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Resumen

En la actualidad, el desarrollo de robots bı́pedos es cada vez más relevante debido a que son

los más adecuados para desplazarse en zonas transitadas por humanos. Esto ha generado un

creciente interés en diseñar y controlar robots bı́pedos capaces de realizar tareas en entornos con

restricciones de espacio y movilidad, lo que requiere precisión en la planificación y control de los

movimientos del robot.

En esta tesis se propone el diseño de un robot bı́pedo con medidas antropométricas para la

implementación de un controlador que cubra los requerimientos mencionados anteriormente. El

robot cuenta con 8 grados de libertad simétricamente distribuidos en ambas piernas, lo que permite

su movimiento en dos planos anatómicos (frontal y sagital). Los movimientos del robot se basan

en el uso de actuadores lineales cuyo desplazamiento se transforma en movimientos angulares

gracias a su disposición mecánica, lo que es una aportación novedosa de esta tesis y tiene mayor

semejanza con la estructura anatómica humana.

Se propone un nuevo algoritmo de control basado en Funciones de Lyapunov tipo Barrera cuya

estructura obedece a una función tangencial asimétrica y que utiliza el algoritmo de super-twisting

como diferenciador robusto y exacto, lo que es una propuesta novedosa para este tipo de estruc-

turas robóticas. Se eligió este tipo de controlador debido a las restricciones angulares inherentes al

desplazamiento bı́pedo. Además, se presenta el análisis de estabilidad demostrando que se garan-

tiza el seguimiento de trayectorias de referencia. Se evaluó el desempeño del controlador de forma

numérica utilizando el software Matlab®en el ambiente Simulink®y posteriormente se evaluó en el

robot suspendido.

La sintonización de las variables del controlador se realizó utilizando el esquema de Apren-
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dizaje Reforzado Multiagente para garantizar el seguimiento de las trayectorias de referencia con-

siderando restricciones en las articulaciones. El esquema multiagente se compone de dos partes:

la primera implementa una estrategia de programación dinámica adaptable basada en la aprox-

imación de la ecuación de Hamilton-Jacobi-Bellman y la segunda implementa una metodologı́a

repetitiva basada en el algoritmo de Gradiente de Polı́tica Determinista Profunda, similar a las ca-

denas de Markov, permitiendo ajustar tanto el seguimiento de la trayectoria como la trayectoria en

sı́ misma, respectivamente. El uso de este esquema disminuyó el consumo energético en com-

paración con un controlador clásico por retroalimentación.

A partir de la propuesta de diseño presentada para el robot, se construyó la estructura mecánica

en la que se realizaron las pruebas del controlador propuesto. La estructura, ensamblada en alu-

minio, incluyó instrumentación electrónica digital y de potencia. La instrumentación permitió el mon-

itoreo y la conversión analógica-digital de las señales obtenidas de resistores variables insertos en

los actuadores lineales, ası́ como la generación de las señales de control basadas en PWM con

voltaje de 0 a 3.3V. La segunda utilizó los pulsos como entradas para un puente H que garantizó

el seguimiento de las trayectorias, asegurando al mismo tiempo, la protección de la sección lógica

mediante optoacopladores.
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Abstract

Currently, the development of bipedal robots becomes increasingly relevant due to their suitability

for navigating environments originally intended for humans. This has led to a growing interest in the

design and control of bipedal robots that can perform tasks in constrained spaces, requiring precise

planning and control of robot movements.

This thesis proposes the design of an anthropomorphic bipedal robot as a platform for imple-

menting a controller. The robot features 8 degrees of freedom symmetrically distributed in both

legs, allowing movement in two anatomical planes (frontal and sagittal). The robot’s movements rely

on the use of linear actuators assembled on aluminum channels, with their linear displacement trans-

formed into angular movements thanks to the mechanical arrangement in which they were placed.

This mechanical arrangement is a contribution of the present thesis and has a greater resemblance

to the human anatomical structure.

An algorithm based on Barrier Lyapunov Functions, whose structure follows an asymmetric tan-

gent function, is presented for control. This controller was chosen due to the angular restrictions

inherent in bipedal locomotion. The performance of the controller was numerically evaluated using

Matlab software in the Simulink environment, and subsequently evaluated on the suspended robot.

The controller’s variable tuning was performed using a Multi-Agent Reinforcement Learning

scheme, which sought to ensure the tracking of reference trajectories while considering joint con-

straints. The multi-agent scheme considers two agents: the first implements an adaptable dynamic

programming strategy based on approximating the Hamilton-Jacobi-Bellman equation, and the sec-

ond implements a repetitive methodology based on the Deep Deterministic Policy Gradient algo-

rithm, similar to Markov chains, allowing adjustment of both trajectory tracking and trajectory itself,
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respectively.

From the proposed robot design, the mechanical structure was constructed, on which the pro-

posed controller was tested. The aluminum structure included digital and power electronic instru-

mentation, where the former allowed for monitoring and subsequent analog-digital conversion of

signals obtained from variable resistors inserted in the linear actuators, such as generating control

signals based on PWM in voltage pulses from 0 to 3.3V, and the latter used the pulses as inputs

for an H-bridge that ensured trajectory tracking, ensuring the protection of the logic section through

optocouplers.
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Chapter 1

Introduction

This chapter presents the general introduction, the motivation of the research associated with the

proposed theoretical result on the development of the automatic controller for the biped robot, the

main objectives, and the formal definitions of the main concepts upon which this work is based, that

is, Biped Walking (BW), RL, and the Barrier Lyapunov Functions (bLfs). In addition, state of art and

the description of the thesis structure are presented at the end of this chapter.

1.1 Fundamentals of automatic safe walking biped robots

The development of BRs implies gathering several approaches (such as mechanical design, elec-

trical instrumentation, and automatizing, among others) in technological development due to the

necessity of overcoming the many challenges its complex and hybrid nature implies. The humanoid

robots are different due to the tasks they were designed to make, thus leading to different capabil-

ities, including rescue, assisting, education, healthcare, etc. Many of them are capable of walking

stably on even terrains and grass, yet in rough environments; not only walking but also climbing

stairs [1, 2] or obstacles [3], jumping [3, 4] and walking on slopes [5, 6]. Aiming to encourage de-

velopers and researchers, there are many international competitions such DARPA [7–10], FIRA [10,

11], HuroCup [12] and the RoboCup Federation [13], showing up the current relevance these robotic

devices have today.

Side research on the development of robotic walking devices refers to the evaluation of loco-

motion that in humans would be unfeasible to test [14]. Overcoming all these tasks leads to the

development of an integrated robotic device that can achieve regular, stable, and robust displace-

ment in almost all types of environments. There exist various stability criteria for bipedal walking

that relays on the fact that the robot is moving slowly: the first one is the position of the Center of
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Mass (CoM) and the Center of Pressure (CoP) in the human-like robot, considered stable if any

of both is within an area called Support Polygon [15]. The following criterion is based on the Zero

Moment Point (ZMP) concept, which refers to a point on the ground where all the forces that interact

in the robotic motion are zero. Hence, if the vertical projection of this point on the supporting sur-

face stays within the support polygon area results in a stable gait. A third criterion is based on the

concept of passive dynamic walking, called Dynamic Walk. All these concepts involve a completely

actuated-legged robot, and the control problem is reduced to a joint tracking control that fulfills all

the previously mentioned criteria [16].

Another main property of automatic robotic walking is the dependency on appropriate coordina-

tion of all the joints at every moment since one unsuitable position of any articulation could lead to

the falling of the structure and, consequently, structural damage. To avoid these undesirable situ-

ations, it is necessary to consider the term safety in robotic walking. This term refers to avoiding

incorrect robot configuration during the gait cycle [17] and, in this case, shunning joints to exceed

certain predefined working regions. Handling the safety requirement implies introducing stability

conditions in the control action, which can be solved using the Barrier Function (BF) concept, which

can contribute to the design of the controller gains. A BF is a continuous function that meets this

requirement by approaching its value to infinity when the state vector approaches the boundary of a

predefined (usually considered safe) set in the task or the joint spaces. The inclusion of BF prevents

the escape of the trajectories from the safeness condition enforced by the safe set. This method

offers a strategy to ensure the safe motion of bipedal devices, including the design of adaptive con-

trollers based on the application of BLfs [18–21]. This approach guarantees that the states remain

inside a convex hull previously defined in the controller implementation [22], which can be related to

the safe set to ensure a stable walking process.

The application of BLfs must include a consequent control design that could guarantee the joints’

operation within the predefined safe set. If this control action considers a robust strategy, the proper

motion for all the joints could be highly conservative, leading to unfeasible biped robot operation.

On the other hand, if the controller has an adaptive structure with state-dependent gains, then the

controller could offer a less conservative outcome but require more complex online implementation

due to the algorithms needed to adjust the control gains. This problem can be solved considering

the available technology on digital boards that can instrument complex control configurations.

2
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1.2 Biped walking

Biped locomotion is considered one of the most significant evolution adaptations in nature [23]. It

is a highly specialized and non-common way of locomotion [24] that in humans is one of their main

characteristics. Two phases characterize the modern human walking cycle: the stance phase, when

one leg works like a pivot on the ground and supports the person’s weight, and the swing phase,

when the leg is off the ground. Anatomically, most of the human gait is made along the sagittal

plane. However, it is a three-dimensional movement. Since walking is a series of cyclical events,

its fundamental unit is a Gait Cycle (GC). The cycle starts at the point of initial contact of one limb

(used as reference) [25–27] ending with the following contact to the ground of the same foot. A

healthy GC starts with the heel contact or heel strike1. Traditionally a GC or stride is subdivided

from 0% to 100%, being the initial contact 0% and the next contact of the same extremity (100%).

For description purposes, the whole GC is divided, as mentioned, into two main phases, which in

turn are divided into events that enable the limb to achieve three basic tasks: Weight Acceptance

(WA), Single Limb Support (SLS) and Limb Advancement (LAd). Within a stride, the body goes

through two periods of double-limb support and two periods of single-limb support. There exist eight

significant events that are used to distinguish seven periods for the GC (Figure 1.1)

WA starts the stance phase and includes the first initial periods (initial contact and loading re-

sponse). The stance continues during SLS with the following two periods of the GC: mid stance and

terminal stance. Finally, LAd begins with the pre-swing period through the end of the swing phase.

A thorough overview of each task is given next.

1.2.1 Task: Weight acceptance

According to [27], this is the most challenging task over the three that constitute a regular GC. This

is because, in this period, a sudden transference of the weight from one to the other limb that just

finished the swing forward occurs, thus having an unstable alignment. This task demands three

main functional patterns: shock absorption, initial limb stability, and preservation of progression.

Initial contact

This stage includes the moment when the foot touches the surface. Depending on the joints’ posi-

tion, the limb’s loading response changes its pattern.

1As not all people have this capability, it is preferred the generic term initial contact

3
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Figure 1.1: Gait cycle divisions [28]

.

The articulation disposition of the reference limb includes flexion of the hip, an extender knee,

and the ankle is dorsiflexed to neutral. Meanwhile, the other limb is at the end of the terminal stance

(Figure 1.2).

Interval: 0 to 2% of GC

Objective: Placing the limb to start the stance with a heel rocker.

Figure 1.2: Initial contact. Adapted from [27]

4
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Loading response

It is the initial double stance period. It begins with the first ground contact continuing to the lifting of

the other foot until the swing phase starts.

The body weight is transferred onto the forward limb. The heel functions as a pivot; the knee

is flexed to absorb the impact shock, and the ankle plantarflexion limits the heel rocker by forefoot

contact with the floor. The opposite limb is in the pre-swing period. This is depicted in Figure 1.3.

Interval: 0 to 10% of GC

Objectives:

• Shock

• Weight-bearing stability

• Progression maintenance

Figure 1.3: Loading response. Adapted from [27]

1.2.2 Task: Single limb support

The second task interval of the GC for the reference limb begins when the non-reference foot is lifted

for swing, finishing when the opposite foot contacts the ground again. While the interval last, the

whole support of the body weight, in both sagittal and coronal planes, relies exclusively on one limb

ensuring that the progression continues. Two periods are involved: mid stance and terminal stance,

differentiated by the progression mechanisms in the bipedal walking.

Mid stance

This stage begins as the non-reference foot is elevated and keep going up to the body weight has

been aligned over the forefoot by the movement.

5
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Referring to the disposition of the reference limb during this period, the foot is fixed to the ground

while the torso moves forward to it by ankle dorsiflexion, and the knee and hip are extended. The

opposite limb is advancing in its mid-swing period (Figure 1.4).

Interval: 10 to 30% of GC

Objectives:

• Passing reference foot

• Stability of limb and trunk

Figure 1.4: Mid stance. Adapted from [27]

Terminal stance

The terminal period finalizes the single limb support (Figure 1.5). The heel rising marks the period’s

beginning, lasting until the other foot touches the ground. During this period, the weight moves

ahead of the forefoot.

This is the second half of the single limb support. At this time, the heel rises, and the reference

limb advances over the forefoot pivot. Biomechanically speaking, the knee spreads and then starts

to bend barely. The increased hip extension allows putting the limb in a more trailing position. The

non-reference limb is in the terminal swing.

Interval: 30 to 50% of GC

Objective: Progression of the body beyond the supporting foot

1.2.3 Task: Limb advancement

To fulfill the task of advancing the limb, prelim posturing starts at stance. The limb swings through

three postures while it lifts itself, advances, and prepares for the next stance phase. It is composed

of four periods: pres-swing2, initial swing, mid swing, and terminal swing.

2Weight release and weight transfer are other names given to this period
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Figure 1.5: Terminal stance. Adapted from [27]

Pre-swing

This is the last double stance interval in the GC; it begins with the initial contact and ends with the

toe-off of the non-reference limb. Though the sudden weight relocation immediately discharges the

limb, it does not actively contribute to the event. Instead, the unloaded limb gets prepared for the

swing.

Referring to the posture, the floor contact by the non-reference limb has started terminal double

support being in loading response as the reference limb increased ankle plantar flexion, widened

knee flexion, and loss of hip extension (Figure 1.6).

Interval: 50 to 60% of GC

Objective: Put the limb for swing

Figure 1.6: Pre-swing. Adapted from [27]

Initial swing

This period is approximately a third part of the swing phase, beginning with lifting the foot from the

ground and ending when the swinging limb is contrary to the stance foot.

Regarding posture, the foot is elevated and the limb fared by hip flexion; the non-reference limb

is starting mid-stance (Figure 1.7).
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Interval: 60 to 73% of GC

Objectives:

• Foot clearance of the floor.

• Advancement of the limb.

Figure 1.7: Initial swing. Adapted from [27]

Mid swing

This second part of the swing phase begins while the swinging limb is opposite the stance limb, as

shown in Figure 1.8, and finishes when the tibia is vertical and the swinging limb is forward, meaning

that the hip and knee are in equal flexion postures. The advancement of the reference limb, anterior

to the body weight line, is because of wider hip flexion. The knee is passively extended, responding

to gravity as the ankle keeps dorsiflexing to neutral. The non-reference limb is the last part of the

mid stance (Figure 1.8).

Interval: 73 to 87% of GC

Objectives:

• Limb progression.

• Foot lifting from the floor.

Figure 1.8: Mid swing. Adapted from [27]
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Terminal swing

This stage starts with a vertical tibia, ending when the foot touches the floor (see Figure 1.9). It is

completed once the shank moves ahead of the thigh. Describing the posture, the limb advancement

is completed by the knee extension; the hip keeps its flexion, and the neutral dorsiflexion of the ankle

remains. The non-reference limb is in a terminal stance.

Interval: 87 to 100% of GC

Objectives:

• Complete limb progression.

• Prepare the limb for stance.

Figure 1.9: Terminal swing. Adapted from [27]

1.2.4 Joint trajectories

Based on the description of the stages and tasks carried out during walking, each joint can be

kinematically described on different anatomical planes, allowing the characterization of movement

amplitudes at a given moment in the cycle. In this study, movements on the sagittal plane of the hip,

knee, and ankle, as well as on the frontal plane of the hip, were considered.

Sagittal plane

The displacements of the articulations in the sagittal plane are illustrated in the Figure 1.10. Each

movement is described bellow.
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Figure 1.10: Sagittal plane angular rotation. Adapted from [28]

Hip

At a typical walking speed, the hip joint is flexed around 30 degrees at the moment of heel contact, as

illustrated in Figure 1.10. As the body moves forward over the fixed foot, the hip extends, achieving

maximum extension of approximately 10 degrees just before toe off. The flexion of the hip joint

is initiated during push off, and the hip joint reaches about 0 degrees of flexion at toe off, which

corresponds to 60% of the gait cycle.

In the swing phase, the hip joint further flexes to move the lower extremity forward for the next foot

placement. Maximum flexion, which is slightly over 30 degrees, is achieved just before heel contact.

It should be noted that at heel contact, the hip joint has already begun to extend in preparation for

weight acceptance. Generally, normal walking requires approximately 30 degrees of flexion and 10

10
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degrees of extension at the hip joint, measured from the anatomic neutral position. As with all lower

extremity joints, the extent of hip joint movement is proportional to walking speed.

Knee

The knee undergoes a flexion of around 5 degrees upon initial heel contact, followed by an additional

10 to 15 degrees during the first 15% of the gait cycle. This slight knee flexion serves to absorb shock

and distribute weight as the body load is transferred to the lower extremity. Subsequently, the knee

nearly fully extends until the heel-off phase (occurring between 30% and 40% of the gait cycle),

when the knee begins to flex again, reaching approximately 35 degrees of flexion at toe-off (60%

of the gait cycle). At the beginning of mid-swing (75% of the gait cycle), the knee experiences a

maximum flexion of approximately 60 degrees. During early swing, knee flexion shortens the length

of the lower extremity, facilitating toe clearance. In mid and late swing, the knee extends almost to

full extension before slightly flexing again in preparation for heel contact. Thus, the normal function

of the knee during level walking necessitates a range of motion between almost full extension and

approximately 60 degrees of flexion.

Ankle

The ankle undergoes a slightly plantar flexed position (between 0 and 5 degrees) at heel contact.

Following heel contact (within the first 8% of the gait cycle), the ankle dorsiflexors eccentrically

control a movement of plantar flexion to position the foot flat on the ground. During stance, the ankle

dorsiflexes up to 10 degrees as the tibia moves forward over the foot, which remains in contact with

the ground (from 8% to 45% of the gait cycle). After heel-off (between 30% and 40% of the gait

cycle), the ankle plantar flexes, reaching a maximum of 15 to 20 degrees of plantar flexion just after

toe-off. During the swing phase, the ankle dorsiflexes to a neutral position to allow for toe clearance.

Ambulation at an average speed requires approximately 10 degrees of dorsiflexion and 20 degrees

of plantar flexion.

Frontal plane

The displacements of the hip in the frontal plane is illustrated in the Figure 1.11. The movement is

described bellow.

11



1.3. AUTOMATIC LEARNING IN BIPED WALKING CHAPTER 1. INTRODUCTION

Figure 1.11: Frontal plane angular rotation. Adapted from [28]

Hip

In the stance phase of walking, the pelvis-on-femoral kinematics are the primary contributor to frontal

plane motion, while a smaller and less consistent amount of frontal plane motion is attributed to

femoral-on-pelvic kinematics. This motion can be observed through medial-lateral movement of the

knee. During the swing phase, the pelvis and the advancing femur work together to return the hip to

its neutral frontal plane position.

1.3 Automatic learning in biped walking

Human walking abilities inspire biped robots. Hence, it is common that biped robots are expected to

develop gait cycles imitating the regular human gait cycle. According to this operative scenario, the

biped robot motion can be handled using the effective integration of mechanical designs, electrical

instrumentation, and reliable automatic controllers. This strategy allows many biped robots to work

accordingly to predefined sequences of expected motions. Nonetheless, this strategy limits the

capacity of the biped robot to perform its tasks in non-previously revisited scenarios. This is contrary

to what human beings do to learn how to move their bodies with the objective of complete walking

processes under diverse scenarios, including irregular terrains, discontinuous surfaces, and many

others.

The progressive knowledge humans acquire to complete complex walking processes is a con-

sequence of their learning capabilities. Human learning is based on neural motor control, pro-

prioception, and biomechanical regulation of muscles and bones. Moreover, the walking process’s

progression is mostly based on an ongoing trial and error recursive procedure performed by humans

at early ages.

12
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Given the method used by humans during the walking learning process, it seems reasonable to

use it as an inspiration to provide more independence to biped robots with the aim of improving how

they perform the gait cycle under different conditions. Such a complex task can be solved using the

artificial learning methodologies that are now popular in the machine learning discipline.

Due to new computing technologies, machine learning today is not like it was in the past. It was

born out of pattern recognition and the theory that computers can learn without being programmed

to do specific tasks. Researchers interested in artificial intelligence wanted to know if computers

could learn from data just as in the human case when they try to learn walking. The iterative aspect

of machine learning is important because as models are exposed to new data, it can adapt inde-

pendently, then they learn from previous calculations to produce reliable and repeatable decisions

and results.

Machine learning is based on the concept of automatic learning that considers the use of avail-

able information to correct a system performance considering input-output relationships (super-

vised), characteristics of input data (unsupervised) and the environment feedback consequence of

system action (reinforcement), among others. The application of machine learning for enforcing the

bioinspired action by biped robots during the walking process is highly related to the characteristics

of reinforcement learning.

The design of better controllers for regulating biped robot motion that relies on Artificial Intelli-

gence (AI) techniques has been increased in the past years, developing a whole agenda for control

theory [29], giving more autonomy to many types of dynamic systems, and putting aside the time-

consuming tuning for algorithms that implicitly look for the optimal values. In the vast field of study

of AI, Machine Learning (ML) is a sub-field of the computer sciences that deals with ”the question

of how to develop software agents that improve automatically with experience”[30].

As we have claimed there exists three main paradigms of ML [31]:

• Supervised Learning (SL)

• Unsupervised Learning (UL)

• Reinforcement Learning

SL learns from a labeled training set of examples that are given by an external supervisor.

Meanwhile, UL looks for a concealed structure in data without labels [32]. Finally, RL maps situations

to actions by maximizing a reward signal.

RL possesses unique features that distinguish it from others. First of all, the trade-off between

exploration and exploitation, [31–33], means that a learning agent must exploit its experiences in

order to get a reward but, on the same time, exploring to decide better actions forward. However,

neither exploration nor exploitation could be left behind, and the algorithm must seek a wide variety

of actions to choose the best. Secondly, RL considers the problem as a whole, taking into account
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the fact that the agent is interacting with its environment. Finally, it uses the information acquired

from the training to evaluate the actions made, rather than learn from given certain actions.

1.4 Reinforcement learning

All so-called living superior organisms in nature learn by exerting repetitive actions of their physi-

ological activities (including functional movements) and evaluating the environmental response by

analyzing outcomes and internalizing the obtained events (reward stimulus or looseness inhibition).

Such recurrent behavior enforces the continuous adjustment of the organism’s actions and decisions

to get the best attainable reward or reduce the looseness within a given period.

In the evolutionary biological theory and the learning sciences, getting knowledge based on

developing complex associations by chaining actions to positive or negative rewards is called trial-

and-error learning [32]. Most studies in the psychology of animal learning have proven that the

so-called superior living organisms mainly use such learning methods. Essentially, this method

considers that repeated actions, followed by the association of positive or negative rewards, reflect

the construction of practical knowledge [34].

The foundations of trial-and-error learning were originally proposed by Edward Thorndike [35],

who called these outcomes Law of Effect due to the relationship to reinforcing acts and how it

changes the affinity to make certain actions. The so-called Law of Effect is based on the consoli-

dation of two critical aspects: selection and associative. On one hand, the selection phase refers

to the fact that the election of diverse alternatives is conducted by the preliminary (based on the

own experience) association between them and their consequences. On the other hand, the as-

sociative phase relates to the establishment of a suitable association between elected alternatives

with particular situations. The combination of both elements is the essence of the Law of Effect

and trial-and-error learning. The idea of learning based on the continued interaction between the

environment and the organism (an agent related to its environment modifying its actions based on

stimuli received in response to them) settles down the base concept for developing Reinforcement

Learning algorithms.

1.4.1 Basic concepts of reinforcement learning theory

Since the main idea of RL is to maximize (or minimize) a reinforcement signal by means of remem-

bering positive control decisions, i.e., a cumulative reward in the long run. RL is connected from a

theoretical point of view with both adaptive control and optimal control methods.
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Elements of RL

Reinforcement learning is a way to map situations to actions [32, 36] via a policy π : s → a such

that a numerical value called reward is maximized (or minimized). This result is obtained assum-

ing the agent is functioning despite the environmental recognizance affronted. In addition to the

agent and the environment, for all reinforcement learning systems, it is possible to identify four arch

components: a policy, a reward signal, a value function, and an environmental model.

First of all, consider the establishment of the interaction that exists among all the mentioned

components: the agent is interacting with its environment through observation and action which

can be seen as a decision-maker. For every step of the so-called interaction, the agent obtains

as input from the current state, st ∈ S, some information from the environment, consequently, the

agent chooses an action at time t, at ∈ A(st), producing the associated output. Then, this action

changes the state of the environment (st+1), and the worth of this change is sent to the agent using

a reinforcement signal, or reward, rt+1 ∈ R [33, 37] (Figure 1.12).

ENVIRONMENT

OBSERVATION ACTION

REWARD

POLICY
UPDATE

AGENT

Figure 1.12: Main components in RL. Adapted from [38].

The strategy followed by the agent is the policy πt . This policy maps the states to the option of

choosing each possible action. Hence, finding the best policy can be considered as an optimization

problem.

One of the key methodologies to derive RL approaches is the well-known Markov Decision

Process. This technique has been exploited for many years with the potential inconvenience of

pre-defining state transition laws.
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Markov Decision Process

Formally, one may describe the RL as a Markov Decision Process (MDP), which provides a math-

ematical framework for studying optimization problems using dynamic programming. A MDP can

represented as a 6-tuple (S,A,R,P,ρ0,γ), with S being the set of all the states between the envi-

ronment and the agent. Also, the term A defines the set of all the actions produced by the agent.

The symbol R describes the accumulation of immediate reward function r (st ,at) in the current state

st and action at in time-step t. The scalar mathcalP denotes the transition probability p(st+1|st,at)

which maps the pair state-action at time-step t to the next one t + 1. The distribution of the ini-

tial states is depicted as ρ0, and γ is a discount factor that satisfies γ ∈ [0,1]. If gamma is closer

to 0, the agent is biased towards immediate reward maximization, leading to short-term oriented

decision-making. In other words, the agent focuses on achieving quick gains rather than consid-

ering the long-term consequences of its actions. This approach may be useful in scenarios where

short-term benefits are more critical than long-term gains. Meanwhile, agents with a discount factor

closer to 1 seeks an optimal policy of far-sighted rewards [39], meaning they prioritize the accu-

mulation of rewards over an extended period of time. This strategy can be advantageous in tasks

that require strategic planning and decision-making, as it allows the agent to consider the potential

long-term consequences of its actions. Then, finding the best policy can be managed as an optimal

mathematical problem.

We can say that the action-value function Q(s,a), and the value function V (s) are defined as

the expected discounted rewards given a current policy π in the states st and action at , respectively.

Qπ (s,a) = Eπ,p [Gt |st = s,at = a] (1.1)

Vπ (s) = Eπ,p [Gt |st = s] (1.2)

Where G = ∑∞
t=0 γtrt is a total discounted reward from time step t, which means that the expec-

tation over all actions according to the policy π is considered. Qπ(st,at) is the state action value

function, also known as the quality function. It is the expected return starting from state st , taking

action at , then following policy π . It is focused on the particular action at the particular state. The

expected value is denoted by Eπ,p, where π is the current policy and p is the transition probability

distribution that describes the likelihood of the agent transitioning from state st to state st+1 after

taking action at .

Thus, the optimal policy can be obtained by maximizing (1.2) and (1.1) via the optimal Bellman

equations:

Vπ∗ (st) = max
at

Est+1,p [r (st ,at)+ γVπ∗ (st)] (1.3)

16



CHAPTER 1. INTRODUCTION 1.4. REINFORCEMENT LEARNING

Qπ∗ (st ,at) = Est+1,p

[

r (st ,at)+ γ max
at+1

Qπ∗ (st ,at)

]

(1.4)

The goal of RL is to learn the optimal policy that maximize 3 the expected return from the start

distribution. This goal is formalized in (1.5), where J represents the expected return:

J = Eri,si ∽ E,ai ∽ π [R1] (1.5)

The expected return E is calculated as the sum of rewards obtained by executing the policy

π from the initial state si to the final state s f , denoted as R1. The expected value is computed by

averaging the return over all possible state and action sequences (ri,si,ai) drawn from the probability

distribution defined by the environment E and the policy π . Here, ∽ denotes random sampling.

The aim is to identify the policy that maximizes J, which corresponds to maximizing the expected

cumulative reward over all feasible trajectories.

With the aim of providing a link between RL and Control Theory, it is necessary to present a

mathematically idealized form of RL called MDP which allows that many dynamical decision pro-

cesses can be modeled as MDP. In this framework, it is considered a delayed reward and the

necessity to balance immediate and delayed reward [32]. The part that learns and makes decisions

is the agent which interacts with the environment4.

The interaction between the agent and the environment consists of the election of actions by the

agent and the response of the environment to these actions. This result is performed by changing

and giving feedback to the agent through rewards, which in turn, tries to maximize them over time

by selecting ”the best” attainable actions 5. The interaction of both elements is depicted in Figure

1.13.

Figure 1.13: Interaction in a MDP

3or minimize, depending on the problem to be solved
4The environment can be seen as everything that is not the agent.
5Analogously, the agent can be seen as a controller, the environment as the plant, and the action is equivalent to

the control signal
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Formally, we can consider the MDP as a 4-tupla (S,A,P,R), where S is a set of states, and A a

set of admissible actions/controls, [40, 41]. There exists a probability of transitions P : S×A×S→
[0,1] which describes from each state s ∈ S and each action a ∈A, the conditional probability

P
a
s,st+1

= Pr{st+1|s,a}

of transitioning from the current state s to the next one st+1 ∈ S given an action a. The costs ”paid”

after this states transition is described through a cost function R : S×A× S → R which is the

expected immediate cost Ra
s,st+1

after the change of states.

The main property in the MDP is the fact that these probabilities of transition relay only in the

current state s without taking into account any of the previous actions. The principal issue for the

agent in a MDP is to find a map π : s×a → [0,1] such that for each state s and action a gives the

conditional probability π (s,a) = Pr{a|s} of taking the action a since the MDP is currently in the

state s. This mapping is called policy.

Every MDP has at least one policy π∗ : S → A that does not change as a time function, which

action is chosen always in S and undominated, in other words, a stationary, deterministic optimal

policy [39]. This technique has many applications in diverse areas of science and technology, but

fails when it is proposed as a potential solution to the self-learned gait cycle of humanoid robots due

to the complex sequence of stages during the gait cycle. Hence, a more deterministic formulation

is required. This is one of the main justification of the control algorithm developed in this study, that

takes advantage of the deep-learning methodologies.

1.4.2 Deep reinforcement learning

Deep Reinforcement Learning (DRL) is the study of RL using neural networks as function approxi-

mation, existing a wide variety of choices of what approximate such as policies, environment models,

action-value functions, value functions, etc. [42]. There are also many algorithms to reach this goal,

each of them with diverse properties addressing different problems. A non-exhaustive classification

map is shown in Figure 1.14.

The two main branches in DRL are the distinction if the agent needs to learn or has access to an

environmental model, i.e., a function that can predict rewards as state transitions. While this brings

many advantages to simple systems, for complex environments this yields in a real challenge, due

to the bias in the model can be exploited by the agent. Such fact leads to good performance with

respect to the learned model, but possibly terrible in a real environment.
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Model-Free RL

RL algorithms

Model-Based RL

Policy Optimization Q-Learning

TRPO

Learn the Model Given the Model

I2A

World Models AlphaZero

MBMF

C51

QR-DQN

DQN

HER

PPO

A2C / A3C

Policy Gradient

SAC

TD3

DDPG

MBVE

Figure 1.14: Taxonomy of algorithms in modern RL. Adapted from [43].

When a model-free RL algorithm is selected, we can approach to represent and train agents

from two main perspectives:

• Policy Optimization. In this branch, a policy is represented explicitly, optimizing its parameters

in an on-policy way, i.e., each update uses the collected data acting in accordance with the

most recent version of the policy. Two examples of policy optimization methods are:

– A2C / A3C (Asynchronous Advantage Actor-Critic [44])

– PPO (Proximal Policy Optimization [45])

• Q-Learning. These methods learn an approximator for the action-value function, using typ-

ically an objective function based on Bellman equation, optimization realized off-policy, this

means that each update can use the data obtained at any time during training, regardless of

how the agent chose to explore the environment when obtaining the data. Some examples

are:

– DQN (Deep Q-Networks [46])

– C51 (Categorical 51-Atom DQN [47])

The two described branches should not be seen as extreme opposites. There exist algorithms

that reach both and can trade off the advantages and disadvantages of both. One of them is the

DDPG algorithm.

Deep Deterministic Policy Gradient (DDPG) is an algorithm that learns a Q-function and a policy

at the same time [48], using off-policy data and the Bellman equation to learn the Q-function. At the

same time, uses the Q-function to learn the policy. This algorithm is closely connected to Q-learning,

meaning that while you know the optimal action-value function Q∗ (st ,at). Then for any state, we
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can find the optimal action a∗ (s) solving

a∗ (s) = argmax
a

Q∗ (st ,at)

One advantage of this algorithm is that is adapted for environments with continuous action

spaces, modeling the policy as a deterministic policy instead of a stochastic policy [49].

Given the benefits that deep-learning may have, then it is feasible to work with it to improve

control actions using these tools. Nevertheless, there is still the necessity of including the natural

motion restrictions to the RL approaches. Such solution can be gotten using the barrier functions

that are now significant tools in the design of state restricted control designs for systems as the

biped system considered in this thesis.

1.5 Barrier functions

As it has been described in subsection 1.2, during the gait process, it is necessary to develop every

articular displacement to a specific range at each articulation in order to assure a safe motion for the

device. Thus, the design of controllers must consider both stability while observing the constraints.

A widely used technique to achieve the former objective is by implementing Lyapunov’s method

which provides a way to determine stability without explicit cognizance of the system [50]. This

method has been used as one of the foremost strategies among researchers. Such fact relies on

their intuition and expertise to construct stable Lyapunov functions to reach stable control designs.

However, this can not guarantee that the designed Lyapunov function suits the needs of the system,

especially when there are output constraints [51].

The constraints have been considered in many approaches, including model predictive control

[52, 53], predictive safety filters [54], adaptive fuzzy tracking control [55], particle swarm optimization

[56], among others.

In [57] it is proposed the use of bLfs for nonlinear systems with an output constraint by designing

the control so that the time derivative of the bLf is negative semidefinite, keeping the Lyapunov

function of the barrier bounded in the closed loop, ensuring that the constraints are not transgressed.

This is a significant contribution to the class of solutions generated by the application of RL using

deep-learning tools with the consideration of state restrictions.
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1.6 General problem statement

The proper motion of robots which are designed to move around in biped-oriented environments is

still open, due to the complexity of such task in terms of mechanical design, electrical and electronic

instrumentation and automatic control designs. The coordination of movements along all the robotic

system is not just desirable, but necessary.

This property implies as a fundamental tool the application of appropriate control schemes.

However, such strategy may need the use of techniques such as RL to find the optimal set of gains

to reach proper movements for the articulations of biped robots. Hence, this thesis considers as

the key problem to solve the design of an automatic controller with state dependent gains that can

be adjusted online considering the presence of state restrictions, and the recursive modifications,

based on RL techniques with the aim of optimizing a given operative functional.

The proposed strategy considers a hybrid strategy that brings into the play the adjustment of the

gains in a double rate performance, with the aim of optimizing a convex functional with respect to

the tracking error for all the joints of the legs in the biped robot.

1.7 Objectives

1.7.1 Main

Mobilize a regulated biped robot following a walking pattern, based on the reference trajectories

following a human gait, using an adaptive controller with state dependent gains and a recursive

strategy based on RL that considers, from its structure, the angular restrictions of the mechanical

configuration.

1.7.2 Specifics

• Design a controller structure which considers constrained states.

• Verify that the constraints in the mechanical structure are met by building an electrical system

that will digitally control the system.

• Develop a two-legged robotic structure using modular aluminum channels and linear actuators

as testing platform for the controller.

• Mathematically describe the mechanical structure of the robot using linear actuators.

• To propose a Multi-agent Reinforcement Learning (MARL) scheme to adapt the reference

trajectories to the biped system while tuning the gains of a controller.
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• Simulate the biped robotic device using the MARL scheme.

1.8 State of art

The development of humanoid robotic devices has motivated significant research efforts, at least

since the 70s of the past century [58]. The inspiration for the design comes from the anthropo-

morphic distribution itself, promoting the idea that the robot concept is equivalent to the humanoid

representation. In general, humanoid robotic devices are classified according to two common cat-

egories: appearance and behavior [59]. Since biped robots could be classified in both terms, it is

evident that they are one of the most exciting examples of modern technology that aggregate dis-

ciplines, such as mechanical design, advanced electrical and electronic instrumentation methods,

and automatic control designs.

The current versions of bipeds robots are characterized by efficient, light, and human-like me-

chanical structures. Their instrumentation approaches have aggregated diverse variants of actu-

ators and sensors, that have allowed the realization of complex controlled movements, including

regular gait cycle, sitting down and standing up, climbing stairs, or walking in unstructured environ-

ments.

The technical literature published over the last thirty years is full of exceptional biped robots.

Most of these devices are fully controlled to exert a well-defined sequence of movements. When

the biped robot is aimed to make autonomous activities independently of predefined tasks, there

is a necessity of introducing a degree of short-time adaptation (based on the automatic control

design) depending on the current robot-environment interaction conditions and long-term learning

depending on the experience acquired by the robotic device using machine learning tools in an

iterative way. Most of the existing machine learning options have taken their inspiration from living

organisms.

There exist different systems which nature makes it very difficult to figure beforehand an accu-

rate mathematical model. Since many control techniques are oriented to solve the reaching of a

given level or following a previously defined trajectory for a structure, these problems assume pre-

vious knowledge of both the goal and the system. Nevertheless, the construction of the reference

trajectories is also one of the main problems for navigation tasks in a variety of mobile robots. As

an example of a workable agent, that could be described as an entity that perceives and act in con-

sequence [60], biped robots are structures that can be designed to walk independently in certain

terrains. Designing a controller for this kind of robot, which must be able to do bipedal displacement

while maintaining equilibrium, is a major task due to the complexity of the system.
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The use of RL in complex systems, particularly in biped robots, has been exploited in past years

because the algorithm does not receive direct instruction about which joint needs to be modified

[61].

1.9 Outline

The general outline of the chapters that make up this thesis, which are organized according to

the main tasks carried out for the development of the project is presented here. Each chapter will

present the problem statement to be addressed, as well as the detailed process undertaken to solve

it. Additionally, the conclusions obtained for each chapter will be included. With this approach, we

aim to offer a clear and coherent structure that facilitates the understanding and follow-up of the

results and conclusions obtained throughout the research.

• Chapter 2 presents the mathematical model obtained from the structure that incorporates lin-

ear actuator. This controller is designed to take into account the joint constraints and actuator

dynamics in order to achieve a more accurate approximation to the physical reality of the robot

developed in this work.

• Chapter 3 presents a detailed proposal for a Lyapunov barrier function controller that con-

siders the constraints inherent in this type of robot. The chapter also presents the results

of implementing the proposed controller in a simplified simulated version of the robot, and

compares them against those obtained from a classical controller.

• Chapter 4 describes the use of a multi-agent reinforcement learning paradigm to tune the

controller gains and adjust the reference trajectories to match the robot’s structure. The chap-

ter also presents the results obtained from the reinforcement learning implementation and

compares them against those obtained from a classical controller.

• Chapter 5 provides a detailed description of the physical structure proposed in this work. The

chapter presents the requirements considered for the dimensions of the structure, as well

as the type and characteristics of the components used in the robot. The physical structure

is described in three main elements: mechanical structure, power electronics, and digital

electronics.

• The general conclusions and final remarks of this thesis are presented in Chapter 6. Addition-

ally, future research directions are discussed.
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Chapter 2

Mathematical Modeling and Control of a

Biped Robot driven by Linear Actuators

The aim of this chapter is to realize the mathematical model of the biped robot structure taking

into account that each articulation is mobilized by a Linear Actuator (LA). Each extremity of the

Biped Robotic Device (BRD) has three articulations with a LA enforcing the controlled motion for

each articulation. A control problem that considers the task of tracking reference trajectories that

define a regular gait cycle is presented. Taking into account the forward complete setting of the

proposed BRD, an output feedback formulation of the an adaptive controller is also developed. A

virtual dynamic representation of the BRD is used to test the proposed controller over the LAs

mathematical model using a distributed implementation of the adaptive controller. This chapter is

derived from [62].

2.1 Introduction

Over the last three decades, significant progress has been made in the development of bipedal

robots (BRDs). Advances in mechanical design, electrical instrumentation, and automatic control

methods have enabled BRDs to perform increasingly complex activities, such as autonomous walk-

ing, stair climbing, and jumping. There is currently a scientific and technical trend towards developing

more efficient BRD configurations, which involves the use of lighter and stronger materials, faster

digital processors, and advanced electronic sensors and actuators. Actuators are particularly im-

portant for BRDs, as they define their mobility capabilities. Several actuator options are available for

BRDs, including permanent magnet and brushless motors, steppers, pneumatic muscles, brushless

motors [63], multi-motor drive systems [64], and, more recently, LAs.
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LAs are becoming increasingly popular in robotics due to their unique characteristics, including

device resizeability, setup versatility, stack setting, higher torque, electrical equivalence to DC mo-

tors, and remarkable motion robustness with respect to external perturbations and long periods of

activity. These devices are comprised of an electrical motor (usually DC with permanent magnet)

attached to a ball-screw driving system (as illustrated in Figure 2.1). However, despite their advan-

tages, there are several drawbacks that need to be addressed before considering LAs a viable option

for driving the movement of BRDs. Firstly, the design and manufacturing complexity often results in

neglecting the internal dynamics of the LAs during modeling. Moreover, LAs have a limited range of

motion, which can result in restricted articulation angular displacement. Nevertheless, LAs present

multiple benefits for the mobilization of BRDs compared to other actuation methods. For instance,

the spatial separation between the drive and joint enables lighter movable parts. Additionally, when

the leg link and LA form a closed kinematic chain, the stiffness of the joint and surrounding structure

increases. Furthermore, backlash can be minimized by utilizing a synchronous drive belt to transmit

actuator power to the joint. Also, a crank mechanism on the thigh can reduce leg inertia and allow

for the installation of heavy objects, such as actuators, near the hip joint [65]. Lastly, given its type

of movement, they can mimic the human muscular system [66].

Figure 2.1: General LA structure [67]

Several studies have emphasized the benefits of using LAs as driving elements for BRDs. For

instance, the Technical University of Munich has developed the humanoid robot LOLA [68], which

uses LAs based on a ball screw drive attached to the main structure by Cardan joints. In this design,

the LA is also used to maintain the moment of inertia of the thigh. Additionally, the WL family of

robots, designed by Waseda University, employs LAs in its Stewart platform-like mechanism that is

used as a novel biped walking type wheelchair [69, 70]. In another study, [71] proposed a double

linear ball-screw drive structure for the ankle joint. In comparison, [72] presented a structure in

which both the knee and ankle possess a single and double LAs structure, respectively. Overall,
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these studies demonstrate the versatility and adaptability of LAs in designing BRDs.

Previous studies on biped robots utilizing LAs as active driving elements have overlooked the

importance of analyzing their electromechanical dynamics, including the temporal evolution of the

motor and its connection to the ball-screw configuration. Additionally, these studies often assume

that LAs have an unbounded range of linear displacement. In order to fill this gap in the existing liter-

ature and offer a more comprehensive mathematical model, the current chapter aims to analyze the

electromechanical characteristics and employ them as constraints in the design of automatic con-

trols, with the objective of ensuring a successful execution of the gait cycle, even under conditions

where the BRD is suspended.

Incorporating linear actuator systems (LA) into biped robot designs presents challenges for both

structural mathematical modeling and automatic control design [73]. Traditionally, BRDs are dynam-

ically modeled as robotic manipulators with an open kinematic chain structure [74]. However, the

addition of LAs alters the architecture of the BRD from a mere manipulator, resulting in changes

to mass distribution, damping, and limitations on angular displacement at each joint of the BRD

(see Figure 2.2) [75]. These mechanical changes, combined with the dynamic nature of LA, create

challenges for designing control techniques, necessitating new design paradigms that consider the

mechanical role of the actuator in conjunction with its driving function [76, 77].

The limited velocity of the LA and restricted screw movement range increase the number of

states in the actuated BRD, and consequently, bound the control actions. The control design for

tracking reference trajectories that define required articulation movements must consider these fea-

tures, in addition to modeling imprecision and external uncertainties. Various techniques have been

proposed to address these issues in the control design, such as penalty state-dependent functions,

convex set projections, composite state convex sets, and adaptive gain bLfs. This thesis is focused

on developing the latter technique.

This chapter is organized as follows. The modeling strategy presented in Section 2.2 details

the method to include the LA presence for each articulation in the BRD. Section 2.3 describes the

mathematical model of the BRD considering that the main structure are restricted by the movement

of the actuator. Section 2.4 considers the dynamics of the BRD when the LA form part of the

main section in the device. In Section 2.5the LA mathematical model is detailed. Section 2.6

presents an adaptive controller based on the application of logarithmic bLfs. Section 2.7 details

the implementation strategy and implementation of the output feedback controller . Section ??

details the virtual BRD designed to test the proposed controller over the LA formulation which was

implemented in Sim-Mechanics/Matlab. The numerical evaluations of the controller considering the

mathematical formulation of the actuator dynamics are presented in Section ??, where the proposed

controller is compared with a classical PID controller.
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2.2 Mathematical modeling strategy

The integration of LAs into a biped robot structure offers two possible modeling strategies. The

distinction between these strategies is illustrated in Figure 2.2, including the angular and linear vari-

ables used for each model.
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Figure 2.2: The two modeling strategies considered incorporating linear actuators into the structure of the

BRD.

The first strategy involves modeling the unactuated mechanical structure as the core element,

with the LAs considered only as a section that provides mobilization to the mechanical linkages.

In Figure 2.2a, the blue lines represent the modeled section of the robot without considering the

displacement of the LAs, but rather the angular movement in the links. The second strategy involves

integrating the LAs as part of the mechanical structure itself. In Figure 2.2b, the blue lines represent

the corresponding modeled section of the robot, now considering the displacement of the LAs as
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part of the kinematics. The class of control strategies is also taken into account in the comparison

of the two models.

In this section, two modeling strategies are presented, each sharing the following common char-

acteristics:

• The biped robot is capable of moving its legs on the sagittal plane.

• There is no dynamic contact between the actuator tip and the structural section of the biped,

implying no stiffness-damping effect.

• Each articulation’s LA is constructed with a lead screw and nut mechanism, enabling linear

motion.

• A DC motor is employed to activate the actuator and is incorporated into the control design.

• All articulations in the biped robot are stationary based on a rotational joint, which is justified

by the motion in the sagittal plane.

• The biped robot is suspended and does not make contact with the support surface.

These shared features are crucial for both modeling strategies and provide a common foundation

for the development of robust controllers.

Considering that q ∈ Q ⊂ Rn is the vector of generalized coordinates and q̇ ∈ TqQ ⊂ Rn, then

the kinetic energy T : TQ→ R+, T = T (q, q̇) and the potential energy U : Q→ R+, U =U(q) for

the entire system.

The energy contributions of the individual subsystems can be calculated independently. Hence,

the equations of motion are obtained with the calculation of the Euler-Lagrange equations:

d

dt

(

∂

∂ q̇i
L

(

q,
d

dt
q(t)

))

− ∂

∂qi
L

(

q,
d

dt
q(t)

)

= τi −Ξi (2.1)

with the generalized forcing and dissipation terms τi ∈R, Ξi ∈R as well as the Lagrangian: L(q, q̇)=

T (q, q̇)−U(q). The derivation and principles behind this formalism can be found in any textbook on

classical mechanics. Except for the differentiations that can become cumbersome for higher-order

systems, the Euler-Lagrange equations formalism is straightforward to apply because it is based on

universal scalar energy functions.

Based on the calculus for the Lagrangian and the application of the Euler-Lagrange equations,

the complete model for a single leg of the biped robot satisfies the following differential equation:

M (q(t))
d2

dt2
q(t)+C

(

q(t),
d

dt
q(t)

)

d

dt
q(t)+G(q(t)) = τ(t)−Ξ(t) (2.2)

Where q ∈ Q ⊂ R3 is the vector of positions including all joints of a single leg in the exoskeleton.
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The inertia matrix is defined as M : R3 → R3×3, C : R3 ×R3 → R3×3 is the matrix of Coriolis and

centrifugal forces, G : R3 → R3 has the terms associated to the gravitational forces and the term

Ξ ∈ R3 is the vector that represents the effect of viscous and dried frictions, external perturbations

and modeling imprecision.

2.3 Development of Mathematical Model 1

The mechanical section of the biped robot depicted in Figure 2.2a is made up of fixed links which

are interconnected by the LA structures. This figure shows the configuration of the articulations in

the BRD which are restricted by the linear movement of the actuator.

The expression of the kinetic energy of this first model corresponds to

T =
3

∑
k=1

T
m

f
k

(

θ1,2,θ2,2,θ3,2, θ̇1,2, θ̇2,2, θ̇3,2

)

+

3

∑
k=1

Tma
k,1
(γ1,γ2,γ3, γ̇1, γ̇2, γ̇3)+

3

∑
k=1

Tma
k,2
(γ1,γ2,γ3, γ̇1, γ̇2, γ̇3)

(2.3)

Where θ j,k corresponds to the angular movement at each joint with respect to the horizontal

plane, with k denoting positive or negative angle, and γ j is used to denote vertical movement. The

nomenclature corresponds to the Figure 2.2. Here the individual kinetic energies for the masses in

the biped robot are presented below. The first section of individual kinetic energies correspond to the

masses of the fixed mechanical sections of the BRD (solid links), that T
m

f
1

, T
m

f
2

and T
m

f
3

respectively

for the three sections of the device:

T
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f
1

=
1

2
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)2
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(2.5)
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The second section of individual kinetic energies correspond to the fixed mechanical sections of

each LA in the BRD, that Tma
j,1
, j = 1,2,3, respectively for the three actuators of the device:

Tma
j,1
= T r

ma
j,1
+

1

4
ma

j,1

(

La
j,1

)2(
(

γ̇ j

)2
)

+

ma
j,1La

j,1

(

ẋ
a,r
j,1cos

(

γ j

)

− ẏ
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j,1sin

(

γ j

)

)

(2.7)

where T r
ma

j,1
is

T r
ma
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ẋ
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+
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The third section of individual kinetic energies correspond to the mobile sections of each LA in

the BRD, that Tma
j,2
, j = 1,2,3, respectively for the three actuators:

Tma
j,2
= T r

ma
j,2
+

1

4
ma

j,2

(

La
j,1

)2((
γ̇ j

)2
)

+
1

8
ma

j,2

(

L̇a
j,2

)2

+
1

8
ma

j,2

(

La
j,2

)2 (
γ̇ j

)2
+

ma
j,2La

j,1

(

ẋ
a,r
j,1cos

(

γ j

)

− ẏ
a,r
j,1sin

(

γ j

)

)

+
1

2
ma

j,2L̇a
j,2

(

ẋ
a,r
j,1sin

(

γ j

)

+ ẏ
a,r
j,1cos

(

γ j

)

)

+

1

2
ma

j,2La
j,2γ̇ j

(

ẋ
a,r
j,1cos

(

γ j

)

− ẏ
a,r
j,1sin

(

γ j

)

)

+
1

2
ma

j,2La
j,1L̇a

j,2

(

sin(γ j − γ j)
)

+

1

2
ma

j,2La
j,1La

j,2

(

cos(2γ j)
)

+
1

4
ma

j,2La
j,2L̇a

j,2

(

sin(γ j − γ j)
)

γ̇ j

(2.9)

where T r
ma

j,2
corresponds to

T r
ma

j,2
=

1

2
ma

j,2

(

(

ẋ
a,r
j,2

)2

+
(

ẏ
a,r
j,2

)2
)

(2.10)
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Correspondingly, the formal expression of the potential energy is defined as follows

V =
3

∑
k=1

V
m

f
k

(θ1,2,θ2,2,θ3,2)+

3

∑
k=1

Vma
k,1
(γ1,γ2,γ3)+

3

∑
k=1

Vma
k,2
(γ1,γ2,γ3)

(2.11)

The first section of individual potential energies correspond to the masses of the fixed mechani-

cal sections of the BRD (solid links), that V
m

f
k

respectively for the three sections of the device:

V
m

f
k

= m
f
k gy

f
k (2.12)

The second section of individual potential energies correspond to the fixed mechanical sections

of each LA in the BRD, that is Vma
j,1
, j = 1,2,3, respectively for the three actuators of the device:

Vma
j,1
= ma

j,1gya
ja (2.13)

The third section of individual potential energies correspond to the mobile mechanical sections

of each LA in the BRD, that is Vma
j,2
, j = 1,2,3, respectively for the three actuators of the device:

Vma
j,2
= ma

j,2gya
jb (2.14)

The calculus of both the kinetic and the potential energies in the BRD uses the estimation of the

centers of masses of the fixed sections in the robot x
f
j and y

f
j that correspond to

x
f
1 =

1

2
L

f
1cos(θ1,2)

y
f
1 =

1

2
L

f
1sin(θ1,2)

(2.15)

x
f
2 = L

f
1cos(θ1,2)−

1

2
L

f
2cos(θ2,2)

y
f
2 = L

f
1sin(θ1,2)−

1

2
L

f
2sin(θ2,2)

(2.16)

x
f
3 = L

f
1cos(θ1,2)−L

f
2cos(θ2,2)+

1

2
L

f
3cos(θ3,2)

y
f
3 = L

f
1sin(θ1,2)−L

f
2sin(θ2,2)+

1

2
L

f
3sin(θ3,2)

(2.17)
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To connect the active length of the actuators with the angular motion obtained at each articulation

in the legs of the BRD, the LAs are configured as shown in Figure 2.2. The following relationships

represent these connections:

(

L
f
1,1

)2

=
(

L0
)2

+
(

La
1

)2 −2L0La
1cos

(

γc
1

)

(

L
f
2,1

)2

=
(

L
f
1,3

)2

+
(

La
2

)2 −2L
f
1,3La

2cos
(

γc
2

)

(

L
f
3,1

)2

=
(

L
f
2,3

)2

+
(

La
3

)2 −2L
f
2,3La

3cos
(

γc
3

)

(2.18)

Complementary, the angles γ j = π/2− γc
j with j = 1,2,3. The corresponding coordinates for

the fixed sections of the LAs are

(

xa
ja,y

a
ja

)

, while the coordinates for the mobile section defined by
(

xa
jb,y

a
jb

)

which can be expressed as follows

xa
ja = x

a,r
j,1 +

1

2
La

j,1sin
(

γ j

)

xa
jb = x

a,r
j,1 +La

j,1sin
(

γ j

)

+
1

2
La

j,2sin
(

γ j

)

ya
ja = y

a,r
j,1 +

1

2
La

j,1cos
(

γ j

)

ya
jb = y

a,r
j,1 +La

j,1cos
(

γ j

)

+
1

2
La

j,2cos
(

γ j

)

(2.19)

where x
a,r
1,1 = x′0, y

a,r
1,1 = y′0; x

a,r
2,1 = xb, y

a,r
2,1 = yb and x

a,r
3,1 = xd , y

a,r
3,1 = yd . The relationships for the

coordinates of the fixed and mobile sections requires the analysis of the connections between the

lengths of the actuators and the angular motions, which are

(

L0
)2

=
(

x′0
)2

+
(

y′0
)2

(

L
f
1,1 +L

f
1,2

)2

= (xb)
2 +(yb)

2

(

L
f
1

)2

+L
f
1

(

L
f
2,1 +L

f
2,2

)

cos(θ1,2 −θ2,2)+

1

4

(

L
f
2,1 +L

f
2,2

)2

= (xd)
2 +(yd)

2

(2.20)
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The corresponding velocities for the fixed sections of the links in the BRD are the following:

ẋ
f
1 =−1

2
L

f
1sin(θ1,2) θ̇1,2

ẏ
f
1 =

1

2
L

f
1cos(θ1,2) θ̇1,2

(2.21)

ẋ
f
2 =−L

f
1sin(θ1,2) θ̇1,2 +

1

2
L

f
2sin(θ2,2) θ̇2,2

ẏ
f
2 = L

f
1cos(θ1,2) θ̇1,2 −

1

2
L

f
2cos(θ2,2) θ̇2,2

(2.22)

ẋ
f
3 =−L

f
1sin(θ1,2) θ̇1,2 +L

f
2sin(θ2,2) θ̇2,2−

1

2
L

f
3sin(θ3,2) θ̇3,2

ẏ
f
3 = L

f
1cos(θ1,2) θ̇1,2 −L

f
2cos(θ2,2) θ̇1,2+

1

2
L

f
3cos(θ3,2) θ̇3,2

(2.23)

The corresponding velocities of fixed and mobile masses for the LAs are given by

ẋa
ja = ẋ

a,r
j,1 +

1

2
La

j,1cos
(

γ j

)

γ̇ j

ẋa
jb = ẋ

a,r
j,1 +La

j,1cos
(

γ j

)

γ̇ j +
1

2
L̇a

j,2sin
(

γ j

)

+

1

2
La

j,2cos
(

γ j

)

γ̇ j

ẏa
ja = ẏ

a,r
j,1 −

1

2
La

j,1sin
(

γ j

)

γ̇ j

ẏa
jb = ẏ

a,r
j,1 −La

j,1sin
(

γ j

)

γ̇ j +
1

2
L̇a

j,2cos
(

γ j

)

−

1

2
La

j,2sin
(

γ j

)

γ̇ j

(2.24)

Considering the basis of the LAs, the following restrictions hold for the relationships between the
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time-varying lengths of the LAs:

(

(

ẋ
a,r
1,1

)2

+
(

ẏ
a,r
1,1

)2
)

= 0

(

(

ẋ
a,r
2,1

)2

+
(

ẏ
a,r
2,1

)2
)

=
(

L
f
1,1 +L

f
1,2

)2
(

θ̇1,2

)2

(

(

ẋ
a,r
3,1

)2

+
(

ẏ
a,r
3,1

)2
)

=

(

L
f
1

)2
(

θ̇1,2

)2
+
(

L
f
2,1 +L

f
2,2

)2
(

θ̇2,2

)2−

2L
f
1

(

L
f
2,1 +L

f
2,2

)

cos(θ1,2 −θ2,2) θ̇1,2

(2.25)

The expressions of the positions and velocities are gotten using the configurations in the BRD and

considering the relative motions of the LAs with respect to the fixed sections of the BRD.

2.4 Development of Mathematical Model 2

To integrate the dynamic movement of the actuators with the mechanical section of the biped robot,

the model shown in Figure 2.2 is considered. In this section, the geometric analysis that combines

the mechanical section with the actuator dynamic movement is presented. Specifically, for the hip

section of the model in Figure 2.2, the following relationships are valid:

θ1 = θ1,1 +θ1,2 (2.26)

The fixed relation between (x0,y0) and (x′0,y
′
0) yields

θ1,1 = atan

(

y′0 − y0

x′0 − x0

)

(2.27)

Now considering that the length of the selected LA for the hip section La
1 is given by La

1 =

La
1,1 + La

1,2. In view of the mechanical relation between (x0,y0), (x
′
0,y

′
0) and (xa,ya) yields the

following equation:

(La
1)

2 =
(

L0
)2

+
(

L
f
1,1

)2

−2L0L
f
1,1cos(θ1) (2.28)
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In view (2.28), γ1,2 = 0.5π −θ1,2, the following relations are valid:

cos(γ1,2) =
y0 − ya

L
f
1,1

=
y0 − yb

L
f
1,1 +L

f
1,2

=
y0 − y1

L
f
1

sin(γ1,2) =
x0 − xa

L
f
1,1

=
x0 − xb

L
f
1,1 +L

f
1,2

=
x0 − x1

L
f
1

(2.29)

Using a similar geometrical study for the knee study, the following angular equation is valid:

θ2 = θ2,1 +θ2,2 (2.30)

The static relation given for (xb,yb) and (x1,y1) yields

θ2,1 = atan

(

yb − y1

xb − x1

)

(2.31)

Taking into account the length of the selected LA for the knee section La
2 is given by La

2 =

La
2,1 + La

2,2. In view of the mechanical relation between (xb,yb), (x1,y1) and (xc,yc) yields the

following equation:

(La
2)

2 =
(

L
f
1,3

)2

+
(

L
f
2,1

)2

−2L
f
1,3L

f
2,1cos(θ2) (2.32)

In view (2.32), γ2,2 = 0.5π −θ2,2, the following relations are valid:

cos(γ2,2) =
y1 − yc

L
f
2,1

=
y1 − yd

L
f
2,1 +L

f
2,2

=
y1 − y2

L
f
2

sin(γ2,2) =
x1 − xc

L
f
2,1

=
x1 − xd

L
f
2,1 +L

f
2,2

=
x1 − x2

L
f
2

(2.33)

For the ankle analysis, the corresponding angular equation is valid:

θ3 = θ3,1 +θ3,2 (2.34)

The static relation given for (xd,yd) and (x2,y2) yields

θ3,1 = atan

(

yd − y2

xd − x2

)

(2.35)

In view of the length of the selected LA for the ankle section La
3 corresponds to La

3 = La
3,1 +La

3,2.
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Considering the mechanical relation between (xd,yd), (x2,y2) and (xe,ye) yields:

(La
3)

2 =
(

L
f
2,3

)2

+
(

L
f
3,1

)2

−2L
f
2,3L

f
3,1cos(θ3) (2.36)

Accordingly (2.36), γ3,2 = 0.5π −θ3,2, the following relations are valid:

cos(γ3,2) =
x2 − xe

L
f
3,1

=
x2 − x3

L
f
3

sin(γ3,2) =
y2 − ye

L
f
3,1

=
y2 − y3

L
f
3

(2.37)

According to the mechanical relations described in this section, the kinetic and potential energies

can be obtained in the form presented in the Mathematical Model 1. The calculus is omitted just to

avoid unnecessary repetition of similar information.

2.5 Tendon-Driven Actuation Principle

The operation of the linear screw-lead and nut device as LA on the biped robot is described as

follows: First, a DC electrical motor rotates a ball-screw, and the nut is locked in rotation but free to

move along the screw axis with the help of an anti-rotation mechanism. This configuration has been

utilized in various LAs and is similar to the one used in this chapter. The induced linear displacement

of the nut is transmitted over a specific link, which eventually drives the rotational joint with the

associated torque. This configuration enables a single-acting actuation architecture that reproduces

tendon routing, thus reducing friction. It is worth noting that friction due to force-transmitting tendons

is a significant source of friction in complex mechanical biped robot configurations. In this chapter’s

biped robot, the LA operates at the level of rotational torque that mobilizes each articulation. As

each articulation is driven by two primary forces, the LA and gravitational, the following relation is

considered:

τi =

(

~ri ×ma
i

d2

dt2
~xs

)

−
Na

i

∑
j=1

(

~rCM, j ×m j~g
)

(2.38)

where~ri is the vector from the articulated joint and the point of actuator insertion on the robot link,

ma
i is the mass of the mobile section in the LA, ~xs is the displacement of the same mobile section,

Na
i is the number of the links placed below the analyzed joint which induce torque action,~rCM, j is

the vector connecting the coordinates of the joint and those of the center of mass of each link j, m j
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is the mass of the link and ~g is the gravity vector.

2.5.1 Actuator Dynamics

An Electromechanical Actuator (EMA) consists of an electric direct current motor (electrical section)

and an associated mechanical gear-box (mechanical section). EMAs are categorized into rotary

and linear classes. LA is further classified into geared and direct-driven linear EMA. Generally, a

geared linear electromechanical actuator comprises a DC motor with a lead-screw (or ball-screw

or roller-screw) and a nut assembly. The motor shaft connects to the lead-screw with the aid of a

shaft-coupling or a gear-box. The DC motor converts electrical energy into the rotational motion

of the shaft, and the lead-screw converts this rotary motion into linear motion. The motor shaft

rotates in either the clockwise or anti-clockwise direction, depending on the input polarity. Once the

rotations of the shaft are transferred to the lead-screw, the nut makes a translational motion either

in the forward or backward direction, depending on the rotational direction of the shaft.

The direct-driven linear electromechanical actuator (EMA) is characterized by the nut serving as

the rotational element and the lead-screw acting as the translational element, with the lead-screw

arrangement being accommodated inside the motor itself. Specifically, the internally threaded nut is

fixed inside the hollow portion of the rotor. When the motor is supplied with electrical energy, both

the rotor and the nut rotate, and the rotational motion of the nut facilitates the linear travel of the

lead-screw. Additionally, the shaft attached to the end of the lead-screw has slotted grooves that

constrain the rotational motion of the lead-screw along with the nut. In terms of function, these two

actuators are not significantly different, but the direct-driven EMA boasts a more compact size than

the geared EMA. This feature renders the direct-driven EMA particularly well-suited for aerospace

industries, robotics, and other industrial machinery applications.

Modeling a single EMAis essential for constructing a multi-element actuator like High-redundancy

Actuators (HRA). In this section, the mathematical model of a direct-driven linear EMAis described.

The electric circuit implies that the applied electrical power with a voltage (Va) is opposed by the

conducting path resistance (Ra), inductance (La) and a back e.m.f (Vb) which is equal to Ke
dθm

dt
.

The voltage can then be expressed as:

Ke
d

dt
θm+La

d

dt
ia +Raia =Va (2.39)

where Ke is the back e.m.f constant and θm is the angular displacement of the motor. In the me-

chanical system, damping, inertia and frictional properties are concentrated quantities. When the

electromagnetic torque generated by the electric circuit is applied to the mechanical system’s (lead-
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screw and nut) rotary element, it rotates at a speed of
d

dt
θm which has a moment of inertia Jm. The

rotational speed of both the rotor and the nut will be the same because they both are attached to

each other. The variables xs and xl are the linear displacements of the lead-screw and the load

respectively. Ks represents the equivalent stiffness that exists between lead-screw and nut and the

damping that exists between bearing and rotor is represented by Cs. The generated torque τm is

opposed by damping torque τd , load torque τl and an inertial torque τi. Hence, the generated

electromagnetic torque is balanced by the other three torques [78], that is:

τm = τd + τl + τi

τm = Kt ia τd = D
d

dt
θm τi = J

d2

dt2
θm

τl =
Cs · l
2π

(ẋs − ẋl)+
Ks · l
2π

(xs − xl)

(2.40)

where D is the equivalent viscous damping coefficient at the armature. The torque τm generated

by the current ia which is passing through the armature is given by the expression (2.40). Kt repre-

sents the motor torque constant. Similarly, the damping, inertial and load torques are given in the

subsequent expressions in (2.40) respectively. In that equation, the term
l

2π
is used for converting

the angular displacement of the nut to linear displacement of the lead-screw, where l is the screw

lead. The substitution of τm, τd , τl and τi in (2.40) and bringing the electrical relationship in (2.39)

yield:

Kt ia = D
d

dt
θm +

Cs · l
2π

(ẋs − ẋl)+
Ks · l
2π

(xs − xl)+ J
d2

dt2
θm

Ke
d

dt
θm +Raia +La

d

dt
ia =Va

(2.41)

with xs = (l ·θ)/(2 ·π) the relationship between the angular displacement and the displacement of

the LA (considering the lead screw configuration). In terms of the movement efficiency the following

relationship is also valid
d

dt
xs = Γr

d

dt
θ

1

η · τi
where Γr is the resistive torque and η is the ball-screw

efficiency. The application of the assumption describing the class of interaction between the tip of

the actuator and the link in the biped robot, then xs = xl .

Using the state variable theory for each actuator τi with the definitions χa
1,i = θm,i, χa

2,i = θ̇m,i

and χa
3,i = ia,i and the corresponding parameters (labeled with a superscript i) yields to the following

model for the actuator:
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d

dt
χa

1,i = χa
2,i

d

dt
χa

2,i =
Di

Ji

χa
2,i +

Kt,i

Ji

χa
3,i

d

dt
χa

3,i =−Ke,i

La,i
χa

2,i −
Ra,i

La,i
χa

3,i +
Va,i

La,i

(2.42)

The pushing force of the LA can be estimated as Fa
i =

(

ma
i

d

dt
χa

2,i

)

, therefore the torque τi =

L
f
i,1 ·Fa

i · sin(δi) produced by this force over the joint i corresponds to δi = π −θm,i − γc
i .

Actuator effect over the second Mathematical model

Notice that integrating the actuator as an active element of the mechanical section simplifies the

analysis of the actuator effect. Indeed, one may notice that mathematical modeling of the actuator

dynamics for this case corresponds to τm in (2.40), with τd = τl = 0. Therefore, the model for the

actuation system inside the actuator (which is operating here as a prismatic joint) is satisfying the

dynamics presented in (2.42) with Di = 0.

In spite that this second model appears as a more simple version of the mathematical description

of the BRD, it could be more complicated to be used in the control design formulation.

2.6 Feedback control of biped robot with linear actuators

The use of bLf has become a popular choice in addressing articulation restricted movement. The

benefits of bLf in improving transient and steady operation of restricted systems have contributed to

the growing number of its applications in recent years. The theory of bLf dates back to the mid-20th

century [79], with its main variants being logarithmic [80–82] and tangent [83, 84].

Biped robotic devices controlled by adaptive gains based on the application of bLf have demon-

strated significant advantages over systems using traditional control approaches such as state feed-

back, extended state approaches, and sliding modes, among others. Although adaptive state-

dependent gains have been applied to proposed controllers in a growing number of applications,

these gains are calculated using controlled bLf. However, no study has been reported proposing the

application of adaptive controllers based on bLf for LAs in BRD configurations. Thus, this section

presents a novel design for a state-dependent adaptive controller for a BRD with LAs in its structure.

The control design considers state restrictions in both the LA and all BRD articulations while tracking

reference trajectories to develop a regulated gait cycle. The dynamics of the DC motor that drives

40



CHAPTER 2. MATHEMATICAL MODELING AND

CONTROL 2.6. FEEDBACK CONTROL OF BR WITH LAS

the LA motion are also included in the study. This section provides an implementation strategy for

LAs as part of the biped robot structure.

2.6.1 Control implementation for BR using linear ball screw drivers as actu-

ation devices

The dynamic model of a single leg presented in (2.2) can be represented (with ζα := q and ζβ :=
d

dt
q) as follows [85, 86]:

d

dt
ζα(t)=ζβ (t)

d

dt
ζβ (t)= f (ζ (t), t)+g(ζα(t))τ(t)+ϒ(ζ (t), t)

y(t) = ζα(t)

(2.43)

with ζ⊤ = [ζ⊤
α ,ζ⊤

β ], where ζ ∈ X ⊂ R2n, X an open subspace of feasible positions, ζα ∈ Rn is

the vector of angles that describes the movements at each joint of the biped robot. The vector

ζβ ∈ Rn represents the time derivative of the angular displacements for each joint. The variable

y represents the available output information that can be measured from the biped robot. The

function f : X ×R+ → Rn is a vector field that represents the internal dynamics of the biped robot,

its structure can be obtained by using Euler-Lagrange method. In this chapter it is not thoroughly

studied the interactions between the contact surface and the biped structure. The properties of the

f function guarantee validity of the locally Lipschitz condition presented here [87]:

‖ f
(

ζ 1
)

− f
(

ζ 2
)

‖ ≤ L f ‖ζ 1 −ζ 2‖,
ζ 1 ∈ X ,ζ 2 ∈ X ,L f ∈ R+

(2.44)

The function g : Rn →Rn×n describes how the input vector affects the dynamics of the biped robot.

This structure owns a well defined inverse since the inertia matrix of the biped robot is positive

definite and satisfies the inequality (2.45) uniformly on t ≥ 0, where it is used the Frobenius matrix

norm:

0 < g− ≤ ‖g(ζα)‖F ≤ g+ <+∞

g− ∈ R+,g+ ∈ R+
(2.45)

The term ϒ : X ×R+ →Rn represents the uncertainties/perturbations, and it belongs to the following

set:

Ξ =

{

ϒ| sup
t≥0, ζ∈Rn

‖ϒ‖2 ≤ ϒ0 +ϒ1‖ζ‖2

}

(2.46)
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Because of the nature of the mechanical structure, it must satisfy the angular displacement restric-

tions for all the components of the state vector:

−∞ < ζ−
α,i ≤ ζα,i ≤ ζ+

α,i <+∞, ζ−
α,i,ζ

+
α,i ∈ R (2.47)

There exists an upper limit ζ+, which is defined as:

(max
i

ζ+
i )

λmin{P} = ζ+ (2.48)

where ζi defines the restriction for the ith angular displacement and P ∈ Rn×n is a positive definite

weighting matrix. Such matrix can be used to restrict some specific articulations. Then, ζ+ defines

the bounds for the states accordingly to the following inequality:

‖ζ‖2
P ≤ ζ+ (2.49)

The term ϒ corresponds to ϒ = M−1Ξ. A biped robot actuated with linear ball screw drivers gain

postural force. Usually, an individual driver is placed at each articulation forming the configuration

observed in Figure 2.2.

2.7 Output feedback control

This section details all the elements in the automatic control design including the implementation of

the output feedback form, the implementation strategy as well as a brief sketch of the stability proof

for the close loop dynamics.

2.7.1 Problem Statement for the Control Design

The aim of this chapter is to develop an output feedback control u = u(t) for a biped robot such that

‖ζa(t)−ζ ∗
a (t)‖ ≤ β0 , ∀t > T > 0 (2.50)

Here T is a given time, the positive scalar β0 defines the quality of the trajectory tracking for the
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reference trajectory ζ ∗
a , which is satisfying the following ordinary differential equation:

d

dt
ζ ∗

α(t)=ζ ∗
β (t)

d

dt
ζ ∗

β (t)=h
(

ζ ∗
α(t),ζ

∗
β (t), t

) (2.51)

Here the vector field h : X ×X ×R+ →Rn is a locally Lipschitz function, which characterizes the

reference trajectories. The references trajectories are proposed (refer to 1.2.4) to satisfy the same

bounds that are admitted by the angular displacements of each joint, that is

−∞ < ζ−
α,i ≤ ζ ∗

α,i ≤ ζ+
α,i <+∞, ζ−

α,i,ζ
+
α,i ∈ R (2.52)

Defining the trajectory tracking error δ (t) ∈ R2n which is given by δ = ζ − ζ ∗, where ζ ∗ =

[(ζ ∗
α)

⊤,(ζ ∗
β )

⊤]⊤. Hence, the dynamics of δ (t) is given by:

d

dt
δ (t)=Aδ (t)+B( f (ζ (t), t)+g(ζα(t))τ(t))+B

(

ϒ(ζ (t), t)−h
(

ζ ∗
α(t),ζ

∗
β (t), t

))

A =

[

0n In

0n 0n

]

B =

[

0n

In

]

(2.53)

The matrices A and B satisfies a companion controllable form with the correct dimensions.

The controller design considered in this chapter assumes that the control form satisfies the

following linear form with a state dependent gain:

τ(t) = g−1(ζa(t))
(

K(t)δ̂(t)−h
(

ζ ∗
α(t),ζ

∗
β(t), t

)

− f (ζ (t), t)
)

(2.54)

Notice that this formulation appears to be a class of adaptive state dependent feedback for the

class of biped robot. In the controller form, δ̂ is the tracking error using the estimates of ζβ . The gain

of the suggested controller is defined as K(t) = [KP(t) KD(t)] with KP ∈Rn×n and KD ∈Rn×n. The

well-known efficient tracking characteristics of the linear control form, its implementation needs of

measuring
d

dt
y(t). The possibility of getting the estimation of such derivative on-line usually implies

important technical resource such additional sensors. A feasible alternative is instrumenting a class

of Robust Exact Differentiator (RED) which can yield an accurate estimation of the time derivative of
d

dt
y(t) [88]. This study uses the significant benefits of the Super-Twisting Algorithm (STA) method

that has proven to be one of the more efficient alternatives to get an accurate estimation of the time

derivative of the output information, while it can be used as part of output feedback control forms

[89]. For a scalar variable, the STA operating as a RED can be detailed as follows. Consider that
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w1 (t) = r (t) with r(t) ∈ R being the signal which must be differentiated, w2(t) =
d

dt
r(t) describes

its time-derivative. Assuming that

∣

∣

∣

∣

d2

dt2
r(t)

∣

∣

∣

∣

≤ r+, it is feasible to propose the following auxiliary

dynamic representation

d

dt
w1(t) = w2(t),

d

dt
w2(t) =

d2

dt2
r(t) (2.55)

The set of differential equations (2.55) consists of the state-space description for r(t). The STA

used to obtain the derivative of r (t) satisfies

d

dt
w̄1 (t) = w̄2 (t)−λ1 |w̃1(t)|1/2

sign(w̃1(t))

d

dt
w̄2 (t) =−λ2sign(w̃1(t))

w̃1 = w̄1 −w1; d(t) =
d

dt
w̄1 (t)

(2.56)

where w̄1 and w̄2 are the STA variables and λ1,λ2 > 0 are its gains [88]. The time-dependent signal,

d(t) represents the output of the RED in (2.56). Here,

sign(ν) =











1 i f ν > 0

[−1,1] i f ν = 0

−1 i f ν < 0

(2.57)
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2.7.2 Adaptive output-feedback controller (AOFC) including the joint restric-

tions and actuator dynamics

The dynamics of each articulation in system (2.43) can be presented as the composition of n-

subsystems as follows:

d

dt
ζα,i(t)=ζβ ,i(t)

d

dt
ζβ ,i(t)= fi (ζ (t), t)+gi,i (ζα(t))τi(t)+

n

∑
j=1, j 6=i

gi, j (ζα(t))τ j(t)+ϒi (ζ (t), t)

τi(t) = L
f
i,1 ·
(

ma
i

d

dt
χa

2,i

)

· sin
(

π −χa
1,i − γc

i

)

d

dt
χa

1,i = χa
2,i

d

dt
χa

2,i =
Di

Ji
χa

2,i +
Kt,i

Ji
χa

3,i

d

dt
χa

3,i =−Ke,i

La,i
χa

2,i −
Ra,i

La,i
χa

3,i +
Va,i

La,i

(2.58)

where ζa,i and ζb,i are the i− th and (n+ i)− th states of (2.43). The nonlinear forms fi (·) and

gi,i(·) are the corresponding functions corresponding to the states ζa,i as well as ζb,i. Additionally,

γi (·, ·) describes the corresponding uncertain section of the studied subsystem. The positioning of

the LA and the movement dynamics of each articulation in the biped robot (2.43) presented in Figure

2.2, establishes a relationship between torques at the analyzed ith joint. This fact is represented in

(2.58). Based on the definition for the tracking error introduced in (2.53), the individual tracking error

for each angular joint in the biped robot satisfies:

d

dt
δi(t) = δi+n(t)

d

dt
δi+n(t) = fi (ζ (t), t)+gi,i (ζα(t))τi(t)−

hi

(

ζ ∗
a (t),ζ

∗
b (t)

)

+
n

∑
j=1, j 6=i

gi, j (ζα(t))τ j(t)+ϒi (ζ (t), t)

(2.59)

Here, the Lipschitz function hi

(

ζ ∗
a (t),ζ

∗
b (t)

)

is the i− th component of h
(

ζ ∗
a (t),ζ

∗
b (t)

)

. Notice that

each tracking error δi admits the following bounds

δ−
i := ζ−

α,i −ζ+
α,i < δi < ζ+

α,i −ζ−
α,i =: δ+

i (2.60)
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Based on the restrictions estimated for each δi, the application of asymmetric output based

bLf yields the construction of the proposed controller that drives the corresponding tracking error

towards the invariant zone near the origin.

2.7.3 Control design for the biped robot device

The convergence for the trajectory tracking error δ in (2.59) can be justified by the arguments de-

scribed in the next theorem:

Theorem 1. Consider the BRD system (2.43), with the control law proposed in (2.54) and the gains

adjusted as in
d

dt
KP,i (t) =−λP,iP1,iδi|δi|−αi

(

KP,i (t)−K∗
P,i

)

d

dt
KD,i (t) =−λP,iP1,i

d

dt
δ̂i|δi|−αi

(

KD,i (t)−K∗
D,i

) (2.61)

where δ̂i is the estimated derivative of δi. Hence, the controller uses the time-derivative of the

tracking error obtained by the implementation of the STA as RED given in (2.56). If there are positive

constants αi, λ1,i, λ2,i, then the Lyapunov inequalities have positive-definite solutions P1,i matrices:

A⊤
1,iP1,i +P1,iA1,i ≤−Q1,i

A1,i =

[

−λ1,i 1

−2λ2,i 0

]

, Q1,i = Q⊤
1,i > 0, Q1,i ∈ R2×2

(2.62)

and if there are positive gains K∗
P,i, K∗

D,i that can be selected in such a way that the Riccati equations

described by

P2,i (A2,i +αiI)+(A2,i +αiI)
⊤

P2,i +P2,iR2,iP2,i +Q2,i ≤ 0 (2.63)

have positive definite P2,i matrices as solutions with

A2,i =

[

0 1

−K∗
P,i −K∗

D,i

]

, R2,i = Λa,i +Λb,i

Q2,i = 4λmax

{

Λ−1
b,i

}

I2×2 + Λ̄a,i,

Λ̄a,i = LiΛa,i, Li ∈ R+

Λa,i = Λ⊤
a,i > 0, Λb,i = Λ⊤

b,i > 0

Λa,i,Λb,i ∈ R2×2 αi ∈ R+

(2.64)
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hence δ⊤ = [δ1, ...,δn,δn+1, ...,δ2n] is globally ultimately bounded with the ultimate bound given by

lim
t→∞

E⊤ (t)P2E (t)≤
n

∑
i=1

γi

αi
(2.65)

where

P2 =













P2,1 02×2 · · · 02×2

02×2 P2,2 · · · 02×2

...
...

. . .
...

02×2 02×2 · · · P2,n













(2.66)

and γi = 2λmax

{

Λ−1
b,i

}

(ϒ0)

Proof. Consider the Lyapunov candidate function given by

V
(

ξ ,E, k̄1, k̄2

)

=
n

∑
i=1

Vi

(

ξi,Ei, k̄1,i, k̄2,i

)

Vi

(

ξi,Ei, k̄1,i, k̄2,i

)

:=V1,i (ξi)+V2,i (Ei)+V3,i

(

k̄1,i, k̄2,i

)

(2.67)

with V1,i (ξi) = ξ⊤
i P1,iξi, V2,i (Ei) = E⊤

i P2,iEi and V3,i

(

k̄1,i, k̄2,i

)

= π1,ik̄
2
1,i + π2,ik̄

2
2,i where k̄1,i =

KP,i (t)−K∗
P,i and k̄2,i = KD,i (t)−K∗

D,i. The term referred to as ξi is described by

ξi =
[

|δ1,i|1/2sign(δ1,i) δ2,i

]⊤
. The time derivative of each function Vi

(

ξi,ei, k̄1,i, k̄2,i

)

is:

d

dt
Vi (t) = 2ξ⊤

i (t)P1,i
d

dt
ξi(t)+2E⊤

i P2,i
d

dt
Ei +2π1,ik̄1,i

d

dt
k̄1,i +2π2,ik̄2,i

d

dt
k̄2,i (2.68)

Notice that V1,i (ξi) is continuous, however it is not differentiable if δ1,i = 0. The ideas proposed

by [89] are reconsidered here for handling the class of no regular Lyapunov functions. Let continue

the analysis of the second stage V2,i (Ei). The calculus of the full-time derivative for the second

function, one gets
d

dt
V2,i (t) = 2E⊤

i (t)P2,i
d

dt
Ei (t) using the Dini’s derivative. The direct substitution

47



2.7. OUTPUT FEEDBACK CONTROL

CHAPTER 2. MATHEMATICAL MODELING AND

CONTROL

of
d

dt
ξi and

d

dt
Ei in the expression corresponding to the full-time derivative of Vi (t) yields:

d

dt
Vi (t)≤ ξ⊤

i (t)
[

P1,iAi,1+A⊤
i,1P1,i

]

ξi +E⊤
i (t)

[

P2,i (A2,i +αiI)+(A2,i +αiI)
⊤

P2,i

]

Ei (t)+

E⊤
i (t) [P2,iR2,iP2,i +Q2,i]Ei (t)−αiVi (t)+ γi +2k̄1,i(t)

{

π1,i
d

dt
k̄1,i(t)+ ei(t)M

⊤
a P2,iEi(t)

}

+

2k̄2,i(t)

{

π2,i
d

dt
k̄2,i(t)+ ei+n(t)M

⊤
b P2,iEi(t)

}

(2.69)

The differential inclusion appears after the application of the Young’s inequality X⊤Y +Y⊤X ≤
X⊤Λ−1X +Y⊤ΛY X ,Y ∈ Rs×q with 0 < Λ = Λ⊤ ∈ Rs×s [90].

Considering the satisfaction of the condition for the existence of positive definite solutions for the

given Lyapunov equations as well as the Riccati algebraic equations given in the theorem statement

and in consideration of the adjusting laws for the gains k̄1,i(t) and k̄2,i(t) in (2.61), leads to the

transformation of inclusion into:
d

dt
V2,i (t)≤−αiV2,i (t)+ γi.

Considering that the solution of the inclusion for
d

dt
V2,i (t) , and the application of the comparison

Lemma, it lead straightforwardly to V2,i (t) ≤ V2,i (0)e−2αit+
γi

αi

(

1− e−2αit
)

. Considering the case

when the inclusion transforms to the equivalent ordinary differential equation. Redefining Vi (t) as

V
eq
i (t), it can be proven that

V (t)≤
n

∑
i=1

√

V1,i (0)−2t
n

∑
i=1

κ1,i +
n

∑
i=1

(

V2,i (0)e−αit +
γi

αi

(

1− e−αit
)

)

(2.70)

Clearly, when t ≥ T with T =

n

∑
i=1

√

V1,i (0)

2
n

∑
i=1

κ1,i

the following inequality can be justified

V (t)≤
n

∑
i=1

(

V2,i (T )e−αi(t−T )
)

+
n

∑
i=1

γi

αi

(

1− e−αi(t−T )
)

(2.71)

If the upper limit is calculated, with t → ∞ yields to lim
t→∞

V (t)≤
n

∑
i=1

γi

αi

. This result finishes the proof.
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2.8 Actuator dynamics and voltage determination

In view of the relationships presented for the LA and the control actions obtained in Theorem 1 yields

to:

τi = L
f
i,1 ·Fa

i · sin(δi) = L
f
i,1 ·ma

i

d

dt
χa

2,i · sin(δi) =

L
f
i,1 ·ma

i

(

Di

Ji
χa

2,i +
Kt,i

Ji
χa

3,i

)

· sin(δi)

(2.72)

Using the STA, one may substitute χa
2,i by its estimate χ̂a

2,i, then the proposed controller may be

represented as follows:

τ̂i = L
f
i,1 ·ma

i

(

Di

Ji
χ̂a

2,i +
Kt,i

Ji
χa

3,i

)

· sin(δi) (2.73)

To obtain the requested voltage in the LA, let introduce the difference between the needed torque

∆τi
= τ∗i − τ̂i which satisfies the following dynamics

d

dt
∆τi

=
d

dt
τ∗i −

d

dt

(

L
f
i,1 ·ma

i

(

Di

Ji

χ̂a
2,i +

Kt,i

Ji

χa
3,i

)

· sin(δi)

)

(2.74)

The estimation of the derivative applied in the equation
d

dt
∆τi

yields to the following representa-

tion:
d

dt
∆τi

=
d

dt
τ∗i −

(

L
f
i,1 ·ma

i

(

Di

Ji

d

dt
χ̂a

2,i +
Kt,i

Ji

d

dt
χa

3,i

)

· sin(δi)

)

+
(

L
f
i,1 ·ma

i

(

Di

Ji
χ̂a

2,i +
Kt,i

Ji
χa

3,i

)

· cos(δi)
d

dt
δi

) (2.75)

The expression given in (2.75) can be alternatively expressed as follows

d

dt
∆τi

= Φa
i (t)+Γa

i (t)Va,i(t)

where the expressions for Φa
i (t) and Γa

i (t) are given here

Φa
i (t) =

d

dt
τi +

(

L
f
i,1ma

i (JiKt,iKe,i −Di)

JiLa,i
sin(δ )+

L
f
i,1ma

i Di

Ji
cos(δ )

d

dt
δ

)

χ̂a
2,i

+

(

L
f
i,1ma

i (Kt,iRa,i − JiDiKt,i)

JiLa,i
sin(δ )+

L
f
i,1ma

i Kt,i

Ji
cos(δ )

d

dt
δ

)

χa
3,i

(2.76)
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and

Γa
i (t) =

L
f
i,1ma

i Kt,i

JiLa,i
sin(δ ) (2.77)

Thus, the dynamic evolution of the error can be written as:

d

dt
∆τi

= Fa
i

(

δ , ˆχa
2,i,χ

a
3,i, t
)

+Γa
i (δ , t)Va,i (2.78)

Then Va,i(t) is:

Va,i(t) =− [Γa
i (t)]

−1
[

ka
i sign(∆τi

)+Fa
i

(

δ , ˆχa
2,i,χ

a
3,i, t
)]

(2.79)

Notice that it is straightforward to prove that the proposed voltage is enforcing the finite-time

reproduction of the needed torque for controlling the proposed BRD.
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Chapter 3

Adaptive controller design with finite and

fixed time convergence

This chapter introduces a novel trajectory tracking robust controller for a biped robotic system with re-

stricted articulations. The robotic device comprises a suspended biped configuration. The proposed

robust control approach employs state-dependent gains, which ensure finite-time convergence of

the tracking deviation. The implementation of controlled tangent barrier Lyapunov function is used

to estimate the controller gains that fulfill the state restrictions. Stability analysis for the tracking error

leads to the explicit design of the state-dependent gains. The forward complete characteristic of the

rehabilitation device allows for the use of a finite-time convergent super-twisting-based differentia-

tor, which enables output feedback realization of the proposed controller. A computerized model of

the proposed rehabilitation robot serves as a reliable testing platform for the suggested robust con-

troller. Numerical evaluations validate the effectiveness of the proposed design by demonstrating

tracking error convergence, satisfaction of the articulation restrictions, and the efficacy of the gain

optimization design. For comparison purposes, the regular state feedback control design is consid-

ered as the benchmark. The faster convergence of the mean square estimation of the tracking error

justifies the design of the proposed control, while the state feedback structure proves the origin is a

fixed-time stable equilibrium point for the space of tracking error. This chapter is derived from [91].

3.1 Introduction

Controlling biped robotic devices has been a subject of interest in various fields, including robotics,

automatic control, and medical rehabilitation. As the applications of biped robots increase, new

automatic controllers that consider the unique characteristics of these devices are being developed.
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Most control designs use the regular human gait as a reference (see Section 1.2.4) to prioritize the

safe headway of the biped robotic device. The ZMP [92, 93] is a crucial criterion for postural stability

in biped robots. This criterion considers the aggregation of gravitational and inertial forces and

aims to force a null moment of inertia. Ensuring the ZMP condition requires a robust controller that

can efficiently track reference trajectories [94, 95]. The references define a sequence of articulation

movements that must be restricted to the allowable articular displacements of the biped robot. These

restrictions can form part of the design of the stable GC for the considered autonomous bipedal

robotic device.

Despite the numerous remarkable designs of robust controllers for biped robots inspired by the

ZMP criterion, many apply asymptotic controllers [96–100] and do not take into account the angular

restrictions for angular movements in biped robot designs. Consequently, the gain tuning process

may take a long time [101, 102], during which the biped robot may suffer undesired effects, including

mechanical damages due to the transient period of the controller action. Therefore, it is desirable to

implement finite-time controllers that consider the state restrictions of the biped robot [103–105].

Finite and fixed time convergent controllers are desirable for state-restricted robotic systems,

such as biped robotic devices [106], due to the strict time constraints that may be present in real-

world applications with predefined finite-duration working time windows [107]. Recently, set-valued

functions such as the sign function have been proposed as the key component of the control design

for finite and fixed time convergent controllers [108]. These controllers often employ discontinu-

ous control functions and are typically based on sliding-mode theory [109–111]. The sliding-mode

controllers drive the trajectories of the robotic device to a predefined subspace, even for high-order

variants that consider augmented variables [112, 113]. Nonlinear state combinations can be used

to create sliding surfaces that enforce predefined convergence velocities of states to the origin once

they are on the sliding manifold [114, 115]. In addition to discontinuous controllers, recent studies

have proposed diverging gains for certain classes of linear controllers and observers to ensure finite

time convergence, which may also be suitable for biped robots. These systems can be regulated

by diverse sliding-mode or gain-divergent control designs while still ensuring either finite or fixed

time convergent approaches, provided they are state or output feedback linearizable systems with

well-defined finite relative degree with respect to the available online measurable outputs [116, 117].

Theoretical results on developing feasible controllers, including gain tuning and estimation of

convergence time, for the analyzed class of systems are mature. However, some studies describe

the methodology for implementing these controllers with state constraints within fixed bounds known

in advance [103, 118]. Currently, significant advances have been made in developing controllers

that can consider state bounds [119]. Among the existing techniques, the application of bLfs is an

option to consider the restricted movements for all articulations included in the biped robotic device
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under study. The use of BLFs has grown in popularity in recent years due to their relevance in

implementing complex nonlinear controllers on real plants. Different variations of BLFs have been

proposed, including logarithmic form [57], integral structures [120], and tangent [121] functions.

However, when bLfs are used as the key stability tool in the second stability method of Lyapunov,

there is a need to ensure finite-time convergence of the system trajectories. One alternative is to

apply polynomial-form control designs that force a non-Lipschitz form around the origin [122] or to

use adaptive variants such as neural networks and fuzzy systems [123, 124]. Although these control

designs may not exhibit robustness with respect to non-vanishing external perturbations, they still

provide reliable transient evolution in a closed set centered on the equilibrium point of the tracking

error space [125]. This study proposes a methodology for implementing a class of tangent barrier

Lyapunov function with diverging gain, which yields finite-time convergence of the tracking error

while satisfying the states restrictions all the time. This is a significant contribution to the control of

biped robotic devices, considering their characteristics.

This chapter presents three principal contributions. Firstly, a robust controller based on a novel

stability analysis is developed using a controlled tangent bLf. Secondly, the proposed tangent BLF

includes fractional and high order polynomial composition of the tracking error, which justifies the

existence of a finite-time equilibrium point of the tracking error dynamics between the articulation

angles and their associated references. Finally, a set of numerical studies is conducted to test the

suggested controller on a virtual representation of the bipedal robotic device, which confirms that the

proposed controller enforces the stability conditions produced by the application of the suggested

tangent BLF.

The chapter is structured as follows. In Section 3.2, it is described the simplified bipedal robotic

structure. Section 3.3 provides details on the adaptive control design based on a novel tangent-

type bLf and presents the corresponding proof. The proposed controller’s numerical evaluations are

shown in Section 3.4, where we compare it with a classical controller. Finally, in Section 3.6, we

present the experimental evaluation of the controller over the mechanical structure.

3.2 Mathematical model

Since in Chapter 2 it was demonstrated that the integration of the bLf controller into the electrome-

chanical dynamics of the LA is possible, and the simulations will be carried out on a robot simulation

platform (Simulink
®

), a simplified version of the model is presented in which the robot is considered

as an open kinematic chain. The biped robot, which is designed for this study, is depicted in Figure

3.1. The proposed design has three links for each leg, which allows for mobilization on the sagittal
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plane. The simulated robot assumes dimensions appropriate for an adult male with a height of ‘

“175 cm and weights appropriate for an aluminum structure with linear actuators attached to it (see

Sections 5.4.6 and A for more details).

of

ℓR
1 ℓL

1

ℓR
2 ℓL

2

ℓR
3

ℓL
3

a) Isometric b) Superior

αR

αR
1

αR
2

c) Right d) Frontal

Figure 3.1: Mechanical diagram of the proposed biped robot detailing the links and rotating joints for each

leg.

According to the Euler-Lagrange methodology, the Lagrangiang function was estimated consid-
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ering the calculus of kinetic K(q̇,q) and potential energies V (q) with q ∈ R6, the vector of general-

ized coordinates with q = [
(

qL
)⊤

,
(

qR
)⊤

]⊤, qL ∈ R3, qR ∈ R3. In view of the symmetry and relative

independence of both legs, each of the legs can be modeled independently.

In principle, the Lagrangian of the biped robot L(q̇,q) can be calculated as the sum of the La-

grangian of the right LR
(

q̇R,qR
)

and left LL
(

q̇L,qL
)

legs, that is L(q̇,q) =LR(q̇R,qR)+LL(q̇L,qL).

In consequence, let consider the modeling process of a single leg which can be easily adjusted for

each leg. Without lost of generality, let consider the Lagrangian for the left leg:

L
L(q̇L,qL) = K

(

q̇L,qL
)

−V
(

qL
)

(3.1)

With the application of the Euler-Lagrange equations:

d

dt

(

∂

∂ q̇L
L

L(q̇L,qL)

)

− ∂

∂qL
L

L(q̇L,qL) = τL −QL
n−i (3.2)

Here τL ∈ R3 is the set of torques realized by the linear actuators, while QL
n−i ∈ R3 is the set of

non-conservative forces (except the torques) that includes friction, damping and some others. The

matrix form corresponding to the calculus of the Euler-Lagrange equations of the left leg in the biped

robot corresponds to the form

DL
(

qL
)

q̈L +CL
(

q̇L,qL
)

q̇L +GL
(

qL
)

= τL +QL
n−i

(

q̇L,qL, t
)

(3.3)

where the inertia matrix DL
(

qL
)

is given by

DL =







DL
11 DL

12 DL
13

DL
12 DL

22 DL
23

DL
13 DL

23 DL
33







The components of inertia matrix DL are described by the following expressions:

DL
11 =

1

4
m1l2

1 +m2l2
1 +

1

4
m2l2

2 +m3l2
1 +m3l2

2 +
1

4
m3l2

2

+m3l1l3cL
23 +m3l2l3cL

3 +m2l1l2cL
2 +2m3l1l2cL

2

DL
12 =−1

4
m2l2

2 −m3l2
2 −

1

4
m3l2

3 −m3l2l3cL
3 −

1

2
m2l1l2cL

2

−m3l1l2cL
2 −

1

2
m3l1l3cL

23
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DL
13 =

1

4
m3l2

3 +
1

2
m3l1l3cL

23 +
1

2
m3l2l3cL

3

DL
22 = m3l2

2 +
1

4
m3l2

3 +
1

4
m2l2

2 +m3l2l3cL
3

DL
23 =−1

4
m3l2

3 −
1

2
m3l2l3cL

3

DL
33 =

1

4
m3l2

3

For the Coriolis matrix CL
(

q̇L,qL
)

, its formal expression is given as follows:

CL
(

qL,qL
)

=







CL
11 CL

12 CL
13

CL
21 CL

22 CL
23

CL
31 CL

32 CL
33







The components of CL
(

q̇L,qL
)

are given by:

CL
11 = m1g

l1

2
sL

1 +m2gl1sL
1 +m3gl1sL

1 +m2g
l1

2
sL

12

+m3gl2sL
12 +m3g

l3

2
sL

123 −m3l1l3sL
23q̇L

2

−m3l1l3sL
23q̇L

3

CL
12 = m3l2l3q̇L

3sL
3 +

1

2
m2l1l2q̇L

2sL
2 +m3l1l2q̇L

2sL
2

+
1

2
m3l1l3sL

23q̇L
2 −

1

2
m3l1l3sL

23q̇L
3 −m2l1l2q̇L

1sL
2

−2m3l1l2q̇L
1sL

2

CL
13 =−1

2
m3l1l3sL

23q̇L
2 +

1

2
m3l1l3sL

23q̇L
3 −m3l2l3q̇L

1sL
3

− 1

2
m3l2l3q̇L

3sL
3

CL
21 =

1

2
m3l1l3q̇L

1sL
23 +

1

2
m2l1l2q̇L

1sL
2 +m3l1l2q̇L

1sL
2

+
1

2
m3l1l3sL

23q̇L
2 −

1

2
m3l1l3sL

23q̇L
3

CL
22 =

1

2
m2l1l2q̇L

1sL
2 −m3l1l2q̇L

1sL
2 −

1

2
m3l1l3q̇L

1sL
23

+
1

2
m2l1l2q̇L

1sL
2 +m3l1l2q̇L

1sL
2

CL
23 =

1

2
m3l1l3q̇L

1sL
23 +m3l2l3q̇L

1sL
3 −m3l2l3q̇L

2sL
3
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+
1

2
m3l2l3q̇L

3sL
3

CL
31 =

1

2
m3l2l3sL

3 q̇L
1 −

1

2
m3l1l3qL

1sL
23 −

1

2
m3l1l3sL

23q̇L
2

+
1

2
m3l1l3sL

23q̇L
3

CL
32 =

1

2
m3l2l3sL

3 q̇L
2 −m3l2l3q̇L

1sL
3 +

1

2
m3l1l3q̇L

1sL
23

C33 =−1

2
m3l1l3q̇L

1sL
23

In the case of the gravitational term G, its expression corresponds to

GL
(

qL
)

=











0

−m2g
l2

2
−m3gl2sL

12 −m3g
l3

2
sL

123

m3g
l3

2
sL

123











In the last terms, the following nomenclature is used: sL
i = sin(qL

i ), cL
i = cos(qL

i ) with i= {1,2,3}
cL

23 = cos(qL
2 −qL

3), sL
23 = sin(qL

2 −qL
3), sL

12 = sin(qL
1 −qL

2) and sL
123 = sin(qL

1 −qL
2 +qL

3).

3.3 Output feedback control

The bipedal robotic device considered in this study, represented by system (3.3), can be mathe-

matically described using the state variable theory [85, 86]. Let ζ Eα = qE and ζ Eβ = q̇E , where

E = {L,R}. Then, the mathematical description can be written as::

d

dt
ζ E

α (t)=ζ E
β (t)

d

dt
ζ E

β (t)= f E
(

ζ E(t), t
)

+gE
(

ζ E
α (t)

)

uE(t)+ϒE
(

ζ E(t), t
)

(3.4)

where
(

ζ E
)⊤

= [
(

ζ E
α

)⊤
,
(

ζ E
β

)⊤
]. Here ζ E ∈ XE ⊂ R6,where XE is an open subspace of the

state variable space. ζ E
α ∈ R3 represents the vector of angular displacements at each joint for

each leg of the biped robot, while ζ E
β ∈ R3 describes the full-time differentiation of the angular

variations measured at each joint in the bipedal robotic device. The function f E : XE ×R+ →
R3 is the vector field used to represent the drift term for the bipedal robotic device, which can

be obtained by applying the Euler-Lagrange representation over (3.3) and corresponds to f E =

−
(

DE
(

qE
))−1 (

CE
(

q̇E ,qE
)

q̇E +GE
(

qE
))

.
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This study does not analyze the contact interactions between the supporting surface and the

foot of the biped robot. The given properties for the f vector function guarantee the validity of the

locally Lipschitz condition, which is given by:

‖ f E
(

ζ E
1

)

− f E
(

ζ E
2

)

‖ ≤ L f ‖ζ E
1 −ζ E

2 ‖,

ζ E
1 ∈ XE ,ζ E

2 ∈ XE ,L f ∈ R+

(3.5)

The function gE :R3 →R3×3 defines the effect of the input vector over the bipedal robotic device

and could be estimated as gE =
(

DE
(

qE
))−1

. This structure considers a well-defined inverse

in view of the inertia (positive definite) matrix associated to the bipedal robotic device. The term

ϒE : XE ×R+ →Rn represents the uncertainties/perturbations. This vector function can be obtained

using the mechanical form (3.3) and leads to ϒE =
(

DE
(

qE
))−1

QE
n−i

(

q̇E ,qE , t
)

. The term ϒE

belongs to the following set:

Ξ =

{

ϒE | sup
t≥0, ζ E∈R3

‖ϒE‖2 ≤ ϒ0 +ϒ1‖ζ E‖2

}

(3.6)

In view of the nature of the biped robot (mechanical structure), each angular displacement is re-

stricted according to the following structure:

−∞ < ζ E,−
α,i ≤ ζ E

α,i ≤ ζ E,+
α,i <+∞, ζ E,−

α,i ,ζ E,+
α,i ∈ R (3.7)

According to the restrictions for the states, there is an upper limit ζ E,+ defined as:

(max
i

ζ E,+
i )3

λminPE
= ζ E,+ (3.8)

Here ζ E,+
i is giving the restriction for the ith angular displacement and PE ∈ R6×6 is a positive

definite weighting matrix. That matrix is going to be used to restrict some specific articular sections.

Then, ζ E,+ characterizes the bounds for the generalized coordinates according to the following

inequality:

‖ζ E‖2
PE ≤ ζ E,+ (3.9)
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3.3.1 Problem Statement for the controller design

The objective of the controller developed in this chapter is designing a controller uE = uE(t) for the

bipedal robotic device in such a way that

‖ζ E
a (t)−ζ E,∗

a (t)‖ ≤ ς E , ∀t > T : 0 (3.10)

Here, T denotes the fixed time for convergence, ς E is the tracking error associated with the

reference trajectories, ζ E
a corresponds to the given position of all joints as explained previously, and

ζ E,∗
a represents the target reference trajectories. The reference trajectories are determined based

on the expected motion of the biped robot, often following a bio-inspired gait cycle observed in

human beings. It is important that such reference trajectories are differentiable.

The generalized coordinate ζ E
a is defined as follows

ζ E
a = |ζ E

a,i|i=1:3

3.3.2 Control design

The control design strategy considers that the proposed reference trajectories satisfies the following

dynamic form
d

dt
ζ E,∗

α (t)=ζ E,∗
β (t)

d

dt
ζ E,∗

β
(t)=hE

(

ζ E,∗
α (t),ζ E,∗

β
(t), t

)

(3.11)

The vector function hE : XE ×XE ×R+ → Rn is locally Lipschitz. Such function characterizes

the reference states.

Taking into consideration that tracking error vector δ E(t) ∈ R6 is defined as δ E = ζ E − ζ E,∗,

where ζ E,∗ = [(ζ E,∗
α )⊤,(ζ E,∗

β
)⊤]⊤. Then, δ E(t) dynamical behavior is given by:

d

dt
δ E(t)=Aδ E(t)+B

(

f E
(

ζ E(t), t
)

+gE
(

ζ E
α (t)

)

uE(t)
)

+

B
(

ϒE
(

ζ E(t), t
)

−hE
(

ζ E,∗
α (t),ζ E,∗

β
(t), t

))

(3.12)

Both system matrices A and B satisfy the companion controllable form of appropriate dimen-

sions. Consider the adaptive controller (with diverging gain) that satisfies the following nonlinear

structure form

uE(t) =
(

gE(ζ E
a (t))

)−1
KE(t)δ E(t) (3.13)
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The selected time-varying gain satisfies the following conditions:

d

dt
KE(t) =−2λ−1cE

1 K̃E(t)
(

(

K̃E(t)
)⊤

K̃E(t)
)− 1

p −2λ−1cE
2 K̃E(t)

(

(

K̃E(t)
)⊤

K̃E(t)
) 1

p −

2λ−1 pπ

2ζ E,+
·Γ(δ E(t))B⊤PEδ E(t)δ E(t)⊤

Γ(ζ E(t)) = tanp−1(z(δ E(t)))+ tanp+1
(

z(δ E(t))
)

z(δ E(t)) = π
‖δ E(t)‖2

PE

4ζ E,+
K̃E(t) = KE(t)−KE,∗

(3.14)

with λ ∈ R+, the constants cE
1 =

(

λρ pπ

ζ E,+

)
p−1

p

, cE
2 =

(

λρ pπ

ζ E,+

)
p+1

p

, ρ ∈ R+ and p ∈ R, p ∈

(0,1], KE(0) = |kE
s |s=1,...,6,−∞ < kE

s < 0. The matrix KE,∗ ∈ R3×6 should be chosen considering

that A+BKE,∗ must be a Hurwitz matrix, and taking into account that matrix A is gotten from the

sublinear section of the bipedal robotic mathematical representation while the matrix B characterizes

the input injection section in the robotic dynamics. Using the traditional extended Ackerman method

for multivariable systems [126], the matrix KE,∗ can be estimated.

The next theorem (Theorem 2) introduces the principal result of this study associated to the gains

selection for the controller based on the suggested technique which may guarantee the satisfaction

of the state (angular displacement) restrictions for the bipedal robotic device operation while the

finite time convergence for the tracking error to the origin is ensured.

Theorem 2. Taking into account the type of nonlinear mechatronic systems presented in (3.12)

driven by the controller form uE(t) proposed in eq. (3.13) armed with the state dependent gain KE(t)

satisfying the adaptation structure in (3.14). Assume that the uncertain part of the mechatronic

model ϒE belongs to the class of nonlinear forms proposed in (3.6). If there exists a positive scalar

constant γE and a positive definite and symmetric matrix PE for the following matrix inequality

ΣE(PE)< 0 sub jected to (4)

ΣE(PE) =

[

ΣE
11(P

E) PED

D⊤PE −QE
ϒ

] (3.15)

where ΣE
11(P

E) = PE(AKE + γIn)+ (A⊤
KE + γIn)P

E +ϒ1QE
ζ , D = [03×3, I3×3], KE,∗ ∈ Rm×n, then

the origin in the tracking error is a practically fixed-time stable equilibrium point for δ E(t) with the
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invariant and attractive zone corresponding to ‖δ E(t)‖2
PE ≥ ς E = 2

ϒE
0

αE
given that αE > 0.

Proof. Consider the suggested Lyapunov candidate function (satisfying the tangent form of barrier

Lyapunov structure) as follows:

V :=V L(δ L(t))+VR(δ R(t))

V E =V R or V E =V L

V E(δ E(t)) = tanp
(

z(δ E(t))
)

+λ tr
{

(

K̃E(t)
)⊤

K̃E(t)
}

(3.16)

The time derivative (Dini’s type) of the Tangent Barrier Lyapunov-like function corresponds to

d

dt
V E(δ E(t)) = p · tanp−1

(

z(δ E(t))
) d

dt
tan
(

z(δ E(t))
)

+2λ tr

{

(

K̃E(t)
)⊤ d

dt
K̃E(t)

}

(3.17)

where
d

dt
tan
(

z(δ E(t))
)

=
πsec2

(

z(δ E(t))
)

2(ζ E,+)

(

δ E(t)
)⊤

PE d

dt
δ E(t) (3.18)

Consequently, the following differential equation is well posed for the time derivative of the barrier

Lyapunov-like function V E associated to:

d

dt
V E(δ E(t)) =

pπ

2ζ E,+
·Γ(ζ E(t))

(

δ E(t)
)⊤

PE d

dt
δ E(t)+2λ tr

{

(

K̃E(t)
)⊤ d

dt
KE(t)

}

(3.19)

The term
(

δ E(t)
)⊤

P
d

dt
δ E(t) needs the substitution of δ E(t) dynamics proposed in (3.12), yield-

ing

(

δ E(t)
)⊤

P
d

dt
δ E(t) =

(

δ E(t)
)⊤

PE
(

Aδ E(t)+B
(

wE(t)+gE
(

ζ E
α (t)

)

uE(t)
))

δ E(t) (3.20)

where wE(t) = f E
(

ζ E(t), t
)

+ϒE
(

ζ E(t), t
)

−hE
(

ζ E,∗
α (t),ζ E,∗

β
(t), t

)

. The equation (3.20) admits

the following representation:

(

ζ E
)⊤

PE d

dt
ζ E =

1

2

(

ηE(t)
)⊤
[

PEAE
K +

(

AE
K

)⊤
PE PED

D⊤PE 0n×n

]

ηE(t)+

(

δ E(t)
)⊤

PEBK̃E(t)δ E(t)

(3.21)

where ηE =
[

(

ζ E
)⊤ (

ϒE
)⊤
]⊤

and AE
K = A+BKE,∗. Including the upper-bound of the ϒE intro-

duced in (3.6) and considering that σ⊤
1 = σ2 = tr

{

σ2σ⊤
1

}

with σ1 ∈ Rn and σ2 ∈ Rn transforms
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the expression (3.21) into

(

ζ E
)⊤

PE d

dt
ζ E ≤ 1

2

(

ηE
)⊤

ΣE
(

PE
)

ηE +ϒE
0 + tr

{

K̃E(t)B⊤PEδ E(t)
(

δ E(t)
)⊤}

(3.22)

Taking into account the obtained result in (3.22) and substituting it in the differential equation

(3.19) yields

d

dt
V E(δ E(t))≤ pπ

2ζ E,+
·Γ(δ E(t))

[

1

2

(

ηE
)⊤

ΣE
(

PE
)

ηE +ϒE
0 −αE

(

δ E(t)
)⊤

PEδ E(t)

]

+

tr

{

K̃E(t)

(

pπ

2ζ E,+
·Γ(δ E(t))B⊤PEδ E(t)

(

δ E(t)
)⊤

+ 2λ
d

dt
KE(t)

)}

(3.23)

Reorganizing the expression (3.23) allows to introduce the adaptive law for KE as follows

d

dt
V E(ζ E(t))≤ pπ

2ζ E,+
·Γ(δ E(t))·

[

1

2

(

ηE
)⊤

ΣE
(

PE
)

ηE +ϒE
0 −αE

(

δ E(t)
)⊤

PEδ E(t)

]

+

tr

{

(

K̃E(t)
)⊤
(

pπ

2ζ E,+
·Γ(δ E(t))B⊤PEδ E(t)

(

δ E(t)
)⊤

+ 2λ
d

dt
KE(t)

)}

+

tr

{

cE
1

(

(

K̃E(t)
)⊤

K̃E(t)
)

p−1
p
+ cE

2

(

(

K̃E(t)
)⊤

K̃E(t)
)

p+1
p

}

-cE
1 tr
{

(

K̃E(t)
)⊤

K̃E(t)
}

p−1
p

+cE
2 tr
{

(

K̃E(t)
)⊤

K̃E(t)
}

p+1
p

(3.24)

Considering the result proposed in (3.15) and using the state restriction given as follows ‖δ E‖2
PE ≥

2
ϒE

0

αE
, yielding (with ρ > 0)

d

dt
V E(δ E(t))≤− ρ pπ

2ζ E,+
·Γ(δ E(t))− cE

1 tr
{

(

K̃E(t)
)⊤

K̃E(t)
}

p−1
p −

cE
2 tr
{

(

K̃E(t)
)⊤

K̃E(t)
}

p+1
p
+ tr

{

cE
1

(

K̃E(t)
)⊤

K̃E(t)
(

(

K̃E(t)
)⊤

K̃E(t)
)−1

p

}

+

tr

{

cE
2

(

K̃E(t)
)⊤

K̃E(t)
(

(

K̃E(t)
)⊤

K̃E(t)
)

1
p

}

+

tr

{

(

K̃E(t)
)⊤( pπ

2ζ E,+ ·Γ(ζ E(t))B⊤PEδ E(t)
(

δ E(t)
)⊤

+ 2λ
d

dt
KE(t)

)}

(3.25)
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Taking into account the barrier Lyapunov type function in (3.16) leads to:

d

dt
V E(δ (t)) =

pπ

2ζ E,+
·
(

δ E(t)
)⊤

PEδ E(t)

(

(

V E
)

p−1
p (ζ E(t)) +

(

V E
)

p+1
p (δ E(t))

)

+

2λ tr

{

(

K̃E(t)
)⊤ d

dt
KE(t)

} (3.26)

Considering the triangle inequality for the p-norm, and using structure of the energetic function

proposed (3.16) yields

d

dt
V E(δ E(t))≤ −ρ pπ

2ζ E,+

(

(

V E
)

p−1
p (δ E(t)) +

(

V E
)

p+1
p (δ E(t))

)

+

tr

{

cE
1

(

K̃E(t)
)⊤

K̃E(t)
(

(

K̃E(t)
)⊤

K̃E(t)
)

−1
p
+ cE

2

(

K̃E(t)
)⊤

K̃E(t)
(

(

K̃E(t)
)⊤

K̃E(t)
)

1
p

}

+

tr

{

K̃⊤(t)
(

pπ
ζ E,+ ·Γ(ζ E(t))B⊤PEδ E(t)

(

δ E(t)
)⊤

+ 2λ
d

dt
KE(t)

)}

(3.27)

If the adaptation law for K̃E(t) (which is described in 3.14) is substituted in (3.27), yileds

d

dt
V E(δ E(t))≤ −ρ pπ

2ζ E,+

(

(

V E
)

p−1
p (δ E(t)) +

(

V E
)

p+1
p (δ E(t))

)

(3.28)

Noticing that, 0 < p−1
p

< 1 and
p+1

p
> 1, hence the origin of the tracking error space is a finite-

time practically stable equilibrium point considering the preliminaries presented in [127].

The fixed-time stability analysis outlined in Theorem 2 is a result of the fact that the temporal

evolution of KE(t) increases when δ E(t) approaches the boundary of the invariant set. It may seem

counterintuitive to use unbounded gains when aiming for fixed-time regulation, especially when deal-

ing with unbounded inputs. However, upon examining the control design formulation, we can see

that the product of the gain and the tracking error K ·δ can be viewed as a scaled state that remains

bounded due to the fixed-time convergence, as well as the stability analysis based on the barrier-like

energetic function.

Remark 1. : The proposed controller design utilizes a time-varying gain, denoted as KE , which is

computed based on the developed adaptive law. The adaptive law involves three free parameters,

namely λ , cE
1 , and cE

2 , which act as adjusting gains for the time evolution of KE . These parameters
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are selected in a manner such that the reference trajectory can be accurately tracked within the finite

time period, provided that the matrix inequality specified in Theorem 2 is satisfied. The scalar p also

plays a crucial role in the tracking performance, as it controls the rate of decay of the difference

between time-varying KE and KE,∗.

Remark 2. As ϒE
0 varies with the set Ξ and is equal to 0, it follows that the origin of the tracking error

is a finite-time stable equilibrium point. This result is directly related to the proposition presented in

Theorem 2 in this chapter.

Remark 3. In this study, we have taken into consideration the effect of perturbations satisfying

‖δ E‖2
PE ≥ 2

ϒE
0

αE
, which could appear as a restrictive condition. Notice that if bounded perturbations

may be considered for the class of biped robots, then the controller could be modified to include a

pure sliding mode controller that can reject such class of perturbations. Then, the classical of the

sliding mode theory can be useful to reject a more general class of perturbations including both the

variant presented in this study as well as the bounded case.

3.3.3 Output feedback form for the control design proposed for the bipedal

robotic device

The sliding mode based super-twisting algorithm (STA) has been applied as a reliable method to ob-

tain the on-line estimation for the time-derivative for continuous variables. This algorithm is defined

by a couple of differential equations [89, 128] governed by:

d

dt
ẑi

a(t) = ẑi
b(t)+ ki

1|ei(t)| 1
2 sign(ei(t))

d

dt
ẑi

b(t) = ki
2sign(ei(t))

(3.29)

Here ẑi
a and ẑi

b are the state variables of the differentiator. The index i characterizes the variable

that must be differentiated (i = 1, ...,3) means to derive each of the angular displacements in order

to get the corresponding angular velocities. The differentiator error is represented by the variable

ei that corresponds to ei = zE
α,i − ẑE

α,i. In view of the angular position variables could be measured

continuously, these differentiators working in parallel would yield the estimation of the angular veloc-

ities that can be inserted as part of the proposed controllers. For the purposes of this study, the sign
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function satisfies |sign(z)| ≤ 1, ∀z ∈ R. According to the result presented by [89], it can be proven

that
∣

∣ei
∣

∣= 0,

∣

∣

∣

∣

d

dt
ei

∣

∣

∣

∣

= 0 ∀t > T ∗,i =

√

0.5Si(0)

2
(3.30)

The function Si satisfies the expression Si(ξ i) =
[

ξ i
]⊤

Riξ i with
[

ξ i
]⊤

=
[

|ei
1|

1
2 sign(ei

1) ei
2

]

.

Each matrix Ri ∈ R2×2 is a positive definite and symmetric matrix. The application of STA as part

of the closed loop output feedback control realization can be consulted in several studies including

[129, 130]. Please see these studies and the references therein for more details.

3.4 Virtual platform

The first experiments that were suggested to evaluate the proposed controller used a virtualized ver-

sion of the biped robot (Figure 3.2). The virtualized mechanical model was proposed in SolidWorksr

the computer assisted design software. The assembled model corresponding to the bipedal robotic

device was transferred to Matlabr applying the Sim-Mechanics Toolboxr. Such numeric simu-

lations were significant to evaluate the control design developed in this study. This virtual model

representation allowed to evaluate the effectiveness of the suggested control structure.

The proposed virtualized structure considered all the mechanical sections in the biped robot,

as well as the main movement elements. Such realistic configuration permitted to evaluate the

suggested controller and comparing it with a classical state feedback approach, which is usually

known as proportional-differential control. The virtual robot considers the actual masses measured

in the experimental version of the robotic device (see next subsection). Also, the effect of the actuator

was considered implementing the electromechanical characteristics of such device.

The controller operation over the biped robotic device can be implemented considering the struc-

tural form depicted in Figure 3.3.

3.5 Numerical evaluations

A simplified (considering the proposed articulations) representation of the biped robotic device, that

is designed using the Computer Aided Design software SolidWorks® taking into account the param-

eters of the physical mechanical structure. The designed model is instrumented as testing numerical

model for the proposed controller. The control design eq. (3.13) was tested using the simplified ver-

sion in MATLAB® in the numerical simulated environmental Simulink®.
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Figure 3.2: Simulated version of the biped robot exported to Matlab from the SolidWorks based on the

application of the Sim-Mechanics Toolbox.

The evaluated settings of the numerical simulation were: fixed integration step at 10µ s, con-

sidering integration solver method was selected as Runge-Kutta. With the aim of comparing the

performance of the suggested controller, a classical state feedback control form was also evalu-

ated with a decentralized structure. The comparison of the trajectory tracking error is carried out

in a single lower limb for evaluation purposes. The reference states were proposed with the aim of

guaranteeing the fulfillment of ZMP criterion.

Figure 3.4 depicts all results of the numerical simulation that evaluates the tracking of reference

states for the hip joint in the bipedal robotic device. Noticing that in comparison to the classical state

feedback control form, the tracking of the reference trajectories is achieved within a time window

of two seconds earlier. Nevertheless, state feedback control is not able for providing (theoretically

formalized), the finite-time robust convergence for the reference tracking deviation to the estimated

invariant and attractive set detailed in the main outcome proposed in this study. A general com-

parison for a period of 10 seconds is shown in Figure 3.4a. With the aim of demonstrating the
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Super-twisting

Algorithm

Figure 3.3: Operational diagram of the proposed finite-time controller based on the application of tangent

barrier Lyapunov function.

benefits of using the proposed controller, Figure 3.4b demonstrates the comparison of the tracking

trajectories during the first second of the numerical simulation. A comparison of the reference states

as well as the controlled trajectories during the period between 4.3 to 5.0 seconds demonstrates

the steady state tracking evaluation of the diverging gain control action with respect to the state

feedback formulation (Figure 3.4c).

Figure 3.5 shows the outcomes of the numerical simulation that analyzes the tracking perfor-

mance for the reference states for the knee joint of the right leg of the bipedal robotic device. Notic-

ing that the comparison for the regular state feedback control action, the tracking of reference state

is achieved a couple of seconds later. A general comparison for a period of 10 seconds is shown in

Figure 3.5a. With the aim of demonstrating the benefits of using the proposed controller, Figure 3.5b

demonstrates the contrast between the tracking trajectories for the knee during the first two seconds

of the numerical simulation. A comparison of reference as well controlled states for the knee dur-

ing the period between 3.9 to 4.8 seconds demonstrates the steady state tracking evaluation of the

diverging gain control action with respect to the state feedback formulation (Figure 3.5c).

Figure 3.6 shows the comparison of the controller actions obtained with the proposed form and
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(a) Evaluation of trajectory tracking between the

suggested finite-time and state feedback control at

the hip joint in the bipedal robotic device
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(b) Evaluation of trajectory tracking between the

suggested finite-time and state feedback control at

the hip joint in the bipedal robotic device, closed

view: 0.0-1.0 s
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(c) Evaluation of trajectory tracking between the

suggested finite-time and state feedback control at

the hip joint in the bipedal robotic device, closed

view: 4.3-5.0 s

Figure 3.4: Trajectory tracking evaluation for the hip joint with the proposed controller and the state feedback

formulation.

the state feedback structure. Figures 3.6a as well as 3.6b show the comparison of temporal evolution

for logarithmic norm (control power) needed to develop tracking of the reference states for hip as well

as knee articulations. The comparison confirms an equivalent control power consumption for these

articulations in the lower limb. Nonetheless, taking into account that the proposed control based on

the suggested finite-time convergent barrier form consumes less energy if for the moments when

the reference states change the movement direction that is a significant characteristic with respect

to the actual operation for the bipedal robotic device.

Figure 3.7 depicts the norm of the tracking error for the proposed controller and its comparison

with the state feedback structure. Figures 3.7a and 3.7b depict the temporal evolution of the norms

for the tracking errors between reference and biped robot trajectories for hip and knee joints, re-

spectively. Such simultaneous evaluations confirm that the suggested control design endorses the

finite-time convergence of the actual robot states to the reference trajectories as well as the state

68



CHAPTER 3. ADAPTIVE CONTROLLER DESIGN 3.5. NUMERICAL EVALUATIONS

0 2 4 6 8 10

Time [s]

0

1

2

3

4

5

D
is

p
la

c
e

m
e

n
t 

[r
a

d
]

Ref

Barrier

PD

(a) Evaluation of trajectory tracking between the

suggested finite-time and state feedback control at

the knee joint in the bipedal robotic device
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(b) Evaluation of trajectory tracking between the

suggested finite-time and state feedback control at

the knee joint in the bipedal robotic device, closed

view: 0.0-1.0 s
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(c) Evaluation of trajectory tracking between the

suggested finite-time and state feedback control at

the knee joint in the bipedal robotic device, closed

view: 4.3-5.0 s

Figure 3.5: Trajectory tracking evaluation for the knee joint with the proposed controller and the state

feedback formulation.

feedback does. However, the proposed approach ensures the finite-time convergence while the

state restrictions are justified. Notice that this condition restricts the consumed control energy which

is needed to track the reference trajectories corresponding to a regular gait cycle for the bipedal

robot. In spite this negative condition, the suggested control design succeeds to solve the tracking

of the references in finite-time.

With the aim of evaluating the performance of both controllers, this study evaluates the L2 norm

corresponding to the control function as well as the tracking error for each articulation in the bipedal

robotic device (Table 3.1).

The evaluation of the performance index Je in Table II was calculated as Je =

∫ t f

0
|e2(t)|dt. Here

e corresponds to the vector of tracking errors measured at both articulations, hip and knee. Likewise,

Jc was calculated as Jc =

∫ t f

0
|u2(t)|dt with u is the control vector formed with the control signals
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(a) Comparison of the logarithmic of the norm for the

control signal: the suggested finite control and the

PD controllers for the hip articulation.
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(b) Comparison of the logarithmic of the norm for the

control signal: the suggested finite control and the

PD controllers for the knee articulation.

Figure 3.6: Logarithmic norm of the estimated controllers for the hip and the knee joints: the proposed

controller and the state feedback formulations.
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(a) Comparison of the error norm signal between the

proposed and the PD controllers for the hip

articulation.
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(b) Comparison of the error norm signal between the

proposed and the PD controllers for the knee

articulation.

Figure 3.7: Comparison of the Euclidean norms of the tracking errors for the knee joint with the proposed

controller and the state feedback form.

Table 3.1: Value of the L2 norm corresponding to the tracking error and control actions of both robotic joints.

Characteristics
Controller

Barrier PD

Je,h 2.5892×104 9.0636×103

Jc,h 7.4752×106 9.6471×106

Je,k 1.8016×104 1.1642×103

Jc,k 8.1580×105 1.0912×106

at the hip and the knee implementing the proposed and the state feedback forms. The norm Jc,h

associated to the control signal using the state feedback realization corresponds to 1.2905 greater

than the result obtained with the proposed finite-time controller. Alike, the L2 norm signal of the

state feedback controller for the knee articulation is 1.3376 times larger than the evaluated norm
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calculated by the controller forced by the barrier Lyapunov function. The tracking errors for both the

hip and the knee articulations, Je,h and Je,k respectively, produced by the controller based on the

barrier Lyapunov function are 2.8567 and 15.4752 times larger than the one produced by the state

feedback control action at the given articulation.

3.6 Experimental evaluations over the mechanical structure

An experimental evaluation was conducted on a self-developed biped robot to test the proposed

controller, which is compatible with the SolidWorks® CAD software. The physical parameters of

the bipedal robotic device were taken into account, including information on the aluminum links and

actuators. The suggested control law in equation eq. (3.13) was tested using a discretized ver-

sion implemented in the TIVA board, with a fixed-step of 10µs seconds and an Euler discretization

methodology. To compare the performance of the suggested controller, the proposed state feedback

form was also implemented in the experimental structure of the biped robot, and a direct comparison

of the trajectory tracking was carried out for both lower limbs. Reference trajectories were proposed

to ensure continuous satisfaction of the ZMP criterion, which was also met by the states of the

bipedal robotic device implementing the suggested controller.

The experimental results presented in Figure 3.8 validate the effectiveness of the proposed

controller in tracking the reference states for the hip (shown in Figure 3.8a) and knee (shown in

Figure 3.8b) joints of the right leg of the biped robot. It can be observed that the actual robotic

state does not converge to the reference when using the traditional state feedback controller, while

the proposed controller ensures accurate tracking of the reference trajectory. Additionally, the state

feedback implementation experiences delays and is unable to continuously track the reference. This

comparison highlights the significant improvement in tracking performance provided by the proposed

controller, at least for the right leg of the robot.

Figure 3.9 displays the experimental results of tracking the reference trajectories for the left leg

of the biped robot. Specifically, Figure 3.9a shows the tracking of the reference trajectory for the hip

articulation, while Figure 3.9b shows the tracking of the reference trajectory for the knee articulation.

Comparing the results of the proposed controller with the traditional state feedback controller, the

actual robotic state using the latter does not converge to the reference, while the proposed controller

accurately enforces the tracking to the reference. These results demonstrate that, at least for the

left leg, the proposed controller significantly improves the tracking performance compared to the

traditional state feedback realization.

Figure 3.10 shows a comparison between the norms of the controller actions obtained with the

71



3.6. CONTROLLER EXPERIMENTAL EVALUATIONSCHAPTER 3. ADAPTIVE CONTROLLER DESIGN

0 20 40 60 80 100 120

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

D
is

p
la

c
e
m

e
n
t 
[r

a
d
]

Ref

PD

Barrier

(a) Comparison of trajectory tracking performance

between the proposed and PD controllers at the right

hip joint in the biped robot
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(b) Comparison of trajectory tracking performance

between the proposed and PD controllers at the right

knee joint in the biped robot

Figure 3.8: Trajectory tracking for the hip and the knee joints of the right leg with the proposed and the state

feedback formulations. Comparison of the trajectories forced by the suggested controllers including the

evaluation of both the transient and the steady state periods.
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(a) Comparison of trajectory tracking performance

between the proposed and PD controllers at the left

hip joint in the biped robot
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(b) Comparison of trajectory tracking performance

between the proposed and PD controllers at the left

knee joint in the biped robot

Figure 3.9: Trajectory tracking for the hip and the knee joints of the left leg with the proposed and the state

feedback formulations.

proposed controller and the state feedback controller. Figures 3.10a and 3.10b depict the temporal

evolution of the control power required to achieve the reference tracking for the hip and the knee

joints. This comparison shows that the control norm for both joints is significantly different between

the two controllers. The suggested barrier Lyapunov controller consumes smaller amounts of energy

compared to the state feedback controller, which is a significant advantage for the operation of biped

robots in real-world applications.

Figure 3.11 presents the norm of the tracking errors of the proposed controller and compares it

with the state feedback structure. Figures 3.11a and 3.11b show the temporal evolution of the norms

of the tracking errors considering the reference and experimental trajectories of the biped robot.

These simultaneous evaluations confirm that the proposed control action supports the reference
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(a) Comparison of the control norm signal between

the proposed and PD controllers at the right leg in the

biped robot
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(b) Comparison of the control norm signal between

the proposed and PD controllers at the left leg in the

biped robot

Figure 3.10: Norm of the estimated controllers for the right and left limbs: the proposed controller and the

state feedback formulations.

tracking as well as the traditional state feedback does, but with the additional benefits of satisfying

the finite time convergent and the state restrictions.

It should be noted that the proposed state feedback controller does not ensure the attraction of

the origin for the tracking error dynamics. Additionally, both controllers exhibit a similar rate of con-

vergence to zero at the beginning of the numerical evaluations, which is an interesting characteristic

of the proposed controller even with the incorporation of an adaptive gain.
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(a) Contrasting between tracking errors measured by

the norm between the proposed and PD controllers

at the right leg in the bipedal robotic device.
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(b) Contrasting between tracking errors measured by

the norm between the proposed and PD controllers

at the left leg in the bipedal robotic device.

Figure 3.11: Contrasting between tracking errors measured by the norm between the proposed and PD

controllers at both legs in the bipedal robotic device.
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Chapter 4

Adaptive Barrier Control with Reinforcement

Learning Gains Adjustment

This chapter describes a RL strategy to improve trajectory tracking of bipedal robotic systems with

articulation restrictions, using robust controllers. The RL approach builds on state-dependent gains

developed earlier in the chapter. The strategy involves two levels of adjustment: first, an adaptive

dynamic programming approach that approximates Bellman’s function using neural networks, and

second, an iterative methodology based on deep deterministic policy gradient with a similar strategy

as Markov chains. The proposed controller optimizes a cost function based on tracking trajecto-

ries for a system with an uncertain mathematical model that satisfies nonlinear perturbed systems

that match the biped robot’s dynamics. The dynamic programming formulation enables the robust

control of bounded modeling uncertainties and disturbances. The HJB equation’s value function is

approximated by a class of neural network, allowing for the estimation of the closed-loop controller

formulation. Numerical evaluations validate the convergence of the tracking error. The regular state

feedback control design is used as a benchmark for comparison purposes.

4.1 Introduction

Designing RL methods involves characterizing and controlling data-driven approximate models of

input-output or input-state relationships that can optimize a predefined reward functional. In its most

fundamental way, RL schemes are sampled-discrete or sampled-continuous closed-loop, assuming

that sampling occurs at the moment when a reward-penalty evaluation updates the control realiza-

tion for the discrete or continuous system under analysis. Indeed, the learning algorithm does not

have any predefined action to take aiming for optimization of the performance functional. In the last
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years, two main trends have appeared to update the controller action at the given sampling time: a)

based on machine learning tool to estimate the update based on parametric optimization methods

or, b) discovering what actions lead to the best attainable reward by trying and testing them out

under safe operative scenarios. In many interesting and challenging RL cases, the updated actions

could affect not only the immediate reward (evaluated through the proposed functional), but also the

next situation and, through that, all subsequent rewards. These characteristics can be framed as

part of a closed-loop sub-optimal solution essentially.

Essentially, a walking robot created by humans is a robotic manipulator that has a movable and

detachable base. The design of bipedal robots has been heavily influenced by the human body,

which is the most sophisticated and versatile biped known to mankind. As a result, most of the

models or machines developed exhibit a strong resemblance to the human body, with two lower

limbs connected through a central member being a common characteristic of almost any model or

machine.

RL is significantly different from supervised learning, chiefly an extended form of learning in most

current investigations in the machine learning framework. Supervised learning acquires knowledge

from a given training set that includes labeled instances of the input-output relationships. These

labels are supplied by an external supervisor, which may not have the option to change such labels

online. Each instance gathers a complete description of an operating situation associated with a

labeled correct action that should be taken into account by the system or more properly, by the

related control action.

The object of the learning is to create a kind of interpolation between the instances in the set

and eventually to provide the extrapolation beyond the set boundaries (usually known as a general-

ization), which forces the learner to act correctly in situations that have not been considered in the

provided training set. This is the most developed kind of learning, but it is not suitable for exerting

learning activities from environment-robot interactions. In a such class of scenarios, it is impractical

to capture examples of the given desired behavior that are both correct and representative of all the

conditions in which the biped robot device has to exert its activities.

RL is distinct from unsupervised learning, which seeks to uncover structure in unlabeled data.

While RL does not rely on examples of correct behavior, it is fundamentally different in that it seeks

to maximize a reward signal rather than discover hidden patterns. While discovering structure in

an agent’s experience can aid in RL, it does not directly address the problem of maximizing a

reward signal. Therefore, we consider RL to be a distinct machine learning paradigm, in addition to

supervised and unsupervised learning, and potentially others.

Bipedal locomotion systems can range from simple structures with three-point masses con-

nected by massless links [131] to highly complex structures that mimic the human body [132]. De-
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spite their differences in structure, both types of systems are capable of walking several steps. The

robotics community has been actively engaged in modeling and controlling bipedal locomotion sys-

tems for many years.

Bipedal robots present several challenges and constraints to the design of control systems due

to their exceptional characteristics. Firstly, they are highly nonlinear and naturally unstable sys-

tems, which renders the well-developed classical control theories for linear systems inapplicable.

Secondly, each walking cycle consists of two different situations in a sequence: the statically stable

double-support phase (both feet in contact with the ground) and the statically unstable single-support

phase (only one foot contact with the ground). Suitable control strategies are required for step-to-

step transitions, adding to the challenge. Thirdly, walking robots are unconnected to the ground,

which means that even if all joints of a bipedal robot are perfectly controlled, it is still not enough to

completely control all the degrees of freedom (DOFs) of the robot. Fourthly, walking systems usually

have many DOFs, especially in 3-D spaces, making the coordination of multijoint movements and

the interactions between DOFs a difficult control problem. Finally, bipedal robots have to be adap-

tive to uncertainties and respond to environmental changes correctly, such as uneven, elastic, sticky,

soft, or stiff ground, or obstacles on the ground. Bipedal robots must adjust their control strategies

fast enough to respond to such environmental changes.

4.2 Problem statement for the reinforcement learning scheme

Notice that the hybrid formulation considered for the class of problem studied in this thesis requires

a first result that modifies the control action within each continuous cycle of adjustment for the

control action. This result is based on the application of the following continuous adaptive dynamic

programming.

To solve this problem, lets consider the functional J(u(·)) related with the tracking error pre-

sented here as the variable ∆. Hence the problem studied here corresponds to optimize (minimize

indeed) the next functional.

J(u(·)) = h0(T )+

T
∫

t=0

h(∆(t),u(t))dt

where the terminal and the ongoing sections of the functional are given by

h0(T ) = ∆⊤(T )P(T )∆(T )

h(∆(t),u(t)) = ∆⊤(t)R(t)∆(t)+u⊤(t)Q(t)u(t)+
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Here P(T ) ∈ Rn×n is a positive definite matrix (P > 0) related to the final term, R(t) ∈ Rn×n is

a semi-positive definite matrix that characterizes the effect of states on the Lagrange section of the

functional, while Q(t) ∈ Rn×n is a positive definite matrix that defines the effect of input function

on the integral section of the functional. Introduce ∆⊤ =
[

∆⊤
a ∆⊤

b

]

to represent the tracking

trajectory error where

∆a : = x∗a − xa

∆b : = x∗b − xb

The functional J(u(·)) is subjected to the dynamics of the biped robot, which satsifes the follow-

ing dynamic expression given by

M(q)q̈+C(q̇,q)q̇+G(q)+λ⊤H (q̇,q)+Ψ(q̇,q) = τ

Here q ∈ Q ⊂ Rn, M : Rn → Rn×n, C : Rn ×Rn → Rn×n, G : Rn → Rn, H : Rn ×Rn → Rp,

λ ∈ Rp×n, Ψ : Rn ×Rn → Rn. All these components are corresponding to the model developed in

the second chapter of this thesis. Notice that here the effect of motion restrictions are considered in

the model of the biped robot.

Based on the state variable theory, lets introduce the following auxiliary vector corresponding to

the angular displacements and velocities of the joints in the biped robot

xa = q

xb = q̇

Based on the proposed auxiliary variables, the dynamics of the biped robot can be presented as

follows
d

dt
xa = xb

d

dt
xb = q̈ = M−1(q)

[

τ −
(

C(q̇,q)q̇+G(q)+λ⊤H (q̇,q)+Ψ(q̇,q)
)]

Considering uncertainties in the mathematical representation of the biped robot model, one gets

d

dt
xa = xb

d

dt
xb = (MN(q)+MU(q))

−1 [τ − ((CN(q̇,q)+CU(q̇,q)) q̇)]−
(MN(q)+MU(q))

−1
[

GN(q)+GU(q)+λ⊤H (q̇,q)+Ψ(q̇,q)
]

Considering the presence of the uncertain terms that agreggates the modeling imprecision and
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the external perturbations, one gets for the dynamics of the angular velocity for all the joints

d

dt
xb = F(xa,xb)+G(xa)u(t)+Φ(t,xa,xb) =

FN(xa,xb)+FU(xa,xb)+(GN(xa)+GU(xa))u(t)+Φ(t,xa,xb)

u(t) = τ

Based on the uncertain representation of the inertia matrix, the following description takes place

(MN(q)+MU(q))
−1 = M−1

N (q)−M−1
N (q)

(

M−1
U (q)+M−1

N (q)
)−1

M−1
N (q)

The more realistic description of the biper robotic system under analysis obeys the following

ordinary differential equation

d

dt
xa = xb

d

dt
xb = FN(xa,xb)+FU(xa,xb)+(GN(xa)+GU(xa))u(t)+Φ(t,xa,xb)

Here
d

dt
xb = FN(xa,xb)+GN(xa)u(t)+η (t,xa,xb,u) is valid for the simplified representation of

the biped robot dynamics.

In view of the composition prepared before using the known and the unknown sections of the me-

chanical system, after implementing the matrix inversion lemma and some algebraic manipulations,

the term η is

η (t,xa,xb,u) = [FU (xa,xb)+Φ(t,xa,xb)+GU (xa)u(t)]

The term η belongs to the following set η (t,xa,xb,u) ∈ Ωη

ΩΨ =











η|η : {R+∪{0}}×Rn ×Rn ×Rm → Rn,

‖η (t,xa,xb,u)‖2 ≤ η0 +η1 ‖q‖2 +η2 ‖q̇‖2 +η3 ‖u‖2 ,

∀(q̇,q) ∈ Ωdq ⊕Ωq,u ∈Uadm











where

Uadm =
{

u|u,‖u‖2 ≤ u0 +u1 ‖q‖2 +u2‖q̇‖2 , ∀(q̇,q) ∈ Ωdq ⊕Ωq

}

Here Uadm is the set of admissible controllers. ⊕ represents Minkowski addition.
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4.3 Properties of the proposed biped robot

The following properties are considered valid for the class of systems that represent the biped robot.

a) The inertia matrix M : Rn → Rn×n is not singular for all possible configurations in q, that is

det(M(q)) 6= 0, ∀q ∈ Ωq

b) The inertia matrix can be decomposed as the combination of a known section named MN :

Rn → Rn×n and the section with uncertain mathematical model referred to as MU : Rn → Rn×n.

The known section represents the nominal values of the inertia matrix, while the uncertain section

accounts for the deviations from the nominal values due to modeling uncertainties.

M(q) = MN(q)+MU(q)

.

c) The Coriolis matrix defined by C : Rn ×Rn → Rn×n

C(q̇,q) =CN(q̇,q)+CU(q̇,q)

where CN : Rn ×Rn → Rn×n, CU : Rn ×Rn → Rn×n are the section of the Coriolis matrix with

known and uncertain mathematical model.

d) The term G : Rn → Rn defines the gravitational effects over the dynamics of the biped robot,

and it is defined as follows

G(q) = GN(q)+GU(q)

where GN : Rn → Rn, GU : Rn → Rn are the section of the gravitational term with known and

uncertain mathematical model.

e) The term Ψ : Rn ×Rn → Rn characterizes the effect of modeling imprecion and external

perturbation on the dynamics of the biped robot.

Ψ(q̇,q) ∈ ΩΨ

ΩΨ =
{

Ψ|Ψ : Rn ×Rn → Rn,‖Ψ(q̇,q)‖2 ≤ Ψ0 +Ψ1 ‖q‖2 +Ψ2 ‖q̇‖2 ,∀(q̇,q) ∈ Ωdq ⊕Ωq

}
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4.4 State variable representation of the tracking trajectory prob-

lem

The dynamics of the reference trajectories can be described by

d

dt
x∗a = x∗b

d

dt
x∗b = h(t)

where x∗a is the vector of reference trajectories. Here the function h is a time dependent vector

function such that its second derivative coincides with it.

Given the reference trajectories, the dynamics of ∆ corresponds to

d

dt
∆a = ∆b

d

dt
∆b = h(t)− (FN(xa,xb)+GN(xa)u(t)+η (t,xa,xb,u))

The controller u is proposed to satisfy the following composite structure

u(t) = uc (t)+uo (t)

Here the following definitions are considered to compose the suggested control action uc ∈ Rm

and uo ∈ Rm, the compensating and the sub-optimal sections, respectively, are given by:

uc (t) = G−1
N (xa)(−FN(xa,xb)+h(t)−Ka∆a −Kb∆b)

uo (t) = G−1
N (xa)v

Notice that the first part is a class of state feedback control formulation. Using the proposed

controller on the trajectory tracking error dynamics leads to

d

dt
∆a = ∆b

d

dt
∆b =−Ka∆a −Kb∆b + v+η (t,xa,xb,u)

Using the extended state representation based on ∆, leads to the following ordinary differential
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equation for the tracking error dynamics

d

dt
∆ = A(Ka,Kb)∆+Bv+Bη (t,xa,xb,u)

A(Ka,Kb) =

[

0n In

Ka Kb

]

, B =

[

0n

In

]

The online optimization problem is to design the control action v such that the following problem

can be solved

v∗ (·) → argmin
v∈Vadm

{

max
η∈Ω

J((k−1)T,kT,v)

}

J((k−1)T,kT,v) = h0(∆(kT ))+

kT
∫

t=(k−1)T

h(∆(t),v(t))dt

h(∆(t),v(t)) = ‖∆‖2
Q +‖v‖2

R Q = Q⊤,Q ≥ 0; R = R⊤,R > 0

Notice that the evolution of the functional is evaluated over a given time period defined by the

recurrent cycles of training. This hybrid strategy is defining the application of the RL strategy devel-

oped in this thesis. Observe that this optimization problem is proposed in terms of a finite horizon

related to the concept of epoch used in artificial neural networks theory.

The solution of the optimization problem can be performed using the adaptive dynamic program-

ming theory with the guaranteed performance (considering the effect of the uncertainties or per-

turbations). Hence, it is feasible to consider the application of the Hamilton-Jacobi-Bellman (HJB)

equation with the robustness condition using the min max formulation. Such version of the HJB

corresponds to

−∂V (∆, t)

∂ t
= max

v∈Vadm

{

min
η∈Ω

H

(

−∂V (∆, t)

∂x
,∆,v,η

)}

In view of the form of J((k − 1)T,kT,v), the expression corresponding to the Hamiltonian is

represented by H
(

−∂V (∆,t)
∂x

,∆,v,η
)

and is defined as follows:

H

(

−∂V (∆, t)

∂x
,∆,v,η

)

=

[

−∂V (∆, t)

∂∆

]⊤
d

dt
∆−h(∆(t),v(t))

The first part of the solution for the HJB with the admissible perturbations and control forms
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requires solving the next optimization problem

min
η∈Ω

H

(

−∂V (∆, t)

∂x
,∆,v,η

)

= min
η∈Ω

(

[

−∂V (∆, t)

∂∆

]⊤
d

dt
∆−h(∆(t),v(t))

)

= min
η∈Ω

(

[

−∂V (∆, t)

∂∆

]⊤
d

dt
∆

)

The previous equation is valid in view of the function h(∆(t),v(t)) is independent of the pertur-

bations/uncertainties term.

min
η∈Ω

H

(

−∂V (∆, t)

∂x
,∆,v,η

)

= min
η∈Ω

(

[

−∂V (∆, t)

∂∆

]⊤
(A(Ka,Kb)∆+Bv+Bη (t,xa,xb,u))

)

= min
η∈Ω

(

[

−∂V (∆, t)

∂∆

]⊤
(Bη (t,xa,xb,u))

)

The optimization problem with respect to the action of uncertainties and perturbations corre-

sponds to

min
η∈Ω

(

[

−∂V (∆, t)

∂∆

]⊤
(Bη (t,xa,xb,u))

)

= max
η∈Ω

(

[

∂V (∆, t)

∂∆

]⊤
(Bη (t,xa,xb,u))

)

Using the Cauchy-Schwarz inequality, the following upper bound takes place for the right-hand

side of the previous inequality

[

∂V (∆, t)

∂∆

]⊤
(Bη (t,xa,xb,u)) ≤

∥

∥

∥

∥

B⊤
[

∂V (∆, t)

∂∆

]∥

∥

∥

∥

· ‖η (t,xa,xb,u)‖

In view of the admissible class of perturbations, the following upper estimation for the term that

should be maximized is obtained

[

∂V (∆, t)

∂∆

]⊤
(Bη (t,xa,xb,u)) ≤ √

η0

∥

∥

∥

∥

B⊤
[

∂V (∆, t)

∂∆

]∥

∥

∥

∥

The maximum that should be calculated for the left-hand side in the previous inequality can be

estimated when the equation is evaluated, that is

[

∂V (∆, t)

∂∆

]⊤
Bη∗ (t,xa,xb,u) =

√
η0

∥

∥

∥

∥

B⊤
[

∂V (∆, t)

∂∆

]∥

∥

∥

∥
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This relation is true if the vectors considered in the vector product are parallel each other. Based

on this argument, the following identity can be used to estimate the maximum admissible value for

the perturbations/uncertainties term η∗, that is

B⊤
[

∂V (∆, t)

∂∆

][

∂V (∆, t)

∂∆

]⊤
Bη∗ (t,xa,xb,u) =

√
η0

∥

∥

∥

∥

B⊤
[

∂V (∆, t)

∂∆

]∥

∥

∥

∥

B⊤
[

∂V (∆, t)

∂∆

]

The corresponding worst possible term η∗ is given by

η∗ (t,xa,xb,u) =
√

η0

∥

∥

∥B⊤
[

∂V (∆,t)
∂∆

]∥

∥

∥

[

B⊤
[

∂V (∆,t)
∂∆

][

∂V (∆,t)
∂∆

]⊤
B

]−1

B⊤
[

∂V (∆,t)
∂∆

]

An algebraic manipulation on the previous expression leads to

η∗ (t,xa,xb,u) =
B⊤
[

∂V (∆,t)
∂∆

]

∥

∥

∥
B⊤
[

∂V (∆,t)
∂∆

]∥

∥

∥

Using this result of the optimization problem for the uncertainties/perturbations, in the calculus

related to the Hamiltonian yields

max
v∈Vadm

H

(

−∂V (∆, t)

∂x
,∆,v,η∗

)

= max
v∈Vadm

{

[

−∂V (∆, t)

∂∆

]⊤
(A(Ka,Kb)∆+Bv+Bη∗ (t,xa,xb,u))−h(∆(t),v(t))

}

= max
v∈Vadm

{

[

−∂V (∆, t)

∂∆

]⊤
(A(Ka,Kb)∆+Bv+Bη∗ (t,xa,xb,u))−

(

‖∆‖2
Q +‖v‖2

R

)

}

(4.1)

Performing the estimation of maximum of the Hamiltonian with respect to the input, that is max
v∈Vadm

H
(

−∂V (∆,t)
∂x

,∆,v,η∗
)

, that can be calculated using the gradient rule, yielding

max
v∈Vadm

H

(

−∂V (∆, t)

∂x
,∆,v,η∗

)

<=>

∇v

{

[

−∂V (∆,t)
∂∆

]⊤
(A(Ka,Kb)∆+Bv+Bη∗ (t,xa,xb,u))−

(

‖∆‖2
Q +‖v‖2

R

)

}

= 0

(4.2)

Considering that the admissible class of the controls v is the entire Rn, hence Vadm =Rm, hence

84



CHAPTER 4. REINFORCEMENT LEARNING CONTROL

TUNING 4.4. STATES REPRESENTATION

the following gradient operation lead to estimate the formal expression of the control action

∇v

{

[

−∂V (∆, t)

∂∆

]⊤
(A(Ka,Kb)∆+Bv+Bη∗ (t,xa,xb,u))−

(

‖∆‖2
Q +‖v‖2

R

)

}

=

∇v

{

[

−∂V (∆, t)

∂∆

]⊤
Bv−‖v‖2

R

}

=

(

[

−∂V (∆, t)

∂∆

]⊤
B

)⊤

−2Rv∗ = 0

Based on the results presented above, it is feasible to calculate the optimal controller v∗ accord-

ingly to the relationship given by

2Rv∗ =

(

[

−∂V (∆, t)

∂∆

]⊤
B

)⊤

The simple solution to the algebraic relationship presented above leads to

v∗ =−1

2
R−1B⊤∂V (∆, t)

∂∆

In view of the difficulties to get the solution of the previous partial differential equation, this study

proposes to get an approximate solution in the following form

V (∆, t) =VN(∆, t)+Ṽ(∆, t)

In the approximate solution to the Bellman´s function, we consider the following representation

of that bounded function considering the universal approximation result developed by Cybenko, that

is

VN(∆, t) = ∆⊤P(t)∆+σ⊤ (∆,Θ)W⊤(t)ΛW(t)σ (∆,Θ)

= ‖∆‖2
P(t)+‖W (t)σ (∆,Θ)‖2

Λ

Also, the term Ṽ (∆, t) is the approximation error which appears considering a bounded number

of sigmoidal activation functions in the neural network representation. This term is bounded with

respect to its two arguments considering the Cybenko´s theorem.

Using the HJB (with the corresponding optimal values estimated above), the following differential
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relationships can be gotten

∂VN(∆, t)

∂ t
= ∆⊤

(

d

dt
P(t)

)

∆+2σ⊤ (∆,Θ)W⊤(t)Λ

(

d

dt
W (t)

)

σ (∆,Θ)

∂VN(∆, t)

∂∆
= 2P(t)∆+2(∇∆σ (∆,Θ))⊤W⊤(t)ΛW(t)σ (∆,Θ)

The substitution of these results on the HJB equation implies the following equation

−∆⊤ d

dt
P(t)∆−2σ⊤ (∆,Θ)W⊤(t)Λ

(

d

dt
W (t)

)

σ (∆,Θ)− ∂Ṽ (∆, t)

∂ t
=

[

2P(t)∆+2(∇∆σ (∆,Θ))⊤W⊤(t)ΛW(t)σ (∆,Θ)
]⊤

·

(

A(Ka,Kb)∆+B
(

−R−1B⊤P(t)∆
)

+Bη∗ (t,xa,xb,u)
)

+

[

−∂Ṽ (∆, t)

∂∆

]⊤
(

A(Ka,Kb)∆+B
(

−R−1B⊤P(t)∆
)

+Bη∗ (t,xa,xb,u)
)

−

(

‖∆‖2
Q +

∥

∥

∥

∥

1

2
R−1B⊤

(

2P(t)∆+2(∇∆σ (∆,Θ))⊤W⊤(t)ΛW(t)σ (∆,Θ)
)

∥

∥

∥

∥

2

R

)

Using the result estimated for the worst potential effect of the uncertainties and perturbations

yields to
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−∆⊤ d

dt
P(t)∆−2σ⊤ (∆,Θ)W⊤(t)Λ

(

d

dt
W (t)

)

σ (∆,Θ)− ∂Ṽ (∆, t)

∂ t
=

[

2P(t)∆+2(∇∆σ (∆,Θ))⊤W⊤(t)ΛW(t)σ (∆,Θ)
]⊤

·



A(Ka,Kb)∆+B
(

−R−1B⊤P(t)∆
)

+B
B⊤
[

∂V (∆,t)
∂∆

]

∥

∥

∥
B⊤
[

∂V (∆,t)
∂∆

]∥

∥

∥



+

[

−∂Ṽ (∆, t)

∂∆

]⊤
(

A(Ka,Kb)∆+B
(

−R−1B⊤P(t)∆
)

+Bη∗ (t,xa,xb,u)
)

−

(

‖∆‖2
Q +

∥

∥

∥

∥

1

2
R−1B⊤

(

2P(t)∆+2(∇∆σ (∆,Θ))⊤W⊤(t)ΛW(t)σ (∆,Θ)
)

∥

∥

∥

∥

2

R

)

The expression described above can be reordered in the following manner, using the relationships

based on the tracking errors and the components having the weights

∆⊤
(

− d

dt
P(t)+Ric(R,Q)

)

+

tr

{

W⊤(t)
(

−2
d

dt
W (t)Λσ (∆,Θ)σ⊤ (∆,Θ)+LL(∆,P(t))

)}

=

∂Ṽ (∆, t)

∂ t
+

[

−∂Ṽ (∆, t)

∂∆

]⊤
(

A(Ka,Kb)∆+B
(

−R−1B⊤P(t)∆
)

+Bη∗ (t,xa,xb,u)
)

Here the following expressions can be calculated for the differential form of the Riccati equation

and the corresponding learning law for the weights W :

Ric(R,Q) =−PA(Ka,Kb)−A⊤(Ka,Kb)P+PB



R−1 +
2

∥

∥

∥
B⊤
[

∂V (∆,t)
∂∆

]∥

∥

∥



B⊤P−Q

LL(∆,P(t)) =
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2WΛ∇∆σ (∆,Θ)



A(Ka,Kb)∆+B
(

−R−1B⊤P(t)∆
)

+B
B⊤
[

∂V (∆,t)
∂∆

]

∥

∥

∥
B⊤
[

∂V (∆,t)
∂∆

]∥

∥

∥



σ⊤ (∆,Θ)−

2W (t)Λ(∇∆σ (∆,Θ))⊤BR−2B⊤P(t)∆σ⊤ (∆,Θ)−

4WΛ(∇∆σ (∆,Θ))⊤BR−2B⊤ (∇∆σ (∆,Θ))W⊤ΛW σ⊤ (∆,Θ)

Notice here that if

− d

dt
P(t)+Ric(R,Q) = 0 (4.3)

and if

−2
d

dt
W (t)Λσ (∆,Θ)σ⊤ (∆,Θ)+LL(∆,P(t)) = 0 (4.4)

And in view of the boundedness for the variable Ṽ , hence the HJB is satisfied considering the

approximate model. In particular for the learning law, notice that

d

dt
W (t) =

W Λ∇∆σ (∆,Θ)



A(Ka,Kb)∆+B
(

−R−1B⊤P(t)∆
)

+
BB⊤

[

∂V (∆,t)
∂∆

]

∥

∥

∥
B⊤
[

∂V (∆,t)
∂∆

]∥

∥

∥





σ⊤ (∆,Θ)

‖σ (∆,Θ)‖Λ−1−

W (t)Λ(∇∆σ (∆,Θ))⊤BR−2B⊤P(t)∆
σ⊤ (∆,Θ)

‖σ (∆,Θ)‖Λ−1−

2WΛ(∇∆σ (∆,Θ))⊤BR−2B⊤ (∇∆σ (∆,Θ))W⊤ΛW
σ⊤ (∆,Θ)

‖σ (∆,Θ)‖Λ−1

(4.5)

4.5 Reinforcement Learning based on recurrent-differential ap-

proximate models by neural networks

According to the results presented in the previous section, once we have designed a controller u

such that u = u(Θ) with Θ representing all the fixed parameters at the beginning of the recurrent
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cycle, hence the optimization after each cycle can be presented as follows

u = u(Θ) ∈Uadm

u∗,k (·,Θ) = min
u∈Uadm

max
η(t,xa,xb,u)∈Ωη

Jk(u(·),Θ)

Θ∗,k+1 = F
(

Θ∗,k,Jk(u(·,Θ∗,k))
)

such that

Jk(u(·,Θ)) = h0(kT )+

kT
∫

t=(k−1)T

h(x(t),u(t,Θ))dt

Here, the time T is actually what it is defined as the evaluation window period for the RL algo-

rithm. Thus, the total period of the reinforcement algorithm would be defined as

Tr = N ∗T

where N can be a fixed number of evaluation rounds or a number that can be changed depending

on the expected value J∗, such that for that given N, it holds that

J(uN(t,Θ))− J∗ < 0

Under these definitions, the reinforcement process implies that

Θ(kT ) = h((k−1)T,J(uk(t,Θ))

Note that the function h is a recurrent function that depends on the variation of J(uk(t,Θ) with

respect to J(uk−1(t,Θ). Although the control may have a quasi-linear form, its expression is consid-

ered using dynamic programming techniques, given by

u = u(∆,Θ(kT)) = u(∆,∇V
k)

where the function Vk is the value function derived from the HJB equation evaluated at the time

window with time t = T . However, it is known that the solution of the HJB equation has an analytical

form only in the case of linear systems with constant parameters or in the case of time optimization.

If the system is nonlinear or even uncertain, the HJB equation has an analytical solution only in very

particular cases. For this reason, approximate solutions are proposed for the HJB equation, that is,
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for the value function, and in the case that the system model is uncertain, we use neural networks.

According to the previous arguments, this reinforcement law is working only at the discrete times

kT.

Hence, taking into consideration the recurrent laws , one may consider different strategies for

adjusting the parameters that define the operation of the controller within each period where the

continuous approximation presented in the previous section holds. Among the availabel options, we

may consider

1. Q-learning

2. Policy iteration

3. Value iteration

The DDPG algorithm proposed by [48] is based on the Deterministic Policy Gradients that at

the same time, it is learning a Q-function, that is it learns a policy, i.e., uses off-policy data and the

approximated Bellman equation learns the Q-function, which turns to learn the policy.

This off-policy algorithm is based on the Q-learning algorithm [133] that learns the value of an

action given a particular state, reaching this by maximizing the expected value of the total reward

along all the updating steps. Indeed, it is designed to deal with continuous action spaces.

Considering the Bellman equation for the optimal action-value, Qπ∗ (st,at) (1.4) 1. This equation

is the key to learning an approximation of Q∗. Assuming that this approximation is a Neural Network

(NN) whose parameters are ϕ , and there exists a set T of transitions (st ,at ,rt,st+1) sampled from

the environment.

The off-policy method employed by this algorithm looks for the minimization of the ϕ-parametrized

mean-squared Bellman error [134, 135] as:

Lϕ(T) = E

[

(

Qϕ(st ,at)−
(

r+ γ max
at+1

Qϕ (st+a,at+1)

))2
]

(4.6)

The Q-learning algorithms used as function approximations are mainly based on minimizing the

(4.6) function.

All these laws work on some fixed parameters within at the beginning of each time-window,

Ka((k−1)T ),Kb((k−1)T ),W ((k−1)T ),P((k−1)T ),Θ((k−1)T )

The proposed laws are giving the rule such that

Ka(kT ) = ΩKa
(J((k−1)T,kT,v∗))

1In order to shorten the notation, the equation will be written as Q∗ from this point in the document.
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Kb(kT ) = ΩKb
(J((k−1)T,kT,v∗))

W (kT ) = ΩW (J((k−1)T,kT,v∗))

P(kT ) = ΩP = P((k−1)T )

Θ(kT ) = ΩΘ = Θ((k−1)T )

4.6 Virtual platform

For the evaluation of the proposed RL algorithm, it was used a virtual version of the biped robot

(Figure 4.1). This virtual model was proposed in SolidWorksr considering mechanical properties

as material, weight and dynamics. The bipedal robotic model was exported to Matlabr applying

Simescape Multibodyr.

Figure 4.1: Virtual robot to prove the RL scheme

In Figure 4.1 is shown the BR from four points of view As can be seen in the image, along
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the foot were implemented virtual sensors (seen as spheres) to know the forces generated by the

interaction between the foot and the ground.

4.7 Design

To attain the objectives of design of trajectories while minimizing the energetic consumption of the

BR, it was proposed a MARL scheme of two Agents. The first agent modified the proposed human-

based trajectories to fit properly to the BR movements. The second Agent intended to find the best

gains for the controller.

A deeper description of the RL construction is given in the next sections.

4.7.1 Neural network sketch

The training was made considering the interaction of two MARL agents each of them consisting

on an actor and critic networks. Both actor networks have the same structure, consisting on nine

layers. The inputs have a dimension of 53 each, followed by two 100-units fully connected layers,

and 8-units fully connected layer. Also, two ReLU layers, one LSTM, one Tanh, and a output scaling

layer are part of the structure (see 4.1). The outline can be seen in Figures 4.2a and 4.3a.

Table 4.1: Actor-network structure

Reference Name Description

1 ’input 1’ Sequence Input Sequence input with 53 dimensions

2 ’fc 1’ Fully Connected 100 fully connected layer

3 ’relu body’ ReLU ReLU

4 ’fc body’ Fully Connected 100 fully connected layer

5 ’body output’ ReLU ReLU

6 ’lstm’ LSTM LSTM with 100 hidden units

7 ’output’ Fully Connected 8 fully connected layer

8 ’tanh’ Tanh Hyperbolic tangent

9 ’scale’ ScalingLayer Scaling layer

The critic network is made out of 10 layers (see Table 4.2, having two different input layers, the

first one with dimension of 53, and the second one being 8-dimensioned. Following the inputs, each

of the hidden fully connected layer has 100 neurons. Afterwards, both branches get concatenated.

The rest of the structure consist on two ReLU layers, two fully connected layers with 100 neurons
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each, and a LSTM layer (also 100 hidden neurons). The structure is shown in Figures 4.2b and

4.3b.

Table 4.2: Critic-network structure

Reference Name Description

1 ’concat’ Concatenation
Concatenation of 2 inputs

along dimension 1

2 ’relu body’ ReLU ReLU

3 ’fc body’ Fully Connected Fully Connected

4 ’body output’ ReLU ReLU

5 ’lstm’ LSTM LSTM

6 ’input 1’ Sequence Input Sequence Input

7 ’fc 1’ Fully Connected Fully Connected

8 ’input 2’ Sequence Input Sequence Input

9 ’fc 2’ Fully Connected Fully Connected

10 ’output’ Fully Connected Fully Connected

(a) Actor network (b) Critic network

Figure 4.2: Critic and actor networks used during the RL from the trajectories agent
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(a) Actor network (b) Critic network

Figure 4.3: Critic and actor networks used during the RL from the gains agent

4.7.2 Reward design

Assuring that the robot retrieve enough information from its environment and used it to attain a

consistent walk, the reward function was designed considering five main parameters: velocity along

the Z axis, norm of tracking errors, the interaction of the feet with the ground, the distance covered

during the walk and the previous actions taken by both agents. The rewards fed both agents equally.

As it was described in 1.4, for the functioning of every RL algorithm is necessary to declare those

variables which will provide information from the environment to the system. For the reward, it was

implemented the following structure:

R= 7Vz−0.3
8

∑
i=1

e2
i + posZ +5FN +3dLF +3dRF + posZ + trays−0.005

8

∑
i=1

u2
A (4.7)

here, R represents the reward, e means the error obtained by the difference between the reference

trajectory and the actual position of each joint, Vz stands for the velocity along Z axis, meanwhile,

posZ expresses the distance from the origin to the CoM of the hip.

FN is constructed considering that if neither foot touches the ground (the BR is not walking) the

normal force of both feet will be zero leading to a penalty of −1. However, if the normal force is

different from 0, the reward is +1.
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dLF and dRF represents the distance from each foot to the ground, and both are constructed the

same: 1− exp(d −Mdist), d represents the measured distance to the floor and Mdist is a constant

in meters, considered as the maximum limit. trays is made taking every (t − 1) action verifying if

they are inside the boundaries (explained further in Table 5.1), giving a reward of +1 for each joint if

inside the range and 0 otherwise, then, the output vector is dot-multiplied with itself. u2
A is computed

as the summation of the squared action at (t −1).

4.8 Numerical evaluation

For training the selected artificial neural network that are used to develop the RL strategy, it was con-

sidered a maximum number of episodes 1000 with
T f
T s

maximum steps per episode. The evolution

of the reward function through the training is shown in Figure 4.4
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Figure 4.4: Rewards evolution over episode

Each simulated episode was two seconds long. The results are shown in the following figures,
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being grouped in right and left limb. The numerical simulation settings were established as follows:

fixed integration step at 10µs, integration method Runge-Kutta.

With the aim of comparing the performance of the suggested controller, a classical state feed-

back control was also evaluated considering a decentralized structure as in the case of the proposed

controller. For this comparative controller, the Sliding Mode-based super-twisting algorithm (STA)

was used as a method to obtain the on-line estimation of the time-derivative for the tracking errors

[89, 128]. The graphs showing the comparative results share the same legend: green line refers

to the results attained by the PID tuned by the RL scheme, and the red line is used to highlight the

results of the classical state feedback control.

Considering the RL design considered in this thesis, two agents were implemented to attain

the data driven based optimization during the automatic walking: minimize the energy used by the

controller introducing adaptations for the control gains, while modifying the reference trajectories for

the robot joints, considering their motion limitations, and enforcing the bioinspired gait cycle. The

Gains Agent added (algebraically) values to a previously tuned PID controller (used for compari-

son), which were reintroduced as the modified KP, KI , and KD gains. The second Agent, modified

reference trajectories (based on human walking patterns [26]), by adding or subtracting values from

the reference vectors.

4.8.1 Right limb

The robot’s right limb was considered as a reference during the gait analysis, in accordance with

what was presented in Section 1.2. The detailed results concerning this limb with its respective

joints and movements are discussed in the next paragraphs.

Hip

Hip is the articulation that connects the pelvis-equivalent channel with the limb. This joint mobilizes

the entire limb in two movements: Flexion-Extension (FE) in the sagittal plane, and Abduction-

Adduction (Abd-Add) in the frontal plane.

Flexion - Extension

The results for the FE movement of the right hip are presented in Figure 4.5. All the graphs keep the

same color code: black for the reference trajectory, green the Reinforcement Learning-based PID

(RL-PID) gains, and the red line for the state feedback controller (PID).
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Figure 4.5a shows the outcomes of the tracking simulation of the hip both reach the reference

trajectory in approximately 15ms. Once stabilized, the maximum amplitude of the error for the RL-

PID in the FE hip joint is 4.5 × 10−3rad and 0.3009rad for the Proportional–Integral-Derivative

(PID) controller (see Figure 4.5b). With regard to the control signals generated by the use of both

schemes, shown in Figure 4.5c, the maxima are 0.6512N ·m and 22.7090N ·m for RL-PID and PID

controllers, respectively.
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Figure 4.5: Evolution of the right hip joint (flexion - extension): tracking, error, and control signals

The actions performed by the agents in the reinforcement strategy can be seen in Figure 4.6.

The adjustment of the reference trajectory for this joint is presented in Figure 4.6a, where the initial

reference trajectory is presented in cyan, the action generated by the Agent is depicted in magenta,

and black represents the final trajectory reference. It can be seen that at 50µs the trajectory changed

−0.052rad from the original. Together with the actions of the first agent, the actions exerted by the

second agent are presented in Figure 4.6b, where the action taken on each of the gains (KP in

orange, KI in blue, and purple for KD) can be observed. The KP gain was modified adding 4.972 to

its original value (75), while the KI and KD gains were subtracted 5 units from both, being originally

0 and 40, respectively. These modifications are attained after the sequence of gains modifications.
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Figure 4.6: Actions of the Agents over the right hip joint (flexion - extension): correction of the reference

trajectory, and evolution of the gains

Abduction - Adduction

The results for the Abd-Add movement of the right limb are presented in Figure 4.7.
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Figure 4.7: Evolution of the right hip (abduction - adduction) joint: tracking, error, and control signals

Figure 4.7a shows the tracking outcomes corresponding to the tracking simulation of the hip that

reaches the reference trajectory in approximately 10ms. Once stabilized, the maximum amplitude
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of the error for the RL-PID in the Abd-Add hip joint is 4.5× 10−3rad and 0.1057rad for the PID

controller (see Figure 4.7b). With regards to the control signals generated after the stabilization

point, (Figure 4.7c), the maximum value is 0.3215N ·m for the RL-PID controller, and 22.7090N ·m
from the PID controller.
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Figure 4.8: Actions of the Agents over the right hip joint (Abduction - Adduction): correction of the reference

trajectory, and evolution of the gains

The actions performed by the agents of the RL can be seen in Figure 4.8. The adjustment of the

reference trajectory for this joint is presented in Figure 4.8a, the color code is cyan for the original

reference trajectory, the agent’s action in magenta, and in black the final reference trajectory. The

adjustment, occurring at 50µs, corresponds to 0.05214rad from the original, and it is kept at that

value during the walking.

Alongside the actions of the trajectories agent, the gains agent evolution is depicted in Figure

4.8b. This result confirms that gains are modified since the beginning 4.99997 units to the original

75 units for KP (depicted in orange color). After 1 second this gain was readjusted to 4.99999 units.

The original KD gain (0 units) was reduced 4.9523 units at the beginning. Then, after 1 second, it

was readjusted to -4.98285 units (blue line). Regarding KI gain, in purple and originally 0, it was set

from the beginning to 4.9761 which, after 1 second, was readjusted to 4.9834.

Knee

Knee is the articulation that mobilizes the leg with respect to the thigh along the sagittal plane. The

results of the simulation can be seen in Figure 4.9.

Figure 4.9a shows the outcomes of the tracking evolution of the knee, which reaches stability in

approximately 12ms. The RL-PID controller led to a maximum error amplitude of 13.1× 10−3rad,

and the PID 30.3× 10−3rad, depicted in Figure 4.9b. Regarding the control signals generated,

shown in Figure 4.9c, the maximum of the RL-PID is 1.4155N ·m, while for the PID controller is
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2.7836N ·m.
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(b) Error trajectories
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Figure 4.9: Evolution of the right knee joint: tracking, error, and control signals

The actions performed by the agents can be seen in Figure 4.10. The adjustment of the refer-

ence trajectory for this joint is presented in Figure 4.10a, where the original reference trajectory is

presented in cyan, the action generated by the Agent is depicted in magenta, and black represents

the final trajectory reference. It can be seen that at 50µs the trajectory is changed −0.0522rad from

the original, and it is kept during the walking.

Together with the actions of the first agent, the actions exerted by the second agent are pre-

sented in Figure 4.10b, where the action taken on each of the gains (KP in orange, KI in purple, and

blue for KD) can be seen. The KP gain was modified by subtracting −4.99875 to its original value

(72) since the beginning, and after 1 second the gain was readjusted −4.9994 units. The derivative

gain KD, preset to 45 units, was modified by the addition of 4.974 units since the beginning, modified

after 4.9871. Finally, from KI gain were subtracted 5 units.
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Figure 4.10: Actions of the Agents over the right knee: correction of the reference trajectory, and evolution of

the gains

Ankle

Ankle is the articulation where the foot and the leg meet. The results of the simulation for this joint

are presented in Figure 4.11.

Figure 4.11a shows the outcomes of the tracking simulation of the hip reaches the reference

trajectory with both control schemes in approximately 8ms. The tracking error evolution is shown in

Figure 4.11b, after the tracking is stabilized, the maximum amplitude of the error for the RL-PID is

11.9×10−3rad and 15.5×10−3rad for the PID controller. The controller signals can be seen in the

Figure 4.11c, which after being stable, the maximum amplitudes are 0.4370N ·m and 1.0093N ·m
for RL-PID and PID controllers, respectively.
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Figure 4.11: Evolution of the right ankle joint: tracking, error, and control signals

The actions performed by the agents can be seen in Figure 4.12. The adjustment of the refer-

ence trajectory for this joint is presented in Figure 4.12a, where the original reference trajectory is

presented in cyan, the action generated by the Agent is depicted in magenta, and black represents

the final trajectory reference. It can be seen that at 50µs the trajectory is changed 0.05235rad from

the original, and it is kept during the walking.

Together with the actions of the first agent, the actions exerted by the second agent are pre-

sented in Figure 4.12b, where the action taken on KP in orange, and KI in purple, were constant,

adding 5 units to each of them. The derivative gain KD in blue, however, presented an adjustment

of −4.99999 since the beginning, and another small one at 1 second of 3.33786 units. The preset

gains were KP 65, KD 0, and KI 0.

0 0.5 1 1.5 2

Time [s]

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

D
is

p
la

c
e

m
e

n
t 

[r
a

d
]

Original

Action input

Reference

(a) Trajectories

Time [s]

T
o

rq
u

e
 [

N
 m

] -6

-5

-4
Kp

-4.999996

-4.999994

-4.999992
Kd

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6

-5

-4
Ki

(b) Control adjustments

Figure 4.12: Actions of the Agents over the ankle knee: correction of the reference trajectory, and evolution

of the gains

4.8.2 Left limb

The results obtained from the performance of both controllers for this leg are presented below.
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Hip

Hip is the articulation which connects the pelvis-equivalent channel with the limb. This joint mobilizes

the entire limb in two movements: FE in the sagittal plane, and Abd-Add in the frontal plane.

Flexion - Extension

The results for the FE movement of the right hip are presented in Figure 4.13.

Figure 4.13a shows the outcomes of the tracking simulation of the hip reaches the reference

trajectory with RL-PID control in approximately 15ms, while PID controlled did it in 12ms. The track-

ing error is depicted in Figure 4.13b, which once the tracking was stable, the RL-PID generated a

maximum amplitude of 9.3× 10−3rad, while for PID it was 0.2425rad. With regard to the control

signals generated by the use of both schemes, shown in Figure 4.13c, the maxima are 0.6477N ·m
and 6.4628N ·m for RL-PID and PID controllers, respectively.
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Figure 4.13: Evolution of the left hip joint (flexion - extension): tracking, error, and control signals

The actions performed by the agents can be seen in Figure 4.14. The adjustment of the refer-

ence trajectory for this joint is presented in Figure 4.14a, where the original reference trajectory is

presented in cyan, the action generated by the Agent is depicted in magenta, and black represents

103



4.8. NUMERICAL EVALUATION

CHAPTER 4. REINFORCEMENT LEARNING CONTROL

TUNING

the final trajectory reference. It can be seen that at 50µs the trajectory is changed −0.05236rad

from the original, and it is kept during the walking.

In cooperation with the actions of the first agent, the actions exerted by the second agent are

presented in Figure 4.14b, where the action taken on each of the gains (KP in orange, KI in blue,

and purple for KD) can be seen. The KP gain was modified by subtracting −4.99994 to its original

value (27) and at 1 second another 34.332×10−6units, while the KD gain were adjusted +5 units

from its original settings at 23, and KI varied from 17 (preset) to 4.999998, and at 1 sec to 4.999996.
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Figure 4.14: Actions of the Agents over the left hip joint (flexion - extension): correction of the reference

trajectory, and evolution of the gains

Abduction - Adduction

The results for the Abd-Add movement of the right limb are presented in Figure 4.15.

Figure 4.15a shows the outcomes of the tracking simulation of the hip where both reach the

reference trajectory in approximately 15ms, showing similar performance on both; however, once

stabilized, the maximum amplitude of the error for the RL-PID controller is 16 × 10−3rad while

the PID controller has a 0.0814rad amplitude (Figure 4.15b). With regard to the control signals

generated after the stabilization point, shown in Figure 4.15c, the maxima are 0.154N ·m for the

RL-PID controller, and 6.096N ·m from the PID controller.
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Figure 4.15: Evolution of the left hip joint (abduction - adduction): tracking, error, and control signals

The adjustments made by the agents to the tracking trajectory and gains are displayed in Figure

4.16. For the first set of actions, i.e., trajectory modification is presented the Figure 4.6a, the action

exerted by the Agent (magenta) on the original trajectory (cyan) generated the final trajectory (black).

This action is the constant subtraction of 0.0523rad It can be seen that at 50µs the trajectory is

changed −0.0522rad from the original.

Together with the actions of the first agent, the actions exerted by the second agent are pre-

sented in Figure 4.10b, where the action taken on each of the gains (KP in orange, KI in blue, and

purple for KD) can be seen. The KP gain was modified by adding 4.999994units to its original value

(75) since the beginning, and after 1 second the gain was readjusted to 4.99998 units. The deriva-

tive gain KD, preset to 0 units, was modified by the addition of 4.951 units since the beginning, and

at 1 s were added 0.0179. Finally, from KI gain (preset at 10) were subtracted 4.99991units since

the beginning to finalize in −4.99991.
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Figure 4.16: Actions of the Agents over the left hip joint (Abduction - Adduction): correction of the reference

trajectory, and evolution of the gains
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Knee

Knee is the articulation that mobilizes the leg with respect to the thigh along the sagittal plane. The

results of the simulation can be seen in Figure 4.17.

Figure 4.17a shows the outcomes of the tracking evolution of the knee, which reaches stability

in approximately 9ms. The RL-PID controller led to a maximum error amplitude of 5.94×10−3rad,

and the PID 93.12×10−3rad, shown in Figure 4.17b. Regarding the control signals generated at

the given time, shown in Figure 4.17c, the maximum of the RL-PID is 1.01933N ·m, while for the

PID controller is 6.71597N ·m.
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Figure 4.17: Evolution of the left knee joint: tracking, error, and control signals

The actions performed by the agents can be seen in Figure 4.18. The adjustment of the refer-

ence trajectory for this joint is presented in Figure 4.18a, where the original reference trajectory is

presented in cyan, the action generated by the Agent is depicted in magenta, and black represents

the final trajectory reference. It can be seen that at 50µs the trajectory is changed −0.05235rad

from the original, and it is kept steady during the walking.

The second agent’s adjustments are presented in Figure 4.18b, where the action taken on KP

(orange, set at 72), and KI (blue, set at 30), was the constant subtraction of 5units. In purple is
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presented the evolution of KD was modified by subtracting −4.99954 to its original value (45) since

the beginning, and after 1 second the gain was readjusted −4.99976 units.
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Figure 4.18: Actions of the Agents over the left knee: correction of the reference trajectory, and evolution of

the gains

Ankle

The ankle is the joint where the foot and leg meet and for which the simulated results are shown

in Figure 4.19. Figure 4.19a displays the development of the tracking simulation, it stabilizes in

approximately 10ms. The tracking error evolution is shown in Figure 4.19b, after the tracking is

stabilized, the maximum amplitude of the error is 2.6×10−3rad for the RL-PID control, and 117.48×
10−3rad for the PID controller. The control signals, displayed in Figure 4.19 agree with the results

obtained in the evolution of the errors since the maximum amplitude of the RL-PID controller is

barely 250.87N ·m, while for the PID is 6.55892N ·m, being at its maximum point 25.14407 times

greater than the proposed one.
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Figure 4.19: Evolution of the left ankle joint: tracking, error, and control signals

The actions performed by the agents on this articulation can be seen in Figure 4.20. The ad-

justment of the reference trajectory for this joint is presented in Figure 4.20a, where the original

reference trajectory is presented in cyan, the action generated by the Agent is depicted in magenta,

and black represents the final trajectory reference. It can be seen that at 50µs the trajectory is

changed −52.35×10−3rad from the original, and it is kept during the walking.

As to the adaptation of the gains, presented in Figure 4.20b, the initial KP gain (orange line)

was set to 55 units, being modified two times by the addition of 4.9059 units, at the beginning, and

0.03182 at 1 sec. The initial proportional gain KD (set at 31, blue line) was also modified twice: at

the beginning by the addition of 4.99955, and at 1 sec to finalize adding 4.99981. KI , in purple, was

a constant addition of 5 to the originally set gain of 17.
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Figure 4.20: Actions of the Agents over the ankle: correction of the reference trajectory, and evolution of the

gains
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4.8.3 Overall performance

The evaluation of the performance indexes Jc and Je in Table 4.3 were calculated as Jc =

∫ t f

0

∣

∣u2
i

∣

∣,

with u as the control vector made up of the signals obtained from the eight joints with both RL-

PID, and PID controllers, and Je =

∫ t f

0

∣

∣e2
i

∣

∣, with e being the vector of tracking errors measures in

the whole structure, for both controllers. Numerical integration was performed by the trapezoidal

method, which approximates the integration over an interval by breaking the area down into trape-

zoids with more easily computable areas. The norm Je for the RL-PID is .4% greater than the PID,

However, the L2 norm signal for the control signals is 16.73% smaller for the RL-PID than the one

obtained using the PID. This implies that the benefit of reducing the energy consumption to mobilize

the robot is sufficient for its choice over a classical feedback controller.

Table 4.3: Value of the two-norm corresponding to the tracking error and control actions of the robotic joints

using RL.

Parameter
Controller

RL-PID PID

Jc 92.57198×103 108.0661×103

Je 18.07623 17.99555
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Chapter 5

Experimental setup for the biped robot

The design and assembly of the BR was based on a linear methodology with feedback, it means

that each stage was developed sequentially then, once those stages were finished, the prototype

was assembled and proved each section individually and as a whole.

The mechanical structure was assembled using prefabricated aluminium structures, which was

electronically instrumented in order to measure the angular movements at each DOF using linear

actuators with embedded angular resistors as an indirect measurement tool and then, attain an

input trajectory-position. Those linear actuators were set such that the trajectory tracking at each

joint could be reached.

The stages that were followed to finish the structure are described in this chapter.

5.1 Introduction

The proposed controller was tested on a real biped robot that was specifically designed for this

study. The structural components of the biped robot were developed in a manner that integrates the

mechanics well with the electrical components required for actuation or measurement of the robot’s

action.

Linear actuators were used to provide individual motion at each joint for the bipedal robotic

device. The positions of these actuators were chosen to induce maximum angular displacements

at the hip, ankle, and knee. The actuators used were 2, 4, and 8 inches in stroke length, with

115 lb Thrust Heavy-Duty Linear Actuation devices HDA2-50, HDA4-50, and HDA8-50, respectively

(ServoCity, USA). These devices feature a 12.0 volts direct current motor with a maximum power

of 200 Watts. Each actuator has a linear variable resistor that provides indirect measurement of

the linear actuator position. The voltage is acquired with the analog-to-digital converter module (12
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bits, sampling period of 0.5 ms, and voltage range of 3.3 volts) included in the TIVA1294 C-Series

board (Texas Instruments, USA), which has a 120 MHz 32-bit ARM Cortex-M4 CPU processor, a

dual 12-bit 2 MSPS analog-to-digital converter (ADC), 1 MB Flash memory, 256 KB SRAM memory,

and 6 KB EEPROM memory.

To mobilize each linear actuator at each articulation, a direct-to-analog power converter (ST’s™IC

VNH5019 AC-DC two-branch power converter in Pololu’s™carrier board, USA) is utilized. The

power converter is augmented with an optoisolation to provide power separation between the digital

board (TIVA1294) where the controller is implemented and the linear actuator, ensuring the safety of

the digital device. The implementation of the controller, as given in eq. (3.13), uses an explicit Euler

discretization based on a first-order approximation (Euler type, ODE1), and is programmed into the

TIVA1294 C-Series (Texas Instruments, USA) board with a sampling time operation of 0.5 ms.

The bipedal robot was designed to satisfy the angular values detected in a typical gait cycle

[26], which include step length, cadence sequence, and walking velocity of 72 cm/s, 1.87 steps/s,

and 1.37 m/s, respectively, corresponding to an individual with a height of 180 cm. The mechanical

structure of the bipedal robot can be divided into two parts: (1) the hip section that is connected

to both lower limbs, with a length of 33.81 cm, and (2) the bilaterally symmetrical lower sections

separated by the knee joint, comprising a 45.72 cm thigh and a 41.19 cm leg.

To ensure that the angular variations of the bipedal robotic device align with a natural walking

cycle, it incorporates four degrees of freedom (DOF) along the sagittal and coronal anatomical

planes. The simplified structure features a single joint associated with the ankle, which enables the

plantarflexion/dorsiflexion movement.

The articulation arrangement of the bipedal robot converts the linear displacement of the actu-

ator to angular displacement, making it a significant contribution to this study. This configuration is

considered a simplified option for the instrumentation of newly developed bipedal robots. The design

aims to introduce a novel, robust mechanical section to the robot’s arrangement.

The proposed instrumentation shown in Figure 5.1 comprises an electrical section for measur-

ing joint displacement. To actuate the articulation joints, technical elements were selected that

correspond to the linear actuation device. The mechanical settings considered when selecting the

actuators include maximum load displacement of 3.5 cm/s, dynamic thrust of 11.34 KgF, static load

of 226.8 KgF, and a single threaded spindle with a 3mm pitch length.

The actuation engines have an electrical voltage active range of 6− 12V and can handle an

electrical current of up to 3.8A at maximum weight load. Each linear actuator contains a 10KΩ

variable resistor device for position sensing, with a tolerance of ±5% of the value. The angular

variation of the joint is linearly dependent on the shank movement. The electrical section operates

on a voltage range of 5.5− 24V , delivering 12A continuously and working with logical levels of

112



CHAPTER 5. EXPERIMENTAL SETUP 5.2. DESIGN APPROACH

Vcc

GND

Position

ADC

TM4C129

PC

H-Bridge

Figure 5.1: Simplified version of the electronic instrumentation system used for each articulation in the biped

robot.

2.5−5V . The device supports square pulsed width modulated signals at frequencies greater than

20KHz. Additionally, the device has built-in electrical protection against reversal-voltage, overload-

voltage, under-voltage, over-temperature, and over-current.

The proposed electrical instrumentation configuration justifies the design of the suggested con-

trol system by taking into account the constraints of the actuators used in the bipedal robot’s opera-

tion. Moreover, the embedded electrical instrumentation is capable of processing the control action

that has been designed. These electrical components are assumed to work with the digital section,

which implements numerical representations of the control design.

5.2 Design approach

Even the fact that the human gait is an individual characteristic, there have been many efforts to

standardize not only the movements made during each phase of the gait cycle, but also to find

normal values that can describe the human walk.

The gait descriptors listed in [26] were obtained averaging results of three independent investi-

gations carried out in New York, Philadelphia and Amsterdam, in which 2300 adult pedestrians, male

and females, that did not know that they were watched while they were walking were measured.

The BR design was based on the spatial and temporal so-called gait descriptors, they are: stride

length, which is the distance between two successive heel contacts of the same foot, in this case,

it was considered 72 cm; cadence, that is the number of steps per minute, for the BR was 1.87

steps/s; the walking speed, that is the distance covered in a given amount of time, it was considered
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1.37 m/s.

Besides the previous parameters, it is necessary to take into account the maximum movement

amplitude at each considered articulation for the correct movement of the BR. These movements

must be do at least in two anatomical planes. Generally, sagittal and frontal planes [136] are enough

for a human-like gait. In the Table 5.1, it is observed the previously mentioned amplitude movements.

Table 5.1: Minima angle movements at each joint considered for the execution of the gait by the BR [137]

Sagittal Plane Frontal Plane

Maximum Minimum Maximum Minimum

Hip 35° -10° 7° -5°

Knee 60° 5° - -

Ankle 15° -20° 6° -2°

The angles content in the Table 5.1 led to designing a 12 DOF BR that are distributed as follows

(see Figure 5.2):

• DOF for hip Abd-Add movement (θ1)

• DOF for hip FE movement (θ1)

• DOF for knee FE movement (θ2)

• DOF for ankle FE movement (θ3)

Θ1r Θ1l

Θ4r Θ4l

Θ2rΘ2l

Θ3rΘ3l

Θ5rΘ5l

Figure 5.2: Angular movements in the BR

This DOF arrangement corresponds to movements made on sagital and frontal planes, both

planes let the execution of a three-dimensional gait [138, 139].
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The range of motion presented on the Table 5.1 must be considered for designing reference tra-

jectories through Artificial Neural Network (ANN) meanwhile, at the same time, must be reachable

by the controller. For the implementation of the closed-loop controller it is necessary a complete

electronic scheme that allows not only measure the sensors but also drive each joint actuator. All

of them managed in a couple of embedded development boards connected between them. Those

boards must have one acquisition module for each sensor, two digital ports for each actuator and a

processing speed that supports the necessary clocking frequency for designing reference trajecto-

ries and their tracking by the controller.

5.3 Mechanical Design

As it was previously mentioned, the mechanical structure of the BR was assembly using Servocity

®’s prefabricated aluminum structures. They were chosen because of its lightness and the hole

pattern makes easy assemble another structural elements.

The election of lengths was made using as reference the anthropomorphic proportions of an

180 cm height person, which correspond to the characteristics of the gait analysis study of [26]. The

anatomical movements made by each DOF are condensed in the table 5.2.

Table 5.2: Movements made at each DOF by the BR

Sagittal Plane Frontal plane

Hip
Flexion-extension Adduction-abduction

Θr2, Θl2 Θr1, Θl1

Knee
Flexion-extension

-
Θr3, Θl3

Ankle
Plantarflexion-dorsiflexion Inversion-eversion

Θr5, Θl5 Θr4, Θl4

Structurally, the joints are based on pillow block bearings attached to u-channels, this mechanical

arrangement is adequate to turn the linear movement made by the actuator into angular movement

through a rotation axis. Each articulation set-up described is bilaterally symmetric for both limbs.
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(a) Isometric (b) Superior

(c) Left (d) Frontal

Figure 5.3: Schematic views of the proposed biped robot detailing dimensions and angles taken into account

for the analysis of the mechanical structure for the Biped Robot
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5.3.1 Linear Actuators

There exists many way to address how the joints are mobilized in this kind of robots and it must

be taken into account variables as speed and position. A wide variety of actuators are used in

many humanoid robots, including gearboxes (harmonic drive or planetary gears), hydraulic actu-

ators, electric motors, series elastic actuator [10, 140, 141] and LA [142–146]. The latter mainly

consist on an electrical DC motor attached to a ball-screw driving system whose characteristics in-

clude resizeability, high torque, robustness against external perturbations, among others; this kind

of actuators also could be used as a mechanical stop for the structure.

With all this advantages, the mechanical arrangement was designed to embed linear actuators

enabling the complete range of movements referred in 5.1.

In the Figure 5.3 are displayed the dimensions and angles in the BR: in 5.3a and 5.3b from an

isometric and top views, respectively, the position of each LA is also displayed, meanwhile in the

5.3c is displayed the position of the three LA used for make movements in the sagittal plane (Θ2,

Θ3 and Θ5). Figure 5.3d displays lengths corresponding to the distance between rotation axes and

the movements along the coronal plane (Θ1 and Θ4). A thorough description of each articulation is

detailed below.
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(a) Mechanical configuration for the

abduction-aduction movement
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5.3.2 Hip articulation

M
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t

1

4

(b) Mechanical configuration for the flexion-extension

movement

Figure 5.4: Structure conforming the hip. This configuration allows the hip movements in two anatomical

planes

The hip articulation can be seen in Figure 5.4 and is designed as a spherical joint enabling two-

plane movement and is considered as two intersected axes. On the first hand, the movements are

made in the coronal plane, its structure consists of a couple of flat brackets, as shown in the Figure

5.4a (labeled with number 1), front and back working as connecting elements between hip and limbs

structures. This movement is equivalent to Abd-Add and is guided by an 2 in - length linear actuator

nudging the entire limb structure (including the FE structure) when rotating around a ball bearing

embedded in the flat brackets, labeled 3. The number 2 element allows a simultaneous movement of

the abduction-adduction lineal actuator with the FE displacement. The FE rotational axis is marked

with the number 4.

On the other hand, the FE movements ( 5.4b ) is made in the sagital plane using a couple of

pillow blocks bearings attained to a square u-channel rotating around the axis numbered 4. This

structure transfers the movement made by the 6 in - length linear actuator to the leg.

The final configuration of the hip joint can be seen in the Figure 5.5. The linear displacement

of the 1in actuator is seen in the Figures 5.5a and 5.5b, according to the mechanical arrangement,

resulting in the Abd-Add movement. In the same way, Figures 5.5c and 5.5dshow the movement of

the 6in actuator rod that allows the FE movement.

The movement range reached by the Abd-Add actuator spans from −3.9◦to 19.8◦and for the

FE actuator the range goes from -16.6◦to 46.4◦, for all of them, it is signed the zero reference as
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the angle where the legs are parallel to the coronal axis of the robot. These measures warrant the

minima angle movements presented in 5.1.

(a) Adduction movement in the BR (b) Abduction movement in the BR

(c) Maximum angle reached by the hip for the

extension movement

(d) Maximum angle reached by the hip for the flexion

movement

Figure 5.5: Final assembly of the hip

5.3.3 Knee articulation

The knee articulation was designed as hinge joint, i. e., the poli-centricity of the knee articulation

was not taken into account, it consists in a 4 in - length linear actuator attained to the u-channel

equivalent to the thigh The linear actuator rod displacement is marked in the figure 5.6, this linear

motion is turned into rotation by the axis.
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5

(a) Isometric view
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(b) Side view

Figure 5.6: Knee articulation

The final configuration of the knee joint is shown at Figure 5.7, from a lateral perspective. It

shows its structure hinge type and the axis of rotation of the articulation (joint). It can be seen

as well the movement of rotation executed from the linear movement of the actuator, this angular

movement is corresponding to the FE of the articulation. The range of movement for the knee joint

goes from 3.2◦to 44.5◦, using as reference to measure it in the DOF the previous link to the joint,

considering it as 0◦ when the subsequent link is parallel to the axis of the preceding link.

(a) Maximum angle for extension movement (b) Maximum angle for flexion movement

Figure 5.7: Final assembly of the knee
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5.3.4 Ankle Articulation

For the ankle, the joint was also designed as a two-dimension movement based on and universal

joint, i.e., a pair of pillow block bearings oriented at 90◦to each other connected by a cross shaft

5.8, number 6. The movement of the articulation was made by a couple 2 in length LA, attached to

the shank-like channel (marked as 7), moving coordinately: when both move at the same time and

direction the foot makes a dorsi-plantar flexion movement; whereas if the movement of both LA is

not coordinated the movement made is inversion and eversion of the foot.
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(a) Fontal view
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(b) Lateral view

Figure 5.8: Ankle articulation

The final structure of the ankle can be seen in 5.9. It is shown the universal joint articulation

that supports the 2D movement, as well as the base of the LA. The range of movement for the

dorsi-plantar flexion, i.e., when both LA move synchronously covers from 62◦5.9a to 120◦5.9b, also

considering that 0 when the foot link is parallel to the axis of the shank-like link. Alternatively, the

inversion-eversion movement reaches 72◦during the eversion movement and 108◦during for the

inversion of the foot.
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(a) Lateral view. Maximum plantarflexion angle (b) Lateral view. Maximum dorsiflexion angle

Figure 5.9: Maxima angular displacements done by the ankle articulation

5.4 Electronic Design

The integrated system fromed by the proposed controller and the mechanical structure was driven

by an electronics arrangement based on an development board reading the sensors embedded into

the LA, then, once calculated the controller, the movement was driven by H-Bridges through Pulse

Wwidth Modulation signals. In the following paragraphs, a detailed description of each component

is given.

5.4.1 Development board

The Texas Instrument’s EK-TM4C129XL TIVA C Series LaunchPad™ evaluation electronic board

was used as main electronic component letting communication between the sensors and actuators

through the implemented controller.

The main characteristics considered in the selection of the electronic board are sown in Table

5.3.

Three GPIOs were used for each Linear Actuator: a couple of for drive the H-Bridge and one for

the position sensor. Since handling the LA implies the utilization of high voltages and currents, the

following isolation system was needed to protect the TIVA.

Table 5.3: Main characteristics of EK-TM4C129XL TIVA

Feature Quantity Description

Processor - ARM Cortex-M4F

Core - 120 MHz; 150 DMIPS
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Feature Quantity Description

External Peripheral Interface - 8/16/32 bit dedicated interface

GPTM 8 16/32-bit

Flash - 1024 KB

EEPROM 6KB

SRAM 256 KB single-cycle System

UART 8 -

GPIO 15 -

PWM 8 -

ADC 2 12-bit, 2 MS/s

5.4.2 Optical isolation

In order to separate the logic electronic part from the power voltages, an 4N25 Photocoupler was

selected. Its election was leaded considering the response (up to 500KΩ, ease of installment and

low energy consumption. In the Figure 5.10 [147] is displayed the schematic internal structure.

Figure 5.10: Schematic internal structure of the 4N25 Optocoupler

The internal functioning of the IC is based on a LED and a transistor working in switched-mode.
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The first part of the design consisted on the election of proper resistors to let the LED to its maximum

bright.

Having the forward current (iF ) to reach the maximum bright of LED equals to 10mA and taking

into account the output voltage as 3.3 V (delivered by the TIVA™), using Ohm’s Law to set the

appropriate resistance, we have :

R =
V

iR
=

3.3V

10×10−3A
= 330Ω (5.1)

Once it was assured the maximum brightness, the second part of the design is work with the

transistor. The cutoff region of its operation occurs if the base lead is open, then the current ICEO is

extremely small thus can be neglected so that VCE =VCC, in our case:

VCE =VCC = 5V (5.2)

For the saturation region, and isolating RC we have:

RC =
VCC −VCEsat

ICsat

= 2.45KΩ ≈ 2.7KΩ (5.3)

Once selected the values of the resistors, the circuit shown in Figure 5.11 was assembled,

where R1 stands for the output resistor (2.7KΩ) and R2 notes the input resistor (330Ω). The base

of the transistor was no connected. The label marked as TIVA notes that the signal comes from the

development board. PWM label means that the output go to the H-Bridge to mobilize the LA. It is

also shown that each section of the optocoupler (input and output) has its own ground to prevent

reverse current, short circuit, electrical surges or spikes, among others circumstances that could

damage the electronics.

For each limb of the BR one electronic board was assembled. Each pair of integrated circuit is

used for one LAs, thus allowing forward and backward movement of each joint, the final assembly

is displayed in Figure 5.12. In the design each ground (input and output) is shared among all the

others. Number one indicates the connection to the 5V voltage source, supplying energy to the

output part of the optocoupler. Number two signs the ground for the input part. Number three tags

the input, as well as number four, does it for the output. Both resistors are labeled, R2 for the input

one and R1 for the output.
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Figure 5.11: Optocoupler circuit electronic diagram

To prove their functioning, a 3kHz square signal was transmitted through both circuits (see

Figures 5.12c). In Figure 5.12b is shown the input signal (blue) which is 3V amplitude and the

output (yellow line) is 5V and 4.8V for the left and right circuits, respectively.

11 44

2 332
R2R2

R1R1

(a) Final layout of the circuit used for the left limb
(b) Response of the left limb optocoupler circuit to a square

signal
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(c) Proofs of functioning for the left limb optocoupler circuit

Figure 5.12: Final assembly and response of the designed optocoupler circuit

5.4.3 Motor driver

The carrier board for ST®VNH5019 general-purpuse motor driver shown in 5.13 is a fully integrated

H-bridge that works from 5.5 to 24 V and can deliver continuous 12 A, working for bidirectional

speed control. It works with 2.5 to 5 V logic levels. In combination with embedded protection

against reverse-voltage, over-voltage, under-voltage, over-temperature, and over-current. To set up

the speed of operation, it must be introduced to the board via an external input signal.

Figure 5.13: VNH5019 Motor Driver Carrier

The main features of the H-bridge are summarized in the Table 5.4
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Table 5.4: Main characteristics of VNH5019 Motor driver carrier

Feature Description

Operating voltage 5.5−24V

Output current 12A

PWM operation Up to 20kHz

Protection

Reverse voltage −16V

Extreme input voltage 41V

Undervoltage and

overvoltage shutdown
24V

High-side and low-side thermal shutdown

Short-to-ground and short-to-Vcc protection

The connections are shown in the Figure 5.14, this was the same scheme used for each motor.

Figure 5.14: VNH5019 Motor Driver carrier connection schematic

5.4.4 Oscillator

To set the operating frequency of the motors, it was necessary to implement a 555 timer IC in

astable configuration. It was chosen as oscillation frequency 19.75 KHz, with duty cycle of 66.5%

and a external capacitor of 560pF . Thus, the resistances were obtained as follows [148]:

R2 =
17×10−6s

0.694(560×10−12F)
= 43.7kΩ

127



5.4. ELECTRONIC DESIGN CHAPTER 5. EXPERIMENTAL SETUP

R1 =
17×33.7−6s

0.694(560×10−12F)
−43700Ω = 43kΩ

The final schematic configuration of the oscillator can be seen in 5.15. In 5.15a are shown

the connections used to obtain the 19.75 KHz square signal (referred in the figure as PWMOut,

this signal was used to establish the working frequency in the motor driver (see 5.4.3). There

were chosen appropriated resistor values (E12 values), resulting in R1 = 39KΩ+4.7KΩ and R2 =

33KΩ+10KΩ, which can be seen in 5.15b.

(a) NE555 Oscilator connection schematic (b) NE555 Oscilator final layout

Figure 5.15: Oscillator final configuration

The output signal given by the previous circuit is shown in 5.16. Here we can see that the final

output frequency is 18.18 KHz (Figure 5.16a), which means 8.63% error, generated by the variations

between the theoretical and real values both resistors and capacitor. In 5.16b is shown that the tH is

36µs, representing 6.82% of error. For the tL it is seen in Figure 5.16c that it last 19µs, representing

11% of error.
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(a) Final oscillation frequency (b) tH final output

(c) tL final output

Figure 5.16: Output signal obtained from the 555 IC

5.4.5 Fixed voltage source

A couple of stable voltage sources were designed to maintain the measurements accurate. Both

circuits were assembled accordingly to its datasheet proof of concept circuit, for L7808 IC as shown

in Figure 5.17a and LF33 IC displayed in Figure 5.17b . On the first hand, the 5V stable voltage was

used for the output part in the optical isolation section of the electronics (5.4.2), to power the motor

driver carrier 5.4.3 and the oscillator 5.4.4, this IC is energized by a +12V voltage source.

On the other hand, the LF33 IC that delivers 3.3V meets the working voltage of the TIVA (which

works with 3.3-V-tolerant in input). This sets the input voltage for the indirect-position sensor, mea-

sured by the potentiometer embedded in the LA. The stability in the input voltage guarantees the

consistency in the measurement for the tracking trajectories at each linear actuator, to energized it,

it was used an independent 5V source connected directly to the general line.

The final outcome of both fixed voltage ICs is displayed in Figure 5.18. The final assembly of

both 7805 and LF33 ICs can be seen in Figures 5.18b and 5.18a, respectively. To verify that the
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voltages were as needed, the output was verified through oscilloscope signal, as can be seen in

5.18c for the 3.3V IC where the delivered output is 3.38V , representing 2.42% error. For the 5V

expected outcome, Figure 5.18d shows that the voltage is 5.08V , meaning an error of 1.6%.

(a) 7805 Electronic diagram (b) LF33 Electronic diagram

Figure 5.17: Diagram of stable voltage sources

(a) Final arragement of LF33 IC (b) Final arragement of 7805 IC

(c) LF33 IC output signal (d) 7805 IC output signal

Figure 5.18: Final results of the fixed voltage sources
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5.4.6 Linear actuators

The actuators used to drive all the joints in the BR were Servocity®linear actuators. Its characteris-

tics are shown in the Table 5.5. They were chosen due to its Velocity, stroke and dynamic thrust that

can reach the characteristics of a normal Human Gait (HG)

Table 5.5: General characteristics of the linear actuators used in the hip and knee

Actuators

Actuator Stroke (cm) Mass (Kg) Velocity (cm/s) Dynamic thrust (Kg) Current draw (A)

2” 4.9784 1.0829 3.4798 11.3398 3.8

4” 9.9822 1.1396 3.4798 11.3398 3.8

6” 14.986 1.2275 3.4798 11.3398 3.8

All the linear actuators have an embedded 10KΩ linear pot position feedback. Since the pot

wiper delivers the position signal to the TIVA, it is necessary to ensure that the voltage does not

exceed the 3.3V and that it is constant trough the whole rod displacement.

5.5 Software Implementation

Once all the previous sections were evaluated and implemented, the controller was programmed in

the TIVA following the scheme depicted in Figure 5.19. Each step is described below:

(a) Here, the GPIOs are set as write or read. there was necessary two for moving back-

wards and forwards each linear actuator and one for the position sensor.

(b) Each reference trajectory was presented as a vector of 251 positions, each position is

in terms of degrees. The initial gains, constants and variable initialization were defined

here.

(c) A counter was initialized, letting advance the program along the trajectory vector. If

the counter is still in the vector the program continues to (d). Otherwise the counter is

reinitialized.

(d) The error variables (measured and estimated) are updated for each position. This allows

to implement numerical differentiation and integration over the vector.

(e) A value is read from each LA.

(f) The value read is adjusted to a relationship between the value read, the maximum volt-

age (3.3V ) and the resolution of the ADC (12-bits). This, in turn, is used to obtain the

ratio between the voltage and the angular position of the joint.

(g) This point allows getting the current discrepancy between the reference trajectory and

the current position.
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(h) A subroutine to define the sign of the error is accomplish.

(i) The controller structure proposed in 3.13 was implemented. Here, once defined the

magnitude of the control signal, the supertwisting algorithm is implemented following

the structure shown in 3.29. Having defined this parameter, each matrix was defined

component by component and the terms Γ
(

ξ E(t)
)

, z
(

δ E
)

and were also mince.

(j) The following step consists in writing through the proper outputs (considering the di-

rection of the rotational displacement) the magnitude of the controller in term of values

between zero and 255, leaving a delay of 10µs.
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(h)

(i)

(j)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Y

N

Figure 5.19: Control implementation flowchart

5.6 Experimental evaluations

Figure 5.20 shows the temporal evolution of the proposed controller over a period of 26 seconds.

The sequence of photos demonstrates the relative placement of linear actuators with respect to the

mechanical structure of the biped robot, which is a contribution of this study. The photos confirm the
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smooth movement of both legs for the suspended biped robotic device, demonstrating the effective-

ness and potential application of the proposed controller. It is important to note that the slow gait

cycle depicted in this figure was intentionally selected to improve the visualization of the controller’s

effect on the biped robot configuration over time.

6s

26s20s18s

8s 11s9s

14s

Figure 5.20: Frames of the behavior of the biped structure using the proposed controller
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Conclusions

This thesis presents several contributions in the field of bipedal robotics. Two modeling techniques

are proposed to overcome the dynamical differences arising from using linear actuators as mobiliz-

ing joint devices, where the joints act as closed-kinematic chains. The dynamical model of the linear

actuator is developed, considering its velocity limitations and restricted screw movement range.

Moreover, an adaptive controller is proposed for a class of simplified biped robots with state restric-

tions, which are handled using state-dependent gains in a state feedback controller. The proposed

controller is inspired by a traditional state feedback formulation that contains gains that are adjusted

using the online evaluation of the tracking error and its derivative. A robust and exact differentia-

tor based on the STA is applied to simplify the implementation of the proposed controller, making

a contribution to the automatic control of biped robots. The proposed approach yields a class of

output-based controller with the gains depending on the estimated derivative of the tracking error.

The stability analysis allows obtaining the time-dependent gain adjusting law, which guarantees the

tracking of reference trajectories.

Experimental results confirm that the proposed controller provides better tracking of the refer-

ence states than the traditional state feedback control realization, guaranteeing the satisfaction of

state constraints. The proposed controller appears to be a significant basis for developing finite time

controllers for state-restricted systems. Additionally, a mechanical structure is proposed that allows

for the three-dimensional movement necessary for bipedal gait, enabling hip abduction and adduc-

tion, and flexion and extension movements to be performed safely. The electronic design enables

the coordinated human-based reference trajectory tracking of the complete biped robot, as well as

providing protection and sensing of the robot’s positions during the execution of the proposed ac-

tivities. Furthermore, the use of MARL allows the generation and control of suitable trajectories

and control signals, respectively, resulting in a decrease of more than 15% in energy consumption
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compared to a classical feedback controller.

Future work includes adjusting the gains in the proposed bLf controller through the MARL, which

would lead to the inclusion of barriers during the simulated walk. Moreover, the integration of the

RL algorithm using appropriate hardware adjustments to the use of simulated MARL-bLfin the biped

robotic structure would allow implementing biped walking using the linear actuators-based structure.
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[22] Peter Wieland and Frank Allgöwer. “CONSTRUCTIVE SAFETY USING CONTROL BAR-

RIER FUNCTIONS”. In: IFAC Proceedings Volumes 40.12 (2007), pp. 462–467. (Visited on

07/07/2022).

[23] William EH Harcourt-Smith and Leslie C Aiello. “Fossils, feet and the evolution of human

bipedal locomotion”. In: Journal of anatomy 204.5 (2004), pp. 403–416.

[24] William EH Harcourt-Smith. “The origins of bipedal locomotion”. In: Handbook of paleoan-

thropology 3 (2007), pp. 1483–1518.

[25] Chandra Prakash, Rajesh Kumar, and Namita Mittal. “Recent developments in human gait

research: parameters, approaches, applications, machine learning techniques, datasets and

challenges”. In: Artificial Intelligence Review 49.1 (2018), pp. 1–40.

[26] Donald A. Neumann. Kinesiology of the musculoskeletal system-e-book: foundations for re-

habilitation. Elsevier Health Sciences, 2013.

[27] J. Perry and B. Schoneberger. Gait Analysis: Normal and Pathological Function. SLACK,

1992. ISBN: 9781556421921.

[28] Donald A. Neumann. Kinesiology of the Musculoskeletal System 3rd Edition. 3rd ed. ELSE-

VIER, 2018. ISBN: 9780323287531,2016032304.

[29] J. R. Leigh. Control theory. In collab. with Institution of Electrical Engineers. 2nd ed. IEE con-

trol engineering series 64. OCLC: ocm53460840. London: Institution of Electrical Engineers,

2004. 297 pp. ISBN: 978-0-86341-332-2 978-0-86341-339-1.

[30] Tom M Mitchell and Tom M Mitchell. Machine learning. Vol. 1. 9. McGraw-hill New York, 1997.

141

https://doi.org/10.1109/ACC.2015.7172044
https://doi.org/10.1007/978-3-030-43089-4_25
https://doi.org/10.15607/RSS.2017.XIII.073


BIBLIOGRAPHY BIBLIOGRAPHY

[31] Muddasar Naeem, Syed Tahir Hussain Rizvi, and Antonio Coronato. “A Gentle Introduc-

tion to Reinforcement Learning and its Application in Different Fields”. In: IEEE Access 8

(2020), pp. 209320–209344. ISSN: 2169-3536. DOI: 10.1109/ACCESS.2020.3038605. URL:

https://ieeexplore.ieee.org/document/9261348/ (visited on 07/10/2022).

[32] Richard S. Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. Second.

Cambridge, MA: The MIT Press, 2018. ISBN: 9780262039246.

[33] Forest Agostinelli et al. “From Reinforcement Learning to Deep Reinforcement Learning:

An Overview”. In: Braverman Readings in Machine Learning. Key Ideas from Inception to

Current State. Ed. by Lev Rozonoer, Boris Mirkin, and Ilya Muchnik. Vol. 11100. Series Title:

Lecture Notes in Computer Science. Springer International Publishing, 2018, pp. 298–328.

ISBN: 978-3-319-99491-8. DOI: 10.1007/978-3-319-99492-5_13. URL: http://link.

springer.com/10.1007/978-3-319-99492-5_13 (visited on 07/10/2022).

[34] Stephen E. Glickman and Bernard B. Schiff. “A biological theory of reinforcement.” In: Psy-

chological Review 74.2 (1967), pp. 81–109. DOI: 10.1037/h0024290. (Visited on 07/08/2022).

[35] Edward Lee Thorndike. Animal Intelligence. New York: The Macmillan company, 1911, p. 328.

[36] Frank L. Lewis and Draguna Vrabie. “Adaptive dynamic programming for feedback control”.

In: Proceedings of 2009 7th Asian Control Conference, ASCC 2009 (2009), pp. 1402–1409.

[37] L. P. Kaelbling, M. L. Littman, and A. W. Moore. “Reinforcement Learning: A Survey”. In:

Journal of Artificial Intelligence Research 4 (May 1, 1996), pp. 237–285. ISSN: 1076-9757.

DOI: 10.1613/jair.301.

[38] What Is Reinforcement Learning? - MATLAB & Simulink. The MathWorks, Inc. URL: https://

www.mathworks.com/help/reinforcement-learning/ug/what-is-reinforcement-

%20learning.html (visited on 07/10/2022).

[39] Ismini Lourentzou. “Markov Games and Reinforcement Learning”. In: ().

[40] Frank L. Lewis, Draguna Vrabie, and Kyriakos G. Vamvoudakis. “Reinforcement Learn-

ing and Feedback Control: Using Natural Decision Methods to Design Optimal Adaptive

Controllers”. In: IEEE Control Systems 32.6 (Dec. 2012), pp. 76–105. ISSN: 1066-033X,

1941-000X. DOI: 10.1109/MCS.2012.2214134. URL: https://ieeexplore.ieee.org/

document/6315769/ (visited on 07/11/2022).

[41] Shiyu Chen and Yanjie Li. “An Overview of Robust Reinforcement Learning”. In: 2020 IEEE

International Conference on Networking, Sensing and Control (ICNSC). Oct. 2020, pp. 1–6.

DOI: 10.1109/ICNSC48988.2020.9238129.

142

https://doi.org/10.1109/ACCESS.2020.3038605
https://ieeexplore.ieee.org/document/9261348/
https://doi.org/10.1007/978-3-319-99492-5_13
http://link.springer.com/10.1007/978-3-319-99492-5_13
http://link.springer.com/10.1007/978-3-319-99492-5_13
https://doi.org/10.1037/h0024290
https://doi.org/10.1613/jair.301
https://www.mathworks.com/help/reinforcement-learning/ug/what-is-reinforcement-%20learning.html
https://www.mathworks.com/help/reinforcement-learning/ug/what-is-reinforcement-%20learning.html
https://www.mathworks.com/help/reinforcement-learning/ug/what-is-reinforcement-%20learning.html
https://doi.org/10.1109/MCS.2012.2214134
https://ieeexplore.ieee.org/document/6315769/
https://ieeexplore.ieee.org/document/6315769/
https://doi.org/10.1109/ICNSC48988.2020.9238129


BIBLIOGRAPHY BIBLIOGRAPHY

[42] John Schulman. “Optimizing expectations: From deep reinforcement learning to stochastic

computation graphs”. PhD thesis. UC Berkeley, 2016.

[43] Part 2: Kinds of RL Algorithms — Spinning Up documentation. 2018. URL: spinningup.

openai.com/en/latest/spinningup/rl_intro2.html (visited on 07/04/2022).

[44] Volodymyr Mnih et al. “Asynchronous methods for deep reinforcement learning”. In: Interna-

tional conference on machine learning. PMLR. 2016, pp. 1928–1937.

[45] John Schulman et al. “Proximal policy optimization algorithms”. In: arXiv preprint (2017).

[46] Volodymyr Mnih et al. “Playing atari with deep reinforcement learning”. In: arXiv preprint

arXiv:1312.5602 (2013).
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Appendix A

Mechanical drawings of the proposed

structure

The robotic device consists of three main parts: the hip and the left and right limbs, which in turn

have their own segments. The following images show the dimensions and hinges associated with

each main section.
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