forms of impairment map into

other [30].

Note that only those packets within the range between lowest allowed OWD and the threshold

are delivered to application layer. This threshold consists ofa trade-offbetween application level

delay and loss.

Although it is not mandatory, it is strongly recommended that malformed packets due to bit

errors that arrive at the receiver are discarded and not reproduced, because the resultant

impairment due to voice waveform distortion may be worse to that produced by loss, especially

for low bit rate codees. These discarded packets are additional losses that, coupled with those due
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to network congestión, must be evaluated by the application layer in order to apply a good

estimation ofthe voice quality using a performance tool as the E-model's R factor. E.g., it could

have more sense to estimate the QoS locally instead of globally, although the second estimation

can always be obtained.

1.6.1 Packet OneWay Delay and Delay Jitter Impairment for VoIP Applications

The oneway delay (OWD) ofthe fc"1 packet is defined as the difference of its reception (Rk) and

sending (Sk) times, i.e.,

Ok = Rk-Sk,k = l,..._N (70)

It is recommended that OWD should not exceed 400mjr, regardless ofthe type ofapplication.

This OWD is referred sometimes as mouth-to-ear delay (when transmitting speech), and the ITU-

T recommendation G.107 [37] provides a tool to estimate the effect ofthis delay on the speech

transmission quality (the mathematical expression is explained in more detail in Section 1 .7).

The OWD can be represented as the sum of all delays that occur from the mouth reference

point at the sender to the ear reference point at the receiver.

0 100 200 300 400 500

OWD (ms)

Figure 7: E-model's R factor vs. OWD in the absence ofother impairments.

Figure 7 shows the effect of OWD on the E-model's R factor without considering other

impairments (e.g., echo, noise and other distortions). To the right of this figure are shown the

speech quality categories of ITU-T recommendation G.109 [39], which transíate the valúes ofR

to users' acceptance levéis. These are also explained in Table 2. Impairments caused by delays

over 500ms are not fully validated in the recommendation G. 109. It is recommended to avoid the

transmission of speech through connections for which the estimated R factor is lower than 50.
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It is also important to clarify that the R valué is an estimation ofthe quality perception to be

expected by the average user under the connection under consideration. Then, this assignment of

range boundaries from best to poor quality cannot be exactly delimited. Rather, the quality should

be viewed as a continuous, as shown in Figure 8.

00 90 80 70 60 50

|
i i i 1 1 1 1

High quality

llllllllll

Médium quality

1 ' i
' ' ' '

| R factor

Low quality ¡

Figure 8: Quality perception of speech according to the ITU-T recommendation G.109.

The delayjitter of two packets is defined as the difference of their respective OWD, i.e.,

iWfc = OWDk+1
-

OWDk, k = 1 N-l. (71)

1.7 Quality Impairments and The E-Model's R Factor

The International Telecommunication Union (ITU) defined the E-model in the ITU-T

Recommendation G.107 [23], as a tool for quality measurement for planning purposes. The E-

model provides a prediction ofthe expected quality as perceived by the end user. This model is

based on impairment factors, as expressed by (E-model's R factor):

R = R0-ls-Id-le+A (72)

where:

• R0 is the signal-to-noise ratio,

ls represents all impairments which occur more or less simultaneously with the voice

signal,

ld sums all delay impairments due to delay and echo effects,

le represents the impairments that are caused by low-bít rate codees and A represents and

advantage factor which certain systems provide in comparison to conventional systems.

A simplified versión of (72), that represents the impairment as a function of the packet delay

and PLR, is:

R = 93.2 -ld-le (73)

where Id, the delay impairment, is defined as [40]:

/d = 0.024d + 0.11(d-177.3)//(d) (74)

where d is the mouth-to-ear delay in ms and

„,„ Í0; d < 177.3
W(d) = ll; d> 177.3

<75>
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The quantity le is the impairment caused by low bit rate codees [23], and its general expression

is:

/e(r)-=yi+y2ln(l+y3r) (76)

where r is the packet loss probability and the valúes ofy!, y2 and y3 are constants that depend on

the type of codee used [41], e.g.,

•Wu OO = « + 301n(l + 15r) (77)

and

/..G.729M = H + 401n(l + lOr) (78)

Themean opinión score (MOS), a numerical indication ofthe perceived quality ofthe received

media after compression and/or transmission, can be estimated from the R factor as: MOS = 1

for R < 0, MOS = 1 + 0.035A + R(R
-

60)(100
-

ff)7
■ 10-6 for 0 < R < 100 and MOS =

4.5 for R > 100 [23]. Un order to achieve the best perceived quality as possible, the R factor, and

consequently the MOS, must be maximized.

Table 2: Definition of speech transmission quality categories.

R-value range MOS
Speech transmission

quality category
User satisfaction

90<fi< 100 4.33 < MOS < 4.5 Best Very satisfied

80 < R < 90 4.02 < MOS < 4.33 High Satisfied

70 < R < 80 3.59 < MOS < 4.02 Médium Some users satisfied

60 < fi < 70 3.10 < MOS < 3.59 Low Many users satisfied

50 < fi < 60 2.57 <M0S< 3.10 Poor Nearly all users satisfied

Note: Transmissions with fi < 50 are not recommended.

In order to do this, the impairments factors Id and le must be adjusted. ld depends on many

parameters,many of them cannot be controlled by the enduser directly (e.g., constant and variable

network delays) but others can, e.g. the size (in ms) ofthe de-jitter buffer timeout. ln its tum, le

depends on the codee used and the PLR. It can be adjusted by selecting the type of codee used

and by applying an error correction technique, e.g. ¿V-packet FEC described in section 4.1 .

There are two main sources of packet losses: network congestión (from A to B) and de-jitter

buffer (from C to D). The PLR due to network congestión is reduced by the N-packet FEC. The

network also adds variable delays, i.e., delay jitters, that are eliminated by the de-jitter buffer, but

at the expense of an additional delay for all (or most) packets and, possibly, a slight increase in

packet loss. This occurs since long delayed packets, although they successfully arrive to the

receiver, are discarded and, consequently, lost from the point ofview ofthe listener. Furthermore,

bit-level errors that may be present in received but corrupted packets are an important source of

errors, especially for wireless Communications.
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ln order to quantify the voice quality by means ofthe E-model's R factor, the performance of

the iV-packet FEC block and the de-jitter buffer must be described analytically, as presented in

Chapter 0.

1.8 Chapter Summary

This chapter presents mathematical definitions and other concepts that are used throughout this

work. Particularly, about the following subjects: 1) stochastic self-similarity for the continuous

and discrete cases, 2) wavelet analysis 3) ICFD transformation, 4) discrete Markov processes

(including 2-state and 4-state formulae), and 5) networkCommunications, particularly aboutVoIP

systems.

Two definitions are given for the discrete self-similarity: the exact self-similarity and the

second order self-similarity. The second definition is more likely to be satisfied by real world

time series.

The degree of self-similarity and, consequently, some statistical properties, are completely

determined by the Hurst index (H). This index of self-similarity, although it is mathematically

well defined, is difficult to estimate from real-world traces. A set of the most commonly used

Hurst index estimators is described in this section.

Wavelet analysis and the LD-Diagram, which are important for data series analysis, area also

described, as well as their relationship with the Hurst index.

Respective mathematical descriptions of the discrete two-state and four-state Markov

processes are presented. These models are applied to network packet losses. The probabilities of

packet reception and loss, as well as the distribution ofgaps and bursts, are calculated in terms of

the probabilities of transition between the states for each model.

Finally, the VoIP system components and the E-model's R-factor are also described.
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2 Analysis and Synthesis of Second-order Self-similar Time Series

2.1 A Wavelet-Based Decomposition of Time-Series

Any time series Xt can be decomposed into a set of time series, each one defined as expressed by

(79).

CÜ=X¡nt-lE)-X¡n,E);n,i€Jri (79)

where X¿
'
is the time series Xt after two operations, which are:

• Aggregation at level nl, as defined by (5) and (6). i.e. m = nl.

• Expansión of level n', which consists in repeating each element ofa time series n' times.

i.e. XJn'E) = 4n<) for fc = 1 + [■£.] and y e N.

These zero mean components Cx't have three important properties:

i. They synthesize the original time seríes without loss, i.e.

xt =V C** (8°)
i

ii. They are pair wise orthogonal:

(Cx,l>CZÍ) = OY*J (81)

iii. If Xt is exactly self-similar or at least satisfies (9) for q
= 2, then the variance of the

components satisfy:

variPxi) = r-var(C^-1) (82)

where

r = n2H~2 (83)

Properties i, ii and iii imply (84) and (85):

o%=YJvar(Cxb (84)
i

ffZ = 1_ll2H-2-Var(& (85)

Then, the variance ofthe ith component is related to the variance ofXt as (86) expresses:
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■w(C#)-(l-r)Tw-tií (86)

where

r = n2"-2 (87)

Another useful property relates the variance of the component to the variances of the

aggregated series, i.e.,

var(c2;{) = var [*("'"*>]
- var [x¡n'E)] (88)

It is easy to proof (88): from (79) it turns that var[Cxj] = var \x[n'~lE) + var \x[n>E)] -

2cov\x[n'~lE).x\n'E)\, but as x[n'E) is itself an aggregation of X¡n'~lE) it turns that

cov \x¡n E\X¡
E'

= var \X¡:n E'\, and (88) comes after a substitution.

Properties i, ii, and iii imply:

aj?=£var(C#) (89)

°¿=T^pvar(.cx.Í) (90)

Then, the variance ofthe jth component is related to the variance ofXt as:

var(C^) = (í-r)rJ-^ (91)

It is easy to proof the following relation:

var{Clj) = n-iS2(j) (92)

An immediate consequence of (92) is that the plot; + logn [var(Cx'¡)] vs. ;' is equivalent to

the LD-Diagram, it is a straight line for W-SOSS and its slope is related to the Hurst index as =

2H - 1
, i.e.:

™K<$)=^T^ (93)

Also, for n = 2 it coincides with the Haar wavelet case ([42] [43]), that is:

'/'mW = <Po(2-h - fc) (94)

and

{+1
0<t<-

-1 ¡<t<l
(95)

0 otherwise

For a finite-length time series with L octaves, the number of octave (/') ofthe LD-Diagram is

related to index i of (79) according to (96):
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i = i (96)

To estimate the LD-Diagram, it is necessary to subtract the bias as expressed by ( 1 9), resulting:

where n¡ is the number of coefficients available at octave, i.e.:

£{log2 [var(c2j_)]}~E{\og2 [var(C^]} - g¡ (97)

Figure 1 shows the components obtained from an W-SOSS sample of size 32 and H = 0.9.

The squared form of the components is due to the expansión of the aggregated series and

disappears after the downsampling.
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Figure 9: Components ofan W-SOSS sample of size 32 and W = 0.9.

The authors of [44] described the aggregation as an inner product with the signal and the Haar

"father" wavelet, and then the relation between wavelet coefficients and aggregation levéis is

obvious. At this point there are similarities between this section and that previous work, the most

important: the relation between aggregation levéis and Haar wavelet is described by Abry et al.

However, two differences must be highlighted: 1) the decomposition presented in this work only

coincides with that definition forn = 2 in (79), for higher valúes the Haarwavelet is not sufficient

to describe the components ofequation (79); and 2) authors of [44] discard anyway the estimation

ofthe Hurst index based on the so named "a-aggregation". In this work, it is clarified that so-
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called "a-aggregation" is misunderstood leading to incorrect implementations (i.e., the "classical"

variance estimator) and a generalization ofthe "d-aggregation" is proposed.

2.2 GeneralWaveforms of the Basis Functions

The orthogonal decomposition defined by (79) can be expressed in terms of an inner product

between the signal and a set oforthogonal wavelet-type functions. Let us describe the waveform

for the general case.

The wavelet-based function is:

( 1
1 - - 0 < t < 1/n

=

{-± 1-<t<l
n n

0 otherwise

(98)

and the wavelet functions derived from if)n(t) are obtained by three operations: scaling,

displacement (similarly, but not exactly equal, to equation (15)) and a phase shift, i.e.:

tfV/AfCO = {1
-

u[n¡(k - l)]}Vn,/,k(t
"

enl-*)

+ u[nJ(k - l)]i/>„,,,k(t + ni - dn'-1)
(99)

and

4>n,jAt) = n-2xpn(n-h-k) (100)

for / = 1, 2, ... ,/, fc = 0, 2, ... , n'~' - 1 and 0 = 0, 1, 2, ... , n - 1. Note that note that

V'n.O.O.oW = tf'n(t).

The function defined by (99) is a generalized form oftheHaarwavelet. It is always a rectangle-

shaped function but it is not symmetric about the horizontal axis except for n = 2.

Figure 10 shows the basis function for n = 2 without phase shift and with a phase shift of 1/2,

respectively. Obviously {Xífí.^jxoCO) = —(X(t),xp2jk¡1(t)), which means that both

produets give the same information. Redundant information can then be reduced by decimating

the sequence of coefficients.
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Figure 10: Basis functions: a) V2,o,o.o(0 (no phase shift) and b) ^2.0,0.1(0 (^í^ t0 ,/'2,o,o,o(0
with a phase shift of 1/2).

Figure 1 1 shows the basis function forn = 3. Note that the phase shift moves the rectangle
of

height 2/3 from one third to another. In this case there exists also redundant information, as

■¿3.0.0,2(0 = -■¿s.o.o.oCO-V's.o.o.iít) and in the general case Vnj.fc.eCO
= -S¿*eV'nj.k,i(0,

which means that one ofthe coefficients, e.g., the one obtained with the last phase shift, can be

discarded. This means that the sequence of coefficients can be downsampled without loss of

information. For a sample of length N, it is easy to verify that the number of observations that

remains in all components (sequences of coefficients) after the downsampling is N — 1, which

can be complemented with the sample mean, in the case that this is not zero.
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Figure 1 1 : Basis functions: a) .¿3.0,0.0(0 (no Phase shift), b) i/>3,o,o.i(0 (</<3,o,o,o(0 with a phase
shift of 1/3) and c) ^3,0,0,2(0 ('/'3,o,o.o(0 with a phase shift of 2/3).

2.3 Wavelet-based Synthesis of tf-SOSS Time Series

A method to synthesize W-SOSS from practically any time series, regardless ofwhether it is or

not self-similar or its marginal distribution, is proposed. This method consists of adjust the sum

expressed by (14) with a set ofweights, i.e.,

1 V

xHl (0
=^ w¡X dx(J' fc*Mf) (ioi)

1=1 k=í

where the weights w¡ are defined as:

Chapter 2: Analysis and Synthesis of Second-order Self-similar Time Series 36



____2^__l
and where S2(j) and cyC are the respective estimations oíS2(j) and c¡C (the associated power

parameter [ 1 ]) from Xt and H1 is the desired Hurst index ofthe new synthetic series. It is necessary

that-»2(/)>0V; = l /.

The weighted sum (101) can also be expressed in terms of the orthogonal components

described in Section 3 and defined by (1 1) as follows:

I

*h.(0
= X»V/C# (103)

l=i

where the weights w* are estimated as:

where rx, similarly to (83), is defined as:

ri
-**■= n2"!"2 (105)

To proof derive (104), consider that a finite length time series XHl(t_) whose Hurst index

estimation is already Wx and rx is defined as in (105). Then, knowing that 1) the variance of

Xh_ (O ^ the sum of the respective variances of its components, as expressed by (84), 2) that

diere are a finite number, say L, ofnon-zero components, and 3) that those variances are related

as (82), it yields:

/-i
j

<%»_
=*«,_}

•

^4 = var [C%J~¡r (106)

7=0

The variance of the j
th
component (Cx'{ ) is related to that of the first one (£%¿ ) by

var {£xix} " ri~lvar{^.t} (I07)

then

Finally, it is straightforward that the weight w¡ for i
= 1, ... ,/ is the square root ofthe quotient

ofthe desired component variance over the estimated one. E.g.,

var{C^}
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yidding (104) after suhsrituring por {c£J x} as in (108). Using this synthesis method. an H-

SOSS self-similar series with equal variance, mean (Lc, zoo), and length than the original
is

obtained. Le_

-S?._=«i_? (109)

No«eihaitheoo}yri_*smcoanfar(103)Bt

similarly to £*■(/) fbr (101). An additional warning is dot even though this synthesis does not

depend either an ihe iinngiml -dfctributian ar die carrelaoan structure of the input signal, it is

preferabk* that this is already setf-simflar (e.g_, FGN) and that its Hurst index is dase to that of

*n_ (0. i-e- W*t is dase to R.

Pathological behavior can be produced in the output series fbr some critical conditions. e.g~

nooceable steps. whichmay produce a noo-stabonary signal, result ofthe transforming a SRD or

unconelated input signal to a LRD output with H dase to 1. Impulses ofvoy brge magnitude

(oudien>canbealsobeprrodiicedwben.fbrsomey. var iC^ x] or. eqm\*afcntr>. S\{j\ is cióse

to zero.

A similar methodology was developed lqr DeMcheUe ef al [45], to synthesize fractional

Gaussian noise by performing a weighted sum of the intrinsic mode fimctions (IMF) of a white

noise process (see also [46])- The advantages of Ibe proposed synthesis compared to that of

Deléchelle et al are that the components defined by (79) are exactly orthogonal. the relation

between ibe weights fbr ibe reconstruction sum are mathematically well defined and the Hurst

index of rhe synthesized time series marches perfectly die wavelet «tintar proposed by D.

Veitch and P. Abry [1 1], i.e_ the <-aimat«-*H H ofthe synthesized series is imbiased (£(fi) = H)

and has zero variance (var(//) = 0 i. The disadvantages are that the components are sequences

of squared signáis (because of die expansión described in Section 3) and not sinusoids, so

noticeable steps arise when synthesizing a time serieswith high Hurst mdex. e.g.. cióse to 1. from

an input that is SRD or weakly correlated. A sointion fbr this problem is to apply interpolation

(as in EMD) instead ofexpanding the series in arder to produce softer components (sinusoids ar

porynomial) instead ofsquare-type, with the consequenix that the Hurst index is no longer exact

but approximated-
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From (1 17), it can be seen that PX2(k) diverges for all valúes ofW in the range between 0 and

1 and that, the higher the Hurst index, the faster it diverges, e.g., it is a line with slope 1 for W =

0.5. Figure 12 shows the divergence ofPX2(k) for many valúes of W.

0 log,o(k)

Figure 12: Log-log plot ofPx,z(k) vs. k. The respective Hurst index of each curve is at its right.
All curves diverge to -foo as k -» oo.

2.5 Variance of the Aggregated Series

Using (87), (82) can be written as:

*<*(&) = r
■

var^i'1) (118)

where r = n2H~2

Let Xt = {,?t; t — 1, ...,¿V} be a finite-length self-similar time series such that N = nL (L <

oo) and n > 2 (i.e. N is a power ofn) then, a set ofnon-zero L components (£x'\; i = 1, ... , L) can

be obtained as expressed by the analysis equation (79). As the components are pair wise

orthogonal, the variance of _?t (ox) is the sum ofa finite number of variances:

áf=Y var(C$;í) (119)
¿—'£=1

Then, the variance ofthe ith component (Cx'¡.), which has also finite length, is:

™dcM = ±-^-r^-ax
and the variance ofthe aggregated series is:

var(*,)-]w-«»
or, equivalently:

var(x^) = r-¡-^-var(Xt)

(120)

(121)

(122)
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Making m = n' in (1 1), it yields:

varfx^A^ri-vartft) (123)

Considering consider var(Xt) = ox (i.e. the sample variance is equal to the variance of the

process), then Ae difference between (122) and (123) is:

_V_ = var (4BÍ)) - imr (x^) (124)

A • = —rL
1-r1

1-rL-°X
(125)

This means that the definition of second order self-similar time series cannot be complied by

finite-length time series (such as those obtained from measurements) i.e. Ae variance of Ae

aggregated series, expressed by (122) is always smaller than Ae expected (Aeoretical) for i > 1.

For a fixed variance (<JX), Ae absolute error (|An ¿|) is greater as L is smaller (shorter traces), i is

greater (larger aggregation levéis) and r is greater (larger Hurst parameter).

0 2 4 6 8 10 12 14 16 18

log2(m)

*——— Inf. length
—•— Finite length

Figure 13. Variance ofAe aggregated series (m = 2') of two time series wiA W = 0.85

2.6 Variance of the Wavelet Components

It is easy to proofAat the variance ofAe components Cx'¡. (defined by (79)) can be calculated as

follows (126):

var(C«*) = var (x^) - var (xf3) (126)

But Ae variance of Ae components for finite-lengA time series also presents a Aeoretical

error:
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where

Var(c£) = var(xr1>)-var(xM)

t;ar(c£) = var{cg) + (A^ -A^-i)

r^+^a-OfTi
Ki

~

A>U-i = . >

(127)

(128)

(129)
1-r*

The positive quantity expressed by (129) shows that the calculation of respective variance of

Ae components C\£'¿ overestimates Ae real variance. Calculating then Ae quotient between

var((%j) and var{€^t~í) from (128) and (129), it yields:

vaT{cg) var(C%) + TÍ-*

var((%-*) var(c£-*) + ri-2

The quotient (130) shows that, although the respective variance ofAe components obtained

from a fini te-length time series present a Aeoretical (positive) enor, it does not affect Ae LD-

Diagram. i.e. Ae ordinate atAe origin ofAe linearmodel derived from AeLD-Diagram is a little

greater than Ae expected (Aeoretical) valué but its slope is identical. It is also shown by (130)

Aat both Ae Aeoretical variance ofAe components and their respective error form a geometrical

series of rate r = n2H~2

Figure 14. Respective LD-Diagram for two time series wiA H = 0.85

The variance ofAe aggregated series ofa real world time series of finite length (var(X^)),

assumingAat it represents a self-similar process, can be different ofAe Aeoretical (wir(J_lm')).

For a set of real world time series, it can be assumed Aat E \var \X™
'

J I = var(X^), but

Ais also implies Aat E{)og2 [vartf™)]} < log2 [uor(^m))].
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2.7 Chapter Summary

In this chapter. a wavelet-based orthogonal decomposition of time series is presented The

analysis functions are scaled. displaced, and phase -shifted versions of Ae basis function. Note

Aat wavelet functions are generally scaled and displaced only. The basis function is defined by

equation (98 1, and the rest ofthe analysis functions are defined by (99) and (100).

After analyzing, ¡_cl, decomposed, Ae original time series, Ae orthogonal components can be

used to two important goals: to observe the frequency content by scales. i.e., through the LD-

Diagram and to estimate the Hurst índex. Also, those components can be added by means ofa

weighted sum m order to produce a new time series with different Hurst index and, consequently.

different correlation It is wonhy to mention Aat abrapt changes xn tbe Hurst index may lead to

pathological senes so h is convenient that the desired new Hurst index is cióse to Ae original.

Finally. Ae variance ofAe aggregated series and the components are described, for both Ae

ideal and real worid cases. I.e., theoretically tbe variance ofthe time series is Ae sum ofan infinite

number of components but as a real worid Ane series is of finite size, Ae number ofcomponents

is also finite and the formulae have to be adapted.
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3 Estimation of Mean, Variance, and Hurst Index of Second-order

Self-similar Time Seríes

3.1 Sample Mean

The sample mean of a self-similar process is unbiased: its expected valué is Ae process mean,

i.e., E(jT) = pXy where X = l/N__\^__íXt, regardless of Ae presence of correlation between

observations. However, its variance does not depend only on the sample size (JV), but also on the

degree of self-similarity (W) ofthe process, as follows:

var(X) = o_\N2H-2 (131)

which becomes:

var(X)=^- (132)
N

(classical estimator) for W = 0.5 (uncorrelated observations).

To derive (131), consider that X, estimated from a sample of size N, behaves exactly Ae same

as the stationary aggregated process _f¿ ', defined by (5), and its variance is determined by the

definition of second-order self-similarity (11). Expression (131) can be also derived (for W > 0.5)

from the auto-correlation coefficient p(k) = 0.5[(fc + 1)2H - 2k2H + (fc - 1)2H] for fc > 1

(p(0) = 1) and var(X) = £_Z?J=1p(k).
Important implications of (131) about the uncertainty ofthe mean are: 1) that it increases wiA

the Hurst index, e.g., var(X) tends to ox as W tends to 1, which makes the sample mean worth

as a single observation, and 2) Aat it cannot be zero for any case when estimated from a finite-

size sample.

Chapter 3: Estimation ofMean, Variance, and Hurst Index of Second-order Self- 44

similar Time Series



_5 -4 -3 -2 -1 O 12 3 4 5
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Figure 15. Distribution ofAe sample mean of standardized fractiona] Gaussian noise processes

wiA H = {OJO, 0.70, 0.90} and N = 32.

3.2 Sample Variance

For high number of observations, sample variance is usually calculated usingAe following:

■

)2
t=i

which is widely known to be biased so it is more adequate to use:

N

N

1 x-

t-FxLP*-1* (134)

especially for small samples.

Particularly, ifAe observations Xt are independent and come from a normal distribution, dx

is distributed as S?"**™!»-», 8" stated by Cochran's Aeorem [47]. [48]. Formula (134) is Ae

most used estimator of the sample variance but, as Beran indicates in [49], it is needed to know

which assumptions this estimator is based on in order to apply it correctly: otherwise it may be

Ae source of errors Aat in practice cannot be negligible for all cases.

A self-similar process is uncorrelated only and only ifthe Hurst index is 0.5. In this particular

case the classical estimator of sample variance. defined by ( 1 34). is unbiased-

The expected valué ofAe sample variance defined by ( 1 34) is:

E(6l) = E

which can be expressed as:

T^JX<-V (135)
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N

wh =

jf—[ í£(^2)
-

w2)i

which is equivalent to:

N

E(&Í) = Jj-Zj{var^^ + lE(Xt)]2 - {var(fi) + [EUO]2}}

(136)

(137)

Wl) = ^^2(i-w2W-2) (138)

Expression (138) proves AatAe classical estimator (134) is biased, i.e., E(óf) * ox, for W -*=

0.5. It is straightforward Aat Ae unbiased variance estimator for self-similar processes is then:

N

t=l

(139)

which obviously becomes (134) for H = 0.5.

A plot oflog10(óx
—

Ojf) vs. Af is shown in Figure 1 6. NoteAat, for a fixed sample size, as H

increases the estimation ofAe variance by means ofAe classical estimator (134) becomes less

reliable.

ln Figure 16 the following details are observed: asAe sample size is greater, Ae magnitude of

Ae bias ofAe classical variance estimator is lower; however, as Ae Hurst índex ofAe process is

greater, that magnitude also greater. As H approaches to 1, Ae variance is considerably

underestimated, makes Ae classical variance estimator useless.

-25

-30

H = 0.01

'(

10 100 1000 10000

N

100000 1000000

Figure 16. LogariAm ofAe variance bias for different sample sizes.
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The variance of tbe estnriaird variance of a self-similar time series can be approximated by

applying Ae formula proposed by Yunhua m [50] for lc = 0, Le.,

*

N(4H-3) N

This approximation is cióse lo the variance of &x. wiA Ae disadvantage Aat ít has a

discontinuity in H = 0.75. A furtherwork can be devdoped in order to verify* this approximation

and to quantify its error.

It is worthy to mention Aat, although the proposed estimator of Ae sample variance is

unbiased. its performance relies on the estimation of Ae Hurst índex. This dependence is very

noticeable as W approaches to 1, as the statistic 1 - JV2"-2 is especially sensitive to Ae variation

of fí under that condition. The derivative -=
—- = —2Mta'*im\_M) vs. H is shown ¡n Figure

17. Note Aat as Ae estimated W increases, tbe estimation ofAe mean ofAe sample variance is

more variable.

Figure 17. Plot -ZN^^biiM)w J?.

An immediate implication ofthis is that processeswhhHurst index dase toimust be carefiíOy

treated, as stight deviations ofthe Hurst index estimation derive in a non-negligible error in tbe

estimation of the process vananee.

3-3 Statistics ofthe Aggregated Process

The aggregated process JQ , as defined by (5 1. that is derived from an W-SS process is also W-

SS íself-similar with Ae same Hurst index). lt is also true fbrAe case ofW-SOSS processes. And
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this aggregated process is, by definition, identically distributed to Ae sample mean obtained from

a set of W = m observations (m is Ae aggregation level, as in (5), i.e., Jfím'~_&. Also, Ae

aggregated sample variance obtained wiA Ae classical estimator (134) is biased, as it is well

known [51].

The variance ofAe aggregated series ofan W-SOSS process must be Aen estimated wiA Ae

unbiased formula (139) adapted to Ae number of observations in Ae sample, i.e.,

«■- (*r) =Tr=h^lW"° -^)2 (141)
1 '

HC=1

where jV¿ is Ae size of Ae series after aggregation (i.e., JV* = N/m). Note Aat Ae estimation of

Ae sample mean from Ae aggregated sample is also unbiased, i.e., E JQ = E(Xt) and it is

more reliable Aan the mean estimated from a sample of the same size, i.e., var JQ =

m2H~2var(X) ifAe samples are ofequal size.

3.4 Statistics ofthe Orthogonal Components

Let {Xt; t = 1, ... , N) be a finite-length self-similar time series such that N = n} (J < oo) and n >

2 (i.e. N is a power ofn), then a set ofnon-zero/ components (Cx¿;j
= 1, ... ,/) can be obtained

as expressed by Ae analysis equation (79). As Ae components are pair wise orthogonal, Ae

variance ofXt (Sx) is Ae sum ofa finite number of variances, i.e., applying (89) to real world

traces, that is:

;

8x=YdVar&r O42!

7=1

Expression (142) and (82) imply Aat Ae variance ofAe jth component C^j. (which has finite

length) and Ae variance ofXt are related as (108), i.e.:

v^{C^)=^]r¡-182 (143)

Applying (86) in (143), it is derived:

.„. var(C^'t)(l-N2H-2)

And, finally, by replacing r1 by N2H~2, it yields:

»<"•(£#) = var(C%{ ) ( 1 45)
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Expression (145) implies that the estimation of tbe variance of components is unbiased (a

desirable property) and. as a consequence. so it is the estimation ofAe stanstic S2(j). AnoAer

implications of(145) is that the estimations ofthe Hurst index and Ae power parameter cfC from

Ae LD-Diagram are unbiased, as have previously proven by the authors of [ 1 1 ] .

3-5 Córrela tion of theWavelet Coefficients

In this Section. the auto-covariance ofAc Haar wavelet coefficients is derived, Le., Ae case for

n - 2 in analysis equation (79). Tbe structure of the jth component (Cx¿), as a function ofAe

elements of JT, is:

(2-*-1) (2Í-*)
r2.j _ *2t-1 ~X2T (146)
LX.r

~

9

where Cx [ is a downsampled versión of Cx¿. i.e.. only the firs observation of each 2' of Cx¿

remains. Then. two wavelet coefficients are correlated as:

,

(2i-t) (2i__j fti-i)
_

(2>-)\

rCjW
= E{c?T,ciU) = £( 2 "2 *)

n47)

Assuming that Xt represents a zoo-mean W-SOSS process and according to the definition

02X.E (*£?*££.) - I (*5H>*Í3) - r. (2*). . (xg-,'»^,) - 1*0* - ■)

and E (^-T^ít+io-i) = Yx^2k
~

1) Tben <147) * calculaíed »

22U-2a2

Ycjik)
= ^ [2p, (2k)

-

px(2fc + 1)
-

px(2k
- 1)] (148)

and the correlation coefl.cient ofthe j
th

component is Aen

... \Px(2k + 1)
-

2Px(2k) + px(2k
- 1)]

Pc.W = PcW =

t^—-
(149)

As (149) shows, the correlation structure is Ae same for all components. Le.. pc (fc) is

independent of/. AnoAer implication of ( 149) is Aat:

V «.. 1 1
-Pxa)-Px(2fc + i) + 2Ef=yil(-i)-1Px(o]

k=0

which- m practice. can be approximated as:

J[pc,W * -0.052W2-0.311W+ 1.168 < 00 (151)

fc=o
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i.e., Ae coefficients are weakly correlated and Ae sum of correlations is finite [52]; furthermore,

none ofAe components (sequences ofwavelet coefficient) can be a self-similar time series except

for W = 0.5, e.g., components ofa white noise process are also white noise processes. A plot of

pCj(k) vs. fc is shown in Figure 18 for W = {0.1,0.3,0.5,0.7,0.9}. The sum ___]___0Pc.(k) vs. W

is shown in Figure 19.

Figure 18. Correlation coefficient ofAe Haar wavelet components.

0.0 0.2 0.4 0.6 0.8 1.0

H

Figure 19. Sum of correlation coefficients ofthe Haar wavelet components.

As Ae máximum magnitude ofycl(l) is 1/8 (when W -* 0), it is said Aat Aese coefficients

are quasi-uncorrelated. Note that yci(l) = 0 for W = 0.5 and W -» 1.

Although the assumption Aat Ae estimation of Ae lst component variance (var(Cx'})) is

unbiased is nearly accurate, it may not hold for components of greater order. As Ae wavelet

coefficients dx(j,k) are almost uncorrelated, the estimation of Ae variance as ___?_(? (CXÍ) *

—var(CZt).

Chapter 3: Estimation ofMean, Variance, and Hurst Index of Second-order Self- 50

similar Time Series



3.6 Variance-Plot-based Estimation of the Hurst Index

As described in Section 1.1.4, the Variance-Plot is a straight line for self-similar time series but,

as many authors have claimed, it underestimates the Hurst index when working wiA real-world

data. This is already noted and documented in the literature, per example: Riedí et al ñame Ais

phenomenon "Ae decay ofthe aggregate variance" [53]. Sheluhin et al state Aat the Variance-

Plot, can only be used to check wheAer the time series is self-similar or not and, if so, to obtain

a crude guess for tbe Hurst index [18]. Clegg developed a comparison ofHurst index estimators

in Ae presence of additional noise (e.g., linear trends or sinusoidal), including tbe aggregated

variance estimator, reporting unbiased estimations when no additional noise is added [13]. Kiunz

et al perform a comparison ofAe variance-based estimator ofLRD wiA other three estimators.

They concludeAat Ae estimator is inherently biased, that can often lead to incorrect conclusions,

and Aat Ae bias diminishes gradually wiA Ae data [51]. Jeong et al also perform a comparison

of several estimators on simulated FGN, concluding Aat Ae variance-based estimator becomes

increasingly negatively biased as H increases [7].

Ofcourse, Aese conclusions and claims are valid in some sense. That is, applyingAe classical

variance estimator to variance-based methods leads to biased and not reliable calculations. But

die objective ofthis section is to clarify Aat Aese claims are a consequence ofthe inadequate

estimation ofAe aggregated variance, caused by Ae application of the classical formula (134)

regardless ofwheAer Ae original process presents any type ofcorrelation.

The solution would be then to apply the unbiased formula (141), but it leads to an ill.

conditioned problem: the Hurst index need to be estimated and known at Ae same Ane. Then it

is not AatAe Variance-Plot is not adequate to estimate Ae Hurst index, raAer Ae flaw of those

implementations is Aat Ae aggregated variance is underestimated.

Nevertheless, it is actually possible to estimate theHurst index analytically fromAe Variance-

Plot. the key is to chooseAe aggregation levéis so Aat they form a geometric series, as explained

in Section 5.1. Note that a numerical method can also be appUed to estimate simultaneously the

Variance-Plot and Ae Hurst index, butAe proposed solution is computationally simpler andmore

efficient.

3.6.1 Analytical Solution to Ae Ill-conditioned Problem

Let {mi, i = 1, ... ,M] be Ae set ofaggregation levéis such that itii
=

ami__
= a'-1»!-,, a.m-_ e

N and a > 1, i.e, the levéis ofaggregation follow a geometric series, e.g., {mj} = {2, 4, 8, ... , 2")
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or {m¿} = {10, 100, 1000, ... , 10M), and let aj(m¡) be Ae variance ofAe aggregated series X1™0

estimated wiA formula (133). Obviously <^(m() is biased, as &hm¿ = o*2(m ) [1
— (—) =

oxm2H~2(l - N2H~2), but Aen Ae difference between d2^ and <^(m¡+1) is calculated as:

% =

S2x(md
-

S2x.mi+Ú
= *>|«^H»W9C1 - a2-2); i = 1 M-1 (152)

and its logarithm

loga A* = loga[<r2m?H-2(l - a2""2)] + (i - 1)(2W - 2) (153)

Finally, the slope (s) ofAe plot loga d* vs. i is obtained (e.g., wiA a weighted least square

regression) and, using it, W is estimated as W = - + 1. It can be easily proven as ój^m,)
= JQ

and substituting it in (79) and (82).

The slope is computed by the following weighted formula:

S = -5 (154)

where Ae weights are such that £{i'i1(M*/¡) = Jl and Aey are adequate so Aat s has minimal

variance, e.g., Wt = Wí-i/mx-

Note that the Variance-Plot can be estimated wiAout bias but the Hurt index is not estimated

from it. Furthermore, ifAe aggregation levéis are taken as m* = 2 ,
Ae estimator is exactly Ae

same than one Aat uses Haar wavelet. The auAors of [54] developed an empirical study of Ae

estimation ofAeHurst index from serieswiAAe presence oftrends. They conclude that a method

named differenced-variance (a variation of Ae variance-bases estimator) should not be used for

estimating the Hurst index. The proposed solution is also a differenced-variance type method, but

it can be used to estimate the Hurst index wiAout bias and with optimal variance. Evidently, when

working wiA real world traces, Ae Variance-Plot may Affer from Ae straight line and an

additional bias results from the logarithm as E[log(-)] -é log[E(-)]. This bias can be corrected

applying by estimating the statistic analogously to (97), i.e.,

loga var [x™] = loga var [x™]
-

9i (155)

where g¡ is the bias described by (20).

3.7 Chapter Summary

In Ais chapter, the mean and variance of an W-SOSS self-similar time series are calculated in

terms of the Hurst index. The estimation of the mean from a real world sample is unbiased,
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regardless of its distribution and Hurst index. Only tbe confidence intervals for that estimation

are different when correlation is present. Le., Aey are narrower for samples wiA SRD (W < 05)

and wider for samples wiA LRD (W > 0.5), as expression (131) indicates.

The classical sample variance estimator, defined by expression (134), is unbiased when H
=

0.5 but biased otherwise. The disregarding ofAis fact may lead to incorrect conclusions. As Ae

sample size is greater Ae magnitude ofthe bias is smaller, but for traces wiA strong LRD, i.e.,

H > 0.90. the classical variance estimator is practically useless. The unbiased estimator is defined

by expression (139), which considers Ae existing correlation between samples by means of tbe

Hurst index. It is necessary to highlight Aat, although Ae estimator is mathematically unbiased,

its performance on real world samples relies on Ae accurate estimation ofAe Hurst índex. And,

as shown in Figure 17, a slight error on the estimation ofthe Hurst índex may lead to a very

different variance estimation for samples wiA W cióse to 1.

Tbe use of tbe classical variance estimation to obtain Ae Variance-Plot from a self-similar

sample has been a very common mistake in works related to Ais subject Several works in Ae

literature have claimedAat the variance-based estimator is unbiased, and Aat Ae higher the Hurst

index, the less reliable tbe estimation. ln Section 3.6, it is clarified Aat Ais has been a

misunderstanding. originated by Ae application ofAe classical variance formula to correlated

samples. A possible solution leads to an ill-conditioned problem, Le., to estimate the variance, it

is necessary to estimate Ae Hurst index, and vice versa. A order to avoid this vicióos circle, tbe

a different plot is derived from Ae original Variance-Plot calculating Ae difference of the

variance between consecutive aggregation levéis. That produces a plotwhose slope is not affected

by the bias (although the intersect is) from which Ae Hurst índex can be calculated And even

more, it is proven Aat Ae "new" plot is exactly the LD-Diagram, Le., the variances* differences

are actuallyAe variances ofAe components obtainedwrth the analysis functions defined by (98),

(99), and (100).

This chapter is based on publication [55]. Also, a more recent study [56] expresses Aat Ae

aggregated variance is underestimated by a factor of 1
— CM2H~2, where C is some constant and

Af is Ae number of aggregated sub-series. A previous study ofAe variance underestimation of

self-similar time series in published in [57].
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4 VoIP PerformanceMetrics

4.1 iV-packet Forward Error Correction

N-packet FEC consists ofAat packet n + 1 contains information about Ae last JV packets, so Aat

ifany ofAe packets n, n
—

1, n
— 2, ..., n

— N + 1 is lost, it can be approximately reconstructed

from Ae associated information. Any packet n cannot be reconstructed if Aere is no redundant

information, e.g., when packets n + l,it + 2 n + JVare also lost, but Aat is not very likely

for high valúes of N. so generally N = 1 will suffice. An altemative to Ae usage of FEC is MFT,

which consists of sending copies of packets when high losses occur. A order to maximize Ae

probability of reception,Aese copiesmust be equally spaced in Ae time [58]. Although MPT has

Ae advantage that it is very easy to implement, unless a low bit rate coded is used, it has Ae

disadvantage ofhigh bandwidth requirement consumption.

When using A' -packet FEC, Ae last N packets of a burst can be reconstructed; Aat way, Ae

perceived PLR of Ae end user is lower Aan Ae real PLR due to Ae network. Generally, Ae

amount of redundancy is defined as a function ofAe PLR [35], e.g., it is not efficient to send

redundant information if Aere are no missing packets. The FEC technique also reduces Ae

burstiness of Ae perceived packet loss at Ae receiver, which affects Ae quality of a VoIP

communication [59]. Many packet recovery schemes are documented in Ae literature [22].

The 1-packet FEC technique performance can be described as: it reduces Ae size ofa burst of

length fc to fc — 1. The perceived PLR (r1') is proportional to Ae perceived average burst length,

which in Ais case decreases by 1 (packet), Aen it is equal to:

r,Y±^t „*,
b

where b, Ae average burst length, is:

£-= JVfc.(fc);fc = l,2,... (157)
*=i

and fb(k) is Ae burst lengA distribution, i.e., fb(k) > 0 V k = 1, 2, ... and ___£___ fb(k) = 1.

Ifthe redundancy level extends to N packets, i.e. packet n has information about n + 1, n +

2, .

.,
n + N packets, the length of all bursts decreases from fc to max(0, fc

-

N) packets, then

Ae new burst length distribution f¿(k) is:
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/ H

f¿W = £/>(0; * = o
(158)

¿=i

\fbfr + N); k>0

Note Aat (158) includes the case when fc = 0, that is, it considers bursts of zero lengA. The

interpretation ofthis is as follows: bursts do really occur in Ae network but, as they are corrected

by a N-packet FEC technique, they are diminished (when fc > N ) or eliminated (when k < JV) in

Ae receiver. Then, f¿(k) is the new average burst lengA can be calculated as:

X

*'=£[*/*'(*)] (159)

*=i

H

b' = h-/V + ^(JV-fc)/b(fc) (160)

lr=l

Consequently, Ae perceived PLR is:

, _[£-*+££?(* --W»W]r
(161)

"
b

which is a generalized form of (156).

íoo
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■ BeforeFEC "AflerFEC

Figure 20. Example ofAe burst lengA distribution before and after 1-packet FEC. PLR is

reduced from 4% to 0.55%, approximately.

Figure 20 shows an example ofAe burst lengA distribution, as expressed by (63)wiA p2_
=

0.001350, p12 = 1.000000, p43
= 0.054507, p____

= 0.845146, p_,3
= 0.001968 and p^

-

0.016989, and how it is modified, from Ae point ofview ofthe receiver, after applying 1-packet

FEC. A Ais example, all bursts are reduced in 1 packet, as is defined by (158) and, as a

consequence, Ae perceived PLR is reduced from 4.022% to 0.548%. Similarly, Figure 2 1 shows

Ae comparison ofAe burst lengA distribution before and after 2-packet FEC. A this example the

PLR ¡s reduced to 0.075%.
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Figure 21. Example ofAe burst lengA distribution before and after 2-packet FEC. PLR is

reduced from 4% to 0.075%, approximately.

Note that (161) expresses Ae perceived PLR ofthe receiverwiAout considering oAer sources

oflosses, e.g., additional perceived losses occur ifpackets are delayedmore than certain threshold

(i.e.. de-jitter buffa* timeout).

4.1.1 Estimation ofBurst LengA Distribution Using Discrete Markov Processes

Packet losses due to network generally present a non-homogeneous behavior. This means Aat

periods of low losses and high losses occur altematively in Ane. Intuitively. it seems more

appropriate to apply a non-homogeneous model to represent these losses. However, unlike Ae

received packets, Aese losses generally occur in bursts of short length, e.g., Ae probabilityAat a

burst has a lengA greater than, per example, 10 packets or even less, is negligible (an example is

shown in Figure 46). This quick decay of Ae burst lengA distribution allows us to apply a

homogeneous model, e.g., Ae 2-stateMarkov process, wiAout significant error.

From Ae perceived burst lengA distribution, expressed by (158), and Ae 2-state burst lengA

distribution (54) is derived:

6vT
/sw- Z^1-^'"1;

k=0
062)

.Pizd-Pi.)™-1: k>0

The perceived average burst lengA defined by (1 59) is Aen:

b" = £[*/¿(*)] = £[fcp_2(l
- pí2)k+N-1] (163)

k=l k=l

* oo

b = £[kPi2(l
- Ih2.k+N-1] = (1

" Piz)" £[*Pm(1
- Piz)*-1] 064)

k=l *=1
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r-?-»s
Pl2

(165)

The perceived PLR, thu is proportional to Ae average burst length, is then:

r^ril-puY1 066)

Note that Ae perceived PLR, without considering discarded packets in tbe de-jitter buffer,

decays geometrically as JV increases.

N

-»t=10% -r=5% *T=2% ♦!-=!%

Figure 22: Plot r¿ vs. N fot r = {10%, 5%, 2%, 1%} and p12 = 85%.

Figure 22 is an example ofthe perceived PLR after FEC reconstruction when prl
= 85% for

four cases: r = {10%, 5%, 2%, 1%). For the four cases in Ais example, the perceived PLR is

reduced below 1% for JV = 2. Expression (166) can also give an estimation of Ae level of

redundancy needed to achieve certain perceived PLR. Also note Aat, generally cine or two levéis

of redundancy are necessary to reduce Ae perceived PLR below 1%.

An importantmatter is that Aemodeling ofAeburst length distribution using a 2-state Markov

process may present an error for non-homogeneous losses. The advantage ofusing Ais model is

Aat Aere is only one parameter needed to estiinate: Ae probability prl of expressions (54) and

< 1 66). The error of the burst lengA distribution can be estimated by comparingAe 2-state vs. the

4-state models, Le., by obtaining the quantity:

*(/_*) = £[A(*)-/r*(*)]2 (167)

k=l

The estimation of p12 using the algorithm explained in Section 4.4.2 produces the following

approximation:

s2(P2i + Pzs) + S4P43

Pl2X
Si+S3

(168)
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which is Ae multiplicative mverse ofAe average burst lengA (61). Note that Ae parameters of

Ae right part of expression (167) correspond to the 4-state model. The estimated burst lengA

distribution, according to (54), is Aen:

k-i

f (k) ___

S2(P21+P23) + S*P43Í1 _ SzPzi
+ P23) + S*P*3\

(j6Q)
***1 + s3 \ sl + s3 )

which will be compared to fb (fc), defined by (63) in order to obtain Ae estimation error ( 1 67).

Comparing expressions (63) and (169), it is noted Aat Ae reliability ofthis approximation of

Ae burst lengA distribution depends on how different are Ae rates two geometric series wiA

respective rates 1 —

p12 and 1 —

P34
—

P32. As P32 can be considered very low against p3+ (see

average valúes for Aese parameters in Table 8), Ae performance of this approximation reduces

to compare Ae probabilities p12 and p34. Le., Ae performance ofAe estimator will be worse as

Ae absolute difference between p12 and p34 is greater. The expected error of Ae estimation of

Ae burst lengA distribution (£(/*)) is shown in Figure 23. The average valúes shown in Table 8

are used for p21. p23, p32 and p43. It is noted Aat, for Ae shown valúes ofAese parameters (both

Pi2 and p43 between 0.6 and 1.0), Ae error is lower than 0.005.

0.004
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^m

i 0.002
-^ ^^á w

0.001 ^^ W 1.00

0.000 '^^
W 0.87

0.8733
„onc

^^ 0.73 Pl1

0.805
0.7367

pM 0.6683

0.60

0.6

Figure 23: SMSE Ae estimated burst lengA distribution.

4.1.2 Estimation of Loss Impairment after FEC Reconstruction

As explained in Section 4.1, Ae JV -packet FEC technique sends additional information of Ae

immeAate previous packets wiAin Ae current sending packet The amount of redundant

information (/), e.g., in bytes, of one packet must be less (or at most equal) Aan JV times Ae
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packet size (P) without redundancy, i.e., / < JV(P). Let us estimate the codee impairment (Ie) fat

Aese two encoding schemes:

I. Normal packets coded using G.711 and redundant information coded using G.729, as

shown in Figure 25a.

2. Normal packet and redundant information both coded using G.729, as sbown in Figure

25b.

n

G.711 G.729 G.729 G.729

a) b)

Figure 24: FEC encoding schemes: Tbe first one combines normal frames, encoded using
G.711 (light rectangle) and redundant frames (dark rectangle) encoded using G.729, while Ae

second uses G.729 for boA frames.

For Ae first case, if Ae PLR Aie to the netwoik is r and Ae perceived PLR after the FEC

block. then Ae impairment after Ais block depends on Ae original loss rate (r) and the percent

of reconstructed packets (r
—

r1). Note that Ais function /e,G.7iu;.7Z9(T'.r') is neither equal to

(77) ñor to (78) and must satisfy Ae following conditions:

lf r = r (i.e., no reconstructed packets):

h.c.711,G.729{r.r) 'e.G.711W

ni.

(170)

(171)

(172)

If 0 < r < r (i.e., some packets are reconstructed):

'e,G.711,G.729(r> rD > ^-.G^llíO

lf r = 0 (i.e.. all packets are reconstructed):

IejG.THjG72tir.ry) > Je.C.71l(0)

iv. For a fixed r > 0, it must be a non-decreasing function of r '.

According to (171), for a fixed valué of r', Ae impairment mercases as Ae percent of

reconstructed packets is greater. Based on Aese properties, the estimation ofAe codee impairment

is proposed as:

/e,G.71i.G.729(''.r') = /e,G.7ii(0 + (r
- r')Ae (173)

where Ae is:

A.= /e,G.729(-'')-/e.G.71l(r') (174)

This estimation ( 1 73 ) satisfies Ae properties described previously.
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Figure 25. Estimation ofAe codee impairments (le) for G.711, G.729 and combined G.711-

G.729. PLR before FEC reconstruction is 5%.

Figure 25 shows Ae proposed model (173), compared wiA Ae estimations for codees G.711

and G.729. Note Aat Ae percent of reconstructed packets (r
—

r") depends on Ae level of

redundancy (JV) and Ae burst lengA distribution (fb(k)).

For Ae second codification scheme (i.e., using G.729 for normal packets and redundant

infonnation), Ae estimation of Ie is Ae same as (78), substituting r wiA r ':

^e.G.729.G.729(r>r0 = U.G.729(j) (175)

Note Aat Ais estimation is not including Aose additional losses caused by de-jitter buffer,

which discard long delayed packets. To estimate Ae impairment after Ae de-jitter buffer block,

Ae valúes ofr and r'must be updated in Ae case of that any packet is discarded.

4.2 Impact of the De-jitter Buffer Size on the Quality of Service

The design ofan adaptive optimal de-jitter buffer consists of determining a time window which

is used to determine wheAer or not each packet is delivered to Ae player. This is, at each packet

arrival Ae receive estimates its OWD, ifAis is wiAin Ae time window, it is decoded and sent to

Ae de-jitter buffer to wait Aere to be played; oAerwise, it will be discarded. The de-jitter buffer

is necessary to play Ae audio stream at constant rate but at Ae expense ofan additional delay for

all (ormost) packets and, possibly, a slight Aerease in PLR.

Let FD(t) be Ae packet OWD distribution and d, Ae OWD for a certain packet. Then, Ae

probability for Ais single packet to be discarded (pd) is:

pd
= l-FD(d) (176)
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Note mal (176) considers Ibe packet delay process as stationary; oAerwise it would be time

dependen!.

Let r
"

be Ae perceiver PLR after FEC and tbe receiver buffer, in this order. It is the sum of

two probabilities: tbe probability of a packet to be lost due to network congestión and the

probability Aat a packet successfully reaches Ae receiver aiid be discarded by the receiver buffer.

then an approach to r" ís:

r" = r + (1 - rO[l - F„(w)] (177)

where r
'

is tbe same man rm' and defined by (161).

As Ae Aeoretical waiting time Aat im-r-m-rn******* Ae perceived PLR is x. (which implies that Ae

packets would never be sent to the listener), tbe optimal valué ofw must consider tbe expected

voice quality ofAe commurucatión, e.g.. bymeans ofAe E-Model"s R-Factor and not considering

PLR only.

43 Generation ofCauchv-dtstributed Time Series w ith Specific Hu rst Index

A method to simúlate Cancby-type processes, Aat represent delay jitter series ofa VoIP cali, is

proposed. This generator produces a random sequence ofCJauchy-Astributed observations whose

correlation is determined by Ae self-sirmlanty* parameter (//). This proposed meAod shows that

it is possible to synthesize artificial time series with both a specific distribution and Hurst index,

even in Ae infinite variance case (a study of tbe finite-variance case is presented ín [60].

The proposed algorithm for generating artificial Canchy tiiiie serieswhh defined size, location,

scale and Hurst index consists ofAe following four stages:

1 ) Genérate of a random sample of certain size. e.g-, a uniformly di stributed series or

FGN.

2) Convert tbe random sample mto a Cauchy-distributed series. wiA a specific location

and scale, by means ofthe ICDF transformation (see Section 1.2).

3) Adjust the Hurst índex ofthe senes b> means of ihe weighted synAesis described in

Section 23.

4) Adjust (be location and scale parameters by means ofthe linear transformations (42)

and (43), which do not alter Ae estimation ofAe Hurst índex.
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Figure 26: Algorithm to genérate Cauchy-distributed time series wiA Hurst index H

Figure 26 shows Ae proposed algorithm, where Xt represents a measured jitter sample, e.g.,

from a monitored VoIP cali, from which Ae location and scale parameter are estimated, and Z_ is

Ae output. Yt is Ae resulting series ofAe ICDF transformation alone.

Note AatAe wavelet-based synAesis ís not a linear transformation (it is only formultiplication

by a real constant). Consequently. Ae output [Z_ ) ofAe generator may not be exactly Cauchy-

distributed, but it is actually very cióse ifAe Hurst index adjustment is not abrupL

4.4 Generation and Modeling of Packet Loss Sequences

Let us define Ae loss sequence as follows:

_

(0; ifpacket nis received
n
~

U;
(178)

ifpacketnislost

From Ae loss sequence, Ae probabilities of transitions were also estimated using Ae

algorithms explained in sections 4.4.2 and 4.4.3, for Ae two-state and Ae four-state models,

respectively.
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4.4.1 Artificial Loa Seqnenre Generation

A simply algorithm is used in this work to simúlate packet losses modeled by discrete Markov

processes. The algoriAm for Ae two-state Markov process sequence is shown m Table 3.

Algorithms to genérate sequences based on processes wiA greater number of states are just

extensions. ForAis. let Xt be a generated uniformly distributed sequence such that X, £ [0.1] for

t = 1, .... JV. The valúes ofpí2 and p2l are set The output sequence Yt represents packet receipt

and losses by zeros and ones, respectively for t = 1, .„,T.

state = 0;

FORt=l TOT,

IF (state),

IF(X[t] <pl2)
state == 0;

Y[t] = 0;
ELSE

Y[t]
= 1;

ENDEF;

ELSE

IF(Xrt] <p21)

Ylt]
= i;

state == 1;

ELSE

Y[i]
= 0;

ENDIF;

ENDIF;

ENDFOR;

Table 3: AlgoriAm for two-state Markov process sequence generation

4.4.2 Two-state Parameters Estimation

The estimations of p12 and p21 are: p12
= tc^e/n_ and p21

= te_c/n0, where tc_^ and te_^ are

Ae respective number of transitions from correct states to error states (i.e., when Yk = 0 and

Kt+1 = 1) and from error states to correct states (i.e., when Y__ = 1 and Yk+__ = 0), and riQ and nx

are Ae respective number of received and lost packets (i.e., the respective numbers of zeros and

ones ofK*-).
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4.4.3 Four-state Parameters Estimation

A the 4-state case, the valúes ofAe sequence Yt are Avided into two regions: the first one with

lower loss rate (whose first and last valúes are zeros) and Ae second one wiA higher loss rate

(whose first and last valúes are ones) Aan certain threshold, e.g. 1%. Then, from the first región,

p12 and p21 are estimated as explained m section 4.4.2. Similarly, p43 and p34 are estimated from

Ae second región. Finally, let tlst^2nd be Ae number of transitions from Ae first región to Ae

second; t2nd^,lst, Ae number of transitions from Ae second to Ae first; nlst, Ae number of

received packets in Ae first región (zeros) and n2nd, Ae number of lost packets in the second

región (ones), Aen p23 = tlst^2nd/n\st and P32
= hnd-ist/n2nd-

4.5 Parameter-optimizable Quality of the VoIP Communication

The máximum valué for Ae MOS, which indicates Ae máximum quality ofAe communication,

is achieved when the R factor is also maximized. The strategy is Aen to setAe adjust parameters

to Aeir respective optimal valúes, e.g., Ae redundancy level (JV), Ae de-jitter buffer size (w), Ae

type of codee (in Ais case, G.711 or G.729) and Ae voice data lengA (mter-departure time or

IDT). Many of Aese adjust parameters are easier to optimize than Ae oAers, as Aey are

independent (or almost) ofAe oAers. E.g., Ae level of redundancy depends only on the PLR; it

is increased as Ae PLR become greater Aan certain thresholds to decrease it to acceptable levéis.

The E-model's R factor can be estimated then in terms of these adjust parameters as follows:

As it is defined by (73), it is Ae sum ofthe impairments due to coded-PLR (le) and Aose due to

mouA-to-ear delay (ld). The Ast one depends on Ae types ofcodee used, as described m section

1.7, and Ae type and level of redundancy, as the perceived PLR decreases by packet

reconstruction. The second one depends ofthe mouth-to-ear delay, which can be expressed as Ae

sum of two delays, i.e.,

d = w + S (179)

where w is Ae delay caused by Ae de-jitter buffer (which is equal to its size) and S is Ae sum of

all other delays, e.g., packet transmission, queuing, codmg/decoding, etc. The delay impairment

is then estimated as expressed by (74) for d = w + S. The valué of d for received packets must

be a constant. Then, w is a random variable that depends on -5 (i.e., w = d —

S).

Finally, Ae E-model's R factor is estimated as a function ofAe following parameters:

a) Communication-intrinsic parameters: Ae network PLR (r), Ae burst lengA distribution

(fb(k)) and the delay due to network and the devices except Ae de-jitter buffer.
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b) Adjust parameters: Ae codee used, Ae level of redundancy (JV), and Ae de-j itter buffer

sizeW.

A methodology to obtam Ae máximum quality is to estímate Ae communication-intrinsic

parameters and Aen to find Ae optimum adjust parameters Aat maximize Ae estimation ofthe

E-model's R factor, and consequently. the MOS. This analysis can be extended if other

improvement techniques are implemented, e.g., bit-level enor correction [61].

4.6 Chapter Summary

In this chapter, modeling and characterization ofpacket loss and delay for a VoIP communication

is presented.

The performance of Ae communication is measured by means of the E-model's R factor,

which can be converted to MOS. Packet reception and loss is modeled by finite-state Markov

processes. An innovative contribution ofthis study corresponds to the models based on two-state

and four-stateMarkov processes: Ae equations for Aeoretical gap and burst lengA distributions,

as a function ofthe probabilities of transitions for both models are proposed. The strategy used to

obtam Ae gap and burst lengA distributions for Ae four-state model presented in Section 133

exemplífíes the generalized methodology for a m-state Markov process model, which consists of

finding firstly their respective CDF, Le., C_,(fc) and Cg(k).

Algorithms for reconstructions, i.e., estimation of Ae probabilities of transitions between

states for two-state and four-state models, are also described.

It is shown, through an evaluation based on SMSE, that both two-state (at least formost cases)

and four-state models can capture Ae geometric-type decay ofthe distribution ofthe burst length,

but Ae two-state model fails to model Ae gap lengA distribution when non-homogeneous losses

are present. Le., Ae gap lengA distribution is Ae sum of two geometrical series wiA different

decaying ratio, as defined by (64), not only one, as defined by (55).

An analysis of Ae JV-packet F-EC scheme is also presented. The expected perceived PLR

obtained wiA Ais correction scheme is quantified, as expresses (161). This resulting general

formula applies for Ae JV-packet FEC scheme, regardless of Ae shape of Ae burst lengA

distribution.

Through an example using real world samples, it is shown Aat 1-packet FEC is generally

sufficient to improve Ae quality ofthe communication to an acceptable level, that is, wiA a PLR

lower Aan 1%.

The equations for Ae estimation of Ae impairments for combined codification, i.e., when

normal packets and redundant mformation may be coded differently, are proposed. These
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estimations satisfy certain properties Aat result ofthe combination of two different codification

schemes, as described in Section 4. 1 .2.

This chapter is based on publications [62], [63].
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5 Simulations and Performance Evaluation

S.l Comparison of the Hurst Index Estimators with Synthetic Traces

5.1.1 Fv aluation Metrics and Methodology

A criterion to evalúate the performance ofAe H estimators is needed. Tbe conclusions are based

on tbe SMSE, which depends on Ae bias and Ae standard deviation of tbe estimations (see

Definition 5).

Definition 2: Average estimated H: H = E[fí)

Definition 3: Bias: 8 = H-H

Definition 4: Standard deviation: SH = JE j (fí
- H) |

Definition 5: Square root ofmean squared error (SMSE): i = ¡EUfí - H)2] = ¡S2 + a__2

The experiment 1 consisted of:

1 . The generation of a set of 222_L traces offractional Gaussian noise (FGN) of lengA 2
L

for L=10,...,16 and Hurst parameter H = 0.50,0.60,0.70,0.80,0.90 by using

Paxson's algorithm, see [64].

2. Estimation of H for each generated trace using Ae estimators described in Section 1 . 1 .6;

Aese are labeled, respectively, R/S, AM, VAR, PER, MAVAR, LWHL and WAV. For

each pair ofvalúes of L and H (Aeoretical), Ae average H. standard deviation and SMSE

were calculated- The implementation is that used in Ae tool developed by J. C. Ramirez

et al [65] [66].

Important note: VAR is Ae classical variance-based estimator, i.e., Ae variance of the

aggregated series is calculated using formula ( 1 34), and not ( 139). It is expected to be negatively

biased.
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5.1.2 Results

The results ofAe calculations are shown from Figure 27 to Figure 33.
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Figure 27. Estimations with R/S method. a) Hurst index, b) bias, c) std. deviation, d) SMSE.
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Figure 28. Estimations with AM method. a) Hurst index. b) bias, c) std. deviation, d) SMSE.
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Figure 29. Estimations wiA VAR method. a) Hurst mdex, b) bias, c) std. deviation, d) SMSE.
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Figure 30. Estimations wiA PER method. a) Hurst mdex, b) bias, c) std. deviation, d) SMSE.

0.90 »——• • • ■ ■—
— i 0.002

-0.80

¿0.70
¿0.60
"^0.50
0.40

■ oooo ju

m
-0.0Ü2 v?^££*^r^£j-<sr~^
-0.004

*"^

10 11 12 13 14 1510 11 12 13 14 15 16

L L

-O.50 -0.60 -0.70 -0.80 *0.90 -O.50 -0.60 -0.70 -0.80 *»0.90

a) b)

16

Chapter 5: Simulations and Performance Evaluation 69



0.00 0.00

10 II 12 13 14 15 16

L

-0.50 -0.60 -0.70 -0.80 »0.90

C)

10 11 12 13 14 15 16

L

-0.50 -0.60 -0.70 -0.80 ♦0.90

d)

Figure 31 . Estimations with MAVAR meAod. a) Hurst index, b) bias, c) std. deviation, d)

SMSE.
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Figure 32. Estimations with LWHT meAod. a) Hurst index, b) bias, c) std. deviation, d) SMSE.
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Figure 33. Estimations wiA WAV meAod. a) Hurst index, b) bias, c) std. deviation, d) SMSE.

The main findings are:
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• For R/S, AM, VAR and PER. the shorter the trace and Ae larger Aeoretical H. the

worse Aeir bias (see Figure 27b, Figure 28b. Figure 29b and Figure 30b). while for

MAVAR. LWHI and WAV |<5| < 0.01 m almost all cases (Ae exceptions are a few

cases for LWHI when L = 10) and Aeir bias is almost constant for all valúes of H in

Ae range from 0.50 to 0.90 (see Figure 31b. Figure 32b and Figure 33b).

The bias of all estimators except R/S was, in most cases, negative valued- R/S statistic

presented positive bias for those traces wiA H < 0.70 and negative bias for H > 0.70.

as shown in Figure 27b.

AlAough the estimations obtained by LWHI presented Ae largest standard deviation

(as shown in Figure 32c), the behavior ofthis estimator is very similar for all valúes of

H at a certain lengA as well as PER. MAVAR and WAV (see Figure 30c. Figure 31c

and Figure 33c).

The standard deviation ofR/S, AM and VAR vary for different valúes ofH. but. except

for R'S, it is smaller Aan 0.035 for all lengths from 1024 to 65536. as shown in Figure

27c. Figure 28c. and Figure 29c.

The smallest SMSE was obtained by WAV estimator, followed by VAR. for H <

0.70 and MAVAR, for H > 0.70.The average bias. average standard deviation and

average SMSE ofthe estimations vs. Aeoretical H of all seven estimators are shown

in Figure 34. Figure 35 and Figure 36, respectively.

The averages bias. standard deviation and SMSE are shown. respectively m Figure 34. Figure

35 and Figure 36. Figure 37 shows the average standard deviation vs. average bias plot. The

behavior of Ae estimators for different valúes on H in Ae range between 0.50 and 0.90 can be

observed.
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Figure 35. Average standard deviation ofAe Hurst mdex estimations
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Figure 37. Average standard deviation vs. average bias ofAe estimations. Square indicates H
=

0.50; diamond. H = 0.90

As Figure 37 shows, although the estimations ofWAV Ad not presented tbe lowest average

bias (the lowest areMAVAR's), they are smallerAan 0.012 forH between 0.50 and 0.90. LWHI

presents almost the
same behavior for different valúes of H but the SMSE of its estimations was

greater Aan 0.05,
due to its large standard deviation (S__ > 0.05)
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5.2 SampleMean and Variance Estimation

5.2.1 Estimation ofthe SampleMean

to order to verify Ae equations Aat describe Ae mean and variance ofAe sample mean, a set of

zero-mean, unitary variance, FGN time series of size Np
= IO6 observations are generated using

an implementation ofAe generator proposed by Davies and Harte in [67], each for a different

Hurst index for H = {0.30, 0.50, 0.70, 0.90 }. Note Aat although several estimators are available

in Ae literature, even for Ae multivariate case, e.g., [68], Ais algoriAm is chosen because it is

easy to implement and because it has a complexity of 0(n log n) .Then, Ae mean is estimated

from blocks of size N = 100 and Ae empirical PDF is obtained from Ae estimations and

compared toAe classical (132) and proposed (131) estimators. Figure 38a showsAatAe variance

ofAe estimated mean does not fits Ae classical model when SRD or LRD is present (Figure 38a,

c, and d), but only for Ae uncorrelated case (Figure 38b). Only proposed estimator (131)

represents adequately this phenomenon for Ae four cases.
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Figure 38: Estimation ofthe sample mean with n = 100 for four cases: a) H = 0.30. b) H =

0.50. c)H = 0.70 and d) H = 0.90.

Chapter 5: Simulations and Performance Evaluation 74



5.2.2 Estimation of tbe Sample Variance

The followed procedure to verify Ae proposed estimator ofthe sample variance (Sj¡) consists of

Ae generation of a set of 100 FGN samples of size 1024 for each valué of H =

{0.05,0.10,0.15, ...,0.95} and Ae estimation of Ae variance using Ae classical formula (134)

and tbe proposed estimator (139). Tbe respective mean of boA estimations for each set was

obtained. For the estimation ofAe Hurst index Ae wavelet estimator ofVeitch and Abry [ 1 1 ] is

used.

1.0 »^%
-0.8 -=--

60.6 -V-

«0.4 —

02

0.0

0.00 0.25 0.50 0.75 1.00

H

Classical
—

Proposed

Figure 39: Mean ofAe estimated variance for n = 1024 and fí = {0.05, 0.10, 0.15 0.95}.

Figure 39 shows that the classical formula underestimates the variance noticeably for higher

valúes of H. For H > 0.95 the estimated variance is less than Ae half of Ae process variance.

The proposed formula (139) does not underesAnate Ae variance. but for high valúes of H Ae

mean ofAe estimated variance varies noticeable from one realization to another. This variation

results from the estimation ofthe Hurst index, as the statistic 1 — N
2
is very sensitive to me

variations of fí. which depends. in tum, of Ae efficiency of Ae sample generator. This is an

indicator Aen Aat the generator proposed by Davies and Harte may be less accurate as H is closer

toi.
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Figure 40: Variance ofAe estimated variance for n
= 1024 and H = {0.05, 0.10, 0.15, ... , 0.95}.

Figure 40 shows the variance of the estimated variance obtained with the proposed formula

(139) compared to the approximation proposed by Yunhua in [50]. As it is expected, Ae variance

ofthe estimation is cióse to zero (lower than 0.001) forH < 0.5; but, as the Hurst index increases,

it becomes noticeable when H > 0.75. This verify the observation of [50], which says that beyond

H = 0.75 the precisión ofthe autocorrelation is about one order lower than when H < 0.75.

5.3 Synthesis of //-SOSS Time Series

To exemplify the proposed wavelet-based synAesis (described in Section 2.3), four time series

wiA respective Hurst index 0.3, 0.5. 0.7 and 0.9 were synthesized from a FGN sample of size

1024. The LD-Diagram ofthe four new time series were obtained and compared to that ofthe

original sample. The plot Xt vs. t for each one the four synthesized series is shown in Figure 41 .

One can visually check Ae presence of positive correlation in Figure 41c and Figure 41d.
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Figure 41 : Plot vs. time ofthe four synAesized time series, a) H - 0.30, b) H - 0.50, c) H =

0.70 and d) H = 0.90.

The LD-Diagram ofAese artificial series is shown in Figure 42. Note Aat Ae original LD-

Diagram of Ae source sample is not a straight line, but it so is for the synthesized series. Also,

Ae estimated Hurst mdex ofthis series is fí = 0.56 and its estimated LD-Diagram is not a straight

line but Ae estimated Hurst index of Ae four generated series is exactly Ae desired, e.g, fí =

0.30 for Ae series shown in Figure 41a and Ae same for the others, and their respective LD-

Diagram is a straight Une.

This "ideal" behavior is just because Ae synthesizer and the estimator match each other. That

does not mean Aat Ae several Hurst index estimators would retum Ae same result; in fact, they

would produce similar, but yet different. valúes.

8

/. ^H=0.9

j

Figure 42: LD-Diagram of synAesized time series.

5.4 Monitored VoIP Test Calls

A set of VoIP test calls were established wiA the Alliance FXS PCI Voice Cards developed at

CTS CINVESTAV with the following characteristics:

• H.323 architecture

Four ports
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Codee G.711-A law [69] / G.729[70], [30]

The voice data lengA used for Ae VoIP calls is shown in Table 4.

Table 4: Used codee types and voice data lengA.

Voice data length

ms
Bytes

G.711 G.729

10 80 10

20 160 20

40 320 40

60 480 60

5.4.1 Test Calls Scenario

The measurement scenario consists of two LANs [71]:

LAN A: CINVESTAV IPN

LAN B : Local Cable-ISP Network

BoA LANs are in Guadalajara, México, Aey have different Internet service providers (ISP)

and are interconnected by Ae Internet backbone.

LANA

Local Canto ISP NMorark

LANB

CINVESTAV GOL N-KKrt

«Of S»*c*. **>f6 SOTKh

tOtO-L-4 10 09X24

B1 82 BS 84

Figure 43. Test calls scenario.

Table 5: Test calls protocol.

Set Al/Bl A2/B2 A3/B3 A4/B4
l G.711-10th-. G.711-20ms G.711-40ms G.711-60ms

2 G.729-10ms G.729-20m_* G729-40m¿: G.729-60m¿*

3 G.71 1-1Oms G.711-20ms G.729-107HS G.729-20ms

4 G.7-l-40-ms G.711-60ms G.729-4077_s G.729-607TLS

As shown in Figure 43, Ae H.323 zone is composed by Ae endpomts Al, A2, A3 and AA

located in LAN A, the gatekeeper and Ae endpoints Bl, B2, B3 and B4, boA located in LAN B,

each endpomt has an Alliance FXS PCI Voice Card and a conventional cord phone. The
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measurements protocol is shown in Table 5. The measurements were monitored at LAN A using

Ae Network Protocol AnalyzerWireshark [72].

Additionally, a Traceroute-based script [73] was implemented in LAN B. in a parallel fashion

to the VoIP measurements. in order to sample the path followed by Ae VoIP packets.

5.4. 2 C olí ect ed Data Sets

The measurement protocol is described in Table 6. Tbe number of packets sent and the total

payload (A bytes) for each set is approximated.

Table 6: Description ofthe VoIP calis.

__■_- Period (honrs) «r

Total

ofsent

Total

(Sirtes)*

I 6 24 4140000 910620000

2 6 24 4140000 305820000

3 6 24 6480000 840240000

4 6 24 1800000 484200000

'Valúes are approximated

The captured RTP streams were processed with Wireshark and fi 1tered with a script to obtain.

from each testVoIP cali, the folio»Ag characteristics:

The respective series of sequence numbers of received packeis

• Tbe respective series ofdelayjitter.

From the series of sequence numbers, the loss sequence (as defined by equation (178)) is

extracted. Section 5.4.4 presents tbe estimation ofthe probabilities of transitions for tbe 2- and 4-

statemodes from these loss sequences, for which tbe algorithms described in 4.4.2 and 4.43 were

applied. Also, the respective gap and burst lengA distributions (fg(k) and fb(k)) were obtained.

The respective SMSE of the gap and burst length distributions, i.e.. the obtained whfa the

estimated parameters vs. Ae measured, is calculated m order to evalúate Ae modeling.

In Section 5.4.5. Ae modeling of (besejitter series, Le, tbe estimation of Cauchy parameters

and Hurst índex, is presented.
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5.4.4 Modeling ofMeasured Loss Sequences

The results presented in this work correspond to Ae 48 VoIP data traces of sets 3 and 4 which

were Ae ones Aat presented higher PLR [71].

The estimated parameters ofAe two-state model (p2_ and p12) are shown in Figure 44a and

Figure 44b. The respective minimum, máximum, average and standard deviation of Aese two

parameters are shown in Table 7.

a) b)

Figure 44: Two-state model parameters a) p21 and b) p12.

Table 7: Two-state model parameters

P21 Pl2

Minimum 0.000322 0.595744

Máximum 0.038605 0.934703

Average 0.013923 0.852838

Std. deviation 0.012234 0.074697

The estimated parameters ofAe four-state model are shown in Figure 45a-f, respectively. The

respective minimum, máximum, average and standard deviation of Aese two parameters are

shown m Table 8. The loss rate threshold used for Ae algoriAm is 1%.
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Figure 45: Two-state model parameters a) p-,, and b) p_2.

Table 8: Four-state model parameters

P21 Pl2 P4J P34 Pu P«

Minimum 0.000188 0.963636 0.015503 0.096774 0.000016 0.OO0890

Máximum 0.002053 1.000000 ) 0.272727 0.931464 0.002551 0.361111

Average 0.000793 0.998997 0.054215 0.688747 0.000602 0.092536 j

Std. deviation 0.000527 0.005424 0.037093 0.259845 0.000609 0.106315

The burst and gap length distributions of one ofAe captured traces obtained from a VoIP cali

with codee G.711 and packet inter-departure time of 20ms are shown in Figure 46 and Figure

47. respectively.

In Figure 46 it is shown Aat the burst lengA decays rapidly. e.g.. to zero probability for burst

of lengA lower than 5 packets. It is also observed that both two-state and four-state models can

characterize this decay.
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Figure 46. Burst lengA distribution ofone ofAe loss sequences.

The gap lengA distribution decays slower Aan the burst length distribution. There exist gaps

of tens and hundreds of packets with non-negligible probability and. in this case, the less flexible

one-parameter formula of the two-state model cannot fit the measured distribution. in contrast

with the four-state model. which fits it adequately.
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The SMSE for burst length distribution of boA two-state and four-state models are quite

similar (less than 0.01) formost traces, as seen in Figure 48. But Aere is a remarkable Afference

between boA models in Ae gap lengA distribution. to Figure 49 it can be observed that Ae SMSE

four-state model fits remarkably better Ae gap lengA distribution for most traces (its maxitmim

SMSE is 0.002).
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Figure 47. Gap length distribution of one ofthe loss sequences.
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Figure 48. SMSE of two-state and four-state burst length distribution.
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Figure 49. SMSE of two-state and four-state gap lengA distribution.

Figure 50 shows the PLR ofthe 48 studied data traces, which is calculated as Ae quotient of

the number of lost packets and Ae number of sent packets. Also, by applying ( 161 ), the perceived

PLR after a JV-packet FEC is estimated forN= 1. 2 and 3

4.00%

3.00%
as

SÍ 2.00%

1.00%

0.00%

1 11 21 31 41

Trace

~N = 0 -N=l -N = 2 -N=3

Figure 50. Perceived PLR for redundancy ofN = 0,1,2,3 packets.

To determine how Ae performance is improved when increasing Ae level of redundancy (JV),

Ae relative gato ís calculated, which defined as:

VW = ~(r"~r"~l);'V>o <18°)

Figure 51 shows the relative gain for Ae studied traces for the redundancy levéis N = 1,2 and

3. Themajor relative gam (approximately 80%) is obtained by adding redundancy ofone packet,

i.e., for JV = 1. In this case the perceived PLR decreases below 0.55% for all studied traces, which

is acceptable for VoIP calls. Although PLR constraints can be lower Aan 0.1% for Internet

backbone routers or public telephony svstems. a less strict limitation applies for VoIP providers

and user local's ISP networics, where losses up to 1% are considered undetectable [74].

AlAough oAer communication scenario may need a different level of redundancy, e.g, N =

0 (no redundancy) or JV = 2, Aese results are still significant. It is shown that, as Ae losses occur

m burst of short lengA e.g, one or two packets, Ae major gam is obtained wiA Ae first level of

redundancy.
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5.4.5 Modeling ofMeasured Jitter

From the 96 monitored VoIP calls described in Section 0, Ae Cauchy-location and -scale

parameters, as well as the Hurst index, were estimated. These estimated parameters are

respectively shown in Figure 52, Figure 53 and Figure 54.
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Figure 52: Location parameter ofjitter samples
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Figure 53: Scale parameter ofjitter samples
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Figure 54: Hurst index ofjitter samples

Table 9 shows Ae minimum, average, máximum and standard deviation of Aese three

parameters. It can be observed from this table and from Figure 52 Aat the location parameter is

near zero formost traces, which is expected due to Ae nature ofdelayjitter. Its estimated standard

deviation is approximately 0.132, but a new estimation excludmg outliers (Aose valúes whose

magnitude is larger than 0.40) gives 0.068, which is lower Aan Ae standard deviation ofHurst

estimations.

The average scale parameter is 1.55, has a standard deviation of 0.823 and presents positive

skewness.

Table 9: Minimum, average, máximum and standard deviation of estimated parameters

Location ...Scale Hurst index

Minimum -1.024881207 0.473172505 0.053220736

Average -0.032550621 1.550452582 0.275858331

Máximum 0.456634627 4.856410683 0.453175013

Std. deviation 0.131975764 0.823479616 0.081280047

Skewness -4.233167324 1.597377662 -0.017680292
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to order to evalúate Ae performance ofAe proposed generator, for each jitter sample described

in Section 5.4.2, a new artificial series was generated wiA the same lengA, location, scale and

Hurst parameters Aan the original, i.e., a new set of96 samples. The efficiency ofAe generation

was evaluated by estimating Ae parameters c, s and H and comparing Aem wiA Ae parameters

ofAe original sample, and by calculating Ae square root ofAe MSE (SMSE) ofAe CDF from

Ae new series.

The random samples consisted of FGN series generated wiA an implementation of Ae

algorithm proposed by R. B. Davies and D. S. Harte [67], wiA Hurst index equal to Aat ofAe

original jitter series. The location and scale parameters were estimated by applying a JMLE

estimator [75]. The Hurst index was estimated wiA an miplementation ofAe Haar-wavelet based

estimator, as described in [1 1].

The respective estimation of Ae c and s parameters for Ae series Xt, Yt and Zt. described in

Section 4.3, are shown in Figure 55 and Figure 56. The estimated valúes for Yt and Zt are very

cióse to Aat ofXt. The location parameter is in practice very cióse to zero, e.g., c e (—0.5,0.5)

formost traces. And Ae estimated scale parameter is in Ae range between 0 and 5 for all studied

samples. Also note that Ae ICDF transformation does not depend on wheAer or not Ae original

series (Xt) is adequately modeled wiA a Cauchy distribution, but only in Ae estimation of c and

s\

0.5 .
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2
"0-5 ^^~^^+

-1.5

_2
♦

-1.2 -0.6 0 0.6
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-c(X) *>c(Y) *»c(Z)

Figure 55: Estimations ofthe location parameter

Figure 54 shows Ae estimated H for Ae Aree series Xt, Yt and Zt. It can be observed Aat the

correlation structure is somehow altered because ofAe ICDF transformation, i.e., Ae estimated

H for Yt is different of Aat of Xt and closer to 0.5. But Ae weighted wavelet-based synAesis,

described in Section 2.3, makes Ae Hurst index ofZt match Aat ofXt (the estimated difference

l«z ~ Hx\ is lower than 10-14).
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Figure 56: Estimation ofthe scale parameter

0.1 0.2 0.3

-H(X) ♦H(Y) •H(Z)

0.4 0.5

Figure 57: Estimation ofAe Hurst index

Figure 58 shows Ae respective SMSE oftbe CDF for Yt and Zt wiA respect to a Cauchy CDF

wiA location and scale parameters cx and sx (estimated from Xt). It is observed that, although

Ae wavelet-syntbesis increases tbe SMSE ofZr . it is very cióse to that of Vt . i.e.. Zt is very cióse

to Cauchy-distributed if Y¡ so is. This is an indication that the efficiency ofthe proposed generator

is very cióse Ae ICDF meAod, but wiA Ae advantage Aat Ae correlation structure is also

adjusted-
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The LD-Diagram of Ae jitter measurements helps determining Ae its self-similar nature, be

either mono- ormulti-fractal. The two cases are represented respectively by Figure 59 and Figure

60.
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Figure 59: LD-Diagram behavior of a VoIP jitter data sample with mono-fractal behavior.

Figure 59 shows Ae components behaviors of a VoIP jitter data sample that belong to the

data sets with SRD. It is observed that Ae variance of Ae components of this time series is

modeled by a straight line; therefore, it is said Aat Ae time series exhibits mono-fractal behavior.
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Figure 60: LD-Diagram behavior ofa VoIP jitter data sample wiA multi-fractal behavior.

Figure 60 shows Ae components behaviors of a VoIP jitter date sample that belong to the

date sets wiA LRD. It is observed Aat Ae variance ofAe components ofAis time series cannot

be adequately modeled with a linear model, and the scaling behavior should be described wiA

múltiple scaling parameters (biscaling), therefore, it is said that Ais time series exhibits multi

fractal behavior. The LD-Diagram can be split in two segments, e.g., first for y = 1, ...,8 and Ae

second for jf ■ 9, ...,14. From each segment Ae slope is calculated and, from it, Ae Hurst index

is estimated, yielding fí__ = 0.43 and fí2 = 1.11, as labeled in Figure 60. A mono-fractal process

wiA H > 1 cannot exist but, in Ais case as Ae linear trend involves only certain part of Ae

spectrum, it does not imply infinite energy.

These results show Aat VoIP jitter wiA SRD or LRD, may exhibit eiAer mono-fractal or

multi-fractal behavior. Multi-fractel behavior explains Ae apparently contradictory behavior of

some real world time series, e.g., stationary samples that seem to present boA SRD and LRD. But

in any case, it is convenient to observe the LD-Diagram when estimating the Hurst index.

The implication ofmulti-fractal behavior on VoIP and oAer interactive multimedia services

is that de-jitter buffer at Ae receiver may not be large enough to mask Ae jitter wiA LRD due to

the persistent low frequency components.

5.5 Chapter Summary

Several experiments are described in Ais chapter: 1) an empirical comparison of seven estimators

of Ae Hurst mdex: R/S, AM, VAR (classical), PER MAVAR, LWHI, and WAV, (Paxson's

algorithm was used here to genérate the FGN samples) 2) evaluation of the formulae regarding
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Ae sample mean and variance of J7-SOSS samples, as described in Chapter 3, 3) evaluation of

Ae synAesis of ff-SOSS time series, and 4) evaluation ofAe modelmg of packet loss and delay

using, respectively, discrete Markov processes and Cauchy-distributed series.

The comparison of seven of Ae most extensively used Hurst index estimators showed Aat

some estimators have a non-homogeneous behavior, e.g., Ae bias of R/S, AM, VAR, and PER

changes across Ae H domain. MAVAR, LHWI, andWAV estimators are more consistent in Ais

sense. And alAough LWHI has a very low bias, it has Ae greatest standard deviation of all.

Generally AeWAV estimator performed best, followed closely by JMAVAR.

lt is shown also Aat when working wiA self-similar samples, researchers should be carefol

when applying formulae corresponding to uncorrelated samples. The estimator of Ae sample

mean is the same, i.e., the classical average, and it remains unbiased alAough Ae confidence

interval depend on the Hurst mdex. The greater Ae H, Ae wider Ae confidence interval. For Ae

variance, the classical estimator works fine for traces wiA SRD but, when LRD is present, it tends

to underestimate the H as it is higher. So a more appropriate estimator, i.e., equation (139) is

needed. AlAough when the Hurst index is cióse to 1, small variations on its estimation may lead

to noticeable error on Ae variance, so possible a more detailed analysis ofAe sample would be

needed to avoid wrong results.

The packet delay and loss are measured from real VoIP calls (96 in total) in order to estimate

Ae necessary parameters to produce artificial samples wiA similar characteristics. Parameters for

the 2-state and 4-stote Markov models, Cauchy distribution, and the Hurst mdex are estimated.

Some particularities can be observed from those estimations, e.g., that Ae parameter p21 from Ae

2-stateMarkov model is generally low (around 0.14), while parameter p12 is high (around 0.85),

that Ae Hurst index for Ae delay jitter samples is always lower Aan 0.5, etc.

The generation of Cauchy-distributed samples wiA determined Hurst index performs well.

Not only Ae Hurstmdex is cióse to Ae desired but also Ae distribution is not greatly affected, as

shown in Figure 58. These results cannot be obtained using the ICDF transformation alone. These

results make Ae proposed generator useful to test systems and prototypes with artificial samples

easily, e.g., wiAout having to take samples from real VoIP calls.

Finally, some traces are worthy plotting the LD-diagram because, alAough Ae estimation of

H indicates SRD, Ae spectrum does not match a single linear model. Instead, it seems to be

splitted in two parts, one behaving like SRD and anoAer like LRD (see Figure 60). That

constitotes an example of a multi-fractal sample. Those types of samples have also to be taken

cautiously, and must be analyzed more cautiously in order to reveal its nature.
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Conclusions

This work constitutes a both a theoretical and a practical reference for the analysis and synthesis

of time series, especially self-similar or correlated traces. It is motivated by the importance ofthe

self-similar processes in Internet network analysis and modeling. These type of processes are

aAactive because modem network are so complex Aat most of the times only statistical

approaches are feasible, and because Aey can capture the boA the short- and long-memory nature

of traffic characteristics.

The self-similar nature of discrete processes, represented by discrete time series, is defined by

a single parameter: Ae Hurst mdex. AlAough this parameter is defined mathematically without

ambiguity, in practice it is not easy to estimate. Even when Aere are several estimators vastly

documented in the literature, Aey are based on different assumptions and they produce different

estimations from the same sample.

One ofthe most accepted andmost robust estimators is Ae wavelet-based [11]. There are also

several implementations, e.g., there are different wavelet analysis functions, but it is unbiased and

it has minimal variance. It is based on the LD-Diagram, which constitutes itself an estimation of

Ae power spectrum by octaves, and it has the advantage that Ae Hurst index can be estimated

also from its slope. Another estimator that is famous in the literature, although less valued, is the

variance-meAod. It has been put aside in many works because its implementations are known to

be biased. Due to Ais disadvantage, it is generally used for comparison only or to give a rough

estimation ofAe Hurst index.

In Chapter 2, a wavelet-based analysis is presented. lt defines its analysis functions as

differences of the aggregated (and expanded) series of the sample under study. Those functions

(multiplied by a corresponding factor) become the components that synthesize the original signal

in sum and are pair wise orthogonal. Also, their variances form a spectrum Aat coincides with Ae

LD-Diagram. The variances ofthe aggregated series and the components are studied, in order to

provide formulae for their statistics such as mean and variance. One ofthe most important results

is the demonstration that the variance-based estimator of the Hurst index is not biased by its

nature, as many authors claim, but because of inadequate implementations. I.e., to estimate the

Hurst index, the slope ofthe Variance-Plot has to be estimated; Ais implies that variances ofthe

aggregated series have to be calculated. And this leads to an ill-conditioned problem, as the

variance of a sample itself depends on the Hurst index (or in the correlation, if not self-similar).

That vicious circle has been avoided by simply use the classical estimator ofthe variance, which

does not consider the Hurst index, and that is the source of its underestimation. In Chapter 3 it is
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shown a better solution to this ill-conditioned problem. i.e.. by subtracting the variances of the

consecutive aggregated series we obtam Ae variances ofthe wavelet components, which formAe

LD-diagram from which the Hurst index can be estimated unbiasedly. That means, the variance-

based method and tbe wavelet-based method are very similar, being exactly the same estimator

when working wiAAe Haar-wavelet as basis.

A comparisonofseven ofthemost common Hurst index estimations is carried out The results

show, as expected, that the estimator with lowest bias (in magnitude) and standard deviation is

Ae wavelet-based. Some time-based estimator as R/S, AM, PER, and Ae classical VAR present

different bias for differentHurst mdex, and have highervariance.MAVARmethod has Ae lowest

bias of Ae compared estimators, but it has twice Ae standard deviation Aan wavelet-based

(WAV).

In Ais work also, Ae quality ofAe VoIP communication is studied- The model of quality is

defined byAe ITU-T RecommendationG. 107 [23] through the E-model's R-factor. It defines Ae

QoS as a function ofAe voice codee, packet loss, and packet delay. A Chapter 4 it is shown Aat

Ae packet losses can bemodeled using finite-state discreteMarkov processes andAe packet delay

jitter using self-similar discrete Cauchy processes. Algorithms to characterize and genérate

artificial samples for packet losses and delay jitter are presented. Real world measurements of

Aose metrics were obtained using Ae scenario is described in Section 5.4. It consists ofan H.323

zone where VoIP calls were conducted and monitored. From them, Ae sequences of packet loss

and delay jitter were extracted, and are used to evalúate Ae performance ofAe proposed models.

One ofAe most important advantages of using discrete Markov processes is that identifying

Ae source of losses is not necessary, i.e., onlyAe probabilities for a packet to be lost or reeeived.

Consecutive received packets form a gap and consecutive packet losses form a burst. In Chapter

4 also, 2-state and 4-state discrete Markov models are studied, and formulae regarding the burst

lengA and gap lengA distributions are derived (including their averages). The burst lengA

distribution is important because it helps determining the perceived PLR when communication

includes FEC as a technique to recover missing packets. Simulations show Aat low levéis of

redundancy, i.e., by usmg 1-packet FEC, the PLR is reduced substantially (e.g., from 5% to 0.5%).

A strategy to obtam Ae burst and gap lengA distributions for the four-state model presented in

Section 1.3.3. It exemplifies Ae generalized methodology for a m-state Markov process model,

which consists of finding firstly their respective CDF, Le., Cb(k) and Cg{k). It is shown also,

through an evaluation based on SMSE, Aat boAMarkovmodels, 2-state and 4-state, can capture

Ae geometric-type decay ofAe distribution ofAe burst lengA (4-state is better but Ae difference

in SMSE is negligible). but the two-statemodel generally fails tomodel Ae gap lengA distribution

in many cases. This is because m Ae presence of non-homogeneous losses (i.e., loss rate varies

by time mtervals), a single geometrical series (i.e., 2-state model) is insufficient to represent the
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gap distribution decay. As the 4-state model involv es two geometrical series, it has better

performance

Tbe proposed method to genérate Cauchy-distributed self-simi 1ar time series produces high-

quality artificial samples that represent real world measurements of delay jitter. These artificial

samplesca be generatedmore quickly than real measurements, and can be usedm test algorithms

or prototype systems easily. Measurements ofCauchy parameters (location and scale) as well as

Ae Hurst index are also taken from real delay jitter samples. They serve as basis fbr generating

Ae artificial samples. It is noticeable that tbe estimated Hurst index from all studied delay jitter

samples range from 0.05 Arough 0.45. meaning all ofmem present SRD. That is expected. as

jitter is defined as Ae difference between tbe respective arrival times ofconsecutive packets. but

tbe proposed generation method is also useful fbr series with LRD, alAough several

recommendations should be considered (see Section 23).
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Future work

This work can be continued in Ae following directions:

• Proposed formúlate for W-SOSS processes can be extended toAemulti-process case, i.e.,

considering auto- and cross-correlation, and marginal distribution for Ae processes.

Several works have been already published, see [68], but equations proposed in Ais work

can be extended to multivariate case and combining distinct types of marginal

distributions, e.g., Gaussian, Cauchy, etc.

Construct a prototype ofa VoIP channel using Ae proposed improvements (Chapter 4).

The prototype would perform Ae following operations:

o At Ae sender side: Capture and digitize voice. Then, codify Ae digitized

sequence using a specific scheme, e.g., G-71 1 or G-729, or both. FinaUy, send

packets to Ae destination in Ae network (including redundancy).

o At Ae receiver side: Receive packets and decode to reconstruct Ae voice (lost

packets can be substituted by redundant information). Then, play the audio

stream by adjusting Ae de-jitter buffer configuration. And, during all Ae

communication, monitor Ae packet delay and loss to adjust configuration to

improve Ae QoS.

Also, the statistical characteristics ofAe OWD can be studied in order to use Ae artificial

Cauchy-distributed self-similar time series in order to produce OWD sequences, so Aat

prototypes can be tested by simulations, which are generally faster Aan real VoIP calls.
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