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Low-order scaling methods for
auxiliary density functional theory

RESUMEN

Esta tesis presenta la derivacion e implementacion de dos metodologias con bajo escala-
miento computacional usadas en el marco de la teoria del funcional de la densidad auxiliar
(ADFT).

Primero, se presenta el desarrollo e implementacién de la aproximacién variacional
local del intercambio exacto (LDF-EXX) para la evaluacion rdpida y eficiente de dicha
contribucion. Esta metodologia permite calculos Hartree-Fock y calculos con funcionales
hibridos en ADFT con rapidez extraordinaria. Atn mas, la metodologia LDF-EXX logra
reducir el cuello de botella computacional de aproximaciones variacionales previamente
reportadas. La metodologia LDF-EXX resultante tiene una eficiencia computacional com-
parable a la teoria del funcional de la densidad de Kohn y Sham con un funcional basado
en la aproximacién del gradiente generalizado.

En segundo lugar, se presenta el desarrollo e implementacion de un nuevo solucionador
iterativo para el sistema de ecuaciones de respuesta que se origina en la teoria de pertur-
baciones de la densidad auxiliar (ADPT). Este nuevo método iterativo resuelve el cuello
de botella computacional de los cdlculos ADPT y permite el cbmputo de propiedades
de respuesta de nanosistemas, en tan solo unas horas, utilizando arquitecturas computa-
cionales modestas.

Las contribuciones alcanzadas en esta tesis abren la posibilidad de cdlculos de gran es-
cala en tiempos razonables cuando se utilizan funcionales hibridos. Ademas, permiten el
computo eficiente de propiedades de respuesta de nanosistemas. El potencial de éstas dos
metodologias nuevas es demostrado a través de aplicaciones seleccionadas que incluyen

problemas quimicos actuales.

xix
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Low-order scaling methods for
auxiliary density functional theory

ABSTRACT

This thesis presents the derivation and implementation of two new low-order scaling
methodologies to be used in the framework of auxiliary density functional theory (ADFT).

First, we present the development and implementation of the local density fitting exact
exchange (LDF-EXX) approach for the rapid and efficient evaluation of exact exchange.
This methodology enables Hartree-Fock and hybrid Kohn-Sham density functional the-
ory calculations with remarkable speed-ups compared to standard exact exchange im-
plementations. Furthermore, the here presented LDF-EXX methodology circumvents the
bottlenecks of former density fitting and resolution-of-the-identity approximation to ex-
act exchange, resulting in a much faster density fitting approach. The resulting LDF-EXX
methodology has a computational efficiency comparable to density-fitting Kohn-Sham
density functional theory calculations performed with a generalized-gradient-approxima-
tion functional.

Second, we present the development and implementation of a new iterative solver for
the response equation system of auxiliary density perturbation theory (ADPT). This new
iterative approach resolves the current bottleneck of ADPT calculations and enables the
computation of molecular response properties of nanosystems in just a few hours on mod-
erate parallel computational architectures.

The contributions achieved in this thesis open the avenue for large-scale all-electron
calculations with hybrid functionals in reasonable timings. In addition, they enable the
very fast computation of molecular properties of nanosystems. Selected applications of
these to new methodologies to current chemical problems exhibit the potential of the here

presented low-order scaling methods.

xxi



Quantum mechanics always seem to require infinitely
many dimensions; I don’t think I can cope with so
many—1I'm going to have about a 100 or so— that

ought to be enough, don’t you think?

Alan Turing

Introduction and Objectives

0.1 INTRODUCTION

The key role of modeling, theory and computation to enable the growth of Chemistry as a
science has been recognized in the international community by the several Nobel Prizes in
Chemistry awarded to theoretical developments, the last two being awarded in 1998 and
2013. Most modern chemical research cannot be performed without the inclusion of some
computational component, whether it is a simple visualization of a molecule or a high-
level quantum mechanical calculation. However, the inclusion of quantum mechanical
calculations into mainstream Chemistry has not been easy or straightforward. Perhaps
because, as noted by Mulliken and Roothaan,’ there has been thousands of chemists that

without any invocation to electronic structure calculations gathered an enormous amount

1



of knowledge and built the foundations of the chemical sciences. The difficulty to merge
theory and computation into mainstream Chemistry has led to an apparent division in the
science; in words of Longuet-Higgins?: “It has always seemed to me that there are three kinds
of Chemistry: experimental, theoretical and computational.”

The division that Longuet-Higgins saw in Chemistry during the 1970’s was not new. In
fact, it might have it’s origins some centuries ago and can be explained by the discussion
about whether a mathematical formulation of Chemistry is possible, or even desirable. For

instance, in 1786 Kant®*

wrote that Chemistry will never be a genuine science because it
cannot be formulated in mathematical terms;? in the early 1800’s Gay-Lussac’ believed that
“...we are perhaps not far removed from time when we shall submit the bulk of chemical phenomena
to computation.;”® and Comte® argued that if mathematical doctrines would ever become
predominant in Chemistry, this would mean the rapid decline of the science.® The division
between those that wished for a mathematical theory of Chemistry and those who didn’t

remained several years more. With the advent of quantum mechanics around 1920’s this

debate heated up. In particular, Dirac’s 1929 statement’

The general theory of quantum mechanics is now almost complete, the imperfections
that still remain being in connection with the exact fitting in of the theory with relativ-

ity ideas. These gives rise to difficulties only when high-speed particles are involved,

2Solange als noch fiir die chymischen Wirkungen der Materien aufeinander kein Begriff ausgefunden
wird, der sich construieren lafst, d. i. kein Gesetz der Anndherung oder Entfernung der Theile angeben lafst,
nach welchem etwa in Propertionen ihrer Dichtigkeiten u. d. g. ihre Bewegungen samt ihren Folgen sich
im Raume a priori anschaulich machen und darstellen lassen (eine Forderung, die schwerlich jemals erfiillt
werden wird), so kann Chymie nichts mehr als systematische Kunst, oder Experimentallehre, niemals aber
eigentliche Wissenschaft werden, weil die Principien derselben blos empirisch sind und keine Darstellung
a priori in der Anschauung erlauben, folglich die Grundsatze chymischer Erscheinungen ihrer Moglichkeit
nach nicht im mindesten begreiflich machen, weil sie der Anwendung der Mathematik unfahig wird.

PJ’espére donner par 1a une preuve de ce qu’ont avancé des chimistes trés-distingues, qu’on n’est peut-
étre pas éloigné de 'époque a laquelle on pourra soumettre au calcul la plupart des phénomenes chimiques.

“Toute tentative de faire rentrer les questions chimiques dans le domaine des doctrines mathématiques,
doit étre réputée jusqu’ici, et sans doute a jamais, profondément irrationnelle, comme étant antipathique
a la nature des phénomeénes...J'ai fait ressortit, dans le volume précédent, le tort général fait jusquu’ici a
la physique par 'abus de 'analyse mathématique. Mais la, il ne s’agissait que de 1'usage irréfléchi d'un
instrument, qui, judicieusement dirigé, est susceptible, pour un tel ordre de recherches, d'une admirable ef-
ficacité. Ici, au contraire, on ne doit pas craindre de garantir que si, par une aberration heurusement presque
impossible, 'emploi de I'analyse mathématique acquérait jaimais, en chimie, une semblable prépondérance,
il déterminerait inévitablement, et sans aucune compensation, dans 'economie entiere de cette science, une
immense et rapide rétrogradation, en substitutant I'empire des conceptions vagues a celui des notions pos-
itives, et una facile verbiage algébrique a une laborieuse explorations des faits.

2



and are therefore of no importance in the consideration of atomic and molecular struc-
ture and ordinary chemical reactions, in which it is, indeed, usually sufficiently accu-
rate if one neglects relativity variation of mass with velocity and assumes only Coulomb
forces between the various electrons and the nuclei. The underlying physical laws nec-
essary for the mathematical theory of a large part of physics and the whole of chemistry
are thus completely known, and the difficulty is only that the exact application of these
equations leads to equations much too complicated to be soluble. It therefore becomes
desirable that approximate practical methods of applying quantum mechanics should
be developed, which can lead to an explanation of the main features of complex atomic

systems without too much computation.

has generated a lot of controversy. For many, Dirac’s claim is reductionist and completely
wrong.“*’ For many others, the statement is, as Parr and Crawford wrote: “both the hope

and despair of valence theoreticians [...].” "

Certainly, Dirac was wrong to state that relativity
has no importance in atomic and molecular structure, but what about the mathematical
theory to describe the whole of chemistry? As Kutzelnigg noted, this is a nontrivial philo-
sophical question.* However, it is a fact that quantum mechanics has enabled the compu-
tation and prediction of many properties of chemical interest. According to Mulliken and
Roothaan, the slow acceptance of quantum mechanics followed from the fact that quan-
tum mechanics was not successful to make quantitative predictions because the answers
to the easy problems were already obtained in the laboratory and the more difficult prob-
lems were too complex, in terms of the mathematical analysis and the computational effort
required, for quantum mechanics to provide an answer.' In Frederick Soddy’s words:"

“...for the most part, chemistry is still too complicated a science for the theories to be a substitute
for the facts as any real theory should be.”

Nowadays, almost 60 years after Mulliken’s and Roothaan’s discussion and 90 years af-
ter Dirac’s claim, the application of quantum mechanics to complex chemical phenomena
is still a challenge. Even today, the simulation of a real chemical laboratory experiment

by quantum mechanical methods still requires vast methodological improvements. To

3



put this in perspective, think about the Hartree-Fock (HF) method. HF is the simplest

12716 and describes electron-electron inter-

approach for solving the Schrodinger equation
actions within a mean-field approach.”" Even this approach scales conventionally as
O(N*), where O() denotes the order of the asymptotic scaling behavior. This means that
to calculate a system 10 times larger than a reference one, the computational time required
increases by a factor of 10* with respect to the time needed for the smaller reference system.
The increase becomes even more dramatic if electron correlation effects, neglected in the
HF approach, are accounted for because the scaling behavior is, at least, O(N°). This was,
and still is, the reason for the excitement density functional theory (DFT)? in the formu-
lation of Kohn and Sham (KS-DFT)* generated in the quantum chemical community. It

incorporates electron correlation without increasing the scaling. Nevertheless, the formal

scaling of KS-DFT is still O(N*).

To illustrate how prohibitive even an O(N*) scaling is for the calculation of large sys-
tems, we can think about it in terms of “Moore’s Law”.?*?* It is an empirical observa-
tion made by Gordon E. Moore in 1965, co-founder of Intel Corporation and Fairchild
Semiconductor, that describes the doubling of components per integrated circuit every
two years. Moore’s Law has been astonishingly valid over the last decades. The factor
of 10* for a 10-times larger system can be described as roughly 2, which would —with
Moore’s assumption —correspond to 26 years of computer development. In other words,
one would need to wait 26 years for the computers to evolve to perform an HF calculation

for a 10-times larger system within the same time frame as today for the reference one.”

Furthermore, the increase of power consumption has led to the end of frequency (proces-
sor speed) scaling as the dominant computer architecture paradigm since the early 2000’s.
Moore’s law has been applicable since then by adding extra processors for parallel com-
puting. However, the potential speed-up of a parallel computing platform is not linear.
Instead, the small portion of a program that cannot be parallelized limit the overall speed-

up as given by Amdahl’s Law.?® If « is the fraction of running time a program spends on
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non-parallelizable parts, then the maximum speed-up is

, @

where P is the number of processors available. If only 1% of the program cannot be, or
is not, parallelized, only a speed-up of 100 can be achieved regardless of the number of
processors given to the task. This is clearly not an option for any enthusiastic researcher
attempting to grasp deeper insights into molecular processes in chemistry, biochemistry,

or material science.

The present work continues the effort of developing “desirable approximate methods [...]”
that lower the computational demand of existing algorithms to make them applicable to
larger systems in reasonable time frames. In particular, a new formulation for calculating
the exact exchange contribution, which lowers the computational demand of traditional
algorithms, is presented. Exact exchange is a key ingredient for HF, post-HF, as well
as for some of the most popular Density Functional Approximations (DFA) used in DFT
calculations. In addition, a new iterative solver for Auxiliary Density Perturbation Theory
(ADPT), which enables property calculations on systems with several hundred of atoms

in just hours, is also presented.

To this end, the thesis is organized as follows. In chapter1a general revision of quantum
mechanics, with a particular focus on Kohn and Sham’s formulation of Density Functional
Theory (KS-DEFT), is given. Chapter 2 presents the Auxiliary Density Functional Theory
(ADFT) formalism, a very efficient alternative to KS-DFT. In chapter 3, the development
of efficient algorithms for calculating exact exchange contributions in the framework of
ADFT are presented. A new iterative solver for ADPT is derived and presented in chapter
4. Selected applications of the algorithms in chapters 3 and 4 are presented on chapter 5.
Finally, the last chapter summarizes the progress achieved in this PhD and suggests some

future developments that arise naturally as extension of the here presented algorithms.
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0.2 OBJECTIVES

The main objective of this work was to continue the efforts of developing new all-electron
first principle “desirable approximate methods [...]” by the development and implementation
of two new low-order scaling methodologies. These new methodologies should allow the
computation of larger systems in reasonable time frames. In order to achieve this goal, we

proposed the following specific objectives:

1. Development and implementation of a new low-order scaling exact exchange ap-
proximation.
(a) Development of the new low-order scaling exact exchange approximation.
(b) Serial and parallel implementation of the exact exchange potential.
(c) Serial and parallel implementation of the exact exchange energy gradients.
(d) Validation, benchmarking and optimization of the new exact exchange imple-
mentation.

2. Development and implementation of a new low-order scaling ADPT solver.

(@) Theoretical development of the new low-order scaling ADPT solver.
(b) Serial and parallel implementation of the new ADPT solver.

(c) Validation, benchmarking and optimization of the new ADPT solver implemen-

tation.



Gar manches rechnet Erwin schon
Mit seiner Wellenfunktion.
Nur wissen mocht man gerne wohl,

Was man sich dabei vorstell'n soll.

Erwin with his psi can do
Calculations quite a few
But one thing has not been seen:

Just what does psi really mean?

Erwin Huickel

Quantum Chemistry Fundamentals

1.1 THE SCHRODINGER EQuaTION

According to the postulates of quantum mechanics, the state of a system is fully described
by a function W(xy, Xa, . . ., Xu, t). W is called the wavefunction, x;, Xa, . . ., X, are the spatial
and spin coordinates of particles 1,2, ..., n that constitute the system and t is the time

variable. The wavefunction W(x1, Xo, . .., Xy, t) evolves in time according to the equation

) OV
AV = ih— - (L1)

Equation (1.1) is the celebrated time-dependent Schrodinger equation introduced by Erwin
Schrédinger in 1926.'2° The operator H is the Hamilton operator. The time-dependent

Schrodinger equation can often be separated into equations for the time and space varia-
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tion of the wavefunction. The time-independent wavefunction W(x;,x,, ... ,x,), satisfies
the equation

HY = EW (1.2)

For anisolated system with N electrons and M nuclei the explicit form of the nonrelativistic

Hamilton operator is given, in atomic units which will be used throughout this discussion,

by:

I:I_ 1 sz M 1 Vz N N 1 N M ZA 13
BN LA DM e e DB s
M M

ZZg
22 R -1y
where r and R denote the spatial coordinates of the electrons and nuclei, respectively.
The atomic mass of nucleus A is M, and it’s charge Z,. The physical meaning of the
terms on the right-hand-side (rhs) of Equation (1.3) are, respectively: kinetic energy of
the N electrons, kinetic energy of the M nuclei, electrostatic repulsion energy between the
N(N—1)/2 electron pairs, electrostatic attraction between the N electrons and the M nuclei,
and electrostatic repulsion between the M(M —1)/2 nuclei pairs. It is therefore customary

to express Equation (1.3) as:
H:Te+ nt Vee T Vie + Vi (14)

The term V,,, couples electronic and nuclear motions, complicating the solution of Equa-
tion (1.2). Born and Oppenheimer showed that an effective separation of electronic and
nuclear motions can be performed without affecting the accuracy of the solution for many
cases.”” The separation is based on the fact that nuclei are several thousand times heavier
than electrons. In a classical dynamical sense, the electrons can be regarded as particles
that follow the nuclear motion adiabatically, meaning that they are dragged along with

the nuclei without requiring relaxation time.” In terms of Equation (1.2) this means that



we can assume a quasi-separable ansatz of the form

W(x,R) = Ug(x) - O(R) (L5)

The quantum mechanical consequence of the mass difference is that the nuclear compo-
nents of the wavefunction are much more localized in space. Thus, in a small space around
the nuclei where the nuclear wavefunction is different from zero it rises much more steeply
than the electronic one, which means that V,0(R) > V ,Wg(x), from which we may ap-

proximate

T,¥(x,R) = — Z ! [Wr(x)VAO(R) + 2V Wg(x) - V4O(R) + O(R) V3 VR (x)]

(1.6)

M
~ —Wr(x) ) L ViO(R) 1.7)
A

Substitution of Equation (1.5) into Equation (1.2) and using approximation (1.7) yields:

To+ Ve + Vi Pr(%) . [Tv+ Vi]OR)
Wnx) O®) (9

Thus, it is clear that the left-hand-side (lhs) can only be a function of R alone

HWg(x) = ER)Wg(x) (1.9)

Equation (1.9) is known as the electronic Schrédinger equation, which yield a set of or-
thonormalized eigenfunctions Wg(x) with corresponding eigenvalues £(R). For each

solution there will be a corresponding nuclear Schrodinger equation. For the electronic



ground state, that is of importance here, the nuclear Schrédinger equation is given by:

[T + Vin + E(R)]O(R) = EO(R)

H,0(R) = EO(R) (1.10)

The usual procedure to solve Equation (1.10) is to solve first Equation (1.9), then substitute

the electronic energy into the nuclear Schrodinger equation and solve it.

Varying the nuclear positions maps out a multi-dimensional potential energy surface
(PES). In Born-Oppenheimer molecular dynamics (BOMD), the motions of the nuclei in
this potential are usually solved using Newtonian mechanics. Note that each electronic
state will give rise to a different PES, and that crossing between two surfaces is not allowed
by the adiabatic theorem.”” To simplify notation we drop the parametric dependency of
the electronic wavefunction on R from now on. Furthermore, the term V,m will be included
in the electronic Hamiltonian since it only adds a constant that shifts the electronic energy
as:

E, =&+ Vy, (L11)

Even with the BO approximation, the Schrodinger equation cannot be solved analytically
for a system with two or more electrons. Thus, only approximate solutions are available
for most chemical systems of interest. Several methods have been developed for this pur-
pose,”® the most relevant being the ones based on the Rayleigh-Ritz variational method. ™"
The variational principle in quantum mechanics states that any approximate wavefunc-
tion will always have an energy expectation value that is above that of the ground state
32,33

energy:

E.[¥i] = E.[Wo] (112)

where W, and W, denote a trial and ground state wavefunctions, respectively. In other
words, the energy expectation value of any appropriate trial wavefunction will provide
an upper bound to the exact ground state energy. The variational method allows to ap-

proximate a solution to the Schrodinger equation for many-electron systems, nevertheless,
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the task is rather complicated. For an N electron system, W depends on 3N spatial coordi-

nates, thus, even for very simple molecules the number of variables becomes large.

1.2 DENsITY FuNcTiONAL THEORY

Thomas and Fermi suggested the use of the electronic density p(r) instead of the wavefunc-
tion W(x) to calculate atomic properties.”* Further works by Dirac™ as well as Wigner
and Seitz”*® improved the model by introducing a local expression for the exchange
potential. Several years later, Slater introduced the idea of approximating the Fock ex-
change operator of the Hartree-Fock method by an average local potential based on the
free-electron gas model.” The result was an exchange potential expressed solely in terms
of p(r). Further development led to the so-called Xa methodology of Slater and Johnson. *
All these methods suggested that a theory based on p(r) instead of W(x) could actually
be accurate enough to calculate molecules. The main advantage of such a methodology
comes from the fact that the electronic density p(r) depends only on 3 instead of 3N spatial

variables. In terms of the wavefunction, p(r) is defined as:

p(r) :N/.../|\I/(r,r2,...,rN)|2dr2dr3...drN (1.13)

Thus, the electronic density is obtained by integrating N —1 electrons out of the wavefunc-
tion. It represents the probability of finding an electron in position r when the other N —1
electrons are in arbitrary positions. In addition of being a much more simpler mathemati-
cal entity, p(r) is an observable, making it more attractive than the rather mysterious W (x).
Nonetheless, all the methods lacked a mathematically rigorous foundation and some of
them failed to describe very “simple” phenomena such as chemical bonding.* A rigorous
mathematical foundation for an ab initio theory based solely on p(r) was first given by Ho-
henberg and Kohn in 1964, starting what we know today as Density Functional Theory.”!

The Hohenberg and Kohn formulation is based on two theorems:

1



First Hohenberg-Kohn theorem: The external potential v(r) is a unique functional of the elec-

tronic density p(r), apart from a trivial additive constant.

The proof for the first Hohenberg-Kohn theorem is very simple. Assume that there exist
two potentials v(r) and ¢/(r) differing by more than a constant and giving rise to the same
ground-state density p(r). Obviously, v(r) and v/(r) correspond to two different Hamilton
operators H and H', which in turn give rise to two different wavefunctions W(x) and W' (x).
Because of the variational principle the following inequality, written in Dirac’s notation, **
must hold

Ey = (W|H|W) < (V'|H|P') (1.14)

Assuming that the ground state is non-degenerate, the inequality strictly holds. Because
we have identical ground-state densities for the two Hamilton operators by construction,

we can rewrite Equation (1.14) as
Ey < (V'|H'|W') + (V'|H — H|W') = E, + / [v(r) — ¢/(r)] p(r)dr (1.15)
Similarly, taking W(x) as the trial wavefunction for H' yields
E) < (V|H|¥) + (V|H — H|W) = E, + / ['(r) — v(r)] p(r)dr (1.16)
Finally, adding Equations (1.15) and (1.16) we obtain
Eo+ Ey < Ej + Eq (1.17)

which is clearly a contradiction. Thus, the theorem has been proven by reductio ad absur-
dum. This contradiction confirms that, for v-representable densities, the knowledge of
the ground-state density uniquely determines the external potential of a non-degenerate

quantum mechanical system. The following mapping can be defined based on the first
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Hohenberg-Kohn theorem:
p(r) = N, o(r) = H — W(x)[p] — E[p] (118)

Therefore, the ground-state wavefunction and the corresponding energy can be expressed

as a functional of p(r):

Eolp) = Flp] + [ o(0) plx) dr = (Wolp] 1 a[p]) (119)
where F[p] is the universal Hohenberg-Kohn functional given by
Flp] = (Wo| Te|Po) + (Wo|Vee| Wo) (1.20)

The name universal arises because F[p] does not depend on the external potential v(r) and,

therefore, it is a universal functional of p(r).*

Second Hohenberg-Kohn theorem: For a positive semi-definite trial density p,(r) that inte-
grates to the number of electrons of the system, E[p,] > Eo, where Ey is the ground state energy of

the system.

For a trial density p,(r) that is not the ground-state density, the first Hohenberg-Kohn
theorem states that p,(r) corresponds to a different external potential v(r), and, therefore,
to a different wavefunction W,(x). If we use p,(r) as trial for a problem having external

potential v(r), it follows from the variational principle:
Elp,| = Flp,] + /v(r) p,(r)dr = (W, |H|V,) > E, (1.21)

This theorem establishes the variational principle for DFT. An electronic density different
from the non-degenerate ground-state one will provide an upper bound for the ground-

state energy of a given external potential.

More general derivations of the Hohenberg-Kohn theorems, that circumvent the v-rep-
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resentable assumption and extend the applicability of DFT, have been given by Levy*
with the so-called constrained-search formulation, and by Lieb* with the convex-conju-
gate (Legendre transform) formulation.*® DFT has also been extended to excited-states in

both time-dependent” " and time-independent’’~ formulations.

If we would knew the exact universal functional F[p], DFT would be an exact formula-
tion. However, accurate implementations of DFT are far from easy to achieve because of
the unfortunate fact that F[p] is hard to approximate in a closed form.* In fact, none of the
formulations of Hohenberg-Kohn, Levy or Lieb give even a hint for F[p|. To proceed, the

energy functional defined in Equation (1.19) can be rewritten as

Elp) = Flp) + [ o(x) ple)
= Tlp) + Valpl + [ o(0) plr) v

= Tlp] +Jlp] + Vilp] + [ o) ple) 122

where T/p] is the kinetic energy and V,.[p] is the electron-electron interaction energy. V,.|p]
can be further split into a classical part, J[p], and a non-classical part, Vi [p]. The problem
with the density functional in Equation (1.22) is how to calculate T[p] and Vi[p]. The tra-
ditional Thomas-Fermi (TF) model ignores V<[p] and takes T[p] by applying locally the

uniform electron gas (UEG) expression for the kinetic energy: >

Exelp) = Trelpl + ] + [ o(0) plo) i (1.23)

The TF model fails to predict the correct behavior for atomic densities, gives total atomic

energies 10 to 50 % too low** and fails to predict binding of molecules.* %"

One step further was taken by Dirac who introduced V[p] as the exchange energy of
an UEG?® given rise to the TF-Dirac (TFD) model. However, the inclusion of exchange
did not improve the description of the density and made the calculated energies even
worse.* For this reason von Weizsacker”® suggested a gradient correction of Trr[p] which

remedies three defects of the TF and TFD models: (i) p(r) is finite at the nuclei, (ii) bind-
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ing of atoms occurs and negative ions are stable and, (iii) p(r) has exponential falloff for
neutral atoms and molecules.” Although the TFD-von Weizsacker (TFDW) model shows
a qualitative improvement, it is still far from being a quantitative model to describe chem-
ical phenomena. Higher order corrections, up to fourth order, provide higher accuracy

but still describe only an average behavior of the electrons.*

1.3 THE KOHN-SHAM METHODOLOGY

Kohn and Sham gave a route to overcome, at least partially, the extremely difficult task of
finding an accurate enough kinetic energy functional T[p].?” This is based on decomposing
T[p] into a part that represents the kinetic energy of a non-interacting system of electrons,
T:|p], and a remainder, T.[p],

Tlp] = Tilp] + Tc[p] (1.24)

The subscripts s and ¢ stand for single-particle and correlation, respectively.” In the non-
interacting system, the total kinetic energy T[p] is just the sum of the single-particle kinetic

energies:

Tilp] = (WIp]|TIW[p])

occ

= Z<¢1‘T’¢z> (1.25)

where W[p] is the Slater determinant® forming the density p(r), and ¢,(r) are the single-
particle orbitals of the non-interacting system. Using Equations (1.22) and (1.24) we can

rewrite the energy functional as

Elp] = Tulp) + Tilo] + Jlp] + V™[p] + / o(r) p(r) dr

= Ts[p] + JIp] + Exclp] + VIp] (1.26)

where

Vipl = [ o) plo) (1.27)



and E,.[p] is the exchange-correlation functional that contains T.[p] and V< [p]. Equation (1.26)
is formally exact but, unfortunately, E,.[p] remains unknown. The practical advantage of
writing the energy functional as Equation (1.26) is that E,.[p] is typically much smaller
than the known terms T;[p], J[p] and V[p], thus, reasonably simple approximations for

E,.[p] may provide accurate enough results for E[p].”

Since T;[p] is not an explicit functional of p(r), Equation (1.26) cannot be directly mini-
mized. Kohn and Sham suggested a scheme where the minimization is carried out in an
indirect form. To this end, Kohn and Sham related the minimization condition for a fully
interacting system with that of a non-interacting system. For the fully interacting system,

the minimization condition is given by

OE[p]  0Ti[p] | OJlp] | OEx[p] , oVIp]
Sp(r)  op(r) | op(x) | op(r) | op(r)

0 (1.28)

The functional derivative 242 yields the external potential, v; the term llpL yields the
op(r) op(r)

Hartree (Coulomb) potential, vy; and, once an explicit form for E.[p] is chosen, the term

65%—6[5] yields the exchange-correlation potential, v,.. Consider now a system of non-interact-

ing particles moving in a potential v,(r). For this system, the minimization condition is

just
OEs[p,] 0Tilp,] oVi[p,]
sl _ s S EO 129
5p.(r) _ dp,(r) " op,(r) )

Comparing Equations (1.28) and (1.29) we find that both minimizations have the same

solution, p (r) = p(r), if:

oVilpl _ 8Jlpl . SExlp]  8VIp] (1.30)

op(r)  oOp(r)  Op(r)  Op(r)

i.e.

05(r) = vH(r) + Uk (r) + (1) (1.31)

Consequently, one can calculate the density of the interacting system with external poten-

tial v(r) by solving the equations of a non-interacting system with external potential v;(r).

16



Heaven S _wcykt;gmcal Accuracy

+ dependence on virtual orbitals

Rung 5

+dependence on occupied orbitals
Rung 4

Rung 3 meta-GGA: TPSS, M06-L

Rung 2 GGA: PBE, BLYP

Rung 1 dependence on the density

Earth

Figure 1.1: Perdew’s Jacob’s Ladder of density functional approximations. Reproduced from reference [61]
with permission from the PCCP Owner Societies.

To this end, Kohn and Sham represented the non-interacting wavefunction as a single
Slater determinant and obtained T[p] through the Kohn-Sham (KS) orbitals ¢,(r) in the

same way as in Equation (1.25). Solving the set of single-particle Schrodinger equations

57 )] po) = () 132

yields orbitals that reproduce the density of the original system

p(x) = D _li(v)? (1.33)

Since vs(r) depends on p(r), the problem of solving Equations (1.32), known as KS equa-
tions, is a nonlinear one. The usual way of solving this problem will be discussed in the

next chapter.

KS-DFT is astounding in its simplicity, yet it delivers, in principle, the exact density

and exact total energy of any interacting, correlated electronic system. Everything hinges
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on the functional E,.[p] and its functional derivative vy.[p].®* Due to the central role of
KS-DFT in electronic structure theory and material sciences™, and the dependence of
KS-DFT accuracy on E,.[p], authors of successful exchange-correlation energy function-
als have some of the most cited papers in both physics and chemistry.®> In order to give
a quick overview of existing E,.[p], we turn to Perdew’s Jacob’s Ladder.***> Perdew pro-
posed a hierarchy of density functional approximations (DFA) for E,.[p] ordered by the
use of increasingly complex ingredients to construct E.[p]. Figure 1.1 shows a pictorial
representation of Perdew’s Jacob’s ladder, where the lower end is the “Hartree World”
and the upper one is the “Heaven of Chemical Accuracy”. Higher levels usually —but
not always—yield more accurate results and are computationally more demanding than
the lower ones. The first rung is the Local Density Approximation (LDA) and uses only
p(r) as its ingredient; the second rung is the generalized gradient approximation (GGA),
which adds the density gradient, Vp(r), to its ingredients; the third rung is known as
meta-GGA and adds the Laplacian of the density, V?p(r), and the kinetic energy density,
7(r), or at least one of them, to its ingredients; the fourth rung has been named hyper-GGA
and includes the exact exchange energy density; and the fifth rung adds exact partial cor-
relation. Nowadays, several of the most popular DFAs belong to the second, third and
fourth rungs. Many highly accurate functionals are of the meta-GGA type and, thus, their
calculation is computationally expensive compared to a standard LDA or GGA functional.
However, the simplicity and accuracy achieved by some second rung functionals attracted
the attention of quantum chemists to KS-DFT.” Therefore, some groups are still devoted
to the development of accurate, and simple, GGA functionals. For example, the Vela-
Medel-Trickey (VMT)® functional improves substantially the energetics of the widely
used Perdew-Burke-Ernzerhof (PBE)®” form while being as simple in form. Further im-
provements may be achieved by imposing additional physically meaningful constraints

like in the VT{8,4} functional ®® which imposes the large s constraint:

lim s"2F,.(p,s) < oo (1.34)

S—00
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where F,.(p, s) is the enhancement factor and s is the dimensionless gradient. Besides en-
ergetics, this efforts have also been directed to improve the calculation of properties. In
particular, the semi-empirical functionals of Keal and Tozer KT1, KT2 and KT3,% " were
developed to improve nuclear magnetic resonance (NMR) calculations without affecting
the geometrical and energetical performance. More recently, Carmona et. al”' developed
a GGA functional which has a correct asymptotic potential (CAP) and improves the cal-
culation of molecular polarizabilities.

The developments of these, and many other, highly accurate DFAs have enabled an ex-
ponentially growing attention for DFT, to the point where KS-DFT is becoming the stan-

dard tool in electronic structure theory calculations.*
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Looking toward the future, it seems certain that colossal rewards lie
ahead from large-scale quantum-mechanical calculations of the struc-

ture of matter.

R. S. Mulliken and C. C. J. Roothaan

Auxiliary Density Functional Theory

2.1 THE LCGTO ForMALISM

The KS equations, Equation (1.32), can be obtained by varying the Kohn-Sham energy

expression, Equation (1.26), subject to the orthonormality constraint

(Y;ly;) = o4 2.1)

where §;; is the Kronecker delta. In order to perform such variation it is convenient to

expand the molecular orbitals, {,(r), in a linear combination of atomic orbitals (LCAO):

P(r) = Z Cui () (2.2)
n
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Here, u(r) represents an atomic orbital or, more general, a basis function, and c,i amolec-
ular orbital (MO) coefficient. In deMon2k’>”* the basis functions are atom-centered (con-
tracted) Gaussian type orbitals (GTO), hence the working ansatz for deMon2k is known as
linear combination of Gaussian type orbitals (LCGTO). An unnormalized Cartesian GTO

is given by:”

u(r) = (x — A" (y — A)" (z — A Zdeck“”z 2.3)

A basis function is completely defined by its atomic center A, its angular momentum vec-
tor a = (ay,a,,4a;), the degree of contraction K, the contraction coefficients d; and the
orbital exponents ;. All these parameters remain constant for a given geometry. Thus,
only the molecular orbital coefficients are the variational parameters under which mini-
mization of Equation (1.26) is performed. Using the explicit form for all the known terms

in Equation (1.26) and assuming a closed-shell system yields:

Elp] = — Z¢]V2 Z/’r A|p r)dr + = //p‘:_r2|drdr2+Exc[](2.4)

where the upper index “occ” refers to all doubly occupied spatial orbitals in the closed-

shell system. The corresponding LCGTO expansion of the electronic density is given by

occ occ

) =23 9, F =233 cueun) vir) = Y Pu p®)v() 25)
i iy u,v

where we have introduced the density matrix, P, with elements:

occ

Pyv =2 Z Cui Cvi (26)
Substituting Equations (2.2), (2.5) and (2.6) into Equation (2.4) yields

1 Z
SN w W
w,v
3Pl || e |r1—r2|> Warydr, + Exlpl (27)

wy ot
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The first two-terms of Equation (2.7) represent the one-electron energy, often named the
core energy. The third term is the electronic repulsion energy, hence the integrals appear-
ing in it are named electron repulsion integrals (ERIs). To ease the notation, we introduce

the core Hamiltonian matrix, H, with elements

Hﬁlvz—§<u|v2v>—§Aj<u |fAA| ‘v> 2.8)
and a shorthand notation for the ERIs
(uvllot) = // ) !1“1—1‘2!) Tlr; )dr dr, (2.9)
to rewrite Equation (2.7) as
Elp] =) PuHyu + % > ) PuPu(uvllot) + Ex[p] (2.10)

[TRY Wy 0,1

Note that the notation for the ERIs differs from the conventional Dirac notation used for
the rest of the integrals. In the ERI notation the double vertical bar represents the two-
electron Coulomb operator 1/|r; — ry|. It also separates the functions that depend on
the electronic coordinate r; (in the bra), from the functions that depend on the electronic
coordinate r; (in the ket). Analog notations will be used for other types of ERIs throughout
the text. Imposing the orthonormality constraint, Equation (2.1), in the LCGTO formalism

leads to the Lagrange functional

all

L[p; c| -2 Z Eij Z Cyz wCvj — 1] (2.11)

w,v
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The variation of the Lagrange functional,

OL[p;c]  OE[p] |~
- 4 WCrici 212
dcyi dcui z]: Ev: SuCui€ (212)

all
= 42 <Hyv + ZPUT<HV||GT> + <H|ch |V>> Cvi — 42 Z S‘uvcngji ) (213)
v j v

0,7

must vanish at a stationary point. To obtain these equations the variation of E,.[p] is per-

formed using the chain rule

OEx[p] _ [ O0Exp]Op(r) , | '
ey _/ dp(r) Tyidr —42V:Cw/vxc[P7r]u(r)V(r)dr (2.14)

At this point it is convenient to define the KS matrix, K. This matrix represents the varia-

tion of the energy with respect to the density matrix and its elements are given by

=Hy + Z Por(uvljot) + (loxelp] [v) (2.15)

0,7
Substitution of Equation (2.15) into Equation (2.13) under the minimization condition yields

all
Kci =) Scej; (2.16)
j

76

Which is a generalized eigenvalue equation.”® There is one Equation of the form (2.16) for

each molecular orbital. Collecting all equations into a single matrix equation yields
Kc = Sce (2.17)

This set of equations have the same form as the famous Roothaan-Hall (RH) equations””®
appearing in HF. Here, ¢ = (¢, ¢p,. .., Coc, - - - ; Can), iS @ square matrix composed from
all the occupied molecular coefficient vectors as well as the virtual molecular orbital co-
efficients vectors. It is important to note that Equation (2.17) is a nonlinear generalized

eigenvalue equation because the KS matrix depends on, at least, the occupied subspace of
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c. Therefore, Equation (2.17) has to be solved iteratively starting from an educated guess
for c. It is also important to note that K is invariant under separate unitary transforma-
tions of the occupied and unoccupied subspaces of c. This property follows from the fact
that the electronic density and, hence, the density matrix are invariant under such trans-
formations

T
P = 2cycCye

(2.18)

= 2CoecUpec UL e 2.19
0OCC ocCcC ( )

OCC ~occ

Thus, the rotations between the occupied and the unoccupied subspaces are responsible
for the change of K between two iterations of the self-consistent field (SCF) procedure. It
follows that, at convergence, the Lagrange multiplier matrix € must have, in general, the

following block diagonal form:

€= (2.20)
0 8l.ll‘lO

Furthermore, we can always choose to work in the molecular orbital representation cU

where U is a block-diagonal orthogonal matrix

U= (2.21)

such that U'eU is a strictly diagonal matrix. Such molecular orbital representation is
called canonical. From now on we will assume that ¢ are the canonical MO coefficients

and, therefore, ¢ is a diagonal matrix.

2.1.1  ComMPUTATIONAL SCALING OF THE KS-DFT LCGTO METHOD

Let us now analyze the computational complexity of the RH method for solving the KS

equations in the LCGTO ansatz. The computation of the full core Hamiltonian matrix H
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Figure 2.1: Influence of the prefactor on the relative speed of algorithms with different scalings.

scales as N?, where N is the number of basis functions, because there are a total of N? el-
ements that need to be computed. The same scaling is observed for the computation of
the overlap matrix S. Both matrices, H and S, remain constant during the whole SCF pro-
cedure and, therefore, are computed only once and stored. The Coulomb contribution to
the KS matrix has a formal N* scaling, because there are a total of N* ERIs. This contribu-
tion is not constant because it depends on P. The exchange-correlation contribution has a
formal N? x G scaling, where G is the number of grid points necessary for the numerical

integration needed to compute the exchange-correlation contribution.

Besides the construction of K, several matrix operations are needed in order to solve
the RH generalized eigenvalue equation. These operations have a formal scaling of N° but
can be performed, up to a certain basis set size, in a very efficient manner using optimized
computational libraries for such operations. Many of these libraries are based on the Basic
Linear Algebra Subroutines (BLAS)”~*® and the Linear Algebra Package (LAPACK),* and
are machine-specific optimized, like Intel’s Math Kernel Library (MKL) and AMD’s Core
Math Library (ACML).

The scaling prefactor is a very important aspect to take into account when the asymp-
totic region of an algorithm has not yet been reached. Figure (2.1) shows two fictitious
examples where the timings of three different modules with linear (=), quadratic (—)
and cubic (=) scalings are compared. In Figure (2.1A) all prefactors are 1 and the cubic

scaling module quickly becomes the most demanding task. However, if the prefactor of
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this cubic module can be made very small, Figure (2.1B), the cubic scaling module can
be faster than the quadratic, and even linear, modules within a certain size range. This
is the case for matrix operations performed with the Intel MKL libraries. Moreover, the
prefactor for the N* Coulomb contribution, the highest scaling part of a LCGTO KS-DFT
calculation, can also be reduced to by taking into account the permutational symmetry of
the integrals. Nevertheless, even by employing the permutational symmetry of the ERIs,
the calculation of the Coulomb contribution rapidly becomes the computationally most

demanding part and other techniques are needed in order to reduce its computational

load.

2.2 VARIATIONAL FITTING OF THE CoUuLOMB POTENTIAL

A very popular technique to reduce the formal scaling of computing the Coulomb poten-
tial is the so-called variational fitting approximation. This technique was introduced by

Dunlap and co-workers, *!

inspired by a former work of Sambe and Felton.” It became
widespread available for use since its introduction into the deMon-KS** and DGauss ™
programs more than 20 years ago. It is equivalent to the application of the truncated res-
olution of the identity (RI)*" for Coulomb integrals used in other programs, specially
from the “wavefunction community”. An extensive review of the influence of the varia-

tional fitting technique on electronic structure calculations can be found in references [97]

and [98].

The variational approximation of the Coulomb potential, as implemented in deMon2k,

is based on the minimization of the error:

_ 1 [ lptr) = p(r)l [p(r2) = p(r2)] 4 o
52_2// dridr, >0 (2.22)

|r1 — 13|

The here appearing approximated density, p(r), is expanded as a linear combination of
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primitive Hermite-Gaussian type functions® (HGTFs), k(r):
p(r) = xk(r) (2.23)
k

From now on these HGTFs will be called auxiliary functions and will be denoted by latin
letters with a bar above them. An unnormalized auxiliary function k(r), centered on atom

A with exponent (; has the following form:

. DN aNY 9N nap
— o —G(r—A)
k(r) (an) (aAy) (6AZ> ¢ (2.24)

As for the GTOs, all parameters appearing in Equation (2.24) remain constant during an

electronic structure calculation unless the geometry of the molecule is changed. In de-
Mon2k the auxiliary functions are grouped in s, spd and spdfg sets sharing the same ex-

ponent within each set.""'"! Specially developed integral recurrence relations”'"*

ensure
maximum performance in the analytic molecular integral calculations with these auxiliary

function sets. Expanding p(r) and p(r) in Equation (2.22) yields:

1 _ 1 o
& = 5 Z ZPWPGI<HV||GT> - Z ZPWWVH@X% + > le?<k||l>x7 (2.25)
k

W,y o,T W,V }j

Since &, is positive semi-definite,'”” the following inequality holds:

S PuPaclrlot) = 303 Pl — 5 YowelElln  (226)
w ok

wy o,t kil

Note that the equality holds only when p(r) equals p(r). Thus, any approximated den-
sity will provide a lower bound to the true Coulomb repulsion energy. In this context it
is worth to point out a common misconception in the literature regarding variationally
density fitting. There are several works in which auxiliary function sets are “optimized”
104-107

in order to reproduce the total energy corresponding to calculations without fitting.

However, such an approach is as useful as optimizing basis sets to total energies for the
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basis set limit. Instead, variational density fitting approaches should be understood as
own methodologies and their quality should be judged according to their accuracy in the
calculation of relative energies, i. e. atomization energies, as it is common for basis sets.
With this in mind we now use inequality (2.26) in order to write a new variational energy

expression based on Equation (2.10)

_ 1 _
Elp) = 3 PuH+ 3 3 PulivlBo — 5 S xelklhn + Bl (227)
By wyo ok kI

The fitting coefficients {x;} are obtained from the minimization of &,:

o€ _ — _
ﬁ ==Y Puluvlm)+ ) xllm) =0V m (2.28)

u,v 1

The set of Equations (2.28) can be written in a more concise form as the linear equation

system
Gx=1J] (2.29)
where
am 2 iy
a_ <2|.|1> <2|.|2> <2||'ﬂ1> (2:30)
(m|1) (m)|2) (m||m)
and
%PWWVHD
ZPyV<P‘V||i>

J=| w (2.31)

> Pw<‘uv|‘m>
JTRY

are the Coulomb matrix and Coulomb vector, respectively. The fitting coefficients are

collected in the vector x. A straightforward solution of Equation (2.29) is obtained by the
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inversion of G:

x=G1J (2.32)

However, the inversion of G can be numerically unstable if large auxiliary function sets

are used. Normalization of the auxiliary functions with respect to the Coulomb norm,
(k|lk) =1V k (2.33)

ensures certain numerical control of G, nevertheless, G can still be ill-conditioned. There-
fore, deMon2k solves Equation (2.29) by means of a robust numerical solver based on a

quasi Newton method."”

Once the fitting Equation (2.29) has been solved —for a particular density —the KS ma-

trix, K, can be obtained by varying Equation (2.27) with respect to the density matrix
K = Hu £ 3 (k) + (pfoscly) (2.34)
k

Thus, the four-center ERI calculation has been substituted by two steps involving three-
and two-center ERIs. The first step involves the calculation of J(P) and solving Equation
(2.29). The second step is the calculation of K. Note that these two steps must be per-
formed in every SCF iteration due to the dependence on P. The formal scaling for this
approach is N* x M, where M is the number of auxiliary functions. Usually M < 3N, thus,
the scaling can be seen as N® with a prefactor larger than 1. As we have seen, the prefac-
tor can be made smaller by taking into account the permutational symmetry of the ERIs,
introducing a prefactor of 1. Furthermore, the N® can be reduced by integral screening,
asymptotic expansion techniques and taking into account the set structure with common
exponents of the auxiliary functions.”'"'"” Integral screening can be further improved
by incremental building of target quantities during the SCF, e.g. for the Coulomb vector

JU+D in the Ith + 1 SCF iteration as

JED = 30 4 AJUHD (2.35)
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where

Ju ZAP D (v ||k) (2.36)

and

APIHD — pi+D) _ pO) (2.37)

A similar strategy can be used for the Coulomb contribution to the KS matrix by employ-
ing Ax'*'. Since AP'*! and Ax'*! tend to the null matrix and null vector, respectively, as
convergence is approaching, this technique allows to screen out a larger and larger num-
ber of integrals when the SCF reaches convergence. This leads to an algorithm where the
most expensive part, in terms of computational demand, is the calculation of the exchange-

correlation potential.

2.3  ExXCHANGE-CORRELATION POTENTIAL FROM FITTED DENSITIES

The use of auxiliary functions for the calculation of the exchange-correlation potential has
a long history in DFT methods.”*""" Traditionally, these methods either fit the potential **
or fit the non-integral powers of p(r)" by using a set of Cartesian GTO auxiliary functions.
The former approach is not variational and, therefore, reliable forces (and higher order
derivatives) cannot be obtained."*"” The latter usually needs different auxiliary function
sets for different powers of p(r) and its gradient, making the treatment rather cumber-
some and limited. A different approach is the direct use of the auxiliary density p(r),
obtained from the variational fitting of the Coulomb potential, for the calculation of the
exchange-correlation energy and potentials.*" The resulting approximation has been
named Auxiliary Density Functional Theory (ADFT)." In ADFT it is essential that p(r)
inherits some properties of p(r), specifically, that p(r) > 0 and [ p(r)dr = N,. Nor-
malization to the number of electron, N,, can be included as a constraint in the fitting
equations, however, even without this constraint the number of electrons is conserved to
high accuracy. The introduction of the positive semi-definiteness property for p(r) is less

straightforward. Fortunately, regions where p(r) < 0 are rather small and usually occur
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when p(r) ~ 0,"” therefore, screening of this points does not impact the accuracy of the

methodology. "

The energy expression in ADFT takes the form:

_ 1 . 5
Elpl =Y PuHu+ DY Puluvlk)g— 5 D xp(klhxi+Eclp)  (238)

W wy ok ki
In deMonZ2k, this approach is called AUXIS and is the default method for calculating the
exchange-correlation contributions. The corresponding Kohn-Sham matrix elements are
given by:

7 OEx[p
p wv

The last term of Equation (2.39) can be evaluated in a similar manner as in Equation (2.14)

to yield
8Exc[[~)] . 6EXC[~(I')] a~(1‘) _ % _ 3
OPyy _/ 5p(r) b, O = 0P, / Osc|p; 1] k(r) dr (2.40)
with:
~ 6Exc 0
Pelpi) = 5;3(1[5] (2.41)

The derivatives of the Coulomb fitting coefficients are obtained using Equations (2.31) and

(2.32) to yield:
83(% o “1/7
P gl G (I[pv) (2.42)

Note that Gk—_l1 refers to the k, [ element of G~'. To simplify notation, we now introduce the

exchange-correlation fitting coefficient vector, z, with elements
= _Gglloxlpl) (243)
1
in order to rewrite Equation (2.39) as

Ky = Hyy + ZWV”E (g + zg) (2.44)
k
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It is important to note that z is spin-dependent and accounts for the difference between the
a and  KS matrices in open-shell calculations. Also note that the set of Equations (2.43)

can be formulated as an inhomogeneous equation system of the form:

Gz=L (2.45)
where
(Vxc[1)
L= <v"f’2> (2.46)
(Oxc|mm)

Dominguez-Soria et al.'”® also proposed a pre-conditioned conjugate gradient iterative
solver for Equation (2.45) coupled to the Coulomb fitting solver. In order to keep the
approach variational, p(r) must be taken unaltered from the solution of Equation (2.32)
to calculate v,.[p]. However this is not mandatory for the calculation of the Coulomb
contribution. Therefore two sets of Coulomb fitting coefficients x are generally available
in a deMon2k calculations, one set is obtained from the solution of Equation (2.32) and
is used to calculate v,.[p], the other set results from SCF convergence and acceleration

techniques—such as auxiliary density mixing""® and DIIS"%"*%!?! —and is used to build K.

2.3.1  CoMPUTATIONAL SCALING OF THE ADFT LCGTO METHOD

Because the approximated density is a linear combination of auxiliary functions, the den-
sity calculation at each grid point becomes linear, i. e., the numerical integration scaling
becomes M x G. Furthermore, since the auxiliary functions decay exponentially, the num-
ber of auxiliary functions with non-negligible values at each grid point are nearly con-
stant for sufficiently large systems. Therefore, only M. auxiliary functions need to be
calculated for the density at each grid point. Adding one atom to the system does not
change Mjoc.. As a consequence, the numerical integration scales linear in G with a con-

stant prefactor equal to Mjec,. The Coulomb contribution can be computed in an almost
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Figure 2.2: Schematic representation of the computational scaling for the three most demanding modules
of ADFT in deMon2k. XC refers to the exchange-correlation contribution.

linear scaling effort by using the double-asymptotic ERI expansion technique.'”” More-
over, the iterative solver for both the Coulomb fitting, Equation (2.32), and the exchange-
correlation coefficients, Equation (2.45), have a subquadratic scaling behavior.'”® All other
calculations needed during each SCF iteration are matrix-matrix operations. The standard
recommendation is to use vendor-optimized mathematical libraries or the Automatically
Tuned Linear Algebra Software (ATLAS) for these N° operations to guarantee very small
prefactors. Figure (2.2) shows a fictitious example for the computational scaling of ADFT.
In this example, the linear algebra part has a prefactor in the order of 1077 while the (al-
most) linear scaling modules have prefactors greater than 1. Nowadays, the linear algebra
becomes the most dominant part in the deMon2k code when N ~ 20, 000; this is reached

for systems with around 1, 000 atoms or more.
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When teaching chemistry students, I explain that
DFT is some algorithm meaning unreliable, while ab

initio is Latin for too expensive.

Kieron Burke

Low-Order Scaling Exact Exchange

Evaluation

The initial idea of DFT was to represent the total energy as a functional of the density,
E[p]. Unfortunately, the form of E[p] is unknown. The so far developed approximations
to E[p] failed, in many cases, to reproduce even the most elementary properties of quan-
tum systems. This was the reason to resort to an implicit representation of T; in terms of
the KS orbitals. Then, only an explicit representation of E,. in terms of p(r) is required in
this variant of DFT. Unfortunately, the explicitly density-dependent approximations for
E,. currently available exhibit also some important deficiencies, such as the inabilities to
properly bind atomic negative ions, reproduce the London dispersion force, and describe

strongly correlated systems.”>'>> The obvious next step for an improvement is a represen-
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tation of E,, or at least E,, in terms of the KS orbitals. The formally correct way of imple-
menting this is the so-called Optimized (Effective) Potential Method (OPM or OEP), in which
the many-body problem is approached by the simultaneous solution of the KS equations
and an integral equation which determines vy.."”” Unfortunately, the OPM turns out to be
computationally demanding even for rather simple orbital-dependent expressions. For
this reason, applications of orbital-dependent xc-functionals often rely on the so-called
generalized Kohn-Sham (GKS) or Hartree-Fock-Kohn-Sham (HFKS) approach.*?* This idea
was originally suggested by Kohn and Sham.*” The explicit E, is known as exact exchange

(EXX) functional and is defined as

L& R )y )
EExx[l)D] = // | 1 — I | dI'1 dI‘z (31)

occ

= —Z<ijui]‘> (3.2)
i,j

Inserting the LCGTO expansion, Equation (3.2) transforms into

Epxx = _ZL > P Por{uol|vr) (3.3)

wy o,t

where we have used the definition of the closed-shell density matrix, Equation (2.6). The
total energy in an EXX only HFKS calculation, which coincides with the HF energy, is

given by

1
ZPWHW +) Z P (uv|k)x -5 > xg (kD) — > " PuPoc(uo|vt) (34)

wv ok kI W,y 0,7

where the variationally fitted Coulomb potential was used. There are two main problems
with an approach based on Equation (3.4). First, computing the EXX term introduces a
formal N* scaling that renders the approach unsuitable for large systems. Second, the en-
ergy is not self-interaction free. The self-interaction arises because the variationally fitted

Coulomb energy represents a lower bound to the real Coulomb energy. This difference,
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albeit a small one, will make the potential for each particle a little bit too attractive.

The first problem may be tackled by noting two very important properties of the ex-
change contribution. The four-center ERIs appearing in Equation (3.3) have non-negligible
contributions only when p(r;) is close in space to o (r;) and v(r;) is close to 7(r;). InLCGTO,
this property is linked to the Gaussian Product Theorem (GPT), which states that the prod-
uct of two Gaussians is another Gaussian centered somewhere on the line between the two

original Gaussians. In the case of two spherically symmetric GTOs:

Ny e WA AL e G=B = A A e S (AB) oG —P)? (3.5)
where
G = Gt (3.6)
& = GG/L (37)
P = ((,A+(,B)/G, (3:8)

and \V,,, \; are normalization constants. For our discussion, the following two facts arising
from the GPT are most important. First, the exponent of the product, C,, is always larger
than the exponents of the two original functions. Thus the product function decays more

rapidly than the original functions. Second, the product pre-factor,
Ny N, e~ A-BF (3.9)

decays exponentially with the squared distance (A — B)2. The GPT also holds for non-
spherically symmetric GTOs. To illustrate this further, take for example the product be-
tween two d-type functions centered on carbon atoms of the linear C, H,, described with
a polarized valence basis set. The first column of Figure (3.1) shows the 107® a.u. iso-
surface of four d,, functions centered on the first four carbon atoms of the chain. The

second column shows the same isosurfaces for the products between the d,, function of
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Figure 3.1: Product of two d,, functions centered on carbon atoms of the C,yHy,. The first column shows
contour plots of the d,, functions of the first four carbon atoms in the chain. The second column shows
contour plots of the product between d,,, of the first carbon atom (header) and the d,,, function depicted on
the left of the product.

Cl—shown at the header of the second column—and the d,, functions depicted in the
corresponding row. Note that all products are more compact than the original functions
as a consequence of the larger exponent. The product between the d,, functions centered
on Cl and C4 is already below 10~ a.u. for every point in space, and the product for the
functions centered on CI and C5 (not shown) is already below 1071 a.u. for all points in
space! This example clearly shows that if the centers of the two original functions, u(r)
and o(r), are further away from each other, then the distribution p W(r) = p(r)o(r) will
vanish for any r. As the system size increases, the number of significant distributions
p.,(r) = p(r)o(r) approaches N from above as N becomes larger.'* Therefore, the num-
ber of non-negligible four center ERIs approaches N? asymptotically from above.'*'*° The
EXX term has another important feature: the elements of both density matrices couple co-
ordinates of electron one (r;) with coordinates of electron two (r;). In insulating systems
P,, has a non-negligible value only if u(r) is close to v(r). A direct consequence of the

GPT and the locality of P in insulating systems is that all four AOs appearing in the four-
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center ERIs must be close in space. These, along with appropriate thresholding of K,
elements, are the fundamentals behind linear-scaling EXX algorithms like ONX'#%1277129
and LinK. 05!

Despite the existence of these linear-scaling EXX algorithms, much effort has been posed
into the development of new algorithms to compute EXX. This is partially because the
linear-scaling is only achieved with respect to system size. However, computing exact ex-
change on a given system while enlarging the basis set still results in the unfavorable N*
scaling. Several attempts have been made to overcome this situation. Examples are Fries-

ner’s pseudospectral method, #*7%°

which involves the use of both numerical grids and
analytical two-electron integrals, and the somewhat related chain-of-spheres exchange
(COSX) developed by Neese and coworkers, " that exploits the short-range nature of
EXX by calculating this contribution via a semi-numerical integration.

Another group of algorithms aiming in the same direction are based on the approx-
imation of the orbital distribution functions pl.j(r) = ybi(r)gb].(r), pm(r) = u(r)y,(r) or
pw(r) = u(r)v(r). The aim is to reduce the formal scaling in the same manner as in the
variational fitting of the Coulomb potential. Examples are the RI-K,'"*1%7** density-fitting

144146 atomic RI

(DF), " Cholesky decomposition (CD) of the four-center ERI supermatrix,
(ARI)," pair atomic RI (PARI),**? concentric atomic density fitting (CADF)"™ and local
density-fitting (LDF)"* algorithms.

In the following, we present our LDF-EXX approach,'™ that has proven particularly

efficient and robust.”**>"® Therefore, it can be used in DFT without compromising its

efficiency.

3.1 VARIATIONAL FITTING OF THE Exact EXCHANGE POTENTIAL

Similar as for the variational fitting of the Coulomb potential, the orbital distribution pij(r)

can be approximated as a linear combination of atom-centered auxiliary functions:

pi(r) =D xik(r) (3.10)
k
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The fitting functional is defined as

XX _ i // PZJ ri) — P r1)] |:pij(r2) - pij(rZ)] dr, dr, 3.11)

|1y — 15|

As shown in Appendix A, the exact exchange fitting functional £} is negative semidefi-
nite. Therefore, the fitting procedure seeks to maximize EX*X. Due to the negative semidef-

inite nature of £*%, the following inequality must hold

- Z<1]||l] szklj k”l xll] ZZZ l]Hk xkl] (312)
b ij okl

The maximization of E£XX corresponds to a minimization of the fitted exact exchange en-

ergy given by the rhs of inequality (3.12).

Introducing the LCGTO expansion of the orbital distributions and substituting Equa-

tion (3.10) into Equation (3.11) yields

EEXX = — Z l]”l] + 22 l]Hk Xkl] Zxkzj kHl xll] (313)
i kI

The expansion coefficients x; are determined by the maximization condition

oEP
0x;d]

(ij||k) — th] Iky=0 V k,i,j (3.14)

From Equation (3.14) one can define a set of linear equation systems, one for each p;; dis-

tribution, which in matrix notation take the form:

GX,‘]' = J,‘]' (315)
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with
(iflT)

= | 2 616

(jllm)
After the fitting equations have been solved, the fitted exact exchange can be written in a

more compact form as

occ

Egxx = — Z Z x%i]‘Gfoi]' (317)

ij kI
= =D (ilGg i) (3.18)
ij kI
1 o
= —;ZZPuva<WHk>G,gl<lHW> (3.19)
wy o,

Using either Equation (3.18) or Equation (3.19) avoids the explicit calculation of the three-
index exact exchange fitting coefficients appearing in Equation (3.17). Note, however, that
this is the result of solving the set of Equations (3.15). If this fitted exact exchange energy is
added to the Hartree energy with Coulomb fitting, the self-interaction-free density fitting

Hartree-Fock energy expression is obtained: "’
= 1
Enr = ZPWHW T Z ZPWWV”@XE 5 ZXIEGH-XI
v

ko kI

1 _ _
—2 2 2 PwPar (ol G T wv) (3:20)

wy o,t

It is important to note that Eyy is self-interaction free only when the same auxiliary func-
tion set is used for both Coulomb and exact exchange fittings. In order to show that Ex

is self-interaction free, consider the self-interaction exact exchange fitting coefficient

g =Y > Ggl(|lii) (3.21)
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Summing over all these coefficients yields

occ

1 By 1
D=5 0 2 G )P = 53 (3:22)
i TR

Thus, it follows that the self-interaction energy contained in the Coulomb fitting coeffi-

cients is canceled by the diagonal exact exchange fitting coefficients.

Moreover, in the simultaneous Coulomb and exact exchange fittings with a common
auxiliary function set, an advantageous error compensation occur. The error compensa-
tion arises from the fact that the total energy calculated only with the variational Coulomb
fitting is a lower bound to the true energy, E > EPY, while the total energy calculated only
with the variational exact exchange fitting correspond to an upper bound to the true en-

ergy, E < EPPK. From these inequalities follows
E— Epex <0< E — Epy (3.23)

and further

E — EDFK E — EDF]K E — EDF] (324)

Thus, the absolute deviation from the four-center energy while performing both fittings

simultaneously is smaller than the maximum absolute deviation of either fit alone.

The downside of the straightforward implementation of an algorithm based on Equa-
tions (3.17)-(3.19) is that the formal scaling still is N* with respect to system size. However,
aformal N° scaling is achieved with respect to the basis set size. Take for example Equation
(3.18). The three-center ERIs must be computed and transformed into MO representation.

If one decides to perform the transformation for both MOs in one step, that is

(ij||k) = chcv] (wv|lk) ¥ i,k | (3.25)

u

the resulting algorithm scales as N2 .. x N?> x M, which can be related to an N° scaling. A

O
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more efficient algorithm arises by splitting the ERI transformation into two steps:

ik = > culuvllk) ¥ i,v,k

u
iy = > cylivik) ¥V i,j.k (3.26)

The first transformation scales as Ny X N> x M and the second as N2_. x N x M, which

gives two N* steps. Another quartic step, common to both approaches, arises from the

multiplication

> GiIkG Vil (3.27)

k

Changing basis set keeps N, constant, thus, the N° scaling with respect to the basis set
size. The scaling of the ERI calculation and transformation to the MO basis can be reduced
by one order of magnitude in sufficiently large systems, nevertheless, the quartic scaling
multiplication remains present. Hence, the application of DF or RI exact exchange has

historically been limited to compact systems with large basis sets.'*!40147152,155

3.2 LocArL-DENsITY-FiTTING EXacT EXCHANGE

To overcome this situation, local versions of the RI and DF algorithms have been proposed
recently. These algorithms are now called ARL " PARI"""? and LDF."*"" In this section
we will present the development of an LDF-EXX algorithm which has proven to be robust

and efficient.”*12>156

The basis of our LDF approach is the already mentioned invariance of the Kohn-Sham
energy and the Kohn-Sham matrix to orthogonal transformations of the MOs. In this way,
the delocalized canonical MOs (CMOs) can be transformed into spatially localized MOs
(LMOs) by minimizing, or maximizing, an appropriate functional. The transformation of

CMOs into LMOs using an orthogonal matrix U is given by:

occ

,(r) = Z U, (r) (3.28)
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The inverse transformation is accomplished by using U” due to the properties of orthog-

onal matrices. Transforming the CMOs appearing in Equation (3.2) into LMOs yields:

occ ocCc

Eexx = — »_ > Usl(IJ||IKL) Uil
LKL i

occ

LJ,K,L

= —> (Wl (3-29)
L]

where the capital letters label LMOs. Equation (3.29) differs from Equation (3.2) only in the
representation of MOs used. The total Egxx remains constant, however, each individual
term of the sum may be different. The objective of using LMOs is to minimize the number
of LMO pairs that have non-negligible contributions to Egxx. This can be accomplished if
the centers of LMOs ¢,(r) and ¢,(r) are far away from each other and their spatial extents
are minimized. In addition, the computation of the EXX contribution to the Kohn-Sham
matrix can also benefit from the use of LMOs. The contribution of the EXX to the K,

element is given by:

OE 1 kG-I
b= Xw= 5> D Paluolk)Gg(llve)
‘Lﬂ/

0Tkl

occ

=D (kG ) (3.30)

i N

where the sum over occupied orbitals can be performed with any representation of the
MQOs. Irrespective from the MO representation used, non-vanishing contributions to X,
arise only from MOs close in space to p(r) and v(r). For CMOs this will be, generally, the

whole molecule, whereas for LMOs this can be much more restricted.

In order to illustrate the advantage of computing X, with LMOs instead of CMOs, Fig-
ure 3.2 shows the 107° a.u. isosurface for the products between a CMO or an LMO and
four different d,, AOs of Cy,H,,. The chosen AOs are centered on C1, C10, C15 and C20 in

order to span the whole molecule. It can be seen that all the products of the CMO have
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Figure 3.2: Product of a canonical molecular orbital (CMO) and a localized molecular orbital (LMO) with
different atomic orbitals (AOs) of C,,H,,. The header shows the CMO and the LMO in the first and second
column, respectively. The first column shows the product of d,,, AOs centered at C1, C10, C15 and C20 with
the CMO and the second column shows the products of the same AOs with the LMO. The molecular orbitals
are shown at 10~% a.u. amplitudes and the products at 10~ a.u. amplitudes.
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Figure 3.3: Algorithmic flowchart of the LDF-EXX computation.

non-vanishing contributions, whereas the products of the LMO decay with the distance
between the LMO center and the AO. In this way, many 1,(r)u(r) combinations can be
discarded and, consequently, the computational effort diminished. Furthermore, due to
the variational nature of the EXX fitting, one can restrict the auxiliary functions set for
each LMO to only those around its center. Very good approximations are obtained pro-
vided that the local auxiliary function set chosen describes appropriately the Hilbert space
spanned by the non-negligible products of 1.(r). Thus, in our LDF-EXX approach each
Y.(r) has a local basis set B; and a local auxiliary function set .A;. These local sets will be

called the local fitting domains.

The resulting LDF-EXX algorithm is based on the same equations as DF-EXX. However,
the equations are solved using LMOs and local fitting domains. As a consequence, a re-
duction of the computational complexity is achieved, leading to an almost linear scaling
algorithm. A simplified flowchart of the processes involved in our LDF-EXX algorithm is

shown in Figure 3.3. In the following, each process will be discussed in detail.

46



3.2.1 MOLECULAR ORBITAL LOCALIZATION

The MO localization is a very important step and, ultimately, determines the speed and
accuracy of the LDF-EXX algorithm. This is due to the fact that tightly localized MOs
have smaller fitting domains. Therefore, the number of operations needed to compute X
is minimized by using tightly localized MOs. Unfortunately, the scaling of several local-
ization schemes is at least cubic. In order to overcome this disadvantage, we developed

an approach that provides tightly localized MOs without too much computation.

The first step for the MO localization is obtaining a set of MOs from the pivoted Cho-
lesky decomposition of the density matrix as proposed by Aquilante et al.”” The pivoted
Cholesky decomposition can be performed in a linear scaling fashion for sparse matri-
ces, nevertheless, the current implementation of deMon2k uses the LAPACK subroutines
which have an N? x N, scaling. One of the advantages of using these Cholesky MOs
is that they are already somewhat local and provide an adequate starting point for some
other localization schemes such as Foster-Boys (FB), """ Edminston-Ruedenberg (ER), "

or Pipek-Mezey (PM). 102

The FB localization minimizes the spatial extension of the MOs. This is equivalent to
maximize the sum of squares of distances of orbital centroids from the origin of the coor-

dinate system:
occ

FB[Y] =) (ilrli)” (3:31)

The ER method maximizes the self-repulsion ienergy
ER[y] = §<ii|yii> : (3.32)
and the PM approach maximizes the Mulliken charge'®® of each orbital
PMIy] = 30 3P (3.33)
i A

where P, is an operator that projects onto the basis functions centered on atom A.
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For our purposes, the most natural localization approach would be ER, because maxi-

mization of Equation (3.32) minimizes the exchange integrals
{llif) v i#] (3.34)

Unfortunately, the ER localization has a formal scaling of at least N°."°*'** Therefore, we
decided to implement the more economical FB algorithm as it is the second obvious choice
for our purpose. Several implementations of the FB localization follow the original pre-
scription of Edmiston and Ruedenberg that determines the optimum orthogonal transfor-
mation of the MOs by consecutive two by two rotations until convergence is reached.'*"'%?
For the occupied space, the FB functional usually have strong and isolated maxima and
has been successfully optimized using this method.'* The objective is to find the optimal

two by two rotation

pi(r) = cosy ,(r) +siny ¢(r)
Yi(r) = —siny g,(r) +cosy ,(r) (3.35)

that maximizes the chosen functional. Orbital-stability conditions lead to:'**

Ajj T
cosél)/:——2 = 0<y< > (3.36)
\/Ai + Bj
where A;; and B;; are defined as:
. o\ 2 1 . B . a2
A = (ilrlf)” = 4 (el = {flr]7)) (3.37)
By = (ilrlf) - ({ilr[i) = {lrli)) (3.38)
The orbital-stability criteria also implies that
Bj = 0 (3.39)
Aj < 0 (3.40)



for all pairs of MOs. As already noted by Pipek and Mezey, this set of relations could
be satisfied if all off-diagonal matrix elements (i|r|j) were zero, or in other words, if the
Boys localized orbitals were all eigenfunctions of the vector operator r. Unfortunately,
the components x, y and z of r in the finite N-dimensional matrix representation of the

occupied subspace do not commute'*%'%

and, consequently, the eigenvalue problem of
r cannot be solved. However, the FB localized MOs do minimize the squares of the off-
diagonal matrix elements of r.'> Thus, FB localization can be seen as the approximate joint

diagonalization (AJD)**~"V of the three dipole matrices X, Y and Z.

In AJD, one seeks to minimize the sum of squares of the off-diagonal elements of all the
matrices that need to be joint diagonalized. This is accomplished also by consecutive two
by two rotations in an extended Jacobi fashion. In order to obtain the Jacobi angles for the
set of dipole matrices, we define a 2 x 2 real symmetric matrix G as

Xii — Aj 24
Xi— X Vi— Yy Zi— Zj
g = Vi— Vi 2V (3-41)

2 2y 2%

In terms of the previously defined quantities A;; and B;; the matrix G can be written as

i r|7 2 _ Ai' lBi'
G =4 il |]1> ! : -]2 (3.42)
2Bij (i[rlj)

The Jacobi angles can now be computed in closed form as

x+1

X! Y
2 V2x +2

cosy = (3.43)

where [x,y]! is any eigenvector with x > 0 associated to the largest eigenvalue of G.
This particular choice constraints the rotation angle to y € [—7, 7] and leads to a locally
quadratic convergent joint diagonalization algorithm.'*®'*” Tt is important to note that PM

localization can also be casted in terms of an AJD, however, in this case the problem con-
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Table 3.1: Maximum orbital spreads [a.u.] for Cholesky localized molecular orbitals (CLMOs) and Foster-
Boys localized molecular orbitals (FBLMOs) of coronene with increasing basis set size. Also shown are
maximum orbital spreads for canonical molecular orbitals (CMOs) and FBLMOs from the trust-region min-
imization in reference [165].

cc-pVDZ cc-pVTZ cc-pVQZ
Occ Virt Occ Virt Occ Virt
CMO 7.498 10.806 7.496 11.613 7.497 12.310

CLMO 3.204 7.149 6.150 9.257 6.627 9.709
FBLMO 2.290 2.951 2.296 3.459 2.298 4.208
Ref. [165] 2.288 3.004 2.292 3.261 3.012 7.614

sists of N,iom matrices.

The FB implementation in deMon2k performs the Jacobi rotations with the angles de-
fined by Equation (3.43), since this choice yields a much more stable algorithm. In order
to demonstrate the effectiveness of this MO localization scheme, Table 3.1 shows the max-
imum orbital spreads for different MO localization approaches for the HF wavefunction

of coronene. The orbital spread of the ith MO is defined as:

0; = /(ilr2[i) — (ilr]i)? (3.44)

It is a measure of the spatial extent of that orbital and thus of its locality. Coronene, also
known as superbenzene, has been chosen because it represents a non-metallic highly delo-
calized system. Table 3.1 shows that Cholesky Localized MOs (CLMOs) are weakly local-
ized Canonical MOs (CMOs). Increasing the cardinality of the Dunning basis sets results
in less local CLMOs. Nevertheless, CLMOs do represent a good starting point for the
FB localization. FB Localized MOs (FBLMOs) are much more local than both, CMOs and
CLMOs. The occupied FBLMOs maximum spread remains almost constant independent
of the cardinality of the basis set. However, the maximum spread for the unoccupied
FBLMOs deteriorates with increasing basis set size, but still remains much smaller than
for the CMOs. It is important to note that the FBLMOs obtained with the AJD algorithm
are, at worst, equally localized than the ones obtained with the more sophisticated trust-
region Newton method (TRNM) described in reference [ 165]. Even more, the FBLMOs

obtained through AJD for the cc-pVQZ basis set are, markedly, more compact than those
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Figure 3.4: Most delocalized occupied and virtual HF coronene molecular orbital isosurfaces (0.03 a.u.).

obtained with the TRNM. This emphasize the use of CLMOs, instead of CMOs, as starting
orbitals for the FB localization procedure.

In order to relate the orbital spreads to an easily understandable picture, Figure 3.4
shows the 0.03 a.u. isosurface for the least localized occupied and virtual FBLMOs of
coronene. These orbitals are identical to the ones presented in reference [ 165] and are

typical examples of FB localized orbitals produced by mixing several ¢ and = MOs.

3.2.2 SELECTION OF THE LOCAL FITTING DOMAINS

Once the MOs have been localized, the next step in the LDF-EXX algorithm is the selection
of the local fitting domains. The flowchart for the selection of the local fitting domains is
depicted in Figure 3.5. The first step is to calculate the atomic Lowdin populations'” for
each orbital. Lowdin populations are calculated from the MO coefficients corresponding
to the symmetric-orthogonalized AO basis.'”? The Lowdin MO coefficients can be obtained

from the original ones by the transformation:
¢ =82 (3.45)
The atomic Léwdin populations for a given orbital 1.(r) are then defined as:

Gia =Y & (3.46)

uceA
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Selection of Fitting Domains
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¢ =SY2%¢
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i=
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Figure 3.5: Flowchart for the selection of the local fitting domains. The vector q; collects the Lowdin atomic
populations g;4 for orbital ¢,(r) and Anax denotes the position of the largest element of q;.

52



\g,;&\g,&\? -

Figure 3.6: Auxiliary functions (top, green) and basis functions (bottom, orange) fitting domains for the least
localized FBLMO of C,yH,,.

Once all g;4’s for a given MO have been obtained, a local set of atoms, D;, is built with
those atoms with the n largest atomic populations. The number of elements 1 of the local

set is defined as the minimum number of atoms that achieve

Q=) qu=>r (3.47)
A

if the populations were ordered from largest to smallest. Then, all auxiliary functions
centered on atoms in D; define the local auxiliary function set A;. Additionally, all AOs
centered on atoms with significant overlap to any atom in D; define the local basis set
B;. Figure 3.6 shows an actual example of atoms contributing to both A; (green) and 5;
(orange) for the least localized FBLMO of C,)H,, and a 7 = 0.99. It can be seen that the
number of auxiliary functions in each A; is very small as compared to the total number of

auxiliary functions of the system.

It is important to note that the Lowdin population analysis is not rotationally invariant

for Cartesian representations of basis sets.'”

As a consequence, the selection of the fitting
domains will not be, in general, rotationally invariant. We have not seen any problems
related to the selection of the fitting domains probably because of the rather strict threshold
7 used in the selection. This (almost) rotational invariance property may not be shared by

other selection schemes like the one described in reference [154], where coarser criteria are

used.
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3.2.3 MOLECULAR ORBITAL SORTING

The parallelization paradigm used for the LDF-EXX algorithm is based on the distribution
of the LMOs. For example, if a system contains 160 LMOs and the calculation is performed
with 16 CPUs, then, each CPU will calculate and transform the ERIs corresponding only
to 10 LMOs. In order to maximize the speed-up obtained from such a parallel calculation,
all the LMOs assigned to a given CPU must be close to each other. In this way, ERIs can
be reused for several, if not all, the assigned LMOs. If the LMOs are not close to each
other, the ERIs can’t be reused and the number of floating-point operations will increase.
Furthermore, it is possible that many CPUs end up calculating the same ERIs diminishing

the parallelization efficiency.

In order to avoid such situations, the LMOs are ordered according to the spatial location
of their centroids. The ordering is performed through the octal tree algorithm, also known
as octree.”” The term octree is used to describe a class of hierarchical data structures whose
common property is that they are based on the principle of recursive decomposition of
space.”5 The first node of the tree, the root, is a cube. Each node has either eight children
or no children. The eight children form a 2 x 2 x 2 regular subdivision of the parent
node. A node with children is called an internal node. A node without children is called a
leaf."”® In Figure 3.7, an schematic representation of a simple octree is given. The root node
contains all data and its considered to be a Level 0 node. The root node is subdivided into
eight Level 1 children. Six of these Level 1 nodes are empty and are represented as non-
filled circles. Since there is no point in subdividing the empty nodes, they are classified
as leaves because they are the ending points of the tree. The remaining two Level 1 nodes
contain some amount of data and are represented as filled circles. These nodes can either
be subdivided into eight children or be classified as leaves depending on the amount of
data contained within them. If the amount of data is greater than a predefined threshold
then the subdivision process continues and they are classified as internal nodes. This is
exactly the case depicted in Figure 3.7, given rise to sixteen Level 2 nodes—eight for each

one of the Level 1 internal nodes. In the example, all of the Level 2 nodes are leaves because
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Level 2

Level QOLOOLLLO
Level 0 e

Figure 3.7: Schematic representation of an octree where each node is depicted as a circle. The node labeled
with an “R” is the root node, the nodes labeled with an “I” are internal nodes, and the nodes labeled with an
“L” are leaf nodes. A filled circle means that the given node contains some data, and the amount of these data
is represented by the intensity of the filling.

they are empty or contain little amount of data. The octree generation can also be stopped
when a specified resolution is achieved independently of the amount of data remaining

in the higher level nodes. For example, in order to reach a resolution of 256 eight levels

L

755 Of

are required (2° = 256). This means that the Level 8 nodes have a side length that is
that of the root node. If the desired resolution is 256, then the octree generation is stopped
under all circumstances at Level 8, no matter the amount of data present in the Level 8

leaf nodes.

Our octree implementation in deMon2k uses both stopping criteria. The maximum

amount of LMOs centroids for each leaf node in a parallel calculation is given by:

NOCC
Nicat = +1 3.48
feat LNCPUJ (348)

where N is the number of occupied LMOs in the system and the floor function |x| re-
turns the largest integer not greater than x. In the case of serial calculations N, is defined

as:

Nicat = { Noce J +1 (3.49)

where Npaeh is the number of batches needed to calculate the exact exchange matrix X
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Figure 3.8: Octree generated for C,yH,, and 4 CPUs. The left image shows the root node, the middle image
also shows all the generated level 1 nodes and the right image shows, in addition, all level 2 nodes.

due to memory restrictions. In order to avoid memory overflows, the second stopping
criteria in deMon2k is a maximum number of nodes including internal and leaf nodes.
The current setting is that no more than 40,000 nodes may be created. This number of
nodes is achieved if every node is subdivided until Level 5. However, in most cases several
leaf nodes are empty, allowing non-empty leaf nodes of levels greater than 5.

To further illustrate the algorithm, an actual octree generated for C, H,, and 4 CPUs
is shown in Figure 3.8. The first step is to determine the stopping criteria for the octree
generation according to the total amount of data present and the number of CPUs in the
task. The data that needs to be distributed are the 81 occupied LMOs of C,yH,,. According

to Equation (3.48), the maximum number of LMOs centered on a given leaf node is

81
Nieat = {ZJ +1=21 (3.50)

The next step is to generate the root node, i. e. a cube that encloses the whole system. The
root node is shown on the leftmost image in Figure 3.8. Since the root node contains more
LMO centers, 81, than the previously defined maximum, 21, it is subdivided into 8 smaller
cubes. These are the Level 1 nodes and are shown in the middle image of Figure 3.8. Six
Level 1nodes are empty —the four nodes in the back and the two upper nodes in the front—
and they are classified as leaves. The remaining two Level 1 nodes contain 40 and 41 LMO
centers, respectively. Since our stopping criteria has not been met, these two Level 1nodes
are classified as internal nodes and further subdivided (right image of Figure 3.8). Only

four Level 2 nodes have LMO centers within them. These four nodes contain 20, 20, 20
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Figure 3.9: Auxiliary function center distribution (green) before and after the octree algorithm.

and 21 LMO centers. Thus, the stopping criteria is reached for all nodes and the octree
generation is stopped. In fact, Figure 3.7 can be seen as an schematic representation of
Figure 3.8. Each one of the four non-empty leaf nodes have LMOs centered close in space
to each other. The contributions to the exact exchange matrix X of the LMOs centered
on one non-empty leaf node are computed by one of the CPUs, maximizing the reuse of

computed ERIs.

This maximization is depicted in Figure 3.9 where the centers of the auxiliary functions
whose ERIs must be computed are shown in green for each one of the 4 CPUs, in the C,,H,,
example, before and after the sorting algorithm. Each CPU has the same number of LMOs
assigned for both the unsorted and sorted cases. It can be seen that in the unsorted case
every CPU must address almost every auxiliary function of the molecule. After the octree
algorithm, each CPU addresses only a fraction of the auxiliary functions of the molecule.
Therefore, more three-center integrals, (uv||k), can be reused to compute half-transformed

integrals of the type (ui||k) appearing in Equation (3.30).

3.2.4 ERI COMPUTATION AND TRANSFORMATION

The last step in LDF-EXX is the computation and transformation of the ERIs in order to

calculate the exact exchange matrix elements, X, according to Equation (3.30). Due to

uvrs
the local fitting domains, each LMO needs the computation of only a limited amount of

AO ERIs, (uv||k), and its corresponding transformation to {ui||k). In order to simplify the
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notation we define a new set of matrices E; with elements:
Exi = (uillk) (3.51)

In general, all E; matrices have different dimensions. In addition, each LMO has an asso-
ciated Coulomb matrix G;. As in the previous case, the dimension of the G; matrices can

be different. Then, the contribution of each LMO to X is given by:
X; = -EG;'E] (3.52)

where X, and X can have, also, different dimensionalities. This property follows from the
locality of all B;. Thus, the last step is to sum the elements of X; into the appropriate blocks
of X. The existence of one G; matrix for each LMO means that N, matrices need to be
inverted, as shown in Equation (3.52). At first glance, this seems to have a huge impact on
the computational efficiency of LDF-EXX. However, this is not the case. Since all A; are

local, the addition of one atom to a sufficiently large system does not alter the size of the

3

A; sets. Thus, even when matrix inversion has a formal M, _,

scaling, growing the system
size translates into an N, scaling because M, remains constant. The same is true for

the computational cost of the E; matrices.

An important property of our LDF-EXX algorithm is that, different to the PARI"""? and
CADF " approaches, the fitting remains negative definite. As a consequence, all G; can

be decomposed as:

G;=LL/ (3.53)
With the aid of the Cholesky vectors L;, we can transform Equation (3.52) into:
X, = -EZZ'E] (3.54)

= —HH] (3.55)
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where

Z;= (LN’ (3.56)

and

H, = EZ; (3.57)

The advantage of employing Equation (3.55) instead of Equation (3.52) is that computing
the inverse of a triangular matrix is much more efficient than computing the inverse of
a general dense matrix. Moreover, the symmetric operation appearing in Equation (3.55)
can be performed using less memory than the operations appearing in Equation (3.52). It
is important to note that the inverse Cholesky factors Z; can be obtained in a direct form

with the AINV algorithm, "% however, this option has yet to be explored.

In this way, the scaling of the ERI part of the LDF-EXX algorithm has been reduced to

3

Noc with respect to the system size and to M;

with respect to the local auxiliary function
set size. The memory requirements of the algorithm are also reduced by the LDF-EXX
approach. In order to calculate all ERIs and obtain the X matrix, enough memory to store
all E; matrices, the LMO coefficients ¢ and the resulting X matrix is needed. Once all E;
matrices are computed, a loop over the occupied LMOs is performed in order to obtain
the X; contributions. Therefore, the memory to store one G; matrix and one X; matrix is
also required. Note that the memory of G; can be reused to store Z; in the same way as the
memory of E; can be reused to store H;. Thus, the total memory needed is proportional
to:

occ

T= leocal + Mlzocal + Z Nlocal,i X Mlocal,i + NZ + N x Nocc (358)

Here, the terms on the rhs corresponds to X;, G;, all E;, X and c, respectively. If the
available memory is not enough to hold all T real numbers, then, batching over the LMOs
occurs. The sum over all occupied orbitals in Equation (3.58) and the number of occupied
orbitals N, are restricted only to those LMOs active in a given batch. As a consequence,

the memory required to calculate all quantities in a batch is decreased.
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3.3  ANALyTICAL ENERGY GRADIENT IN LDF-EXX

Analytical energy derivatives with respect to nuclear positions are important quantities
for geometry optimizations, vibrational frequency analysis and BOMD simulations. The
gradient of E with respect to all nuclear displacements is a vector which collects all these

derivatives. In Cartesian coordinates, the gradient vector is given by:

OE OE OE OE OE OE T
g—( ) (3.59)

0A, 0A, OA. OB, OB, OB.

In order to simplify the notation, we will denote the derivative of a function, f, with respect

to one of its parameters, A, as:

f = (3.60)

To proceed, let us write an ADFT energy expression including both E,. and Egxx as:

1 )
Z PuHu + ) Z (k| uv) P — 5 > x:Gyx; + Exelp] + aEpxx (3.61)

v ki

where a denotes the fraction of Egxx mixed into a particular global hybrid functional. Thus,

an arbitrary component of g is given by:'*"'%?

EM = 3" p HHVJrZPWHW +22x (k|| )PP, +

w,v w,v
s 1
S xplkfuv) PG — 5 > xGixg + EW) + aERy (3.62)
Vook kI
The derivatives of the elements of H, G and the three-center ERIs are obtained through

integral recurrence relations. The derivative of E,. is obtained via the chain rule and is

given by:

B~ [l q

= > W (olp] k) +Zxk Oxe[p (3.63)
k



Furthermore, the here appearing elements of x) can be obtained by deriving Equation
(2.29),
GWx + GxW =JW (3.64)

from where it follows

xW =G (IW - GWx) (3.65)

Substituting Equation (3.65) into Equation (3.63) yields:

Zzpyv ‘LlVHk Zg + ZZP#V [JVHk

u,v

k
Zkakl z + Zxk o.c[p] | KN (3.66)

kI
Finally, in order to obtain Eg()x, let us rewrite Epxx as
occC

Eexx = —5 ZPWZZ i Ji (3.67)

where

Jei = (kllvi) (3.68)

and

*i = Y Gy T (3.69)
I

Remember that in the LDF-EXX approach, the indices appearing in Equations (3.67)-(3.69)
are restricted according to the fitting domains of each ,(r). The derivative of Equa-

tion (3.67) is given by:

occ occ occ

EXX = Z P Z Z xkyl]kw Z P;W Z Z ka]kvz Z P,UV Z Z xkyz]kﬁ) (3 70)
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The derivatives of the xz,; fitting coefficients can be obtained by using a modified form of

Equation (3.65) to yield
(A) B 1 occ ) ) 1 occ ] (/\) )
Epo = = 32 P DD il + 3D P D D %Gy i
v ik v ikl

DD )W FIEED D) S 67
[TRY i k w,v i k

The last two terms of Equation (3.71) are formally equivalent, however, we kept them

explicitly separated because
PO =23 "o +2> el 3.72)
arises naturally from the substitution of
A z z A
Tt = 2Kl Ve + 3 (Kl)e? (373)
B g
into Equation (3.71). Thus, Equation (3.71) can be rewritten as
A A —
Einx = 3 POXu + > TG = >3 "N " P tklve) ey (3.74)
v R i koo owy
where we have defined an auxiliary matrix I', with elements
occ

I = % DY xpiPui (3.75)

i uv
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Substituting Equations (3.66) and (3.74) into Equation (3.62) yields

EM = N KPP+ P HY +

[TRY [TRY

7 1
Z Z P#V<P‘V|‘k>w (% +z) — Z ka,%) <§xl -+ z,) +
wYok kI

> ok +a Y TGl —ad 3NN P (kllve) Ve (3.76)
ik

k kI TR

The last two terms of the rhs of Equation (3.76) are the only additions to the energy deriva-
tive when performing an hybrid ADFT calculation in comparison to a “pure” ADFT one.
In the same manner as in “pure” ADFT, the derivative of P can be eliminated by means of

the Roothaan-Hall equations (2.17) and the orthonormality constraint, Equation (2.1). First,

note that the first term of the rhs of Equation (3.76) can be written as

occ occ
LTI 9) SEISNE) 9 Prmars
w,v i v i v
occ
= 4> > dKuey (3.77)
i

Moreover, substitution of Equation (2.17) into Equation (3.77) yields

occ

S KPR =43 VS cue; (3.78)
v

iowy

The derivative of the orthonormality constraint,

> C;(i?)swcvj + D cuSiley+ ) C#iswcg) =0V i, (379)
w,v v v
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allows the elimination of the derivatives of the MO coefficients by substitution of the iden-

tity

A
- Z C[uisft/}/)cvi = Z CW yvcvz + Z Cui ‘uvc( )

u,v

= 2 Z e Sy, (3.80)
into Equation (3.78):
Z K#VPL/}/) = -2 Z Z CW‘SL/}/)CW'&
[18% i v
T (3.81)
where W, an element of the closed-shell energy-weighted density matrix, is defined as:

occ

Wiy =2 cicuicyi (3.82)

By substituting Equation (3.81) into Equation (3.76), an expression for calculating an ele-
ment of g without the need of derivatives of the density matrix or the MO coefficients is

obtained:

= =) WuSP+> P,HY +

Vv [TRY

D 1
oD Pl (i +z) = Y aGy’ <§x, + zz) +
wyok A

occ

Z(ch 0] | k™M) xz + a Z Tg kl —a Z Z Z Z Py X (k|[va)Mc,; (3.83)

k kil

As already noted, the additional terms appearing in an hybrid ADFT calculation are the
last two terms of Equation (3.83). All other terms are already coded into deMon2k and
their implementation will not be further discussed. For a competent discussion of the cal-

culations of these terms we refer the interested reader to references [181] and [182]. The
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LDF-EXX gradient
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MO localization

|

Selection of local fitting domains
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MO sorting
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Calculation of the E; matrices
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Calculation of the I' and y; matrices
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Contraction of I' and of y; with the appropriate ERI derivatives

|

Stop

Figure 3.10: Algorithmic flowchart for the calculation of the LDF-EXX gradient.
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terms characteristic to EXX gradients are calculated according to the algorithmic flowchart
depicted in Figure (3.10). Note that all steps until the calculation of the E; matrices are
also performed during each SCF iteration, therefore, the same subroutines are used for
these steps. After all E; matrices have been computed, the auxiliary matrix I' and the
transformed LDF-EXX fitting coefficients y; are obtained according to the algorithm rep-
resented in Figure 3.11. As in the SCF, the Z; matrices are obtained by inversion of a Cho-
lesky factor of each G;. Then, the half-transformed LDF-EXX coefficients x; are obtained
as:

x; = G 'E] = Z,ZE] (3.84)

For this transformation, the memory of each E; can be reused for each x;. The next step is

to transform the x; coefficients to MO representation according to

y%ij = Zxkuic}l]' v I_C S Ai A ] < Noce (385)
‘UGBZ'
Thus, a new field with dimensions Mjocai X Noc is needed. This field is immediately used

to obtain the corresponding contribution toI" as

T = Z ViV ¥ k1€ A (3.86)
i

Note that in Equation (3.86), only a submatrix I'; is obtained, and the elements of this
submatrix have to be summed into the appropriate blocks of the full I' matrix. In order
to store I';, the memory of Z; is reused. Furthermore, only a given column of I is read
and written at a time, thus avoiding the allocation of a full M? field. For the efficient
calculation of the last term in Equation (3.83) we introduce new auxiliary coefficients yz,;
and vy, defined as: N

Yioi = O _ViiCoj ¥V kKEA A0 €B (3.87)
;

and
ocCcC

Yier = > YiiCoi (3.88)
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Calculation of the I" and y; matrices
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i=1
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Figure 3.11: Flowchart for the calculation of the LDF-EXX gradient auxiliary matrices.
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The auxiliary coefficients y;,, can be directly contracted with the ERI derivatives appearing

in the last term of Equation (3.83). Thus, the calculation of this term becomes:

occ

Z Z > Z Py xpi(kllov) Vs = Z Z Yigw (Kllov) (3.89)

The memory needed to store all y; coefficients is reused from the one used to store all x;
coefficients. The flowchart depicted in Figure 3.11 shows the steps performed to compute

I' and the auxiliary coefficients y;. The direct sum
r=rerl; (3.90)

appearing in Figure 3.11 means that the calculated I'; is summed into the appropriate blocks
of I'. As already mentioned, I is updated vector by vector and stored on disk. On the other
hand, all y; coefficients are kept in memory, transformed into shell blocks to yield v, and

contracted with the corresponding shell blocks of ERI derivatives (k||ov)®)

In terms of memory, only one additional temporary field, with dimension Mjoca1 X Nocc,
needs to be allocated. The advantage is that no N2 _, and N? fields, for the local contribu-
tion of the EXX matrix X; and the EXX matrix X, respectively, are needed. Therefore, the

memory needed for the LDF-EXX gradients is given by:

occ

T = Mlocalz + Nocc X Mlocal,i + Z Nlocal,i X Mlocal,i + N x Nocc (391)

If the memory is not sufficient to store all quantities, then the calculation is split into
batches over the occupied LMOs, in an analog manner as for the LDF-EXX potential com-
putation. In this case the loop over all occupied orbitals appearing in Figure (3.11) is re-
stricted to only those LMOs active in a given batch. Thus, only a subset of the y;,; co-
efficients and I'; matrices are computed. The contraction of the contribution to the yy,,
coefficients with the ERI derivatives is done in each batch. Differently, the contraction

of T with GW is performed after all I'; contributions are summed, i.e. at the end of all
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batches.

The parallelization of the LDF-EXX gradients is performed exactly as for the LDF-EXX
potential. The LMOs are distributed among all cores. Moreover, the octree algorithm is
also employed to maximize the reuse of three-center ERIs. When memory is not suffi-
cient batching also occurs. Thus, it can be seen that the LDF-EXX gradient computation
is consistent with the LDF-EXX potential one, up to the point that the same batching and

parallelization paradigms are used.

3.4 VALIDATION AND BENCHMARKS

3.4.1 VALIDATION OF THERMOCHEMICAL PARAMETERS

In order to validate our LDF-EXX approach, we compare standard heats of formation,
AHJ%%K, obtained for the B3LYP, '®> PBEQ, '*#'%> and M06-2X'%® DFAs and the HF method, em-
ploying the LDF-EXX algorithm and the standard four-center ERI exact exchange imple-
mented in NWChem,'"” with available experimental data.”®® Note that the hybrid GGAs,
B3LYP and PBEO, are implemented in both hybrid ADFT and DE-DFT versions. However,
the hybrid meta-GGA can only be implemented for the DF-DFT approach due to the ex-
plicit dependence on the KS-MOs via the kinetic energy density, 7(r). The corresponding

energy expressions are given by:

EBYP — 081EXF + 019 EYWN 4+ 0.80 ED™° + 0.72 AE®® + 020 Epxx  (3.92)
EFPEO —  EPPE 10,75 EPPF 1 0.25 Egxx (3.93)
EM0O2 = EMOO-2X . 062X 4 (.54 Epxx (3.94)

Here A means that only the “non-local” part of the Becke88 exchange functional® is used.
It is important to note that the implementation of the M06 correlation functionals differ
slightly from the ones proposed in reference [186] by modifying the self-correlation cor-
rection term inside the VS98 (VSXC) ! contribution and the M06 part, as suggested by

Gréfenstein et al."”” This modification avoids a singularity occurring in the equal-spin part
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of the correlation energy, leaving the total energy values essentially unchanged. As men-

193,194

tioned in reference [ 192], a similar modification can also be used in the PKZB and

TPSS"° meta-GGA functionals.

Standard heats of formation were obtained by the method proposed by Curtiss et al.'°

for the 223 molecules of the G3/99 test set, ”>""” using the Def2-TZVPP ' basis set in spheri-
cal representation and the B3LYP/6-31G(2df,p) optimized geometries.'”” Geometries, zero-
point energy corrections and enthalpy corrections at 298 K were obtained at the B3LYP/6-
31G(2df,p) level of theory using Gaussian 09.*" In short, in order to calculate AH}** for a

general molecule with formula A,B,C,, the following steps must be performed:

1. Calculate the zero-point corrected atomization energy D, as:

Dy(A,B,C.) = (er (A) + yE.(B) + zEe(C)> — E(AB,C.) + E.e(AB,C.)  (3.95)

2. Calculate the enthalpy of formation at 0 K as:

AHY(AB,C.) = (xAH})K(A) + yAHX(B) + zAHjBK(C)) — Dy(A\B,C.)  (3.96)

3. Calculate AH?%K as:

AHP®*(AB,C.) = AHY"(AB,C.) + Haosk(AB,C.) — Hok(A,B,C.)—
X(H2981<(A) - HOK(A)> - y<H2981<(B) - HOK(B)> - (3.97)

Z(HZ%K(C) - HOK(C))

In the above scheme, AH"(X) and Hask(X) — Hox(X) for a given atom X is taken from
reference [196]. Table 3.2 shows mean deviations (MD), mean absolute deviations (MAD)
and maximum absolute deviations (MaxAD), in kcal/mol, of the calculated HF and ex-
perimental AH?*%."*" Three different HF approaches were used for this purpose. The
first approach, labeled as NWChem, is the standard four-center HF implementation of

NWChem and is included as reference. The second and third approaches use the LDF-
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Table 3.2: Errors for Hartree-Fock standard heats of formation [kcal/mol] with respect to experiment. All
quantities were calculated with the Def2-TZVPP basis set in spherical representation. The NWChem column
refers to a standard four-center HF implementation. The A2*/A2* uses the GEN-A2* auxiliary function set
for both the SCF and the final energy calculation, whereas the A2/A2* calculations were performed with the
GEN-A2 for the SCF and the GEN-A2* auxiliary function set for the final energy calculation. See text for
more details.

NWChem A2*/A2* A2/A2*

MD 212.8 212.7 210.2
MAD 212.8 212.7 210.2
MaxAD  582.0 582.0 577.2

EXX algorithm and differ only in the auxiliary function set used. The results shown in the
column “A2*/A2*” were obtained by using the GEN-A2*?"! auxiliary function set. In the
case of the “A2/A2*” approach, the wavefunction was obtained with the GEN-A2 auxil-
iary function set and an additional non-self-consistent energy calculation was performed
using the GEN-A2* auxiliary function set. The results shown in Table 3.2 demonstrates
that the LDF-EXX HF approach is almost indistinguishable to a standard four-center HF
implementation in terms of accuracy achieved with an appropriate auxiliary function set.
Furthermore, even the GEN-A2 auxiliary function set provides accurate enough HF MOs.
This follows from the fact that the A2/A2* approach gives results within 1.5 kcal/mol of the
A2*/A2* approach, even though the A2/A2* energy is non-self-consistent. The individual
AHZ**X for the 223 molecules of the G3/99 test set are listed in Table B.1 of Appendix B. It
is important to note that, in the case of the A2*/A2* approach, AH;** deviations for the
Si-containing molecules are specific for the basis set used (Def2-TZVPP) and are due to
the automatically generated auxiliary function set. These deviations vanish when using,

for example, the more systematically augmented Dunning basis sets.



L

Table 3.3: Errors [kcal/mol] for hybrid DFT standard heats of formation employing the Def2-TZVPP basis set in spherical representation. MD is the mean
deviation, MAD is the mean absolute deviation and MaxAD is the maximum absolute deviation. See Table 3.2 for the used abbreviations.

B3LYP PBEO M06-2X
NWChem A2*/A2* A2/A2* NWChem A2*/A2* A2/A2* NWChem A2*/A2* A2/A2*
MD 3.8 4.9 34 —4.2 -3.6 —-5.6 -1.3 -0.9 —2.6
MAD 5.0 5.8 4.8 6.4 5.9 7.6 24 2.3 3.5

MaxAD 20.9 215 242 36.3 35.9 42.3 16.2 15.9 20.6




The AH7* for the full G3/99 test set were also computed for three hybrid DFAs: B3LYP,
PBEO and M06-2X. Table 3.3 shows MD, MAD and MaxAD for these hybrid DFAs as im-
plemented in deMon2k. Note that B3LYP and PBEO results were obtained with the ADFT
methodology, whereas the M06-2X were obtained with the DF-DFT one. Since the fraction
of EXX mixed in these three hybrid DFAs is rather small —see Equations (3.92)-(3.94) —the
major differences between NWChem and deMon2k results arise from the different DFT
methodologies employed. In particular, Table 3.3 shows that B3LYP is not as well suited
for ADFT calculations as for DFT, and that PBEO is better suited for ADFT calculations
than for DFT ones.

In addition to AHJ?%K, we also compared chemical reaction barrier heights calculated
with our LDF-EXX algorithm. For this purpose, the HTBH38/08 and NHTBH38/08 data-
bases were employed.”*" The HTBH database contains 19 hydrogen transfer reactions
with values for the forward and reverse classical reactions barrier heights. The NHTBH
database contains 19 reactions, including heavy-atom transfer, bimolecular nucleophilic
substitution, association, and unimolecular reactions. The “best estimates” provided in

the Minnesota databases?”

are used as experimental references for the validation. All cal-
culations were performed with the spherical representation of the Def2-TZVPP basis set
and with the structures optimized at the QCISD/MG3 level.?”* Table 3.4 shows MADs of
the three hybrid DFAs for the chemical reaction barrier heights. Note that ADFT results
are consistently better than their DFT counterparts. Furthermore, the A2/A2* approach
gives more accurate results than the A2*/A2*. This result is counter-intuitive, given that
the GEN-A2* set is larger than the GEN-A2 set, however, it is a direct consequence of
ill-conditioned G matrices. These ill-conditioned matrices are more likely to occur when
a calculation is performed with very large auxiliary functions sets, such as the GEN-A2*
set. Clearly, these validation calculations indicate that the solution method for the fitting

equation system, Equation (2.29), must be revisited if accuracies below 1 kcal/mol should

be addressed. However, this is outside the scope of this work.
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Table 3.4: Mean absolute errors [kcal/mol] for hybrid DFT chemical reaction barrier heights employing the Def2-TZVPP basis set in spherical representation.
See Table 3.2 for the used abbreviations.

B3LYP PBEO M06-2X
NWChem A2*/A2* A2/A2* NWChem A2*/A2* A2/A2* NWChem A2*/A2* A2/A2*
HTBH forward 4.29 416 3.91 4.05 3.66 3.61 1.04 1.10 1.08
HTBH backward 4.65 4.62 4.47 4.90 4.48 4.77 1.38 1.53 1.51
NHTBH forward 6.09 6.01 511 4.60 4.54 3.67 1.76 1.76 1.63

NHTBH backward 5.24 5.21 4.61 4.45 4.38 3.89 1.92 1.88 1.84




The results of the M06-2X DFA are also interesting. Remember that the M06-2X imple-
mentation in deMon2k is a slightly modified form of the original M06-2X functional. Nev-
ertheless, the results of a standard implementation of this functional using four-center
ERIs are almost identical to the DF-DFT results obtained with deMon2k. We have also
tested the adaptive grid accuracy for the M06-2X chemical reaction barrier heights since it
has been reported that reaction energies obtained with meta-GGAs may be very sensitive
to the integration grid employed, specially for the M06 functional family.*”* Therefore, we
performed additional calculations with the M06-2X functional and the FINE adaptive grid
of deMon2k, yielding essentially the same results as the ones reported in Table 3.4.

In summary, the LDF-EXX approach is almost indistinguishable to standard four-center
EXXimplementations for computing thermochemical data with either HF or hybrid DFAs.
Furthermore, chemical reaction barrier heights are consistently better for all hybrid DFAs
and the LDF-EXX ADFT method, especially with the non-self-consistent A2/A2* approach.
Finally, the modified version of the M06 suite implemented in deMon2k is very stable and
yields accurate results with the default grid settings of the program.

A remarkable feature of these results is that neither the GEN-A2 nor the GEN-A2* aux-
iliary functions sets were developed for the variational approximation of exact exchange.
Yet, their performance can be compared to the rather large auxiliary function sets devel-
oped by Weigend and specifically designed to fit the exact exchange.”**” Furthermore,
the GEN-A2 and GEN-A2* auxiliary functions sets are automatically generated and can

adapt to whichever basis set is employed.

3.4.2 VALIDATION OF GEOMETRICAL PARAMETERS

The LDF-EXX energy gradients were validated by optimizing the 148 molecules of the
G2/97 molecular test set.””® The optimizations were performed with the Def2-TZVPP basis
set using either the standard HF implementation of NWChem or the LDF-EXX HF imple-
mentation of deMon2k. Both codes used their default settings for SCF and optimization
convergence criteria. Table 3.5 shows MD, MAD and MaxAD for all bond lengths and

bond angles of the full G2/97 set. For this purpose, we defined a bond between two atoms
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Table 3.5: Deviation of bond lengths and bond angles of LDF-EXX with respect to standard HF. See Table
3.2 for the used abbreviations.

Bonds [pm] Angles [°]
A2*/A2*  A2/A2* A2*/A2*  A2/A2*
MD 0.01 0.16 0.00 0.00
MAD 0.02 0.18 0.05 0.07
MaxAD 0.29 3.00 0.63 0.62

when their distance was smaller than % times the sum of their covalent radii. Moreover,
bond angles were defined only for bonded triads. With these definitions, the results pre-
sented in Table 3.5 correspond to 751 bond lengths and 1202 bond angles. As Table 3.5
shows the GEN-A2*/GEN-A2* approach yields optimized geometrical parameters that
are basically indistinguishable from a standard four-center HF implementation. Excellent
results can also be obtained with the GEN-A2/GEN-A2* approach, with a MAD of only
0.18 pm. Only 8 bonds, of the 751 compared, deviated more than 1 pm and involved either
S or Cl atoms. The largest deviation was in the CI-N bond present in nitrosyl chloride
(CINO), which was 3.0 pm shorter than the NWChem reference. This underlines the ex-
cellent cost-performance ratio that can be obtained with the GEN-A2/GEN-A2* LDF-EXX
approach even when, as already mentioned, neither the GEN-A2 nor GEN-A2* auxiliary

functions sets were developed to fit exact exchange.

3.4.3 TIMINGS

In order to demonstrate the computational performance of the LDF-EXX approach, we
compared the average time needed to compute the Fock, or KS, matrix in one SCF cycle
for three hydrocarbon systems with different dimensionalities. All timings reported in
this section were obtained on an Intel® Xeon® X5675 processor with a clock rate of 3.07
GHz and 4 GB of memory, unless otherwise stated. As one-dimensional systems we used
linear alkane chains, Cyg,Hzg, 12, with 1 < n < 10. Thus, 10 carbon atoms are added to the
chain by each increase of n. The geometrical parameters that define the chains are given in
Table 3.6. The average time, in minutes, for one Fock matrix build (EXX and Coulomb) us-

ing the 6-31G** basis set”®*"” is shown in Figure 3.12. The results are compared with two
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Table 3.6: Geometrical parameters of the linear alkane chains.

Parameter Value  Units
C-C 1500 A
C-H 1.000 A
/ C-C-C 109.47 ©
/ C-C-H 109.47 °
/ C-C-C-C 180.0 °
8 T T T T
r == [inK 1
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Figure 3.12: Fock matrix build average timings [min] for linear alkane chains employing the 6-31G** basis
set. LinK == refers to the default HF implementation in GAMESS, QFMM = refers to the GAMESS HF
implementation using the quantum fast multipole method to calculate Coulomb interactions, A2*/A2* ==
refers to the LDF-EXX implementation in deMon2k using the GEN-A2*/GEN-A2* approach, and A2/A2*
= refers to the LDF-EXX implementation in deMon2k using the GEN-A2/GEN-A2* approach.

different four-center HF implementations of GAMESS.?"" The data labeled “LinK” refer to
the default HF GAMESS implementation which uses the LinK algorithm*’**! to compute
the exchange contribution; the timings labeled “QFMM” were obtained using the quan-
tum fast multipole method also implemented in GAMESS*'~?" to calculate the Coulomb
contribution and the LinK algorithm for the exchange part; the two remaining data sets,
“A2/A2*” and “A2*/A2*”, refer to timings obtained with the LDF-EXX algorithm for the ex-
act exchange contribution and the double asymptotic expansion for the Coulomb part.'”” It

is evident that the LDF-EXX HF method implemented in deMon2k is faster than any of the
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HF methodologies implemented in GAMESS. For the Cq,H,(, chain, LDF-EXX achieves al-
ready a speed-up of one order of magnitude with respect to the standard HF implementa-
tion of GAMESS. Even when compared to the combined QFMM+LinK methodology, LDF-
EXX is 3.5x faster with the GEN-A2*/GEN-A2* approach and 5.0x faster with the GEN-
A2/GEN-A2* approach. It is important to note that the timings of the GEN-A2/GEN-A2*
approach include the contribution of the final non-self-consistent energy calculation with
the GEN-A2* auxiliary function set. Furthermore, the LDF-EXX algorithm implemented
in deMon2k builds the full exchange contribution each cycle, thus, only the Coulomb part
takes advantage of the incremental building discussed in Sections 2.2 and 2.3. In contrast,
both HF implementations in GAMESS take advantage of the incremental building of the
Fock matrix for both exchange and Coulomb contributions. It is also worth noting that
the total energy difference between the HF solutions of the two codes did not exceed 1.0
kcal/mol for C;,H,,, when comparing the GEN-A2*/GEN-A2* approach.

Changing the basis set from 6-31G** to cc-pVTZ?"® results in a marked increase of the
speed-up factor. Taking as example the C,,Hg, chain, the speed-up factor changed from
3.8x to 17.5x when comparing the timings of the GEN-A2*/GEN-A2* with the LinK ap-
proach. In fact, convergence of the HF wavefunction is achieved within 50 min with the
LDF-EXX algorithm, which is half of the time needed to complete one SCF iteration with
GAMESS! This is inline with the previous discussion about the scaling with respect to
the basis set size, namely, the M13oca1 scaling for LDF-EXX compared to the N# scaling
of a standard HF implementation. Note that the comparison is not with respect to the
faster QFMM+LinK method because the requested memory for this approach (17.5 GB)
exceeded the computational resources assigned. Moreover, the size of the molecule is not
big enough to notice a significant difference between LinK and QFMM+LinK (see Figure
3.12).

Timings of the LDF-EXX energy gradients were also compared to the standard HF
implementation and the linear scaling QFMM+LinK HF implementations of GAMESS.
Figure 3.13 shows timings to compute the complete HF energy gradient (one electron,

Coulomb and exchange) employing the 6-31G** basis set. Again the improved perfor-
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Figure 3.13: Timings [min] for the full HF energy gradient of linear alkane chains employing the 6-31G**
basis set. LinK == refers to the default HF implementation in GAMESS, QFMM = refers to the GAMESS
HF implementation using the quantum fast multipole method to calculate Coulomb interactions, A2*/A2*
= refers to the LDF-EXX implementation in deMon2k using the GEN-A2*/GEN-A2* approach, and A2/A2*
= refers to the LDF-EXX implementation in deMon2k using the GEN-A2/GEN-A2* approach.

mance of our new LDF-EXX algorithm is clearly visible.

Noticing such huge speed-up factors of LDF-EXX with respect to traditional HF im-
plementations, we decided to perform the comparisons of two-dimensional and three-
dimensional systems with respect to the computationally more efficient DF-DFT and ADFT
approaches. As two-dimensional systems, we used saturated graphite sheets, Cy,2Hy,,
with 2 < n < 8. Figure 3.14 shows the average time to compute one SCF iteration of
LDF-EXX HF in comparison with the corresponding times for DF-DFT PBE and ADFT
PBE calculations on these systems. As Figure 3.14 shows, LDF-EXX HF and DE-DFT GGA
calculations need almost the same time for one SCF iteration. In contrast, the ADFT ap-
proach achieves an almost linear scaling behavior very soon, and keeps far apart from
the other two methodologies with increasing system sizes. It is important to note that the
times shown in Figure 3.14 do not include the final LDF-EXX energy calculation. Besides
benchmarking the computational efficiency of the LDF-EXX algorithm, saturated graphite

sheets also test the MO localization algorithm because they are highly delocalized systems.
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Figure 3.14: Fock and Kohn-Sham matrix build average timings [min] for saturated graphite sheets em-
ploying the 6-31G** basis set. EXX == refers to the LDF-EXX HF calculations using the GEN-A2*/GEN-A2*
approach, DF-DFT == refers to the DF-DFT PBE calculations, and ADFT == refers to the ADFT PBE calcu-
lations.

The MO localization algorithm took no more than 10 seconds per iteration in the largest
system, C,sHj,. This represent less than 2% of the total computational time.

Finally, saturated diamond unit cells C,,sHg,2, with 2 < n < 6, were used to benchmark
three-dimensional systems. These systems have n diamond unit cells in each Cartesian
direction. Figure 3.15 shows the average time needed for one SCF iteration for LDF-EXX
HF, DF-DFT PBE and ADFT PBE calculations on these systems. The results are similar to
the ones for the saturated graphite sheets in Figure 3.14. As expected, ADFT calculations
are much faster than LDF-EXX HF or DF-DFT ones. However, one important difference
with respect to Figure 3.14 arises: the LDF-EXX HF calculations are always faster than
DF-DFT ones!

In conclusion, LDF-EXX calculations show, by and large, the same computational effi-
ciency as DF-DFT ones with a GGA-type functional. Furthermore, LDF-EXX can achieve
speed-ups of 1to 2 orders of magnitude with respect to traditional four-center implementa-
tions even with basis sets as small as the double-C 6-31G**. With larger basis sets this differ-

ence becomes even larger. Thus, our new LDF-EXX algorithm can be straightforward used
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Figure 3.15: Fock and Kohn-Sham matrix build average timings [min] for saturated diamond unit cells
employing the 6-31G** basis set. EXX == refers to the LDF-EXX HF calculations using the GEN-A2*/GEN-
A2* approach, DF-DFT == refers to the DF-DFT PBE calculations, and ADFT == refers to the ADFT PBE

calculations.

for hybrid DF-DEFT calculations with a minimum impact on the scaling of this methodol-
ogy. On the other hand, LDF-EXX will still be the computational bottleneck in ADFT
hybrid calculations. A possibility to overcome this computational bottleneck is the com-
bination of LDF-EXX with the so-called Auxiliary Density Matrix Method (ADMM).?"%'%

The working formulas for such a combination are presented in section 6.2.2 of this thesis.

3.4.4 PARALLELIZATION

The parallelization of the code was benchmarked with the same one-, two- and three-
dimensional systems with and without the octree sorting algorithm. The wall clock time
needed to build one EXX contribution with 1, 2, 4, 8 and 16 CPUs is shown in Figure 3.16.
The benchmarked systems were the linear alkane chain Cs)H,j,, the saturated graphite
sheet C,sH;, and the saturated diamond C,,3Hy, employing the 6-31G** and the GEN-
A2/GEN-A2* approach. As Figure 3.16 shows, the use of the octree algorithm to sort the
LMOs among the CPUs makes a huge impact on the efficiency of the LDF-EXX algorithm
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Figure 3.16: Influence of the octree algorithm on the average time to build one EXX contribution in parallel
for one-, two- and three-dimensional systems. Plot A shows the time [s] for the linear alkane chain C5,H;,.
Plot B shows the time [min] for the saturated graphite sheet C;,3Hj,. Plot C shows the time [min] for the
saturated diamond C,gHgs. All calculations employed the 6-31G** basis set and the GEN-A2/GEN-A2*

approach.
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parallelization, specially for the one-dimensional systems. For this case, the sorting algo-
rithm can speed-up the parallelization of the code almost by a factor of 3 for small number
of processor count. The octree algorithm has also a positive impact on the efficiency of the
LDF-EXX parallelization for two-dimensional and three-dimensional systems. However,
as Figure 3.16B shows, the time to build one EXX potential for the two-dimensional satu-
rated graphite sheets is less accelerated by the sorting algorithm. This behavior is a con-
sequence of the extension of LMOs, which are less local in conjugated systems compared
to non-conjugated ones. The three-dimensional saturated diamond unit cells corroborate
this observation. Figure 3.16C shows that the boost achieved by the octree sorting algo-
rithm is intermediate between the one-dimensional and three-dimensional cases.

It is important to note that the time needed to sort the LMOs is negligible (around 5 s for
these systems) and, therefore, LMOs are always sorted. Also note that when Ncpy > Nocc

the sorting algorithm is not needed.
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I would like to emphasize strongly me belief that the
era of computing chemists, when hundreds if not thou-
sands of chemists will go to the computing machine
instead of the laboratory for increasingly many facets
of chemical information, is already at hand. There is
only one obstacle, namely that someone must pay for

the computing time.

R. S. Mulliken

Low-Order Scaling Response Property

Evaluation

Many molecular properties can be calculated as the derivative of the total energy with
respect to internal or external perturbations. These properties are often observables and,
therefore, permit the direct measurement of the molecular electronic structure response
to a given perturbation. For this reason they are often named response properties. The
connection between energy derivatives and molecular properties can be best seen by ex-
panding the energetic response in a Taylor series around the perturbations. Thus, the
perturbed energy can be written as:

1d°E

At -——
A=0 2d)°

dE
E(A)=Eo+ -5

2
= P (4.1)

A=0
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where Ej is the unperturbed reference energy and A is used to denote a perturbation. Such
perturbations can be electromagnetic fields, external charge distributions or nuclear dis-
placements, to name a few. There is a vast number of response properties that are of
interest to various research fields. Many of them correspond to second- and higher-order
derivatives of the energy and, therefore, these properties depend on the response of the
density matrix P. In quantum chemistry, this response can be obtained either from the
response of the molecular orbitals or directly from the response of the density matrix. The
former yields the so-called Coupled-Perturbed SCF (CPSCF) methods.?"**° that reduce
to the Coupled-Perturbed Kohn-Sham (CPKS) approach in the framework of Kohn-Sham
DFT. The latter is the starting point for McWeeny’s self-consistent perturbation (SCP) the-
ory.?”7?? Unfortunately, the CPKS equation system possesses a very large dimension and
the SCP problem can become rather difficult to converge. Therefore, many recent devel-
opments in molecular response theory have been aimed in developing new algorithms

233-241

that can circumvent these problems. All these methods have to solve a nonlinear

equation system and, thus, rely on iterative solvers. Noniterative molecular response al-

242-250

gorithms have also been developed, among which Auxiliary Density Perturbation

242,243,251

Theory (ADPT) is a prominent example.

4.1  AuxiLIARY DENsSITY PERTURBATION THEORY

The basic idea of ADPT is to develop the molecular response through the auxiliary den-
sity instead of the orbital density. As a consequence, the response of the density matrix
elements is substituted by the response of the Coulomb and exchange-correlation fitting
coefficients. For the detailed derivation of the static and frequency-dependent ADPT equa-
tions we refer the interested reader to references [ 242], [ 243], [ 251] and [ 252]. Here, we
will take only the results for the linear response and perturbation-independent basis set

as an example.
According to McWeeny’s SCP method, an element of the dynamic first-order perturbed
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density matrix is given by

occ  uno ,C(/\)( ) occ  uno

P (w) =2 Z Z p——_ T Z Z e (4.2)

where I (w) is the perturbed Kohn-Sham matrix in MO representation. An element of

K™ (w) is obtained according to
Z cuiK() (@) cva (4.3)
The perturbed ADFT Kohn-Sham matrix elements are given by:

KW (w) = HY +Z wllk) [+ (@) + 2 ()] (44)
The here appearing perturbed core-Hamiltonian, H"), depends on the particular pertur-
bation being studied. Independent of the form of HY, the perturbed fitting coefficients

x™ and zY) must be computed in order to obtain P™W. To this end, ADPT takes advantage
of the perturbed Coulomb fitting equations which, for perturbation-independent auxiliary

function sets, take the form

> Gax (@) = 3 (Klluv) PR (@) (45)

[TRY

Equations (4.2) and (4.5) can be combined into a single one. Multiplying Equation (4.2) by

(uv||k) and summing over all AO pairs yields

Zpyv luv”k = ZZZZ Zﬂ CWCW luka>

ocC uno

2 Z Z Z Z“ cch (uv]k) (4.6)

where we have introduced w;, = ¢; — ¢,. The rhs of Equation (4.6) can be further simplified
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by performing the sum over the AOs and using the permutational symmetry of the ERIs:
ZP w)(uvllk) = 422/&) <za||k> 4.7)
Substituting the rhs of Equation (4.7) into the rhs of Equation (4.5) yields

OocCc uno

> Gaw) =433 K@
l

<lﬂ\|k> (4.8)

To proceed further, the perturbed Kohn-Sham matrix K(w) appearing in Equation (4.8) is

expanded:

ZG’H’CTW = 422% _ Wi za||k>
1

occ uno

4222 [ (@) + 2" ()] {lia) "

ia

= (ia]|k) (4.9)

Collecting all terms that depend on the perturbed fitting coefficients transforms Equation
(4.9) into:
Y GV (@) -4 Aglw) [xj“) (@) + 2V ()| = 4™ (w) (4.10)
1 1

where
OCC O0cCcC

Ag(w Z Z k||za

is an element of the Coulomb response matrix A (w), and

— (ialll (4.11)

OCcC uno

) =33

— (ial k) (412)

is an element of the perturbation vector b (w). Finally, the perturbed exchange-correla-

tion coefficients are obtained from Equation (2.45) as:

zM(w) = GTILW(w) (4.13)

88



with

@) =[] T k) 5,0 i
- fo (w) //fxc[p](rlarz) I_C(r1)7(r2) dr; dr,
= Zx— )(1 fielp] | F) (414)

In Equation (4.14), we used the following definition for the adiabatic exchange-correlation

kernel:
8’ Exc[p]
6p(r1) 6p(r2)

The adiabatic kernel is, formally, nonlocal in space but local in time, i.e. frequency inde-

frelp)(rr,12) = (4.15)

pendent. For local and semilocal functionals the kernel further simplifies to: *'%*

frelpl(r1,12) = fe[p] (11, 12)0(11 — 12) (4.16)

For the case of LDA DFAs, this approximation is known as the Adiabatic Local Density
Approximation (ALDA).*'?? Substitution of Equations (4.13) and (4.14) into Equation (4.10)

yields the following linear equation system for x") (w):

}LG —Aw) (E+GF) | xV(w) = bY(w)

R(w)xM(w) = bM(w) (4.17)
where an element of the kernel matrix, F is given by:

Fg = (k| felp]I1) (4.18)

Different to CPKS, Equation (4.17) can be solved by the explicit inversion of the ADPT
response matrix, R(w), because the dimension of the problem is reduced from (Noe X
Nuno) X (Noee X Nuno) in CPKS to M x M in ADPT. This procedure, however, is prone to

numerical instabilities that can be encountered during the matrix inversion. Therefore,
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this step is performed based on the singular value decomposition (SVD) of the response
matrix. It is important to note that even when the matrices G, A(w) and F are symmetric
matrices, the full response matrix is generally not symmetric. Thus, the SVD of R(w) is
carried out by the eigenvalue decomposition (EVD) of R(w) [R(w)]" or its transpose. The
disadvantage of this step is that if R(w) is ill-conditioned, then R(w) [R(w)]" will be even
worse conditioned. In order to avoid such problem, one can try to obtain an explicitly
symmetric form of Equation (4.17) and perform the SVD over this symmetric matrix. It is

straightforward to show that introducing the identity
E=G"'A(w)A(w)'G (4.19)
into Equation (4.17) yields an equivalent symmetric problem with the form

R(0)GA(w)yM (@) = bW (w)

}IA(a))—A(a))G1A(a))—A(w)G1FG1A(a)) yMw) = bM(w)  (4.20)

where

yM(w) = A(w)'GxM(w) (4.21)

For ease of notation, we will denote this symmetric matrix as R'(w). Equation (4.20) still
can have some numerical issues despite being a real and symmetric linear equation sys-
tem. Let us illustrate most of the problems encountered while solving the ADPT equation
system. Figure 4.1 shows a color map of the difference, in a.u., between R(w) and [R(w)]"
for one water molecule described at the VWN/DZVP/GEN-A2 level of theory. If R(w)
would be symmetric, then the color map shown in Figure 4.1 would be a blank square.
However, it can be seen that R(w) is not symmetric even for this very simple system. In
order to obtain a direct solution of the ADPT response equations, either Equation (4.17) or
Equation (4.20) must be solved. The numerical stability of any of these methods will be

governed by the condition number, «, of the corresponding matrix. If the spectral norm
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Figure 4.1: Color map showing the difference [a.u.] between the ADPT response matrix and its transpose
for one water molecule at the VWN/DZVP/GEN-A2 level of theory.

is chosen, then x can be computed as

Omax(A)

k(A) = ooin(A)

(4.22)

for any arbitrary matrix A. Here, 0max(A) and omin(A) denote the largest and smallest sin-
gular values of matrix A, respectively. By definition, singular values are positive semidef-
inite. All nonzero singular values correspond to the positive square roots of the nonzero
eigenvalues of AAT and ATA.?>® The utility of defining the condition number « in terms
of singular values is that every real matrix has a real decomposition of the form A = ULV’
where U and V are orthogonal matrices and X is a rectangular diagonal matrix that col-

lects all singular values.”*

In order to gain insight into the numerical stability of solving the ADPT equation system,
it is instructive to plot all singular values of the matrices R(w), R/(w) and R(w) [R(w)]".
Figure 4.2 shows a plot of the singular values of all these matrices on a logarithmic scale.
From this figure follows that the symmetric approach has the worst condition number,
10°. Then, R(w) [R(w)]" follows relatively close with a condition number of around 108.

Finally, the original matrix has a condition number of around 10*. Thus, it is preferable to
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Figure 4.2: Singular values of the ADPT response matrix and the corresponding symmetrized response
matrices for one water molecule employing the VWN/DZVP/GEN-AZ2 level of theory.

avoid any of the modifications to the original matrix in order to ensure the best numerical
stability attainable for the solution of the ADPT equation system. Furthermore, the condi-
tion number worsens with increasing system size. When using the VWN/DZVP/GEN-A2
level of theory, the condition number of the ADPT response matrix R(w) for the C,H,,
linear alkane chain is around 3 x 10°, the corresponding one for the C,,H,, chain is around
1x 107 and the one for C,,H,, is 3 x 10”. We note that the default method to solve the ADPT

response equation system in deMon2k prior to this work was to obtain R(w) ™ as:

R(o)" = [R(@)]" (R@) [R(@)]") (4.23)

The numerical stability was controlled by the SVD of R(w) [R(w)]".

Besides these numerical instabilities, solving either Equation (4.17) or (4.20) can become
computationally demanding. Most evident is the M? scaling for the matrix diagonaliza-
tion needed for the SVD. However, the real bottleneck of ADPT arises in the actual com-
putation of R(w). In order to obtain the ADPT response matrix, four different matrices

must be computed: G, G, A(w) and F. When the ADPT module is called, the matrix G
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Figure 4.3: Wall clock times of the principal ADPT modules for the polarizability calculations of linear

alkane chains. The VWN/DZVP/GEN-A2 level of theory was used. See text for more details. A small offset
was introduced to F for visibility.

and its inverse are already computed and stored. The computation of the kernel matrix, F,

2
loca

involves a numerical integration which scales as M; ., x G. Finally, computation of A (w)
involves three quartic-scaling steps: the first one is an M x N? X N, scaling step that trans-
forms the three-center ERIs from (k|| uv) to (k||iv), the second one is an M x N x Noce X Nuno
scaling step that transforms (k||iv) into (k||ia), and the third involves the contraction of the
ERIs over the MO indices. Thus, the ADPT scaling is dominated by the computation of
the Coulomb response matrix which represents its computational bottleneck. To illustrate
this, static polarizability calculations for linear alkane chains with up to 100 carbon atoms
were performed. In this case, the VWN/DZVP/GEN-A2 level of theory was used. The
calculations were performed on a single Intel® Xeon® X5675 @ 3.07 GHz processor with
4 GB of allocatable memory. Figure 4.3 shows the wall clock time needed to compute F,
A(w) and all other steps involved in the calculation of the polarizability tensor a. It can
be seen that the computation of the kernel matrix possesses almost linear scaling behav-

ior. This linear scaling is due to the fact that M., remains constant and, thus, this part of

the code scales only with the number of grid points G. In contrast, the A(w) calculation
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possesses a quartic scaling and, thus, quickly becomes the bottleneck for the polarizability
tensor calculation. It is evident that if ADPT is to be used to describe response properties
of nanosystems a new way for solving the response equation system is needed.

The explicit computation of all matrices involved in the response equation system can
be avoided if an iterative procedure is used to obtain x!)(w). In this way, only the action
of R(w) on a trial vector is required. Along this line, an iterative solver for the ADPT
response equation system is presented in the following section. The newly developed
iterative solver allows the reduction of the computational scaling of the algorithm and

works directly on R(w), avoiding the ill-conditioned matrices R/(w) and R(w) [R(w)]".>

42 ITERATIVE SoruTioN TO THE ADPT EQuUATIONS

It is widely known that the solution of very large linear equation systems can be achieved
in the most efficient and stable form by iterative methods. This is, in part, because the
coefficient matrix is used only to compute its action on a given vector. In this form, the
elements of the matrix do not need to be available at all times, saving a huge amount of
memory. It is therefore convenient to derive an iterative algorithm that avoids the explicit
calculation of the Coulomb matrix A (w), the current bottleneck of ADPT. To this end, we
now analyze how to compute the action of the response matrix on a trial vector p in the
most efficient manner. Itis evident that such an action can be divided into three: the action

of G, the action of G™'F and the action of A (w).

The action of G on a trial vector is extensively used in the Coulomb solver proposed by

108

Dominguez-Soria et al.'” The complexity of this step has a formal M? scaling, but it can

be further lowered by means of the double-asymptotic ERI expansion.'”

The action of G™'F on the trial vector p can be subdivided into two steps. The result of

the first one is the kernel vector f with elements:

i = ZU"fxc | Dy

= (klfelp) (4.24)

—
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where p(r) is obtained as

=> pik(r) (4.25)
k

The value of p(r) at every grid point is obtained in an analog way as for the auxiliary
density, thus, it possesses an Mjoca % G scaling. The evaluation of the vector f can also be

performed with an M. % G scaling, since f is obtained as:

fi = ng ) feelP(xg)] - plr) (4.26)

Thus, only M, contributions to f are computed at every grid point. In the second step, f
is transformed with the inverse Coulomb matrix. In order to perform this transformation,
Glis read from disk. An alternative option is to solve, by means of the preconditioned

conjugate gradient solver used to obtain z,'” the linear equation system:
Gf'=f (4.27)

This avoids the need for an explicit G™! matrix for ADPT (see also section 6.2.1). Finally,

the action of A(w) on p yields a vector a(w) with elements

@) = Aglo)py (4.28)
1

Substituting Equation (4.11) into Equation (4.28) yields

ocC uno

Z Z Z kHza

<za 1D (4.29)

Introducing the LCGTO expansion, Equation (4.29) transforms into

OCcCc uno

1 (w) = Z {k||oT) Z Zcmcm o a)2 chcm Z (wv||Dp; (4.30)

where we have ordered the summations according to the discussion of the following indi-
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vidual steps.

The last sum on the rhs of Equation (4.30) is arithmetically equivalent to the one used
to obtain the Kohn-Sham matrix in the ADFT direct SCF approach.””*° Thus, the same
subroutines, with the appropriate input fields, can be used. The formal scaling of this step
is N? x M, but it can be further reduced by integral screening and the double asymptotic

ERI expansion. Performing the sum for all AO pairs defines a new matrix Q with elements

Qu =Y _(wlk)pe (4.31)

k
Substituting Equation (4.31) into Equation (4.30) yields

occ uno

( Z kHGT chazcm 2 — 2 chcanyv (432)

The next step is the transformation of the matrix Q into its MO representation, namely,
Q = Cgcc Q Cuno (433)

which can be decomposed as two matrix-matrix multiplications, one with N? X N, scaling
and the other with N x Ny X Nypo scaling. These two cubic steps are performed with
optimized BLAS subroutines. This ensures near peak performance and, therefore, the
cubic scaling can be hidden for most system sizes. Afterwards, Q is scaled with the orbital

energies to yield a new matrix whose elements are given by

/ Wiy
Qia (a)) = Qiawz— (4-34)

2
ia W

This transformation has an Ny X Nyno scaling. With these steps Equation (4.32) is trans-

formed into:
OoCcC uno

ag(w) = > (kllo7) Z Zcmchm (4.35)
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The next step is the back-transformation of Q'(w) into AO representation according to

T(0) = coee@ (w)cl,

uno

(4.36)

which can be performed in an equivalent way as discussed for Equation (4.33). Finally, an

element of the resulting a(w) vector is computed as:

ap(@) = (klloT) Tor () (4.37)

0,T

This last step is almost arithmetic equivalent to the computation of the Coulomb vector J,
Equation (2.31). However, note that T(w) is not a symmetric matrix. Thus, care must be
taken when re-using the subroutines for computing J. Besides this small technical detail,
this last step preserves the M x N? formal scaling and can also take advantage of integral

screening and the double asymptotic ERI expansion.

In summary, we have shown that the action of R(w) can be decomposed into several
steps which do not exceed a formal cubic scaling. The calculation of the kernel vector f
exhibits a linear scaling and three other steps show, at worst, quadratic scalings, namely
the computation of Gp, G™'f, and Q'(w). Two other steps, the formation of Q and a(w)
can be computed with subquadratic scaling by using integral screening and the double
asymptotic ERI expansion. Finally, the two remaining steps involve four cubic scaling
matrix-matrix multiplications that benefit from a very low prefactor by using optimized
BLAS subroutines and, consequently, remain “hidden” for a wide range of system sizes

before becoming the computational bottleneck.

In addition to the reduction of the computational complexity, the iterative solver also
achieves a reduction in the memory demand for the perturbation calculation. Explicit
construction of the Coulomb response matrix A(w) requires sufficient memory to store
M x Noee X Nyno real numbers, many times forcing its computation to be performed in
batches. With the new solver, two N x N matrices and few M-dimensional vectors are

needed. In fact, the small amount of memory required by the iterative ADPT solver allows
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the storage of near-field ERIs in memory. As a consequence, the mixed SCF paradigm,
where near-field ERIs are stored in memory and far-field ERIs are recalculated as needed,
becomes also applicable for the ADPT solver.'®

In the previous paragraphs, we have shown that the iterative solution of the ADPT
response equation not only reduces the formal scaling of the algorithm, but also allows
the usage of highly efficient algorithms to compute the computationally most-demanding
tasks, i.e., optimized BLAS subroutines for matrix-matrix multiplications and an analog
of the mixed SCF scheme for the ERI calculation. However, given that the ADPT response
matrix R(w) is not symmetric, special solvers must be used. Traditional algorithms de-
veloped for these type of equation systems include BiCG, BICGSTAB,*” CGS,*® QMR*”
and GMRES.?*" Some of them lack the desirable global residual minimization properties
or require the storage of a large number of basis vectors. Moreover, BiCG, BiICGSTAB and
CGS work with the “squared” linear system in order to deal with a symmetric matrix. As
we have seen, working with the squared system might introduce severe numerical insta-
bilities to the algorithm. As an alternative, a new class of efficient nonsymmetric iterative
solvers have been introduced on the basis of the Eirola-Nevanlinna (EN) algorithm.?¢=*%
It has been shown that the EN algorithm performs equally well as the more traditional
GMRES approach.”® One advantage of the EN algorithm is that it improves an approx-
imate inverse coefficient matrix each iteration. This property is particularly important
when dealing with several perturbations because the improved R(w) ™! can be used as a
preconditioner for subsequent response equation systems. In the following subsection

we will give a brief description of the EN algorithm and its implementation in the ADPT

response branch of deMon2k.

42.1 EIROLA-NEVANLINNA ALGORITHM

In 1989, Eirola and Nevanlinna proposed an iterative algorithm to solve nonsymmetric
linear equation systems which is accelerated via rank-one updates of an approximate in-

26

verse coefficient matrix.”*! Figure 4.4 shows the original EN algorithm, EN1, which has

been rewritten in terms of the ADPT response equation system. To simplify the notation,
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1: procedure EN1

2 Initialization: x(()A) , Hy arbitrary, ry = b — RX(()A)
3 forj=0, ndo

4 if ||rj||oc < 7 then

5: Exit

6: end if

7 u; = H](E — RH])I']

8 Vi = mep (B — H/RT)Ruy

9 H]'Jr] = H] + u]'VjT

10: X](J/g = X](A) + H]'_HI‘]‘

11: I']'+1 = b(/\) — RX](jg
12: end for

13: end procedure

Figure 4.4: Original Eirola-Nevanlinna algorithm ENI1. The matrix R is the coefficient matrix, Hy is an
approximation to the inverse coefficient matrix and xéA) is a guess for the solution vector.

the w dependency of vectors and matrices will be dropped in this subsection. Hj is a guess
to the inverse response matrix and X(()/\) is a guess for the perturbed fitting coefficients. The
algorithm starts by calculating the residual ry = b®) — Rx{") and improves x]m on each
iteration by minimization of the residual. In exact arithmetic the EN1 algorithm yields the
solution in at most M steps, for an M x M linear equation system, under the assumption
that all H; are nonsingular. The disadvantage of the ENI algorithm is that the action of
R on different vectors has to be computed four times. An alternative algorithm, devel-
oped for situations where it is more convenient to calculate a linear combination of j +1
vectors instead of multiplying a vector by R, was also given in the original EN paper?”
and we will call it EN2. For stability reasons, Vuik and van der Vorst proposed a slight
modification of the EN2 algorithm based on the modified Gram-Schmidt orthogonaliza-
tion and a scaling invariant approach.”***** Figure 4.5 shows the EN2 algorithm including
the modifications of Vuik and van der Vorst. Only two actions of the ADPT response
matrix are needed per iteration of the EN2 algorithm, making it computationally more
efficient than EN1. In EN2, however, the updates to the approximate inverse are not per-
formed explicitly. Instead, the action of the updates are carried through the vectors c and

u. Other modifications of the EN2 algorithm have also been suggested, **>~** but the here

presented EN2 algorithm requires one action of R less than these modified algorithms. In
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1: procedure EN>

2 Initialization: x(()A) , Hy arbitrary, ry = b — RX(()A)
3 forj =0, ndo

4 if ||rj||oc < 7 then
5: Exit

6: end if

. . r]THgRTrj

Yy = r].THgRTRHOr]-

8 6 =T — yRHOI']'

9: n-= ]/HQI']'

10: form=0,j—1do
11 a=cl&

12: E=&—ac,

13: n=n+auy,

14: end for

15: Cj = RH¢

16: Llj = Hoé

17: form = Oj—ldo
18: ﬁ = —c,C

19: = ¢j + Bcy
20: u] = u; + fuy,
21: end for
22: C]' = W
23: ll]' = m

24: X](J/g = X](/\) + n + UjC]-Téj
25: ri=§& — ch].TEj

26: end for
27: end procedure

Figure 4.5: Modified Eirola-Nevanlinna algorithm, EN2, based on a modified Gram-Schmidt orthogonaliza-

tion and designed to be scaling invariant. The matrix R is the coefficient matrix, Hy is an approximation to

(1)

the inverse coefficient matrix and x; " is a guess for the solution vector.
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order to avoid memory overflows a restarted version of the EN2 algorithm, that drops all
c and u vectors after r iterations, is the one actually implemented in deMon2k. Since all
iterative ADPT calculations performed so far have converged in 9 iteration or less, r was
set to 15. This choice of r allows more flexibility for hard-cases and keeps the memory
demand fixed.

A very important choice to be made is that of Hy, i.e., the guess for R™!. The only
condition imposed by the algorithm is that Hj has to be nonsingular. The identity matrix,
E, is a valid guess, however, choosing Hy = E has led to non-converging cases. As a
consequence, we decided to use Hy = G as guess. This choice is motivated by several
observations. First, G is formally a nonsingular matrix. Second, the Coulomb matrix
appears in the definition of R, thus, R can be obtained as a perturbation to G ' according
to the Woodbury formula.?*®?*” Third, setting Hy = G ! ensures the solution of the zeroth-

order approximation to Equation (4.9), i.e. the solution to:

Gx®M = 4pW (4.38)

Note that Equation (4.9) can also be used to obtain an SCP solution but previous tests
have shown that convergence is very problematic. Therefore, we decided to use the EN2
algorithm with Hy = G~! because it combines the reduced dimensionality obtained in

Equation (4.9) with a very robust numerical solver.

4.3 VALIDATION AND BENCHMARKS

4.3.1 VALIDATION

In order to validate our new iterative procedure, we compared static and dynamic polar-
izabilities of small molecules obtained with the direct and the new iterative solver. The ex-
perimental geometries were used for this comparison.”*® In addition, the DFT-optimized
valence triple-C plus polarization (TZVP)**” basis sets augmented by field-induced polar-

ization (FIP) functions were employed. These TZVP-FIP1 basis sets are described in detail
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in references [270], [271] and [272]. The reported mean polarizabilities are calculated from

the diagonal elements of the polarizability tensor as

a(w) = [a(w)xx + a<w>yy + a(w)zz} (4.39)

QW

The corresponding polarizability anisotropies are calculated in the principal axes system

of the polarizability tensor according to

Aa(@)P = 5 | (@(@)s — a(@)y)” + (@@ ~ 3(@)=) + (@) — (@)2)’]  (@40)

N =

Table 4.1 shows static polarizabilities and polarizability anisotropies [a.u.] obtained from
the direct and iterative solution of the ADPT equations. We included experimental re-
sults as reference but will not further discuss them here because ADPT accuracy has been
extensively discussed in the literature.”>*** Instead, we focus on the comparison of the
results obtained with the two different solvers for the ADPT equation system. The agree-
ment between direct and iterative solutions is almost perfect with a maximum absolute
deviation of 0.01 a.u. for a(w) and 0.02 a.u. for |Aa(w)|. Further tightening of the con-
vergence criteria does not change these results. Dynamic polarizabilities, listed in Table
4.2, show exactly the same behavior. The small differences arise from the SVD performed
in the direct solution of the ADPT response equation system. These results demonstrate
that the iterative solver does not alter the previously reported accuracy of ADPT. Further-

more, it is expected that xV

contains less numerical noise since the SVD step has been
completely eliminated. It is also important to mention that each perturbation converged
in less than five iterations, demonstrating that the chosen EN2 algorithm in combination
with the G ! start guess is well suited for solving the ADPT response equation system. To
further demonstrate the suitability of the EN2 algorithm, we computed the polarizability
dispersion for the Li atom. These calculations were performed with the objective to test

the performance of the iterative algorithm near excitation poles, where the polarizability

diverges towards +o0o. Figure 4.6 shows the polarizability dispersion of the lithium atom
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Table 4.1: Comparison of static LDA polarizabilities [a.u.] and polarizability anisotropies [a.u.] of small
molecules obtained with the direct and iterative solver for the ADPT equation system. For comparison, the
available experimental data are listed, too. For all molecules, the experimental geometries are used.

Molecule Direct Iterative Expt.
a |Ac| a |Aa| a |Aa|
HF 589 113 589 113 5.40°  1.35°
CH, 17.38 17.38 17.274
GCH, 2340 12.52 23.39 12.52 22,684 11.83¢
CH;F 17.69  1.49° 17.69  1.49° 17.32¢ 141
HCl 18.02*  1.96 18.02*  1.96 17.545 147"
H,S 2472 0.57% 2472 0.57% 2466 0.67
CH,F, 18.46  1.92° 18.46  1.92° 18.20¢  1.70"
OCS 3410 25.25 3410 25.25 34.33¢ 26.26¢
SO, 2565 13.26 25.64 13.26 25.49% 12.98%
CHF; 19.65 1417 19.65 1417 18.69¢  1.46f
CF, 19.93 19.93 19.534
CS, 5427 54.95 5426 54.93 55.38¢ 57.38°

2 Calculated dynamic values at experimental A.

b Static value from refractive index dispersion (Ref. 273).

¢ Static value from molecular beam electric resonance (Ref. 274).

4 Static value from refractive index dispersion (Ref. 275).

¢ Deduced from static estimates of Ref. 276.

f Dynamic values at A = 632.8 nm (Ref. 277).

8 Depolarized light scattering at A = 632.8 nm (Ref. 278).

h Static value from molecular beam electric resonance (Ref. 275).

I Extrapolated static value from dispersion dynamic mean polar-
izability (Ref. 279).

J Dynamic value at A = 632.8 nm from Kerr effect (Ref. 280).

K Static value from refractive index and Rayleigh scattering disper-
sion (Ref. 279).
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Table 4.2: Dynamic LDA polarizabilities [a.u.] and polarizability anisotropies [a.u.] of small molecules
obtained with the direct and iterative solver for the ADPT equation system. For comparison, the available
experimental data are listed, too. For all molecules, the experimental geometries are used.

Molecule Direct Iterative Expt.
a |Ac| a |Aa| a |Aa|
NH; 15.29 2.64 15.29 2.64 14.98°  1.94°
H,O 1046 0.4 1046 013 9.92°  0.66°
N, 11.99  5.06 11.99  5.05 11.95*  4.70°
CcO 13.70  3.34 13.70  3.35 13.34*  3.59°
NO 11.97 554 11.97  5.53 11.74*  5.702
O, 10.56  6.18 10.56  6.18 10.78*  7.422
N,O 19.82 1946 19.82  19.45 20.24* 19.97°
CO;, 1772 13.88 1772 13.89 17.75* 14.17%
Cl, 31.03 15.45 31.03 15.43 31117 17.547

CHy 2912  12.86 2910 12.84 28.48% 12.21°
CH 3043  4.66 3043  4.67 30.10*  5.207
CeHs 72.68 40.57 72.67 40.56 70.18* 37.93°

2 Depolarized light scattering at A = 632.8 nm (Ref. 278).

b Depolarized ratio from Rayleigh scattering at A = 514.5 nm (Ref.
281).

¢ Depolarized light scattering at A = 632.8 nm (Ref. 279).
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Figure 4.6: Polarizability dispersion for the Li atom at the PBE/aug-cc-pVTZ/GEN-A2* level of theory. The

green point near the center of the image demonstrates the odd behavior of the direct solver when |w — wj,| <
10~* a.u. for this system. A small offset of 10 a.u. was included to aid the visibility.

obtained with the PBE/aug-cc-pVTZ/GEN-A2* level of theory. It can be seen that both
solvers, direct and iterative, overlap for almost all points. The only difference is found for
the closest point to the pole (green point of Figure 4.6). The average polarizability obtained
with the direct approach is around 13 a.u., while the corresponding iterative average po-
larizability is above 200,000 a.u.! Thus, the direct solution shows an odd behavior very
close to the singularity. This kind of odd behavior of the direct solver is also seen in the
polarizability anisotropy which can be as large as 3 a.u. with the direct approach. For the
Li atom this anisotropy should be of course zero by symmetry and, therefore, this large
values arise from numerical instabilities in the direct approach. In contrast, the iterative
polarizability anisotropy does not exceed 0.03 a.u. for any point calculated with the itera-
tive approach.

In summary, we have shown that the here presented ADPT iterative solver provides the
same results as the traditional ADPT solver for both static and dynamic polarizabilities.
Furthermore, we also demonstrated that the iterative solver is numerically more stable

near excitation poles than the traditional ADPT solver.
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4.3.2 BENCHMARKS

In order to test the real computational complexity of the code, static polarizability calcu-
lations for linear alkane chains with up to 100 carbon atoms, at the VWN/DZVP/GEN-A2
level of theory, were performed. A single Intel® Xeon® X5675 @ 3.07 GHz processor with
a maximum of 4 GB of allocatable memory was used for all calculations. Figure 4.7 shows
the wall clock time needed to obtain the full polarizability tensor using the direct and the
iterative ADPT solvers. The polarizability module in deMon2k performs the following

steps:
1. If requested, rotate the molecule and the converged MOs to ErisH orientation.
2. Compute G and its inverse G
3. Solve Coulomb fitting equation system to obtain x.
4. Build the perturbation vectors b (w).
5. Solve the response equation system to obtain x!)(w) and calculates z™M) (w).
6. Build the perturbed density matrices P (w).
7. Calculate the polarizability tensor elements as a,,(w) = > P}(ﬁ) (@)(p|ryv).
IRt

The difference between the direct and iterative solvers lies only in step 5. For the direct

solver, step 5 can be further divided as:
5. Solves the response equation system to obtain x!)(w) and calculates z™M (w).

(a) Build the Coulomb response matrix A(w).

(b) Build the exchange-correlation kernel matrix F.

(¢) Build the ADPT response matrix R(w) = ;G — A(w) (E — G7'F).
(d) Obtain R(w)™ = R(w)” (R(w)R(w)T) ™"
(e) Obtain xM(w) = R(w) bW (w).
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Figure 4.7: Timings [min] for serial static polarizability tensor calculations of linear alkane chains with the
direct and iterative ADPT solvers. The VWN/DZVP/GEN-A2 level of theory was employed.

(f) Obtain zW(w) = G7'TFxM (w).

In the case of the iterative solver, the EN2 algorithm is used in step 5 to directly obtain
xW(w). The perturbed exchange-correlation fitting coefficients are then obtained by com-
puting the action of F on x"(w) and, subsequently, the action of G™! on the resulting
vector. As can be seen from Figure 4.7, the direct and iterative solvers show similar per-
formance until the 30 carbon alkane chain. However, for larger alkane chains the quartic
scaling of the explicit building of the Coulomb response matrix A (w) (see also Figure 4.3)
in the direct solver becomes dominant, rendering this approach no longer competitive
with the iterative solver. The iterative solver is already 2x faster than the direct one for
the C,,Hg, chain, and achieves a 20x speed-up for the largest alkane chain tested. This
means that the polarizability of the C,,,H,,, alkane can be obtained within 17 min with the
iterative solver instead of 5.5 h with the direct one! The average polarizability obtained
with both solvers differ by less than 0.1%, 1,076.69 a.u. vs. 1,077.57 a.u., for the direct and
iterative solvers, respectively.

To further analyze the scaling behavior of the most time-consuming steps involved in
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Figure 4.8: Average time [s] needed for each module in one iteration of the EN ADPT solver. The data
labeled as f refer to Equation (4.24); Q — Q — T refers to the matrix-matrix multiplication steps described
in Equations (4.33)-(4.36); Q refers to Equation (4.31); and a(w) refers to Equation (4.37). As benchmark
systems the same linear alkane chains as in Figure 4.7 are used.

the iterative solution to the ADPT response equations system, Figure 4.8 depicts timings
[s] for the individual steps of one EN2 iteration. Note that all these steps are related to the
calculation of the action of R(w) on some trial vectors, and that two of such actions are
needed in each EN2 iteration. The most time-demanding steps involve the calculation and
contraction of the three-center ERIs, namely, the computation of the matrix Q (Equation
4.31) and the vector a(w) (Equation 4.37). These steps represent 84% of the total time of

109 is

the EN2 solver for the C,, H,(, chain. Note that the double asymptotic ERI expansion
already used here. The other two remaining steps have very low computational demand
for these systems. The action of the kernel matrix to obtain f (Equation 4.24) represents
only 10 % of the total iterative algorithm time. Finally, the matrix-matrix multiplications
appearing in Equations (4.33)-(4.36) represent only 4 % of the total time. The remaining
2 % is distributed among all other matrix-vector and vector-vector operations appearing
in Figure 4.5. It is important to note that matrix-matrix multiplications are obtained with

the standard cubic scaling algorithm implemented in the BLAS subroutines. As a con-

sequence, these steps will eventually become the most computationally demanding ones.
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Figure 4.9: Performance comparison [min] between the standard and mixed ADPT iterative solvers. As
benchmark systems the same linear alkane chains as in Figure 4.7 are used.

An alternative to overcome the cubic scaling is the introduction of the Laplace transform of
the energy denominator of Equation (4.34) and the additional implementation of a sparse
matrix-matrix multiplication for the resulting scaled density matrices. This alternative
has yet to be explored but is kept as a perspective to develop a fully linear-scaling ADPT
approach.

Another advantage of the iterative ADPT solver is its low-memory demand compared
to that of the direct solver. As already mentioned, this opens up the possibility to store all
near-field ERIs and recompute only the far-field ones by the double asymptotic expansion
in each EN iteration. This new mixed ERIs*”* ADPT approach has a direct influence on the
most time-demanding parts of the ADPT iterative solver. Usage of the mixed ADPT ap-
proach introduces an additional speed-up factor of 2 for the ADPT iterative solver. This is
shown in Figure 4.9 where the performance of the standard ADPT iterative solver is com-
pared to the one of the mixed ADPT iterative solver. The speed-up achieved by the mixed
ADPT iterative solver should be more important for situations where many iterations are
needed to achieve convergence or when more equations systems have to be solved, for

example, in the computation of nuclear displacements or nuclear spin-spin coupling con-
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stants.

The new ADPT iterative solver has also been parallelized. The parallelization also takes
advantage of the low memory-demand of the iterative solver, consequently, architectures
with a moderate amount of memory per processor, i.e. 2 GB, can be efficiently used. This
is particularly important for the step that substitutes the calculation of the full exchange-
correlation kernel matrix, F. When the ADPT direct solver is invoked in parallel mode, all
processors allocate the full M? F matrix and calculate the contribution from a distributed
set of grid points. This matrix can be allocated by all processors simultaneously only
when M < 14,000 in a 2 GB/processor architecture. In contrast, the ADPT iterative solver
makes no use of M? matrices. The scalability of the parallel version of the ADPT iterative
solver was tested by performing static polarizability calculations on the C,,, fullerene at
the VWN/DZVP/GEN-A2 level of theory. All calculations were performed on the West-
Grid of Compute Canada using 5, 6, 7, 8 and 9 nodes composed of 12 Intel® Xeon® E5649
@ 2.53 GHz processors. Each one of these nodes has 2 GB of memory per core, for a total of
24 GB per node. This calculation employed more than 10,000 basis functions and almost
25,000 auxiliary functions. Therefore, a direct ADPT calculations of this system cannot
be performed on this computational architecture. Figure 4.10 depicts the wall clock time
[h] for solving the ADPT response equation system and to calculate the full polarizability
tensor. Note that the ADPT iterative solver and all other steps needed to obtain the po-
larizability tensor are very well parallelized. Also note that the time needed to solve the
ADPT response equation system was less than 7 hours with 5 nodes. Even more, with 9
nodes the total calculation time, including SCF and ADPT, is less than 10 hours! Another
important result obtained for the C,,,, and also for Cy, is that the computation is still
dominated by the calculation of the ERIs. Therefore, the cubic scaling steps that remain
in the iterative ADPT solver have still a minor impact for these system sizes.

In summary, the ADPT iterative solver is well suited for serial as well as parallel cal-
culations, reduces the formal scaling to N* x N, and achieves almost linear scaling for
systems with hundreds of atoms. As a consequence, the ADPT iterative solver allows the

computation of polarizabilities of nanosystems in just hours. Extension to other molec-
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Figure 4.10: Scalability of the ADPT iterative solver tested by calculating the full polarizability tensor of the

Cyy fullerene at the VWN/DZVP/GEN-A2 level of theory. The wall clock time [h] vs. the number of cores
in the parallel calculation is depicted.

ular response properties, like higher-order polarizabilities and nuclear displacements, is

straightforward and its currently under investigation in our laboratory.
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Solutions to problems
are easy to find:
the problem’s a great
contribution.
What is truly an art
is to wring from your mind
a problem to fit

a solution.

Piet Hein

Applications

5.1 THE EFrFecT OF ExacT-ExcHANGE IN SIMPLE METAL CLUSTERS

Atomic clusters and small nanoparticles are recognized as distinct physical objects with
their own properties. This became most clear by the experimental discovery of the elec-
tronic shell structure in alkali metal clusters.”*2* With this discovery an emphasis was
put on the quantized delocalization of valence electrons in the mean field created by the
metal ions.”***** This behavior suggests the jellium model, which is defined by a Hamil-
tonian that treats the valence electrons as usual but the ionic cores as a uniform positively
charged background. The model leads to a description of the electron density in terms of
“Cluster Orbitals” (CO) that extend over the entire cluster. Most interesting, these “Cluster

Orbitals” can also be found in canonical Kohn-Sham calculations.2%>2%
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In the spherical jellium model, the ionic background density is that of a uniformly
charged sphere. If the electron density is also assumed to be spherical, the COs will have
good angular momentum quantum numbers [,m and their angular parts can be written
in terms of spherical harmonics.” This gives rise to electronic shells very much as in the
atomic case. The most prominent “magic numbers” observed in mass abundances, ioniza-
tion potentials and electron affinities correspond to the filling of major spherical shells and

are, in general, correctly reproduced for alkali metals and some noble metals. 72542702

In the monoelectronic case the quantum energies are given by *”*

E, = (211 + 1+ %) haw . (5.1

Therefore, each level is separated from the next one by the same energy difference. As
a consequence of Equation (5.1) each level has a constant 2n + [ value and is nya-fold
degenerate, where 71,y is the maximum n appearing in the level. The energetic sequence
is

(1S) (1P) (1D 2S) (1F 2P) (1G 2D 35

For many-electron systems one has to consider additionally the potential from the pres-
ence of other electrons, which leads to the energetic splitting of the degenerate levels. For
higher levels, the energetic differences of shells with different angular quantum numbers
become so large that the energetic sequence is affected, e.g. the 1H shell 2n +1 = 7) is

lower in energy than the 35 shell (21 + [ = 6).”” The modified energetic sequence is
1S1P 1D 2S5 1F 2P 1G 2D 1H 3S 2F ...

If the assumption of a uniformly positively charged background is lifted, additional split-
ting must occur for F and higher CO shells, due to the finite point group symmetry of
the actual cluster. Most recently, this effect has been observed in the Nas;" cluster?” and
is depicted in Figure 5.1 for the icosahedral point group symmetry. In many cases this

subshell splitting is overlaid by Jahn-Teller®” distortions. As a consequence, low-spin
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configurations (singlets or doublets) are the ground-states of small simple metal clusters.
In contrast, some mixed metal clusters have strong spin magnetic moments and have va-
lence electron configurations similar to Mn and Cr.?*" These very stable high-spin metal
clusters can have potential applications in spintronic devices, where information is stored
via electron spins rather than charges.

Different to mixed metal clusters, it is unclear if high-spin configurations of simple metal
clusters can become relevant. In particular, we seek if these high-spin simple metal clus-
ters provide explanations to more recent experimental features that cannot be fully ex-
plained by electronic shell closing effects. A prominent example are the trends in the

melting temperatures of small sodium clusters. %2

Therefore, a systematic study of small simple metal clusters in high-spin configurations
is presented, where all the calculated high-spin states correspond to electronic configura-

tions where subshell closing of a spin manifold occurs.

5.1.1 SODIUM CLUSTERS

Surprisingly, the trends in the melting temperature of small sodium clusters cannot be
straightforwardly explained by their electronic shell structure. In particular, the relative
high melting temperature of Nas;" around 290 K is not obviously related to its electronic
shell structure.’”*"? The 54 valence electron of Nas;" give rise to the following electronic

configuration

18% 1P° 1D" 282 1™ 2P 1G*

Thus, 4 electrons are missing for closing the 1G shell, which occurs in Nag,". This is in com-

303 where

plete agreement with the abundance of cationic sodium clusters in mass spectra,
a pronounced peak for Nag," is observed. This enhanced stability, however, does not cor-
respond to a higher melting temperature. Instead, the less stable Nas;" cluster shows a
considerably higher melting temperature than the more stable Nas," cluster. In order to

explain this discrepancy the concept of geometrical shell closing has been introduced.*” In

the particular case of Nas;" a closed-shell icosahedron is assumed based on the comparison
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of the measured photoelectron spectra and the calculated density of states.”* However,
a closed-shell Nas;" cluster will undergo Jahn-Teller distortion. Figure 5.1 shows that for
an icosahedral cluster the 1G shell is split into a five-fold degenerated h, subshell and a
four-fold degenerated g, subshell. In fact, the fourteen electrons on the 1G shell can be
arranged as (hy)" (g,)*, where the @ and B spin manifolds of the /, subshell are closed
and only the a manifold of the g, subshell is closed. This, of course, will favor a perfectly
icosahedral quintet state. A fundamental question then arises. Can the subshell closing
of only one spin manifold explain the discrepancy between the magic numbers in cluster
melting and cluster abundance in mass spectrometry? In order to gain insight into this
question we searched high-spin configurations of small sodium clusters, up to Nas;", were
shell or subshell closing of a spin manifold occurs. We will devote particular attention to
Nag;" to try to explain the discrepancy in the magic numbers.

The equilibrium geometries of small sodium clusters have been extensively studied
with different theoretical methods. For example, Martins, Buttet and Car studied sodium
clusters Na, and Na,” with n < 8 and n = 13 by means of the local spin density approxi-
mation and a pseudopotential approximation to treat core electrons.””” Rothlisberger and
Andreoni also studied small sodium clusters within the local spin density approximation

and employing pseudopotentials.™**"”

More recently, Solov’yov, Solov’yov and Greiner
used the B3LYP DFA to find the equilibrium geometries of neutral and singly charged
sodium clusters consisting of up to 20 atoms.””® Furthermore, Aguado and Kostko stud-
ied the equilibrium geometries of neutral and anionic sodium clusters with up to 80 atoms
based on global minima found with the Gupta potential.”” The ground-state geometries
of these studies were used to compare how relevant a given high-spin configuration might
be. The study begins by comparing the energies obtained at the PBE/DZVP/GEN-A2 level
theory. Further computations with the hybrid DFA PBEO are then presented for the most
relevant cases.

According to the jellium energy levels for many-electron systems, shown in Figure 5.1,

the first high-spin configuration with a closed subshell corresponds to the five-electron

configuration 15?1P°. This configuration is possible only for tetrahedral or cubic symme-
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Figure 5.2: Optimized structures of Na,~ (top), Nas (middle) and Na," (bottom). The left column shows the
high-spin structure while the right column shows the corresponding ground states. The relative stabilities
[kcal/mol] of the high-spin clusters at the PBE/DZVP/GEN-A2 level of theory are shown below the structure.
Bonds are drawn between all nearest neighbors.

try with three-fold degeneracies. Thus, Na,~, Na; and Na," clusters in T;, T; and O;, sym-
metry, respectively, were investigated. Figure 5.2 shows the optimized structures of these
clusters along with the corresponding ground states. Also shown in Figure 5.2 are the
relative stabilities [kcal/mol] of the high-spin quartets. None of the quartet clusters were
the ground-states, however, both Na,~ and Na," clusters are within 5 kcal/mol from their

corresponding ground-states.

The next high-spin configuration occurs for a T; symmetry with (a)? (£,)° (¢)? triplet
configuration, where the 1D shell is split into two subshells with e and t, irreducible rep-
resentations. This T; symmetry and electron count can be realized with the Nay, cluster,
shown in Figure 5.3. However, the calculation predicts the 2S shell to be below of the
1D shell leading to an electronic (a1)? (£2) (a1)! (e)! configuration. As a consequence, the

Na, triplet state lies around 13 kcal/mol above the almost degenerated D4; and C, singlet
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ground-states.

An eleven electron quartet in O, symmetry follows. The Na,," cluster can be arranged
into a cuboctahedron, shown in Figure 5.3, with an empty center to fulfill the symmetry
and electron count requirements. The expected electronic configuration, (alg)2 (t1,)° (tzg)3,
is in fact obtained. However, this hollow geometry lies around 13 kcal/mol above the Cy,
doublet ground state.

The thirteen electron Nay,” cluster can be arranged into an icosahedron where each one
of the sodium atoms occupies a vertex position. The 1D shell does not split in icosahedral
symmetry, therefore, the thirteen electrons can be configured into a sextet as 15 1P°1D°.
However, the Na,,” icosahedron is a hollow structure. Similar to the Na,," cuboctahedron,
this vacancy diminishes significantly the stability of the cluster. The ground-state Na;,”
doublet was obtained by re-optimizing the Na,, neutral cluster described in reference [308].
The structures of the Na;,” icosahedral sextet and the re-optimized doublet are shown in
Figure 5.3. Due to the vacancy, the Na;,” sextet turned out to be 10 kcal/mol less stable
than the low-spin Na;,” cluster.

A very similar [, structure, having the same electron configuration as Na;, , can be
obtained by placing one extra sodium atom in the center of the icosahedron. This neu-
tral Nay; sextet is, so far, the most relevant high-spin configuration found in the series.
Although it is not the ground-state, it is just 1.3 kcal/mol less stable than the C; global min-
imum reported in reference [ 309] and 3.3 kcal/mol less stable than another C; structure
obtained by re-optimization of the minimum reported in reference [308]. Given the small
energetical difference, and the high degeneracy of a sextet state, the icosahedral Na,; clus-
ter could explain why the measured dipole moment of the thirteen atom sodium cluster
essentially vanishes.”’ Furthermore, this very small energetical difference should enable
the detection of the Naj;; in a molecular beam through a Stern-Gerlach experiment. Un-
fortunately, no reference to Stern-Gerlach experiments performed on Na;; clusters was
found in the literature. Figure 5.4 shows the structures of the icosahedral Na,; cluster and
the minimum structures reported in references [309] and [308]. Solov’yov’s structure re-

semble two interpenetrating icosahedra, while Aguado’s structure is closer to a capped
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Figure 5.3: Optimized structures of Nay, (top), Na;,” (middle) and Na,,” (bottom). The left column shows the
high-spin structure while the right column shows the corresponding ground states. The relative stabilities
[kcal/mol] of the high-spin clusters at the PBE/DZVP/GEN-A2 level of theory are shown below the structure.
Bonds are drawn between all nearest neighbors.
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tetrahedron. The COs of the icosahdral Na;; are shown in Figure 5.5. Note that both «
and f spin manifolds completely fill the 1S and 1P shells, however, only the a manifold
closes the 1D shell.

From now on, we search only for structures without vacancies. This restriction fol-
lows from the fact that smaller hollow structures in high-spin configurations are at least
10 kcal/mol less stable than other low-spin minima found. Unfortunately, other T; and
Oy, high-spin structures did not follow the energetic ordering of the the spherical jellium
model and resulted to be rather unstable. For example, the Na,; O, cluster in a quartet

state is less stable than the C; doublet ground-state by more than 60 kcal/mol.

Two more clusters, with I, symmetry and possible high-spin configurations remain in

our investigated series. The first one is the Na,; neutral cluster, which can adopt an

(ag)* (t1)° ()" (ag)* (t2)° (84)° (1) (rg)?

configuration. This configuration results from the splitting of the 1G shell into h, and g,
subshells. The a manifold of the i, subshell is then completely filled. This icosahedral clus-
ter is constructed on top of the Nay; I, one, where the second icosahedral shell takes the
anti-Mackay "' positions and has a rhombic triacontahedron shape. In fact, this high-spin
icosahedral cluster is the most stable Na,; cluster around the rhombic triacontahedron
structure. The Na,; sextet is around 1 kcal/mol more stable than both slightly distorted
doublet and quartet clusters. The structures for the Na,; sextet and doublet are shown in
Figure 5.6. The quartet geometry is essentially the same as the doublet one. Also shown in
Figure 5.6 are two other doublet cluster geometries. One based on an incomplete second
icosahedral Mackay shell and the other one obtained by re-optimizing the global mini-
mum reported in reference [309]. It is interesting to note that the Na,; sextet is also more
stable than the incomplete Mackay shell structure. However, the re-optimized Na,; clus-
ter turned out to be more stable than the high-spin Na,; by almost 5 kcal/mol. This neutral
Na,; sextet may also be detected in a molecular beam by Stern-Gerlach-type deflection but,

again, no reference has been found for this experiment.
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Figure 5.4: Optimized Nay; clusters. The icosahedral Nay; sextet cluster is shown at the top, the re-optimized
doublet from reference [309] is shown at the middle and the one from reference [308] at the bottom. Relative
stabilities [kcal/mol] at the PBE/DZVP/GEN-A2 level of theory are shown below each structure. Bonds are
drawn between all nearest neighbors.
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Figure 5.5: Cluster orbitals of the icosahedral Nay; cluster. The sodium atoms are shown as orange spheres.

The last cluster studied is the already mentioned Nas;" cluster in I, symmetry. Its va-

lence electrons can be configured as

(ag)* (1)® (o)™ (ag)* (t20)° (8u)" (t1)° (g)™ (85)"

which results from the splitting of the 1G shell. The electron configuration is very simi-
lar to the previously discussed Na,; example. In this case, the f manifold also fills the
h, subshell. The four remaining electrons of Nags" close the o g, subshell. This icosahe-
dral cluster is the most prominent example in the series because all calculations establish
an I, structure as the most stable one. Different to the singlet case, the high-spin quin-
tet configuration given above provides a very stable electronic environment that avoids
any Jahn-Teller distortion. In fact, we have found that the quintet configuration is the
ground state of the Nay;" cluster. It is 1.6 kcal/mol and 2.5 kcal/mol more stable than the
slightly distorted triplet and singlet states. Although the relative stabilities of the low-spin
configurations do not automatically discard them, the high-spin state can further be re-
lated to other experimental data. One of the most important ones is the comparison of the

measured photoelectron spectra®”* with the calculated density of states (DOS). The com-
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Figure 5.6: Optimized Nay; clusters. The icosahedral Na,s5 sextet is shown at the top and its first icosahedral
shell is highlighted in blue. The upper middle image shows the C; Na,5; doublet structure. The lower middle
image shows the Na,s; doublet cluster which was built by removing 10 atoms of the 55 atom icosahedral
structure. Finally, the global minimum structure is shown at the bottom. Relative stabilities [kcal/mol] at
the PBE/DZVP/GEN-A2 level of theory are shown below each structure. Bonds are drawn to highlight the
structure elements of these clusters.
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parison between the calculated density of states of the singlet and quintet Nas;" and the
measured photoelectron spectra is shown in Figure 5.7. The subshell closing of the quintet
yields a characteristic shoulder in the frontier orbital DOS at around -4.5 eV. This shoulder
is due to the half occupation of the 1G g, subshell by the a-spin manifold. Therefore, this
shoulder is absent in the singlet DOS. This qualitative difference may bridge directly to ex-
periment, because DOS structures are often reproduced by photoelectron spectra. In fact,

the experimental photoelectron spectrum ™

of Nas;", shown as the top image of Figure 5.7,
possesses a narrow peak for the valence electrons with a characteristic shoulder, just like
our quintet DOS. The structure of the photoelectron spectrum has been used as an argu-
ment for the spherical geometry of the cluster. Here, we suggest that the high-spin quintet
structure is responsible for the shoulder in the photoelectron spectrum. The g, subshell
closing stabilizes the high-spin quintet state and avoids Jahn-Teller distortions of the clus-
ter. What remains to be seen is how this stabilization of the highly symmetric I, structure
by subshell closing influences the cluster dynamics. As previously mentioned, the trends
on the melting temperatures of sodium clusters cannot be straightforwardly explain by
shell closing arguments. Although it has been argued that the geometrical shell closing is
responsible for the maxima of melting temperatures, there has not been an explanation as
to why the melting temperature of Nas;" is considerably larger than that of the next icosa-
hedral cluster, Na,,,", or the Nas," cluster with a completely filled 1G shell. Further studies
of the stability of the quintet Nas;" cluster through Born-Oppenheimer molecular dynam-

ics indeed confirm that the subshell closing affects the dynamics of Nas;" and predicts a

higher melting temperature.””

Including exact exchange, through the PBEO hybrid DFA, introduces important changes
in the relative stability of the high-spin clusters. The relative energy between the Na;
doublet of reference [ 309] and that of reference [ 308] changes from 2.0 kcal/mol with
PBE to 1.9 kcal/mol with PBEQ. However, the relative energy between the doublet ground-
state and the high-spin sextet reduces from 3.3 kcal/mol with PBE to only 1.2 kcal/mol with
PBEOQ. Different to PBE, the hybrid PBEO predicts that the high-spin sextet is the second

most stable structure. Furthermore, PBEO also increases the distance of the surface Na
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Figure 5.7: Comparison of the measured photoelectron spectra (top) and the calculated density of states
of the singlet (middle) and quintet (bottom) Nags" cluster. The photoelectron spectra is a reprinted figure
with permission from [G. Wrigge, M. Astruc Haffmann and B. v. Issendorff, Phys. Rev. A, 65, 063201, 2002]
Copyright 2002 by the American Physical Society.
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Table 5.1: Geometrical parameters and relative energies of the icosahedral sodium clusters employing the
PBE and PBEO functionals. Calculations were performed with the DZVP basis and GEN-A2 auxiliary func-
tion set. Hybrid calculations used the GEN-A2/GEN-A2* approach. The distance to the center of mass, rcom,
for each type of nonredundant sodium atom is given in A and the relative energy, AE, of the high-spin icosa-
hedral cluster with respect to the ground state is given in kcal/mol.

PBE PBEO
Nay, Nays Nags" Nay, Nays Nags"
3.372 3.512 3.383 3.531
rcom 3.535 5.639 6.065 3.548 5.660 6.081
6.628 7.047 6.672 7.107
AE 3.3 49 0.0 1.2 0.5 0.0

atoms to the center of the icosahedron by 1 pm.

A similar effect is also seen for the icosahedral Na,scluster. In this case, the hybrid PBEO
predicts that the high-spin sextet is only 0.5 kcal/mol less stable than the doublet ground-
state. Thus, this high-spin structure may also contribute to the measured dipole moment
and photoelectron spectra. The distance to the center of the cluster for the three nonredun-
dant sodium atoms (which are not located at the center themselves) is also elongated with
PBEQ. The first icosahedral shell is the least affected being shifted only by 1 pm. The two
kinds of surface atoms in the second icosahedral shell are 2 pm and 4 pm farther away to

the center compared to their PBE counterparts.

The PBEO functional affects the energetics of the Nas;" icosahedral cluster much less than
that of Na;; and Nays. In fact, PBEO predicts that the quintet is 1.9 kcal/mol more stable than
the triplet and 2.9 kcal/mol more stable than the singlet. This means that PBEO stabilizes
the high-spin quintet by 0.4 kcal/mol compared to PBE. The optimized geometry of the
icosahedral Nas; " quintet with PBEO follows the same trend as for the smaller ichosahedral
clusters. The distance to the center of the first icosahedral shell is 2 pm larger with PBEO
compared to PBE. Also, the distance to the center for the second icosahedral shell atoms
are 2 pm and 6 pm larger with PBEQ. Table 5.1 summarizes the above discussed results by
comparing the optimized geometrical parameters [A] and relative energies [kcal/mol] of

the high-spin icosahedral sodium clusters with both PBE and PBEO. Note that Na;; and
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Nay; are (hy)° sextets and Nas; " is a (g,)* quintet. Unexpectedly, the inclusion of exact ex-
change stabilized the high-spin configurations of the three icosahedral clusters compared
to PBE. This effect has already been observed in transition metal complexes, mostly in-
volving iron, where the high-spin stabilization depended linearly on the percentage of
exact exchange used in hybrid functionals.”**" Reiher et al.’"* reparametrized the B3LYP
hybrid functional to reproduce the experimental spin-state energetics. They found that a
15 % mixing of exact exchange was optimal. It is thus instructive to think that the energet-
ical results obtained with PBE and PBEO provide bounds for the real spin-state energetics
of these clusters. Therefore, we can clearly state that the Nag;" quintet is the ground state.
Furthermore, the Nay; cluster should also be considered for the correct description of the
experimental data available.

In summary, we have found that spin quenching does occur for small sodium clusters.
However, all three high-spin icosahedral sodium clusters, Nay;, Na,; and Nas;", should be
considered for the correct description of experimental features. We suggest that subshell
closing is an important mechanism to be considered for the stability of high-spin metal
clusters. In particular, the subshell closing occurring in the Nas;" cluster stabilizes the

304 Furthermore, the sub-

icosahedral structure predicted by photoelectron spectroscopy.
shell closing mechanism might be responsible for the unusually high melting temperature
of the Nag;" cluster. The subshell closing might also be important for the future search of

300

magnetic superatoms™" and magnetic metal clusters with potential applications in spin-

tronics.

5.1.2 COPPER CLUSTERS

The study of high-spin copper clusters is interesting in many respects. Different to the
sodium atom, the presence of d orbitals near the valence s-electron introduces some di-
rectionality in the bonds formed in the cluster.” Therefore, it is surprising that canonical
Kohn-Sham calculations also predict the COs obtained with the jellium model.”” Further-
more, the copper clusters are much more stable than their sodium counterparts.”” As a

consequence, copper clusters are more likely to be found in real life applications. In par-
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Table 5.2: Geometrical parameters and relative energies of the icosahedral copper clusters described with
PBE and PBEO. Calculations were performed with the DZVP basis and GEN-A2 auxiliary function set. Hy-
brid calculations used the GEN-A2/GEN-A2* approach. The distance to the center of mass, rcoym, for each
type of nonredundant copper atom is given in A and the relative energy, AE, of the high-spin icosahedral
cluster with respect to the ground state is given in kcal/mol.

PBE PBEO
Cuy, Cuys Cugs Cuy, Cuys Cuss
2.403 2.472 2.389 2.458
Ycom 2.460 3.937 4.258 2.448 3.905 4.216
4.686 4904 4.661 4.884
AE 8.5 294 0.0 4.5 9.6 0.0

ticular, high-spin clusters can be ideal for molecular electronic devices, as the coupling
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could be altered by charging or weak fields.

Therefore, it is important to establish if the subshell closing mechanism plays the same
crucial role in determining the stability of high-spin copper clusters as in the sodium case.
To this end, we focused on the same icosahedral arrangements than the ones obtained for
Nay;, Nay; and Nass". The same levels of theory, PBE/DZVP/GEN-A2 and PBE0/DZVP
with the GEN-A2/GEN-A2* approach, were used. These results are summarized in Table
5.2. Inclusion of exact exchange also stabilizes the high-spin states of the copper clusters.
However, Cu;; and Cu,; are more than two times less stable than their sodium counter-
parts. The same degree of stabilization as in the sodium cluster case is obtained with the
PBEO hybrid functional for the Cus;" high-spin cation, namely, 0.4 kcal/mol compared to
the PBE results. Based on these results we can clearly state that the high-spin configura-
tions of Cuy; and Cu,s do not play an important role for the description of measured quan-
tities. However, it is important to note that the high-spin Cuss" quintet is also predicted to
be the ground-state. In this case, PBE predicts that the quintet Cus;" is 1.3 kcal/mol more
stable than the triplet and 2.0 kcal/mol more stable than the singlet. On the other hand,
PBEO predicts the quintet to be 1.8 kcal/mol more stable than the triplet and 2.4 kcal/mol
more stable than the singlet. This result encourages further research on magnetic clusters

made from simple metals, as they could be incorporated more easily into real life applica-
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tions.

Different to the sodium clusters case, exact exchange made the copper clusters a little
bit more compact. The hybrid PBEO predicts that the icosahedral shell of Cuy; is 1 pm
closer to the center compared to the PBE result. The same is true for the first icosahedral
shells of the Cu,; and Cuss" clusters. Furthermore, the second icosahedral shell gets also

compacted when exact exchange is included.

In summary, the subshell closing stabilization mechanism is also present in copper clus-
ters. This shows that high-spin cluster configurations should not be neglected in further
research, in particular those involving the closure of shells and subshells. Further work to
gain insights into the dynamical stabilization of the subshell closing is also being carried

out in our laboratory.

5.2 THE Accuracy oF DFT ror TransITION METAL COMPOUNDS

Predicting chemical bonding within organic compounds is relatively straightforward. This
picture changes dramatically when turning to transition metal compounds, specially when
dealing with metal atoms having partially filled d-shells.”” DFT has become the preferred
method for electronic structure theory because its cost scales more favorably with system
size than does the cost of correlated wavefunction methods, and yet it competes well in ac-
curacy.’™ The advantages of DFT are specially important for transition metals. The reason
for this is electron correlation. Due to the partially filled d shells and nearly degenerate
(n +1)s and nd shells, systems containing transition metals often have many low-lying
nearly degenerate states.’”” The correlation effects on geometries, densities and energies,
due to the near-degeneracy, can be very large.’"® Furche and Perdew showed that GGAs
and meta-GGAs functionals yield geometries that are in very good agreement to experi-
mental gas phase structures for 3d metals.’” In the same study, they argued against the use
of hybrid functionals because the more strongly correlated the system, the less exact ex-
change is needed for its accurate description.”” One of the best DFT descriptions obtained

so far for 3d transition metal clusters was presented by Calaminici et al. by employing DFT
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optimized basis sets.”” The use of optimized basis sets was also emphasized for transition

metal carbonyls by showing that double-C optimized basis sets can outperform the larger
correlation consistent triple- and quadruple-C basis sets.**

However, some problems remain that affect the accuracy of DFT despite the active re-
search and development of new exchange and correlation DFAs.?! In short, two main
problems have been identified. First, pure dispersion interactions are not well reproduced
with many functionals and, second, Coulomb self-interaction is not correctly canceled out
by the exchange DFAs leading to overstabilization where delocalized electrons and low-
spin configurations occur. On the other hand, inclusion of exact exchange through hybrid
functionals overstabilizes high-spin states, *%7%317,322

Despite the issues remaining with DFT, it still yields more accurate results than other
high-level correlated ab initio methods like CCSD(T) for transition metal compounds.®*’
Nevertheless, most theoretical studies on transition metal compounds have relied on small
basis sets or introduced frozen-core approximations to alleviate the computational com-
plexity of the computation.’” In this study, we take advantage of the low computational
complexity of ADFT and LDF-EXX hybrid ADFT methods to employ the augmented corre-
lation-consistent basis sets proposed by Dunning, *'***~?” with double-, triple- and quadru-
ple-C quality. Standard ADFT calculations are performed with the widely used PBE func-
tional and the GEN-A2 auxiliary function set, whereas hybrid ADFT calculations used the
PBEO functional and the GEN-A2/GEN-A2* approach.

Figure 5.8 shows the geometrical parameters used to compare the influence of both the
basis set and exact exchange. In particular, we will focus on metal-carbon bond distances
and the deviation of the hydrogen atoms from the plane of the aromatic rings, where ap-
plicable. Experimental structures used for comparison were, preferably, from gas-phase
data and can be found in references [ 328-340].  Table 5.3 lists bond lengths [A] and
angles [°] for the sixteen transition metal compounds studied. To ease the notation we
will call the aug-cc-pVXZ basis set XZ only. Note that going from DZ to TZ and QZ can

show sometimes an oscillatory behavior. For instance, the Ti—C bond length in Ti(CH,),

changes from 2.084 A with DZ to 2.095 A with TZ and goes back to 2.090 A with QZ.
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Table 5.3: Bond distances [A] and bond angles [°] of selected transition metal organometallic compounds.
Experimental structures were taken from references [ 328-340]. Cb stands for n*-cyclobutadiene, Cp for
n°-cyclopentadienyl and Bz for 1°-benzene substituents.

Molecule Point  Structural PBE PBEO Expt

Group Parameter DZ TZ QZ DZ TZ Qz ’

r(TiC) 2.084 2.095 2.090 2.076 2.087 2.084 214
Ti(CH,), Ty r(CH) 1117 1106 1105 1109 1.098 1.098
Z(HCH) 108.0 108.4 108.5 107.8 1081 108.3

r(TiC) 2.037 2.049 2.057 2.019 2.033 2.041 2.047

r(TiCl) 2198 2200 2201 2189 2192 2195 2185

TiCl,CH, Csy 1r(CH) 1116 1104 1103 1107 1.096 1.096 1.098

Z(CITiCl) 113.3 1135 113.3 113.8 114.0 113.8 113.0
Z(HCH) 110.3 110.6 1101 110.5 110.6 110.3 109.9

1(TiCp) 2161 2168 2170 2154 2160 2.164
1(TiC) 2419 2432 2436 2389 2401 2411 2372
1(CC) 1429 1413 1413 1418 1404 1404 1.397
r(CH) 1.099 1.088 1.088 1.091 1.080 1.081 1113

TiCp,Cl, G r(TiQl) 2347 2340 2330 2.341 2335 2326 2318

Z(CpTiCp) 130.8 130.5 129.6 131.5 1311 130.2 1281
Z(CITiCl) 9754 9791 9810 96.78 9790 9731 971

(@) 50 60 63 30 35 40 88
r(CrBz) 1705 1704 1700 1.690 1.687 1.684
1(CrCp,) 2224 2214 2212 2204 2195 2194 2.208
r(CC) 1427 1414 1416 1415 1404 1406 1417
r(CH) 1104 1.089 1.091 1.093 1.082 1.083
CrBz(CO;); Gy r(CrCeo)  1.838 1.839 1.838 1.840 1.841 1.842 1.863
r(CO) 1174 1166 1165 1157 1149 1148
/(CCrCco) 864 870 869 859 864 864 886
(@) 33 39 35 32 35 32
1(CrCp) 1757 1769 1792 1768 1.852 1.807 1.798
1(CrC) 2145 2149 2166 2147 2208 2172 2169
CrCp, Dsp,  1(CCQ) 1447 1434 1431 1432 1414 1417 1431
r(CH) 1101 1.088 1.088 1.092 1.081 1.080 1.108
/() 054 13 23 07 05 10 29
r(CrBz) 1623 1627 1624 1.622 1623 1619 1613
r(CrC) 2163 2158 2157 2155 2149 2147 2152
CrBz, D¢.  r(CC) 1430 1417 1419 1419 1408 1409 1423
r(CH) 1105 1.093 1.094 1.095 1084 1.084 1.090
Z(a) 45 44 38 40 37 34 47
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Table 5.3: continued

Molecule Point Structural PBE PBEO Expt
Group  Parameter Dz TZ QZ Dz TZ QZ ’
r(MnCp) 1776 1780 1790 1769 1772 1.781
r(MnCcp) 2157 2154 2159 2145 2143 2149 2165
r(CC) 1440 1426 1424 1427 1415 1414 142
MnCp(CO),  C, r(CH) 1.099 1.087 1088 1.091 1.080 1.081
r(MnCco) 1782 1784 1783 1783 1785 1785 1.80
r(CO) 1171 1163 1162 1153 1145 1144 115
/(CMnCco) 909 916 918 906 911 897 92
Z(a) 07 12 10 08 06 04
r(MnCp) 2.049 2059 2.082 2.050 2.057 2.071 2.046
r(MnC) 2385 2.389 2407 2382 2.383 2394 2.383
MnCp, Ds,  r(CC) 1437 1424 1422 1425 1414 1412 1429
r(CH) 1100 1.087 1.089 1.092 1.081 1.081 1133
/() 14 11 05 15 15 -2 0
r(FeEt) 2006 2012 2014 1970 1977 1980 1.995
r(FeC) 2129 2132 2134 2.094 2099 2101 2117
r(CC) 1428 1411 1412 1420 1405 1405 1419
r(CH) 1103 1.090 1.091 1095 1.083 1.084 1.072
r(FeC,y) 1.802 1799 1798 1.806 1.802 1.802 1.815
FeEt(CO), Cpy  r(FeCe) 1791 1791 1789 1780 1779 1778 1.806
r(CO) 1164 1155 1154 1146 1139 1137 1143
/(CFeC,) 1760 1752 1758 1742 1729 174.0
/(CeqFeCeq) 1128 1114 117 1125 110 1110 1117
Z(HCH) 1149 1148 1146 1141 1139 1139
Z(a) 219 215 -21.3 -238 -233 -231
r(FeCb) 1772 1771 1779 1747 1747 1753
r(FeC) 2.054 2048 2.054 2.028 2.024 2.028 2.063
r(C—C) 1475 1461 1460 1465 1452 1451 1.456
r(C=C) 1462 1448 1446 1448 1436 1435 1456
FeCb(CO); G r(CH) 1.097 1084 1.086 1.089 1077 1.078
r(FeCco) 1777 1777 1775 1770 1769 1768 1.819
r(CO) 1167 1159 1157 1149 1141 1140 1131
/(CFeCco) 918 920 921 913 915 896 955
Z(a) 78 73 62 80 -80 -80
r(FeCp) 1640 1640 1.658 1.652 1.651 1.668 1.660
r(FeC) 2.050 2.044 2057 2.052 2.045 2.058 2.064
FeCp, Ds,  1(CQC) 1445 1433 1432 1430 1420 1418 1.440
r(CH) 1100 1.088 1.089 1.091 1.080 1.080 1104
Z(a) 18 21 21 20 20 28 37
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Table 5.3: continued

Molecule Point  Structural PBE PBEO Expt
Group Parameter DZ TZ QZ DZ TZ QZ )
1(CoCp) 1712 1723 1712 1698 1707 1.699
r(CoCcp) 2106 2108 2.099 2.088 2.089 2.083 2.129
r(CC) 1443 1429 1429 1429 1418 1417 1450
CoCp(CO), G, r(CH) 1.099 1.087 1088 1.091 1079 1.080 1.083
r(CoCco) 1733 1734 1735 1733 1732 1734 1.679
r(CO) 1170 1161 1161 1151 1144 1143 1191
/(CCoCco) 981 987 978 979 986 979 984
Z(a) 17 17 17 14 14 10
r(NiCp) 1724 1735 1727 1717 1726 1721
r(NiC) 2116 2118 2112 2104 2105 2101 211
r(CC) 1442 1428 1428 1429 1417 1417 143
NiCp(NO)  Cs,  r(CH) 1.099 1087 1.087 1.091 1.080 1.080
r(NiN) 1626 1.624 1625 1592 1591 1591 1.626
r(NO) 1181 1172 1173 1162 1154 1154 1165
Z(a) 06 16 16 08 14 11
r(NiCp) 1.813 1.822 1.815 1.822 1.828 1.824 1.828
r(NiC) 2188 2189 2183 2189 2189 2185 2196
NiCp, Ds,  r(CC) 1440 1426 1426 1426 1415 1415 1430
r(CH) 1100 1.087 1.087 1.091 1.080 1.080 1.083
Z(a) 05 04 04 01 04 03 03
1(ZnC) 1952 1955 1956 1.940 1943 1.943 1.929
Zn(CH;), Dsy r(CH) 1113 1102 1102 1.058 1.095 1.095 1.09
Z/(HCH) 1079 108.0 1082 1077 1079 108.0 107.7
1(ZnCp) 1920 1.941 1940 1.908 1921 1.921 1.932
1(ZnC) 2278 2286 2288 2262 2268 2266 2.280
r(CC) 1438 1424 1422 1426 1414 1413 1422
r(CH) 1100 1.087 1.090 1.092 1.080 1.083 1.08
ZnCp(CH;) G r(ZnCy) 1963 1967 1955 1951 1955 1.946 1.903
1(CHae) 111 1099 1100 1103 1093 1.093 112
Z/(HCH) 1089 1091 1085 108.7 108.9 108.2
Z(a) 09 05 03 09 09 01
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Figure 5.8: Top and side views of a generic metal sandwich complex. The side view shows the geometrical
parameters being compared in this study. In particular, the angle @ measures the deviation of the hydrogens
from the plane of the aromatic ring. As indicated by the arrow, positive values refer to bending towards the
metal atom.

Table 5.4: Mean absolute deviations [pm] of relevant bond lengths of transition metal organometallic com-
pounds.

Structural PBE PBEO
Parameter DZ TZ QZ Dz TzZ QZ

rM—X) 21 22 19 23 23 20
rM—Cp) 17 15 13 13 32 12

These oscillations are usually rather small. By and large, PBE performs rather good to
describe the geometries of these complex systems. The structures obtained with PBEO are
slightly worse than those of PBE. However, some particular cases should be noted. These
cases will be discussed taking into account the mean absolute deviations (MAD) for the
26 M—C, M—N and M—Cl bonds and the 5 M—Cp distances shown in Table 5.4. Note that
increasing the basis set size improves the PBE M—X and M—Cp distances, however, an
important deterioration is seen for the M—Cp distance when increasing the basis set size,
from DZ to TZ, with PBEQ. This deterioration is caused by the very poor description of the
Cr—Cp distance with the PBEO functional. This distance is either 3 pm too short with the
DZ basis or 5 pm too long with the TZ basis. A1 pm accuracy is recovered with the very
large QZ basis set. All other M—Cp PBEO distances are predicted within 1 pm accuracy.

Some important deviations, common to both PBE and PBEO, should also be noted. The
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most important one is the Co—Cco bond distance in CoCp(CO),, which is predicted to
be 6 pm too large with both functionals and all basis sets! The experimental reference for
this structure comes from gas-phase electron diffraction, and the authors already noted
that this Co—C bond was unusually short.” Consequently, the experimental C—O bond
length is elongated and the predicted bond lengths turned out to be 3 pm too short for
PBE and 5 pm too short for PBEQ. Another important deviation occurs for the Zn—Cye
bond length in the methyl(cyclopentadienyl)zinc complex. Both PBE and PBEO predict
elongated bonds deviating by up to 6 pm from the gas-phase experimental measurement.
The consistency between PBE and PBEO bond lengths, along with some large deviations
in the experimental measurements (see for example [328] and [329]) suggest that some of
these experimental measures should be revisited.

The bending of the hydrogen atoms out of the plane of the aromatic rings are almost
equally well described with PBE and PBE(. Again, the largest difference is obtained for
chromocene with more than 2° deviation from the experimental measurement. The C—C
and C—H bonds are consistently shorter, by 1 pm, with PBEO than with PBE. The shorten-
ing of these bonds makes the PBEQ predictions worse. The same is true for carbonyl C-O
bonds and the nitrosyl N—O bond, where the bonds are shortened by almost 2 pm.

Altogether, PBE and PBEQ describe the structural parameters of the here studied orga-
nometallic compounds reasonably well if large basis sets are used, as the here employed
aug-cc-pVQZ basis. Structural details are qualitatively correct, as shown by the a bending
angles in Table 5.3. Nevertheless, unexpected deviations may occur as discussed above.

Another important aspect we studied on these compounds are spin-state splittings. Es-
pecially large differences between PBE and its hybrid PBEO can be found for chromocene,
manganocene and nickelocene for these energy splittings. Table 5.5 lists relative energies
[kcal/mol] for a low-spin, an intermediate-spin and a high-spin configuration for each of
these metallocenes. For chromocene, PBE and PBEO predict triplet ground states with all
basis sets employed. However, with PBEO the splitting between the ground-state triplet
and the quintet vanishes with DZ, is only 3.2 kcal/mol with TZ and 1.4 kcal/mol with QZ.

In contrast, the PBE splitting is more than 10 kcal/mol for all basis sets. A similar behavior
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Table 5.5: Relative energies [kcal/mol] of different spin states of chromocene, manganocene and nickelocene.
Calculations were performed with PBE and PBEO and the aug-cc-pVXZ basis set (X = D,T,Q). For PBE0
calculations, the GEN-A2/GEN-A2* approach was used.

Molecule PBE PBEO

DZ TZ QZ DZ TZ Qz
1CGC2 20.3 214 226 37.9 39.3 45.9
3CGC2 0.0 0.0 0.0 0.0 0.0 0.0
5CGC2 18.3 151 10.9 0.0 3.2 14
2Mr1Cp2 0.0 0.0 0.0 8.3 7.9 6.7
4MnCp2 27.3 247 24.0 21.7 21.6 21.5
6MnCp2 19.0 16.6 14.1 0.0 0.0 0.0
1NiCp2 16.2 15.9 15.8 225 221 21.8
3NiCp2 0.0 0.0 0.0 0.0 0.0 0.0

>NiCp, 116.8 114.6 113.8 126.4 1228 1229

is seen also for nickelocene, where both PBE and PBEO predict triplet ground-states. The
difference arises in the singlet-triplet splitting. Similar to chromocene, PBEQ stabilizes the
high-spin state by around 7 kcal/mol.

For manganocene, PBE and PBEO predict different ground-states with rather large sepa-
rations from other spin multiplicities. In this case, PBE favors the low-spin doublet state by
more than 14 kcal/mol while PBEQ favors the sextet state by more than 7 kcal/mol. This dif-
ference has already been documented between the OPTX-PBE “pure”- and B3LYP hybrid-
functionals and has been used to tune hybrid functionals for metallic systems.”**"" It has
been pointed out that Mn complexes have low crossover energy barriers between several
electronic states.*! Photoelectronic, electron paramagnetic resonance and gas-phase struc-
ture determination have shown the presence of spin equilibrium in manganocene and
dimethylmanganocene with ?E,, and ®A;, as the only well-defined identified states.**~*
However the doublet *Ey, state is favored at very low-temperatures (below 90 K) by about
0.5 kecal/mol.****>*% The here presented results are gas-phase 0 K calculations therefore,
the correct spin-state description is obtained by the “pure” functional PBE. It is important
to note, however, that the structural parameters presented in Table 5.3 correspond to the
high-spin sextet because the electron diffraction experiment was measured at around 100

°C, where a 60:40 mixture of sextet and doublet manganocene is present. >
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In summary, the “pure” DFT description outperforms the hybrid one for the here stud-
ied organometallic compounds, even when the very large aug-cc-pVQZ basis sets was
employed. PBE geometries are almost at basis set convergence, however, the relative en-
ergies can still vary up to 5 kcal/mol when going from aug-cc-pVTZ to aug-cc-PVQZ. Our
results discourage the use of hybrid functionals for the calculation of transition metal sys-
tems even if only one metal atom is present! PBEO bond lengths showed unexpected dete-
rioration with increasing basis set size and the spin-state splittings are even qualitatively
not reliable. Furthermore, we would like to emphasize that tuning the amount of exact ex-
change present in hybrid functionals to obtain the correct spin-state splitting will certainly
alter, usually for worse, its performance for other properties. An alternative approach

could be the optimization of the Dunning basis sets for “pure” DFT functionals.

5.3 STATIC POLARIZABILITIES OF GIANT FULLERENES: WHERE IS THE LIMIT?

The study of size-dependent properties of nanoparticles has become a frontier line of
research in nanoscience. In particular, the study of the electric-dipole polarizability of
giant fullerenes has attracted considerable attention.?****=? Unlike most nanoparticles,
fullerenes are distinctly different in that they have all the atoms on the surface whereas
solid spherical nanoparticles have only roughly N'/? atoms on the surface.****' This fea-
ture results in a rapid increase in their volume as the number of atoms increases. As the
electric-dipole polarizability is proportional to volume, fullerenes are most suitable for
investigating quantum size effects manifested in polarizability.

Several studies on fullerene polarizability have been based on classical models or have
employed drastic approximations. The results of these models, however, show rather
large variance. For example, the predictions for the Cs,, polarizability vary from 5844 a.u.
(Pariser-Parr-Pople model®”) over 6924 a.u. (Penn model-linear response theory®**) and
up to 12612 a.u. (tight binding***).

In this section, we present first-principle static and dynamic polarizabilities of icosahe-

dral fullerenes, ranging from C,, to Cy, obtained with Auxiliary Density Perturbation
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Theory (ADPT). These calculations provide an accurate description of the electronic struc-
ture since they are based on all-electron first-principles density functional theory. It is
important to note that the only assumption made is that the vibronic contributions are
negligible, thus, only the electronic part is shown. This is different to previous studies
where, in addition, some other approximate techniques have been invoked to lower the
computational complexity of the linear response. *****"

The selected methodology was VWN/DZVP/GEN-A2 since it has demonstrated good
performance to accuracy ratio.”*>**" This basis and auxiliary function set combination re-
sults in more than 14,000 basis functions and 32,000 auxiliary functions for the 960 fullerene.
It is important to note that no simplification due to symmetry has been used. Therefore,
the iterative ADPT solver can be used for other nonsymmetric systems with the same com-
putational efficiency. Optimized geometries, at the same level of theory, were used for all
fullerenes.”**! The optimized structures are shown in Figure 5.9 with the view aligned
along one of the C; axes. All twelve five-membered rings are colored in red in order to aid
the view to distinguish the vertices of the icosahedron. Note that C, and C,g, have rather
spherical shapes but the larger fullerenes have clearly polyhedrical shapes. At some point,
the icosahedral faces will be so large that they will basically behave as graphene sheets.
As a consequence, the specific polarizability (per carbon atom) of these giant fullerenes
should be that of the graphene. Here, we attempt to find, by an all-electron first princi-
ples calculation, at which size the polyhedral faces can be rendered as graphene sheets.

Table 5.6 lists the obtained ADPT static polarizabilities [a.u.] along with previous re-
sults obtained in the literature.”***~°> The semiempirical PPP approach clearly under-
estimates the polarizability of the larger fullerenes. It is interesting to note that for C,,,
the PPP polarizability is only 76 % that of VWN/DZVP/GEN-A2. Furthermore, Ruiz et
al.”"” obtained that the PPP polarizabilities are 75 % that of a spherical conducting shell.
Therefore, the all-electron ADPT results predict that the giant fullerenes behave almost as
spherical conducting shells starting from C,,,. The sum-over-states polarizabilities, cor-
rected by random phase approximation (SOS-RPA), are in very good agreement to the

VWN/DZVP/GEN-A2 for all the series. The same is true for the PBEO/SVPD polarizabil-
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Figure 5.9: Optimized structures of the calculated icosahedral fullerenes. Geometries were optimized at
the VWN/DZVP/GEN-A2 level of theory without any simplification due to symmetry. The view is aligned
along one of the C3 axes and all twelve five-membered rings are colored in red to facilitate the identification
of the vertices of the icosahedron.
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Table 5.6: Static average polarizability [a.u.] of icosahedral fullerenes with different methodologies. The
Parriser-Parr-Pole (PPP) results were taken from reference [ 347]. Classical Penn model results were taken
from reference [ 348]. The sum-over-states results corrected by random phase approximation (SOS-RPA)
were taken from reference [349]. PBEO refers to the hybrid PBEO/SVPD results from reference [350]. The last
two columns are results obtained with the ADPT VWN/DZVP/GEN-A2 methodology solving the response
equations with the direct [243,351] and iterative solver, respectively.

Molecule PPP Penn SOS-RPA PBEO Direct Iterative

Ceo 526 434 533 551 529 528
Cuo 1404 2025 2014 2014
Cho 2018 2317 2915 2018 2902 2902
Coo 6222 6929 7794 8395 8464 8466
Cry 9494 12471 12342 12489
Cogo 14747 18524 18538

ities, except for C,,,, where PBEO/SVPD severely underestimates the average polarizabil-
ity. This underestimation led Rappoport and Furche to state that there is a minimum in
the average polarizability per carbon atom in the icosahedral fullerene series.”" Figure
5.10 shows that no such minimum is found by ADPT, neither with the direct nor the it-
erative solvers. This agrees with the SOS-RPA results reported in reference [ 349]. Both
PBEO/SVPD and VWN/DZVP/GEN-A2 specific polarizabilities (per atom) exhibit a nega-
tive curvature possibly indicating a saturation for larger icosahedral fullerenes. In order
to obtain the asymptotic polarizability per atom, we fitted the ADPT data to an asymptotic
model, yielding

a/N = 7.77562 +16.5394 (1 — e 000227N) (5.2)

as the best fit. Using Equation (5.2) we get an asymptotic limit of 24.3 a.u. per carbon atom.
If the same trend is followed by larger fullerenes, the C;5,, would attain an specific polar-
izability only 0.1 a.u. smaller than the asymptotic limit. It is important to mention that
Gueorguiev et al. already suggested that quantum size effects should be present, at least,
until Cyg,0.%* This statement was based on the ratio of the static polarizability calculated

with a quantum mechanical approach and that of a classical model.

Dynamical polarizabilities are much less studied than their static counterparts. Here we
compare calculated and experimental dynamical polarizabilities of C,,. Furthermore, we

present as a showcase application dynamical polarizabilities of the two largest fullerees,

141



Specific polarizability [a.u.]

A

8
100 200 300 400 500 600 700 800 900
Number of carbon atoms
Figure 5.10: Specific polarizability (per carbon atom) of icosahedral fullerenes from Cg, to Cy4y. PBEO results

are taken from reference [350]. VWN results were obtained with the new ADPT iterative solver. The solid
line was obtained by fitting the VWN data to an asymptotic model. See text for more details.

C,yp and Cy. Figure 5.11 shows the excellent agreement of ADPT dynamical polarizability
for Cy, compared to available experimental data.””*°° This is inline with previous reports

of our group concerning the accuracy of ADPT dynamical polarizabilities.****!

The specific (per carbon atom) dynamical polarizabilities of C,,, and Cy, are shown in
Figure 5.12. To the best of our knowledge, this is the first report of all-electron dynamical
polarizabilities of such giant fullerenes. Note that the range for the y-axis in Figure 5.12 is
so large because the most energetic wavelength used, 1047 nm, is close to the first excitation
pole of C,,, and is behind the first excitation pole of Cyy,. This explains the jump of the
specific polarizability of C,,, to very large values and the sharp reduction of the specific
polarizability of Cy,.

In summary, we provide ADPT static polarizabilities for icosahedral fullerenes from
Cgo t0 Cogg- Our results follow closely those reported for the SOS-RPA method* and do
not show the minimum in the specific polarizability for C,,, previously reported in ref-
erence [ 350]. In fact, the specific polarizability of giant fullerenes grows monotonically,

although with a negative curvature, suggesting a saturation for larger systems. Fitting the
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Figure 5.11: Calculated and experimental C, dynamical polarizabilities. The average dynamical polariz-
abilities were calculated at the VWN/GEN-A2/DZVP level of theory.
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Figure 5.12: Specific dynamical polarizabilities of C,, and Cyy, calculated at the VWN/DZVP/GEN-A2 level
of theory.
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calculated ADPT static polarizabilities to an asymptotic model predicts that saturation is
achieved already for Csg,, with a polarizability close to 24.2 a.u. per carbon atom. Further-
more, C,y ADPT dynamical polarizabilities are in excellent agreement with experimental
ones. Thus, the EN iterative solver does not alter the ADPT accuracy for the calculated
dynamical polarizabilities.”*>*”! Finally, the first all-electron dynamical polarizability cal-
culations for C,,, and Cyy, were presented. The dynamical polarizabilities were obtained
for six different laser wavelengths, one of which is very close to the first excitation pole
of C,,, and is beyond the first pole of Cy,. It is important to note that these results were
obtained without the inclusion of simplifications due to the icosahedral symmetry of the
systems. As a consequence, ADPT can now be used to predict molecular response prop-

erties for nanosystems with many thousands of basis and auxiliary functions.
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Conclusions and Perspectives

6.1 CONCLUSIONS

Quantum mechanics has enabled the computation and prediction of many chemical prop-
erties of interest. However, the simulation of “real life” chemical problems is still out of
our reach. Therefore, the main objective of this work was to develop new approximate
methods for applying quantum mechanics to more complex atomic and molecular sys-

tems at a first-principle level of theory.

In this respect, we have shown the development and application of such approximate
methods for two typical quantum chemical applications. On one hand, we developed
a low-scaling methodology for the computation of exact exchange, which we called lo-

cal density fitting exact exchange (LDF-EXX)”#!°>® that can be used in molecular energy
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calculations and structure optimizations. On the other hand, we developed a low-scaling
algorithm for the solution of the response equation system arising in auxiliary density per-
turbation theory (ADPT)**?* for the calculation of molecular response properties. The
261

resulting methodology is based on the Eirola-Nevanlinna®" algorithm and has proven to

be robust and efficient.*”

The LDF-EXX methodology extends and improves previous efforts to reduce the com-
putational complexity for calculating exact exchange.'""*-** Ultimately, this develop-
ment resulted in the implementation of hybrid functionals in deMon2k™™ and opened
the possibility to extend deMon2k’s capabilities beyond density functional theory (DFT).
The performance achieved by LDF-EXX is based on an efficient molecular orbital local-
ization algorithm and on the use of very simple auxiliary function sets. To this end, we
have substituted the standard Jacobi-sweep-based localization proposed many years ago
by Edminston and Ruedenberg'® by the more efficient approximate joint diagonalization
(AJD) approach.'®*"" The usefulness of the new AJD-based localization approach is not
limited to LDF-EXX but can be used in other quantum chemical methodologies too, like
the Individual Gauge for Localized Orbital approach for the computation of nuclear mag-
netic resonance shielding tensors.”” Different to other approximate exact exchange algo-
rithms, LDF-EXX was validated with the relatively simple GEN-An and GEN-An* auxil-
iary function sets.”” These auxiliary function sets yielded 1 kcal/mol accuracies for heats
of formation and chemical reaction barrier heights. Furthermore, the GEN-A#n set showed
remarkable speed-ups compared to standard electron repulsion integral calculations and
also to conventional density fitting and resolution-of-the-identity implementations.

Although LDF-EXX achieves the above mentioned remarkable performance, this is only
a minor step forward for the application of quantum mechanical methods to the mathe-
matical description of “...the whole of chemistry [...].” To this end, implementation of LDF-
EXX on new architectures, like hybrid CPU-GPU computational clusters, can improve
the size-range where LDF-EXX is applicable. However, this new implementation should
solve some of the remaining issues with the here presented LDF-EXX implementation.

Although the LDF-EXX can be used with success for non-insulators, like sodium and cop-

146



per clusters, the AJD localization algorithm struggles to optimize the objective functional.
Moreover, the presented parallelization is far from being adequate for massive parallel
high-performance computing environments.

The new ADPT iterative solver also shows remarkable performance. This advance is
of great importance for the direct comparison between theory and experiment and the
prediction of new material properties. With this approach, molecular property calcula-
tions of nanosystems can be performed in just a few hours.”” Thus, systematic screening
of molecular databases with a first-principle methodology becomes feasible. The main
advantage of the ADPT iterative solver is that it can be straightforward extended for the
computation of other molecular response properties, like static and dynamic hyperpolar-
izabilities?”” and Fukui functions,*® to name a few. The ADPT iterative solver has also
great potential to be used in the calculation of analytic second derivatives in ADFT, which
are currently under development in our laboratory.

One important aspect of the ADPT iterative solver is that, besides lowering the compu-
tational complexity, it also diminishes the memory demand of the code. Therefore, the
computations can be performed on modest and economical computational architectures.
This low memory demand has also enabled the use of a mixed ADPT approach, which is
an analog of the mixed self-consistent-field procedure developed in our group.””® Further-
more, this diminished memory requirements can be useful for a GPU version of deMon2k,
too.

Both of these low-order scaling methods were applied to chemical problems of current
interest. First, we studied the effect of EXX on the electronic structure of sodium and
copper clusters. We established the subshell closing of a spin-manifold as an important
stabilizing mechanism for high-spin clusters. In particular, high-spin configurations of
icosahedral Nay;, Na,; and Nas;" clusters were found to be remarkably stable. For Nay,
it was found that the 1D cluster shell was closed by the a-manifold. The PBE results pre-
dicts the sextet Nay; to be only 3 kcal/mol less stable than the ground state. Furthermore,
inclusion of EXX, via the PBEO functional, reduces this energy difference further, making

the sextet only 1 kcal/mol less stable than the ground state. A similar situation occurs for
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Nays. In this case, the predicted electronic configuration,

1S% 1P% 1D™ 252 1F* 2P° 1G° ,

allowed an stable sextet configuration due to the splitting of the 1G shell into h, and g,
subshells with five- and four-fold degeneracies. Thus, the i, subshell was also closed by
the a-manifold. The PBE functional predicts this sextet to be 5 kcal/mol less stable than
the ground state. Again, EXX stabilized the sextet and predicts it to be only 0.5 kcal/mol
less stable than the doublet. Both of the sextet neutral cluster, Na;; and Na,s, are predicted
to be sufficiently stable to be detected by Stern-Gerlach-type experiments. Unfortunately,

no reference to an experimental result for this cluster sizes was found in the literature.

The Nas;" cluster is a special case. Both PBE and PBEQ predict that the high-spin quintet
is the ground state. In this case, inclusion of EXX added an extra 0.4 kcal/mol stabilization.

The stability of the quintet is explained by its electronic configuration,

15?2 1P° 1D 252 1F% 2P% 1G* |

that indicates the complete closure of the h, subshell by both, a- and g-spin, manifolds
and the closure of the g, subshell by the a-manifold. The calculated density of states of
the quintet Nays" cluster shows a characteristic shoulder, due to the g, subshell closing
by only one spin manifold. This shoulder is also seen in the experimentally measured
photoelectron spectrum of the Nags" cluster, ’* supporting our finding of a quintet ground
state. The proposed subshell closing mechanism could provide an explanation as to why
the melting temperature of the Nas;" cation is abnormally high®"*"?. Further studies in
our group confirmed that the subshell closing mechanism indeed affects the dynamical

behavior of Nas;" and predicts the melting temperature to be above 300 K.**

The subshell closing mechanism was also studied in icosahedral copper clusters. It was
shown that also for these clusters it can be an important stabilizing mechanism. Differ-

ent to the sodium case, the Cu;; and Cu,; sextets are far less stable as compared to their
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corresponding low-spin ground states. However, the Cu;;" quintet was also found to be
the ground state for copper. This suggests that subshell closing may be an important
mechanism for simple metal cluster stabilization, independent of the nature of the cluster.
Indeed, this could lead to “real life” applications. Unlike sodium clusters, copper clus-
ters could provide the first stable magnetic cluster to be applied in the emerging field of
spintronics.

We also studied the effect of exact exchange and basis set size on the quality of the
description of transition metal complexes. To this end, we used the PBE and PBEO func-
tionals with the augmented correlation consistent basis sets of Dunning. We found that
PBE results improve systematically with increasing basis set size. However, this was not
the case for PBEQ, were we found a poorer description of the bond lengths using the aug-
cc-pVTZ than with the aug-cc-pVDZ basis. We also encountered some other issues due
to the inclusion of EXX for the description of these complexes. In particular, C—H, C-O
and N—O bond lengths became shorter for all basis sets. In addition, the spin-state split-
tings can be qualitatively changed by hybrid functionals. Specifically, the PBEO functional
overstabilizes high-spin configurations and incorrectly predicts a sextet ground state for
manganocene at 0 K. Therefore, we advocate the use of “pure” DFT functionals for calcu-
lation of the transition metal compounds, even if only one transition metal atom is in the
system.

Finally, the static and dynamic polarizabilities of giant icosahedral fullerenes were also
studied. We found that the specific polarizability (per carbon atom) increases monoton-
ically with the system size and that a previously reported minimum for C,,, does not
exist.”” We also predicted that, starting with the Cyq,, icosahedral fullerene, the specific
polarizability will achieve its asymptotic maximum at around 24.3 a.u. per carbon atom.
Interestingly, it was previously predicted that quantum-size effects should be observed,
at least, until Cyg, .7 We also presented, to the best of our knowledge, the first all-electron
dynamical polarizability calculation for C,,, and Cy,. We predict that the usual laser used
for this measurements, 1047 nm, will provide an energy very close to the first excitation

pole of both C,,, and Cy,. For the C,,, this energy will be below the first pole, provoking
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a huge increase in the specific polarizability. On the other hand, the laser energy will be
above the first excitation pole of Cy, and a steep decrease in the specific polarizability

should be observed.

Vast improvements are still needed for real chemical simulations. Both LDF-EXX and
the new ADPT iterative solver contribute to this ultimate goal. The advancement made is
just a step of an interstellar journey. Nevertheless, I think that quantum chemical calcula-
tions will, step by step, achieve Dirac’s vision and provide answers to the real and complex
problems as described by Mulliken and Roothaan.’ In other words, we will build, step by

step, the snare that will some day catch the sun:

Through all the ages of history there were men to whom this whisper had come of hidden
things about them. They could no longer lead ordinary lives nor content themselves
with the common things of this world once they had heard this voice. And mostly
they believed not only that all this world was as it were a painted curtain before things
unguessed at, but that these secrets were Power. Hitherto Power had come to men by
chance, but now there were these seekers seeking, seeking among rare and curious and
perplexing objects, sometimes finding some odd utilisable thing, sometimes deceiving
themselves with fancied discovery, sometimes pretending to find. The world of every
day laughed at these eccentric beings, or found them annoying and ill-treated them,
or was seized with fear and made saints and sorcerers and warlocks of them, or with
covetousness and entertained them hopefully; but for the greater part heeded them not
at all. Yet they were of the blood of him who had first dreamt of attacking the mam-
moth; every one of them was of his blood and descent; and the thing they sought, all
unwittingly, was the snare that will some day catch the sun.

(The World Set Free, H. G. Wells)
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6.2 FUTURE WORK

6.2.1 EBIROLA-NEVANLINNA COULOMB FITTING

The partition of the electron repulsion integrals (ERIs) into near-field and far-field has
led to the proposal of the mixed SCF scheme.””® In this approach, all near-field ERIs are
stored in memory and only the far-field ERIs are recomputed in each SCF step employ-
ing fast asymptotic expansions.'” The mixed SCF scheme solves the ERI bottleneck of
ADFT. New computational bottlenecks then appear. On one hand, the numerical inte-
gration of the exchange-correlation potential, even though performed with the linear ex-
panded auxiliary density, appears again as a time consuming step. On the other, linear
algebra tasks are more and more dominating the CPU time consumption of ADFT calcula-
tions. Whereas the numerical integration of the exchange-correlation potential is already
addressed by a more aggressive grid point screening, little has been done so far for the
linear algebra tasks beyond the use of highly optimized external linear algebra libraries.
In particular, matrix diagonalization consumes already for medium sized systems a large
portion of the computational time in ADFT calculations. '™

The largest matrix that has currently to be diagonalized is the Coulomb matrix G. This
diagonalization, used for the singular value decomposition (SVD) of G, can be completely
avoided if a sufficiently robust numerical solver is employed. The Eirola-Nevanlinna (EN)
solver, applied to the ADPT response equation system, has shown to yield results in per-
fect agreement to those obtained by the SVD of the response matrix. Moreover, excellent
convergence has been observed with the G start guess. Therefore, we propose the use

of the EN algorithm for the solution of the fitting equation system

Gx=1J (6.1)

The guess for the inverse of G can either be the identity matrix or can be obtained through
a low-cost approach, like the approximate inverse (AINV) from Benzi and Tuma."”7*

AINV is based on the pivoted inverse Cholesky decomposition of the matrix. It is very
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efficient and can be easily parallelized. If the EN algorithm proves to be robust enough, an
SVD-free deMon2k version can be achieved. This will reduce the linear algebra bottleneck

of current ADFT calculations in deMon2k.

6.2.2 AUxiLIARY DENsITY MATRIX METHOD

As concluded in section 3.4.3 the LDF-EXX will represent the computational bottleneck
in ADFT hybrid calculations. To circumvent this bottleneck we propose a new algorithm
that combines LDF-EXX with the Auxiliary Density Matrix Method (ADMM)?"?*from
the literature. Note that ADMM is only intended for hybrid DFT calculations. In ADMM
the exact exchange energy, K(P), is split into two parts. The first part, k(p), represents
the exact exchange energy calculated with a smaller secondary basis set. The second part,
X(P) — x(p), is a correction term evaluated by DFT exchange energies in the primary and
secondary basis set, respectively. Thus, the ADMM exact exchange energy contribution

to a hybrid functional is given by:

K(P) = k(p) + X(P) — x(p) (6.2)

The here appearing density matrices, P and p, are calculated from the primary and sec-
ondary basis set, respectively. In fact, p is obtained by projection of P on the smaller

secondary basis set. In the original ADMM implementations "’

only projection of the
basis set is possible. However, when combining ADMM with LDF-EXX two possible pro-
jection choices arise. Either the primary basis set or the primary auxiliary function set
can be projected. The former choice provides the greatest reduction of the computational
scaling for the computation of the three-center ERIs. The latter will provide the greatest
reduction for the calculation and inversion of all charge density ERI matrices G; needed in
LDF-EXX. Because the three-center ERI computation and transformation is the bottleneck
of LDF-EXX calculations, projection of the primary basis set will result in the computation-

ally most efficient algorithm. Therefore, we suggest this approach for the combination of

LDF-EXX with ADMM.
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In order to project the primary basis set, we follow the ADMM2 approximation of
Guidon et al.”” In ADMM2 the projection is based on a least-squares fitting of the pro-

jected MOs, 1,(r), obtained by minimizing

Wa = (1) = () [,(x) = y(r)) (63)
with respect to the projected MO coefficients. Expansion of the expectation value in Equa-
tion (6.3) yields

occ

Wa =) (g 9,) = 209, 1 9;) + (9| 9;) (6.4)

1

Equation (6.4) can be rewritten in matrix notation as:
W, = CTSC — 2¢"QC + c’sc (6.5)

where the columns of C and c contain the MO coefficients of the primary and secondary
basis, respectively. The corresponding overlap matrices for these basis sets are denoted
by S and s. The matrix Q is the mixed overlap matrix between the secondary and primary
basis sets. Variation of Equation (6.5) with respect to the MO coefficients of the secondary

basis yields

oW,
8cm-

=2 QuuCui+2> sapcpi=0 V a A i< Noce (6.6)
p p
where a and g label AOs of the secondary basis. From Equation (6.6) follows:
= 5aQuuCui ¥V B A i< Noce (6.7)
a u
We can recast this set of equations into matrix notation as

c=s'QC=TC (6.8)
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where T = s7!Q is the transformation matrix from the primary MOs to the secondary
MOs. The projected density matrix is obtained using the projected MO coefficients of
Equation (6.8):

p=ccl =TPT? (6.9)

The ADMM-EXX energy, K, is computed from P and p according to Equation (6.2). Differ-
ent projection strategies that preserve either the normalization or the orthonormalization
of the MOs have also been proposed,””** but we will focus here on the above described

unconstrained projection.

The corresponding contribution of the ADMM-EXX to an element of the Kohn-Sham

matrix is given by:

0X ok 0x '\ Opap
K ! ~ 9P, + < - )
" 0Py p Opap  Opap) OPpy

The first term of the rhs of Equation (6.10) is just the contribution to the Kohn-Sham matrix

(6.10)

from the chosen correction exchange functional evaluated with the primary density. The
first term inside the parenthesis is an element of the LDF-EXX contribution to the Kohn-

Sham matrix, Equation (3.52), evaluated with the secondary basis, i.e.

occ

k=> eZZ]e (6.11)
where an element of the ERI matrix e; is given by:
ear; = {ailk) (6.12)

The second term inside the parenthesis is the contribution to the Kohn-Sham matrix from
the exchange DFA evaluated with the secondary density calculated from the projected
density matrix p. Finally, the partial derivative of an element of the projected density
matrix with respect to an element of the primary density matrix can be easily obtained
from Equation (6.9) as

Opap

op,, ~ lwlm ¢
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Thus, the ADMM-LDF-EXX contribution to the Kohn-Sham matrix is given by:

K=X+T'(k-x)T (6.14)

Here X and x are the contribution of the mapping exchange potential evaluated with the
primary and secondary densities, respectively, and k is the exact exchange potential evalu-
ated with the secondary basis. Note that the auxiliary density, p(r), has yet not been intro-
duced. Therefore, Equations (6.2)-(6.14) constitute the working equations for the ADMM-
LDF-EXX approach within the DE-DFT method. We have previously seen that LDF-EXX
HF calculations are as fast as DF-DFT GGA ones. As a consequence, ADMM-LDF-EXX
might be even counterproductive, i.e. slowing down DF-DFT hybrid computations be-
cause of the two additional numerical integrations needed! This situation can be alleviated
with the ADFT methodology, where the numerical calculation of the exchange functionals

are performed with the auxiliary density and, therefore, are far less demanding.

Tue ADMM-LDF-EXX ArproacH wiTHIN ADFT

The above presented ADMM-LDE-EXX approach can be straightforward incorporated
into the ADFT methodology. The main difference to conventional ADFT arises from the
fact that a secondary auxiliary density, p(r), must be obtained by the variational fitting of

the secondary density. Thus, a new fitting equation system,

Gx=1J, (6.15)

must be solved. Note that the same auxiliary function set is used for the primary and

secondary variational density fitting. In Equation (6.15), the Coulomb vector J is defined
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as
%(ﬂlaﬁﬁ?aﬁ
Z;@Haﬁﬁ?aﬁ

)

¢
|
Q

(6.16)

> (| aB)pap

ap

Once Equation (6.15) has been solved, the computation of x(p) is carried out according to:

x(p) = Ex[p] (6.17)

Finally, the contribution of the ADMM-EXX to an element of the Kohn-Sham matrix is

obtained as:

k

k

K = (R + 3" T (kaﬁ - Zwukm) Ty, (618)
a,p

where

g=Y G '(I|velp]) (6.19)

When using ADFT with the ADMM-LDE-EXX approach, two additional ERI computa-
tions, building J and computing K, and two additional numerical integrations must be
performed. The ERI computations can be performed very efficiently by employing the
double-asymptotic ERI expansion and an incremental building of the contributions. As
already noted, the numerical integrations of DFAs are performed with the use of auxiliary

densities and, therefore, are not too demanding.

AnavLyTicarL ADFT Grabpients FoR ADMM-LDE-EXX

The ADMM-LDF-EXX approach introduces four new contributions to ADFT gradients.
First, the contribution from X[p]; second, the contribution from x[p]; third, the contribu-
tion from k(p); and fourth, the contribution from the projection. The first contribution

is obtained using Equation (3.66) without modifications. The second contribution, corre-
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sponding to x[p], is given by

e - [RS8

= Y i wpl k) + 3w vnclp] kD) (6.20)

The derivatives of the secondary fitting coefficients, X, can be obtained by deriving Equa-

tion (6.15), from where it follows

Edpl™ = D plaplze+> > paslaplik) Mz —
ap k ap  k

> 1Guzi+ Y xp(vs[p] [N (6.21)

kI k
which is equivalent to Equation (3.66) evaluated with the secondary basis and the sec-

ondary quantities p, X, and z. For the third contribution, corresponding to k(p), an equiv-

alent to Equation (3.74) is obtained, namely

KO =3 pkas + ) TGy’ =D 0300 D papaalklpy) Ve (622)
a,p i

kI ko ap y

Only p™) remains to be evaluated. Deriving Equation (6.9) yields
p® = TOPTT + TPYOTT 4 TP (TT)" (6.23)
The here appearing transformation matrix derivatives are given as:

W — (S_l)(A)Q+S_1Q(A)

= —s'sWs1Q +s71QW (6.24)

To proceed we collect the terms involving péAﬁ) of Equations (6.21) and (6.22) and introduce

Xop = ) _(aBllk)z (6.25)

k
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to ease the notation. The calculation of the other terms in Equations (6.21) and (6.22) is
straightforward according to the discussion in section 3.3 and, therefore, will not be fur-
ther discussed here. Thus, we find by substituting Equation (6.23) into the difference of

these two terms:

Z(kﬁ_xaﬁ paﬁ = 2 ZZ ﬁ_xaﬁ TaHvaT[Sv‘i‘
Z Z o~ Xap) TauP () Ty (6.26)

The second term of the rhs of Equation (6.26) along with the first term of the rhs of Equation

(3.66) can be immediately recognized as
> KPP (6.27)

which can just be absorbed in the Pulay forces. The remaining first term of the rhs of

Equation (6.26) can be evaluated by substituting Equation (6.24) into it, yielding

22 Z ap — xaﬁ ‘W PfuvTﬁv = —22 Z Z ap — xaﬁ ay yé Tb‘U,Pp.VT‘BV

Wy ap Wy af oy
23 3 (kap — Xap) 50y QP Tp  (6.28)
wy o ap oy
which can be rewritten as
235 (kg — xag) TP T = = > wapsly + 305" Wa QW) (6.29)
a,p a u

Wy ap

where we introduced the generalized energy-weighted density matrices

w=2s"(k—x)p (6.30)

W =25k -x)TP (6.31)
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In summary, only two subroutines must be added to the code. One that builds the general-
ized energy-weighted density matrices, w and W, and another one that contracts W with
the mixed-overlap derivatives QY. The remaining contributions can be obtained by call-
ing the same subroutines programmed for the LDF-EXX gradient within ADFT, provided

that they are fed with the appropriate quantities—primary or secondary.

ADMM MAPPING

After the general theory for ADFT ADMM-LDEF-EXX calculations has been derived, the
basis set mapping and the influence of the exchange correction functional was studied. To
this end HF AHJ%%K for the full G3/99 molecular test set were computed and compared to
the corresponding LDF-EXX results. Merlot et al. have already shown that there is no sin-
gle exchange functional and secondary basis set combination that performs equally well
for every primary basis set and molecule.”” Thus, we decided to test the KT3 exchange
functional” along with the 3-21G*°**" secondary basis set because this combination was
the best to approximate the B3LYP cc-pVTZ?® results in reference [218]. In addition, we
also probed the recently developed CAP exchange functional” because its potential de-
cays asymptotically like the EXX potential. Finally the EV93 exchange functional®" was
also tested because it reproduces the optimized effective potential of noble gases. To in-
vestigate the influence of the secondary basis set we also used the DFT optimized DZVP
basis.'""**” The Def2-TZVPP'® basis was always used as primary basis set along with the
GEN-A2* auxiliary function set.

Individual AH?%K for the 223 molecules of the G3/99 test set are shown in Table B.2
of Appendix B. Table 6.1 lists a summary of these results in terms of MADs, MDs and
MaxADs for the ADMM-LDF-EXX calculated AH7** with respect to the corresponding
LDE-EXX HF reference ones. The KT3 functional shows the best performance among the
three exchange functional when the 3-21G secondary basis is used. However, it shows
the largest deviations when DZVP is used as secondary basis. Of the other two exchange
functionals, CAP shows the best performance for both secondary basis sets. This result

was expected due to the asymptotic properties of the CAP potential which EV93 and KT3
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Table 6.1: Deviations [kcal/mol] of ADMM-LDF-EXX HF standard heats of formation with respect to LDF-
EXX HF ones. See text for details.

CAP EV93 KT3

3-21G
MD 210  26.2 19.6
MAD 210  26.2 19.6
MaxAD 43.6 535 405

Dzvp
MD -0.2 0.4 1.8
MAD 02 04 1.8
MaxAD —-67 —-69 0.8

do not possess. It is also worth noting that the mapping compared HF and not hybrid
calculations, as has been the usual case.””*"* In this way, any effect of the ADMM approach
will not be hidden by the small fraction of EXX generally mixed into hybrid DFAs. When
using the ADMM approach for hybrid ADFT calculations, the deviations shown in Table
6.1 are expected to decrease, at least, by the same fraction as EXX is mixed into a given

hybrid.

According to these results, the ADMM-LDF-EXX approach is a very promising method-
ology that can overcome the computational bottleneck of hybrid ADFT calculations. Fur-
thermore, the CAP exchange functional is the best choice to perform the ADMM mapping.
However, a thorough validation for several hybrid functionals has yet to be performed.
This validation must include relative energy comparisons, such as AH?*** and chemical
reaction barrier heights, as well as optimized geometry comparisons. This validation is
very important to ensure that ADMM-LDF-EXX does not change the overall shape of the
potential energy surface and, therefore, to establish if ADMM-LDF-EXX can be used for
BOMD calculations. If ADMM-LDF-EXX is shown to be accurate enough, then it is also
useful to benchmark its performance for one-, two- and three-dimensional systems. These
benchmarks are very useful to tune the programming and achieve the best performance
of the code. In this way, ADMM-LDF-EXX can be used for hybrid ADFT calculations with

small impact on the very well-known ADFT performance.
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6.2.3 PosT-HARTREE-Fock METHODS IN DEMON2K

The excellent performance achieved by our LDF-EXX algorithm encourages the develop-
ment of post-Hartree-Fock methods based on the same philosophy. These so-called local
correlation methods have been available since many years.”**~% Many of them are based

368

on the orbital invariant formulation of Mgller-Plesset perturbation theory " proposed by

365,367

Saebg and Pulay. In particular, Werner, Schiitz and coworkers have provided very
significant contributions to the local correlation method. They have achieved linear or
near linear scaling for LMP2,°*”*" LCCSD*"¥* and LCCSD(T), ”*~”> where L means that

the method is formulated in terms of localized orbitals. Furthermore, local density-fitting

MP2 (LDF-MP2) have also been successfully applied by them.***”

A different approach towards local electron correlation methods is based on the Laplace
transform of the energy denominators.”*~% It has also been extended for the density-
fitting approach with localized molecular orbitals.”**” The Pulay and Saebg’s methodol-
ogy needs the solution of a linear equation system because the first-order amplitudes no
longer decouple. In comparison, Almlof’s Laplace transform technique needs a numerical
integration of the Laplace integral, although it has been shown that it requires only a few

quadrature points.”™

The LDE-MP2 envisioned for deMon2k is based on the same principles than the here
presented LDF-EXX. Particularly important is the use of the GEN-An auxiliary function
sets to ensure the maximum performance attainable. In order to use localized molecular
orbitals, it will rely on the elimination of the energy denominators by a Laplace transform,
as suggested by Haser and Almlof.?”*”” We also propose the implementation of the scaled

7599 because it is a more efficient approach to calculate the

opposite-spin (SOS) varian
second-order correlation energies. In SOS-MP2, the second-order correction to the energy

is given by:

o ﬁ . . 2

ialjb

Esosarz =133 3 iﬁﬁ —1.3Eos (6.32)
ia  jb ij
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where i, j label occupied molecular orbitals (MOs), a, b label unoccupied MOs and
A = e, + ey — i — & (6.33)

The spin-dependence of the opposite-spin contribution has been transferred to the sum
limits. Despite of its simpler form, the SOS-MP2 version improves both the relative en-
ergies as well as the gradients.” Introducing the Laplace transform of the denominator

yields:

a P o0
Eos =Y Y (ial|jb)* / e dt (6.34)
jvb 0

where t is the Laplace variable. By solving the Laplace integral with a numerical quadra-

ture, Equation (6.34) can be approximated as:

a f
C s —A%®
Eos~ Y wy) > fialljb)e™™ " (63)
q J:b

ia

The orbital energies appearing in the exponential can be factored out and included directly
into the definition of the MOs. In this way, each quadrature point will have its own set of

MOs defined as:

Y,(r) = Hbi(r)egitq/z
Pur) = P, (r)e et (6.36)

The SOS-MP2 energy can now be written in terms of the newly transformed MOs as:

a B
Eos~ Y w, Y Y (IA||JB)? (6.37)
q

LA B

The advantage of using Equation (6.37) is that it is invariant under unitary transformation
of the new set of MOs. As a consequence, localized MOs (LMOs) can be used and the
orbital products (transition densities) can be restricted to only the spatially close ones.

Furthermore, these orbital products can be variationally fitted to a linear combination of
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auxiliary functions, exactly in the same way as it was done for the LDF-EXX. In this case,

the transition densities are approximated as:

Pra(r Z X4k (r) (6.38)

The fitting coefficients are obtained by the minimization of the error in the Coulomb metric,

in an analog manner to Equation (3.14). Thus, we find for the fitting coefficients:
xiaa = Y_(KID T HIA) (6.39)
1
As in LDF-EXX, the auxiliary functions can also be restricted to only those close in space

to 1,(r) and ¢, (r). Using Equations (6.38) and (6.39) we can rewrite the SOS-MP2 energy

as:
Eos ~ Z w, Z Z > B¢BBBF (6.40)
LA B k]l
with
Bt = (A|)(I]k)~/> (6.41)

1
In order to further simplify Equation (6.40) we introduce a new pair of matrices X* and

XPF defined as:

[24

X% = ) BB (6.42)
LA
p

xt = Y BFB® (6.43)

Substituting the definition of the X matrices into Equation (6.40) yields
Eos ~ Z wy Y XaXE (6.44)
k1
We thus see that the equations arising in our proposed SOS-MP2 methodology share some
common features to both LDF-EXX and ADPT. The same algorithms for orbital localiza-
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tion and space subdivision (octree) can boost the performance of this SOS-MP2 approach.
Furthermore, the X matrices can be built with the same subroutines as the ones used to
compute the Coulomb response matrix A. As a result, we expect that a very efficient SOS-
MP2 algorithm can be implemented in deMon2k. This algorithm can be accelerated by a
GPU implementation similar to reference [388].

Other highly-correlated approaches may follow this MP2 proposal, leading to local
coupled-clusters and configuration interaction algorithms. In addition, electron propa-

gator methods can also be programmed with this philosophy in mind. %%

6.2.4 ADDITIONAL FUTURE WORK

In the following, we will enumerate some of the additional future works that could follow

the here presented developments.

) 177-180

1. Introduction of Benzi and Tuma approximate inverse (AINV algorithm for the

direct computation of the inverse Cholsesky factors in LDF-EXX.

2. Improvement of the LDF-EXX parallelization by employing the octree algorithm
with more resolution. The parallelization approach may also be revisited and be
completely changed from the current molecular orbital partition to an atomic orbital

partition.

3. Development of a second-order orbital localization approach to find a more appro-
priate set of localized orbitals for both LDF-EXX and the above presented local SOS-

MP2 approach.

4. Introduction of the range-separated Coulomb operator for the implementation of

range-separated hybrid functionals.

5. Introduction of the Laplace transform for the ;22 factor appearing in the ADPT it-

a
W —w
erative solver. In this way, the energy denominator disappears and the intermediate

transformation to molecular orbital representation can be avoided. Furthermore, the
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introduction of sparse matrix-matrix multiplication subroutines can render a truly

linear-scaling APDT approach.
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Negative definiteness of SEXX

We wish to show that the exact exchange fitting functional

e

is negative semidefinite. If we write pl.j(rl) - f)ij(rl) = Fjj(ry), the fitting functional may be

rewritten in the form
occC
r r
Ej// i) ”Zdﬂdm (A.2)
|T1— 12|

We may now define a potential as

_ [ Filr2)
1)/Jn—rﬂd2 (A.3)



Taking the Laplacian, with respect to the coordinates r;, on both sides of Equation (A.3)

yields:

1 1
20 (r) = [ — 1 V2Fi(r)d 2/ JFi(r)) Ve ——d
V2.6,(11) /|1”1—I‘2|vr1 E2)dn: +2 [ Vo (ra) - Vo +

/ Fyi(r2) V2 ;drz (A.4)

lry 1o

Since Fjj(r;) does not depend on r; the first two terms on the rhs of Equation (A.4) van-
ish. Thus, the only term remaining involves the Laplacian of the Coulomb operator. It is
straightforward to show that

A L

-1y

— 0V r#rs. (A.5)

However, this result does not hold for r; = r,, as indicated in Equation (A.5), because the

derivatives are undefined at these points. Instead, the Laplacian of the Coulomb operator

at these singularities is given by *'

1
Vi———=-4nVr=r, (A.6)
[r1 — 12|
from where it follows
1
V2 —— = 4nd(r;—r A7
r| | r, — 1y | ( 1 2) ( )

Using Equation (A.7) we can transform Equation (A .4) into

v31¢ij(rl) = —47I/Fij(r2)(5(r1—r2)dr2

= —47ZP1']'(I'1) (AS)

We may now use Equations (A.3) and (A.8) to rewrite the exact exchange fitting functional

in the form
0ocCC

&= 3> [ 0,09, (r)ar (A9
)
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where we have dropped the subindeces for the coordinate of integration and derivation.

We now use the vector identity >

V- (pVY) =V + V- VY (A.10)

which holds for any pair of functions. Hence, we are left with

occ

T i Z / V- |95(r)Vy(r) | dr — —Z / V,(r) - Vo (r)dr (A1)

Applying the divergence theorem to the first term of the rhs of Equation (A.1l) yields a

surface integral over an enclosing infinite sphere:

occ

2 47T Zf Z] V(Pl] -ndS— —— /V(lbl] V¢1]< ) (A12)

Assuming that the potentials and their gradients will vanish at infinity, the surface integral

will vanish, which results in

occ

Z / [V,(r)dr (A13)

Since the integral of a square is necessarily positive then the sum appearing in Equation
(A.13) is positive definite. Thus, it follows that &, is negative semidefinite, vanishing only
when p,.(r) = p,(r) for every point in space.

Note that the only assumption made is that ¢, (r) must vanish at infinity, which holds
for any Gaussian type orbital. This result was previously derived by Slater in Appendix

19 of Reference 392.
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Table B.1: Hartree-Fock standard heats of formation [kcal/mol] for the 223 neutral molecules of the G3/99 test set. B3LYP/6-31G(2df,p)
optimized geometries and the Def2-TZVPP basis set in spherical representation were used in all calculations. A2*/A2* calculations
were performed with the GEN-A2* auxiliary function set for both the SCF and the final energy calculation, whereas the A2/A2* were
perfomed with the GEN-A2 auxiliary function set for the SCF and the GEN-A2* auxiliary function set for the final energy calculation.

Molecule NWChem A2*¥/A2* A2/A2* Expt.
LiH 57.7 57.7 57.6 33.3
2BeH 82.0 82.0 82.0 81.7
2CH 169.8 169.8 169.7 142.5
CH, (°By) 129.0 129.0 129.0 93.7
CH, (*4) 157.3 157.3 157.1 102.8
3CH, 99.4 99.4 99.4 35.0
CH, 73.8 73.8 73.7 ~17.9
SNH 117.9 17.9 117.8 85.2
NH, (2B;) 109.9 109.9 109.8 45.1
NH, 86.8 86.8 86.6 ~11.0
20H 47.9 47.9 47.8 9.4
H,0 19.6 19.6 19.5 —57.8
HF —-20.6 —-20.6 —-20.6 —65.1
SiH, (‘4) 106.3 104.6 105.8 65.2
SiH, (°By) 110.5 108.8 110.0 86.2
2SiH, 92.9 91.2 92.2 47.9
SiH, 73.5 71.8 731 8.2
PH, 77.4 77.4 77.0 331
PH, 70.7 70.7 70.1 13
H,S 48.2 48.2 47.7 —4.9
HCI 7.5 7.5 7.3 -22.1
Li, 72.3 72.3 72.3 51.6
LiF -31.1 311 -31.1 —80.1
HC=CH 165.9 166.0 166.0 54.2
H,C=CH, 147.3 147.3 146.9 12.5
H,C—CH, 140.3 140.3 139.6 -20.1
CN 196.3 196.4 196.3 104.9
HCN 145.3 145.3 145.3 315
co 58.9 59.0 58.8 —26.4
2HCO 106.7 106.7 106.2 10.0
H,CO 90.5 90.5 89.9 —26.0
CH,0H 95.4 95.4 94.5 —48.0
N, 114.0 114.1 113.9 0.0
H,NNH, 194.2 194.1 193.0 22.8
NO 121.4 121.6 120.6 216
%0, 87.5 87.5 87.1 0.0
H,0, 101.9 101.9 100.6 -32.5
F, 73.8 73.8 72.5 0.0
Co, 49.1 49.1 49.2 —94.1
Na, 51.8 51.8 51.7 34.0
Si, 185.4 182.0 185.4 139.9
P, 113.8 113.8 114.0 34.3
33, 82.0 82.1 80.9 30.7
cl, 39.9 40.0 36.7 0.0
NaCl -15.2 -15.2 -15.1 —43.6
Si0o 57.9 56.3 57.8 —24.6
cs 141.3 141.3 141.2 66.9
SO 72.6 72.7 717 12
Clo 83.4 83.4 81.4 24.2
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Table B.1: (continued)

Molecule NWChem  A2*/A2* A2/A2* Expt.
CIF 411 41.2 39.4 —13.2
Si,Hy 131.5 1281 128.7 19.1
CH,Cl1 78.2 78.2 76.7 —-19.6
H;C-SH 17.2 17.2 115.6 -5.5
HOCI 69.0 69.0 67.0 —17.8
SO, 82.5 82.6 79.8 —71.0
BF, —163.1 —163.1 —164.0 —271.4
BCl, —18.2 —18.2 —22.7 —96.3
AlF, —181.4 —181.4 —181.3 —289.0
AlCl4 —77.3 —77.2 —78.8 —139.7
CF, —60.5 —60.6 —63.4 —223.0
CCl, 11 11 103.7 —22.9
0cCs 93.7 93.7 93.8 -331
cs, 141.5 141.6 141.9 28.0
F,CO 9.1 9.0 6.7 —149.1
SiF, —241.1 —242.3 —241.3 —386.0
SiCl, —58.6 -59.8 —63.0 —158.4
NNO 204.6 204.6 204.7 19.6
CINO 160.3 160.3 158.1 124
NF; 136.8 136.7 134.0 -31.6
PF, —99.0 —98.9 —101.8 —229.1
(0N 236.7 236.7 234.4 34.1
F,O 138.5 138.4 136.3 5.9
CIF, 12.6 12.7 110.3 —38.0
F,C=CF, 51.4 521 46.3 —157.4
Cl,C=Cdl, 174.4 174.8 164.9 -3.0
F;,C-CN 120.3 120.5 118.2 —118.4
HC=C—-CH, 224.3 224.3 2241 44.2
H,C=C=CH, 225.6 225.6 224.4 45.5
C;H, (cyclopropene) 251.4 251.4 249.6 66.2
H,C=CH-CH;, 209.6 209.6 208.3 4.8
C;3Hy (cyclopropane) 219.9 219.9 218.2 12.7
CH;—CH,—CH;, 205.5 205.4 204.0 —25.0
C,H, (Z-1,3-butadiene) 276.4 276.4 274.6 26.3
C,H, (2-butyne) 284.4 284.4 283.7 34.8
C,H; (methylenecyclopropane) 298.3 298.3 295.2 47.9
C,H, (bicyclo[1.1.0]butane) 309.8 309.8 307.4 51.9
C,H, (cyclobutene) 292.2 2921 288.7 374
C,Hjg (cyclobutane) 284.7 284.6 281.8 6.8
C,Hg (isobutene) 271.9 271.9 269.5 —4.0
C,H,, (trans butane) 270.8 270.7 268.6 -30.0
C,H,, (isobutane) 270.1 270.0 267.8 —32.1
C5Hg (spiropentane) 368.6 368.5 364.6 44.3
C¢H, (benzene) 361.8 361.8 357.5 19.7
CH,F, 19.0 18.9 17.6 —107.7
CHE, —21.6 —21.6 —23.6 —166.6
CH,Cl, 84.8 84.8 8L.8 —22.8
CHCl,4 95.2 95.3 90.4 —24.7
CH;NH, 160.2 160.2 159.3 -5.5
CH,;CN 199.8 199.8 199.5 18.0
CH;3NO, (nitromethane) 242.6 242.5 239.2 —17.8
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Table B.1: (continued)

Molecule NWChem  A2*/A2* A2/A2* Expt.
CH,ONO (methyl nitrite) 240.9 240.8 237.7 —15.9
CH,SiH, 130.5 128.8 129.5 —7.0
HCO,H 79.4 79.4 78.0 —-90.5
HCO,CH, 152.5 152.5 150.3 —85.0
CH,CONH, 204.1 204.0 201.3 —57.0
C,H:N (aziridine) 242.6 242.5 240.7 30.2
NCCN (cyanogen) 284.0 284.1 284.0 73.3
NH(CHj,), 230.6 230.5 228.9 —44
CH,CH,NH, 223.6 223.5 221.9 —11.3
H,C=C=0 (ketene) 150.2 150.2 149.5 —11.4
C,H,O (oxirane) 177.9 177.8 176.0 —12.6
CH,CHO 146.4 146.4 144.8 -39.7
O=CH-CH=0 161.5 161.5 159.0 -50.7
CH,CH,OH 157.1 157.1 155.5 —56.2
(CH,),0 167.5 167.4 165.8 —44.0
C,H,S (thiooxirane) 190.3 190.3 187.6 19.6
(CH;),S$=0 218.4 218.4 213.7 -36.2
CH,CH,SH 182.2 182.2 179.8 —11.1
(CH,),S 184.4 184.4 181.7 -89
H,C=CHF 120.1 120.1 118.7 —33.2
CH,CH,Cl 141.3 141.3 139.1 —26.8
H,C=CHCl 149.3 149.3 147.2 8.9
H,C=CHCN 272.1 272.2 271.4 43.2
(CH,),C=0 204.4 204.3 201.4 —51.9
CH,CO,H 136.0 135.9 133.2 —103.4
CH,CFO 100.3 100.3 97.7 -105.7
CH,COCl1 139.6 139.6 136.2 —58.0
CH,CH,CH,Cl 206.5 206.5 203.6 315
(CH,),CHOH 219.2 219.1 216.7 —65.2
CH,—0—CH,CH, 229.3 229.3 227.0 —51.7
(CH;);N 299.8 299.7 297.0 -5.7
C,H,O (furan) 275.3 275.2 271.5 -83
C,H,S (thiophene) 294.0 294.1 289.0 27.5
C,H;5N (pyrrole) 331.5 331.5 327.7 25.9
CsH,N (pyridine) 379.1 379.1 374.4 33.6
H, 25.8 25.8 25.8 0.0
2SH 60.2 60.2 60.0 34.2
2C=CH 215.6 215.7 215.7 135.1
HC=CH, (?4") 178.5 178.6 178.1 71.6
CH,C=0 (2A") 163.0 163.0 161.5 —24
CH,—OH (2A) 115.7 115.7 114.9 —4.1
CH,0 (?4') 113.5 113.4 112.7 4.1
CH,CH,O (24") 174.7 174.7 173.2 -3.7
CH,S (24") 125.9 125.9 124.6 29.8
CH,CH, (2A") 163.4 163.4 162.7 28.9
(CH,),CH (?4") 226.5 226.4 225.1 21.5
2C(CH,), 289.5 289.4 287.1 12.3
NO, (24;) 181.5 181.6 180.2 7.9
CH,CH=C=CH, 289.1 289.1 287.1 38.8
C5Hj (isoprene) 339.8 339.8 336.7 18.0
C5Hyq (cyclopentane twist) 331.2 3311 327.6 -18.3
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Table B.1: (continued)

Molecule NWChem A2*/A2* A2/A2* Expt.
C5H;, (n-pentane) 336.1 336.1 333.3 —35.1
C(CHj;), (neopentane) 335.3 335.2 331.9 —40.2
C¢Hg (1,3-cyclohexadiene) 394.8 394.8 389.9 25.4
C¢Hg (1,4-cyclohexadiene) 392.9 392.9 387.9 25.0
C¢Hy, (cyclohexane chair) 390.8 390.7 386.5 —29.5
C¢H,, (n-hexane) 401.5 401.4 398.0 —39.9
CcHy, (3-methylpentane) 403.5 403.4 399.9 —41.1
C¢H;—CHj (toluene) 425.6 425.6 420.1 12.0
C,H,; (n-heptane) 466.8 466.8 462.7 —44.9
CgHg (cyclooctatetraene) 531.7 531.7 524.5 70.7
CgH;g (n-octane) 532.1 532.1 527.3 —49.9
C,pHg (naphtalene) 587.7 587.7 578.2 35.9
C,oHg (azulene) 631.0 631.0 621.4 69.1
CH;CO,CH; (Z-methylacetate) 209.6 209.5 206.2 —98.4
(CH;);COH (t-butanol) 282.2 282.0 278.6 —74.7
C¢H;NH, (aniline) 439.0 439.0 433.3 20.8
C¢H;O0H (phenol) 374.4 374.4 368.6 —23.0
C,H,O (divinyl ether) 299.4 299.4 296.7 -3.3
C,HO (tetrahydrofuran) 285.7 285.6 282.2 —44.0
C5HgO (cyclopentanone) 327.6 327.5 322.5 —45.9
CcH,O, (benzoquinone) 393.0 393.0 384.6 —29.4
C¢H,N, (pyrimidine) 392.8 392.7 387.9 46.8
(CH;),S0, 221.0 2211 215.8 —89.2
C¢H;5Cl (chlorobenzene) 364.8 364.8 358.0 124
NC(CH,),CN (succinonitrile) 393.9 394.0 392.9 50.1
C,H,N, (pyrazine) 399.5 399.4 394.4 46.9
C,H,O (3-butyn-2-one) 296.0 296.1 294.0 15.6
C,H,O (E-crotonaldehyde) 276.0 276.0 273.1 —24.0
C,H,O; (acetic anhydride) 266.7 266.7 261.6 —136.8
C,H,S (2,5-dihydrothiophene) 306.7 306.7 301.4 20.8
(CH;),CHCN 329.7 329.7 328.0 5.6
C,HgO (methyl ethyl ketone) 269.5 269.5 265.9 —57.1
(CH;),CHCHO 277.0 276.9 273.8 —51.6
C,Hg0, (1,4-dioxane) 305.4 305.3 300.8 —75.5
C,HgS (tetrahydrothiophene) 305.0 305.0 300.2 —8.2
(CH;),CCl 268.4 268.3 263.9 —43.5
C,H,ClI (n-butyl chloride) 271.9 271.9 268.3 —37.0
C,HyN (tetrahydropyrrole) 3519 351.8 348.2 —0.8
C,HyNO, (2-nitrobutane) 433.9 433.9 428.5 —39.1
(CH;CH,),0 291.2 291.2 288.2 —60.3
CH,;CH(OCHj;), (dimethyl acetal) 31.7 311.6 307.8 —93.1
(CH;);CSH 31.7 311.6 307.1 —26.2
C,H,,S, (diethyl disulfide) 352.4 352.5 345.7 -17.9
(CH;);CNH, 350.5 350.4 346.9 —28.9
(CH,),Si 301.3 299.5 298.2 —55.7
C5H¢S (2-methyl thiophene) 357.1 357.1 350.7 20.0
C5;H;N (N-methyl pyrrole) 400.6 400.6 395.8 24.6
C5H,,O (tetrahydropyran) 347.4 347.3 343.0 —53.4
(CH;CH,),C=0 334.7 334.7 330.4 —61.6
C5H,,O, (isopropyl acetate) 334.6 334.6 329.6 —115.1
C5H,S (tetrahydrothiopyran) 368.8 368.7 363.1 -15.2
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Table B.1: (continued)

Molecule NWChem A2*[A2* A2/A2* Expt.
C5;Hy;N (piperidine) 413.2 4131 408.7 —11.3
C5H,, O (t-butyl methyl ether) 358.8 358.7 354.5 —67.8
CcH,F, (1,3-difluorobenzene) 307.2 307.3 300.3 -73.9
C¢H,F, (1,4-difluorobenzene) 308.3 308.4 301.2 —73.3
C¢H;F (fluorobenzene) 334.3 334.4 328.6 —27.7
C¢H,,O (diisopropyl ether) 419.0 418.9 414.3 —76.3
PF5 —186.3 —185.7 —188.4 —381.1
SF¢ —48.0 —47.7 —50.3 —291.7
P, 185.3 185.4 175.4 14.1
SO, 11.9 1121 109.0 —94.6
SCl, 70.4 70.5 65.1 —4.2
POCl, 221 22.5 15.3 —133.8
PCl; 66.6 67.0 57.7 —86.1
Cl,0,5 114.6 114.8 107.6 —84.8
PCl, 31.0 311 25.6 —69.0
ClL,S, 107.2 107.4 100.2 —4.0
SiCl, (A1) 21.0 19.3 19.2 —40.3
CF;Cl1 —14.3 —14.3 —18.7 —169.5
C,F, —50.7 —50.0 —55.5 —321.3
2CF, 9.0 8.9 6.5 ~111.3
2C,H; (phenyl radical) 392.2 392.3 387.8 81.2
M.D. 212.8 212.7 210.2
M.A.D. 212.8 212.7 210.2
Max. Dev. 582.0 582.0 577.2
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Table B.2: ADMM Hartree-Fock standard heats of formation [kcal/mol] for the 223 neutral molecules of the G3/99 test set. B3LYP/6-31G(2df,p) optimized geometries, the Def2-TZVPP basis set
in spherical representation and the GEN-A2*/GEN-A2* approach were used in all calculations.

Molecule LDF-EXX  CAP3-21G KT33-21IG EV933-21IG CAPDZVP KT3DZVP EV93DZVP Expt.
LiH 57.7 58.3 58.1 57.5 57.8 57.8 57.8 33.3
2BeH 82.0 82.8 82.5 82.8 84.8 85.2 85.0 81.7
2CH 169.8 173.8 173.4 174.2 169.4 169.5 169.1 142.5
CH, (®By) 129.0 131.7 130.9 131.4 128.6 128.8 128.4 93.7
CH, (*4) 157.3 162.4 161.8 163.3 156.3 156.6 156.0 102.8
3CH3 99.4 103.6 102.6 103.2 98.4 98.6 98.1 35.0
CH, 73.8 78.9 77.7 78.8 72.4 72.8 72.0 —17.9
SNH 117.9 122.4 121.6 122.3 117.6 117.8 17.7 85.2
NH, (®By) 109.9 116.3 114.9 115.9 109.1 109.4 109.2 451
NH;,4 86.8 92.3 91.0 91.5 85.4 85.9 85.5 —11.0
20H 47.9 51.1 50.5 50.1 47.8 47.9 47.8 9.4
H,O 19.6 22.7 22.8 21.8 18.9 19.3 19.1 —57.8
HF —20.6 —19.9 —19.1 —20.5 —20.9 —20.9 —211 —65.1
SiH, (1A;) 104.6 115.0 114.4 117.0 105.5 105.0 105.4 65.2
SiH, (®By) 108.8 120.1 118.8 120.0 110.5 110.6 111.0 86.2
ZSiHS 91.2 107.7 106.8 109.3 92.8 92.6 93.2 47.9
SiH, 71.8 92.5 92.4 95.9 73.0 72.7 73.5 8.2
2PH2 77.4 91.5 90.4 93.9 77.4 77.5 78.0 33.1
PH; 70.7 89.3 88.2 93.4 70.3 70.5 71.2 1.3
H,S 48.2 60.4 58.7 62.6 48.3 48.7 49.5 —4.9
HC1 7.5 13.0 12.0 13.8 8.0 8.3 8.6 —221
Li, 72.3 72.6 73.6 72.9 72.2 72.6 73.1 51.6
LiF =311 —35.1 —30.7 —33.4 —31.5 —31.7 —32.1 —80.1
HC=CH 166.0 171.4 170.4 171.9 162.4 165.1 164.2 54.2
H,C=CH, 147.3 156.6 155.0 157.2 144.9 146.3 145.3 12.5
H;C—CH;,4 140.3 150.8 149.4 152.2 138.0 139.2 137.6 —20.1
CN 196.4 205.5 204.0 207.1 194.1 195.6 195.0 104.9
HCN 145.3 157.1 155.9 159.0 142.2 144.2 143.7 31.5
CcO 59.0 70.9 71.1 74.0 56.9 58.1 571 —26.4
2HCO 106.7 119.5 119.4 122.2 105.2 106.4 105.6 10.0
H,CO 90.5 104.9 104.8 107.9 89.0 90.0 89.2 —26.0
CH,;OH 95.4 105.4 105.4 108.1 94.6 95.3 94.4 —48.0

N, 114.1 135.7 132.8 137.5 111.7 113.5 113.4 0.0
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Table B.2: (continued)

Molecule LDF-EXX  CAP3-21G KT33-21G EV933-21IG CAPDZVP KT3DZVP EV93DZVP Expt.
H,NNH, 194.1 207.0 205.1 207.9 193.1 194.1 193.8 22.8
NO 121.6 140.1 138.2 141.8 121.3 122.2 121.9 21.6
3O2 87.5 105.4 104.6 107.4 89.4 89.9 89.6 0.0
H,0O, 101.9 107.3 108.1 108.6 104.0 104.4 104.2 —-32.5
F, 73.8 72.3 75.7 76.9 78.0 78.3 78.1 0.0
Co, 491 68.8 68.5 72.4 47.2 49.2 48.0 —94.1
Na, 51.8 51.1 52.3 50.5 50.1 51.9 50.8 34.0
Si, 182.0 196.1 1941 1971 187.2 187.0 187.5 139.9
P, 113.8 137.0 133.9 140.5 116.5 116.3 17.5 34.3
382 82.1 102.5 98.6 104.1 86.4 85.5 86.5 30.7
dl, 40.0 48.6 46.1 50.4 43.6 429 441 0.0
NaCl —15.2 —14.5 —18.8 —18.4 —15.4 —15.1 —15.2 —43.6
SiO 56.3 66.4 68.8 72.5 57.8 57.6 57.5 —24.6
CSs 141.3 156.9 154.3 158.6 141.2 141.6 141.5 66.9
SO 72.7 87.7 87.9 92.2 74.5 74.6 75.0 1.2
CIO 83.4 90.2 89.8 93.1 85.9 85.9 86.3 24.2
CIF 41.2 411 43.5 46.3 44.0 44.0 44.4 —13.2
Si,Hy 128.1 166.8 165.9 172.2 130.8 130.0 130.4 191
CH,Cl1 78.2 88.3 86.3 89.3 78.7 78.9 78.8 —19.6
H;C-SH 17.2 132.8 130.3 135.1 17.2 17.7 117.9 —-5.5
HOCI 69.0 72.9 73.2 75.7 71.4 71.3 71.9 —17.8
SO, 82.6 118.2 17.4 126.9 87.1 88.0 89.2 —71.0
BF; —163.1 —157.8 —150.9 —148.5 —158.4 —158.3 —161.2 —271.4
BCl, —18.2 0.5 —4.8 —11 —18.5 —18.8 —20.6 —96.3
AlF, —181.4 —182.5 —174.2 —171.8 —174.1 —174.0 —174.8 —289.0
AlCl, —77.2 —61.2 —67.9 —62.4 —75.0 —75.7 —77.5 —139.7
CF, —60.6 —44.9 —39.7 -31.6 —55.2 —53.9 —56.5 —223.0
Cdl, 111 137.1 132.1 139.6 17.2 116.0 116.9 —22.9
OCs 93.7 114.2 111.8 118.3 93.0 94.6 94.3 —33.1
cs, 141.6 161.4 157.1 164.6 141.8 142.6 142.9 28.0
F,CO 9.0 26.6 29.8 35.6 10.6 12.3 10.4 —149.1
SiF, —242.3 —232.6 —223.7 —214.3 —228.3 —228.2 —231.0 —386.0
SiCl, —59.8 —24.0 —32.5 —229 —51.3 —52.3 —53.4 —158.4
NNO 204.6 238.2 233.7 241.0 203.9 206.6 206.5 19.6
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Table B.2: (continued)

Molecule LDF-EXX  CAP3-21G KT33-2IG EV933-21IG CAPDZVP KT3DZVP EV93DZVP Expt.
CINO 160.3 181.9 179.0 185.4 162.2 163.0 163.5 12.4
NF, 136.7 153.1 156.1 163.9 143.5 144.5 143.5 —3L.6
PF, —98.9 —90.9 —84.7 —74.0 —88.1 —88.3 —88.9 —229.1
O, 236.7 264.8 262.9 268.1 241.6 242.6 242.1 34.1
F,O 138.4 143.2 146.5 150.4 1451 145.5 145.1 59
CIF, 12.7 17.8 123.2 131.3 123.4 122.7 123.8 —38.0
F,C=CF, 52.1 74.7 79.7 90.7 57.2 59.5 57.0 —157.4
Cl,C=Ccl, 174.8 203.4 197.7 206.2 179.2 179.4 180.4 -3.0
F;C—-CN 120.5 147.2 1494 160.4 122.3 125.6 122.8 —118.4
HC=C-CH;, 224.3 234.9 233.1 236.8 220.4 224.0 222.2 442
H,C=C=CH, 225.6 237.0 234.7 238.4 222.5 225.4 223.7 45.5
C;H, (cyclopropene) 251.4 269.1 266.4 271.4 248.2 251.3 249.7 66.2
H,C=CH-CH, 209.6 224.1 222.2 226.3 206.4 208.8 207.0 4.8
C;3Hy (cyclopropane) 219.9 235.2 233.1 237.9 217.2 219.4 217.6 12.7
CH;—CH,—CH; 205.4 221.3 219.7 2241 202.5 204.4 202.0 —25.0
C,H; (Z-1,3-butadiene) 276.4 294.9 292.2 297.7 272.7 276.1 274.1 26.3
C,H, (2-butyne) 284.4 299.7 297.3 303.0 279.9 284.2 281.3 34.8
C,Hg (methylenecyclopropane) 298.3 317.1 314.6 320.9 294.8 298.3 296.0 47.9
C,Hg (bicyclo[1.1.0]butane) 309.8 334.0 3310 338.6 306.6 310.3 307.8 51.9
C,H; (cyclobutene) 292.1 313.9 311.7 318.2 289.1 292.5 290.3 37.4
C,Hg (cyclobutane) 284.6 305.7 304.5 3111 282.1 284.9 282.3 6.8
C,Hg (isobutene) 271.9 291.8 289.5 295.5 268.3 271.3 269.2 —4.0
C,H,, (trans butane) 270.7 2921 290.2 296.3 267.0 269.7 266.5 —30.0
C,H,, (isobutane) 270.0 290.8 289.1 294.8 266.4 269.1 266.1 —321
CsHg (spiropentane) 368.5 393.9 391.0 399.9 364.6 368.7 365.7 44.3
CyH, (benzene) 361.8 385.6 382.7 391.8 356.8 363.0 360.0 19.7
CH,F, 18.9 28.8 32.5 37.5 20.4 20.9 19.4 —107.7
CHF; —21.6 —9.0 —41 2.6 —18.2 —17.4 —19.5 —166.6
CH,(l, 84.8 100.6 97.5 102.2 87.3 87.2 87.5 —22.8
CHCl,4 95.3 116.6 112.4 118.5 99.7 99.1 99.8 —24.7
CH;NH, 160.2 172.1 170.7 173.7 158.2 159.3 158.3 —5.5
CH,CN 199.8 216.5 214.6 219.3 196.3 199.2 198.0 18.0
CH;3NO, (nitromethane) 242.5 281.0 277.9 285.4 243.7 246.0 245.0 —17.8

CH;0ONO (methyl nitrite) 240.8 271.8 270.2 278.9 242.6 2442 243.0 —15.9
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Table B.2: (continued)

Molecule LDF-EXX  CAP3-21G KT33-21G EV933-21IG CAPDZVP KT3DZVP EV93DZVP Expt.
CH,SiH, 128.8 150.8 149.6 153.9 129.5 129.6 129.5 -7.0
HCO,H 79.4 97.5 97.8 101.3 78.5 79.9 78.8 -90.5
HCO,CH, 152.5 175.7 176.6 183.6 151.3 153.1 151.2 —85.0
CH;CONH, 204.0 227.7 226.3 231.4 201.4 204.1 202.2 —57.0
C,H;N (aziridine) 242.5 262.3 259.9 266.1 240.3 242.3 241.0 30.2
NCCN (cyanogen) 284.1 305.9 303.1 310.4 280.2 284.3 282.9 73.3
NH(CHj;), 230.5 248.7 247.1 252.5 228.1 229.5 227.9 —4.4
CH;CH,NH, 223.5 241.6 239.7 244.4 2211 2229 221.2 —11.3
H,C=C=0 (ketene) 150.2 165.3 164.2 168.1 148.5 150.9 149.7 —11.4
C,H,O (oxirane) 177.8 196.3 195.4 201.7 176.7 178.4 176.8 —12.6
CH;CHO 146.4 165.9 165.1 169.5 144.3 146.3 144.6 —-39.7
O=CH-CH=0 161.5 190.1 189.6 195.9 159.4 162.1 160.4 -50.7
CH;CH,OH 157.1 173.2 172.9 177.3 155.4 157.0 155.2 —56.2
(CH;3),0 167.4 183.6 183.7 189.5 166.3 167.3 165.4 —44.0
C,H,S (thiooxirane) 190.3 208.8 205.6 211.7 190.5 191.3 190.8 19.6
(CH,),5=0 218.4 254.4 251.2 260.3 221.4 222.3 222.8 —36.2
CH,;CH,SH 182.2 202.6 199.8 206.0 181.5 182.7 182.0 —11.1
(CH;),S 184.4 203.8 200.5 206.2 184.4 184.9 184.6 —-8.9
H,C=CHF 120.1 131.5 132.2 136.4 119.4 121.0 19.7 —33.2
CH,;CH,Cl1 141.3 156.3 154.0 158.3 1411 142.0 141.0 —26.8
H,C=CHCl 149.3 163.1 160.5 164.4 148.6 149.9 149.4 8.9
H,C=CHCN 272.2 292.1 289.5 295.4 268.0 271.9 270.3 43.2
(CH;),C=0 204.3 228.6 227.3 233.1 202.0 204.8 202.6 —51.9
CH;CO,H 135.9 158.8 158.6 163.8 134.5 137.0 135.1 —103.4
CH,;CFO 100.3 120.6 121.7 127.6 99.8 102.1 100.2 —105.7
CH,;COCl1 139.6 163.5 161.2 167.0 139.4 141.3 140.2 —58.0
CH;CH,CH,Cl 206.5 226.7 2241 230.0 205.6 207.3 205.6 -31.5
(CH;),CHOH 219.1 240.9 240.1 246.0 217.0 219.3 216.8 —65.2
CH;—-0O—-CH,CH;, 229.3 251.6 251.2 258.8 227.3 229.1 226.4 —51.7
(CH;);N 299.7 323.3 321.6 329.1 296.5 298.5 296.1 -57
C,H,0 (furan) 275.2 298.6 297.3 306.3 273.3 277.2 2751 —8.3
C,H,S (thiophene) 2941 319.8 316.0 325.1 292.4 295.7 294.8 27.5
C,H;5N (pyrrole) 331.5 353.7 351.5 359.7 327.5 332.0 329.9 25.9

C5H;5N (pyridine) 379.1 408.8 405.3 415.7 375.2 380.5 378.0 33.6
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Table B.2: (continued)

Molecule LDF-EXX  CAP3-21G KT33-21G EV933-21G CAPDZVP KT3DZVP EV93DZVP Expt.
H, 25.8 27.3 26.7 26.6 25.6 25.2 25.1 0.0
2SH 60.2 67.5 66.5 68.5 60.6 60.8 61.2 34.2
2C=CH 215.7 219.4 218.2 219.6 213.2 215.6 214.4 135.1
HC=CH, (?4’) 178.6 185.5 184.0 185.8 176.5 178.1 176.8 71.6
CH,C=0 (%4) 163.0 181.0 180.0 184.3 161.1 163.1 161.6 —24
CH,—OH (%A4) 115.7 125.2 125.0 1271 1151 115.7 115.0 —41
CH,O0 (24") 113.4 124.2 123.5 126.6 112.7 113.2 112.3 41
CH,CH,0 (2A") 174.7 191.3 190.1 194.6 173.3 174.7 172.9 —-3.7
CH,S (2A") 125.9 136.6 134.7 137.6 126.2 126.4 126.3 29.8
CH,CH, (2A") 163.4 172.8 171.2 173.7 161.4 162.5 161.0 28.9
(CH,),CH (24") 226.4 241.0 238.9 243.0 223.6 225.5 223.2 21.5
2C(CH,), 289.4 309.0 306.6 312.3 285.8 288.5 285.5 12.3
NO, (2A1) 181.6 213.5 209.7 215.8 182.6 184.4 184.1 7.9
CH;CH=C=CH, 289.1 306.0 303.3 308.8 285.1 289.0 286.5 38.8
C5Hg (isoprene) 339.8 363.8 360.8 368.2 335.6 339.9 337.5 18.0
CsH, (cyclopentane twist) 3311 356.0 355.0 363.0 327.6 331.2 327.7 —18.3
CsH;, (n-pentane) 336.1 363.0 360.8 368.7 3316 335.1 331.2 —35.1
C(CH3;), (neopentane) 335.2 360.3 358.3 364.9 330.6 333.9 330.3 —40.2
C¢Hg (1,3-cyclohexadiene) 394.8 4229 420.6 429.7 390.0 395.5 391.9 254
C¢Hg (1,4-cyclohexadiene) 392.9 4219 419.6 429.0 388.0 393.6 390.1 25.0
C¢H, (cyclohexane chair) 390.7 422.0 421.0 430.6 386.2 390.8 386.6 -29.5
C¢H,, (n-hexane) 401.4 433.9 431.4 441.0 396.2 400.5 395.9 —39.9
C¢H,, (3-methylpentane) 403.4 435.0 432.7 441.9 398.2 402.5 398.2 —41.1
C¢H;—CH; (toluene) 425.6 454.7 451.3 462.3 420.3 427.2 423.5 12.0
C,H,4 (n-heptane) 466.8 504.8 502.0 513.3 460.7 465.9 460.5 —44.9
CgHg (cyclooctatetraene) 531.7 566.7 563.0 574.4 524.9 533.2 528.6 70.7
CgH,g (n-octane) 532.1 575.7 572.6 585.6 525.4 531.3 525.2 —49.9
C,yHg (naphtalene) 587.7 628.3 623.4 639.6 581.3 592.0 586.6 35.9
C,yHg (azulene) 631.0 672.8 667.5 683.5 624.3 635.1 629.8 69.1
CH;CO,CH; (Z-methylacetate) 209.5 237.6 238.0 246.7 207.8 210.6 207.9 —98.4
(CH;);COH (t-butanol) 282.0 308.4 307.7 314.8 279.1 282.3 279.3 —74.7
C¢H5;NH, (aniline) 439.0 469.8 466.0 477.2 434.0 441.0 437.7 20.8
C¢H50H (phenol) 374.4 404.0 401.3 412.3 370.7 377.3 3741 —23.0

C,H,O (divinyl ether) 299.4 323.6 322.0 330.2 297.4 300.9 298.7 -3.3
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Table B.2: (continued)

Molecule LDF-EXX  CAP3-21G KT33-21G EV933-21G CAPDZVP KT3DZVP EV93DZVP Expt.
C,H;O (tetrahydrofuran) 285.6 312.2 312.5 322.0 284.1 287.0 284.0 —44.0
C5HgO (cyclopentanone) 327.5 360.9 360.1 369.2 324.9 329.5 325.9 —45.9
C¢H,O, (benzoquinone) 393.0 439.1 436.2 448.5 389.6 396.5 393.0 —29.4
C¢HyN, (pyrimidine) 392.7 428.8 424.6 436.3 389.5 394.0 391.8 46.8
(CH3),S0, 2211 279.2 274.2 288.2 227.3 229.4 230.5 —89.2
C¢H;Cl (chlorobenzene) 364.8 392.3 387.9 398.7 361.7 367.4 364.7 124
NC(CH,),CN (succinonitrile) 394.0 427.6 424.7 434.4 388.0 394.2 391.5 50.1
C,H,N, (pyrazine) 399.4 435.5 431.1 443.0 396.6 400.7 398.9 46.9
C,H,O (3-butyn-2-one) 296.1 319.7 317.7 324.5 292.0 297.0 294.2 15.6
C,H O (E-crotonaldehyde) 276.0 304.5 302.4 309.7 272.6 276.4 273.8 —24.0
C,H,O; (acetic anhydride) 266.7 307.2 307.1 318.7 264.9 269.2 265.7 —136.8
C,H¢S (2,5-dihydrothiophene) 306.7 333.4 330.2 339.2 305.6 308.3 306.9 20.8
(CH;),CHCN 329.7 356.7 354.6 362.2 325.0 329.4 326.7 5.6
C,HgO (methyl ethyl ketone) 269.5 298.6 297.2 304.9 266.2 269.8 266.7 —57.1
(CH;),CHCHO 276.9 306.3 305.1 312.4 273.9 277.4 274.4 —51.6
C,Hg0, (1,4-dioxane) 305.3 340.1 341.3 353.7 305.1 307.9 304.4 —75.5
C,HgS (tetrahydrothiophene) 305.0 332.9 330.4 339.3 304.3 306.5 304.6 —8.2
(CH;);CCl 268.3 292.0 289.5 296.1 266.4 268.6 266.1 —43.5
C,HyCl (n-butyl chloride) 271.9 297.6 294.7 302.3 270.3 272.7 270.2 —37.0
C,HyN (tetrahydropyrrole) 351.8 379.9 378.7 388.1 348.5 351.9 349.0 -0.8
C,HgNO, (2-nitrobutane) 433.9 487.9 484.3 497.0 433.3 438.0 434.8 —-39.1
(CH;CH,),0 291.2 319.8 318.8 328.3 288.5 291.1 287.5 —60.3
CH,;CH(OCH,;), (dimethyl acetal) 311.6 343.4 344.4 356.5 310.3 312.8 309.1 —93.1
(CH,;);CSH 311.6 340.8 337.8 346.2 308.9 311.5 309.3 —26.2
C,H,,S, (diethyl disulfide) 352.5 391.7 385.4 397.4 353.5 354.8 353.5 ~17.9
(CH;);CNH, 350.4 378.0 376.2 383.5 346.1 349.6 346.6 —28.9
(CHy),Si 299.5 325.7 322.5 329.8 298.0 300.5 298.2 —55.7
C5H¢S (2-methyl thiophene) 357.1 387.3 383.2 3941 354.8 358.9 357.3 20.0
C;H,N (N-methyl pyrrole) 400.6 428.5 426.3 437.2 396.3 401.3 398.8 24.6
C5H,,O (tetrahydropyran) 347.3 380.2 380.2 391.2 345.0 348.8 344.9 —53.4
(CH;CH,),C=0 334.7 368.6 367.4 376.9 330.5 334.9 331.0 —61.6
C5H,,O, (isopropyl acetate) 334.6 373.7 373.4 385.6 331.5 335.9 331.7 —115.1
C5H,S (tetrahydrothiopyran) 368.7 402.6 400.0 410.2 367.0 370.2 367.5 —15.2

CsHyN (piperidine) 413.1 447.6 446.2 456.7 409.3 413.7 410.0 -11.3
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Table B.2: (continued)

Molecule LDF-EXX CAP3-21G KT33-21G EV933-2IG CAPDZVP KT3DZVP EV93DZVP Expt.
C5H,,O (t-butyl methyl ether) 358.7 390.4 389.6 399.7 355.3 358.6 354.8 —67.8
C¢H,F, (1,3-difluorobenzene) 307.3 337.3 337.4 351.0 307.0 313.2 309.6 ~73.9
C¢H,F, (1,4-difluorobenzene) 308.4 338.5 338.5 3522 308.1 314.2 310.6 ~73.3
C4H;F (fluorobenzene) 334.4 361.0 359.7 371.0 3317 337.8 334.6 —27.7
C¢H,,O (diisopropyl ether) 418.9 457.6 455.9 468.4 4147 418.6 414.0 —76.3
PF, —185.7 ~168.3 ~159.1 —1411 —167.4 —166.7 —168.9 —381.1
SF, —47.7 —21.4 ~14.3 10.2 224 —21.4 224 —291.7
P, 185.4 246.4 2351 254.5 195.3 192.2 193.8 141
SO, 112.1 167.4 164.0 177.8 119.5 1215 122.9 —94.6
sCl, 70.5 89.7 84.3 92.6 76.8 75.4 77.3 —42
POCl, 25 72.9 65.5 78.8 323 316 328 ~133.8
PCl, 67.0 117.0 104.2 118.8 81.1 78.2 81.0 —86.1
C1,0,5 114.8 175.5 167.6 184.2 126.9 127.3 129.7 —84.8
PCl, 311 60.0 52.8 63.2 39.0 37.3 38.9 —69.0
LS, 107.4 137.9 129.6 141.6 116.6 114.6 17.3 —40
SiCl, (1A) 19.3 335 29.6 355 241 231 232 —40.3
CF,Cl ~14.3 5.0 8.3 16.6 -89 -8.0 -9.9 ~169.5
C,Fq —50.0 -19.3 —11.2 3.0 —425 —39.5 —44.0 —321.3
2CF, 8.9 19.5 241 30.0 12.4 131 12 —111.3
2C¢H; (phenyl radical) 392.3 414.0 410.9 419.4 387.7 393.9 390.0 81.2
M.D. 212.7 233.7 2323 238.9 212.5 2145 213.1
M.AD. 212.7 233.7 2323 238.9 212.5 2145 213.1
Max. Dev. 582.0 625.6 622.5 635.5 575.3 581.2 575.1
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