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Resumen

En esta tesis presentamos las constricciones cosmológicas del modelo Multi Scalar Field

Dark Matter (MSFDM), en el que suponemos que la materia oscura está formada por

distintos campos escalares ultra ligeros. Como primera aproximación consideramos que los

campos son reales y que no interactúan entre ellos. Estudiamos las ecuaciones que describen

el fondo y las perturbaciones para N -campos. También presentamos la evolución de los

parámetros adimensionales de densidad, el espectro de potencias de materia y el espectro

de la radiación cósmica de fondo (CMB por sus siglas en inglés). En particular, nos

enfocamos en el caso de dos campos escalares con distintas combinaciones de los potenciales

V (ϕ) = 1/2m2
ϕϕ

2, V (ϕ) = m2
ϕf

2 [1 + cos(ϕ/f)] and V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1]. Sin

embargo, el formalismo matemático y los códigos empleados pueden ser extendidos a más

campos. Por otro lado, usamos los datos de BAO, Big Bang Nucleosynthesis, bosques de

Ly-α y Supernovas para hallar las restricciones de los parámetros para los casos en que

tenemos un solo campo y dos campos, también calculamos la evidencia bayesiana. Hallamos

que algunas combinaciones de los potenciales son penalizados por esta, mientras que otros

muestran un preferencia igual al modelo de materia oscura fŕıa. Por otro lado, estudiamos

numéricamente un nuevo modelo para explicar la expansión acelerada del Universo en el

que no es necesaria la existencia de la enerǵıa oscura. Usando distintas aproximaciones

al parámetro de Hubble y considerando un fluido efectivo obtenemos la evolución de los

parámetros adimensionales de densidad, el espectro de potencias de materia y el espectro

del CMB.
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Abstract

In this work we show the cosmological constraints on the Multi Scalar Field Dark Matter

model (MSFDM), we assume the dark matter is made up of different ultra-light scalar fields.

As a first approximation, we consider they are real and do not interact with each other. We

study the equations for both the background and perturbations for N -fields and present

the evolution of the density parameters, the mass power spectrum and the CMB spectrum.

Here, we focus on two scalar fields with several combinations for the potentials V (ϕ) =

1/2m2
ϕϕ

2, V (ϕ) = m2
ϕf

2 [1 + cos(ϕ/f)] and V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1]. However, the

mathematical formalism and the codes used can be extended to more fields. We use

the data from BAO, Big Bang Nucleosynthesis, Lyman-α forest and Supernovae to find

constraints on the sampling parameters for the cases of a single field and double field,

along with the Bayesian evidence. We found that some combinations of the potentials get

penalized through the evidence, however for others there is a preference as good as for the

cold dark matter. On the other hand, we numerically study a new model to explain the

accelerated expansion of the Universe in which the existence of dark energy is not necessary.

Using different approaches to the Hubble parameter and considering an effective fluid, we

obtain the evolution of the dimensionless density parameters, the matter power spectrum

and the CMB spectrum.
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Outline

The outline of the thesis is as follows. In Chapter 1 we start by briefly introducing

the observations that led to the need for dark matter and dark energy. In Chapter 2,

we present the necessary concepts of the theoretical framework to develop this thesis. We

provide a brief review of General Relativity, the Friedmann-Lemâıtre-Robertson-Walker

metric (which describes an expanding Universe that is also homogeneous and isotropic),

the concepts of redshift, Friedmann and continuity equations. Then we describe the Λ Cold

Dark Matter model (ΛCDM), considered as the standard model of Cosmology, its current

issues and some possible solutions. In particular we review the Scalar Field Dark Matter.

We also describe the cosmological observations that we use throughout this work.

In Chapter 3, we describe the motivations for having more than one scalar field as

dark matter. We introduce the Multi Scalar Field Dark Matter model (MSFDM) presenting

the mathematical formalism for the background and the linear perturbations for n fields

that, as a first approximation, are real, spatially homogeneous and non-interacting with

each other, each with a potential. Using an amended version of the CLASS code we

obtained the evolution of the background, Matter Power Spectrum and Cosmic Microwave

Background power spectrum for the particular case of two scalar fields with the quadratic,

trigonometric cosine and hyperbolic cosine potentials.

In Chapter 4, we describe the process of parameter inference with Bayesian statistics.

We review the difference between frequentist and Bayesian statistics, as well as Bayes’

theorem and some other concepts such as prior, likelihood and Chi-square to mention a

few, and describe the numerical techniques of the MCMC and the convergence criterion.
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In Chapter 5, we present the constraints of the SFDM and MSFDM parameters using

an amended version of the Monte Python code for different combinations of potentials and

observations. On the other hand, we make a comparison with the axionCAMB code that

considers a single field as dark matter with the quadratic potential. We check extensions

to our model by varying the neutrino masses and with non-zero curvature. We also study,

in an introductory way, whether our model can be described by the α β γ-parametrisation

used for non-CDM models.

In Chapter 6, we present the motivations and mathematical formalism of the Comp-

ton Mass Dark Energy model (CMaDE) as well as the evolution of the background, Mat-

ter Power Spectrum and Cosmic Microwave Background power spectrum using another

amended version of the CLASS code. In Chapter 7, we present the conclusions and

future work.

In the appendices we show how to install, modify, and use the CLASS and Monte

Python codes, the Planck 18 likelihood and the Ly-α notebook (from which we got the

data used in chapters 3 and 5) used in this work.
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Chapter 1

Introduction

Although fundamental problems in physics have been solved in recent years, such as the

existence of the Higgs boson, a crucial part of the Standard Model of particles; or gravi-

tational waves and black holes, predicted by Albert Einstein from the Theory of General

Relativity; phenomena remain to be explained. In particular, what are dark matter and

dark energy.

The idea of dark matter has its origin in the 1930’s when Fritz Zwicky concluded that

there was very little luminous matter in the Coma cluster to explain the movement of the

approximately 1000 galaxies in it, that is, it takes more matter than observed to explain

Coma dynamics [1]. Years later, in the 70’s, the astronomer Vera Rubin studied the speed

of the nearby galaxies she observed [2, 3]. It was believed that the speed with which matter

in a spiral galaxy should move had to be a function of its radius from the center of the

galaxy[4]

v =

√
GM(R)

R
. (1.1)

Where R is the radius measured from the center of the galaxy and M(R) is the mass

depending on the radius. This means that farther away matter is, the slower its speed will

be. However, it was found to remain almost constant for large radius which did not agree

with the observed matter. This led to reconsidering the idea that there must be a type
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of matter that is not visible and that it must only have gravitational interaction in order

to explain the observed velocities. Another evidence of the dark matter existence is the

relative motion between galaxies. The gravitational force a single galaxy feels produced by

those around it is studied. Dark matter is also necessary to explain structure formation in

the Universe (galaxies, galaxy clusters, cosmic background radiation). It is believed that

this structure started to formed in the early Universe because of small irregularities that

grew due to gravitational interaction. However, it is accepted that baryonic matter (short

name used to refer to all the know particles of the Standard Model of Particles) is not

enough to cause the gravitational force that helped the growth of irregularities in the early

Universe.

On the other hand, when the relative motion of galaxies was studied, it was assumed

that they all must fulfill the relation

v = H0r + V, (1.2)

where v is the speed of separation, r the distances between galaxies and v the peculiar

speed. So if we knew H0, we could know the evolution of the Universe. This means that

we need to observe as many galaxies as possible to obtain information on H0. However,

measuring them has problems because we do not know any law to determine the peculiar

speed. On the other hand, we also need to accurately measure the distances between them

where the usual technique is parallax but this fails for very distant galaxies. So, other

objects that behave more or less the same between them, that there are enough of them,

and that they shine a lot; are needed. One of the objects that meets these conditions is a

type of star called Cepheids because its luminosity varies periodically practically without

irregularities, if we know the brightness or its luminosity (knowing its period) we can know

the distance, its light decreases proportionally to the square of the distance to the observer

and its brightness is dim at far distances [4]. When Hubble studied the Cepheids [5], he

found that there was a proportional relation between the distance of a galaxy and the

2



speed with which it was receding

z =
H0

c
D, (1.3)

where z is the redshift, c the speed of light, D the distance and H0 the so called Hubble

parameter. The meaning of this equation is that galaxies with greater distance are moving

faster from us at this instant. This relation only holds if the Universe is expanding, although

it was not yet known whether this expansion was accelerated, constant, or decelerated.

However, using Cepheids also has problems because, at large distances, they are not

bright enough. So, the next object to be used were Type Ia supernovae stars because

they are very bright and the luminosity is similar between them, the luminosity-shape of

the light curve relation is empirical and because the luminous distance, which depends on

H, is measured. Using these stars, Perlmutter, Schmidt, and Riess [6, 7] found that to

explain their observations the Universe must have an accelerating expansion, and it has

been proposed that dark energy is causing this expansion. However, almost nothing is

known about dark energy. In addition to the observations that we have mentioned, there

is currently other evidence [8, 9, 10] of the existence of dark matter and dark energy such

as the Cosmic Microwave Background (CMB) or the Baryonic Acoustic Oscillation (BAO).

As we will see in later chapters, there is a standard model that describes these phenom-

ena known as ΛCDM in which dark matter is cold (CDM) and dark energy is a cosmological

constant (Λ). However, this one still has problems to solve. In this work we study alter-

natives models that could provide a solution to such problems.

[11, 12, 13]

3



4



Chapter 2

Cosmology

The beginning of the cosmology as it is known today emerged after 1920, when the Shapley-

Curtis debate was carried out [14]. This debate was held between the astronomers Harlow

Shapley and Heber Curtis, resulting in a revolution for astronomy at that time by reaching

an important conclusion: “The Universe had a larger scale than the Milky Way”. Several

observations at that epoch established that the size and dynamics of the cosmos could be

explained by Einstein’s General Theory of Relativity. At the beginning, cosmology was

a speculative science based only on a few datasets, and it was characterized by a dispute

between two cosmological models: the steady state model and the Big Bang (BB) theory.

It was not until 1990, when the amount of data increased enough to discriminate and rule

out compelling theories, that the BB model awarded was the most accepted.

Since Cosmology is based on the General Theory of Relativity, in this chapter we will

summarize the basic concepts used in this work.

2.1 Dynamics and geometry

In order to specify the geometry of the Universe, an essential assumption is the Cosmologi-

cal Principle: for a particular time and on sufficiently large scales, the observable Universe

can be considered homogeneous and isotropic, with great precision. For example, at scales

5



Figure 2.1: In the left panel we see an example of homogeneity because the image looks

the same no matter where we stand. However, it is not isotropic because the lines follow

a particular direction. The central panel shows isotropy because the lines go out in all

directions but it is not homogeneous because it has a center, therefore the image does

depend on where we stand. In the panel on the right we see an example of isometry and

homogeneity because the circles do not follow any direction and there is no center. [15]

greater than 100 Mega-parsecs, the distribution of galaxies observed on the celestial sphere

justifies the assumption of isotropy. The uniformity observed in the temperature distribu-

tion (one part in 105) measured through the Cosmic Microwave Background (CMB) is the

best observational evidence we have in favor of a universal isotropy. Therefore, if isotropy

is taken for granted and by taking into account that our position in the Universe has no

preference (Copernican Principle), the homogeneity follows when considering isotropy in

each point. Here isotropy means that the Universe is observed equally in all directions and

homogeneity means that the universe is observed equally in each point of space, see Figure

2.1 for an example.

2.1.1 The metric

In General Relativity, the interaction between the geometry of spacetime and the amount of

matter contained is studied. In general, spacetime is not necessarily flat but can be curved.

The curvature of spacetime produces physical effects on the contained matter, these effects

are usually associated with a gravitational field. On the other hand, the curvature of

6



spacetime is related to the contained matter by means of an energy-momentum tensor

[16]. The above expressions can be summarized by paraphrasing Wheeler: “matter tells

spacetime how to curve and, in turn, the geometry of this curvature tells matter how to

move”. We can write this sentence down by the Einstein equations

Gµν = 8πGTµν , (2.1)

where Gµν is the Einstein tensor (geometry of the spacetime), Tµν is the energy-momentum

tensor (matter contained in the Universe) and G is the gravitational Newton constant

[17, 16, 18, 19].

The distance between two points in a curved spacetime can be measured as

ds2 = gµνdx
µdxν , (2.2)

where gµν is the metric tensor that contains all the information about the geometry of

the spacetime. From now on, and unless stated otherwise, greek letters µ, ν, . . . denote

spacetime indices ranging from 0 to 3, while latin letters i, j, . . . denote spatial coordinates

ranging from 1 to 3.

2.1.2 Symmetric Spaces

The fact that the Universe is homogeneous and isotropic allows us to divide space into

three-dimensional slices, each at a fixed time, these being also homogeneous and isotropic.

Let’s classify these slices. Note that these three dimensional spaces have constant curvature.

They can have zero, positive or negative curvature. For the flat case, zero curvature, we

have a three-dimensional Euclidean space E3 whose line element is given by

dl2 = dx⃗2 = δijdx
idxj. (2.3)

For positive curvature, we have a three-dimensional space represented by a sphere inside a

four-dimensional Euclidean space E4. The line element is

dl2 = dx⃗2 + du2, (2.4)

7



Figure 2.2: The spacetime can be foliated into spatial hypersurfaces with plane, positive

and negative curvature [17].

with

x⃗2 + u2 = a2. (2.5)

Where a is the radius of the sphere. The surface of the sphere is also homogeneous and

isotropic [17].

In the case of negative curvature, three-dimensional space can be represented as a

hyperboloid. The line element is given by

dl2 = dx⃗2 − du2, (2.6)

with

x⃗2 − u2 = −a2. (2.7)

Where a is an arbitrary constant. The hyperboloid is also homogeneous and isotropic [17].

To study the cases of nonzero curvature, we do, for convenience, a rescaling such that

we work with dimensionless quantities. In particular, we consider the change

x⃗ → ax⃗, (2.8)

u → au. (2.9)

8



Where a has units of length. We can rewrite the line element for both cases as

dl2 = a2
[
dx⃗2 ± du2

]
, (2.10)

with

x⃗2 ± u2 = ±1. (2.11)

From the above condition we have

udu = ∓x⃗ · dx⃗. (2.12)

Using the above expression we can rewrite the line element as

dl2 = a2

[
dx⃗2 ± (x⃗ · dx⃗)2

1∓ x⃗2

]
. (2.13)

In order to include the case of zero curvature (flat space) the line element must be rewritten

as

dl2 = a2

[
dx⃗2 + k

(x⃗ · dx⃗)2
1− kx⃗2

]
≡ a2γijdx

idxj, (2.14)

where

γij ≡ δij + κ
xixj

1− κ (xkxk)
. (2.15)

While κ = 0 corresponds to the flat case, κ = +1 represents the case with positive curvature

(sphere) and κ = −1 corresponds to the negative curvature (hyperboloid). For dl2 > 0 we

must take a2 > 0. And the form of γij depends on the chosen coordinates [17].

For convenience, we will use spherical polar coordinates. This will transform Equation

(2.14) into a diagonal metric. For this, we will use [17]

dx⃗2 = dr2 + r2dΩ2, (2.16)

x⃗ · dx⃗ = rdr. (2.17)

Where dΩ2 ≡ dθ2 + sin2θdϕ2. The line element is given by

dl2 = a2
[

dr2

1− kr2
+ r2dr2

]
. (2.18)

9



We can further simplify the above expression

dl2 = a2
[
dχ2 + S2

k (χ) dΩ
2
]
. (2.19)

Where we have redefined the radial coordinate such that

dχ =
dr√

1− kr2
. (2.20)

The form of Sk depends on the value of k.

Sk(χ) ≡


sinhχ k = −1,

χ k = 0,

sinχ k = +1.

(2.21)

2.2 FLRW metric

To study the Universe, we use the FLRW or Friedmann-Lemâıtre-Robertson-Walker metric.

This metric describes an expanding Universe that is also homogeneous and isotropic. It

is obtained by adding the time coordinate to the metric discussed in the previous section.

That is

ds2 = dt2 − a2(t)γijdx
idxj. (2.22)

Where a(t), called the scale factor, is a time-dependent parameter. Note that (2.22) de-

pends only on the scale factor and the curvature parameter k. The coordinates xi ≡
{x1, x2, x3} are called comoving coordinates and are related to the physical coordinates as

xi
phys = a(t)xi. The comoving coordinate system follows the expansion of the Universe in

such a way that the spatial coordinates of non-moving objects do not change. The dis-

tance between two objects measured in comoving coordinates remains the same. However,

the physical or proper distance of objects grows over time as the Universe expands. The

physical velocity of an object is given by

vifis ≡
dxi

fis

dt
= a(t)

dxi

dt
+

da

dt
xi ≡ vipec +Hxi

fis, (2.23)
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Figure 2.3: The distance between two points measured from the comoving coordinate

system remains constant as the Universe expands. The physical distance is proportional

to the comoving by the scale factor a(t) [17].

where we define the Hubble parameter as

H ≡ ȧ

a
. (2.24)

In (2.23) there are two contributions: the term vipec is called the peculiar velocity while

Hxi
fis is called the Hubble flux. The peculiar velocity is the velocity of the object measured

by a comoving observer, that is, one moving with the Hubble flux [17].

In spherical coordinates the FLRW metric is given by

ds2 = dt2 − a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (2.25)

The expression (2.25) can be rescaled and still represent the same thing using the

following changes of variables

a → λa, (2.26)

r → r

λ
, (2.27)

k → λ2k. (2.28)

This freedom allows us to set the value of the scale factor to one at present. That is

a(t0) ≡ 1 = a0. (2.29)
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Where t0 represents the current time. And all parameters that evaluate to t0 will be

denoted with the subscript 0.

Using (2.20) and (2.21) we can write the FLRW metric as

ds2 = dt2 − a2(t)
[
dχ2 + S2

k (χ) dΩ
2
]
. (2.30)

The metric written as (2.30) is useful when we want to study the propagation of light

[17]. For the same purpose, conformal time is defined as

dτ =
dt

a(t)
. (2.31)

Substituting (2.31) into (2.30) we can rewrite the FLRW metric as

ds2 = a2(t)
[
dτ 2 −

(
dχ2 + S2

k (χ) dΩ
2
)]

. (2.32)

Note that (2.32)) has a form similar to the Minkowski metric multiplied by the scale factor

whose argument is now the conformal time.

2.3 Redshift

Part of the information we have about the Universe has been obtained through the light

that reaches us from the astrophysical bodies that are in it. However, to obtain a good

interpretation of this information, it must be taken into account that, throughout its

journey, the light undergoes changes. When an object approaches us, the light we receive

from it is compacted making it bluer. If the object is moving away then the wave lengthens

and is seen redder. It follows that the light emitted at time t1 with wavelength λ1 will be

observed at t0 with a wavelength given by

λ0 =
a(t0)

a(t1)
λ1. (2.33)

Where a is the scale factor at different times. We define the redshift parameter as

z ≡ λ0 − λ1

λ1

, (2.34)
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or, using Equation (2.33),

1 + z =
a(t0)

a(t1)
. (2.35)

If we use the convention a(t0) ≡ 1, we have

1 + z =
1

a(t1)
. (2.36)

2.4 Friedmann and continuity equations

The content of the Universe needs to satisfy homogeneity and isotropy, as well; hence, here

it is described by the energy-momentum tensor of a perfect fluid

Tµν = (ρ+ P )UµUν − Pgµν , (2.37)

where ρ is the energy density, P is the fluid pressure, and Uµ is the 4-velocity relative to

the observer. If we take the velocity as Uµ = (1, 0, 0, 0) (comoving observer), the energy-

momentum tensor reduces to

T µ
ν = gµλTλν =


ρ 0 0 0

0 −P 0 0

0 0 −P 0

0 0 0 −P

 . (2.38)

Using Equations (2.1) and (2.38), with the FLRW metric, we can obtain the Friedmann

equations

H2 ≡
(
ȧ

a

)2

=
8πG

3

∑
i

ρi −
κ

a2
, (2.39)

ä

a
= −4πG

3

∑
i

(ρi + 3Pi) . (2.40)

In these expressions, H accounts for the rate of expansion (or contraction) of the Uni-

verse, named as the Hubble parameter. Subindex i labels all the components that we
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believe the Universe is made of. These equations describe the evolution of the Universe.

By combining Equations (2.39) and (2.40), we can obtain the continuity equation given by

ρ̇+ 3
ȧ

a
(ρ+ P ) = 0. (2.41)

The meaning of (2.41) is the conservation of the energy-momentum tensor (∇µT
µν = 0).

In order to close the system, we need to include an equation of state that relates pressure

and energy density for a given fluid. In particular, we are interested on barotropic fluids,

which generally have the form of P = ωρ.

2.5 Content of the Universe and the ΛCDM Model

Once the equations that define the dynamics of the Universe are known, it is necessary to

specify its content. The standard cosmological model, also known as Λ Cold Dark Matter

(ΛCDM), is one of the most accepted models to describe the Universe, with its content

being:

• Dust: It has no pressure (P = 0), and its energy density takes the form of ρ ∝ a−3.

Dust is conformed by baryons (ordinary matter).

• Dark matter: It is proposed to explain several astrophysical observations, like the

dynamics of galaxies in the Coma cluster or the rotation curves of galaxies [4, 20].

The ΛCDM model assumes the dark matter only interacts gravitationally (and pos-

sibly by weak interaction) with the rest of the Universe, hence its name, Cold Dark

Matter (CDM). Since it is proposed as interacting only via gravitational force, there

can be several candidates to fulfill this requirement: it could be conformed by weakly

interacting massive particles (WIMPs), by gravitationally-interacting massive parti-

cles (GIMPs); by axions (hypothetical elementary particles); or by sterile neutrinos,

just to mention a few. For a short review about Dark Matter and possible candidates,

see Reference [21].
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• Radiation: This corresponds to relativistic particles that follow the relation P = 1
3
ρ,

which implies a density with a behavior ρ ∝ a−4. We consider photons ργ and massless

neutrinos ρν as radiation, so the total radiation energy density in the Universe is

given by

ρr = ργ + ρν . (2.42)

The relation between these quantities is

ρν = Neff × 7

8
×
(

4

11

)4/3

ργ, (2.43)

where Neff is the effective number of relativistic degrees of freedom, with standard

value Neff = 3.046 [22].

• Dark Energy: It is introduced to explain the current accelerated expansion of the

Universe. In the ΛCDM model, dark energy is given by the cosmological constant Λ

or equivalently by an equation of state ω = −1.

Component ω

Dust 0

Radiation 1/3

Cosmological Constant -1

Table 2.1: Equation of state associated to each component of the Universe.

Each of these components can be described by its equation of state shown in Table 2.1,

and defining the density parameter

Ωi ≡
ρi
ρcrit

, with ρcrit =
3H2

8πG
, (2.44)
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with ρcrit being the condition to have a flat Universe or equivalently zero curvature, we can

rewrite (2.39) as

H2

H2
0

= Ωr,0a
−4 + Ωm,0a

−3 + Ωk,0a
−2 + ΩΛ,0, (2.45)

where Ωr,0 is the radiation density parameter, Ωm,0 ≡ Ωb,0 + ΩDM,0 corresponds to the

total matter, Ωb,0 to baryons, ΩDM,0 to dark matter, Ωk ≡ −κ/(aH)2 the curvature density

parameter, and ΩΛ ≡ Λ/3H2 associated with the Cosmological Constant, and the subscript

zero indicates they are evaluated by today’s values.

2.6 Cosmological parameters

2.6.1 Base parameters

These parameters, also known as standard parameters, are the main quantities used in

the description of the Universe. They are not predicted by a fundamental theory, but

their values must be fitted to provide the best description of the current astrophysical and

cosmological observables.

To explain the homogeneous and isotropic Universe, we can use the density parameter

of each component Ωi,0 and the Hubble parameter H0 related by (2.45).

In particular, the radiation contribution is measured with great precision, so that Ωγ is

pinned down very accurately, and, hence, there is no need to fit this parameter. Similarly,

neutrinos, as long as they maintain a relativistic behavior, can be related to the density of

the photons through (2.43).

On the other hand, the existence of strong degeneracies from different combinations of

parameters is also notorious. In particular, the geometric degeneracy involving Ωm, ΩΛ and

the curvature parameter Ωk = 1−Ωm−ΩΛ. To reduce these degeneracies, it is common to

introduce a combination of cosmological parameters such that they have orthogonal effects

in the measurements.
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2.6.2 Derived parameters

The above standard set of parameters provides an adequate description of the cosmological

models. However, this parameterization is not unique, and some others can be as good

as this one. Various parameterizations make use of the knowledge of the physics or the

sensitivity of the detectors and can, therefore, be interpreted more naturally. In general,

other parameters could have been used to describe the Universe, for example: the age of

the Universe, the current temperature of the neutrino background, the epoch of equality of

matter-radiation, or the epoch of reionization. In the ΛCDM model, in order to decrease

degeneracies, the physical energy densities ΩDM,0h
2 and Ωb,0h

2 are used as base parameters

[22].

2.7 ΛCDM and beyond

The success of ΛCDM model relies mainly on the accurate agreement with several cosmo-

logical observations, for example measurements of the current accelerated expansion of the

Universe and the Cosmic Microwave Background Radiation (CMB) [10].

The best description for the dark matter assumes to be made up of pressureless, non-

relativistic, neutral and non-baryonic particles whose interaction is primarily through grav-

ity. However, the assumption of a particle with these properties brings up many unex-

plained features, mainly at galactic scales, i.e. the central density behaviour in galactic

halos or the overpopulation of substructures at small scales; for an extended review about

the problems and possible solutions see Refs. [20, 23, 24].1 On the other hand, so far it

was not possible to detect WIMPs either directly in the laboratory, or indirectly by astro-

nomical signals of distant objects have failed. This leads us to explore alternatives to the

ΛCDM model.

With this in mind, several alternatives have been suggested. For instance, the Scalar

1Recent studies suggest there is no longer a Missing Stellites Problem (MSP), however there could be

the problem so many satellites, see [25, 26].
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Field Dark Matter (SFDM) model proposes the dark matter as a spin 0 boson particle

[27, 28, 29, 30, 31, 32]; or the Self Interacting Dark Matter, as its name states, relies on

the cold dark matter to be made of self interacting particles [33, 34, 35]. On the other

hand, in order to explain the accelerated expansion of the Universe, there exist different

modifications to the theory of General Relativity, i.e., f(R) theories [36], braneworld models

[37, 38]. There are also some alternatives to the cosmological constant as Dark Energy,

i.e., scalar fields (quintessence, K-essence, phantom, quintom, non-minimally coupled scalar

fields [39, 40, 41, 42, 43]); or many more alternatives, i.e., anisotropic Universes [44, 45, 46].

Finally, if the dark energy is assumed to be a perfect fluid, one of the most popular time-

evolving parameterizations for its equation of state consists of expanding ω in a Taylor

series, for example, the Chevallier-Polarski-Linder (CPL) ω = ω0+ωa (1− a), with two free

parameters ω0, ωa [47, 48]. It may also be expanded into Fourier series [49], or many more

approaches, as have been suggested to account for a dynamical dark energy [50, 51, 52].

2.8 Scalar Field Dark Matter

An alternative that may alleviate the problems of ΛCDM, mentioned in section 2.7, is to

consider a dark matter but now described by a single scalar field ϕ with an associated

potential V (ϕ), whose evolution is carried out by the Klein-Gordon equation. The idea

of assuming a scalar field as the Dark Matter (DM) of the Universe was introduced about

two decades ago, where the simplest possibility is to be real, or complex, minimally cou-

pled to gravity and interacting with ordinary matter only gravitationally [53, 54, 55, 56].

Throughout the years, this model has been rediscovered and received many names, for

example: Scalar Field DM (SFDM) [55], fuzzy DM [57], Bose-Einstein condensate DM [58]

and, more recently, ultra-light axion DM [59], but a systematic study was carried out since

then [55]; here we will refer to it as SFDM, as it was named in [60]. Based on this idea,

the particle associated to the field is an ultralight boson whose mass oscillates around

mϕ ∼ 10−22eV, (2.46)
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and hence is able to form Bose-Einstein condensates that conform the galactic structures

[59, 61, 62, 63, 64]. In this work we will consider that the scalar field is already formed

and we will not delve into their origin; see Refs. [59, 35] for details.

For an expanding universe the scalar field cools down along with the expansion, and

after a while, this causes that the field, the boson gas, freezes and then condensates. For

an ideal boson gas the condensation temperature goes like Tc ∼ m−5/3, implying that for a

mass big enough the condensation temperature becomes small, but the opposite happens if

the mass turns out to be light, or ultra-light, the condensation temperature could be very

high.

Assuming a Friedmann-Lemaitre-Robertson-Walker metric, a spatially homogeneous

scalar field and that all other components are modeled as perfect fluids, we describe the

background dynamics with the following equations

H2 =
κ2

2

(∑
I

ρI + ρϕ

)
, (2.47a)

ρ̇I = −3
ȧ

a
(ρI + pI) , (2.47b)

ϕ̈ = −3Hϕ̇− ∂ϕV (ϕ) . (2.47c)

In these equations, dots represent derivatives with respect to the cosmic time, H is the

Hubble parameter, ρI and pI are the energy and the pressure of the I-th fluid component,

and κ2 = 8πG. Equation (2.47b) is the continuity equation. The scalar field density and

pressure are given by

ρϕ = (1/2)ϕ̇2 + V (ϕ), pϕ = (1/2)ϕ̇2 − V (ϕ). (2.48)

In order to solve the system of equations, we can use the following change of variables

x =
κ√
6
ϕ′ , (2.49a)

y =
κ√
6

√
2V (ϕ)

H
, (2.49b)

zI =
κ√
6

√
2ρI
H

. (2.49c)

19



Where x and y represents the kinetic and potential parts of the scalar field, respectively;

zI is the new variable for the I-th component and q̇ = Hq′ with q′ = dq
dlna

. These variables

are constrained by the following equation

x2 + y2 +
∑
I

z2I = 1. (2.50)

As an example, suppose that the scalar field has the potential V (ϕ) = (1/2)m2
ϕϕ

2 and that

in the Universe there is radiation (zγ), baryons (zb) and cosmological constant (zΛ). The

equations to solve are

x′ = −3x+
3

2
Πx− sy , (2.51a)

y′ =
3

2
Πy + sx , (2.51b)

z′γ =
3

2

(
Π− 4

3

)
zγ , (2.51c)

z′b =
3

2
(Π− 1) zb , (2.51d)

z′Λ =
3

2
ΠzΛ , (2.51e)

s′ =
3

2
Πs . (2.51f)

Where Π = 2x2 + 4/3z2γ + z2b and s ≡ m
H

is used to close the system, see [62] for details.

On the other hand, Ωϕ = x2 + y2 and ΩI = z2I . In the left panel of Figure 2.4 we show the

solution of these equations, this is, the evolution of the density parameters and we found

that, at background level, SFDM can reproduce ΛCDM. However, this change of variable

has a disadvantage because it is computationally more expensive to obtain the evolution of

the scalar field due to its oscillatory nature, as can be seen in the right panel of the same

Figure where we have lowered the resolution of the code to be able to see the oscillations.

To solve this problem, in the reference [65], the authors propose a change of variables

in such a way that we can avoid these oscillations:

κϕ̇√
6H

≡ Ω
1/2
ϕ sin(θ/2) ,

κV 1/2

√
3H

≡ Ω
1/2
ϕ cos(θ/2) . (2.52a)

We will study more of this change of variables in the next chapter.
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Figure 2.4: Evolution of the density parameters with Scalar Field Dark Matter (left panel) and the

evolution of the kinetic (red lines) and potential (blue lines) part of the scalar field while the black solid

line is the sum of both part.

2.9 Cosmological observations

In this section, we review some observables, which give information about dark matter

and dark energy, and which we will use later to constrain the parameters of the models

presented here. [11].

2.9.1 Baryon Acoustic Oscillations (BAO)

The BAO is a statistical property, a feature in the correlation function of galaxies or in the

power spectrum. The best description of the early Universe considers that it was made of

plasma of coupled photons and matter (baryons and dark matter). The interaction between

the gravitational force due to matter and the radiation pressure formed spherical waves

in the plasma. When the Universe cooled down enough, the protons and electrons were

able to join together, forming hydrogen atoms; therefore, this process allowed photons to

decouple from the rest of the baryons. The photons began to travel uninterrupted, while
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the gravitational field attracted matter towards the center of the spherical wave. The final

configuration is an overdensity of matter in the center and a shell of baryons of fixed radius

called sound horizon. This radius, used as a standard ruler, is the maximum distance that

sound waves could have traveled through the primordial plasma before recombination. The

sound horizon rd is given by

rd =

∫ ∞

zd

cs(z)

H(z)
dz, (2.53)

where the sound speed (in terms of redshift z) in the photon-baryon fluid is cs(z) =

3−1/2c
[
1 + 3

4
ρb(z)/ργ(z)

]−1/2
, and zd is the redshift when photons and baryons decouple.

The BAO scale is determined by adopting a fiducial model to be able to translate the

angular and redshift separations at comoving distances. The information of the measure-

ment is found in the ratio (α) of the measured BAO scale and that predicted by the fiducial

model (fid). In an anisotropic fit, two ratios are used, one perpendicular α⊥ and one par-

allel α∥ to the line of sight. A measurement of α⊥ constrains the ratio of the comoving

angular diameter distance to the sound horizon [66]:

DM(z)

rd
= α⊥

DM,fid(z)

rd,fid
, (2.54)

where the comoving angular diameter distance is given by

DM(z) =
c

H0

Sk

(
Dc(z)

c/H0

)
. (2.55)

The line-of-sight comoving distance is defined as

Dc(z) =
c

H0

∫ z

0

dz′
H0

H(z′)
, (2.56)

and Sk(z)

Sk(x) =


sinh

(√
Ωkx

)
/
√
Ωk Ωk > 0,

x Ωk = 0,

sin
(√−Ωkx

)
/
√−Ωk Ωk < 0.

(2.57)

The Hubble parameter can be constrained by measuring α∥ using an analogous quantity
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Figure 2.5: BAO Hubble diagram. BAO measurements of DV /rd, DM/rd and zDH/rd from the sources

indicated in the legend. The scaling factor
√
z is included for a better display of the error bars. Solid lines

are plotted by using the best-fit values obtained by the Planck satellite [67]. The Lyα cross-correlation

points have been shifted in redshift; auto-correlation points are plotted at the correct effective redshift.

DH(z)

rd
= α∥

DH,fid(z)

rd,fid
, (2.58)

with DH(z) = c/H(z).

If redshift-space distortions are weak (which is valid for luminous galaxy surveys but

not for the Ly-α), an isotropic analysis measures an effective combination of (2.54) and

(2.58), and the volume averaged distance DV (z) [66]

DV (z)

rd
= α

DV,fid(z)

rd,fid
, (2.59)

with DV (z) = [zDH(z)D
2
M(z)]

1/3
.

The BAO measurements constrain the cosmological parameters through the radius of

the sound horizon rd, Hubble distance DH(z) and the comoving angular diameter distance

DM(z); see Figure 2.5.
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2.9.2 Supernovae type Ia (SNIa)

This type of supernova occurs in binary star systems, one of which is a white dwarf that

accretes matter from the star that accompanies it. When the white dwarf accumulates

sufficient mass (≈1.4 solar masses), its core will start the ignition temperature for carbon

fusion, and, within a few seconds, it releases enough energy to produce the supernova [68].

Since type Ia supernovae (SNIa) are hypothesized to occur near the same mass limit of

1.4 solar masses, commonly referred to as Chandrasekhar mass, their luminosity peaks are

fairly consistent and can be standardized and, thus, be used as standard candles [22]. From

several analyses of SNIa, the Supernova Cosmology Project and High-z Supernova Search

Team both found evidence that the Universe is currently expanding at an accelerated rate

[69, 70, 71].

These stars allow us to measure relative distances using the luminosity distance given

by

DL ≡
√

L

4πS
, (2.60)

where L is the luminosity defined as the energy emitted per unit solid angle per second, and

S is the radiation flux density defined as the energy received per unit area per second [4].

The observable quantity is the radiation flux density received, and it cannot be translated

into the luminosity density unless the absolute luminosity of the object is known. Even if

the luminosity is unknown, it will appear as a scaling factor [4]. The relation between DL

and the cosmological parameters is given by

DL = DM(1 + z), (2.61)

where DM is provided by Equation (2.55). Another important quantity in the observation

of supernovae is the standardized distance modulus

µ = m∗
B −MB + αX1 − βC, (2.62)

where m∗
B is the observed peak magnitude in the rest frame of blue band (B), α, β, and

MB are parameters that depend on host galaxy properties [72]. X1 is the time stretching
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of the light curve, and C is the supernova color at maximum brightness. The relation

between the standardized distance modulus and the luminosity distance is

µ = 5log10

(
DL

10pc

)
. (2.63)

Although SNIa have been widely used to restrict cosmological models, there are still

discussions about the way it is done. That is, in order to extract information from them,

an a priori cosmological model has to be assumed, which may biased the outcomes [73].

2.9.3 Cosmic Microwave Background (CMB):

Corresponds to the radiation that permeates all the Universe, discovered in 1965. Before

recombination, baryons and photons were tightly coupled, and once photons decouple from

the rest of the matter, they traveled uninterrupted until reach us. The temperature radia-

tion measured at different parts of the sky contains information of the last scattering epoch,

gravitational lensing, among others. Here, the CMB displays the primordial anisotropies

studied in the angular power spectrum. One of the most important recent collaborations

that studies the CMB corresponds to the Planck satellite, and previous probes include

COBE [74] and WMAP [75]. It is a European Space Agency mission, in which the main

objective is to measure the temperature, polarization, and anisotropies of the CMB over

the entire sky. These results would allow to determine the properties of the Universe at

large scales and the nature of dark matter and dark energy, as well as to test inflation-

ary theories, determine whether the Universe is homogeneous or not, and obtain maps of

galaxies in the microwave [10, 76, 77, 78, 79, 80, 81, 82].

2.9.4 Lyman-α forest (Ly-α)

Quasars (quasi-stellar objects) are highly active nuclei of very luminous galaxies that emit

ultraviolet light. When such light travels through space it passes through clouds of neutral

hydrogen, which is one of the most common materials in the Universe. As they pass, the
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photons excite the electrons in the hydrogen atoms causing an absorption or emission in

the alpha line of the Lyman series that is reflected in the spectrum that is made here on

Earth once the light has arrived. We will see a dip in the corresponding wavelength. When

light passes through a large amount of hydrogen we have a dense array of absorption lines,

for this reason it is called Lyman alpha forest (Ly-α) [83, 84].

Because most of the hydrogen clouds are less massive than dwarf galaxies, studying

the Ly-α forests gives us information on density fluctuations on small scales through the

MPS. In inflationary theories, the MPS is related to the Primordial Power Spectrum, so

we can also obtain information about the initial conditions of density inhomogeneities

(necessary for structure formation) at early ages of the Universe. The Ly-α forests also

give us information about the expansion of the Universe because there are redshifts in the

light spectrum caused by this expansion or mesauring Hubble parameter [85]. On the other

hand, we can measure the position of the BAO peak and obtain constraints on dark energy

and dark matter models [86].

In this work we indirectly used the information from the Ly-α forest because we used

the MPS points obtained from reference [86] to constrain the parameters of our model. It

is important to mention that the constraints obtained should be seen as approximations

because the process to obtain the MPS of the Ly-α data depends on a fiducial model, which

in the cited reference corresponds to ΛCDM. The proper way would be to do hydrodynamic

simulations with our model as can be seen in [87, 88]. However, this will be left as future

work.
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Chapter 3

Multi Scalar Field Dark Matter

3.1 Multi Scalar Field Dark Matter

One motivation for studying multiple scalar fields as dark matter is that the galaxies

start forming and the re-collapse raises the temperature of the bosons again. Therefore,

depending on the initial conditions of the galaxy formation, the boson particles can produce

excited states, although most of the boson particles remain in the condensate state, or in

the ground state [62, 61, 89, 63, 90]. These excited particles can be interpreted as other

scalar fields. Thus, once the galaxy is already formed, if it still contains boson particles

in several quantum states, then it can be interpreted as a galaxy with different scalar

fields. On the other hand, for heavy particles these vibrations could be neglected, however

for ultra-light particles an excitation could be comparable with its original mass. In an

effective way the scalar field contains the mass plus the effective mass of the excitation’s

energy. Thus, this boson gas of particles in excited states could be seen effectively as many

scalar fields with different potentials, hence the introduction of the Multi Scalar Field Dark

Matter model.

Another motivation to introduce several scalar fields with different potentials could be

encouraged because if the 4% of just the baryonic matter in the universe is so diverse, then

we can suspect that the 26% of the matter, the dark matter, could be made of several
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species with different properties too. This diversity of particles could be observed and be

tested at various scales, for instance at the galactic level by observing the rotation curves

as well as at the largest scales of the Universe. If the dark matter is formed of scalar

fields, then both results should match flawlessly. Here we will focus on the cosmological

implications.

On the other hand, it has been shown that a scalar field with a convex potential behaves,

in average, like dust during late times and hence mimics the behaviour of the cold dark

matter. However, depending on the specific form of the potential and even whether the

field is real or complex, it may have different behaviors before acting like a pressure-less

fluid. So, in order to have a dark matter evolution, it is necessary that the dependence of

the potential with respect to the field is such that it presents a minimum value at some

critical point around which the field oscillates [64, 59, 91].

Some examples of such kind of potentials are the parabolic function V (ϕ) = 1/2m2
ϕϕ

2

[62, 63, 65] and the self-interacting potential with a quartic term contribution V (ϕ) =

1/2m2
ϕϕ

2 + λϕϕ
4 [35, 92, 93, 94], or the axion like potential V (ϕ) = m2

ϕf
2 [1 + cos(ϕ/f)]

[95, 96, 97] and its analog V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1] [98, 99]. Here mϕ is interpreted

as the mass of the field, λϕ is the self-interacting constant and f represents a decaying

constant.

For a single field, several constrictions on its mass have been imposed by using CMB

and matter power spectrum [100], galactic dynamics [101], dwarf galaxies [102, 103, 104],

N -body simulations with reionization process [105] and Lyman-α flux spectra [106, 87].

However, the presence of small inconsistencies among datasets are also found, and can be

seen in Figure 1 of reference [35], and in reference [107].

This single field model provides a very good description of the evolution of the cos-

mological densities and the peaks of the CMB as well as the number of substructures in

galaxy arrays, among others [61, 62, 63, 64, 59]. Nonetheless it still presents some open

issues [59]. For example, numerical simulations have shown that the mass of the field could

vary for different scales of the simulation in order to fit the observations, for instance on
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the formation of galaxies [108], the whirling plane of satellite galaxies around the Milky

Way, Andromeda and Centaurus A galaxies [109], the same mass scale in satellite galaxies

of the Milky Way [110], or the σ8 and H0 tension [111, 112], just to mention a few.

In order to alleviate these discrepancies, we open up the possibility that the dark

matter may be composed of several types of scalar fields. We present a model where the

dark matter may be made up by several scalar fields, with different potentials, and to

show its constraints imposed by current cosmological observations. This model may help

us to alleviate the inconsistencies among the constrictions of the mass values obtained by

different observations, arguing that they could be different dark matter particles [113].

Also, if we consider two scalar fields with different masses, the same mass scale in the

satellite galaxies of the Milky Way could be explained, i.e. one type of particle could form

the host galaxy and the other the satellites [114]. We will refer to this model as the Multi

Scalar Field Dark Matter (MSFDM). Other areas have included similar ideas where two

or more fields are used, for instance a combination of the inflaton and the SFDM [35],

two scalar fields as dark energy [115, 39], the inflaton and the curvaton [116], two scalar

fields for inflation [117, 118], interactions between dark energy and dark matter [119] or

the axiverse model [113, 120, 121] (see also [122]).

Given the motivations above, in the following sections we study the background dy-

namics and the linear perturbations of the model. As a first approximation we consider

the scalar fields are spatially homogeneous, real and with no interaction among each other.

3.2 Background dynamics

We base our analysis on a flat Universe filled up with the standard components: baryons,

dark energy in the form of a cosmological constant (Λ), photons and neutrinos as relativistic

species and dark matter (DM). For the neutrinos, we consider the base model used in [10], in

which they assumed a normal mass hierarchy [123, 124, 125, 126], two massless neutrinos

and a massive one with the minimal mass
∑

mν = 0.06 eV. In particular, we assume
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the DM is described by multiple real scalar fields ϕi endowed with their corresponding

potentials Vi(ϕi), whereas the rest of the matter components are modeled as perfect fluids.

Assuming a Friedmann-Lemaitre-Robertson-Walker metric, the equations of motion for the

background dynamics are

H2 =
κ2

2

(∑
I

ρI +
∑
i

ρϕi

)
, (3.1a)

ρ̇I = −3
ȧ

a
(ρI + pI) , (3.1b)

ϕ̈i = −3Hϕ̇i − ∂ϕiVi(ϕi) . (3.1c)

Here, dots represent derivatives with respect to the cosmic time t, H is the Hubble param-

eter, κ2 = 8πG, and ρI and pI are the energy density and pressure of the I-th fluid species

respectively, whereas for the scalar fields we have the associated density and pressure given

by the standard expressions

ρϕi = (1/2)ϕ̇2
i + Vi(ϕi), pϕi = (1/2)ϕ̇2

i − Vi(ϕi). (3.2)

Notice that we are assuming different species of scalar fields, represented each one by the

subindex i in the above equations. The Klein-Gordon Equations (3.1c), for each of the

fields, can be written in a more manageable form by using the following polar transforma-

tion [127]1

κϕ̇i√
6H

≡ Ω
1/2
ϕi sin(θi/2) ,

κV
1/2
i√
3H

≡ Ω
1/2
ϕi cos(θi/2) , (3.3a)

where Ωϕi ≡ κ2ρϕi/3H
2 represents the dimensionless density parameter, and similarly θi is

an angular degree of freedom directly related to the equation of state (EoS) for each one

of the fields, wϕi ≡ pϕi/ρϕi = − cos θi. Additionally, in order to close the system, we define

the potential variables yji as

yji ≡ −2κ6j/2√
3κj

∂j
ϕi
V

1/2
i

H
. (3.3b)

whose form depend on the potential for a particular field. For the potentials that we will

study here, it is enough to take j = 1, 2. However, j can take larger values. These are y1i

1The equivalence between the polar transformation and the fluid equations can be seen in [128, 129]
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and y2i given by

y1i ≡ −2
√
2
∂ϕiV

1/2
i

H
, y2i ≡ −4

√
3
∂2
ϕiV

1/2
i

κH
. (3.3c)

As a proof of the concept, we focus our study on the following potentials

Vi(ϕi) =


m2

ϕif
2
i [1 + cos(ϕi/fi)] cos

(1/2)m2
ϕiϕ

2
i quadratic

m2
ϕif

2
i [cosh(ϕi/fi)− 1] cosh

. (3.4)

and their possible combinations; with fi being a characteristic energy scale for the scalar

fields ϕi, and mϕi its corresponding mass scale. It can be seen that the variables (3.3c) for

the aforementioned potentials can be written as

y21i = 4
m2

ϕi

H2
− 2λϕiΩϕi , (3.5a)

y2i = λϕiy1i . (3.5b)

Notice that the three functional forms in (3.4) can be compressed into a dimensionless

parameter, λϕi = 3/κ2f 2
i , which facilitates the numerical calculations. Positive values of

λϕi > 0 describe the cosine potential and negative ones λϕi < 0 the cosh potential, whereas

the quadratic case corresponds to λϕi = 0 (for more details see [65, 95, 99]). Then, for

each field, the associated Klein-Gordon Equation (3.1c) is represented by the following set

of coupled equations 2

θ′i = −3 sin θi + y1i , (3.6a)

Ω′
ϕi = 3 (wtot + cos θi) Ωϕi , (3.6b)

y′1i =
3

2
(1 + wtot) y1i +

1

2
λϕiΩ

1/2
ϕi sin θi , (3.6c)

2For a generic potential the differential equations of (3.3b) are given by

y′ji = − Ḣ

H2
yi,j +Ω

1/2
ϕi

sin

(
θi
2

)
yi,j+1.

For the quadratic, cos and cosh potentials we only need to calculate up to y2i to close the system of

equations.
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with wtot =
∑

I ΩIwI+
∑

i Ωiwi, where ΩI ≡ κ2ρI/3H
2 and wI = pI/ρI . The prime denotes

derivative with respect to the number of e-folds N = ln a, and for any given variable q we

have the relationship q̇ = Hq′.

The initial conditions necessary to solve these equations are

mϕi

H0

=
5

2
Ω

1/2
r0 a−2

iniθi,ini, (3.7a)

for the quadratic case [65]; for the cosine potential we have [95]

Ωϕi,ini = a−3
oscaini, (3.7b)

y1i,ini = 5θi,ini, (3.7c)

m2
ϕi

H2
ini

=
y21i,ini
4

+ λϕi. (3.7d)

and for the hyperbolic cosine [99]

Ωϕi,ini = − 12

λϕi

, (3.7e)

cos(θϕi,ini) = −1

3
. (3.7f)

The main purpose in all cases is to match a given value of the density parameter Ωϕi,0 at

the present time with the initial values of the dynamical quantities (θi, y1i,Ωϕi)ini at early

enough times (typically for a scale factor of the order of aini ≃ 10−14).

In general terms, the mass parameter mϕi determines the start of the rapid oscillations

of the field ϕi around the minimum of the potential Vi, which happens at around H ≃ 3mϕi.

For λϕi ̸= 0, Eq. (3.5a) becomes a constraint equation that must be satisfied by the field

variables at all times, whereas for λϕi = 0 it simply tells us that y1i = 2mϕi/H. In fact,

one expects that at late times mϕi ≫ H so that for the three cases in (3.4) the relation

y1i = 2mϕi/H should be satisfied with high accuracy. Only for the case λϕi < 0 (cosh

potential) it is also necessary to impose the scaling solution during radiation domination:

Ωϕi = −12/λϕi and cos θi = −1/3, and then the initial value of y1i is calculated from

Eq. (3.5a). Furthermore, the field mass mϕi is not an independent parameter in this case,

32



and it has been shown that the two parameters are related through [99]

mϕi

Hini

= 1.5

[(
λϕi

3
− 4

)
Ωϕi,0

Ωr,0

aini

]2
, (3.8)

with Ωr,0 the present density parameter of relativistic species and aini the initial value of

the scale factor.

3.3 Linear density perturbations

We consider the linear perturbations for the scalar fields by expanding the field to the lead-

ing order, with ϕi (x⃗, t) = ϕi (t) + φi (x⃗, t), where ϕi(t) are the background fields described

in the above section, whereas φi are the field linear perturbations. The perturbed metric,

in the synchronous gauge 3 is ds2 = −dt2 + a2(t) (δlm + hlm) dx
ldxm, with hlm being the

tensor perturbations of the metric. Working in Fourier space, the perturbed Klein-Gordon

equation for each field is given by

φ̈i = −3Hφ̇i −
(
k2

a2
+ ∂2

ϕiVi

)
φi −

1

2
ḣϕ̇i . (3.9)

In Eq. (3.9), k is the comoving wavenumber, h is the trace of hlm and ḣ is known as the

metric continuity. Following the idea presented for the background in the previous section,

we use the polar variables [65, 95],√
2

3

κφ̇i

H
= −Ω

1/2
ϕi e

αi cos

(
ϑi

2

)
,

κyi,1φi√
6

= −Ω
1/2
ϕi e

αi sin

(
ϑi

2

)
, (3.10)

where αi and ϑi are the new perturbation quantities. If we define the new quantities

δ0i = −eαi sin

(
θi − ϑi

2

)
, δ1i = −eαi cos

(
θi − ϑi

2

)
, (3.11)

3The synchronous gauge is the most used to study cosmological perturbations and allows to solve the

system numerically in a simpler way [65, 130].
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where the density contrast is δϕi ≡ δρϕi/ρϕi = δ0i, then the perturbed Klein-Gordon

Equation (3.9) can be rewritten as

δ′0i = [−3 sin (θi)− ωi (1− cos (θi))] δ1i + ωi sin (θi) δ0i −
1

2
h′ (1− cos (θi)) , (3.12)

δ′1i =

[
−3 cos (θi)− ωi sin (θi) +

yi,2
yi,1

Ω
1/2
ϕi

sin

(
θi
2

)]
δ1i

+

[
ωi (1 + cos (θi))−

yi,2
yi,1

Ω
1/2
ϕi

cos

(
θi
2

)]
δ0i −

1

2
h′ sin (θi) . (3.13)

Where ωi and its respective differential equation (needed to close the system) are given by:

ωi ≡ k2

a2H2yi,1
, (3.14)

ω′
i = ωi

[
3

2
ωtot −

1

2
− yi,2

yi,1
Ω

1/2
ϕi

sin

(
θi
2

)]
. (3.15)

For the potentials we study here Equation (3.9) can be rewritten as

δ′0i = −
[
3 sin θi +

k2

k2
Ji

(1− cos θi)

]
δ1i +

k2

k2
Ji

sin (θi) δ0i −
1

2
h′ (1− cos θi) , (3.16a)

δ′1i = −
[
3 cos θi +

(
k2

k2
Ji

− λϕiΩϕi

2y1i

)
sin θi

]
δ1i +

(
k2

k2
Ji

− λϕiΩϕi

2y1i

)
(1 + cos θi) δ0i

−1

2
h′ sin θi , (3.16b)

where we have introduced the Jeans wavenumber as k2
Ji = H2a2y1i. Other quantities

of interest are the perturbations for the energy density δρϕi, pressure δpϕi and velocity

divergence Θϕi, which are explicitly read

δρϕi = ϕ̇iφ̇i + ∂ϕiV φi , (3.17a)

δpϕi = ϕ̇iφ̇i − ∂ϕiV φi , (3.17b)

(ρϕi + pϕi)Θϕi =
k2

a
ϕ̇iφi . (3.17c)

In terms of the new variables δ0i and δ1i, they are written as

δρϕi = δ0i ρϕi , (3.18a)

δpϕi = (δ1i sin θi − δ0i cos θi) ρϕi , (3.18b)

(ρϕi + pϕi)Θϕi =
k2ρϕi
aHyi,1

[(1− cos θi) δ1i − sin θiδ0i] . (3.18c)
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Again, depending on the value of λϕi, one recovers the perturbed equations of any of the

three different potentials of this work (3.4). The initial conditions for the perturbations

simply are δ0init = 0 and δ1init = 0. It has been shown that the dynamical variables δ0i

and δ1i quickly reach an attractor behavior driven by the non-homogeneous term h′ in

Equations (3.16) [65, 95, 99].

3.4 Numerical results

In this section we show the background evolution, mass power spectrum (MPS) and CMB

power spectrum for different combinations of potentials, obtained with a modified version

of the CLASS code that is able to deal with multiple scalar fields [131, 65, 95]. This version

of the code is publicly available and can be found in [132].

The MPS is the Fourier transform of the two-point correlation function of the distribu-

tion of matter and gives us information on the overdensities of matter and how much they

grow. As we will see below, it gives us information about structure formation at different

scales. In the same way, the CMB power spectrum give us information about the temper-

ature fluctuations. Both of them are sensitive to dark matter. See [133, 134, 17, 135, 86]

for details.

In the following results, we use the ratio R = Ωϕ1,0/ΩDM,0 to parameterize the energy

density of the scalar fields, where ΩDM,0 = Ωϕ1,0 + Ωϕ2,0 + Ωcdm,0 represents the current

total dark matter contribution from the scalar fields sector. The combination of the fields is

symmetric, then for reference we take ϕ1 to define R, otherwise if ϕj is taken as reference we

need to redefine R = Ωϕj/ (
∑

iΩϕi + Ωcdm). The mass values for the fields were taken from

the references mentioned above, in particular, those reported in [114], where the existence

of at least two scalar fields with masses of 10−22 and 10−20 eV is proposed to explain the

observations of the galaxy cores.

Throughout this work, we consider several combinations for the fields, and combined

them with the CDM as well. This is because, until now, the nature of the dark matter is not
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yet determined and several possibilities should bear in mind. As the next approximation to

the single field, here we assume two types of fields with different combinations of potentials

as dark matter, however, once we have enough accurate data, the analysis (and the code)

could be easily generalized to N different fields.

In the first combination we assume the field one has V (ϕ1) = 1
2
m2

ϕ1ϕ
2
1 while the rest

of the dark matter density is conformed by CDM, therefore Ωϕ2,0 = 0. As we can see

on the left panel of Figure 3.1, the main difference in the background is the start of the

scalar field oscillations due to the mass and R values. If R > 0.5 the oscillations approach

those of a single scalar field while if R < 0.5 the oscillations are less evident until they

disappear when R = 0 (there is only CDM). In the mass power spectrum, the right panel of

the same figure, we notice the expected cut-off in small scales for the lightest mass values

(mϕ1 < 10−20 eV) but the behaviour is lost for heavier masses (mϕ1 > 10−20 eV) because

the scalar field behaves like dust over the shown scales. Similar to the background, we

found that the MPS of the combinations is bounded by the cases R = 1 (only SFDM) and

R = 0 (only CDM). We can see an example of this in Figure 3.1 for mϕ1 = 10−22 eV (black

line) and 10−20 eV (blue line) with R = 0.2 (dotted) and R = 0.8 (dashed). For R = 0.8

the oscillations approach the case of a single SFDM but disappear for R = 0.2, this is

evident for mϕ1 = 10−22 eV. In the same way, in the right panel, when R = 0.8 the mass

power spectrum shows a cut-off similar to the single case for both values mϕ1 = 10−22 and

10−20 eV, but it behaves like CDM (red solid line) for R = 0.2.

For the second combination we assume two scalar fields with no CDM, both of them

with a quadratic potential V (ϕ1,2) = 1
2
m2

ϕ1,2ϕ
2
1,2 (see Figure 3.2). We found that the

total contribution to the background evolution, in particular the oscillations of the fields,

depends on the contribution of each one through R and are bounded by the oscillations of

the lightest and the heaviest field respectively. For the MPS, the cut-off is more evident

when the lightest field accounts for the principal contribution to ΩDM,0 (mϕ2 > mϕ1 and

R > 0.5 or mϕ2 < mϕ1 and R < 0.5), the behavior is closer to single field models (R = 0

or R = 1) depending of the dominant field, as expected. In the left panel of Figure 3.2
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we show the total contribution of the fields to the background using mϕ1 = 10−22 eV with

mϕ2 = 10−24 eV (green). The oscillations are more evident for R = 0.8 (dashed) than for

R = 0.2 (dotted) and both of them are bounded by the single cases (solid). This is seen as

well, but it is less noticeable due to the masses values, for the combination mϕ1 = 10−22 eV

with mϕ2 = 10−20 eV (blue). For the MPS, we use the same values and we find a behavior

similar to the previous case.

We also study a third combination of double field but now with V (ϕ1) = 1
2
m2

ϕ1ϕ
2
1

and V (ϕ2) = m2
ϕ2f

2 [1 + cos(ϕ2/f)] respectively. For the background we observe a similar

behavior than in the previous combinations, that is, once we kept the masses fixed and

solely modify the λϕ2 values, we see no difference among them. The oscillations of the fields

depend on the masses and R, similarly to the quadratic potentials case. See, for example,

Figure 3.3 where we take mϕ1 = 10−22 eV along with mϕ2 = 10−24 eV with λϕ2 = 104

(green), mϕ2 = 10−22 eV with λϕ2 = 105 (black) and mϕ2 = 10−20 eV with λϕ2 = 105 (blue)

for R = 0.2 (dotted) and R = 0.8 (dashed). For the MPS we see differences depending

on mϕ1,2 values or R and also by varying λϕ2 values. In order to see a bump in the MPS

we need that the second field dominates (R < 0.5) with lighter mass and higher λϕ2. In

the right side of Figure 3.3 we can see the bump before the cut-off (k ∼ 0.9) for the green

and black dotted lines, because in both cases the second field dominates and λϕ2 has high

values with lighter masses. On the other hand, in the blue dotted line we do not observe

the bump yet because the field becomes too heavy (mϕ2 ≥ 10−20 eV).

Finally, we study the combination of the field potential V (ϕ1) =
1
2
m2

ϕ1ϕ
2
1 with V (ϕ2) =

m2
ϕ2f

2 [cosh(ϕ2/f)− 1]. In the background and MPS we have a similar behavior as before.

This can be seen in Figure 3.4 where we take the combinationmϕ1 = 10−22 eV,mϕ2 = 1.54×
10−22 eV, λϕ2 = −8× 103 (black), mϕ1 = 10−22 eV, mϕ2 = 0.6× 10−20 eV, λϕ2 = −5× 104

(blue) and mϕ1 = 10−22 eV, mϕ2 = 0.3× 10−18 eV, λϕ2 = −4× 104 (gray). It is important

to note that both fields have the same contribution (R = 0.5), other combinations require

further analysis. In the mass power spectrum, at small scales, we see that λϕ2 has a

greater contribution compared to the previous case because in the cosh-like potential the
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scalar field mass depends on the λϕ2 value, contrary to the cos-like potential in which these

parameters are independent. When mϕ2 ∼ mϕ1 we can appreciate a different behavior

depending on the value of λϕ, for example, the black dotted line. However, if mϕ2 ≥ mϕ1,

the change in λϕ2 does not display noticeable changes (blue dotted and gray dotted lines).

In general for the background, we found slight differences at early times with respect

to ΛCDM, where the oscillations presented could give us information about how light the

scalar fields masses can be. We found too a cut-off at small scales in the mass power

spectrum that differentiates our model from the CDM, and the shape below the cut-off

depends on the multi-field dynamics. The cut-off tell us that not all structures can be

formed at small scales.

Regarding the CMB spectrum, when the mass of at least one of the fields, for any

combination, is less than mϕi < 10−26 eV, the spectrum of the fields differs from the

ΛCDM spectrum as seen in [100]. However, for masses greater than mϕi > 10−26 eV the

same CMB power spectrum is obtained as for ΛCDM regardless of the value of λϕ or R.

See, for example Figure 3.5 where we show the CMB power spectra for V (ϕ1,2) =
1
2
m2

ϕ1,2ϕ
2
1,2

with mϕ1 = 10−22 eV, mϕ2 = 10−24 eV and R = 0.8 (green dashed line); V (ϕ1) =
1
2
m2

ϕ1ϕ
2
1

with V (ϕ2) = m2
ϕ2f

2 [1 + cos(ϕ2/f)] for mϕ1 = 10−22 eV, mϕ2 = 10−22 eV, λϕ2 = 105 and

R = 0.2 (black dotted line) and V (ϕ1) =
1
2
m2

ϕ1ϕ
2
1 with V (ϕ2) = m2

ϕ2f
2 [cosh(ϕ2/f)− 1] for

mϕ1 = 10−22 eV, mϕ2 ∝ 10−20 eV, λϕ2 = −5× 104 and R = 0.5 (blue dotted line). For the

three cases we have obtained nearly the same CMB power spectra as for the ΛCDM model

(solid red line). We also plotted the Planck-18 dataset as reference [136].
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Figure 3.1: Evolution, zoomed-in on early times, of the ratio of the density parameters Ωϕ+CDM/ΩΛCDM

(left) and the ratio of the linear matter power spectrum (right) at z = 0, for a SFDM + CDM model

using ΛCDM as reference (solid red lines). The field potential is the quadratic one V (ϕ) = 1
2m

2
ϕϕ

2, and

R represents the ratio of the field contribution to the total DM. Black lines represent a mass value of

mϕ = 10−22 eV while blue lines refer to mϕ = 10−20 eV. Dashed and dotted lines represent R = 0.8 and

R = 0.2 values respectively. The data points for the MPS were obtained from [86].
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Figure 3.2: Evolution, zoomed-in on early times, of the ratio of the density parameters

Ωquad1+quad2
/ΩΛCDM (left) and the ratio of the linear matter power spectrum (right) at z = 0, for a

double field model using ΛCDM as reference (solid red lines). The potential for both fields is the quadratic

one V (ϕ) = 1
2m

2
ϕϕ

2, and R represents the ratio of the fields contribution to the total DM. Green lines

represent a mass value of mϕ2 = 10−24 eV and blue lines refer to mϕ2 = 10−20 eV while mϕ1 is fixed to

10−22 eV. Dashed and dotted lines represent R = 0.8 and R = 0.2 values respectively. The data points for

the MPS were obtained from [86]. MPS data labels are the same as in Figure 3.1.
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Figure 3.3: Evolution, zoomed-in on early times, of the ratio of the density parameters

Ωquad1+cos2/ΩΛCDM (left) and the ratio of the linear matter power spectrum (right) at z = 0, for

a model with two fields using ΛCDM as reference (solid red lines). Here, the field one has the po-

tential V (ϕ) = 1
2m

2
ϕϕ

2 with mass value mϕ = 10−22 eV as reference. While the second field has

V (ϕ2) = m2
ϕ2f

2 [1 + cos(ϕ2/f)]. Green lines represent a mass value of mϕ2 = 10−24 eV with λϕ2 = 104,

black lines indicate mϕ2 = 10−22 eV with λϕ2 = 105 and blue lines refer to mϕ2 = 10−20 eV with λϕ2 = 105.

Dashed and dotted lines represent R = 0.8 and R = 0.2 values respectively, where R represents the ratio

of the fields contribution to the total DM. The data points for the MPS were obtained from [86]. MPS

data labels are the same as in Figure 3.1.
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Figure 3.4: Evolution, zoomed-in on early times, of the ratio of the density parameters

Ωquad1+cosh2
/ΩΛCDM (left) and the ratio of the linear matter power spectrum (right) at z = 0, for a model

with two fields using ΛCDM as reference (solid red lines). The field one has the potential V (ϕ) = 1
2m

2
ϕϕ

2

with mass value mϕ = 10−22 eV as reference, and the second field has V (ϕ2) = m2
ϕ2f

2 [cosh(ϕ2/f)− 1].

Black lines represent a mass value of mϕ2 = 1.54 × 10−22 eV with λϕ2 = −8 × 103, blue lines indi-

cate mϕ2 = 0.6 × 10−20 eV with λϕ2 = −5 × 104 and green lines refer to mϕ2 = 0.3 × 10−18 eV with

λϕ2 = −4× 105. Dotted lines represent R = 0.5 where R represents the ratio of the fields contribution to

the total DM. The data points for the MPS were obtained from [86]. MPS data labels are the same as in

Figure 3.1.
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Chapter 4

Parameter inference with Bayesian

statistics

In the previous chapter we numerically studied the evolution of the background and the

linear perturbations of our model using different combinations and values of the parame-

ters that we put in by hand. However, to get a complete picture we want to know, given

cosmological observations, what is the most likely value that the parameters of our model

can take. However, since we have a unique Universe, we cannot rely on a frequentist inter-

pretation of statistics (we are not able to create multiple Universes and make a frequentist

inference). An alternative approach that will help in our task is the Bayesian statistics.

In Bayesian statistics, the probability is interpreted as a “degree of belief”, and it may be

useful when repetitive processes are complicated to reproduce.

4.1 Frequentist and Bayesian statistics

The difference between both descriptions is on the definition of probability. From the

frequentist statistic, probability has meaning in limiting cases of repeated measurements

P =
n

N
, (4.1)
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where n denotes the number of successes, and N the total number of trials. This is, we

define the probability P as the limit of the number of independent trials going to infinity.

Then, for frequentist statistics, probabilities are fundamentally related to frequencies of

events. While, in Bayesian statistics, the concept of probability is extended to cover degrees

of certainty about a statement. For Bayesian statistics, probabilities are fundamentally

related to our knowledge concerning an event.

To understand the consequences of these differences we introduce some key concepts.

However, see references [137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 22] and references

therein for details.

Let x be a random variable related to a particular event and P (x) its corresponding

probability distribution, for both cases, the same rules of probabilities apply 1:

P (x) ≥ 0, (4.2)∫ ∞

−∞
dxP (x) = 1. (4.3)

For mutually exclusive events, we have

P (x1 ∪ x2) = P (x1) + P (x2), (4.4)

but, in general

P (x1 ∪ x2) = P (x1) + P (x2)− P (x1 ∩ x2). (4.5)

The meaning of these rules is that Equation (4.2) is necessary due to the probability of

having an event is always positive; Equation (4.3) is a normalized relation, which tells us

that we are certain to obtain one of the possible outcomes; in Equation (4.4) we have that

the probability of obtaining an observation, from a set of mutually exclusive events, is given

by the individual probabilities of each event; finally, and in general, if one event occurs

given the occurrence of another then the probability that both x1 and x2 happen is equal

to the probability of x1 times the probability of x2 given that x1 has already happened

P (x1 ∩ x2) = P (x1)P (x2|x1). (4.6)

1The corresponding discrete definition can be given by replacing
∫
dx →∑

.
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If two events x1 and x2 are mutually exclusive, then

P (x1 ∩ x2) = 0 = P (x2 ∩ x1). (4.7)

The rules of probability distributions must be fulfilled by both frequentist and Bayesian

statistics. However, there are some consequences derived by the fact that these two sce-

narios have a different definition of probability.

4.1.1 Frequentist statistics

In the frequentist inferential procedure we need these basic ingredients: the data, the model

and an estimation procedure. The main assumption in frequentist statistics is that the data

has a definite, but unknown, underlying distribution to which all inference pertains.

The data is a measurement or observation, denoted by X, that can take any value from

a corresponding sample space. A sample space of an observation X can be defined as a

measurable space (x, B̂) that contains all values that X can take upon measurement. In

this point of view, it is considered that there is a probability function P0 : B̂ → [0, 1] in

the sample space (x, B̂) representing the “true distribution of the data”

X ∼ P0.

On the other hand, the model Q is a collection of probability measurements Pθ : B̂ →
[0, 1] in the sample space (x, B̂). The distributions Pθ are called model distributions, with

θ being the model parameters; in frequentist statistics θ is unchanged. A model Q is said

to be well-specified if it contains P0, i.e.,

P0 ∈ Q.

Finally, we need a point-estimator (or estimator) for P0. This is, we need a map

P̂ : x → Q, representing our best guess P̂ ∈ Q for P0 based on the data X. Therefore, the

frequentist statistics is based on trying to answer the following questions: “what the data
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is trying to tell about P0?” or “considering the data, what can we say about the mean

value of P0?”

As we saw above, in this formalism, the probability depends on the frequency. So, for

this formalism to be valid, we must assume that we have a hypothetical infinite sequence of

events and hence we know the probability by assuming how many times we get the desired

result from this infinite sequence. For example, if we have a die and we want to know

the probability that any of the sides will come up, we must assume that the die has been

thrown infinitely many times and that, on average, each side has come up one sixth of the

times. This gives us that the probability is 1/6 for each side.

We must be careful not to confuse frequentist probability with classical probability. In

the classical view, we assume that all options are equally likely to occur. For example,

in the case of dice, we can assume that all sides have the same probability of occurring

which gives us 1/6 for each. Although the probability is the same, the assumptions made

to arrive at it are different.

However, frequentist statistics start to break down when we ask questions like, for

example, what is the probability that it will rain tomorrow. We need to imagine an infinite

succession of mornings and see what fraction of them have rain, which is not very intuitive.

4.1.2 Bayesian statistics

On the other hand, in the Bayesian point of view, data and model are elements of the

same space [137], there is no formal distinction between measured quantities X and pa-

rameters θ. One may envisage the process of generating a measurement’s outcome Y = y

as two draws, one draw for Θ, where Θ is a model with associated probabilities to the

parameter θ, to select a value of θ and a subsequent draw for Pθ to arrive at X = x. This

perspective may seem rather absurd when thinking in a Frequentist way, but, in Bayesian

statistics, where probabilities are related to our own knowledge, it results natural to asso-

ciate probability distributions to our parameters. In this way, an element Pθ of the model
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is interpreted simply as the distribution of X given the parameter value θ, i.e., as the

conditional distribution X|θ.
Bayesian probability is based on the synthesis of evidence and personal judgment in

looking at that evidence. It is based on personal knowledge that we have and can change

from one person to another.

As an example, let us consider Chile whose land area is 756 950 km2 and suppose we

divide it into four regions:

A1 → < 10 000 km2,

A2 → [10 000, 50 000] km2,

A3 → [50 000, 100 000] km2, (4.8)

A4 → > 100 000 km2.

We want to know how big the Atacama desert is. Let’s start by putting probabilities

depending on what we know about this desert. In my case, I know that the Atacama

desert is big but I don’t know how big it is, so I choose

P (A1) = 0.1,

P (A2) = 0.4,

P (A3) = 0.4, (4.9)

P (A4) = 0.1.

Now, the desert is known to be the fourth largest region in Chile so I’ll modify the proba-

bilities by

P (A1) = 0.1,

P (A2) = 0.1,

P (A3) = 0.4, (4.10)

P (A4) = 0.4.
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Frequentist Bayesian

Data are a repeatable random Data are observed from

sample. There is a frequency. the realized sample.

Underlying parameters remain Parameters are unknown and

constant during this repeatable described probabilistically.

process.

Parameters are fixed. Data are fixed.

Table 4.1: Main differences between the Bayesian and Frequentist interpretations.

On the other hand, Santiago is the smallest region in the country with 15 403 km2. This

leads me to modify the probabilities again by

P (A1) = 0,

P (A2) = 0.2,

P (A3) = 0.4, (4.11)

P (A4) = 0.4.

While Aysén is the third largest region with an area of 108 494 km2. Finally, I’ll change

again

P (A1) = 0,

P (A2) = 0.2,

P (A3) = 0.7, (4.12)

P (A4) = 0.1.

This example shows us that the Bayesian probability changes depending on the knowledge

we have.
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Finally, table 4.1 provides a short summary of the most important differences between

the two statistics.

4.2 Bayes’ theorem, priors, posteriors and other con-

cepts

The Bayes’ theorem is a direct consequence of the axioms of probability shown in Equations

(4.2) - (4.6). From Equation (4.6), without loss of generality, it must be fulfilled that

P (x1 ∩ x2) = P (x2 ∩ x1). In such a case, the following relation applies:

P (x2|x1) =
P (x1|x2)P (x2)

P (x1)
. (4.13)

As mentioned above, in the Bayesian framework, data and model are part of the same

space. Given a model or hypothesis H, with x1 → D as a set of data, and x2 → θ as the

parameter vector of the model, we can rewrite the above equation as

P (θ|D,H) =
P (D|θ,H)P (θ|H)

P (D|H)
. (4.14)

This last equation is known as the Bayes’ theorem and is the most important tool in a

Bayesian inference procedure. In this result, P (θ|D,H) is called the posterior probability

of the model. L(D|θ,H) ≡ P (D|θ,H) is the likelihood, π(θ) ≡ P (θ|H) is called the prior

and expresses the knowledge about the model before acquiring the data (this prior can be

fixed depending on either previous experiment results or the theory behind), Z ≡ P (D|H)

is the evidence of the model, usually referred to as the Bayesian Evidence.

The prior refers to the information we have a priori of the model. It can be defined in

various ways; however, a common one is the uniform prior or flat prior:

π(θ) ∝ c, (4.15)

with c being a constant. This type of prior is telling us that every parameter value is

equally probable a priori. Using this prior also means that the posterior probability will be
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proportional to the likelihood (since the Bayesian Evidence is a constant). We can define

different types of priors, however, in this work we will consider only the flat type. It is

important to mention that the choice of a prior will influence the posterior distribution,

although its effect is reduced as more data are collected.

On the other hand, regarding the Bayesian Evidence, we notice that it acts as a nor-

malizing factor, and is given by the average of the likelihood over the prior

P (D|H) =

∫
dNθP (D|θ,H)P (θ|H), (4.16)

where N is the dimensionality of the parameter space. The Bayesian evidence plays an

important role for selecting the model that best describes the data, this process being

known as model selection. For convenience, the ratio of two evidences

K ≡ P (D|H0)

P (D|H1)
=

∫
dN0θ0 P (D|θ0, H0)P (θ0|H0)∫
dN1θ1 P (D|θ1, H1)P (θ1|H1)

=
Z0

Z1

, (4.17)

or equivalently the difference in log evidence lnZ0 − lnZ1 is often termed as the Bayes

factor B0,1:

B0,1 = ln
Z0

Z1

, (4.18)

where θi is a parameter vector (with dimensionality Ni) for the hypothesis Hi and i = 0, 1.

In Equation (4.18), the quantity B0,1 = lnK provides an idea on how well model 0 may fit

the data when compared to model 1. Jeffreys provided a suitable guideline scale on which

we are able to make qualitative conclusions, see Table 4.2 [147].

Bayes’ theorem has an enormous implication with respect to a statistical inferential

point of view. Usually, we collect some data and then interpret it with a given model;

however, we sometimes do the opposite. That is, as we will see in the next chapter, first

we have a set of data, and then we confront a model considering the probability that our

model fits the data. Bayes’ theorem provides a tool to relate both scenarios. Then, with

this theorem, we are able to select the model that best fits the data.
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|B0,1| Odds Probability Strength

< 1.0 < 3 : 1 < 0.750 Inconclusive

1.0-2.5 ∼ 12 : 1 0.923 Significant

2.5-5.0 ∼ 150 : 1 0.993 Strong

> 5.0 > 150 : 1 > 0.993 Decisive

Table 4.2: Jeffreys guideline scale for evaluating the strength of evidence when two models are compared.

4.2.1 The Likelihood

When testing a single model the Bayesian evidence is usually set apart. Then, without loss

of generality, we can fix it to P (D|H) = 1 and if we ignore the prior (when we have a large

amount of data), we can identify the posterior with the likelihood P (θ|D,H) ∝ L(D|θ,H);

thus, by maximizing it, we can find the most probable set of parameters for a model given

the data. However, having ignored the Bayesian evidence and the prior, we are not able to

provide an absolute probability for a given model, but only relative probabilities. On the

other hand, it is possible to report results independently of the prior by using the Likelihood

ratio. The likelihood at a particular point in the parameter space can be compared with the

best-fit value, or the maximum likelihood Lmax. Then, we can say that some parameters

are acceptable if the likelihood ratio

Λ = −2 ln

[
L(D|θ,H)

Lmax

]
, (4.19)

is bigger than a given value.

Suppose we have a single-peaked distribution whose mean is given by

θ̂ =

∫
dθθP (θ|D,H). (4.20)

If the model is well-specified and the expectation value of θ̂ corresponds to the real or
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most probable value θ0, we have

⟨θ̂⟩ = θ0, (4.21)

then we say that θ̂ is unbiased. If we do the Taylor expansion of the log likelihood around

its maximum, we have

lnL(D|θ) = lnL(D|θ0)

+
1

2
(θi − θ0i)

∂2 lnL

∂θi∂θj
(θj − θ0j) (4.22)

+ ...,

where θ0 is the parameter vector of the real model. In this way, we can express the likelihood

as a multi-variable likelihood given by

L(D|θ) = L(D|θ0) exp
[
−1

2
(θi − θ0i)Hij(θj − θ0j)

]
, (4.23)

where

Hij = −∂2 lnL

∂θi∂θj
, (4.24)

is called the Hessian matrix. It controls whether the estimates of θi and θj are correlated,

and if it is diagonal, they are are uncorrelated.

The above expression for the likelihood is a good approximation as long as our posterior

distribution possesses a single-peak. On the other hand, if the data errors are normally

distributed, then the likelihood for the data will be a Gaussian function as well. In fact,

this is true if the model is linearly dependent on the parameters. However, if the data is

not normally distributed, we can use the central limit theorem to justify that the resulting

distribution will be best approximated by a multi-variate Gaussian distribution [140].

4.2.2 The Chi-square and goodness of fit

The main aim of parameter estimation is to maximize the likelihood in order to obtain

the most probable set of model parameters given the data. Considering the Gaussian

approximation in Equation (4.23), we can see the likelihood will be maximum if the quantity

χ2 ≡ (θi − θ0i)Hij(θj − θ0j), (4.25)
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is minimum. The quantity χ2 is called chi-square and is related to the Gaussian likelihood

via L = L0e
−χ2/2. We can say that maximizing the Gaussian likelihood is equivalent to

minimizing the chi-square. However, there are some circumstances where the likelihood

cannot be described by a Gaussian distribution, in these cases the chi-square and the

likelihood are no longer equivalent.

The probability distribution for different values of χ2 around its minimum is given by the

χ2 distribution for v = n −M degrees of freedom, where n is the number of independent

data points and M the number of parameters. We can calculate the probability that

an observed χ2 exceeds a value χ̂ for the correct model. This probability is given by

Q(v, χ̂) = 1 − Γ(v/2, χ̂/2) [148], where Γ is the incomplete Gamma function. Then, the

probability that the observed χ2 (even the correct model) is less than a given value χ̂2 is

1−Q. This statement is strictly true for Gaussian likelihoods.

GivenQ evaluated with the best-fit values (minimum chi-square), we can have a measure

of the goodness of fit. If Q is small (small probability), we have:

• The model is wrong and can be rejected.

• The errors are underestimated.

• The error measurements are not normally distributed.

While, if Q is too large we can interpret it as:

• Errors have been overestimated.

• Data are correlated or non-independent.

• The distribution is non-Gaussian.

4.2.3 Contour plots and confidence regions

Once the best fit parameters are obtained, we would like to know the confidence regions

where values could be considered good candidates. We take values inside a compact region
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∆χ2

σ p M = 1 M = 2 M = 3

1 68.3% 1.00 2.30 3.53

2 95.4% 4.00 6.17 8.02

3 99.73% 9.00 11.8 14.20

Table 4.3: ∆χ2 for the conventional 68.3%, 95.4% and 99.73% as a function of the number of parameters

(M) for the joint confidence level.

around the best fit value with constant χ2 boundaries. When the χ2 has more than one

minimum, it is said that we have non-connected confidence regions, and for multi-variate

Gaussian distributions (as the likelihood approximation in Equation (4.23)) these are el-

lipsoidal regions. Following Reference [140], we show an example of how to calculate the

confidence regions: we a small perturbation from the best fit of chi-square ∆χ2 = χ2−χ2
best

and, using the properties of χ2 distribution we define confidence regions for variations on

χ2 to its minimum. In Table 4.3, we see the 68.3%, 95.4%, and 99.73% confidence levels

as a function of number of parameters M for the joint confidence level. For Gaussian

distributions, these are the conventional 1, 2, and 3 σ confidence levels.

The steps to compute constant χ2 confidence regions is as follows: after finding the best

fit by minimizing χ2 (or maximizing the likelihood) and checking that Q is acceptable for

the best parameters, then:

1. Be M the number of parameters, n the number of data and p the confidence limit de-

sired.

2. Solve the equation:

Q(n−M,min(χ2) + ∆χ2) = p. (4.26)

3. Find the parameter region where χ2 ≤ min(χ2) + ∆χ2. This defines the confidence
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Figure 4.1: Example of a confidence region. We see the 1 and 2 σ confidence level for

the parameters Ωm and Ωk for the model oΛCDM where curvature is an extra parameter.

Dotted lines correspond to the value for ΛCDM. Taken from [11].

region.

Leaving aside the model, in Figure 4.1 we see an example of confidence regions at 1

and 2 σ where the most probable values of the parameters shown can be found.

4.2.4 Marginalization

In general, a model depends on more than one parameter. Sometimes, some of these

parameters θi may be of less interest. For example, they may correspond to nuisance

parameters, like calibration factors, or it may be the case that we are interested in only one

of the parameter constraints rather than the joint of two or more of them simultaneously.

Then, we marginalize over the uninteresting parameters by

P (θ1, ..., θj, H|D) =

∫
dθj+1...dθmP (θ,H|D), (4.27)

wherem is the total number of parameters in the model, and θ1,...,θj denote the parameters

we are interested in.
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4.3 Numerical tools

Most of the time, it is very difficult to compute the posterior distribution analytically. In

particular in Cosmology where, even the simplest model, they have six free parameters.

For these cases, and as we saw in the section 3.4, the numerical tools play an important

role. There are several options to carry out this work; nevertheless, in this section, we

focus on the Markov Chain Monte Carlo (MCMC) with the Metropolis Hastings algorithm

(MHA).

4.3.1 MCMC techniques

The purpose of the MCMC algorithm is to build up a sequence of points, the chain, in a

parameter space in order to evaluate the posterior of Equation (4.14). Here, we review the

basic steps for this procedure; however, it is recommendable to check [149, 150, 151, 152,

153] for a more formal version of the MCMC theory.

Monte Carlo simulations are algorithms that use random number generators to approx-

imate a specific quantity. On the other hand, a sequence X1, X2, . . . of elements of some set

is a Markov Chain if the conditional distribution of Xn+1 given X1, . . . , Xn depends only on

Xn. In other words, a Markov Chain is a process where we can compute subsequent steps

based only in the information given at the present. An important property of a Markov

Chain is that it converges to a stationary state where successive elements of the chain are

samples from the target distribution; in our case, it converges to the posterior P (θ|D,H).

Hence, we can estimate all the usual quantities of interest out of the posterior (mean, vari-

ance, etc.). The combination of both procedures is called an MCMC. The number of points

required to get good estimates in MCMCs scales linearly with the number of parameters,

so this method becomes much faster than grids as the dimensionality increases.

The target density is approximated by a set of delta functions:

p(θ|D,H) ≃ 1

N

N∑
i=1

δ(θ − θi), (4.28)
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where N is the number of points in the chain. Then, the posterior mean is computed as

⟨θ⟩ =
∫

dθθP (θ,H|D) ≃ 1

N

N∑
i=1

θi, (4.29)

where ≃ follows because the samples θi are generated out of the posterior by construction.

So, we can estimate any integrals (such as the mean, variance, etc.) as

⟨f(θ)⟩ ≃ 1

N

N∑
i=1

f(θi). (4.30)

In a Markov Chain, it is necessary to generate a new point θi+1 from the present point

θi. However, we need a criterion for accepting or rejecting this new point depending on

whether it turns out to be better for our model or not. If the new step is worse than the

previous one, we may still accept it since, if we only accept steps with better probability,

we could be converging into a local maximum in our parameter space and, therefore, just

exploring a small region of the entire space. The simplest algorithm that contains all this

information in its methodology is known as the Metropolis-Hastings algorithm.

4.3.2 Metropolis-Hastings algorithm

In the Metropolis-Hastings algorithm [154, 155], we need to start from a random initial

point θi, with an associated posterior probability pi = p(θi|D,H). It is necessary to propose

a candidate θc by drawing from a proposal distribution q(θi, θc) used as a generator of new

random steps. Then, the probability of acceptance of the new point is given by

p(acceptance) = min

[
1,

pcq(θc, θi)

piq(θi, θc)

]
. (4.31)

If the proposal distribution is symmetric, the algorithm is reduced to the Metropolis

algorithm

p(acceptance) = min

[
1,

pc
pi

]
. (4.32)

We generate a random number between 0 and 1. If this number is less than p, the

proposal θc is accepted. Otherwise it is rejected and the method is repeated.

The complete algorithm can be expressed by the following steps:
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1. Choose a random initial condition θi in the parameter space and compute the poste-

rior distribution.

2. Generate a new candidate from a proposal distribution in the parameter space and

compute the corresponding posterior distribution.

3. Accept or reject the new point with the help of the Metropolis-Hastings algorithm.

4. If the point is rejected, repeat the previous point in the chain.

5. Repeat steps 2–4 until you have a large enough chain.

4.3.3 Convergence test

Just as we need a criterion to accept or reject the points of the chains, we also need a

criterion to know if our chains have converged. We need to verify that the points in the

chain are not converging to a false convergent point or to a local maximum. In this sense,

we need that our algorithm takes into account this possible difficulty.

The usual test is the Gelman-Rubin convergence criterion [156, 157]. That is, by starting

with M chains with very different initial points and N points per chain, if θji is a point in

the parameter space of position i and belonging to the chain j, we need to compute the

mean of each chain:

⟨θj⟩ = 1

N

N∑
i=1

θji , (4.33)

and the mean of all the chains

⟨θ⟩ = 1

NM

N∑
i=1

M∑
j=1

θji . (4.34)

Then, the chain-to-chain variance B is given by

B =
1

M − 1

M∑
j=1

(⟨θj⟩ − ⟨θ⟩)2, (4.35)
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and the average variance of each chain is

W =
1

M(N − 1)

N∑
i=1

M∑
j=1

(θji − ⟨θj⟩)2. (4.36)

If our chains converge, W and B/N must agree. In fact, we say that the chains converge

when the quantity

R̂ =
N−1
N

W +B(1 + 1
M
)

W
, (4.37)

which is the ratio of the two estimates, approaches unity. A typical convergence criterion

is when 0.97 < R̂ < 1.03.
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Chapter 5

Multi Scalar Field Dark Matter:

Cosmological Constraints

In this chapter we present the Bayesian inference procedure in order to constrain the

MSFDM models by using different data sets. In order to perform the cosmological analysis,

we generate Monte Carlo Markov Chains with the Metropolis-Hastings algorithm using a

modified version of the Monte Python code [158, 159] with the modified version of CLASS

used in subsection 3.4. We verified that our chains converged using the Gelman-Rubin

criterion R − 1 < 0.03 implemented in Monte Python. Then we discuss the merits of the

models with respect to CDM within the framework of the Bayesian model selection.

5.1 Cosmological constraints

In the previous section we saw that the main difference throughout the models rests on

the mass power spectrum at small scales, hence we use the 3D matter power spectrum

inferred from Lyman-α data from BOSS and eBOSS collaboration [86]1. We also use the

Ly-α BAO from eBOSS DR14 [160], the Galaxy BAO from DR12 [161], 6dFGS [162] and

1As mentioned in [86], the process of inferring the MPS is model-dependent, therefore we will consider

the constraints obtained here as an approximation.
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SDSS DR7 [163], and the SNe Ia survey Pantheon [164] to improve the constraining power.

On the other hand, we found that the parameter constraints describing the scalar-field

remain the same when incorporating the Planck 18 dataset. For this reason and to reduce

computational time we have only used the data already described. See appendix 5.4 for

further details.

The sampling parameters in the analysis are the physical baryon density parameter

ωb,0, the logarithmic power spectrum scalar amplitude log (1010As), the scalar spectral

index ns, the Thomson scattering optical depth due to reionization τreio, the scalar field

masses mϕi, the decay parameters λϕi and, instead of cold dark matter density parameter,

we use the scalar field density parameters Ωϕi,0. However we found, from previous analysis,

that the posteriors of log (1010As), ns and τreio do not present a change respect to ΛCDM,

therefore we will kept these parameters fixed. See appendix 5.4. The flat priors used for

the remaining sampling parameters are as follow: H0 = [10, 100] for the Hubble constant in

km s−1Mpc−1, ωb,0 = [0.005, 0.1] for the physical baryon density and Ωϕ1,0 = Ωϕ2,0 = [0, 1]

for the scalar field density parameters today. For the scalar field parameters, we choose the

priors to be consistent with the numerical results we found with CLASS, and since these

parameters can take values of powers of ten, we chose a logarithmic base to efficiently

cover the entire parameter space and reduce the computational cost. This means that we

have log10 (mϕi/eV) = [−24,−17] for the scalar field masses, log10 (λϕi) = [1, 6] for the

parameter on the trigonometric cosine potential and λϕi,aux = [−6,−1] for the hyperbolic

cosine potential. For this case, we cannot use directly log10 (λϕi) because λϕi < 0, so in

order to cover the parameter space we use the auxiliary variable λϕi,aux whose relation

with λϕi is given by λϕi = −10−λϕi,aux . In what follows we will use quadi to refer to

the potential Vi(ϕi) = (1/2)m2
ϕiϕ

2
i , cosi for Vi(ϕi) = m2

ϕif
2
i [1 + cos(ϕi/fi)] and coshi for

Vi(ϕi) = m2
ϕif

2
i [cosh(ϕi/fi)− 1]. If there is no subscript, it means that it is the single field

case.

First, in Figure 5.1, we show the constraints for the single field cases, that is, the 1D

marginalized posterior distribution of the free parameters for each model corresponding to
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Figure 5.1: 1D posterior distribution for the single SFDM with potentials V (ϕ) = 1/2m2
ϕϕ

2 (red),

V (ϕ) = m2
ϕf

2 [1 + cos(ϕ/f)] (green) and V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1] (blue). The constraints on the field

mass are very similar for the three potentials, whereas the self-interaction parameter λϕ of the trigonometric

potential remains unconstrained by the data.

the potentials V (ϕ) = 1/2m2
ϕϕ

2, V (ϕ) = m2
ϕf

2 [1 + cos(ϕ/f)], and V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1].

It can be noticed that the posteriors of the field masses are very similar for the three po-

tentials, and that the observations considered can only put a lower bound on it, which

is log(mϕ/eV) ≳ −21.9 at 95% CL for the quadratic and hyperbolic cosine potentials

and log(mϕ/eV) ≳ −21.8 at 95% CL for the trigonometric cosine potential. In the case

of the trigonometric potential, we see that its extra parameter λϕ appears unconstrained

and the posterior looks practically the same with the prior we considered above for this

parameter, which is consistent with previous studies [96, 106, 87]. As for the hyperbolic

cosine, we have already mentioned the close relationship between the field mass mϕ and

the self-interaction parameter λϕ, and then the constraints on the former are translated to

log(−λϕ) ≳ 3.6 at 95% CL. The excluded values of λϕ correspond to the cases in which

SFDM has a significant contribution as an early radiation component. An example of this

can be seen in Figure 5.2.

For completeness, we also present in Figure 5.3 the 1D posterior distributions for the

cosmological common parameters of the models: the density parameters (SFDM and Λ),

and the Hubble constant H0. The posteriors are very similar for the three models, which

65



14 12 10 8 6 4 2 0
log10(a)

0.0

0.2

0.4

0.6

0.8

1.0

1, 1 = 102, m 1 = 7.66 × 10 26eV
b

+ ur

1, 1 = 104, m 1 = 9.58 × 10 22eV
b

+ ur

10 5 10 4 10 3 10 2 10 1 100 101

k[hMpc 1]
10 5

10 3

10 1

101

103

105

P(
k)

[h
3 M

pc
3 ]

1 = 102, m 1 = 7.66 × 10 26eV
1 = 104, m 1 = 9.58 × 10 22eV

Figure 5.2: Background and MPS evolution for the SFDM with potential V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1].

Magenta lines correspond to λϕ = −102 with mϕ = 7.66 × 10−26 eV, which are ruled out from the

constraints obtained. We can see the scalar field contribution to radiation. On the other hand, black lines,

that correspond to λϕ = −104 with mϕ = 9.58× 10−22 eV, represent values within the confidence regions.

show that one recovers the results of the standard ΛCDM model.

In Figure 5.4 we show the posteriors 2 for the combinations V (ϕ1) = 1/2m2
ϕ1ϕ

2
1 with

V (ϕ2) = 1/2m2
ϕ2ϕ

2
2, V (ϕ1) = 1/2m2

ϕ1ϕ
2
1 with V (ϕ2) = m2

ϕ2f
2 [1 + cos(ϕ2/f)] and V (ϕ1,2) =

m2
ϕ1,2f

2 [1 + cos(ϕ1,2/f)]. For the quadratic-quadratic and quadratic-cos combinations we

2The triangle plots of the MSFDM paremeters in Figure 5.1 and Figure 5.4 can be seen in appendix 5.4
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Figure 5.3: 1D posterior distribution for the cosmological common parameters of all the models studied

in this work.

found a lower bound for the mass of both fields given by log10(mϕ1,2/eV) = −22.1 at

95%. While, for the cos-cos combination, the lower bound for the mass of field one is

log10(mϕ1/eV) = −22.1 at 95% and for the second field log10(mϕ2/eV) = −22.2 at 95%.

We also found that the density parameter Ωϕi of one field depends on the Ωϕj of the other

field. That is, if Ωϕ1 dominates then Ωϕ2 is small, and on the other way around because the

total contribution remains constant. In [114] the authors propose two scalar fields (with

the possibility of a third one) with masses mϕ1 ≈ 10−22 eV and mϕ2 ≈ 10−20 eV, and these

values are within our confidence regions. The fact that the lighter field dominates over

the massive field is also in agreement with our results. The triangle plots of the MSFDM

parameters in Figure 5.1 and Figure 5.4 can be seen in appendix 5.4.

quad cosh quad1 + quad2

lnBi,ΛCDM 1.59 0.85 2.13

Table 5.1: Bayes factor for SFDM and double-SFDM with different potentials using ΛCDM as reference.

As we have mentioned, the main objective is to present the model of Multiple Scalar

Fields as Dark Matter. Although, for completeness, we compute the Bayes factor, lnBi,j,

by using the numerical package MCEvidence [165], and the ratio is done respect to CDM.

The results are shown in Table 5.1. Following the Jeffreys guideline [11], if lnBi,j > 5 we
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Figure 5.4: 1D posterior distribution for the two SFDM with the potentials V (ϕ1,2) = 1/2m2
ϕ1,2ϕ

2
1,2 (red),

V (ϕ1) = 1/2m2
ϕ1ϕ

2
1 with V (ϕ1) = m2

ϕ1f
2 [1 + cos(ϕ1/f)] (green) and V (ϕ1,2) = m2

ϕ1,2f
2 [1 + cos(ϕ1,2/f)]

(blue).

have a decisive strength against model i; if 5 > lnBi,j > 2.5 it means a strong strength; if

2.5 > lnBi,j > 1 we have a significant strength and if lnBi,j < 1 the data prefers model

i. In general, we should be careful taking the values of the Bayes factor since some of the

parameters were unconstrained by the data [166]. On the other hand, the fact that the

posteriors of the parameters of the scalar fields are not Gaussian prevents us from using

other information criteria such as the AIC or the BIC; or else, the Bayesian complexity,

since they need (or assume) the Gaussianity of the posterior. See, for example, [167]

or [168]. On the other hand, we do not present the Bayes factor for the trigonometric

potential cosine nor for the models with more than one field because the posteriors are not

mono-modal and some parameters are not constrained which can cause the method used

in MCEvidence to fail [165].

We found that the maximum of the likelihoods correspond to the same value− lnLmax =

523.03. That is, we can find a suitable combination of parameters such that the model in
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Figure 5.5: Evolution of the linear matter power spectrum at z = 0 for a CDM+SFDM model with

V (ϕ) = 1
2m

2
ϕϕ

2 with mass value mϕ = 10−27 eV and R = 0.15, 0.2, 0.5 and 1. Colors and line types were

chosen to match Figure 2 of [100] for an easy comparison.

place resembles the behaviour of a cold dark matter.

5.2 Comparison with axionCAMB

In addition to CLASS, there is a code that solves the cosmology for an ultra-light axion,

this is a modification to the CAMB code [169, 170] called axionCAMB [100, 171]. For the

case where only the scalar field is present, the formalism presented in this work and the

results of axionCAMB [100] are in agreement as mentioned in [65]. Similarly, in [100], the

authors also studied the combination of an ultra-light axion with CDM. In Figure 5.5, we

have reproduced the right side of figure 2 of the same reference for R > 0.1 and mϕ = 10−27

eV. We found that the code presented here is in good agreement with the results of [100]

except for small values of R, which translates to very small contributions from the scalar

field (Ωϕ ∼< 0.02).
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5.3 Extensions to MSFDM model: neutrino masses

and curvature.

It is well known that neutrinos have effects on the evolution of the Universe [172, 173], in

particular on the MPS [174] where the MSFDM model has differences respect to ΛCDM.

Therefore, in this section we vary the neutrino masses to see the effects on our model.

We assume the neutrino model already presented in section 3.2. In Figure 5.6 we show

the evolution of the linear matter power spectrum for the SFDM model (one field) with

the potential V (ϕ) = 1
2
m2

ϕϕ
2 with mass values mϕ = 10−24, 10−22 and 10−20 eV each

combined with neutrino masses mν = 0.2, 0.4, 0.6, 0.8 and 1 eV; bigger values are already

discarded [175, 176, 177, 178]. We found no significant differences respect to the neutrino

base model. However, there could be degeneration with the MSFDM. For example, in

Figure 5.7 we compare the evolution of the MPS for the double field model, with potentials

V (ϕ1,2) = 1
2
m2

ϕ1,2ϕ
2
1,2, and the single field case with different neutrino masses showed in

Figure 5.6. For the double field model, we fix the mass value of field one to mϕ1 = 10−22

eV while the second mass takes mϕ2 = 10−24 eV and 10−20 eV, with R = 0.2 and R = 0.8.

We can see that the MPS of both models are very similar.

In the same way, we study the case where we add curvature to the scalar field model

and find the same results as for ΛCDM. This can be seen in the left panel of Figure 5.8

where we show the 1D posterior for Ωk.

5.4 MSFDM: Planck 18 results.

In this appendix we show the triangle plots for the different potential combinations analyzed

in section 3.4. In Figure 5.9 we show the posteriors of the physical baryon density parameter

ωb,0, the logarithmic power spectrum scalar amplitude log (1010As), the scalar spectral index

ns, the Thomson scattering optical depth due to reionization τreio, the Hubble constant H0

in km s−1Mpc−1, the scalar field mass log10 (mϕi/eV), the Dark Energy density parameter
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Figure 5.6: Evolution of the linear matter power spectrum at z = 0 for V (ϕ) = 1
2m

2
ϕϕ

2 with neutrino

masses mν = 0.2, 0.4, 0.6, 0.8 and 1 eV. Coloured dotted lines represent the combinations with mϕ = 10−24

eV, coloured solid lines with mϕ = 10−22 eV and coloured dashed lines with mϕ = 10−20 eV. For example,

the blue dashed line represents a model with mν = 0.2 eV and mϕ = 10−20 eV. The black lines represent

the case for the SFDM with masses mϕ = 10−24 eV (dotted), mϕ = 10−22 eV (solid) and mϕ = 10−20 eV

(dashed) using the base model for neutrinos used in [10]. Solid red line represents the MPS for ΛCDM.

The data points for the MPS are the same used in section 3.4 and were obtained from [86].

ΩΛ and the Dark Matter density parameter ΩDM . The last one refers to Cold Dark Matter

for ΛCDM and to the scalar field for SFDM using Planck 18 data [10, 179], the 3D matter

power spectrum inferred from Lyman-α data from BOSS and eBOSS collaboration [86],

the Ly-α BAO from eBOSS DR14 [160], the Galaxy BAO from DR12 [161], 6dFGS [162]

and SDSS DR7 [163], and the SNe Ia survey Pantheon [164]. As we can see, there are

no differences between the constrictions of the ΛCDM and SFDM parameters and they

agree with the values reported in [10]. Thus, in section 5.1 we decided to vary only the

parameters corresponding to the scalar fields, leaving the rest of the parameters fixed.

Using the fact that the SFDM model provides similar constraints for the basic parameters

using the Planck data and given that we found similar restrictions for the scalar field mass
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Figure 5.7: Evolution of the linear matter power spectrum at z = 0 for a single field with potential

V (ϕ) = 1
2m

2
ϕϕ

2 with neutrino masses mν = 0.2 (blue), 0.4 (orange), 0.6 (green), 0.8 (magenta) and 1 eV

(indigo) compared with the double field model with V (ϕ1,2) = 1
2m

2
ϕ1,2ϕ

2
1,2 using mϕ1 = 10−22 eV and

different values of mϕ2 and R. For the single case varying neutrino mass, coloured dotted lines represent

the combinations with mϕ = 10−24 eV, coloured solid lines with mϕ = 10−22 eV and coloured dashed lines

with mϕ = 10−20 eV. The dark blue and gray lines represent the MSFDM evolution and solid red line

represents the MPS for ΛCDM. The data points for the MPS are the same used in section 3.4 and were

obtained from [86]. On the right side, a small-scale zoom is shown where you can see the consequence of

changing the values of the neutrino masses and the scalar fields.

with and without Planck 18 data, we decided to use only the MPS from Ly-α, BAO and

SNe Ia data. This change in the data set used also gives us a reduction in computational

time.

On the other hand, in Figures 5.10, 5.11, 5.12, 5.13, 5.14 and 5.15 we also show the 1D

and 2D posteriors of the combinations studied in section 5.1 when we consider each data

set separately. In all cases we find that we need to combine the data sets to improve the

constraints on the parameters of the scalar fields. Note that by using only the BAO data,

the restriction for H0 gives high values compared to Planck 18, so it is necessary to use

more data sets in order to constrain this parameter. See [160].
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Figure 5.8: In the left panel we show the constraints on the curvature parameter for ΛCDM and for the

SFDM model. In the right panel, we show the mass value constriction for the SFDM model with potential

V (ϕ) = 1
2m

2
ϕϕ

2 using the data from Planck 18, MPS from Ly-α BAO and SNe Ia (blue) and, MPS from

Ly-α BAO and SNe Ia (green).

Finally, in Figures 5.16, 5.17, 5.17, 5.19, 5.20 and 5.21 we compare the constraints

obtained using only the Planck 18 data with the Planck 18 plus MPS from Ly-α BAO and

SNe Ia data. In general we see that using more data constrains the cosmological parameters

better. And that, in particular, using only Planck does not give us information about the

parameters of the scalar fields. This agrees with the results obtained in section 3.4 where

the CMB spectrum is the same for the different models.

5.5 A general parametrisation

In [180, 181] the authors proposed a general parametrisation, called α, β, γ-parametrisation,

to describe the transfer function of non-CDM (nCDM) models, in particular, the fuzzy

dark matter model which in our case corresponds to a single SFDM with the quadratic

potential. In their studies they found that models allowed correspond those that meet

mϕ ≳ 10−22 eV. In a first test, we found this parametrisation could also describe the

combination of two fields with different combinations of potentials that with the possible
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exception of the cases in which the characteristic bump of the trigonometric cosine-type

potential occurs. In Figure 5.22, we show some examples of the transfer function for the

combinations SFDM+CDM, quad1+quad2, quad1+cos2 and quad1+cosh2 (solid lines) and

the transfer function with the α, β, γ-parametrisation (dashed lines). Although the values

of the parameters α, β and γ were set by hand, we can see they resemble the numerical

results we obtained with the exception of the cosine potential, where the characteristic

bump cannot be described by this parametrisation. However, further studies similar to the

one done in [182] are necessary to determine the relationship between the properties of the

scalar fields and the α, β and γ parameters and to obtain the respective constraints.
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75



-22

-21

-20

-19

-18

lo
g 1

0
(m

φ
/e

V
)

2.2

2.22

2.24

2.26

2.28

10
0
ω
b

64.4

66.6

68.7

70.9

73.1

H
0
[k

m
s−

1
M

p
c−

1
]

0.626 0.658 0.691 0.724 0.757
ΩΛ

0.193 0.227 0.262 0.296 0.331

Ωφ

0.626

0.658

0.691

0.724

0.757

Ω
Λ

-22 -21 -20 -19 -18

log10(mφ/eV)
2.2 2.22 2.24 2.26 2.28

100 ωb
64.4 66.6 68.7 70.9 73.1

H0[kms−1Mpc−1]

BAO

BAO + Ly − α
BAO + Ly − α + SN

Figure 5.10: 1D and 2D posterior distribution for the potential V (ϕ) = 1
2m

2
ϕϕ

2. We found constrictions

for mϕ and Ωϕ. We see that it is necessary to use different data sets to constrain the parameters of the

scalar field. Here and in the following figures the Ly-α label refers to the MPS inferred from these data.

See the text for details.
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Figure 5.11: 1D and 2D posterior distribution for the potential V (ϕ) = m2
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2 [1 + cos(ϕ/f)]. We found
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the scalar field.
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Figure 5.15: 1D and 2D posterior distribution of the fields when both have the potential V (ϕ) =

m2
ϕf

2 [1 + cos(ϕ/f)].
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Figure 5.16: 1D and 2D posterior distribution of cosmological and scalar field parameters for a single

field with V (ϕ) = 1
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2
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2 using Planck 18 data and Planck 18 plus MPS from Ly-α BAO and SNe Ia data.
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Figure 5.17: 1D and 2D posterior distribution of cosmological and scalar field parameters for a single

field with V (ϕ) = m2
ϕf

2 [1 + cos(ϕ/f)] using Planck 18 data and Planck 18 plus MPS from Ly-α BAO and

SNe Ia data.
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Figure 5.18: 1D and 2D posterior distribution of cosmological and scalar field parameters for a single

field with V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1] using Planck 18 data and Planck 18 plus MPS from Ly-α BAO

and SNe Ia data.
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Figure 5.19: 1D and 2D posterior distribution of cosmological and scalar field parameters for double

field with considering potential V (ϕ1) = 1/2m2
ϕ1ϕ

2
1 for the first field with V (ϕ2) = 1/2m2

ϕ2ϕ
2
2 using Planck

18 data and Planck 18 plus MPS from Ly-α BAO and SNe Ia data.
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Figure 5.20: 1D and 2D posterior distribution of cosmological and scalar field parameters for double

field with potential V (ϕ1) = 1/2m2
ϕ1ϕ

2
1 for the first field and V (ϕ2) = m2

ϕ2f
2 [1 + cos(ϕ2/f)] using Planck

18 data and Planck 18 plus MPS from Ly-α BAO and SNe Ia data.
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Figure 5.21: 1D and 2D posterior distribution of cosmological and scalar field parameters for double

field when both have the potential V (ϕ) = m2
ϕf

2 [1 + cos(ϕ/f)] using Planck 18 data and Planck 18 plus

MPS from Ly-α BAO and SNe Ia data.
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β and γ.
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Chapter 6

Compton Mass Dark Energy model

(CMaDE)

In this chapter we present a work in progress in which we apply both the numerical and

mathematical tools learned in the previous chapters to an alternative model of dark energy

to explain the accelerated expansion of the Universe.

One of the beliefs is that the explanation for the acceleration of the universe could

come from quantum mechanics, that is, from a theory of quantum gravity. In the reference

[183] the authors propose an effective way to introduce the quantum character of the

graviton, using analogies with other fields and interactions. They show that with this

proposal the system behaves very similar to the ΛCDM case. In this chapter we will show

that the predictions of the ΛCDM and CMaDE models are indistinguishable, at least at

cosmological scales, since the CMB and MPS profiles are very similar, but the CMaDE

model using an explanation of quantum mechanics without dark energy. In what follows

we remain the main ideas of [183], but then we use the functional form of the dark energy

in effective way.

The main arguments is that in the case of a massless particle, such as the gravitational

interaction mediator or graviton, the energy due to its momentum E = pc, is not contained

in the Einstein equations. In the Einstein’s equations it is implicit that the mass of the
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mediator of the gravitational interaction is zero. On the other side, the energy of the

graviton due to its moment comes from the quantum mechanical character of the graviton.

But everything in nature gravitates. The claim of [183] is that this energy also gravitates

and must be counted as extra energy.

The hypotheses are: if Gravitation is a quantum mechanical interaction its mediator

has a Compton effective mass and its corresponding wavelength λ is limited by the size of

the observable universe. Using these arguments, they found that the cosmological constant

is given by 1

Λ =
2π2

λ2
. (6.1)

We will use Λ as indicated in (6.1) as an effective result, where Λ varies very slowly.

For an observer today, the gravitational interaction travels a distance RH during its

life, the wavelength will be λ = (c/H0)RH long, where RH is the unitless length given by

RH = H0

∫ t

0

dt′

a
=

∫ N

−∞

H0

H
e−N ′

dN ′. (6.2)

In order to obtain the Friedmann equation for our model, we consider that

H2 +
k

a2
=

κ2

3
(ρm + ρr + ρΛ) . (6.3)

Using equations (6.1) and (6.2) in the derivative of (6.3), we get that [183]

HH ′

H2
0

+ Ω0ke
−2N +

3

2
Ω0me

−3N + 2Ω0re
−4N −√

3

2

H0e
−N

Hπ

(
H2

H2
0

− Ω0ke
−2N − Ω0me

−3N − Ω0re
−4N

) 3
2

= 0.

(6.4)

From the above we have that the CMaDE Friedmann equation is given by (6.4) and

ΩΛ =
2

3

π2

R2
H

. (6.5)

1Be careful not to confuse the λ presented here, as a wavelength, with the λ of the scalar field models

where it is related to the potentials decay constants.
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Here it is important to note that given (6.1) with (6.2) for the function Λ implies that

the CMaDE model only has curvature as a free constant to fit all observations. If we

integrate (6.4) and (6.2) we find that RH ∼ 3. Also note that, because Λ is not a constant,

the Bianchi identities have an extra term

Λ̇ = H
dΛ

dN
= −4π2

(
H0

c

)2

H0
e−N

R3
H

. (6.6)

We obtain that Λ̇ = −4.48 × 10−16h3
0/R

3
H/Mpc2/yr; its value today is Λ̇ ∼ −5 ×

10−17h3
0/Mpc2/yr, which is really very small, being H0 = 100h0Km/sec/Mpc. Note that

just after inflation we can put that Λ̇ = −1.5×10−72h3
0e

−N/R3
H/cm

2/sec, which depends on

the value of RH . However, the redshift for inflation is z ∼ 1026, this means that N ∼ −60.

So, before inflation the wavelength is small, the exponential factor is big and the Bianchi

identities have an extra term given by (6.6).

When inflation ends, the wavelength grows up about e60 times thus RH ∼ λ0e
60 grows

very fast and (6.6) becomes very small. This means that the Bianchi identities hold up

very well, because Λ̇ ∼ 0, i.e., after inflation Λ is almost constant. So the equation (6.1)

can be viewed as a very slowly varying cosmological constant.

Here, we will see equation (6.1) with the integral (6.2) as an effective proposal and check

if them can explain the observable universe, leaving for future work the possible quantum

gravity explanation of the equations (6.1) and (6.2). Note that this λ is similar to the

proposal of holographic dark energy where we know that this model is not able to explain

the dark energy behavior of the universe [184]. The difference of (6.2) with the holographic

model is that the holographic wavelength is the distance to the horizon of the universe, this

integral has an extra scale factor outside the corresponding integral (6.2). The other main

difference is that the holographic model has a free constant in the cosmological function

Λ, while the equation (6.1) has no free parameters. So, let us think of the equation (6.1)

as an effective proposal and its justification are the results that we find in this work.

In Figure 6.1 we compare the numerical solution of (6.4) with the evolution of the

Hubble parameter in ΛCDM, HΛCDM = H0

√
Ω0me−3N + Ω0re−4N + ΩΛ. Note that H has
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Figure 6.1: In the upper panel we show the evolution of the Hubble parameter using

the CMaDE (equation (6.4), point line) and the ΛCDM model (solid line). We used the

Planck values Ω0m = 0.315, Ω0r = 10−4, H0 = 67.3 km/s/Mpc in both plots and the value

Ω0Λ = 0.684 for the ΛCDM curve and (6.7) for the CMaDE model. In the lower panel we

show the proportional difference between both curves (HCMaDE −HΛCDM)/HΛCDM .

the same evolution for both models implying same predictions. Note too that the CMaDE

density remains subdominant for large redshifts and is a bit different than the evolution of

LCDM for small redshifts.

Solving numerically (6.4) for a flat space-time we carry out the integral (6.2) and we

find that RH = 3.083 in (6.1). With these results we obtain that

Λ = 2
( π

3.087

)2 H2
0

c2
=

3H2
0

c2
Ω0Λ, (6.7)

We can see that the value of ΩΛ strongly depends on the size of the wavelength. (6.2).

We can use the size of the universe horizon to determine the value of the wavelength

λ. Thus we can determine the value of the CMaDE now and give an explanation of the

cosmological and coincidence problems.
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Figure 6.2: Evolution of the 1−H/Happ using the numerical integration of (6.4) (H) and

equation (6.10) (Hap), with q = 0.695. We plot log(|1 −H/Happ|), observe that this ratio

is always less than 10−3.

In what follows we want to study the possibility that the CMaDE model is capable

of reproducing all the observations of the universe that we have so far. Strictly speaking

we have to solve equation (6.4) and solve the whole cosmology using it. However, in this

chapter we first solve the entire cosmology using an approximation. Here we will focus on

the temperature fluctuations of the cosmic microwave background (CMB) and the mass

power spectrum (MPS) only, leaving a more in-depth analysis of the rest for future work.

In order to find a suitable approximation to the equation (6.4), we proceed as follows. We

know that during the epoch dominated by matter H = 2/(3t) = H0/a
3/2 [185], so we found

that the evolution of RH is given by RH = 2
√
a. Thus, during this time we have that

ΛMD ∼ π2

6

3H2
0

c2
1

4a
. (6.8)

So, we find that the field equation for ΛMD is Λ̇MD +HΛMD = 0. We use this approx-

imation to get the Hubble parameter evolution, given as follows

H = H0

√
Ω0me−3N + Ω0re−4N + Ω0ke−2N + Ω0Λe−N . (6.9)
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Figure 6.3: Evolution of the Ω’s using equations (6.9) and (6.10) and the corresponding

ones using the ΛCDM model.

However, this approximation is not good enough for the numerical solution of (6.4).

Instead of that we will approximate it with the function

Happ = H0

√
Ω0me−3N + Ω0re−4N + Ω0ke−2N + Ω0ΛeqN . (6.10)

where q and Ω0Λ are constants that fit the numerical solution. The similarity between the

function (6.10) with the numerical integration of (6.4) is very good everywhere, see figure

6.2.

The radiation content of the universe, CMB photons plus neutrinos, is given by ρr =

2(1 + 3 × 7/8(4/11)4/3)T 4. The CMB observations indicate that T = 2.7255 K, thus

Ω0r = 9.54 × 10−5. We set Ω0Λ such that Happ = H0 at N = 0. These values, again, are

very close to that obtained in ΛCDM.

In Figure 6.3 we see the evolution of the Ω’s for the CMaDE model, using the function

(6.10) and the ΛCDM model, we see the similarity of the evolution.

Thus, the next step is to see whether this approximation gives us the correct behavior

of the CMB and MPS profiles. In Figure 6.4 we see the comparison between the profiles

of the CMaDE and ΛCDM models using an amended version of CLASS code [131], again

the similarity between both models is very close. The only difference we find for the flat
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universe is an excess of temperature predicted by the CMaDE model in the first maximum,

but in the rest, of the two profiles, the coincidence with the observations using the Planck

data is very good. It is very remarkable that the value of ΩΛ in the CMaDE model is

completely theoretical, so it is quite relevant that this match with the observations is so

good. We believe that the small differences could be due to the fact that we are using

an approximation for the CMaDE model and not the solution of the equation (6.4) or by

some extra phenomenon.
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Figure 6.4: Profiles of the CMB for a flat universe (upper panel) and for a closed universe

with Ω0k = −0.003 (middle panel) and MPS (lower panel) observations using an amended

version of CLASS code [131]. We compare them with the best fit of the ΛCDM model,

using data from the Planck satellite. Note that the CMB temperature fluctuations for the

flat universe are the same as the ΛCDM, the only difference is in the first maximum. For

the MPS there are very small discrepancies for the small structure. The CMaDE model

settings are Ω0r = 5.67 × 10−5, q = 0.694, H0 = 72.6 km/s/Mpc and Ω0b = 0.044 for the

flat universe and q = 0.695, Ω0k = −0.003, H0 = 72.6 km/s/Mpc and Ω0b = 0.043 for the

closed universe. Observe that the value of H0 is very close to the observed one from the

local distance ladder [186]
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Chapter 7

Conclusions and future work

In this work we presented the cosmological constraints of the Multi Scalar Field Dark

Matter (MSFDM) model, in which we assume the dark matter is composed of different

ultralight scalar fields. The idea was introduced to alleviate some of the cosmological and

astrophysical discrepancies, for instance, the distinct values of the single scalar field mass

obtained when considering different observations, where more than one field is needed in

order to explain them. As a first approximation, we took for granted that the scalar fields

are real, spatially homogeneous and they do not interact with each other. We presented

the equations that describe the evolution of the background and perturbations for N scalar

fields, and by using the polar change of variables we avoided the scalar field characteristic

oscillations. Thus, we obtained a general expression for the fields evolution that depend

on the potential and its derivatives, in particular, the equations for the potentials V (ϕ) =

1/2m2
ϕϕ

2, V (ϕ) = m2
ϕf

2 [1 + cos(ϕ/f)] and V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1]. Under this

change of variables, these three configurations are described by a single system of equations

where the parameter λϕ is able to decide the type of potential to use.

We showed the evolution for the background, mass power spectrum (MPS) and the

CMB power spectrum using a modified version of the CLASS code [131, 65, 95] with two

dark matter components. We considered the following combinations: a) cold dark matter

and a scalar field with potential V (ϕ) = 1/2m2
ϕϕ

2, and two scalar field models, with b) both
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potentials V (ϕ) = 1/2m2
ϕϕ

2, c) V (ϕ) = 1/2m2
ϕϕ

2 and V (ϕ) = m2
ϕf

2 [1 + cos(ϕ/f)], and d)

V (ϕ) = 1/2m2
ϕϕ

2 and V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1]. Since the fields are independent from

each other, we introduced the parameter R to have the field one as reference.

We showed that the evolution of the background is mainly affected at the beginning of

the scalar fields oscillations since its amplitude depends on the masses and the contribution

that each one has to the total dark matter, being bounded by the heaviest and lightest

masses; however these do not depend on λϕ. After the oscillations have started, the fields

evolution only depend on Ωϕi,0. On the other hand we found that, in all combinations,

the MPS presents the characteristic cut-off of the single field at small scales. However, it

does not present the oscillations of the single case due to the superposition of the different

fields. This cut-off is far form the ΛCDM behavior when the lightest field dominates, and

if the heaviest one dominates the MPS behavior approaches the ΛCDM model. For the

case that one of the fields has the axion potential, the characteristic bump appeared when

it had a light mass with large λϕ values. On the contrary, if the mass is heavier, the bump

disappeared regardless of the values of λϕ and R. On the other hand, in the CMB power

spectrum, we have not found significant changes unless one of the fields has mϕi ≤ 10−26

eV. That is, regardless of the number of fields we can always find a combination of the

fields that matches the CMB observations where the total contribution of dark matter is

ΩDM = 0.264, given by Planck 18 data [10].

We performed the parameter inference analysis with the Monte Python code [158, 159]

using BAO, Big Bang Nucleosynthesis, Ly-α forest and Supernovae for a single scalar

field with the three potentials mentioned above and for double scalar fields. In the latter

case, for simplicity we used the following combination of potentials: V (ϕ1) = 1/2m2
ϕ1ϕ

2
1

with V (ϕ2) = 1/2m2
ϕ2ϕ

2
2, V (ϕ1) = 1/2m2

ϕ1ϕ
2
1 with V (ϕ2) = m2

ϕ2f
2 [1 + cos(ϕ2/f)] and

V (ϕ1) = m2
ϕ1f

2 [1 + cos(ϕ1/f)] with V (ϕ2) = m2
ϕ2f

2 [1 + cos(ϕ2/f)]. For the single case

we found a bound for the mass values that corresponds to the one reported by the Ly-α

data. We also presented the constrictions for the potential V (ϕ) = m2
ϕf

2 [cosh(ϕ/f)− 1]

where we have found a bound for λϕ and, therefore, for the scalar field mass where, the
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latter, is also in agreement with the reported by the Ly-α. In this case, the excluded values

correspond to the cases in which the scalar field contributes to radiation as can be seen

in Figure 5.2. For the double field models we found bounds for the masses and that the

contribution of the fields depends on each other. Within our confidence regions are the

masses reported in [114], in which more than one scalar fields is needed to explain the

observed galaxies halos.

Finally, we have found that adding more scalar fields in order to explain astrophysical

phenomena does not affect the known cosmology. So the MSFDM can be an alternative

candidate to dark matter that is able to explain the observations at the cosmological and

astrophysical levels. Its difference with other models is seen in the MPS at small scales.

The results presented here can be generalized to larger number of fields with different

potentials. We expect that forthcoming observations of collaborations such as DESI and

LSST will allow us to better constrain the parameters of our model.

The future work, for this model, is to study the case in which the fields are complex

and have different behaviors throughout their evolution, as well as interactions between

complex or real fields. Cases with different potentials can also be studied. For example,

a pending job is to study the potential that includes the interaction of a field with itself,

which is paused because by using the polar change of variables the differential equations

become complicated to solve even numerically because we have not been able to find the

initial conditions for the system. Another topic that is interesting to study is the interaction

of one scalar field with another, and even the interaction between scalar field dark matter

with scalar field dark energy. We must also investigate the impact of the hyperbolic cosine

type potential on the initial conditions of the other fields, since we must remember that,

as we saw in the section 3.4, this potential only allows combinations in which both fields

have the same contribution to the total dark matter.

On the other hand, as mentioned in the section 5.1, we use the MPS data obtained

from Ly-α where ΛCDM has been assumed as the fiducial model. To do it properly, we

must do the hydrodynamic simulations that include the information from our model to
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extract the Lyα information now with the correct model and make the Bayesian inference

with these results.

Regarding the CMaDE model, we saw that using the approach presented in the chapter

6 we can numerically reproduce the same results as the LCDM model. However, we want

to solve the entire differential equation without the approximation. Future work is to

introduce it in CLASS. However, it remains to be determined if the normal version of

CLASS can solve it or if it is necessary to look for another one, for example, Hi-CLASS.

Once this is done, the next step is to find the constraints of the model through Bayesian

inference as was done with the MSFDM model. The idea is to separately use the Planck

18 CMB data and the Pantheon SN data to determine the value of H0 and see if CMaDE

can resolve the discrepancy between these data sets.
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Appendix A

CLASS code.

The Cosmic Linear Anisotropy Solving System (CLASS) is a code designed to simulate

the evolution of linear perturbations in the universe and to compute CMB and large scale

structure observables using the ΛCDM as fiducial model [131]. It is written in C to take

advantage of the computational speed that this programming language has compared to

others. In addition to the use of the “classes”1 that allowed to write it in such a way that

they can be calculated separately, for example, the background and the perturbations. In

this work we are only interested in the part of the dark matter, so the rest of the equations

to be solved are the same as in ΛCDM, which can be seen in [131, 130].

A.1 Installing CLASS

Throughout this work we use two operating systems: macOS and Ubuntu. Although they

are both based on linux, the way to install CLASS is a bit different.

1For readers unfamiliar with programming, we can say that a class is a template that defines variables,

functions, and methods. This will be useful because we can define a class in the background only once and

we can call it throughout the code without having to define it every time we use it.
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A.1.1 Ubuntu

This operating system is installed on the ekbek server belonging to the Astrophysical Super

Computing Laboratory (LaSumA for its acronym in Spanish). It currently has the version

20.04.3 LTS with 8 processors Intel(R) Core(TM) i7-7700 CPU @3.60 GHz with 4 cores

each and 8 GB of RAM memory.

Since CLASS is written in C, we need a compiler. In this case we will use gcc. We also

need to install make. Usually they are already installed with Ubuntu but if not, it can be

done with

If we only wanted to use CLASS, these requirements would suffice. However, as we will

see later, we need python to be able to do the link with Monte Python.

Although most versions of Ubuntu already include some version of python, we recom-

mend using a virtual environment as a good programming practice. A python environment

allows us to install, in isolation, specific versions of libraries that we are going to use. That

is, we can have as many python environments as we want and what we do to one doesn’t

affect the others. In the case of making a mistake, which is very common when program-

ming, we can simply delete the environment and create another one. For this purpose, we

recommend installing miniconda [187], which is a minimal conda installer used to manage

python and its libraries.

We must download the installer from [188]. In this case, we download the version

“Miniconda3-py37 4.11.0-Linux-86 64.sh”. See Figure A.1.

To install it we write in the terminal “bash Miniconda3-py37 4.11.0-Linux-86 64.sh” as

in Figure A.2

102



Figure A.1: We download the file in the “Documentos” directory.

Figure A.2: Installing miniconda.

We just have to accept everything. This will create a new directory called ”miniconda3”

(because we have downloaded the version that has python 3.7) in the root of our user as

can be seen in Figure A.3. In case we have some version of python previously installed,

miniconda will ask us to modify the PATH (.bashrc file) so that this python is used by

default. We must tell it “yes”, please.

Figure A.3: “miniconda3” directory in our user root.

Now we close and reopen the terminal. If everything has gone well, we will see next
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to our user the word “(base)” as in Figure A.4. This means that we are working with the

default python environment created by miniconda, in this case it is python 3.7.

Figure A.4: Python base environment.

If we want to deactivate the base environment of miniconda and use the python that

Ubuntu has by default, we write “conda deactivate”. See Figure A.5.

Figure A.5: Deactivating Python base environment.

If we want to activate it again, we just have to close and open the terminal.

Now we must create the environment in which we are going to work. Although the

latest versions of Monte Python and CLASS have compatibility with python 3, we use

python 2.7 because Monte Python was written in this version. We must write “conda

create –name py27 python=2.7” in the terminal, this will create a python 2.7 environment

called py27. See Figure A.6. We can give the environments the name we want with the

version of python we need.

Figure A.6: Creating Python py27 environment.
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To activate it we write “conda activate py27”. In Figure A.7 we can see the change

between environments, that is, we went from “base” to “py27” with python 2.7.

Figure A.7: Activating Python py27 environment.

To deactivate we write “conda deactivate” as in Figure A.8. We see the change from

“py27” to “base”.

Figure A.8: Deactivating Python py27 environment.

The next step is to install the necessary python libraries. For this we will use the pip

and conda package managers. We use conda when the library dependencies are outside of

python and thus cannot be handled by pip. Activate the py27 environment and write in

the terminal “pip install cython numpy scipy pandas astropy” as in Figure A.9. This will

install the libraries cython, numpy, scipy, pandas and astropy at the same time. We can

also install them one by one. For example, “pip install cython”, press Enter; then “pip

install numpy” and so on.

For the numexpr and mpi4py 2 we will use conda. This is “conda install numexpr”, we

wait for this library to finish installing. Then we write “conda install mpi4py” as in Figure

2This library will be essential when running Monte Python because it will allow us to parallelize the

code, that is, run several processes at the same time.
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Figure A.9: Installing libraries with pip.

A.10.

Figure A.10: Installing libraries with conda.

In addition to the C compiler, python and their libraries; we also need to install LaTeX

to do the plotting when we study the Monte Python results. For this we must write in

the terminal “sudo apt install texlive-latex-recommended” and then “sudo apt-get install

dvipng texlive-latex-extra texlive-fonts-recommended” as seen in Figure A.11.

We already have everything we need to install CLASS. First we need to download it

from [189] for the latest version (without MSFDM) or from [132] for the amended version

used in this work. In any case, we will download it as ZIP 3 as seen in Figure A.12.

Once downloaded and decompressed, we will enter the “class public” directory. See

Figure A.13.

Then, activate the py27 environment, write “make” and wait for the process to finish

as seen in Figure A.14.

The first test to know that CLASS was installed correctly is to enter python and type

3For more advanced users, it can be downloaded using git which allows us to have updated versions.

See [190] for a tutorial.
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Figure A.11: Installing LaTeX.

Figure A.12: Downloading CLASS.

“import classy” in the terminal. It should not display any legend, it should display the

following line of code. See Figure A.15. The classy library is a wrapper written in python
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Figure A.13: Enter the class public directory.

Figure A.14: Using make to compile CLASS.

generated by compiling CLASS. This will be the link to Monte Python. On the other

hand, we can also use it as any python library and run our code in a jupyter notebook, for

example 4. However, for the purposes of this work, we will work with CLASS from C.

Figure A.15: First test importing classy.

The next test is to run CLASS with an input file by typing “./class explanatory.ini”. In

Figure A.16 we can see an example of a correct execution as well as the direction and name

of the output files. On the other hand, “explanatory.ini” is the default input file and it is

recommended not to modify it as it contains detailed instructions for all the parameters

4See the notebooks directory in class public
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and models included in CLASS, as an example see Figure A.17. If you want to use another

model or change the parameters, we recommended to copy it or create a new file. The

input files will be explained later.

Figure A.16: Second test using an input file.

A.1.2 macOS

We must follow the same steps and in the same order as in Ubuntu. Here we will mention

only the differences. The first difference is that on macOS we don’t have apt-get to install

libraries from the terminal, instead we have homebrew. Instructions for installing it can

be found at [191], see Figure A.18.

After it has been installed, we type “brew install gcc” and then “brew install cmake”

as in Figure A.19. cmake is the analogue of make in Ubuntu.

The other difference is before CLASS is compiled, that is, before typing make in the

terminal inside the class public directory. We must modify the Makefile file that is in the
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Figure A.17: explanatory.ini file snippet.

Figure A.18: Installing homebrew.

Figure A.19: Using homebrew to install libraries.
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aforementioned directory. Here we need to add the gcc version number that homebrew

puts when installing the compiler. As can be seen in the Figure A.20, in this case we

have gcc-11. In principle, we should do the same with python but, since we have installed

miniconda, it still uses the word python to refer to all versions so it remains the same.

Figure A.20: Modifying the Makefile file to make it compatible with mac. We changed the

C compiler name.

We also need to modify the setup.py file inside the class public/python directory and

add the version of gcc installed with brew and add the direction where the compiler was

installed as seen in Figures A.21 and A.22.
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Figure A.21: We changed the C compiler name in setup.py file.

Figure A.22: Adding the C compiler direction in setup.py file.
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Appendix B

Modifying CLASS

In this section we will show how we added scalar fields to CLASS, we take these references

[65, 96, 99] and the implementation of the scalar field as dark energy that is included by

default in CLASS as a guide. The difference is that for dark energy the scalar field is an

option to choose between cosmological constant, fluid or the field. Whereas we include the

scalar fields as extra components of the Universe separated from dark energy. This allows

us to have both scalar field dark matter and scalar field dark energy.

The main CLASS files are in the class public/source directory. This is where all the

equations to be solved are. These are

• background.c

• input.c

• lensing.c

• nonlinear.c

• output.c

• perturbations.c

• primordial.c
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• spectra.c

• thermodynamics.c

• transfer.c

Each of these corresponds to a C library with a .h extension found in the class public/include

directory. These libraries are called in the header of their respective .c file.
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Appendix C

input.c

Let’s start with the input.c file with which CLASS extracts the parameter values from the

input file and calculates the initial conditions to solve the differential equations. Through-

out this and all files, the corresponding variables will be labeled with sfdm 1 or sfdm 2

depending on each case.

To find the initial conditions we copy the default CLASS method for handling scalar

fields, this is called the shooting method. We need a target variable, that is, the value to

be reached, and a method’s own variable. In our case we will use the current contribution

of the scalar fields to the content of the Universe, that is, the Omegas. See Figure C.1.

Figure C.1: We haven’t defined any variables yet. We’re just giving the code the name of

the parameters to use for the shooting method. In this case the parameters to reach are

the Omegas and the parameters to be used for adjustments are the shooting parameters.

Next we define the local variables, where alpha sfdm is related to Ωϕ as we will see in
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background.c See Figure C.2.

Figure C.2: Defining local variables.

We then tell CLASS how to extract the data from the input files. It can be read in

different ways, in this case we will only use two: Ωϕ and ωphi. In the class call function we

see in green and in quotes how CLASS will look for the parameter in the input file. Then,

we see in which variable the value will be stored, for example &param1 or &param2. The

entry that follows, &flag1 or &flag2, are boolean variables used to test and determine how

the extracted value is going to be transformed. In class test the chosen way to extract the

parameter is determined depending on which flag is set on. If both are, it will return an

error message. Then the value is added to the total of the components of the Universe.

See Figure C.3.

If the contribution of the scalar field is different from zero, CLASS will read the other

parameters of the scalar field: the mass, the decay constant and the tuning index that will

be used for the shooting method. See Figure C.4

The initial conditions for the differential equations of the scalar field are now obtained.

We treat the three potentials by means of a nested “if” using the value of the lambda
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Figure C.3: Extracting the values parameters from input files.

Figure C.4: Reading the scalar field parameters from the input file.

parameter as a flag. We begin by considering the case greater than or equal to zero corre-

sponding to cos and quadratic, respectively. First, the initial conditions of the quadratic

case are obtained. Inside this “if” we have another “if” to deal with the potential type

cos whose initial conditions need those of the quadratic case. For this we implement the

Newton-Raphson method as it is done in the reference [96]. See Figure C.5. Notice that in

the code (using the atom editor), the variables are colored red. Next to them there is an
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arrow and the word pba which means that it is a variable that belongs to the background.

This is one of the advantages of classes in C, these variables are defined in another file,

namely background.c, and we can use them in other parts of the code without defining

them.

Figure C.5: Obtaining the initial conditions for the quadratic and cos potentials.

In the case of the cosh, outside of the if, we put the initial conditions in an else. See

Figure C.6.

Figure C.6: Obtaining the initial conditions for the cosh potentials.

The next piece of information that is extracted from the input file is whether or not we
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are going to use the scalar field’s attractor condition. This is the relationship of the initial

values that the parameters have between them and that were presented in section 3.2. The

first “if” checks if they are going to be used and inside it there is an “if” and an else for

the cases of cos and quadratic, and cosh, respectively. Outside of the main “if” is an else,

here are the actions that the code will do when the attractor is not used. It takes as initial

condition the last entry of the array of parameters of the scalar field. See Figure C.7 We

recommend always using the attractor condition. Otherwise, finding the initial conditions

would have to be done manually and could become very complicated.

Figure C.7: Determining if the scalar field attractor condition will be used or not.

We do the same for the second field taking care to change the number 1 to 2. See

Figures C.8, C.9 and C.10.

Now we are going to set the default values that the scalar fields variables will take.

These values are what CLASS will assign if it doesn’t find scalar fields information in the

input file, the .ini file. See Figure C.11.

The lines of Figures C.12, C.13 and C.14 are adapted from those of the scalar field as

dark energy.

At the end, we define the auxiliary functions for the Newton-Raphson method. See
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Figure C.8: Implementing the second field.

Figure C.15.
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Figure C.9: Implementing the second field.

Figure C.10: Implementing the second field.
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Figure C.11: Assigning default values for scalar field variables.

Figure C.12: Adapting the scalar field lines as dark energy to dark matter.

122



Figure C.13: Adapting the scalar field lines as dark energy to dark matter.

Figure C.14: Adapting the scalar field lines as dark energy to dark matter.
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Figure C.15: Auxiliary functions.
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Appendix D

input.h

In this file we are only going to put the name of the parameters that will be the target of

the shooting method and the declarations of the auxiliary functions. See Figures D.1 and

D.2.

Figure D.1: input.h file modifications.

Figure D.2: input.h file modifications.
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Appendix E

background.c

In this file we will put the differential equations that we must solve to know the evolution

of the scalar fields. We start by defining the local variables for the fields, that is, they will

only be used in this file, unlike those accompanied by pba-> or ppt-> that can be used

anywhere in the code. See Figure E.1. The term pba means that the variable belongs to

the background and ppt to the perturbations. Throughout the appendices we will specify

each of these terms when it appears.

Figure E.1: Defining scalar fields local variables.

We will treat the two-field case and the single-field case separately, using nested ifs,
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because the contribution to the density is different. Having these nested ifs allows the use

of the fields to be symmetric.

The if of the two fields is activated when both flags are true, see line 428 in Figure E.2.

This happens when a non-zero value is given to the Ωϕi in the input file. We are going to

store the solutions of the differential equations in the local variables defined before. We will

use these local variables to calculate the parameters of the scalar fields. As can be seen on

lines 430, 431 and 432 of the Figure E.2, some variables start with index bi in their name.

This means that they are going to be integrated, that is, those that have a differential

equation. Then others appear with index bg , these quantities depend on the solutions of

the differential equations, that is, on the index bi as can be seen in lines 438-442. Then

the contributions of the matter and radiation densities of the scalar fields are added to the

total densities respectively.

We do the same for the individual fields, paying special attention to the continuity of

the number of lines of code. Also note the difference in how the field density is calculated

in line 473 of Figure E.3 and line 441 of Figure E.2.

Then, as a precaution, the fields parameters arrays are emptied, see Figure E.5.

Also as a precaution, the flags that indicate whether or not there are scalar fields are

set to false, see Figure E.6. The value will change depending on the information in the

input file, see Figure E.7.

Then the index bg (Figure E.8) and index bi (Figure E.9) indices used in Figures E.2,

E.3 and E.4 are defined.

Next we put the information of the scalar fields that CLASS will show in the terminal

when it is executed. These messages will be displayed as long as the field flags are true,

see Figures E.10 and E.11.

Now the initial conditions calculated in the input.c file are fixed, see Figure E.12.

Then we put the title of the columns of the fields parameters that will be in the

output file, see Figure E.13. On the lines shown in the Figure E.14, we tell CLASS which

parameters we want it to save to the output file. We must be careful to put them in the
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Figure E.2: Assigning scalar fields variables.

same order as the column titles.

Then we put the differential equations, see Figures E.15 and E.16. Finally, we define

the helper functions that we have used in writing the differential equations, see Figure

E.17.
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Figure E.3: Assigning scalar field 1 variables.

Figure E.4: Assigning scalar field 2 variables.
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Figure E.5: The fields parameters arrays are emptied.

Figure E.6: Initializing flags.
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Figure E.7: Initializing flags.

Figure E.8: Defining the index bg indices.

Figure E.9: Defining the index bi indices.
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Figure E.10: Printing scalar field 1 information.

Figure E.11: Printing scalar field 2 information.
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Figure E.12: Fixing initial conditions.
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Figure E.13: Naming the columns in the output file.

Figure E.14: Assigning the parameters that will be in the output file.
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Figure E.15: Scalar field 1 differential equations.

Figure E.16: Scalar field 2 differential equations.
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Figure E.17: Defining auxiliary functions for the differential equations.
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Appendix F

background.h

In this file we declare the variables that we use in the background.c file, that is, we tell

CLASS what type each one is, see Figures F.1, F.2, F.3, F.4 and F.5.

Figure F.1: Defining scalar fields quantities.
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Figure F.2: Defining scalar fields index bg.

Figure F.3: Defining scalar fields index bi.

Figure F.4: Defining scalar fields flags.
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Figure F.5: Declaring auxiliary functions for the differential equations.
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Appendix G

perturbations.c

In this file we are going to put the differential equations for the perturbations. First, as a

good programming practice, we initialize the flags associated with the scalar fields to false,

see Figure G.1. Then if the input file says that there are scalar fields, the flags are set to

true, see Figures G.2 and G.3.

Figure G.1: Initializing the scalar fields flags to false.
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Figure G.2: Setting the scalar fields flags to true.

Figure G.3: Setting the scalar fields flags to true.

The, we define the indices for the perturbations variables, see Figure G.4. As in back-

ground.c, we also need to declare local variables, see Figure G.5.

Figure G.4: Defining the perturbations indices.

Then, we check that the slow rolling condition is met for both fields, see Figures G.6

and G.7.
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Figure G.5: Declaring local variables.

Figure G.6: Checking slow-rolling condition.

Figure G.7: Checking slow-rolling condition.

145



We also give the name to the columns of the parameters of interest that will be saved

in the output file, see Figure G.8.

Figure G.8: Naming the columns in the output file.

We define the indices of the variables with which the differential equations are going to

be solved, see Figure G.9.

Figure G.9: Defining scalar fields indices.

The next step is a technical detail where we have to reassign the indices defined above,

see Figure G.10.

Then we declare local variables, see Figure G.11.

We include the scalar fields to the radiation or matter content depending on the value

of λϕ.

We define the fraction of each scalar field dark matter as its density divided by the

total density, see Figure G.13.

Now we put the initial conditions for the perturbations, see Figures G.14 and G.15.

Then we declare other local variables that will appear in the differential equations, see
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Figure G.10: Reassigning the scalar fields indices.

Figure G.16. Now, we define the quantities (3.18a), see Figures G.17 and G.18. Then, we

include the density contrast of the fields to the total density contrast, see Figure G.19. We

include the scalar fields to the matter velocity divergence, see Figure G.20. We declare

the variables used in Figure G.20, see Figure G.21. If the contribution of the scalar fields

is nonzero, we tell the code to include the perturbations of each field, see Figure G.22.

Now, we define the quantities (3.18c) for both fields, see Figures G.23 and G.24. Then, we

declare as zero the fields local variables ussed above, see Figure G.25. Now, we store the
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Figure G.11: Declaring local variables.

results of the differential equations in local variables for both fields, see Figure G.26. In

Figure G.27, we tell CLASS what quantities to put in the output file. These correspond

to the local variables we just defined.

Since we are going to enter a new function where the differential equations are going

to be defined, we must declare other local variables, see Figure G.28. Finally, we write the

differential equations, see Figures G.29 and G.30.
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Figure G.12: Adding the scalar fields to the matter and radiation budget.

Figure G.13: Defining the fraction of each scalar field dark matter.
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Figure G.14: Initial conditions for the scalar field dark matter 1 perturbations.

Figure G.15: Initial conditions for the scalar field dark matter 2 perturbations.
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Figure G.16: Declaring local variables.

Figure G.17: Defining the quantities 3.18a for scalar field dark matter 1.
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Figure G.18: Defining the quantities 3.18a for scalar field dark matter 2.

Figure G.19: Adding the scalar field density contrast to the total density contrast.
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Figure G.20: Including the scalar fields to the matter velocity divergence.

Figure G.21: Declaring variables.

Figure G.22: Including the scalar fields contributions to the perturbations.
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Figure G.23: Defining the quantity 3.18c for scalar field dark matter 1.

Figure G.24: Defining the quantity 3.18c for scalar field dark matter 2.
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Figure G.25: Declaring to zero the fields local variables.

Figure G.26: Storing the results of the differential equations in local variables for both

fields.

Figure G.27: Telling CLASS what quantities to put in the output file.
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Figure G.28: Declaring local variables.

Figure G.29: Writing the differential equations for scalar field dark matter 1.
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Figure G.30: Writing the differential equations for scalar field dark matter 2.
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Appendix H

perturbations.h

In this file we declare the variables used in the file perturbations.c. See Figures H.1, H.2

Figure H.1: Declaring flags.
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Figure H.2: Declaring indices. Please pay special attention to the code line number.
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Appendix I

spectra.c

This file computes the anisotropy and Fourier power spectra. Since in our model this is

calculated in the same way as in ΛCDM, we just copy and paste the lines of code for the

scalar field as dark energy and adapt it to scalar field dark matter. First, we define the

indices for the scalar field dark matter, see Figure I.1. If the scalar fields has a non-zero

contribution, their transfer function information is added, see Figures I.2 and I.3. Then,

we put the name to the columns of the quantities that will be saved in the output file. We

can use two different formats, the CLASS format, see Figure I.4, and the CAMB 1 format,

see Figure I.5. Using one format or another depends on what we want to do. Then we tell

CLASS which variables we want to store, see Figure I.6 for CLASS format and Figure I.7

for CAMB format.

1CAMB [170] is CLASS-like code written in fortran and python. The difference between the formats is

because the codes use different units.
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Figure I.1: Defining indices.

Figure I.2: Adding the scalar field 1 transfer function information.
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Figure I.3: Adding the scalar field 2 transfer function information.

Figure I.4: Naming the columns in the output files in CLASS format.

Figure I.5: Naming the columns in the output files in CAMB format.
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Figure I.6: Telling CLASS which variables we want to store in CLASS format.

Figure I.7: Telling CLASS which variables we want to store in CAMB format.
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Appendix J

spectra.h

In this file we declare the indices used in the spectra.c file, see Figure J.1.

Figure J.1: Defining indices.
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Appendix K

Input files

As we have seen in the previous appendices, CLASS needs an input file where it will

extract all the values to do the calculations. These files must have the extension .ini. The

file that contains all the information about the input parameters is called explanatory.ini.

However, here we will review a file that was made specifically for the case of two scalar

fields. Something very important to note is that only the lines with the equal sign (=)

will be considered as input, the rest will be treated as comments. We can also use # to

make comments. Numerically, in order to use the synchronous gauge, we need the cold

dark matter contribution to be non-zero, so we assign it a negligible contribution. If any

parameter does not appear in the .ini file, CLASS will assign the default value defined in

the input.c file. In Figures K.1, K.2 and K.3 we show the .ini file for double field with

quadratic and cos potential. For the other combinations used in this work we only need to

modify the SFDM sections.

For the quadratic case, we put the mass in the first element of the scalar field parameter

array while the second entry must be zero, see Figure K.4. For the cos case, in addition

to the mass, we must specify the value of lambda, therefore the second entry of the array

must be different from zero, see Figure K.5. And for the cosh case, we must put a negative

value in the second entry of the array, that is, the value of lambda, see Figure K.6. In this

case, it is not necessary to assign a specific value for the mass, as we remember that it
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Figure K.1: Double Scalar Field Dark Matter input file.

depends on the value of lambda. If the attractor is off, we need to specify the value of the

remaining inputs. This is valid for both fields.

In Figure K.7, we see the result of running CLASS with the .ini file we just reviewed. All

of these messages are found in .c files inside the source folder. For example, the information

of the scalar fields is in the file background.c as we saw in the appendix E.
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Figure K.2: Double Scalar Field Dark Matter input file.
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Figure K.3: Double Scalar Field Dark Matter input file.

Figure K.4: Parameter values for the quadratic case.
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Figure K.5: Parameter values for the cos case.

Figure K.6: Parameter values for the cosh case.
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Figure K.7: Running CLASS.
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Appendix L

Output files

The output files that are important to us are the background files (name background.dat),

the MPS files (name pk.dat), and the CMB files (name cl.dat). From the name background.dat

file we will use the critical density and field densities columns, see Figure L.1. From the

name pk.dat file we will use the only two columns, L.2; and from the name cl.dat file we

will only use the first two columns that give us information on the CMB temperature, L.3.

Figure L.1: Example of file name background.dat.
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Figure L.2: Example of file name pk.dat.

Figure L.3: Example of file name cl.dat.
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Appendix M

Monte Python code

As its name says, Monte Python [158, 159] is a code written in python that does parameter

estimation by taking cosmological information from CLASS using MCMC.

M.1 Installing Monte Python

The first thing we need to do is download the code from [192], just like we do with CLASS.

Then, inside the montepython public-3.3 directory, we must create a new file called de-

fault.conf by copying and adapting the contents of the default.conf.template file to our

computer. In this file we tell Monte Python where the CLASS is so it can use it. It is im-

portant that it is a new file because if we only copy and paste the file default.conf.template,

the copy will keep the extension .template and not .conf. We show the default.conf file for

ekbek server in Figure M.1. clik refers to the Planck 18 likelihood that we will review later.

The python libraries needed by Monte Python have already been installed in appendix A.1.

As it is written in python we don’t need to compile anything, we just have to run the code.
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Figure M.1: default.conf file for the ekbek server.

M.2 Modifying Monte Python

As we saw in section 3.4, λϕi can range from zero to values like 106 so, to allow Monte

Python to cover the parameter space, we redefine this parameter to be read logarithmically.

For this, we modified the data.py file inside the montepython public-3.3/montepython

directory, see Figure M.2.

Figure M.2: Modifying the data.py file.
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M.3 Input files

Like CLASS, Monte Python requires an input file. In this case, it has the .param extension.

It contains the information of the parameters to be adjusted, the data to be used and the

conditions under which the inference process will be carried out. Here we review one of the

used files. First we must include the data, the name of each set must match the names of

the directories that are in the montepython public-3.3/montepython/likelihoods directory,

see Figure M.3.

Figure M.3: Data sets in .param file.

Then we put the parameters, there are three types. The cosmo types are the ones that

will enter the inference process, the nuissance types are for the data and depend on the

data set; and the derived types that will not participate in the inference process but their

value will be calculated using the cosmo type data. First, we put the name which, for the

first and third type of parameter, must match the one in the CLASS .ini file. In the first

entry, after the equals sign, we put the mean value that we believe the parameter may

have. In the second and third entries are the lower and upper bounds, respectively, of the

parameter prior. If we don’t have a specific prior we put none on both entries. In the

fourth entry goes the value of 1 − σ. If we want a parameter to remain unchanged, we

leave this entry as zero. In the fifth input we put the scale value. For scalar fields we will

leave it at 1 because we will not do any scaling. Otherwise, for omega b this entry is equal

to 0.01 because Monte Python does scale this parameter. In the last entry we defined the

type, in this example, we will put the cosmo types first, see Figure M.4. Note that, since

in CLASS the scalar field parameters appear in an array, in Monte Python we must put

them in the same way. However, if the attractor is on, we put 0 as the 1 − σ value in

inputs 3, 4 and 5 of the parameter array. If we only put, for example, the scalar field mass
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and we do not put the others parameters even if they are not going to vary, Monte Python

will take it as an error and will not be executed, see Figure M.4. In this case, Pantheon

requires nuisance parameters so we need to add them, see Figure M.5. Then we define the

derived parameters and assign values to parameters that we want to be fixed, see Figure

M.6. Finally, we set the maximum value of k at which we want the MPS to be calculated

and default values for Monte Python in case they are not specified when running the code,

see Figure M.7.

Figure M.4: Defining cosmo parameters.

Figure M.5: Defining nuisance parameters.
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Figure M.6: Defining the derived parameters and assigning values to parameters that we

want to be fixed.

M.4 Running Monte Python

For the process that we are going to explain, we recommend using tmux, this is a virtual

terminal inside the “real” terminal in which we are working. The advantage of tmux is
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Figure M.7: Setting the maximum value of k at which we want the MPS to be calculated

and default values for run Monte Python.

that we will leave the processes running and we can close both the main terminal and the

remote server session. We install it with sudo apt-get install tmux.

The process of running Monte Python consists of three parts. The first consists of

generating chains of few steps. The second is to analyze these chains and obtain the

covariance matrix. The third part is to run a new set of chains with many more steps than

the first. Finally, these chains are analyzed.

We first get into tmux by simply typing tmux in the terminal. Next, we move to the

main Monte Python directory and activate the python environment. There, we write the

line shown in Figure M.8. With mpirun -np we tell the code how many chains we want

to run, that is, we are going to run the code in parallel. In this case we will use 4 chains.

Then, with python montepython/MontePython.py we will run the main file. With run -N

we tell it that we will do the inference process. After this, we put the number of steps per

chain. For this first part we use 50000. With -p we pass the input file and with -o we pass

the address where the output files will be saved.

When these chains are done, we’re going to analyze them to get the covariance matrix.

With python montepython/MontePython.py info we tell the code that we want to analyse

the chains. Then, we put the output directory of the previous part. And with –want-

covmat we tell Monte Python to get the covariance matrix will be saved in the same
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Figure M.8: Running the first part of the Monte Python process.

output directory. See Figure M.9.

Figure M.9: Obtainign the covariance matrix.

As a good programming practice, we move the previous chains and the files obtained

from the analysis to a new folder to avoid being overwritten. In this case, we create a new

folder, called 50000, inside the output folder and move all the files except the log.param

into it. This last file has all the information from the run we just did and we will use it for

the next part. Once this is done, we move on to the final part.

We start again with mpirun -np 4, then with python montepython/MontePython.py

run -N 150000. We also pass the input file with -p, this time it will not be the one in

the input directory but the log.param file that is in the output directory. With -o we give

the address of the output directory. With -b we pass the .besfit file which, as its name

indicates, contains the best fit values of the previous chains. These values will be used as

the new mean from which Monte Python will start the inference process. And with -c we

pass the covariance matrix. See Figure M.10.

Figure M.10: Running the last part of the Monte Python process.
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M.5 Analyze the output

To analyze the final chains we can write the lines in Figure M.9 without the –want-covmat

option. This will give us the R-1 value (Gelman-Rubin criterion) and the 1-D and 2-D

posteriors plots with all the parameters. However, it is possible to customize the graphs

and the parameters that we want to plot. For this we need a file with a .plot extension

that is located in the montepython public-3.3/plot files directory. The file that contains

all the customization options is called example.plot. Here we will show an example of the

file that we use. We can redefine and rename parameters and indicate which ones we want

to plot, see Figure M.11. We can plot contours only, change ticks and fonts size, change

plot limits, put legends, and change curve smoothing, see Figure M.12.

We know that our chains are good enough when the Gelman-Rubin criterion is met;

when the acceptance rate is in the range 0.2-0.3, this value can be seen in the .log file in

the output directory; and when the plots look smooth.
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Figure M.11: Example of a .plot file.
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Figure M.12: Example of a .plot file.
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Appendix N

Installing the Planck 18 likelihood

In order to use the data from the Planck 18 collaboration in Monte Python we must install

the likelihood and the data. We recommend doing this on a server and not on your personal

computer because inference with this dataset is computationally intensive. The steps we

will show here are for Ubuntu only.

First we move to the folder where we want to download Planck. Then we download the

code data with the lines wget -O COM Likelihood Code-v3.0 R3.01.tar.gz ”http://pla.esac.esa.int/

pla/aio/product-action?COSMOLOGY.FILE ID=COM Likelihood Code-v3.0 R3.01.tar.gz”,

see Figure N.1.

Figure N.1: Downloading the code files.

We download the baseline data with wget -O COM Likelihood Data-baseline R3.00.tar.gz

”http://pla.esac.esa.int/pla/aio/product-action?COSMOLOGY.FILE ID=COM Likelihood Data-
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baseline R3.00.tar.gz”, see Figure N.2.

Figure N.2: Downloading the baseline files.

Since these codes are written in fortran, we need to install a compiler for that program-

ming language. We use gfortran which is installed by typing in the terminal sudo apt-get

install gfortran as can be seen in Figure N.3.

Figure N.3: Installing the fortran compiler.

Then we move to the directory code/plc 3.0/plc-3.01 and install the math functions

library cfitsio with sudo apt install libcfitsio-bin libcfitsio-dev , as is Figure N.4.

Figure N.4: Installing the library cfitsio.

When this process is done, we are going to write ./waf configure –install all deps –

lapack install to install all the dependencies that Planck likelihood needs, see Figure N.5.

If there are no errors, a message will be displayed asking us to type ./waf install to finish

the installation as in Figure N.6.
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Figure N.5: Installing all the dependencies that Planck likelihood needs.

Figure N.6: Finishing the installation.

Finally, we must add the Planck likelihood address to the PATH. In this case, we need

to modify the .bashrc file as in Figure N.7.

Figure N.7: Adding the clik likelihood to the PATH.

N.1 Running Monte Python with Planck 18

Planck 18 data is added to .param files as shown in Figure N.8 and can be combined with

data from other cosmological observations.

Figure N.8: Adding the Planck 18 data to the .param file.

Also, it is recommended to add the -f 1.5 –superupdate 20 options in the first part of

the Monte Python process to have a better acceptance rate, see Figure N.9. Although, as
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in any numerical process of Bayesian inference, this is somewhat empirical.

Figure N.9: Special options for Planck 18.
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Appendix O

Extracting the Ly-α data

To obtain the Ly-α MPS points that we used in section 3.4, it was necessary to modify a

jupyter notebook, which accompanies the reference [86], because this only allowed us to

reproduce the plots in that paper but not extract the data or the errors. In this appendix

we will review the modification.

The authors of this code saved it in a Docker container. This works as a type of virtual

machine in which all the dependencies necessary to run the notebook are already included,

thus avoiding compatibility problems between versions and features of different computers.

It is important to clarify that Docker was only available for Windows and MasOS at the

time of writing this thesis, therefore the process presented here was carried out in MacOS

and not in Ubuntu as in the previous appendices.

The first step is to install Docker by following the instructions on its page [193]. We

must also install julia because the code is written in this programming language. To install

it we just have to follow the instructions that come on its page [194].

The process that runs this notebook is very heavy, so it is recommended to change the

Docker configuration so that it supports at least 8 Gb of RAM. If the computer on which

this process is going to be carried out has a higher capacity RAM, we can increase the

amount allowed to Docker.

We download the code from [195]. Then we enter the directory where we downloaded
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it with cd mpk compilation. Next, we will build the docker container with docker-compose

build. See Figure O.1. After the process completes, we type PORT=8888 docker-compose

up to activate the Docker container, see Figure O.2. Finally we will use jupyter to open

the notebook. Since we installed python before, we must check that the jupyter kernel is

julia because if it is python it will not execute the code.

Figure O.1: Building the docker container.

Figure O.2: Activating the docker container.

We are not going to review all of the code, just the cells we added to extract the points

and save them to .txt files. Before running the added cells, we ran all the previous ones

because, as already mentioned, obtaining Ly- α information depends on the model and this

process is done in the original cells of the notebook. However, we strongly recommend not

running cells below the sections χ2’s and “Make plot” because they require such a large

amount of RAM that 8 Gb is not enough. This causes the kernel to die and we have to

run again. Since the whole process is slow, we must save as much time as possible.

First we are going to save the data from the SDSS DR7 LGR collaboration. Here we

only save the results of the section corresponding to this data set in arrays and, in turn,

we save these arrays in a .txt file. See Figure O.3.

For the DES and Planck data we need to define a helper function that allows us to

extract the data, see Figure O.4.
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Figure O.3: Saving the SDSS DR7 LGR data in a .txt file.

Figure O.4: Defining the auxiliary function to extract the DES and Planck Ly-α data.

The general process is: extract the data with the function we just defined, this will

return column arrays (one-dimensional) and matrices. We then get the transpose of these

matrices and store each column of the transposed matrix in one-dimensional arrays. Finally,

we save all these arrays in a .txt file. For DES data, see Figure O.5. For Planck ϕϕ, see

Figure O.6. For Planck EE, see Figure O.7. For Planck TT, see Figure O.8.
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Figure O.5: Extracting the DES data.

Figure O.6: Extracting the Planck ϕϕ data.
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Figure O.7: Extracting the Planck EE data.

Figure O.8: Extracting the Planck TT data.
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[13] T. Matos and L.O. Té llez-Tovar, The cosmic microwave background and mass

power spectrum profiles for a novel and efficient model of dark energy, Revista

Mexicana de F́ısica 68 (2022) .

[14] V. Trimble, The 1920 shapley-curtis discussion: background, issues, and aftermath,

Publications of the Astronomical Society of the Pacific 107 (1995) 1133.

[15] http://www.soloentendidos.com/wp-content/uploads/2015/12/

04-12-2015-12-13-58.jpg.

[16] R. Wald, General relativity. the university of chicago, Chicago. Sect 6 (1984) .

[17] D. Baumann, Cosmology, part iii mathematical tripos, University lecture notes

(2014) .

[18] L. Iorio, Editorial for the Special Issue 100 Years of Chronogeometrodynamics: The

Status of the Einstein’s Theory of Gravitation in Its Centennial Year, Universe 1

(2015) 38 [1504.05789].

[19] I. Debono and G.F. Smoot, General Relativity and Cosmology: Unsolved Questions

and Future Directions, Universe 2 (2016) 23 [1609.09781].

196

https://doi.org/10.1007/s11467-013-0300-5
https://doi.org/10.1007/s11467-013-0300-5
https://arxiv.org/abs/1209.0922
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1051/0004-6361/201833910
https://arxiv.org/abs/1807.06209
https://doi.org/10.3390/universe7070213
https://arxiv.org/abs/1903.11127
https://arxiv.org/abs/2112.09337
https://doi.org/10.31349/revmexfis.68.020705
https://doi.org/10.31349/revmexfis.68.020705
http://www.soloentendidos.com/wp-content/uploads/2015/12/04-12-2015-12-13-58.jpg
http://www.soloentendidos.com/wp-content/uploads/2015/12/04-12-2015-12-13-58.jpg
https://doi.org/10.3390/universe1010038
https://doi.org/10.3390/universe1010038
https://arxiv.org/abs/1504.05789
https://doi.org/10.3390/universe2040023
https://arxiv.org/abs/1609.09781
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[64] L.A. Ureña López, Brief Review on Scalar Field Dark Matter Models, Front.

Astron. Space Sci. 6 (2019) 47.
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[94] A. Suárez and P.-H. Chavanis, Cosmological evolution of a complex scalar field with

repulsive or attractive self-interaction, Phys. Rev. D 95 (2017) 063515

[1608.08624].
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[99] L.A. Ureña López, Scalar field dark matter with a cosh potential, revisited, JCAP

06 (2019) 009 [1904.03318].

[100] R. Hlozek, D. Grin, D.J.E. Marsh and P.G. Ferreira, A search for ultralight axions

using precision cosmological data, Phys. Rev. D 91 (2015) 103512 [1410.2896].

[101] A. Paredes and H. Michinel, Interference of Dark Matter Solitons and Galactic

Offsets, Phys. Dark Univ. 12 (2016) 50 [1512.05121].
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