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Resumen

En este trabajo se abordó la contribución del polo de π0 a la parte de dispersión luz
por luz hadrónica de la anomalía aµ. Esto a través del cálculo del factor de forma de
transición de π0 dentro del marco de teoría de resonancias quirales (RχT ) con dos
multipletes de resonancias vectoriales. Esto con el fin de reproducir los correctos
comportamientos asintóticos predichos por cromodinámica cuántica (QCD por sus
siglas en inglés). Uno de estos límites no es posible reproducirlo únicamente con un
multiplete de resonancias vectoriales. El factor de forma de transición en RχT queda
expresado en terminos de los paramétros de los multipletes y combinaciones lineales
de las constantes de acoplamiento de la teoría efectiva. Los parámetros se tomaron
de trabajos previos y de la información disponible de las partículas involucradas
(del PDG). Además se encontraron relaciones entre las constantes de acoplamiento
a partir de las condiciones de corta distancia de QCD. Quedaron tres constantes de
acoplamiento libres, de las cuales 2 estaban restringidas a valores específicos por los
límites a altas energías y la otra fue ajustada a información experimental del factor
de forma de π0 con un fotón virtual (no existe información para dos fotones virtuales
en el caso del π0). Con esto se obtuvieron, de manera preliminar, cotas para el valor
de aHLbL:π−pole

µ : 4.60 ± 0.06 ≤ aπ
0−pole,HLbL

µ × 1010 ≤ 6.26 ± 0.09. Este valor no
es competitivo con las mejores determinaciones actuales dada la gran incerteza de
nuestro resultado, pero se espera que esto mejore al realizar el mismo cálculo para
η − η′. Estos casos sí poseen información para dos fotones virtuales, además de ser
más sensibles a los datos (la supresión quiral es proporcional a la masa al cuadrado
de los mesones pseudoescalares).
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Abstract

In this work, the π0-pole contribution to the hadronic light by light(HLbL) piece of
the aµ was addressed. This through the calculation of the π0 transition form fac-
tor within the framework of Resonance Chiral Theory (RχT ) with two multiplets
of vector resonances. This was done with the purpose of reproducing the correct
asymptotic behavior predicted by Quantum Chromodynamics (QCD). One of these
limits could not be reproduced by a single multiplet of vector meson resonances.
The transition form factor in RχT is expressed in terms of the parameters that
characterize the multiplets and linear combinations of the of the coupling constants
of the effective field theory. The parameters were taken from previous work and from
available information of the particles involved (from PDG). Besides, relations be-
tween the coupling constants were found by imposing the short distance constraints
from QCD. Three constants remained free, which 2 of them were constrained to
specific values for the high energy limits and the other one was fitted to available
data of 1 virtual photon π0-TFF (there is no information for doubly virtual pho-
tons in the π0 case). Given this, in a preliminary way, bounds for the value of
aHLbL:π−pole
µ : 4.60 ± 0.06 ≤ aπ

0−pole,HLbL
µ × 1010 ≤ 6.26 ± 0.09. This value is not

competitive with the best accepted values given the big uncertainty of our result,
but it is expected to improve after the same procedure for η−η′ is performed. These
cases do have information for doubly virtual photons, also, they are more sensitive
to data (the chiral suppression is proportional is proportional to the squared mass
of pseudoscalar mesons).
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Introduction

Particle Physics has described the fundamental interactions of nature with great
success based on a construction made in the late 70’s. This is the Standard Model
of elementary particles (SM), which incorporates features from quantum field theory
(QFT) and Group Theory. However, new challenges have emerged as high-energy
physics faces a new precision era. These defiances come from different places: dark
matter, matter-antimatter asymmetry of the universe, origin of neutrino masses and
observables which differ significantly from the SM predictions.

In the latter is where this research comes into place. Since the beginning of
this century, measurements of the gyromagnetic ratio of the muon (gµ) indicated a
discrepancy with the SM prediction. The first measurement of the 2000s was done
at BNL [1], this resulting in a deviation of 2.6σ with respect to the SM, which
was not enough for the anomaly to be confirmed. Because of this, both theoretical
and experimental efforts were done in order to improve their precision. Two years
ago, FNAL [2] improved the measurement, increasing the tension between theory
and experiment to slightly more than 4 standard deviations. The precision of the
experiment was so good, that it forced the theoretical efforts to go even further.
This is the current stage of the muon g-2 research.

The main source of the theoretical error in g-2 comes from the hadronic contri-
butions, since in contrast with electroweak (EW) interactions, QCD (for Quantum
Chromodynamics, the gauge theory of strong interactions) is non-perturbative at
low (2mπ ≤ E ≤ 1 GeV) and intermediate energies (1 GeV ≤ E ≤ 2 GeV). Be-
cause of this, an alternative description, valid in this regime, must be implemented.
Due to confinement of the theory and the running of its coupling (giving rise also
to asymptotic freedom) [3], gluons and quarks are not the degrees of freedom in
nature, but the hadrons instead. Because of this, an effective field theory (EFT)
for low and intermediate energies is implemented using hadrons as the interacting
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fields. One approach is the so-called Chiral Perturbation Theory[4] (χPT ) for low
energies, and Resonance Chiral Theory[5] (RχT ) for low and intermediate energies,
which are based on the underlying symmetries of the fundamental QCD and the
concept of EFT.

Among the two main hadronic contributions there is the hadronic light-by-
light scattering (HLbL) and hadronic vacuum polarization (HVP). Within the first
one, lays this research. The main contribution to HLbL is the one coming from
the pseudoscalar-poles, which were previously calculated as pseudoscalar particle
exchanges (see e. g. [6]). Later, the most important contribution to this process,
was understood as the pseudoscalar-pole contribution (see, for instance, [7]). Both
of them used the Transition Form Factor (TFF) of the pion within the framework
of χPT (Chiral Perturbation Theory) with resonances (RχT).

In the last work mentioned, one multiplet of vector boson resonances was in-
cluded as active fields. However, the form factor was underestimated at high ener-
gies, since the asymptotic behavior did not coincide with the one predicted by QCD
at short distances (in one of the two relevant regimes). This can be fixed including
two vector meson resonance multiplets as active fields. Performing this calculation
is the aim of this work.

Computational methods were used for the development of this work. Our EFT,
has infinite terms, so some of them must be truncated, and the mathematical struc-
ture of matter multiplets is non trivial, so the symbolical processing of expressions
for obtaining the truncated Lagrangian up to the required accuracy, was performed
in Wolfram Mathematica. The Feynman rules were obtained by this method too,
but the kinematics for obtaining the amplitude were performed by hand. Latter,
short distance constraints were applied by symbolical processing using the same tool
and finally, the fit to experimental data and the numerical integration described in
Chapter 6 were performed in Python 3.

The tools for calculation in this thesis are EFT, specifically χPT and RχT.
As a consequence, concepts about the underlying fundamental theory (QCD) must
be developed before proceeding with the calculation of the π pole contribution to
the HLbL piece of aµ. These are the first two chapters of the thesis, the first one
deals with the basic concepts of QFT, symmetries and Gauge Theories, so the basis
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are set for the construction of the SM, which is worked our in the latter chapter.
The third and fourth chapters develop the theory and methods of the EFTs used
in this work. The fifth chapter describes the calculation to be computed and the
methods previously used. The sixth chapter addresses the calculation of the π-pole
contribution, and develops the methodology for LMD+V computation on ref. [7].
The last chapter describes in detail the calculation of π-TFF with two multiplets of
vector meson resonances and preliminary bounds for aµ in this scheme were found.
The bounds found are 4.60 ± 0.06 ≤ aπ

0−pole,HLbL
µ × 1010 ≤ 6.26 ± 0.09, consistent

with previous calculations [6, 7, 8, 9, 10, 11, 12] but with too large error for the
moment.

The obtained value for the π-pole contribution to the HLbL piece of aµ is still
preliminary, since only one parameter was fitted from the 5 unfixed. Furthermore,
the calculation for aπ0−pole,HLbL

µ is not complete in this thesis, as the computation
of η − η′-TFFs are required for the calculation of coupling constants which cannot
be obtained reliably from the π-TFF, because of chiral suppression and lack of
experimental data issues which are going to be solved in the η − η′ case.
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1. Theoretical Background

The calculations to be performed in this work are constructed based on the symme-
tries of QCD, so, in order to understand how this is done, theoretical basis must be
set for this thesis to be understandable. For this purpose, a pedagogical example is
worked out, QED. Then, concepts which will be used in more complicated theories,
are explained within the theory of electromagnetic interactions. Later, the relevant
concepts of symmetries are mentioned and connected with physics of fundamental
interactions. Finally, with all this explained, Gauge Theories (the cornerstones for
the construction of fundamental interactions, based on symmetry principles) are
developed.

1.1 QED: a simple QFT

All the physics of an interaction is described by its Lagrangian density. In the case
of QED, this Lagrangian contains matter fields (fermions) and interaction bosons
(the photon)[13].

L = ψ̄(x)
(
i /D −m

)
ψ(x)− 1

4
F µν(x)Fµν(x), (1.1)

where ψ(x) and ψ̄(x) are the fields annihilating fermions and anti-fermions (and
creating the corresponding antiparticles), with mass m and unit charge (like the
electron), the photonic field is Aµ, which appears both in Dµ and in F µν in the
following way:

Dµ = ∂µ − ieAµ, F
µν = ∂µAν − ∂νAµ . (1.2)

The Lagrangian in eq. (1.1), gives rise to the kinetic terms for both the photon
and the fermions, and the interactions between fermions and photons. This can be
summarized in the Feynman diagrams for propagators and the vertex of QED:
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γ

(a)

f

(b)

γ

f

f̄

(c)

Figure 1.1. Feynman diagrams for QED: (a) is the photon propagator, (b) is the fermion
propagator and (c) is the interaction vertex.

This is enough to construct a quantum theory for electromagnetic interactions.
Its study gives rise to understanding different processes, some of the most important
ones are:

e+

e− f

f̄

γ

(a)

e+

e− e−

e+

γ

(b)

e− e−

e+ e+

γ

(c)

e−

γ e−

γ

e−

(d)

Figure 1.2. Feynman diagrams for simple QED processes: (a) is a general pair annihila-
tion e+e− → ff̄ for f ̸= e , (b) and (c) are the contributions at tree level for the Bhabha
scattering, being these in the s and u channels, and (d) is the known Compton scattering.

These are the basics for QED, in the next sections, important concepts for
the construction of a fundamental and an EFT theory will be developed from this
pedagogical example.

2



1.1.1 Second Quantization in QED

The second quantization of QED 1 is given by raising the electromagnetic fields for
electrons and photons to operators:

ψ(x)→ ψ̂(x), Aµ(x)→ Âµ(x). (1.3)

After this promotion, commutation relations can be constructed for the fields similar
to the ones between x⃗ and p⃗ in quantum mechanics. For this construction, two
features lead the procedure: the resulting Hamiltonian has to be bounded from
below, and the commutation relations have to respect the spin-statistics theorem [14]
(actually causality leads to the spin-statistics theorem in quantum field theory). This
can be achieved by the following fields in terms of the creation and annihilation
operators:

ψ̂(x) =

∫
d3k

(2π)3
√
2ω

∑
s=1,2

[
ĉs(k)u(k, s)e

−ik·x + d̂†s(k)v(k, s)e
ik·x
]
, (1.4)

where u and v are the spinorial solutions for particle and antiparticle and ĉ†s(k)

and d̂†s(k) are the creation operators of fermionic particles and antiparticles of po-
larization s and momentum k. For the spin-statistics connection to be obeyed,
anti-commutation relations are constructed between creation and annihilation oper-
ators for both particles and antiparticles. This leads to anti-commutation relations
between the field operator and its conjugated momenta. We will not go further into
this discussion since all the development of the theory leads to the widely known
Feynman rules of QED.
For the electromagnetic mediator, the photon, the degree of freedom is the field Âµ

which obeys commutation relations and it is described by:

Âµ =

∫
d3k

(2π)3
√
2ω

∑
λ

[
εµ(k, λ)α̂(k, λ)e−ik·x + ε∗µ(k, λ)α̂†(k, λ)eik·x

]
, (1.5)

where εµ is te polarization vector and α̂(†) is the creation (annihilation) operator.
With this description constructed, Feynman rules can be obtained. The building
blocks for the computation of the amplitudes of different processes are the Feynman
rules for incoming and outgoing particles, propagators and for the vertex in Figure

1This is a historical, although bad (as it can be misleading, unless one reminds it came from
the transition from Quantum Mechanics) name. From the point of view of quantum field theory
there is only one quantization.
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1.1. Many processes as the ones in Figure 1.2 can be addressed with this formalism
which has shown to be highly precise and accurate.

1.1.2 Form Factors in QED

For the diagrams of processes in Figure 1.2 Feynman rules give us their contribu-
tions, however, the diagrams shown are just the dominant part of the amplitude.
There are more contributions to them, which are suppressed as the coupling con-
stant is much less than 1. These suppression can be arranged by number of loops
(which is equivalent to an expansion in powers of the coupling). For example, in
the pair annihilation of Figure 1.2, 1 loop corrections to this process are shown in
Figure 1.3(the loop in one of the external fermions appears in any of the 4 external
particles).
Form factors can be understood from this example, since all different contributions

can be summed up into a blob, as it is observed in Figure 1.4. Form factor in this
case, describes the interactions of the process e+e− → f̄f considering all possible
contributions. In the case of QED, since it is a perturbative quantum field theory,
all contributions can be computed, and the sum of all contributions will give us
the expression for the blob vertex. However, as the problem becomes harder for
other QFTs (non perturbativity, diversity of structures in different diagrams), sym-
metries can be used to predict the different structures appearing in the blob and
experimental data can be used to get the coefficients for each contribution.

1.2 Lie Groups, Lie Algebras and Symmetries

Lie groups, algebras and symmetries are tightly related, and they are the building
blocks for the systematic construction of any quantum field theory, which is why it
is important to mention some important properties of them. First of all, a group G
is a set of elements g ∈ G which fulfills the following conditions [13]:

• the group has an associative multiplication law ◦, under which g1 ◦ g2 = g3,
such that g1, g2, g3 ∈ G and is associative under that multiplication law: g1 ◦
(g2 ◦ g3) = (g1 ◦ g2) ◦ g3.

• the group has an identity element I ∈ G under the multiplication law, such
that I ◦ g = g ◦ I = g, g ∈ G.
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e+

e− f

f̄

(a)

e+

e− f

f̄

(b)

Figure 1.3. Feynman diagrams for simple two types of QED corrections to pair annihi-
lation: (a) a fermion loop in the photon propagator, (b) a photon-fermion loop in one of
the external particles.

e+

e− f

f̄

Figure 1.4. Effective interactions (including possible form factor) of e+e− → f̄f .

• there is an unique inverse element g− ∈ G for each g ∈ G under the multipli-
cation law, such that g− ◦ g = I.

The group does not require commutativity under the multiplication law, but if the
group does satisfy it, it is called an abelian group. In case it does not, it is called a
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non-abelian group. Also, the groups can be separated in discrete and continuous.

1.2.1 Lie Groups and Algebras

A Lie group is a continuous group for which the multiplication law involves differen-
tiable functions of the parameters which label the group element. This characteristic,
allows us to connect all elements of the group to the identity trough infinitesimal
transformations (which can be connected by adding up those into finite transfor-
mations). The infinitesimal transformations are linear combinations of the basis,
which are called Generators of the group. The generators of the group define both
infinitesimal transformations and the algebra of the group itself, which is described
by the generators and its commutation relations. Some example of groups are:

• N-Dimensional Special Orthogonal Group (SO(N)): the group of real orthogo-
nal N×N matrices (O×OT = 1) with determinant 1. This group is N(N−1)/2
dimensional.

• one dimensional unitary group (U(1)): the group of all phase shifts of module
1. This group is one dimensional.

• N-Dimensional Special Unitary Group (SU(N)): this is the most used group
in physics, the algebra of any angular momenta is described by SU(2). This is
the group of complex unitary N×N matrices of determinant one. This group
is of dimension N2 − 1.

Another concept that will become handy is that of a representation of the group. A
representation of the group is a map between all elements of the group into matri-
ces, such that the matrix multiplication between the elements in the representation
reproduces the multiplication table obtained from the multiplication law ◦ given in
the definition of the group.

1.2.2 Symmetries

Symmetries in physics can be split in continuous and discrete. Continuous symme-
tries are related with Lie groups and Lie algebras, since matter is written in different
representations of diverse symmetry groups. This allows us to relate symmetries of
nature to group structures. This means that if we impose a symmetry on a system,
its dynamics is defined by which singlets (or higher-dimensional representations)
we can construct with the different representations of matter. Symmetries can be
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global (independent of space-time parameters) or local (functions of space-time pa-
rameters).

1.3 Gauge Theories

Gauge Theories are based on a local symmetry. The general procedure for con-
structing a gauge theory is to impose a global symmetry, construct the most general
Lagrangian compatible with the symmetries and then promote it to a local sym-
metry by absorbing the remaining terms of the local transformation(usually coming
from the derivative of the local parameters) into gauge bosons, which will now me-
diate the interactions. In a simple sense, if we get the symmetry and the matter,
we get the interactions and the mediators, which means, we get the dynamics. This
can be performed systematically for the construction of any quantum field theory
(sometimes the procedure is not straightforward and may require the spontaneous
symmetry breaking of the gauge symmetry, in such a way that the symmetry of the
vacuum is a sugbroup of the Lagrangian symmetry).

1.3.1 Abelian Gauge Theories

An abelian gauge theory is the easiest way to introduce the topic, and we have
done so already. In eq. (1.1), the Lagrangian is already gauged, as the covariant
derivative /D is a transformation of the derivative /∂. This Lagrangian is an U(1)
symmetric one, if we transform the fermionic field by

ψ → eiαψ, (1.6)

the Lagrangian is invariant, but if instead of α, we use α(x), the Lagrangian is only
invariant under this transformation when the electromagnetic field Aµ as in eq. (1.2)
and transforms in such way that absorbs the terms coming from the derivative of
α(x).

1.3.2 Non-Abelian Gauge Theories

Non-abelian gauge theories in general have a more complicated structure than just
a phase transformation. Examples of them are the most commonly used in physics,
SU(2) and SU(3). About SU(3) we will talk about in further chapters so we will
focus for this short discussion on SU(2).
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SU(2) is the algebra that defines all angular momenta. As already mentioned, SU(2)
has 3 generators, which obey the commutation relations (with structure constants
proportional to the Levi-Civita symbol):

[Ti, Tk] = iεijkTk. (1.7)

Furthermore, The Standard Model of Elementary Particles which is split in 3 fun-
damental interactions, has an SU(2) part, which is the one that combined with U(1)
becomes the Electroweak Theory.
Another important feature of non-abelian gauge theories is that -as it was proved by
ref. [3]- just these theories can reproduce the asymptotic freedom behavior observed
in strong interactions.
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2. The Standard Model, SU(3)C ⊗ SU(2)L ⊗ U(1)Y

In this chapter, we give a brief description of the Standard Model of elementary par-
ticles with emphasis on the relevant pieces of it for this work. In the first section,
we will mention the Electroweak Theory and some of its main features: an EFT for
electroweak processes, the gauge group of the theory, and a short example comple-
ment the discussion on form factors from the first chapter. In the second section, we
will introduce the Higgs mechanism and develop the most relevant characteristics for
χPT and RχT. In the third section, we will discuss QCD, the fundamental theory
of strong interactions, which are of the main interest for our work. QCD has a lone
candidate for describing the phenomenology, SU(3)C . Within this phenomenology
lies the asymptotic freedom, which can be described with the beta function. As
in EW theory, form factors are found in QCD (mostly here than anywhere else),
so we will mention them briefly in the context of QCD. Finally, some words about
loop calculation are mentioned, which will be helpful for the development of future
chapters.

2.1 Electroweak Theory

Electroweak interactions are the ones responsible for the radioactive decay of some
elements in nature in the process known as beta decay (or β-decay). This process
was first observed by Henri Becquerel in 1896. Later observations came which gave
intuition of a different kind of interactions which was not electromagnetism. The
discovery of neutron and proton opened a gate into these interactions, a deeper un-
derstanding of it could be awaited since protons and neutrons were the components
of the decaying nuclei in radioactive decays. With more fundamental particles to
study these decays, non-conservation of energy and momentum arose, which was
inconsistent with all developed physics till that point of history. For the purpose of
avoiding this problem, Wolfgang Pauli proposed in 1932 the existence of a new par-
ticle, the neutrino (ν), which was responsible of the missing energy and momentum
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(and of restoring the spin-statistics connection). 21 years later, in 1953, Reines and
Cowan reported experimental evidence of its existence. With this discovery, β-decay
was understood with the Fermi theory as the process sketched in Figure 2.1.

n

p

ν̄

e−

Figure 2.1. Fermi theory diagram for β-decay: n→ pe−ν̄.

New observations lead to successful modifications, such that the theory was
compatible with them: parity violation, V-A theory, lepton decays, strangeness
violation, the quark model, quark mixing (CP violation). However, violation of
unitarity at high energies lead to the idea that the Fermi theory was an effective
theory and that, inside the blob, there was more information. Therefore, the theory
of the intermediate vector boson (IVB) emerged (see fig. 2.2).

n

p

ν̄

e−

W−

Figure 2.2. IVB diagram for β-decay: n→ pe−ν̄.

However, the unitarity violation persisted. There was a way out, if an elec-
trically neutral massive boson W 0 (today called Z0) was added, the bad energy
behavior could be canceled. The algebra of the currents (including the new neu-
tral current) was the one of SU(2), so a gauge invariant theory could be written,
which, with the help of the Higgs mechanism, could be compatible with observa-
tions. At the same time, there was no room for QED, so the theory was extended
to SU(2) × U(1). Finally, charged weak current processes were measured, so the
result was a successful theory for weak and electromagnetic interactions [13].
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2.1.1 An EFT for the nuclear β decay

As we mentioned before, the nuclear beta decay suggested the necessity of a com-
plementary theory which described the β decay. This process corresponded to the
ejection of electrons from an atomic nucleus [15] (N,Z) → (N − 1, Z + 1)e−. The
continuous spectrum of the electron suggested an 1 to 3 process instead of a two-
body decay, so W. Pauli proposed the particle that E. Fermi later called the neutrino
(ν). Since no further information was known about the fundamental process that
lead to this one, Fermi proposed a general 4-fermion interaction as it is seen in
eq. (2.1). An effective field theory for the electroweak interactions had started to
emerge. The theory of weak interactions became richer with strangeness violating
processes, as

K0 → π+π−, K0 → π+π−π0, (2.1)

which presumably added parity violation to the theory, since the final states have
P = +1 and P = −1, respectively. Lee and Yang proposed then the weak interaction
as a new fundamental one [16]. Later, experimental evidence of this statement was
given [17], the observation that weak interaction did not just violate parity but did
it maximally, gave rise to the V-A theory. Such a framework proposed that all weak
interactions could be derived from a current-current (j × j) interaction of the form:

M =

〈
4GF√

2
jµLjµL

〉
, (2.2)

where the fermion currents were given by νe and u, d left-handed pieces

jµL = ν̄Lγ
µeL + ūLγ

µdL + h.c.

Later (as mentioned at the beginning of this section), a deeper understanding of
the fundamental interaction was sought, and with it, a more formal description of
them: The Standard Electroweak Theory. It is the intention of this section to stress
that even though a fundamental description is the ideal procedure to study the
phenomenology of any interaction, an EFT is an useful tool which can reproduce
the experimental data, but can be used too to predict yet unobserved phenomena.

2.1.2 The Gauge Group SU(2)L ⊗ U(1)Y

The Standard Model is based on the gauge group G = SU(3)× SU(2)×U(1). The
EW sector (SU(2) ×U(1)), has different representations for left and right chiralities

11



of particles. The description of one family of quarks can be reproduced to study the
three of them, and the lepton sector as well. So, in general, the representations of
fermions in the theory are:

ϕ1(x) =

(
u

d

)
L

, ϕ2(x) = uR, ϕ3(x) = dR, (2.3)

which means that the left-hand particles do interact under the SU(2) sector and
the right-handed particles do not; also, their representation under U(1) is a singlet,
characterized by their weak hypercharge. With these representations, the most
general Lagrangian can be built, so that it is invariant under global transformations
of the EW group:

L =
3∑

j=1

i ¯ϕj(x)γµ∂µϕj(x). (2.4)

For the interactions to happen, the global symmetry needs to be promoted to a
local one, according to the gauge principle. For this purpose, the theory requires
one boson per each generator of the theory, so that the covariant derivatives have
the correct behavior under local transformations:

Dµϕ1(x) = [∂µ + ig
σi
2
W i

µ(x) + ig′y1Bµ(x)]ϕ1(x),

Dµϕ2(x) = [∂µ + ig′y2Bµ(x)]ϕ2(x),

Dµϕ3(x) = [∂µ + ig′y3Bµ(x)]ϕ3(x). (2.5)

The gauging of the symmetry (making it local) gave rise to the interactions, as
we intended. An important feature of this group is that it is non-abelian (their
generators do not commute), so 3- and 4-boson interactions are predicted by the
theory. Another important feature is the fact that it is not W 0 (or W 3) related to
Z0, nor B to γ, but a combination of them: the weak eigenstates B and W 3 mix to
yield the physical (mass eigenstates) γ and Z0 states.

2.1.3 Form Factors in EW theory

Form factors can be found within the EW theory, as they describe what we cannot
say from tree level interactions. For example, when considering higher order effects
in the interaction of a fermion with light: The tree level contribution is easily calcu-
lated from the Feynman rules of QED. The whole interaction: tree level, one loop
and higher order corrections, can be considered into a single effective vertex, which
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(a) (b) (c)

(d) (e)

Figure 2.3. Feynman diagrams for fermion interaction with light: (a) is the tree level
interaction, (b)-(e) are the one-loop corrections to this process.

Lorentz structure can be predicted based on the symmetries of the theory.

Figure 2.4. Effective interaction of a fermion with a photon.

From QED, it is known that the general structure of the amplitude is:

ū2Γ
µ(p1, p2)u1, (2.6)

where u1 is the incoming fermion’s spinor, and ū2 is the outcoming. The link between
them is the most general Lorentz structure that can be constructed using (p1, p2).
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Since γ is a vector boson, the structure has to be a Lorentz vector. Gordon’s
decomposition indicates that it is enough to consider the combination pµ1(2) with
γ’s momentum, qµ[18]. Since QED is reflection invariant, just 3 structures can be
constructed, so the most general amplitude compatible with the symmetries of the
theory is:

ū2Γ
µ(p1, p2)u1 = ū2

[
γµF1(q

2) +
iσµν

2m
qνF2(q

2) + qµF3(q
2)

]
u1, (2.7)

where the F1,2,3 are called form factors. They can be computed in some cases, but in
those where we cannot calculate them from the fundamental theory, the behavior,
or the relevance of the different compatible structures at different energies can still
be studied, as it happens in QCD.
The first form factor is the one related with charge conservation, the second one
is related with light interaction with fermions (giving rise to the magnetic dipole
moment, of maximum interest in this thesis) and both can be calculated from per-
turbation theory 1.

2.2 Higgs Mechanism

The Higgs mechanism gives mass trough weak interactions to elementary particles,
it is the interaction with the Higgs’ vacuum which gives a non-zero mass, while
keeping the theory gauge-invariant[18]:

f f

⟨ϕ(x)⟩

=
−imf

v

(a)

W W

⟨ϕ(x)⟩

=
ivg2

2
gαβ

(b)

Figure 2.5. Feynman diagrams for mass terms of fermions and bosons: (a) is the interac-
tion diagram and term for fermions and antifermions and (b) is the one for weak bosons,
where ⟨ϕ(x)⟩ ∝ v is the v.e.v. of the Higgs boson (∼ 246 GeV), and g is the weak coupling.

Since part of the Z and W belong to the mass-generating mechanisms (their
longitudinal polarizations), their masses are related by a mixing parameter, weak-

1The third structure trivially vanishes for a real photon.
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mixing or Weinberg’s (although introduced by Glashow) angle (θW ):

M2
W =

1

4
v2g2, M2

Z =
M2

W

cosθW
. (2.8)

This mechanism is important for EW theory’s consistency and its success was one
of the main theoretical particle physics achievements [19].

2.2.1 Spontaneous Symmetry Breaking

The Higgs mechanism is based on the spontaneous symmetry breaking (SSB) of a lo-
cal continuous symmetry. The SSB is realized when the ground state of a dynamical
system is degenerated. The degeneration is what allows to perform the expansion of
the system’s solutions around any choice of the ground state. The new dynamical
field does not have the original symmetry. However, the original symmetry still
holds since the physics is invariant under the choice of ground state [20].
As an illustrative example, we will consider a massless complex scalar field. The
Lagrangian of this dynamical field is:

L(x) = ∂µϕ(x)∗∂µϕ(x)− µ2 |ϕ(x)|2 − λ |ϕ(x)|4 , ϕ(x) = ϕ1(x) + iϕ2(x). (2.9)

This Lagrangian has a U(1) symmetry, since it remains unchanged as ϕ(x) →
eiαϕ(x). The potential of this Lagrangian is:

V(x) = µ2 |ϕ(x)|2 + λ |ϕ(x)|4 , (2.10)

and for it to be bounded from below, λ > 0 is enough. For it to fulfill the require-
ment of degeneracy, we need µ2 < 0. For this case, the global minima full set is
parametrized by:

ϕ(x) = ϕ0 =

(
−µ2

2λ

)1/2

eiθ =
1√
2
veiθ, 0 ≤ θ < 2ϕ. (2.11)

SSB is realized when an specific value of θ is chosen. If we choose ϕ0 to be real,
we can expand the excitations of the dynamical field as σ(x) and η(x) so that
ϕ(x) = 1√

2
(v + σ(x) + iη(x)). The new quadratic terms of the Lagrangian in this

parametrization are:

L0(x) =
1

2
∂µσ(x)∂µσ(x)−

1

2
(2λv2)σ2(x) +

1

2
∂µη(x)∂µη(x), (2.12)
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the cubic and quartic terms give interactions, which are not invariant under ϕ(x)→
eiαϕ(x). The theory is then said to be spontaneously broken. The field σ(x) acquired
a non-zero mass and the field η(x) is a massless field, about which we continue
discussing in the next section.

2.2.2 The Goldstone Theorem

The U(1) globally invariant case is a rather simple example of Goldstone’s theorem:
”When SSB is realized for a theory which has a global continuous symmetry with
N generators, and n of them are broken in the process, n massless spin-0 bosons
emerge". These massless spin-0 bosons are the so called Nambu-Goldstone bosons.
A more general construction of the theorem can be done. So let us start from a
theory which is invariant under transformations of a continuous group G with N

generators Tk:

g ∈ G : Φ⃗(x) 7→ e−i
∑N

k=1 akTkΦ⃗(x) ≈

(
1− i

N∑
k=1

akTk

)
Φ⃗(x). (2.13)

If we now consider that SSB occurs, such that the v.e.v of Φ⃗(x) remains invariant
under the subgroup H of G. Then, an expansion of V(x) is performed around the
choice of vacuum Φ⃗min,

V( ⃗̃Φ) = Φ⃗min +
∂
(
Φ⃗min

)
∂Φi

χi +
1

2

∂2
(
Φ⃗min

)
∂Φi∂Φj

χiχj + ..., (2.14)

where χi are the degrees of freedom after the expansion. We can notice that the
second term vanishes form the minimum condition and that the matrix term with
second derivatives (excluding the 1

2
factor) is the mass matrix element M2

ij. If we
evaluate it for Φ⃗min and use the last expression in (2.14) to substitute it in (2.15),
and differentiate with respect to Φj, we find the vector equation:

M2TkΦ⃗min = 0⃗. (2.15)

From here, Goldstone’s theorem can be read: for the N − n unbroken generators,
Tunbroken,k, eq. (2.16) is automatically satisfied. However, for the n broken ones,
Tbroken,k, each of the vectors Tbroken,kΦ⃗min is an eigenvector of M2 with zero eigen-
value. This is Goldstone’s theorem: for each broken generator, there is a zero
eigenvalue of the mass matrix.
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2.2.3 Explicit Symmetry Breaking

When the symmetry is not exact, symmetry breaking appears as small terms in the
Lagrangian which set the scale of the symmetry breaking. The Nambu-Goldstone
bosons acquire a mass term proportional to the scale of the symmetry breaking and
are called Pseudo-Goldstone bosons, or PGb for short. Let us take a simpler discrete
case to illustrate the point, a reflection invariant (ϕ⃗(x)→ −ϕ⃗(x)) three component
real scalar field, with an explicit symmetry breaking with scale a:

L′(x) = ∂µϕ⃗(x) · ∂µϕ⃗(x)−m2
∣∣∣ϕ⃗(x)∣∣∣2 − λ ∣∣∣ϕ⃗(x)∣∣∣4 − aϕ3(x), (2.16)

this Lagrangian is clearly non-invariant under a reflection transformation. The vac-
uum of the theory is modified by the aϕ3(x) term:

⟨ϕ3⟩± = ±
√
−m

2

λ
+

a

2m2
. (2.17)

If we perform an expansion around ⟨ϕ3⟩+, we obtain the masses:

m2
ϕ1

= m2
ϕ1

= a

√
− λ

m2

m2
ϕ3

= −2m2 + 3a

√
− λ

m2
, (2.18)

in the SSB case, m2
ϕ1(2)

would be zero since 2 generators got broken. However, the
explicit symmetry breaking, induced a mass term proportional to the symmetry
breaking scale a [20].

2.3 Quantum Chromodynamics

Quantum Chromodynamics is the fundamental theory for strong interactions. In
the mid 60’s, it was both theoretically and experimentally hard to work on the
topic, since all the observed particles are "colorless", they are singlets under the
gauge group. So, why it is necessary to talk about a force for which all asymptotic
states are invisible to it? It is because the constituents of composite particles as
protons and neutrons are not blind to this force, and so, they do interact strongly.
Considering the fact that they interact but are confined inside the nucleons (and
some other particles too), very high-energy processes should be studied in order to
see the effects of this force. An example of this need is the experimental ratio be-
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tween e−e+ → µ−µ+ to e−e+ → hadrons, which is sensitive to NC and verifies that
NC = 3. Also, spin 1

2
particles in the fundamental representation and the conjugate

representation can form bounded colorless integer spin particles (bosons) and three
spin 1

2
particles in the fundamental representation can form bounded colorless semi-

integer spin particles (baryons) [21].
This success was both experimental and theoretical, and came in several pieces. First
the Feynman’s parton model proposed that nucleons were constituted by smaller spin
1
2

point-like particles which carry part of the nucleon’s momenta (evidence of this
statement was found in Deep Inelastic Scattering experiments) [13], then the quark
model appeared, which correctly predicted magnetic moments of nucleons; however,
it predicted the existence of both quarks and gluons which were not detected di-
rectly [21]. Indirect evidence for quarks and gluons eventually appeared and the
theory was "complete", except for the fact that elementary particles of the theory
are not seen free (confinement) and that at very high energy, they behave as free
particles (asymptotic freedom), these two facts were major issues because the fun-
damental theory was of no practical use as seen from QFT [22], since perturbation
theory could not be used for calculations in some energy regimes.

2.3.1 QCD Lagrangian

Even though perturbation theory cannot be used for some calculations, the QCD
Lagrangian can be used to construct an EFT based on the symmetries of the underly-
ing theory and the degrees of freedom of the effectively interacting particles (mesons
and baryons), which can instead be used in these troublesome energy regimes. The
SUC(3) locally invariant Lagrangian is (neglecting gauge-fixing and ghost terms):

LQCD = −1

4
Gi

µνG
µνi +

∑
r

q̄αr i /D
β
αqrβ −

∑
r

mrq̄
α
r qrα +

θQCD

32π2
g2sG

i
µνG̃

µνi, (2.19)

where the r index runs over the six quark flavors, α runs over three colors and i

runs over the eight gauge bosons, the gluons; gs is the strong interactions coupling
and the field strength tensor is given by:

Gi
µν = ∂µG

i
ν − ∂νGi

µ − gsfijkGj
µG

k
ν , (2.20)
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where the quark gauge covariant derivative is:

Dµβ
α = ∂µδβα +

igs√
2
Gµβ

α , (2.21)

with

Gβ
α =

8∑
i=1

Giλ
iβ
α√
2
, (2.22)

and λi are the eight hermitian generators of SU(3)C .

2.3.2 Beta Functions

An important feature which enables SU(3)C to match the phenomenology (confine-
ment and asymptotic freedom) is the Beta Function of QCD. The running of the
coupling of any interaction is given by its beta function

dg2

d lnQ2
= 4πβg2 = bg4 +O(g6) + ..., (2.23)

where g is the coupling of the theory and Q2 is the scale of the experiment. The b
coefficient is given by

b = − 1

(4π2)

[
11

3
C2(G)−

4

3
TF −

1

3
Tϕc −

1

6
Tϕh

]
, (2.24)

where C2(G) is the quadratic Casimir of the group, for SU(N) is just N except
for N = 1 where it is zero. TF , Tϕc , and Tϕh

are the fermion, complex scalar and
hermitian scalar Dynkin indices. It turns out that for SU(3)C

b =
2nq − 33

48π2
, (2.25)

where nq is the number of active quark fields (they become active as the energy is
enough to produce them), so at any value of nq, b is negative, resulting in asymptotic
freedom

1

αs(Q2)
=

1

αs(M2)
+

33− 2nq

12π
ln
Q2

M2
. (2.26)

This behavior of the coupling αs(Q
2) means that at higher energy scales, the particles

decouple and asymptotic freedom occurs. The counter effect of this is the fact that
at lower energies, the theory becomes non-perturbative as the interaction becomes
stronger and αs ∼ O(1) [13].
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2.3.3 Form factors in QCD

In Figure 2.1, it is represented, diagrammatically, the fact the fundamental particles
of QCD are not free interacting particles. Instead, composite objects are interacting
and consequently there is information that cannot be obtained from the underlying
theory. As in eq. (2.8), form factors can be obtained from the symmetries of the
theory. In contrast with EW theory, which can be studied perturbatively, the form
factors cannot be computed from Feynman diagrams. Instead, effective field theories
can be implemented to study their behavior. A relevant form factor for this work is
the one related with pseudoscalar meson’s transition into two photons (the so-called
meson transition form factor).

P

Figure 2.6. Pseudoscalar transition form factor P → γγ.

Electromagnetic and strong interactions occur in this process, since the pseu-
doscalar particles (π0, η, η′) are not fundamental entities, its interaction with light
cannot be studied from QCD’s fundamental Lagrangian, so EFT’s can be worked
out in order to obtain the P-TFF compatible with fundamental theory symmetries
and predictions.

20



3. Chiral Perturbation Theory (χPT)

As mentioned in the previous chapter, QCD is the fundamental theory for strong
interactions, however, perturbation theory fails to work at low and intermediate
energies (E ≤ 2 GeV). A construction for the study of QCD phenomenology can be
performed, in a different way that was worked for EW theory with the Fermi theory
(motivated by the fact that the EW is a weakly-coupled case and that of low-energy
QCD is strongly-coupled). For low energy (E ≤ 1 GeV), Chiral Perturbation Theory
(χPT) succeeds in the description of pseudoscalar mesons (π,K, η) phenomena, as
π± decay, ππ scattering, πγ scattering, and the different processes involving other
pseudoscalar mesons as well.

3.1 Effective field theories

An EFT is a valid approximation for energies that are small compared to some scale
Λ of the underlying theory. An EFT can be systematically constructed based on
Weinberg’s theorem [16]: "if one writes down the most general possible Lagrangian,
including all terms consistent with assumed symmetry principles, and then calculates
matrix elements with this Lagrangian to any given order of perturbation theory, the
result will simply be the most general possible S-matrix consistent with analyticity,
perturbative unitarity, cluster decomposition and the assumed symmetry principles".
Let us start with an example. Consider a system of two scalar particles ϕ and Φ

with masses m and M , respectively. They interact with each other as given by the
following Lagrangian:

Lfund =
1

2
(∂µϕ∂

µϕ+ ∂µΦ∂
µΦ)− 1

2

(
m2ϕ2 +M2Φ2

)
− λ

2
Φϕ2, (3.1)
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the Feynman diagram regarding the interaction is shown in Figure 3.1.

Φ

ϕ

ϕ
= −iλ

Figure 3.1. Interaction of scalar fields Φ (solid line) and ϕ (dashed line) and corresponding
Feynman rule.

The elastic scattering ϕ(p1)ϕ(p2)→ ϕ(p3)ϕ(p4) is mediated by the heavier scalar Φ

through the interaction in eq. (3.1) in the s, t, u channels, as shown in Figure 3.2.

(a) (b) (c)

Figure 3.2. Feynman diagrams for s, t and u respectively for the elastic scattering of two
scalars ϕ mediated by the scalar Φ.

The amplitude for this process is

Mfund = λ2
(

i

s−M2 + i0+
+

i

t−M2 + i0+
+

i

u−M2 + i0+

)
. (3.2)

At low energies with respect to M , {s, |t| , |u|} ≪ M2, an expansion on s,t,u
M2 can be

performed and the leading order contribution is

Mfund =
3iλ2

M2
+O

(
{s, |t| , |u|}

M2

)
. (3.3)

If one works at the scale where any Mandelstam variable is ≪M2, Φ is frozen out.
In this way, the equations of motion are reproduced by the effective Lagrangian

Leff =
1

2

(
∂µϕ∂µϕ−m2ϕ2

)
+

λ2

8M2
ϕ4. (3.4)
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The effective coupling will give out a contact term of 4 ϕ’s as seen in the following
figure.

ϕ ϕ

ϕ ϕ
=

3iλ2

M2

Figure 3.3. Contact term of Leff for 4 ϕ’s interaction.

This gives the following amplitude to the elastic scattering of two ϕ’s

Meff =
3iλ2

M2
. (3.5)

This reproduces exactly the leading order contribution Lfund in the expansion for
{s,|t|,|u|}

M2 << 1.

An example of an effective field theory for a simple theory points out two
important ideas which can help us understand how to build an EFT for any theory.
The part of the theorem that mentions "including all terms" requires infinite terms,
but this is of no practical use. To overcome this issue, we have to stop at some point,
considering the level of accuracy we are aiming to. In our example, we could have
continued to expand the equations of motion to the next order in p2

M2 terms and
included these corrections in the effective Lagrangian. This would have matched
the next to leading order (NLO) terms of eq. (3.3) and so would have done if we
included the next to next to leading order (NNLO) and so on, but how precise we
need to go will tell us how many orders should we consider. Since the EFT works
in a limited energy regime, p2

Λ2 is a favorable expansion parameter for the terms in
the effective Lagrangian, as it was also seen in our example.

In this sense an EFT for QCD can be constructed based on the Lagrangian
in eq. (2.20), as it gives us the symmetry principles to start working with. Also,
the degrees of freedom observed in nature are hadrons, so they must be used to
construct the EFT, instead of the unobserved quarks and gluons at different energy
regimes.

QCD can be divided into three scales: high energy QCD (E > 2 GeV), low
energy QCD (E ≤ 1 GeV) and the resonant region which is in the middle of both.
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Because of the limits in the energy scales, quarks can be split into the 3 light ones
(u, d, s) and the heavy ones (c, b, t), and because of the masses of the heavy ones,
an effective field theory only considering the light quarks can be worked out and be
useful. First, in this chapter, the building blocks of the procedure will be worked
out in the low energy limit (χPT ) and then, in the next chapter, the intermediate
region will be constructed (RχT ) from this one [20].

3.2 Chiral Symmetry in QCD

In order to start the construction of an EFT for QCD at low energies, the symmetries
must be the first point to look at. As mentioned in the previous chapter, for the
non-perturbative regime, it is enough to consider the 3 lightest quarks (u, d, s). The
QCD Lagrangian for just these free quarks is:

Lfree quarks =
3∑

A=1

∑
f=u,d,s

q̄fA (γµi∂µ −mf ) qfA, (3.6)

where f is the flavor index and A are the 3 colors. The color sum can be written in
the form of a color triplet

qf =

qf,1qf,2

qf,3

 , (3.7)

and the local symmetry can be achieved by adding the gluons into the picture, in
the adjoint representation of color SU(3). However, this symmetry is not the one
we are using for the construction of the EFT.

3.2.1 Chiral Limit

There is an accidental symmetry in here by taking the limit where these quarks
are massless (this can be approximately realized if the characteristic energy of the
process is much larger than these masses), this is the so called Chiral Limit. The
Lagrangian then takes the form

LChiral =
∑

f=u,d,s

q̄fγ
µi∂µqf , (3.8)
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then the Lagrangian can be split into left and right chiral components of q: qR(L) =
1
2
(1± γ5)q.

LChiral =
∑

f=u,d,s

q̄Lfγ
µi∂µqLf + q̄Rfγ

µi∂µqRf . (3.9)

This Lagrangian is invariant under two independent global transformations:uLdL
sL

→ UL

uLdL
sL

 = exp

(
−i

8∑
a=1

ΘLa
λa
2

)
e−iΘL

uLdL
sL

 ,

uRdR
sR

 ,→ UR

uRdR
sR

 = exp

(
−i

8∑
a=1

ΘRa
λa
2

)
e−iΘR

uRdR
sR

 ,

(3.10)

where UL(R) are independent 3 × 3 complex rotations times a global phase. So,
the chiral Lagrangian (3.8) is invariant under a global SU(3)L× SU(3)R ×U(1)L×
U(1)R which can be rewritten since completeness allows us to do a (L,R)→ (V,A)

basis change. This is convenient, since (V,A) have a definite behavior under parity
transformation, which is a good label for the hadron multiplets. Chiral currents
related with these symmetries can be written, according to Nöether’s Theorem[20]

V µ
a = q̄γµ

λa
2
q,

Aµ
a = q̄γµγ5

λa
2
q,

V µ = q̄γµq,

Aµ = q̄γµγ5q, (3.11)

making 18 conserved currents. However, as it is seen in nature, there is an ob-
served asymmetry between particles with the same spin and opposite parity. This
fact of nature gives us the hint that somewhere there, a symmetry breaking must
occur (otherwise these multiplets should be degenerate according to the symmetries
discussed above).

3.2.2 Chiral symmetry breaking

When the masses of light quarks are taken into account in the QCD Lagrangian,
chiral symmetry is explicitly broken. The divergence of (almost all) chiral currents
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(3.11) becomes non-zero

∂µV
µ
a = iq̄

[
M,

λa
2

]
,

∂µA
µ
a = iq̄γ5

{
M,

λa
2

}
,

∂V µ = 0,

∂µA
µ = 2iq̄γ5Mq +

3g2s
32π2

εµνρσG
µν
a G

ρσ
a , (3.12)

where the mass matrix is M = diag{mu,md,ms} and the second term of ∂µAµ

comes from the quantum corrections (it is related to the extremely approximate CP
symmetry of the strong interactions, which must be discussed in presence of the
electroweak sector of the SM and is not yet understood). It is important to make
some remarks regarding the inclusion of non-zero quark masses:

1. For any values of quark masses, the individual flavor currents f̄γµf are con-
served in the strong interactions, so strong coupling is flavor independent.

2. All 18 currents, except the vector singlet current (so baryon number is ex-
actly conserved, but for anomalous effects), get a non-vanishing divergence for
different quark masses.

3. For equal quark masses, the 9 vector currents (octet + singlet) are conserved.

4. Considering a more realistic case, mu = md ̸= ms, the SU(3) flavor symmetry
is reduced to SU(2) isospin symmetry.

5. mu −md (compared to the typical energy scale of a given process) is then a
scale of isospin symmetry breaking.

This information will become important when discussing the symmetry breaking in
QCD at low energies.

3.3 Chiral Perturbation Theory for Mesons

Having discussed the main features of chiral symmetry and its explicit breaking, due
to quark masses, the elements for constructing an EFT for mesons made of the light
quarks is set. The fact that parity is a good symmetry of the QCD Lagrangian but
not of the hadron spectrum will be explained via spontaneous symmetry breaking.
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3.3.1 Goldstone Theorem Realization in QCD

Spontaneous symmetry breaking in QCD is feasible due to the known experimental
input discussed before. Considering the chiral limit, a sufficient but not necessary
condition for it to happen is ⟨q̄q⟩ ≠ 0, also known as the scalar singlet quark conden-
sate. This nomenclature comes from the fact that q̄q transforms as a scalar under
the Lorentz group and as a singlet under SU(3)V . The "condensation" is a non-
perturbative phenomenon of the QCD ground state that is driven by the formation
of quark-antiquark pairs. The definition of scalar and pseudoscalar densities will be
of practical use:

Sa(y) = q̄(y)λaq(y),

Pa(y) = iq̄(y)γ5λaq(y), (3.13)

with a = 0, ..., 8 being λ0 =
√

2
3
I3, and the other 8 are the usual Gell-Mann matrices.

In the chiral limit, ⟨Sa⟩ = 0, which for the diagonal matrices gives the relations

⟨λ̄1⟩ =
√

2

3
⟨ūu+ d̄d+ s̄s⟩ = 0,

⟨λ̄3⟩ = ⟨ūu− d̄d⟩ = 0,

⟨λ̄8⟩ =
√

1

3
⟨ūu+ d̄d− 2s̄s⟩ = 0, (3.14)

(3.15)

leading to the fact that all ⟨f̄f⟩ are equal. If we then take a non-zero value of the
singlet quark condensate we get:

⟨q̄q⟩ = 3⟨f̄f⟩ . (3.16)

This results in the fact that Pa(y) has a non-vanishing matrix element between the
vacuum and the massless one-particle state |ϕb⟩, meaning that chiral symmetry has
been spontaneously broken, resulting in SUL(3)× SUR(3)→ SUV (3), giving rise to
8 pseudoscalar Goldstone bosons. This fits perfectly with the explanation we are
aiming at, yielding the construction of the pseudoscalar meson octet, which will have
different nature than its parity partner. The explicit symmetry breaking by quark
masses will give rise instead -for these lightest pseudoscalars- to pseudo-Goldstone
bosons.
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3.3.2 Effective Lagrangian for low-energy QCD: χPT

The facts of nature lead to the search for a mechanism which breaks spontaneously
the chiral symmetry. This gives us an useful mechanism to construct a theory with
8 pseudoscalar Goldstone bosons. Here, the lightest octet of pseudoscalar mesons
(π,K, η) can be identified with each one of the Goldstone bosons. So an effective
theory to study interactions between them can be constructed.

3.3.2.1 Transformation properties of the Goldstone Bosons

Before constructing the effective Lagrangian for these Goldstone bosons, it is neces-
sary to understand how do they transform under the action of the symmetry group
and which object is the ideal one for it. The Goldstone bosons can be arranged in
a n-dimensional vector Φ = (ϕ1, ...ϕn), which is a map from Minkowski space into a
vector space:

M1 =
{
Φ : M4 → Rn|ϕi : M

4 → R
}
. (3.17)

For the purpose of the construction, we will discuss some properties of all the left
co-sets called the quotient G/H, defined as

G/H = {gH|g ∈ G} , (3.18)

where at the same time gH is defined as:

gH = {gh|h ∈ H} , (3.19)

with G (H) the symmetry group of a dynamical Lagrangian system (the vacuum).
An important property is that co-sets either completely overlap, or are completely
disjoint. This allows us to do an isomorphic mapping between the quotient G/H
and the Goldstone bosons fields. This mapping, which we call φ, has an important
property: any given element g ∈ G can map a vector Φ into another Φ′. Given this,
it can be applied to our chiral QCD case. The symmetry group of chiral QCD is
G = SU(3)L × SU(3)R and of its vacuum is H = SU(3)V . Let g̃ = (L̃, R̃) ∈ G. A
representative element of the left co-set can be characterized as g̃H = (1, R̃L̃†)H in
the convention where it has the identity matrix in the first argument. Under the
action of an element g, a left co-set element g̃ transforms as

gg̃H = (L,RR̃L̃†)H = (1, RR̃L̃†L†)(L,L)H = (1, R(R̃L̃†)L†)H, (3.20)
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where in the last step we have used the fact that (L,L) belongs to SU(3)V and for
group properties, it is mapped into H itself. The representative matrix g̃ is then
transformed as

U(x)→ RU(x)L† , (3.21)

under the action of the group element g. Then, if we want to construct a basis for
an SU(3) element, we must get a set of hermitian traceless 3 × 3 matrices. This
can be done by using the exponential parametrization and the fact that there is an
isomorphism between the elements of the group G and the elements of the vector
space spanned by the Goldstone bosons. So we can write an SU(3) element as

U(x) = exp

(
i
Φ(x) · λ
F0

)
, (3.22)

where

ϕ = Φ · λ =


π0 + 1√

2
η8

√
2π+

√
2K+

√
2π− −π0 + 1√

2
η8
√
2K0

√
2K− K̄0 − 2√

3
η8

 , (3.23)

and the constant F0 is a scale introduced to make the argument of the exponential
function dimensionless, and will be set by experimental input. We can (and will)
choose R(x) = L†(x) = u(x) so that u2(x) = U(x). These elements transform
under the action of the group as in eq. (3.21), under the action of g. This allows
us to construct not just the building blocks of the EFT but also to look for the
independent terms allowed by the theory. Since the construction is made in (even)
powers of p

Λ
, which for this case is Λ = 4πFπ ≈ 1.170 GeV [20], it will converge

rather well at low energies. It is an useful remark that ∂µU(x) terms are of order
p
F0

and U(x) is of order p0.

3.3.2.2 χPT at order p2

The independent terms must be constructed order by order using eq. (3.22) and
its derivative, knowing that it transforms as eq. (3.21) and considering the chiral
counting. From properties of λ matrices, and the transformation under G, it is
evident that traces must be taken for terms to be globally invariant under G. It is
also found that the odd terms in U cancel. Knowing this, the first order is p2. And
the only independent term is:

Leff =
F 2
0

4
Tr
[
∂µU∂

µU †] , (3.24)
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where a convenient normalization has been chosen. However, the particles in the
pseudoscalar octet of mesons are not massless, so an explicit symmetry breaking
term must be added for the particles to become pseudo-Goldstone bosons (pGb).
This term is:

Ls.b. =
F 2
0B0

2
Tr
[
MU † + UM†] , (3.25)

withM = diag {mu,md,ms} being the mass matrix of quarks. Given this, external
sources may be added with the correct structure in order to reproduce electromag-
netic and weak interactions of the pGbs.

3.3.2.3 Interaction with external sources

External sources can be included in the effective field theory since Ward identities
are obtained from a locally invariant generating functional involving a coupling
to external fields [20]. This can address the aim to include EW interactions into
the EFT theory. From the structure of the conserved currents, external fields can
couple in the 4 same structures: v, a, s, p or l, r, s, p. It will be useful to employ it
in the last form, since electromagnetic interactions are non-chiral and electroweak
interactions are just left-handed. When promoting the theory to be locally invariant,
the derivatives must be generalized to covariant derivatives. Since U transforms as
(3.21) now locally, the covariant derivative is rather different than usual

DµU = ∂µU − irµU + iUlµ, (3.26)

with rµ and lµ transforming so that

DµU → VR(DµU)V
†
L . (3.27)

Since the effective Lagrangian will ultimately contain arbitrarily high powers of
derivatives we also need field-strength tensors:

fR(L)µν = ∂µr(l)ν − ∂νr(l)µ − i[r(l)µ, r(l)ν ]. (3.28)

By the convention of Gasser and Leutwyler [23]

Ls.b. =
F 2
0

4
Tr
(
χU † + Uχ†) , χ = 2B0(s+ ip), (3.29)
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where s and p are the scalar and pseudoscalar external sources. The mass matrix
can be included in s. The final order p2 Lagrangian locally invariant under SU(3)V ×
SU(3)A is:

L2 =
F 2
0

4
Tr
[
DµU(D

µU)†
]
+
F 2
0

4
Tr
[
χU † + Uχ†] . (3.30)

3.3.3 Application of the lowest order EFT

Some exercises can be performed in order to check consistency with observations
and to set those non-restricted by symmetry constraints.

3.3.4 Pseudo-Goldstone Boson Masses

As an exercise, an expansion on quadratic terms of the pGb can be performed in
order to find the masses that theory predicts:

Ls.b. = −
B0

2
Tr
[
Mϕ2

]
, (3.31)

by taking the isospin limit mu = md = m it results in the following masses:

m2
π = 2mB0,

m2
K = B0(m+ms),

m2
η =

2

3
B0(m+ 2ms). (3.32)

This result is compatible with observed pseudoscalar masses so it sets the value of B0

(F 2
0B0 ∼ (275MeV)2). Higher order corrections (including those of electromagnetic

origin) account for the mass differences between neutral and charged particles.

3.3.4.1 π+ Decay

π+ decay can be studied in its main channel π+ → µ+νµ.

π+

νµ

µ+

W+

Figure 3.4. π+ → µ+νµ decay. In χPT the W boson propagator shrinks to a point.
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As it is shown in Figure 4.1 this process happens by a weak interaction. It can
be described within χPT by taking a left external field

lµ = − g√
2
(W+

µ T+ +W−
µ T−), s = p = rµ = 0, (3.33)

where

T+ = T †
+ =

0 Vud Vus

0 0 0

0 0 0

 , (3.34)

the transition π+ → W+ will come from the left term in the covariant derivative
and the ∂µπ part from (3.26). By taking the trace in the relevant operators, the
decay rate can be computed:

Γ =
1

4π
G2

FV
2
udF

2
0m

2
µmπ

(
1−

m2
µ

m2
π

)2

. (3.35)

Since all the other constants have already being computed from diverse observables,
F0 can be obtained from measuring π+ decay (F0 ∼ 90 MeV).

3.3.4.2 Pion scattering

The process ππ → ππ can be computed from the effective theory.

π

π

π

π

Figure 3.5. 4 π scattering in χPT .

Expanding the Lagrangian (3.30), no cubic terms in the pGb’s is obtained, so
the first interaction to be studied is the interaction between 4 pions

L4ϕ
2 =

1

6F
(ϕi∂

µϕi∂µϕjϕj − ϕiϕi∂
µϕj∂µϕj) +

m2
π

24F 2
ϕiϕiϕjϕj, (3.36)

where i, j are cartesian indexes, and shall not be confused with flavor indexes. We
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get the amplitude for this process

M =i

[
δabδcd

s−m2
π

F 2
+ δacδbd

t−m2
π

F 2
+ δadδbc

u−m2
π

F 2

]
− i

3F 2
(δabδcd + δacδbd + δadδbc)(Λa + Λb + Λc + Λd)

(3.37)

where Λi = p2i −m2
π and vanishes for on shell contributions. s, t, u are the known

Mandelstam variables (s+ t+u = 4m2
π). Dispersion with light is also an achievable

process to study within the EFT for pGb.

3.3.5 Higher order χPT

If more precision is required, more orders of p2 should be added, this can go on as
higher as it is necessary. At some point, it gets messy. However, there are features
that are not found at leading order.

3.3.5.1 Order p4 Lagrangian

Based on the transformation of the different objects available, the most general
Lagrangian compatible with assumed symmetries can be obtained at O(p4)

L4 =L1

{
Tr[DµU(D

µU)†]
}2

+ L2Tr[DµU(DνU)
†]Tr[DµU(DνU)†]

+ L3Tr[DµU(D
µU)†DνU(D

νU)†] + L4Tr[DµU(D
µU)†]Tr(χU † + Uχ†)

+ L5Tr[DµU(D
µU)†(χU † + Uχ†)] + L6

[
Tr(χU † + Uχ†)

]2
+ L7

[
Tr(χU † − Uχ†)

]2
+ L8Tr(Uχ

†Uχ† + χU †χU †)

− iL9Tr[fRµνD
µU(DνU)† + fLµν(D

µU)†DνU ] + L10Tr(UfLµνU
†fµν

R )

+H1Tr(fRµνf
µν
L ) +H2Tr(χχ

†).

(3.38)

The last two terms are purely external fields so they are not relevant for pGb inter-
actions with external fields (but are needed for renormalization). It is a good point
now, to mention that renormalizability is not achieved in χPT in the usual form.
χPT is renormalizable order by order, since divergent diagrams from L2 are of order
p4 and so on. This means that the constants Li from (3.38) need to be renormalized.
This is not relevant for our discussion but it is important to be aware of it.
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3.3.5.2 Pseudo-Goldstone Bosons masses at order p4

With eq. (3.38), corrections for pGb masses can be performed. The mass corrections
m2

P −m2
PL2 are:

m2
π0L4

=
64B2

0

F 2
0

[
(2m+ms)mL6 +m2L8

]
,

m2
π±L4

=
32B2

0

F 2
0

[
m2L8

]
,

m2
K0L4

= m2
K±L4

=
32B2

0

F 2
0

[mmsL8] ,

m2
ηL4

=
64B2

0

F 2
0

[
(m+ 2ms)(2m+ms)L6 + 2m2

sL7 + (m2 + 2m2
s)L8)

]
. (3.39)

In this case no direct comparison between masses can be performed as easily as
in (3.30). However, a difference between the charged and neutral pions can be
addressed as they depend on different constants. Order p6 Lagrangian is calculated
in [24], and depending on the precision of the problem, it can be useful.

3.3.6 Chiral Anomaly: The Wess-Zumino-Witten Effective

Action

Intrinsic parity is an accidental symmetry in the construction of χPT , this forbids
odd-intrinsic-parity process as K+K− → π+π−π0 and π0 → γγ. However, these
occur in nature and are detected in different hadronic experiments, which points to
the fact that anomalous contributions are needed to understand them 1. This lead
to the development of the Wess-Zumino-Witten action[25][26]

SWZW [[U, l, r] =− iNC

240π2

∫
dσijklmTr

[
ΣL

i Σ
L
j Σ

L
kΣ

L
l Σ

L
m

]
− iNC

48π2

∫
dx4εµνρσ (W (U, l, r)µνρσ −W (1, l, r)µνρσ) ,

(3.40)

1A complementary point of view comes from the fact that the QCD Lagrangian has the chiral
anomaly, which must be implemented in its effective realization at low energies, given by χPT.
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where W (U, l, r) is defined as

W (U, l, r)µνρσ =Tr

[
UlµlνlρU †rσ +

1

4
UlµU †rνUlρU †rσ

+ iU∂µlνlρU †rσ + i∂µrνUlρU †rσ − iΣLµlνU †rρUlσ

ΣLµU †∂νrρUlσ − ΣLµΣLνU †rρUlσ + ΣLµlν∂ρlσ + ΣLµ∂νlρlσ

−iΣLµlνlρlσ +
1

2
ΣLµlνΣLρlσ − iΣLµΣLνΣLρlσ

]
− (L↔ R),

(3.41)

and Σ
L(R)
µ are

ΣL
µ = U †∂µU, ΣR

µ = U∂µU
†, (3.42)

where L ↔ R means ΣL
µL ↔ RΣR

µ , lµ ↔ rµ and U ↔ U †. This Lagrangian is
of order p6 and cannot be produced by χPT , according to the framework that we
have explained, so it must be added by hand for the theory to have intrinsic parity
violating processes, induced by the chiral anomaly of QCD.

3.3.6.1 π0-TFF at Leading Order

Among the processes described by (3.40), the most important one for this work is
the pion transition form factor (π-TFF), this is, the decay of a π0 into two photons.
This process is described in an EFT since π0 is not a fundamental particle.

π0

γ

γ

Figure 3.6. π0 → γγ.

The main contribution for this process within χPT is given by the πγγ part of (3.40)

Lπγγ = −εµνρσ
e2NCF

µνF ρσπ0

96π2F
, (3.43)

which translates into the amplitude

M = −ie2εµνρσqµ1 q
µ
2 ϵ

∗ρ
1 ϵ

∗σ
2

(
2

3F

)(
NC

8π2

)
. (3.44)
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More contributions will come from higher order terms within the anomalous sector
of χPT, and also from the inclusion of vector meson resonances into the calculation.

36



4. Resonance Chiral Theory (RχT)

At higher energies (E ≥Mρ), the hadronic spectrum becomes richer and χPT ceases
to describe strong interactions fully. Even including arbitrary higher orders in χPT
will not solve the problem, since resonances become dynamic degrees of freedom.
Consequently, they must be included in the action. Because of this, an extension of
our EFT must be constructed [7]. After the pseudoscalar mesons octet, the second
multiplet that becomes active (dynamical fields) is the vector meson multiplet (ρ’s,
ω, K∗’s and the ϕ). Thus, it will be incorporated in the antisymmetric tensor
formulation [27]: by respecting Weinberg’s theorem, every term compatible with the
assumed symmetries must be included. The aim of RχT is to match both the chiral
limit (to yield χPT) and to reproduce the constraints imposed by high-energy QCD.
In doing so, we assume that, bridging between both known regimes, RχT captures
the most essential features of the resonance region, guided by symmetry principles
(unitary symmetry and the large number of colors limit of QCD). Ultimately, its
phenomenological successes indicate this is a sensible approach.

4.1 RχT Lagrangian

The Lagrangian is constructed as mentioned before, it must respect QCD symme-
tries. The vector meson multiplet in the large-NC limit is [28] 1

Vµν =

(ρ0 + ω0)/
√
2 ρ+ K∗+

ρ− (−ρ0 + ω0)/
√
2 K∗0

K∗− K̄∗0 ϕ


µν

. (4.1)

1Ideal meson mixing between the ω8,1 flavor states to yield the physical ω, ϕ particles is used
throughout. With NC →∞ the SU(3)V octets and singlets converge into nonets.
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The rest of the building blocks of this formalism are [7]:

u = exp

(
i

Φ√
2F

)
, Φ =

8∑
a=0

λaϕ
a

√
2
,

uµ = i
[
u†(∂µ − irµ)u− u(∂µ − ilµ)u†

]
,

Γµ =
1

2

[
u†(∂µ − irµ)u+ u(∂µ − ilµ)u†

]
,

∇µ· = ∂µ + [Γµ, ·], fµν
± = ufµν

L u† ± u†fµν
R u, (4.2)

χ± = u†χu† ± uχ†u, χ = 2B0(s+ ip). (4.3)

Given the building blocks, the EFT can be constructed, respecting chiral symmetry
for the pseudo-Goldstone bosons and unitary symmetry for the resonance states.
It is important to clarify that the χPT expansion parameter, (p2 ∼ m2)/(4πF )2,
no longer holds in the resonance region. Instead, an expansion in the inverse of
the number of colors of the QCD gauge group (1/NC) will be used. We will work
at leading order in this expansion. In this way, multi-trace operators are typically
suppressed (this is non-trivial once the η′ is considered, but we will not dwell into
this here), as well as meson loops 2. With NC →∞, there is a tower with an infinite
number of mesons per set of quantum numbers. In previous works, this spectrum
was cut to the lightest resonance multiplets (this effectively modifies the parameters
of the lowest-lying resonances as a result of integrating all other states out). Here,
we go beyond this simplification for the most important contributions, coming from
vector (and for consistency pseudoscalar) mesons.

Still, proceeding as outlined above, the number of operators at leading order,
would still be infinite. The key observation that limits them (and keeps the pre-
dictability of the theory) comes from the fact that it must match QCD asymptotic
behavior, as well as from restricting to operators that actually contribute to our
processes of interest. Indeed, an operator in RχT is made from a χPT tensor and
a(some) resonance(s) operator(s). If we increase the order of the chiral tensor (in
the chiral counting), the leading asymptotic contribution (coming from the opera-
tor of highest order in the chiral expansion) will have to vanish, according to QCD
constraints. On the other hand, if we increase the number of resonance fields, it will
not contribute to our process of interest, since a vector(axial) resonance will yield

2In general, resonance widths are the dominant next-to-leading order effect in this expansion,
and need to be included to make contact with phenomenology. This is not the case here, as
the pseudo-Goldstone’s transition form factors (the non-perturbative ingredient needed for our
computations) probe the spacelike (q2 < 0 in our metric) region.
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-at least- two(three) pseudo-Goldstone bosons. This reasoning shows the way in
which QCD short-distance constraints, together with the process we are studying,
specify a given number (which we can, in fact, handle) of operators for our RχT
calculations.

4.1.1 Even Intrinsic Parity Sector

The behavior of the vector resonance multiplet under the chiral group will give us
the most general Lagrangian which -upon resonance integration- contributes to the
O(p4) chiral low-energy constants 3:

Lkin
V = −1

2
⟨∇λV

λν∇ρVρν⟩+
1

4
M2

V ⟨VµνV µν⟩,

Leven
V =

FV

2
√
2
⟨Vµνfµν

+ ⟩+
λV√
2
⟨Vµν {fµν

+ , χ+}⟩+ i
GV√
2
⟨Vµνuµuν⟩, (4.4)

where ⟨⟩ is an abbreviation for the trace operator. In the even parity sector, there
are also the relevant O(p6) operators [24], with their contribution included as 4:

Leven
6 =

∑
i=7,8,22

CW
i OW

i . (4.5)

The OW
i terms are:

OW
7 = iϵµνρσ⟨χ−f

µν
+ fρσ

+ ⟩,

OW
8 = iϵµνρσ⟨χ−⟩⟨fµν

+ fρσ
+ ⟩,

OW
22 = ϵµνρσ⟨uµ

{
∇λf

λν
+ , fρσ

+

}
⟩. (4.6)

All above terms in the resonance Lagrangian include the kinetic part of the new
particles in RχT and their interactions with both external fields and pGbs.

3Terms including axial/scalar resonances do not contribute to the pGb TFF and are thus
omitted here; pseudoscalar resonances only contribute through the anomalous sector, where they
are introduced.

4The operator with coefficient λ starts contributing to the O(p6) chiral couplings. It gives rise
to coupling constants splittings within the resonance multiplet via a shift in FV . That is why we
preferred to introduced it above.
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i Oi
VJP

1 {V µν , fρα
+ }∇αu

σ

2 {V µα, fρσ
+ }∇αu

ν

3 i{V µν , fρσ
+ }χ−

4 iV µν [fρσ
− , χ+]

5 {∇αV
µν , fρα

+ }uσ
6 {∇αV

µα, fρσ
+ }uν

7 {∇σV µν , fρα
+ }uα

Table 4.1. Odd-intrinsic parity sector in RχT with 1 vector resonance, a pGb and a
vector current. An ϵµνρσ is omitted in all cases.

4.2 Odd intrinsic parity sector

The odd intrinsic parity sector can be split into two different contributions: with
one or two resonances involved [29].

4.2.1 1 resonance contributions

For 1 resonance, all the independent contributions will have a coupling constant ci
MV

:

Lodd
V =

7∑
i=1

ci
MV

Oi
V JP , (4.7)

where Oi
V JP are listed in Table 4.1. The sub-index V JP means that there is one

vector resonance, one external spin-one current and a pseudoscalar meson in each
independent term.

4.2.2 2 resonance contributions

In the 2 resonance case, the methodology is the same, all terms that are compatible
with the symmetries are included in the odd intrinsic parity Lagrangian, this consists
in an even-intrinsic parity term which contributes to mass term corrections and 4
odd parity terms, which contribute to interactions.

Leven
V V = −eVm⟨VµνV µνχ+⟩,

Lodd
V V =

4∑
i=1

diO
i
V V P , (4.8)

where the OV V P terms are listed in Table 4.2. The index V V P means that there are
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i VVP

1 {V µν , V ρα}∇αu
σ

2 i{V µν , V ρσ}χ−
3 {∇αV

µν , V ρα}uσ
4 {∇σV µν , V ρα}uα

Table 4.2. Odd-intrinsic parity sector in RχT with 2 vector resonances and a pseu-
doscalar. An ϵµνρσ is omitted in all cases.

two vector meson resonances and a pseudoscalar in the interactions. An important
remark is the fact that even though the label includes 1 pseudoscalar, the number
of pseudoscalar mesons can rise since the expansion is infinite. However, for the
purpose of this work, there is no need of more 5.

4.3 RχT application: ω → π0γ

As usual, an application of the previously developed formalism is useful to prove
its outreach. In this case, the calculation for ω → πγ is a convenient exercise, as it
has experimental information available for comparison. Because of the scale of the
process, the λV term in (4.4) will be omitted as it breaks explicitly chiral symmetry
and these corrections are negligible in this instance. It is important to remark

ω(q)

π0

γ(k)

Figure 4.1. ω → π0γ.

that, for electromagnetic interactions, the external fields are written in terms of the
electromagnetic field-strength tensor:

F µν
L = F µν

R = eQF µν , (4.9)

where e is the electron’s charge, Q = diag{2
3
,−1

3
,−1

3
} and, as mentioned above, F µν

is the known electromagnetic field-strength tensor.
5However, the V V P and V JP operators listed here are a basis for processes with only one

pseudoscalar. In the general case the minimal set of operators is given in ref. [31]. The translation
between both bases is worked out in ref. [24].
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i Lci

1 −iεµνρσ c12
√
2e

F0MV
∂σ∂απ

0F ραωµν

2 −iεµνρσ c22
√
2e

F0MV
∂ν∂απ

0F ρσωµα

3 iεµνρσ
c34

√
2em2

π

F0MV
π0F ρσωµν

4 0

5 −iεµνρσ c52
√
2e

F0MV
∂σπ0F ρα∂αω

µν

6 −iεµνρσ c62
√
2e

F0MV
∂νπ0F ρσ∂αω

µα

7 −iεµνρσ c72
√
2e

F0MV
∂απ

0F ρα∂σωµν

Table 4.3. Lagrangian terms contributing to the process ω → πγ at tree level in RχT.

4.3.1 Relevant Lagrangian terms

Since the Lagrangian can be expanded indefinitely (because of the exponential func-
tion in (3.22)), the Lagrangian must be truncated at the quantity of pseudoscalar
mesons for this process, in this case, 1. The only contributions for this process
will come from the odd intrinsic parity sector. The Lagrangian will be split by
contributions’ type, since it is easier to calculate the amplitudes in this way.

4.3.2 OV JP contributions to ω → π0γ

This contribution will also be labeled as Ldirect
ωπγ , since there is a coupling ρ→ γ that

can mediate the process too, as we will see next. The relevant terms in the La-
grangian are obtained through computational methods as there are a large amount
of terms appearing, even in the 1 pseudoscalar reduction. The contributions are
collected in Table 4.3.

All these contributions define the vertex of Figure 4.2 in our EFT.

ω(q)

π0

γ(k)

Figure 4.2. Direct ω → π0γ vertex in RχT.
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i Ldi

ρ→ γ ieFV

2

1 −iεµνρσ 2d1
F0
∂σ∂απ

0(ρµνωρα + ωµνρρα)

2 iεµνρσ
8m2

πd2
F0

π0ρµνωρσ

3 −iεµνρσ 2d3
F0
∂σπ0(∂αρ

µνωρα + ∂αω
µνρρα)

4 −iεµνρσ 2d4
F0
∂απ

0(∂σρµνωρα + ∂σωµνρρα)

Table 4.4. Lagrangian term contributions to the process ω → πγ mediated by a resonant
ρ in RχT.

4.3.3 OV V P contributions to ω → π0γ

This other contribution will be labeled Lρ
ωπγ since (4.8) has a contribution ω → πρ

and ρ has a transition term for ρ→ γ coming from the FV term in Leven
V in eq. (4.4)

that will contribute. The relevant terms are gathered in Table 4.4.
All these terms define the ω → πρ and ρ→ γ vertices in Figure 4.3.

ω(q)

π0

γ(k)
ρ0

Figure 4.3. ω → π0γ process mediated by a ρ in RχT.

All amplitudes related to this process can be computed by using the antisym-
metric tensor formulation for the vector meson resonances and the known Feynman
rules for the rest of particles, shown in Table 4.5.

Process Feynman Rule
⟨0|Vµν |V, q⟩ i

MV
(qµεν(q)− qνεµ(q))

⟨0|Fµν |A, k⟩ −i(kµεν(k)− kνεµ(k))
⟨0|T {Vµν(x), Vρσ(y)} |0⟩ i

M2
V

∫
d4ke−ik(x−y)

(2π)4(M2
V −k2−iϵ)

[gµρgνσ(M
2
V − k2)

+gµρkνkσ − gµσkνkρ + (µ↔ ν)]

Table 4.5. Feynman rules for electromagnetic fields and vector mesons in the antisym-
metric tensor formulation.

Using these Feynman rules, and the convention that derivatives acting on in-
coming particles extract a factor ∂µA → −ipµA and outgoing particles take the
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opposite sign, we get the following amplitudes

Mdirect
ωπγ = iεµνρσε

∗µ
ω ε

∗ν
γ q

ρkσ
2
√
2e

MωMV F

[
−c1256M2

ω + c1235m
2
π

]
,

Mρ
ωπγ = −iεµνρσε∗µω ε∗νγ qρkσ

4e

MωM2
V

FV

F

[
d3M

2
ω + d123m

2
π

]
,

(4.10)

where the multi-index terms come from combinations of the coupling constants of
(4.3)-(4.8) after applying Feynman rules of Table 4.5 and are defined as:

c1256 = c1 − c2 − c5 + 2c6,

c1235 = c1 + c2 + 8c3 − c5,

d123 = d1 + 8d2 − d3. (4.11)

High-energy limits on QCD behavior will impose constraints on the coupling con-
stants of the EFT [24] since the theory is constructed to reproduce both χPT and
perturbative QCD. This will be discussed in further detail in chapters 6 and 7 and
here the result will be just quoted and briefly discussed. The obtained amplitude
after applying these constraints is:

Mω→πγ = iϵαβρσϵ
α
ωϵ

β
γq

ρkσ
e

FV

(
Nc

8π2

Mω

F
− F

2

Mω

M2
V

m2
π

M2
ω

)
. (4.12)

Before these constrictions were obtained, the relations between couplings in ref. [29]
were used. With these, an error of∼ 30% was obtained, compared with experimental
data in [30]. With the consistent constraints in ref. [24], the error is reduced to
[7, 9]%.

4.4 RχT extensions

A consistent set of short-distance distance constraints [24] requires the inclusion of
the lightest pseudoscalar resonance nonet. This multiplet P ′ must be included for the
sake of consistency between different observables and the constraints they impose.
This multiplet is P ′ =

∑8
a=0

λaP ′a
√
2

, and assuming ideal mixing, its diagonal elements
are (P ′

11, P
′
22, P

′
33) =

1√
2
(π1300+ η1295,−π1300+ η1295,

√
2η′1405), where the sub-indexes

refer to the mass of the resonances in MeV. The kinematic and interaction terms
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are [31]:

Leven
P ′ =

1

2
⟨∇µP

′∇µP ′⟩+ idm⟨P ′χ−⟩,

Lodd
P ′ = εµνρσ⟨κP5 {f

µν
+ , fρσ

+ }P ′ + κPV
3 {V µν , fρσ

+ }P ′ + κPV V V µνV ρσP ′⟩. (4.13)

A discussion on correct asymptotic behavior for ⟨V V P ⟩ correlators is done in ref. [32]
and it demonstrates that for the complete set of high energy conditions for ⟨V V P ⟩
to be fulfilled, two vector meson and two pseudoscalar resonances (not to be con-
fused with pGb) must be included. However, it is mentioned that no change in the
pseudoscalar transition form factor functional form occurs as the second multiplet of
pseudoscalar resonances is included. So, motivations for including more resonances
exist; however, the problem of working them out limits the richness of the hadronic
spectrum, so as to be useful and pragmatic. The inclusion of heavier particles is
systematic but no computationally trivial, making this last note important.
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5. The aµ Anomaly

The interaction between magnetic field and angular momenta is a well known phe-
nomenon in classical electrodynamics, a particle with a non-zero angular momentum
interacts with a magnetic field [33]. In quantum theory the same happens when a
non-zero spin particle interacts with a magnetic field [34]. However, a factor g be-
tween the classical prediction and the quantum case appears.
This quantum observable can be calculated for leptons with extreme precision within
the electromagnetic quantum theory introduced in chapter 1, QED. Experimental
information is unavailable for τ since it lives much shorter that the lighter leptons
e, µ. For both e and µ there is a tension between experiment and The Standard
Model’s prediction (with opposite signs, however). This difference can be caused by
new physics, which is generically suppressed by the factor m2

l

Λ2
NP

, so µ will in principle
be more sensitive to new physics 1.

5.1 Classical description of the gyromagnetic ratio

For the understanding of the quantum nature of the gyromagnetic ratio, a classical
description can be helpful as a starting point. So let us begin with the description
of the magnetic dipole moment of a loop of charge Q and mass M that rotates with
an angular frequency ω.

Figure 5.1. Rotating charged loop.

1Despite ae is measured more precisely, this sensitivity to ΛNP makes currently the new physics
scale probed by aµ ∼ 20 times higher than for the electron.
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The loop has both orbital angular momentum (L⃗) and magnetic dipole moment
(m⃗), these quantities are related by:

m⃗ =

(
Q

2M

)
L⃗. (5.1)

The factor connecting the magnetic dipole moment with the angular momentum is
called the gyromagnetic ratio, which also applies for a pointlike particle. If classical
theory were right, a lepton with spin 1

2
would have the gyromagnetic ratio

|m⃗|∣∣∣S⃗∣∣∣ = eℏ
2m

, (5.2)

this is the so called Bohr magnetron, so that, in these units, g would be one.

5.2 µ Interaction With Light

Since µ is more sensitive than e to new physics, it is more interesting to look for a
discrepancy in here. Also, the current status of the tension is greater in µ [35]. The
observable in the scope of QFT is described by the following interaction.

µ+

γ

µ+

Figure 5.2. µ+ interaction with a photon.

The blob in Figure 5.2 represents every possible contribution to this interaction.
The tree level contribution in QED comes from (1.1), in the so called Gordon’s
decomposition [18]

ūs(p
′)γµur(p) =

1

2m
ūs(p

′)[(p′ + p)µ + iσµν(p′ − p)ν ]ur(p), (5.3)

which defines the interaction of a µ with transferred momentum p−p′ in the interac-
tion with a photon, which is a rotated version of (c) in Figure 1.1. The second term
in (5.3) is the one which defines the electromagnetic interaction of a photon with
the spin of a lepton. The spin operator is proportional to σµν

2
, so the gyromagnetic

ratio is e
m

and g = 2, instead of one, that would correspond to a classical angular
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momentum. This is the tree level contribution, which gets slightly modified by loop
corrections from all SM sectors: QED, electroweak and QCD.

5.3 1-Loop Corrections

Since the deviation from the QED classical result is the interesting observable, the
anomalous magnetic moment of the muon is defined as:

aµ =
(g − 2)µ

2
. (5.4)

The first correction to the fundamental value of gtree = 2 comes from the 1 loop
QED contributions which are found in Figure 2.3. After renormalization, just (b)
and (c) terms contribute to the vertex correction. And after explicit calculation,
just the diagram in (b) contributes in the famous Schwinger’s result

aµ =
α

2π
= 0.00116. (5.5)

There are second order contributions coming from the EW theory, for example

µ+

γ

µ+

µ+ µ+

H

Figure 5.3. µ+ interaction with a photon with a µ−H − µ loop.

As this contribution, there are other 3 in the EW theory at one-loop level,
involving as well Z bosons and neutrinos. Since QED and EW theories are per-
turbative, next to next to leading order and further corrections will increase the
precision of the theoretical prediction, which will converge fast.

5.4 BNL and FNAL Experiments and the anomaly

In 2004 a dedicated experiment in Brookhaven National Lab measured aµ [36] with
unprecedented precision, finding a discrepancy between 2.2 and 2.7σ with respect to
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the Standard model prediction. Both experiment and theoretical results improved
and when Fermi National Lab performed a more precise measurement [37], the
anomaly increased to 4.2σ, close to the required 5σ that would confirm (indirectly)
the existence of new physics. These results are illustrated in Figure 5.4.

Figure 5.4. Experimental results and their deviation from The Standard Model [38].

5.4.1 Experimental Configuration

The experimental configurations are the same for both experiments (and come from
the last CERN experiments), it is the precision (both systematically and statisti-
cally) which improves from BNL’s to FNAL’s. A picture of the last experiment is
shown in Figure 5.5.

Figure 5.5. Picture of the muon g-2 experiment in FNAL [38].

The experiment consists in µ+, which enter a solenoid of constant magnetic
field right after the decay π+ → µ+νµ (this decay occurs 99.99% of the time) and
then decay via µ+ → ν̄µνee

+. The solenoid is surrounded by detectors which are
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sensitive to e+’s energy and the direction of its motion. π+ decays are ideal, since
the two-body decay has everything fixed, as it is seen in Figure 5.6.

π+νµ µ+

s⃗νµ → ← s⃗µ+

Figure 5.6. Diagram for π+ → µ+νµ. See the main text.

The above arrow in Figure 5.6 shows the direction of the momentum of each
particle and the bottom arrow is for the spin’s projection in this direction (helicity).
Since π+ is a spin 0 particle, conservation of angular momentum ensures that spins
are antiparallel. Also, the conservation of momentum warrants that the particles
go back-to-back. Combined with the fact that νs are always left-handed, since
they are massless to an excellent approximation, this translates into left-handed
helicity neutrinos. This means that their spin projection is always antiparallel to its
momentum. This fixes completely that the µ+ spin projection is always antiparallel
to the direction of its motion. The µ+ starts completely polarized, but when it
moves in a magnetic field B, the spin precesses with a frequency

ω0 = gµ
Be

2mµ

, (5.6)

where gµ is the muon gyromagnetic ratio. The µ+ decays µ+ → ν̄µνee
+, and the

maximum energy e+ are detected, since the maximum energy is known and its direc-
tion is registered. Because the maximum energy e+ comes in the forward direction
of the antimuon’s displacement, it inherits the µ+ polarization, as they are ultrarela-
tivistic and, because of that, have right handed helicity (the direction of the motion
of e+ is the direction of antimuon’s spin before its decay). The maximum energy
positron’s direction is detected, at any point of the solenoid, which means that the
antimuon’s polarization can be measured at all points. This measurement, will be
compared with the oscillation frequency of the antimuons inside the solenoid, which
is [33]:

ω0 =
Be

mµ

. (5.7)

With B calibrated (this needs to be done with exquisite precision and is one of the
experimentalists warhorse), a direct extraction of aµ can be performed:

ω0 − ωc =
(g − 2)µ

2
(ω0), (5.8)
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Figure 5.7. Different contributions to aµ. The solid blue bars stand for theoretical
predictions, the light blue bars are the errors for each one. The solid red lines are the
experimental measurements and the dotted red lines indicate the reach of future experi-
mental efforts [39].

Then, all the collected data can be translated into ω0 and, with ωc known, aµ is
obtained, in a very precise way 2.

5.5 Different contributions to aµ

The different contributions to the muon g − 2 are summarized in Figure 5.7.

As it can be observed in Fig. 5.7, the main contributions come from QED cal-
culations up to 3 loops, the 4 and 5 loops corrections are comparable with hadronic
and EW contributions. However, it is observed that the hadronic uncertainties are
of the same order of forthcoming aµ measurements. For matching the experimental
advances, the main effort must be done in reducing the hadronic errors.

The current status of the theoretical calculation and experimental data is [30,
8]:

aTh′20
µ = 116591810(43)× 10−11,

aExp′21
µ = 116592061(41)× 10−11,

(5.9)

so that the current tension between experiment and theory is [8]:

∆aµ = aexpµ − athµ = −251(59) , (5.10)

amounting to 4.2 standard deviations.

2In practice, not only maximum energy positrons are used. For the others, the knowledge of
muon decay properties, according to Michel’s distribution, is employed.

52



5.5.1 QED contributions

The diverse QED contributions were calculated at different moments in history.
The first computation was made by Julian Schwinger in 1951 [40] and it consisted
in 1 diagram. The 2-loop calculation was performed by A. Petermann and C.M.
Sommerfeld in 1956 [41, 42] and it included 7 diagrams. 3-loop calculation was done
by S. Laporta and E. Remiddi [43] and it comprised 72 diagrams. 4-loop calculation
was accomplished by S. Laporta [44] and it consisted in 891 diagrams. Finally, the
5-loop calculation was performed numerically with 3% error by the T. Kinoshita’s
group [45] and it consisted in 12672 diagrams. The current value for the total QED
contribution is:

aQED
µ = 116584718.931(104)× 10−11. (5.11)

5.5.2 EW contributions

The EW contributions were updated in 2013 by D. Gnendiger, D. Stöckinger and H.
Stöckinger-Kim up to two loops, accounting for the Higgs mass measurement [46],
the current EW total contribution is:

aEW
µ = 153.6(1.0)× 10−11. (5.12)

5.5.3 QCD contributions

As it was seen in Figure 5.7, the QCD contributions are split into two, the Hadronic
Vacuum Polarization (HVP) and the Hadronic Light by Light Scattering (HLbL).
From these, the first one can be connected to experiment directly. The second one
requires a deeper theoretical effort, since it cannot be obtained completely like that
at the moment. We will use RχT to compute its main contribution, which is unam-
biguously defined and connected to measurable form factors within the dispersive
formulation [11].

5.5.3.1 Hadronic Vacuum Polarization

The HVP is a two-loop QCD contribution (an hadronic loop is added to the Schwinger
diagram), whose general topology is depicted in Figure 5.8.

The blob includes all possible intermediate hadronic states. The intermediate
line can be connected with the e+e− → hadrons amplitude trough the spectral
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µ+ µ+

γ

Figure 5.8. HVP general diagram.

theorem. The currently accepted value for the HVP contribution is [8]:

aHV P
µ = 6845(40)× 10−11. (5.13)

5.5.3.2 Hadronic Light by Light Scattering

HLbL is the hardest calculation to perform, since it cannot be connected unambigu-
ously to experimental data. An EFT approximation or dispersive methods can be
employed in order to consider as many contributing processes as possible, which are
in principle connected to measurable data. The bigger contributions to HLbL are
the pseudoscalar pole ones, which will be discussed in the two last chapters. The
general diagram for this is shown in Figure 5.9, that is order α suppressed with
respect to the leading contribution to HVP.

µ+ µ+

γ

Figure 5.9. HLbL general diagram. The blob includes any type of hadron interactions.

The blob contains all possible intermediate hadronic states. It can be described
by RχT by taking into account the most relevant hadronic states. The current value
for HLbL is:

aHLbL
µ = 92(18)× 10−11. (5.14)
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This is consistent with the upper limit set in ref. [47] which is based on the fact that
the hadron loop is almost saturated by parton level effects, this bound is aHLbL

µ <

159× 10−11.
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6. Contribution of the π0 pole to aµ

From all the contributions to the HLbL piece of the anomalous magnetic moment of
the muon in the standard model, the most important one is the pseudoscalar-pole
contribution [8]. Its computation cannot be performed in perturbation theory, so an
EFT (or dispersive approach or model) must be used instead. The current tension
between experiment and theory in aµ has turned it into a precision problem, so
evaluating this contribution with a reduced error is very important. The diagrams
that describe this process are:

µ+ µ+

γ

q3

P

q2

q1

µ+ µ+

γ

q3 q2

P

q1

µ+ µ+

γ

q3 q1

P

q2

Figure 6.1. Feynman diagrams for the pseudoscalar-pole contribution to the HLbL piece
of aµ.
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6.1 Pseudoscalar-pole contributions

The pseudoscalar pole contributions up to date [8] are:

P aP−pole
µ × 1011

π0 63.0+2.7
−2.1

η 16.3(1.4)
η′ 14.5(1.9)

π0 + η + η′ 93.8+4.0
−3.6

Table 6.1. SM predictions for the pseudoscalar-pole contributions to the HLbL piece of
aµ.

The other contributions are smaller, these ones are π,K loops/boxes, S-wave
ππ rescattering, scalars, tensors, axial vectors, u, d, s-loops/short-distance and c-
loop. After summing up all these contributions, the magnitude remains similar but
the error grows almost 5 times. Its current value is [8]

aHLbL
µ × 1011 = 92± 18. (6.1)

6.2 π0 pole contribution to the Hadronic light-by-

light piece of aµ

The pseudoscalar-pole contribution to the HLbL tensor can be easily obtained within
the language of Green’s functions. Inserting the identity as a sum over the QCD
spectrum ((1 =

∑
X

∫
dΠx |X⟩ ⟨X|, with |X⟩ on-shell intermediate hadronic states)

within the HLbL tensor [9, 48], it is obtained that such function exhibits well-
isolated poles for the lightest pseudoscalar states. From here, the π0 contribution
can be taken from this sum with X = π0. The γ with momenta qi are off-shell,
and the external γ is the only on-shell photon in the contribution. This procedure
translates the diagrams in Figure 6.1 into the integral:

aHLbL,π0−pole
µ = −2π

3

(α
π

)3 ∫ ∞

0

dQ1dQ2

∫ +1

−1

dt
√
1− t2Q3

1Q
3
2

×
[
F1I1(Q1, Q2, t)

Q2
2 +m2

π

+
F2I2(Q1, Q2, t)

Q2
3 +m2

π

]
,

(6.2)
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where Q2
3 = Q2

1 + Q2
2 + 2Q1Q2t. Fi are expressed in terms of the transition form

factors:

F1 = Fπγ∗γ∗(Q2
1, Q

2
3)Fπγ∗γ∗(Q2

2, 0),

F2 = Fπγ∗γ∗(Q2
1, Q

2
2)Fπγ∗γ∗(Q2

3, 0), (6.3)

where Ii are defined as:

I1(Q1, Q2, t) =
−1
m2

µQ
2
3

[
4m2

µt

Q1Q2

+ (1−Rm1)

(
2Q1t

Q2

4(1− t2)
)

−(1−Rm1)
2Q1t

Q2

− 8X(Q1, Q2, t)(Q
2
2 − 2m2

µ)(1− t2)
]

I2(Q1, Q2, t) =
−1
m2

µQ
2
3

[
2(1−Rm1)

(
Q1t

Q2

+ 1

)
+ 2(1−Rm2)

(
Q2t

Q1

+ 1

)
4X(Q1, Q2, t)(Q

2
3 + 2m2

µ(1− t2))
]
,

(6.4)

in which X(Q1, Q2, t) and Rmi are defined as:

X(Q1, Q2, t) =
(1− t2)−1/2

Q1Q2

arctan

(
z
√
1− t2

1− zt

)
Rmi =

√
1 +

4m2
µ

Q2
i

. (6.5)

Finally, z is defined as:

z =

(
Q1Q2

4m2
µ

)
(1−Rm1)(1−Rm2). (6.6)

According to this definition of the model independent computation of aµ, the only
input which is unknown is the transition form factor of the pion Fπγ∗γ∗(Q1, Q2),
which will be calculated from our EFT, whose constants will be later set by asymp-
totic QCD constraints and experimental data. The resulting two loop integrals can
be treated by first performing the angular integration analytically, using the method
of Gegenbauer polynomials, followed by a numerical evaluation of the remaining two
dimensional integration over the moduli of the Euclidean loop momenta [10]. The
integral in eq. (6.2) can be performed as a double integral instead of a triple one 1

1This can also be accomplished by setting the pion on-shell by means of a delta function, with
good enough approximation in the numerical integration.
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if the pole form factor is written in the form:

Fπ0γ∗γ∗(q21, q
2
2) =

Fπ

3

f(q1)−∑
MVi

1

q22 −M2
Vi

gMVi
(q21)

 . (6.7)

After the angular integration in eq. (6.2), assuming -as it holds in physically moti-
vated cases- that π0-TFF has the shape in eq. (6.7), the pion pole contribution to
the HLbL piece of aµ is:

aHLbL:π0−pole

µ =
(α
π

)3 [
aHLbL:π0(1)
µ + aHLbL:π0(2)

µ

]
, (6.8)

where aHLbL:π0(1)
µ and aHLbL:π0(2)

µ are defined as:

aHLbL:π0(1)
µ =

∫ ∞

0

dQ1

∫ ∞

0

dQ2

wf1(Q1, Q2)f
(1)(Q2

1, Q
2
2) +

∑
MVi

wg1(MVi
, Q1, Q2)g

(1)
MVi

(Q2
1, Q

2
2)

 ,
aHLbL:π0(2)
µ =

∫ ∞

0

dQ1

∫ ∞

0

dQ2

∑
M=mπ ,MVi

wg2(M,Q1, Q2)g
(2)
M (Q2

1, Q
2
2), (6.9)

with

f (1) =
Fπ

3
f(−Q2

1)Fπ0γ∗γ∗(−Q2
2, 0),

g
(1)
MVi

=
Fπ

3

gMVi
(−Q2

1)

M2
Vi

Fπ0γ∗γ∗(−Q2
2, 0),

g(2)mπ
=
Fπ

3
Fπ0γ∗γ∗(−Q2

1,−Q2
2)

f(0) +∑
MVi

gMVi
(0)

M2
Vi
−m2

π

 ,

g
(2)
MVi

=
Fπ

3
Fπ0γ∗γ∗(−Q2

1,−Q2
2)

gMVi
(0)

m2
π −M2

Vi

,

(6.10)
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where the weight functions wf1(Q
2
1, Q

2
2), wgi(M

2, Q2
1, Q

2
2) are:

wf1(Q1, Q2) =
π2

Q2
2 +M2

π

1

6m2
µQ1Q2

{
− 4(2m2

µ −Q2
2)(Q

2
1 −Q2

2)
2 ln [1+

(Q2
1 +Q2

2 −R0)(Q2
1 −R

mµ

1 )(Q2
2 −R

mµ

2 )

8m2
µQ

2
1Q

2
2

]
+

[
−4m2

µQ
2
1Q

2
2 −

1

m2
µQ

4
1Q

4
2

+
1

2m4
µ

Q4
1Q

6
2 +Q6

1 − 3Q4
1Q

2
2 −Q2

1Q
4
2 +Q6

2

](
1− R

mµ

1

Q2
1

)
− (Q2

1 −Q2
2)

2

×R0

(
1− R

mµ

1

Q2
1

)
+

1

m2
µ

Q2
2(Q

4
2 − 4m4

µ)R
mµ

1 −
1

2m4
µ

Q4
1(Q

2
2 − 2m2

µ)R
mµ

2

+
1

2m4
µ

(Q2
2 − 2m2

µ)(Q
2
1Q

2
2 − 2m2

µQ
2
1 − 2m2

µQ
2
2)R

mµ

1 R
mµ

2

}
,

wg1(M,Q1, Q2) =
π2

Q2
2 +M2

π

1

6m2
µQ1Q2

{
− 4(2m2

µ −Q2
2)(Q

2
1 −Q2

2)
2 ln [1+

(Q2
1 +Q2

2 −R0)(Q2
1 −R

mµ

1 )(Q2
2 −R

mµ

2 )

8m2
µQ

2
1Q

2
2

]
+ 4(2m2

µ −Q2
2)[M

4 + (Q2
1 −Q2

2)
2

+ 2M2(Q2
1 +Q2

2)] ln

[
1 +

(M2 +Q2
1 +Q2

2 −RM)(Q2
1 −R

mµ

1 )(Q2
2 −R

mµ

2 )

8m2
µQ

2
1Q

2
2

]
−
[
M6 + 3M4Q2

1 + 3M2Q4
1 + 3M4Q2

2 + 2M2Q2
1Q

2
2 + 3M2Q4

2 −
M2

m2
µ

Q2
1Q

4
2

]
×
(
1− R

mµ

1

Q2
1

)
− (Q2

1 −Q2
2)

2R0

(
1− R

mµ

1

Q2
1

)
− M2

m2
µ

Q2
1(Q

2
2 − 2m2

µ)R
mµ

2

(
1

− R
mµ

1

Q2
1

)
+ [M4 + 2M2Q2

1 + 2M2Q2
2 +Q4

1 +Q4
2 − 2Q2

1Q
2
2]R

M

(
1− R

mµ

1

Q2
1

)}
,

wg2(M,Q1, Q2) =
π2

6m2
µM

2Q1Q2

{
−M2R

mµ

1 R
mµ

2 + 4[m2
µ(Q

2
2 −Q2

1) + 2Q2
1Q

2
2](Q

2
1 −Q2

2)

× ln

[
1 +

(Q2
1 +Q2

2 −R0)(Q2
1 −R

mµ

1 )(Q2
2 −R

mµ

2 )

8m2
µQ

2
1Q

2
2

]
+ 4[M2m2

µ(Q
2
1 −Q2

2)

[−2Q2
1Q

2
2 +m2

µ(Q
2
1 −Q2

2)] + 2M2[Q2
1Q

2
2 +m2

µ(Q
2
1 +Q2

2)]] ln

[
1+

(M2 +Q2
1 +Q2

2 −RM)(Q2
1 −R

mµ

1 )(Q2
2 −R

mµ

2 )

8m2
µQ

2
1Q

2
2

]
+M4Q2

1 + 2M2Q4
1 +M4Q2

2

−M2Q2
1Q

2
2 + 2M2Q4

2 +Q2
1(Q

2
1 +Q2
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1
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1
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2(Q
2
2 − 3Q2
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1

− R
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2
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2
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−Q2

1(M
2 +Q2

1 +Q2
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,

(6.11)
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and the Rmµ

i , R0 and RM are:

R
mµ

i =
√
Q4

i + 4m2
µQ

2
i i = 1, 2,

RM =
√

(M2 +Q2
1 +Q2

2)
2 − 4Q2

1Q
2
2,

R0 =
√

(Q2
1 +Q2

2)
2 − 4Q2

1Q
2
2.

(6.12)

This method, reduces the triple integral in eq. (6.2) into a double integral which
can be computed by using numerical methods. Since the triple integral has inverse
trigonometric functions of Q1, Q2, its evaluation becomes demanding even by using
numerical methods, so the procedure of Gegenbauer polynomials becomes useful
and convenient for Fπγ∗γ∗ with higher complexity, as in the case of two vector meson
multiplets of resonances which we will be working in this thesis. In previous models
for the construction of π-TFF this method was used for the computation of aµ.
For academical purposes, we performed the computation of them and reproduced
correctly all values of ref. [10], see Table 6.2. The expressions for π-TFF in these
models are:

FWZW
π0γ∗γ∗(q21, q

2
2) = −

NC

12π2Fπ

,

FVMD
π0γ∗γ∗(q21, q

2
2) = −

NC

12π2Fπ

M2
V

(q21 −M2
V )

M2
V

(q22 −M2
V )
,

FLMD
π0γ∗γ∗(q21, q

2
2) =

Fπ

3

q21 + q22 − NC
4π2

M4
V

F 2
π

(q11 −M2
V )(q

2
2 −M2

V )
,

FLMD+V
π0γ∗γ∗ (q21, q

2
2) =

Fπ

3

q21q
2
2(q

2
1 + q22) + h1(q

2
1 + q22)

2 + h2q
2
1q

2
2 + h5(q

2
1 + q22) + h7

(q21 −M2
V1
)(q22 −M2

V1
)(q21 −M2

V2
)(q22 −M2

V2
)

,

(6.13)

where the constants in the LMD+V are[10] h1 = 0, h5 = 6.88 ± 0.61GeV4, h7 =

−NC

4π2

M4
V1

M4
V2

F 2
π

and h2 is unknown but will be taken from −10GeV2 to 10GeV2 and
since in the WZW case the form factor integral is divergent, it is integrated just
from 0GeV to 1GeV.

6.3 Pion Transition Form Factor (π0 TFF)

As it can be seen in Table 6.1, the π0 pole is the biggest contribution to the whole
aHLbL
µ , so the precise descriptions of the diagrams in Figure 6.1 in the case of P = π
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Form Factor a
HLbL:π(1)
µ a

HLbL:π(2)
µ aHLbL:π−pole

µ × 1010

WZW 0.095 0.0020 12.2
VMD 0.044 0.0013 5.6
LMD 0.057 0.0014 7.3

LMD+V (h2 = −10GeV2) 0.049 0.0013 6.3
LMD+V (h2 = 0GeV2) 0.045 0.0013 5.8

LMD+V (h2 = 10GeV2) 0.041 0.0013 5.3

Table 6.2. Results for the terms a
HLbL:π0(1)
µ , a

HLbL:π0(2)
µ y aHLbL:π0−pole

µ for different
models.

π0

γ∗

γ∗

Figure 6.2. π0 Transition Form Factor.

are fundamental for the precision in the calculation of the HLbL piece of aµ. The
vertex with two photons and one neutral pion is described by the π0-TFF, as seen
in Fig. 6.2.

The blob in Figure 6.2 can be described by RχT so that it ensures χPT at low
energies and asymptotic QCD for high energies, in such a way that it can be used
at all virtualities as the loop integrals go from 0 to ∞. Consequently, this vertex
construction and computation are the building blocks for the theoretical calculation
of aHLbL:π0−pole

µ .

6.4 π0-TFF in RχT

The calculation of π0-TFF can be performed with all the formalism constructed in
Chapter 3. The procedure is similar to the one for ω → πγ, with two important
remarks: first, explicit chiral symmetry breaking terms are included (as they are
necessary at the current level of precision); second, γ in this case are off-shell par-
ticles, since in the diagrams of Figure 6.1, the π0-TFF is needed with one or two
virtual γs.
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6.4.1 RχT Lagrangian for the π-TFF including the lightest

meson resonances

The transition form factor can be computed explicitly in RχT, with the uncon-
strained constants coming from 2 the order p6 chiral contributions in equation (4.6),
the odd-intrinsic parity sector with 1 and 2 resonances in equations (4.3) and (4.8),
respectively, and the pseudoscalar resonance P → P ′ transition vertex. In the 1
multiplet of resonances case, with chiral symmetry breaking, a set of relevant shifts
on the couplings and masses are displayed on Table 6.3.

quantity value with chiral symmetry breaking
M2

ρ(ω) M2
V − 4eVmm

2
π

FV ρ (FV + 8m2
πλV )

FV ω
1
3
(FV + 8m2

πλV )

Table 6.3. Relevant shifts on masses and couplings caused by chiral symmetry breaking.

From the pseudoscalar resonance there are relevant processes which contribute
to the π0-TFF, these are recapitulated in the diagrams of Figure 6.3.
These diagrams contribute to the process, resulting in shifts on the constants intro-
duced before:

CW
7 → CW∗

7 = CW
7 +

4dmκ
P
5

3M2
π(1300)

,

c3 → c∗3 = c3 +
dmMV κ

PV
3

M2
π(1300)

,

d2 → d∗2 = d2 +
dmκ

PV V

2M2
π(1300)

. (6.14)

6.4.2 π0 TFF for LMD

LMD stands for lowest meson dominance. That is, only the pseudo-Goldstone
bosons and the lightest vector (and, in this case, pseudoscalar) resonances are ac-
counted for. The amplitude one gets with all these contributions is:

MRχT :V,P,P ′

π0γ∗γ∗ = ie2ϵµνρσq1µq2νε
∗
1ρε

∗
2σFπ0γ∗γ∗(q21, q

2
2), (6.15)

2We recall that the Wess-Zumino-Witten part, calculated in equation (3.43, depends only on
the pion decay constant and the number of colors.
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π0 π1300

(a)

π0

γ∗

γ∗

π1300

ω

ρ0

(b)

π0

γ∗

γ∗

π1300

(c)

π0

γ∗

γ∗

π1300

ω(ρ0)

(d)

Figure 6.3. Feynman diagrams involving π(1300) relevant for π0-TFF.

where FRχT :V,P,P ′

π0γ∗γ∗ (q21, q
2
2) is the π0-TFF. And for the case of RχT with pGb(P), 1

vector meson resonance multiplet (V) and a pseudoscalar meson resonance multiplet
(P’) we get:

FRχT :V,P,P ′

π0γ∗γ∗ (q21, q
2
2) =

2

3F

{(
−NC

8π2
− 8(q21 + q22)C

W
22 + 32m2

πC
W∗
7

)
[
−
√
2(FV + 8m2

πλV )

MV

(
mπ2c∗1235 + c125q

2
1 − c1256q22

)( 1

M2
ρ − q22

+
1

M2
ω − q22

)
+2(FV + 8m2

πλV )
2m

2
πd

∗
123 + d3(q

2
1 + q22)

(M2
ρ − q21)(M2

ω − q22)

]
+ (1↔ 2)

}
,

(6.16)
where the 1 ↔ 2 implies both the exchange of momenta and polarizations, which
leaves the non π0-TFF part of equation (6.15) invariant because of the antisymmetry
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properties of the Levi-Civita’s symbol. The multi-index couplings are defined as:

c∗1235 = c1 + c2 + 8c∗3 − c5
c1256 = c1 − c2 − c5 + 2c6

c125 = c1 − c2 + c5

d∗123 = d1 + 8d∗2 − d3, (6.17)

and come from a similar procedure as in Tables 4.3, 4.4 and 4.5.

6.4.3 Short-Distance Constraints (LMD)

Perturbative expansions for gs (or αs) at high energies can be performed for QCD,
and establish how some strong interacting observables must behave in this regime.
These conditions are called short-distance constraints and their information for
the π0-TFF case can be split into three groups: vanishing π0-TFF at high ener-
gies, correlator ⟨V V P ⟩ at high energies and dominant behavior of π0-TFF at high
energies[56, 57, 58, 59]. The first group of constraints comes from the restrictions:

lim
Q2→∞

Fπ0γ∗γ∗(−Q2,−Q2) = 0, lim
Q2→∞

Fπ0γ∗γ∗(−Q2, ) = 0. (6.18)

The second group of constraints comes from the behavior of the ⟨V V P ⟩ QCD cor-
relator:

(ΠV V P )
abc
µν (p, q) = i2

∫
d4xd4yei(px+qy) ⟨0|T

{
V a
µ (x)V

b
ν (y)P

c(0)
}
|0⟩ , (6.19)

where V a
µ and P c are the even parity vector octet and the odd parity pseudoscalar

conserved currents in (3.11), respectively. The two groups of constraints impose the
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following relations between the RχT couplings[24, 7]:

c1 = c2 − c5 = c3 = c125 = c1235 = 0,

c∗1235 = 8c∗3 =
8dmκ

PVMv

m2
π(1300)

=
NCe

V
mMV

8
√
2π2FV

,

d∗123 =
F 2

8F 2
V

+
4dmκ

PV V

m2
π(1300)

, d123 =
F 2

8F 2
V

,

d3 = −
NCM

2
V

64π2F 2
V

, c1256 = −
NCMV

32
√
2π2FV

,

CW∗
7 = λV = 0, κP5 = 0, CW

7 = CW
8 = CW

22 = 0. (6.20)

This reduces the π0-TFF to:

Fπ0γ∗γ∗(q21, q
2
2) =

32π2m2
πF

2
V d

∗
123 −NCM

2
VM

2
ρ

12π2Fπ(M2
ρ − q21)(M2

ω − q22)
, (6.21)

so that, in the chiral and large NC limits, it matches previous results [32][10]:

Fπ0γ∗γ∗(q21, q
2
2) = −

NCM
2
V

12π2F0(M2
V − q21)(M2

V − q22)
. (6.22)

6.5 Wrong asymptotic behavior of the LMD π0 TFF

The third set of constraints to be imposed by asymptotic QCD is the one of the
leading term at large Q2 = −q2:

lim
Q2→∞

Q2Fπ0γ∗γ∗(−Q2,−Q2) =
2F

3
, lim

Q2→∞
Q2Fπ0γ∗γ∗(−Q2, 0) = 2F. (6.23)

From these, just the second one can be reproduced by the RχT working with the
pGbs and the first multiplet of V and P resonances. There is not enough freedom left
(undetermined coupling constants) in order to give the correct behavior. The doubly
virtual π0-TFF gives a 1

q4
leading contribution for high energies. This underestimates

the π0-pole’s contribution to aµ, since it falls faster than it should, so it induces an
asymmetric systematic theory error in the evaluation of ref. [7]. This issue should
be fixed including an additional multiplet of spin-one resonances in RχT: this is the
aim of this work (here only the π0 case is included, the η and η′ contributions are
left for future work).
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6.6 Experimental input for π0 TFF couplings

Experimental input can be used to fit the free parameters from equation (6.21), in
this case, just one. For the case of η and η′, there are more parameters. Information
from CLEO [49], CELLO [50], LEP [51], BaBar [52, 53], Belle [54] and BESIII [55]
experiments can be used for this purpose. Technical details on how to obtain these
data are beyond the scope of this work, however a mention to the processes which
give us information about the π0-TFF is a good exercise to appreciate the basics of
the involved experimental methods and ideas. One of these processes is the Dalitz
decay of light pseudoscalar mesons, it gives information on the 1 virtual photon
in the time-like sector as it can be seen in Figure 6.4. The double Dalitz decay
(π0 → 2(e+e−)) gives access to the doubly virtual case[60].

π0

γ

l+

l−

γ∗

Figure 6.4. Dalitz decay of a π0.

e+e− colliders also give information on the time-like region of π0-TFF, the
specific process which is useful for this observable is the one in Figure 6.5.

π0

e+

e+

e−

e−

γ∗

γ∗

Figure 6.5. The e+e− → e+e−π0 process gives information about the π0-TFF.

And finally two-photon collisions are studied at e+e− colliders. The cross section
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of pseudoscalar meson production in two-photon collisions is proportional to the
square of the respective spacelike TFF.
For this work and in [7], just the space-like information will be used. And only the
one virtual γ case is used to estimate the values of the constants by comparison
to experimental data from all experiments except BaBar [52] since π0-TFF behaves
differently (and seem to be at odds with the Brodsky-Lepage constraint) than the
rest of high-energy data (particularly from Belle).

6.7 Results of π0-pole contribution to aµ (LMD)

In the RχT scheme with one multiplet of pseudoscalar and vector resonances, the
results for fitting the constants in (6.21) to experimental data (except for BaBar),
are gathered in Table 6.4 [7]. The fit is not sensitive to F 2

V , F 2
π and d∗123 but only

constant fit without BaBar data
d̄123 (−2.3± 1.5)× 10−1

MV (791± 6)MeV
eVm (−0.36± 0.10)

Table 6.4. Constants obtained from π0-TFF experimental data to d̄123, MV and eVm in
(6.21).

to the combination F 2
V d∗123
F 2
π

which was called d̄123 in [7] 3. With this information, the
π0-pole contribution to the HLbL piece of aµ was calculated from (6.2) using the
data of Table 6.4 in equation (6.21). The obtained value was [7] 4:

aHLbL,π0−pole
µ = (58.1± 0.9)× 10−11. (6.24)

This result is compatible with the dispersive one [11]

aHLbL,π0−pole
µ =

(
6.26+0.30

−0.25

)
× 10−10, (6.25)

which is taken as the reference result in the White Paper [8], once updated by the
final PrimEx measurement of Γ(π0 → γγ), to

(
6.30+0.27

−0.21

)
× 10−10.

3Other fits are provided in this reference, and the minimization included η and η′ TFF data as
well, resulting in other couplings being fitted (which we do not display here).

4This result does not include the dominant systematic uncertainty, coming from the wrong
asymptotic behaviour of the TFF, which amounted to +0.5 · 10−10 for the sum of the π0, η and η′

contributions (it is ∼ +0.3 · 10−10 for the π0-pole part).
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7. aπ−poleµ calculation via RχT in the two hadron

saturation scheme

As mentioned in the section 6.5 and at the end of 6.7, the leading asymptotic
contribution of the doubly virtual π0-TFF lead to an underestimation of the total
aHLbL:π0−pole
µ contribution. Aiming to confirm or refute the anomaly between exper-

iment and the Standard Model prediction for aµ is a precision problem, so fixing
this systematic error is needed for the RχT computation to be competitive with
those based on dispersion relations [11] and rational approximants [9]. These two
are taken as the SM prediction for the π0 and η − η′ cases, respectively.

7.1 Fixing the asymptotic behavior

As mentioned in ref. [32], the problem of wrong asymptotic behavior can be fixed if
a second vector meson resonance multiplet is included with corresponding dynamical
fields in RχT. This is the one including the first excitations of the ρ and ω states. It
is also demonstrated that for all the correct asymptotic QCD predictions to be ful-
filled, a second excitation of pseudoscalar mesons shall be included, although it will
not modify the expression for the π0-TFF (after couplings redefinition). For sim-
plicity, just a second vector meson resonance multiplet (and only in the chiral limit)
was added to the previous work in ref. [7], so that the short-distance constraints
were fulfilled for this observable. This was just meant to estimate the associated
uncertainty, as explained in this reference. Here this will be worked out consistently.

7.2 RχT Lagrangian including two vector meson res-

onances

The Lagrangian of this scheme of RχT which is often called two hadron (multiplets)
saturation (THS), is similar to the case of one hadron multiplet saturation (single
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meson dominance or LMD). The chiral Lagrangian will be written just once, since
the inclusion of new particles does not change the low-energy Lagrangian (it only
modifies the numerical values of their couplings). The pseudoscalar resonance sector
will just have duplicated κPV term (V → V ′) and triplicated the κPV V term (V V →
V ′V ′ and V V → {V, V ′}). The even and odd sector of RχT will be duplicated
with the substitution V → V ′. The new terms which are more different are those
of V V ′P type, which will be labeled Oi

V V ′P and will be 6, instead of the 4 of the
V V P and V ′V ′P cases. For summing up all that has been constructed so far, the
complete LTHS is:

LTHS =
F 2
π

4
⟨uµuµ + χ+⟩+ LWZW +

∑
j=7,8,22

CW
j OW

j

+ Lkin
V + Leven

V + Lodd
V + Leven

V V + Lodd
V V

+ Lkin
V ′ + Leven

V ′ + Lodd
V ′ + Leven

V ′V ′ + Lodd
V ′V ′

+ Leven
P ′ + Lodd

P ′

+ εµνρσ⟨κPV ′

3 {V ′µν , fρσ
+ }P ′ + κPV ′V ′

V ′µνV ′ρσP ′ + κPV V ′ {V µν , V ρσ}P ′⟩

+
∑

n=a,b,c,d,e,f

dnO
n
V V ′P ,

(7.1)
where -for the primed case-, the couplings will be correspondingly primed (MV ′ , FV ′ ,
λV ′ , c′i, d

′
i, e

V ′
m , κ

PV ′
3 , κPV ′V ′) and there will be mixed V, V ′ terms too. The operators

On
V V ′P are given in Table 7.1.

n On
V V ′P

a εµνρσ⟨{V µν , V ′ρα}∇αu
σ⟩

b εµνρσ⟨{V µα, V ′ρσ}∇αu
ν⟩

c εµνρσ⟨{∇αV
µν , V ′ρα}uσ⟩

d εµνρσ⟨{∇αV
µα, V ′ρσ}uν⟩

e εµνρσ⟨{∇σV µν , V ′ρα}uα⟩
f iεµνρσ⟨{V µν , V ′ρσ}χ−⟩

Table 7.1. Interaction terms with one vector meson resonance, one excited vector meson
resonance and a pGb.

These terms include two resonances from different multiplets in the same dia-
grams of Figure 7.1. For π0, just these crossed ρω′ and ωρ′ contributions will appear,
for η and η′, crossed contributions do not appear, just ρρ′, ωω′ and ϕϕ′.
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π0

γ∗

γ∗

π1300

ω(ρ0)

ρ′0(ω′)

Figure 7.1. Contribution from a π0 → π(1300) transition and then a π(1300) → ω(ρ0)ρ′0(ω′)
vertex.

7.3 π0-TFF in THS RχT

With LTHS, π0-TFF can be obtained again in the same way as it was calculated in
the last chapter. We got:

FTHS
π0γ∗γ∗(q21, q

2
2) =

2

3Fπ

{(
−NC

8π2
− 8(q21 + q22)C22

W + 32m2
πC

W∗
7

)
[
−
√
2(FV + 8m2

πλV )

MV

(
mπ2c∗1235 + c125q

2
1 − c1256q22

)( 1

M2
ρ − q22

+
1

M2
ω − q22

)
+ 2(FV + 8m2

πλV )
2m

2
πd

∗
123 + d3(q

2
1 + q22)

(M2
ρ − q21)(M2

ω − q22)

−
√
2(FV ′ + 8m2

πλV ′)

MV ′

(
m2

πc
′∗
1235 + c′125q

2
1 − c′1256q22

)( 1

M2
ρ′ − q22

+
1

M2
ω′ − q22

)

+2(FV ′ + 8m2
πλV ′)2

m2
πd

′∗
123 + d′3(q

2
1 + q22)

(M2
ρ′ − q21)(M2

ω′ − q22)
+ (1↔ 2)

]
+ 2(FV + 8m2

πλV )(FV ′ + 8m2
πλV ′)

(
m2

πd
∗
abcf + (q21 + q22)dabcd

)(
1

(M2
ρ − q21)(M2

ω′ − q22)
+

1

(M2
ρ′ − q21)(M2

ω − q22)

)}
,

(7.2)
where the multi-index primed coupling constants have the same definition as the
unprimed ones in (6.17), with corrections as the unprimed couplings in (6.14). The
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mixed multiplet multi-index coupling constants are defined as:

dabcd = da + db − dc − 2dd,

dabcf = da + db − dc + 8d∗f , (7.3)

where df gets corrections from the κV V ′P term in eq. (7.1):

df → d∗f = df +
dmκ

PV V ′

2m2
π(1300)

. (7.4)

7.4 Short Distance Constraints

Again, eq. (7.2) can be simplified, since the couplings in FTHS
π0γ∗γ∗ are constrained

from QCD high-energy behavior. For the THS case in the chiral limit, short distance
constraints have been computed in refs. [32, 61]. Corrections to the chiral limit case
are order by order in the m2

π expansion, since π0’s mass is the scale of the symmetry
breaking, furthermore the chiral counting is order by order in the p2 expansion.
These facts allow us to calculate the short distance constraints at both p2 and m2

π

orders.

7.4.1 limQ2→∞Fπ0γ∗γ∗(−Q2,−Q0) = 0 Constraints

For this limit to be satisfied, both quadratic and zeroth order terms in q2n must
vanish independently. Besides, the m2

π expansion allows us to obtain at most 4
independent short-distance constraints, which are shown in Table 7.2.

Q2n order m2
π order constraint

Q2 m2
π there is no term at this order

Q2 m0
π CW

22 = 0
Q0 m2

π λV = λV ′ = 0

Q0 m0
π (c5 − c6) + FV ′MV

FV MV ′
(c′5 − c′6) = NCMV

64
√
2π2FV

Table 7.2. Two virtual photon constraints at different orders in Q2 and m2
π. In the third

line we have used that that C∗
7 = 0 from ⟨V V P ⟩ short distance constraints [61, 24].

7.4.2 limQ2→0Fπ0γ∗γ∗(−Q2, 0) = 0 Constraints

In the same way for this case, no more than 4 constraints can be obtained from
different orders in the diverse expansions of the theory. The results for this case are
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shown in Table 7.3.

Q2n order m2
π order constraint

Q2 m2
π

eVm
M2

V
= eV

′
m

M2
V ′

Q2 m0
π c125 = −c′125

FV ′M3
V

FV M3
V ′

Q0 m2
π c′∗1235 = −c∗1235

FV M3
V ′

FV ′M3
V
+

MV ′eV
′

m NC

8
√
2π2FV ′

Q0 m0
π 8F 2

V ′M2
V d

′
3 + 8F 2

VM
2
V ′d3 + 4FV FV ′(M2

V +M2
V ′)dabcd

+4
√
2c125FVM

2
V ′MV

(
1− M2

V ′
M2

V

)
= −M2

V M2
V ′NC

8π2

Table 7.3. One virtual photon constraints at different orders in Q2 and m2
π.

7.4.3 ⟨V V P ⟩ Constraints

All ⟨V V P ⟩ constraints at order m0
π are consistent with the chiral limit, they are

found in [61]. The relevant ones for our work are:

C∗
7 = c125 = c′125 = c1235 = c′1235 = 0. (7.5)

7.4.4 Constraints from Dominant 1
Q2 behavior in the space-

like region.

The constraints on the leading behavior of the π-TFF at high energies is set by refs.
[56][57] in the single virtual photon case and by refs. [58][59] in the doubly virtual
photon case, they are given by:

lim
Q2→∞

−Q2Fπ0γ∗γ∗(−Q2,−Q2) =
2F

3
,

lim
Q2→∞

−Q2Fπ0γ∗γ∗(−Q2, 0) = 2F, (7.6)

are at 1
Q2 order, and are collected in Table 7.4. With c5 − c6 = c56.

7.5 FTHS
π0γ∗γ∗(q

2
1, q

2
2)

After applying all short-distance constraints from the previous section, 3 indepen-
dent (combination of) couplings remain, d∗123 ∝ d̄123, d3 ∝ d̄3 and FV ′d∗abcf ∝ d̄abcf
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virtual photons m2
π order constraint

2 m2
π c56 =

c∗1235
8eVm

2 m0
π d′3 =

(
8F 2π2M3

V + 64d3π
2F 2

VM
3
V + 64

√
2c56π

2FVM
4
V

+8F 2π2MVM
2
V ′ − 64d3π

2F 2
VMVM

2
V ′ − 64

√
2c56π

2FVM
4
V ′

−M3
VM

2
V ′NC +MVM

4
V ′NC) / (64π

2F 2
V ′MV (M

2
V −M2

V ′))

1 m2
π d′∗123 = −

FV (2d∗123FV M2
V ′+d∗abcfFV ′ (M2

V +M2
V ′ ))

2F 2
V ′M

2
V

1 m0
π c∗1235 = −eVm (4F 2π2M4

V + 32d3π
2F 2

VM
2
V + 24F 2π2M2

VM
2
V ′

−64d3π2F 2
VM

2
VM

2
V ′ + 32d3π

2F 2
VM

2
V ′

+M2
VM

4
V ′NC) /

(
4
√
2π2FVMV (M

4
V −M4

V ′)
)

Table 7.4. Short-distance constraints obtained by the dominant behavior of singly and
doubly virtual photons in the π0-TFF.

(see table 7.5). The final FTHS
π0γ∗γ∗(q21, q

2
2) is:

FTHS
π0γ∗γ∗(q21, q

2
2) =

[
32π2F 2

Vm
2
π

(
1− M2

V ′

M2
V

)(
q21q

2
2 −

M2
V ′

M2
V

M4
ρ

)
d∗123

+ 64π2q21q
2
2F

2
V

(
1− M2

V ′

M2
V

)2

M2
ρd3

+ 16π2FV FV ′m2
π

(
1− M2

V ′

M2
V

)(
q21q

2
2 −M4

ρ

)
d∗abcf

+ 4F 2
ππ

2q21q
2
2(q

2
1 + q22 − 2M2

ρ ) + 24F 2
ππ

2M
2
V ′

M2
V

M2
ρ ((q

2
1 + q22)M

2
ρ − 2q21q

2
2)

+NC
M4

V ′

M2
V

M2
ρ (q

2
1q

2
2 −M4

ρ )

]
/
[
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(7.7)
In the LMD scheme, it was not possible to obtain short distance constraints from
the dominant behavior of π-TFF (as the ones in Table 7.4), since the couplings were
not enough for these asymptotic behavior to be reproduced.
If we stop the constraining of eq. (7.2) with only the relations in Tables 7.3 and 7.2
(for the LMD case, only these conditions were able to be satisfied), after setting all
couplings and masses from the second vector meson multiplet to zero, the result in
ref. [7] is correctly reproduced.
In the chiral limit, this result is in contradiction with the expression found in ref. [7]
by a sign in the d3 term. However, the behavior of FTHS

π0γ∗γ∗(q21, q
2
2) in the doubly

virtual photon case in that work is unphysical, since it becomes highly oscillatory and
acquires negative values. This is corrected if the sign is taken positive, consequently,
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new coupling expression in terms of previous couplings

d̄123
F 2
V d∗123
3F 2

π

d̄3
F 2
V d3
3F 2

π

d̄abcf
FV FV ′d∗abcf

6F 2
π

Table 7.5. Redefinition of coupling constants.

the result in eq. (7.7) will be taken as correct.
The multi-index coupling constants are set from LMD for d∗123 and d3, while fit to
available data on one virtual photon π-TFF will be used to get d∗abcf . Since there are
more couplings which are only sensitive to the doubly virtual photon case, and there
is no data in that sector, only an estimation on aHLbL,π0−pole

µ can be done. For fitting
these couplings, the η and η′ TFFs must be computed since there is information on
η-TFF available from e+e− → π+π−η for the doubly virtual case [62]. The multi-
index couplings are multiplied by different coupling constants, it will be convenient
to redefine them as it was done for d∗123 in the LMD case, see Table 7.5.
With this redefinition of the coupling constants, the expression for π0TFF is:

FTHS
π0γ∗γ∗(q21, q

2
2) =

[
96π2F 2

πm
2
π

(
1− M2

V ′

M2
V

)(
q21q

2
2 −
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V ′

M2
V

M4
ρ

)
d̄123

+ 192π2q21q
2
2F

2
π

(
1− M2

V ′

M2
V

)2

M2
ρ d̄3

+ 96π2F 2
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2
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)(
q21q
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ρ

)
d̄abcf

+ 4F 2
ππ
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/
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ρ )(q
2
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1 −M2

ρ′)(q
2
2 −M2

ω′)
]
.

(7.8)

7.6 FTHS
π0γ∗γ∗(q

2
1, q

2
2) couplings and parameters

The still free parameters will be fitted to available data, coming from CLEO [49],
BaBar [52], Belle [54] and CELLO [50] and probe the space-like region for one virtual
photon. The data set has the format (Q2,−Q2Fπ0γγ∗(−Q2, 0)), from our expression
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of π0-TFF, we get:

−Q2FTHS
π0γ∗γ∗(−Q2, 0) =

[
M2

V ′M2
ρNCQ

2 + 24F 2
ππ

2Q4

−96F 2
ππ

2m2
πQ

2
(
1− M2

V

M2
V ′

)(
d̄abcf +

M2
V ′

M2
V
d̄123

) ]
12Fππ2(Q2 +M2

ρ )(Q
2 +M2

ρ′)

(7.9)

We can redefine again the combination of coupling constants since the fit will not
be available to distinguish between d̄abcf and d̄123, entering the linear combination
d̄fit:

d̄fit = d̄abcf + d̄123
M2

V ′

M2
V

. (7.10)

Because this is a preliminary work, the couplings (some of them to be fitted, too,
in future work) are set as follows:

• d̄123 will be taken from the fit to experimental data in ref. [7].

• d̄3 will be taken from the consistent set of short-distance constraints on the
odd-intrinsic parity sector [24]:

d̄3 = −
NCM

2
V

192F 2
ππ

2
. (7.11)

• MV will be taken from the fit to experimental data in ref. [7].

• M2
V ′ will be set as the isospin average of the involved particles in this process

from the second multiplet of vector resonances, which masses will be taken
from the PDG [30].:

M2
V ′ =

M2
ρ′0 + 2M2

ρ′±
+M2

ω′

4
= (1448MeV)2. (7.12)

• In the model, the masses of Mρ(ω) are the same and can be calculated with
the data in Table 6.4.

• M2
ρ′,ω′ are equal in the simplified model, so they will be taken as M2

V ′ .

• mπ will be taken from PDG [30], in the isospin symmetry limit, in which we
are computing.

• NC = 3 is the number of colors.
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• Fπ is the pion decay constant, and its value is Fπ = 92.2 MeV [30].

• d̄fit will be fitted to available data. From it and the value of d̄123 (which will
be taken as an initial guess for d̄fit) in ref. [7], d̄abcf will be obtained.

This gives an estimate for the parameters and couplings of FTHS
π0γ∗γ∗ since the fit will

be complete until all constants are fitted to experimental data (in a joint fit together
with the η and η′ channels). In refs. [6, 7], π0-TFF is fitted with and without BaBar
data [52], since this set of measurements differs with respect to the rest of data at
high energies. Eq. (7.9) will be fitted with and without BaBar data.

7.7 Fit results

For the initial guess, we set to zero the value of dabcf since it is there where the
information of the second multiplet is mainly present, the comparison with ref. [7]
and experimental data can be observed in Figure 7.2. At low energies, it can be seen
that its behavior is very close to the LMD case, but at higher energies it approaches
the asymptotic behavior prescribed by QCD.
The values obtained from the fit of eq. (7.9) to available data are collected in the

table 7.6.
As it can be seen in eq. (7.9), the constant to be fitted is multiplied by the symmetry

d̄fit χ2/d.o.f. d̄abcf

Initial guess d̄123
M2

V ′
M2

V
= −0.778 0.170 0

With Babar Data 3.16± 1.31 0.167 3.94± 1.40
Without Babar Data 4.74± 1.06 0.170 5.51± 1.18

Table 7.6. Fit results of eq. (7.9) to available data on the π0 − TFF .

breaking parameter m2
π, so its contribution is highly suppressed compared with the

other terms. As a consequence, the fit is not very sensitive to small changes on
d̄fit as it shows the comparison between the different χ2/d.o.f., see Table 7.6. As
mentioned before, a similar structure will appear in the η−η′ case, but since their
masses are much higher than π0’s, the fit will be more sensitive to changes in the
shared parameters. In contrast with ref. [7], no accuracy improvement is obtained
by taking out BaBar data [52]. This can be due to the parameters that we are
borrowing from this analysis (instead of fitting them).
The plots resulting for 1 virtual π-TFF of eq. (7.9) with the data in Table 7.6 are
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Figure 7.2. π-TFF for the initial guess value d̄abcf = 0(solid black line), compared with all
available data from CLEO[49](blue), BaBar[52](yellow), Belle[54](green), CELLO[50](red).
Also, the LMD model from ref.[7](dashed black line) is plotted.

shown in Figure 7.3 for all data and without BaBar[52] data.
The 1 virtual photon case of π-TFF reproduces the high energy behavior which

could not be reproduced in the LMD case, this is possible due to the number of new
couplings coming from including a second multiplet of vector meson resonances.
However, there are two problems. The first one is that the coupling available to fit
in π-TFF is chirally suppressed, as it is multiplied by m2

π, therefore the experimental
data on π-TFF is not good to probe its value. The second problem is the fact that
d̄abcf and d̄123 appear in a single linear combination in the 1 virtual photon case,
but they appear in two different linear combinations in the 2 virtual photons case,
where there is no experimental data yet.
The first problem still has another consequence: even though the data is not very
sensitive to d̄fit, the integral in eq. (6.2) is. Therefore, a better approach to its
calculation must be done: the η − η′-TFF computation will help in this regard,
since the corresponding mass is comparable with the scale of the mass of the first
multiplet of vector meson resonances.
The contribution arising from the second problem is suppressed with respect to the
first one since the doubly virtual photon π-TFF just appears in the second integral
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of eq. (6.2), which weight function is 2 orders of magnitude smaller. However, in
a precision problem the small details count. The solution for this issue is the same
as in the first case: there is information about the doubly virtual transition form
factor for η [62], which will probe very valuable.
There is no available data for the doubly virtual form factor in the pion case, and the
parameter d̄3 is sensitive to this case only. By taking the parameters and couplings
as mentioned in the past section, the plot on Figure 7.4 is obtained. As it can
be seen, and has been widely mentioned during this work, the asymptotic QCD
condition was not correctly reproduced in ref. [7], and now it is fulfilled. However,
the fit to η − η′ data is still necessary to get the couplings unavailable for π and
improve the calculations (nevertheless its computation has higher difficulty and will
be addressed in future work).

7.8 π0 pole contribution to HLbL piece of aµ with

two meson resonance multiplets in the RχT

For the evaluation of eq. (6.8), partial fractions of the general f(q22) expressions in
(7.8) (using the fact that Mρ =Mω and Mρ′ =Mω′ in THS) are:

expression partial fraction
h0(q21)

(q22−M2
ρ )(q

2
2−M2

ρ′ )

h0(q21)

(q22−M2
ρ )(M

2
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ρ′ )
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(q22−M2
ρ′ )(M

2
ρ′−M2

ρ )

q22h2(q21)

(q22−M2
ρ )(q

2
2−M2

ρ′ )

h2(q21)M
2
ρ

(q22−M2
ρ )(M

2
ρ−M2

ρ′ )
+

h2(q21)M
2
ρ′

(q22−M2
ρ′ )(M

2
ρ′−M2

ρ )

q42h4(q21)

(q22−M2
ρ )(q

2
2−M2

ρ′ )
h4(q

2
1) +

h4(q21)M
4
ρ

(q22−M2
ρ )(M

2
ρ−M2

ρ′ )
+

h4(q21)M
4
ρ′

(q22−M2
ρ′ )(M

2
ρ′−M2

ρ )

Table 7.7. Partial fraction splitting of all q22 contributions in eq. (7.8) .

Fπ0γ∗γ∗(q21, q
2
2) in terms of h2i(q21) is:

Fπ0γ∗γ∗(q21, q
2
2) =

Fπ

3

[
h0(q

2
1) + q22h2(q

2
1) + q42h4(q

2
1)

(q22 −M2
ρ )(q

2
2 −M2

ρ′)

]
. (7.13)
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The h1(q21) can be obtained rearranging eq. (7.8):

h0(q
2
1) =−
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(7.14)

gMVi
(q21) and f(q21) in eq. (6.7) are related to hi(q21) by:

f(q21) = h4(q
2
1) ,

gMρ(q
2
1) = −

h0(q
2
1) +M2

ρh2(q
2
1) +M4

ρh4(q
2
1)

M2
ρ −M2

ρ′
,

gMρ′
(q21) = −

h0(q
2
1) +M2

ρ′h2(q
2
1) +M4

ρ′h4(q
2
1)

M2
ρ′ −M2

ρ

. (7.15)

Given f(q21) and gM2
V (V ′)

, and eq. (6.9), aHLbL:π0−pole
µ was calculated. Although the

integrals go from zero to infinity, the changes in their values reached the numerical
error around the scale Λ = 10GeV 2, so the integral was performed up to 30GeV 2.
This integration was performed for all combinations of limits in the values of d̄123[7]
and d̄abcf in order to get the limits of our estimation. Using the obtained coupling
and the ones set in section 7.6, the obtained bounds to the value of the pion pole
contribution to the HLbL piece of aµ in the two vector meson resonance multiplets
scheme estimate are:

4.93± 0.06 ≤ aπ
0−pole,HLbL

µ × 1010 ≤ 5.72± 0.08 (All data),

4.60± 0.06 ≤ aπ
0−pole,HLbL

µ × 1010 ≤ 5.30± 0.07 (Without BaBar),

5.97± 0.09 ≤ aπ
0−pole,HLbL

µ × 1010 ≤ 6.26± 0.09 (Initial guess). (7.16)
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The values of aµ are much more sensitive to changes in d̄fit than the single virtual
π-TFF, so the analysis should be completed by studying higher pseudoscalar poles
(η−η′). The results from all possible combinations of the d̄123 and d̄fabc, considering
the initial guess and the errors of both values can be seen in Table 7.8 which is

d̄123 d̄abcf aµ × 1010

All Data −0.40 2.54 5.72± 0.08
3.94 5.43± 0.07
5.34 5.15± 0.07
0 6.26± 0.09

−0.25 2.54 5.60± 0.08
(Central Value) 3.94 5.32± 0.07

5.34 5.03± 0.07
(Initial guess) 0 6.14± 0.09

−0.10 2.54 5.49± 0.08
3.94 5.20± 0.07
5.37 4.93± 0.06
0 6.02± 0.09

Without BaBar −0.38 4.34 5.30± 0.07
5.52 5.06± 0.07
6.70 4.82± 0.06
0 6.22± 0.09

−0.23 4.34 5.18± 0.07
(Central Value) 5.52 4.94± 0.07

6.70 4.71± 0.06
(Initial guess) 0 6.09± 0.09

−0.08 4.34 5.06± 0.07
5.52 4.83± 0.06
6.70 4.60± 0.06
0 5.97± 0.09

Table 7.8. aµ values for all combinations of errors of d̄123[7] and d̄abcf . Results with
d̄abcf ∼ 0 are the most realistic estimates.

consistent with previous calculations [8, 7, 6, 9, 10, 11, 12], provided d̄abcf ∼ 0,
corresponding to our educated guess. This is not yet an improvement over the
systematic error in ref. [7] because the high sensitivity of aµ to changes in the
coupling constants (particularly d̄abcf ) contrasted with the little sensitivity to these
couplings of the available data considered in this work. However, when all necessary
constants get fitted to the complete set of data, a more precise and reliable value
of aHLbL,π0−pole

µ will be obtained. Specifically, the computation of η − η′-TFF is
expected to improve drastically the calculation.
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(a)

(b)

Figure 7.3. Fit of eq. (7.9) to experimental data (black solid line) a) from CELLO [50],
CLEO [49], BaBar [52] and Belle [54] b) All data except BaBar [52]. The blue data is
from CLEO, the orange data is from BaBar, the green data is from Belle and the red data
is from CELLO. The shaded region is the 5σ confidence interval of each fit. The purple
dotted line is the limit of high energies and the black dotted line is the fit from LMD in
ref. [7].



Figure 7.4. THS doubly virtual photon π-TFF with the parameters and couplings from
section 7.6 and the fit values of Table 7.6 compared with the LMD case in ref. [7].
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Conclusions and Perspectives

Conclusions

QCD fundamental theory cannot be used for performing analytical calculations as
it can be done with EW theory. From this fact, an EFT is required. An EFT
based on the symmetries of the underlying theory can be constructed and used to
reproduce QCD observables at different regimes: χPT for low energies and RχT for
intermediate and high energies.

Although χPT reproduces and predicts many QCD observables at low energies
with very good precision and accuracy, as energy increases, perturbativity is lost.
For this reason, in the regime of intermediate energies, the lowest vector meson res-
onance multiplet should be included (RχT ) as it is shown in [27], still reproducing
low energy behavior. However, it is not enough for verifying particular high energy
limits. This gets fixed by adding a second vector meson resonance multiplet (THS).

The main source of error in aµ comes from the hadronic part, specifically (for
the relative error) in the Hadronic Light by Light piece. From this part, the π-pole is
the highest lone contribution, so it is important to work on a precise calculation of it.

On a previous work using EFT’s [7], π-pole contribution was calculated, how-
ever, the theory did not have enough couplings to reproduce all high energy predic-
tions, resulting in a systematic error, underestimating the calculation of aHLbL:π−pole

µ .
This problem was addressed successfully in this work by the THS scheme.

An expression for π-TFF was found within the THS scheme. By imposing short
distance constraints on this expression, a small number of couplings and parameters
remained free. As a preliminary work, these couplings and parameters except one
(which was fitted to single virtual photon experimental data) were taken from the
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LMD+V results on ref.[7], PDG[30], and the LMD+V constraints[24]. The results
for different approximations are bounded between 46.0±0.6 ≤ aπ

0−pole,HLbL
µ ×1011 ≤

62.2 ± 0.9, which is consistent with other references [8, 7, 6, 9, 10, 11, 12] but at
this stage, is not competitive given its large uncertainty (we recall that the White
Paper result for this contribution is

(
63.0+2.7

−2.1

)
× 10−11) [8].

The unique parameter that was fitted, was chirally suppressed with respect to
the rest of contributions, so its variation did not affect substantially the correlation
between the model and the experimental data. However, the variation of this cou-
pling was important for the π-pole contribution, so the results of this work are not
conclusive and will be improved.

A systematic error is unavoidable in this work as no information on doubly
virtual photon π-TFF has been measured. Some of the couplings are sensitive only
to this case, so an approximation to LMD+ V values was the best we could do for
this work.

Perspectives

There is more work to be done in the same direction and we expect that this new
computations will increase the accuracy and, in consequence, the relevance of what
was done for this thesis. The first improvement to the methodology will be to fit all
parameters and data in eq. (7.9). This will increase the sensitivity of the model to
data.

Second, as mentioned in the conclusions above, the results can be improved
since η and η′ belong to the same multiplet (the couplings to vector mesons will be
the same) but their masses are around 4 and 7 times the mass of π, which means
that chirally suppressed couplings in the π case will be around 16 and 49 times more
sensitive to data (which are a bit less precise than for π0, however).

Third, there is information for doubly virtual photons in the η-TFF[62], which
will give us light on the parameters which cannot be obtained from π data and
this will allow us to avoid using LMD+V constraints. As they are calculated in
different schemes, this approximation has a systematic error which we will evade by
performing the computation of η − η′ within the THS scheme.
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Finally, we can say that this work is incomplete until η− η′-TFF is computed,
constrained by short distance behavior and fitted to available data. This work
can be important when finalized, as it solves systematic errors in the RχT past
computations, possibly rendering it competitive with the current state of the art
calculations of the pseudo-Goldstone pole contributions to aHLbL

µ .

89





Bibliography

[1] Ch. Utpal and N. Pran, Phys. Rev. D, 66 (2002) 093001.

[2] B. Abi et al. (Muon g-2 Collaboration)Phys. Rev. Lett. 126 (2021), 141801

[3] D. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973), 1343

[4] G. Ecker, J. Gasser, A. Pich and E. de Rafael, Nucl. Phys. B 321 (1989) 311.

[5] J. Portolés, AIP Conference Proceedings 1322(2010) 178.

[6] P. Roig, A. Guevara, and G. López Castro, Phys. Rev. D 89(2014), 073016.

[7] A. Guevara, P. Roig, J.J. Sanz-Cillero JHEP 06(2018), 160.

[8] T.Aoyama et al. Phys.Rept. 887 (2020) 1-166.

[9] P. Masjuan, P. Sánchez-Puertas Phys. Rev. D 95 (2017) 054026.

[10] M. Knecht, A. Nyffeler, Phys. Rev. D 65(2002) 073034.

[11] M. Hoferichter, B. L. Hoid, B. Kubis, S. Leupold and S. P. Schneider, JHEP
10 (2018) 141.

[12] K. Raya, A. Bashir, P. Roig, Phys. Rev. D 101 (2020) 7, 074021.

[13] P. Langacker, The Standard Model and Beyond (CRC Press, 2010).
ISBN:9781420079067.

[14] Aitchison, Hey. Gauge Theories in Particle Physics: A practical introduction,
(CRC Press, 2013). ISBN: 9781466513020.

[15] M. Peskin, Concepts of Elementary Particle Physics (Oxford University Press,
2019). ISBN: 9780198812197.

[16] T.D. Lee and C.N. Yang, Phys. Rev. 104 (1956) 254-258.

91



[17] C.S. Wu et al. Phys.Rev. 105 (1957) 1413-1414.

[18] F. Mandl, G. Shaw, Quantum Field Theory (John Wiley & Sons, 1993). ISBN:
9780471105091.

[19] ATLAS Coll., Georges Aad et al., Phys.Lett.B 716 (2012) 1-29.
CMS Coll., Serguei Chatrchyan et al., Phys.Lett.B 716 (2012) 30-61.

[20] S. Scherer, M. Schindler, A Primer for Chiral Perturbation Theory (Springer,
2012). ISBN: 9783642192531.

[21] P. Pal, An Introductory Course of Particle Physics (CRC Press, 2014). ISBN:
9781482216998.

[22] D. Gross Proc.Nat.Acad.Sci. 102 (2005) 5717-5740.

[16] S. Weinberg, Physica 96A (1979) 327-340.

[23] J. Gasser, H. Leutwyler, Nucl. Phys. B 250 (1985) 465.

[24] J. Bijnens, L. Girlanda and P. Talavera, Eur. Phys. J. C23 (2002) 539.

[25] J. Wess, B. Zumino, Phys. Lett. B 37 (1971) 95.

[26] E. Witten, Phys. Lett. B 223 (1983) 422.

[27] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, E. de Rafael, Nucl. Phys. B 321
(1989) 311-342.

[28] M. Knecht and A. Nyffeler, Phys.Rev.D 65 (2011) 073034.

[29] P. D. Ruiz-Femenía, A. Pich and J. Portolés, JHEP 07 (2003) 003.

[24] P.Roig, J.J. Sanz-Cillero, Phys.Lett.B 733 (2014) 158-163.

[30] Particle Data Group, P.A. Zyla et al. PTEP 2020 (2020) 8, 083C01.

[31] K. Kamp, J. Novotny, Phys.Rev.D 84 (2011) 014036.

[32] T. Kadavy, K. Kampf, J. Novotny, [arXiv:2206.02579 [hep-ph]](2022).

[33] J.D. Jackson Classical Electrodynamics (Jhon Wiley & sons, 1999) ISBN:
047130932X.

92



[34] J.J. Sakurai, J.J. Napolitano, Modern Quantum Mechanics (Pearson, 2014).
ISBN: 9789332519008.

[35] P. Escribano, J. Terol-Calvo, A. Vicente, Phys.Rev.D 103 (2021) 11, 115018.

[36] Muon g-2 Collaboration, G.W. Bennett et al. Phys.Rev.D 73 (2006) 072003.

[37] Muon g-2 Collaboration, B. Abi et al. Phys. Rev. Lett. 126, 141801.

[38] FNAL, (2021) First results from Fermilab’s Muon g-2 experiment strengthen
evidence of new physics, [visited in 12/Feb/2023] https://news.fnal.gov/20
21/04/first-results-from-fermilabs-muon-g-2-experiment-strengthe

n-evidence-of-new-physics/.

[39] P. Sánchez-Puertas, (2021) Current progress in the muon g-2, [visited in
12/Feb/2023] https://indico.nucleares.unam.mx/event/1717/sessio
n/39/material/0/0.pdf.

[40] J. Schwinger, Phys. Rev. 82 (1951) 664-679.

[41] A. Petermann Nucl.Phys. 1 (1956) 5, 357-359.

[42] C.M. Sommerfeld Phys. Rev. 107 (1957), 328

[43] S. Laporta, E. Remiddi, Phys. Rev. 107 (1996) 328.

[44] S. Laporta Phys.Lett.B 772 (2017) 232-238.

[45] T. Kinoshita et al. Phys.Rev.D 97 (2018) 3, 036001

[46] C. Gnendiger, D. Stöckinger, H. Stöckinger-Kim Phys.Rev.D 88 (2013) 053005.

[47] J. Erler, G. Toledo-Sánchez Phys. Rev. Lett. 97 (2006), 161801.

[48] F. Jegerlehner, A. Nyffeler, Phys.Rept. 477 (2009) 1-110.

[49] J. Gronberg et al. [CLEO Collaboration], Phys. Rev. D 57 (1998) 33.

[50] H. J. Behrend et al. [CELLO Collaboration], Z. Phys. C 49 (1991) 401.

[51] M. Acciarri et al. [L3 Collaboration], Phys. Lett. B 418 (1998) 399.

[52] B. Aubert et al. [BaBar Collaboration], Phys. Rev. D 80 (2009) 052002.

93

https://news.fnal.gov/2021/04/first-results-from-fermilabs-muon-g-2-experiment-strengthen-evidence-of-new-physics/
https://news.fnal.gov/2021/04/first-results-from-fermilabs-muon-g-2-experiment-strengthen-evidence-of-new-physics/
https://news.fnal.gov/2021/04/first-results-from-fermilabs-muon-g-2-experiment-strengthen-evidence-of-new-physics/
https://indico.nucleares.unam.mx/event/1717/session/39/material/0/0.pdf
https://indico.nucleares.unam.mx/event/1717/session/39/material/0/0.pdf


[53] P. del Amo Sanchez et al. [BaBar Collaboration], Phys. Rev. D 84 (2011)
052001.

[54] [Belle Collaboration]: S. Uehara et al. Phys. Rev. D 86 (2012) 092007.

[55] BES III Coll., M. Ablikim et al. Chin. Phys. C 37 (2013) 123001.

[56] S. J. Brodsky and G. R. Farrar, Phys. Rev. Lett. 31 (1973) 1153.

[57] G. P. Lepage and S. J. Brodsky, Phys. Rev. D 22 (1980) 2157.

[58] V. A. Nesterenko and A. V. Radyushkin, Phys. Lett. B128 (1983) 439.

[59] A. Novikov, Mikhail A. Shifman, A. I. Vainshtein, M. B. Voloshin, V. I. Za-
kharov, Nucl. Phys. B 237 (1984) 525.

[60] Yining Xian a, Bo-Qiang Ma, Nucl. Phys. A 1027(2022) 122497.

[61] V. Mateu, J. Portolés, Eur.Phys.J.C 52 (2007) 325-338.

[62] S. Holz, J. Plenter, C. W. Xiao, T. Dato, C. Hanhart, B. Kubis, U.-G. Meißner
& A. Wirzba Eur. Phys. J. C 81 (2021), 1002.

94


	PORTADA
	IDENTIFICACIÓN

	Resumen
	Abstract
	Figures
	Tables
	Introduction
	1 Theoretical Background
	1.1 QED: a simple QFT
	1.1.1 Second Quantization in QED
	1.1.2 Form Factors in QED

	1.2 Lie Groups, Lie Algebras and Symmetries
	1.2.1 Lie Groups and Algebras
	1.2.2 Symmetries

	1.3 Gauge Theories
	1.3.1 Abelian Gauge Theories
	1.3.2 Non-Abelian Gauge Theories


	2 The Standard Model, SU(3)CSU(2)L U(1)Y
	2.1 Electroweak Theory
	2.1.1 An EFT for the nuclear  decay
	2.1.2 The Gauge Group SU(2)L U(1)Y
	2.1.3 Form Factors in EW theory

	2.2 Higgs Mechanism
	2.2.1 Spontaneous Symmetry Breaking
	2.2.2 The Goldstone Theorem
	2.2.3 Explicit Symmetry Breaking

	2.3 Quantum Chromodynamics
	2.3.1 QCD Lagrangian
	2.3.2 Beta Functions
	2.3.3 Form factors in QCD


	3 Chiral Perturbation Theory (PT)
	3.1 Effective field theories
	3.2 Chiral Symmetry in QCD
	3.2.1 Chiral Limit
	3.2.2 Chiral symmetry breaking

	3.3 Chiral Perturbation Theory for Mesons
	3.3.1 Goldstone Theorem Realization in QCD
	3.3.2 Effective Lagrangian for low-energy QCD: PT
	3.3.2.1 Transformation properties of the Goldstone Bosons
	3.3.2.2 PT at order p2
	3.3.2.3 Interaction with external sources

	3.3.3 Application of the lowest order EFT
	3.3.4 Pseudo-Goldstone Boson Masses
	3.3.4.1 + Decay
	3.3.4.2 Pion scattering

	3.3.5 Higher order PT
	3.3.5.1 Order p4 Lagrangian
	3.3.5.2 Pseudo-Goldstone Bosons masses at order p4

	3.3.6 Chiral Anomaly: The Wess-Zumino-Witten Effective Action
	3.3.6.1 0-TFF at Leading Order



	4 Resonance Chiral Theory (RT) 
	4.1 RT Lagrangian
	4.1.1 Even Intrinsic Parity Sector

	4.2 Odd intrinsic parity sector
	4.2.1 1 resonance contributions
	4.2.2 2 resonance contributions

	4.3 RT application: 0
	4.3.1 Relevant Lagrangian terms
	4.3.2 OVJP contributions to 0
	4.3.3 OVVP contributions to 0

	4.4 RT extensions

	5 The a Anomaly
	5.1 Classical description of the gyromagnetic ratio
	5.2  Interaction With Light
	5.3 1-Loop Corrections
	5.4 BNL and FNAL Experiments and the anomaly
	5.4.1 Experimental Configuration

	5.5 Different contributions to a
	5.5.1 QED contributions
	5.5.2 EW contributions
	5.5.3 QCD contributions
	5.5.3.1 Hadronic Vacuum Polarization
	5.5.3.2 Hadronic Light by Light Scattering



	6 Contribution of the 0 pole to a
	6.1 Pseudoscalar-pole contributions
	6.2 0 pole contribution to the Hadronic light-by-light piece of a
	6.3 Pion Transition Form Factor (0 TFF)
	6.4 0-TFF in RT
	6.4.1 RT Lagrangian for the -TFF including the lightest meson resonances
	6.4.2 0 TFF for LMD
	6.4.3 Short-Distance Constraints (LMD)

	6.5 Wrong asymptotic behavior of the LMD 0 TFF
	6.6 Experimental input for 0 TFF couplings
	6.7 Results of 0-pole contribution to a (LMD)

	7 a-pole calculation via RT in the two hadron saturation scheme
	7.1 Fixing the asymptotic behavior
	7.2 RT Lagrangian including two vector meson resonances
	7.3 0 -TFF in THS RT
	7.4 Short Distance Constraints
	7.4.1 Q2F0**(-Q2,-Q0)=0 Constraints
	7.4.2 Q20F0**(-Q2,0)=0 Constraints
	7.4.3 VVP Constraints
	7.4.4 Constraints from Dominant 1Q2 behavior in the space-like region.

	7.5 F0 **THS(q12,q22)
	7.6 F0 **THS(q12,q22) couplings and parameters
	7.7 Fit results
	7.8 0 pole contribution to HLbL piece of a with two meson resonance multiplets in the RT

	Conclusions and Perspectives
	Bibliography

