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Abstract

This thesis presents the derivation and implementation of analytic second-order electronic

energy-derivatives employing perturbation methodologies with efficient scaling with respect

to the number of atoms in the framework of auxiliary density functional theory (ADFT).

This development and implementation enables the calculation of harmonic IR vibrational

spectra with remarkable speed-ups compared to the standard finite-difference methodology.

The calculated analytic ADFT frequencies and IR intensities are in excellent quantitative

agreement with results obtained from four-center integral approaches, albeit with a fraction

of computational time.

For the low-order perturbation approach we implemented an iterative solver for the re-

sponse equation system of auxiliary density perturbation theory (ADPT). In this work the

iterative ADPT solver was further extended to the case of perturbation-dependent basis and

auxiliary-functions. This iterative methodology overcomes the speed and memory bottleneck

of ADPT calculations, enabling the computation of molecular response properties for nano-

metric systems in very reasonable times on moderately parallel computational architectures.

Finally, we present a semi-numerical approach for the calculation of third-order energy-

derivatives, employing a finite-difference method on top of analytically calculated second-

order energy-derivatives. It permits numerically stable calculations of vibrational Raman

spectra in the double harmonic approximation. In particular the numerical instabilities

inherent to previous high-order finite-difference methods employing only analytical first-order

derivatives are avoided. This permits the calculation of Raman spectra of large complex

molecules. The application of the developed methodologies to selected molecular systems

of current chemical interest demonstrates the potentiality of the low-order scaling method

presented here for the calculation of analytic second- and higher-order energy-derivatives.
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Resumen

Esta tesis presenta la derivación e implementación de las derivadas analíticas de la energía

electrónica de segundo orden empleando metodologías perturbativas con bajo escalamiento

en términos del número de átomos en el marco de la teoría funcional de la densidad auxiliar

(ADFT por sus siglas en inglés). El presente desarrollo e implementación permite el cálculo

de espectros IR armónicos con aceleraciones notables en comparación con la metodología

estándar de diferencias finitas. Las frecuencias analíticas calculadas con ADFT, así como las

intensidades IR están en excelente acuerdo cuantitativo con los resultados de aproximaciones

que emplean integrales de cuatro centros, obtenidos en una fracción del tiempo computacional

requerido.

Para la aproximación perturbativa de bajo orden de escalamiento hemos implementado

un solucionador iterativo para el sistema de ecuaciones de respuesta de la teoría de per-

turbaciones de la densidad auxiliar (ADPT por sus siglas en inglés). En este trabajo el

solucionador iterativo ADPT fue extendido para el caso de bases y funciones auxiliares de-

pendientes del parámetro de perturbación. Esta metodología iterativa supera los cuellos de

botella de la velocidad y memoria de los cálculos de ADPT, lo que permite el cálculo de

propiedades de respuesta molecular en sistemas a nanométricos en tiempos razonables en

modestas arquitecturas computacionales paralelas.

Finalmente, presentamos una aproximación semi-numérica para el cálculo de derivadas

de la energía de tercer orden, mediante un método de diferencias finitas donde se emplean

segundas derivadas analíticas. Esto permite cálculos numéricamente estables de espectros

vibracionales Raman dentro de la doble aproximación armónica. En lo particular, las in-

estabilidades numéricas inherentes al anterior método de diferencias finitas de orden superior

que solo emplean las derivadas analíticas de primer orden, son evitadas. Esto permite el

calculo de espectros Raman de moléculas complejas de gran tamaño. La aplicación de las

metodologías desarrolladas a sistemas moleculares seleccionados con actual interés químico

demuestran la capacidad de los métodos de bajo orden de escalamiento para el cálculo de

segundas derivadas analíticas y de orden superior.
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Chapter 1

INTRODUCTION AND OBJECTIVES

Vibrational spectroscopy is a valuable tool in modern chemistry for molecular structure

elucidation, reaction monitoring and quality control. The two most common variants are the

infrared (IR) and Raman spectroscopy. These are nondestructive techniques which measure

vibrational energy levels associated with the chemical structure in a sample. The IR spectrum

provides information about how much electromagnetic radiation is absorbed by a sample as

function of wavelength, commonly reported in wavenumbers, while the Raman spectrum

provides information about how much electromagnetic radiation is inelastically scattered as

function of frequency shift, also reported in wavenumbers.

Vibrational spectroscopy can also provide insight into the nature of chemical bonds and

intramolecular forces acting between the atoms in a molecule. To extract such information

it is necessary to assign vibrational motions to each peak in a spectrum. However even for

an experienced chemist, a vibrational mode assignment can be a rather challenging task, in

particular when the spectrum is composed of many overlapping bands which can mask valu-

able information. It is here where first-principle calculations can offer a valuable quantum-

chemical analysis of vibrational spectra. Unfortunately, for wave function approaches the

calculation of vibrational spectra is an exceptionally time-consuming task. As a result, only

small molecules can be treated by these methodologies. For larger systems, density functional

theory (DFT) [1] is a promising alternative.

5
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The basic idea of DFT is to describe a microscopic system by means of the electron density

—a physical observable, as opposed to the wave functions which are a purely mathematical

construct. Thus, for a system with N electrons, the 3N spatial degrees of freedom of the

wave function are reduced to only three spatial coordinates. This tremendous reduction of

complexity allows DFT calculations on large systems with hundreds, or even thousands of

atoms [2]. Simultaneously, the Kohn-Sham approach to density functional theory (KS-DFT)

[3] achieves a fairly good compromise between accuracy and efficiency and is one of the most

widely used electronic structure theories today.

Vibrational analyses performed with quantum mechanical methodologies require the cal-

culation of the Hessian matrix, obtained as the second-order energy-derivatives with respect

to nuclear displacements. The dimensionality of the Hessian matrix is 3M × 3M , with M

being the number of atoms in the system. Although the first-order electronic energy deriva-

tives are relatively easy to calculate, second-order derivatives are not. The simplest way

to calculate second-order derivatives is to follow a finite-difference method where typically

two first-order derivatives are required for each atomic coordinate. This method is easily

implemented, but it requires significant computational resources and is prone to numerical

instabilities. Thus, an analytic second-order energy derivative formulation is very desirable.

In the framework of KS-DFT the analytic calculation of the Hessian matrix usually in-

volves the solution of the coupled-perturbed Kohn-Sham (CPKS) [4–6] equations. Iterative

solvers are employed due to the large dimensionality of the corresponding CPKS equation

systems. This also renders analytical Hessian calculations rather time consuming because

a CPKS equation system has to be solved for each nuclear displacement[7, 8]. As a conse-

quence, analytic Hessian calculations in the framework of KS-DFT are still formidable tasks

even for systems with less than hundred atoms.

An alternative approach to CPKS was developed in the framework of auxiliary density

functional theory (ADFT). Due to a dramatic reduction in dimensionality it permits the

direct solution of the perturbation equation system. This so-called auxiliary density pertur-

bation theory (ADPT), has been already successfully used to calculate static and dynamic

polarizabilities [9–11] as well as spin-spin coupling constants [12] and Fukui functions [13].
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Here we present the extension of ADPT for the calculation of second-order electronic energy

derivatives with respect to nuclear displacements. As a result, an efficient route for the calcu-

lation of IR and Raman spectra in the framework of ADFT becomes available through ADPT.

We also show how this methodology improves time and memory consumption compared to

the finite-difference method. In the presented applications vibrational spectra simulations

are used for the characterization of complex molecular systems.

The thesis is organized in the following way. In Chapter 2 the Kohn-Sham method

is briefly outlined. Chapter 3 describes the linear combination of Gaussian-type orbital

(LCGTO) approximation for the solution of the Kohn-Sham equations and the foundation of

ADFT. In Chapter 4 the derivation of the analytic second-order electronic derivatives in the

framework of ADFT, as well as the corresponding semi-numerical third-order derivatives are

discussed in detail. The explicit formulas for the calculation of the perturbed density and

Kohn-Sham matrices employing McWeeny’s self-consistent perturbation (SCP) theory and

the implementation of ADPT as an alternative to the CPKS equations is reviewed in the

next chapter. This chapter also addresses the adaptation of the iterative Eirola-Nevanlinna

algorithms for the solution of the ADPT response equation system. Chapter 5 finishes with

the discussion of the different parallelization schemes implemented for large-scale analytic

second-order energy-derivative calculations. Chapter 6 describe common algorithmic appli-

cations for the developed analytical and semi-numerical energy derivatives. The detailed

discussion of such algorithmic implementations focuses on the calculation of IR and Raman

spectra in the double harmonic approximation. In Chapter 7 applications of the new al-

gorithms to problems of current interest in our research groups are presented. Conclusions

and perspectives of this work are given in the last chapter. The first appendix describes the

generic working equations for the calculation of specific ADFT-GGA exchange-correlation

integrals for the case of perturbation-dependent auxiliary-functions. These formulas are the

basic ingredients for the analytical calculation of second-order ADFT-energy derivatives. The

second appendix describes an alternative for the calculation of the perturbed energy-weighted

density matrix which avoids the inversion of the overlap matrix. The last two appendices

extend the SCP theory and the ADPT response equations to open-shell systems.
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The main objective of this work is the development and application of efficient auxiliary-

function methods that push the limits of current first-principle molecular property calcula-

tions. This methodology should allow the computation of larger systems in reasonable time

frames. In order to achieve this goal, we proposed the following specific objectives:

1. Development and implementation of analytic second-order energy-derivatives in the

framework of ADFT.

(a) Theoretical development of analytic second-order energy-derivatives.

(b) Serial and parallel implementation of the analytic second-order energy-derivatives.

(c) Implementation of the developed analytical and semi-numerical energy-derivatives.

(d) Validation, benchmarking and applications of the presented implementation.



Chapter 2

KOHN-SHAM DENSITY FUNCTIONAL

THEORY

2.1 The Schrödinger Equation

A central aim of ab-initio electronic structure theory methods is to be reliable and predictive

within chemical accuracy by combining theoretical physics and chemistry with computer

science and mathematics. To do so, molecular electronic structure theory focuses extensively

on the solution of the Schrödinger equation [14–18]. In order to simplify the problem, the

electronic and nuclear wave functions are separated by the Born-Oppenheimer approximation

[19]. The resulting electronic Schrödinger equation is cast in the following form:

ĤΨ (r; R) = EΨ (r; R) . (2.1)

Here, Ψ denotes the electronic wave function—a function that depends explicitly on the

electronic coordinates r and parametrically on the nuclear coordinates R. From now on we

will omit the parametric dependence on the nuclear coordinates in order to avoid cluttering

of the notation. Thus, for an isolated molecular system, the electronic Hamilton operator Ĥ

9
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has the following form:

Ĥ = −1

2

N∑
i

∇2
i −

N∑
i

M∑
A

ZA
|ri −RA|

+
N∑
i>j

1

|ri − rj|
. (2.2)

We will use atomic units as in Eq. (2.2) throughout this work. The upper sum limits N

and M denote the number of electrons and nuclei, respectively. The corresponding position

vectors are given by ri, rj and RA. This Hamilton operator is uniquely determined by the

number of electrons, the nuclear coordinates and the nuclear charges of the molecular system.

Apart from a small subset of physical systems, mainly one-electron systems, the electronic

Schrödinger equation can not be analytically solved. Thus, for most quantum chemical

systems approximate solutions of the electronic Schrödinger equation are needed. The most

successful approximations rely on the variational principle [20], which may be stated as: The

expectation value of a Hamilton operator Ĥ, calculated using a properly normalized trial wave

function Ψ̃(r) ( with 〈Ψ̃|Ψ̃〉 = 1), consistent with all the boundary conditions of the problem,

is never lower than the true ground state energy E0, which is the expectation value of Ĥ

calculated using the true ground state wave function Ψ0(r) [21, 22]:

E[Ψ̃] =
〈

Ψ̃
∣∣∣ Ĥ ∣∣∣Ψ̃〉 ≥ E0. (2.3)

This principle guarantees that any approximation to the exact wave function lies above the

exact energy of the system and that further improvements to the trial wave function will

lower the system energy closer to its exact energy.

2.2 The Hohenberg-Kohn Theorems

One of the fundamental postulates of quantum mechanics [23] establishes that the wave

function determines the state of a quantum mechanical system. However, this wave function

per se has no physical meaning. In 1926 Max Born gave a statistical interpretation [24] of

the wave function for a one-electron system, which states that the probability of finding a
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particle, bounded between r and r + dr, is given by the modulus of the wave function

P (r)dr = Ψ∗(r)Ψ(r)dr = |Ψ(r)|2 dr. (2.4)

In the particular case of an one-electron system, this corresponds to the electron density ρ(r)

between r and r + dr. For a system with N electrons, the wave function will contain 3N

variables, while the electron density is just a three-dimensional scalar field, no matter how

many electrons are in the molecular system. According to the statistical interpretation of

Born, the single-particle electron density of a many electron system can be calculated by the

following expression:

ρ(r) = N

∫
...

∫
... |Ψ(r, r2, ..., rN)|2 dr2...drN . (2.5)

Thus, ρ(r) dr is the number of electrons in a volume element dr. Following Born’s interpreta-

tion, Eq. (2.5) represents the probability of finding an electron at position r while the other

N−1 electrons are at arbitrary positions. In addition to being a much simpler mathematical

entity, the electron density ρ(r) is an observable, unlike the wave function Ψ(r) which is a

purely mathematical construct1. This enormous simplification was a main motivation for the

development of density functional models [28, 29], like the one from Thomas and Fermi [30–

32], in which the electron density substitutes the wave function as basic quantity. However,

it was not before the pioneering work of Pierre Hohenberg and Walter Kohn in 1964 [1] that

a theory based on density functionals could be formulated. This so-called Density Functional

Theory (DFT) is based on two theorems, named the Hohenberg-Kohn theorems. The first of

these theorems can be stated as: For a system of N interacting electrons in a non-degenerate

ground state, the external potential v(r) is determined, within a trivial additive constant, by

the electron density ρ(r), except where ρ(r) = 0.

Proof : Let us assume that two different external potentials v(r) and v′(r) lead to the

same electronic density ρ(r) of a non-degenerate ground state. This implies the existence of

1Interestingly, the wave function may be reconstructed by performing a large set of experimental mea-
surements. We refer the interested reader to Refs. 25, 26 and 27.
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two different Hamilton operators, Ĥ and Ĥ ′, with different ground state wave functions Ψ(r)

and Ψ′(r), that yield the same ground state density ρ(r). By using the variational principle,

Eq. (2.3), and taking Ψ′(r) as trial wave function for the Hamilton operator Ĥ we find,

E0 =
〈

Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉 < 〈Ψ′

∣∣∣ Ĥ ∣∣∣Ψ′〉 . (2.6)

To proceed we now separate the Hamilton operator as,

Ĥ = F̂ + v(r), (2.7)

where,

F̂ = −1

2

N∑
i

∇2
i +

N∑
i>j

1

|ri − rj|
(2.8)

collects the kinetic energy operators of the electrons and their Coulomb repulsion. Thus, it

is the same for both Hamilton operators Ĥ and Ĥ ′. As a consequence, Ĥ and Ĥ ′ differ only

in their external potentials that are, by construction v(r) and v′(r). Therefore, Eq. (2.6) can

be rewritten as,

E0 <
〈

Ψ′
∣∣∣ Ĥ ′ ∣∣∣Ψ′〉+

〈
Ψ′
∣∣∣ Ĥ − Ĥ ′ ∣∣∣Ψ′〉 =

〈
Ψ′
∣∣∣ Ĥ ∣∣∣Ψ′〉 ,

=⇒ E0 < E ′0 +
〈

Ψ′
∣∣∣ Ĥ − Ĥ ′ ∣∣∣Ψ′〉 ,

=⇒ E0 < E ′0 + 〈Ψ′| v − v′ |Ψ′〉 ,

=⇒ E0 < E ′0 +

∫
[v(r)− v′(r)] ρ(r) dr. (2.9)

Analogously to Eq. (2.9), taking Ψ(r) as a trial wave function for the Hamilton operator Ĥ ′

yields:

E ′0 <
〈

Ψ
∣∣∣ Ĥ ∣∣∣Ψ〉+

〈
Ψ
∣∣∣ Ĥ ′ − Ĥ ∣∣∣Ψ〉 =

〈
Ψ
∣∣∣ Ĥ ′ ∣∣∣Ψ〉 ,

=⇒ E ′0 < E0 +
〈

Ψ
∣∣∣ Ĥ ′ − Ĥ ∣∣∣Ψ〉 ,
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=⇒ E ′0 < E0 + 〈Ψ| v′ − v |Ψ〉 > E ′0,

=⇒ E ′0 < E0 +

∫
[v′(r)− v(r)] ρ(r) dr. (2.10)

By adding (2.9) to (2.10) we obtain:

E0 + E ′0 < E ′0 + E0. (2.11)

Obviously Eq. (2.11) is a contradiction. Therefore, the ground state density ρ(r) uniquely

determines the corresponding external potential v(r). The unique determination of the exter-

nal potential by the density implies also the unique determination of the Hamilton operator

by the density (up to an arbitrary additive constant), and this is seen from the basic form

of the molecular electronic Hamilton operator (2.2), which depends only on the number of

electrons, N , and the position of the nuclei and their nuclear charges, ZA. The knowledge of

the external potential v(r) determines the positions and charges of the nuclei. The unknown

number of electrons can be determined by integrating Eq. (2.5):

∫
ρ(r) dr = N. (2.12)

Therefore, the following mapping can be established:

ρ(r)↔ N, v(r)→ Ĥ → Ψ[ρ]→ E[ρ]. (2.13)

As a consequence, the resulting wave function is also defined up to an arbitrary phase factor

by the electronic density ρ(r). Given the fact that the wave function is a functional of the

ground state density, the expectation value O of any operator Ô is also a unique functional

of this density:

〈
Ô
〉

=
〈

Ψ[ρ]
∣∣∣ Ô ∣∣∣Ψ[ρ]

〉
= O[ρ]. (2.14)

Therefore, also all ground state electronic properties are determined by the non-degenerate
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ground state density [1]. Further extensions have shown that the first Hohenberg-Kohn

theorem also holds for degenerate ground states and excited states, provided that certain

symmetry requirements are fulfilled [33]. Note that the above proof only shows the existence

of Ψ[ρ] and E[ρ]. It does not provide any insight into the functional dependencies.

The second Hohenberg-Kohn theorem can be stated as: The ground state density ρ(r)

can be determined from the ground state energy functional E[ρ] via the variational energy

principle.

Proof : To a trial density ρ′(r), such as
∫
ρ′(r)dr = N and ρ′(r) ≥ 0 ∀ r, corresponds

according to the mapping of Eq. (2.13) a trial wave function Ψ′[ρ′] 2. From the variational

principle (2.3), it follows that,

E[ρ′] =
〈

Ψ′
∣∣∣ Ĥ ∣∣∣Ψ′〉 ≥ E[ρ]. (2.15)

The equality E[ρ′] = E[ρ] holds if ρ′(r) = ρ(r). Eq. (2.15) is the analog to the variational

principle for wave functions. Thus, the ground state energy and density ρ(r) can be obtained

by minimization of the functional E[ρ] with respect to the density, employing the above

normalization restriction.

2.3 The Kohn-Sham Methodology

As shown in the proof of the first Hohenberg-Kohn theorem the functional F [ρ] is independent

of the external potential v(r) and holds for any number of particles. For this reason it is

called the universal (and unknown3) Hohenberg-Kohn functional. The terms that define F [ρ]

are the electron kinetic energy T [ρ] and the electron-electron interaction energy contributions

2The trial density must be restricted to v-representable densities, i.e., an electron density, for which an
associated static external potential, v(r), exists.

3When we talk about the unknown density functional, we usually mean that we do not know how to
write the universal functional as a simple and explicit functional of the density, without any reference to
the wave function. A review on methods for constructing the exact density functional mathematically and
computationally can be found on Ref. 34.
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Vee[ρ]:

F [ρ] = T [ρ] + Vee[ρ]. (2.16)

The electron-electron interaction energy contribution Vee[ρ] can be further divided into the

classical Coulomb interaction, J [ρ], and the non-classical (quantum-mechanical) electronic

interactions, Vnc[ρ]. Thus, we find:

Vee[ρ] = J [ρ] + Vnc[ρ]. (2.17)

The only term that has an explicit expression is J [ρ]. The expressions for T [ρ] and Vnc[ρ]

are unknown. But in 1965, Walter Kohn and Lu Jeu Sham devised an ingenious way to

overcome this limitation with a trade-off between simplicity and accuracy [3]. They proposed

to introduce orbitals for a non-interacting fictitious reference system from which the major

part of the kinetic energy can be computed with good accuracy. The resulting residual, Tc[ρ],

must be corrected separately:

T [ρ] = Ts[ρ] + Tc[ρ]. (2.18)

In Eq. (2.18) the subscript s stands for single-particle and c stands for correlation [35]. In a

non-interacting system, the total kinetic energy, Ts[ρ], is the sum of all single-particle kinetic

energies:

Ts[ρ] =
〈

Ψs[ρ]
∣∣∣ T̂ ∣∣∣Ψs[ρ]

〉
= −1

2

N∑
i

〈
ψi
∣∣∇2

∣∣ψi〉 . (2.19)

Here, Ψs[ρ] denotes the wave function of the non-interacting system. It is expressed by a

single Slater determinant [36] that forms the density ρ(r). The ψi(r) are the single-particle

Kohn-Sham orbitals of the non-interacting system. The fictitious non-interacting system is

connected to the real system by the constraint that the occupied Kohn-Sham orbitals generate
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the ground state density of the real system according to

ρ(r) =
N∑
i

|ψi(r)|2 . (2.20)

Using Eq.(2.16), (2.17) and (2.18), the universal functional F [ρ] can be expressed as,

F [ρ] = Ts[ρ] + J [ρ] + Exc[ρ], (2.21)

with,

Exc[ρ] = Tc[ρ] + Vnc[ρ]. (2.22)

Here, Exc[ρ] is known as the exchange-correlation functional, which collects the difference of

the kinetic energies between the real interacting and fictitious non-interacting system, Tc[ρ],

and the non-classical electronic interactions Vnc[ρ]. By enforcing the identity of the densities

between the fictitious non-interacting Kohn-Sham system and the real system, an explicit

expression for the Coulomb interaction becomes available. Thus, we obtain as Kohn-Sham

energy:

E[ρ] = −1

2

N∑
i

〈
ψi
∣∣∇2

∣∣ψi〉+

∫
ρ(r)v(r)dr +

1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ + Exc[ρ]. (2.23)

Since F [ρ] has a universal nature, Exc[ρ] must be universal, too, i.e., it must have the same

form for atoms, molecules and solids. However, the actual form of Exc[ρ] is still unsettled.

Thus, we must introduce approximate functionals based on the electron density to describe

this term. Once such a functional is chosen, the minimization of Eq. (2.23) with respect to

the Kohn-Sham orbitals, ψi, subject to the orthonormality constraint,

〈ψi|ψj〉 = δij, (2.24)
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yields the single-particle Kohn-Sham equations:

(
−1

2
∇2 + v[ρ] +

∫
ρ(r′)

|r− r′|
dr′ + vxc[ρ]

)
ψi(r) = εiψi(r) ∀ i. (2.25)

Here εi is a Lagrange multiplier, and vxc[ρ] is known as the exchange-correlation potential,

which is defined as the functional derivative of the exchange-correlation energy with respect

to the density ρ(r),

vxc[ρ](r) ≡ δExc[ρ]

δρ(r)
. (2.26)

The above Kohn-Sham equations must be solved by an iterative, self-consistent procedure.

Although Eq. (2.25) eliminates the unknown kinetic energy functional by introducing orbitals

of a fictitious non-interacting reference system, the exchange-correlation energy functional is

still unknown. In fact, the quality of a density functional calculation critically depends on

the quality of the Exc[ρ] approximation [37]. At this point it is important to note that Exc[ρ]

is at least two orders of magnitude smaller than the sum of the other energetic contributions

in Eq. (2.23). Nevertheless, an explicit form of Exc[ρ] is necessary to specify the Kohn-Sham

equations. The search for an accurate approximation to Exc[ρ] is far from simple, and is one

of the greatest challenges in DFT. There is a wide variety of exchange-correlation functionals,

leading the way from the "Hartree world" to the "Heaven of Chemical Accuracy", illustrated

by Perdew and Schmidt [38, 39] using the "Jacob’s ladder" metaphor. In this metaphor,

functionals may be grouped according to their formulation, each rung of the ladder adds a

refinement to the approximation of the exchange-correlation energy.

The first-rung functionals are only dependent upon the density ρ(r) and are known as

local density approximation (LDA). The most notable example is the approximation in which

the Dirac exchange [32] is combined with a fit to the homogeneous electron gas correlation,

like the one proposed by Vosko, Wilk and Nusair (VWN) [40]. The LDA is often surprisingly

good at calculating geometries, namely bond lengths and angles to within a few percent. But

the corresponding bond energies are very poor and far from chemical accuracy.
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Second-rung functionals utilize in addition the gradient of the density, ∇ρ(r), in their

formulation, known as generalized gradient approximation (GGA). Popular GGAs were pro-

posed by Becke, Lee, Yang and Parr (BLYP) [41–44], and Perdew, Burke and Ernzerhof

(PBE) [45], to name a few.

Third-rung functionals are known as meta-GGAs. They include the Laplacian of the

density ∇2ρ(r) as a natural extension of GGAs that include only the density and its first

derivatives. More recently developed meta-GGAs like TPSS [46] or SCAN [47] use the kinetic

energy density, τ(r), instead of ∇2ρ(r). This is motivated by the fact that more exact

conditions for the electron gas can be fulfilled with τ(r) than ∇2ρ(r). However, in the

context of our discussion it should be noted that τ(r) depending meta-GGAs cannot be used

with the ADFT framework due to their intrinsic orbital dependency [48].

Fourth-rung functionals are a class of approximations that combine conventional DFT

exchange with Hartree-Fock exchange. This hybrid exchange is augmented by conventional

DFT correlation. They are known as hybrid-GGAs. The exact exchange energy functional

is expressed in terms of the Kohn-Sham orbitals rather than the density. For this reason it is

termed as an implicit density functional [49]. One of the most commonly used versions is the

global-hybrid B3LYP [50], which stands for Becke, 3-parameter, Lee-Yang-Parr, as well as

their range-separated corrected CAM-B3LYP [51, 52] Note that both hybrid functionals, due

to the variational fitting of Fock exchange [53], are available within the ADFT framework.

In fact ADFT hybrid functional calculations can be computationally less demanding than

corresponding Kohn-Sham meta-GGA calculations.

Fifth-rung functionals are explicitly dependent on the occupied and virtual Kohn-Sham

orbitals via perturbation theory. They are known as double-hybrid functionals [54, 55]. Al-

though most current implementations are fundamentally semiempirical [56], there are efforts

to obtain parameter-free double-hybrid functionals [57–60].

The developments of these, and many other, highly accurate density functional approx-

imations have enabled an exponentially growing application of DFT to the point where

Kohn-Sham DFT has become the standard tool for first-principle electronic structure theory

calculations [22].



Chapter 3

AUXILIARY DENSITY FUNCTIONAL

THEORY

3.1 The LCGTO Approximation

For simplicity, we consider only closed-shell systems in which we have 2N electrons occupying

N doubly occupied spatial orbitals. The corresponding equations for open-shell systems are,

as seen from the surface, a straightforward extension to the closed-shell case [61–63]. In

the linear combination of Gaussian-type orbital (LCGTO) approximation the Kohn-Sham

orbitals are expanded in atomic orbitals,

ψi(r) =
∑
µ

cµiµ(r). (3.1)

In Eq. (3.1) µ(r) represents an atomic orbital (AO) or basis function and cµi denotes the

corresponding molecular orbital (MO) coefficient. Throughout the text, the basis functions

will be denoted with Greek letters. The sum in Eq. (3.1) runs over all atomic orbitals used

in the calculation. Typically, these orbitals are expressed in terms of contracted Cartesian

19
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Gaussian type orbital (GTO) functions. A (unnormalized) contracted GTO is given by [64]:

µ(r) = (x− Ax)ax(y − Ay)ay(z − Az)az
Ka∑
k

dake
−ζak(r−RA)2 . (3.2)

The above GTO is defined by its atomic center A, its angular momentum index a =

(ax, ay, az), its contraction degree Ka, the contraction coefficients dak and the orbital expo-

nents ζak. It is worth noting that the contraction coefficients remain unaltered in electronic

structure calculations. By using the LCGTO approximation, we find for the closed-shell

electron density (2.20),

ρ(r) = 2
occ∑
i

|ψi(r)|2 = 2
occ∑
i

∑
µ,ν

cµicνiµ(r)ν(r) =
∑
µ,ν

Pµνµ(r)ν(r), (3.3)

where Pµν is a closed-shell density matrix element,

Pµν = 2
occ∑
i

cµicνi. (3.4)

Taking into account the LCGTO expansion of the electron density, the Kohn-Sham energy

expression (2.23) can be written as,

E =
∑
µ,ν

PµνHµν +
1

2

∑
µ,ν

∑
σ,τ

PµνPστ 〈µν ‖στ〉+ Exc[ρ]. (3.5)

The first term in Eq. (3.5) is known as the core energy. The element Hµν contains all one-

electron energy contributions, namely the kinetic energy and the nuclear attraction energy

of the electrons,

Hµν = −1

2

〈
µ
∣∣∇2

∣∣ν〉− M∑
A

〈
µ

∣∣∣∣ ZA
|r−RA|

∣∣∣∣ν〉 . (3.6)
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The second term in Eq. (3.5) is the two-electron Coulomb repulsion energy. The short-hand

notation used here for the four-center electron repulsion integrals (ERIs) has the form,

〈µν ‖στ〉 =

∫∫
µ(r)ν(r)σ(r′)τ(r′)

|r− r′|
drdr′. (3.7)

In this ERI notation [65] the symbol ‖ denotes the two-electron Coulomb operator, 1/|r− r′|.

It also separates functions of electron 1, on the left side (bra), from those of electron 2, on

the right (ket). The same notation will be used for two-center and three-center ERIs that

will appear in the following sections.

The derivation of the LCGTO Kohn-Sham equations follows those of the Roothaan-Hall

equations in Hartree-Fock [66, 67], except for the exchange-correlation energy functional

which is absent in the Hartree-Fock methods. To be more precise, the correlation energy is

not included in the Roothaan-Hall equations. However, in Hartree-Fock the Coulomb self-

interaction energy cancels exactly with the corresponding exchange energy. This is usually

not the case in practical Kohn-Sham calculations where a Coulomb self-interaction error may

remain to a certain extent depending on the approximation used for the exchange-correlation

energy functional.

The derivation of the Kohn-Sham equations starts with the minimization of the corre-

sponding energy expression, Eq. (3.5), applying the constraint for the molecular orbital

orthonormality (2.24) within the LCGTO expansion,

〈ψi|ψj〉 =
∑
µ,ν

cµiSµνcνj = δij. (3.8)

Here Sµν denote the overlap matrix elements. The resulting Lagrange function for the energy

minimization is given by,

L(c) = E[ρ]− 2
all∑
i,j

λij

{∑
µ,ν

cµiSµνcνj − δij

}
. (3.9)
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The variation of (3.9) with respect to the MO coefficients yields,

∂L(c)

∂cµi
= 4

∑
ν

(
Hµν +

∑
σ,τ

Pστ 〈µν ‖στ〉+ 〈µ| vxc[ρ] |ν〉

)
cνi − 4

all∑
j

∑
ν

Sµνcνjλji. (3.10)

For the variation of Exc[ρ], assuming a local exchange-correlation functional, the following

chain rule was applied:

∂Exc[ρ]

∂cµi
=

∫
δExc[ρ]

δρ(r)

∂ρ(r)

∂cµi
dr = 4

∑
ν

〈µ| vxc[ρ] |ν〉 cνi. (3.11)

At this point it is convenient to introduce the Kohn-Sham matrix, which corresponds to the

differentiation of the Kohn-Sham energy with respect to a density matrix element,

Kµν ≡
∂Exc[ρ]

∂Pµν
= Hµν +

∑
σ,τ

Pστ 〈µν ‖στ〉+ 〈µ| vxc[ρ] |ν〉 . (3.12)

Combining Eq. (3.10) with (3.12) yields,

∑
ν

Kµνcνi =
all∑
j

∑
ν

Sµνcνjλji, (3.13)

or in matrix notation,

Kc = Scλ. (3.14)

This set of equations has a significant resemblance to the Roothaan-Hall equations [66, 67].

Because the electronic density is invariant under unitary transformations of the occupied

molecular orbitals, it is possible (and convenient) to choose a set of molecular orbitals for

which the off-diagonal undefined Lagrange multipliers, λij, are zero. Thus, we can use a

molecular orbital representation cU, where U is an orthogonal transformation matrix, such
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that UλUT becomes a diagonal matrix:

KcU = ScU UTλU︸ ︷︷ ︸
ε

. (3.15)

These transformed molecular orbitals are called canonical, and they are solutions of the

canonical Kohn-Sham equations,

Kc = Scε. (3.16)

Throughout the following discussion we will assume canonical Kohn-Sham molecular or-

bital unless otherwise stated. As Eq. (3.5) shows, the formal scaling of the core energy

is O(N2
bas), whereas the two-electron Coulomb repulsion energy scales as O(N4

bas). For the

calculation of the exchange-correlation contribution a numerical integration has to be per-

formed. This calculation scales formally as O(N2
bas × G), where G is the number of grid

points necessary to perform the numerical integration. Further reduction to this scaling can

be achieved by exploiting the localized nature of the exchange-correlation potential and by

employing the integral prescreening technique [68, 69] with negligible loss of accuracy. From

this analysis follows that the computationally most demanding step is the calculation of the

four-center ERIs, which tends to become a serious bottleneck as the system grows in size.

The scaling for the Coulomb integrals can be reduced by taking into account the permu-

tational symmetry of the four-center ERIs. Nevertheless, the calculation of the Coulomb

contribution rapidly becomes the computationally most demanding part as the system size

increases. Thus, techniques are needed that reduce the computational work associated to the

four-center ERI calculations.

3.2 Variational Fitting of the Coulomb Potential

A very popular technique to reduce the formal scaling of computing the Coulomb potential

is the so-called variational fitting approximation. This technique was introduced by Dunlap

and co-workers [70–73], inspired by a former work of Sambe and Felton [74]. It is equivalent
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to the application of the resolution of the identity (RI) [75, 76] for Coulomb integrals used

in programs like TURBOMOLE [77] or GAUSSIAN [78]. The similarities and differences

between the variational Coulomb energy fitting and the RI technique are discussed in great

detail in a review by Dunlap, Rösch, and Trickey [79]. In this review it is stated that "the

RI arguments yield expressions which formally are identical to variational results but the

arguments themselves contain no suggestion of variational stability". For this reason we

use in this work the terms variational density fitting or variational fitting of the Coulomb

potential. Note that this approach not only delivers a variational energy expression but

also the corresponding energy derivatives. The variational approximation of the Coulomb

potential, as implemented in deMon2k [80], is based on the minimization of the following

self-interaction term [81, 82],

E2 =
1

2

∫∫
[ρ(r)− ρ̃(r)][ρ(r′)− ρ̃(r′)]

|r− r′|
drdr′ ≥ 0. (3.17)

The approximate density ρ̃(r), which is commonly called auxiliary density is calculated in

deMon2k as a linear combination of primitive Hermite-Gaussian functions [81], which are

centered at the atoms,

ρ̃(r) =
∑
k̄

xk̄k̄(r). (3.18)

From now on, these auxiliary-functions are denoted by small Latin letters with a bar over

them. An unnormalized auxiliary-function, k̄(r), centered at atom K with exponent ζk has

the form:

k̄(r) =

(
∂

∂Kx

)k̄x ( ∂

∂Ky

)k̄y ( ∂

∂Kz

)k̄z
e−ζk(r−RK)2 . (3.19)

The auxiliary-functions are normalized with respect to the Coulomb norm in deMon2k. Be-

cause the auxiliary-functions are used to fit the electron density they are grouped in s, spd,

and spdfg sets. The exponents are shared within each of these sets [80, 83]. Therefore, the

auxiliary-function notation (3,2,2) describes 3 s sets with a total of 3 functions, 2 spd sets
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with a total of 20 functions and 2 spdfg sets with a total of 70 functions. For the analytic

molecular integral calculations with these auxiliary-functions, specially developed integral

recurrence relations are used [81, 84], ensuring high computational performance. Expanding

ρ(r) and ρ̃(r) in Eq. (3.17) according to Eq. (3.3) and (3.18) yields:

E2 =
1

2

∫∫
ρ(r)ρ(r′)

|r− r′|
drdr′ −

∫∫
ρ(r′)ρ̃(r)

|r− r′|
drdr′ +

1

2

∫∫
ρ̃(r)ρ̃(r′)

|r− r′|
drdr′

=
1

2

∑
µ,ν

∑
σ,τ

PµνPστ 〈µν ‖στ〉 −
∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉
xk̄ +

1

2

∑
k̄,l̄

xk̄xl̄
〈
k̄‖ l̄
〉
. (3.20)

Since E2 is positive semi-definite [82], Eq. (3.17), it follows,

1

2

∑
µ,ν

∑
σ,τ

PµνPστ 〈µν ‖στ〉 ≥
∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉
xk̄ −

1

2

∑
k̄,l̄

xk̄xl̄
〈
k̄‖ l̄
〉
. (3.21)

Note that the equality holds only when ρ(r) = ρ̃(r). Any approximate density will provide

a lower bound to the Coulomb repulsion energy. By combining Eq. (3.5) with (3.21) an

approximation to the Kohn-Sham SCF energy is obtained:

E =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉
xk̄ −

1

2

∑
k̄,l̄

xk̄xl̄
〈
k̄‖ l̄
〉

+ Exc[ρ], (3.22)

where the fitting coefficients, xk̄, are obtained by minimizing E2, keeping the density matrix

constant:

(
∂E2

∂xk̄

)
P

= −
∑
µ,ν

Pµν
〈
µν ‖ k̄

〉
+
∑
l̄

xl̄
〈
k̄‖ l̄
〉

= 0. (3.23)

In the context of deMon2k calculations, the energy expression of Eq. (3.22) is often called

the BASIS approach because the basis set density, ρ(r), is used for the calculation of the

exchange-correlation energy. At this point it is convenient to introduce the Coulomb matrix,
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defined as,

G =


〈1̄‖ 1̄〉 〈1̄‖ 2̄〉 · · ·

〈
1̄‖N̄aux

〉
〈2̄‖ 1̄〉 〈2̄‖ 2̄〉 · · ·

〈
2̄‖N̄aux

〉
...

... . . . ...〈
N̄aux ‖ 1̄

〉 〈
N̄aux ‖ 2̄

〉
· · ·

〈
N̄aux ‖N̄aux

〉

 , (3.24)

and the Coulomb vector,

J =



∑
µ,ν

Pµν 〈µν ‖ 1̄〉∑
µ,ν

Pµν 〈µν ‖ 2̄〉

...∑
µ,ν

Pµν
〈
µν ‖N̄aux

〉


. (3.25)

With G and J the following inhomogeneous equation system for the determination of the

fitting coefficients, collected in x, can be formulated:

Gx = J (3.26)

A straightforward solution is obtained by the inversion of the Coulomb matrix G,

x = G−1J. (3.27)

In deMon2k, the inverse G−1 for a initial geometric structure is computed by using a sin-

gular value decomposition (SVD). Then the fitting coefficients are calculated directly using

Eq. (3.27) in each SCF step. In case of geometry optimizations or molecular dynamics

simulations, the initial G−1 matrix is a guess for the following molecular structure. In the

corresponding SCF iterations, Eq (3.27) is solved iteratively with a quasi-Newton algorithm

[85] employing an inverse BFGS update [86–88] for G−1.



3.3. FITTING OF THE EXCHANGE-CORRELATION POTENTIAL 27

Once the fitting equation, (3.27), has been solved, the corresponding Kohn-Sham ma-

trix—for a particular density—can be obtained by varying Eq. (3.22) with respect to the

density matrix,

Kµν = Hµν +
∑
k̄

〈
µν ‖ k̄

〉
xk̄ + 〈µ| vxc[ρ] |ν〉 . (3.28)

As Eq. (3.22) shows, the variational fitting of the Coulomb potential replaces the four-center

ERI calculation by the corresponding three-center and two-center ERI calculations. The

formal scaling for this approach is O(N2
bas × Naux), where Naux is the number of auxiliary-

functions. In most calculations Naux ≤ 3Nbas holds. As a result the scaling for the ERI

calculations becomes O(N3
bas) with a prefactor greater than 1. This prefactor can be reduced

by taking into account the permutational symmetry of the three-center ERIs. Integral screen-

ing, efficient recurrence relations and asymptotic expansion techniques can further improve

considerably the computation of three-center Coulomb integrals achieving a near linear scal-

ing [81, 84, 89]. Note that for very large systems sub-linear scaling has also been reported

[89, 90]. This leads to an algorithm where the most time-demanding computational step

corresponds to the numerical integration of the exchange-correlation potential.

3.3 Fitting of the Exchange-Correlation Potential

The use of auxiliary-functions for the calculation of the exchange-correlation energy and

potential has a long history in DFT. These methods aim to overcome the computational

bottleneck associated with the numerical integration of Exc[ρ] and vxc[ρ] integrals [74, 91].

In programs like deMon-KS [92], DGAUSS [65], or GTOFF [93] the exchange-correlation

potential is expanded in auxiliary-functions. The expansion coefficients are obtained by a

least-squares fit on a grid. Even though these methods usually deliver good energies, neither

the fit nor the energy expression itself is variational. As a result, only approximate gradients

(and higher-order derivatives) are available [94, 95]. As an alternative to fitting the exchange-

correlation potential by auxiliary-functions, the direct use of the auxiliary-function density
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from the variational fitting of the Coulomb potential for the calculation of the exchange-

correlation potential has been investigated over the last two decades [96–101]. The resulting

energy expression, from now on named auxiliary density functional theory (ADFT) [102], is

variational and has the form,

E =
∑
µ,ν

PµνHµν +
∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉
xk̄ −

1

2

∑
k̄,l̄

xk̄xl̄
〈
k̄‖ l̄
〉

+ Exc[ρ̃]. (3.29)

In deMon2k [80], this theoretical model is often referred to as the AUXIS approach. It is

the default method for calculating the exchange-correlation contributions. In this approach,

it is fundamental that the auxiliary density ρ̃(r) has the same properties as the Kohn-Sham

density ρ(r), namely ρ̃(r) ≥ 0 and
∫
ρ̃(r)dr = N . The normalization to the number of

electrons can be included in the variational fitting of the Coulomb potential by a constraint

[98]. Even without such a constraint the approximate density conserves the electron number

to a sufficiently good degree. The semi-positive definiteness of ρ̃(r) cannot be guaranteed

with similar constraints. Nevertheless, the construction of the approximate density avoids

by itself the accumulation of larger areas with negative densities [103]. As soon as a region

accumulates negative fitted density it acts as an attractive potential for the remaining electron

density. Because the fitting is variational in the Coulomb self-energy error negative fitted

density regions almost never occur. In practice, artificial negative electron densities occur

when ρ(r) ≈ 0 [104]. They can be eliminated by enlarging the auxiliary-function set. During

the numerical integration of the approximate density, grid points with negative density values

can be safely screened out without compromising the accuracy of the integrated electron

number, if sufficiently large auxiliary-function sets are used [99].

Since the approximate density is a linear combination of auxiliary-functions, the density

calculation at each grid point scales linearly. This is a clear advantage to the use of the

Kohn-Sham density for which basis function products have to be evaluated at each grid

point. Due to the fact that auxiliary-functions with shared exponents are used in deMon2k,

the computationally expensive exponential part is shared by all functions of an auxiliary-

function set and has only to be calculated once at each grid point. Furthermore, for the
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uncontracted unnormalized Hermite-Gaussian functions, Eq. (3.19), the following recurrence

relation can be deduced:

[k̄ + 1̄i|(r) = 2ζk(i−Ki)[k̄|(r) − 2ζkk̄i[k̄− 1̄i|(r) ; i = x, y, z. (3.30)

The recursion starts with [̄s| = e−ζk(r−RA)2 . All higher angular functions can be gener-

ated by Eq. (3.30). Because the approximate density, ρ̃(r), is a linear combination of

auxiliary-functions, a very efficient algorithm for the numerical integration of the approxi-

mate exchange-correlation energy and potential can be formulated [99]. As in Kohn-Sham

DFT, the ADFT Kohn-Sham matrix elements can be obtained by differentiation of the ADFT

energy expression, Eq. (3.29), with respect to the density matrix elements,

Kµν = Hµν +
∑
k̄

〈
µν ‖ k̄

〉
xk̄ +

∂Exc[ρ̃]

∂Pµν
. (3.31)

The last term of Eq. (3.31), evaluated analogously to Eq. (3.11), is:

∂Exc[ρ̃]

∂Pµν
=

∫
δExc[ρ̃]

δρ̃(r)

∂ρ̃(r)

∂Pµν
dr =

∑
l̄

∂xl̄
∂Pµν

∫
l̄(r)vxc [ρ̃](r) dr, (3.32)

where,

vxc [ρ̃](r) ≡ δExc[ρ̃]

δρ̃(r)
. (3.33)

The derivatives of the Coulomb fitting coefficients are obtained using Eq. (3.25) and (3.26)

as,

∂xl̄
∂Pµν

=
∑
k̄

〈
µν ‖ k̄

〉
G−1
k̄l̄
. (3.34)



30 CHAPTER 3. AUXILIARY DENSITY FUNCTIONAL THEORY

Therefore, we obtain as ADFT Kohn-Sham matrix elements,

Kµν = Hµν +
∑
k̄

〈
µν ‖ k̄

〉
xk̄ +

∑
k̄,l̄

〈
µν ‖ k̄

〉
G−1
k̄l̄

〈
l̄
∣∣vxc [ρ̃]

〉
. (3.35)

To simplify notation, we now introduce the exchange-correlation fitting coefficient vector, z,

with elements,

zk̄ ≡
∑
l̄

G−1
k̄l̄

〈
l̄
∣∣vxc [ρ̃]

〉
. (3.36)

Hence, Eq. (3.31) can be rewritten as,

Kµν = Hµν +
∑
k̄

〈
µν ‖ k̄

〉
(xk̄ + zk̄) . (3.37)

It is important to point out that z is a spin-dependent quantity. Its different values for α and

β spin densities determine the differences between α and β Kohn-Sham matrices in open-shell

calculations. Similar to Eq. (3.26), an inhomogeneous equation system can be formulated

as,

Gz = L, (3.38)

with,

L =


〈1̄|vxc[ρ̃]〉

〈2̄|vxc[ρ̃]〉
...〈

N̄aux

∣∣vxc[ρ̃]
〉

 . (3.39)

Domínguez-Soria et al. [85] proposed an iterative method for solving the inhomogeneous

linear equation systems associated with Coulomb and exchange-correlation fitting. For the

exchange-correlation fitting they proposed a preconditioned conjugate gradient method with



3.3. FITTING OF THE EXCHANGE-CORRELATION POTENTIAL 31

a preconditioner built by the quasi-Newton solver for the Coulomb fitting. For the imple-

mentation it is important to note that ρ̃(r) has to be used directly for the evaluation of the

exchange-correlation potential in order to keep the calculation variational. However, this is

not mandatory for the calculation of the Coulomb contribution in the SCF energy expression.

As a result, there are two sets of fitting coefficients in deMon2k calculations. The first one

refers to the solution to Eq. (3.26), and the other results from SCF acceleration techniques,

such as fitting coefficient mixing [102] or direct inversion in the iterative subspace (DIIS)

[102, 105, 106], which are used to build the Coulomb part of the Kohn-Sham matrix.

With the above described ADFT approach the bottleneck for the numerical integration

becomes negligible. In combination with a sophisticated implementation of the three-center

ERI calculations, the computational bottleneck is now shifted to linear algebra operations,

mainly the diagonalization and multiplication of matrices. In particular, we can identify two

linear algebra tasks that are computationally most demanding. The first one is the diagonal-

ization of the Coulomb matrix, Eq. (3.24), associated with its SVD. Because the Coulomb

matrix scales with the number of auxiliary-functions its diagonalization is the single most

demanding linear algebra task in deMon2k. The second most demanding linear algebra task

represents the solution of the Kohn-Sham equation system, Eq. (3.16), that has to be per-

formed in each SCF step. It consists of the transformation of the general eigenvalue equation

system into its special form and the diagonalization of the corresponding Kohn-Sham matrix.

Although these operations have a formal scaling of N3
bas, they can be performed in a very

efficient manner using optimized computational libraries. Many of these libraries are based

on the Basic Linear Algebra Subroutines (BLAS) [107–111] and the Linear Algebra Package

(LAPACK) [112]. They are machine-specific optimized libraries. Well-known examples are

Intel’s Math Kernel Library (MKL) and AMD’s Core Math Library (ACML). The current

implementation in deMon2k allows routine calculations of systems with up to 10000 basis

functions and has been already successfully applied to systems with more than 25000 basis

functions.



Chapter 4

ANALYTIC ADFT ENERGY DERIVA-

TIVES

This chapter focuses on the calculation of analytic first- and second-order ADFT-energy

derivatives with respect to arbitrary perturbations. For the sake of clarity, only the closed-

shell case is depicted in the following sections.

4.1 First-Order Derivatives

Energy derivatives with respect to an external perturbation may have two contributions.

The first contribution corresponds to the derivatives of the electronic energy. The second one

are the corresponding derivatives of the nuclear repulsion energy. Because these derivatives

are straightforward to calculate they will not be discussed here. For the calculation of the

electronic energy derivatives we will use Eq. (3.29). In the case where basis and auxiliary-

functions are dependent on the perturbation parameter, λ, the derivative of the electronic

energy is expressed as,

E(λ) =
∑
µ,ν

P (λ)
µν Hµν +

∑
µ,ν

PµνH
(λ)
µν +

∑
µ,ν

∑
k̄

P (λ)
µν

〈
µν
∣∣∣∣k̄〉xk̄ +

∑
µ,ν

∑
k̄

Pµν
〈
µν
∣∣∣∣k̄〉(λ)

xk̄+

∑
µ,ν

∑
k̄

Pµν
〈
µν
∣∣∣∣k̄〉x(λ)

k̄
− 1

2

∑
k̄,l̄

〈
k̄
∣∣∣∣l̄〉(λ)

xk̄xl̄ −
∑
k̄,l̄

〈
k̄
∣∣∣∣l̄〉x(λ)

k̄
xl̄ + E(λ)

xc [ρ̃]. (4.1)

33
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In order to simplify the notation, we will denote the derivative of a function f with respect

to a parameter λ as,

∂f

∂λ
= f (λ). (4.2)

Because basis and auxiliary-functions are λ-dependent none of the molecular integral deriva-

tives vanishes. To proceed we rewrite Eq. (4.1) as,

E(λ) =
∑
µ,ν

P (λ)
µν

(
Hµν +

∑
k̄

〈
µν
∣∣∣∣k̄〉xk̄

)
+
∑
µ,ν

Pµν

(
H(λ)
µν +

∑
k̄

〈
µν
∣∣∣∣k̄〉(λ)

xk̄

)
+

∑
k̄

x
(λ)

k̄

(∑
µ,ν

Pµν
〈
µν
∣∣∣∣k̄〉−∑

l̄

〈
k̄
∣∣∣∣l̄〉xl̄

)
︸ ︷︷ ︸

0

−1

2

∑
k̄,l̄

〈
k̄
∣∣∣∣l̄〉(λ)

xk̄xl̄ + E(λ)
xc [ρ̃]. (4.3)

Due to the variational fitting of the Coulomb potential, Eq. (3.26), the third term in Eq.

(4.3) vanishes. For the exchange-correlation energy-derivative follows:

E(λ)
xc [ρ̃] =

∫
δExc[ρ̃]

δρ̃(r)

∂ρ̃(r)

∂λ
dr. (4.4)

The auxiliary density derivative is given by,

∂ρ̃(r)

∂λ
=

∂

∂λ

∑
k̄

xk̄k̄(r) =
∑
k̄

x
(λ)

k̄
k̄(r) +

∑
k̄

xk̄k̄
(λ)(r). (4.5)

Thus, it follows that,

E(λ)
xc [ρ̃] =

∑
k̄

x
(λ)

k̄

〈
k̄
∣∣vxc [ρ̃]

〉
+
∑
k̄

xk̄
〈
k̄(λ)
∣∣vxc [ρ̃]

〉
. (4.6)
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The derivative of the density fitting coefficients, x(λ)

k̄
, are found by differentiation of Eq.

(3.26) with respect to the perturbation λ. This yields:

x
(λ)

k̄
=
∑
l̄

G−1
k̄l̄

(∑
µ,ν

P (λ)
µν

〈
µν ‖ l̄

〉
+
∑
µ,ν

Pµν
〈
µν ‖ l̄

〉(λ) −
∑
m̄

G
(λ)

l̄m̄
xm̄

)
. (4.7)

By substituting Eq. (4.7) and Eq. (3.36) into Eq. (4.6) we find that,

E(λ)
xc [ρ̃] =

∑
k̄

zk̄

(∑
µ,ν

P (λ)
µν

〈
µν ‖ k̄

〉
+
∑
µ,ν

Pµν
〈
µν ‖ k̄

〉(λ) −
∑
m̄

G
(λ)

k̄m̄
xm̄

)
+

∑
k̄

xk̄
〈
k̄(λ)
∣∣vxc [ρ̃]

〉
. (4.8)

With this explicit form for the exchange-correlation energy-derivative we find for the first-

order ADFT-energy derivative:

E(λ) =
∑
µ,ν

P (λ)
µν Kµν +

∑
µ,ν

PµνH
(λ)
µν +

∑
µ,ν

∑
k̄

Pµν
〈
µν
∣∣∣∣k̄〉(λ)

(xk̄ + zk̄) +

∑
k̄

xk̄
〈
k̄(λ)
∣∣vxc [ρ̃]

〉
−
∑
k̄,l̄

G
(λ)

k̄l̄
xl̄

(
1

2
xk̄ + zk̄

)
. (4.9)

The perturbed density matrix derivative follows from Eq. (3.4),

P (λ)
µν = 2

occ∑
i

c
(λ)
µi cνi + 2

occ∑
i

cµic
(λ)
νi . (4.10)

The explicit differentiation of the molecular orbital coefficients can be avoided because of

Wigner’s 2n + 1 theorem for perturbation theory [20, 113]. To exploit this theorem the

orthonormality constraint for the molecular orbitals, Eq. (2.24), has to be differentiated.

This yields the so-called Pulay relation [114, 115],

∑
µ,ν

c
(λ)
µi Sµνcνi +

∑
µ,ν

cµiSµνc
(λ)
νi +

∑
µ,ν

cµiS
(λ)
µν cνi = 0

=⇒ 2
∑
µ,ν

cνiSµνc
(λ)
µi +

∑
µ,ν

cµiS
(λ)
µν cνi = 0. (4.11)
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By substituting the first term of (4.9) with Eq. (4.10), it follows that,

∑
µ,ν

P (λ)
µν Kµν = 2

occ∑
i

∑
µ,ν

(
c

(λ)
µi cνi + cµic

(λ)
νi

)
Kµν

=⇒
∑
µ,ν

P (λ)
µν Kµν = 4

occ∑
i

∑
µ,ν

c
(λ)
µi Kµνcνi. (4.12)

Employing the Kohn-Sham equation identity of Eq. (3.16) to Eq. (4.12) yields:

∑
µ,ν

P (λ)
µν Kµν = 4

occ∑
i

∑
µ,ν

c
(λ)
µi Sµνcνiεi. (4.13)

With the Pulay relation, Eq. (4.11), the explicit differentiation of the molecular orbital

coefficients can then be eliminated from Eq. (4.13). Thus we find:

∑
µ,ν

P (λ)
µν Kµν = −2

occ∑
i

∑
µ,ν

cµiS
(λ)
µν cνiεi. (4.14)

To simplify the notation we now introduce the energy-weighted density matrix,

Wµν ≡ 2
occ∑
i

εicµicνi. (4.15)

Combining Eq. (4.15) and (4.14) with Eq. (4.9) yields the final working equation for the

calculation of first-order ADFT-energy derivatives [99]:

E(λ) = −
∑
µ,ν

WµνS
(λ)
µν +

∑
µ,ν

PµνH
(λ)
µν +

∑
µ,ν

∑
k̄

Pµν
〈
µν
∣∣∣∣k̄〉(λ)

(xk̄ + zk̄ ) +

∑
k̄

xk̄
〈
k̄(λ)
∣∣vxc [ρ̃]

〉
−
∑
k̄,l̄

G
(λ)

k̄l̄
xl̄

(
1

2
xk̄ + zk̄

)
. (4.16)
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4.2 Second-Order Derivatives

Taking the derivative of Eq. (4.16) with respect to a second perturbation parameter, de-

noted by η, in analogy with the previous discussion, yields the second-order ADFT-energy

derivatives:

E(λη) =
∑
µ,ν

P (η)
µν

(
H(λ)
µν +

∑
k̄

〈
µν ‖ k̄

〉(λ)
(xk̄ + zk̄)

)
+

∑
µ,ν

Pµν

(
H(λη)
µν +

∑
k̄

〈
µν ‖ k̄

〉(λη)
(xk̄ + zk̄)

)
+

∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉(λ)
(
x

(η)

k̄
+ z

(η)

k̄

)
+
∑
k̄

x
(η)

k̄

〈
k̄(λ)
∣∣vxc [ρ̃]

〉
+

∑
k̄

xk̄
〈
k̄(λη)

∣∣vxc [ρ̃]
〉

+
∑
k̄

xk̄
〈
k̄(λ)
∣∣v(η)
xc [ρ̃]

〉
−
∑
µ,ν

W (η)
µν S

(λ)
µν −

∑
µ,ν

WµνS
(λη)
µν −

∑
k̄,l̄

G
(λη)

k̄l̄
xl̄

(
1

2
xk̄ + zk̄

)
−
∑
k̄,l̄

G
(λ)

k̄l̄
x

(η)

l̄
(xk̄ + zk̄)−

∑
k̄,l̄

G
(λ)

k̄l̄
xl̄z

(η)

k̄
. (4.17)

Differentiation of the exchange-correlation potential in Eq. (4.17) gives:

v(η)
xc [ρ̃](r) =

∫
δvxc [ρ̃](r)

δρ̃(r′)

∂ρ̃(r′)

∂η
dr′. (4.18)

In the case of pure density functionals the functional derivative of the exchange-correlation

potential defines the corresponding exchange-correlation kernel as [12],

δvxc [ρ̃](r)

δρ̃(r′)
= δ(r− r′)fxc[ρ̃](r, r′). (4.19)

Inserting Eq. (4.19) and (4.5) into (4.18) and then in Eq. (4.17) yields for the second-order
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ADFT-energy derivatives:

E(λη) =
∑
µ,ν

P (η)
µν

(
H(λ)
µν +

∑
k̄

〈
µν ‖ k̄

〉(λ)
(xk̄ + zk̄)

)
+

∑
µ,ν

Pµν

(
H(λη)
µν +

∑
k̄

〈
µν ‖ k̄

〉(λη)
(xk̄ + zk̄)

)
+

∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉(λ)
(
x

(η)

k̄
+ z

(η)

k̄

)
+
∑
k̄

x
(η)

k̄

〈
k̄(λ)
∣∣vxc [ρ̃]

〉
+

∑
k̄

xk̄
〈
k̄(λη)

∣∣vxc [ρ̃]
〉

+
∑
k̄,l̄

xk̄
〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄〉x(η)

l̄
+

∑
k̄,l̄

xk̄
〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄(η)
〉
xl̄ −

∑
µ,ν

W (η)
µν S

(λ)
µν −

∑
µ,ν

WµνS
(λη)
µν −

∑
k̄,l̄

G
(λη)

k̄l̄
xl̄

(
1

2
xk̄ + zk̄

)
−
∑
k̄,l̄

G
(λ)

k̄l̄
x

(η)

l̄
(xk̄ + zk̄)−

∑
k̄,l̄

G
(λ)

k̄l̄
xl̄z

(η)

k̄
. (4.20)

At this point it is convenient to sort the individual terms in Eq. (4.20) according to their

dependence on the perturbed matrix or vector elements, namely the perturbed density or

energy-weighted density matrix elements and perturbed Coulomb or exchange-correlation

fitting coefficients. Based on this sorting, the second-order ADFT-energy derivative is parti-

tioned as,

E(λη) = E (λη) + E(λη). (4.21)

The first contribution, E (λη), is completely independent of the perturbed matrix and vector

elements and has the form:

E (λη) =
∑
µ,ν

Pµν

(
H(λη)
µν +

∑
k̄

〈
µν ‖ k̄

〉(λη)
(xk̄ + zk̄)

)
+
∑
k̄

xk̄
〈
k̄(λη)

∣∣vxc [ρ̃]
〉

+

∑
k̄,l̄

xk̄
〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄(η)
〉
xl̄ −

∑
µ,ν

WµνS
(λη)
µν −

∑
k̄,l̄

G
(λη)

k̄l̄
xl̄

(
1

2
xk̄ + zk̄

)
. (4.22)

The analytic molecular integral derivatives in Eq. (4.22) can be straightforwardly calculated

from the corresponding integral recurrence relations [81, 84]. Similarly, the numerical inte-
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grals of the exchange-correlation potential and kernel are evaluated with the same adaptive

grid [100, 116] that is used for the SCF. Note that the primitive Hermite-Gaussian function

derivatives are simply higher-order functions of the same type. The exchange-correlation

kernel is calculated either from analytic expressions for the kernel [12] or by finite-differences

if only analytic exchange-correlation potential expressions are available [117]. The density,

Pµν , and energy-weighted density, Wµν , matrix elements are calculated from the converged

molecular orbital (MO) coefficients and energies. The fitting coefficients, xk̄ and zk̄, are also

taken directly from the previously converged single-point energy calculation.

Unlike Eq. (4.22), the other contribution to the second-order derivatives of the ADFT

energy, E(λη), contains only terms that depend on the perturbed matrix or vector elements,

E(λη) =
∑
µ,ν

P (η)
µν

(
H(λ)
µν +

∑
k̄

〈
µν ‖ k̄

〉(λ)
(xk̄ + zk̄)

)
+

∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉(λ)
(
x

(η)

k̄
+ z

(η)

k̄

)
+
∑
k̄

x
(η)

k̄

〈
k̄(λ)
∣∣vxc [ρ̃]

〉
+

∑
k̄,l̄

xk̄
〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄〉x(η)

l̄
−
∑
µ,ν

W (η)
µν S

(λ)
µν −

∑
k̄,l̄

G
(λ)

k̄l̄
(xk̄ + zk̄)x

(η)

l̄
−

∑
k̄,l̄

G
(λ)

k̄l̄
z

(η)

k̄
xl̄. (4.23)

Again, the molecular integral derivatives appearing here can be straightforwardly calculated.

For the calculation of the perturbed x(η)

k̄
vector elements, we employ ADPT. The actual im-

plementation of second-order ADFT-energy derivatives is presented in the following chapter.

4.3 Mixed Derivatives

There are several cases where molecular properties depend on different perturbations [118],

i.e., infrared (IR) intensities which are proportional to second-order derivatives of the energy

with respect to the nuclear positions R and a component of an external electric field F:

IR intensities ∝ ∂2E

∂Ri∂Fj
i = Ax, Ay, Az, ... ; j = x, y, z. (4.24)
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In the particular case where the basis and auxiliary-functions are dependent on one pertur-

bation, here Ri, but not on the other, here Fj, the symmetry of the second-order derivatives,

∂2E

∂Ri∂Fj
=

∂2E

∂Fj∂Ri

, (4.25)

permits to select two algorithms. If one chooses λ as an electric field component and η as a

nuclear coordinate most of the integral derivatives in Eq. (4.22) and Eq. (4.23) will vanish.

The corresponding mixed second-order derivative is given as,

∂2E

∂Ri∂Fj
=
∑
µ,ν

PµνH
(Ri,Fj)
µν +

∑
µ,ν

P (Ri)
µν H(Fj)

µν . (4.26)

The perturbation operator added to the monoelectronic Hamilton operator for IR intensities

is expressed as,

Γ̂ = −F · r. (4.27)

Thus, we find as explicit expression for the mixed second-order derivatives with respect to

an electric field component and a nuclear coordinate:

∂2E

∂Ri∂Fj
= −

∑
µ,ν

Pµν 〈µ| j |ν〉(Ri) −
∑
µ,ν

P (Ri)
µν 〈µ| j |ν〉 . (4.28)

Note that this approach will require all 3M perturbed density matrices, P(Ri), for the nuclear

coordinates. If the IR intensities are calculated within an analytic frequency analysis this

disadvantage disappears because the 3M P(Ri) matrices are readily available. Therefore, the

extra computational effort for the calculation of IR intensities reduces to the evaluation of

dipole integral matrices and their derivatives. Consequently, we use this approach as default

for the mixed second-order derivatives associated with the IR intensities. On the other hand,

if the perturbed density matrices are not available, e.g. in a frequency restart calculation,

where some or all Hessian matrix elements are already evaluated, we can take the nuclear

coordinates as first perturbation, λ, and the electric field components as the second, η. This
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yields the following expression for the mixed second-order energy-derivatives:

∂2E

∂Fj∂Ri

=−
∑
µ,ν

Pµν 〈µ| j |ν〉(Ri) +
∑
µ,ν

P (Fj)
µν

(
H(Ri)
µν +

∑
k̄

〈
µν ‖ k̄

〉(Ri) (xk̄ + zk̄)

)
+

∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉(Ri)
(
x

(Fj)

k̄
+ z

(Fj)

k̄

)
+
∑
k̄

x
(Fj)

k̄

〈
k̄(Ri)

∣∣vxc [ρ̃]
〉

+

∑
k̄,l̄

xk̄
〈
k̄(Ri)

∣∣ fxc [ρ̃]
∣∣l̄〉x(Fj)

l̄
−
∑
µ,ν

W (Fj)
µν S(Ri)

µν −
∑
k̄,l̄

G
(Ri)

k̄l̄
(xk̄ + zk̄)x

(Fj)

l̄
−

∑
k̄,l̄

G
(Ri)

k̄l̄
z

(Fj)

k̄
xl̄. (4.29)

The analytic dipole moment derivatives are calculated in a time comparable to one polari-

zability calculation [11]. The advantages of Eq. (4.29) is that only three perturbed density

matrices, P(Fj), need to be evaluated. On the downside the ERI derivatives with respect to

all nuclear coordinates need to be calculated. Nevertheless this is the method of choice if the

Hessian matrix elements are available from a restart.

For the evaluation of Raman intensities knowledge of the third-order derivatives of the

energy with respect to a nuclear coordinate and two electric external fields is required [119].

In deMon2k, the energy gradient of a molecule in the presence of a small finite external

electric field is calculated. Then the second-order derivatives of the gradient with respect

to the external field are calculated using a second-order finite-field perturbation method.

Although the advantage of the procedure is that the analytic calculation of the gradient vector

is computationally very efficient, numerical precision difficulties could arise if a too small

external electric field is used. This is particularly critical for second-order finite-field methods

due to the quadratic finite-field dependence. Thus, an alternative semi-numerical procedure

is presented here to overcome these drawbacks. It is based on the analytic expression for

the second-order derivatives of the energy with respect to the nuclear positions RA and a

component of an external electric field F, Eq. (4.29), and a collinear external electric field

F′. Differentiation of Eq. (4.29) with respect to an external electric field is mathematically

equivalent to the second-order derivatives of the energy gradient with respect to two external
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electric field components discussed above yields:

∂3E

∂F ′k∂Fj∂Ri

=
∂2

∂F ′k∂Fj

∂E

∂Ri

=
∂

∂F ′k

∂2E

∂Fj∂Ri

. (4.30)

Thus, the semi-numerical third-order derivative necessary for Raman intensities can be cal-

culated by the expression:

∂3E

∂F ′k∂Fj∂Ri

≈ 1

2∆F ′k

[(
∂2E

∂Fj∂Ri

)
+∆F ′

k

−
(

∂2E

∂Fj∂Ri

)
−∆F ′

k

]
. (4.31)

The advantage of this semi-numerical approach lies in the fact that the finite-field depen-

dency is linear, which renders this approach numerically more stable, and, therefore, more

reliable than the previous second-order finite-field method. The analytic second-order energy-

derivatives perturbed by the external F′ finite-field are calculated as,

(
∂2E

∂Fj∂Ri

)
±∆F ′

k

=−
∑
µ,ν

Pµν 〈µ| j |ν〉(Ri) +
∑
µ,ν

P (Fj)
µν

(
H(Ri)
µν +

∑
k̄

〈
µν ‖ k̄

〉(Ri) (xk̄ + zk̄)

)
+

∑
µ,ν

∑
k̄

Pµν
〈
µν ‖ k̄

〉(Ri)
(
x

(Fj)

k̄
+ z

(Fj)

k̄

)
+
∑
k̄

x
(Fj)

k̄

〈
k̄(Ri)

∣∣vxc [ρ̃]
〉

+

∑
k̄,l̄

xk̄
〈
k̄(Ri)

∣∣ fxc [ρ̃]
∣∣l̄〉x(Fj)

l̄
−
∑
µ,ν

W (Fj)
µν S(Ri)

µν −
∑
k̄,l̄

G
(Ri)

k̄l̄
(xk̄ + zk̄)x

(Fj)

l̄
−

∑
k̄,l̄

G
(Ri)

k̄l̄
z

(Fj)

k̄
xl̄ ±∆F ′k

∑
µ,ν

P (Fj)
µν 〈µ| k |ν〉 . (4.32)

The additional quantities that must be calculated are six finite-field SCF calculations and

their respective dipole moment derivatives. Thus, for a given molecular system both infrared

and Raman intensities can be calculated at a computational cost comparable to that of six

single-point SCF calculation and seven polarizability calculations. These working equations

are the fundamental pillars for the analytic calculations of harmonic vibrational spectra in

the framework of ADFT. The implementation of these equations will be discussed in the

following chapters.



Chapter 5

AUXILIARY DENSITY PERTURBATION

THEORY

The calculation of the density matrix response, i.e., the derivative of density matrix ele-

ments with respect to the perturbation parameter, is mandatory for the evaluation of an-

alytic second-order derivatives. In the literature two principal methods are available. On

one side are the methods that are based on the linear response of the molecular orbitals.

They yield the so-called Coupled-Perturbed SCF (CPSCF) [4–6, 120–123] equations, which

become the Coupled-Perturbed Kohn-Sham (CPKS) equations in the framework of Kohn-

Sham DFT. Because of their large dimension they are usually solved iteratively. Therefore,

many developments in Kohn-Sham response theory are devoted to the simplification of the

CPKS equation system [124–136]. As an alternative to the computationally expensive CPKS

method, a non-iterative formulation based on the response of the fitting coefficients has been

introduced [137]. This so-called auxiliary density perturbation theory (ADPT) [9, 11, 137–

139] represents a specific adaptation of McWeeny’s self-consistent perturbation (SCP) theory

to ADFT.

43
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5.1 McWeeny’s Self-Consistent Perturbation Theory

Self-consistent perturbation theory as proposed by McWeeny [140–144] is based on the use

of projection operators that separate the occupied-occupied, virtual-virtual and occupied-

virtual subspaces. These projection operators are described by Nbas × Nbas matrices. To

simplify the algebra orthogonal atomic orbitals (AOs) are used. The MO coefficients are

transformed to orthogonal AO representation by S1/2 [145, 146]:

c̆µp =
∑
σ

Sµσ
1/2cσp ∴

∑
µ

c̆µpc̆µq = δpq. (5.1)

The breve on the transformed MO coefficients indicates the orthogonal AO basis and will be

used for all matrices represented in this basis. For the occupied-space projection operator

follows that

Π̆ =
occ∑
i

S1/2cic
T
i S1/2, (5.2)

whereas for the complementary unoccupied-space projection operator we have

q̆ = E− Π̆. (5.3)

Here ci denotes MO coefficient (column) vectors of non-orthogonal AOs. The operators Π̆

and q̆ define a Nocc-dimensional occupied subspace S1 in the space spanned by the Nbas

basis functions and a (Nbas − Nocc)-dimensional complementary unoccupied subspace S2,

respectively. The S1 and S2 subspaces are spanned by the doubly occupied and virtual

orbitals, respectively [147]. The projection matrices Π̆ and q̆ must be idempotent and self-

adjoint. The proofs of these properties are straightforward and are given by the following

equations:

Π̆2 = Π̆Π̆ =
occ∑
i,j

c̆ic̆
T
i c̆j c̆

T
j =

occ∑
i,j

c̆iδij c̆
T
j =

occ∑
i

c̆ic̆
T
i = Π̆, (5.4)
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q̆2
= q̆q̆ = (E− Π̆)(E− Π̆) = E− 2Π̆ + Π̆2 = E− Π̆ = q̆, (5.5)

Π̆T =
occ∑
i

(
c̆ic̆

T
i

)T
=

occ∑
i

(
c̆T
i

)T
c̆T
i =

occ∑
i

c̆ic̆
T
i = Π̆, (5.6)

q̆T
= ET − Π̆T = E− Π̆ = q̆. (5.7)

Furthermore, Π̆ and q̆ are complementary to each other which is expressed by their orthog-

onality,

Π̆q̆ = Π̆(E− Π̆) = Π̆− Π̆ = 0. (5.8)

Thus, for any arbitrary Nbas ×Nbas matrix M̆ the following identity is fulfilled:

M̆ = (Π̆ + q̆)M̆(Π̆ + q̆) = Π̆M̆Π̆ + Π̆M̆q̆ + q̆M̆Π̆ + q̆M̆q̆, (5.9)

M̆ = M̆oo + M̆ou + M̆uo + M̆uu. (5.10)

The right hand side of Eq. (5.10) corresponds to the projected components of M̆ onto the S1

and S2 subspaces (M̆oo and M̆uu) and their intersections (M̆ou and M̆uo)1 [147]. In the SCP

method developed by McWeeny [141, 142] the idempotence of the occupied-space projector

matrix, Eq. (5.4), and its commutator with the Kohn-Sham matrix,

K̆Π̆ = Π̆K̆, (5.11)

are used to derive the corresponding linear response equations. By differentiating Eq. (5.4)

and Eq. (5.11), taking into account the perturbation-dependence of the basis functions, we

find that

Π̆(λ) = Π̆(λ)Π̆ + Π̆S̆(λ)Π̆ + Π̆Π̆(λ), (5.12)

1The notation should not be confused with that for block matrices. All M̆ components are Nbas ×Nbas

matrices.
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K̆(λ)Π̆ + K̆Π̆(λ) + K̆Π̆S̆(λ) = S̆(λ)Π̆K̆ + Π̆(λ)K̆ + Π̆K̆(λ). (5.13)

Note the appearance of S̆(λ) which is the non-vanishing derivative of the orthogonal over-

lap matrix, i.e., the unit matrix. It is calculated from the non-orthogonal overlap matrix

derivative as,

S̆(λ) = S−1/2S(λ)S−1/2. (5.14)

By using the aforementioned method the following projections are obtained from the idem-

potence relation, Eq. (5.12):

Π̆(λ)
oo = −S̆(λ)

oo , (5.15)

Π̆(λ)
uu = 0, (5.16)

Π̆(λ)
ou = Π̆(λ)q̆, (5.17)

Π̆(λ)
uo = q̆Π̆(λ). (5.18)

As an example we show below the derivation of Eq. (5.15) from the projection of Eq. (5.12)

on the occupied-occupied subspace:

Π̆
(
Π̆(λ)

)
Π̆ = Π̆

(
Π̆(λ)Π̆ + Π̆S̆(λ)Π̆ + Π̆Π̆(λ)

)
Π̆,

Π̆(λ)
oo = Π̆Π̆(λ) Π̆Π̆︸︷︷︸

Π̆

+ Π̆Π̆︸︷︷︸
Π̆

S̆(λ) Π̆Π̆︸︷︷︸
Π̆

+ Π̆Π̆︸︷︷︸
Π̆

Π̆(λ)Π̆,

Π̆(λ)
oo = Π̆Π̆(λ)Π̆︸ ︷︷ ︸

Π̆
(λ)
oo

+ Π̆S̆(λ)Π̆︸ ︷︷ ︸
S̆
(λ)
oo

+ Π̆Π̆(λ)Π̆︸ ︷︷ ︸
Π̆

(λ)
oo

,

Π̆(λ)
oo = −S̆oo. (5.19)
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Projection of the commutation condition, Eq. (5.13), leads to the following equations:

K̆Π̆(λ)
oo + K̆S̆(λ)

oo = S̆(λ)
oo K̆ + Π̆(λ)

oo K̆, (5.20)

K̆(λ)
ou = K̆Π̆(λ)

ou − Π̆(λ)
ou K̆ + K̆S̆(λ)

ou , (5.21)

−K̆(λ)
uo = K̆Π̆(λ)

uo − Π̆(λ)
uo K̆ − S̆(λ)

uo K̆, (5.22)

K̆Π̆(λ)
uu = Π̆(λ)

uu K̆. (5.23)

Eq. (5.20) and (5.23) are trivially solved because of Eq. (5.15) and (5.16), respectively.

Since Eq. (5.22) is just the transposition of Eq. (5.21), Eq. (5.21) alone is sufficient for the

determination of the density matrix response. To proceed we expand Π̆
(λ)
ou , K̆

(λ)
ou , S̆

(λ)
ou and

S̆
(λ)
oo into their MO representation:

Π̆(λ)
ou =

occ∑
i

uno∑
a

c̆iΠ
(λ)
ia c̆T

a , (5.24)

K̆(λ)
ou =

occ∑
i

uno∑
a

c̆iK(λ)
ia c̆T

a , (5.25)

S̆(λ)
ou =

occ∑
i

uno∑
a

c̆iS(λ)
ia c̆T

a , (5.26)

S̆(λ)
oo =

occ∑
i,j

c̆iS(λ)
ij c̆T

j . (5.27)

The perturbed Kohn-Sham, K(λ)
ia , and overlap matrix, S(λ)

ia , elements in MO representation

are invariant with respect to the underlying AO basis set, i.e., they can be expressed in terms

of the orthogonal or non-orthogonal AO basis. Using the latter we find:

K(λ)
ia ≡

∑
σ,τ

cσiK
(λ)
στ cτa, (5.28)

S(λ)
ia ≡

∑
σ,τ

cσiS
(λ)
στ cτa. (5.29)
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By substituting Eqs. (5.24), (5.25) and (5.26) into Eq. (5.21) it follows that

occ∑
i

uno∑
a

c̆iK(λ)
ia c̆T

a =
occ∑
i

uno∑
a

K̆c̆iΠ
(λ)
ia c̆T

a −
occ∑
i

uno∑
a

c̆iΠ
(λ)
ia c̆T

a K̆ +
occ∑
i

uno∑
a

K̆c̆iS(λ)
ia c̆T

a . (5.30)

To proceed we now introduce molecular orbital energies, εi and εa, according to the solutions

of the Kohn-Sham equations, i.e., K̆c̆i = εic̆i, and c̆T
a K̆ = c̆T

a εa. This yields:

occ∑
i

uno∑
a

c̆iK(λ)
ia c̆T

a =
occ∑
i

uno∑
a

c̆iεiΠ
(λ)
ia c̆T

a −
occ∑
i

uno∑
a

c̆iΠ
(λ)
ia εac̆a

T +
occ∑
i

uno∑
a

c̆iεiS(λ)
ia c̆T

a , (5.31)

Π
(λ)
ia =

K(λ)
ia − εiS

(λ)
ia

εi − εa
. (5.32)

With the explicit expression for Π
(λ)
ia and Eqs. (5.15), (5.16) and (5.17) we find for the

perturbed closed-shell density matrix in the orthogonal basis:

P̆(λ) = 2Π̆(λ) = 2(Π̆(λ)
ou + Π̆(λ)

uo + Π̆(λ)
oo ), (5.33)

P̆(λ) = 2

(
occ∑
i

uno∑
a

c̆i
K(λ)
ia − εiS

(λ)
ia

εi − εa
c̆T
a +

occ∑
i

uno∑
a

c̆a
K(λ)
ia − εiS

(λ)
ia

εi − εa
c̆T
i − S̆(λ)

oo

)
. (5.34)

Back-transformation to the non-orthogonal basis with P(λ) = S−1/2P̆(λ)S−1/2, yields the per-

turbed closed-shell density matrix in the non-orthogonal basis:

P(λ) = 2

(
occ∑
i

uno∑
a

ci
K(λ)
ia − εiS

(λ)
ia

εi − εa
cT
a +

occ∑
i

uno∑
a

ca
K(λ)
ia − εiS

(λ)
ia

εi − εa
cT
i −

1

2
PS(λ)P

)
. (5.35)

From Eq. (5.35) we find as working equation for the calculation of the perturbed closed-shell

density matrix elements:

P (λ)
µν = 2

occ∑
i

uno∑
a

K(λ)
ia − εiS

(λ)
ia

εi − εa
(cµicνa + cµacνi)−

1

2

∑
σ,τ

PµσS
(λ)
στ Pτν . (5.36)

Because K(λ)
ia depends on P

(λ)
µν a self-consistent approach is needed for the calculation

of the perturbed density matrix elements [140]. Note, however, that the explicit response
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of the molecular orbitals is never needed in such an approach. Instead the target quantity

in McWeeny’s SCP approach is the linear response of the density matrix. Thus, the SCP

formulation is the method of choice for DFT perturbation calculations employing the electron

density and its derivatives as the fundamental ingredients.

5.2 Restricted ADPT Equation System

As Eq. (5.36) shows, the iterative evaluation of the perturbed density matrix can become a

serious computational bottleneck if convergence is slow. Thus, a more direct method that is

driven by the auxiliary-function density rather than the orbital density is desirable. In such

an approach the response of the density matrix elements is substituted by the response of the

fitting coefficients. To proceed in this direction we expand the perturbed ADFT Kohn-Sham

matrix elements of Eq. (5.36) and Eq. (5.28) as,

K(λ)
µν = H(λ)

µν +
∑
k̄

〈
µν ‖ k̄

〉(λ)
(xk̄ + zk̄) +

∑
k̄

〈
µν ‖ k̄

〉 (
x

(λ)

k̄
+ z

(λ)

k̄

)
. (5.37)

The perturbed Coulomb fitting coefficients appearing here are given by Eq. (4.7). The

perturbed exchange-correlation fitting coefficients are as follows:

z
(λ)

k̄
=
∑
l̄

G−1
k̄l̄

〈
l̄(λ)
∣∣vxc [ρ̃]

〉
−
∑
l̄,m̄

G−1
k̄l̄
G

(λ)

l̄m̄
zm̄ +

∑
l̄,m̄

G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄〉x(λ)
m̄ +

∑
l̄,m̄

G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄. (5.38)

Thus, in ADFT the response of the Kohn-Sham matrix can be evaluated directly from

the response of the auxiliary-function density. As a result, the self-consistent solution of Eq.

(5.36) can be substituted by an analytic solution in the space of the auxiliary-functions. To

do so we expand the perturbed Kohn-Sham matrix in Eq. (5.36) according to Eq. (5.28),
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(5.37) and (5.38). This yields:

P (λ)
µν = 2

occ∑
i

uno∑
a

H(λ)
ia

εi − εa
(cµicνa + cµacνi)+

2
occ∑
i

uno∑
a

∑
k̄

〈
ia‖ k̄

〉(λ)
xk̄

εi − εa
(cµicνa + cµacνi)+

2
occ∑
i

uno∑
a

∑
k̄

〈
ia‖ k̄

〉(λ)
zk̄

εi − εa
(cµicνa + cµacνi)+

2
occ∑
i

uno∑
a

∑
k̄

〈
ia‖ k̄

〉
x

(λ)

k̄

εi − εa
(cµicνa + cµacνi)−

2
occ∑
i

uno∑
a

∑
k̄,l̄,m̄

〈
ia‖ k̄

〉
G−1
k̄l̄
G

(λ)

l̄m̄
zm̄

εi − εa
(cµicνa + cµacνi)+

2
occ∑
i

uno∑
a

∑
k̄,l̄

〈
ia‖ k̄

〉
G−1
k̄l̄

〈
l̄(λ)
∣∣vxc [ρ̃]

〉
εi − εa

(cµicνa + cµacνi)+

2
occ∑
i

uno∑
a

∑
k̄,l̄,m̄

〈
ia‖ k̄

〉
G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄〉x(λ)
m̄

εi − εa
(cµicνa + cµacνi)+

2
occ∑
i

uno∑
a

∑
k̄,l̄,m̄

〈
ia‖ k̄

〉
G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄

εi − εa
(cµicνa + cµacνi)−

2
occ∑
i

uno∑
a

εiS(λ)
ia

εi − εa
(cµicνa + cµacνi)−

1

2

∑
σ,τ

PµσS
(λ)
στ Pτν . (5.39)

In the above equation Hia denotes the core Hamilton matrix elements in MO representation:

H(λ)
ia ≡

∑
µ,ν

cµiH
(λ)
µν cνa. (5.40)

On the other hand, the differentiation of the fitting equation system given in Eq. (3.26)

with respect to the perturbation parameter λ yields:

∑
µ,ν

P (λ)
µν 〈µν ‖ n̄〉 =

∑
k̄

G
(λ)

n̄k̄
xk̄ +

∑
k̄

Gn̄k̄ x
(λ)

k̄
−
∑
µ,ν

Pµν 〈µν ‖ n̄〉(λ) . (5.41)
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By multiplying Eq. (5.39) with three-center ERIs and then combining it with Eq. (5.41) an

inhomogeneous equation system for the direct calculation of the perturbed Coulomb fitting

coefficients, employing perturbation-dependent basis and auxiliary-functions, is obtained:

∑
µ,ν

P (λ)
µν 〈µν ‖ n̄〉 = 4

occ∑
i

uno∑
a

H(λ)
ia

εi − εa
〈ia‖ n̄〉+

4
occ∑
i

uno∑
a

∑
k̄

〈
ia‖ k̄

〉(λ)
xk̄

εi − εa
〈ia‖ n̄〉+

4
occ∑
i

uno∑
a

∑
k̄

〈
ia‖ k̄

〉(λ)
zk̄

εi − εa
〈ia‖ n̄〉+

4
occ∑
i

uno∑
a

∑
k̄

〈
ia‖ k̄

〉
x

(λ)

k̄

εi − εa
〈ia‖ n̄〉−

4
occ∑
i

uno∑
a

∑
k̄,l̄,m̄

〈
ia‖ k̄

〉
G−1
k̄l̄
G

(λ)

l̄m̄
zm̄

εi − εa
〈ia‖ n̄〉+

4
occ∑
i

uno∑
a

∑
k̄,l̄

〈
ia‖ k̄

〉
G−1
k̄l̄

〈
l̄(λ)
∣∣vxc [ρ̃]

〉
εi − εa

〈ia‖ n̄〉+

4
occ∑
i

uno∑
a

∑
k̄,l̄,m̄

〈
ia‖ k̄

〉
G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄〉x(λ)
m̄

εi − εa
〈ia‖ n̄〉+

4
occ∑
i

uno∑
a

∑
k̄,l̄,m̄

〈
ia‖ k̄

〉
G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄

εi − εa
〈ia‖ n̄〉−

4
occ∑
i

uno∑
a

εiS(λ)
ia

εi − εa
〈ia‖ n̄〉 − 2

occ∑
i,j

S
(λ)
ij 〈ij ‖ n̄〉

=
∑
k̄

G
(λ)

n̄k̄
xk̄ +

∑
k̄

Gn̄k̄ x
(λ)

k̄
−
∑
µ,ν

Pµν 〈µν ‖ n̄〉(λ) . (5.42)

At this point it is convenient to introduce the Coulomb response matrix A with elements,

An̄k̄ ≡
occ∑
i

uno∑
a

〈n̄‖ ia〉
〈
ia‖ k̄

〉
εi − εa

, (5.43)
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the exchange-correlation kernel matrix F with elements,

Fk̄m̄ ≡
∑
l̄

G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄〉 , (5.44)

and the perturbation vector b(λ) with elements:

b
(λ)
n̄ =

occ∑
i

uno∑
a

H(λ)
ia

εi − εa
〈ia‖ n̄〉+

occ∑
i

uno∑
a

∑
k̄

〈n̄‖ ia〉
〈
ia‖ k̄

〉(λ)

εi − εa
xk̄+

occ∑
i

uno∑
a

∑
k̄

〈n̄‖ ia〉
〈
ia‖ k̄

〉(λ)

εi − εa
zk̄ −

occ∑
i

uno∑
a

∑
k̄,l̄,m̄

〈n̄‖ ia〉
〈
ia‖ k̄

〉
εi − εa

G−1
k̄l̄
G

(λ)

l̄m̄
zm̄+

occ∑
i

uno∑
a

∑
k̄,l̄

〈n̄‖ ia〉
〈
ia‖ k̄

〉
εi − εa

G−1
k̄l̄

〈
l̄(λ)
∣∣vxc [ρ̃]

〉
+

occ∑
i

uno∑
a

∑
k̄,l̄,m̄

〈n̄‖ ia〉
〈
ia‖ k̄

〉
εi − εa

G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄−

occ∑
i

uno∑
a

εiS(λ)
ia

εi − εa
〈ia‖ n̄〉 − 1

2

occ∑
i,j

S
(λ)
ij 〈ij ‖ n̄〉 −

1

4

∑
k̄

G
(λ)

n̄k̄
xk̄+

1

4

∑
µ,ν

Pµν 〈µν ‖ n̄〉(λ) . (5.45)

It is important to note that the Coulomb response matrix, the exchange correlation response

matrix and the perturbation vector are spin-dependent. However, for the sake of simplicity

we restrict our discussion here to the restricted closed-shell formulation. For the extension to

open-shell see appendix C and D. With these quantities the inhomogeneous equation system,

Eq. (5.42), can be written in the following form:

4b
(λ)
n̄ =

∑
k̄

Gn̄k̄x
(λ)

k̄
− 4

∑
k̄

An̄k̄x
(λ)

k̄
− 4

∑
k̄,l̄

An̄k̄Fk̄l̄x
(λ)

l̄
,

4b(λ) = (G− 4A− 4AF) x(λ). (5.46)

This is the working equation system for auxiliary density perturbation theory (ADPT)

with perturbation-dependent basis and auxiliary-functions. It has the same algebraic form as
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the ADPT equation system for perturbation-independent basis and auxiliary-functions [137].

The essential difference lies in the calculation of the perturbation vector elements, b(λ)
n̄ , which

becomes much more complicated if perturbation-dependent basis and auxiliary-functions are

used. In this case the calculation of these vector elements can become a computational

bottleneck, in particular for second-order energy-derivatives, because they are needed for

each individual perturbation. Therefore, we will discuss the efficient calculation of the b(λ)
n̄

elements in the following section.

5.3 Calculation of the Perturbation Vector

For the computationally efficient calculation of the perturbation vector the three-center ERIs

in MO representation are expanded as,

〈
ia‖ k̄

〉
=
∑
µ,ν

cµicνa
〈
µν ‖ k̄

〉
. (5.47)

Inserting Eq. (5.47) into Eq. (5.45) yields the following explicit form for a perturbation

vector element:

b
(λ)
n̄ =

occ∑
i

uno∑
a

∑
µ,ν

∑
σ,τ

cµicνa
H

(λ)
µν

εi − εa
cσicτa 〈στ ‖ n̄〉+

occ∑
i

uno∑
a

∑
µ,ν

∑
σ,τ

∑
k̄

cµicνa

〈
µν ‖ k̄

〉(λ)
xk̄

εi − εa
cσicτa 〈στ ‖ n̄〉+

occ∑
i

uno∑
a

∑
µ,ν

∑
σ,τ

∑
k̄

cµicνa

〈
µν ‖ k̄

〉(λ)
zk̄

εi − εa
cσicτa 〈στ ‖ n̄〉+

occ∑
i

uno∑
a

∑
µ,ν

∑
σ,τ

∑
k̄,l̄,m̄

cµicνa

〈
µν ‖ k̄

〉
G−1
k̄l̄
G

(λ)

l̄m̄
zm̄

εi − εa
cσicτa 〈στ ‖ n̄〉+

occ∑
i

uno∑
a

∑
µ,ν

∑
σ,τ

∑
k̄,l̄

cµicνa

〈
µν ‖ k̄

〉
G−1
k̄l̄

〈
l̄(λ)
∣∣vxc [ρ̃]

〉
εi − εa

cσicτa 〈στ ‖ n̄〉+

occ∑
i

uno∑
a

∑
µ,ν

∑
σ,τ

∑
k̄,l̄,m̄

cµicνa

〈
µν ‖ k̄

〉
G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄

εi − εa
cσicτa 〈στ ‖ n̄〉−
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occ∑
i

uno∑
a

∑
σ,τ

εiS(λ)
ia

εi − εa
cσicτa 〈στ ‖ n̄〉 −

1

8

∑
µ,ν

∑
σ,τ

PσµS
(λ)
µν Pντ 〈στ ‖ n̄〉−

1

4

∑
k̄

G
(λ)

n̄k̄
xk̄ +

1

4

∑
σ,τ

Pστ 〈στ ‖ n̄〉(λ) . (5.48)

The auxiliary-function summations in the fourth, fifth and sixth term of Eq. (5.48),

∑
µ,ν

∑
k̄,l̄,m̄

cµicνa
〈
µν ‖ k̄

〉
G−1
k̄l̄
G

(λ)

l̄m̄
zm̄ +

∑
µ,ν

∑
k̄,l̄

∑
µ,ν

cµicνa
〈
µν ‖ k̄

〉
G−1
k̄l̄

〈
l̄(λ)
∣∣vxc [ρ̃]

〉
+ (5.49)

∑
µ,ν

∑
k̄,l̄,m̄

cµicνa
〈
µν ‖ k̄

〉
G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄,

can be grouped together as:

∑
µ,ν

∑
k̄,l̄

cµicνa
〈
µν ‖ k̄

〉
G−1
k̄l̄
ql̄. (5.50)

The elements of the newly introduced vector q are defined as,

ql̄ =
∑
m̄

G
(λ)

l̄m̄
zm̄ +

〈
l̄(λ)
∣∣vxc [ρ̃]

〉
+
∑
m̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄. (5.51)

The first two terms in Eq. (5.51) are calculated analogously to the corresponding contri-

butions to the ADFT gradients [99]. The calculation of the last term in Eq. (5.51) can be

significantly simplified by noting that

∑
m̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄ =

〈
l̄
∣∣ fxc [ρ̃]

∣∣σ(λ)
〉
, (5.52)

with,

σ(λ)(r) =
∑
m̄

xm̄m̄
(λ)(r). (5.53)

The formal scaling of Eq. (5.53) is O(Naux×G), where G denotes the number of grid points

for the numerical integration. This scaling can be further reduced by grid screening tech-



5.3. CALCULATION OF THE PERTURBATION VECTOR 55

niques [81]. This compression allows calculating the exchange-correlation kernel contribution

on the grid directly on a vector of dimension Naux instead of performing a matrix-vector

multiplication, avoiding the allocation of a full N2
aux field [117]. Afterwards the q vector is

multiplied with the inverse of the Coulomb G matrix previously stored on hard disk:

q′k̄ =
∑
l̄

G−1
k̄l̄
ql̄. (5.54)

This operation results in a new vector which is multiplied in the same way as the first three

terms in Eq. (5.48). For the simultaneous processing, we introduce a N2
bas matrix L with

elements

Lµν = H(λ)
µν +

∑
k̄

〈
µν ‖ k̄

〉(λ)
(xk̄ + zk̄) +

∑
k̄

〈
µν ‖ k̄

〉
q′k̄. (5.55)

The calculation of these matrix elements is analogous to corresponding contributions to the

ADFT gradients [99]. Employing integral screening and the double asymptotic expansion

for the three-center ERI derivatives [89] a sub-quadratic scaling for the evaluation of these

matrix elements can be reached. Once the L matrix is calculated it is transformed to the

MO representation,

Lia =
∑
µ,ν

cµiLµνcνa. (5.56)

This step scales as O(n3). However, by employing optimized BLAS routines [107–111] this

cubic scaling is efficiently suppressed. The Lia matrix elements are then scaled with the

corresponding MO energy differences,

L′ia =
Lia

εi − εa
, (5.57)

and summed together with S ′ia matrix elements defined as,

S ′ia =
εiS(λ)

ia

εi − εa
, (5.58)
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yielding the Q matrix:

Qia = L′ia + S ′ia. (5.59)

With this Q matrix, Eq. (5.48) can be rewritten as,

b
(λ)
n̄ =

occ∑
i

uno∑
a

∑
σ,τ

Qiacσicτa 〈στ ‖ n̄〉 −
1

8

∑
µ,ν

∑
σ,τ

PσµS
(λ)
µν Pντ 〈στ ‖ n̄〉− (5.60)

1

4

∑
k̄

G
(λ)

n̄k̄
xk̄ +

1

4

∑
σ,τ

Pστ 〈στ ‖ n̄〉(λ) .

Transformation of the Q matrix into atomic orbital representation yields:

Tστ =
occ∑
i

uno∑
a

cσiQiacτa. (5.61)

By inserting Eq. (5.61) into Eq. (5.60) we find for the perturbation vector elements,

b
(λ)
n̄ =

∑
σ,τ

Tστ 〈στ ‖ n̄〉 −
1

8

∑
µ,ν

∑
σ,τ

PσµS
(λ)
µν Pντ 〈στ ‖ n̄〉 −

1

4

∑
k̄

G
(λ)

n̄k̄
xk̄+ (5.62)

1

4

∑
σ,τ

Pστ 〈στ ‖ n̄〉(λ) .

To proceed we introduce a matrix V with elements,

Vστ = Tστ −
1

8

∑
σ,τ

PσµS
(λ)
µν Pντ . (5.63)

All matrix-matrix multiplications in the above equations are performed with BLAS [107–111]

routines that suppress their formal cubic scaling for the systems studied here. Once the V

matrix is collected, Eq. (5.62) reduces to:

b
(λ)
n̄ =

∑
σ,τ

Vστ 〈στ ‖ n̄〉 −
1

4

∑
k̄

G
(λ)

n̄k̄
xk̄ +

1

4

∑
σ,τ

Pστ 〈στ ‖ n̄〉(λ) . (5.64)
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The first term is algebraically identical to the calculation of the J vector in the SCF

procedure [81]. It possesses a formal scaling of O(n3) but shows a sub-quadratic scaling if

integral screening and double asymptotic expansions for the three-center ERIs are employed

[81, 89]. The second term is calculated analogously to the corresponding contributions to the

ADFT gradients [99] and thus the same routines can be used. The third term is calculated

through the corresponding integral recurrence relations [81, 84]. After these operations, the

perturbation vector is readily available to be used in the corresponding ADPT equation

system. The memory requirement of this approach is no more than three N2
bas matrices and

someNaux vectors, which is roughly equivalent to the memory used during the SCF procedure.

Therefore, if the SCF energy of a system can be calculated so can its perturbation vectors.

5.4 ADPT Eirola-Nevannlina Algorithm

To solve the ADPT equation system, Eq. (5.46), the inverse of the response matrix, R = G−

4A− 4AF, can be calculated. This is possible because the dimension of the ADPT response

matrix (Naux×Naux) is small compared to the (Nocc ×Nuno)×(Nocc ×Nuno) CPKS dimension

[137]. Also, it is important to keep in mind that R is perturbation-independent. This is

clearly an advantage, because regardless of the number of perturbations (or perturbation

types), R remains unaltered. Thus, a single inversion is needed and R−1 can be stored on

disk for later purposes. However, as system size grows, the response matrix R tends to

become ill-conditioned. This leads to numerical instabilities during the matrix inversion.

Therefore, a robust and efficient algorithm for large indefinite non-symmetric systems of

linear equations is needed [148]. To this end iterative methods for linear equation systems

are employed. They have the additional advantage that the time consuming AO to MO

transformations associated with the calculation of the A matrix,

〈
iν ‖ k̄

〉
=
∑
µ

cµi
〈
µν ‖ k̄

〉
∀ ν, k̄ ∧ i ∈ occ, (5.65)
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and,

〈
ia‖ k̄

〉
=
∑
ν

cνa
〈
iν ‖ k̄

〉
∀ i, k̄ ∧ a ∈ uno, (5.66)

can be avoided. It has been shown in the literature [137] that the O(n4) scaling of these

transformations with increasing system size becomes the computationally most demanding

step in ADPT calculations. As an example, Figure 5.1 depicts computational timings for the

calculation of F and A matrices of linear alkanes from C10H22 to C100H202. All calculations

are performed on a single Intel Xeon X5675 @ 3.07 GHz processor with 2 GB RAM employing

the VWN/TZVP/GEN-A2 methodology with the default adaptive grid [100, 116] accuracy

of 10−5 a.u. in deMon2k. Up to 1 048 auxiliary-functions, the timings for both matrices are

roughly the same. Then they split and for the biggest alkane, the time to calculate A is

about 26 times the time spent to calculate F. As a result, even for medium-sized systems

the calculation of the Coulomb matrix can become a computational bottleneck.
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Figure 5.1: Wall clock times for the calculation of the kernel matrix F and Coulomb response
matrix A of linear alkane chains. The VWN/TZVP/GEN-A2 level of theory was used.



5.4. ADPT EIROLA-NEVANNLINA ALGORITHM 59

To overcome this computational bottleneck and to obtain stable solutions for the ADPT

equation system, our method of choice is a variant of the Eirola-Nevanlinna algorithm

[149, 150]. Such an approach was implemented for the first time in our laboratory for the

calculation of static polarizabilities of giant fullerenes with up to 960 carbon atoms [11, 151].

However, as opposed to polarizability calculations, the evaluation of analytic second-order

energy-derivatives requires many individual perturbation calculations, namely three times

the number of atoms in the system. For this reason, the perturbation-independence of the

Coulomb response matrix A and the kernel matrix F can be computationally advantageous,

despite their unfavorable scaling because they have to be calculated and stored only once.

In analogy to the conventional SCF approach we name this implementation for the solution

of the ADPT equation systems the conventional Eirola-Nevanlinna (Con-EN) method. A

drawback of the Con-EN method is its rather large memory demand. As an example, take

the calculation of the Coulomb response matrix for the carbon fullerene C540. Employing

the VWN/DZVP/GEN-A2 level of theory with 18 360 auxiliary-functions requires about

2.5 GB of available RAM per processor. To avoid the memory bottleneck of the Con-EN

method, a direct variant, named the direct Eirola-Nevanlinna (Dir-EN) [11, 151] method,

was implemented in deMon2k, too. It avoids the explicit calculation and storage of the A

and F matrices. Instead it calculates directly the actions of these matrices on trial vectors.

Take as an example the second term of Eq. (5.46) in which the Coulomb response matrix A

is multiplied with perturbed Coulomb fitting coefficients:

an̄ =
∑
k̄

An̄k̄x
(λ)

k̄
=
∑
k̄

occ∑
i

uno∑
a

〈n̄‖ ia〉 1

εi − εa
〈
ia‖ k̄

〉
x

(λ)

k̄
. (5.67)

By expanding the MOs in the three-center ERIs, and rearranging terms, Eq. (5.67) can be

rewritten as,

an̄ =
∑
µ,ν

〈n̄‖µν〉
occ∑
i

uno∑
a

cµicνa
1

εi − εa

∑
σ,τ

cσicτa
∑
k̄

〈
στ ‖ k̄

〉
x

(λ)

k̄
. (5.68)
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To proceed, a matrix Q is defined as,

Qστ =
∑
k̄

〈
στ ‖ k̄

〉
x

(λ)

k̄
. (5.69)

The sum in Eq. (5.69) possesses a resembles the one appearing in the Kohn-Sham matrix

construction in the SCF procedure [81], Eq. (3.28). Therefore, integral screening and double

asymptotic ERI expansions [89] can be used to obtain an asymptotic O(Nbas) scaling for the

calculation of the Q matrix elements. Substituting Eq. (5.69) into (5.68) yields:

an̄ =
∑
µ,ν

〈n̄‖µν〉
occ∑
i

uno∑
a

cµicνa
1

εi − εa

∑
σ,τ

cσiQστcτa. (5.70)

The transformation of Q into MO representation, similar to Eq. (5.56), yields:

Qia =
∑
σ,τ

cσiQστcτa. (5.71)

The transformation is computationally further accelerated using BLAS [107–111] routines,

such that the formal scaling of O(N3
bas) is efficiently suppressed for the system sizes dis-

cussed here. Then, the resulting Qia elements are scaled with the corresponding MO energy

differences,

Q′ia =
Qia

εi − εa
. (5.72)

Substituting Eq. (5.72) into Eq. (5.70) yields the following expression:

an̄ =
∑
µ,ν

〈n̄‖µν〉
occ∑
i

uno∑
a

cµiQ
′
iacνa. (5.73)

Next, the Q′ia matrix elements are transformed into AO representation,

Tµν =
occ∑
i

uno∑
a

cµiQ
′
iacνa. (5.74)
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By inserting Eq. (5.74) into (5.73), it follows that,

an̄ =
∑
µ,ν

〈n̄‖µν〉Tµν . (5.75)

This equation is algebraically identical to the one for the calculation of the Coulomb vector

J, Eq. (3.25). Integral screening and double asymptotic expansions for the three-center ERIs

can be used [81, 89] to reduce the scaling from O(N3
bas) to well below O(N2

bas). Similarly, the

third term in Eq. (5.46) can be expanded as,

αn̄ =
∑
k̄,m̄

An̄k̄G
−1
k̄m̄

∑
l̄

〈
m̄
∣∣ fxc[ρ̃]

∣∣l̄〉x(λ)

l̄
. (5.76)

For the efficient calculation of this term, a vector q is defined,

qm̄ =
∑
l̄

〈
m̄
∣∣ fxc [ρ̃]

∣∣l̄〉x(λ)

l̄
= 〈m̄| fxc [ρ̃] |σ〉 . (5.77)

with,

σ(r) =
∑
l̄

x
(λ)

l̄
l̄(r). (5.78)

Eq. (5.77) and (5.78) have a similar structure to Eq. (5.52) and Eq. (5.53). Thus, the same

algorithm can be used for its calculation. Afterwards the q vector is multiplied with the

inverse of the Coulomb G matrix previously stored on hard disk:

q′k̄ =
∑
m̄

G−1
k̄m̄
qm̄. (5.79)

Ultimately, by inserting Eq. (5.77), (5.78) and (5.79) into (5.76) we obtain:

αn̄ =
∑
k̄

An̄k̄q
′
k̄. (5.80)
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Eq. (5.80) has the same structure as (5.67), and, therefore, it is calculated by the same

approach. This reduces the formal scaling for the solution of the ADPT equation system

to O(N3
bas). Even more important, the Dir-EN method has a reduced memory demand. It

requires about 2N2
bas matrices and a few Naux vectors, compared to the Nbas × Nocc × Nuno

memory demand for the explicit Coulomb response matrix calculation. This permits ADPT

calculations on systems with thousand and more atoms. As in the direct SCF algorithm,

the Dir-EN method requires the repetitive calculation of three-center ERIs in each iteration

step of the EN algorithm. For many perturbations, as needed for the calculation of analytic

second-order energy-derivatives, this repetitive ERI calculation is usually the most demanding

computational task in the Dir-EN method. Fortunately, three-center ERI calculation is well

developed in deMon2k [81, 84, 89] and also very well parallelized [152].

Once the ADPT equation system is solved and the perturbed fitting coefficients, x(λ)

k̄
,

are obtained the calculations of the needed perturbation matrix and vector elements are

straightforward. First, the perturbed exchange-correlation fitting coefficients, z(λ)

k̄
, are ob-

tained according to Eq. (5.38). Then, the perturbed Kohn-Sham matrix elements, Eq.

(5.37), are calculated with the perturbed Coulomb and exchange-correlation fitting coeffi-

cients. Afterwards, the perturbed Kohn-Sham matrix elements are transformed into the MO

representation using Eq. (5.28) and the perturbed density matrix is calculated according to

Eq. (5.36). Once the perturbed density and Kohn-Sham matrix are available the perturbed

energy-weighted density matrix can be calculated as,

W (λ)
µν =

1

2

∑
σ,τ

(
P (λ)
µσ KστPτν + PµσK

(λ)
στ Pτν + PµσKστP

(λ)
τν

)
. (5.81)

With all the perturbed matrix and vector elements at hand, the corresponding contributions

to the Hessian matrix, Eq. (4.23), can be calculated. Figures 5.2 and 5.3 depict the flowcharts

of the analytic frequency module in deMon2k employing the Con-EN and Dir-EN method,

respectively.
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Start frequency analysis module (Con-EN)

Get P,x and z from a
previous single-point SCF

Build A, F Store A, F

Calculate E (λη)

η=1

Read A, F

Calculate b(η); Solve ADPT equa-
tions; Get x(η), z(η),P(η) and W(η)

Calculate E(λη)

η < 3M? η = η + 1

Calculate H and ω

End frequency analysis module

yes

no

Figure 5.2: Flowchart of the analytic frequency module in deMon2k using the Con-EN
method. See text for further details.
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Start frequency analysis module (Dir-EN)

Get P,x and z from a
previous single-point SCF

Calculate E (λη)

η=1

Calculate b(η); Solve ADPT equa-
tions; Get x(η), z(η),P(η) and W(η)

Calculate E(λη)

η < 3M? η = η + 1

Calculate H and ω

End frequency analysis module

yes

no

Figure 5.3: Flowchart of the analytic frequency module in deMon2k using the Dir-EN method.
Note that the calculation of A and F and the corresponding I/O operations are absent. See
text for further details.
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In order to test the serial computational performance of the second-order ADFT-energy

derivatives harmonic vibrational frequencies of alkane chains containing 10 to 100 carbon

atoms were calculated on an Intel Xeon X5675 @ 3.07 GHz processor with a maximum

of 2 GB of allocatable RAM. In Figure 5.4 the CPU timings for the frequency analysis

calculations employing the analytic Con-EN and Dir-EN algorithms are compared to the

corresponding timings of the numerical finite-difference (FD-ADFT) method. All calculations

were performed using the DFT optimized TZVP basis set [153] in combination with the

automatically-generated GEN-A2* auxiliary-function set [83]. The SCF energy convergence

criterion [102] and grid tolerance were set to 5 × 10−7 a.u. and 10−6 a.u., respectively.

These calculations were performed with the local density approximation (LDA) using the

Dirac exchange [32] and VWN [40] correlation functionals. The corresponding exchange-

correlation kernel was calculated analytically. The structure parameters were optimized

prior to the frequency analyses and the default settings of deMon2k are used [154].
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Figure 5.4: CPU time in days for the frequency analysis with the conventional EN (Con-EN),
direct EN (Dir-EN) and numerical finite-difference (FD-ADFT) algorithm of linear alkane
chains CnH2n+2 with n = 10, 20, ..., 100.

For all system sizes the analytic second-order derivative calculations are clearly faster than

their numerical counterpart. The difference is even more noticeable with increasing system

size. From the two analytic approaches the one that employs the Con-EN algorithm for the
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solution of the ADPT equations systems is the computationally most efficient. This indicates

that for the one-dimensional systems studied here the higher-order scaling of the explicit A

matrix calculation, Eq. (5.43), is overcompensated by the increasing vibrational degrees of

freedom with system size. As a result, the Con-EN algorithm in which the perturbation-

independent A matrix is calculated only once outperforms the direct approach. Therefore,

the use of the Con-EN algorithm will be bounded by memory, rather than CPU time.

5.5 Parallelization

Because the calculation of E(λη), Eq. (4.23), is computationally most demanding two dif-

ferent parallelization schemes were implemented in deMon2k. The first one is inspired by

the already available parallel finite-difference calculation of second-order energy-derivatives

in deMon2k [154] using the Message Passing Interface (MPI) [155]. It distributes the nuclear

displacements across a number of processors, where each CPU works independently on a pre-

viously assigned set of perturbations. As a result the number of perturbations per processor

is given as:

# of perturbations per processor ≈ Int
(

3M

# of processors

)
. (5.82)

The scheme is called parallelization over the perturbations, and is triggered in deMon2k by the

keyword PARALLEL HXYZ. This is the default for parallel analytic second-order derivative

calculations. It is the method of choice for high-performance computing architectures. In

this setup, each processor requires a complete set of data, namely the fitting coefficients, xk̄

and zk̄, the density matrix elements Pµν and, if the Con-EN variant is used, the response

matrices A and F which can reside in RAM or on hard disk. The parallelization over

the perturbations minimizes the communication between processors, therefore showing a

consistent speed-up with increasing number of processors in a calculation. Figures 5.5 and

5.6 depict the flowcharts of the parallel frequency module in deMon2k employing the Con-EN

and Dir-EN method, respectively.
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Start MPI XYZ frequency analysis module (Con-EN)

Process 0 Process n

Send P,x and z
Receive

P,x and z

Build A and F Build A and F

Calculate E(λη) Calculate E(λη)

Store full A, F Store full A, F

Setup η low0 ,η upp0 Setup η lown ,η uppn

FOR( η low0 , · · · , η upp0)
Calculate b(η);

Solve ADPT equations;
Get x(η),

z(η),P(η) and W(η)

Calculate E
(λη)
0

FOR( η lown , · · · , η uppn)
Calculate b(η);

Solve ADPT equations;
Get x(η),

z(η),P(η) and W(η)

Calculate E
(λη)
n

Read A, F Read A, F

Collect E(λη) Send fragments E
(λη)
n

Calculation of H and ω

End MPI XYZ frequency analysis module

Calculate E(λη)

Figure 5.5: Flowchart of XYZ parallel frequency analysis with the Con-EN method.
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Start MPI XYZ frequency analysis module (Dir-EN)

Process 0 Process n

Send P,x and z
Receive

P,x and z

Calculate E(λη) Calculate E(λη)

Setup η low0 ,η upp0 Setup η lown ,η uppn

FOR( η low0 , · · · , η upp0)
Calculate b(η);

Solve ADPT equations;
Get x(η),

z(η),P(η) and W(η)

Calculate E
(λη)
0

FOR( η lown , · · · , η uppn)
Calculate b(η);

Solve ADPT equations;
Get x(η),

z(η),P(η) and W(η)

Calculate E
(λη)
n

Collect E(λη) Send fragments E
(λη)
n

Calculation of H and ω

End MPI XYZ frequency analysis module

Calculate E(λη)

Figure 5.6: Flowchart of XYZ parallel frequency analysis with the Dir-EN method.
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As example, the frequency analysis of the C240 fullerene was performed on 48, 72, 80, 120,

144, 240, 360 and 720 Intel R©Xeon R©L5520 @ 2.27GHz processors with 1.5 GB of RAM at the

VWN/DZVP/GEN-A2 level of theory. The Dir-EN method was used in order to maintain

memory allocation as small as possible. Whereas the frequency calculation performed with

48 processors needed about 3 days to finish, the same calculation employing 720 processors

finished in about 8 hours. Figure 5.7 depicts the reciprocal time spent for a parallel run with

increasing number of processors.
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Figure 5.7: Reciprocal CPU time [h-1] for C240 frequency analysis as a function of processors
used in parallel runs. The actual data points of XYZ Dir-EN calculations are connected by
a solid line to guide the eye.

The red line represents the ideal parallelization, where the calculation time is halved as

the number of processors is doubled. The blue line connects data points obtained with our

parallelization scheme. As the blue line is nearer to the red line, the parallel performance

approaches its ideal behavior. As Figure 5.7 shows, our data points behave in a very satis-

factory way with increasing number of processors, in the sense that their reciprocal timing

is monotonically increasing. A drawback of this parallelization scheme is the existence of

an upper limit for the number of processors, namely three times the number of atoms in

the system, i.e., one perturbation per processor. In our example, the frequency analysis of

the C240 fullerene can make use of at most 720 processors. Besides, as the studied systems
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increase in size, hard disk intensive I/O saturation and/or RAM memory exhaustion, mainly

in the Con-EN method, can hinder the efficiency of this scheme.

To overcome this limitation, the second implemented parallelization scheme focuses on the

distribution of data across the processors. In this setup all processors work simultaneously on

the same task, i.e., the same nuclear displacement, and the work of the task is parallelized.

This is called parallelization over the SCP and is triggered in deMon2k by the keyword

PARALLEL HSCP. Only one processor hosts the complete set of matrices and files and

accesses the hard disk. Figures 5.8 and 5.9 show simplified flowcharts depicting how this

parallel scheme works. When a task is declared, i.e., the linear algebra or the integral

derivative calculation, the required subsets of data are distributed over all processors and the

task itself is executed. As a consequence, if a processor finishes its part of a task earlier than

the others, it must wait for them to complete their contributions before the next perturbation

cycle, η + 1, begins. Therefore, this data distribution avoids parallel hard disk I/O and

minimizes RAM allocation, but might show a less optimal work load distribution. It is our

method of choice for larger system sizes where the parallelization over the perturbation fails

due to RAM and/or storage limitations. Note also that the number of processors used in this

setup is not bound by the number of perturbations. Table 5.1 compares both parallelization

schemes in terms of characteristics that have to be taken into account in order to choose the

optimal parallelization according to individual hardware setups.

Table 5.1: Comparison of parallelization schemes.

Parallelization scheme XYZ SCP

Maximum number of processors 3M Unlimited
Cycles performed to calculate E(λη) (3M/Nproc) 3M
Memory and storage demand High Low
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Start MPI SCP frequency analysis module (Con-EN)

Process 0 Process n

Send P,x and z
Receive

P,x and z

Build A and F Build A and F

Calculate E(λη) Calculate E(λη)

Store full A, F

Send fragments A, F Receive fragments A, F

FOR( 1, · · · , 3M)
Calculate b(η);

Solve ADPT equations;
Get x(η),

z(η),P(η) and W(η)

Calculate E
(λη)
0

FOR( 1, · · · , 3M)
Calculate b(η);

Solve ADPT equations;
Get x(η),

z(η),P(η) and W(η)

Calculate E
(λη)
n

Read A, F

Collect E(λη) Send E
(λη)
n

Calculation of H and ω

End MPI SCP frequency analysis module

Calculate E(λη)

Figure 5.8: Flowchart of SCP parallel frequency analysis with the Con-EN method.
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Start MPI SCP frequency analysis module (Con-EN)

Process 0 Process n

Send P,x and z
Receive

P,x and z

Calculate E(λη) Calculate E(λη)

FOR( 1, · · · , 3M)
Calculate b(η);

Solve ADPT equations;
Get x(η),

z(η),P(η) and W(η)

Calculate E
(λη)
0

FOR( 1, · · · , 3M)
Calculate b(η);

Solve ADPT equations;
Get x(η),

z(η),P(η) and W(η)

Calculate E
(λη)
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Collect E(λη) Send E
(λη)
n

Calculation of H and ω

End MPI SCP frequency analysis moduleEnd MPI SCP frequency analysis module

Calculate E(λη)

Figure 5.9: Flowchart of SCP parallel frequency analysis with the Dir-EN method.
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For the sake of clarity, let us compare the memory allocation of both parallelization

schemes for frequency analyses of the C540 fullerene that are intended to be performed on 48,

72, 80, 120, 144, 240, 360 and 720 processors at the VWN/DZVP/GEN-A2 level of theory,

using the Con-EN method. Employing the XYZ parallelization scheme, the kernel matrix F,

with an approximate size of 2.5 GB, has to be stored in RAM as many times as threads are

requested. The red line in Figure 5.10 illustrates this RAM allocation.
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If the calculation is intended to be performed on processors with 1.5 GB of RAM each, the

required memory will surpass the memory available on the system. Thus, a frequency analysis

with the XYZ parallel scheme is impossible. On the other hand, the SCP parallelization

scheme requires only one F matrix which is distributed over all processors. This means that

RAM allocation of F per processor actually decreases as the number of processors increases.

This behavior is shown as the blue line in Figure 5.10. The drawback of this scheme is that

as more threads are requested, the processor communication overhead affects severely the

parallel performance [156].



Chapter 6

ALGORITHMIC APPLICATIONS OF

SECOND DERIVATIVES

6.1 Restricted Step Algorithm for Optimization

The method of choice for local structure optimizations, i.e., minimization or transition state

search, is in many quantum chemical programs the restricted-step algorithm from Levenberg

and Marquardt [157, 158]. In this method a trust region is defined in which the quadratic

expansion of the potential energy surface (PES) is minimized. The corresponding Levenberg-

Marquardt step is given by,

∆r = −(H− λE)−1g. (6.1)

Here g and H denote the energy gradient vector and Hessian matrix, respectively. The

nuclear displacement according to the Levenberg-Marquardt step is given by ∆r and λ is an

undefined Lagrange multiplier arising from the constraint that the step must reside inside a

given trust region. It has been shown by Fletcher [159] that such a sequence of Levenberg-

Marquardt steps converges to a local minimum. However, the choice of λ is critical for

this convergence to a local minimum and also for the overall performance of the method,

75
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i.e., in how many steps a converged solution is found. For minimizations1 Nocedal and

Wright [161] described a three-case approach that always provides the "best" λ in terms of

method performance. This algorithm is implemented in deMon2k [160] and shows superb

performance if numerically stable gradients and Hessian matrices are provided. However,

because of the computational demand associated with the quantum chemical calculations of

the Hessian matrix, restricted-step algorithms for structure optimization are often formulated

as quasi-Newton methods [98]. In these methods the explicit calculation of the Hessian matrix

is substituted by its successive update with gradient and step vectors [86–88, 162]. For

structure minimizations the so-called BFGS update has proven particularly useful because it

generates positive-definite approximations of the Hessian matrix. Whereas the BFGS quasi-

Newton restricted-step algorithm shows similar performance as its Newton counterpart, i.e.,

a restricted-step algorithm in which the Hessian matrix is calculated in each step, molecular

structure minimization is very sensitive to the choice of the initial Hessian matrix [160,

163]. In particular, more complicated molecular structures usually fail to optimize to a local

minimum if the initial Hessian matrix is approximated by a force field [164–166]. Instead they

optimize to higher-order critical points on the PES. The initial calculation of the Hessian

matrix cures this algorithmic problem in a rather satisfying way. Therefore, the efficient

calculation of the Hessian matrix is of great importance for the local minimization of complex

molecular structures.

Besides molecular structure optimization, the Hessian matrix must also be calculated

for local transition state searches employing an uphill-trust region method [167, 168]. Here

the calculation of the initial Hessian matrix is mandatory in order to define the uphill search

direction by the Hessian eigenmode with negative curvature. Similarly, for the initial step of a

intrinsic reaction coordinate (IRC) [169] calculation the Hessian matrix of the transition state

must be calculated in order to determine the "transition mode", i.e., the Hessian eigenmode

with negative curvature. Therefore, all the above discussed computational methods benefit

from efficient and numerically stable analytical calculation of the Hessian matrix.

1For an in-depth discussion of restricted-step algorithm methods for unconstrained and constrained struc-
ture optimizations as well as transition state searches we refer the interested reader to Ref. 160.
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6.2 Harmonic Vibrational Analysis

Vibrational spectroscopy is one of the most widely used techniques for the determination,

identification and characterization of molecular structures. Quantum chemical calculations

can be a reliable tool for the qualitative assignment of experimental spectra. This can become

particularly important for large molecules with many degrees of freedom where normal modes

become too complicated to be anticipated only by chemical intuition. In this section we

discuss how IR and Raman spectra can be calculated from second- and third-order analytic

ADFT-energy derivatives.

6.2.1 Harmonic IR Spectra Simulation

In the harmonic approximation the potential energy of a polyatomic system near a reference

coordinate R0, is expanded up to the quadratic term as a Taylor series. For sufficiently small

amplitudes of vibration, the higher-order terms are neglected [170]:

V (R0 + ∆R) = V (R0) +
3M∑
i

∂V

∂Ri

∆Ri +
3M∑
i,j

∂2V

∂Ri∂Rj

∆Ri∆Rj. (6.2)

The constant term V(R0) can be taken as reference and set to zero for the following discussion.

If R0 is assumed to be a stationary point, then the gradient of the potential with respect to

the nuclear position will vanish and Eq. (6.2) can be rewritten as,

V (R0 + ∆R) =
3M∑
i,j

∂2V

∂Ri∂Rj

∆Ri∆Rj. (6.3)

Eq. (6.3) can be transformed into mass-weighted Cartesian coordinates (MWC) according

to the reference coordinates R0 by:

∆Ri =
∆R′i√
mi

=⇒ ∂

∂Ri

=
√
mi

∂

∂R′i
, (6.4)
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where
√
mi denotes the square root of the mass of the atom associated with the Cartesian

coordinate Ri. The substitution of (6.4) into (6.3) yields:

V (R′0 + ∆R′) =
3M∑
i,j

∂2V

∂R′i∂R
′
j

∆R′i∆R
′
j. (6.5)

The potential can be transformed to a set of normal coordinates Q where each one of these

coordinates is associated with one mode of motion, be it a rotation, translation or vibration.

These coordinates are defined in terms of the MWC by an orthogonal transformation:

∆Qk =
3M∑
i

∆R′iDik, (6.6)

∆R′i =
3M∑
k

∆QkDki. (6.7)

The Dik matrix elements, which will be calculated later on, are defined by,

3M∑
i,j

Dik
∂2V

∂R′i∂R
′
j

Djl = ωkδkl. (6.8)

Note that the indices i and j refer to the MWC coordinates, whereas the indices k and l refer

to the normal coordinates. By the substitution of (6.7) into (6.5), employing Eq. (6.8), the

following expression is obtained:

V (Q0 + ∆Q) =
3M∑
k,l

∆Qkωkδkl∆Ql =
3M∑
k

ωk∆Q
2
k. (6.9)

Eq. (6.9) has the same form as the potential operator for a multi-dimensional quantum

harmonic oscillator [171], which contains the information of its fundamental frequency for a

given mode. If we place the origin of Eq. (6.9) in the same point as the minimum point of the

potential energy surface E(Q0), the lower portion of V (Q) will exactly coincide with the one

of E(Q). Thus, the harmonic oscillator force constant ωk for a given vibrational mode should
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coincide with the Hessian matrix transformed to the normal coordinate representation:

ωk =
∂2E

∂Q2
k

. (6.10)

For the 3M degrees of freedom of a molecule withM atoms, three of them are connected with

translational motions as a whole and another three (two for a linear molecule) correspond to

the rotation of the molecule as a whole. We will refer to these six (five) motions, depicted in

Figure 6.1, as external degrees of freedom.
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Figure 6.1: External degrees of freedom of a molecule.

In the normal coordinate frame, the external degrees of freedom are expected to have zero

frequency. As a consequence, the second-order energy-derivatives with respect to the normal

coordinates ∂2E/∂Q2
k for the corresponding rotation and translation modes vanish. Thus:

V (Q0 + ∆Q) =
3M−6∑
k

ωk∆Q
2
k. (6.11)

In order to calculate the remaining 3M − 6 (3M − 5) fundamental frequencies of the internal
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degrees of freedom the corresponding ∂2E/∂Q2
k must be calculated. To do so we assume that

the Hessian matrix elements in MWC, Hij, at an equilibrium point are already calculated:

H ′
ij =

(
1

√
mimj

)
∂2E

∂Ri∂Rj

=
∂2E

∂R′i∂R
′
j

. (6.12)

The transformation to a set of coordinates ξk is defined by the following orthogonal transfor-

mation:

∆ξk =
3M∑
i

∆R′iΓik, (6.13)

∆R′i =
3M∑
k

∆ξkΓki. (6.14)

The Γik matrix elements are calculated in the so-called standard orientation with the center

of mass at the origin and the Z and Y axes along the first and second principal axes of the

tensor of inertia. The transformation into standard orientation is depicted in Figure 6.2.

x

z

y

X

Z

Y

X

Z

Y

Figure 6.2: Coordinate systems for the transformation into standard orientation. The "xyz"
system (black) represents the MWC coordinates. The "XYZ" system is parallel to "xyz",
but its origin is now shifted to the center of mass. The "XYZ" system (green) coincides with
the principal axes of the tensor of inertia. This coordinate system represents the so-called
standard orientation.
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The three orthogonal vectors, Γtrans, of length 3M correspond to the translational degrees

of freedom. Their elements are defined by:

[Γtrans
x ]Ai

= δxi
√
mA, (6.15)

[Γtrans
y ]Ai

= δyi
√
mA, (6.16)

[Γtrans
z ]Ai

= δzi
√
mA. (6.17)

The three orthogonal vectors, Γrot, represent orthogonal rotations around the principal

axes of the tensor of inertia Θ. These principal axes are obtained by diagonalization, i.e.,

ŨΘU = Θdiag. Their elements are calculated as,

[Γrot
Rx ]Ai

= ([PA]yUiz − [PA]zUiy)
√
mA, (6.18)

[Γrot
Ry ]Ai

= ([PA]zUix − [PA]xUiz)
√
mA, (6.19)

[Γrot
Rz ]Ai

= ([PA]xUiy − [PA]yUix)
√
mA, (6.20)

where the [PA]j components appearing here are defined as,

[PA]j =
∑
i=x,y,z

R′′Ai
Uij. (6.21)

The R′′A are the Cartesian coordinates of atom A with respect to the center of mass. If

one of these vectors does not correspond to a rotation, namely Γn ·Γn ≈ 0, the corresponding

rotation mode is removed. After these vectors are normalized the remaining Γik coefficients

are generated by a Gram-Schmidt orthogonalization [172]. This process builds on the previ-

ously calculated orthogonal Γtrans and Γrot vectors and generates an orthogonal set of 3M−6

(3M − 5 for a linear molecule) Γvib vectors, that span the space for the internal degrees of

freedom of the molecule. The full Γ transformation matrix is described in Table 6.1.
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Table 6.1: Matrix elements for the orthogonal transformation of Eq. (6.13) and (6.14).

ξtransx ξtransy ξtransz ξrotRx ξrotRy ξrotRz ξvib1 . . . ξvibNvib

R′1 Γ11 Γ12 Γ13 Γ14 Γ15 Γ16 Γ17 . . . Γ1k

R′2 Γ21 Γ22 Γ23 Γ24 Γ25 Γ26 Γ27 . . . Γ2k

R′3 Γ31 Γ32 Γ33 Γ34 Γ35 Γ36 Γ37 . . . Γ3k

R′4 Γ41 Γ42 Γ43 Γ44 Γ45 Γ46 Γ47 . . . Γ4k

R′5 Γ51 Γ52 Γ53 Γ54 Γ55 Γ56 Γ57 . . . Γ5k

R′6 Γ61 Γ62 Γ63 Γ64 Γ65 Γ66 Γ67 . . . Γ6k

R′7 Γ71 Γ72 Γ73 Γ74 Γ75 Γ76 Γ77 . . . Γ7k
...

...
...

...
...

...
...

... . . . ...
R′i Γi1 Γi2 Γi3 Γi4 Γi5 Γi6 Γi7 . . . Γik

As the external motion modes are orthogonal to vibrations, they can be projected out

from the Cartesian Hessian matrix. This projection results in a reduced Nvib ×Nvib Hessian

matrix,

Fkl =
∂2E

∂ξk∂ξl
=

3M∑
i,j

Γvibki
∂2E

∂R′i∂R
′
j

Γvibjl ; l, k = 1, 2, · · · , Nvib. (6.22)

The Fij are elements of the harmonic force constant matrix that represents a system of Nvib

harmonic oscillators [170]. After the external degrees of freedom are eliminated the projected

Hessian matrix is diagonalized:

ω = LTFL. (6.23)

The resulting diagonal matrix ω = [ω1, ω2, · · · , ωNvib ] contains the force constants ∂2E/∂Q2
k =

ωk. The frequency (cycles per unit time) for each vibrational mode is calculated as,

νi =

√
ωi

2π
. (6.24)

In spectroscopy, the frequency is usually given indirectly in wavenumbers, ν̃, which are defined

by the number of electromagnetic wavelengths per length unit. Wavenumbers are obtained
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by dividing Eq. (6.24) by the speed of light in vacuum, c0.

ν̃i =

√
ωi

2πc0

. (6.25)

The Dik matrix elements that satisfy Eq. (6.8) and (6.10) are then calculated as,

Dki =

Nvib∑
l

LklΓli. (6.26)

As Eq. (6.8) is calculated in terms of MWC, the displacements in terms of Cartesian coor-

dinates for each vibrational mode are obtained with the following expression:

D′ki =
Dki√
mi

. (6.27)

Each set of 3M coordinates of a particular vibration must be normalized.

The absolute infrared absorption intensities of a given vibrational mode is proportional

to the transition intensity from an initial vibrational state Φi to a final vibrational state Φf

due to the interaction of the dipole moment with the incident light [173]:

A =

∫
1

l
ln

(
I0

I

)
dν ∝ 〈Φi|µ |Φf〉2 . (6.28)

Here I0 is the intensity of the incident radiation, I denotes the final intensity of the transmit-

ted radiation traversing a length l of an absorbing gas and µ =
〈
Ψel
∣∣ µ̂ ∣∣Ψel

〉
is the expectation

value of the electronic dipole moment. The vibrational wave function, |Φ〉, can be written as

the product of Nvib harmonic oscillator functions
∣∣ϕk〉 as,

|Φ〉 =

Nvib∏
k

∣∣ϕk〉 . (6.29)

The integration in Eq. (6.28) is performed over a frequency range which corresponds to a

specific absorption band. By omitting translational contributions, and because molecules

are randomly oriented in an experimental gas phase setup, a summation over all allowed
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rotational states is necessary in order to model the spectrum quantum mechanically. Thus,

the following relations apply [174]:

〈Φi|µ |Φf〉2 = 〈Φi|µx |Φf〉2 + 〈Φi|µy |Φf〉2 + 〈Φi|µz |Φf〉2 , (6.30)

A ∝
(
〈Φi|µx |Φf〉2 + 〈Φi|µy |Φf〉2 + 〈Φi|µz |Φf〉2

)
. (6.31)

As the change of the expectation value µ with respect to the normal coordinates Q is un-

known, a Taylor series expansion of the dipole integral is used. If this expansion is truncated

after the linear term we obtain:

µi(Q0 + ∆Q) = µi(Q0) +

Nvib∑
k

∂µi
∂Qk

∆Qk. (6.32)

The substitution of Eq. (6.32) into the expectation value of the dipole moment yields:

〈Φi|µi |Φf〉 = µi(Q0) 〈Φi|Φf〉+

Nvib∑
k

∂µi
∂Qk

〈Φi|∆Qk |Φf〉 . (6.33)

The first term on the right-hand side of Eq. (6.33) vanishes unless the initial and final states

are the same. Therefore, it has no influence on the transitions of vibrational states. Thus, for

an IR active normal mode, a non-zero transition probability is only obtained if the following

two conditions are fulfilled due to the second term of Eq. (6.33): First, the derivative of the

dipole moment with respect to the normal coordinate, ∂µi/∂Qk, must be non-zero. This is

only true if the dipole moment changes according to the corresponding normal mode motion.

Second, the integral 〈Φi|∆Qk |Φf〉, must not vanish. For a given normal mode k, this integral

is expanded as follows:

〈Φi|∆Qk |Φf〉 =
〈
ϕ1
i

∣∣ϕ1
f

〉 〈
ϕ2
i

∣∣ϕ2
f

〉 〈
ϕ3
i

∣∣ϕ3
f

〉
· · ·
〈
ϕki
∣∣∆Qk

∣∣ϕkf〉 . (6.34)

The integrals 〈ϕi|ϕf〉 will vanish unless
∣∣ϕki 〉 =

∣∣ϕkf〉, i.e., the initial and final state remain

the same, due to the orthogonality of the functions. This does not apply for
〈
ϕki
∣∣∆Qk

∣∣ϕkf〉.
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This integral will be different from zero only if
∣∣ϕkf〉 =

∣∣ϕki±1

〉
, i.e., if the vibrational quantum

numbers of the initial and final state differ by one [171]. This implies that the fundamental

transitions for a given normal mode k occur at their frequency ν̃k. The absorption for a

fundamental transition from
∣∣ϕk0〉→ ∣∣ϕk1〉, is then given by [174, 175],

〈Φ0|µi |Φ1〉2k =
~

8π2c0ν̃k

(
∂µi
∂Qk

)2

. (6.35)

Thus, the absorption coefficient for a vibrational normal mode can be expressed as,

Ak ∝
~

8π2c0ν̃k

∑
i=x,y,z

(
∂µi
∂Qk

)2

. (6.36)

The expectation value of the dipole moment can be calculated as the first-order energy-

derivative with respect to an electric field [138, 176, 177],

〈
Ψel
∣∣ µ̂i ∣∣Ψel

〉
=
∂E

∂Fi
; i = x, y, z. (6.37)

Thus, the final expression for the integrated absorption coefficient for a given normal mode

k [174] is given by:

Ak =
1

4ε0

NA

3c2
0

∑
i=x,y,z

(
∂2E

∂Fi∂Qk

)2

. (6.38)

The second-order derivatives of the energy, ∂2E/∂Fi∂Qk are obtained from the corresponding

mixed Cartesian derivatives by using the transformation matrix of Eq. (6.27):

∂2E

∂Fi∂Qk

=
3M∑
j

∂2E

∂Fi∂Rj

D′jk. (6.39)

Note that the wave function |Φ〉 is only a product of the individual harmonic oscillator

wave functions for normal modes of the molecule within the harmonic oscillator approxima-

tion. Because the Taylor series for µ is truncated after the linear terms, which represents a

second-order mixed energy-derivative (electrical harmonicity), the procedure presented here
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is usually referred to as the double harmonic approximation.

6.2.2 Harmonic Raman Spectra Simulation

Raman spectroscopy differs from IR spectroscopy in that it is based on photon scattering

rather than photon absorption [178–180]. The treatment of Raman intensities is based on

Placzek’s classical theory of polarizability [181], where the Raman scattering may be thought

of as the radiation emitted from an oscillating dipole [175, 182]:

I =
16π2ν4

0

3c3
0

(
µind

)2
. (6.40)

In Eq. (6.40) ν0 is the frequency of oscillation and of the emitted light. In order to apply a

semi-quantum-mechanical treatment, the hypothesis is made that the classical formulas can

be converted to quantum formulas by replacing the induced dipole by its expectation value:

I ∝ ν̃4
in

〈
Ωi

∣∣µind ∣∣Ωf

〉2
. (6.41)

Here ν̃in is the wavenumber of the incident beam, and |Ω〉 is the rotational-vibrational wave

function that can be factored into a pure vibrational |Φ〉 and rotational |Y 〉 wave function,

|Ω〉 = |Φ〉 · |Y 〉 . (6.42)

Of course the previous expression is only valid if the rotational-vibrational couplings can be

neglected. The induced dipole moment µind is calculated from the polarizability tensor and

the electric field vector F as:
µindx

µindy

µindz

 =


αxx αxy αxz

αyx αyy αyz

αzx αzy αzz



Fx

Fy

Fz

 . (6.43)
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Here αij =
〈
Ψel
∣∣ α̂ij ∣∣Ψel

〉
is the expectation value of the electronic polarizabilities at coordi-

nates R0. The intensity of light emitted from a molecule corresponding to a given vibration

can then be expressed as,

I(m) = K 〈Ωi|αmxFx + αmyFy + αmzFz |Ωf〉2 . (6.44)

The constant K collects characteristics that depend on the experimental setup [174]. As an

example, let us consider the geometry depicted in Figure 6.3, where an incident laser beam,

Z-polarized, travels in the X direction to a molecule at the origin. Light is scattered and

the Raman effect is observed along the Y axis. The scattered light is observed with intensity

I(z) (blue wave) in the plane perpendicular to the XY -plane, whereas the intensity I(x) (red

wave) is observed in the plane parallel to the XY -plane.

X

Z

Y
Scattered light

Sample

Figure 6.3: Geometrical setup used for the discussion of the Raman effect. The sample is at
the origin. The laser is incident in the X-direction and the scattered light is measured in the
Y -direction. The laser light is polarized perpendicular to the XY plane. The scattered light
perpendicular to the XY plane has an intensity I(z), whereas the scattered light parallel to
the XY plane has an intensity I(x).
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Under these conditions, where Fx = Fy = 0 and Fz 6= 0, the intensity components of the

scattered light are obtained as,

I(x) = K 〈Ωi|αxzFz |Ωf〉2 = KF 2
z 〈Ωi|αxz |Ωf〉2 , (6.45)

I(z) = K 〈Ωi|αzzFz |Ωf〉2 = KF 2
z 〈Ωi|αzz |Ωf〉2 . (6.46)

By introducing the irradiance, which connects the intensity of the incident beam with the

amplitude of the electric field [175],

I0 =
1

2
ε0c0F

2
z , (6.47)

Eq. (6.45) and (6.46) take the forms:

I(x) = K ′I0, 〈Ωi|αxz |Ωf〉2 (6.48)

I(z) = K ′I0 〈Ωi|αzz |Ωf〉2 . (6.49)

The quantities most frequently observed experimentally are the depolarization ratios, ρ,

defined as the ratio of the scattered intensity which is polarized parallel to Fz (blue wave),

to the intensity perpendicular to Fz (red wave) [175]. When linear polarized incident light

(as shown in Figure 6.3) is used, the ratio of intensities is given by:

ρ =
I(z)

I(x)
=
〈Ωi|αxz |Ωf〉2

〈Ωi|αzz |Ωf〉2
. (6.50)

Thus, in order to obtain the depolarization ratio, the integrals in Eq. (6.50) must be eval-

uated. The components of the polarizability tensor, αij depend on the orientation of the

molecule in a space-fixed reference frame, but they are related to the principal axes of po-

larizability. This system is depicted in Figure 6.4. The general formulation that relates the

polarizability tensor in a space-fixed orientation in terms of the principal polarizability axes
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†′

β

γ
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Figure 6.4: Angles that relate a space-fixed Cartesian coordinate (red) and a rotated Carte-
sian coordinate system (blue) which coincides with the principal axes of inertia.

is expressed as [182],

αij =
∑

i′=x′,y′,z′

αi′i′lii′lji′ . (6.51)

The lij′ are matrix elements of a rotation matrix L, called direction cosine matrix [183].

These coefficients are defined as the cosine of the angle between the positive directions of the

i and j′ axes,

cos θ = lij′ . (6.52)

The geometrical description of these direction cosine elements is analogous to the standard

orientation rotation, but instead of coinciding with the principal axes of inertia, the rotated

body-fixed molecule orientation, shown in Figure 6.4, will now coincide with the principal

polarizability axes of the molecule. The substitution of Eq (6.52) into the transition integral

appearing in both Eq. (6.48) and (6.49) yields:

〈Ωi|αij |Ωf〉 =

〈
Ωi

∣∣∣∣∣ ∑
i′=x′,y′,z′

αi′i′lii′lji′

∣∣∣∣∣Ωf

〉
. (6.53)

As αij depends on the orientation of the molecule, the rotational contribution of the total wave
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function must be taken into account [174]. The translational contribution is not considered

because it does not affect the polarizability tensor. Thus, by the separation of vibrations and

rotations in Eq. (6.53) we obtain:

〈Ωi|αij |Ωf〉 =
∑

i′=x′,y′,z′

〈Φi|αi′i′ |Φf〉 〈Yi| lii′lji′ |Yf〉 . (6.54)

As the intensities I(x) and I(z) are proportional to the squared transition integrals,

〈Ωi|αij |Ωf〉2 =

( ∑
i′=x′,y′,z′

〈Φi|αi′i′ |Φf〉 〈Yi| lii′lji′ |Yf〉

)2

, (6.55)

the following explicit expression is obtained:

〈Ωi|αij |Ωf〉2 =
∑

i′=x′,y′,z′

〈Φi|αi′i′ |Φf〉2 〈Yi| lii′ |Yf〉2 〈Yi| lji′ |Yf〉2 +

∑
i′=x′,y′,z′

∑
j′ 6=i′
〈Φi|αi′i′ |Φf〉 〈Φi|αj′j′ |Φf〉 〈Yi| lii′ |Yf〉 〈Yi| lji′ |Yf〉×

〈Yi| lij′ |Yf〉 〈Yi| ljj′ |Yf〉 . (6.56)

As an illustrative example we now evaluate I(z), Eq. (6.49), which requires the evaluation of

the terms in Eq. (6.56) with the condition i = j = z. Thus Eq. (6.56) reduces to,

〈Ωi|αzz |Ωf〉2 =
∑

i′=x′,y′,z′

〈Φi|αi′i′ |Φf〉2 〈Yi| lzi′ |Yf〉4 +

∑
i′=x′,y′,z′

∑
j′ 6=i′
〈Φi|αi′i′ |Φf〉 〈Φi|αj′j′ |Φf〉 〈Yi| lzi′ |Yf〉2 〈Yi| lzj′ |Yf〉2 . (6.57)

The integrals 〈Yi| lzi′ |Yf〉 in Eq. (6.57) can be solved by means of the isotropic average [184].

Such averaging is a classical process in which all molecular orientations are assumed to be

equally possible [184]. The isotropic average of a product of four identical direction cosines
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results in,

〈Yi| lzi′ |Yf〉4 =
1

5
. (6.58)

If the four direction cosines consist of products of pairs of identical direction cosines then the

average is,

〈Yi| lzi′ |Yf〉2 〈Yi| lzj′ |Yf〉2 =
1

15
. (6.59)

It is noteworthy that this procedure gives results which are identical with those obtained

by calculating Eq. (6.54) and summing the intensity expressions over the complete set of ini-

tial and final rotational states [183]. After the isotropic average is calculated, the substitution

of Eq. (6.58) and (6.59) into (6.57) yields:

〈Ωi|αzz |Ωf〉2 =
1

5

∑
i′=x′,y′,z′

〈Φi|αi′i′ |Φf〉2 +

1

15

∑
i′=x′,y′,z′

∑
j′ 6=i′
〈Φi|αi′i′ |Φf〉 〈Φi|αj′j′ |Φf〉 . (6.60)

Eq. (6.60) can be conveniently replaced as function of two invariants of the polarizability

tensor. The first one is called mean isotropic polarizability ᾱ, expressed as,

ᾱ =
1

3
(〈Φi|αx′x′ |Φf〉+ 〈Φi|αy′y′ |Φf〉+ 〈Φi|αz′z′ |Φf〉) , (6.61)

whereas the second one is the polarizability anisotropy |∆α|2,

|∆α|2 =
1

2

(
[〈Φi|αx′x′ |Φf〉 − 〈Φi|αy′y′ |Φf〉]2 + [〈Φi|αy′y′ |Φf〉 − 〈Φi|αz′z′ |Φf〉]2 +

[〈Φi|αz′z′ |Φf〉 − 〈Φi|αx′x′ |Φf〉]2
)
−

3
(
〈Φi|αx′y′ |Φf〉2 − 〈Φi|αy′z′ |Φf〉2 − 〈Φi|αz′x′ |Φf〉2

)
. (6.62)
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For the body-fixed orientation frame (Figure 6.4), αx′y′ = αy′z′ = αz′x′ = 0. Thus, the

following expression is valid:

|∆α|2 =
1

2

(
[〈Φi|αx′x′ |Φf〉 − 〈Φi|αy′y′ |Φf〉]2 + [〈Φi|αy′y′ |Φf〉 − 〈Φi|αz′z′ |Φf〉]2 +

[〈Φi|αz′z′ |Φf〉 − 〈Φi|αx′x′ |Φf〉]2
)
. (6.63)

From the definition of Eq. (6.60) and (6.63), Eq. (6.49) takes the form,

I(z) = K ′I0
|∆α|2

15
. (6.64)

With a similar procedure, the expression for I(x), Eq. (6.49) results in,

I(x) = K ′I0
45ᾱ2 + 4|∆α|2

45
. (6.65)

Similar to the IR intensity calculations, αi′i′ is not known as an explicit function of the

normal coordinates Q. Thus, a Taylor series expansion, truncated to first order in the

normal coordinates, is used:

αx′x′(Q0 + ∆Q) = αx′x′(Q0) +

Nvib∑
k

∂αx′x′

∂Qk

∆Qk. (6.66)

Substitution of Eq. (6.66) into the expectation value of the electric polarizability yields:

〈Φi|αx′x′ |Φf〉 = αx′x′(Q0) 〈Φi|Φf〉+

Nvib∑
k

∂αx′x′

∂Qk

〈Φi|∆Qk |Φf〉 . (6.67)

The very same conditions as for Eq. (6.33) apply to Eq.(6.67). The non-vanishing contri-

butions where
∣∣ϕki 〉 =

∣∣ϕkf〉 correspond to the Rayleigh scattering, i.e., the frequency of the

scattered light is the same as that of the incident beam, ν̃in. For Stokes Raman scattering,

where
∣∣ϕk0〉→ ∣∣ϕk1〉, the frequency of the inelastically scattered light is no longer the same as

the wavenumber of the incident beam, ν̃in. This frequency in Eq. (6.41) has to be replaced

by ν̃in− ν̃k where ν̃k is the wavenumber corresponding to the vibrational transition for normal
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mode k. Thus, the Stokes scattering for a fundamental transition from
∣∣ϕk0〉→ ∣∣ϕk1〉, is given

by [174, 175],

〈Φ0|αx′x′ |Φ1〉k =

√
~

8π2c0ν̃k

∂αx′x′

∂Qk

. (6.68)

The corresponding intensities for Stokes scattering, Eq. (6.64) and (6.65) take the form:

I
(z)
k ∝K

′′I0(ν̃in − ν̃k)4 |∆α|2k
15

, (6.69)

I
(x)
k ∝K

′′I0(ν̃in − ν̃k)4 45ᾱ2
k + 4|∆α|2k

45
. (6.70)

As the mean isotropic polarizability and the polarizability anisotropy are invariant with

respect to rotation of the coordinate system, the following relations for Eq. (6.69) apply:

ᾱk =
1

3

(
〈Φ0|αxx |Φ1〉k + 〈Φ0|αyy |Φ1〉k + 〈Φ0|αzz |Φ1〉k

)
, (6.71)

and,

|∆α|2k =
1

2

([
〈Φ0|αxx |Φ1〉k − 〈Φ0|αyy |Φ1〉k

]2
+
[
〈Φ0|αyy |Φ1〉k − 〈Φ0|αzz |Φ1〉k

]2
+

[〈Φ0|αzz |Φ1〉k − 〈Φ0|αxx |Φ1〉k]
2)−

3
(
〈Φ0|αxy |Φ1〉2k − 〈Φ0|αyz |Φ1〉2k − 〈Φ0|αzx |Φ1〉2k

)
, (6.72)

where,

〈Φ0|αij |Φ1〉k =

√
~

8π2c0ν̃k

∂αij
∂Qk

=

√
~

8π2c0ν̃k

∂3E

∂Fi∂Fj∂Qk

. (6.73)

The third-order energy-derivative in Eq. (6.73) is transformed into the normal mode coordi-

nate representation by using the transformation matrix of (6.27),

∂3E

∂Fi∂Fj∂Qk

=
3M∑
a

∂3E

∂Fi∂Fj∂Ra

D′ak. (6.74)
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Thus, the depolarization ratio of the kth vibrational mode [179] is defined as,

ρk =
I

(z)
k

I
(x)
k

=
3|∆α|2k

45ᾱ2
k + 4|∆α|2k

; k = 1, 2, · · · , Nvib. (6.75)

The importance of the depolarization ratio lies in the fact that it is a pure molecular

property, independent of the experimental setup. Therefore, it contains useful information

about the symmetry of the vibrational modes [182]. If the vibration is not totally symmetric,

then the trace of the polarizability tensor ᾱk will be zero, and the anisotropy |∆α|2k will be

non-zero. Thus,

ρk =
3

4
. (6.76)

On the other hand, for totally symmetric vibrations which belong to the point groups of

the cubic system (such as Oh and Td) the anisotropy |∆α|2k will be zero and, thus, the

depolarization ratio will vanish,

ρk = 0. (6.77)

For the remaining vibrations there may be both diagonal and off-diagonal terms in the third-

order derivative tensor. The resulting range for these situations is given by,

0 ≤ ρi ≤
3

4
. (6.78)

In order to validate our ADPT approach we present the calculation of the harmonic

vibrational frequencies, along with the IR spectra and Raman intensities for the icosahedral

fullerene C60, obtained with both ADPT-ADFT and finite-difference methodologies. All

calculations were performed on 16 Intel Xeon X5675 @ 3.07 GHz processors with 4 GB of

RAM. The comparison is shown in Figure 6.5.
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Figure 6.5: Comparison of C60 (Ih symmetry) IR (top) and Raman (bottom) spectra calcu-
lated from numerical finite-differences and analytical second-order energy-derivatives.
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The optimization and frequency analysis was performed using the GGA PBE [45] exchange-

correlation functional. The SCF energy convergence criterion [102] was set to 10−6 a.u.,

whereas for the numerical integration an adaptive grid with a tolerance of 10−6 a.u. was

used. For the density fitting the GEN-A2* auxiliary-function set was automatically gener-

ated [83]. The DZVP-GGA basis set [83] was employed. For the finite-difference second-order

derivatives the nuclear displacement step size is 0.01 a.u, whereas for Raman intensities a

finite electric field strength of 0.01 a.u. is employed. The analytic second-order derivatives

are calculated with the Con-EN iterative solver. It is evident that the spectra obtained with

the ADPT-ADFT methodology show an excellent agreement compared to those obtained

with the finite-difference methodology. Besides its remarkable agreement, the ADPT-ADFT

method offers a considerable speed-up, specifically for this system up to four times faster

compared to the finite-difference method. Nevertheless it should be remembered that these

spectra are calculated within the double harmonic approximation. Thus, for a reliable com-

parison with experiment anharmonic corrections must be included. They are currently under

development in our laboratory.



Chapter 7

APPLICATIONS

7.1 Carbon Fullerenes

Fullerenes are closed carbon-cage molecules which contain only pentagonal and hexagonal

rings, the most famous of them is the icosahedral C60 [185], composed of twelve pentagonal

carbon rings located around the vertices and twenty hexagonal carbon rings at the centers

of icosahedral faces. These carbon systems, being known since 1985 [186], have attracted

great attention, and consequently, a large number of works, experimental as well as theo-

retical, are focused on the study of these systems [187–191]. Larger fullerenes that have an

icosahedral symmetry can be constructed as well [192, 193]. These carbon clusters, called

giant fullerenes can be seen as cut-out of graphene sheets folded into their final shape. These

giant icosahedral fullerenes are always formed by twelve pentagonal carbon rings, while the

remaining rings have a hexagonal arrangement [185]. To the best of our knowledge, there

exists no systematic study on the vibrational spectroscopy of giant fullerenes based on non-

symmetry-adapted first-principle calculations. Most certainly this is due to the prohibitive

computational demand required for such a study. In this section, we focus on the calcu-

lation of the harmonic vibrational frequencies as well as the corresponding IR and Raman

intensities for the icosahedral C60, C180, C240 and C540 fullerenes [194]. We circumvent the

computational bottleneck by employing ADFT. The structures of the optimized fullerene

97



98 CHAPTER 7. APPLICATIONS

minima are depicted in Figure 7.1.

Figure 7.1: Optimized structures of the calculated icosahedral fullerenes. Geometries were
optimized at the PBE/DZVP-GGA/GEN-A2+ level of theory without any symmetry con-
straints. The view is aligned along one of the C3 axes and all twelve five-membered rings of
all the larger fullerenes are colored in blue to facilitate the identification of the vertices of
the icosahedron.

As our calculations were performed without simplification due to symmetry, they also

indicate that IR and Raman calculations can be performed for other non-symmetric systems

of similar size with approximately the same computational efficiency. All calculations were

performed on 64 Intel Xeon X5675 @ 3.07 GHz processors with 4 GB of RAM. The op-

timization and frequency analysis calculations for all fullerenes were performed using both

LDA VWN [40] and GGA PBE [45] exchange-correlation functionals. The SCF energy con-

vergence criterion [102] and grid tolerance were set to 10−6 a.u. and 10−6 a.u., respectively.

The DZVP-GGA basis set [83] was employed along with the GEN-A2+ customized auxiliary-

function set. This basis and auxiliary-function set combination results in more than 8000 basis

functions and 31 000 auxiliary-functions for the C540 fullerene. For the Raman intensities a
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finite electric field strength of 0.01 atomic units was employed. The HXYZ parallelization

scheme was employed, along with the Con-EN algorithm except for C540. For this system the

Dir-EN variant was used. All other settings were according to the deMon2k defaults [154].

Our calculations show that the optimized fullerenes possess icosahedral-like structures. The

corresponding vibrational analyses confirmed that they are stable local minima on the singlet

potential energy surface.

Figure 7.2 depicts the normalized distribution of bond lengths in the optimized systems.

The dashed line at 1.42 Å is the graphene bond length obtained from a periodic deMon2k

calculation [195].
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Figure 7.2: Normalized number of bonds for the C60, C180, C240 and C540 fullerenes versus
bond length, calculated with the VWN (red line) and PBE (black line) exchange-correlation
functionals.
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As Figure 7.2 shows, bond lengths obtained with the VWN functional are shorter than

those obtained with the PBE functional. The difference between the shortest and longest C-C

bond reaches a maximum in C180, and then decreases until C540. As the fullerenes grow in size,

a delocalization over the bonds is observed with a converging behavior near to the graphene

bond length value, albeit somewhat slower for the PBE/DZVP-GGA/GEN-A2+ level of

theory. Also with growing system size, the faceted surfaces start to resemble the hexagonal

arrangement in graphene. This trend is even more pronounced in larger fullerenes, namely

the C720 and C960 fullerenes. These systems were optimized with the VWN/DZVP/GEN-A2

level of theory [139]. This behavior supports the statement that giant fullerenes, starting

from the C540, begin to show an enhanced π-system delocalization. Thus, giant fullerenes

can be seen as finite size analogs of graphene.

The bonds that fall outside the increasingly narrower distribution around the graphene

bond length are the shortest bonds in the fullerenes. They can be assigned to the conju-

gated double bonds adjacent to the cyclopentadienyl units. Interestingly these shortest bond

lengths are longest in C60, decreasing monotonically to around 1.39 Å for the VWN func-

tional and 1.40 Å for the PBE functional when going to C540. This is an indicator that the

cyclopentadienyl units are less incorporated into the delocalized π-system of the fullerenes.

As the system grows in size, these cyclopentadienyl units are consistently more isolated from

the delocalized π-system found in the planar faces of fullerenes. This is consistent with

the experimental finding on C60 where the hexagons adjacent to the cyclopentadienyl units

behave more like cyclohexatrienes rather than benzene rings [196].

In order to compare with experiment the analytic IR and Raman spectra were calculated

for the C60 fullerene. The obtained results are presented in Figure 7.3. The experimental

C60 IR and Raman line positions [197] are also depicted in this figure 7.3 as green dashed

lines. As can be seen from Figure 7.3, the features of the obtained spectra are very similar,

both with the VWN and PBE functionals. Moreover, the analytic IR frequency analysis

shows an excellent agreement with the experimental measurement, in particular for the PBE

exchange-correlation functional.
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Figure 7.3: Comparison of the analytically calculated VWN (red) and PBE (black) IR (top)
and Raman (bottom) spectra of C60. The green dashed lines indicate experimental data.
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Figure 7.4: Comparison of the analytically calculated VWN (red) and PBE (black) IR (top)
and Raman (bottom) spectra of C180.
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Figure 7.5: Comparison of the analytically calculated VWN (red) and PBE (black) IR (top)
and Raman (bottom) spectra of C240.
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Figure 7.6: Comparison of the analytically calculated VWN (red) and PBE (black) IR (top)
and Raman (bottom) spectra of C540.
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Active modes present in C60 are also observed in the theoretical spectra obtained for C180,

C240 and C540 although with variable intensity. These spectra are depicted in Figures 7.4 to

7.6. As systems grow in size, more IR- and Raman-active modes appear in both vibrational

spectra below 1700 cm−1. The most demanding calculation of the Hessian matrix corresponds

to the C540 fullerene with the PBE functional and the Dir-EN ADPT algorithm. It took

around 9 days to be completed. As the single-point SCF energy calculation for this system

needs about 1500 seconds on the same computational setup, an estimated time for a finite-

difference Hessian matrix is approximately 70 days. This means that the analytic approach

is almost 8 times faster than its finite-difference counterpart. An interesting behavior is

observed for the Raman spectra of the studied fullerenes. As systems increase in size, the

peak intensity in the region between 1000 and 1700 cm−1 grows rapidly. Besides, the Raman

spectra for the C540 clearly presents some noise. The source of this noise might be connected

to the fact that the electric-dipole polarizabilities of giant fullerenes grow very rapidly [11].

This could introduce unexpected numerical instabilities in the semi-numerical methodology

presented in Section 4.3. Further numerical tests are necessary to obtain a definitive answer

for this unexpected behavior.
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7.2 Thiolate-Protected Gold Nanoclusters

Ligand-thiolate-protected gold nanoclusters with the formula Aun(S-R)m and sizes ranging

from about ten to a few hundred atoms constitute a special class of nanomaterials [198].

These clusters are unique in the sense that they can be treated as inorganic-organic hybrid

compounds. Strong quantum size effects are observed in these systems. As a result specific

physicochemical properties such as discrete energy levels, enhanced photoluminescence, cat-

alytic reactivity and nonlinear optical properties [199–205] are found in these clusters. The

technological significance of these protected clusters has led to extensive research. In par-

ticular, the size-selective production of these clusters without the necessity of cumbersome

electrophoretic or chromatographic isolation [206–209] has attracted much attention. The

properties of thiolate-protected nanoclusters are controlled by both the ligands and the Au

core [210, 211]. These clusters can range in size as small as Au15(SR)13 [212], up to hundreds

of gold atoms such as Au279(SR)84 [213]. Despite the remarkable success in this research area,

structure determination of thiolate-protected nanoclusters remains a great challenge for both

experiment and theory. Because the large size gold clusters are appealing for practical appli-

cations, the understanding of their atomic structures and structure evolution, in particular

the surface atom arrangements and gold-thiolate interface, are of paramount importance in

order to reveal the nature of their structure-property correlation.

The computational study of these systems is quite complex as they are composed of a core

with a specific arrangement of Au atoms, surrounded by ligands which possess many degrees

of freedom. One of the main objectives in our research groups is to determine the correlation

between different ligand-protectors and the size and geometrical shape of the metallic core.

To achieve this goal the availability of the analytic Hessian matrix is very advantageous. An

initial Hessian for a geometry optimization calculation can reduce significantly the number

of iterations of the structure optimization. If the cost of the Hessian is not too large, its use

can significantly reduce the overall time for the structure minimization. Besides, the Hessian

matrix calculation is a must in order to determine whether the optimized structure is truly
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a local minimum.

To show the advantages of the availability of the analytic Hessian matrix for this research

area and to probe the calculation of analytic second-order energy-derivatives on systems

which make use of effective core potentials, the optimization of the methylthiolate-protected

gold cluster Au20(S-CH3)16 is presented. We also calculated the harmonic vibrational fre-

quencies along with the IR and Raman intensities. The structure optimization and frequency

analysis were performed with the HXYZ parallelization scheme, along with the Con-EN al-

gorithm in parallel on 12 Intel Xeon X5675 @ 3.07 GHz processors with 4 GB of RAM. For

the optimization and frequency analysis the LDA VWN [40] exchange-correlation functional

was used. The SCF energy convergence criterion [102] was set to 10−6 atomic units. For the

numerical integration a pruned fixed grid with 99 radial shells and 590 angular points per

shell was employed [214]. For the density fitting the GEN-A2 auxiliary-functions were auto-

matically generated. The gold atoms were represented with a Stuttgart-Dresden relativistic

effective core potential with 19 valence electrons [215], whereas for the remaining atoms an

all-electron DZVP basis set [83] was employed. The methodology was validated previously

to match with the experimental Au2 bond distance [216]. For all other settings the deMon2k

defaults are used in these calculations [154]. The optimized geometry of Au20(S-CH3)16 is

depicted in Figure 7.7, where the sulfur atoms are represented by yellow-colored spheres.

The inner Au atoms are metallic orange spheres, whereas the carbon and hydrogen atoms

are black- and white-colored spheres, respectively.

Figure 7.7: Optimized structure of the thiolate-protected Au20(S-CH3)16.
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The resulting size of the cluster is approximately 1.45 nm, with a core size of 0.82 nm.

Each sulfur atom is always connected to two superficial gold atoms with an average bond

length of 2.32 Å. In Figure 7.8 the analytically calculated IR and Raman spectra of the

Au20(S-CH3)16 cluster are presented. The vibrational analysis confirms that the structure is

indeed a local minimum.
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Figure 7.8: Comparison of the analytically calculated IR (top) and Raman (bottom) spectra
of Au20(S-CH3)16 at the VWN/DZVP/GEN-A2 level of theory.
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The vibrational modes corresponding to the gold core are located below 100 cm−1, whereas

the peaks in the region between 250 and 350 cm−1 correspond to the stretching of the super-

ficial gold and sulfur atoms. The peak at 700 cm−1 is assigned to C-S stretching, whereas

the peak at 900 cm−1 corresponds to a methyl rocking vibration mode. The peak appearing

between 1250 to 1300 cm−1 is assigned to symmetric CH3 bending, whereas the most intense

peak for both spectra, located between 1350 and 1450 cm−1 is assigned to the methyl twisting.

The region between 2800 and 3000 cm−1 can be assigned to the symmetric C-H stretching

and the region between 3000 and 3100 corresponds to modes assigned to asymmetric C-H

stretching. The calculation of the Hessian matrix took around 6 hours to be completed. As a

single-point SCF energy for this system can be obtained in around 210 seconds with the used

computational settings here, an estimate for the finite-difference Hessian matrix calculation

is approximately 42 hours. This means that the analytic approach is about 6 times faster

than its finite-difference counterpart.

In order to show the efficiency of the analytic second-order energy-derivatives for a

medium-sized nanocluster the optimization of the tert-butylbenzenethiolate-protected gold

cluster Au36(S-C6H4t-Bu)16 was also performed. The structure of this system is depicted

in Figure 7.9. The resulting size of the cluster is approximately 2.63 nm—about the dou-

ble of the previous cluster, with a core size of 1.01 nm. Each sulfur atom is, similar to

the Au20(S-CH3)16, connected to two superficial gold atoms with an average bond length of

2.33 Å.

To perform this structure optimization an initial analytic Hessian matrix was calculated.

The parallel run was performed on 96 Intel Xeon X5675 @ 3.07 GHz processors with 4 GB of

RAM. The methodology employed was the same as for the Au20(S-CH3)16 cluster, with the

exception of an adaptive grid with 10−8 a.u. grid tolerance. The calculation of the analytic

Hessian matrix took around 7 days. As the single-point SCF energy calculation for this

system needs 90 minutes, an estimate for the finite-difference Hessian matrix calculation is

approximately 212 days. This means that the analytic approach is about 28 times faster

than its finite-difference counterpart.
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Figure 7.9: Optimized structure of the thiolate-protected Au36(S-C6H4t-Bu)16

It is evident that the finite-difference Hessian matrix calculations have become prohibitive

for 612 atoms at the level of theory presented (about 7 000 basis functions, 12 500 auxiliary-

functions and 180 ECP shells). Thus, if structure optimizations and vibrational analyses for

systems of the size of the Au279(SR)84 nanocluster are performed, the analytic second-order

ADFT-energy derivative is the method of choice to perform those calculations in reasonable

times.
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7.3 Endohedral Uranium Fullerenes

Already in 1985 it was proposed that fullerene cages could confine atoms or even small

molecules in their interior. These structures have attracted special attention as a new class

of technologically relevant materials [186]. The metal-containing fullerenes, more commonly

called endohedral metallofullerenes (EMFs), have been attracting wide interest all over the

world over the past two decades [217–219]. An interesting but difficult task in the study of

EMFs is the structure determination of these systems, due to the large number of possible iso-

mers that must be considered for a certain fullerene. Here, the combination of experimental

IR and Raman spectroscopy with DFT calculations of molecular structures and vibrational

spectra has proven already valuable for reliable structure elucidation of EMFs [220, 221]. In

addition, Raman spectra are also useful tools for determining the metallofullerene symmetry

and metal-cage bond strength [222]. In order to demonstrate the usefulness of our methodol-

ogy in this respect, the harmonic vibrational frequencies as well as IR and Raman intensities

were calculated for two isomers of U2@C80. The structures studied here are the result of an

extensive search for minimum structures [223, 224] by exploring the potential energy surface

using Born-Oppenheimer meta-molecular dynamics in which the atomic weights of uranium

atoms are artificially reduced. Note that this does not alter the potential energy surface but

greatly enhances the explored area in a given time period. This search yielded two isomers

which are energetically very similar, but geometrically different. We will label them here as

S1 and S2, respectively. Their optimized geometries are depicted in Figure 7.10. As the IR

and Raman spectroscopy are techniques sensitive enough to distinguish geometrically differ-

ent structures, the theoretical calculation can be used to characterize a determined structure

by comparing with an experimental spectrum.

For the theoretical studies of these systems, the structure optimizations were performed

without any symmetry constraint. Although these systems are not as large as the giant

fullerenes, or the tert-butylbenzenethiolate-protected gold cluster, the SCF energy calculation

requires many iterations to reach the convergence criteria. Thus, the use of the analytic
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Figure 7.10: Perspective drawings showing the relative orientations of the optimized struc-
tures of S1 (left) and S2 (right). The first row shows an orientation where the principal axis
lies in the plane of the paper, which passes through the U atoms. The second row shows a
top view along the principal axis.

second-order energy-derivatives for the calculation of the vibrational spectra clearly becomes

advantageous, as only one SCF calculation is required. These structure optimizations and

frequency analyses were performed in parallel on 32 Intel Xeon E5-2650 @ 2.2GHz processors

with 4 GB of RAM. The optimization and frequency analysis of the endohedral uranium

fullerenes were performed using the GGA PBE [45] exchange-correlation functionals. The

SCF energy convergence and auxiliary density convergence [102] were set to 10−9 a.u. and

10−6 a.u., respectively. For the numerical integration a pruned grid with 99 radial shells and

590 angular points per shell was used [214]. For the carbon atom the all-electron DZVP-

GGA basis set was employed, whereas for the uranium atom the Stuttgart-Dresden quasi-
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relativistic effective core potential with 32 valence electrons [225–227] and the corresponding

valence basis set was used. For the density fitting the automatically-generated GEN-A2* [83]

and GEN-A2** [224] auxiliary-function set were used for carbon and uranium, respectively.

The unrestricted open-shell ADFT methodology was employed because spin contamination

is considered negligible, compared to previously performed restricted open-shell calculations

[224]. The ADPT convergence criterion was set to 7 × 10−7. The HXYZ parallelization

scheme was employed, along with the Con-EN algorithm. For all other settings the deMon2k

defaults are used in these calculations [154]. The calculation of the analytic Hessian matrix

took around 16 hours. As the single-point SCF energy calculation for this system needs about

90 minutes, an estimate for the finite-difference Hessian matrix calculation is approximately

295 hours. This means that the analytic approach is almost 18 times faster than its finite-

difference counterpart. The obtained vibrational spectra are depicted in Figure 7.11, where

the blue and green solid lines correspond to the isomers S1 and S2, respectively.

According to the experimental low-energy Raman spectrum of a sample of U2@C80, for a

region between 100 and 600 cm−1, obtained by Echegoyen et al. [228], a set of main peaks

are observed at 122, 220 and 232 cm−1. The lowest experimental peak, compared to the

theoretical results, can be assigned to a Raman-active U-U stretching mode, whereas the

remaining active modes can be assigned to breathing modes of the cage with no involvement

of the U atoms. In fact, the remaining peaks observed in the theoretical analysis beyond

200 cm−1 are assigned to vibrational modes with practically non-existent U involvement. In

order to further verify the previous statement, the IR and Raman spectra of an hexanionic

fullerene C6−
80 cage with an approximate icosahedral symmetry were calculated at the same

level of theory as for the U2@C80. The resulting C6−
80 spectra, corresponding to the red lines

in Figure 7.11, are compared with those corresponding to the S1 and S2 isomers.
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Figure 7.11: Comparison of the analytic a) IR and b) Raman spectra of S1 and S2 isomers with
those to the C6−

80 fullerene. Dashed lines correspond to experimentally observed low-energy
Raman spectra of Ref. 228.
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As Echegoyen et al. state [228], the formal charge of U inside the fullerene cage is

+3, thus, an excess of 6 electrons are transferred from the U dimer to the fullerene cage.

The comparison supports the statement that no active modes corresponding to the fullerene

cages are present below 200 cm−1 in neither IR nor the Raman spectra. Below the reported

experimental Raman range, there are Raman-active vibrational modes which, for both S1 and

S2, can be assigned to uranium-cage interactions where the vibrational mode is analogous to

the rotation of the uranium dimer inside the cage. Typically, free (external) rotational modes

are expected to have zero frequencies, but due to the confinement and interaction with the

fullerene cage these dimer rotations are no longer free. Thus, changes in the total energy and

polarizabilities due to the internal rotation of the U dimer are observed, and by consequence,

Raman-active modes are seen in the theoretical spectra. The same is also true for the U

dimer translational movements, which are IR-active, but their intensities are so weak that

they are barely visible. These assignments, with their corresponding relative intensity are

presented in Tables 7.1 and 7.2.

Table 7.1: Relative IR and Raman intensities for the S1 isomer; s: strong, m: medium, w:
weak, vw: very weak.

ν̃ [cm−1] IR Raman Assignment

38.6 vw - U-U translation
48.9 vw - U-U translation
51.7 - s U-U rotation
51.8 - s U-U rotation
120.1 - m U-U stretching
144.7 vw - U-U translation
208.8 - s Cage breathing
212.1 - s Cage breathing
218.4 - s Cage breathing
223.6 - s Cage breathing
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Table 7.2: Relative IR and Raman intensities for the S2 isomer; s: strong, m: medium, w:
weak, vw: very weak.

ν̃ [cm−1] IR Raman Assignment

17.8 - m U-U rotation
25.0 vw - U-U translation
30.2 - m U-U rotation
36.9 vw - U-U translation
107.2 - m U-U stretching
140.2 vw - U-U translation
208.5 - s Cage breathing
210.0 - s Cage breathing
218.8 - s Cage breathing
222.6 - s Cage breathing

These tables show that the vibrational modes corresponding to the rotational-like modes

are almost degenerate in the S1 isomer, whereas for the S2 system, degeneracy is broken by

the U-U translation-like modes inside the fullerene cage. The comparison of the IR spectra

of both S1 and S2 isomers (Figure 7.11) presents two important aspects. First, they are very

similar throughout the frequency range. Second, the translational-like IR-active modes are so

weak that they are barely visible. Thus, the IR spectra cannot provide enough information to

distinguish one isomer from another. On the other hand, the Raman spectra could distinguish

experimentally one isomer from the other. The single (degenerate) peak corresponding to

the rotation-like U-U modes in S1 isomer has a stronger intensity compared to the double

(non-degenerate) modes in S2. Besides, these intensities are easily visible compared to those

of the IR spectra. This finding can be confirmed by very low frequency Raman spectra.



Chapter 8

CONCLUSIONS AND PERSPECTIVES

In this thesis the working equations for the analytic calculation of second-order ADFT-energy

derivatives and their efficient serial and parallel implementation have been presented. In the

context of ADPT response explicit low-scaling formulas for the calculation of the first-order

perturbed density matrix employing the Eirola-Nevanlinna algorithm are derived. As a result,

harmonic IR and Raman spectra calculations within the framework of ADFT through ADPT

have become accessible. The extension of this approach to the unrestricted and restricted

open-shell methodology is rather straightforward and was also implemented into deMon2k.

Serial benchmark calculations of frequency analyses of linear alkane chains demonstrate

the improved computational performance of the analytic second-order derivative implemen-

tation with respect to their numerical finite-difference counterparts. This performance im-

provement increases monotonically with increasing degrees of freedom, i.e., with increasing

system size.

The increased computational performance is also found in the different parallelization

schemes discussed in this work. These parallel implementations, in combination with the

conventional and direct variants of the Eirola-Nevanlinna algorithm, permit efficient ana-

lytic second-order energy-derivative calculations on a large variety of different computational

architectures, ranging from single desktop machines to high performance computer architec-

tures. In this respect it is worthwhile to highlight a general trend observed in the discussed

applications. The computational performance improvement due to analytic second-order

117
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energy-derivatives is largest for systems with SCF convergence problems. Marked examples

are the discussed endohedral metallofullerenes and the thiolate-protected Au36(S-C6H4-t-

Bu)16 where speed-up factors of 20 to 30 with respect to finite-difference methods are found.

These factors are expected to improve even further as these systems increase in size. Note

also that the calculation of reliable vibrational spectra demands high quality density ma-

trix and density fitting coefficients, i.e., a well converged single-point SCF solution. Thus,

a tightening of the SCF convergence criteria and grid tolerances for the numerical integra-

tion of the exchange-correlation contributions as well as for the semi-numerical calculation

of pseudopotential integrals [229] is always encouraged.

We also have shown that the calculation of harmonic IR and Raman spectra using an-

alytic second-order ADFT-energy derivatives can produce in essence the same results as

four-center Kohn-Sham methods, albeit with dramatically reduced computational demand

in CPU time and allocatable memory. Therefore, the methodology proposed here is partic-

ularly useful for larger systems where the finite-difference ADFT approach becomes imprac-

tical due to prohibitive CPU times. Even though harmonic IR frequencies are very useful

for the characterization of the most intense peaks in an experimental spectra, their accu-

racy is still not sufficient for an ab-initio assignment of experimental spectrum. To this end

anharmonic corrections must be included. A possible approach in this direction represents

the so-called vibrational self-consistent (VSCF) field method [230–233] that has been used

with good success to go beyond the harmonic approximation. This method solves the vi-

brational Schrödinger equation in mass-weighted normal coordinates by proposing a Hartree

product ansatz which leads to single-mode VSCF equations. The major computational dif-

ficulty arises from the evaluation of multidimensional integrals which depend upon as many

vibrational modes as are coupled in the scheme [234]. The use of third- and fourth-order

electronic energy derivatives are useful to detect mode coupling terms which may be ex-

pected to give a sizable contribution to the resulting vibrational frequencies [235]. A further

extension employs Møller–Plesset perturbation theory in a fashion analogous to its use in

electronic structure problems and is called vibrational perturbation theory (VPT). Here the

nuclear Hamiltonian contains harmonic and anharmonic terms [236] which depend on third-
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and fourth-order derivatives of the energy with respect to the nuclear coordinates. If the

anharmonic terms are assumed to be small in comparison to the harmonic ones they may

be treated as perturbations and the application of Rayleigh-Schrödinger perturbation theory

yields a sequence of vibrational perturbation levels (VPTn, n=1,2,3..) [237]. Thus, in all

cases it is clear that third- and fourth-order derivatives of the energy with respect to nuclear

coordinates are needed for the calculation of anharmonic vibrational corrections [238]. The

analytic evaluation of these derivatives is difficult and can become computationally expensive

and numerically challenging because the second-order density matrix derivatives are needed.

Particularly, in DFT numerical challenges arise from the third- and fourth-order functional

derivatives of the exchange-correlation energy. Therefore, finite-difference methods are usu-

ally employed. Their accuracy depends critically on the finite step size employed [236].

Various step sizes have been proposed, from fixed step sizes that range between 0.001 to 0.02

bohr depending on the highest-order derivative information available [239, 240], to adaptive

step sizes which are proportional to the reduced mass and harmonic frequencies [241]. Hav-

ing the evaluation of analytic second-order derivatives at hand, third-order finite-difference

derivatives can be computed by the following scheme [242],

∂3E

∂Rk∂Rj∂Ri

' 1

2∆Rk

[(
∂2E

∂Rj∂Ri

)
+∆Rk

−
(

∂2E

∂Rj∂Ri

)
−∆Rk

]
. (8.1)

Here (∂2E/∂Rj∂Ri)±∆Rk denotes the second-order energy-derivative with respect to nuclear

displacements at the nuclear position Rk ± ∆Rk. Figure 8.1 depicts the grid points used

for the finite-difference calculation of third- and fourth-order energy-derivatives. The origin

(green) represents the unperturbed coordinates of a molecular system. For the calculation

of Eq. (8.1) displacements according to the black dots in Figure 8.1 are performed. At

these points SCF calculations must be converged and the corresponding analytic second-

order energy-derivatives must be calculated. Note that these steps are independent of each

other which permits a simple and efficient parallelization. Thus, for a given molecular system

the third-order derivatives can be calculated at a cost comparable to that of 6M SCF and

analytic Hessian matrix calculations, M being the number of atoms in the system.
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Figure 8.1: Grid points used for the calculation of semi-numerical third- and fourth-order
energy-derivatives.

The calculation of the fourth-order electronic energy derivative elements with respect to

the same nuclear displacement Rk is straightforward. As Eq. (8.2) shows it only requires the

second-order energy-derivatives evaluated at the unperturbed coordinates, i.e., the origin of

Figure 8.1 (green dot):

∂4E

∂R2
k∂Rj∂Ri

' 1

∆Rk
2

[(
∂2E

∂Rj∂Ri

)
+∆Rk

− 2

(
∂2E

∂Rj∂Ri

)
R0

+

(
∂2E

∂Rj∂Ri

)
−∆Rk

]
. (8.2)

Thus, these derivatives require almost no extra computational effort.

The calculation of fourth-order electronic derivatives with respect to four different dis-

placements require four finite displacements, indicated by the four red dots in Figure 8.1.

These derivatives are then calculated as,

∂4E

∂Rl∂Rk∂Rj∂Ri

' 1

4∆Rl∆Rk

[(
∂2E

∂Rj∂Ri

)
+∆Rl,+∆Rk

−
(

∂2E

∂Rj∂Ri

)
+∆Rl,−∆Rk

−

(
∂2E

∂Rj∂Ri

)
−∆Rl,+∆Rk

+

(
∂2E

∂Rj∂Ri

)
−∆Rl,−∆Rk

]
. (8.3)
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Thus, a full set of second-, third- and fourth-order derivatives with respect to nuclear

displacements requires 36M2 SCF and analytic Hessian matrix calculations. This underlines

the importance of a computationally efficient methodology for analytical second-order energy-

derivative calculations in the framework of ADFT for the accurate ab-initio simulation of

vibrational spectra including anharmonic corrections.

Although ADPT-ADFT theory can provide first-principle calculation of response prop-

erties with systems up to around thousand atoms [139], a frequency analysis of a protein

in water is still computationally unfeasible with a QM-only methodology. For such systems

with many thousands of atoms, hybrid quantum mechanical (QM) and molecular mechanics

(MM) methodologies must be used. In such methods the studied system is partitioned into

two parts, the QM subsystem (in our previous example, the protein), which could be treated

with ADFT, and the embedding environment (the water) which can be described with molec-

ular mechanics methods [243]. As the energy expression for QM/MM is already available in

the framework of ADFT [244], analytic second-order derivatives could in principle be calcu-

lated. Such a Hessian matrix, schematically depicted in Figure 8.2, can be separated into

three main regions: a QM-MM, a QM-QM and a MM-MM block. Whereas the calculation

of the QM-QM and MM-MM blocks is rather straightforward the QM-MM block needs some

considerations.

MM-MM MM-QM MM-MM

QM-MM QM-QM QM-MM

MM-MM MM-QM MM-MM

Figure 8.2: Hessian matrix structure for a QM/MM system.
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There are two general types of contributions to this block that originate from the intro-

duced MM atoms. The first arises from the mechanical interaction energy between the QM

and MM systems. In our QM/MM implementation this term is expressed by a Lennard-

Jones potential. Thus, the corresponding second-order derivatives can be straightforward

analytically calculated. The second contribution corresponds to the electrostatic interaction

between the QM electrons and the MM point charges. This implies the calculation of per-

turbed density matrix elements, P(λ), for each corresponding MM degree of freedom. It is

expected to be the principal bottleneck for the analytic Hessian calculation of a QM/MM

system. Therefore, the ADPT equations must also be solved for all MM degrees of free-

dom. However, the response equation system will have important simplifications due to the

fact that there are no basis functions on the MM atoms. These simplifications have been al-

ready explored in the framework of conventional DFT/MM calculations for the corresponding

CPKS response equations [245, 246]. Despite these improvements such calculations are still

prohibitive for large systems, including enzymes. Thus, a similar derivation of second-order

ADFT-energy derivatives within the QM/MM framework is expected to be a useful tool to

evaluate frequencies and infrared intensities of biological systems.
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Perturbation-Dependent Analytic GGA

Exchange-Correlation Integrals

The calculation of analytic GGA exchange-correlation contributions [12] is crucial in order

to obtain numerically stable and computationally efficient expressions for the calculation of

vibrational harmonic frequencies in ADFT. There are several stages in our derivation where

exchange-correlation contributions appear. One is the second-order ADFT-energy derivative,

Eq. (4.20), in which the following exchange-correlation terms appear:

∑
k̄

x
(η)

k̄

〈
k̄(λ)
∣∣vxc [ρ̃]

〉
;
∑
k̄

xk̄
〈
k̄(λη)

∣∣vxc [ρ̃]
〉

;
∑
k̄,l̄

xk̄x
(η)

l̄

〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄〉 ; (A.1)

∑
k̄,l̄

xk̄xl̄
〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄(η)
〉
.

Another stage is the calculation of the perturbed exchange-correlation fitting coefficients, Eq.

(5.38), in which the following exchange-correlation terms appear:

∑
l̄

G−1
k̄l̄

〈
l̄(λ)
∣∣vxc [ρ̃]

〉
;
∑
l̄,m̄

G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄〉x(λ)
m̄ ;

∑
l̄,m̄

G−1
k̄l̄

〈
l̄
∣∣ fxc [ρ̃]

∣∣m̄(λ)
〉
xm̄. (A.2)

In the following section we discuss the calculation of the following individual terms using

perturbation-dependent basis and auxiliary-functions:

〈
k̄(λ)
∣∣vxc [ρ̃]

〉
, (A.3)〈

k̄(λη)
∣∣vxc [ρ̃]

〉
, (A.4)
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∑
l̄

x
(η)

l̄

〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄〉 , (A.5)

∑
l̄

xl̄
〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄(η)
〉
, (A.6)

∑
l̄

x
(λ)

l̄

〈
k̄
∣∣ fxc [ρ̃]

∣∣l̄〉 , (A.7)

∑
l̄

xl̄
〈
k̄
∣∣ fxc [ρ̃]

∣∣l̄(λ)
〉
. (A.8)

A.1 Exchange-Correlation Potential Integrals

Throughout this discussion, we assume that the exchange-correlation energy is expressed by

the GGA. In the ADFT framework, the functionals in this class depend not only on the

auxiliary density but also on its gradient, here expressed through the quantity,

γ̃ = ~∇ρ̃(r) · ~∇ρ̃(r) =
∣∣∣~∇ρ̃(r)

∣∣∣2 . (A.9)

The GGA exchange-correlation energy in the framework of ADFT is expressed as,

Exc[ρ̃, γ̃] =

∫
exc(ρ̃, γ̃) dr. (A.10)

The functional derivative of Exc[ρ̃, γ̃] defines the GGA exchange–correlation potential and is

given by,

vxc[ρ̃, γ̃](r) ≡ δExc[ρ̃, γ̃]

δρ̃(r)
=
∂exc(ρ̃, γ̃)

∂ρ̃(r)
− ~∇ · ∂exc(ρ̃, γ̃)

∂~∇ρ̃(r)
. (A.11)

Note that ∂exc/∂ ~∇ρ̃ represents a common shorthand notation for a derivative of a scalar

quantity, exc(ρ̃, γ̃), with respect to the three components ∂ρ̃(r)/∂x, ∂ρ̃(r)/∂y and ∂ρ̃(r)/∂z.

Therefore, the derivative ∂exc/∂ ~∇ρ̃ is a Euclidean vector with three components,

∂exc

∂~∇ρ̃
=

(
∂exc
∂ρ̃(x)

,
∂exc
∂ρ̃(y)

,
∂exc
∂ρ̃(z)

)
, (A.12)
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with,

ρ̃(x) =
∂ρ̃(r)

∂x
; ρ̃(y) =

∂ρ̃(r)

∂y
; ρ̃(z) =

∂ρ̃(r)

∂z
. (A.13)

We now derive "implementation forms" for the exchange-correlation potential integrals, Eq.

(A.3) and (A.4). Our aim is to obtain formulations for perturbation-dependent auxiliary-

functions that are as close as possible to those already derived for perturbation-independent

auxiliary-functions [12]. We start with the substitution of Eq. (A.11) into Eq. (A.3), which

yields:

〈
k̄(λ)
∣∣vxc[ρ̃, γ̃]

〉
=

∫ [
∂exc(ρ̃, γ̃)

∂ρ̃(r)
− ~∇ · ∂exc(ρ̃, γ̃)

∂~∇ρ̃(r)

]
k̄(λ)(r) dr. (A.14)

Integrating by parts the second term of Eq. (A.14), and noting that k̄(λ) vanishes at ±∞,

we obtain:

〈
k̄(λ)
∣∣vxc[ρ̃, γ̃]

〉
=

∫ [
∂exc(ρ̃, γ̃)

∂ρ̃(r)
+
∂exc(ρ̃, γ̃)

∂~∇ρ̃(r)
· ~∇

]
k̄(λ)(r) dr. (A.15)

Applying the chain rule,

∂exc(ρ̃, γ̃)

∂~∇ρ̃(r)
=
∂exc(ρ̃, γ̃)

∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ , (A.16)

to the second term in Eq. (A.15) in order to obtain the derivative of exc[ρ̃, γ̃] in terms of the

rotationally invariant approximate density derivative norm yields the final "implementation

form" for the (A.3) integral:

〈
k̄(λ)
∣∣vxc[ρ̃, γ̃]

〉
=

∫ ∂exc(ρ̃, γ̃)

∂ρ̃(r)
+
∂exc(ρ̃, γ̃)

∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇
 k̄(λ)(r) dr. (A.17)

Note the appearance of an auxiliary-function mixed derivative, ~∇k̄(λ)(r), with respect to

nuclear and electronic coordinates which is the main difference to the equivalent term for
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perturbation-independent auxiliary-functions. Due to the use of primitive Hermite-Gaussian

auxiliary-functions these mixed derivatives can be straightforward calculated from corre-

sponding derivatives with respect to electron coordinates alone [99]. Following the same

argument the "implementation form" for the (A.4) integral is given as,

〈
k̄(λη)

∣∣vxc[ρ̃, γ̃]
〉

=

∫ ∂exc(ρ̃, γ̃)

∂ρ̃(r)
+
∂exc(ρ̃, γ̃)

∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇
 k̄(λη) dr. (A.18)

The third-order auxiliary-function mixed derivatives, ~∇k̄(λη)(r), can be calculated as de-

scribed above, i.e., as derivatives with respect to electron coordinates alone.

A.2 Exchange-Correlation Kernel Integrals

For the evaluation of the integral sums (A.5), (A.6), (A.7) and (A.8) the exchange-correlation

kernel, which is the functional derivative of the exchange-correlation potential, is needed.

Generally, the exchange-correlation potential is a functional at coordinate r that might vary

by a density change at a different point r′. Therefore, we obtain for its derivative,

∂vxc[ρ̃, γ̃](r)

∂λ
=

∫
δvxc[ρ̃, γ̃](r)

δρ̃(r′)

∂ρ̃(r′)

∂λ
dr′. (A.19)

However, due to the semi-local nature of GGA potentials, i.e., vxc[ρ̃, γ̃](r) is only a function

of ρ̃(r) and its derivatives at this position, the functional derivative in Eq. (A.19) is given by

[247],

δvxc[ρ̃, γ̃](r)

δρ̃(r′)
= δ(r− r′)

dvxc[ρ̃, γ̃](r)

dρ̃(r′)
. (A.20)

Expanding the differential in Eq. (A.20) for a GGA functional yields:

δvxc[ρ̃, γ̃](r)

δρ̃(r′)
= δ(r− r′)

[
∂vxc[ρ̃, γ̃](r)

∂ρ̃(r′)
+
∂vxc[ρ̃, γ̃](r)

∂~∇′ρ̃(r′)
· ∂
~∇′ρ̃(r′)

∂ρ̃(r′)

]
. (A.21)
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The last term of Eq. (A.21) can be expressed as,

∂~∇′ρ̃(r′)

∂ρ̃(r′)
=

∂

∂ρ̃(r′)

(
∂

∂x′
ρ̃(r′),

∂

∂y′
ρ̃(r′),

∂

∂z′
ρ̃(r′)

)
=

(
∂

∂x′
∂ρ̃(r′)

∂ρ̃(r′)
,
∂

∂y′
∂ρ̃(r′)

∂ρ̃(r′)
,
∂

∂z′
∂ρ̃(r′)

∂ρ̃(r′)

)
= ~∇′. (A.22)

Therefore, the GGA exchange-correlation potential derivative takes the form:

δvxc[ρ̃, γ̃](r)

δρ̃(r′)
= δ(r− r′)

[
∂vxc[ρ̃, γ̃](r)

∂ρ̃(r′)
+
∂vxc[ρ̃, γ̃](r)

∂~∇′ρ̃(r′)
· ~∇′
]

= fxc[ρ̃, γ̃](r, r′). (A.23)

With this form for the ADFT GGA exchange-correlation kernel, fxc[ρ̃, γ̃](r, r′), we now turn

to the evaluation of the integral sums. Because of their structural similarities, we will only

discuss in detail Eq. (A.5) which is expressed as,

S ≡
∑
l̄

x
(η)

l̄

〈
k̄(λ)
∣∣ fxc[ρ̃, γ̃]

∣∣l̄〉 =

∑
l̄

x
(η)

l̄

∫∫
k̄(λ)(r) δ(r− r′)

[
∂vxc[ρ̃, γ̃](r)

∂ρ̃(r′)
+
∂vxc[ρ̃, γ̃](r)

∂~∇′ρ̃(r′)
· ~∇′
]
l̄(r′) dr dr′. (A.24)

To ease the notation we introduce the differential du′ = δ(r− r′) dr′:

S =
∑
l̄

x
(η)

l̄

∫∫
k̄(λ)(r)

[
∂vxc[ρ̃, γ̃](r)

∂ρ̃(r′)
+
∂vxc[ρ̃, γ̃](r)

∂~∇′ρ̃(r′)
· ~∇′
]
l̄(r′) dr du′. (A.25)

This expression can be expanded into two terms,

S =
∑
l̄

x
(η)

l̄

∫∫
k̄(λ)(r)

[
∂vxc[ρ̃, γ̃](r)

∂ρ̃(r′)

]
l̄(r′) dr du′ +

∑
l̄

x
(η)

l̄

∫∫
k̄(λ)(r)

[
∂vxc[ρ̃, γ̃](r)

∂~∇′ρ̃(r)
· ~∇′
]
l̄(r′) dr du′. (A.26)



128 APPENDIX A. EXCHANGE-CORRELATION INTEGRALS

Reordering the integrands,

S =
∑
l̄

x
(η)

l̄

∫∫
l̄(r′)

[
∂vxc[ρ̃, γ̃](r)

∂ρ̃(r′)

]
k̄(λ)(r) dr du′ +

∑
l̄

x
(η)

l̄

∫∫
~∇′ l̄(r′) ·

[
∂vxc[ρ̃, γ̃](r)

∂~∇′ρ̃(r′)

]
k̄(λ)(r) dr du′, (A.27)

and expanding the exchange-correlation potential according to Eq. (A.11) yields the following

explicit form for the (A.5) integral sum,

S =
∑
l̄

x
(η)

l̄

∫∫
l̄(r′)

[
∂2exc[ρ̃, γ̃]

∂ρ̃(r′)∂ρ̃(r)

]
k̄(λ)(r) dr du′ −

∑
l̄

x
(η)

l̄

∫
l̄(r′)

∂

∂ρ̃(r′)

[∫
~∇ · ∂exc[ρ̃, γ̃]

∂~∇ρ̃(r)
k̄(λ)(r) dr

]
du′ +

∑
l̄

x
(η)

l̄

∫
~∇′l̄(r′) · ∂

∂~∇′ρ̃(r′)

[∫
∂exc[ρ̃, γ̃]

∂ρ̃(r)
k̄(λ)(r) dr

]
du′ −

∑
l̄

x
(η)

l̄

∫
~∇′l̄(r′) · ∂

∂~∇′ρ̃(r′)

[∫
~∇ · ∂exc[ρ̃, γ̃]

∂~∇ρ̃(r)
k̄(λ)(r) dr

]
du′ ≡

sa + sb + sc + sd. (A.28)

By applying the du′ differential with the variable collapse according to the Dirac delta func-

tion the term sa turns into its "implementation form",

sa =
∑
l̄

x
(η)

l̄

∫
l̄(r)

[
∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂ρ̃(r)

]
k̄(λ)(r) dr. (A.29)

Integration by parts of the second term of Eq. (A.28), sb, assuming that the k̄(r) derivatives

vanish at ±∞, yields:

sb =
∑
l̄

x
(η)

l̄

∫
l̄(r′)

∂

∂ρ̃(r′)

[∫
∂exc[ρ̃, γ̃]

∂~∇ρ̃(r)
· ~∇k̄(λ)(r) dr

]
du′. (A.30)
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To proceed further,we collapse the variables according to the Dirac delta function as,

sb =
∑
l̄

x
(η)

l̄

∫
l̄(r)

∂

∂ρ̃(r)

∂exc[ρ̃, γ̃]

∂~∇ρ̃(r)
· ~∇k̄(λ)(r) dr. (A.31)

By applying the chain rule, Eq. (A.16), the expression can be rewritten as,

sb =
∑
l̄

x
(η)

l̄

∫
l̄(r)

∂

∂ρ̃(r)

 ∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣
 · ~∇k̄(λ)(r) dr. (A.32)

Finally, sb is expressed in the "implementation form" as,

sb =
∑
l̄

x
(η)

l̄

∫
l̄(r)

∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(λ)(r) dr. (A.33)

For the third term of Eq. (A.28), sc, the variable collapse due to the du′ differential results

in the following expression:

sc =
∑
l̄

x
(η)

l̄

∫
~∇l̄(r) · ∂2exc[ρ̃, γ̃]

∂~∇ρ̃(r)∂ρ̃(r)
k̄(λ)(r) dr. (A.34)

The application of the chain rule, Eq. (A.16), yields the "implementation form" for the sc

term,

sc =
∑
l̄

x
(η)

l̄

∫
~∇l̄(r) ·

~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣ ∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣ k̄(λ)(r) dr. (A.35)

For the last term of Eq. (A.28), sd, the integration by parts of the inner integral, again

assuming that the auxiliary-function derivative vanishes at ±∞, yields:

sd =
∑
l̄

x
(η)

l̄

∫
~∇′l̄(r′) · ∂

∂~∇′ρ̃(r′)

[∫
∂exc[ρ̃, γ̃]

∂~∇ρ̃(r)
· ~∇k̄(λ)(r) dr

]
du′. (A.36)
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After applying the chain rule, Eq. (A.16), we obtain,

sd =
∑
l̄

x
(η)

l̄

∫
~∇′l̄(r′) · ∂

∂~∇′ρ̃(r′)

∫ ∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(λ)(r) dr

 du′. (A.37)

Applying the du′ differential with the variable collapse according to the Dirac delta function

then yields:

sd =
∑
l̄

x
(η)

l̄

∫
~∇l̄(r) · ∂

∂~∇ρ̃(r)

 ∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(λ)(r)

 dr. (A.38)

In this case the outer (partial) differentiation generates two terms due to the product in the

inner integral. Thus we find:

sd =
∑
l̄

x
(η)

l̄

∫
~∇l̄(r) · ∂2exc[ρ̃, γ̃]

∂~∇ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(λ)(r)

 dr +

∑
l̄

x
(η)

l̄

∫
~∇l̄(r) · ∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣ ∂

∂~∇ρ̃(r)

 ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣ · ~∇k̄(λ)(r)

 dr,

= sda + sdb . (A.39)

After interchanging the differentiation in the first term of Eq. (A.39) and applying the chain

rule, Eq. (A.16), we obtain:

sda =
∑
l̄

x
(η)

l̄

∫
~∇l̄(r) · ∂

2exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣2
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(λ)(r)

 dr. (A.40)

Rearranging Eq. (A.40) according to the scalar product yields the final "implementation

form" for the sda term,

sda =
∑
l̄

x
(η)

l̄

∫  ~∇l̄(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ~∇ρ̃(r) · ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ∂2exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣2 dr. (A.41)
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For the evaluation of the sdb term in Eq. (A.39) we employ the following expansion:

∂

∂~∇ρ̃(r)

∇ρ̃(r) · ~∇k̄(λ)∣∣∣~∇ρ̃(r)
∣∣∣

 =
~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)

∣∣∣ −
(
~∇ρ̃(r) · ~∇k̄(λ)(r)

) ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣3 . (A.42)

A detailed derivation of Eq. (A.42) is given in the appendix of Ref. 12. By substituting Eq.

(A.42) into the sdb term we find:

sdb =
∑
l̄

x
(η)

l̄

∫
~∇l̄(r) · ∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)

∣∣∣ −
(
~∇ρ̃(r) · ~∇k̄(λ)(r)

) ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣3
 dr. (A.43)

The expansion and rearrangement of Eq. (A.43) yield the following "implementation form"

for sdb ,

sdb =
∑
l̄

x
(η)

l̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇l̄(r) · ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)

∣∣∣
 dr −

∑
l̄

x
(η)

l̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
(
~∇ρ̃(r) · ~∇k̄(λ)(r)

) ~∇l̄(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣3

 dr. (A.44)

Thus, we find as final "implementation form" for sd,

sd =
∑
l̄

x
(η)

l̄

∫  ~∇l̄(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ~∇ρ̃(r) · ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ∂2exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣2 dr +

∑
l̄

x
(η)

l̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇l̄(r) · ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)

∣∣∣
 dr −

∑
l̄

x
(η)

l̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
(
~∇ρ̃(r) · ~∇k̄(λ)(r)

) ~∇l̄(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣3

 dr. (A.45)

We now give the explicit formulation of the "implementation forms" for the integral sums

(A.5) to (A.8).
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"Implementation form" of integral sum (A.5):

∑
l̄

x
(η)

l̄

〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄〉 =
∑
l̄

x
(η)

l̄

∫
l̄(r)

[
∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂ρ̃(r)

]
k̄(λ)(r) dr +

∑
l̄

x
(η)

l̄

∫
l̄(r)

∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(λ)(r) dr +

∑
l̄

x
(η)

l̄

∫
~∇l̄(r) ·

~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣ ∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣ k̄(λ)(r) dr +

∑
l̄

x
(η)

l̄

∫  ~∇l̄(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ~∇ρ̃(r) · ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ∂2exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣2 dr +

∑
l̄

x
(η)

l̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇l̄(r) · ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)

∣∣∣
 dr −

∑
l̄

x
(η)

l̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
(
~∇ρ̃(r) · ~∇k̄(λ)(r)

) ~∇l̄(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣3

 dr.

(A.46)

"Implementation form" of integral sum (A.6):

∑
l̄

xl̄
〈
k̄(λ)
∣∣ fxc [ρ̃]

∣∣l̄(η)
〉

=
∑
l̄

xl̄

∫
l̄(η)(r)

[
∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂ρ̃(r)

]
k̄(λ)(r)dr+

∑
l̄

xl̄

∫
l̄(η)(r)

∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(λ)(r) dr +

∑
l̄

xl̄

∫
~∇l̄(η)(r) ·

~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣ ∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣ k̄(λ)(r) dr +

∑
l̄

xl̄

∫  ~∇l̄(η)(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ~∇ρ̃(r) · ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ∂2exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣2 dr +

∑
l̄

xl̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇l̄(η)(r) · ~∇k̄(λ)(r)∣∣∣~∇ρ̃(r)

∣∣∣
 dr −
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∑
l̄

xl̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
(
~∇ρ̃(r) · ~∇k̄(λ)(r)

) ~∇l̄(η)(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣3

 dr.

(A.47)

"Implementation form" of integral sum (A.7):

∑
l̄

x
(λ)

l̄

〈
k̄
∣∣ fxc [ρ̃]

∣∣l̄〉 =
∑
l̄

x
(λ)

l̄

∫
l̄(r)

[
∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂ρ̃(r)

]
k̄(r) dr +

∑
l̄

x
(λ)

l̄

∫
l̄(r)

∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(r) dr +

∑
l̄

x
(λ)

l̄

∫
~∇l̄(r) ·

~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣ ∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣ k̄(r) dr +

∑
l̄

x
(λ)

l̄

∫  ~∇l̄(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ~∇ρ̃(r) · ~∇k̄(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ∂2exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣2 dr +

∑
l̄

x
(λ)

l̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇l̄(r) · ~∇k̄(r)∣∣∣~∇ρ̃(r)

∣∣∣
 dr −

∑
l̄

x
(λ)

l̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
(
~∇ρ̃(r) · ~∇k̄(r)

) ~∇l̄(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣3

 dr. (A.48)

"Implementation form" of integral sum (A.8),

∑
l̄

xl̄
〈
k̄
∣∣ fxc [ρ̃]

∣∣l̄(λ)
〉

=
∑
l̄

xl̄

∫
l̄(λ)(r)

[
∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂ρ̃(r)

]
k̄(r) dr +

∑
l̄

xl̄

∫
l̄(λ)(r)

∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣
~∇ρ̃(r)∣∣∣~∇ρ̃(r)

∣∣∣ · ~∇k̄(r) dr +

∑
l̄

xl̄

∫
~∇l̄(λ)(r) ·

~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣ ∂2exc[ρ̃, γ̃]

∂ρ̃(r)∂
∣∣∣~∇ρ̃(r)

∣∣∣ k̄(r) dr +

∑
l̄

xl̄

∫  ~∇l̄(λ)(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ~∇ρ̃(r) · ~∇k̄(r)∣∣∣~∇ρ̃(r)
∣∣∣

 ∂2exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣2 dr +
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∑
l̄

xl̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
 ~∇l̄(λ)(r) · ~∇k̄(r)∣∣∣~∇ρ̃(r)

∣∣∣
 dr −

∑
l̄

xl̄

∫
∂exc[ρ̃, γ̃]

∂
∣∣∣~∇ρ̃(r)

∣∣∣
(
~∇ρ̃(r) · ~∇k̄(r)

) ~∇l̄(λ)(r) · ~∇ρ̃(r)∣∣∣~∇ρ̃(r)
∣∣∣3

 dr. (A.49)

These are the generic working equations for the calculation of GGA exchange–correlation

integrals needed for the analytical calculation of second-order ADFT-energy derivatives. The

first- and second-order derivatives of exc(ρ̃, γ̃) are specific for each GGA functional. They are

the same as for perturbation-independent basis and auxiliary-functions.



Appendix B

Perturbed Energy-Weighted Density

Matrix Calculation

The perturbed energy-weighted density matrix, W(λ), is needed for the calculation of analytic

second-order energy-derivatives. It can be calculated in two different ways, both of them

originate from the Kohn-Sham equations,

∑
v

Kµνcνi =
∑
v

Sµνcνiεi. (B.1)

Multiplication of Eq. (B.1) by cσi and summation over all occupied MOs yields:

∑
ν

occ∑
i

Kµνcνicσi =
∑
ν

occ∑
i

Sµνcνicσiεi. (B.2)

To proceed, we now introduce the (closed-shell) density matrix, Eq. (3.4), on the left-hand

side of Eq. (B.2) and the (closed-shell) energy-weighted density matrix, Eq. (4.15), on the

right-hand side of Eq. (B.2). Thus, we obtain,

∑
ν

KµνPνσ =
∑
ν

SµνWνσ. (B.3)

Differentiation of Eq. (B.3) with respect to the perturbation parameter λ yields:

∑
ν

K(λ)
µν Pνσ +

∑
ν

KµνP
(λ)
νσ =

∑
ν

S(λ)
µν Wνσ +

∑
ν

SµνW
(λ)
νσ . (B.4)
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From this equation we find as explicit expression for the energy-weighted density matrix

derivative,

W(λ) = S−1
(
K(λ)P + KP(λ) − S(λ)W

)
. (B.5)

In our experience Eq. (B.5) is prone to numerical instabilities due to the overlap matrix

inversion. Therefore, an alternative for the calculation of the perturbed energy-weighted

density matrix avoiding the inversion of the overlap matrix, is presented. We start again

from Eq. (B.1) but now multiplying from left by cµj and sum over all basis functions:

∑
µ,ν

cµjKµνcνi =
∑
µ,ν

cµjSµνcνiεi. (B.6)

To proceed, we employ the orthogonality constraint, Eq. (2.24), on the right-hand side of

Eq. (B.6), yielding:

∑
µ,ν

cµjKµνcνi = δjiεi. (B.7)

By multiplication of cµj from left and cνi from right and summation over all occupied MOs

on both sides of Eq. (B.7) we obtain:

occ∑
i,j

∑
µ,ν

cσjcµjKµνcνicτi =
occ∑
i,j

cσjδjiεicτi =
occ∑
i

cσiεicτi. (B.8)

The introduction of the (closed-shell) energy-weighted density matrix, Eq. (4.15) on the

right-hand side of Eq. (B.8), and the (closed-shell) density matrix, Eq. (3.4), on the left-

hand side of Eq. (B.8) yields:

1

2
PKP = W. (B.9)
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From the differentiation of Eq. (B.9) with respect to the perturbation parameter λ the

explicit expression for the energy-weighted density matrix derivative is obtained:

1

2

(
P(λ)KP + PK(λ)P + PKP(λ)

)
= W(λ). (B.10)

Even when the evaluation of Eq. (B.10) requires 6 matrix-matrix multiplications for each

perturbation, this expression does not need the overlap matrix nor its inverse, thus, the

numerical instabilities associated with the inversion of the overlap matrix are circumvented.



Appendix C

Unrestricted Self-Consistent Perturbation

Theory

This appendix extends the results of section 5.1 to open-shell systems. The appearing R

matrices can be closed-shell or open-shell density matrices. In the latter case they are marked

with a spin-specific superscript σ that can be either α or β. By generalization of Eq. (5.33)

the perturbed density matrix, with n being the occupation number of the MOs, is given by,

R̆(λ) = nΠ̆(λ) = n(Π̆(λ)
ou + Π̆(λ)

uo + Π̆(λ)
oo ), (C.1)

R̆(λ) = n

(
occ∑
i

uno∑
a

c̆i
K(λ)
ia − εiS

(λ)
ia

εi − εa
c̆T
a +

occ∑
i

uno∑
a

c̆a
K(λ)
ia − εiS

(λ)
ia

εi − εa
c̆T
i − S̆(λ)

oo

)
. (C.2)

Back-transformation to the non-orthogonal basis by R(λ) = S−1/2R̆(λ)S−1/2 yields:

R(λ) = n

(
occ∑
i

uno∑
a

ci
K(λ)
ia − εiS

(λ)
ia

εi − εa
cT
a +

occ∑
i

uno∑
a

ca
K(λ)
ia − εiS

(λ)
ia

εi − εa
cT
i −RS(λ)R

)
. (C.3)

For open-shell systems, the occupation number is n = 1 for each spin-orbital. Therefore, the

perturbed spin-density matrices are given by:

R(λ),σ
µν =

occ∑
i

uno∑
a

K(λ),σ
ia − εσi S

(λ),σ
ia

εσi − εσa

(
cσµic

σ
νa + cσµac

σ
νi

)
−
∑
σ,τ

Rσ
µσS

(λ)
στ R

σ
τν . (C.4)
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Unrestricted ADPT Equation System

This appendix extends the results of section 5.2 to open-shell systems where the total elec-

tronic density is given by the sum of the α and β spin densities,

ρ(r) = ρα(r) + ρβ(r). (D.1)

We assume that the same separation in α and β spin densities also holds for the approximate

density,

ρ̃(r) = ρ̃α(r) + ρ̃β(r) =
∑
k̄

(
xαk̄ + xβ

k̄

)
k̄(r). (D.2)

The xα
k̄
and xβ

k̄
are spin-polarized fitting coefficients which are obtained from separate spin-

dependent fitting equations (3.27). The fitting of the total density remains variational. The

spin-polarized density matrix elements are given by,

Rσ
µν =

occσ∑
i

cσµic
σ
νi. (D.3)

Similar to the unrestricted Hartree-Fock methodology [62], two sets of Kohn-Sham equa-

tions are obtained. The corresponding spin-polarized ADFT Kohn-Sham matrix elements

are given by,

Kσ
µν = Hµν +

∑
k̄

〈
µν ‖ k̄

〉 (
xk̄ + zσk̄

)
. (D.4)
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The ADPT equations are derived by starting from Eq. (C.4) and following the same proce-

dure as in section 5.2 using the corresponding spin-polarized matrices and MOs. Therefore,

the open-shell perturbed Kohn-Sham matrix elements, assuming perturbation-dependent ba-

sis and auxiliary-functions, have the form:

K(λ),σ
µν = H(λ)

µν +
∑
k̄

〈
µν ‖ k̄

〉(λ)
(xk̄ + zσk̄ ) +

∑
k̄

〈
µν ‖ k̄

〉 (
x

(λ)

k̄
+ z

(λ),σ

k̄

)
. (D.5)

The perturbed spin-polarized exchange-correlation coefficients are given by,

z
(λ),σ

k̄
=
∑
l̄

G−1
k̄l̄

〈
l̄(λ)
∣∣vσxc[ρ̃]

〉
−
∑
l̄,m̄

G−1
k̄l̄
G

(λ)

l̄m̄
zσm̄ +

∑
l̄

G−1
k̄l̄

〈
l̄
∣∣v(λ),σ
xc [ρ̃]

〉
. (D.6)

The spin-polarized exchange-correlation potential appearing here is defined as,

vσxc[ρ̃](r′) ≡ δExc[ρ̃]

δρ̃σ(r′)
. (D.7)

Since vσxc[ρ̃] is a functional of ρ̃α(r) and ρ̃β(r), the derivative of vxc[ρ̃] with respect to the

perturbation parameter λ generates two terms:

∂vσxc[ρ̃](r)

∂λ
=

∫
δvσxc[ρ̃](r)

δρ̃α(r′)

∂ρ̃α(r′)

∂λ
dr′ +

∫
δvσxc[ρ̃](r)

δρ̃β(r′)

∂ρ̃β(r′)

∂λ
dr′. (D.8)

At this point it is convenient to introduce the spin-polarized exchange-correlation kernel as,

fστxc [ρ̃](r, r′) =
δvσxc[ρ̃](r)

δρ̃τ (r′)
. (D.9)

Note that this kernel depends on two spins indicated by the superscripts σ and τ . By inserting

Eq. (D.8) and (D.9) into Eq. (D.6) we obtain the following expression for the perturbed
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spin-polarized exchange-correlation coefficients:

z
(λ),σ

k̄
=
∑
l̄

G−1
k̄l̄

〈
l̄(λ)
∣∣vσxc[ρ̃]

〉
−
∑
l̄,m̄

G−1
k̄l̄
G

(λ)

l̄m̄
zσm̄ +

∑
l̄,m̄

α,β∑
τ

G−1
k̄l̄

〈
l̄
∣∣ fστxc [ρ̃]

∣∣m̄〉x(λ),τ
m̄ + (D.10)

∑
l̄,m̄

α,β∑
τ

G−1
k̄l̄

〈
l̄(λ)
∣∣ fστxc [ρ̃]

∣∣m̄(λ)
〉
xτm̄.

Following the same argumentation as in section 5.2 the unrestricted ADPT equation system

is obtained as:1
2
G−Aα (E + Fαα) −Aα −Aα Fαβ

−Aβ −Aβ Fβα 1
2
G−Aβ (E + Fββ)

 x(λ),α

x(λ),β

 =

 b(λ),α

b(λ),β

 . (D.11)

Compared to the implementation of the closed-shell ADPT equations, Eq. (5.46), the

unrestricted ADPT equation system, Eq. (D.11), requires the calculation and storage of two

spin-dependent Coulomb response matrices, Aα and Aβ, three spin-dependent Kernel matri-

ces, Fαα, Fββ and Fαβ, and the complete open-shell response matrix of size 4 (Naux×Naux).

Despite the higher storage requirements, by following the same implementation described

in Section 5.4, the RAM memory requirements for the open-shell ADPT Eirola-Nevannlina

algorithm, compared to the closed-shell scheme, is only marginally increased, as only the

working vectors of size Naux are doubled. Thus, the limiting factor to calculate an open-shell

system of a certain size is the hard disk storage available.
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